
www.it-ebooks.info

http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.it-ebooks.info

http://www.it-ebooks.info/

iv

Contents at a Glance
n About the Author ...xv
n About the Technical Reviewer ...xvi
n Acknowledgments ...xvii
n Introduction ..xviii
n Chapter 1: Overview of HTML5 and ASP.NET 4.5 ..1
n Chapter 2: Overview of jQuery ..35
n Chapter 3: Working with Audio and Video ..63
n Chapter 4: Drawing with the Canvas ...83
n Chapter 5: Working with Forms and Controls ..119
n Chapter 6: Using History API and Custom Data Attributes ..165
n Chapter 7: Storing Data in Web Storage ...183
n Chapter 8: Developing Offline Web Applications ..203
n Chapter 9: Dealing with Local Files Using the File API ..223
n Chapter 10: Multithreading in Web Pages Using Web Workers255
n Chapter 11: Using the Communication API and Web Sockets ...277
n Chapter 12: Finding Location with the Geolocation API ..305
n Chapter 13: Styling Web Forms and Views with CSS3 ...323
n Appendix A: HTML5 Learning Resources ...351
n Index ..353

www.it-ebooks.info

http://www.it-ebooks.info/

xviii

Introduction

Welcome to the exciting world of HTML5! If you’re an ASP.NET developer looking to turbocharge your
ASP.NET applications with HTML5 features, you’ve picked the right book. Compared to its successors,
HTML5 offers a much richer and complex set of features. HTML5 isn’t just about additional markup tags—
it’s about APIs that you can program using client-side script.

On one hand, HTML5 simplifies tasks that weren’t possible previously; but at the same time, it calls for
a detailed understanding of HTML5 features and ways to integrate those features into your applications.
This is the reason you need a book that specifically talks about integrating HTML5 into your web
development framework: ASP.NET. When ASP.NET was initially released, the core focus was on server-side
programming. However, due to the popularity of Ajax, the client side became increasingly rich. Most
professional web sites developed today tap the power of JavaScript and Ajax to provide a better user
experience. Because many HTML5 features are programmable using JavaScript, the overall work done at
the client side will continue to increase. ASP.NET, JavaScript, Ajax, and HTML5 may sound like
independent pieces, but in reality they complement each other to form a complete picture of modern web
application development. This book is intended to help you understand what this picture looks like and
how to tap the full potential of HTML5 features in your ASP.NET web applications.

Who Is This Book For?
This book is for ASP.NET web developers who want to tap the power of HTML5 in their existing or new web
applications. This book doesn’t teach about ASP.NET features as such. I assume you’re already comfortable
working with ASP.NET and doing web application development in general.

All the code samples discussed in this book use C# as the server-side programming language. So, you
should also know C#. For the client-side code, the book uses jQuery—a JavaScript-based library. Although
no prior knowledge of jQuery is expected, I assume you’re familiar with the basics of JavaScript.

The examples illustrated throughout the book use SQL Server and Entity Framework. Although you
need not have a detailed understanding of these, you should be familiar with them.

Finally, the book uses Visual Studio as the development tool. You should know how to work with Visual
Studio to perform basic tasks such as creating projects and debugging code.

Web Forms or MVC
ASP.NET offers two options for developing web applications: ASP.NET Web Forms and ASP.NET MVC.
Using the HTML5 features discussed in this book is more or less the same whether you’re developing Web
Forms–based applications or MVC-based applications. So, this book presents the code samples as a mix of

www.it-ebooks.info

http://www.it-ebooks.info/

xix

 n introduction

Web Forms and MVC applications. Where there is difference in the usage of HTML5 features, both options
are covered. All the MVC applications use ASPX views.

Software Required
In order to work through the examples discusses in this book, you need the following software:

•	 Visual Studio 2012

•	 SQL Server 2012

•	 Web browsers: Internet Explorer 9, Firefox, Chrome, Opera, and Safari

Although I used Visual Studio Professional 2012 to develop the book’s examples, most of the examples
can also be developed using Visual Studio Express 2012 for Web.

All the data-driven examples were developed using SQL Server 2012 Express Edition. I use the
Northwind sample database in many examples, and I suggest that you install it at your end. You can
download the Northwind database and its script from the MSDN downloads web site. Some examples
(especially those needing Web Socket protocol support) require Windows 8 in order to run successfully.

HTML5 is an evolving specification. As of this writing, various browsers support HTML5 features to
varying degrees. Throughout the book, I use different browsers (IE9, Firefox, Chrome, Opera, and Safari) to
illustrate HTML5 features. When you’re developing a web application that uses HTML5 features, it’s
recommended that you test the features in these browsers. So, you should install the latest versions of all
these browsers on your development machine.

Structure of This Book
This book is organized in 13 chapters and 1 appendix. A quick overview follows:

•	 Chapter 1 gives you a brief overview of the HTML5 features discussed in the book.
Some Visual Studio 2012 features that are important from an HTML5 point of view
are also discussed.

•	 Many features of HTML5 can be programmed using JavaScript. Chapter 2 teaches
you the basics of jQuery—a popular JavaScript library. You use jQuery throughout
the book. If you’re unfamiliar with jQuery, this chapter gets you up and running.

•	 Playing audio and video files is now easy because HTML5 provides native support
for playing media files. Chapter 3 covers these two areas in detail.

•	 Chapter 4 covers the HTML5 canvas, a feature that allows you to draw inside a
browser window using JavaScript objects intended for that purpose.

•	 If you develop data-driven web applications using ASP.NET, Chapter 5 is bound to
catch your attention: it covers new HTML5 input types and enhancements to HTML
forms.

•	 Chapter 6 discusses the history API and custom data attributes (data-*). The history
API lets you add entries to the browser history programmatically, and custom data
attributes allow you to define metadata for an element.

www.it-ebooks.info

http://www.it-ebooks.info/

xx

 n introduction

•	 HTML5 introduces a new type of client-side storage called web storage. Using web
storage, you can store pieces of information as key-value pairs. Chapter 7 covers this
useful topic.

•	 Although most web applications require a live network connection in order to
function properly, some applications can be developed to work offline. Chapter 8
discusses what offline web applications are and how to develop one.

•	 Chapter 9 shows how you can use the file API to read file information and the
content of files selected by the user. This chapter also teaches you to use HTML5
native drag-and-drop.

•	 Web workers let you develop web pages such that JavaScript processing can be run
in the background. This way, the user interface is responsive to user interactions
processing logic behind the scenes. Chapter 10 covers this important and useful
feature.

•	 HTML5 has added new ways in which the client and server can communicate. They
include the postMessage API, server-sent events, XMLHttpRequest (Level 2), and
Web Sockets. All of them are the subject matter of Chapter 11.

•	 As mobile devices become more and more popular, web applications that customize
themselves according to the user’s current location are finding their way into
handheld gadgets. Chapter 12 discusses geolocation—the feature that lets you
develop location-aware web applications.

•	 Chapter 13 covers some of the important enhancements to Cascading Style Sheets
version 3 (CSS3). Using these features, you can add fancy frills to your HTML
elements, such as web fonts, shadows, transparency, gradients, and borders with
rounded corners.

Appendix A lists some learning resources for HTML5.

Downloading the Source Code
The complete source code for the book is available for download at the book’s companion web site. Visit
www.apress.com, and go to this book’s information page. You can then download the source code from the
Source Code/Download section.

Contacting the Author
You can reach me via my web sites www.bipinjoshi.com and www.bipinjoshi.net. You can also follow me on
popular social-networking web sites such as Facebook and Twitter (see the “Subscribe” section on my web
sites for the links).

www.it-ebooks.info

http://www.apress.com
http://www.bipinjoshi.com
http://www.bipinjoshi.net
http://www.it-ebooks.info/

1

n n n

chapter 1

Overview of HTML5 and
ASP.NET 4.5

Until recently, ASP.NET developers didn’t need to bother much about the version number of HTML—and
now suddenly everybody is talking about HTML5! That’s the kind of impact the evolved HTML standards
will have on the web pages we develop now and in the future. Of course, the old functionality provided by
traditional HTML (such as HTML 4.01) isn’t going away. The previous version is an integral part of HTML5,
but the new improvements offered by HTML5 are appealing to any ASP.NET developer.

This chapter gives you a quick overview of HTML5 features. It also explains how HTML5 and ASP.NET
fit into a web application. An overview of the ASP.NET web stack and step-by-step tour of project creation
in Visual Studio give you a quick brush-up of your ASP.NET skills.

This chapter specifically covers:

•	 A brief history of HTML5

•	 HTML5 page layout

•	 New markup tags

•	 HTML5 programmable features

•	 Where and how HTML5 fits in an ASP.NET application

History of HTML5
To understand the magic behind the number 5, it would be worthwhile to peek into the history and
inspiration behind the evolution of HTML standards over a decade. If you’ve been designing web pages
since the early days of the Web, you’ll recollect that back then, a web page was basically a collection of
static HTML elements. Web pages lacked the interactivity, responsiveness, and complexity you see today.
The old HTML was merely a set of markup tags that web developers and designers used to create web
pages. It was also careless about the strictness of the markup.

After completing the majority of work on HTML 4, the World Wide Web Consortium (W3C) decided to
develop a standard—XHTML—for HTML markup. The XHTML specifications introduced strict rules for
HTML markup such as requiring that start tags have corresponding end tags, tags be properly nested, and
so on. These rules were introduced with good intentions and were appreciated by the developer
community. However, it became apparent that nobody wanted to give up web pages developed using the

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 1 n overview of htML5 and asp.net 4.5

2

old HTML that didn’t meet the rules enforced by XHTML. Neither web-page developers nor browser
companies stopped their support for traditional HTML markup in favor of the new XHTML standards. As a
result, web pages became a mix of old HTML and XHTML. There were efforts to evolve XHTML further, but
the browser and developer community simply refused to give up support for plain old HTML markup. The
XHTML rules, although good from a theoretical point of view, weren’t compelling enough to make the web
community abandon support for traditional HTML.

In 2004, a group of people, mostly from browser manufacturing companies (such as Apple, Mozilla,
and Opera), formed the Web Hypertext Application Technology Working Group (WHATWG). The newly
formed group began looking at HTML from a different perspective. Instead of talking in terms of rules,
standards, and strictness, they brainstormed about features that, if added to HTML, would add value for
web designers and developers. Traditional HTML (official version 4.01) coupled with these additional
features became HTML5. This initiative got support from the community, developed momentum, and was
taken over by W3C for standardization in 2007. In January 2008, W3C published a working draft of HTML5.
In addition, XHTML5 (a set of standards for HTML5 documents) was introduced; it’s essentially an update
to XHTML and is being defined alongside the HTML5 specifications.

The past showed that it’s impossible to abandon HTML and replace it with something else. So, HTML
is considered a current standard: although it’s called HTML5 to refer to its new capabilities, from the
browser and specifications point of view it’s just HTML. The next section makes this clear when you learn
the basic layout of an HTML5 page.

n Note Although XHTML could never replace HTML, it had a positive impact on web developers and designers.
Due to XHTML’s strict rules, web page developers and designers became more conscious of improving the structure
of their web pages. The web-design tools also improved by highlighting markup-level errors caused by improper
nesting and missing end tags.

HTML5 Page Structure
Now that you know the brief history of HTML5, let’s see a simple HTML5 web page in action. Open any text
editor, such as Windows Notepad, TextPad, or Visual Studio’s default text editor, and key in the markup
shown in Listing 1-1.

Listing 1-1. A Simple HTML5 Page

<!DOCTYPE html>
<html>
 <head>
 <title>Welcome to HTML5</title>
 </head>
 <body>
 <h1>Hello HTML5!</h1>
 </body>
</html>

Save the file as Hello.htm, and double-click it to open in your default browser. Figure 1-1 shows a
sample run of Hello.htm in Internet Explorer 9 (IE9).

www.it-ebooks.info

http://www.it-ebooks.info/

3

chapter 1 n overview of htML5 and asp.net 4.5

Although constructing this web page isn’t rocket science, it throws light on some interesting things.
First, look at the <!DOCTYPE> declaration in Listing 1-1: it tells you that this document is an HTML
document. Notice that there is no mention of the HTML version in the DOCTYPE. That means even if new
features are added to HTML in the future (and they undoubtedly will be) the document is still an HTML
document and not an HTML4 or HTML5 document. Compare this simple DOCTYPE declaration with the
following pre-HTML5 declaration:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” “http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd”>

The complex DOCTYPE declaration is reduced to a simple form in HTML5.
Listing 1-1 includes properly nested markup tags such as <head>, <title>, and <h1>. However, HTML5

and web browsers forgive most nesting errors, just like old HTML. Of course, as a good practice you should
follow the guidelines of well-formed and -structured markup.

In the preceding example, you used a text editor to create Hello.htm. As an ASP.NET developer, you
probably use Visual Studio or Visual Studio Express for Web to develop your web pages. Luckily, these tools
understand and support HTML5 markup. Figure 1-2 shows the Options dialog in Visual Studio, where you
can configure the relevant settings.

Figure 1-1. A sample run of Hello.htm

Figure 1-2. Options dialog in Visual Studio

www.it-ebooks.info

http://www.w3.org/TR/xhtml1/DTD/
http://www.it-ebooks.info/

chapter 1 n overview of htML5 and asp.net 4.5

4

When you configure Visual Studio to use HTML5 (Visual Studio 2012 uses HTML5 by default), all the
HTML pages and Web Forms you create use the HTML5 style of DOCTYPE declaration. The markup in Listing
1-2 shows the default web form markup created in an ASP.NET web site.

Listing 1-2. Default Markup for a Web Form

<%@ Page Language=”C#” %>

<!DOCTYPE html>
<script runat=”server”>
</script>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title></title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <div>
 </div>
 </form>
</body>
</html>

You can also see HTML5-specific markup tags in Visual Studio IntelliSense (Figure 1-3).

Figure 1-3. HTML5-specific tags in Visual Studio IntelliSense

Although HTML5 and web browsers forgive most markup errors, as a good developer you should
ensure that your HTML5 page markup follows the recommended usage rules. To assist with this task, you
can use the W3C Markup Validation Service: an online utility that validates your HTML and XHTML
documents. Figure 1-4 shows this utility with Hello.htm as the input.

www.it-ebooks.info

http://www.w3.org/1999/xhtml%E2%80%9D
http://www.it-ebooks.info/

5

chapter 1 n overview of htML5 and asp.net 4.5

Note that this tool may not correctly validate ASP.NET server-side markup. For example, the
runat=”server” attribute may be flagged as an error. If you’re using Visual Studio, your job is simpler
because validation errors are automatically highlighted as you key in your markup (see Figure 1-5).

Figure 1-4. Validating an HTML5 document

Figure 1-5. HTML5 document validation in Visual Studio

n Note You might wonder why HTML pages created in Visual Studio have xmlns set to http://www.w3.
org/1999/xhtml. This namespace indicates that an HTML5 document is using validation rules from the XHTML5
specifications; Visual Studio editor flags validation errors accordingly.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 1 n overview of htML5 and asp.net 4.5

6

A Quick Look at HTML5-specific Tags
Before you move ahead to the programmable features of HTML5, it would be helpful to glance over a few
newly added elements. Table 1-1 presents a list of elements that not only allow you to design more
structured web pages but also provide functionality that has never before been part of HTML markup.
Note, however, that any detailed discussion of the elements related to the well-structuredness of web
pages (the first couple of rows in Table 1-1) is beyond the scope of this book.

n Note You can fine a neat and handy HTML5 tag reference at http://w3schools.com/html5/default.
asp.

You come across some of the elements mentioned in Table 1-1 in the chapters to follow. They’re explained
as and when required.

Table 1-1. Newly Added HTML5 Elements

Elements Description
<article>, <header>, <hgroup>,
<footer>, <section>, <summary>,
<aside>, <nav>

These elements allow you to design a page in a more structured
manner (such as an article or blog post). Previously, developers used
a combination of <div>, , and <p> to design HTML pages.
Although that approach is perfectly acceptable, even under HTML5,
the new layout elements can come in handy to mark specific areas
of pages such as headers, footers, summaries, and sidebars. The new
elements are more readable and meaningful in a given context, and
you can design your CSS styles specifically for them. These elements
also make it possible for third-party tools and utilities to parse the
HTML document and automate page processing.

<figure>, <figcaption> Using images in a web page is a common task for which you use
. The <figure> and <figcaption> tags are used to mark figures
that serve as illustrations in an article or document.

<input> The <input> tag itself isn’t a new addition to HTML5. However, it
now has many new values for its type attribute: Email, URL,
Telephone, Color, and so on.

<audio>, <video> Showing audio and video files used to be tricky and often required
dependency on a plug-in (Flash or Silverlight, for example). The new
<audio> and <video> elements provide a native way for browsers to
identify (and play) media files.

<canvas> The <canvas> element is a region where you can draw shapes, text,
and images using JavaScript code.

HTML5 Features of Interest
Enhanced markup is just a small part of the HTML5 story. HTML5 is more than markup; it includes a set of
features that you can program using client-side script.

Over time, web applications have moved beyond static markup. Almost all modern web applications
use technologies such as JavaScript, jQuery, Ajax, validations, data access, and more. To cope with the
changing nature of web applications, HTML5 has taken steps in the right direction by offering native
support for features that are commonly needed by web developers. Rather than rely on a third party to

www.it-ebooks.info

http://w3schools.com/html5/default
http://www.it-ebooks.info/

7

chapter 1 n overview of htML5 and asp.net 4.5

provide support or develop such a feature from scratch, it’s easy to consume the native support provided
by HTML5. For example, ASP.NET developers used validation controls or custom validation libraries to
validate user input. But HTML5 natively supports many of the commonly needed validations. Thus
HTML5 is an umbrella that covers markup tag, markup standards, programmable APIs, and new JavaScript
objects.

The subsequent chapters of this book dissect the HTML5 APIs and associated JavaScript objects one
by one. This section’s overview of these programmable features gives you an idea of what’s coming.

Audio and Video
Playing audio and video files used to be tricky and often involved dependency on third-party plug-ins such
as Flash and Silverlight. HTML5 introduces <audio> and <video> elements so a web page can play media
files with ease. This native support means that playing media files requires no special plug-ins, applets, or
ActiveX controls. HTML5 also provides audio and video APIs to control various aspects of the audio and
videos being played. This programmability gives you better control over the media files and how to play
them.

Canvas
One of the reasons for the popularity of the Web is the GUI offered to end users: images, animations, fonts,
and other interactive effects make a web site appealing from an end user’s perspective. However, web
developers often encounter limitations when drawing graphics in the browser. Developers commonly use
Flash or Silverlight plug-ins to generate graphics on the server side and then send them to the client
browser as pictures.

HTML5 does a great job in client-side graphic rendering by offering the <canvas> element. You do your
actual drawing using the canvas API. Some of the areas in which the canvas API can be useful include
charting, gaming, and online drawing tools.

History API
Before the advent of HTML5, web developers had little control over session history and its manipulation.
The HTML5 history API provides a means to perform tasks such as moving forward and backward in the
session history, adding new entries to the history, and synchronizing page content when the user navigates
within the history. The history API is a standardized way to manipulate the browser history via JavaScript
and is especially useful in Ajax-driven applications that have no one-to-one mapping between the page
URL and the content being displayed at a given point in time.

Web Storage
As an ASP.NET developer, you may have used cookies to store small pieces of data on the client side. One
limitation of using cookies is the amount of data that can be saved. For example, many browsers limit each
cookie to 4,096 bytes.

HTML5 web storage allows you to store more data on the client side using JavaScript code. Web
storage comes in two flavors: local storage and session storage. Local storage is persisted on the client
machine across browser sessions, whereas session storage is persisted only for the current session. These
storages are exposed as two new JavaScript objects: localStorage and sessionStorage.

4
www.it-ebooks.info

http://www.it-ebooks.info/

chapter 1 n overview of htML5 and asp.net 4.5

8

Offline Web Applications
Normally, web applications require a live connection with the server in order to function. This always-
connected behavior can create problems when the server goes offline for some reason or the network
connection is lost temporarily. The HTML5 application caching feature addresses these scenarios with the
help of the offline application caching API. Offline applications use a cache manifest file that stores a list of
files that are to be cached locally. A typical cache manifest includes a list of web pages, images, style sheets,
and script files. This way, these files are accessible even if the network connection is unavailable
temporarily. Your application can also use the offline application cache API to deal with updated versions
of pages.

File API
Traditionally, client-side code never had access to the local file system. But HTML5 allows you to read and
find information about local files. Such a feature lets you perform custom processing before a file or its
data is sent to the server. HTML5 drag-and-drop features and the file API can be used hand in hand to drag
files from the local machine onto a web page and then take further action (say, upload the file to the server
or show a thumbnail of an image file).

Web Workers
The web workers API brings multithreading to browser-based applications. Web workers essentially allow
you to load and execute JavaScript code in a separate thread without affecting the responsiveness of the
user interface. This means the end user can continue to work with the user interface while web workers
run some processing in the background. When the processing is complete, the user is notified or the page
is updated with the processing results.

Web Sockets
If you’ve ever programmed a desktop chat application, then you’re probably aware of socket programming.
Sockets are essentially programmable interfaces that plug into each other over a network. Once they’re
plugged in, the two systems can communicate with each other: client to server and server to client.

On the other hand, web pages are based on a request-response model. When a web server sends a
response to the client, it doesn’t hold a constant connection with the client. So, if the server wants to notify
the client about something interesting, it doesn’t have any way to do so. A popular way around this is to
periodically ping back to the server using Ajax requests. But this pull technique is still one-way
communication and isn’t always efficient due to the possibility of too many requests.

Web sockets, on the other hand, provide a two-way communication channel that lets the server send
data to the client browser. They offer socket programming capabilities for web applications.

Geolocation
Geolocation has the potential to become a popular feature of HTML5 because it brings location awareness
to web applications. Using geolocation, you can develop applications that are dependent on the user’s
location (assuming the device on which the page is running can report position). For example, a web site
may offer discounted rates or special offers to people living in a specific locality. In addition, geolocation
can be of great use on mobile devices such as mobile phones and tablets.

www.it-ebooks.info

http://www.it-ebooks.info/

9

chapter 1 n overview of htML5 and asp.net 4.5

CSS3
Strictly speaking, CSS3 isn’t a direct feature of HTML5 but is evolving along with HTML5. It’s worthwhile
for any HTML5 and ASP.NET developer to know CSS3. ASP.NET developers rely heavily on CSS for the sake
of look and feel and formatting Web Forms, views, and pages, and CSS3 introduces cool new features that
are bound to grab developers’ attention. Features such as boxes, shadows, web fonts, transforms,
transitions, and media queries are particularly worth noting because they let developers accomplish
things that weren’t easy before.

HTML5 and Browser Support
Even though HTML5 is not yet an official standard, you can start using many of its features in your
ASP.NET web applications. All the leading browsers—Mozilla Firefox, Google Chrome, Opera Software’s
Opera, Apple Safari, and Microsoft IE—support HTML5 in varying degrees. These days, most browsers
release updated versions frequently, and HTML5 support improves in each new version. IE is lagging
slightly behind as far as the frequency of new releases is concerned, but IE9 does support several HTML5
features.

As a good programming practice, you should always test your Web Forms, views, and plain HTML
pages in the browser you’re targeting. There are two ways to check whether the target browser supports a
specific HTML5 feature:

•	 Statically at development time

•	 Dynamically at runtime

Checking for HTML5 Support Statically
With this approach, you manually ensure that the features used in your web pages are supported by your
target browser. You can get help from any of the online utilities that tell you whether a specific browser
version supports certain HTML5 features. Consider, for example, http://html5test.com, which provides a
nice way to detect browser support for HTML5. Figure 1-6 shows the home page of the HTML5 test site
displaying the HTML5 support score for the browser being used to view the site.

www.it-ebooks.info

http://html5test.com
http://www.it-ebooks.info/

chapter 1 n overview of htML5 and asp.net 4.5

10

As you can see in Figure 1-6, IE9 on Windows 7 scores 138 points out of 500. You can also check how
other browsers score. Figure 1-7 shows a feature comparison between Firefox 11, Chrome 18, and Opera
12.

Figure 1-6. http://html5test.com browser score

www.it-ebooks.info

http://html5test.com
http://www.it-ebooks.info/

11

chapter 1 n overview of htML5 and asp.net 4.5

IE9 scores poorly compared to other browsers. In addition, IE9 runs only on Windows 7, limiting its
audience further. As of this writing, Internet Explorer 10 is still in the development stage, but other
browsers are quite aggressive in releasing the new versions or updates. In real-world situations, rather than
targeting a single browser, you have no choice but to target multiple browsers and their varying support
for HTML5 features.

Checking for HTML5 Support Dynamically
Checking for HTML5 feature support statically works well only if you know the target browser. For
example, if you’re developing an intranet web application that is supposed to be used only by the
employees of a particular company, you may standardize on a specific browser and program HTML5
features accordingly. However, in today’s modern age, users can access web sites from many browsers and
devices—some of which only offer a specific browser choice—so relying on such browser standardization
may not be the best approach. If your web application is in widespread use, then you can’t guarantee
which browser the end users are using. A fact of real-world web application development is that you need
a robust and safe approach to detect browser support for HTML5 features at runtime. You need to plug in

Figure 1-7. Firefox, Chrome, and Opera scores compared

l
www.it-ebooks.info

http://www.it-ebooks.info/

chapter 1 n overview of htML5 and asp.net 4.5

12

code that detects the browser and its HTML5 support at runtime; then, based on the result, your web page
should either use those features or use some alternative.

You can manually add JavaScript code that performs various tests to detect whether a particular
HTML5 feature is supported by the target browser, but testing and managing such code is too complex
because there are so many things to check for. Luckily, utility libraries are available that make your life
easy. One such popular utility library is Modernizr. Modernizr is an open source JavaScript library that
helps you build HTML5- and CSS3-powered web sites. To use the Modernizr library, you first need to
download the development version or production version from http://modernizr.com. Unless you wish to
debug a script, the production version is recommended due to its compact size. You can also specify which
feature tests you would like to include in the library. The downloaded Modernizr library can then be used
in your web pages for feature detection.

To give you can idea of how Modernizr can be used, let’s develop a simple web page—
HelloModernizr.htm—and test for a few HTML5 features. Listing 1-3 shows the complete HTML markup of
HelloModernizr.htm.

Listing 1-3. Detecting Features Using Modernizr

<!DOCTYPE html>
<html>
 <head>
 <title>Welcome to HTML5</title>
 <script type=”text/javascript” src=”jquery-1.7.2.min.js”></script>
 <script type=”text/javascript” src=”modernizr-2.5.3.js”></script>
 <script type=”text/javascript”>
 $(document).ready(function () {
 if (Modernizr.audio) {
 $(“#Message”).append(“Your browser supports the HTML5 audio tag.
”);
 }
 if (Modernizr.video) {
 $(“#Message”).append(“Your browser supports the HTML5 video tag.
”);
 }
 if (Modernizr.canvas) {
 $(“#Message”).append(“Your browser supports the HTML5 canvas tag.
”);
 }
 if (Modernizr.draganddrop) {
 $(“#Message”).append(“Your browser supports HTML5 drag-anddrop.
”);
 }
 });
 </script>
 </head>
 <body>
 <h1>Hello HTML5!</h1>
 <div id=”Message”></div>
 </body>
</html>

As you can see, HelloModernizr.htm includes two JavaScript libraries in the head section. The first
<script> tag refers to a jQuery library, and the other refers to Modernizr. The <script> block that follows
tests for four HTML5 features: audio, video, canvas, and drag-and-drop. The feature-detection code runs
when the page is loaded in the browser. Notice the use of the Modernizr object, which has various

www.it-ebooks.info

http://modernizr.com
http://www.it-ebooks.info/

13

chapter 1 n overview of htML5 and asp.net 4.5

properties representing HTML5 features. If a particular feature is supported by the browser, this sample
page appends a message to a <div> element with the ID Message.

n Note The jQuery code used in HelloModernizr.htm is fairly easy to understand. The ready() function runs
when a web page is fully loaded in a browser. To select an HTML element with a specific ID, you use # syntax. The
append() method called on the <div> appends the supplied text/markup to the element. You learn about jQuery in
more detail in Chapter 2.

Figure 1-8 shows a sample run of HelloModernizr.htm in Firefox.

Figure 1-8. Sample run of HelloModernizr.htm in Firefox

Notice how support for the <audio>, <video>, and <canvas> tags and drag-and-drop is confirmed to be
available on the browser.

HTML5 and ASP.NET
You’ve learned the history of HTML5 and its features. You also created a couple of simple HTML5 pages
and used the Modernizr library to detect browser support for HTML5 features. Now, let’s see how HTML5
fits into the overall ASP.NET stack. Figure 1-9 shows the ASP.NET technology stack.

Figure 1-9. ASP.NET stack

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 1 n overview of htML5 and asp.net 4.5

14

As you can see, ASP.NET is part of the overall .NET Framework and relies heavily on .NET Framework
base class libraries. On the top of the .NET Framework, ASP.NET provides features and services that are
specific to web applications. These features and services include authentication, authorization,
membership, role management, and profile management, all of which can be consumed in ASP.NET web
sites and services. The two prominent ways of building ASP.NET web sites are Web Forms and MVC
applications. To develop services, you can use ASMX web services (available since version 1.0 of ASP.NET)
or other better options such as Windows Communication Foundation (WCF) services and the Web API.

Figure 1-9 shows that Web Forms and MVC views are going to use of HTML5. At first glance, you may
think the use of HTML5 is restricted to the display part of an ASP.NET application. Although the user
interface is where you use HTML5 heavily, the integration goes deeper. Figure 1-10 shows the integration
between HTML5 and ASP.NET.

Figure 1-10. HTML5 and ASP.NET interaction

The ASP.NET server-side infrastructure sends HTML5 markup to the browser when a request is
received. The ASP.NET server-side infrastructure consists of code in a web form code file or MVC
controller. Most real-world web applications use data residing in a data store such as SQL Server. To access
this business data, you can use a combination of ADO.NET and Plain Old CLR Objects (POCOs) or Entity
Framework.

When the ASP.NET server-side infrastructure sends HTML5 markup to the client browser, the browser
renders the user interface and allows the end user to work with the page. Many HTML5 features
mentioned earlier expose programmable APIs that can be consumed using JavaScript code. The JavaScript
code can, in turn, talk with the server to retrieve data or configuration needed for processing. For example,
suppose you let the end user plot a simple bar graph in the browser using the HTML5 canvas API. After the
graph is finished, you may want the user to save its data and related information to a database. This
requires transfer of data from the client browser to the server. To facilitate this data transfer, you can use
jQuery and send an Ajax request to a piece of server-side code. The server-side code then saves the data
into a database.

Some features of HTML5 may not need any server-side interaction once the page is rendered. For
example, you can display an HTML <form> that uses the new <input> types such as Email and URL. Doing so
doesn’t require any talk-back with the server.

www.it-ebooks.info

http://www.it-ebooks.info/

15

chapter 1 n overview of htML5 and asp.net 4.5

Now that you know where HTML5 fits in with ASP.NET, it’s worthwhile to know some features of Visual
Studio HTML editor that can make your life easy.

Features of the Visual Studio HTML Editor
The Visual Studio HTML editor offers many features that simplify web page design. As an ASP.NET
developer, you’re probably familiar with many features of the HTML editor, so this section doesn’t discuss
each and every one; instead, it examines some interesting aspects.

n Note You can refer to the MSDN documentation for all the available features of the Visual Studio HTML editor.
Searching for visual studio html editor in the MSDN library should get you started.

HTML Formatting
While you’re designing an HTML page, formatting various markup tags makes navigating and locating a
specific element easy. The Visual Studio HTML editor does a good job of formatting the markup tags for
you. If you need to tweak the default formatting behavior, you can do so via the Tools > Options dialog; see
Figure 1-11.

Figure 1-11. Changing HTML formatting options

Using formatting options you can, for example, configure whether closing tags should be
automatically added, attribute values should be enclosed in double quotes, and so on. Clicking the Tag
Specific Options button opens a dialog in which you can configure individual markup tags and their
settings (Figure 1-12).

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 1 n overview of htML5 and asp.net 4.5

16

Tag-specific options include outlining specifications (whether you can collapse and expand a tag, and
the minimum lines needed to enable this behavior), the tag’s foreground and background colors in the
HTML editor, line breaks, and so on. For most tags, the defaults set by Visual Studio work fine. However, in
some case you may want to alter the default values. For example, while working with web sites that use
<audio> and <video> tags heavily, you may want to consider changing the default tag foreground and
background colors to make them easier to locate.

IntelliSense and Validations for HTML5 Tags
One feature of the Visual Studio HTML editor that is popular among developers is IntelliSense. Although
IntelliSense is commonly used, a few things are worth noting because they aren’t obvious at first glance.

The IntelliSense list doesn’t show all possible HTML tags. Which tags are displayed for you to select
from is governed by the HTML validation scheme you’re using. You can configure the validation options
from the Options dialog, as shown in Figure 1-13.

By default, the Visual Studio 2012 HTML editor uses HTML5 and also shows errors when any of the
conditions listed under Show Errors are found.

Figure 1-12. Configuring formatting options for individual tags

www.it-ebooks.info

http://www.it-ebooks.info/

17

chapter 1 n overview of htML5 and asp.net 4.5

After you save the configuration, if you try to enter invalid HTML markup in a web page, the editor
shows it as a validation error. Figure 1-14 shows the error message that appears when attribute values
aren’t enclosed in quotes.

Figure 1-13. Configuring validation options

Figure 1-14. Validation error shown by the HTML editor

Also note that if you set the Validation option to something other than HTML5 (say, HTML 4.01),
HTML5-specific tags (such as <canvas>, <audio>, and <video>) won’t appear in IntelliSense.

HTML5 Snippets
Another time-saving feature of the Visual Studio HTML editor is HTML5 snippets. HTML5 snippets add a
commonly used fragment of HTML5 markup to the web page you’re editing. You can then customize the
fragment as needed. Figure 1-15 shows the HTML5 audio snippet in the IntelliSense window.

Figure 1-15. HTML5 snippet in IntelliSense

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 1 n overview of htML5 and asp.net 4.5

18

After you select an HTML5 snippet in IntelliSense, press the Tab key twice to fully expand the snippet and
add it at the current cursor location (Figure 1-16).

Figure 1-16. HTML5 audio snipped expanded after pressing the Tab key twice

Once the snippet is added in the editor, you can modify it to suit your needs.

Automatically Renaming End Tags
Sometimes you may accidently misspell HTML tags while keying them in a web page. For example, let’s
say that instead of <audio>, you enter <aidio>. By default, when you close a start tag, Visual Studio
automatically adds a corresponding end tag: the markup becomes <aidio></aidio>. To correct the error,
you don’t have to modify both the start and end tags—correcting the start tag automatically fixes the end
tag too.

JavaScript IntelliSense
Visual Studio offers IntelliSense not just for HTML5 markup tags but also for JavaScript code. Earlier, this
chapter looked at the jQuery and Modernizr libraries. Visual Studio provides IntelliSense for the objects,
methods, and properties of these libraries too. Figure 1-17 shows the properties of a Modernizr object
listed in the IntelliSense window.

Figure 1-17. JavaScript IntelliSense

Note that to display Modernizr members as shown in Figure 1-17, you must refer to the Modernizr
library in the page using <script> tag.

www.it-ebooks.info

http://www.it-ebooks.info/

19

chapter 1 n overview of htML5 and asp.net 4.5

Testing a Web Page in a Specific browserTesting
To ensure that your web page renders correctly in different browsers, you may need to run it in the
individual browsers. A feature of Visual Studio that comes handy in such situations is shown in Figure 1-18.

Figure 1-18. Running a web page in different browsers

The Run command on the standard toolbar shows a drop-down with all the browsers installed on a
machine. You can select any browser from the list, and Visual Studio will launch your web application in
the selected browser.

There is another way to browse HTML files in multiple browsers at once. If you right-click any HTML
file in Solution Explorer and select the Browse With menu option, a dialog opens as shown in Figure 1-19.

Figure 1-19. Selecting multiple browsers to view an HTML page

When you click Browse, the web page is launched in all the selected browsers.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 1 n overview of htML5 and asp.net 4.5

20

Sample Web Applications
Now that you have a basic understanding of what HTML5 has to offer you as an ASP.NET developer, let’s
conclude this chapter by developing two simple ASP.NET web applications that use HTML5 features. The
first web application uses ASP.NET Web Forms, and the second uses ASP.NET MVC.

n Note At this stage, you don’t need to worry too much about jQuery syntax and HTML5 feature utilization in these
web applications. The examples are meant to give you a quick and simplified understanding of what has been
discussed so far. Later chapters present thorough coverage of these topics.

A Simple ASP.NET Web Forms–based Web Application
Using HTML5
In this section, you develop an ASP.NET Web Forms–based application that plays audio and video files
using HTML5 <audio> and <video> tags. The audio and video files to be played are retrieved at runtime
using jQuery code.

Creating the ASP.NET Web Forms Project
To begin developing the application, create a new ASP.NET web application in Visual Studio using C# as
the coding language. Figure 1-20 shows the New Project dialog in Visual Studio.

Figure 1-20. Creating a new Web Forms project in Visual Studio

www.it-ebooks.info

http://www.it-ebooks.info/

21

chapter 1 n overview of htML5 and asp.net 4.5

Add three folders to the application: Images, Media, and Scripts. These folders store images, media
files (audio/video), and script files, respectively. Place a few MP3 audio files and MP4 video files in the
Media folder. Also copy jQuery and Modernizr library files into the Scripts folder. Figure 1-21 shows the
Solution Explorer after setting up these folders.

n Note If you haven’t downloaded the latest versions of the jQuery and Modernizr JavaScript libraries yet, you can
do so by visiting the respective web sites (http://jquery.com and http://modernizr.com). Keep a copy of
these files handy, because you use them in the examples throughout this book. You can also access them from the
Microsoft Content Delivery Network (CDN); that way, you don’t need to maintain a local copy of the files. Visit
http://www.asp.net/Ajaxlibrary/cdn.ashx for more details.

Figure 1-21. Solution Explorer with script, audio, and video files

Adding a Master Page and a Content Page
After you create the project, add a master page to the web application using the Add New Item dialog
(Figure 1-22).

www.it-ebooks.info

http://jquery.comand
http://modernizr.com
http://www.asp.net/Ajaxlibrary/cdn.ashx
http://www.it-ebooks.info/

chapter 1 n overview of htML5 and asp.net 4.5

22

Name the master page MasterPage.master, and add the markup shown in Listing 1-4.

Listing 1-4. Markup from MasterPage.master

<%@ Master Language=”C#” AutoEventWireup=”true” CodeBehind=”MasterPage.master.cs”
 Inherits=”Example_03.MasterPage” %>
<!DOCTYPE html>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Welcome to my HTML5 web site!</title>
 <link rel=”stylesheet” type=”text/css” href=”StyleSheet.css” />
 <script type=”text/javascript” src=”Scripts/jquery-1.7.2.min.js”></script>
 <script type=”text/javascript” src=”Scripts/modernizr-2.5.3.js”></script>
</head>
<body>
 <aside class=”sidebar”>
 <figure>

 <figcaption>HTML5 rocks!</figcaption>
 </figure>
 </aside>
 <section id=”content” class=”content”>
 <article>
 <form id=”form1” runat=”server”>
 <asp:ContentPlaceHolder ID=”ContentPlaceHolder1” runat=”server”>
 </asp:ContentPlaceHolder>
 </form>

Figure 1-22. Adding a master page

www.it-ebooks.info

http://www.w3.org/1999/xhtml%E2%80%9D
http://www.it-ebooks.info/

23

chapter 1 n overview of htML5 and asp.net 4.5

 </article>
 </section>
</body>
</html>

Notice that the markup shown in Listing 1-4 uses several HTML5-specific tags mentioned earlier in
Table 1-1. Also notice that the jQuery and Modernizr script files are referenced in the master page so that
not every content page has to refer to them again. As you enter the markup, notice how Visual Studio
IntelliSense shows HTML5-specific tags, making your job easy.

Now add a new web form with a master page using Add New Item dialog, and select
MasterPage.master as its master page (Figure 1-23).

Figure 1-23. Adding a web form with master page

Next, add the markup shown in Listing 1-5 to Default.aspx.

Listing 1-5. Markup for Default.aspx

<%@ Page Title=”” Language=”C#” AutoEventWireup=”true” MasterPageFile=”~/MasterPage.Master”
CodeBehind=”Default.aspx.cs” Inherits=”Example_03.Default” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”ContentPlaceHolder1”
 runat=”server”>
 <header>
 <h1>Play random Audio and Video files!</h1>
 </header>
 <div>
 <input type=”button” id=”playmusic” value=”Play Random Audio File” />

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 1 n overview of htML5 and asp.net 4.5

24

 <audio id=”audio” src=”media/audio1.mp3” controls></audio>

 <input type=”button” id=”playvideo” value=”Play Random Video File” />

 <video id=”video” src=”media/video1.mp4” controls></video>
 </div>
</asp:Content>

The markup shown in Listing 1-5 renders two buttons, one <audio> tag, and one <video> tag. The
<audio> and <video> tags have their src attribute set to default media files, but later you’ll change src
programmatically. The two buttons call server-side code that returns a random media file to be played.
The returned media file is then assigned to the src attribute of the <audio> or <video> tag so as to set the
media files dynamically. Figure 1-24 shows Default.aspx at runtime in IE9.

Figure 1-24. Default.aspx in IE9

Adding Web Methods
Currently, clicking the Play Random Audio File and Play Random Video File buttons doesn’t do anything.
You need to write server-side and client-side code to make them functional. Go into the code-behind file
of Default.aspx, and add two web methods called GetAudio() and GetVideo() as shown in Listing 1-6.

Listing 1-6. Web Methods to Be Called from the Client Side

[WebMethod]
public static string GetAudio()
{
 //write logic to return random audio file
 return “audio1.mp3”;
}

www.it-ebooks.info

http://www.it-ebooks.info/

25

chapter 1 n overview of htML5 and asp.net 4.5

[WebMethod]
public static string GetVideo()
{
 //write logic to return random video file
 return “video1.mp4”;
}

Notice that both methods are static and are decorated with the [WebMethod] attribute. This attribute is
required so the methods become web callable and can be called from client-side code. GetAudio() and
GetVideo() don’t return a random file from a set of files, but you could add that logic inside the methods;
currently they return predefined audio and video file names.

Writing jQuery Code to Call Web Methods
To call the GetAudio() and GetVideo() web methods from the client-side code, you need to add some
jQuery code in the Default.aspx file. Listing 1-7 shows that code.

Listing 1-7. jQuery Code for the Call GetAudio() and GetVideo() Web Methods

<script type=”text/javascript”>
 $(document).ready(function () {
 if (!Modernizr.audio) {
 alert(‘Your browser does not support the HTML5 audio tag.’);
 return false;
 }
 if (!Modernizr.video) {
 alert(‘Your browser does not support the HTML5 video tag.’);
 return false;
 }

 $(“#playaudio”).click(function () {
 $.ajax({
 type: “POST”,
 url: ‘default.aspx/GetAudio’,
 contentType: “application/json; charset=utf-8”,
 dataType: “json”,
 success: function (results) {
 $(“#audio”).src = results.d;
 $(“#audio”).trigger(“play”);
 },
 error: function (err) {
 alert(err.status + “ - “ + err.statusText);
 }
 })
 });

 $(“#playvideo”).click(function () {
 $.ajax({
 type: “POST”,
 url: ‘default.aspx/GetVideo’,
 contentType: “application/json; charset=utf-8”,

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 1 n overview of htML5 and asp.net 4.5

26

 dataType: “json”,
 success: function (results) {
 $(“#video”).src = results.d;
 $(“#video”).trigger(“play”);
 },
 error: function (err) {
 alert(err.status + “ - “ + err.statusText);
 }
 })
 });
 });
</script>

The <script> block shown in Listing 1-7 consists of four parts:

•	 ready() function for the HTML document

•	 HTML5 audio and video feature detection using Modernizr

•	 Click event handler for the playaudio button

•	 Click event handler for the playvideo button

The ready() function is executed when the HTML DOM tree is fully loaded in the browser. It first
checks whether the browser supports HTML5 audio and video features using Modernizr’s audio and video
properties (see the code marked in bold). If the browser doesn’t support audio or video, an error message
is displayed to the user.

The click event handler for the playaudio button is wired next. It calls GetAudio() using jQuery
$.ajax() (see the bold code inside the event handler). When GetAudio() returns an audio file, the src
property of the <audio> element is set to the returned file name, and its play() method is triggered to play
the audio file. Notice how the return value of GetAudio() is accessed using results.d syntax. If there is an
error while calling GetAudio(), an error message is displayed.

n Note $.ajax() is one of several techniques you can use to call server-side code from HTML pages. You learn
more about $.ajax() and other Ajax techniques offered by jQuery in Chapter 2.

The click event handler for the playvideo button is very similar to that for the playaudio button. The
only difference is that it calls GetVideo() and plays a video file in the <video> element.

Run Default.aspx in IE9, and try clicking both buttons. See if audio and video files are played properly.

n Note The web application also uses a CSS file that takes care of the web form’s look and feel. You can get the
complete source code for the project, including the CSS file, from the Chapter 1 code download.

A Simple ASP.NET MVC-Based Web Site Using HTML5
In this section, you develop an ASP.NET MVC application that displays an HTML5 canvas. You can draw a
string on the canvas and then send the string to the server to be saved in a data store.

www.it-ebooks.info

http://www.it-ebooks.info/

27

chapter 1 n overview of htML5 and asp.net 4.5

Creating an ASP.NET MVC Project
Begin by creating an ASP.NET MVC project in Visual Studio (Figure 1-25).

Figure 1-25. Creating a new ASP.NET MVC project

Make sure you select the Empty project template with ASPX as the view engine (Figure 1-26).

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 1 n overview of htML5 and asp.net 4.5

28

n Note Although the web application you’re building in this section isn’t dependent on a specific version of MVC,
the screenshots shown here assume that you’ve selected the MVC4 project template.

Unlike the ASP.NET Web Forms project you created earlier, the MVC project already contains a Scripts
folder with jQuery and Modernizr libraries added to it. Of course, if you’re keen to use the latest (or some
specific) versions of these libraries, you can add them to the Scripts folder as before. Figure 1-27 shows
the folder structure and script files for a newly created MVC project.

Figure 1-26. Select the ASPX view engine.

www.it-ebooks.info

http://www.it-ebooks.info/

29

chapter 1 n overview of htML5 and asp.net 4.5

Adding a Controller and Action Methods
Right-click the Controllers folder, select Add Controller from the menu, and add a new controller named
HomeController (Figure 1-28).

Figure 1-27. Folder structure and script files from an ASP.NET MVC project

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 1 n overview of htML5 and asp.net 4.5

30

Add two action methods named Index() and SaveCanvas() to the HomeController class, as shown in
Listing 1-8.

Listing 1-8. Action Methods of HomeController

public ActionResult Index()
{
 return View();
}

public JsonResult SaveCanvas(string data)
{
 //add code to store canvas data in some database
 Session[“canvas_data”] = data;
 return Json(“Canvas data stored successfully!”);
}

The Index() action method simply returns the Index view, which you create in a moment. The
SaveCanvas() method is called from the client-side jQuery code. The return type of SaveCanvas() is a
JsonResult object, which represents a JavaScript Object Notation (JSON) representation of .NET data
types.

n Note JSON is a lightweight data-interchange format. It’s a text-based format and is based on a subset of the
JavaScript programming language. Due to its text-based nature, it’s easy to generate, read, write, and parse.

Figure 1-28. Adding HomeController

www.it-ebooks.info

http://www.it-ebooks.info/

31

chapter 1 n overview of htML5 and asp.net 4.5

To keep the things simple, SaveCanvas() doesn’t perform any database operations, but you could add
them if you wish to persist the data in a database . The code stores the data in a session variable named
canvas_data. A success message is returned to the caller by wrapping it in JSON format using the Json()
method.

Adding a View
Next, right-click the Index() action method and select Add View from the shortcut menu. Add a new ASPX
view named Index (Figure 1-29).

Figure 1-29. Adding an Index view

Add the markup shown in Listing 1-9 to the Index view located in the Views/Home folder.

Listing 1-9. Markup for the Index View

<%@ Page Language=”C#” Inherits=”System.Web.Mvc.ViewPage<dynamic>” %>

<!DOCTYPE html>
<html>
<head runat=”server”>

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 1 n overview of htML5 and asp.net 4.5

32

 <meta name=”viewport” content=”width=device-width” />
 <title>Index</title>
 <script type=”text/javascript” src=”../../Scripts/jquery-1.6.2.min.js”></script>
 <script type=”text/javascript” src=”../../Scripts/modernizr-2.0.6-development-only.js”></
script>
</head>
<body>
 Enter Text :
 <input type=”text” id=”Text1” value=”<%= Session[“canvas_data”] %>” />
 <input type=”button” id=”Button1” value=”Draw” />
 <input type=”button” id=”Button2” value=”Save” />

 <canvas id=”myCanvas” width=”500” height=”200”></canvas>
</body>
</html>

There are a couple of things to notice about this markup. First, it uses the HTML5 <canvas> tag and
defines a canvas 500 pixels wide and 200 pixels high. Second, it uses the session variable canvas_data to
populate the TextBox so the TextBox contains the value of canvas_data.

Writing jQuery Code to Call Action Methods
Now you need to wire event handlers for the Draw and Save buttons. You do that using jQuery code, as
shown in Listing 1-10.

Listing 1-10. jQuery Code to Draw on the Canvas and Save the Session Data

<script type=”text/javascript”>
 $(document).ready(function () {
 if (!Modernizr.canvas) {
 alert(‘Your browser does not support the HTML5 canvas tag.’);
 }
 $(“#Button1”).click(function () {
 var canvas = document.getElementById(‘myCanvas’);
 var context = canvas.getContext(“2d”);
 context.fillStyle = ‘silver’;
 context.fillRect(0, 0, 500, 200);
 context.fillStyle = ‘Black’;
 context.lineWidth = 10;
 context.font = ‘20pt Arial’;
 var x = canvas.width / 2;
 var y = canvas.height / 2;
 context.textAlign = “center”;
 context.fillText($(“#Text1”).val(), x, y);
 });

 $(“#Button2”).click(function () {
 var data = ‘{ “data” : “’ + $(“#Text1”).val() + ‘”}’;
 $.ajax({
 type: “POST”,

www.it-ebooks.info

http://www.it-ebooks.info/

33

chapter 1 n overview of htML5 and asp.net 4.5

 url: ‘/home/SaveCanvas’,
 data: data,
 contentType: “application/json; charset=utf-8”,
 dataType: “json”,
 success: function (result) {
 alert(result);
 },
 error: function (err) {
 alert(err.status + “ - “ + err.statusText);
 }
 })
 });
 });
</script>

This jQuery code first checks whether the browser supports the HTML5 canvas using the Modernizr
library. It then wires click event handlers for Button1 (Draw) and Button2 (Save). Notice the bold code. The
first fragment essentially gets hold of the Canvas object and its drawing context. Several properties of the
drawing context are then set, such as fillStyle and font. The fillRect() method draws the canvas
background. The fillText() method draws the supplied text at a specified x and y location. The string to be
drawn is taken from the TextBox, and the text alignment is set to center.

The click event handler for Button2 uses $.ajax() and sends a POST request to the SaveCanvas() action
method. The message returned from SaveCanvas() is then shown to the user.

Figure 1-30 shows a sample run of the Index view.

Figure 1-30. Sample run of the Index view

Summary
HTML5 is more than a set of markup elements. It offers many programmable features that are often
required in modern web applications. These features include native support for playing audio and video

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 1 n overview of htML5 and asp.net 4.5

34

files, canvas, web storage, a history API, a file API, web sockets, web workers, offline applications, and
geolocation.

This chapter gave you an overview of HTML5 and its features. You also learned how ASP.NET and
HTML5 fit together. You used the Modernizr library to detect HTML5 feature support at runtime. Finally,
you developed two simple web applications that illustrate how HTML5 and ASP.NET can go hand in hand.
These applications also demonstrated how jQuery can make Ajax requests to the server and invoke server-
side code without posting the entire page to the server.

Although HTML5 features can be programmed using plain JavaScript, in many real-world cases you
use JavaScript-based libraries such as jQuery for client-side scripting. Chapter 2 delves into the details of
jQuery and makes you familiar with many of its programming constructs.

www.it-ebooks.info

http://www.it-ebooks.info/

35

n n n

chapter 2

Overview of jQuery

To take advantage of many HTML5 features, you need to use client-side scripting techniques. Although
you can use JavaScript to accomplish this task, using jQuery is easier and more beneficial. If you’re
developing a modern web application, chances are you’re already using jQuery for your client-side
scripting needs. So, sticking with jQuery for programming HTML5 features will make your code more
readable, consistent, and manageable. In addition, jQuery offers many benefits over plain JavaScript
(selectors and Ajax calls, for example, as discussed in this chapter) that you can use in your client-side
code. Some HTML5 features require you to send data from the client to the server. This data transfer can
be done effectively through Ajax requests to the server, and jQuery offers rich support for making Ajax
requests. All the benefits mentioned here make jQuery an ideal choice for programming HTML5 features.

This chapter gives you an introduction to various jQuery features and constructs. However, the
chapter doesn’t attempt to discuss every minuscule feature of jQuery. It focuses on features that are
frequently needed when programming HTML5 and that are used in the remainder of this book.
Specifically, you learn the following:

•	 Event handling in jQuery

•	 jQuery selectors

•	 Manipulating the DOM using jQuery

•	 Ajax techniques in jQuery

n Note This chapter covers the basics of jQuery and how to use jQuery in ASP.NET applications. If you’re already
familiar with jQuery, feel free to skip this chapter.

What Is jQuery?
The official jQuery web site (http://jquery.com) defines jQuery as follows:

jQuery is a fast and concise JavaScript Library that simplifies HTML document traversing,
event handling, animating, and Ajax interactions for rapid web development. jQuery is
designed to change the way that you write JavaScript.

Let’s try to understand this definition of jQuery in a bit more detail.

www.it-ebooks.info

http://jquery.com
http://www.it-ebooks.info/

chapter 2 n overview of jQuery

36

jQuery Is a JavaScript Library
As an ASP.NET developer, you must have used JavaScript in one way or the other while developing ASP.NET
web sites. Without a doubt, plain JavaScript helps you code rich, interactive, more responsive web pages;
but you often need to write too much code. For example, if you wish to write a client script that shows a
fancy pop-up menu complete with animation effects using plain JavaScript, it’s a time-consuming task.

To simplify your client-side scripting and make you more productive, several JavaScript libraries are
available, and jQuery is one of them. There are others, such as MooTools, Prototype, and Dojo. The fact
that Microsoft uses jQuery extensively in ASP.NET projects clearly indicates jQuery’s popularity and
Microsoft’s intention to support it in ASP.NET. As you would expect, jQuery is cross-browser and supports
all leading browsers including Internet Explorer, Firefox, Chrome, Opera, and Safari.

jQuery Is Fast and Concise
jQuery is highly optimized library. Moreover, it’s compact. The production version of jQuery 1.7.2 is just
32KB, and the development version is 247KB. This compactness means less data to be downloaded on the
client side without compromising stunning UI effects.

jQuery Simplifies Traversing HTML Documents,
Event Handling, Animation, and Ajax Interactions
jQuery simplifies HTML DOM navigation and manipulation considerably. It offers many ways to
transverse DOM trees and parent-child elements. Most JavaScript functionality goes in client-side event
handlers. jQuery is handy when it comes to event handling because it’s easy to wire event handlers and
process the events. jQuery also allows you to make Ajax calls to ASP.NET web services, web methods,
Windows Communication Foundation (WCF) services, and MVC controller actions.

jQuery Is Designed to Change the Way You Write JavaScript
jQuery dramatically changes the way you write JavaScript code. If you’ve never used jQuery before, initially
you may find its syntax a bit odd; but once you get hang of it, you’ll probably never look at any other
library (or at least the traditional way of writing JavaScript). For example, a common JavaScript file
contains several functions, and you call them individually whenever required. With jQuery, the chain of
operations makes your code compact. jQuery lets you chain methods together so the output from one
method is automatically processed by the next method in the chain. This makes it easier to invoke
multiple methods on the same output.

Downloading and Referring to jQuery
Before you use any of jQuery’s features and constructs, you need to refer to it in your Web Forms or MVC
views. You can refer to the jQuery library in two ways:

•	 Refer to a local copy of the jQuery library.

•	 Refer to the jQuery library from Microsoft’s Ajax Content Delivery Network (CDN).

To refer to a local copy of the jQuery library, you should first download it from jQuery official web site
(http://jquery.com) to your local machine. If you create a new ASP.NET MVC project, the jQuery library is
automatically placed in the Scripts folder (Figure 2-1). Of course, if you wish to use the latest version of
the jQuery library, you need to download it separately.

www.it-ebooks.info

http://jquery.com
http://www.it-ebooks.info/

37

chapter 2 n overview of jQuery

To refer to the jQuery library from Microsoft’s Ajax CDN, you don’t need to maintain a local copy of the
jQuery library—you can refer to it directly. You can find a list of files available on the Microsoft Ajax CDN at
www.asp.net/ajaxlibrary/cdn.ashx. Figure 2-2 shows a list of files you can use from Microsoft Ajax CDN.

The URLs for minified and non-minified versions of jQuery 1.7.2 are as follows:

http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.7.2.min.js
http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.7.2.js

The minified version is a compressed version obtained by applying several script-minification
techniques such as removal of whitespaces and comments from the code. The minified version is ideal for
production use because of its compact size. You can use non-minified version during the development
phase when script debugging might be needed.

n Note A CDN is a network of servers situated at key locations across the globe. This network maintains cached
copies of files that are to be delivered to the client. When a client tries to access any file that is being maintained by
the CDN, the server nearest to the requesting client fulfills the request. This technique is known as edge caching
because the servers toward the edge supply the content. In addition to Microsoft Ajax CDN, you can also use the
Google Libraries API for referring to the jQuery library.

Figure 2-1. jQuery library from ASP.NET MVC projects

www.it-ebooks.info

http://www.asp.net/ajaxlibrary/cdn.ashx
http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.7.2.min.js
http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.7.2.js
http://www.it-ebooks.info/

chapter 2 n overview of jQuery

38

Whether you keep a local copy of the jQuery library or refer to it from the Microsoft Ajax CDN, you
need to add a <script> reference to it as shown in Listing 2-1.

Listing 2-1. Referring to the jQuery Library

 <!-- Referring to a local copy of the jQuery library -->

 <script type="text/javascript" src="Scripts/jquery-1.7.2.min.js"></script>

 <!-- Referring to the jQuery library from the Microsoft Ajax CDN -->

 <script type="text/javascript"
 src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.7.2.js">
 </script>

In Listing 2-1, the first <script> tag refers to the jQuery library from a local folder named Scripts.
Make sure you change this path to match your project folder structure. If you use the Microsoft Ajax CDN

Figure 2-2. Files available on the Microsoft Ajax CDN

www.it-ebooks.info

http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.7.2.js
http://www.it-ebooks.info/

39

chapter 2 n overview of jQuery

to refer to the jQuery library, your development machine must have Internet connectivity. You can, of
course, use a local copy of the jQuery library during development and switch to the Microsoft Ajax CDN
once the application goes into production.

Now that you know how to refer to the jQuery library in your ASP.NET web applications, let’s examine
the core features of jQuery in the sections to come.

Event Handling
Handling events raised by HTML page elements such as buttons, lists, and images is one of the most
frequently programmed operations in client-side scripts. jQuery offers an easy and cross-browser event-
handling mechanism that allows you to wire event handlers on the fly and also provides rich information
about the event being handled.

Table 2-1 lists many of the commonly used client-side events in web applications.

Table 2-1. Commonly Used Client-Side Events in Web Applications

Event Description
blur Occurs when focus leaves an element

change Occurs when the value of <input>, <textarea>, and or <select> changes.

click Occurs when the user clicks an element.

dblclick Occurs when the user double-clicks an element.

focus Occurs when an element receives focus.

hover Allows you to trap mouse entry and exit from an element.

keydown Occurs when a keyboard key is pressed but is yet to be released.

keypress Occurs when any of the input key is pressed. Normally used when you’re only interested in
data entered and not in the state of the Shift or Ctrl key.

keyup Occurs when a keyboard key is released.

mousedown Occurs when a mouse button is pressed but not yet released.

mouseup Occurs when a pressed mouse button is released.

select Occurs when text is selected from <input> or <textarea>.

submit Occurs when a form is being submitted. Valid only on <form> elements.

To handle the events in Table 2-1, jQuery offers a set of corresponding functions. These functions
serve a dual purpose:

•	 They let you specify an event-handler function that should be executed when the
event is raised.

•	 They let you trigger the event programmatically.

For example, to wire an event-handler function named OnClick to the click event of a button whose
ID is Button1, you write

$("#Button1").click(OnClick);

On the other hand, if you wish to programmatically trigger the click event of Button1, you write:

$("#Button1").click();

This dual purpose will be clearer when you use it in the example developed in this section.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 2 n overview of jQuery

40

One nice feature of jQuery event handling is that the event object is passed to the event handler in a
standard way and contains the same set of properties across all browsers. The event object passed to an
event handler contains several pieces of information, as listed in Table 2-2.

Table 2-2. Properties of Event Object Passed to an Event Handler

Property Description
altKey Returns true/false depending on whether the Alt key is pressed

ctrlKey Returns true/false depending on whether the Ctrl key is pressed

data User-specific data passed to the event handler. This is optional.

pageX X coordinate of the mouse within the document.

pageY Y coordinate of the mouse within the document.

shiftKey Returns true/false depending on whether the Shift key is pressed.

target A reference to the DOM element that triggered the event.

type Type of event, such as click or keydown.

which The key code of the keyboard key that was pressed.

The event object also provides a handy method preventDefault() that cancels the default action on
an event.

To understand how events can be handled using jQuery, let’s develop an ASP.NET Web Forms
application as shown in Figure 2-3.

The web form shown in Figure 2-3 has a <textarea> to enter free-form text data. However, you can set
a maximum number of characters that can be entered. At runtime, as the user starts typing, a character
counter displays the number of characters that can still be entered. If the length of the entered text exceeds
a predefined value, you can either prohibit further entry or display a negative character count with colored
highlighting. When the user clicks the Submit button, they’re asked to confirm whether they want to
submit the form; accordingly, either the form is submitted to the server or the action is cancelled.

Listing 2-2 shows the HTML markup of the web form.

Figure 2-3. Character counter using jQuery event handling

www.it-ebooks.info

http://www.it-ebooks.info/

41

chapter 2 n overview of jQuery

Listing 2-2. HTML Markup of the Character Counter Form

<form id="form1" runat="server">
Enter some text :

<textarea id="textarea" rows="3" cols="50" class="TextArea"></textarea>

Character counter :

<asp:Button ID="submit" runat="server" Text="Submit" OnClick="submit_Click" />

<asp:Label ID="lblMessage" runat="server" Text=""></asp:Label>
</form>

The Submit button and the associated message label are server controls. As usual, the CSS classes
used in the markup reside in a style-sheet file. Next, you need to write jQuery code that wires several event
handlers and makes the character counter functional. Listing 2-3 shows the ready() function that wires
event handlers for keyup, blur, and click events. The keyup and blur event handlers ensure that the
number of characters entered in the textarea are less than or equal to the maximum length. They also
update the character count in the corresponding element.

Listing 2-3. Event Wiring of the Character Counter

$(document).ready(function () {
 var eventData = {
 MaxLength: 20,
 Type: 'Remaining',
 AllowOverflow: true,
 CounterId: 'counter',
 NormalCss: 'NormalCounter',
 WarningCss:'WarningCounter'
 };
 $("#textarea").keyup(eventData, OnKeyUp);
 $("#textarea").blur(eventData,OnBlur);
 $("#textarea").keyup();

 $("#submit").click(function (event) {
 if (!confirm("Do you wish to submit the form?")) {
 event.preventDefault();
 }
 });
})

The ready() function is automatically called by jQuery when the entire HTML DOM tree is loaded in
the browser. You can pass your own function to the ready() function that wires event handlers for various
elements such as textarea and <button>. The code declares a variable (eventData) that stores configuration
settings you need to pass to the event handlers. Once the event handlers are wired, the eventData object is
automatically passed to the event handlers every time the event is raised. Notice that eventData is a JSON
object and takes the form of key-value pairs. A key and its value are separated by a colon (:) and multiple
key-value pairs are delimited by comma (,). Table 2-3 explains the purpose of each of the settings of the
eventData object.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 2 n overview of jQuery

42

Table 2-3. Configuration Settings Passed via the eventData Object

Option Description
AllowOverflow This setting governs the behavior of the <textarea> if the length of the text exceeds the

MaxLength value. If you set AllowOverflow to true, you can enter text even if the length
exceeds MaxLength; otherwise you can’t enter any further text after MaxLength is reached.

CounterId CounterId indicates the ID of an HTML element (typically a or <div>) that is
displaying the character counter.

MaxLength This setting indicates the maximum number of characters that can be entered in the
<textarea>.

NormalCss NormalCss is a CSS class that is applied to the counter element when the length of the text
entered is less than MaxLength.

Type You can display the character counter in two ways: show the total number of characters
entered so far, or show the number of characters that can still be entered. If you pass
Total, the former setting is used; if you pass Remaining, the latter setting is used.

WarningCss When the length of the text entered in the <textarea> exceeds MaxLength, the character
counter is displayed with a CSS class indicated by WarningCss.

The code then selects the <textarea> element. Notice the jQuery way of selecting an element based on
its ID: you need to pass the ID of an element prefixed with the # character. The keyup and blur events of
<textarea> are wired to the OnKeyUp and OnBlur event-handler functions, respectively. You write these
event-handler functions shortly. Notice that the code also passes the eventData object while wiring the
event handlers. Then the code programmatically triggers the keyup event of the <textarea> by calling the
keyup() function. This causes the counter element to display the initial character count.

The event handler for the click event of the Submit button is wired using a different syntax. Instead of
creating a separate function and then attaching it as an event handler, the code creates an anonymous
event handler (also known as inline function) function. The event-handler function takes a parameter
(event) that is automatically passed when the click event is raised. The click event handler of the Submit
button asks the user whether to submit the form. If the user decides to cancel the form submission, the
click event is cancelled using the preventDefault() method of the event object.

The event-handler function OnKeyUp() is shown in Listing 2-4.

Listing 2-4. Handling the keyup Event

function OnKeyUp(event) {
 var id = "#" + event.target.id;
 var counterid = "#" + event.data.CounterId;
 var text = $(id).val();
 if (text.length > event.data.MaxLength) {
 if (!event.data.AllowOverflow) {
 $(id).text(text.substring(0, event.data.MaxLength));
 }
 }
 var diff = 0;
 if (event.data.Type == 'Remaining') {
...
 }
 else {
... }
 $(counterid).text(diff);
}

www.it-ebooks.info

http://www.it-ebooks.info/

43

chapter 2 n overview of jQuery

Notice how event.target.id is used to retrieve the ID of <textarea> and event.data.CounterId is used
to retrieve the ID of . These IDs are stored in two variables (id and counterid) for later use. The val()
method returns the text entered in the <textarea> and is stored in another local variable (text). Depending
on the type of counter (Remaining or Total), the code checks the length of the text data entered in the
<textarea> against the MaxLength value. If Type is Remaining, the check is performed as follows:

diff = event.data.MaxLength - $(id).val().length;
if (diff < 0) {
 $(counterid).removeClass(event.data.NormalCss);
 $(counterid).addClass(event.data.WarningCss);
}
else {
 $(counterid).removeClass(event.data.WarningCss);
 $(counterid).addClass(event.data.NormalCss);
}

If the difference between the length of the text and MaxLength is less than 0, it indicates that the text
has exceeded its maximum allowed length. In that case, you should display the counter with the
WarningCss class. To do this, you first remove the NormalCss class using the removeClass() method and then
apply the WarningCss class using the addClass() method. If the difference is greater than 0, you should
apply the NormalCss class by removing the WarningCss class.

If the counter Type is Total, the CSS classes are applied as shown here:

diff = $(id).val().length;
if (diff > event.data.MaxLength) {
 $(counterid).removeClass(event.data.NormalCss);
 $(counterid).addClass(event.data.WarningCss);
}
else {
 $(counterid).removeClass(event.data.WarningCss);
 $(counterid).addClass(event.data.NormalCss);
}

If the length of the text entered is more than the MaxLength value, the NormalCss class is removed using
the removeCss() method and the WarningCss class is applied using addClass(). Otherwise, WarningCss is
removed and NormalCss is applied.

Finally, after the code performs the length checking based on the Type setting, the counter value is
assigned to the element using the text() method.

If the AllowOverflow setting is false, further text entered by the user is trimmed to the value of
MaxLength using the substring() JavaScript function. The trimmed text is assigned to the <textarea> using
the text() method.

The OnBlur() event-handler function is shown in Listing 2-5.

Listing 2-5. Handling the blur Event

function OnBlur(event) {
 var id = "#" + event.target.id;
 $(id).keyup();
}

The OnBlur() event-handler function simply triggers the keyup event programmatically. This way, even
if the user enters text in the <textarea> using a copy-paste technique (Ctrl+V or a shortcut menu), the
counter still reflects the correct value when the user exits the <textarea>.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 2 n overview of jQuery

44

Figure 2-4 shows a sample run of the web form with text exceeding the MaxLength value. You can also
test the Submit button’s functionality. Observe that if you click Cancel, the form isn’t posted back to the
server.

In the character counter you just developed, you used #id syntax to select a DOM element matching a
specific ID. By doing so, you uses one of jQuery’s many selectors. The next section introduces some other
important selectors in jQuery.

Event Wiring Using the bind() Method
In the preceding example, you wired event handlers of the standard events click and change using the
jQuery functions click() and change(), respectively. As of this writing, jQuery doesn’t include event
functions for HTML5-specific events. For example, the video element you learn about in Chapter 3 has
play and pause events, but jQuery doesn’t have built-in functions to wire event handlers for these events.
Luckily, jQuery provides a generic way to wire events to their handlers: the bind() method. You can use it
as follows:

$("#Button1").bind("click",OnClick);

This line of code wires the click event of Button1 to an event-handler function named OnClick. The
bind() method takes two parameters. The first parameter indicates the event you wish to handle, and the
second parameter specifies the event-handler function.

jQuery Selectors
While working with client-side scripts, you often need to perform certain tasks only on specific elements.
For example, you may want to read the value of a text box whose ID is TextBox1 or display all the rows of a
table that contain a negative value in red. jQuery selectors let you match HTML elements against certain
criteria and select them for further processing. Thus jQuery selectors return a collection with zero or more
elements matching a selection criterion.

Figure 2-4. Character counter showing a warning

www.it-ebooks.info

http://www.it-ebooks.info/

45

chapter 2 n overview of jQuery

jQuery selectors can be grouped into the following categories:

•	 Basic selector: Selects elements based on basic criteria such as ID, CSS class, and
HTML tag name.

•	 Basic filter: Filters an element set based on conditions such as first occurrence, last
occurrence, and odd or even elements.

•	 Attribute selector: Selects elements by matching their attribute values.

•	 Child filter: Filters an element set based on conditions such as first-child, last-child,
nth-child, and only-child.

•	 Content filter: Filters elements based on their content.

•	 Form selector: Selects form elements based on their type (button, check box, and so
on) and state (selected or checked).

•	 Hierarchy selector: Selects elements from a hierarchy (children, descendents,
siblings, and adjacent).

•	 Visibility filter: Selects elements based on their visibility status (visible or hidden).

The selectors that are needed frequently and that are used in this book’s examples are discussed in the
following sections.

n Note Some of the examples discussed in the following sections use the Northwind database, a sample database
developed by Microsoft for SQL Server. So, you may consider installing it in your local SQL Server or SQL Server
Express instance. You can download the T-SQL script of the Northwind database from the MSDN download center.

Selecting Elements Based on ID, Tag Name, and CSS Class
Selecting HTML elements based on their ID, tag names, or CSS class is a common requirement in client-
side scripting. From the previous sections, you already know how to select HTML elements by specifying
their ID. Listing 2-6 shows these three types of selections.

Listing 2-6. Using ID, Tag Name, and CSS Class to Match Elements

$(document).ready(function () {
 $("#myDiv").html("<h1>Hello jQuery !</h1>");
 $("div").css("background-color", "#ded8d8");
 $(".MyClass").text("We have the same CSS class!");
})

The first line in the ready function selects a DOM element whose ID is myDiv. It then sets the HTML
content of the selected element to some markup using the jQuery html() method. The second line selects
all the <div> elements from the page and sets their background color to #ded8d8 using the css() method.
Finally, the third line of code selects all the elements that have a CSS class named MyClass applied to them
and sets their HTML content to a string.

Figure 2-5 shows a sample run of the page.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 2 n overview of jQuery

46

Notice how all the <div> elements have the same background color because the color was applied to
the background-color attribute for all HTML elements with tag name div. Similarly, both <div> elements
with the CSS class MyClass have the same text content.

Now, let’s develop a more meaningful example based on this knowledge. Figure 2-6 shows a GridView
server control populated with data from the Employees table of the Northwind database.

Figure 2-5. Selecting HTML elements based on ID, tag name, and CSS class

Figure 2-6. GridView with alternate rows displayed with different styles

www.it-ebooks.info

http://www.it-ebooks.info/

47

chapter 2 n overview of jQuery

The GridView control renders itself as an HTML table in the browser. The GridView shown in Figure 2-6
has alternate rows displayed with different CSS styles. Also, the header row is displayed with another CSS
style. Further, the rows show a highlighted marker when the mouse pointer hovers over them. Clicking any
row displays the EmployeeID of that row in an alert box. All this is done through jQuery. The <script> block
from the web form reveals the jQuery code shown in Listing 2-7.

Listing 2-7. Marking Odd and Even Rows with Different Styles

$(document).ready(function () {
 $("#GridView1 th").parent().addClass("HeaderRow");
 $("#GridView1 tr:not(.HeaderRow):odd").addClass("Row");
 $("#GridView1 tr:not(.HeaderRow):even").addClass("AlternateRow");
 $("#GridView1 tr:not(.HeaderRow)").hover(function () {
 $(this).addClass('HoverRow');
 }, function () {
 $(this).removeClass('HoverRow');
 }).click(function () {
 if ($(this).hasClass("HeaderRow")) {
 alert("This is header row. Can't get EmployeeID!");
 }
 else {
 alert("You selected Employee ID :" + $("td:first", this).text());
 }
 });
});

The code shown in Listing 2-7 uses a combination of selectors discussed earlier in this section and a
few additional filters. First, the code sets a CSS class for the header row of the table. Notice how the <th>
elements from a specific GridView (with ID GridView1) are selected. This way, even if there are multiple
tables on the same web form, the styling is applied only to GridView1. The parent() method returns a
parent element of <th> (<tr> in this case), and the HeaderRow CSS class is applied to that table row using
the addClass() method.

The next two lines of code select all the odd and even rows from the table excluding the header row.
This is done using the :not(), :odd, and :even selectors. The :not() selector ensures that the header row
isn’t selected for applying odd and even styling. The :odd and :even selectors return odd and even
elements, respectively. Once selected, the CSS classes Row and AlternateRow are applied to them,
respectively.

Next, a mouse-hover effect is added to the table rows using the hover() method. The first parameter to
the hover() method is a function that is called when the mouse pointer enters a table row, and the second
parameter is a function that is called when the mouse pointer leaves that table row. In the callback
functions, the keyword this represents the current table row. The hover() method functions essentially
add and remove the HoverRow CSS class to the table row under consideration.

n Note In any jQuery event handler, the keyword this refers to the DOM element to which the event handler is
attached.

Notice the use of the jQuery chaining feature while wiring the click event handler. Instead of again
selecting the rows and then wiring their click event handler, you can wire event handlers for the hover and
click events at the same time.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 2 n overview of jQuery

48

The click event handler displays the EmployeeID from the row being clicked. The td:first selector
returns the first <td> element in the current row. The text() method, when called without any parameter,
returns the text content from that table column (EmployeeID in this case). If the header row is clicked, an
error message is displayed. Notice how the hasClass() method is used to determine whether a row has a
specific CSS class applied to it.

Selecting Elements Based on Their Attribute Value
Attribute selectors let you match attributes of HTML elements with certain criteria. It isn’t limited to equal-
to matching; several other options are also available, as outlined in Table 2-4. Using an attribute selector
takes the following general form:

<element_name>[<attribute_name> <operator> <value_to_match>]

Table 2-4. Attribute Selectors

Attribute Selector Operator Description
Attribute equals = Selects elements whose specific attribute value exactly equals a

specific string value.

Attribute not equal != Selects elements whose specific attribute value doesn’t match a
specific string value or whose specified attribute is missing.

Attribute starts with ^= Selects elements whose specified attribute value begins with a
specific value.

Attribute ends with $= Selects elements whose specified attribute value ends with a
certain string value.

Attribute contains *= Selects elements whose specified attribute value contains a
specific string.

Attribute contains prefix |= Selects elements whose specified attribute value matches exactly
the specified value or that starts with the specified value followed
by a hyphen (-).

Has attribute selector Selects an element if a specified attribute is present.

Let’s consider some examples that show how the attribute selectors are used.
Suppose you have a web page with a bunch of hyperlinks, and you wish to select hyperlinks whose

href attribute is exactly equal to http://www.microsoft.com. The following attribute selector does the trick.
The alert box displays the total number of elements selected:

alert($("a[href = 'http://www.microsoft.com']").length);

Suppose you have a few hyperlinks: http://microsoft.com, http://msdn.microsoft.com, and http://
www.asp.net. You need to select only those hyperlinks that contain the word Microsoft. The following
attribute contains selector selects the first two hyperlinks but not the third one:

alert($("a[href *= 'microsoft.com']").length);

Let’s say a product catalog page displays many images. Some of them are product images, and others
are web site theme images (logo, menus, and so on). Also assume that the product images are stored in a
folder named product. To select all the product images for processing, you can use this attribute starts with
selector to return image elements whose src attribute begins with product:

alert($("img[src ^= 'product']").length);

www.it-ebooks.info

http://www.microsoft.com
http://microsoft.com
http://msdn.microsoft.com
http://www.asp.net
http://www.asp.net
http://www.it-ebooks.info/

49

chapter 2 n overview of jQuery

Suppose you’re building a photo album web application that displays photos in various formats
including .png, .jpg, and .gif. Based on the image format, you may allow certain special effects to be
added. In such cases, you may want to select images with a particular file extension. The following
attribute ends with selector does that by selecting all the images whose src attribute ends with .gif:

alert($("img[src $= '.gif']").length);

Suppose a multilingual web site needs to render its content in different languages. The lang attribute
is used to mark the language of a section of the page. If you wish to select all the <div> elements having
their lang attribute set to some value, you can use this has attribute selector:

alert($("div[lang]").length);

Now, let’s develop a more realistic example that uses attribute selectors, as shown in Figure 2-7.

In Figure 2-7, the web form consists of a GridView control that displays links to files that can be
downloaded. The download categories are listed in a DropDownList at the top. When the user selects a
particular category, only downloads belonging to the selected category are displayed. The rest are kept
hidden. The download links have a specific pattern:

•	 All download links for products contain the Products folder in the URL: for example,
products/Product1Setup.exe.

•	 All download links for white papers are of the form paper-xxxx, where xxxx is the
title of the paper: for example, Paper-Topic1.pdf.

Figure 2-7. Filtering download links using attribute selectors

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 2 n overview of jQuery

50

•	 All download links for software components are of the form xxxx-comp.zip: for
example, Component1-comp.zip.

This hiding and showing of download links happens on the client side using jQuery attribute selectors.
Listing 2-8 shows the skeleton of this code.

Listing 2-8. Hiding or Showing Download Links Using Attribute Selectors

$(document).ready(function () {
 $("#DropDownList1").change(function () {
 switch ($("#DropDownList1").val()) {
 case "A":
 case "P":
 case "WP":
 case "C":
 }
 })
})

The ready function wires an event handler for the change event of DropDownList1. As you might guess,
the change event is raised when the selection in the DropDownList changes. The change event handler
consists of a JavaScript switch statement that checks for the selected value. Let’s discuss what goes in each
case section.

If the selected value is "A", meaning All Downloads, then the display CSS property of all the table rows
is set to block. This ensures that all types of downloads (products, components, and white papers) are
shown in the grid:
case "A":

 $("#GridView1 tr a").parent().css("display", "block");
 break;

If the selected value is "P" (Products), then the attribute contains selector (*=) is used to match all the
anchor elements whose href attribute contains the string "products/". Once matched, the table rows
containing the matched hyperlink elements are shown, and other rows are kept hidden:

case "P":
 $("#GridView1 tr a[href *= 'products/']").parent().css("display", "block");
 $("#GridView1 tr a[href |= 'Paper']").parent().css("display", "none");
 $("#GridView1 tr a[href $= '-comp.zip']").parent().css("display", "none");
 break;

If the selected value is "WP" (White Papers), the code uses the attribute contains prefix selector (|=) to
select hyperlinks prefixed with the text "paper". Notice that the URLs for white papers begin with "Paper-",
but the selector specifies only "Paper"; this is because while matching the elements, the attribute contains
prefix selector automatically assumes a hyphen (-). Once selected, the table rows containing those
hyperlinks are shown, and the other rows are kept hidden:

case "WP":
 $("#GridView1 tr a[href *= 'products/']").parent().css("display", "none");
 $("#GridView1 tr a[href |= 'Paper']").parent().css("display", "block");
 $("#GridView1 tr a[href $= '-comp.zip']").parent().css("display", "none");
 break;

Finally, if the selected value is "C" (Components), the code selects links related to components using
the attribute ends with selector ($=) and displays and hides table rows accordingly:

www.it-ebooks.info

http://www.it-ebooks.info/

51

chapter 2 n overview of jQuery

case "C":
 $("#GridView1 tr a[href *= 'products/']").parent().css("display", "none");
 $("#GridView1 tr a[href |= 'Paper']").parent().css("display", "none");
 $("#GridView1 tr a[href $= '-comp.zip']").parent().css("display", "block");
 break;

Selecting Form Elements
Form selectors let you select HTML <form> elements based on their type (text box, check box, radio button,
and so on) or their status (selected, checked, or disabled). Table 2-5 lists the various form selectors
available.

Table 2-5. Form Selectors

Selector Elements Selected
:button <input> elements of type button, and <button> elements

:checkbox <input> elements of type checkbox

:checked Check boxes and radio buttons that are checked

:disabled Elements that are disabled

:enabled Elements that are enabled

:file <input> elements of type file

:image <input> elements of type image

:input Elements of type <input>, <textarea>, <select>, and <button>

:password <input> elements of type password

:radio <input> elements of type radio

:reset <input> elements of type reset

:selected Options of a <select> element that are selected

:submit <input> elements of type submit

:text <input> elements of type text

Listing 2-9 shows some of the selectors mentioned in Table 2-5.

Listing 2-9. Basic Usage Syntax of Form Selectors

$(document).ready(function () {
 $("#form1 :text").attr("disabled", "disabled");
 $("#form1 :checkbox").attr("checked", "checked");
 $("#Button1").click(function () {
 alert($("#form1 input[type='checkbox']:checked").length + " checkboxes are checked.");
 alert($("#Select1 option:selected").length + " options are selected.");
 });
});

The first form selector in Listing 2-9 selects all text boxes and disables them by adding the disabled
attribute. The jQuery attr() function is used to set attribute values of an element. The first parameter of
attr() is the name of the attribute, and the second parameter is its value. In this case, the disabled
attribute is set to a value of disabled so as to disable the text boxes.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 2 n overview of jQuery

52

The second form selector selects all check boxes and programmatically checks them by adding the
checked attribute.

The click event handler of Button1 selects all the check box elements that are checked. A jQuery
selector may return zero or more elements. The total number of elements selected can be obtained using
the length property. In this case, an alert box displays the total number of check boxes that are checked.

Finally, the last alert box displays the count of all the selected options from a <select> element.
The web form shown in Figure 2-8 demonstrates a more realistic use of form selectors. The web form

shows a GridView with records from the Employees table of the Northwind database. Each row of the
GridView has a check box and a radio button to select that row. The check-box column also has a check box
in the header to toggle selection of all the check boxes. The list box at the top displays cities; if you select
one or more cities in the list box, only the employee records belonging to the selected cities are enabled.
Other records’ check boxes and radio buttons are disabled. Clicking the Clear Selection button clears any
selection made in the list box and enables all the employee rows. The jQuery code responsible for this
functionality consists of four event-handler functions: the change event handler of the check boxes, the
change event handler of the radio buttons, the change event handler of the list box, and the click event
handler of the button. These event handlers are wired in the ready() function and are discussed next.

Listing 2-10 shows the change event handler of the check boxes.

Figure 2-8. A GridView showing check boxes and radio buttons to select employee rows

www.it-ebooks.info

http://www.it-ebooks.info/

53

chapter 2 n overview of jQuery

Listing 2-10. Change Event Handler of the Check Boxes

$("#GridView1 :checkbox[id$='chkHeader']").change(function () {
 if ($("#GridView1 :checked[id $='chkHeader']").is(":checked")) {
 $("#GridView1 :checkbox[id *='chkItem']").attr("checked", "checked");
 }
 else {
 $("#GridView1 :checkbox[id *='chkItem']").removeAttr("checked");
 }
})

The code shown in Listing 2-10 wires the change event handler for the check box in the header row. It
does so using the ends with attribute selector because at runtime, the GridView generates unique IDs for
the check boxes. While generating these unique IDs, the design-time ID set by the developer is appended
at the end of a unique string value. For example, the header check box has its ID property set to chkHeader,
and at runtime its client-side ID becomes GridView1$ctl01$chkHeader. The change event handler of the
header check box selects all the check boxes from the GridView rows and toggles their state depending on
the header check box state. The check box state is toggled by adding or removing the checked attribute
using the jQuery attr() method.

The change event handler of all the radio buttons is wired as shown in Listing 2-11.

Listing 2-11. Change Event Handler of the Radio Buttons

$("#GridView1 :radio[id *='radItem']").change(function () {
 var newId = this.id;
 $("#GridView1 :radio[id *='radItem']").each(function (index) {
 if (this.id != newId) {
 $(this).removeAttr("checked");
 }
 })
})

By default, radio buttons placed in a GridView aren’t mutually exclusive, and you can select more than
one radio button. This happens because the GridView generates a different name for each of the radio
button rather than treating them as a group. To tackle this problem, the change event handler of the radio
buttons iterates through the radio buttons and unchecks all of them other than the one being selected. To
iterate through the radio buttons, the code uses the jQuery each() method. The each() method takes a
function that is executed on each element from the matched set. The callback function receives a zero-
based index of the current element from the matched set. To uncheck a radio button, its checked attribute
is removed using the removeAttr() method.

The change event handler of the list box displaying the cities is shown in Listing 2-12.

Listing 2-12. Change Event Handler of the List Box

$("#ListBox1").change(function () {
 $("#GridView1 :input").attr("disabled", "disabled");
 $("#ListBox1 option:selected").each(function () {
 $("#GridView1 tr:contains('" + this.value + "')").each(function () {
 $(":input", this).removeAttr("disabled");
 })
 })
})

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 2 n overview of jQuery

54

This event handler disables all input elements including check boxes and radio buttons. It then selects
the options selected in the list box and iterates through them one by one using the each() method. The
code in the each() block checks whether the current row contains a selected city. This checking is done
using the :contains() selector. This selector accepts a string and returns only those rows that contain the
specified string value. If a city is found in a row, the disabled attribute of the corresponding check box and
radio button is removed using the removeAttr() method.

The click event handler of the Clear Selection button is shown in Listing 2-13.

Listing 2-13. Click Event Handler of the Clear Selection Button

$("#Button1").click(function (event) {
 $("#ListBox1 option").each(function () {
 $(this).removeAttr("selected");
 })
 $("#GridView1 :input").removeAttr("disabled");
 event.preventDefault();
})

The button’s click event handler iterates through all the list-box options using the each() method and
unselects them one by one by removing the selected attribute. All the <input> elements are enabled by
removing the disabled attribute, because no city is now selected in the list box.

Modifying the DOM Using jQuery
By now, you know how to alter existing elements and their attributes. jQuery also lets you insert, append,
remove, and replace elements from the HTML DOM so you can modify the document structure. For
example, suppose you’re calling a remote service from client-side jQuery code and, based on what the
service returns, you need to generate HTML markup on the fly. Such tasks can be accomplished using
jQuery methods that let you manipulate the HTML DOM. Table 2-6 lists some of the most commonly used
DOM-manipulation methods.

Table 2-6. jQuery Methods for Modifying the HTML DOM

Method Description
after() Inserts content after a specific element

append() Appends content as specified by the parameter to the end of the matched elements.

appendTo() Appends the matched elements to the end of a target element.

attr() Gets or sets an attribute value

before() Inserts content before a specific element

clone() Makes a deep copy of an element and its contents

empty() Removes all the child nodes of a specific element

html() Returns the HTML markup of an element

insertAfter() Inserts content after a specific element

insertBefore() Inserts content before a specific element

prepend() Inserts content as specified by the parameter at the beginning of the matched elements

prependTo() Inserts the matched elements at the beginning of a target element

remove() Removes a specific element and all its child elements

www.it-ebooks.info

http://www.it-ebooks.info/

55

chapter 2 n overview of jQuery

removeAttr() Removes an attribute from an element

replaceWith() Replaces target element with specific content

text() Returns the text content of an element including all child elements

val() Returns the value from a form element

wrap() Wraps every element of a matched set in a given element

You’re already familiar with some of these methods, such as val(), attr(), removeAttr(), text(), and
html(). Listing 2-14 shows the use of other methods from Table 2-6.

Listing 2-14. Using DOM-Manipulation Methods

$("#container").append("<div>Hello</div>");
$("<div>Hello</div>").appendTo("#container");
$("span").replaceWith("<div class='class1'>Hello Universe!</div>");
$("<div class='class2'>Hello World!</div>").replaceAll("div.class1");

The first line of code from Listing 2-14 adds <div>Hello</div> at the end of the container element. So,
if the container is a element, then after calling the append() method, the effective markup is

<div>Hello</div>

n Note Most browsers let you view the HTML source of the web page being displayed. However, this HTML source
doesn’t include any HTML markup dynamically added at runtime using the jQuery methods listed in Table 2-6.

The second line of code uses the appendTo() method. This method is similar to the append() method
with one difference: append() is invoked on the target element and accepts markup to be appended. The
appendTo() method accepts a target element as a parameter and appends the specified markup at the end
of the target.

The example of the replaceWith() method replaces all the elements with <div
class='class1'> elements. For example, if the original markup is Hello World!, then after
calling the replaceWith() method, the new markup is <div class='class1'>Hello Universe!</div>.

Finally, the replaceAll() method replaces all the <div> elements with the CSS class class1 with
<div>Hello World!</div>.

jQuery Ajax Techniques
Many of the HTML5 features discussed in later chapters require you to pass data between the client
browser and the server. Such a data transfer can be accomplished in two ways:

•	 Submitting an entire form to the server

•	 Making an Ajax request to the server

The first technique involves submitting the entire form to the server using GET or POST requests.
Although this is a classic technique and easy to implement (using a Submit button or the submit()
JavaScript method), it suffers from a drawback: the entire page needs to be refreshed, which affects the
responsiveness and overall performance of the web application. No wonder many modern web
applications tend to use the second way of sending data to the server.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 2 n overview of jQuery

56

The second technique involves making an Ajax request to the server. The advantage of using Ajax is
that you don’t need to send all the form data to the server. Instead, you can send only the pieces of data
that are required for processing at a given point of time. The result of the processing returned by an Ajax
request can be used to dynamically update the web page. Thus Ajax improves the responsiveness and
overall performance of a web application.

Note that although Ajax implies using XML as a data format, JSON is more commonly used than XML
due to its compactness. Most of the examples in this book that require data transfers between client and
server use Ajax and JSON.

jQuery offers many ways to make Ajax requests to the server. They’re listed in Table 2-7.

Table 2-7. jQuery Ajax Methods

Technique Request Method Description
$.ajax() GET / POST / other

HTTP verbs also
supported

Generic function that can be used to make Ajax calls to the
server. All the techniques listed below internally use $.ajax()to
perform their operations.

$("...").load() GET / POST Fetches HTML markup or text from the server dynamically and
then sets it to the contents of a selected DOM element.

$.get() GET Makes generic GET requests to the server. For example, using the
$.get() method you can make a request to an MVC action
method and fetch data from the database.

$.post() POST Makes generic POST requests to the server. For example, using
the $.post() method you can submit a form to an MVC action
method for further processing.

$.getJSON() GET Makes a GET requests to the server and fetches data in JSON
format.

$.getScript() GET Loads remote script files dynamically so you can execute them
further in the code.

Using jQuery Ajax techniques, you can invoke the following types of ASP.NET server-side code:

•	 Web services (.asmx)

•	 Web methods

•	 WCF services (.svc)

•	 ASP.NET MVC controller action methods

•	 Web API

•	 Generic HTTP handlers (.ashx)

Although jQuery Ajax techniques let you call ASMX web services, whenever possible you should avoid
using them because newer techniques are available.

n Note Technically speaking, you can make Ajax request to any server-side resource not listed here. However, in
most common cases it’s best to encapsulate the code to be called from the client side in one of the mechanisms
discussed.

j
www.it-ebooks.info

http://www.it-ebooks.info/

57

chapter 2 n overview of jQuery

Detailed discussion of all the jQuery Ajax techniques listed in Table 2-7 is beyond the scope of this
book. The examples that follow illustrate the use of the $.ajax() function because it’s the mother of all the
other techniques.

The examples in this section show how you can use $.ajax() in Web Forms as well as MVC
applications. Both of the applications you develop display a simple web page, as shown in Figure 2-9.

The web page allows you to enter a temperature value in Celsius or Fahrenheit and converts it to the
other scale. The temperature conversion happens in a WCF service for the Web Forms application and in a
controller action method for the MVC application.

Using the jQuery $.ajax() Method in a Web Forms Application
The WCF service that converts temperature values between Celsius and Fahrenheit is shown in Listing
2-15.

Listing 2-15. WCF Service for Converting Temperature Values

namespace AjaxWebForm
{
 [DataContract]
 public class TemperatureData
 {
 [DataMember]
 public decimal Value { get; set; }
 [DataMember]
 public string Unit { get; set; }
 }

 [ServiceContract]
 public interface IService
 {
 [OperationContract]
 [WebInvoke(Method = "POST",
 RequestFormat = WebMessageFormat.Json,
 ResponseFormat = WebMessageFormat.Json)]

Figure 2-9. Web page to convert a temperature between Celsius and Fahrenheit

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 2 n overview of jQuery

58

 TemperatureData Convert(TemperatureData t);
 }

 public class Service : IService
 {
 public TemperatureData Convert(TemperatureData t)
 {
 if (t.Unit == "C")
 {
 t.Value = (t.Value * 1.8m) + 32;
 t.Unit = "F";
 }
 else
 {
 t.Value = (t.Value - 32) / 1.8m;
 t.Unit = "C";
 }
 return t;
 }
 }
}

The TemperatureData class represents the data contract of the WCF service and contains two data
member properties: Value and Unit. The IService interface represents a service contract for the service
and defines a single method Convert(). The Convert() method accepts a TemperatureData object and
returns a TemperatureData object after converting the temperature value to the other scale.

Notice that Convert() is decorated with an [WebInvoke] attribute. Due to this attribute, Convert()
becomes callable from the client-side jQuery code. The RequestFormat and ResponseFormat properties of
the [WebInvoke] attribute specify JSON as the communication format during request and response,
respectively. The Method property specifies that Convert() can be invoked by HTTP POST requests. The
Service class implements Convert(). The Convert() method checks the Unit of the incoming
TemperatureData object and, depending on the Unit, converts the Value to the other scale.

The Service class’s Convert() method can be called using jQuery’s $.ajax() function as shown in
Listing 2-16.

Listing 2-16. Using $.ajax() to Call the WCF Service Convert() Method

$(document).ready(function () {
 $("#Button1").click(function () {
 url = "Service.svc/Convert";
 data = '{"Value":"' + $("#Text1").val() + '","Unit":"' + $("#Select1").val() + '"}';
 $.ajax({
 type: "POST",
 url: url,
 data: data,
 contentType: "application/json; charset=utf-8",
 dataType: "json",
 success: OnSuccess,
 error: OnError
 })
 });
});

www.it-ebooks.info

http://www.it-ebooks.info/

59

chapter 2 n overview of jQuery

function OnSuccess(results) {
 alert("Converted Temperature : " + results.Value + " " + results.Unit);
}

function OnError(err) {
 alert(err.status + " - " + err.statusText);
}

The Convert button’s click event handler contains the jQuery code for invoking the Convert()
method. The $.ajax() function has many configurable settings. Some common ones are used in Listing
2-14. The url setting allows you to specify the remote resource URL. For a WCF service, the URL takes the
form <path_to_svc_file>/<method_name>.

The type option lets you specify the HTTP request type to be used while making the request. The
Convert() method is configured with the [WebInvoke] attribute to use a POST method, and hence type is
POST. The data setting indicates the data to be sent to the server (if any) while making the call. Notice how
data is captured in JSON format. A JSON object takes the form of key-value pairs: a key and its value are
separated by a colon (:), and multiple key-value pairs are delimited by a comma (,).

The dataType setting governs the data type of the response (XML, JSON, and so on). Recollect that the
[WebMethod] attribute specified ResponseFormat as JSON, so dataType here must be set to JSON to correctly
process the data coming from the server.

If Convert() returns successfully, the function specified by the success option (OnSuccess) is called. If
there is any error while calling the WCF service, a function specified by the error option (OnError) is called.
The OnSuccess() function is where you process the data returned from the WCF service. OnSuccess()
receives the return value of Convert() (the TemperatureData object) as a parameter. You can access its Value
and Unit properties and display an alert box to the user.

In the OnError() function, you typically flag the error to the user or take some corrective action.
OnError() receives an error object; you can display its status and statusText properties to the user.

Figure 2-10 shows a sample run of the Web Forms application.

Figure 2-10. Sample run of Web Forms application that converts temperatures

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 2 n overview of jQuery

60

Using the jQuery $.ajax() Method in an MVC Application
Working with MVC applications and calling server-side code from jQuery is simple. You don’t need to
create a separate service (of course, you can if you so wish). Instead, you can encapsulate the code in a
controller action method. For example, Listing 2-17 shows the Convert() action method that encapsulates
the temperature-conversion logic.

Listing 2-17. Convert() Action Method in an MVC Controller

public JsonResult Convert(TemperatureData t)
{
 if (t.Unit == "C")
 {
 t.Value = (t.Value * 1.8m) + 32;
 t.Unit = "F";
 }
 else
 {
 t.Value = (t.Value - 32) / 1.8m;
 t.Unit = "C";
 }
 return Json(t);
}

As you can see, the Convert() action method accepts a parameter of type TemperatureData and returns
a JsonResult. The JsonResult class wraps a return value in JSON format. Notice how the JsonResult object
is returned using ASP.NET MVC’s Json() method; this method accepts data to be returned and converts it
into JSON format.

You can call the Convert() action method from the client side by writing the jQuery code shown in
Listing 2-18.

Listing 2-18. Calling a Controller Action Method Through $.ajax() ()

$(document).ready(function () {
 $("#Button1").click(function () {
 url = "/Home/Convert";
 data = '{ Value: "' + $("#Text1").val() + '", Unit: "' + $("#Select1").val() + '" }';
 $.ajax({
 type: "POST",
 url: url,
 data:data,
 contentType: "application/json; charset=utf-8",
 dataType: "json",
 success: OnSuccess,
 error: OnError
 })
 });
});

function OnSuccess(results) {
 alert("Converted Temperature : " + results.Value + " " + results.Unit);
}

www.it-ebooks.info

http://www.it-ebooks.info/

61

chapter 2 n overview of jQuery

function OnError(err) {
 alert(err.status + " - " + err.statusText);
}

This code is similar to Listing 2-16, with a minute difference: the URL where the POST request is sent is
of the form <controller_name>/<action_method_name>. If you run the MVC application, you should get the
same results as in the case of the Web Forms application.

Summary
HTML5 features can be programmed with plain JavaScript, but using a library such as jQuery provides
greater richness of functionality and ease of use. jQuery is a popular JavaScript library that makes your
client-side scripting a breeze. Using the power of jQuery selectors, you can select HTML DOM elements
based on complex conditions. You can also manipulate the HTML DOM on the fly. jQuery comes to the
rescue when you need to pass data between client and server. And jQuery Ajax techniques let you make
requests to the server without submitting the entire page.

This chapter gave you an overview of core jQuery features such as event handling, selectors, DOM
manipulation, and Ajax techniques. You use these features (and a few more) throughout the remainder of
the book. With these skills under your belt, it’s time to explore the HTML5 audio and video APIs in the next
chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

63

n n n

chapter 3

Working with Audio and Video

Web sites built more than a decade ago were mainly collections of static HTML pages. Then came
JavaScript, and web pages became more interactive and animated. However, media-rich web sites were
still in their infancy. Over the years the situation has changed to a great extent. Web sites supporting audio
and video aren’t at all uncommon. Video-sharing web sites such as YouTube have become immensely
popular. To add to this media madness, social networking web sites such as Facebook and Google+ let you
share videos with just a click of your mouse. The bottom line is that media-rich web sites will become
more and more common in the years to come.

For pre-HTML5 web applications, developers need to rely on third-party plug-ins to display audio and
video files. That is because HTML 4.01 doesn’t have native support for playing media files. Native support
means the HTML markup and the browser can display media files without needing any external plug-in or
application. HTML5 is set to change the picture: it offers native support for playing audio and video files.
Not only that, it exposes audio and video APIs that allow you to control how media files are played in the
browser. This chapter covers all you need to know to use HTML5’s audio and video features. Specifically,
you learn about the following:

•	 Using the <audio> element

•	 Using the <video> element

•	 Media formats supported by leading browsers

•	 Providing a fallback mechanism in cases where the browser doesn’t support HTML5

•	 Creating a custom video player using audio and video API and jQuery

Embedding Media Files Using the <object> Tag
Before discussing the HTML5-specific ways you can play audio and video files, let’s glance at the
techniques that are commonly in use today. Although HTML5 provides native support for embedding
audio and video files in a web page, not all browsers support HTML5. To ensure that your web page works
as expected in such browsers, you can use the techniques discussed in this section as a fallback
mechanism.

The HTML <object> tag is a general-purpose tag that lets you embed objects in your web page: media
files, ActiveX controls, Java applets, or even PDF files. However, more commonly it’s used to display audio
and video files. The <object> tag needs a third-party plug-in to load and play media files; you can use
Adobe Flash, Apple QuickTime, and Microsoft Silverlight based plug-ins. If the target machine doesn’t have
the required plug-in installed, the media file will refuse to play.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 3 n working with audio and video

64

The following sections illustrate how to use the <object> tag to play audio and video files.

Embedding Audio Files
To embed an audio file into a web page, you can use an <object> tag as shown in Listing 3-1.

Listing 3-1. Using the <object> Tag to Play Audio Files

<body>
<h2>Play Audio File</h2>
<object data="Media/Song.mp3" />
</body>

The data attribute of the <object> tag points to an MP3 audio file residing in the Media folder.

Embedding Flash Video Files
Adobe Flash is one of the most popular ways of embedding video files in web pages. Due to its popularity,
all the leading browsers support the Flash plug-in. You can use the <object> tag to embed Flash videos in a
web page; Listing 3-2 shows how.

Listing 3-2. Embedding a Flash Video Using the <object> Tag

<object id="flash1" data="Media/Video1.swf" type="application/x-shockwave-flash"
height="200" width="200">
 <param name="movie" value="Media/Video1.swf">
</object>

The <object> tag this time plays a Flash video file Video1.swf. The type attribute specifies the MIME
type for Flash videos (application/x-shockwave-flash).

Embedding Silverlight Video Files
Microsoft’s solution to displaying media files in a web page is Silverlight. Silverlight is seen as a competitor
to Flash, but because it’s a relatively recent invention, it lags behind Flash in terms of popularity and
widespread use. However, Silverlight is a flexible and powerful platform that can be programmed using
.NET tools such as Visual Studio and Visual C#. You can also encode existing media files into a Silverlight-
specific format using Expression Web. Listing 3-3 shows how to embed and play a video using Silverlight.

Listing 3-3. Embedding Silverlight Media Files

<object data="data:application/x-silverlight-2"
type="application/x-silverlight-2" width="300" height="300">
 <param name="source" value="silverlightvideos/CleanTemplate.xap"/>
 <param name="background" value="white" />
 <param name="minRuntimeVersion" value="4.0.50401.0" />
 <param name="autoUpgrade" value="true" />
 <param name="enableHtmlAccess" value="true" />
 <param name="enableGPUAcceleration" value="true" />
 <param name="initparams" value='playerSettings =

www.it-ebooks.info

http://www.it-ebooks.info/

65

chapter 3 n working with audio and video

 <Playlist>
 <DisplayTimeCode>false</DisplayTimeCode>
 <EnableCachedComposition>true</EnableCachedComposition>
 <EnableCaptions>true</EnableCaptions>
 <EnableOffline>true</EnableOffline>
 <EnablePopOut>true</EnablePopOut>
 <StartMuted>false</StartMuted>
 <StartWithPlaylistShowing>false</StartWithPlaylistShowing>
 <StretchNonSquarePixels>NoStretch</StretchNonSquarePixels>
 <Items>
 <PlaylistItem>
 <AudioCodec>WmaProfessional</AudioCodec>
 <Description></Description>
 <FileSize>1349539</FileSize>
 <FrameRate>25</FrameRate>
 <Height>360</Height>
 <IsAdaptiveStreaming>false</IsAdaptiveStreaming>
 <MediaSource>silverlightvideos/Video2.wmv</MediaSource>
 <ThumbSource></ThumbSource>
 <VideoCodec>VC1</VideoCodec>
 <Width>640</Width>
 </PlaylistItem>
 </Items>
</Playlist>'/>

<img src="http://go2.microsoft.com/fwlink/?LinkId=108181"
alt="Get Microsoft Silverlight" style="border-style: none;"/>

</object>

Notice how the <object> tag now includes many pieces of information. The <param> and <Playlist>
elements supply a great deal of data such as the path of the Silverlight compressed output file (.xap) and
the configuration of the video being played.

HTML5 Audio and Video Tags
In the previous sections, you learned how pre-HTML5 web applications play audio and video files using
<object> tag. Now let’s turn our attention to HTML5 and see how HTML5 natively supports audio and
video playback.

HTML5 audio and video support comes in the form of the <audio> and <video> markup elements,
respectively. Each of these tags has a set of attributes you can use to configure how files are played.
Additionally, these elements expose properties, methods, and events that you can program using
JavaScript or jQuery. The following sections discuss the <audio> and <video> elements in detail.

Playing Audio
The HTML5 <audio> tag allows you to embed and play audio files in a web page. In its basic form, the
<audio> tag looks like Listing 3-4.

www.it-ebooks.info

http://go2.microsoft.com/fwlink/?LinkID=124807
http://go2.microsoft.com/fwlink/?LinkId=108181
http://www.it-ebooks.info/

chapter 3 n working with audio and video

66

Listing 3-4. Simple Use of the <audio> Tag

<body>
 <audio src="Audio1.mp3" controls="controls"></audio>
</body>

The src attribute points to an audio file (Audio1.mp3), and the controls attribute indicates that the
audio playback controls such as Play, Pause, and Volume should be displayed. Figure 3-1 shows how an
<audio> tag is rendered in IE9, Firefox, Chrome, and Opera.

n Note Not all the browsers support all the audio and video formats. You learn how to deal with the different levels
of support in various browsers later in this chapter.

Figure 3-1. <audio> element in different browsers

www.it-ebooks.info

http://www.it-ebooks.info/

67

chapter 3 n working with audio and video

All the browsers also reveal a shortcut menu if you right-click the audio player (see Figure 3-2). You
can use the shortcut menu to control audio playback.

The <audio> tag also provides some useful attributes that let you fine-tune how audio files are played.
By default, when you run a page using <audio>, the audio file isn’t played until you click the Play button. If
you wish to play the file automatically, you can add the autoplay attribute as follows:

<audio src="Audio1.mp3" controls="controls" autoplay="autoplay"></audio>

The autoplay attribute is handy for playing a background sound as users read the content of your web
page.

By default, an audio file isn’t replayed when it completes. To play the same file over and over again,
you can set the loop attribute:

<audio src="Audio1.mp3" controls="controls" loop="loop"></audio>

The loop attribute is useful in scenarios when users tend to be on a page a long time and you wish to
play background audio without interruption.

There is also a preload attribute that governs how an audio file is loaded by the browser. This attribute
has three possible values: auto, metadata, and none. The auto value indicates that the entire audio file
should be loaded as soon as the web page loads in the browser. metadata indicates that only metadata
information such as the length of the audio file should be loaded. Finally, none indicates that the file
shouldn’t be loaded at all. In this case, the file is loaded only when it’s played in the browser. The default
value for the preload attribute varies from browser to browser. If the preload attribute is omitted, the result
varies from one browser to another. The following markup shows how to use the preload attribute:

<audio src="Audio1.mp3" controls="controls" preload="auto" ></audio>

Using the preload attribute, you can control how much media data is downloaded on the client side.
For example, if you’re displaying a long list of audio files on a single page, setting preload to auto might
download too much data. Setting preload to metadata can be more efficient in such cases. Note that
preload is ignored if the autoplay attribute is present.

Playing Video
The HTML5 <video> element lets you play video files. It supports the same set of attributes as the <audio>
tag and provides a few more. The basic use of <video> is shown here:

<video src="Video1.mp4" controls="controls"></video>

The src attribute points to a video file, and the controls attribute displays the playback controls.
Figure 3-3 shows a video file being played in IE9.

Figure 3-2. Shortcut menu for the audio player in IE9

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 3 n working with audio and video

68

In addition to the autoplay, loop, and preload attributes, you can also use the muted and poster
attributes with the <video> element. The muted attribute indicates whether the audio output of the video
file being played should be muted. You can use this attribute when you want the user to view the video
without background sound, like this:

<video src="Video1.mp4" controls="controls" muted="mute d"></video>

The poster attribute points to an image file that is displayed while the video is being downloaded or
until the user clicks the Play button. You can use poster to display additional information about the video.
Here’s an example:

<video src="Video1.mp4" controls="controls" poster="poster.jpg" preload="none"></video>

Figure 3-4 shows the poster attribute in action.

Figure 3-4. Using the poster attribute

Figure 3-3. <video> element in IE9

www.it-ebooks.info

http://www.it-ebooks.info/

69

chapter 3 n working with audio and video

In addition to the attributes discussed so far, you can use the height and width attributes to control
the dimensions of the video player.

n Note HTML5 <audio> and <video> elements don’t hide the location of the media file from the end user. Just
like an image, you can easily save a media file that’s being played by looking at the web page’s HTML source and
grabbing the file URL or by right-clicking the video player and choosing the Save As menu option.

Supported Audio and Video Formats
In the preceding sections, you worked with the <audio> and <video> tags to display audio and video files.
These tags are simple to use, but there is a gray area that you need to be aware of as a web developer: audio
and video formats. Although HTML5 provides native support for audio and video playback, this support
isn’t uniform across all browsers. Different browsers don’t agree on the audio and video file formats that
can be played. For example, IE9 and Chrome play MP4 files just fine; but if you try to play them in Firefox,
you get the error “Video format or MIME type is not supported” (see Figure 3-5).

Figure 3-5. Firefox is unable to play MP4 files.

n Note You may wonder why not all browsers support all of the popular media formats. There are various reasons
for this lack of support including licensing issues, patenting issues, open standards, and so on. Detailed discussion of
these issues is beyond the scope of this book.

Before examining browsers and their supported formats, it’s worthwhile to look at some of the widely
used media formats on the Web because all the leading browsers support one or more of these formats.
Table 3-1 lists the file formats supported by the leading browsers.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 3 n working with audio and video

70

Table 3-1. Common Audio and Video File Formats for HTML5

Format File Extension MIME Type Description
MP3 .mp3 audio/mp3 MP3 is possibly the most popular and widely used format

for audio files. The MP3 format was originally designed by
the Moving Picture Experts Group (MPEG) as part of its
specifications. The main reasons some browsers don’t
support this format are licensing and patent issues.

MP4 .mp4 video/mp4 Just like MP3, MP4 is a popular web format for videos. The
MP4 standard is a part of MPEG-4. It’s widely used by
H.264 codecs; saying that a browser supports MP4 video
actually refers to H.264.

Ogg Vorbis .ogg audio/ogg Ogg Vorbis is a free and open format for audio files.

Ogg Theora .ogv video/ogg Ogg Theora is a format for videos and, just like Ogg Vorbis,
is a free and open standard.

WAV .wav audio/wav WAV or Waveform is a format for audio files. It was
designed for PCs by Microsoft and IBM. WAV is an
uncompressed file format and hence file sizes tend to be
larger.

WebM .webm video/webm WebM is a royalty-free and open video format intended
for use with HTML5. Its development is sponsored by
Google.

Notice the MIME Type column in Table 3-1. You must ensure that your web server has the correct
mapping of file extensions and MIME types. If this mapping doesn’t exist, the web server may not serve the
media files, and consequently the web page may not play the audio/video. For example, while using the
development web server that ships with Visual Studio, you may need to add the markup shown in Listing
3-5 to the web.config file so that all the file extensions mentioned in Table 3-1 work as expected.

Listing 3-5. Adding MIME Type Mappings in web.config

<system.webServer>
 <staticContent>
 <mimeMap fileExtension=".mp4" mimeType="video/mp4" />
 <mimeMap fileExtension=".ogg" mimeType="audio/ogg" />
 <mimeMap fileExtension=".oga" mimeType="audio/ogg" />
 <mimeMap fileExtension=".ogv" mimeType="video/ogg" />
 <mimeMap fileExtension=".webm" mimeType="video/webm" />
 </staticContent>
</system.webServer>

As you can see the <staticContent> subsection of <system.webServer> contains several <mimeMap>
elements. Each <mimeMap> element maps a file extension with its MIME type.

If you’re using a stand-alone installation of Internet Information Services (IIS) rather than the Visual
Studio development web server, you can also configure MIME types in the IIS Manager. Figure 3-6 shows
the relevant IIS Manager dialog in Windows 7.

www.it-ebooks.info

http://www.it-ebooks.info/

71

chapter 3 n working with audio and video

n Note Multipurpose Internet Mail Extension (MIME) is a specification for the format of non-text e-mail
attachments. Although it was originally designed to work with e-mailing systems, it’s now used extensively on the
Web to indicate the content type of web resources.

Now that you have some idea about various media formats, let’s see how different browsers support
them. Table 3-2 shows the leading browsers’ support of the media types from Table 3-1.

Table 3-2. Media Supported by Leading Browsers

Media Type IE9 Firefox Chrome Opera Safari
MP3 Yes No Yes No Yes

MP4 Yes No Yes No Yes

Ogg Theora No Yes Yes Yes No

Ogg Vorbis No Yes Yes Yes No

WAV No Yes Yes Yes Yes

WebM No Yes Yes Yes No

Figure 3-6. MIME mappings in IIS

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 3 n working with audio and video

72

n Note It’s best to test the media support mentioned in Table 3-2 in the latest versions of these browsers. The
specification is evolving, and all the browser companies are actively working to improve and standardize their
support for media formats.

Implementing a Fallback Mechanism
From the discussion in the preceding section, you may have realized that relying on browsers to support
media files of a specific MIME type isn’t practical when you’re building Internet web applications.
Additionally, when your target browser is unknown, you can’t guarantee that it supports HTML5 <audio>
and <video> tags. Some form of fallback mechanism is necessary to provide alternatives to the user if the
target browser doesn’t support HTML5 audio and video playback.

You need to provide fallback schemes for two scenarios:

•	 The target browser supports HTML5 <audio> and <video> tags but doesn’t support a
particular MIME type.

•	 The target browser doesn’t support HTML5 <audio> and <video> tags.

To handle these scenarios, you can use the following fallback mechanisms, respectively:

•	 Create media files in multiple file formats (MIME types).

•	 Use Flash or Silverlight as an alternate playback mode.

The following sections detail how to implement these techniques.

Supporting Multiple Media Formats
The <audio> and <video> elements allow you to specify multiple media sources. Until now, you’ve used the
src attribute of these tags to specify a media file, but <audio> and <video> can also use nested <source>
elements to specify multiple source files. At runtime, depending on the supported media type, a browser
picks up an appropriate version of the file. Listing 3-6 shows a <video> element that lists three sources.

Listing 3-6. Using the <source> Element

<video controls>
 <source src="media/video1.mp4" type="video/mp4" />
 <source src="media/video1.ogv" type="video/ogg" />
 <source src="media/video1.webm" type="video/webm" />
</video

As shown in Listing 3-6, each <source> element sets src and type attributes. The src attribute points to
a video file, and the type attribute indicates the file’s MIME type.

The downside of using <source> is that you need to maintain multiple file formats for each audio or
video file under consideration. This may require additional media-converter software, which increases the
overall cost of the project.

www.it-ebooks.info

http://www.it-ebooks.info/

73

chapter 3 n working with audio and video

n Note When you play an audio or video file with multiple <source> elements, it isn’t apparent which of the file
formats the browser is using. A quick and easy way to find out is to right-click the <audio> or <video> element in
the browser and select Save As from the shortcut menu. The Save As dialog displays the source file name of the
<source> element that is being played.

Flash or Silverlight Fallback
The fallback mechanism using the <source> element works well if you’re sure the target browser supports
HTML5. However, it’s possible that the target browser doesn’t understand HTML5 <audio> and <video>
elements. In such cases, you can use a Flash- or Silverlight-based fallback system. Listing 3-7 shows how
an example using Flash.

Listing 3-7. Using a Flash-Based Fallback System

<video controls>
 <source src="media/video1.mp4" type="video/mp4" />
 <source src="media/video1.ogv" type="video/ogg" />
 <source src="media/video1.webm" type="video/webm" />
 <object id="flash1" data="Media/Video1.swf" type="application/x-shockwave-flash">
 <param name="movie" value="Media/Video1.swf">
 </object>
</video>

The <video> element now has an <object> tag nested inside it. This way, if a browser doesn’t
understand the <video> tag, it skips to the <object> tag and plays the Flash video file.

If you decide to provide a Silverlight fallback, you need to embed Silverlight media using the <object>
tag. Listing 3-8 shows how this can be done.

Listing 3-8. Using a Sliverlight-Based Fallback System

<video controls>
 <source src="media/video1.mp4" type="video/mp4" />
 <source src="media/video1.ogv" type="video/ogg" />
 <source src="media/video1.webm" type="video/webm" />
 <object data="data:application/x-silverlight-2"
type="application/x-silverlight-2" width="300" height="300">
 <param name="source" value="silverlightvideos/CleanTemplate.xap"/>
 ...
 </object>
</video>

In Listing 3-8, the Silverlight media is embedded using the <object> tag inside the <video> element. If
a browser encounters the <video> tag but doesn’t support it, the browser skips to the <object> tag and
plays the Silverlight video.

If you don’t want to provide Flash, Silverlight, or another fallback, then instead of an <object> tag you
can simply include some HTML markup that informs the end user what went wrong.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 3 n working with audio and video

74

n Note To test the Flash or Silverlight fallback scheme, you need a browser version that doesn’t support HTML5
<audio> and <video> elements.

Programming with the Audio and Video APIs
So far, you’ve been using static <audio> and <video> elements to play audio and video files. HTML5 also
provides a programmatic way to play and control media files using JavaScript. To give you a glimpse of
what you can configure, Table 3-3 shows a list of the properties, methods, and events of the <audio> and
<video> DOM elements that you have at your disposal. Note that Table 3-3 lists only the commonly used
members of <audio> and <video>.

n Note You can browse all the available members of the <audio> and <video> elements at www.w3schools.
com. This web site also provides a good reference for the other HTML5 tags, properties, methods, and events.

Table 3-3. Properties, Methods, and Events of the <audio> and <video> DOM Elements

Member
Property /
Method / Event Description

canPlayType() Method The canPlayType() method returns true/false depending on whether a
particular MIME type can be played by the <audio> or <video> element.

currentTime Property The currentTime property indicates the current time instance of a
media file in seconds.

duration Property The duration attribute returns duration of the media file being played
in milliseconds. This property returns correct value only if the
metadata of the file is available at the time of reading the property.

ended Event The ended event is raised when the media file is played completely.

pause Event The pause event is raised when a media file is paused.

pause() Method The pause() method pauses a media file being played.

play Event The play event is raised when a media file is played.

play() Method The play() method plays a media file specified by the src property.

playbackRate Property The playbackRate property governs the speed at which a media file is
played. Default is 1 which means normal speed. Value of 2 means twice
the normal speed and so on.

playing Event The playing event is raised when the media file is ready to play.

src Property The src property indicates a URL of the media file to be played.

timeupdate Event The timeupdate event is raised when the current playback position is
changed.

volume Property The volume property indicates the volume level of the audio/video
player. Possible values are between 0 and 1, 1 being maximum volume
and 0 being mute.

volumechange Event The volumechange event is raised when the volume of a media file
being played is changed.

-
www.it-ebooks.info

http://www.it-ebooks.info/

75

chapter 3 n working with audio and video

n Note It’s always a good practice to check whether the browser supports <audio> and <video> tags before
you attempt to play the media files. As discussed in Chapter 1, you can use Modernizr library for that purpose. A
sample check looks like this:

$(document).ready(function () {
 if (!Modernizr.audio) {
 alert("This browser doesn't support HTML5 audio!");
 }
 if (!Modernizr.video) {
 alert("This browser doesn't support HTML5 video!");
 }
});

Creating a Custom Video Player Using the Video API
To see the properties, methods, and events of the <video> element in action, let’s build a custom video
player in an ASP.NET MVC application. The video player looks like the one shown in Figure 3-7.

Figure 3-7. A custom video player

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 3 n working with audio and video

76

The custom video player shown in Figure 3-7 provides a drop-down list of video files that can be
played. This list resides in a SQL Server database and is fetched using jQuery $.ajax() method. You can
play, pause, or stop a video using the Play and Stop buttons. (A single button is used to play as well as
pause a video.) The playback speed and volume can be set using the respective range input controls. Once
a video starts playing, the overall percentage of progress (%) is shown along with the video’s total duration.
The player also includes a poster that tells the user to select a video file from the drop-down list.

HTML5 Markup
The HTML5 markup for the custom video player resides in an MVC view (Index.aspx) and is shown in
Listing 3-9. For the sake of clarity, Listing 3-9 shows only the markup required for the video player rather
than the complete view.

Listing 3-9. HTML Markup for the Custom Video Player

<div class="PlayList">
 Select Video To Play :

 <select id="ddlPlayList" class="DropDownList">
 </select>
</div>
<div>
 <video id="videoPlayer" controls class="Video" poster="/content/media/poster.jpg" ></video>
</div>
<div class="Progress">

 Progress :

</div>
<div>
 <input type="button" id="btnPlayPause" value="Play" class="Button" />
 <input type="button" id="btnStop" value="Stop" class="Button"/>
</div>

<div class="Speed">
 Playback Speed (1-5) :
 <input type="range" id="rngPlaybackRate" value="1" step="1" min="1" max="5" class="Range"/>
</div>
<div class="Volume">
 Volume (0-1) :
 <input type="range" id="rngVolume" value="1" step="0.1" min="0" max="1" class="Range"/>
</div>

This HTML5 markup consists of six <div> elements. The first <div> contains a <select> element that
displays a list of videos that can be played.

The second <div> element contains an HTML5 <video>tag. The id attribute of the <video> element is
set to videoPlayer, and its poster attribute points to the poster.jpg file. The image indicated by the poster
property is displayed initially when no file is yet being played in the videoPlayer. Notice that the src
attribute of the <video> tag isn’t set because the actual video URL is selected from the drop-down list. Even
though the markup sets the controls attribute, you can skip it if you wish because you control the play and
pause operations programmatically.

www.it-ebooks.info

http://www.it-ebooks.info/

77

chapter 3 n working with audio and video

The third <div> element shows the total duration of the video and a progress indicator specifying the
percentage of the video already played.

The fourth <div> element holds two buttons: Play/Pause and Stop. btnPlayPause toggles between Play
and Pause modes.

The fifth and sixth <div> elements display a range selector for video playback rate and volume. Notice
that both <input> elements representing the range selectors have their type attribute set to range. (You
learn about several new <input> types available in HTML5 in Chapter 5.) The min and max attributes of
these range selectors indicate the minimum value and maximum value that can be selected. The step
attribute indicates a step by which a range can be incremented or decremented.

The CSS classes used by the Index.aspx view reside in the application’s Site.css file. For the sake of
reducing clutter, the CSS classes aren’t shown here.

SQL Server Database and Entity Framework Data Model
The application stores a list of videos that can be played in a SQL Server Express database (VideoDb.mdf).
VideoDb consists of a single table (Videos) that stores the titles and URLs of video files. Figure 3-8 shows the
schema of the Videos table in Server Explorer.

Figure 3-8. Schema of the Videos table

To represent the Videos table at the code level and get data out of this table, you use an Entity
Framework data model. The data model resides in the Models folder and looks like Figure 3-9.

Figure 3-9. Entity Framework data model class for the Videos table

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 3 n working with audio and video

78

The Video data model class has three properties—Id, Title, and Url—that correspond to the
corresponding columns in the Videos table.

Fetching the Video Playlist
To display a list of videos in the drop-down list, you need to fetch the data from the Videos table using
jQuery’s $.ajax() method. The controller class (VideoPlayerController) contains an action method—
GetPlayList()—that returns a list of Video objects. The GetPlayList() method and the associated jQuery
code that calls it are shown in Listing 3-10 and Listing 3-11, respectively.

Listing 3-10. GetPlayList() Action Method

public JsonResult GetPlayList()
{
 VideoDbEntities db=new VideoDbEntities();
 var data = from items in db.Videos
 select items;
 return Json(data.ToArray());
}

Listing 3-11. Calling the GetPlayList() Method Using $.ajax

$.ajax({
 type: "POST",
 url: '/VideoPlayer/GetPlayList',
 dataType: 'json',
 contentType: "application/json; charset=utf-8",
 success: OnSuccess,
 error: OnError
 });

function OnSuccess(playListItems) {
 for (var i = 0; i < playListItems.length; i++) {
 $("#ddlPlayList").append("<option value='" + playListItems[i].Url + "'>" +
 playListItems[i].Title +
 "</option>");
 }
}

function OnError(err) {
 alert(err.status + " - " + err.statusText);
}

Notice that the GetPlayList() method selects all the records from the Videos table and returns an
array of Video objects as JsonResult. The jQuery $.ajax() method then makes a POST request to the
GetPlayList() action. The success function OnSuccess() receives a JSON array of Video objects. The
OnSuccess() function then iterates through this JSON array and, with each iteration, appends an <option>
element to the drop-down list using the append() method. The URL of a video file is assigned to the value
attribute of an <option> element, and its title is displayed in the drop-down list.

The OnError() function displays information about any errors encountered while invoking the
GetPlayList() method.

www.it-ebooks.info

http://www.it-ebooks.info/

79

chapter 3 n working with audio and video

Playing, Pausing, and Stopping a Video
You need to handle various client-side events in order to make the video player functional. These events
fall into two categories:

•	 Events of supporting elements such as the Play/Pause and Stop buttons, the volume
control, and the drop-down list

•	 Events of the <video> element

The events in the first category can be handled using the jQuery event-handling syntax you learned
about in Chapter 2. Listing 3-12 shows various event handlers in this category.

Listing 3-12. Handling Events of Supporting Elements

videoPlayer = $("#videoPlayer").get(0);

$("#ddlPlayList").change(function () {
 var extension = $(this).val();
 extension=extension.substr(extension.lastIndexOf('.') + 1)
 var mime = "";
 switch (extension) {
 case 'mp4':
 mime = "video/mp4";
 break;
 case 'ogv':
 mime = "video/ogg";
 break;
 case 'webm':
 mime = "video/webm";
 break;
 }
 if (videoPlayer.canPlayType(mime)) {
 $("#btnPlayPause").val("Play");
 videoPlayer.src = $(this).val();
 $("#btnPlayPause").click();
 }
 else {
 alert("Cannot play this video format!");
 }
});

$("#btnPlayPause").click(function () {
 if ($(this).val() == "Play") {
 videoPlayer.playbackRate = $("#rngPlaybackRate").val();
 videoPlayer.play();
 }
 else {
 videoPlayer.pause();
 }
});

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 3 n working with audio and video

80

$("#btnStop").click(function () {
 videoPlayer.pause();
 videoPlayer.currentTime = 0;
});

$("#rngVolume").change(function () {
 videoPlayer.volume = $(this).val();
});

The code in Listing 3-12 stores a reference to the <video> DOM element in a global variable,
videoPlayer. Notice the use of the get() method, which returns a DOM element at a specified index. Any
jQuery selector returns a collection of zero or more elements matching the selection criteria. You can
retrieve an element from this collection using get() by specifying its zero-based index. In this case, the
<video> element is selected using its ID. Naturally, the collection has only one element, and hence index is
specified as 0.

The drop-down list’s change event handler takes care of playing a video when the selection in the
drop-down list changes. First it checks whether the <video> element can play the selected video file using
the canPlayType() method. The canPlayType() method accepts the MIME type of a media file and returns
true if that media type can be played. If the <video> element is capable of playing the selected video file, its
src property is set to the URL of the selected video file, and the Play/Pause button’s click event is triggered
programmatically.

The Play/Pause button’s click event handler checks its own value. Inside the handler, the keyword
this refers to the DOM element being clicked (that is, the Play/Pause button) and the val() method
returns the current value of the button. If the value is Play, the playbackRate property is set to a value
selected in the speed range selector, and the <video> element’s play() method is called. This way, the video
is played at a chosen playback speed. If the value is Pause, the <video> element’s pause() method is called
so that video playback is paused.

The Stop button’s click event handler sets the currentTime property to 0 to indicate the beginning of
the media file and calls the pause() method.

The Volume range selector’s change event handler changes the volume of the video playback by setting
the volume property of the <video> element.

Displaying Duration and Progress
To display the total length of the selected video file and its playback progress, you need to handle the
timeupdate and loadmetadata events of the <video> element. These events need to be wired a bit differently
than before. Events such as click and change are standard HTML DOM events and are natively included in
the jQuery library. However, that’s not the case with video events. Because the <video> element is a new
addition in HTML5, the jQuery library doesn’t have native support for its events. Therefore you need to
wire the event handlers as shown in Listing 3-13.

Listing 3-13. Wiring Events Using the jQuery bind() Method

$(videoPlayer).bind("loadedmetadata", OnLoadedMetadata);
$(videoPlayer).bind("timeupdate", OnTimeUpdate);
$(videoPlayer).bind("play", OnPlay);
$(videoPlayer).bind("pause", OnPause);

As you can see, jQuery’s bind() method essentially binds an event with its handler. The first parameter
of the bind() method is the event to be handled, and the second parameter is the event-handler function.

www.it-ebooks.info

http://www.it-ebooks.info/

81

chapter 3 n working with audio and video

You could use anonymous functions here, but for the sake of clarity Listing 3-13 uses stand-alone
JavaScript functions.

n Note As of this writing, jQuery doesn’t include event functions for HTML5-specific events such as play and
pause. That is why this example uses the bind() method. Refer to Chapter 2 for details of using the bind()
method for event wiring.

You might be wondering why Listing 3-13 handles play and pause events. It does so because you can
also play and pause videos in the video player using the shortcut menu. If a user decides to use the
shortcut menu instead of the Play/Pause button to play or pause a video, the functionality of the Play/
Pause button becomes out of sync. The play and pause events are raised when the video is played or
paused using either means (button or shortcut menu). By handling these events, you ensure that the Play/
Pause button always reflects the correct state of the player.

The event-handler functions OnLoadedMetadata, OnTimeUpdate, OnPlay, and OnPause are shown in
Listing 3-14.

Listing 3-14. Event-Handler Functions Used in the bind() Method

function OnLoadedMetadata() {
 $("#spanDuration").html("Duration : " + videoPlayer.duration.toFixed(1) + " seconds.");
}

function OnTimeUpdate() {
 var percentage = Math.floor((videoPlayer.currentTime / videoPlayer.duration * 100));
 $("#spanProgress").html(percentage + " % ");
}

function OnPlay() {
 $("#btnPlayPause").val("Pause");
}

function OnPause() {
 $("#btnPlayPause").val("Play");
}

The loadmetadata event is raised when the metadata of the video file being played is loaded. In order
to display a video’s duration, the video’s metadata must be available; hence the loadmetadata event is used
to display the duration in a element. The duration property returns the duration in seconds; for the
sake of proper display, it’s converted to a fixed decimal number using the JavaScript toFixed() method.

The timeupdate event is raised every time the current playback position of the video changes. The
OnTimeUpdate() function calculates a percentage of video played so far with the help of the <video>
element’s currentTime and duration properties. The progress thus calculated is displayed in a
element.

The OnPlay() event handler sets the Play/Pause button’s text to Pause when the video starts playing.
On the same lines, the OnPause() event handler sets the Play/Pause button’s text to Play when the video is
paused.

That’s it! Your custom video player is ready. You can test the player by adding a few entries in the
Videos table and then running those files by selecting from the drop-down list.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 3 n working with audio and video

82

Summary
Prior to HTML5, embedding audio and video files in a web page required third-party plug-ins such as
Flash and Silverlight. Developers used <object> tags to embed Flash or Silverlight media in web pages.
HTML5 provides native support for playing audio and video files using <audio> and <video> elements,
respectively. As of this writing, there is yet to be standardization on the audio and video formats supported
by the various browsers, but we can hope that in the future all browsers will agree on a common set of
media formats.

Because not all browsers support HTML5, you may need to implement a fallback scheme so that if a
browser doesn’t understand HTML5 <audio> and <video> elements, the Flash or Silverlight player takes
over. Using <audio> and <video> tags coupled with jQuery, you can develop database-driven media
catalogs or playlists.

The <audio> and <video> elements allow you play existing media files. The HTML5 <canvas>, the
subject of the next chapter, lets you draw shapes, text, and images in a browser, thus opening a plethora of
possibilities for building graphic-rich web applications.

www.it-ebooks.info

http://www.it-ebooks.info/

83

n n n

chapter 4

Drawing with the Canvas

One of the reasons for the popularity of the Web is the graphical user interface offered to end users.
Images, animations, fonts, and other interactive effects make a web site appealing from an end user’s
perspective. However, one limitation that web site developers may have encountered when developing
pre-HTML5 web applications was drawing graphics in the browser using client-side capabilities. ASP.NET
developers have been using the System.Drawing namespace to generate graphics on the fly on the server
and then send them to the client, but there is no native support for drawing graphics in the browser
window.

HTML5 does a great job at client-side graphic rendering by offering the canvas. As the name suggests,
a canvas is a rectangular area of a web page in which you can perform drawing operations with the help of
the canvas API and JavaScript/jQuery. In this chapter, you learn about the HTML5 canvas in detail.
Specifically, you look into the following:

•	 Drawing lines, curves, paths, shapes, and text on the canvas

•	 Applying special effects such as shadows, gradients, pattern fills, and transparency
to drawing objects

•	 Saving the canvas state on the server for later use

The chapter concludes by building a sample application that incorporates what you’ve learned.

The <canvas> Element
As mentioned previously, an HTML5 canvas is a rectangular space on a web page where you carry out
drawing operations. An HTML5 canvas is represented by the <canvas> tag. As of this writing, the latest
versions of all the leading browsers (IE, Firefox, Chrome, Opera, and Safari) support the <canvas> element,
although the support varies in terms of the canvas features offered.

You can place a canvas on a web page using the markup from Listing 4-1.

Listing 4-1. Basic <canvas> Element

<head runat="server">
 <script type="text/javascript" src="Script/jquery-1.7.2.min.js"></script>
 <script type="text/javascript" src="Script/modernizr-2.5.3.js"></script>
 <script type="text/javascript">
 $(document).ready(function () {

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 4 n drawing with the canvas

84

 if (!Modernizr.canvas) {
 alert("This browser doesn't support HTML5 Canvas!");
 }
 });
 </script>
 <style>
 canvas {
 border: 2px solid #808080;
 }
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <canvas id="MyCanvas" height="200" width="200"></canvas>
 </form>
</body>

The markup in Listing 4-1 declares an HTML5 canvas using a <canvas> element. Although they’re
optional, the width and height of the canvas are also set to mark the dimensions of the canvas. If you don’t
specify dimensions for a canvas, the browser creates a canvas with the default width and height. For
example, if dimensions aren’t specified, Firefox and Google create a canvas with a width of 300 pixels and a
height of 150 pixels. The <head> section also contains jQuery code that checks for canvas support using
Modernizr. The <style> section adds a border to the canvas so its boundaries can be seen on the web page.
Figure 4-1 shows how the canvas looks.

Drawing on the Canvas
In order to draw anything on the canvas, you need to get its drawing context. A drawing context is an
object that provides methods and properties for drawing graphics on the canvas. Any changes to the
context properties are applied to subsequent drawing operations. Additionally, you can perform different
drawing operations using different context objects.

Figure 4-1. Basic canvas rendered in a browser

www.it-ebooks.info

http://www.it-ebooks.info/

85

chapter 4 n drawing with the canvas

To get a reference to the drawing context in your code, you use the getContext() method of the
<canvas> DOM element. Listing 4-2 shows how.

Listing 4-2. Getting a Drawing Context

$(document).ready(function () {
 var canvas = $("#MyCanvas").get(0);
 var context = canvas.getContext("2d");
});

As you did in the previous chapter, here you use the jQuery get(0) method to get a reference to the
<canvas> element with ID MyCanvas. As mentioned in Chapter 2, jQuery selectors return a collection of
matching elements. You can retrieve an element from this collection using the get() method by specifying
its zero-based index. In this case, the <canvas> element is selected using its ID. Naturally, the collection has
only one element, and hence index is specified as 0. You then call the getContext() method of the canvas
object to retrieve its drawing context. The getContext() method takes a parameter indicating the type of
context. A value of 2d indicates two-dimensional drawing content (the only mode currently available).

Once you get the drawing context object, you’re ready to draw on the canvas. While performing
drawing operations on the canvas, you need to specify the coordinates where graphics are to be drawn,
and hence you should be aware of the canvas coordinate system. The unit for specifying canvas
coordinates is the pixel. The top-left corner of the canvas has coordinates (0,0). Figure 4-2 explains canvas
coordinates with an example.

The figure shows a canvas 300 pixels wide and 200 pixels high. The origin of the canvas is at (0,0).
Another point at (150,100) is also shown.

Drawing Lines
Drawing a line is possibly the simplest operation you can perform on a canvas. To draw a line, you need to
perform these operations:

•	 Shift the current drawing position to a required start point.

Figure 4-2. HTML5 canvas coordinate system

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 4 n drawing with the canvas

86

•	 Specify the end-point coordinates of the line.

•	 Draw the line.

Listing 4-3 shows all three operations.

Listing 4-3. Drawing a Line

context.moveTo(10, 100);
context.lineTo(190, 100);
context.stroke();

This code assumes that the context variable holds a reference to a drawing context. To draw a line
with start coordinates of (10,100) and end coordinates of (190,100), you use three methods of the drawing
context: moveTo(), lineTo(), and stroke().

The moveTo() method moves the current drawing coordinates to specified x and y points (10 and 100
in this case). The lineTo() method specifies the end coordinates of the line (190,100 in this case). The line
isn’t drawn immediately after you call the lineTo() method. You inform the drawing context that the
drawing operation is to be performed using the stroke() method. The code from Listing 4-3 results in the
line shown in Figure 4-3.

The line drawn in this case assumes a default width. You can, however, change the width of the line
being drawn as explained in the next section.

Changing the Line Width and Cap
In the preceding example, you used the default values for the line width and line cap while drawing a line.
You can change these defaults using the lineWidth and lineCap properties.

The lineWidth property specifies the width of a line in pixels. All lines drawn after you set lineWidth
assume the newly specified width while rendering.

The line cap refers to how the end of a line is drawn. The lineCap property has three possible values:
butt, round, and square. The default is butt. Figure 4-4 shows the difference between the three line
endings.

Figure 4-3. Drawing a line

www.it-ebooks.info

http://www.it-ebooks.info/

87

chapter 4 n drawing with the canvas

As you can see in Figure 4-4, a lineCap value of butt ends exactly at the end coordinates specified in
the lineTo() method. On the other hand, lineCap values of round and square extend the line by an amount
equal to the width of the line, because additional pixels equal to half of the line width are used for the cap.
For example, consider a line with width of 10 pixels, a start point (10,100), and an end point (190,100). The
length of the line including the start and end points is 180 pixels. If you specify a lineCap mode of butt, the
resulting line has a length of exactly 180 pixels. However, with a lineCap mode of round or square, the
length of the line is 190 pixels (180 pixels + an additional 5 pixels at the start + an additional 5 pixels at the
end for a line).

Listing 4-4 shows how to use the lineWidth and lineCap properties, and Figure 4-5 shows the resulting
lines.

Figure 4-4. Differences between butt, round, and square

Figure 4-5. Different lineCap settings in action

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 4 n drawing with the canvas

88

Listing 4-4. Setting the lineWidth and lineCap Properties

context.lineWidth = 10;

context.beginPath();
context.moveTo(20, 100);
context.lineTo(180, 100);
context.lineCap = "butt";
context.stroke();

context.beginPath();
context.moveTo(20, 120);
context.lineTo(180, 120);
context.lineCap = "round";
context.stroke();

context.beginPath();
context.moveTo(20, 140);
context.lineTo(180, 140);
context.lineCap = "square";
context.stroke();

In this listing, the width of the lines to be drawn is set to 10 pixels using the lineWidth property. Then
the code draws three lines by setting lineCap to butt, round, and square, respectively.

Notice the use of the beginPath() method, which begins a new drawing path. (Paths are covered in a
later section.) Here, suffice to say that a path is a series of drawing operations. If you don’t call beginPath(),
all lines are redrawn with the last lineCap setting you specified (square in this example).

Notice how the last two lines in Figure 4-5 add extra pixels to the overall length, whereas the first line
is precisely drawn as per the start and end coordinates.

Drawing Curves
You can draw three types of curves on the canvas: arcs, quadratic curves, and Bezier curves. These three
types of curves are drawn using the arc(), arcTo(), quadraticCurveTo(), and bezierCurveTo() methods.
Drawing an arc is necessary in order to draw circles and rounded rectangles. You can probably do all the
drawing you need with arc() and arcTo(), but if you need something more complicated, you can
investigate quadratic and Bezier curves. The following sections discuss arc() and arcTo().

A Quick Introduction to Radians
While working with arcs, you frequently come across angles specified in radians. The radian is the standard
unit of angular measurement and describes the ratio between the length of an arc of a circle and its radius.
One radian is defined as the angle subtended when the length of the arc of a circle is equal to the radius of
that circle. A radian is therefore equal to (Length of the arc / Radius of the arc).

The circumference of a circle is given by the formula 2πr, where r is the radius of the circle. A full circle
means 360° or 2πr/r—that is, 2π and 1 radian = (180/π)°. To convert radians to degrees, you need to
multiply a radian value by 180/π. Along the same lines, to convert degrees to radians, you multiply a degree
value by π/180.

www.it-ebooks.info

http://www.it-ebooks.info/

89

chapter 4 n drawing with the canvas

n Note This discussion is limited to the bare minimum understanding required to use the arc() and arcTo()
methods. Explaining the mathematical treatment involved in drawing these curves is beyond the scope of this book.

Drawing an Arc Using the arc() Method
To draw an arc on a canvas, you use the drawing context’s arc() method. The general syntax of arc() is as
follows:

context.arc(x, y, radius, start_angle, end_angle, direction)

The first two parameters of the arc() method indicate the coordinates of the center of the arc. The
radius parameter indicates the arc’s radius. The start and end angles are the angles in radians for the start
point and end point of the arc, respectively. Finally, the direction parameter indicates whether the arc
should be drawn in a clockwise or counterclockwise direction. To better understand these parameters,
look at Figure 4-6.

Listing 4-5 shows a code fragment that draws an arc using the arc() method.

Listing 4-5. Using the arc() Method

var canvas = $("#MyCanvas").get(0);
var context = canvas.getContext("2d");
var x = canvas.width / 2;
var y = canvas.height / 2;
var radius = 100;
var start_angle = 0.5 * Math.PI;
var end_angle = 1.75 * Math.PI;
context.arc(x, y, 75, start_angle, end_angle, false);
context.lineWidth = 20;
context.stroke();

Figure 4-6. Pictorial representation of the arc() method’s parameters

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 4 n drawing with the canvas

90

This code calculates the center of the canvas and uses those coordinates as the x and y coordinates of
the arc. Notice how the start and end angles are calculated in radians using the Math.PI constant. The
direction parameter is set to false, indicating that the arc should be drawn in the clockwise direction.
Figure 4-7 shows how the code from Listing 4-5 renders in the browser.

Figure 4-7. The arc() method in action

There is also a different way to draw an arc: using the arcTo() method. This method takes the
following form:

context.arcTo(x1, y1, x2, y2, radius)

In this method signature, x1, y1, x2, and y2 are the control points, and radius is the radius of the arc.
Determining the control points is bit complex; Figure 4-8 illustrates.

Figure 4-8. Coordinates used in the arcTo() method

www.it-ebooks.info

http://www.it-ebooks.info/

91

chapter 4 n drawing with the canvas

n Note Without going into too much detail, control points are special points attached to a curve that are used to
alter the curve’s shape and angle. Stretching a control point changes the shape of a curve, whereas rotating a
control point changes the curve’s angle.

The arcTo() method comes in handy for drawing rounded rectangles. Listing 4-6 shows how.

Listing 4-6. Using the arcTo() Method

var canvas = $("#MyCanvas").get(0);
var context = canvas.getContext("2d");
var x = 25;
var y = 50;
var width = 150;
var height = 100;
var radius = 20;
context.lineWidth = 10;
// top and top right corner
context.moveTo(x + radius, y);
context.arcTo(x + width, y, x + width, y + radius, radius);
// right side and bottom right corner
context.arcTo(x + width, y + height, x + width - radius, y + height, radius);
// bottom and bottom left corner
context.arcTo(x, y + height, x, y + height - radius, radius);
// left and top left corner
context.arcTo(x, y, x + radius, y, radius);
context.stroke();

This code calls the arcTo() method four times. The first call draws the top edge and upper-right
corner of the rectangle. The second call draws the right edge and lower-right corner. The third call draws
the bottom edge and lower-left corner. Finally, the fourth call draws the left edge and upper-left corner.
Figure 4-9 shows how the rounded rectangle looks at runtime.

Figure 4-9. Drawing a rounded rectangle using the arcTo() method

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 4 n drawing with the canvas

92

The arc() and arcTo() methods discussed in this section are very useful for drawing circles, sectors,
and rounded rectangles.

Drawing Paths
In the preceding sections, you learned to draw lines and curves. You can combine lines and curves to draw
a path or a shape. Simply put, a path is a sequence of drawing operations that result in a shape. A path can
be open or closed. A closed path can also be filled with some color or pattern.

To draw a path, you first call the beginPath() method and then draw lines or curves as before. To flag
the end of the path, you call stroke() (to draw the outline of a shape) or fill() (to draw a filled shape).

Listing 4-7 draws a smiley using the moveTo() and arc() methods.

Listing 4-7. Drawing a Smiley

var canvas = $("#MyCanvas").get(0);
var context = canvas.getContext("2d");
context.beginPath();
//face
context.arc(100, 100, 80, 0, Math.PI * 2, false);
//smile
context.moveTo(160, 100);
context.arc(100, 100, 60, 0, Math.PI, false);
//left eye
context.moveTo(75, 70);
context.arc(65, 70, 10, 0, Math.PI * 2, true);
//right eye
context.moveTo(135, 70);
context.arc(125, 70, 10, 0, Math.PI * 2, true);
context.stroke();

context.lineWidth = 5;
context.stroke();

In all, there are four calls to the arc() method: they draw the outline of the face, the smile, the left eye,
and the right eye, respectively. To actually draw the path, the code calls the stroke() method—stroke()
draws the outline of the path. Figure 4-10 shows what the smiley looks like in the browser.

You can also draw closed paths that are filled by a color. For example, Listing 4-8 draws a triangle that
is filled with blue color.

Listing 4-8. Drawing a Filled Shape

context.beginPath();
context.moveTo(50,20);
context.lineTo(50,100);
context.lineTo(150, 100);
context.closePath();
context.lineWidth = 10;
context.strokeStyle = 'red';
context.fillStyle = 'blue';
context.stroke();
context.fill();

www.it-ebooks.info

http://www.it-ebooks.info/

93

chapter 4 n drawing with the canvas

Notice the use of two methods not used so far: closePath() and fill(). The closePath() method
closes a path by joining the start point of the first drawing operation and the end point of the last drawing
operation. Thus to draw a triangle, you need to draw only two lines using lineTo(); calling
closePath()draws the third side of the triangle. Until now, you used the stroke() method to draw an
outline of a shape. The fill() method fills the shape with a color. Of course, you can use stroke() as well as
fill() with a single shape. The strokeStyle and fillStyle properties can be used to specify a color with
which the outlining or filling operation should be performed. Figure 4-11 shows how a filled triangle is
rendered as a result of running the code from Listing 4-8.

Figure 4-10. Drawing a smiley

Figure 4-11. Drawing a filled triangle

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 4 n drawing with the canvas

94

Just like a triangle, a rectangle can also be drawn using the path-drawing techniques discussed earlier.
However, drawing a rectangle is such a commonly needed operation that there are readymade methods—
strokeRect() and fillRect()—that simplify your job. These methods accept the coordinates of the upper-
left corner of a rectangle and its width and height. The strokeRect() method draws an outline of the
rectangle, whereas fillRect() draws a filled rectangle. Listing 4-9 show how these methods are used, and
Figure 4-12 shows the resulting rectangles.

Listing 4-9. Drawing a Rectangle

var canvas = $("#MyCanvas").get(0);
var context = canvas.getContext("2d");
context.lineWidth = 5;
context.fillRect(10,10,180,50);
context.strokeRect(10,80,180,50);

n Note There is also a method—rect()—that you can use to draw rectangles. However, if you use rect(), you
also need to call stroke() or fill() to actually draw the rectangle. The strokeRect() and fillRect() methods
perform these two steps in one go.

Drawing Text
So far, you’ve learned to draw lines, curves, and shapes on the canvas. Often you need to incorporate text
as a part of the drawing itself, and sooner or later you’ll want to draw text on the canvas. As you might
expect, the drawing context provides rich support for drawing text using the strokeText() and fillText()
methods. Additionally, you can specify the font, font size, alignment, and baseline for drawing the text.

Listing 4-10 show how to draw text with the help of these properties and methods.

Figure 4-12. Rectangles drawn on a canvas

www.it-ebooks.info

http://www.it-ebooks.info/

95

chapter 4 n drawing with the canvas

Listing 4-10. Drawing Text on the Canvas

var canvas = $("#MyCanvas").get(0);
var context = canvas.getContext("2d");
var x = canvas.width / 2;
var y = canvas.height / 2;
context.font = "30px Arial";
context.textBaseline = "middle";
context.textAlign = "center";
context.lineWidth = 1;
context.strokeStyle = "red";
context.fillStyle = "blue";
context.strokeText("Hello Canvas!",x,y-50);
context.fillText("Hello Canvas!",x,y+50);

This code sets the font for the text to be drawn using the font property. Note that the font size and
attributes such as bold and italics must be mentioned before the font family in order for the text to be
drawn correctly.

The textBaseLine property governs the baseline for the text. Some of the common values for
textBaseLine property are top, bottom, and middle. These values affect the vertical positioning of the text
with respect to the y coordinate. For example, setting the textBaseLine property to middle means the text
is drawn with its vertical midpoint corresponding to the y coordinate. The textAlign property controls the
text alignment on the canvas. Common values for textAlign are left, right, and center. The textAlign
property controls the alignment of the text with respect to the x position of the text. For example, if the x
coordinate is set to 100px and textAlign is set to center, then the center of the text is placed at 100px.

You can use the strokeStyle property to specify the text outline color. The strokeText() method
draws the text on the canvas with the specified strokeStyle.

The fillStyle property governs how the text is filled, and the fillText() method draws the text with the
specified fillStyle.

Figure 4-13 shows how the code from Listing 4-10 renders the specified text.

Figure 4-13. The strokeText() and fillText() methods in action

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 4 n drawing with the canvas

96

n Note There is no built-in way to wrap a long line of text into multiple lines of text. You have to write your own
code to segment the text according to your needs.

Drawing Images
Drawing on the HTML5 canvas is not limited to lines, curves, shapes, and text. You can also draw existing
image files on a canvas. This is particularly helpful when you wish to integrate an image that is more
complicated than a simple shape. Consider, for example, if you want to display a company logo on a
canvas. Re-creating the logo from scratch may not be the best option. Additionally, the logo may be too
complex to be drawn using the available canvas API. It would be much easy to load an existing logo image
and then render it on the canvas. Luckily, the drawing context offers the drawImage() method, which allows
you to draw images on a canvas.

Listing 4-11 shows the simplest form of using drawImage().

Listing 4-11. Using the drawImage() Method in Its Simplest Form

var canvas = $("#MyCanvas").get(0);
var context = canvas.getContext("2d");
var img = new Image();
$(img).load(function () {
 context.drawImage(img, 10, 20);
});
img.src = "images/html5.png";

This code creates an image on the fly using JavaScript code. Notice that the jQuery code also wires an
event handler for the load event of the image object. The load event is raised when an image is fully
loaded. Unless an image is fully loaded, you can’t draw it on a canvas. Therefore, you call the drawImage()
method inside the load event handler. drawImage() accepts the image object to be drawn and x and y
coordinates where the image is to be drawn. The code then sets the image’s src property to an existing
image file (images/html5.png). If you run the code in Listing 4-11, you see an image drawn on the canvas as
shown in Figure 4-14.

At times you may need to resize an image while drawing it on the canvas. For example, the original
image size may be larger than the canvas size, and you may wish to fit the image as per the canvas
dimensions. To accomplish this, you can use a variation of the drawImage() method that accepts the width
and height to which the image must be resized. Listing 4-12 shows how this is done.

Listing 4-12. Drawing an Image with a Specific Width and Height

var canvas = $("#MyCanvas").get(0);
var context = canvas.getContext("2d");
var img = new Image();
$(img).load(function () {
 context.drawImage(img,0,0, canvas.width,canvas.height);
});
img.src = "images/html5.png";

As you can see, in addition to x and y coordinates, the drawImage() method also specifies the image’s
width and height. In Listing 4-12, the image width and height are set equal to the canvas width and height.

www.it-ebooks.info

http://www.it-ebooks.info/

97

chapter 4 n drawing with the canvas

Of course, it’s possible that the resized imaged may be distorted if the width and height proportions aren’t
maintained.

Yet another possibility while drawing images on a canvas is to draw just a portion of the source image
instead of the entire image. To accomplish this image cropping, you use another variation of the
drawImage() method that takes the coordinates and dimensions of the image slice along with other
parameters discussed previously. Listing 4-13 make clear how to use this variation.

Listing 4-13. Drawing Just Part of an Image

var canvas = $("#MyCanvas").get(0);
var context = canvas.getContext("2d");
var img = new Image();
$(img).load(function () {
 context.drawImage(img, 0,0,200,40,0, 0, canvas.width/2 , canvas.height/2);
});
img.src = "images/html5.png";

The drawImage() method now takes four more parameters than the previous signature. The two
parameters after the image parameter indicate the x and y coordinates (0,0) of the source image at which
cropping should begin. The next two parameters indicate the width (200px) and height (40px) of the region

Figure 4-14. drawImage() method in action

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 4 n drawing with the canvas

98

from the source image that needs to be drawn on the canvas. The last four parameters have the same
significance as in the previous example. Figure 4-15 shows how part of the image is drawn on the canvas.

As you can see, the HTML5 logo has been cropped such that only the text HTML is drawn on the
canvas. Just like the previous variation of the drawImage() method, here too there can be distortion of the
resultant image if the width and height proportions are not maintained.

Adding Special Effects
The canvas methods you’ve learned about so far allow you to render plain graphics. However, you can also
add fancy and eye-catching effects to the graphics such as shadows, transparency, gradient fills, and
pattern fills. In this section, you learn how.

To add special effects, you set certain properties of the drawing context and then call stroke() or
fill(). Let’s see how this is done with some examples.

Shadows
A common effect used while drawing graphics on a canvas is a shadow. You can add shadows to lines,
curves, shapes, and text using four core properties of the drawing context object: shadowColor, shadowBlur,
shadowOffsetX, and shadowOffsetY.

The shadowColor property indicates the color of the shadow. The shadowBlur property is a numeric
property and configures the blurriness of the shadow. The lower the shadowBlur value, the sharper the
shadow. For example, setting shadowBlur to 10 adds more blurriness to the shadow than a value of 5. The
shadowOffsetX and shadowOffsetY properties allow you to control the positioning of the shadow. These x
and y coordinates are relative to the target graphic object displaying the shadow. For example, if you set
the shadowOffsetX and shadowOffsetY properties to 5 pixels, then the shadow is drawn 5 pixels to the right
and 5 pixels down from the target graphic. You can also supply shadowOffsetX and shadowOffsetY
properties as negative numbers to shift the shadow in the opposite direction (left and up).

Listing 4-14 adds shadows to a rectangle and text using the shadow properties discussed.

Figure 4-15. Image cropping using the drawImage() method

www.it-ebooks.info

http://www.it-ebooks.info/

99

chapter 4 n drawing with the canvas

Listing 4-14. Using Shadow Properties to Configure Shadows

var canvas = $("#MyCanvas").get(0);
var context = canvas.getContext("2d");

context.shadowColor = "#808080";
context.shadowBlur = 5;
context.shadowOffsetX = 10;
context.shadowOffsetY = 10;
context.fillRect(20, 20, 150, 80);

context.shadowColor = "red";
context.shadowBlur = 15;
context.shadowOffsetX = -5;
context.shadowOffsetY = 5;
context.fillStyle = "blue";
context.textAlign = "center";
context.font = "bold 30px Arial";
context.fillText("Hello Canvas!",100,150);

This code draws a rectangle with a shadow color of #808080 and offsets of 10 pixels. The blur value is
5. The x offset value is -5, and shadowColor is red. Figure 4-16 show how the resulting rectangle and text
look.

The text drawn on the canvas has a negative x shadow offset value, and hence the shadow shifts to the
left side. The y shadow offset is a positive value, and hence the shadow shifts toward the bottom.

Figure 4-16. Adding shadows to a rectangle and text

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 4 n drawing with the canvas

100

Transparency
Until now, all the graphic objects drawn on a canvas have been totally opaque. You can, however, change
the transparency of a graphic object using the strokeStyle and fillStyle properties. These properties let
you set the color of a graphic such that in addition to RGB components, it also specifies a transparency
level. This is accomplished using the rgba() function (instead of more commonly used rgb() function).
Listing 4-15 shows how.

Listing 4-15. Setting the Transparency of a Drawing Object

var canvas = $("#MyCanvas").get(0);
var context = canvas.getContext("2d");

context.fillStyle = "black";
context.fillRect(20, 20, 150, 80);
context.fillStyle = "rgb(255, 0, 0)";
context.fillRect(40, 40, 150, 80);

context.fillStyle = "black";
context.fillRect(20, 150, 150, 80);
context.fillStyle = "rgba(255, 0, 0,0.5)";
context.fillRect(40, 170, 150, 80);

The first block of code draws two filled rectangles without any transparency. The second block of code
draws two filled rectangles, with the second rectangle having a transparency of 50%. Notice how the rgba()
function is used. The fourth parameter of rgba()—the alpha value—controls the transparency. The alpha
value can be between 0 to 1, 0 being transparent and 1 being opaque. Figure 4-17 shows how both sets of
rectangle are rendered.

Figure 4-17. Controlling the opacity of drawing objects

www.it-ebooks.info

http://www.it-ebooks.info/

101

chapter 4 n drawing with the canvas

n Note In CSS, an RGB value can be obtained using the functional notation formats rgb() and rgba(). rgb()
uses red, green, and blue components to form a color. rgba() uses an additional component—alpha—that controls
the color’s transparency.

Gradient Filling
A gradient specifies a range of colors that are used to fill a shape. The gradient effect applies color ranges
continuously between the start and end positions, thus producing a smooth color transition. A gradient
can be of two types: linear or radial.

A linear gradient is defined by two points and a color at each of those points. The colors along the line
joining these two points vary based on a color stop.

A radial gradient is defined by two circles, each of which has a color. The gradient radiates out from
the starting circle to the ending circle, and colors are calculated based on color stops.

To fill a shape with a linear or radial gradient, you first need to create a corresponding gradient object
and then define the required color stops. Finally, you fill a shape with the fillStyle property set to the
gradient object just created.

Listing 4-16 shows how you can fill a rectangle with a linear gradient.

Listing 4-16. Drawing a Linear Gradient

var canvas = $("#MyCanvas").get(0);
var context = canvas.getContext("2d");
var linearGradient = context.createLinearGradient(0, 100, 200, 100);
linearGradient.addColorStop(0, "blue");
linearGradient.addColorStop(0.5, "green");
linearGradient.addColorStop(1, "red");
context.fillStyle = linearGradient;
context.fillRect(0, 0, 200, 200);

This code creates a linear gradient object using the drawing context’s createLinearGradient()
method. The first two parameters of createLinearGradient() represent the x and y coordinates of the
gradient’s start point. Similarly, the last two parameters represent the x and y coordinates of the end point.
The gradient is drawn from the start point to the end point.

The code adds three further color stops. The color-stop offset values range from 0 to 1 (from the start
of the gradient to the end). The drawing context’s fillStyle property is set to the linear gradient object, and
then fillRect() is called. Figure 4-18 shows the resulting gradient-filled rectangle.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 4 n drawing with the canvas

102

Using the start and end points of the gradient, you can change how the linear gradient is drawn. For
example, if you create a linear gradient object using start and end coordinates of (50, 10) and (200, 100),
respectively, the resulting gradient is as shown in Figure 4-19.

The process of filling a shape with a radial gradient is similar to the preceding example, with a few
differences. First, you use the createRadialGradient() method to create a radial gradient object. Second,
instead of the start and end coordinates, you supply coordinates for the center of the start and end circles
along with their respective radii. Listing 4-17 shows how this is done.

Figure 4-18. Linear gradient

Figure 4-19. Changing the coordinates of the gradient line

www.it-ebooks.info

http://www.it-ebooks.info/

103

chapter 4 n drawing with the canvas

Listing 4-17. Drawing a Radial Gradient

var canvas = $("#MyCanvas").get(0);
var context = canvas.getContext("2d");
var radialGradient = context.createRadialGradient(100, 100, 5,100, 100,100);
radialGradient.addColorStop(0, "blue");
radialGradient.addColorStop(0.5, "green");
radialGradient.addColorStop(1, "red");
context.fillStyle = radialGradient;
context.fillRect(0, 0, 200, 200);

As you can see, the createRadialGradient() method takes six parameters. The first three represent the
coordinates of the start circle (100,100) and its radius (5). The next three indicate the coordinates of the
end circle (100,100) and its radius (100). Figure 4-20 shows the resulting rectangle.

The gradient starts out blue, then turns green, and then changes to red due to color stop values of 0,
0.5, and 1.

Pattern Filling
Pattern filling involves filling a shape with an image, typically repeated across x, y, or both axes. In order to
use pattern filling, you use the drawing context’s createPattern() method and then set the fillStyle
property to the newly created pattern. Listing 4-18 shows how you create a pattern.

Listing 4-18. Creating and Filling a Pattern

var canvas = $("#MyCanvas").get(0);
var context = canvas.getContext("2d");
var img = new Image();
$(img).load(function () {

Figure 4-20. Radial gradient

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 4 n drawing with the canvas

104

 var pattern = context.createPattern(img, "repeat");
 context.fillStyle = pattern;
 context.fillRect(0, 0, 200, 200);
});
img.src = "images/pattern.png";

This code creates a new instance of an Image object and sets its src property to an image that is to be
used for pattern filling. The load event handler of the Image creates a pattern using the drawing context’s
createPattern() method. The first parameter of createPattern() is the image to be used, and the second
parameter indicates a repeat direction. The possible values for the repeat direction are repeat-x (repeat
horizontally), repeat-y (repeat vertically), and repeat (repeat in both the directions). The fillStyle
property is then set to the newly created pattern object. Finally, a filled rectangle is drawn. Figure 4-21
shows how the rectangle is filled with a sample pattern.

Saving the Canvas State
So far, you’ve been playing with the canvas by performing various drawing operations on it. Many times,
you need to change the state of the canvas between drawing operations. For example, assume that you
have a canvas with settings such as lineWidth and fillStyle set to some values. Now you wish to draw
three rectangles on the canvas. However, lineWidth and fillStyle are different for all of them. In this case,
you set the context properties for the first rectangle and then draw the rectangle. Doing so causes the
original values to be overwritten. You repeat the same process to draw the other two rectangles. Now, if you
wish to return the canvas to the original state it was in before you began drawing the three rectangles, you
have to set those properties again because they were overwritten by the subsequent drawing operations.
Saving the canvas state allows you to restore it at some later stage.

The term state can be bit misleading. Here, the canvas state means settings such as the strokeStyle,
fillStyle, lineWidth, lineCap, shadowOffsetX, shadowOffsetY, shadowBlur, and shadowColor properties and
a few other settings. You may want to save a snapshot of the canvas settings at a given point of time so you
can revert back to those settings later in the current browser session. To perform these tasks, the drawing

Figure 4-21. Filling a rectangle with a pattern

www.it-ebooks.info

http://www.it-ebooks.info/

105

chapter 4 n drawing with the canvas

context object offers two methods: save() and restore(). As their names suggest, the save() method
saves a canvas state, whereas the restore() method restores a previously saved state.

Using the save() and restore() Methods
Using save() and restore() is relatively straightforward. The save() method pushes a snapshot of the
canvas state onto a stack, whereas the restore() method pops a saved snapshot of the canvas state. It’s
important to remember that canvas state doesn’t refer to the actual drawing on the canvas. Listing 4-19
show how you use save() and restore().

Listing 4-19. Using the save() and restore() Methods

var canvas = $("#MyCanvas").get(0);
var context = canvas.getContext("2d");
//default state
context.lineWidth = 5;
context.fillStyle = 'blue';
context.fillRect(10, 120, 150, 50);
context.save();
//change state
context.lineWidth = 10;
context.fillStyle = 'red';
context.fillRect(20, 130, 150, 50);
//restore state
context.restore();
context.fillRect(30, 140, 150, 50);

As you can see, first canvas settings such as lineWidth and fillStyle are set and a rectangle is drawn.
You save these settings using the save() method. Next, you change the canvas settings to new values, and a
rectangle is drawn. Finally, before drawing a third rectangle, you restore the canvas settings using
restore(). Figure 4-22 shows the effect of saving and restoring the canvas state.

Figure 4-22. Effect of saving and restoring the canvas state

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 4 n drawing with the canvas

106

Notice that in Figure 4-22, the top three rectangles are drawn without using save() or restore(). The
third rectangle assumes the canvas settings set for the second rectangle.

The rectangles at the bottom, however, use save() and restore(). After the code draws the first
rectangle, the canvas state is saved using save(). Before the third rectangle is drawn, the canvas state is
restored using restore(). That’s why the third rectangle assumes the restored settings and not those with
which the second rectangle was drawn.

Saving the Canvas Drawing
In the preceding sections you performed drawing operations during the active browser session. What if
you close the browser window? What if you wish to persist a drawing for later use? That is where you need
to deal with saving the canvas drawing. You may want to save the canvas drawing in a storage medium
such as local storage (discussed in Chapter 7), a physical file system of the server, or a SQL server database
residing on the server, so you can retrieve it later during the same or a different browser session.

To fulfill this requirement, the canvas (not the drawing context!) offers the toDataURL() method.
However, this method alone won’t persist data on the server. It returns a Base64 representation of the
canvas drawing. It’s your responsibility to send this Base64-encoded data to the server using a client-side
technique such as the jQuery $.ajax() method.

In addition to the built-in techniques of saving the canvas drawing, you can implement custom
techniques that mimic a save operation. For example, you can remember all the drawing steps performed
by a user on the canvas. Instead of saving the canvas drawing, you can save these steps on the server and
later replay the same steps to reproduce the canvas drawing. The saving mechanism you use depends on
the kind of application you’re building. The following sections you primarily focus on the built-in
techniques for saving the canvas drawing.

Using the toDataURL() Method
The canvas’s toDataURL() method returns a Base64-encoded representation of the drawing. It’s up to you
to decide what to do with this Base64 data. Some of the possibilities include the following:

•	 Display the canvas drawing in an HTML image object.

•	 Send the Base64-encoded string to the server, and save it in a database.

•	 Send the Base64-encoded string to the server, and save it as an image file on the
server.

•	 Save the Base64-encoded string in web storage, and retrieve it later.

Your selection of a canvas-saving technique depends on the kind of application. In the following
examples, you learn all the techniques except the last one; web storage is the subject of Chapter 7.

n Note Base64 encoding is commonly used in scenarios where there is a need to convert binary data to text
format for the sake of storing and transferring over wire. Base64 is commonly used to encode e-mail attachments
and store binary data in XML documents.

www.it-ebooks.info

http://www.it-ebooks.info/

107

chapter 4 n drawing with the canvas

Saving the Canvas Drawing in an Object
At times you may want to allow users to save the canvas drawing as a physical image file. In such cases,
saving a canvas drawing as an image can be useful. Once the image has been saved, users can right-click it
and save the drawing in their local file system just like any other image loaded in the browser.

Saving a canvas as an image can also be used in situations where you wish to allow users to create
multiple drawings without saving them explicitly and then load the previously created drawings again on
the canvas. In such cases, you can save different drawings as images and then reload the drawings using
the drawImage() method discussed earlier.

Saving a canvas drawing in an object is straightforward. All you need to do is assign the src
property of the DOM element to the Base64-encoded data returned by the toDataURL() method.
Listing 4-20 shows how this can be done.

Listing 4-20. Saving a Canvas Drawing as an Object

var canvas = $("#MyCanvas").get(0);
var context = canvas.getContext("2d");
context.fillRect(20, 20, 160, 160);
var data = canvas.toDataURL();
$("#imgCanvas").attr("src", data);

As shown in this listing, a rectangle is drawn on the canvas, and then toDataURL() is called to retrieve
the Base64-encoded representation of the canvas drawing. You load this Base64 data into an element
by setting its src attribute. A part of a sample Base64-encoded string is shown here:

...

As you can see, the string begins with a MIME type for the image. You can also specify the image type
yourself using a variation of toDataURL():

var data = canvas.toDataURL("mage/png");

toDataURL() now takes the MIME type for the image. Typical values include image/png and image/jpg.
The default image MIME type is image/png.

Saving the Canvas Drawing in SQL Server
Saving the canvas drawing in a SQL Server database calls for sending to the server the Base64-encoded
data obtained as a result of calling toDataURL(). You can either use a hidden form field to accomplish this
data transfer or, better yet, use the jQuery $.ajax() method. Listing 4-21 uses $.ajax() to send the Base64-
encoded data to the server.

Listing 4-21. Sending Base64 Canvas Data to the Server Using $.ajax()

var canvas = $("#MyCanvas").get(0);
var context = canvas.getContext("2d");
context.fillRect(20, 20, 160, 160);

$('#btnSave').click(function () {
 var data = canvas.toDataURL();
 data = data.replace('data:image/png;base64,', '');
 $.ajax({
 type: 'POST',

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 4 n drawing with the canvas

108

 url: '/SaveInSQLServer.aspx/SaveToDb',
 data: '{ "data" : "' + data + '" }',
 contentType: 'application/json; charset=utf-8',
 dataType: 'json',
 success: function (msg) {
 alert('Image data saved to SQL Server database!');
 }
 });
});

As shown here, the click event handler of a button triggers the save operation. Inside the click event
handler, toDataURL() is called and the Base64-encoded data is stored in a local variable. You need to send
only the image data to the server; hence the beginning of the string ('data:image/png;base64,') is
removed using the JavaScript replace() function. Of course, if you wish to render the images in image
elements using the data URL technique discussed earlier, you need not remove the beginning of the string.

The $.ajax() method then makes a POST request to a web method named SaveToDb(). The Base64-
encoded image data is passed to the server as a JSON object. The SaveToDb() web method is shown in
Listing 4-22.

Listing 4-22. SaveToDb() Web Method

[WebMethod]
public static void SaveToDb(string data)
{
 ImageDbEntities db = new ImageDbEntities();
 Image img = new Image();
 img.ImageData = data;
 img.SaveDate = DateTime.Now;
 db.Images.AddObject(img);
 db.SaveChanges();
}

The SaveToDb() method receives the Base64-encoded image data as a parameter. Inside, it uses an
Entity Framework data model class (Image) to save the data in a SQL Server table named Images. If you run
this example and check the ImageDb database from the App_Data folder, you find that a record is added to
the Images table every time you click the Save button.

Saving the Canvas Drawing as an Image File on the Server
At times, saving a canvas drawing as a physical disk file on the server is more convenient than storing the
image in a database. For example, consider a case where you wish to send the canvas drawing as an e-mail
attachment. In such a case, attaching a canvas drawing saved as a physical image file is more convenient
and simplifies your task.

Saving a canvas drawing as a server-side image is similar to the previous technique. This time,
however, you need to convert the Base64-encoded data back to its binary representation and then save it
as a disk file. Converting Base64-encoded data to its binary form is necessary because you save it in a
physical image file rather than a SQL Server database. The jQuery code remains almost identical to the
previous example, but the web method needs some modifications. Listing 4-23 shows the $.ajax() call
being made to a web method named SaveAsImageFile.

www.it-ebooks.info

http://www.it-ebooks.info/

109

chapter 4 n drawing with the canvas

Listing 4-23. $.ajax() Method Calling the SaveAsImageFile Web Method

$('#btnSave').click(function () {
 var data = canvas.toDataURL();
 data = data.replace('data:image/png;base64,', '');
 alert(data);
 $.ajax({
 type: 'POST',
 url: '/SaveAsServerSideImg.aspx/SaveAsImageFile',
 data: '{ "data" : "' + data + '" }',
 contentType: 'application/json; charset=utf-8',
 dataType: 'json',
 success: function (msg) {
 alert('Image saved on the server!');
 }
 });
});

Once the Base64-encoded data is received in the web method, it’s converted to binary form and saved
as a physical file. Listing 4-24 shows the SaveAsImageFile() web method.

Listing 4-24. Saving the Canvas Drawing as a Physical Image File

[WebMethod]
public static void SaveAsImageFile(string data)
{
 Guid id = Guid.NewGuid();
 string path = HttpContext.Current.Server.MapPath("~/images/" + id.ToString() + ".png");
 byte[] binaryData = Convert.FromBase64String(data);
 FileStream file = new FileStream(path, FileMode.Create);
 BinaryWriter bw = new BinaryWriter(file);
 bw.Write(binaryData);
 bw.Close();
}

This code generates a random file name using a GUID and the Server.MapPath() method. The
physical file has an extension of .png. To convert Base64-encoded data into binary form, you use the
FromBase64String() method of the Convert class. This method accepts Base64-encoded data and returns a
byte array. The byte array thus returned is written to a physical file using the FileStream and BinaryWriter
classes.

Figure 4-23 shows a sample canvas drawing saved as an image file being viewed in Windows Photo
Viewer.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 4 n drawing with the canvas

110

As you can see in the title of the Photo Viewer, the file is saved with a GUID as the file name and .png
as the file extension.

Creating Pie Charts Using Canvas Drawing Techniques
Now that you’re familiar with the canvas API, it’s time to develop a sample application that puts together
what you’ve learned so far. In this section, you develop an ASP.NET MVC application that allows you to
create pie charts using the HTML5 canvas.

Developers often resort to third-party charting components for their charting needs. However, at
times you may find canvas-based charting useful. The <canvas> element is an integral part of HTML5, so
you need not purchase a commercial component. Many third-party components are rich when it comes to
server-side programming, but they often lack client-side programming support. You can use canvas-based
charting when a chart is to be programmed using client-side code. Using canvas-based charting also lets
you avoid dependency on third-party charting software. Of course, you can resort to a third-party charting
component if your requirements call for it.

The example application’s user interface is divided into two sections, as shown in Figure 4-24. The left
side of Figure 4-24 shows how a final pie chart looks in the browser, and the right side shows the area
where you can enter pie chart data such as sector names, values, and colors. You can also specify a title for
the chart along with a gradient background. Clicking the Draw Chart button draws a pie chart on the
canvas based on the data you enter. Clicking the Save Chart button does two things—it saves the pie chart
as an image file on the server, and it also saves the pie chart sector information in a SQL Server database.
This way, you can regenerate a pie chart based on the saved data and use the physical image file for other
purposes such as sending as e-mail attachments, embedding in documents, or presentations.

Figure 4-23. Canvas drawing after saving as a physical image file

www.it-ebooks.info

http://www.it-ebooks.info/

111

chapter 4 n drawing with the canvas

SQL Server Database
The application saves pie chart data such as sector names and their values in a SQL Server database
(ChartDb). The ChartDb database consists of two tables: ChartMaster and ChartDetails. The actual data
access happens through Entity Framework. The Entity Framework data model for the ChartMaster and
ChartDetails tables physically resides in the Models folder of the web application and is shown in Figure
4-25.

Figure 4-24. Drawing pie charts using canvas API

Figure 4-25. Entity Framework data model for the ChartDb database tables

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 4 n drawing with the canvas

112

As you can see, the ChartMaster table stores the pie chart title and the physical image file URL. The
ChartDetails table stores sector information such as names, values, and colors. Although this application
doesn’t regenerate charts based on stored data, you could easily do so because the data is readily available
in these tables.

MVC Controller
The ASP.NET MVC application has a single controller: ChartController. It contains code that saves a pie
chart as an image. It also saves the pie chart data into the ChartMaster and ChartDetails tables. The action
method of the ChartController class that does the job is shown in Listing 4-25.

Listing 4-25. Saving the Chart Image on the Server

[HttpPost]
public JsonResult SaveChart(string data, ChartMaster master, ChartDetail[] details)
{
 Guid id = Guid.NewGuid();
 string path = HttpContext.Server.MapPath("~/images/" + id.ToString() + ".png");
 byte[] binaryData = Convert.FromBase64String(data);
 FileStream file = new FileStream(path, FileMode.Create);
 BinaryWriter bw = new BinaryWriter(file);
 bw.Write(binaryData);
 bw.Close();

 ChartDbEntities db = new ChartDbEntities();
 master.Id = id;
 master.ImageUrl = "~/images/" + id.ToString() + ".png";
 db.ChartMasters.AddObject(master);
 foreach (ChartDetail detail in details)
 {
 detail.ChartId = master.Id;
 db.ChartDetails.AddObject(detail);
 }
 db.SaveChanges();
 return Json("Chart saved in the database!");
}

As you can see, the SaveChart() method accepts three parameters: canvas drawing data in Base64
format, a ChartMaster object, and an array of ChartDetail objects. These three parameters are sent from
the client-side jQuery code.

The code in SaveChart() should look familiar because previous sections have discussed these canvas-
saving techniques. Notice how a GUID serves dual purposes: acting as a chart ID and a physical file name.
The SaveChart() method essentially does two things: it saves the pie chart as a physical .png file on the
server and saves the chart data in the ChartMaster and ChartDetails tables. SaveChart() returns a success
message as a JsonResult object after a chart is saved on the server.

www.it-ebooks.info

http://www.it-ebooks.info/

113

chapter 4 n drawing with the canvas

MVC View
The HTML5 canvas markup, as well as jQuery code that invokes the controller actions, resides in a view:
Index.aspx. The HTML markup of the index view is shown in Listing 4-26. For the sake of clarity, unwanted
markup tags have been removed.

Listing 4-26. HTML Markup of Index.aspx

<div>Chart Title :</div>
<input type="text" id="txtTitle" size="87" class="textbox"/>
...
<table id="tblChartData" border="1" cellpadding="5">
 <tr class="HeaderRow">
 <th>Sector Name</th>
 <th>Sector Value</th>
 <th>Color</th>
 <th>Action</th>
 </tr>
 <tr>
 <td><input type="text" id="txtName"/></td>
 <td><input type="text" id="txtValue"/></td>
 <td><input type="text" id="txtColor"/></td>
 <td><input type="button" id="btnAdd"/></td>
 </tr>
</table>

<input type="checkbox" id="chkGradient" />
Show Gradient
...
Gradient Color : <input type="text" id="txtGradient" />
...
<input id="btnDraw" type="button" value="Draw Chart" />
<input id="btnSave" type="button" value="Save Chart" />
...
<canvas id="MyCanvas" width="600" height="500"></canvas>

This HTML markup is straightforward and creates a canvas 600px wide and 500px high. The event
handlers for the Add, Draw Chart, and Save Chart buttons are wired in jQuery code and are discussed next.

Adding Chart Data
Adding pie chart data involves capturing sector information such as the sector name, its value, and its
color. Once captured, sector information is added to the HTML table (see Figure 4-24). The jQuery code
responsible for adding sector information to the HTML table is shown in Listing 4-27.

Listing 4-27. Adding Chart Data to an HTML Table

$("#btnAdd").click(function () {
 var row = "<tr>";
 row += "<td>" + $("#txtName").val() + "</td>";
 row += "<td>" + $("#txtValue").val() + "</td>";

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 4 n drawing with the canvas

114

 row += "<td>" + $("#txtColor").val() + "</td>";
 row += "<td> </td>";
 row += "</tr>";
 $("#tblChartData").append(row);
 $("#txtName").val('');
 $("#txtValue").val('');
 $("#txtColor").val('');
 $("#txtName").focus();
});

As you can see, the jQuery code from the Add button’s click event handler uses the val() method to
retrieve values entered in the text boxes. The append() method is then used to dynamically add a new table
row.

n Note You may find entering sector colors a bit tedious. The code download for this chapter includes a JavaScript
function that automatically populates the color text box with a random hexadecimal color code upon receiving focus.
For the sake of saving space, that function isn’t discussed here.

Drawing a Pie Chart
The Draw Chart button’s click event handler is responsible for drawing a pie chart on the canvas. The
complete jQuery code for the click event handler is given in Listing 4-28.

Listing 4-28. Drawing a Pie Chart

var sectorNames = Array();
var sectorValues = Array();
var sectorColors = Array();

$("#btnDraw").click(function () {
 context.save();
 if ($("#chkGradient").is(":checked")) {
 var linearGradient = context.createLinearGradient(0, 0, canvas.width, canvas.height);
 linearGradient.addColorStop(0, $("#txtGradient").val());
 linearGradient.addColorStop(1, 'white');
 context.fillStyle = linearGradient;
 context.fillRect(0, 0, canvas.width, canvas.height);
 context.restore();
 }
 else {
 context.clearRect(0, 0, canvas.width, canvas.height);
 }
 context.save();

 $("table tr:gt(1)").each(function (i, v) {
 sectorNames[i] = $(this).children("td:eq(0)").text();
 })
 $("table tr:gt(1)").each(function (i, v) {
 sectorValues[i] = parseInt($(this).children("td:eq(1)").text());

www.it-ebooks.info

http://www.it-ebooks.info/

115

chapter 4 n drawing with the canvas

 })
 $("table tr:gt(1)").each(function (i, v) {
 sectorColors[i] = $(this).children("td:eq(2)").text();
 })

 //draw title
 context.textAlign = "center";
 context.font = "bold 30px Arial";
 context.shadowColor = "silver";
 context.shadowOffsetX = 2;
 context.shadowOffsetY = 2;
 context.fillStyle = "black";
 context.fillText($("#txtTitle").val(), 300,50);
 context.restore();

 //draw sectors
 var total = 0;
 for (var i = 0; i < sectorValues.length; i++) {
 total += sectorValues[i];
 }
 var angle = 0;
 for (var i = 0; i < sectorValues.length; i++) {
 context.fillStyle = sectorColors[i];
 context.beginPath();
 context.moveTo(170, 250);
 context.arc(170, 250, 150, angle, angle + (Math.PI * 2 *
 (sectorValues[i] / total)), false);
 context.lineTo(170, 250);
 context.fill();
 context.stroke();
 angle += Math.PI * 2 * (sectorValues[i] / total);
 }

 //draw legends
 var offset = 150;
 for (var i = 0; i < sectorColors.length; i++) {
 context.fillStyle = sectorColors[i];
 context.font = 'bold 12px Arial';
 context.save();
 context.shadowColor = "silver";
 context.shadowOffsetX = 2;
 context.shadowOffsetY = 2;
 context.fillRect(400, offset, 20, 15);
 context.restore();
 context.textBaseline = "middle";
 context.fillText(sectorNames[i] + ' - ' + sectorValues[i] + '%', 425, offset + 10);
 offset += 30;
 }

});

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 4 n drawing with the canvas

116

The code in Listing 4-28 declares three global arrays—sectorNames, sectorValues, and sectorColors—
for storing sector names, their values, and their colors, respectively.

Then the code determines whether a gradient is to be drawn by checking the state of the gradient
check box. Accordingly, either a linear gradient is drawn or the canvas is cleared using the clearRect()
method. Notice how the createLinearGradient() method is used and how the color stops are defined. The
start color stop is picked up from the corresponding text box, but the end color stop is always white. Also
notice the use of the canvas’s save() and restore() methods for saving and restoring the canvas state. You
restore the canvas settings to their initial values because you don’t need a gradient for every drawing
operation.

Next, you use the jQuery each() method to iterate through all the HTML table rows. The three sector
arrays are populated by picking values from the respective table cells.

You then draw the title of the pie chart using fillText() method. Notice that the title has a shadow
configured using the shadowOffsetX, shadowOffsetY, and shadowColor properties. For the same reason
mentioned earlier, the canvas state is restored to the previous value.

Next, a for loop iterates through the sectorValues array and draws sectors of the pie chart using the
arc() method. Notice how the angle is calculated based on the total of the sector values and the value of a
sector being drawn.

Finally, the pie chart’s legends are drawn. The associated for loop iterates through the sectorColors
array, and for every sector a rectangle is drawn with the sector color. A label is also drawn in front of the
rectangle.

Saving a Pie Chart
Once you draw a pie chart on the canvas, it can be saved to the database. The Save Chart button’s click
event handler contains jQuery code that calls the SaveChart() controller action method with the help of
the $.ajax() method. Listing 4-29 shows how this is done.

Listing 4-29. Saving a Pie Chart on the Server

$('#btnSave').click(function () {
 var data = canvas.toDataURL();
 data = '"data": "' + data.replace('data:image/png;base64,', '') + '"';

 var master = '"master": {"Title" :"' + $("#txtTitle").val() + '"}';

 var details = '"details" : [';
 for (var i = 0; i < sectorNames.length; i++) {
 var sector = '{"SectorName" : "' + sectorNames[i] + '", "SectorValue":"' +
 sectorValues[i] + '", "SectorColor":"' + sectorColors[i] + '"}';
 details += sector
 if ((i+1) != sectorNames.length) {
 details += ",";
 }
 }
 details += ']';

 var finalData = '{' + data + ',' + master + ',' + details + '}';

 $.ajax({
 type: 'POST',

www.it-ebooks.info

http://www.it-ebooks.info/

117

chapter 4 n drawing with the canvas

 url: '/Chart/SaveChart',
 data: finalData,
 contentType: 'application/json; charset=utf-8',
 dataType: 'json',
 success: function (result) {
 alert(result);
 }
 });
});

The code needs to pass a complex JSON object from the client side to the server because the
SaveChart() method takes three parameters. Additionally, one of the parameters is an array of ChartDetail
objects. The code from Listing 4-29 constructs a JSON object (finalData) by gathering various pieces of
information (such as the chart title and sector details). The jQuery $.ajax() method then makes a POST
request to the SaveChart() method and passes the JSON object along with the call. The success function
displays the returned message from the server in an alert box.

Figure 4-26 shows a sample run of the application.

As you can see if you successfully save the chart on the server, a success message is displayed in an
alert box. You can verify the save operation by checking for the existence of the data in the ChartMaster and
ChartDetails tables.

Figure 4-26. Successful run of the application

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 4 n drawing with the canvas

118

Summary
The HTML5 canvas allows you to draw lines, curves, paths, shapes, images, and text using the canvas API.
The drawing context object provides methods and properties to perform the drawing operations just
mentioned. You can also add fancy frills to your drawing objects such as shadows, gradients, and
transparency. The canvas also lets you save the canvas state programmatically. Using jQuery code, you can
transfer the canvas drawing to the server as a Base64 string. In this chapter, you learned all this and also
developed a simple yet functional charting application using the canvas API, jQuery, and ASP.NET MVC.

Chapters 3 and 4 discussed the audio, video, and graphics provisions of HTML5. One area that attracts
any ASP.NET developer developing data-driven web applications is the forms enhancements such as new
input types and validations. The next chapter dissects these enhancements and shows how you can use
them in ASP.NET web forms as well as MVC applications.

www.it-ebooks.info

http://www.it-ebooks.info/

119

n n n

chapter 5

Working with Forms
and Controls

One of the key areas where ASP.NET shines is developing data-driven web applications. Most ASP.NET web
applications are more than collections of HTML pages. They involve a variety of database tasks ranging
from simple listings of records to complex database operations. These tasks often include accepting user
input, performing validation on the data entered by the user, processing the data on the server, and finally
saving it in a data store.

A data-entry page typically presents a set of controls such as text boxes, check boxes, radio buttons,
drop-down lists, and similar elements. These controls are housed in an HTML <form> element. Upon filling
the form, the user can submit the form along with its data to the server for processing. Over the years,
developing an HTML form has become more complex and demanding. For example, many forms call for
complex data-format and business validations. They also need different types of controls for specific data
types such date-time and numbers. Keeping these changing requirements and trends in mind, HTML5
offers a set of enhancements to the existing <form> features. It has also introduced new features that make
overall form development easier. This chapter gives you a detailed introduction to these new and
enhanced form features of HTML5. Specifically, you learn about the following:

•	 Using new HTML5 input types

•	 Improvements to the existing controls

•	 Using the newly added and enhanced features of HTML5 in ASP.NET Web Forms
and MVC applications

•	 Validating user input using various techniques

Understanding HTML Forms in ASP.NET
Whenever you develop a data-driven ASP.NET or ASP.NET MVC application, the application’s user
interface is rendered with the help of Web Forms and views, respectively. Web Forms and views in turn use
the HTML <form> element to house the data-entry region of the page. Before this chapter delves into the
HTML5-specific features of the <form> element, it’s worthwhile to briefly discuss how a <form> element
appears in a typical ASP.NET Web Forms and ASP.NET MVC application.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 5 n working with forMs and controLs

120

The <form> Element in ASP.NET Web Forms
A typical ASP.NET web form consists of a <form> tag marked with the runat server. Additionally, it hosts one
or more server controls such as text boxes, lists, and grids. Finally, it provides a mechanism to submit a
form to the server for further processing. Listing 5-1 shows a simple web form that illustrates how these
elements look in source view.

Listing 5-1. A Server-Side <form> Element in a Web Forms Application

<form id="form1" runat="server">
<asp:Label ID="Label1" runat="server" Text="Enter your Name : " ></asp:Label>

<asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>

<asp:Button ID="Button1" runat="server" Text="Submit" />
</form>

The <form> tag in Listing 5-1 has two attributes: id and runat. If you wish to process an HTML form on
the server, it must be marked with runat. The runat attribute has only one possible value: server. In the
<form> are a Label server control, a TextBox server control, and a Button server control. If you run this web
form in a browser, you get the display shown in Figure 5-1.

Figure 5-1. A simple web form displayed in a browser

If you view the HTML source of the resulting page shown by the browser, it’s as shown in Listing 5-2.

Listing 5-2. HTML Source of a Web Form

<form method="post" action="WebForm1.aspx" id="form1">
 <div class="aspNetHidden">
 <input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
 value="kv16mNsClgHGNtkmN…" />
 </div>
 <div class="aspNetHidden">
 <input type="hidden" name="__EVENTVALIDATION" id="__EVENTVALIDATION"
 value="jIRq9NWtI20O4IJRVRDv7…" />
 </div>
 Enter your Name :

 <input name="TextBox1" type="text" id="TextBox1" />

www.it-ebooks.info

http://www.it-ebooks.info/

121

chapter 5 n working with forMs and controLs

 <input type="submit" name="Button1" value="Submit" id="Button1" />
</form>

As you can see, at runtime ASP.NET adds several pieces to the resulting HTML markup. Notice now the
<form> tag has action and method attributes. Also notice that all the server controls are converted into their
equivalent HTML markup. Finally, note the ViewState hidden form fields added at the top of the form. This
bulky Base64-encoded ViewState (truncated in the listing for the sake of clarity) is one of the reservations
ASP.NET developers have against Web Forms.

The following are a few things worth noting about the <form> tag used in a web form:

•	 Typically, a web form has only one <form> tag, although HTML doesn’t impose any
such restriction.

•	 A form method is always POST.

•	 A web form is posted to itself. That is, the action attribute of the <form> tag points to
the same .aspx file.

•	 When you use master pages, the <form> tag is placed in the master page file
(.master) rather than individual content pages (.aspx).

The <form> Element in ASP.NET MVC
The <form> element in the context of an ASP.NET MVC application is quite flexible. ASP.NET MVC
applications have a couple of options when you place a <form> element in a view:

•	 An HTML <form> tag and HTML <input> tags can be placed directly in a view file.

•	 HTML helpers can be used to render <form> and <input> tags.

Listing 5-3 shows a form developed using plain HTML markup tags.

Listing 5-3. A <form> in an MVC View Using Plain HTML Tags

<form method="post" action="/Home/Index">
 Enter your Name :

 <input name="TextBox1" type="text" id="TextBox1"/>

 <input type="submit" name="Button1" value="Submit" id="Button1" />
</form>

This <form> uses plain HTML markup tags such as <form> and <input>. Notice that the action attribute
of the <form> tag points to a controller action method (/Home/Index); you’re free to point it to any controller
class.

Listing 5-4 shows the same form developed using HTML helpers.

Listing 5-4. A <form> Rendered Using HTML Helpers

<% using(Html.BeginForm("IndexWithHelpers","Home","POST")) %>
<% { %>
<%= Html.Label("Enter your Name :") %>

<%= Html.TextBox("txtName") %>

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 5 n working with forMs and controLs

122

<input type="submit" value="Submit" />
<% } %>

As shown in Listing 5-4, the <form> tag is rendered using the BeginForm() method. The three
parameters of the BeginForm() method represent the action method name, the controller name, and the
form method, respectively. The Label and TextBox HTML helpers render a <label> and an <input> tag,
respectively. The view’s resulting markup closely matches Listing 5-3.

HTML5 Controls
An HTML5 form consists of a combination of text and controls. The text part of an HTML5 form usually
consists of field labels, section headings, and explanatory text about the form. The HTML5 markup
provides a plethora of controls. These controls can be broadly classified in the following categories:

•	 Data-input controls in which you type string data. Controls such as text boxes and
<textarea> fall in this category.

•	 Option-selection controls that allow you to pick one or more options from a set of
options. Controls such as check boxes, radio buttons, and drop-down lists belong to
this category.

•	 Range-selector controls that let you pick a value between minimum and maximum
values.

•	 Date- and time-picker controls that let you choose a date or a part of it (week, day,
month, and so on).

•	 Color-picker control that allows you to pick color values.

•	 Button controls that render as Submit, Reset, Image, or push buttons.

•	 Miscellaneous controls that don’t fit in any other category mentioned here.

HTML 4.01 provides many of the controls belonging to these categories. Most of the controls listed
here are displayed using an <input> element. The type attribute of the <input> element is responsible for
rendering a required type of control.

HTML5 adds many new input types; you learn about them in the following sections. Table 5-1 lists the
available input types in HTML5 for your quick reference. Some controls that aren’t <input> types but are
used commonly in HTML forms are also listed.

Table 5-1. HTML5 <input> Types

Input Type / HTML Tag
New to
HTML5? Control Rendered Additional Notes

text, password, <textarea> No Text box, password-
entry field, free-form
text area

The <input> element with type equal to
text renders a single-line text box,
whereas <textarea> renders a multiline
text box.

checkbox, radio No Check box, radio
button

More than one check box can be
selected at a time, whereas only one
radio button from a given group can be
selected. You create a radio-button
group by setting the name attribute to a
common value.

www.it-ebooks.info

http://www.it-ebooks.info/

123

chapter 5 n working with forMs and controLs

email, url, tel Yes Text box that restricts
the entered value to
match the format of
email, url, or tel
(telephone number)

These controls validate data entered in
them and display an error message if
data doesn’t meet the expected format.
The type tel isn’t implemented in all
browsers.

date, datetime, datetime-
local
time, week, month

Yes Date and/or time
picker

Different browsers may display these
controls in different fashions.

color Yes Color picker Different browsers may display the color
picker in different fashions.

number, range Yes Up-down control,
range selector (slider)

You can specify minimum and
maximum values as well as a step value.

file Improved Text box with a Browse
button

This control is used to upload files from
a client machine to the server.

hidden No Hidden form field (not
displayed on the form)

This control isn’t displayed on the web
page but can be accessed
programmatically. It’s typically used to
pass processed or hidden data between
client and server.

submit, reset, button,
image

No Push button / image
button for submitting,
resetting the form, or
triggering a custom
action

These controls trigger an action. A
Submit button submits a form to the
server using a POST/GET request.

search Yes Search box A search box can have special features
that an ordinary text box doesn’t have,
such as the ability to clear the entered
search criteria.

<select></select> No Drop-down list. This control displays a list box or drop-
down list. You can specify list items
using <option> elements.

The next section discusses the new input types introduced by HTML5.

Using HTML5-Specific Input Types
Ensuring that data entered by a user meets the expected format is a common task in all data-driven web
applications. Traditionally, developers used custom JavaScript code to perform checks such as these:

•	 Data entered is of correct format: for example, e-mail addresses, URLs, and
telephone numbers.

•	 Data entered falls within certain range between minimum and maximum values: for
example, age group and yearly income.

•	 Dates are entered in a common format, and values are valid dates.

Performing such validations through JavaScript is, no doubt, a good programming practice. However,
a more logical approach is to enable the data-entry controls to accept data of the required format or range.
This way, you need not write any JavaScript code to validate the user input. The new HTML5 input types

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 5 n working with forMs and controLs

124

attempt to do just that. Remember, though, that not all browsers support these new input types.
Additionally, browser support for a particular input type may differ in terms of the control’s user interface
and validating capabilities.

As with other features of HTML5, it’s recommended that you check browser support for the new input
types using the Modernizr library. Listing 5-5 shows some sample jQuery code that checks whether the
email input type is supported by the browser.

Listing 5-5. Checking Support for the New Input Types

$(document).ready(function () {
 if (!Modernizr.inputtypes.email) {
 alert("This browser doesn't support email input type of HTML5!");
 }
});

n Note If a browser encounters an input type that it can’t recognize, a normal text box is rendered. As of this
writing, Chrome and Opera are leading as far as support of the new input types is concerned. Hence, all the input
types discussed in the following sections are illustrated using either Chrome or Opera.

Note that individual browsers may perform the validations based on the input types bit differently. For
example, Firefox highlights the <input> field containing an invalid value as soon as you leave the field.
Chrome and Opera, on the other hand, don’t give such instant visual feedback. All browsers, however,
perform the validations when the form is submitted. At that time, the browser displays an error message (if
any) for the first <input> field in error, and that input field gets the focus. Consider, for example, a form
with three <input> fields, the first two of which contain invalid values. When such a form is submitted, the
browser displays the validation error message for the first input field, and the first input field gets the
focus. Only when a valid value is entered in the first input field is the validation error message for the
second input field displayed. If there are any validation errors, the form isn’t submitted.

The following sections discuss the new input types offered by HTML5. Remember that all the HTML
4.01 input types are available and can be used as before.

E-mail Addresses
E-mail addresses are commonly used on web sites for variety of reasons ranging from user registrations to
contact forms. You can accept e-mail addresses using the email input type. Listing 5-6 shows how the
email input type is used.

Listing 5-6. Using the email Input Type

Enter your email address :

<input id="email" type="email" />

<input type="submit" value="Submit"/>

As you can see, the type attribute is set to email. If you try to enter an invalid e-mail address, the
browser displays an error message (see Figure 5-2).

www.it-ebooks.info

http://www.it-ebooks.info/

125

chapter 5 n working with forMs and controLs

Notice that the error message is displayed only if the text box contains a value. If the text box is left
empty, no validation is performed. This behavior is similar to ASP.NET validation controls.

URLs
Setting the input type to url ensures that the value entered matches a URL pattern. You use the url type as
follows:

<input id="url" type="url" />

If you enter a valid Internet URL such as http://www.microsoft.com, the input field doesn’t give any
errors. Entering an invalid Internet URL, such as http://microsoft%com, causes the browser to display an
error message. Note, however, that the current implementation of the url input type in most browsers
doesn’t perform strict checks on the URL format. For example, they allow whitespace to be part of the URL.

Numbers and Telephone Numbers
Numeric data is commonly accepted in web pages for things such as age, currency values, number of
employees in an organization, and so on. You can use the number input type in such cases. Additionally, the
number input type lets you specify an acceptable range for the number. For example, consider a web page
that accepts an employee’s current salary. Here is how to use the number input type:

<input id="salary" type="number" />

Figure 5-3 shows how Chrome displays the number input type as an up-down control.

Figure 5-2. Chrome showing an error message when the user enters an invalid e-mail address

Figure 5-3. The number input type shown in Chrome

www.it-ebooks.info

http://www.microsoft.com
http://www.it-ebooks.info/

chapter 5 n working with forMs and controLs

126

In addition to specifying the type attribute as number, you can also specify a minimum value, a
maximum value, and a step value. The minimum and maximum values the control should accept are
specified by the min and max attributes, respectively. The step attribute indicates a jump in the number
when the number is incremented or decremented. The following markup shows how to use these three
attributes to restrict a user’s age to a range from 18 to 100:

<input type="number" min="18" max="100" step="2" />

Figure 5-4 shows the error message that’s displayed if you try to exceed the maximum value.
By default, using the number input type allows you to enter only integers. If you wish to enter decimals,

you need to specify an appropriate step value as follows:

<input type="number" min="10" max="50" step="0.5" />

n Note The min, max, and step attributes work with these input types: number, range, date, datetime,
datetime-local, month, time, and week.

To mark an input field as a telephone number, you use the tel type. But currently, browsers don’t
impose any special validations on the tel input type, and hence it acts more like a marker. You can use this
information to perform custom JavaScript validations. Listing 5-7 shows how.

Listing 5-7. Custom Validation for the tel Input Type

$("#form1").submit(function (e) {
 var flag = false;
 $("input[type='tel']").each(function (i,v) {
 var pattern = /^(\([0-9]{3}\)|[0-9]{3}-)[0-9]{3}-[0-9]{4}$/;
 var value = $(this).val();
 if (!pattern.test(value)) {
 alert("Telephone no. is invalid!");
 flag = true;
 }
 });
 if (flag) {
 e.preventDefault();
 }
});

Figure 5-4. The number input type with min and max attributes specified

www.it-ebooks.info

http://www.it-ebooks.info/

127

chapter 5 n working with forMs and controLs

The code shown in Listing 5-7 shows a jQuery submit() function that handles the form’s submit event.
The submit event is raised when a form is submitted either using a Submit button or programmatically.
The submit event handler function declares a flag variable that indicates whether the entered telephone
number matches a certain pattern.

A jQuery attribute selector then selects all the input elements with the type attribute set to tel. The
jQuery each() method checks each matched element against a regular expression, as indicated by the
pattern variable. The regular expression’s test() method returns true if a value specified in the parameter
matches the pattern; otherwise it returns false. If the test() method returns false, an error message is
displayed to the user using an alert box. Setting the flag variable to true indicates a validation error. The
default action (form submission, in this case) is prevented using the preventDefault() method.

Range Selectors
At times, you need to select (rather than enter) values falling within a specific range. Recollect the custom
video player you developed in Chapter 3: you provided the facility to change the player’s volume. In such
cases it isn’t appropriate to expect the user to enter a volume level. Instead, it’s better to let them select a
volume level from a range. The following markup shows how you can use the range input type:

<input id="range1" type="range" min="1" max="5" step="1" />

Attributes such as min, max, and step have the same significance as for the number input type (min and
max control the control’s minimum and maximum allowed values, and step controls the jump in the
value). Figure 5-5 shows how the previous range selector is displayed in Chrome.

Figure 5-5. Range selector in Chrome

The resulting range selector has a minimum value of 1, a maximum value of 5, and a step of 1.

Dates and Times
Another commonly used data type in web applications is date and/or time. In ASP.NET Web Forms, the
Calendar server control lets you pick dates. However, the biggest downside of Calendar is that it requires a
post back when a date is selected. No wonder ASP.NET developers often used JavaScript-based pop-up
date-time pickers in their web applications. It would be better if the browser itself could display a date-
time picker, and that’s where the date and time input types come into the picture. Using these input types,
you can select a date, a time, or both. The user can also select a complete week or month rather than a
specific day or time.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 5 n working with forMs and controLs

128

n Note As of this writing, Opera is the only browser that displays a pop-up date-time picker for the date and
time input types. Chrome displays a pop-up date picker only when the input type is date; it renders a plain text box
for other date and time types. Also, there is a difference in the display format for date. Opera, for example, displays
dates in yyyy-MM-dd format, whereas Chrome displays them as per machine date format.

Listing 5-8 shows all the available date-time input types.

Listing 5-8. Date and Time Input Types

<input id="dt1" type="date" />
<input id="dt2" type="time" />
<input id="dt3" type="datetime" />
<input id="dt4" type="datetime-local" />
<input id="dt5" type="week" />
<input id="dt6" type="month" />

The six date-time input types allow you to accept date, time, date and time, local date and time, week,
and month, respectively. The dates are displayed in yyyy-MM-dd format, whereas times are displayed in
hh:mm:ss format. For weeks and months, the format is yyyy-Www and yyyy-MM, respectively. Figure 5-6
shows how Opera displays these date-time input types.

If you click the down arrow of the date input type displayed in Figure 5-6, a pop-up date picker is
displayed (see Figure 5-7).

Figure 5-6. Opera showing date-time input types

www.it-ebooks.info

http://www.it-ebooks.info/

129

chapter 5 n working with forMs and controLs

Note that you can also use the min and max attributes for dates to restrict the date selection to a
particular date range.

Colors
An input type of color allows you to specify a color value. Recollect the pie chart canvas application you
developed in Chapter 4. In that case, you specified sector colors in a plain text box. If your browser
supports the color input type, it can prompt you with a color picker, making your job easy. Figure 5-8
shows how Opera displays a color input type.

Figure 5-7. Opera showing a pop-up calendar

Figure 5-8. Color picker in Opera

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 5 n working with forMs and controLs

130

Using the color input type is just a matter of setting the type attribute of an <input> element to color,
as shown here:

<input id="color1" type="color" />

Once the user selects a color, the value of the <input> field returns the corresponding hexadecimal
color code. For example, selecting a white color returns #ffffff. By default, the color picker defaults to
black (#000000).

Search
The search input type is intended to be used for search boxes. Currently, browsers don’t provide anything
special for the search input type except a few display changes. For example, Chrome displays a cross (X) as
you start typing in the search box (see Figure 5-9). Clicking the X clears the search box.

Figure 5-9. Search input type in Chrome

Now that you know what new input types are available and how to use them in a web page, it’s time to
see how you can use these input types in Web Forms and MVC views.

Using the New Input Types in Web Forms
In ASP.NET 4.5, you can set the TextMode property of a TextBox server control to the required input type.
Prior to ASP.NET 4.5, the TextMode property took only two values: SingleLine and MultiLine. In ASP.NET
4.5, however, all the new input types are supported, as is evident in Figure 5-10.

www.it-ebooks.info

http://www.it-ebooks.info/

131

chapter 5 n working with forMs and controLs

At runtime, the ASP.NET framework converts the TextMode setting to the appropriate input type
attribute. Note that you can also set the type attribute directly in the <asp:TextBox> markup tag to get the
same effect. However, the recommended way is to set the TextMode property. Of course, nothing prevents
you from using a plain HTML5 <input> tag with the required setting for its type attribute. But if you wish to
access the text box from the server-side code, then chances are you should use the TextBox server control.

If you wish to set attributes such as min, max, and step, you need add them directly to the
<asp:TextBox> markup tag as shown here:

<asp:TextBox ID="TextBox1" runat="server" TextMode="Number"
min="18" max="100" step="2">
</asp:TextBox>

n Note If you’re using Visual Studio 2010, you may need to install the latest Service Pack to be able to use the
new input types.

Using the New Input Types in MVC Views
In MVC views, things are bit easier when it comes to using the new HTML5 input types. Because MVC
views rely directly on the HTML markup rather than server controls, you can easily use <input> tags as
discussed earlier. If you prefer to use HTML helpers instead of raw HTML markup, you can use the new
input types as follows:

<%= Html.TextBox("txtNumber","18",new {type="number",min="18",max="100"}) %>

As you can see, the TextBox helper takes three parameters: the name of the resulting <input> element,
its default value, and an object representing additional HTML attributes that need to be added to the
element. In this example, you set the type, min, and max attributes.

Figure 5-10. The TextMode property supports the new input types.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 5 n working with forMs and controLs

132

If your views are strongly typed against some model, you can use TextBoxFor() instead of TextBox(),
as follows:

<%= Html.TextBoxFor(m => m.Age, new {type="number",min="18",max="100"}) %>

In this line of code, the model is assumed to have a property named Age. The Age property is displayed
in a text box that is of type number. The min and max attributes of the text box are set to 18 and 100,
respectively.

Other Validation Attributes
In the preceding sections, you learned about HTML5 input types that let you validate the format of the
data being entered. Beyond the input types, HTML5 adds several other attributes for controlling a few
other aspects of the validation process. This section discusses these techniques.

Dealing with Required Fields
Many data-entry forms expect a value to be entered in one or more text boxes. To enforce this requirement,
ASP.NET developers often use the RequiredFieldValidator control. HTML5 includes an easy alternative to
indicate mandatory data-entry fields. Consider the following markup:

<input id="firstName" type="text" name="firstName" required="required"/>

Notice the required attribute at the end of the <input> element. This is the HTML5 way to indicate
that a given field is mandatory. If you don’t supply any value for the firstName text box, the browser shows
an error message and refuses to submit the form even if you haven’t written any validation script. Figure
5-11 shows how Chrome throws an error message.

As you can see, trying to submit the form without entering a value in the text box generates an error
prompting the user to fill out the field.

Pattern-Matching Using Regular Expressions
The new HTML5 input types allow you to validate a few commonly used data formats. However, at times
you need to validate something more complex. A common way to validate such complex formats is regular
expressions. HTML5 also relies on them for performing custom pattern-matching operations. Let’s see
how.

Figure 5-11. Using the required attribute

www.it-ebooks.info

http://www.it-ebooks.info/

133

chapter 5 n working with forMs and controLs

Suppose you wish to accept the user’s first name. A name can contain only the letters A to Z in
uppercase or lowercase. The HTML5 <input> element provides a pattern attribute that takes any valid
regular expression and validates an inputted value against it. If the inputted value doesn’t match the
pattern specified by the regular expression, an error is shown. The following line of markup shows how to
use the pattern attribute:

<input id="firstName" type="text" name="firstName" pattern="^\s*([a-zA-Z]+)\s*$"
required="required" />

The pattern attribute of this <input> tag is set to a regular expression that allows only alphabetic
characters in the text box. If you try to enter a number as a first name, you get an error, as shown in Figure
5-12.

Figure 5-12. Validating data using the pattern attribute

Entering numeric data in the input field generates an error because the regular expression allows only
alphabetic characters. The default error message leaves the user clueless about what exact format is
expected or what went wrong; later, you learn to customize the error message displayed by the browser.

Turning HTML5 Validations On and Off
When you use the new input types and related validation techniques, your form is validated before it’s
submitted to the server. However, at times you may want to skip the form validation altogether. During the
testing phase, you may want to test your server-side validations, and you may want to disable HTML5
validations temporarily. In certain cases, it might be all right to submit a form without performing any
validations. For example, let’s say you have a Cancel button or a Help button on a form. Because actions
indicated by these buttons don’t rely on the data, you can safely bypass the validations.

You can turn off the HTML5 validations at two distinct places:

•	 At the <form> tag level

•	 At the Submit button level

The former approach is good during the testing phase, and the latter approach is suitable for cases
where a form needs to be submitted regardless of the control values.

To turn off the validations at the form level, HTML5 offers the novalidate attribute. At the Submit
button level, the HTML5 formnovalidate attribute does the job. The following fragment of markup shows
how to use both of these attributes:

<form id="form1" method="post" novalidate="novalidate"></form>
<input type="submit" formnovalidate="formnovalidate" />

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 5 n working with forMs and controLs

134

The <form> element has the novalidate attribute set to novalidate. If you submit this form, no
validations are performed on the input data based on input types or pattern.

The Submit button has the formnovalidate attribute set to formnovalidate. This has the same effect as
the novalidate attribute.

Performing Custom Validations
In spite of the fact that HTML5 input types along with required and pattern attributes let you validate data,
real-world web applications often still call for complex validations. In particular, validations that involve
validating against data residing in a database are beyond the reach of the techniques discussed so far.
Luckily, HTML5 also offers a technique you can use to perform such custom validations. It involves two
steps:

1. Write a custom JavaScript function that performs the custom validation.

2. If the validation fails, call the setCustomValidity() method on the input field to
inform the browser about the error.

Step 2 is your chance to supply a custom error message to the browser so the browser can pop it
whenever validation fails. To understand how these steps work, look at Listing 5-9.

Listing 5-9. Custom Validation Function

$(document).ready(function () {
 $("#btnSubmit").click(OnSubmit);
});
function OnSubmit(evt) {
 $.ajax({
 url: '/home/ValidateCustomerID',
 type:'post',
 data: { id: $("#txtCustId").val() },
 dataType: 'json',
 async:false,
 success: function (result) {
 var textbox = $("#txtCustId").get(0);
 if (result == false) {
 textbox.setCustomValidity("Customer ID was not found in the database!");
 }
 else {
 textbox.setCustomValidity("");
 }
 }
 });
}

Listing 5-9 shows the click event handler of a Submit button. This event handler invokes a controller
action named ValidateCustomerID() using $.ajax() and passes a customer ID entered in a text box
(txtCustId). The ValidateCustomerID() action return true if the supplied customer ID is found in the
Customers table of the Northwind database; otherwise it returns false. Notice the success function of the
$.ajax() call: if a customer ID isn’t found in the database, the setCustomValidity() method is called on
the text box along with a custom error message. This error message is displayed to the user when the form

www.it-ebooks.info

http://www.it-ebooks.info/

135

chapter 5 n working with forMs and controLs

is submitted. If a customer ID is found, setCustomValidity() method is called with an empty string
indicating that there is no validation error. The ValidateCustomerID() action is shown in Listing 5-10.

Listing 5-10. ValidateCustomerID() Action Method

public JsonResult ValidateCustomerID(string id)
{
 NorthwindEntities db = new NorthwindEntities();
 var data = from item in db.Customers
 where item.CustomerID == id
 select item;
 if (data.Count() <= 0)
 {
 return Json(false);
 }
 else
 {
 return Json(true);
 }
}

The ValidateCustomerID() action uses the Entity Framework data model for the Northwind database to
determine whether a CustomerID value exists in the database. Accordingly, a true or false flag is returned
as JsonResult. Figure 5-13 shows a sample run of the view with an invalid customer ID.

Figure 5-13. setCustomValidity() method in action

Notice an interesting thing about Listing 5-9: the $.ajax() call specifies an async option value of
false. By default, $.ajax() makes an asynchronous request to the server. However, with this default
behavior, the Submit button submits the form without waiting for ValidateCustomerID() to return. With
the async option set to false, $.ajax() makes a synchronous request to the server rather than
asynchronous, and the OnSubmit event handler waits for the ValidateCustomerID() method to complete.

HTML5 Input Types and ASP.NET Validation Techniques
Although the new HTML5 input types are great additions to the HTML markup, at times you need to
mix HTML5 native validation techniques and ASP.NET validation techniques. ASP.NET Web Forms and

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 5 n working with forMs and controLs

136

ASP.NET MVC provide good support for validation through server controls and HTML helpers,
respectively. It’s worthwhile to examine how these validation techniques fit in with HTML5. The following
sections discuss various combinations in which HTML5 validation techniques can go hand in hand with
ASP.NET built-in techniques.

HTML5 Input Types and Validation Controls
ASP.NET Web Forms provide validation controls for performing a common set of validation tasks. These
validation controls emit client-side JavaScript that performs the job of validating the data. More
important, you can use them along with the HTML5 input types. The validation controls as well as the
HTML5 input types perform the validation when a form is submitted. If a text box has TextMode set to
Email and also has a RegularExpressionValidator attached (see Listing 5-11), both schemes display an
error message when a form is submitted.

Listing 5-11. Using TextMode and RegularExpressionValidator Together

<asp:TextBox ID="TextBox3" runat="server" TextMode="Email"></asp:TextBox>

<asp:RequiredFieldValidator ID="RequiredFieldValidator3" runat="server"
ControlToValidate="TextBox3" ErrorMessage="Please enter email address"
ForeColor="Red">*</asp:RequiredFieldValidator>

<asp:RegularExpressionValidator ID="RegularExpressionValidator1" runat="server"
ErrorMessage="Invalid email address" ForeColor="Red"
ValidationExpression="\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*"
ControlToValidate="TextBox3">*</asp:RegularExpressionValidator>

Figure 5-14 shows how this works at runtime.

Figure 5-14. Validation controls and HTML5 input types used together

www.it-ebooks.info

http://www.it-ebooks.info/

137

chapter 5 n working with forMs and controLs

You might wonder why you would use validation controls and HTML5 input types together. Because
HTML5 input types aren’t supported on all browsers, you need to use validation controls as a fallback
mechanism. So, in all you have the following options:

•	 Use only HTML5-specific input types and validation attributes. This approach works
if the target browser supports the HTML5 input types; otherwise no validations are
performed.

•	 Use a combination of HTML5 validation techniques and ASP.NET validation
controls. This approach ensures that validations work in all browsers, but there may
be some redundancy in the error messages as discussed earlier.

•	 Use a combination of HTML5 validation techniques and ASP.NET validation
controls with client-side validation turned off. In this case, if the target browser
supports HTML5, the HTML5 validation techniques execute; otherwise the form is
posted back to the server, and validation controls validate the data. Of course, in the
latter case, there is an overhead of the extra round trip to the server.

HTML5 Input Types and Server-Side Validations
in an MVC Application
One way to combine HTML5’s new validation techniques with ASP.NET MVC is to use HTML5 to provide
client-side validation while using ASP.NET MVC to provide server-side validation in the controller. In this
example, you validate first name, last name, and e-mail values using the MVC ValidationMessage and
ValidationSummary HTML helpers. Listing 5-12 shows a view that renders a simple form with three fields:
FirstName, LastName, and Email.

Listing 5-12. Validation Helpers and HTML5 Input Types in an MVC Application

<% using (Html.BeginForm()) { %>
<table cellpadding="3" cellspacing="0" class="style1">
 <tr>
 <td nowrap="nowrap" width="5%">
 <%= Html.Label("First Name :")%>
 </td>
 <td width="50%">
 <%= Html.TextBox("FirstName", "", new {required="required"})%>
 <%= Html.ValidationMessage("FirstName","*")%>
 </td>
 </tr>
 <tr>
 <td nowrap="nowrap" width="5%">
 <%= Html.Label("Last Name :")%>
 </td>
 <td width="50%">
 <%= Html.TextBox("LastName", "", new {required="required"})%>
 <%= Html.ValidationMessage("LastName","*")%>
 </td>
 </tr>
 <tr>
 <td nowrap="nowrap" width="5%">

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 5 n working with forMs and controLs

138

 <%= Html.Label("Email Address :")%>
 </td>
 <td width="50%">
 <%= Html.TextBox("Email", "", new {type="email"})%>
 <%= Html.ValidationMessage("Email","*")%>
 </td>
 </tr>
</table>
<input id="Submit1" type="submit" value="Submit" />
<%= Html.ValidationSummary() %>
<%}%>

As you can see, the Email text box has its type set to email. Also notice how the ValidationMessage and
ValidationSummary MVC HTML helpers display validation errors. The HTML5 validations happen right in
the browser. However, the MVC validations are performed in a controller, as shown in Listing 5-13.

Listing 5-13. Performing Validations in a Controller

[HttpPost]
public ActionResult Index(FormCollection form)
{
 if (form["FirstName"].Length < 3 || form["firstname"].Length > 50)
 {
 ModelState.AddModelError("FirstName",
 "Invalid First Name. Must be between 3 and 50 characters.");
 }
 if (form["LastName"].Length < 3 || form["LastName"].Length > 50)
 {
 ModelState.AddModelError("LastName",
 "Invalid Last Name. Must be between 3 and 50 characters.");
 }
 if (form["Email"].Length <= 0)
 {
 ModelState.AddModelError("Email", "Please enter Email Address.");
 }
 if(!Regex.IsMatch(form["Email"],@"\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*"))
 {
 ModelState.AddModelError("Email", "Invalid Email Address.");
 }
 return View();
}

As you can see, the Index() action method performs validation on the form data and accordingly adds
error messages in the ModelState. The validation helpers display these model errors in the browser (see
Figure 5-15).

www.it-ebooks.info

http://www.it-ebooks.info/

139

chapter 5 n working with forMs and controLs

When you have validation logic at the client side as well as the server side, the client-side validations
are performed prior to submitting the form. In this example, the HTML5 validations are performed first,
and only then is the form submitted. Once the control reaches the Index() action method. the server-side
validations are performed.

HTML5 Input Types and Unobstructive Validation
Unobstructive validation is a technique implemented by ASP.NET that uses data-annotation attributes and
jQuery. Under this scheme, a data model is decorated with data-annotation attributes that perform
validations on the data model property values. At runtime, ASP.NET emits data-* attributes, a feature of
HTML5. ASP.NET performs client-side validations with the help of these emitted data-* attributes and
jQuery.

The data-* attributes are custom attributes and are just like any other built-in HTML attributes in
terms of usage syntax. However, they differ from built-in HTML attributes in that they don’t play any role
in the visual rendering of the element. ASP.NET 4.5 Web Forms as well as MVC applications support
unobstructive validation. I don’t discuss the unobstructive validation scheme any further; suffice to say
that you can use unobstructive validation along with HTML5 validation techniques if required.

n Note The data-* attributes are a feature of HTML5. You learn to use them in Chapter 6.

Customizing Validation Messages
So far, you’ve relied on the browser to display HTML5 validation messages. No doubt browsers supporting
HTML5 validations do a good job of displaying validation messages neatly. However, you may want to
customize them further. For example, you may want the error message font and color to match your web
page theme, or you may want to give a strong highlight to any input control that violates the validation
rules. HTML5 offers two ways to accomplish such customizations:

•	 Use CSS pseudo-classes to customize the appearance of an input field that violates a
validation rule.

Figure 5-15. Validations in an MVC controller

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 5 n working with forMs and controLs

140

•	 Use JavaScript/jQuery code to customize the way validation messages for input
fields are displayed.

The former technique is suitable in situations where you wish to customize the appearance of an
input field and you aren’t interested in changing the way validation messages are displayed. The latter
approach gives you total control over how and where validation messages are displayed. It involves
handling the input field’s invalid event and writing custom logic to display validation messages.

Customizing the Appearance of an Input Field
Using CSS Pseudo-Classes
Whenever there is a validation error, the browser pops up a callout that displays the validation error
message (see Figure 5-2). Although browsers don’t allow you to customize the appearance of the validation
message callout, you can customize how an input field looks when a validation rule is broken. The trick is
to write specific CSS pseudo-classes.

n Note A CSS pseudo-class is a class that is applied to elements based on their state. For example, an anchor
(<a>) tag has pseudo-classes link, visited, hover, and active, which represent the corresponding state of a
hyperlink. The CSS pseudo-classes discussed in this section come from the CSS3 specification.

Table 5-2 lists the pseudo-classes you can use with HTML5 validations.

Table 5-2. Pseudo-Classes for Customizing Input Fields

Pseudo-Class Description
valid Applies to input elements that contain valid values.

invalid Applies to input elements that contain invalid values.

in-range Applies to input elements whose value is between the min and max values.

out-of-range Applies to input elements whose value is outside the min and max limits.

required Applies to input elements that are marked as required.

optional Applies to input elements that aren’t marked as required.

Listing 5-14 uses many of the CSS pseudo-classes mentioned in Table 5-2 to customize the
appearance of input fields in the event of validation errors.

Listing 5-14. Sample Pseudo-Classes to Customize Input Fields

input:invalid {
 background-color: #ffd800;
 border: 2px solid #f00;
}
input:required {
 background-color: #ffd800;
 border: 2px solid #f00;
}
input:out-of-range {

www.it-ebooks.info

http://www.it-ebooks.info/

141

chapter 5 n working with forMs and controLs

 color: #fff;
 background-color: #242a59;
 border: 2px solid #f00;
}

Figure 5-16 shows a sample run of a web page with some invalid data.

Figure 5-16. Validation pseudo-classes in action

Notice how the Email text box picks up the input:invalid class because the field’s value doesn’t meet
the format of a valid e-mail address. Along the same lines, the Age text box picks up the input:out-of-
range class when the age exceeds a maximum limit.

Customizing Validation Messages Through Code
After performing validations, the HTML DOM raises an invalid event for all input fields that violate
validation rules. You can trap the invalid event and write custom code to suppress the default validation
messages and display your own. In the invalid event handler, you can use the ValidityState object to find
out more about the error. Listing 5-15 shows how this can be accomplished.

Listing 5-15. Handling the invalid Event

$(document).ready(function () {
 $("#txtEmail").bind("invalid", OnInvalid);
 $("#txtAge").bind("invalid", OnInvalid);
});

function OnInvalid(evt) {
 var input = evt.target;
 var validity = input.validity;

 if (validity.typeMismatch) {
 alert("Invalid email address");
 }
 if (validity.rangeOverflow) {
 alert("Age value too big");
 }
 if (validity.rangeUnderflow) {

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 5 n working with forMs and controLs

142

 alert("Age value too small");
 }
 evt.preventDefault();
}

As you can see, the jQuery bind() method binds the invalid event handler for the two <input> fields.
The OnInvalid() function gets the ValidityState object via the validity property of the input field. The
ValidityState object provides several pieces of information about the current validity status of an input
field. Table 5-3 lists the properties of the ValidityState object that can be used.

Table 5-3. ValidityState Properties

Property Description
customError Returns true if validation is performed via custom error techniques.

patternMismatch Returns true if a control has a pattern attribute set and the control value
doesn’t match the pattern.

rangeOverflow Returns true if an input type contains a value smaller than the max value.

rangeUnderflow Returns true if an input type contains a value smaller than the min value.

stepMismatch Returns true if an input type contains a value not in accordance with the
step value.

tooLong Returns true if data entered in a control exceeds its maxLength value.

typeMismatch Returns true if a control contains data not that doesn’t matching the
required format (e.g. emaile-mail, URLs, number, and so on etc.)

valid Returns true if a control contains valid value, or false otherwise.

valueMissing Returns true if a control marked as “required” doesn’t contain any input.

The code then displays an alert box with a customized validation message. The browser’s default
validation message is suppressed by calling the event object’s preventDefault() method. If you don’t
prevent the default action using a preventDefault() call in addition to your alert box, the browser’s
validation error message callout is also displayed, which is unnecessary in most cases.

Figure 5-17 show a sample run of the code.

Figure 5-17. Customized validation message from the invalid event handler

www.it-ebooks.info

http://www.it-ebooks.info/

143

chapter 5 n working with forMs and controLs

As you can see, entering an invalid e-mail address and clicking the Submit button displays the
validation error message in an alert box instead of the browser’s default callout.

Other Improvements to the <input> Element
In the preceding sections, you learned about the new input types available in HTML5. HTML5 also
enhances the <input> element with some features:

•	 Setting focus to a field when a form is loaded

•	 Displaying hint or help text using placeholders

•	 Spellchecking the entered text

•	 Turning browser autocomplete on or off

•	 Providing a drop-down list for an input field

These enhancements are discussed in the following sections.

Setting Autofocus
When a web page loads in the browser, it’s a good idea to set the initial focus to a data-entry field that the
user is supposed to fill out. You can indicate that an input field should receive focus using the autofocus
attribute. The following markup shows how:

<input id="firstName" type="text" name="firstName" autofocus="autofocus"
 required="required"/>

This line of markup declares a text input field that has its autofocus attribute set to autofocus. When
you open the web page in the browser, the firstName text box gets focus.

Displaying Help Text Using Placeholders
While filling out fields such as e-mail addresses, URLs, dates, and telephone numbers, it’s a recommended
practice to let the user know the format in which the data is to be entered. One way to do this is to simply
place explanatory text in front of the data-entry field. The downside of this approach is that the label
occupies extra screen space. HTML5 placeholders provide an elegant way to add hint or help text to an
input control.

A placeholder is displayed as a watermark and is removed as soon as the user starts filling the field.
You specify a placeholder using placeholder attribute of the <input> element. The following line of markup
adds a placeholder that tells a user how to format a telephone number:

<input id="telephone" type="tel" placeholder="(123) 123-1234"/>

Figure 5-18 shows how this placeholder looks at runtime.
As you can see, the input field displays the placeholder as specified in the placeholder attribute. As

soon as you start typing the telephone number, the placeholder text disappears. If the input field is
emptied, the placeholder appears again.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 5 n working with forMs and controLs

144

Enabling Spell-Check
If your form accepts free-form text input from the user, you may want to enable spell-check on the
content. Suppose, for example, that you’re developing a blog engine that allows users to post and edit
articles. It would be nice to enable spell-check for the content. This way, users can trap spelling errors
easily. The spellcheck attribute does this job for you. Here is how you use it:

<textarea id="textarea1" rows="5" cols="50" spellcheck="true"></textarea>

The spellcheck attribute is a Boolean and can be set to true or false. If it’s set to true, the <textarea>
(or <input>) highlights spelling errors as shown in Figure 5-19.

Figure 5-19. Enabling spell-check for a <textarea>

Figure 5-18. Displaying a placeholder

Notice how an incorrect spelling is highlighted with a red underline.

Turning Off Autocomplete
Most browsers try to help users fill data-entry forms with the help of the autocomplete feature. This feature
lets users pick a value from a list instead of typing the entire value. At times, however, you may want to
disable this feature for an input field. The autocomplete attribute allows you to do just that. The following
markup shows how it’s used:

<input id="firstName" type="text" autocomplete="off"/>

Of course, you can set autocomplete to on to explicitly turn on the feature. You can also turn
autocomplete on or off for the entire form by adding the autocomplete attribute to the <form> tag instead of
the individual <input> tag:

www.it-ebooks.info

http://www.it-ebooks.info/

145

chapter 5 n working with forMs and controLs

<form id="form1" autocomplete="off"></form>

If you set the autocomplete attribute of the <form> tag, autocomplete is disabled for all input fields
belonging to that form.

Providing a Drop-Down List
At times, you want to let the user either enter a value manually or pick it from a list. For desktop
applications, the combo box control is often used for such functionality. Suppose you’re developing an
order-entry page where customer details are provided. If an order is being placed by an existing customer,
it’s helpful to let the user choose existing details from a list rather than enter them again. You can provide
such a list using a combination of the list attributes of the <input> and <datalist> element. Listing 5-16
shows how this can be accomplished.

Listing 5-16. Providing a Drop-Down List

<input id="country" type="text" list="pickuplist1" />
<datalist id="pickuplist1">
 <option label="India" value="India"></option>
 <option label="USA" value="USA"></option>
 <option label="UK" value="UK"></option>
</datalist>

As you can see, the <datalist> element essentially provides a list of key-value pairs. The value
attribute governs what should be filled in the target text box when a selection is made. The label attribute
acts as a description for the corresponding value. The <input> element’s list attribute is set to the ID of
the <datalist>. At runtime, a list is displayed as shown in Figure 5-20.

Figure 5-20. Drop-down list for an input field

The column at left in the drop-down list shows values as indicated in the value attribute, and the
column on the right displays values specified by the label attribute.

Setting a Form’s Action and Method
Normally, the <form> tag has action and method attributes to indicate the form action and HTTP method
(GET/POST), respectively. In some cases, you may want to change these settings for individual Submit

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 5 n working with forMs and controLs

146

buttons. You can do so using the formaction and formmethod attributes of the <input> element. Listing 5-17
shows how.

Listing 5-17. Setting a Form’s Action and Method Using the <input> Tag

<form action="/Home/Index" method="get">
 <input id="btnSubmit" type="submit" value="Submit"
 formaction="/Home/Index2"
 formmethod="post" />
</form>

The <form> tag’s action attribute is set to /Home/Index, and its method attribute is set to get. You
override these defaults through the <input> tag by setting the formaction attribute to /Home/Index2 and
the formmethod attribute to post. Other Submit buttons on the form (if any) use the action and method as
specified at the form level.

Designing an Employee Data Form
Now it’s time to put your knowledge of HTML5 form features to use and develop a complete form that
deals with data from a SQL Server database. In this section, you develop an ASP.NET Web Forms
application that inserts data into, updates data in, and deletes data from the Employees table of Northwind
database. The main form of the application is shown in Figure 5-21.

Figure 5-21. Employee data form

www.it-ebooks.info

http://www.it-ebooks.info/

147

chapter 5 n working with forMs and controLs

The form shown in Figure 5-21 doesn’t update all the columns of the Employees table for the sake of
simplicity. The Employee Data Entry form has the following validations and features:

•	 Columns FirstName, LastName, BirthDate, Title (Current Designation), HireDate,
Address, City, Country, and PostalCode are mandatory fields, and they must be
entered during data addition or modification.

•	 The legal age for employment is assumed to be 18, and hence there must be a
difference of at least 18 years between BirthDate and HireDate.

•	 All the data-entry fields show a placeholder when empty.

•	 Current Designation can be entered manually or can be chosen from a list.

•	 PostalCode and HomePhone must match the pattern of US ZIP code and US telephone
number, respectively.

Configuring the FormView Control
The form shown in Figure 5-21 is actually a FormView server control. Listing 5-18 shows the important
properties of the FormView that need to be configured.

Listing 5-18. Properties of the FormView Control

<asp:FormView ID="FormView1" runat="server"
 AllowPaging="True"
 DefaultMode="Edit"
 DataKeyNames="EmployeeID"
 SelectMethod="GetEmployees"
 InsertMethod="InsertEmployee"
 UpdateMethod="UpdateEmployee"
 DeleteMethod="DeleteEmployee"
 ItemType="SampleAppWebForms.Model.Employee"
>
...
</asp:FormView>

By default, when the web form is shown in the browser, the FormView is in Edit mode so you can
modify an employee record. You do so by setting the DefaultMode property to Edit.

Instead of relying on EntityDataSource control (or any other data source control), the FormView relies
on custom methods to perform Create, Read, Update, and Delete (CRUD) operations. You can accomplish
this by setting the four properties SelectMethod, InsertMethod, UpdateMethod, and DeleteMethod to
appropriate methods. The GetEmployees(), InsertEmployee(), UpdateEmployee(), and DeleteEmployee()
methods are written in the code-behind file of the web form and are discussed later.

The FormView templates are strongly typed to various properties of the Employee model. That is why
the ItemType property is set to the fully qualified name of an Entity Framework data model class: Employee.
The Employee model is discussed later along with the CRUD methods mentioned earlier.

Using HTML5 Input Types and Related Attributes
The FormView control uses EditItemTemplate and InsertItemTemplate to render the data-entry form’s user
interface in Edit and Insert mode, respectively. These templates are almost identical in terms of HTML and

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 5 n working with forMs and controLs

148

server control markup. Listing 5-19 shows EditItemTemplate. For the sake of readability, only the markup
related to HTML5 validation techniques is shown.

Listing 5-19. EditItemTemplate of the FormView

<EditItemTemplate>
<fieldset>
 <legend>Basic Details</legend>
 <label for="FullName">Full Name :</label>
 <asp:DropDownList ... SelectedValue='<%# BindItem.TitleOfCourtesy %>'>
 ...
 </asp:DropDownList>
 <asp:TextBox ... required="required" Text="<%# BindItem.FirstName %>"
 PlaceHolder="First Name" autofocus="autofocus">...
 <asp:TextBox ... required="required" Text="<%# BindItem.LastName %>"
 PlaceHolder="Last Name">...
 <label for="txtBirthDate">Birth Date :</label>
 <asp:TextBox ... TextMode="Date" Text="<%# BindItem.BirthDate %>"
 required="required" PlaceHolder="Birth Date" >...
</fieldset>
<fieldset>
 <legend>Employment Details</legend>
 <label for="lblEmployeeID">Employee ID :</label>
 <asp:Label ... Text="<%# BindItem.EmployeeID %>">...
 <label for="txtDesig">Current Designation :</label>
 <asp:TextBox ... required="required" Text="<%# BindItem.Title %>"
 PlaceHolder="Designation" list="lstTitles">...
 <datalist id="lstTitles"></datalist>
 <label for="txtHireDate">Hire Date :</label>
 <asp:TextBox ... TextMode="Date" Text='<%# BindItem.HireDate %>'
 required="required" PlaceHolder="Hire Date">...
</fieldset>
<fieldset>
 <legend>Contact Details</legend>
 <label for="address">Address :</label>
 <asp:TextBox ... required="required" Text="<%# BindItem.Address %>"
 PlaceHolder="Street Address">...
 <asp:TextBox ... required="required" Text='<%# BindItem.City %>'
 PlaceHolder="City" >...
 <asp:TextBox ... required="required" Text='<%# BindItem.Country %>'
 PlaceHolder="Country" >...
 <asp:TextBox ... pattern="\d{5}(-\d{4})?" Text='<%# BindItem.PostalCode %>'
 required="required" PlaceHolder="Postal Code" >...
 <label for="txtPhone">Home Phone :</label>

 <asp:TextBox ... TextMode="Phone" Text='<%# BindItem.HomePhone %>'
 PlaceHolder="(123) 123-1234" >...
</fieldset>
<asp:Button ... Text="Save" CommandName="Update" />
<asp:Button ... ID="btnNew" Text="Add New"
 CommandName="New" formnovalidate="formnovalidate" />

www.it-ebooks.info

http://www.it-ebooks.info/

149

chapter 5 n working with forMs and controLs

<asp:Button ... ID="btnDelete" Text="Delete"
 CommandName="Delete" formnovalidate="formnovalidate" />
</EditItemTemplate>

Look carefully at the markup shown in Listing 5-19. In all, there are three <fieldset> elements that
represent the three sections of the form: Basic Details, Employment Details, and Contact Details. A
<fieldset> element is used to group related elements. To indicate the grouping visually, the <fieldset>
element also draws a box enclosing the grouped elements. Because this is an Edit mode template, you
want changes made to any field to propagate back to the database. Hence, all fields except EmployeeID are
bound with the data model using a BindItem object. EmployeeID is the primary key, so it’s read-only and
hence uses an Item object.

If you look at the <asp:TextBox> elements, you find that many of them use HTML5 input types and
related attributes. The BirthDate and HireDate text boxes have their TextMode property set to Date.
Similarly, HomePhone has a TextMode value of Phone. The PostalCode text box’s pattern attribute is set to a
regular expression that matches US ZIP codes. Note that you could use the pattern attribute for the
HomePhone text box too, but instead the application validates the phone number via jQuery code.

A <datalist> displays the existing values as soon as a text box gets focus. The <datalist> is linked to
the text box using the list attribute. The actual <datalist> items are filled at runtime using jQuery.

The required attribute is set for all text boxes that must be filled. In addition, they all have their
Placeholder attribute set to some help text. The three Button server controls—btnUpdate, btnNew, and
btnDelete—invoke the appropriate actions. Notice that the CommandName property of these button controls
is set to Update, New, and Delete, respectively. This way, the FormView control triggers the appropriate
method. Also note that btnNew and btnDelete have their formnovalidate attribute set because there is no
need to perform data validation when you click these buttons.

Taking Care of Date Formatting
The BirthDate and HireDate text boxes have TextMode set to Date. As you learned earlier, the default date
format for the HTML5 date input type is yyyy-MM-dd. However, the Employees table stores dates in MM/dd/
yyyy format. To take care of this mismatch in the date formats, you need to handle the DataBound event of
the FormView and convert dates from MM/dd/yyyy format to yyyy-MM-dd format. Listing 5-20 shows how to
do this conversion.

Listing 5-20. Converting Date Formats

protected void FormView1_DataBound(object sender, EventArgs e)
{
 if(FormView1.CurrentMode == FormViewMode.Edit)
 {
 DateTime dtBirthDate= ((Employee)FormView1.DataItem).
 BirthDate.GetValueOrDefault();
 DateTime dtHireDate = ((Employee)FormView1.DataItem).
 HireDate.GetValueOrDefault();
 TextBox txtBirthDate= (TextBox)FormView1.FindControl("txtBirthDate");
 TextBox txtHireDate = (TextBox)FormView1.FindControl("txtHireDate");
 txtBirthDate.Text = dtBirthDate.ToString("yyyy-MM-dd");
 txtHireDate.Text = dtHireDate.ToString("yyyy-MM-dd");
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 5 n working with forMs and controLs

150

This code checks whether the CurrentMode of the FormView is Edit and, if so, grabs the BirthDate and
HireDate values being bound. The DataItem object represents an Employee being bound with the FormView.
The text boxes showing BirthDate and HireDate are found using the FindControl() method. Finally, the
date values are filled in the text boxes using yyyy-MM-dd format.

Writing the CRUD Methods
The web form code-behind contains four methods that perform CRUD operations on the database. These
methods are shown in Listing 5-21.

Listing 5-21. Methods Performing CRUD Operations

public IQueryable<Employee> GetEmployees()
{
 NorthwindEntities db = new NorthwindEntities();
 var data = from item in db.Employees
 orderby item.EmployeeID
 select item;
 return data;
}

public void InsertEmployee(Employee e)
{
 NorthwindEntities db = new NorthwindEntities();
 db.Employees.AddObject(e);
 db.SaveChanges();
}

public void UpdateEmployee(Employee e)
{
 NorthwindEntities db = new NorthwindEntities();
 var data = from item in db.Employees
 where item.EmployeeID == e.EmployeeID
 select item;

 Employee obj = data.SingleOrDefault();
 obj.TitleOfCourtesy = e.TitleOfCourtesy;
 obj.FirstName = e.FirstName;
 obj.LastName = e.LastName;
 obj.BirthDate = e.BirthDate;

 obj.Title = e.Title;
 obj.HireDate = e.HireDate;

 obj.Address = e.Address;
 obj.City = e.City;
 obj.Country = e.Country;
 obj.HomePhone = e.HomePhone;

 db.SaveChanges();
}

www.it-ebooks.info

http://www.it-ebooks.info/

151

chapter 5 n working with forMs and controLs

public void DeleteEmployee(Employee e)
{
 NorthwindEntities db = new NorthwindEntities();
 var data = from item in db.Employees
 where item.EmployeeID == e.EmployeeID
 select item;
 Employee obj = data.SingleOrDefault();
 db.DeleteObject(obj);
 db.SaveChanges();
}

These CRUD methods are straightforward. The GetEmployees() method returns a collection of
Employee objects to the caller. The InsertEmployee(), UpdateEmployee(), and DeleteEmployee() methods
receive an Employee object as a parameter. This Employee object is then inserted into, updated in, or deleted
from the database. The Employee model class contains all the columns of the Employees table, but you
aren’t using all of them. Hence, UpdateEmployee() assigns individual properties of the Employee object. The
Employee model class is shown in Figure 5-22.

The application doesn’t use all the properties of the Employee class. The properties of interest are
EmployeeID, TitleOfCourtesy, FirstName, LastName, BirthDate, Title, HireDate, Address, City, Country, and
HomePhone.

Figure 5-22. Employee data model class

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 5 n working with forMs and controLs

152

jQuery Code
The web form also needs some jQuery code that does the following:

•	 Populates <datalist> items by fetching existing Titles (designations) from the
Employees table

•	 Validates that an employee is at least 18 years old at the time of hiring

•	 Validates that telephone numbers match the US phone number format

To populate the <datalist> items, you need to make an Ajax call to the server and retrieve all existing
Title values. You do so using the $.ajax() method, as shown in Listing 5-22.

Listing 5-22. Populating the <datalist> with Existing Title Values

$(document).ready(function () {
 $.ajax({
 url: 'employeeform.aspx/GetTitles',
 type: 'post',
 dataType: 'json',
 contentType: "application/json; charset=utf-8",
 success: function (results) {
 for (var i = 0; i < results.d.length; i++) {
 $("#lstTitles").append("<option label='" + results.d[i] +
 "' value='" + results.d[i] + "'></option>");
 }
 },
 error: function (err) { alert(err.status + " - " + err.statusText); }
 });
...

The $.ajax() method invokes a web method, GetTitles(), that resides in the EmployeeForm.aspx web
form. GetTitles() returns a string array of existing titles. Once the titles are returned, they’re added to the
<datalist> using the jQuery append() method. The GetTitles() web method is shown in Listing 5-23.

Listing 5-23. GetTitles() Web Method

[WebMethod]
public static string[] GetTitles()
{
 NorthwindEntities db=new NorthwindEntities();
 var data = (from item in db.Employees
 select item.Title).Distinct();
 return data.ToArray();
}

GetTitles() selects distinct Title values from the Employees table and returns them to the caller as an
array. Figure 5-23 shows how the <datalist> looks at runtime.

www.it-ebooks.info

http://www.it-ebooks.info/

153

chapter 5 n working with forMs and controLs

In order to validate that an employee was at least 18 years old at the time of hiring, you need to find
out the difference between BirthDate and HireDate. If this difference is greater than 18 years, the employee
record can be added or updated. The HomePhone text box is of type tel (TextMode of Phone), and the
telephone number entered should be a valid US telephone number. Both of these validations are
performed when a record is added or updated. Listing 5-24 shows how this is done.

Listing 5-24. Validating the Age Requirement and Telephone Number Format

$("input[name$='btnUpdate']").click(function (e) {
 var birthDate = ToDate($("input[name$='txtBirthDate']").val());
 birthDate.setFullYear(birthDate.getFullYear() + 18);
 var hireDate = ToDate($("input[name$='txtHireDate']").val());
 var txtBirthDate = $("input[name$='txtBirthDate']").get(0);
 if ((hireDate.getTime() - birthDate.getTime()) < 0) {
 txtBirthDate.setCustomValidity("Invalid Birth Date or Hire Date!");
 }
 else {
 txtBirthDate.setCustomValidity("");
 }

 var pattern = /^\(?(\d{3})\)?[-]?(\d{3})[-]?(\d{4})$/;
 var value = $("input[name$='txtPhone']").val();
 var txtPhone = $("input[name$='txtPhone']").get(0);
 if (!pattern.test(value)) {
 txtPhone.setCustomValidity("Invalid Telephone Number!");
 }
 else {
 txtPhone.setCustomValidity("");
 }
});

function ToDate(input) {
 var parts = input.match(/(\d+)/g);
 return new Date(parts[0], parts[1] - 1, parts[2]);
}

Figure 5-23. <datalist> populated using jQuery

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 5 n working with forMs and controLs

154

A jQuery attribute ends with selector is used to select btnUpdate. This is necessary because the Update
button is part of EditItemTemplate, and FormView assigns a unique name to the constituent controls (for
example, FormView1$btnUpdate). The first block of code essentially calculates the difference between
HireDate and BirthDate. If this difference is less than 0, it indicates that the age is less than 18. If so, a
custom error message is added by calling the setCustomValidity() method on the BirthDate text box.

The second block of code validates the telephone number. It does so by matching the entered value
against a regular expression. Notice the use of test(), which performs pattern matching. The test()
method returns false if the value doesn’t match the pattern. In that case, the setCustomValidity() method
is called to set a custom validation message.

CSS Pseudo-Classes
Finally, you need to add a few pseudo-classes to highlight validation errors. These pseudo-classes are
found in StyleSheet.css and are shown in Listing 5-25.

Listing 5-25. Pseudo-Classes for Validation Errors

input:invalid {
 background-color: #ffd800;
 border: 2px solid #f00;
}

input:required {
 background-color: #fff;
 border: 1px solid #ff6a00;
}

The invalid pseudo-class is applied to all invalid input fields, whereas the required pseudo-class is
applied to all input fields for which the required attribute is set.

That’s it! Figure 5-24 shows a sample run of the web form with a validation error.
Notice how the web form validates the Home Phone field upon form submission. Home Phone needs

to be in the form (123) 123-1234. However, because the last part of the entered telephone number contains
five digits rather than 4, the validation error is displayed.

www.it-ebooks.info

http://www.it-ebooks.info/

155

chapter 5 n working with forMs and controLs

Designing a User Registration Form
In this section, you develop an ASP.NET MVC application that displays a User Registration page. Unlike the
Employee Data Entry form you developed in the preceding section, the User Registration page performs
validations on the client side as well as the server side. The client-side validations are performed using
HTML5 features you learned about in this chapter, and the server-side validations use data annotation
attributes. Further, the client-side validations are handled using the invalid event so that validation
messages (client as well as server) are displayed in a consistent way. Figure 5-25 shows the User
Registration page.

Figure 5-24. Employee Data Entry form with a validation error

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 5 n working with forMs and controLs

156

This page has the following validations and features:

•	 The Display Name, Email Address, Password, Confirm Password, and Legal Age
fields must be completed.

•	 Duplicate display names and e-mail addresses aren’t allowed.

•	 The e-mail address should be in the proper format.

•	 The Password and Confirm Password values must match.

•	 The blog URL must be in the proper format.

•	 Legal Age must be between 18 and 100.

•	 The Profile text area should have spell-check turned on.

•	 The Display Name, Email Address, Password, Blog/Website, and Profile fields have a
minimum length and a maximum length.

All the features except the last are implemented through HTML5. The last set of validations is
implemented on the server.

Figure 5-25. User Registration page

www.it-ebooks.info

http://www.it-ebooks.info/

157

chapter 5 n working with forMs and controLs

Entity Framework Data Model and Data Annotations
The example page stores user information in a SQL server table named Users. An Entity Framework data
model is used to add user data in the Users table. Figure 5-26 shows the User model class.

Figure 5-26. User model class

To perform the server-side validations, you use data annotation attributes. Instead of decorating the
User model class with the data annotations, it’s a recommended practice to use a metadata class. A
metadata class is a class that contains the data annotations for various properties of the main class. The
metadata class is then associated with the main data model class. The advantage of using a metadata class
is that it isolates validation-specific metadata in a separate class. This way, even if the User model class is
regenerated for some reason, the data annotations won’t be lost. The metadata class is shown in Listing
5-26.

Listing 5-26. UserMetadata Class

public class UserMetadata
{
 [Required]
 [StringLength(50,MinimumLength=3)]
 [DisplayName("Display Name")]
 public string DisplayName { get; set; }

 [Required]
 [StringLength(250, MinimumLength = 10)]
 [DisplayName("Email Address")]
 public string Email { get; set; }

 [Required]

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 5 n working with forMs and controLs

158

 [StringLength(20, MinimumLength = 6)]
 public string Password { get; set; }

 [StringLength(50, MinimumLength = 10)]
 [DisplayName("Blog / Website")]
 public string BlogUrl { get; set; }

 [StringLength(500,ErrorMessage = "Bio size out of permissible limits.")]
 [DisplayName("Profile")]
 public string Bio { get; set; }

 [Required]
 [DisplayName("Legal Age")]
 public string Age { get; set; }

 [Required]
 [DisplayName("Yearly Income")]
 public string Income { get; set; }
}

[MetadataType(typeof(UserMetadata))]
public partial class User
{
}

As you can see, the UserMetadata class contains property definitions matching the User model class.
The properties are then decorated with data annotation attributes such as [Required], [StringLength],
and [DisplayName]. As you might have guessed, the [Required] attribute ensures that a property value is
set. The [StringLength] attribute lets you specify minimum and maximum lengths for a string property.
The [DisplayName] attribute is used to specify friendlier names for the properties. These names are used in
the server-side error messages instead of the actual property names.

The UserMetadata class is a standalone class. To link it with the User model class, you need to create a
User partial class and decorate it with [MetadataType] attribute.

n Note Data annotation attributes do a great job of implementing common validation criteria at the model level.
ASP.NET validation mechanisms then use this information to provide the user with visual feedback about validation
errors. A detailed discussion of data annotation attributes is beyond the scope of this book.

User Controller
The user registration application has a single controller (User) that contains two variations of Index()
action methods. These action methods are shown in Listing 5-27.

Listing 5-27. Index Action Methods of the User Controller

public ActionResult Index()
{
 return View();
}

www.it-ebooks.info

http://www.it-ebooks.info/

159

chapter 5 n working with forMs and controLs

[HttpPost]
public ActionResult Index(User user)
{
 if (ModelState.IsValid)
 {
 UserDbEntities db = new UserDbEntities();
 db.Users.AddObject(user);
 db.SaveChanges();
 return View("Success");
 }
 else
 {
 return View("Index", user);
 }
}

The Index() action methods are straightforward. The second Index() action method accepts a User
instance and adds it to the database. Notice the use of the ModelState.IsValid property, which returns
true only if the data model (User object) meets all the validation criteria. If user registration is successful,
the Success view is rendered. Otherwise Index view is displayed with validation errors.

The User controller also contains two action methods that are invoked from jQuery code. These
methods check for duplicate display names and e-mail addresses and return true if a duplicate is found.
Listing 5-28 shows these action methods.

Listing 5-28. Checking Duplicate Display Names and E-mail Addresses

[HttpPost]
public JsonResult IsDuplicateEmail(string email)
{
 UserDbEntities db = new UserDbEntities();
 var data = from item in db.Users
 where item.Email == email
 select item;
 bool flag=false;
 if (data.Count() > 0)
 {
 flag = true;
 }
 return Json(flag);
}

[HttpPost]
public JsonResult IsDuplicateDisplayName(string displayname)
{
 UserDbEntities db = new UserDbEntities();
 var data = from item in db.Users
 where item.DisplayName == displayname
 select item;
 bool flag = false;
 if (data.Count() > 0)
 {

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 5 n working with forMs and controLs

160

 flag = true;
 }
 return Json(flag);
}

The IsDuplicateEmail() method accepts an e-mail address to be verified and returns true if it already
exists in the database. Similarly, IsDuplicateDisplayName() accepts a display name and returns true if it
already exists. Notice that both of these methods return true or false after wrapping the value as a
JsonResult object.

Displaying the User Registration Form in an MVC View
The User Registration form is rendered using MVC HTML helpers. The Index view that displays the form is
strongly typed with the User class. Listing 5-29 shows the form’s markup. Note that to save space, table
markup tags as well as jQuery code have been omitted and are indicated with ellipses.

Listing 5-29. Using HTML Helpers to Render the User Registration Form

<%@ Page Language="C#" Inherits="System.Web.Mvc.ViewPage
 <SampleAppMVC.Models.User>" %>
...
 <% using (Html.BeginForm("Index","User","POST")) { %>
 <%= Html.LabelFor(model => model.DisplayName)%>
...
 <%= Html.TextBoxFor(model=>model.DisplayName,
 new {required="required"})%>
 <%= Html.ValidationMessageFor(model=>model.DisplayName,"*")%>
...
 <%= Html.LabelFor(model=>model.Email)%>
...
 <%= Html.TextBoxFor(model=>model.Email,
 new {required="required",type="email"})%>
 <%= Html.ValidationMessageFor(model=>model.Email,"*")%>
...
 <%= Html.LabelFor(model=>model.Password)%>
...
 <%= Html.PasswordFor(model=>model.Password,new {required="required"})%>
 <%= Html.ValidationMessageFor(model=>model.Password,"*")%>
...
 <%= Html.Label("Confirm password")%>
...
 <%= Html.Password("ConfirmPassword", "",new {required="required"})%>
 <%= Html.ValidationMessage("ConfirmPassword","*")%>
...
 <%= Html.LabelFor(model=>model.BlogUrl)%>
...
 <%= Html.TextBoxFor(model=>model.BlogUrl, new {type="url"})%>
 <%= Html.ValidationMessageFor(model=>model.BlogUrl,"*")%>
...
 <%= Html.LabelFor(model=>model.Age)%>
...

www.it-ebooks.info

http://www.it-ebooks.info/

161

chapter 5 n working with forMs and controLs

 <%= Html.TextBoxFor(model=>model.Age,
 new {required="required",type="number",min="18",max="100"})%>
 <%= Html.ValidationMessageFor(model=>model.Age,"*")%>
...
 <%= Html.LabelFor(model=>model.Income)%>
...
 <%= Html.TextBoxFor(model=>model.Income,
 new {type="range",min="2",max="20",step="4"})%>
 <%= Html.ValidationMessageFor(model=>model.Income,"*")%>
...
 <%= Html.LabelFor(model=>model.Bio)%>
...
 <%= Html.TextAreaFor(model=>model.Bio,
 new {spellcheck="true",rows="3",cols="30"})%>
 <%= Html.ValidationMessageFor(model=>model.Bio,"*")%>
...
 <input id="btnSubmit" type="submit" value="Submit" />
...
 <%= Html.ValidationSummary() %>
 <div id="divErr" class="validation-summary-errors"></div>
...
<%}%>

Listing 5-29 uses many HTML helper methods such as LabelFor, TextBoxFor, ValidationMessageFor,
and ValidationSummary. Notice how HTML5 input types and attributes are specified in the second
parameter of the HTML helper methods. The validation conditions listed at the beginning of this section
are implemented using HTML5 attributes. The server-side validation errors are displayed by the
ValidationSummary() method. The <div> element below the validation summary is intended to display
HTML5 validation messages.

Checking for Duplicate Display Names and E-mail Addresses
To ensure that the entered display name and e-mail address don’t already exist in the database, you need
to call the IsDuplicateDisplayName() and IsDuplicateEmail() methods from the jQuery code, discussed
earlier. You call them using the jQuery $.ajax() method when the Submit button is clicked. Listing 5-30
shows how to check for duplicate display names.

Listing 5-30. Checking for Duplicate Display Names

if ($("#DisplayName").val() != "") {
 var data = '{ "displayname" : "' + $("#DisplayName").val() + '"}';
 $.ajax({
 url: '/User/IsDuplicateDisplayName',
 type: 'post',
 data: data,
 dataType: 'json',
 contentType: "application/json; charset=utf-8",
 async: false,
 success: function (result) {
 var displayname = $("#DisplayName").get(0);
 if (result == true) {

www.it-ebooks.info

http://www.it-ebooks.info/

162

chapter 5 n working with forMs and controLs

 $("#divErr").append("Duplicate Display Name!
");
 }
 },
 error: function (err) { alert(err.status + " - " + err.statusText); }
 });
}

This code calls the IsDuplicateDisplayName() action method with the help of $.ajax(). Notice how
the displayname parameter is passed as a JSON object. The success method receives a value of true if a
display name already exists in the database. In that case, an error message is appended to divErr using the
append() method.

Although it isn’t discussed here, checking for duplicate e-mails works along similar lines.

Comparing the Password and Confirm Password Fields
Ensuring that the values entered in the Password and Confirm Password text boxes are the same is simple.
Listing 5-31 shows how it’s done.

Listing 5-31. Validating Password and Confirm Password

if ($("#Password").val() != $("#ConfirmPassword").val()) {
 $("#divErr").append("Password mismatch!
");
}

The values entered in the text boxes are compared, and if there is any mismatch, an error message is
added to the divErr element.

Handling the invalid Event and Displaying Validation Errors
To display other validation errors from input types (required field, min/max overflow, e-mail and URL
patterns, and so on), you handle the invalid event on all the <input> elements. Listing 5-32 shows how this
is done.

Listing 5-32. Handling the invalid Event

$(document).ready(function () {
 $("input").bind("invalid",OnInvalid);
 ...
})

function OnInvalid(evt) {
 var input = evt.target;
 var validity = input.validity;
 if (!validity.valid) {
 if (input.id == "DisplayName")
 { $("#divErr").append("Please enter Display Name!
"); }
 if (input.id == "Email")
 { $("#divErr").append("Please enter Email Address!
"); }
 if (input.id == "Password")
 { $("#divErr").append("Please enter Password!
"); }
 if (input.id == "ConfirmPassword")

www.it-ebooks.info

http://www.it-ebooks.info/

163

chapter 5 n working with forMs and controLs

 { $("#divErr").append("Please enter Password Again!
"); }
 if (input.id == "Age") {
 if (validity.valueMissing) {
 $("#divErr").append("Please specify age!
");
 }
 if (validity.rangeUnderflow) {
 $("#divErr").append("Age must be between 18 and 100!
");
 }
 if (validity.rangeOverflow) {
 $("#divErr").append("Age must be between 18 and 100!
");
 }
 }
 }
 evt.preventDefault();
}

The code from Listing 5-32 binds the OnInvalid() function as an event handler of the invalid event.
Look at the OnInvalid() function carefully. It uses the ValidityState object. First, the code checks whether
a control contains a valid value using the valid property. If a control contains an invalid value, its id
property is checked and an error message is appended in divErr. Notice the validation for Legal Age: it
uses the valueMissing, rangeUnderflow, and rangeOverflow properties.

That completes the User Registration page. Figure 5-27 shows how the page responds to HTML5
validations.

Figure 5-27. HTML5 validations displayed by the invalid event handler

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 5 n working with forMs and controLs

164

Figure 5-28 shows how validation errors are displayed for server-side errors.

Figure 5-28. Server-side validations from data annotations and MVC

The error message shown in Figure 5-28 comes from the User data model class. Because this
validation happens on the server, the Password field loses its value.

Summary
Most ASP.NET applications are data driven and involve forms in some way or another. HTML5 provides an
array of features that enhance forms, the most noticeable being the new input types. Input types such as
email, url, tel, and date allow you to enforce validations on the data being entered without needing any
client-side script. Additionally, features such as required fields, pattern matching, autofocus, placeholders,
and spell-check help you to develop rich forms with minimal markup and script.

Of course, you may still need to rely on server-side validation or custom validation as a fallback
mechanism to deal with browsers that don’t support HTML5. HTML5 also lets you customize validation
messages and the way those messages are displayed.

HTML5 form features can be used by Web Forms as well as MVC applications. The TextMode property
of the TextBox server control supports various HTML5 input types. MVC applications can use raw <input>
tags or use HTML helpers to render HTML5 input types.

www.it-ebooks.info

http://www.it-ebooks.info/

165

n n n

chapter 6

Using History API and
Custom Data Attributes

Whenever you navigate between various pages of your web application, the browser maintains a history of
the pages you visited. You can navigate through the history using the browser’s back and forward buttons.
The same history is accessible to the JavaScript code through the History object. Although the History
object isn’t a new addition in HTML5, there are some enhancements to it that are worth knowing about.
Especially in Ajax-driven applications, the new History API can prove to be very useful. An Ajax-driven
application often changes the web page content without generating unique URLs for each different piece
of content rendered in the page. This not only causes mismatches between the bookmarked URLs and the
actual content but also makes content difficult for search engines to track. The History API provides a
small object model as compared to other HTML5 APIs, but the functionality offered is often desirable
when web applications need to synchronize the URL shown in the browser address bar and the page
content.

After discussing the problems with traditional history management and how HTML5 addresses them,
the chapter moves on to discuss another useful topic: custom data attributes, or data-* attributes. The
standard HTML attributes are predefined by the HTML specifications and normally affect the behavior or
appearance of an element in some way. The custom data attributes are developer-defined attributes that
can be used to store metadata information about an element. This information can then be accessed using
the client-side script.

The key topics discussed in this chapter include the following:

•	 The History object and HTML5 enhancements to it

•	 Scenarios when traditional history tracking can be problematic

•	 Using the HTML5 History API to add history entries

•	 Defining custom data attributes (data-*) on HTML elements

•	 Accessing custom data attributes using plain JavaScript and jQuery

The History Object
Whenever you navigate through pages of a web application, the browser tracks your visits in the form of
the History object. You can access the History object via the history property of the DOM window object.
In HTML 4.01 the History object has just one property and three methods, described in Table 6-1.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 6 n using history api and custoM data attributes

166

Table 6-1. Properties and Methods of the History Object

Property / Method Description
length Indicates the number of entries in the History object.

back() Takes a user to the previous URL in the history.

forward() Takes a user to the next URL in the history.

go() Takes a user to a specified URL in the history. The go() method takes a single
parameter that can be either a number or a URL string. If the parameter is a
number, the user is taken to a URL at that specific position with respect to the
current page. A negative number indicates movement backward through the
history, and a positive number indicates movement forward through the history .
For example, window.history.go(-2) takes the user two pages backward relative to
the current page. If the parameter is a URL, the user is navigated to that URL.

Developers don’t use the History object very often because users most commonly use the browser’s
back and forward buttons to navigate the history. However, if required for some reason, the properties and
methods described in Table 6-1 are available to programmatically navigate to history entries.

To demonstrate the use of the History object, let’s develop a simple Slide Show application in ASP.NET
MVC. The Slide Show application displays images of some carpentry tools along with their descriptions, as
shown in Figure 6-1.

Figure 6-1. User interface of the Slide Show application

www.it-ebooks.info

http://www.it-ebooks.info/

167

chapter 6 n using history api and custoM data attributes

As you can see in Figure 6-1, there are four buttons at the bottom of the page arranged in two rows.
The top row of buttons (Previous and Next) cause the page to be submitted back to the server and then
display either the previous slide or the next slide depending on the button clicked. The bottom row of
buttons (< and >) use the History object to navigate backward or forward, respectively. The URL pattern
used by the Slide Show application is like this:

http://localhost:1065/home/index/2

In this URL, home is the MVC controller name, index is the action method that handles the server-side
logic of fetching a slide, and 2 is the ID of the slide being displayed. For different slides, the ID at the end of
the URL is different.

n Note You may wonder why you’re building a complete database-driven application just to illustrate couple of
methods of the History object. You’re starting with this project to demonstrate the use of History object in a non-
Ajax application; then you move it to Ajax to see the problems that occur, and finally you see how the History
object’s new functionality can resolve that problem.

The Slide Show application stores its data in a SQL Server database named ImageDb. The ImageDb
database contains a single table—Images—that stores image information such as title, description, and
image URL. Figure 6-2 shows an Entity Framework data model for the Images table.

As shown in Figure 6-2, the Image data model class has four properties: Id, Title, Description, and
ImageUrl. The Id column is the primary key for the Images table.

The main Controller class of the application (HomeController) contains just one action method—
Index(). The skeleton of the Index() action method is shown in Listing 6-1. The code that retrieves the
image information from the database is omitted for the sake of simplicity.

Listing 6-1. Index() Action Method

public ActionResult Index(int id=0)
{
 ImageDbEntities db = new ImageDbEntities();
 IQueryable<Image> data = null;
 ...
 ...
 return View(data.SingleOrDefault());
}

Figure 6-2. Entity Framework data model for the Images table

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 6 n using history api and custoM data attributes

168

The Index() action method accepts an optional integer parameter that indicates an image ID. If this
parameter is supplied, an image with that particular ID is displayed; otherwise the first image from the
Images table is displayed.

The Previous and Next buttons submit the form to the server and display the previous or next slide. In
order to navigate through the browser history, you need to handle the click event of the < and > buttons
and call the back() and forward() methods of the History object, respectively. Listing 6-2 shows how this is
done.

Listing 6-2. Calling the back() and forward() Methods

$(document).ready(function () {
 $("#btnBackward").click(function () {
 window.history.back();
 });
 $("#btnForward").click(function () {
 window.history.forward();
 });
});

As you can see, the click event handler of the btnBackward button calls the History object’s back()
method, whereas the click event handler of the btnForward button calls History object’s forward()
method.

To see how the back() and forward() methods work, run the application and navigate through the
slides using the Previous and Next buttons. Then try clicking < and >. The browser address bar reflects the
appropriate slide URL depending on the button clicked. You can also verify the behavior using the
browser’s back and forward navigation buttons.

Understanding the History-Tracking Problem
The History object discussed in the preceding section essentially tracks the URLs you visit through the
browser address bar, hyperlinks, navigation menus, or code. For example, every time you click the Previous
or Next button in the Slide Show application, the browser address bar reflects a different URL. This is
possible because you submit the entire form to the server. In other words, for every slide, you have a
unique URL. However, there can be situations where such a one-to-one mapping between the content of a
page and its URL can’t be maintained. Consider the following cases:

•	 You’re developing a Web Forms based application, and the logic of displaying
different slides is embedded in the server-side click event handlers of the Previous
and Next buttons. You’re using a single web form to display all the slides. An Image
control on the page is updated with the new picture whenever the Previous or Next
button is clicked. As a result, all the slides have the same URL. In such a case, there
isn’t a one-to-one match between slides and URLs.

•	 If you use Ajax techniques such as the jQuery $.Ajax() method or ASP.NET Ajax
extensions, the complete page isn’t submitted to the server. Instead, you make an
Ajax call to the server and retrieve the next or previous slide. In this case, too, there
isn’t a unique URL for each slide.

In both cases, the browser history records a single URL for all the slides shown in a page. Because a
single URL represents all the slides, the user can’t bookmark a specific slide. A user may bookmark the
page, thinking that a bookmark is being added for a specific slide; but if the bookmark is accessed, it
always shows the first slide because the URL is common to all the slides. To understand this problem more

www.it-ebooks.info

http://www.it-ebooks.info/

169

chapter 6 n using history api and custoM data attributes

clearly, let’s convert the Slide Show application developed previously into an Ajax-driven application so
that slides are loaded using the jQuery $.Ajax() method without refreshing the entire page.

The Ajax version of the Slide Show application consists of a controller named AjaxHomeController that
contains the Index() action method, as shown in Listing 6-3.

Listing 6-3. Index() Action Method of AjaxHomeController

public ActionResult Index()
{
 ImageDbEntities db = new ImageDbEntities();
 IQueryable<Image> data = null;
 ...
 return View(data.SingleOrDefault());
}

This time, the Index() action method doesn’t accept an image ID as a parameter because Index() is
invoked only once when the index view is rendered initially. After that, various slides are fetched via Ajax
calls. The Index() action method simply fetches the first image from the Images table and passes it to the
index view.

Now the Previous and Next buttons don’t submit the form to the server. Instead, clicking these buttons
triggers Ajax calls to the server to fetch and display slides.

To display the previous or next slide, you need to handle the click event handlers of the Previous and
Next buttons. These event handlers are shown in Listing 6-4.

Listing 6-4. Client-Side click Event Handlers of the Previous and Next Buttons

$("#prev").click(function () {
 $.Ajax({
 type: "POST",
 url: "/AjaxHome/GetImage",
 data:'{ id : "' + $("#id").val() + '", direction : "P"}',
 contentType: "application/json; charset=utf-8",
 dataType: "json",
 success: OnSuccess,
 error: OnError
 })
});

$("#next").click(function () {
 $.Ajax({
 type: "POST",
 url: "/AjaxHome/GetImage",
 data: '{ id : "' + $("#id").val() + '", direction : "N"}',
 contentType: "application/json; charset=utf-8",
 dataType: "json",
 success: OnSuccess,
 error: OnError
 })
});

These click event handlers of the Previous and Next buttons use the jQuery $.Ajax() method to
invoke the GetImage() action method. The GetImage() method expects two parameters: the ID of the

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 6 n using history api and custoM data attributes

170

current image and a direction (N=Next or P=Previous). GetImage() then returns an Image object
representing the previous or next image. The OnSuccess() function simply reads the Image object
properties and displays a slide accordingly. Listing 6-5 shows the OnSuccess() function.

Listing 6-5. OnSuccess() Function

function OnSuccess(image) {
 $("#id").val(image.Id);
 $("#title").html(image.Title);
 $("#desc").html(image.Description);
 $("#img").attr("src",image.ImageUrl);
 $("#divMsg").html("History Length : " + history.length);
}

OnSuccess() receives an Image object returned from the GetImage() action method. Title, ImageUrl,
and Description are then assigned to appropriate HTML elements. A <div> element also shows the
number of entries in the History object to prove the point.

The skeleton of the GetImage() action method that is invoked using the $.Ajax() calls is shown in
Listing 6-6.

Listing 6-6. GetImage() Action Method

public JsonResult GetImage(int id,string direction)
{
 ImageDbEntities db = new ImageDbEntities();
 IQueryable<Image> data = null;
 ...
 return Json(data.SingleOrDefault());
}

GetImage() accepts an ID of an image and a direction. It then finds the next or previous image in the
specified direction. If no direction is specified, it fetches an image with the specified ID. The return type of
GetImage() is JsonResult. The Json() method converts an Image object into its JSON equivalent and
returns it to the caller.

Now, to understand the problem discussed at the beginning of this section, run the new Slide Show
application and navigate through the slides using the Previous and Next buttons. Figure 6-3 shows slide 2
displayed in the browser, but the address bar still shows the base URL.

Because you’re fetching slides using $.Ajax(), the browser address bar doesn’t change the URL. Once
you’re finished, try clicking the < and > buttons. Even if you navigate through all the slides, you aren’t taken
forward or backward because the browser has just one entry in the History object: http://
localhost:1065/Ajaxhome.

Figure 6-3. Changing the current slide doesn’t change the URL in the address bar.

www.it-ebooks.info

http://www.it-ebooks.info/

171

chapter 6 n using history api and custoM data attributes

Effect on Browser Bookmarks
The history-tracking problem described in the preceding section also has an undue effect on bookmarks.
Suppose a user is on slide 3, which displays information about a spanner. The user may want to re-read the
same information later and so adds a bookmark to this page with the impression that slide 3 has been
bookmarked. However, because there are no unique URLs for different slides, the browser adds a
bookmark to the base URL (http://localhost:1065/Ajaxhome). The next time the user accesses this
bookmark, the first slide is shown instead of the third because the server sends the first slide from the
database for the URL.

Effect on Search Engine Listings
The Slide Show application also suffers from one drawback that no webmaster wants to have in their
applications. Because there is just one URL for all the slides being displayed, search engines capture and
list only this URL. If each slide was assigned its own unique URL (as in the non-Ajax version you developed
earlier), then search engines could list all the slides in their databases. To allow users to search for and find
unique information, you need a unique URL for each independent piece of information—in this case,
each individual slide. The Ajax version of the Slide Show application in its current form violates this
recommendation, affecting the application’s search engine listings.

The Solution
Now that you understand the problems faced by Ajax-driven applications in terms of tracking history,
bookmarks, and search engine listings, let’s discuss the possible solutions. The basic cause of all the
problem areas discussed earlier is that there are no unique URLs to identify independent pieces of
content. To solve these issues, you need to create unique URLs for each such piece of information. As far as
Ajax applications are concerned, there are two ways to generate such URLs:

•	 Using hash fragment in the URLs

•	 Using the new HTML5 History API

Using Hash Fragment in URLs
This technique involves generating URLs by adding a hash fragment at the end of the base URL. For
example, consider the following URL:

http://localhost/slideshow.aspx#slideid=3

In this address, a slide ID is appended after the base URL using #. The browser ignores all information
after # and doesn’t send a separate request to the server. However, this is still a unique URL. You can
append any number of key-value pairs in the # fragment, just like a query string; the only restriction is the
size limit of the query string. Once you’ve created a hash-fragmented URL, you can navigate to it using
standard navigation techniques (clicking a hyperlink or programmatically calling window.location.href,
for example). You then need to write JavaScript code to read the hash fragment data and display the page
content accordingly.

Although hash-fragmented URLs appear to solve the problem, they introduce problems of their own:

•	 Processing hash fragments often becomes too complex as the amount of data you
want to pass increases. Some JavaScript libraries do the job for you, but over all the
code tends to become tricky with hash-fragmented URLs.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 6 n using history api and custoM data attributes

172

•	 The URL becomes too complex and is rarely easy to remember. Although most web
applications don’t expect you to remember individual page URLs (they have
navigation menus), in certain cases easy-to-remember URLs work great. Consider,
for example, a social-networking application such as Facebook. Facebook offers
shorter profile URLs that are much easier to remember than traditional profile URLs
that have a complex ID in the query string.

•	 If you use hash-fragmented URLs, your processing logic may become tied to the
hash-fragment parameters. If you add, remove, or change these parameters, you
may also need to update your code due to the changes.

•	 In spite of the fact that hash-fragmented URLs are widely used in Ajax-driven web
applications, search engines may treat them differently. For example, Google
expects hash-fragmented URL data to begin with #! (a hash mark followed by an
exclamation point). Once you do that, your application is considered Ajax crawlable.

n Note ASP.NET Ajax extensions use the hash-fragment technique to generate URLs for multiple Ajax requests.
The ScriptManager server control makes it easy for you to generate and handle hash-fragmented URLs through
its EnableHistory property.

HTML5 History API
HTML5 comes to the rescue when it comes to creating different URLs for individual Ajax requests. Using
the HTML5 History API, you can add entries to the browser history programmatically. These
programmatically added URL entries need not exist physically on the server. When you navigate to an
entry added via the History API, the browser raises an event to give you chance to synchronize the URL
and the page content. By handling this event, you can fetch relevant content from the server and render it
on the page. If you use the HTML5 History API, there is no need to use hash-fragmented URLs—you can
avoid all the associated complexity. If a user bookmarks such a programmatically added URL and later
navigates to it, the request is sent to the server as a fresh request, and you need to handle it on the server.

Understanding the History API
Earlier in this chapter, you learned about the History object (see Table 6-1). The HTML5 History API
essentially adds two methods and one event to the traditional History object. These new methods and
event are listed in Table 6-2.

Table 6-2. New Methods and Event of the History Object

Method / Event Description
pushState() Adds an entry to the browser session history with the given state, title, and URL.

replaceState() Updates a current entry in the browser’s session history with new details. You can use
the replaceState() method if the data associated with a history entry changes.

popstate A popstate event is raised by the window object when the current history entry changes.
If the history entry was created by pushState or replaceState, the popstate event’s
state property contains a copy of the history state object.

www.it-ebooks.info

http://www.it-ebooks.info/

173

chapter 6 n using history api and custoM data attributes

To understand how you can use the new History API, you can modify the Ajax version of the Slide
Show (MVC) application developed earlier. Recollect that the Slide Show application uses the jQuery
$.Ajax() method to make Ajax requests to the server-side GetImage() action method and retrieve slides.
Also recall that the browser address bar shows the same base application URL even if different slides are
being shown to the user. Just for the sake of easy understanding, the Slide Show application’s OnSuccess()
function is given again in Listing 6-7.

Listing 6-7. OnSuccess() Function Without the HTML5 History API

function OnSuccess(image) {
 $("#id").val(image.Id);
 $("#title").html(image.Title);
 $("#desc").html(image.Description);
 $("#img").attr("src",image.ImageUrl);
 $("#divMsg").html("History Length : " + history.length);
}

n Note For your convenience, the source code download contains three versions of the Slide Show MVC
application. The controller names are HomeController, AjaxHomeController, and HTML5HomeController,
respectively. While trying this example, you can modify AjaxHomeController and its index view instead of starting
from scratch.

To use the HTML5 History API, you need to modify the OnSuccess() function as shown in Listing 6-8.

Listing 6-8. OnSuccess() Function Using the pushState() Method to Add a History Entry

function OnSuccess(image) {
 $("#id").val(image.Id);
 $("#title").html(image.Title);
 $("#desc").html(image.Description);
 $("#img").attr("src", image.ImageUrl);

 history.pushState(image, image.Title, "/HTML5Home/index/" + image.Id);
 $("#divMsg").html("History Length : " + history.length);
}

The OnSuccess() function receives a JSON object returned by the GetImage() action method that
represents an image from the database. After assigning image details such as Title, Description, and
ImageUrl, you add an entry to the History object using the pushState() method. The first parameter of
pushState() is state information that you wish to access inside the popstate event handler. Here, the code
passes the entire Image JSON object as the state information. The second parameter is a title that you’re
assigning to this history entry. This title is typically displayed in the browser’s history menu or dialog. The
third parameter is a URL that is to be associated with this history entry. The browser simply puts this URL
in the address bar without navigating to it. Also, the browser doesn’t check whether the URL really exists on
the server. It’s up to you to decide what that URL should be. The URL used by the Slide Show application is
in the form /index/<image_id>. Later you modify the Index() action method to take care of the image ID
passed.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 6 n using history api and custoM data attributes

174

Next, you need to handle the popstate event so that when you navigate to a history entry, you can
generate the slide as per the history state information. This way, you can synchronize the current slide with
the URL being shown in the address bar. Listing 6-9 shows how the popstate event is handled.

Listing 6-9. Handling the popstate Event

$(document).ready(function () {
 if (!Modernizr.history) {
 alert("This browser doesn't support the HTML5 History API!");
 }
 else {
 window.onpopstate = OnPopState;
 }
...
});

function OnPopState(evt) {
 $.Ajax({
 type: "POST",
 url: "/HTML5Home/GetImage",
 data: '{ id : "' + evt.state.Id + '", direction : "" }',
 contentType: "application/json; charset=utf-8",
 dataType: "json",
 success: function (image) {
 $("#id").val(image.Id);
 $("#title").html(image.Title);
 $("#desc").html(image.Description);
 $("#img").src = image.ImageUrl;
 },
 error: OnError
 })
}

Remember that the popstate event is raised for the window object, and hence you attach an event-
handler function OnPopState to the window. Notice how support for the History API is detected. The
OnPopState function makes an Ajax call to GetImage() using $.Ajax(). Recollect that while calling the
pushState() method, you specified the Image JSON object as the history state. The same Image JSON object
can be retrieved using the state property of the evt parameter. An ID of an image that is to be fetched is
then passed to the GetImage() method. Upon successful completion of the Ajax call, Image details such as
Title, Description, and ImageUrl are assigned to various <form> elements.

Finally, change the Index() action to take care of the optional image ID. Listing 6-10 shows the
modified version of Index().

Listing 6-10. Index() Action Method, Which Now Takes Care of the Optional Image ID

public ActionResult Index(int id=0)
{
 ImageDbEntities db = new ImageDbEntities();
 IQueryable<Image> data = null;
 if (id == 0)
 {
 data = (from item in db.Images

www.it-ebooks.info

http://www.it-ebooks.info/

175

chapter 6 n using history api and custoM data attributes

 orderby item.Id ascending
 select item).Take(1);
 }
 else
 {
 data = from item in db.Images
 where item.Id == id
 select item;
 }
 return View(data.SingleOrDefault());
}

The Index() action method now checks whether an image ID is passed. If so, it returns an image with
the specified ID; otherwise the first image from the database is returned.

Figure 6-4 shows a sample run of the modified Slide Show application. Notice how the browser
address bar is showing a unique URL for every slide.

The browser’s history menu or dialog also lists the URLs added via the pushState() method, as shown
in Figure 6-5.

Figure 6-4. HTML5 pushState() method changing the URL in the address bar

Figure 6-5. The browser’s history dialog showing URLs added via the pushState() method

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 6 n using history api and custoM data attributes

176

n Note Not all browsers use the title parameter of the pushState() method even if it’s mentioned. For
example, the history dialog shown in Figure 6-5 shows the title for all the URLs as “Slide Show – Hammer” even if
their location is different. Future versions of browsers may use this parameter.

Browser Support
Almost all of the leading browsers except Internet Explorer 9 support the HTML5 History API. As with any
other features of HTML5, it’s always a good practice to check whether a browser supports the History API
using Modernizr. The Slide Show application includes that check, as shown in Listing 6-11.

Listing 6-11. Checking Support for the History API Using Modernizr

if (!Modernizr.history) {
 alert("This browser doesn't support HTML5 History API!");
}

If a browser doesn’t support the HTML5 History API, your application may still work, but it doesn’t add
any entries in the history; neither does it change the address bar. If you wish to provide some sort of
fallback, you can resort to either of these two options:

•	 Use full-page refresh as you did in the first non-Ajax version of the Slide Show
application.

•	 Use the hash-fragmented URL technique discussed earlier.

Custom Data Attributes
HTML markup elements use attributes to specify configuration information. For example, the height and
width attributes of the <canvas> element govern the height and width of the canvas when displayed in the
browser. Most of the attributes of HTML elements affect the user interface or visual display of the element
under consideration.

While developing web applications, developers often find it necessary to emit metadata about an
element to the client browser. Such metadata doesn’t affect the display of the element directly.
Nevertheless, the metadata holds pieces of information relating to that element.

Consider an example where an HTML form is to be validated using custom JavaScript code. When the
JavaScript code validates the form fields, it’s supposed to display validation errors if any of the fields hold
invalid values. Often, the error message text is directly embedded in the JavaScript code. But what if the
error message text is to be changed after the deployment? Embedding the error message text directly in the
script calls for editing the script. This in turn amounts to changing the application’s code-base. In such
situations, it’s helpful if the error message text is stored separately from the web pages (say, in a database
table). At runtime, the error messages can be retrieved from the database and emitted to the client. These
emitted messages form the metadata of the HTML elements. If any change is required in the error
messages, you change the database entries, and the application begins using the new values from the next
run.

Prior to HTML5, there wasn’t a standard to deal with such metadata information. HTML5 introduces
custom data attributes that can be used to define metadata about elements.

www.it-ebooks.info

http://www.it-ebooks.info/

177

chapter 6 n using history api and custoM data attributes

Overview of Custom Data Attributes
The HTML5 custom data attributes are special attributes that take the following form:

data-<name>="value"

Custom data attributes always begin with data- followed by a developer-defined name. For example,
for the custom validation scenario discussed earlier, you can create a custom data attribute named data-
errormessage.

The developer-defined name can contain a hyphen (-). For example, data-customer-id and data-
customer-name are valid custom data attributes. Custom data attributes are also referred as data-*
attributes due to the naming convention they follow. A data-* attribute can be assigned a value just like
any other HTML attribute. ASP.NET uses data-* attributes extensively to provide unobstructive validation
in web forms and MVC applications.

n Note Unobstructive validation is a technique implemented by ASP.NET that uses data annotation attributes and
jQuery. Under this scheme, a data model is decorated with data-annotation attributes that perform validations on the
data-model property values. At runtime, ASP.NET emits data-* attributes based on these data-annotation attributes.
The client-side validations are performed with the help of these data-* attributes and jQuery.

Unlike standard HTML attributes, data-* attributes don’t affect the visual look and feel of the element.
In fact, the browser doesn’t use them automatically for any purpose. You need to programmatically access
them and execute the intended logic on them. An HTML element can have any number of data-*
attributes defined on it.

Although you can use data-* attributes for any custom requirement, you should avoid using them if
the same purpose can be accomplished with a standard HTML attribute. For example, suppose you wish
to display a tooltip for an element when the user hovers the mouse pointer on it. The tooltip changes
based on programmatic conditions. In this case, it’s better to use the HTML title attribute rather than
create a new data-* attribute.

Listing 6-12 shows some sample HTML markup that uses custom data attributes.

Listing 6-12. Using Custom Data Attributes

<table border="1" cellpadding="3">
 <tr id='emp1' data-employeeid='1' data-title='Sales Representative'>
 <td>Nancy</td>
 <td>Davolio</td>
 </tr>
 <tr id='emp2' data-employeeid='2' data-title='Vice President, Sales'>
 <td>Andrew</td>
 <td>Fuller</td>
 </tr>
 ...
</table>

This listing shows an HTML table containing employee data. Each table row contains the name of the
employee and additionally has two custom data attributes: data-employeeid and data-title. The data-
employeeid attribute stores the employee’s EmployeeID, and the data-title attribute stores the employee’s
job title.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 6 n using history api and custoM data attributes

178

Accessing Custom Data Attributes Using JavaScript
Now that you know what custom data attributes are, let’s see how to access them in JavaScript code.
Consider the JavaScript code shown in Listing 6-13, which illustrates how you can access the data-*
attributes used in Listing 6-12 using JavaScript code.

Listing 6-13. Accessing data-* Attributes in JavaScript Code

var emp = document.getElementById('emp1');
alert('Employee ID : ' + emp.getAttribute('data-employeeid'));
alert('Title : ' + emp.getAttribute('data-title'));

emp.setAttribute('data-employeeid', '100');
emp.setAttribute('data-title', 'Senior Manager');
alert('New Employee ID : ' + emp.getAttribute('data-employeeid'));
alert('New Title : ' + emp.getAttribute('data-title'));

This code uses the DOM document’s getElementById() method to grab a table row with ID of emp1. It
then retrieves the values of the data-employeeid and data-title custom data attributes using the table
DOM element’s getAttribute() method. The values are displayed in an alert box. Further, the code
changes the values of data-employeeid and data-title using the setAttribute() method. The changed
values are also displayed in an alert box.

Although the technique of getting and setting data-* attributes from Listing 6-13 works as expected,
HTML5 offers a technique exclusively designed for accessing data-* attributes. HTML5 data-* attributes
are made available to your code through the dataset property of the underlying DOM element. Listing
6-14 shows how to use the dataset property to access data-* attributes.

Listing 6-14. Using the dataset Property to Access data-* Attributes

var emp = document.getElementById('emp1');
alert('Employee ID : ' + emp.dataset.employeeid);
alert('Title : ' + emp.dataset.title);
emp.dataset.employeeid = '200';
emp.dataset.title = 'Junior Manager';
alert('New Employee ID : ' + emp.dataset.employeeid);
alert('New Title : ' + emp.dataset.title);

 To retrieve a data-* property value, you simply use the attribute name without data- against the
dataset property. Similarly, to set a data-* attribute value, you use its name against the dataset property
and assign a value to it.

If the custom data attribute contains a hyphen (-), you can access the attribute using camel casing.
For example, to access the data-employee-birthdate attribute, you use the following code:

alert('Employee ID : ' + emp.dataset.employeeBirthdate);

As you can see, the attribute name contains employee-birthdate. But when you access it using the
dataset property, it’s referred to as employeeBirthdate.

Accessing Custom Data Attributes Using jQuery
The jQuery library also supports accessing custom data attributes by providing methods exclusively to
work with data-* attributes. Listing 6-15 shows how you can use jQuery to retrieve and assign data-*
attribute values.

www.it-ebooks.info

http://www.it-ebooks.info/

179

chapter 6 n using history api and custoM data attributes

Listing 6-15. Using jQuery to Access data-* Attributes

alert('Employee ID : ' + $("#emp1").data('employeeid'));
alert('Title : ' + $("#emp1").data('title'));

$("#emp1").data('employeeid', '100');
$("#emp1").data('title', 'Senior Manager');

alert('Employee ID : ' + $("#emp1").data('employeeid'));
alert('Title : ' + $("#emp1").data('title'));

The jQuery library provides a data() method to access custom data attributes. To retrieve a data-*
attribute, you call data() on the underling DOM element and pass the attribute name without data-. For
example, Listing 6-15 uses data('employeeid') to retrieve the value of the data-employeeid attribute. To
assign a value to a data-* attribute, you call the data() method and supply the attribute name without
data- and its new value. If the custom data attribute contains hyphen (-) in the name (data-employee-
birthdate, for example) you can access it using the same camel-casing syntax, as shown here:

alert('Title : ' + $("#emp1").data('employeeBirthdate'));

If you call data() without any parameters, it returns an object of key-value pairs containing all the
data-* attributes of that element and their values. Listing 6-16 shows how to use this variation of the
data() method.

Listing 6-16. Using the data() Method to Obtain data-* Attributes as an Object

var obj = $("#emp1").data();
alert('Employee ID : ' + obj.employeeid);
alert('Title : ' + obj.title);
alert('Birth Date : ' + obj.employeeBirthdate);

As you can see, the data() method is called without any parameters. Doing so returns an object with
key-value pairs. To read a particular data-* attribute value, you can use the data-* attribute name without
data- against the object returned.

n Note You can also use the jQuery attr() method to get or set data-* attributes. However, it’s better to use
data() because it’s designed specifically to deal with custom data attributes.

Using Custom Data Attributes to Emit Validation Messages
Now that you know how to use custom data attributes, let’s develop a Web Forms application that
illustrates how you can implement the validation scenario discussed at the beginning of this section with
the help of data-* attributes. In this section, you develop a web form as shown in Figure 6-6.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 6 n using history api and custoM data attributes

180

The web form shows employee names from the Employees table of the Northwind database along with
their BirthDate and HireDate values. The user can select the respective dates and click the Save button.
Clicking Save triggers validation logic that checks whether the employee is at least 18 years old at the time
of hiring. If not, an error message is displayed to the user in an alert box. The validation message isn’t
embedded anywhere in the code; rather, it’s stored in a database table named ErrorMessages. The
ErrorMessages table has a simple structure, as shown in its Entity Framework data model (Figure 6-7).

Figure 6-6. Employee list web form

Figure 6-7. Data model for the ErrorMessages table

www.it-ebooks.info

http://www.it-ebooks.info/

181

chapter 6 n using history api and custoM data attributes

As you can see, the ErrorMessages table contains three columns: Id, ErrorCode, and ErrorMessageText.
The ErrorCode column contains a short code for an error (such as INVALIDDATE), and the ErrorMessageText
column holds the descriptive error message (for example, “The Hire Date must be later than Birth Date”).
Listing 6-17 shows the markup for the ItemTemplate of the Repeater server control that renders the
employee list.

Listing 6-17. Web Form Markup That Shows the Employee List

<ItemTemplate>
 <tr id='<%# Eval("EmployeeID","emp{0}") %>'
 data-employeeid='<%# Eval("EmployeeID") %>'>
 <td><%# Eval("FirstName") %> <%# Eval("LastName") %></td>
 <td><asp:TextBox ID="txtBirthDate" runat="server" TextMode="Date"
 Text='<%# Eval("BirthDate") %>'
 data-error-invaliddate='<%# GetValidationMessage("INVALIDDATE") %>'>
 </asp:TextBox></td>
 <td><asp:TextBox ID="txtHireDate" runat="server" TextMode="Date"
 Text='<%# Eval("HireDate") %>'
 data-error-invaliddate='<%# GetValidationMessage("INVALIDDATE") %>'>
 </asp:TextBox></td>
 <td><input type="button" value="Save"/></td>
 </tr>
</ItemTemplate>

This markup consists of two TextBox server controls that display the BirthDate and HireDate column
values, respectively. The TextMode property of these text boxes is set to Date so that a date-picker is
displayed to select the dates. Each text box has a custom data attribute named data-error-invaliddate.
The value of this attribute comes from the GetValidationMessage() function. GetValidationMessage()
picks up the ErrorMessageText from the ErrorMessages table based on the ErrorCode passed:

public string GetValidationMessage(string errorCode)
{
 ValidationDbEntities db = new ValidationDbEntities();

 var data = from item in db.ErrorMessages
 where item.ErrorCode == errorCode
 select item.ErrorMessageText;
 return data.SingleOrDefault();
}

The jQuery code that performs the validation and displays the validation error, if any, resides in the
Save button’s click event handler. This code is shown in Listing 6-18.

Listing 6-18. Validating the Age of an Employee

$("input[value='Save']").click(function () {
 var birthDateTxtbox = $(this).closest('tr').children().eq(1).children().eq(0);
 var hireDateTxtbox = $(this).closest('tr').children().eq(2).children().eq(0);
 var birthDate = ToDate($(birthDateTxtbox).val());
 var hireDate = ToDate($(hireDateTxtbox).val());
 birthDate.setFullYear(birthDate.getFullYear() + 18);

 if ((hireDate.getTime() - birthDate.getTime()) < 0) {

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 6 n using history api and custoM data attributes

182

 alert($(birthDateTxtbox).data('errorInvaliddate'));
 return;
 }

 //make $.Ajax() request to update the database
 alert('Data saved!');
});

The Save button’s click event handler begins by grabbing a reference to the BirthDate and HireDate
input fields. The closest() method returns the row that holds the input fields and the Save button. The
children() method returns all the child elements of the table row. The eq() method then returns a table
cell at the specified index. Because the input fields are inside the table column, another call to the
children() and eq() methods is necessary to grab the respective input fields.

The input fields hold the date value in yyyy-MM-dd format. These dates are converted into JavaScript
date objects using a custom function ToDate(). The ToDate() function looks like this:

function ToDate(input) {
 var parts = input.match(/(\d+)/g);
 return new Date(parts[0], parts[1] - 1, parts[2]);
}

ToDate() should be familiar, because you used it in Chapter 5. It essentially parses the supplied input
value and returns a JavaScript date object representing that value.

Next, the code checks the difference between the HireDate and BirthDate to determine if the
employee is at least 18 years old at the time of hiring. If not, an error message as specified in the data-
error-invaliddate custom data attribute is displayed to the user in an alert box. The jQuery data()
method is used to retrieve the value of the data-error-invaliddate attribute.

Although the code doesn’t actually save the changed data to the server, you can add that functionality
if the age validation succeeds. In Listing 6-18, a success message is displayed after the age check is
successful.

Summary
The HTML5 History API is a relatively small area of improvement, but it comes in handy in certain
scenarios. In particular, modern web applications rely on Ajax techniques extensively to render page
content without refreshing the entire page. At the same time, they need to take care of search engine
optimization and the user experience. The new HTML5 History API allows you to add entries in the history
programmatically. This way, you can also change the URL shown in the browser’s address bar. When you
navigate through the history, the History API gives you a chance to synchronize the page content with the
URL being navigated to. The HTML5 History API not only provides a standard way of dealing with history
entries but also takes away the complexity otherwise involved in the implementation.

Custom data attributes (data-*) allow you to embed metadata about an HTML element. They aren’t
processed by the browser and don’t directly affect an element’s behavior. You can use a DOM element’s
dataset property or the jQuery data() method to access data-* attributes.

Although the History API and custom data attributes let you deal with session history and metadata
respectively, there is also a frequent need to store and retrieve session data. Traditionally, cookies have
been used to store such data on the client side. The next chapter examines what is known as web storage—
the ability to store and retrieve data locally on the client side.

www.it-ebooks.info

http://www.it-ebooks.info/

183

n n n

chapter 7

Storing Data in Web Storage

Most of the web sites developed today deal with data in one form or another. Naturally, this application
data needs some sort of storage mechanism. As far as the server is concerned, there are sophisticated
database engines such as SQL Server. However, storing data on the client side can be tricky. Traditionally,
developers used cookies to persist data on the client side, but cookies suffer from their own limitations. To
provide a streamlined data-storage mechanism at the client side, HTML5 provides web storage. This
chapter examines what web storage is along with situations where it can be used. Specifically, you learn
the following:

•	 What is web storage?

•	 Flavors of web storage

•	 Storing items in, retrieving them from, and removing them from web storage

•	 Storing non-string data in web storage

•	 Passing data from web storage to the server for further processing

Overview of Web Storage
The term web storage refers to HTML5’s client-side data-storage mechanism. Web storage allows you to
store data on the client side as key-value pairs. The W3C recommended a web storage size limit of 5MB per
origin (see the section “Security Considerations for Web Storage” to learn more about origins). However,
individual browsers may slightly deviate from this limit. For example, IE8 allows web storage of up to
10MB.

Although both web storage and cookies store data on the client side, they work differently. Cookies are
passed between client and server with each and every request from a given web site. On the other hand,
web storage is never passed to the server automatically. If you need to transmit data from web storage to
the server-side code, you must resort to a programmatic approach such as jQuery calling server-side code
or a hidden form field. Additionally, unlike cookies, you can’t set an expiration time for web storage. You
either need to write code to delete stale items or count on the user to delete the stale items using an option
in the browser.

Web storage comes in two flavors: session storage and local storage. These two types are exposed as
sessionStorage and localStorage attributes of the window object, respectively. As you might have guessed,
session storage is persisted as long as the current browser (or its tab) instance is running. The moment you
close the browser instance (or tab), the data is removed. If you load the web site again later, it can’t access

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 7 n storing data in web storage

184

any of the previously stored data. Session storage is suitable for a single transaction. Local storage, unlike
session storage, stores data across multiple instances of the browser and also beyond the current session.

In summary, web storage is good choice if

•	 You need to store data exceeding the size limits of cookie-based storage.

•	 You don’t need to pass data to and from the server with every request.

•	 You don’t need to set any specific expiration time for the data.

However, web storage may not be a good choice if

•	 You wish to store a huge amount of data.

•	 Your data can’t be easily stored as key-value pairs (binary data or BLOBS, for
example).

•	 Data to be stored is sensitive.

Session Storage and Local Storage Objects
As mentioned earlier, sessionStorage and localStorage objects store data as key-value pairs. Both of these
objects have similar properties and methods. Table 7-1 lists them for your quick reference.

Table 7-1. Properties and Methods of sessionStorage and localStorage

Property / Method Description
setItem() Adds a key-value pair to a web storage object. If the key already exists, its value is

changed.

getItem() Retrieves the value of a specified key from a web storage object.

removeItem() Removes a specified key and the value associated with it from a web storage object.

clear() Removes all the key-value pairs from the web storage object.

key() Takes a zero-based index and returns key name at that index.

length Returns the total number of key-value pairs from the web storage object.

remainingSpace Returns the amount of storage space (in bytes) still available for storing data. This
property is currently supported only by IE.

Now that you have some idea about session storage and local storage, let’s try these properties and
methods in a Web Forms application.

n Note You can also test the sessionStorage and localStorage objects using plain HTML pages, but in that
case you must host them in Internet Information Services (IIS). Unless your pages are part of a web site, the browser
can’t determine their originating domain and thus can’t allocate storage space to them. You learn about these
security restrictions later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

185

chapter 7 n storing data in web storage

Using the sessionStorage and localStorage Objects
In this section, you create the simple web form shown in Figure 7-1.

The web form allows you to store key-value pairs in the localStorage object. It consists of two text
boxes in which the user can enter a key and a value, respectively. Clicking the Store Data button stores a
key and its value in the localStorage object. A list of all the keys and their values is shown in the bottom
table. Clicking the Clear Data button removes all the entries from the localStorage. Listing 7-1 shows how
the click event handlers of both buttons deal with the localStorage object.

Listing 7-1. Using the localStorage Object

var storage = window.localStorage;

$(document).ready(function () {
 if (!Modernizr.localstorage) {
 alert("This browser doesn't support HTML5 Local Storage!");
 }
 $("#store").click(OnStoreClick);
 $("#clear").click(OnClearClick);
});

Figure 7-1. Simple web form using the localStorage object

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 7 n storing data in web storage

186

function OnStoreClick(event) {
 var key = $("#keyName").val();
 var value = $("#keyValue").val();
 storage.setItem(key, value);
 $("#tblItems").empty();
 for (var i = 0; i < storage.length; i++)
 {
 $("#tblItems").append("<tr><td>" + storage.key(i) + " = " +
 storage.getItem(storage.key(i)) + "</td></tr>");
 }
}

function OnClearClick(event) {
 storage.clear();
 $("#tblItems").empty();
}

This code first stores a reference to the localStorage object in a variable: storage. This way, you don’t
always need to use window.localStorage syntax to call methods of the localStorage object. Additionally, if
you decide to test sessionStorage instead of localStorage, you can just change this one line of code, and
the rest of the code automatically uses sessionStorage object. Notice how support for localStorage is
checked using Modernizr. If you wish to check support for sessionStorage, you can use the Modernizr.
sessionstorage property instead.

The jQuery ready function wires the click events of the two buttons (Store Data and Clear Data) with
event-handler functions: OnStoreClick() and OnClearClick().

The OnStoreClick() event-handler function stores a key-value pair in the storage object using the
setItem() method of the localStorage object. It then iterates through all the keys. With every iteration, the
code uses key() and getItem() to retrieve a key and its value. The key-value pair is then added to the
tblItems table.

The OnClearClick() event-handler function simply removes all the items from the store using clear()
method.

Storing Numbers, Dates, and Objects
Although the localStorage and sessionStorage objects allow you to store data, they suffer from a
limitation as far as the data type of items being stored is concerned: all the data is stored as string. Even if
you add values with numeric or date data types, they’re still stored as plain strings. This is important
because when you read the data back, you may need to convert it into an appropriate data type. In still
more complex scenarios, you may want to store objects in web storage. Obviously, because web storage
natively supports only string data to be stored, these types of conversions are your responsibility.

Consider the piece of code shown in Listing 7-2.

Listing 7-2. Storing Numbers in localStorage

$(document).ready(function () {
 var storage = window.localStorage;
 storage["number1"] = 10;
 storage["number2"] = 20;
 var sum1 = storage["number1"] + storage["number2"];
 var sum2 = Number(storage["number1"]) + Number(storage["number2"]);

www.it-ebooks.info

http://www.it-ebooks.info/

187

chapter 7 n storing data in web storage

 alert("Without conversion Sum = " + sum1 + "\r\n" +
 "With conversion Sum = " + sum2);
});

As you can see, two numbers are stored in localStorage with the keys number1 and number2,
respectively. Notice that this time, instead of using setItem() and getItem(), the code uses a familiar
dictionary-access syntax to store the items. The sum1 variable stores the sum of the values of these two keys
without performing any conversion, whereas sum2 stores their sum by first converting them to numbers
using the Number() function. An alert box displays the values of sum1 and sum2, as shown in Figure 7-2.

Figure 7-2. Adding numeric values after conversion

Figure 7-2 confirms that localStorage stores data in plain-text format and you need to convert it to an
appropriate data format before using it in further processing.

Storing date values is similar to storing numbers in that you need to convert date strings into
JavaScript Date objects. Listing 7-3 shows how this can be done.

Listing 7-3. Storing Dates in localStorage

$(document).ready(function () {
 var storage = window.localStorage;
 storage["date"] = new Date(2012,5,15);
 var date1 = storage["date"];
 try{
 alert("Without conversion Year = " + date1.getFullYear());
 }
 catch(e){
 alert("Data is not of date type!");
 }
 var date2 = new Date(storage["date"]));
 try {
 alert("With conversion Year = " + date2.getFullYear());
 }
 catch (e) {

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 7 n storing data in web storage

188

 alert("Data is not of date type!");
 }
});

This code stores a date in localStorage. It then tries to access the year part of the date without
performing any conversion. This results in an error, as indicated by the alert box. The second attempt
parses the stored string into a Date object and then outputs its year. As you might have already guessed,
the second attempt gives correct results.

In Listing 7-3, the date is stored in the localStorage object using the default JavaScript format (for
example, Thu Mar 01 2012 00:00:00 GMT+0530 [India Standard Time]). In many cases, you may be using an
input field as a date picker (you can do that in by setting the type attribute to date). The date picker returns
dates in yyyy-MM-dd format. This format is also safe to store directly in localStorage because it can be
easily parsed back into a JavaScript Date object later.

Storing objects sounds complex at first, but luckily most browsers support a handy way to convert
objects into strings and vice versa. As far as JavaScript is concerned, objects are represented in JSON
format; using the JSON.stringify() and JSON.parse() methods, you can easily convert a JSON object into
a string and parse its string representation back into an object. Listing 7-4 shows how to do this
conversion.

Listing 7-4. Converting JSON Objects

$(document).ready(function () {
 var storage = window.localStorage;
 var object1 = { "Name": "Tom", "Age": 50 };
 storage["object"] = JSON.stringify(object1);
 var object2 = JSON.parse(storage["object"]);
 alert(object2.Name + " (" + object2.Age + " years)");
});

This code defines a JSON object with two properties: Name and Age. While storing the JSON object into
localStorage, the JSON.stringify() method converts the JSON object into its string representation. While
retrieving the data from localStorage, the JSON.parse() method reconstructs the object. The alert box
then correctly outputs the Name and Age properties (Figure 7-3).

Figure 7-3. Dealing with JSON objects

www.it-ebooks.info

http://www.it-ebooks.info/

189

chapter 7 n storing data in web storage

The JSON object used in this example contains the Name value Tom and the Age value 50. The resulting
alert box displays these values to the user.

Session Storage and Local Storage Events
The sessionStorage and localStorage objects support a storage event that is raised whenever the
underlying storage area changes. You should be aware of two things while dealing with this event. First, the
storage event is raised on the window object. Second, for most browsers except IE, the storage event is fired
on every browser instance (or tab) except the one that changed the storage object. In IE, the storage event
is raised for all instances (or tabs) of the browser. So, if Example1.aspx is loaded in three tabs Tab1, Tab2,
and Tab3, and Tab1 changes the web storage, Tab2 and Tab3 receive the storage event. In IE, Tab2 and Tab3
as well as Tab1 receive the storage event.

The storage event handler receives event information as a StorageEvent object. The properties of
StorageEvent are shown in Table 7-2.

Table 7-2. Event Parameters of the storage Event

Parameter Description
key Represents the key of an item that is being added to the storage

oldValue Old value of the key being changed (if an existing key is being changed)

newValue New value being assigned to a key

url URL of the page that is accessing the storage area

storageArea Reference to the storage area: localStorage or sessionStorage

Just to check how the storage event works, modify the example shown in Figure 7-1 as shown in
Listing 7-5.

Listing 7-5. Handling the storage Event

$(document).ready(function () {
 ...
 window.addEventListener('storage', OnStorage, false);
 ...
});

function OnStorage (event) {
 alert("Storage event fired for key : " + event.key + " in page " + event.url);
 alert("Old Value - New Value : " + event.oldValue + " - " + event.newValue);
}

Notice how the storage event handler is attached using the window object’s addEventListener()
method. The OnStorage() function uses various properties of the event parameter and displays them in a
message box. To test the storage event, open the same web form in two Firefox tabs. Switch to the first tab,
and add a key. You should see an alert box on the other tab as shown in Figure 7-4.

As you can see, adding a key to the first tab informs the user that the storage event has been raised for
the second tab and the key name is key1.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 7 n storing data in web storage

190

Clearing Web Storage Manually
If you add key-value pairs to localStorage and then close the browser without clearing the storage area,
the data is preserved on the disk. As mentioned earlier, unlike cookies, you can’t set a specific expiration
date and time for local storage. One way to clear the localStorage data is to programmatically call the
removeItem() method for each item or call the clear() method. Alternatively, you can manually delete the
localStorage data using browser dialogs. For example, Figure 7-5 shows the Clear All History dialog in
Firefox.

Figure 7-4. The storage event is raised when a key is added.

Figure 7-5. Clearing local storage manually

www.it-ebooks.info

http://www.it-ebooks.info/

191

chapter 7 n storing data in web storage

Make sure you select the Cookies check box and click the Clear Now button. In addition to cookies,
this also deletes localStorage data.

Passing Data from Web Storage to the Server
Unlike cookies, web storage data isn’t passed between the client and server with each request. If you wish
to send web storage data to the server, you must devise a programmatic way to do so. Some options to
accomplish this task are as follows:

•	 Hidden form field: In this approach, you first store data in localStorage or
sessionStorage objects as usual. At the time of submitting the form, you transfer
this web storage data into a hidden form field and then submit the form. The server-
side code can then read this hidden field and process the data further.

•	 Ajax calls: Using this approach you make an Ajax call to the server and pass the web
storage data to the server. The server-side code then processes the data further. In a
Web Forms application, the Ajax call can be made to a web method, a web service,
or a Windows Communication Foundation (WCF) service. In an ASP.NET MVC
application, the Ajax call can be made to an action method.

In the example discussed in the next section, you use jQuery to call controller action methods.

An Example of Using Local Storage in a Survey Form
This section presents a more realistic example than the previous one that uses all the information about
localStorage discussed so far. You develop a simple survey form that captures user feedback. As you may
be aware, filling out a survey may not be a priority for end users while they’re using your web site. They
may begin completing the survey form and then navigate to some other part of the web site that interests
them more. They may even close the browser and come back to your web site later. In such scenarios, it
would be nice to persist the survey data locally as the user is entering it. Later, when the user comes
back, you can reload the persisted data and save the user time. The survey application is developed using
ASP.NET MVC, and its main view is shown in Figure 7-6.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 7 n storing data in web storage

192

As you can see, the survey form consists of two sections: User Info and Survey Questions. The User
Info section captures user details such as First Name, Last Name, and Email. The Survey Questions section
displays a list of survey questions and their answer choices. The survey questions as well as the choices are
fetched from a SQL Server database (SurveyDb). As users start filling out the survey form, their input is
stored in local storage. When they complete the survey and clicks the Submit Answers button, the user
details and survey answers are sent to the server using jQuery $.ajax() method and stored in a database.

The SurveyDb database contains four tables: Questions, Choices, Results, and Users. Their purpose is
listed in Table 7-3.

Figure 7-6. Survey form presented to users

www.it-ebooks.info

http://www.it-ebooks.info/

193

chapter 7 n storing data in web storage

Table 7-3. Database Tables Used by the Survey Application

Table Name Description
Questions Contains the survey questions. Every question has a unique QuestionID.

Choices Contains the answer choices for the survey questions. One question can have multiple
choices. Every choice has a unique ChoiceID.

Results Stores the survey answers as filled in by users.

Users Contains user information such as FirstName, LastName, and Email.

The actual data access happens via an Entity Framework data model, shown in Figure 7-7.

Figure 7-7. Entity Framework data model for SurveyDb database tables

To access the data residing in the SurveyDb database from the client side, you use jQuery code that
calls certain action methods. In all three action methods of the controller (HomeController) are called from
the jQuery code. They are GetQuestions(), GetChoices(), and SaveResults(). These action methods are
discussed when they’re used by the jQuery code.

When the view is loaded in the browser, a list of all the questions and their choices is displayed in the
browser. This task is accomplished in the jQuery ready() method. ready() also wires event handlers for the
buttons and the text boxes, as shown in Listing 7-6.

Listing 7-6. ready() Event Handler

var storage = window.localStorage;
$(document).ready(function () {

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 7 n storing data in web storage

194

 if (!Modernizr.localstorage) {
 alert("This browser doesn't support HTML5 Local Storage!");
 }
 $("#submit").click(SubmitData);
 $("#firstName").change(function () { storage["FirstName"] = $(this).val(); });
 $("#lastName").change(function () { storage["LastName"] = $(this).val(); });
 $("#email").change(function () { storage["Email"] = $(this).val(); });
 $("#firstName").val(storage["FirstName"]);
 $("#lastName").val(storage["LastName"]);
 $("#email").val(storage["Email"]);
 GetQuestions();
})

A reference to the localStorage object is stored in a global variable—storage—for the sake of
convenience. The click event of the Submit Answers button is wired to the SubmitData() function. The
change event handlers of the firstName, lastName, and email text boxes are also wired. These change event
handlers retrieve the text box value using the val() method and save it in localStorage. This way, as soon
as users begin typing in these text boxes, their values are automatically saved in localStorage. If a user is
revisiting the survey form and the firstName, lastName, and email values are already stored, then these
pieces are retrieved from localStorage and filled in the text boxes.

The GetQuestions() function is then invoked to fetch survey questions. GetQuestions() is shown in
Listing 7-7.

Listing 7-7. GetQuestions() Client-Side Function

function GetQuestions() {
 $.ajax({
 type: "POST",
 url: "/Home/GetQuestions",
 dataType: "json",
 contentType: "application/json; charset=utf-8",
 success: function (results) {
 for (var i = 0; i < results.length; i++) {
 $("#container").append("<div data-questions-questionid='" +
 results[i].QuestionID + "'>" +
 results[i].QuestionText + "</div>");
 $("div[data-questions-questionid]").addClass("paddedDiv");
 }
 GetChoices();
 },
 error: function (err) {
 alert(err.status + " - " + err.statusText);
 }
 })
}

The GetQuestions() function invokes the GetQuestions() action method using $.ajax(). The
GetQuestions() action method returns an array of question items. The success handler function iterates
through this array, and with each iteration, a <div> is dynamically added to the container. The
GetQuestions() action method is shown in Listing 7-8.

www.it-ebooks.info

http://www.it-ebooks.info/

195

chapter 7 n storing data in web storage

Listing 7-8. GetQuestions() Action Method

public JsonResult GetQuestions()
{
 SurveyDbEntities db = new SurveyDbEntities();
 var data = from item in db.Questions
 select item;
 return Json(data.ToArray());
}

The GetQuestions() action method selects all the question items from the Questions table and returns
them as an array. Because the return value is to be accessed in jQuery code, it’s converted into JSON format
using the Json() method and then returned as a JsonResult.

Notice the use of data-* attributes in Listing 7-7. As discussed in Chapter 6, the data-* attributes are
different than standard HTML attributes in that they’re developer defined and don’t directly affect the
element in any way. All data-* attributes begin with prefix data- followed by a developer-defined attribute
name. An element can have any number of data-* attributes, which you can access programmatically
using jQuery code.

The dynamically generated <div> element defines one data-* attribute named data-questions-
questionid. This attribute stores the QuestionID of a question from the Questions table. A sample
dynamically generated <div> element looks like this:
<div data-questions-questionid='1'>Which programming language do you use?</div>

The success handler function then calls the GetChoices() function to populate choices for each of the
questions. The GetChoices() function is shown in Listing 7-9.

Listing 7-9. GetChoices() Client-Side Function

function GetChoices() {
 $.ajax({
 type: "POST",
 url: "/Home/GetChoices",
 contentType: "application/json; charset=utf-8",
 dataType: "json",
 success: function(results){
 for (var i = 0; i < results.length; i++) {
 $("div[data-questions-questionid='" + results[i].QuestionID + "']").append(
 "
<input type='checkbox' data-choices-questionid='" +
 results[i].QuestionID +
 "' data-choices-choiceid='" + results[i].ChoiceID +
 "'/>" + results[i].ChoiceText + "");
 if (storage[results[i].ChoiceID] != null) {
 var choiceId = results[i].ChoiceID;
 $("input[data-choices-choiceid='" +
 choiceId + "']").attr('checked', 'checked');
 }
 }
 $("input[data-choices-questionid]").change(function (event) {
 var key = $(event.target).attr("data-choices-choiceid");
 if ($(event.target).is(':checked') == true) {
 storage[key] = $(event.target).attr("data-choices-questionid");
 }
 else {

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 7 n storing data in web storage

196

 storage.removeItem(key);
 }
 });
 },
 error: function (err) {
 alert(err.status + " - " + err.statusText);
 }
 })
}

The GetChoices() function invokes the GetChoices() action method using the $.ajax() method. The
GetChoices() action method returns an array of choice items. The success handler function iterates
through all the choice items returned, and with each iteration, a choice is added to a question by
dynamically generating a check box. You need to append all the choices belonging to a question inside
that question’s <div> element. Notice the jQuery selector that selects a <div> with data-questions-
questionid attribute equal to the QuestionID. This way, the check boxes for choices are added to the <div>
showing their question. Also notice how the code sets the data-choices-questionid and data-choices-
choiceid attributes of the <input> element for later use. These two attributes represent the QuestionID and
ChoiceID of a choice, respectively. A sample <div> with check boxes added looks like this:

<div data-questions-questionid='1'>Which programming language do you use?

 <input type='checkbox' data-choices-questionid='1' data-choices-choiceid='1'/>
 C#
 <input type='checkbox' data-choices-questionid='1' data-choices-choiceid='2'/>
 VB.NET
 <input type='checkbox' data-choices-questionid='1' data-choices-choiceid='3'/>
 PHP
</div>

After you add the check boxes, you determine their checked status from localStorage, and
accordingly they’re checked or kept unchecked. If a user toggles the choice selection, you need to
synchronize localStorage with the new selection. You do this in the change event handler of the
dynamically added check boxes. The change event handler essentially determines whether a check box is
checked (:checked selector), and an entry is added to or removed from the localStorage. When you add an
item in localStorage, a ChoiceID acts as a key and its QuestionID acts as a value.

The GetChoices() action method used by the GetChoices() function discussed earlier is shown in
Listing 7-10.

Listing 7-10. GetChoices() Method

public JsonResult GetChoices()
{
 SurveyDbEntities db = new SurveyDbEntities();
 var data = from item in db.Choices
 select item;
 return Json(data.ToArray());
}

The GetChoices() method is similar to the GetQuestions() method but returns all the choices from the
Choices table.

When a user fills out the survey form and clicks the Submit Answers button, the SubmitData() function
is called. This function in turn calls the SaveResults() action method using the jQuery $.ajax() method.
The code in Listing 7-11 shows how this is done.

www.it-ebooks.info

http://www.it-ebooks.info/

197

chapter 7 n storing data in web storage

Listing 7-11. SubmitData() Client-Side Function

function SubmitData(event) {
 var data = '';
 for (var i = 0; i < storage.length; i++) {
 var key = storage.key(i);
 var value = storage[key];
 var pair = '"' + key + '":"' + value + '"';
 data = data + pair + ",";
 }
 if (data.charAt(data.length - 1) == ',') {
 data = data.substring(0, data.length - 1)
 }
 data = '{' + data + '}';
 $.ajax({
 type: "POST",
 url: "/Home/SaveResults",
 contentType: "application/json; charset=utf-8",
 data: data,
 dataType: "json",
 success: function(results){
 alert('Results saved!');
 window.localStorage.clear();
 },
 error: function (err) {
 alert(err.status + " - " + err.statusText);
 }
 })
}

The SubmitData() function forms a JSON representation of all the key-value pairs from localStorage
by iterating through the keys. The function sends a JSON dictionary consisting of multiple question-choice
pairs to the server all at once, not one question-choice at a time. The server-side code then needs to
deserialize this JSON dictionary data into a .NET dictionary for further processing. To understand how
SubmitData() sends the data to the server, you need to know what the JSON key-value pairs look like.
Listing 7-12 shows some sample JSON data.

Listing 7-12. JSON Data Being Sent from the Client

{
 "FirstName":"Tom",
 "LastName":"Jerry",
 "Email":"tom@somedomain.com",
 "5":"2",
 "7":"3",
 "1":"1",
 "9":"3"
 }

As you can see, there are several keys in the JSON data being sent to the server. These keys are
described in Table 7-4.

www.it-ebooks.info

mailto:tom@somedomain.com
http://www.it-ebooks.info/

chapter 7 n storing data in web storage

198

Table 7-4. Keys Used in the JSON Dictionary

Key Value
FirstName A string value indicating the user’s first name

LastName A string value indicating the user’s last name

Email A string indicating the user’s e-mail address

<choice_id> <question_id> An integer indicating the QuestionID of the choice: for example,
localStorage["3"] = 1 where 3 is a ChoiceID and 1 is a QuestionID

Note that localStorage is a key-value collection, and each key needs to be unique. Each choice in the
Choices table has a unique ChoiceID. That is why you make ChoiceID the key and QuestionID the value. If
you did it the other way around, you couldn’t store multiple choices for a question—the latest ChoiceID
would overwrite the previously stored ChoiceID because the QuestionID for both would be the same.

Once SaveResults() returns successfully, all the data from localStorage is removed using the clear()
method. The SaveResults() action method that saves the survey results in the Results table is shown in
Listing 7-13.

Listing 7-13. SaveResults() Action Method

public JsonResult SaveResults()
{
 string jsonData = string.Empty;
 using (StreamReader sr = new StreamReader(Request.InputStream))
 {
 jsonData = sr.ReadToEnd();
 }
 Dictionary<string, string> data =
 JsonConvert.DeserializeObject<Dictionary<string, string>>(jsonData);

 SurveyDbEntities db = new SurveyDbEntities();

 User usr = new User();
 usr.FirstName = data["FirstName"];
 usr.LastName = data["LastName"];
 usr.Email = data["Email"];
 db.Users.AddObject(usr);
 db.SaveChanges();

 string userEmail = data["Email"];
 int usrId = (from item in db.Users
 where item.Email == userEmail
 select item.UserID).SingleOrDefault();

 data.Remove("FirstName");
 data.Remove("LastName");
 data.Remove("Email");

 foreach (string str in data.Keys)
 {
 int choiceId = int.Parse(str);

www.it-ebooks.info

http://www.it-ebooks.info/

199

chapter 7 n storing data in web storage

 int questionId = int.Parse(data[str]);
 Result result = new Result();
 result.QuestionID = questionId;
 result.ChoiceID = choiceId;
 result.UserID = usrId;
 db.Results.AddObject(result);
 }
 db.SaveChanges();
 return Json("success");
}

The SaveResults() method is bit lengthy and requires careful observation. In order to convert JSON
data passed from the client into a .NET dictionary, it uses the Json.NET library. Json.NET is a popular high-
performance JSON framework for .NET that offers flexible ways to convert between JSON and .NET types.
SaveResults() first reads the InputStream of the request into a string variable. It then uses the JsonConvert
class of the Json.NET library to convert the JSON string into a .NET dictionary. Because localStorage stores
all data as plain strings, the .NET dictionary uses string key and value data types
(Dictionary<string,string>).

n Note Json.NET is a powerful open source framework and offer many other features. In this example, however,
you need it only to convert a JSON dictionary to a .NET dictionary. Visit http://json.codeplex.com for more
details about Json.NET.

SaveResults() then adds the user information to the Users table. The user’s UserID is retrieved
because it’s also required while adding records to the Results table. The three keys—FirstName, LastName,
and Email—are removed after a record is added in the Users table so that only ChoiceID keys are left. This
way, you can simply run a for-each loop and add data to the Results table.

Figure 7-8 shows a sample successful run of the Survey application.

Figure 7-8. Sample run of the Survey application

www.it-ebooks.info

http://json.codeplex.com
http://www.it-ebooks.info/

chapter 7 n storing data in web storage

200

You can test the application by making some selections and closing the browser window without
saving the data. If you open the survey form again, it should show your earlier selections. You can then
submit the answers and check whether they’re saved in the SurveyDb database.

Passing Data as Hidden Form Field
In the Survey application that you just developed, data from the client side is passed to the server using the
jQuery $.ajax() method. This works nicely because you don’t submit the entire page to the server.
However, in many cases you may want a full-page postback to the server.

Suppose you’ve developed the Survey application as a non-Ajax application. Further assume that the
survey is split into three separate web pages like a wizard, such that each page displays a small subset of
the total questions. In this case, data stored in localStorage needs to be sent to the server when the final
wizard page is submitted. The application doesn’t use Ajax, so how can you pass web storage data to the
server? A simple way is to use a hidden form field. You can read key-value pairs from web storage, store
them in a hidden field, and then submit the page to the server for further processing.

Assuming the Submit Answers button on the survey form causes a full-page postback, you can handle
its click event and set a hidden form field using the client-side script shown in Listing 7-14.

Listing 7-14. Transferring localStorage Data into a Hidden Field

function OnPostback() {
 var data = '';
 for (var i = 0; i < storage.length; i++) {
 var key = storage.key(i);
 var value = storage[key];
 var pair = '"' + key + '":"' + value + '"';
 data = data + pair + ",";
 }
 if (data.charAt(data.length - 1) == ',') {
 data = data.substring(0, data.length - 1)
 }
 data = '{' + data + '}';
 $("#hiddenAnswers").val(data);
}

Listing 7-14 essentially generates the same JSON key-value pairs as in the previous case. This time,
however, the JSON data is assigned to a hidden field with ID hiddenAnswers. On the server side, an action
method handles the form postback. One such implementation is shown in Listing 7-15.

Listing 7-15. Handling the Postback on the Server

[HttpPost]
public ActionResult Index(FormCollection form)
{
 string jsonData = Request.Form["hiddenAnswers"];
 Dictionary<string, string> data =
 JsonConvert.DeserializeObject<Dictionary<string, string>>(jsonData);
 //save data here
 ...
 return Index();
}

www.it-ebooks.info

http://www.it-ebooks.info/

201

chapter 7 n storing data in web storage

As you can see, the Index() action method receives a FormCollection. The hidden field data is then
retrieved and converted into a .NET dictionary using the Json.NET library as before. Once you have the .
NET dictionary ready, you can easily store the survey results in the database just like the SaveResults()
action method discussed earlier.

Security Considerations for Web Storage
When you’re using web storage, it’s important to be aware of some security aspects. Web storage isn’t
intended to store sensitive, secret data. So, you should never store sensitive information such as
passwords, credit card numbers, Social Security numbers, and so on in web storage.

A browser allocates the same storage space to all the data that comes from the same origin. An origin
means a combination of the scheme/host/port of the web site you’re accessing. For example, http://www.
domain1.com and http://blog.domain1.com are treated as two different origins by web storage. Along the
same lines, http://www.domain1.com and https://www.domain1.com are also considered two different web
sites. This, way malicious code can’t trick web storage into storing dangerously huge amount of data. This
same origin policy also prevents malicious scripts from using random subdomains to store unrestricted
amounts of data.

As mentioned, web storage allocates storage spaces on a per-origin basis. However, someone could
use DNS spoofing and pretend access was being attempted by an authentic domain. This way, the browser
might grant malicious code access to that domain’s storage area. To prevent such attacks, you can use
Secure Socket Layer (SSL). Once SSL is in place, users can rest assured that the site they’re visiting is from
the authentic domain, and the browser will allocate the same storage space to all pages originating from
that domain.

Summary
Web storage allows you to store data on the client machine. It doesn’t suffer from the limitations of cookies
and allows a reasonable amount of data to be stored on the client machine. The two objects
sessionStorage and localStorage store key-value pairs of string data. sessionStorage can store data only
for the current browser session, whereas localStorage can store data across browser sessions.

Web storage isn’t transmitted to the server automatically with each request. You need to devise a
programmatic approach such as Ajax calls or a hidden form fields to send web storage data to the server.

Web storage deals with data that is used in a live web application. The next chapter delves into
another feature—offline applications—that lets you work with your web applications offline.

www.it-ebooks.info

http://blog.domain1.com
http://www.domain1.com
https://www.domain1.com
http://www.it-ebooks.info/

203

n n n

chapter 8

Developing Offline Web Applications

Web applications are often looked on as wired applications that are connected to the network at all times.
This “always on” nature of web applications is one of the reasons for their popularity and rapid growth. In
today’s Internet age, when network connectivity isn’t a big deal, this characteristic of web applications
doesn’t pose a problem in most scenarios. However, sometimes you can’t guarantee network connectivity.
What should users of your application do then? Wouldn’t it be nice if they could use your web application
even in the absence of network connectivity? That is precisely what HTML5 offline web applications offer.

At first glance, you may find the concept of web applications functioning in a disconnected or stand-
alone fashion slightly odd; but once you understand the scenarios in which they can help, you’ll appreciate
this feature of HTML5. This chapter explains the concept of offline web applications as applicable to
HTML5. Specifically, you learn about the following:

•	 What offline web applications are, and when to use them

•	 The cache manifest file structure

•	 Creating and using a cache manifest in Web Forms and MVC applications

•	 Going online using Ajax techniques in situations where an offline application wants
to talk with the server

•	 Using the applicationCache object and related events

When to Use Offline Applications
Offline applications are best suited in situations where there is little or no communication between client
and server after the application files are downloaded at the client side. As the name suggests, offline
applications are web applications that don’t have live access to server-side resources such as databases
and server-side code. Not all applications are good to go as offline applications. Therefore it’s important to
understand when to use offline applications and when to avoid them. While deciding whether your web
application is a good candidate for going offline, you should consider these two basic questions:

•	 Does your application depend on live data?

•	 What impact will network downtime have on your web application and its users?

Suppose you’re building a module for a sports portal that displays live cricket scores. Obviously your
visitors will use this module to check the latest status of a cricket match. It doesn’t make sense for such a
module to go offline, because it relies on the latest data. The same can be said about web sites that provide

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 8 n deveLoping offLine web appLications

204

stock quote information. Such web applications aren’t good candidates to be implemented as offline
applications.

Now, consider an online game. Assume that once downloaded, this game runs in a browser and needs
no data from the server. The data used by the game is created and consumed on the client side. In such a
case, the application doesn’t depend on live data from the server and hence can be developed as an offline
application.

Another important consideration is network downtime. Consider a web application that is used by
sales executives. These sales executives are constantly travelling as part of their work and use the
application on their laptops or mobile devices through wireless Internet connectivity. It’s possible that they
may not have Internet connectivity at all times; for example, they may travel to a remote location that is
out of the coverage range of the wireless Internet service provider. Unavailability of network connectivity
can hamper their work, so it makes sense to develop an offline application. On the other hand, network
downtime may not make much difference to a web application used by operators for certain routine tasks,
so there is no need to make it available as an offline application.

n Note The term offline application doesn’t necessarily indicate that all of a web site’s pages work offline. A web
site can have some pages that require network access to function and other pages that work offline. Offline
application refers to the latter type of web pages.

HTTP Caching and Offline Applications
Before you delve into the details of offline applications, it’s worthwhile to understand that they aren’t same
as traditional HTTP caching. Caching web resources such as web pages, images, style sheets, and
JavaScript script files isn’t a new invention. Browsers have been using these standard HTTP caching
techniques for years. Whenever you access a web page, the browser downloads the page and its associated
resources, such as images and style sheets, and stores them in a cache. This cache is maintained on the
individual client machine. Browsers use this cache for the sake of efficiency and performance. Suppose, for
example, that you’re developing web pages that use the jQuery library. You refer to the jQuery library from
the Microsoft Ajax Content Delivery Network (CDN) in all your web pages. If the browser already has the
same version of the jQuery library in its cache, there is no need to download it again from the CDN. The
same is true for images and style sheets.

Most of the time, the browser uses traditional HTTP caching behind the scenes. If you wish to check
whether a browser has stored files in the local cache, you can test the behavior using the browser’s offline
mode. Almost all browsers provide an option to work offline. For example, Figure 8-1 shows Firefox’s Work
Offline menu option.

If you select this menu option, Firefox doesn’t fetch pages from the server. Instead, it uses pages from
the local cache if they already exist; otherwise it gives an error message.

The Work Offline menu option relies on the standard HTTP caching mentioned earlier. Usually you
don’t need to write any code on the server to enable this default behavior. If you wish to fine-tune or
prohibit this behavior, you can do so using cache-control headers or IIS Manager.

At first glance, traditional HTTP caching may resemble the offline application caching introduced by
HTML5. However, there are significant differences between them:

•	 Traditional HTTP caching doesn’t need any code or configuration from your side
unless you wish to alter the default browser behavior. On the other hand, HTML5
offline applications need certain explicit steps from your side.

www.it-ebooks.info

http://www.it-ebooks.info/

205

chapter 8 n deveLoping offLine web appLications

•	 Traditional HTTP caching can be fine-tuned using cache-control headers. HTML5
offline applications rely on a manifest file and always work in an offline fashion even
if network connectivity is available.

•	 Traditional HTTP caching is an implicit mechanism, and no thought is given to how
web pages should behave while the browser is in offline mode. HTML5 offline
applications are explicitly developed with requirements such as data storage and
network availability in mind.

Building an Offline Application
Offline applications essentially fetch server resources such as web pages, images, style sheets, and script
files and store them in the browser’s local cache. Once the files are on the local machine, there is no need
for network connectivity. Of course, later you may need to go online to synchronize local and server-side
data.

To develop an offline application, you need to follow these basic steps:

1. Create a cache manifest file.

2. Add references to the cache manifest file to all the web pages that are part of the
offline application.

3. Configure the web server so that it recognizes the cache manifest file extension.

4. In JavaScript code, periodically check whether network connectivity with the
server is available.

A cache manifest is a text file that lists all the file-based resources of an offline application. The
resources listed in a cache manifest file include files that are to be cached, files that are to be fetched over a
network rather than cached locally, and substitute files in case files can’t be cached for some reason. An
ASP.NET web application may contain many web pages out of which only a few are used as an offline

Figure 8-1. Working offline in Firefox

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 8 n deveLoping offLine web appLications

206

application. So, there is no one-to-one mapping between the ASP.NET application and the offline
application. One ASP.NET application may include multiple independent offline applications. Each such
offline application needs its own cache manifest. There is no rigid requirement for the cache manifest’s file
extension, but .appcache and .manifest are commonly used.

Simply creating a cache manifest file isn’t sufficient. All the web pages belonging to that offline
application should refer the cache manifest. This way, whenever a browser downloads a web page, it
knows that this page is part of an offline application. Additionally, the cache manifest tells the browser
what resources the page requires (images, script files, and so on) so that the browser can ensure
availability of those resources.

As mentioned, a cache manifest file can have any developer-defined extension. You need to inform IIS
about the file extension you’re using for your cache manifest file and associated MIME type. Without this
information, IIS may not send the cache manifest to the browser, and the browser can’t cache the required
files.

Although offline applications behave like stand-alone applications, at some point in their lifetime they
may need to interact with the web server. Suppose, for example, that you’ve developed a JavaScript-
intensive game as an offline application. This means the end user doesn’t need network connectivity while
playing the game. However, at the end, the game may need to go online to store the user’s score in an
online account or profile. In this case, you need to check whether a network connection is available and, if
so, perform the required data transfer. This step is, of course, optional and depends primarily on the
nature of the application.

The following sections examine in detail the steps you follow to build an offline application. You
develop a simple Web Forms–based offline application that uses the topics you’ve learn about. This offline
application displays a JavaScript-driven digital clock on a web page (see Figure 8-2). There is also a
provision to send the time shown on the clock to the server for further processing.

Figure 8-2. Clock offline application

www.it-ebooks.info

http://www.it-ebooks.info/

207

chapter 8 n deveLoping offLine web appLications

Creating a Cache Manifest
As mentioned earlier, a cache manifest is a text file that lists files to be cached. In this example, you use
.cachemanifest as the file extension and learn how to inform IIS about this extension.

The cache manifest file consists of a cache manifest declaration followed by one or more sections:
CACHE, NETWORK, and FALLBACK. The cache manifest declaration looks like this:
CACHE MANIFEST

All cache manifest files must begin with this line. Other than the CACHE section, the other sections are
optional and are discussed next.

n Note Cache manifest files are case sensitive. Be sure you key in the section names as well as file names
exactly as shown in the example code.

The CACHE Section of the Cache Manifest
The CACHE section of a cache manifest lists all the files that are to be cached on the client side. The files may
include web pages, images, style sheets, and JavaScript files. For example, the Clock application uses the
files listed in Table 8-1.

Table 8-1. Files Used in the Clock Application

File Name Description
Clock.aspx The main web form where the clock is displayed

StyleSheet.css The CSS file that includes styles being used in the Clock application

Scripts/jquery-1.7.2.min.js A jQuery library that is necessary for the Clock application to work

Images/HTML5.png An HTML5 logo that is displayed at the bottom of the Clock application

The files displayed in Table 8-1 are specified in the cache manifest as shown in Listing 8-1.

Listing 8-1. CACHE section of the Cache Manifest File

CACHE MANIFEST

CACHE:
Clock.aspx
Images/HTML5.png
StyleSheet.css
Scripts/jquery-1.7.2.min.js

Notice that the CACHE section name is followed by a colon (:) character. Files to be cached are listed
one per line.

CACHE is an implicit section. That means if you don’t explicitly specify CACHE, the files are assumed to
belong to the CACHE section. So, Listing 8-1 and Listing 8-2 are equivalent.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 8 n deveLoping offLine web appLications

208

Listing 8-2. Implicit CACHE Section

CACHE MANIFEST

Clock.aspx
Images/HTML5.png
StyleSheet.css
Scripts/jquery-1.7.2.min.js

The cache manifest file written so far conveys that the four files specified in the CACHE section are to be
downloaded to the local cache.

n Note: The Clock application is an ASP.NET Web Forms application; if you developed it as an MVC application,
then instead of Clock.aspx you would specify a controller action that renders the respective view (for example,
Home/Index).

The NETWORK Section of the Cache Manifest
The CACHE section specifies what files the browser should cache for offline usage. The NETWORK section does
exactly the opposite: it lists files that should not be cached. Suppose your application displays
advertisements in addition to page content. They most likely come from an ad engine that keeps track of
ad impressions and clicks. Obviously, such ads can’t be stored offline. If your offline application uses such
resources, they should be listed in the NETWORK section.

Listing 8-3 shows the Ads.js file listed in the NETWORK section.

Listing 8-3. NETWORK Section of the Cache Manifest File

CACHE MANIFEST

CACHE:
...

NETWORK:
Scripts/Ads.js

This way, Ads.js is never cached in an offline cache. Instead, it’s always accessed over the network.
In a big application, there may be many candidates for the NETWORK section. At times you may not even

know in advance that a resource needs to come over the network. In such cases, you can use the * wildcard
character to inform the browser that all files not listed in the CACHE section should be accessed over a
network. You use the * character like this:

NETWORK:
*

The NETWORK section is also useful when you’re working with resources (images, scripts, and so on) that
are hosted on a different server and referred to by your application. For example, you might be using
images and script files hosted by a CDN rather than including them in your application. If you don’t
include these external resources in the NETWORK section (either explicitly or by using the * wildcard), then,
strangely enough, your application won’t load them when you’re online.

www.it-ebooks.info

http://www.it-ebooks.info/

209

chapter 8 n deveLoping offLine web appLications

The FALLBACK Section of the Cache Manifest
The FALLBACK section of the cache manifest file specifies alternate files in case a resource can’t be cached or
can’t be accessed over a network. You can think of the FALLBACK section as an error-handling technique. If
the original resource is unavailable, you substitute some other resource. You can use the FALLBACK section
to provide substitute content or display an error message. For example, the Clock application uses the
FALLBACK section to display a generic error message (see Listing 8-4).

Listing 8-4. FALLBACK Section of the Cache Manifest File

CACHE MANIFEST

CACHE:
...

NETWORK:
...

FALLBACK:
/ ErrorPage.aspx

Listing 8-4 uses ErrorPage.aspx as a generic error page for all resources (/) that can’t be cached. Notice
the use of the / character: it indicates that for any resource that can’t be accessed, ErrorPage.aspx should
be displayed. The / and the error page are separated by whitespace.

Before you proceed to the next section, make sure you save the cache manifest file as Clock.
cachemanifest in the root folder of your web application.

Referring to the Cache Manifest in Web Forms and Views
Now that you’ve created the cache manifest for the Clock application, let’s see how to refer it in web forms
and views. Look at Listing 8-5.

Listing 8-5. Referring to a Cache Manifest in Clock.aspx

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Clock.aspx.cs"
 Inherits="BasicOfflineApp.WebForm1" %>

<!DOCTYPE html>
<html xmlns=”http://www.w3.org/1999/xhtml” manifest=”Clock.cachemanifest”>
<head runat="server">
 <link rel="stylesheet" type="text/css" href="StyleSheet.css" />
 <script type="text/javascript" src="Scripts/jquery-1.7.2.min.js"></script>
 <script type="text/javascript">
 ...
 </script>
</head>
<body>
 <script src="Scripts/Ads.js"></script>
 <form id="form1" runat="server">
 <div class="clock">
 <div id="date"></div>

www.it-ebooks.info

http://www.w3.org/1999/xhtml%E2%80%9D
http://www.it-ebooks.info/

chapter 8 n deveLoping offLine web appLications

210

 <div id="time">
 :
 :

 </div>
 </div>

 <center>
 <input id="Send" type="button" value="Send Time to Server" />

 </center>
 </form>
</body>
</html>

Notice the markup shown in bold. The <html> tag contains a manifest attribute that points to the
Clock.cachemanifest file. You need to add the manifest attribute in all the web forms (or MVC views) that
are part of the offline application.

Also notice that the <head> section contains references to StyleSheet.css and the jQuery library. There
is also a <script> block that contains the jQuery code responsible for displaying the clock (the code isn’t
shown in the listing for the sake of clarity). The <body> section uses Ads.js to display advertisements,
followed by markup to display the clock. Recollect that the CACHE section of the Clock.cachemanifest file
contains all these style sheet, script, and image files.

The remaining markup from the <body> section includes a few elements that render hours,
minutes, and seconds. The clock is displayed using the jQuery code shown in Listing 8-6.

Listing 8-6. jQuery Code that Displays the Clock

$(document).ready(function () {
 if (!Modernizr.applicationcache) {
 alert("This browser doesn't support HTML5 Offline Applications!");
 }
 var months = ["January", "February", "March", "April", "May", "June",
 "July", "August", "September", "October",
 "November", "December"];
 var days= ["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"]
 var today = new Date();
 today.setDate(today.getDate());
 $('#date').html(days[today.getDay()] + " " + today.getDate() + ' ' +
 months[today.getMonth()] + ' ' + today.getFullYear());

 setInterval(function () {
 var seconds = new Date().getSeconds();
 $("#sec").html((seconds < 10 ? "0" : "") + seconds);
 },1000);

 setInterval(function() {
 var minutes = new Date().getMinutes();
 $("#min").html((minutes < 10 ? "0" : "") + minutes);
 },1000);

www.it-ebooks.info

http://www.it-ebooks.info/

211

chapter 8 n deveLoping offLine web appLications

 setInterval(function() {
 var hours = new Date().getHours();
 $("#hours").html((hours < 10 ? "0" : "") + hours);
 }, 1000);
});

This code uses the setInterval() JavaScript function to update the time after every 1,000
milliseconds. The current date is also displayed at the top of the clock using the JavaScript Date object and
its methods. Notice how browser support for offline applications is detected using the Modernizr.
applicationcache property.

Configuring IIS to Recognize the Cache Manifest File
In order for an offline application to work as expected, the browser should be able to download the cache
manifest file successfully from the web server. It’s important that the web server (IIS) serve the cache
manifest with the extension you use (.cachemanifest in this case). Earlier it was mentioned that .manifest
and .appcache are commonly used file extensions for the cache manifest; be aware that .manifest is also
used by .NET ClickOnce deployment, and IIS may already have an entry for it (see Figure 8-3).

Considering this, you may want to use another file extension (such as .appcache or .cachemanifest) to
avoid confusion. Once you decide on a file extension, you need to add its MIME content type in IIS as
text/cache-manifest. This way, IIS serves the cache manifest file correctly to the requesting browser.

There is also an alternative to using IIS Manager: your web application’s web.config. You can configure
the cache manifest file extension using the mimeMap element of web.config. Listing 8-7 shows how to map
the .cachemanifest file extension to the MIME type text/cache-manifest.

Figure 8-3. MIME types configured in IIS

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 8 n deveLoping offLine web appLications

212

Listing 8-7. Mapping the MIME Type Using web.config

<system.webServer>
 <staticContent>
 <mimeMap fileExtension=".cachemanifest" mimeType="text/cache-manifest" />
 </staticContent>
</system.webServer>

The fileExtension attribute of the <mimeMap> element specifies the file extension of the cache manifest
file, and the mimeType attribute specifies the cache manifest’s MIME type.

Testing an Offline Application
Now that you’ve completed all the steps required to create an offline application, let’s test the Clock
application using Chrome. Assuming that you have the project opened in Visual Studio, press Ctrl+F5 to
run the application. Clock.aspx is loaded in the browser as shown in Figure 8-2 earlier. To ensure that the
application is really being served from the browser cache, open the Visual Studio development web server
(IIS Express) and stop the application (see Figure 8-4).

Now, refresh Clock.aspx. Ordinarily you would receive an error at this step because the web
application is stopped; but because the browser has cached the application locally, Clock.aspx is refreshed
from the cache.

Open another browser tab, type chrome://appcache-internals in the address bar, and press Enter. You
should see a page similar to that shown in Figure 8-5.

Figure 8-5 shows how Chrome displays details of offline applications. You can see all the files listed in
the cache manifest. You can also manually clear the cache by clicking Remove.

Figure 8-4. IIS Express list of applications

www.it-ebooks.info

http://www.it-ebooks.info/

213

chapter 8 n deveLoping offLine web appLications

n Note Different browsers have different ways to show details of offline applications. For example, Firefox shows
these details in the Tools Options Advanced Network dialog. Additionally, Firefox informs you that a web
application is requesting offline storage when the application is initially accessed.

Going Online Using Ajax
Although an offline application is disconnected from the server, during the lifetime of the application it
may need to go online and communicate with the server. Suppose you wish to save the current time
displayed in the Clock application in a database. You can do that only if a network connection is available.
A sure way to tell if a network connection is available is to make a request to the server and see if the
request is successful. The jQuery $.ajax() method can be used effectively for this purpose. Listing 8-8
shows how you can use $.ajax() to ping the server periodically.

Listing 8-8. Checking Whether a Network Connection Is Available Using $.ajax()

$(document).ready(function () {
 ...
 setTimeout(CheckOnline, 5000);
});

Figure 8-5. Chrome showing offline application details

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 8 n deveLoping offLine web appLications

214

function CheckOnline() {
 $.ajax({
 type: "POST",
 url: 'Clock.aspx/IsOnline',
 contentType: "application/json; charset=utf-8",
 dataType: "json",
 success: function (result) {
 if (result.d == true) {
 $("#status").html("You are Online!");
 setTimeout(CheckOnline, 5000);
 }
 },
 error: function () {
 $("#status").html("You are Offline!");
 setTimeout(CheckOnline, 5000);
 }
 });

This code shows a function—CheckOnline()—that makes an $.ajax() request to a web method
named IsOnline(). The IsOnline() web method returns a Boolean flag. If the $.ajax() method is able to
invoke IsOnline() successfully, it indicates that a network connection is available. The success method
then sets the content of a <div> to “You are Online!” If there is no network connectivity, the call to
IsOnline() fails, and the error function is called. The error function sets the content of the <div> to “You
are Offline!” You need to check for the online status periodically; hence the CheckOnline() function is
called every 5,000 milliseconds using the setTimeout() function.

The IsOnline() web method used by the $.ajax() call is shown in Listing 8-9.

Listing 8-9. IsOnline() Web Method

[WebMethod]
public static bool IsOnline()
{
 return true;
}

The IsOnline() method returns true to indicate that a network connection to the server is available.

Updating an Offline Application
Once a cache manifest file is served to the browser, the browser begins using the application files from the
cache. But you may need to change the web application after it has been cached. There are two
possibilities in such cases:

•	 You can add files to or remove them from the web application and make changes to
the cache manifest file.

•	 You can change one or more of the application files (their content or code) but not
change the cache manifest file.

When you begin using an offline application, normally the browser checks with the server to see
whether a cache manifest file is available that’s newer than the one that has been cached. If so, the browser
downloads the new cache manifest file and downloads the files as per that cache manifest. This browser

www.it-ebooks.info

http://www.it-ebooks.info/

215

chapter 8 n deveLoping offLine web appLications

behavior takes care of the first scenario listed because the timestamp of the modified cache manifest file is
different than that of the previously downloaded cache manifest.

However, the second scenario is slightly tricky. In that case, you aren’t changing the cache manifest
file: you’re changing the constituent files, and you expect the browser to use the new versions of those files.
Unfortunately, the browser doesn’t check the timestamp of each constituent file, and it keeps using the
cached versions of the files. To rectify the problem, you need to change the timestamp of the cache
manifest file residing on the server. There are different approaches to doing this:

•	 Whenever one or more constituent files change, run a utility that changes the
timestamp of the cache manifest file (you can easily develop such a utility using
System.IO classes).

•	 Open the cache manifest file and make a pseudo-change to it (say, add whitespace
and remove it; or cut the entire contents of the file, save the file, paste in the
contents, and save the file back to the disk) so it has a new timestamp.

•	 Maintain a version number in the cache manifest file, and change it whenever the
constituent files change.

Of these options, the last is simplest to implement. The other options are more suitable if you’re
planning to build an automated way to update the cache manifest file.

Suppose the Clock.aspx file listed in Clock.cachemanifest changes due to a code-level revision, and
you wish to use a version number as a way to change the cache manifest. You can do so as shown in Listing
8-10.

Listing 8-10. Cache Manifest with a Version Number

CACHE MANIFEST
version 2.0

CACHE:
...

NETWORK:
...

FALLBACK:
...

Notice the bold code. The cache manifest file treats content following a # character as a comment. You
specify a version number in the comment. Whenever you change any of the constituent files, you need to
change the version number and save the modified cache manifest file. This way, the timestamp of the
cache manifest is also changed, and the browser downloads the cache manifest and its constituent files
again.

n Note There can be some differences in the way cache manifest files are checked for a new version. If for some
reason (HTTP caching, for example) the cache manifest file is cached on the client side, the browser won’t check
whether the file has been modified. If so, the user needs to manually remove the offline application files as
mentioned earlier.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 8 n deveLoping offLine web appLications

216

Offline Application Events
In the preceding sections, you created an offline application by creating a cache manifest. The browser did
all the work of downloading and storing the application files in a local cache. When the browser is busy
downloading and caching an application, it raises several applicationCache object events.
applicationCache is an object whose properties, methods, and events can be handled using JavaScript
code. Using applicationCache events, you can track various stages of an offline application’s life cycle. Let’s
see what kind of events the applicationCache object fires:

1. Whenever you request a web page whose manifest attribute points to a cache
manifest file, the checking event of the applicationCache object is raised. The
checking event is raised regardless of whether the application is already cached.

2. If the browser has never cached this application before, it downloads the
application’s cache manifest as indicated in the manifest attribute and begins
downloading files as listed in the cache manifest. At the same time, the
downloading event of the applicationCache object is raised.

3. The cache manifest may contain many files, and the downloading operation
may be lengthy. That is why periodically the applicationCache object raises a
progress event notifying you about the progress of the download operation.

4. After all the files listed in the cache manifest are downloaded, the
applicationCache object raises the cached event. This event is an indication that
the entire application is now available offline.

5. If you’re accessing an application that is already cached, the browser checks
whether the application’s cache manifest file has changed since the last
download.

6. If the cache manifest file is unchanged, there is no need to update the offline
cache, and the noupdate event of the applicationCache object is raised.

7. If the cache manifest has changed since the last download, the browser begins
downloading the application files and raises the downloading and progress
events of the applicationCache object as before.

8. When all the application files have been successfully downloaded, the
updateready event of the applicationCache object is raised.

9. It’s also possible that an application that was cached earlier is no longer an
offline application—that is, its cache manifest has been removed from the
server. In this case, the browser raises the obsolete event of the
applicationCache object and removes the existing files from the cache. The
application is now treated as a connected application and needs a live network
connection with the server in order to function properly.

10. If there is an error in any of the previous steps, the error event of the
applicationCache object is raised.

The applicationCache object events just discussed are listed in Table 8-2 for your convenience.

www.it-ebooks.info

http://www.it-ebooks.info/

217

chapter 8 n deveLoping offLine web appLications

Table 8-2. Events of the applicationCache Object

Event Description
checking Raised when the browser detects a web page’s manifest attribute.

downloading Raised when the browser begins downloading files listed in an application’s cache
manifest file.

progress Raised periodically during the download process.

cached Raised when an application has been downloaded successfully and cached on the local
machine.

updateready Raised when the browser has successfully downloaded an updated version of a
previously cached application.

noupdate Raised when the browser detects that no update is required for an already cached
application.

obsolete Raised when the browser detects that the cache manifest of a previously cached
application is no longer available on the server.

error Raised when there is an error during any of the other events.

To understand how you can use these events, let’s wire some of them into the Clock application (see
Listing 8-11). The Clock application essentially uses these events to notify the end user about the
associated operations.

Listing 8-11. Using applicationCache Object Events

$(document).ready(function () {
 ...
 $(applicationCache).bind("checking",NotifyUser);
 $(applicationCache).bind("downloading", NotifyUser);
 $(applicationCache).bind("progress", NotifyUser);
 $(applicationCache).bind("cached", NotifyUser);
 $(applicationCache).bind("updateready", NotifyUser);
 $(applicationCache).bind("noupdate", NotifyUser);
 $(applicationCache).bind("obsolete", NotifyUser);
 $(applicationCache).bind("error", NotifyUser);
});

function NotifyUser(evt) {
 alert(evt.type);
 if (evt.type == 'updateready') {
 if (confirm('An updated version of this application is available.' +
 'Do you wish to use the new version now?'))
 {
 applicationCache.swapCache();
 }
 }
}

This code binds the applicationCache events listed in Table 8-1 to a common event handler function
NotifyUser(). The NotifyUser() function displays the event type (checking, downloading, progress, and so
on). Notice the if block: if the event type is updateready, it means an updated version of the application is
available. In most cases, you want the user to use the updated version immediately. One way to

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 8 n deveLoping offLine web appLications

218

accomplish this is to call the window.location.reload() method. Alternatively, you can call the
applicationCache object’s swapCache() method. swapCache() replaces the older cache with the newly
downloaded one and begins using the new cache without requiring any page refresh as in the case of
reload().

n Note The applicationCache object also exposes a status property that returns a numeric status code
depending on the state of the object (1 for Idle, 2 for Checking, and so on). However, in most cases, using
applicationCache object events offers much more flexibility and control than using the status property.

ASP.NET MVC Example: the Survey Application Revisited
In the preceding sections, you worked with the Web Forms–based Clock application. To create an offline
application using ASP.NET MVC, you follow the same steps. For the sake of completeness, let’s convert the
Survey application you developed in Chapter 7 into an offline application. The Survey application may not
be the best candidate for offline use, but think of a slight variant of it.

Suppose a big software development company frequently recruits junior- and senior-level software
developers. The company receives hundreds of job applications from interested candidates, and it’s
impossible to conduct personal one-to-one interviews with all the applicants. Hence the company wants
to develop an online examination engine that presents a series of single-choice, multiple-choice, and
descriptive questions to candidates. The candidates can take the online exam anywhere, at their
convenience. This online test becomes a basis for filtering the candidates. Only successful candidates are
then called for interview. In the case of an online examination engine, candidates may remain on a page
for a long time because they’re thinking about the correct answers. Such an application can be nicely
developed as an offline application. By now you must have guessed that the Survey application, although
not exactly an online exam engine, resembles this scenario.

Let’s carry out the steps required to convert the Survey application into an offline application. The
offline version of the Survey application is shown in Figure 8-6.

d
www.it-ebooks.info

http://www.it-ebooks.info/

219

chapter 8 n deveLoping offLine web appLications

The modified Survey application is almost identical to the original in terms of look and feel, except for
one change. Below the Submit Answers button, you now display the network status so the user knows
whether survey data can be saved to the database.

Creating a Cache Manifest File
To begin converting the Survey application into an offline application, create a copy of the Survey
application and open it in Visual Studio. Next, you need to create the cache manifest file for the
application. So, create a text file named Survey.cachemanifest, and add the entries shown in Listing 8-12.

Figure 8-6. Survey application converted to an offline application

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 8 n deveLoping offLine web appLications

220

Listing 8-12. Survey.cachemanifest File

CACHE MANIFEST
version 1.0

CACHE:
Home/Index
Content/Site.css
Scripts/jquery-1.6.2.js
Scripts/modernizr-2.0.6-development-only.js

FALLBACK:
/ Home/ErrorPage

Look at this listing carefully. The CACHE section lists four entries: one route URL, one CSS file, and two
script files. The FALLBACK section specifies a generic error page: the ErrorPage view displays a generic error
message to the user.

Next, open index view and specify the cache manifest file using the manifest attribute, like this:
<html manifest="/Survey.cachemanifest">...</html>

Getting the Questions and Choices
The overall functionality of the Survey application remains unchanged even when it’s converted into an
offline application. However, because the application relies on the questions and choices stored in the
database, you need to cache them on the client side. Recollect that the GetQuestions() and GetChoices()
functions call controller action methods to retrieve questions and choices, respectively. You should store
this data into local storage so it’s also available in offline mode.

n Note A real-world survey or online exam application has many questions and choices. Additionally, the
questions may change frequently, and it would be impractical to cache all of them and their choices on the client
side. A better approach is to fetch questions and choices in live mode every time and then inform users that they can
go offline.

The modified versions of the GetQuestions() and GetChoices() functions are shown in Listing 8-13.

Listing 8-13. Storing data in local storage

 function GetQuestions() {
 $.ajax({
 ...
 GetChoices();
 },
 error: function (err) {
 if (storage[“container”] != null) {
 $(“#container”).html(storage[“container”]);
 }
 else {
 alert(err.status + “ - “ + err.statusText);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

221

chapter 8 n deveLoping offLine web appLications

 }
 })
}

function GetChoices() {
 $.ajax({
 ...
 else {
 storage.removeItem(key);
 }
 });
 storage[“container”]=$(“#container”).html();
 },
 error: function (err) {
 alert(err.status + " - " + err.statusText);
 }
 })
}

Notice the bold code. The GetQuestions() function fetches questions and then calls the GetChoices()
function. Once GetChoices() completes successfully, the container <div> element is populated with
questions and their choices. The code stores the entire dynamically generated HTML markup in local
storage. This way, even if there is no network connectivity, the questions and choices are available to the
code. Beginning the next time through, if GetQuestions() can’t access the database due to network
unavailability, the error function of the $.ajax() call (of GetQuestions()) retrieves the HTML markup
stored in the local storage and populates the container <div> element.

Checking for a Network Connection
Finally, the Survey application needs to store the answers in a database. It makes an Ajax call to the server
whenever the Submit Answers button is clicked. When the user clicks Submit Answers, the SubmitData()
function is invoked; it calls the SaveResults() controller action method to save the survey data. This Ajax
call succeeds only if there is network connectivity.

It would be beneficial to inform the user about the availability of a network connection and
accordingly enable or disable the Submit Answers button. To do so, you need to periodically check
whether a network connection is available. Listing 8-14 shows how this can be accomplished.

Listing 8-14. Enabling or Disabling the Submit Answers Button

$(document).ready(function () {
 ...
 setTimeout(CheckOnline, 5000);
})

function CheckOnline() {
 $.ajax({
 type: "POST",
 url: 'Home/IsOnline',
 contentType: "application/json; charset=utf-8",
 dataType: "json",
 success: function (result) {

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 8 n deveLoping offLine web appLications

222

 if (result == true) {
 $("#status").html("You are Online!");
 $("#submit").removeAttr('disabled');
 setTimeout(CheckOnline, 5000);
 }
 },
 error: function () {
 $("#status").html("You are Offline!");
 $("#submit").attr('disabled', 'disabled');
 setTimeout(CheckOnline, 5000);
 }
 });
}

This code should look familiar: you used a similar technique in the Clock application. Using the
setTimeout() method, you call CheckOnline() every five seconds. CheckOnline() then calls the IsOnline()
controller action method. If this call is successful, it indicates that a network connection is available;
otherwise, the network is unavailable. Accordingly, the Submit Answers button is enabled or disabled by
adding or removing the disabled attribute. IsOnline() is shown in Listing 8-15.

Listing 8-15. IsOnline() Action Methodpublic JsonResult IsOnline()

{
 return Json(true);
}

IsOnline() returns true in JSON format. You can now run the Survey application and test it by
stopping the application in IIS Express, as explained earlier.

Summary
Most web applications need a live network connection to the web server in order to function properly.
Such applications involve heavy interaction between client and server. Some web applications, however,
can work without an active network connection to the web server. Such applications usually involve heavy
client-side functionality. HTML5 allows you to develop such offline applications easily. Not every
application is a good candidate, but if the need arises, you have native support for such offline
applications.

At the heart of an offline application is a cache manifest file that lists all the files that are needed in
offline mode. If required, an offline application can connect with the web server when a network
connection is available and transfer data or execute server-side code. The applicationCache object
introduced in HTML5 represents an offline application cache and helps you to track various application
life cycle events by raising events.

HTML5 adds rich client-side capabilities to your web applications. Another such area is client-side file
access. Traditionally, JavaScript couldn’t access local files in any manner. The HTML5 File API provides a
standardized way to deal with local files. The next chapter discusses this feature in detail.

www.it-ebooks.info

http://www.it-ebooks.info/

223

n n n

chapter 9

Dealing with Local Files Using
the File API

It’s a well-known fact that for the sake of security and privacy, browsers don’t allow web applications to
tamper with the local file system. Local files are used in a web application only when the user decides to
upload them to the server using the HTML <input> element of type file. The title of this chapter may
surprise you at first, because the term File API gives the impression of being a full-blown file-system
manipulation object model like the System.IO namespace of .NET Framework. Obviously, the people
behind HTML5 are aware of the security issues such an object model can create. So, the File API is
essentially a cut-down version of a file-handling system in which files can only be read and can’t be
modified or deleted. Additionally, the File API can’t read any random file on the machine. File(s) to be read
must be explicitly supplied by the user. Thus, the File API is a safe way to read and optionally upload local
files with user consent.

This chapter examines what the File API can do for you and how it can be used in ASP.NET web
applications. Specifically, you learn the following:

•	 Classes available as a part of the File API

•	 Techniques of selecting files to be used with the File API

•	 Using HTML5 native drag-and-drop

•	 Reading files with the File API

•	 Uploading files to the server

Understanding the File API
The HTML5 File API consists of a set of three objects (see Table 9-1) that allow you to read files residing on
the client computer. The files to be read must be explicitly selected by the user using one of the supported
techniques discussed in later sections. Once selected, you can read the files using JavaScript code.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 9 n deaLing with LocaL fiLes using the fiLe api

224

Table 9-1. Objects Exposed by the File API

Object Description
FileList A list of files selected by the user. A user typically selects files using a file field or by dragging

from Windows Explorer and dropping them on a predefined area of a web page.

File A single file that’s used to find information such as file name, size, and MIME type.

FileReader Allows you to read a file in asynchronous fashion. Once read, you can either upload the
contents to the server or use them for custom processing.

The object model of the File API is quite small, but you can use these three objects in creative ways
that were impossible (or at least very difficult) prior to HTML5. Some of the creative ways in which you can
use the File API are as follows:

•	 In traditional HTML, when you use a file field to upload files, there is no checking of
file size on the client end. Only when the file reaches the server can you perform
checks in the server-side code and accept or reject the file. You can now reject files
above a certain file size at the client.

•	 You can read image files on the client side and render a preview or thumbnail before
they’re uploaded to the server. Such a facility can also be used in social networking
applications or photo album applications that deal with images.

•	 You can validate the content of file before it’s uploaded to the server. For example, if
your application is supposed to upload XML files, you can validate an XML
document before it reaches the server.

•	 You can develop client-side images or file catalogs that a user can review before
finally uploading them to the server.

•	 You can develop a photo album application that lets the user drag and drop images
files rather than individually picking them up.

n Note In the future, HTML5 may add more support for file-system navigation. A draft specification is available at
http://dev.w3.org/2009/dap/file-system/pub/FileSystem/. However, as of this writing there is little or
no support for these features in the leading browsers.

FileList Object
The FileList object represents a list of File objects. A FileList is returned either from a file field (<input
type="file">) placed on a web page or by the user dragging and dropping local files from Windows Explorer
on a droppable area of a web page. Normally, you iterate through a FileList to access individual File
objects. The FileList object exposes just one property and one method, as described in Table 9-2.

Table 9-2. Properties and Methods of the FileList Object

Property / Method Description
length The length property returns a number of File objects from a FileList.

item() The item() method accepts a zero-based index and returns a File object at that
index.

www.it-ebooks.info

http://dev.w3.org/2009/dap/file-system/pub/FileSystem/
http://www.it-ebooks.info/

225

chapter 9 n deaLing with LocaL fiLes using the fiLe api

File Object
A File object represents a single file and provides information about it such as its name, size, and MIME
type. You also need a File object if you wish to read the contents of a file. Table 9-3 lists the properties of
the File object.

Table 9-3. Properties of the File Object

Property Description
name Name of a File along with its extension

size Size of a file in bytes

type MIME type of the file

FileReader Object
A FileReader object allows you to read the contents of a File. The read operation is performed in
asynchronous fashion. This way, even very large files can be read without blocking other operations. The
FileReader object can read File contents as text, Base64, binary, or ArrayBuffer. Table 9-4 lists the
methods of the FileReader object that are responsible for reading a file.

Table 9-4. Methods of the FileReader Object

Property / Method Description
readAsText() Reads a file as a text file

readAsDataURL() Reads a file as a data URL (Base64)

readAsBinaryString() Reads a file as a raw binary string

readAsArrayBuffer() Reads a file as an ArrayBuffer

abort() Can be used to abort a file-reading operation

The readAsText() method is intended to be used with text-based files such as plain-text files, CSV
files, and XML files. The readAsDataURL() method encodes the file content in Base64 format and returns it
as a data URL. As described in more detail in Chapter 4, you know that the data URL format consists of
Base64-encoded data prefixed with the MIME type of the file, as shown in the following example:
…

The readAsDataURL() method also comes in handy in situations where binary data can’t be transferred
to the server. One such situation is the jQuery $.ajax() method that sends text data to the server. The
readAsBinaryString() method reads files as raw binary data. The readAsArrayBuffer() method reads the
file contents as an ArrayBuffer; an ArrayBuffer is a fixed-length binary data buffer.

The file-reading methods discussed here affect certain properties of a FileReader. These properties
can then be used to process the file contents or to flag an error to the end user. Table 9-5 lists these
properties.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 9 n deaLing with LocaL fiLes using the fiLe api

226

Table 9-5. Properties of the FileReader Object

Property Description
error Error that occurred (if any) while reading a file.

readyState State of a FileReader object. The possible readyState values are 0 (EMPTY), 1
(LOADING), and 2 (DONE).

result File’s contents. This property is valid only after the read operation is complete.
The format of the data returned depends on the read method invoked.

The FileReader raises certain events as the file is being read. You can wire up handlers for these events
and intercept various stages of the read operation. The events raised by the FileReader object are given in
Table 9-6.

Table 9-6. Events of the FileReader Object

Event Description
load Raised when a file is successfully read

loadstart Raised when the reading of file content is about to begin

loadend Raised when the file-reading operation completes successfully or with an
error

loadprogress Raised periodically when data is being read

error Raised when there is some error while performing the read operation

abort Raised when a read operation is aborted

Out of all the events listed in Table 9-6, you must handle the load event because that is where you can
access the file content.

Selecting Files to Be Used With the File API
As mentioned previously, files to be accessed using the File API must be explicitly selected by the user in
one of the following ways:

•	 A user can select files using the Open File dialog shown by a file field control.

•	 As user can drag files from Windows Explorer and drop those files on some
predefined area of a web page.

The first way is straightforward and traditional. A variation on this technique is to display the Open
File dialog without a visible file field on the page. In such cases, you need to play tricks to achieve the
desired behavior. The second way is specific to HTML5, and with the native support for drag-and-drop it’s
easy to implement in web pages.

The following sections discuss these two ways of selecting files. Note that HTML5 drag-and-drop
features aren’t restricted to file selection alone and can be used independently in your applications.

Using a File Field to Select Files
Using a file field to select one or more files is the most basic technique of selecting files to be used with the
File API. Prior to HTML5, a file field control allowed the selection of only one file at a time. If you wanted to

www.it-ebooks.info

http://www.it-ebooks.info/

227

chapter 9 n deaLing with LocaL fiLes using the fiLe api

allow users to select five files, you had to place five separate file field controls on the web page. In HTML5,
however, users can select multiple files using a single file field control. This is possible with the new
multiple attribute of the <input> element. Listing 9-1 shows how a file field control can be configured for
selecting a single and multiple files.

Listing 9-1. File Field Control Markup

<input id="File1" type="file" />
<input id="File2" type="file" multiple="multiple" />

This listing shows two <input> elements with the type attribute set to file. Notice that the second file
field has the multiple attribute. When you specify the multiple attribute, the resulting Open File dialog
allows you to select multiple files using standard Windows techniques (a combination of the Ctrl/Shift key
and mouse clicks).

The file fields are displayed differently by different browsers. For example, Figure 9-1 shows how the
file fields are displayed in Chrome, Opera, and Firefox.

Figure 9-1. File fields in different browsers

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 9 n deaLing with LocaL fiLes using the fiLe api

228

Notice how Chrome and Opera show the file field with the multiple attribute to indicate that multiple
files can be selected. Clicking the Browser, Choose Files, or Add Files button opens a standard Windows
Open dialog, as shown in Figure 9-2.

Figure 9-2. Selecting multiple files using the Open dialog

Notice that Figure 9-2 shows multiple files selected. When you select multiple files and click the Open
button in the Open File dialog, all the selected files are added to the same file field, one after the other.
Firefox and Opera display all the selected files in the text box of a file field control, whereas in Chrome you
need to hover your mouse over the file field to see a list of selected files (see Figure 9-3).

Figure 9-3. File field control after selecting files

www.it-ebooks.info

http://www.it-ebooks.info/

229

chapter 9 n deaLing with LocaL fiLes using the fiLe api

If you’re developing an ASP.NET Web Forms–based application, you can use the FileUpload server
control instead of using the raw markup shown in Listing 9-1. The markup in Listing 9-2 shows how you
can use FileUpload server controls.

Listing 9-2. Using FileUpload Server Controls

<asp:FileUpload ID="FileUpload1" runat="server" />
<asp:FileUpload ID="FileUpload2" runat="server" AllowMultiple="True" />

The first FileUpload server control shown here lets you select a single file. The second FileUpload
server control has its AllowMultiple property set to True and allows you to select multiple files.

If you’re developing an ASP.NET MVC application, you can either use the plain HTML shown in Listing
9-1 or use an HTML TextBox helper to render a file field. Listing 9-3 shows how to use HTML TextBox
helpers to render file fields.

Listing 9-3. Using TextBox Helpers to Render File Fields

<% using (Html.BeginForm("Index","Home","POST")) { %>
<%= Html.TextBox("file1", "",new {type="file"})%>

<%= Html.TextBox("file2", "",new {type="file",multiple="multiple"})%>
<%}%>

As you can see, to render a file field you use TextBox helper and supply a type property value of file.
The first call to the TextBox helper renders a file field that allows only one file to be selected, whereas the
second call sets the multiple property to allow multiple files to be selected.

Using a Custom Button to Select Files
Sometimes, using a file field to select files is undesirable for aesthetic reasons. Although you can use CSS to
change the look and feel of a file field, its appearance can’t be altered drastically. For example, let’s say you
wish to display an image on a web page, and when a user clicks the image you wish to prompt them to
select one or more files. Something like this is impossible using file field because even after applying CSS,
the field’s basic appearance is governed by the browser.
If you wish to provide such a custom technique for selecting files in your application, you need to use a
programmatic trick. You essentially need to add a file field to the web page but keep it hidden from view.
When a user clicks a custom graphic or button intended for file selection, you trigger the click event on
the hidden file field through JavaScript. This way, the Open File dialog is displayed to the user. Once the
user selects one or more files, those files are assigned to the hidden file field. You can then access the files
for further processing.

Figure 9-4 shows a custom image for selecting files.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 9 n deaLing with LocaL fiLes using the fiLe api

230

The web form consists of a Label control, a FileUpload control, and an ImageButton control. Listing
9-4 shows the web form’s markup.

Listing 9-4. Prompting for File Selection Using a Custom Image

<form id="form1" runat="server">
 <asp:FileUpload ID="FileUpload1" runat="server" AllowMultiple="true"
 CssClass="hidden" />
 <asp:Label ID="Label1" runat="server" CssClass="message"
 Text="Click on the image below to select files" >
 </asp:Label>

 <asp:ImageButton ID="ImageButton1" runat="server"
 ImageUrl="~/Images/UploadFile.jpg" />
</form>

Notice a couple of things in the markup. First, the AllowMultiple property of the FileUpload control is
set to True so as to allow multiple-file selection. Second, its CssClass property is set to a CSS class named
hidden. The hidden CSS class looks like this:

.hidden {
 display:none;
}

The hidden CSS class simply sets the display CSS property to none so that at runtime, the FileUpload
control isn’t visible. An ImageButton control is used to display a clickable image to the user. In order to trap
the client-side click event of the ImageButton and programmatically trigger the click event of the
FileUpload control, you need to write some jQuery code. Listing 9-5 shows the jQuery code to add to the
web form.

Listing 9-5. Programmatically Triggering the click Event of the File Field

$(document).ready(function () {
 $("#FileUpload1").change(function (evt) {
 alert(evt.target.files.length + " file(s) were selected!");

Figure 9-4. Selecting files using a custom image button

www.it-ebooks.info

http://www.it-ebooks.info/

231

chapter 9 n deaLing with LocaL fiLes using the fiLe api

 });
 $("#ImageButton1").click(function (evt) {
 $("#FileUpload1").click();
 evt.preventDefault();
 });
});

This code essentially handles the client-side click event of the ImageButton control. Inside the click
event handler, it triggers the click event of the FileUpload control (the file field). This way, an Open File
dialog is shown to the user. Because you don’t have any server-side functionality for the ImageButton
control, you call the preventDefault() method to cancel the default action. Upon selecting file(s), the
change event of the file field is raised. Notice the use of the files property that gives you access to all the
files selected using the Open File dialog. The change event handler displays the number of files selected
using the length property of the files object.

Using Drag-and-Drop to Select Files
Selecting files from an Open File dialog isn’t the only option for grabbing files to be read using the File API.
A more advanced option lets users drag files from Windows Explorer or the Desktop and drop them onto
some area of a web page. This drag-and-drop option requires more coding than the previous options
because you need to designate a certain area of a web page where files can be dropped; further, you must
handle certain events related to drag-and-drop. In the past, developers used third-party JavaScript
libraries or plug-ins to implement drag-and-drop. However, HTML5 provides native support for drag-and-
drop. Although implementing drag-and-drop–based file selection requires more code than the other
techniques, the overall process is straightforward and can be implemented easily as compared to
traditional HTML.

The native drag-and-drop support in HTML5 isn’t limited to use with the File API. It’s an independent
feature of its own and can be used in any situation where drag-and-drop is required. In the section that
follows, you learn how to implement drag-and-drop in a web page.

n Note Strictly speaking, selecting files using drag-and-drop requires only the drop operation to be captured.
However, the next section covers how to implement dragging as well as dropping operations for the sake of
completeness. You can use the native drag-and-drop support in many situations to provide a better user experience.

Working with Drag-and-Drop
Drag-and-drop operations are common in desktop applications. Modern web applications also try to
harness the ease and power of drag-and-drop operations to provide an enhanced user experience. Web
developers often resorted to third-party JavaScript-based libraries or custom techniques for enabling drag-
and-drop behavior in their web applications. Luckily, HTML5 comes with built-in support for drag-and-
drop.

Using drag-and-drop features, you can drag an HTML element and drop it onto another. You can also
drag files from Windows Explorer or the Desktop and drop them onto a web page for further processing.
During the drag-and-drop operation, you can pass data from the source element to the target element.

Implementing drag-and-drop essentially involves the following steps:

1. Enable dragging for one or more HTML elements from a web page.

2. Decide on a drop target, and handle the drop of draggable elements or files.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 9 n deaLing with LocaL fiLes using the fiLe api

232

3. Handle drag-and-drop related events.

4. If required, transfer data between the drag source and the drop target.

Enable Dragging for HTML Elements
The first step in using drag-and-drop in a page is to make one or more elements draggable. You do this by
setting the draggable attribute of an HTML element to true. For example, the following piece of markup
makes a <div> element draggable:

<div class="myclass" draggable="true">Some content</div>

Drag-and-Drop Events
Marking one or more DOM elements as draggable is just a part of the story. To actually make your drag-
and-drop functional and visually appealing to the end user, you need to handle certain events. These
events are listed in Table 9-7.

Table 9-7. Drag-and-Drop Events

Event Description
dragstart Raised when the drag operation begins

drag Raised when an element is dragged

dragenter Raised when a draggable element is dragged and enters a valid drop
target

dragleave Raised when a draggable element that was dragged on a valid drop target
leaves the drop target

dragover Raised when a draggable element is being dragged over a valid drop
target

drop Raised when a dragged element is dropped onto a valid drop target

dragend Raised when the drag operation ends

Note that a drag source is an element that is being dragged, whereas a drop target is an element on
which a draggable element is to be dropped. Events from Table 9-7 such as dragstart, drag, and dragend
are handled by a drag source, whereas events such as dragenter, dragleave, dragover, and drop are
handled by a drop target. You can wire event handlers to these events using JavaScript, as shown in Listing
9-6.

Listing 9-6. Wiring Event Handlers for Drag-and-Drop Events

$("div").each(function () {
 this.addEventListener('dragstart', OnDragStart, false);
 this.addEventListener('drop', OnDrop, false);
});

In this code, the dragstart and drop events of <div> elements are wired to OnDragStart and OnDrop
functions respectively using addEventListener() method.

www.it-ebooks.info

http://www.it-ebooks.info/

233

chapter 9 n deaLing with LocaL fiLes using the fiLe api

Transferring Data Between Drag-and-Drop Operations
Most of the time, dragging something and dropping it onto something else also calls for transferring some
data between the source and the target elements. To accomplish this data transfer, HTML5 provides the
dataTransfer object. The dataTransfer object is accessible in various drag-and-drop events through the
event object passed to the event handlers. Table 9-8 lists some of the important properties and methods of
dataTransfer object.

Table 9-8. Properties and Methods of the dataTransfer Object

Property / Method Description
effectAllowed Indicates the types of operations that are to be allowed. The possible values are

none, copy, copyLink, copyMove, link, linkMove, move, all, and uninitialized.

dropEffect Indicates the type of operation that is currently selected. If the type of operation
isn’t supported by the effectAllowed attribute, then the operation fails. The
possible values are none, copy, link, and move.

setDragImage() Sets the given element that is shown during drag operation.

setData() Sets specific data that is to be transferred.

getData() Retrieves previously set data for further processing.

clearData() Removes the previously stored data.

You typically use the properties and methods of the dataTransfer object in the dragstart and drop
event handlers.

Implementing Drag-and-Drop: A Shopping Cart
Now let’s put your knowledge to work in a simple yet functional Shopping Cart web form, shown in Figure
9-5.

Figure 9-5. Shopping Cart web form

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 9 n deaLing with LocaL fiLes using the fiLe api

234

As you can see, the web form represents a simple shopping cart. Various products are represented by
<div> elements placed inside a Repeater control. The products can be dragged and dropped onto the
shopping bag. Once all the required products are added, the user can click the Place Order button to send
product data to the server to place an order.

Entity Framework Data Model
The Shopping Cart example stores data in a SQL Server Express database. To get the data in and out of the
database, the application uses the Entity Framework data model, as shown in Figure 9-6.

Figure 9-6. Entity Framework data model for the Shopping Cart database

The data model consists of two classes: Product and Order. The Product class captures details such as
ProductId, Name, Description, Cost, and ImageUrl. The Order class captures details such as OrderId,
ProductName, and Qty. Of course, a real-world shopping-cart system captures many more details, but this
data model is sufficient to illustrate this subject.

Product Catalog and Shopping Cart
The product catalog is a Repeater control whose ItemTemplate contains a draggable <div> element. This
<div> element wraps all the product details such as Name, Description, and Cost for an individual product.
The Repeater control receives its data through an EntityDataSource control. The markup of the Repeater
control is given in Listing 9-7.

Listing 9-7. Markup of the Product Catalog

<asp:Repeater ID="Repeater1" runat="server" DataSourceID="EntityDataSource1">
 <ItemTemplate>
 <div class=”product” draggable=”true”>
 <header><%# Eval("Name") %></header>
 <div>
 <asp:Image runat="server" ID="img1"
 ImageUrl='<%# Eval("ImageUrl") %>' />
 </div>
 <div><%# Eval("Description") %></div>

 <div class="cost"><%# Eval("Cost","Cost : ${0}") %></div>

www.it-ebooks.info

http://www.it-ebooks.info/

235

chapter 9 n deaLing with LocaL fiLes using the fiLe api

 <input type="hidden" value="<%# Eval("ProductId") %>" />
 </div>
 </ItemTemplate>
</asp:Repeater>

Notice the code in bold. The <div> elements representing products are marked with the draggable
attribute set to true. The remaining markup from Listing 9-7 essentially binds various columns of the
Products table with HTML elements using the ASP.NET Eval() data-binding expression.

Handling Drag-and-Drop Events
The next step is to wire drag-and-drop event handlers to various elements. The jQuery code that wires
various event handlers is shown in Listing 9-8.

Listing 9-8. Wiring Drag-and-Drop Event Handlers

$(document).ready(function () {
 $("div .product").each(function () {
 this.addEventListener('dragstart', OnDragStart, false);
 });

 var cart = $("#divCart").get(0);
 cart.addEventListener('dragenter', OnDragEnter, false);
 cart.addEventListener('dragleave', OnDragLeave, false);
 cart.addEventListener('dragover', OnDragOver, false);
 cart.addEventListener('drop', OnDrop, false);
 cart.addEventListener('dragend', OnDragEnd, false);
})

As you can see, first all the <div> elements that have the product CSS class applied to them (that is, the
container <div> elements of all the products) are selected using a jQuery selector. Then the each() method
is called on the result set to add an event listener for the dragstart event. The addEventListener() method
wires an event-handler function to an event. In this case, the dragstart event is handled by the
OnDragStart function.

The <div> element that contains the shopping bag and the buttons has the ID divCart. The divCart
element should handle other events such as dragenter, dragleave, and drop. A series of
addEventListener() method calls attaches event-handler functions to these events. The event-handler
functions take the form OnXXXX, where XXXX is the name of the event.

In all, there are six event-handler functions: OnDragStart, OnDragEnter, OnDragLeave, OnDragOver,
OnDrop, and OnDragEnd. Let’s examine them one by one.

OnDragStart
The dragstart event handler reduces the opacity of the element being dragged so that the end user gets a
visual clue about the drag operation. The OnDragStart event-handler function that handles the dragstart
event is shown in Listing 9-9.

Listing 9-9. OnDragStart Event Handler Function

function OnDragStart(e) {
 this.style.opacity = '0.3';

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 9 n deaLing with LocaL fiLes using the fiLe api

236

 srcElement = this;
 e.dataTransfer.effectAllowed = 'move';
 var product=$(this).find("header")[0].innerHTML;
 e.dataTransfer.setData('text/html', product);
}

The OnDragStart event-handler function stores the source of drag operation in a global variable
srcElement because you need it later in the drop event handler. The effectAllowed property of the
dataTransfer object is set to move. When the user drags a product and drops it on the shopping bag, you
need to transfer the corresponding product name to the drop target. In this case, product names are
placed inside <header> elements; hence the find() method finds all the header elements and then grabs the
innerHTML (the product name) of the header element. The setData() method sets the product name as the
data to be transferred via the dataTransfer object. This way, the drop event handler knows which product
is to be added to the shopping cart. The first parameter of setData() indicates the MIME type of the data
that is being transferred ('text/html' in this case).

OnDragOver
The OnDragOver event-handler function adds a CSS class to the drop target so as to give the user a visual
clue about the operation. The OnDragOver function is shown in Listing 9-10.

Listing 9-10. OnDragOver Function

function OnDragOver(e) {
 ...
 $(this).addClass('highlight');
 e.dataTransfer.dropEffect = 'move';
}

The highlight CSS class essentially adds a highlight to the drop target (shopping bag <div> element)
by changing its background color. It’s shown here:

.highlight
{
 background-color:Yellow;
}

The dropEffect property of the dataTransfer object is set to move.

OnDragEnter and OnDragLeave
The OnDragEnter and OnDragLeave event handlers merely add the highlight CSS class to and remove it
from the drop target element. These event handlers are shown in Listing 9-11.

Listing 9-11. OnDragEnter and OnDragLeave Functions

function OnDragEnter(e) {
 $(this).addClass('highlight');
}

function OnDragLeave(e) {
 $(this).removeClass('highlight');
}

www.it-ebooks.info

http://www.it-ebooks.info/

237

chapter 9 n deaLing with LocaL fiLes using the fiLe api

OnDrop
The OnDrop event-handler function is the main event handler in which you transfer product names from
the DataTransfer objet to the shopping cart. The OnDrop function is shown in Listing 9-12.

Listing 9-12. OnDrop Function

function OnDrop(e) {
 ...
 srcElement.style.opacity = '1';
 $(this).removeClass('highlight');
 var count = $(this).find("div[data-product-name='" +
 e.dataTransfer.getData('text/html') + "']").length;
 if (count <= 0) {
 $(this).append("<div class='selectedproduct' data-product-name='" +
 e.dataTransfer.getData('text/html') + "'>" +
 e.dataTransfer.getData('text/html') + "</div>");
 }
 else {
 alert("This product is already added to your cart!");
 }
 return false;
}

The drop event handler sets the opacity of the source element back to 1 because the drag-and-drop
operation is complete. It also removes the highlight CSS class from the target element. It then appends
the product being dragged to the target element.

Notice the use of the getData() method to retrieve the data previously set in the OnDragStart event-
handler function. There is also a check so the same product can’t be added to the cart multiple times.
Figure 9-7 shows how an error message is shown to the user if the same product is dragged and dropped
multiple times.

Figure 9-7. Checking for duplicate products after the drop

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 9 n deaLing with LocaL fiLes using the fiLe api

238

As you can see, Mouse has already been added to the shopping cart. Attempting to drag-and-drop
Mouse to the shopping cart again results in an alert box with a message informing the user about the
duplication.

OnDragEnd
The OnDragEnd event-handler function simply removes the highlight CSS class from the drop target and is
shown in Listing 9-13.

Listing 9-13. OnDragEnd Function

function OnDragEnd(e) {
 $("div .bag").removeClass('highlight');
 this.style.opacity = '1';
}

Passing Data from Client to Server
To transfer shopping-cart items to the server-side code, you need to use the jQuery $.ajax() method. The
click event handler of the Place Order button has the relevant code and is shown in Listing 9-14.

Listing 9-14. Saving Order Data on the Server

$("#Button1").click(function () {
 var data = new Array();
 $("div .bag div").each(function (index) {
 data[index] = "'" + this.innerHTML + "'";
 });
 $.ajax({
 type: 'POST',
 url: 'shoppingcart.aspx/PlaceOrder',
 contentType: "application/json; charset=utf-8",
 data: '{ products:[' + data.join() + ']}',
 dataType: 'json',
 success: function (results) { alert(results.d); },
 error: function () { alert('error'); }
 });
});

As you can see, first the products in the shopping bag are stored into a JavaScript array. This way, it’s
easy to pass them to the server by joining the array elements. An Array is created by using the each()
method and extracting the innerHTML of individual <div> elements. Then the $.ajax() method invokes a
web method, PlaceOrder(), that resides in the ShoppingCart.aspx web form. The PlaceOrder() web
method is shown in Listing 9-15.

Listing 9-15. PlaceOrder Web Method

[WebMethod]
public static string PlaceOrder(string[] products)
{
 Guid orderId = Guid.NewGuid();

www.it-ebooks.info

http://www.it-ebooks.info/

239

chapter 9 n deaLing with LocaL fiLes using the fiLe api

 ShoppingCartEntities db = new ShoppingCartEntities();
 foreach (string p in products)
 {
 Order order = new Order();
 order.OrderId = orderId;
 order.ProductName = p;
 order.Qty = 1;
 db.Orders.AddObject(order);
 }
 db.SaveChanges();
 return "Order with " + products.Length.ToString() +
 " products has been added!";
}

The PlaceOrder() web method puts an order in the Orders table. The method accepts an array of
strings that represents product names. Notice how $.ajax() passes the products parameter in JSON
format. Upon successful completion of the web method, the success handler function displays an alert to
the end user.

To test the drag-and-drop behavior, run the web form and try dragging a product on the shopping
bag. Figure 9-8 shows a sample run of the web form.

Figure 9-8. Sample run of the Shopping Cart web form

Notice how the product being dragged (Mouse) is shown with less opacity and how the shopping bag
is highlighted. If you click the Place Order button, the selected products are saved in the database.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 9 n deaLing with LocaL fiLes using the fiLe api

240

Dragging and Dropping Files
Now that you know how to drag HTML elements and drop them onto a target element, let’s see how files
can be dragged and dropped onto a web page. In the case of file drag-and-drop, you don’t have to worry
about marking any HTML elements as draggable because files are external entities and you drag them
from outside the browser. You need to take care of dropping of the files.

A page may contain many HTML elements capable of acting as a drop target. However, if you want to
access the files dropped from Windows Explorer or the Desktop, you have to “listen” to known elements
designated for that purpose. To understand how to do this, let’s develop a web form as shown in Figure 9-9.

Figure 9-9. Dragging and dropping files on a web form

The web form consists of a <div> element whose background image is set to the image of a basket. You
can drag files from Windows Explorer or the Desktop and drop them onto this <div> element. The <div>
handles the drop event and displays an alert box that indicates how many files were dropped. The code in
Listing 9-16 shows how the required drag-and-drop events are handled.

Listing 9-16. Handling Dropped Files

$(document).ready(function () {
 var container;
 container = document.getElementById("container");
 container.addEventListener("dragenter", OnDragEnter, false);
 container.addEventListener("dragover", OnDragOver, false);
 container.addEventListener("dragleave", OnDragLeave, false);
 container.addEventListener("drop", OnDrop, false);
});

function OnDragEnter(e) {
 e.stopPropagation();
 e.preventDefault();
}

www.it-ebooks.info

http://www.it-ebooks.info/

241

chapter 9 n deaLing with LocaL fiLes using the fiLe api

function OnDragLeave(e) {
 e.stopPropagation();
 e.preventDefault();
}

function OnDragOver(e) {
 e.stopPropagation();
 e.preventDefault();
}

function OnDrop(e) {
 e.stopPropagation();
 e.preventDefault();
 var files = e.dataTransfer.files;
 alert(files.length + " file(s) dropped!");
}

This code wires event handlers for four events—dragenter, dragover, dragleave, and drop—using the
addEventListener() method. Unlike in the Shopping Cart example, the functions OnDragEnter,
OnDragLeave, and OnDragOver don’t do anything special apart from calling the stopPropagation() and
preventDefault() methods. The jQuery stopPropagation() method stops the event from bubbling up the
DOM tree, thus preventing any parent handlers from being notified of the event. Similarly, the jQuery
preventDefault() method prevents the event’s default action.

If you wish, you can set dropEffect or a visual indicator in these event handlers. Also, note that you
aren’t setting the dataTransfer object anywhere. This is because data (files in this case) comes from an
external source. Notice the OnDrop() event-handler function: it uses the files property of the dataTransfer
object to access the files that were dropped on the element. It then displays the number of files dropped
using the length property.

To test the web form, run it: drag a few files from Windows Explorer and drop them on the basket. As
soon as you drop the files, you should see an alert with the number of files dropped.

Reading Files and Displaying File Information
Now that you know the techniques for selecting files—file field, custom button, and drag-and-drop—let’s
see how to read the selected files using the File API. To understand the process, you develop a web form
that resembles Figure 9-10.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 9 n deaLing with LocaL fiLes using the fiLe api

242

The web form is divided into two parts. The top part allows you select image files using all three
techniques. Then, the details of the selected files, such as file name, size, and MIME type, are displayed in a
table at the bottom. Hovering on the Show link provided in each row of the table shows that image to the
right of the table. The markup for the web form is shown in Listing 9-17.

Listing 9-17. Markup for a Web Form That Shows Image Previews

<form id="form1" runat="server">
<div>
 <table>
 <tr>
 <th>
 <asp:Label ID="Label1" runat="server" Text="1. File Field"
 CssClass="message">
 </asp:Label>
 </th>
 <th>
 <asp:Label ID="Label2" runat="server" Text="2. Custom Button"
 CssClass="message">
 </asp:Label>
 </th>
 <th>

Figure 9-10. Reading files using the File API

www.it-ebooks.info

http://www.it-ebooks.info/

243

chapter 9 n deaLing with LocaL fiLes using the fiLe api

 <asp:Label ID="Label3" runat="server" Text="3. Drag & Drop"
 CssClass="message">
 </asp:Label>
 </th>
 </tr>
 <tr>
 <td>
 <asp:FileUpload ID=”FileUpload1” runat=”server” AllowMultiple=”True” />
 </td>
 <td>
 <asp:FileUpload ID=”FileUpload2” runat=”server” AllowMultiple=”true”
 CssClass=”hidden” />
 <asp:ImageButton ID=”ImageButton1” runat=”server”
 ImageUrl=”~/Images/UploadFile.jpg”/>
 </td>
 <td>
 <div id=”divBasket” class=”dropDiv”></div>
 </td>
 </tr>
 </table>
</div>
<div class="divBlock">
 <table id=”Table1” border=”1” cellPadding=”3”></table>
</div>
<div class="divBlock">

</div>
</form>

The bold elements in the listing are important to the functioning of the web form. The file field
FileUpload1 is used to select files directly, whereas FileUpload2 is kept hidden and shows the Open File
dialog when the ImageButton is clicked. The <div> element divBasket is the drop target where files dragged
from Windows Explorer can be dropped. The HTML table Table1 is filled dynamically using jQuery
depending on the files selected. A preview of the images is shown in filePreview image element.

Various events of the elements are wired in the jQuery ready() function, shown in Listing 9-18.

Listing 9-18. Wiring the Event Handlers of the HTML Elements

var files;

$(document).ready(function () {
 $("#FileUpload1").change(OnChange);
 $("#FileUpload2").change(OnChange);

 $("#ImageButton1").click(function (evt) {
 $("#FileUpload2").click();
 evt.preventDefault();
 });

 var basket;
 basket = document.getElementById("divBasket");

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 9 n deaLing with LocaL fiLes using the fiLe api

244

 basket.addEventListener("dragenter", OnDragEnter, false);
 basket.addEventListener("dragover", OnDragOver, false);
 basket.addEventListener("drop", OnDrop, false);
});

This code declares a global variable, files, that is used later in the code to store a reference to the
selected files. The change event of both file field controls is wired to the OnChange function. Similarly, the
dragenter, dragover, and drop events are wired to the OnDragEnter, OnDragOver, and OnDrop functions,
respectively. Out of all these event handlers, OnChange and OnDrop are important because they initiate the
process of generating the table of files. These two event handlers are shown in Listing 9-19.

Listing 9-19. OnChange and OnDrop Event Handlers

function OnChange(evt) {
 files = evt.target.files;
 ShowFileDetails(files);
}

function OnDrop(evt) {
 evt.stopPropagation();
 evt.preventDefault();
 files = evt.dataTransfer.files;
 ShowFileDetails(files);
}

The OnChange event-handler function grabs the selected files using the files property of the file field
control. Note that the change event handler of FileUpload1 as well as FileUpload2 is handled by OnChange.
So, the evt.target refers to the respective file field control. OnChange then calls a helper function
ShowFileDetails(), which updates the table of files displayed in the page.

The OnDrop event-handler function grabs the files using the files property of the dataTransfer object
and cancels the event bubbling. ShowFileDetails() is then called to generate a table of files.

Note that the files property of the file field control and the dataTransfer object is of type FileList (see
Table 9-2 earlier for a quick recap of the FileList object). The ShowFileDetails() function used by the
OnChange and OnDrop event handlers is shown in Listing 9-20.

Listing 9-20. Showing File Information Using the File Object

function ShowFileDetails(files) {
 $("#Table1").empty();
 $("#Table1").append("<tr><th>File Name</th><th>Size</th><th>MIME Type</th><th>Preview</th></
tr>");
 for (var i = 0; i < files.length; i++) {
 if (files[i].type == "image/jpeg" ||
 files[i].type == "image/png" ||
 files[i].type == "image/gif") {
 $("#Table1").append("<tr><td>" + files.item(i).name +
 "</td><td>" + files[i].size +
 "</td><td>" + files[i].type +
 "</td><td><a href='#'
 data-file-index='" +
 i + "'>Show</td></tr>");

www.it-ebooks.info

http://www.it-ebooks.info/

245

chapter 9 n deaLing with LocaL fiLes using the fiLe api

 }
 else {
 alert("Only image files are allowed. Other files will be ignored!");
 }
 }
 $("a").hover(ShowPreview, HidePreview);
}

ShowFileDetails() first empties the table by removing all its rows using the jQuery empty() method. It
then iterates through the FileList and accesses each File object to get the file details. Because the
application is intended only for image files, every file’s extension is checked. If a file is an image file (.jpg,
.jpeg, .png, or .gif) then a new row is added to the table. This checking is done with the help of the File
object’s type property, which returns the MIME type of a file (image/jpeg, image/png, and so on). The name
property returns the name of the file with extension but doesn’t include the path information. The size
property returns the size of the file in bytes.

You can access individual File objects either using typical collection syntax (files[i]) or using the
item() method of the FileList object. The Show hyperlink stores an index of the file using a custom data-*
attribute data-file-index. This way, you can determine which image to show.

The actual image preview is shown when you hover the mouse over the Show link. The jQuery hover()
method binds two handler functions to the hyperlink elements that are invoked when the mouse pointer
enters and leaves the hyperlinks. The ShowPreview() and HidePreview() functions are shown in Listing
9-21.

Listing 9-21. Showing an Image Preview

function ShowPreview(evt) {
 var reader = new FileReader();
 $(reader).bind("load",function (e) {
 var imgSrc = e.target.result;
 $("#filePreview").attr('src',imgSrc);
 });
 var fileIndex = $(evt.target).attr('data-file-index');
 reader.readAsDataURL(files[fileIndex]);
}

function HidePreview(evt) {
 $("#imgPreview").attr('src', '');
}

The ShowPreview() function creates an instance of a FileReader. The FileReader object reads files in
asynchronous fashion and raises a load event when a file is successfully read. That is why the event
handler for the load event needs to be attached before reading the file. A file is read using the
readAsDataURL() method of the FileReader object. readAsDataURL() makes the file content available to the
load event handler in the form of a data URL (Base64 encoded). This content can be accessed using the
result property of the e.target object. The load event handler retrieves the file content using the result
property of the FileReader object and then sets the image’s src attribute to the image content.

The HidePreview() method simply removes the image’s src attribute.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 9 n deaLing with LocaL fiLes using the fiLe api

246

Uploading Files to the Server
It isn’t mandatory that files read by the File API be uploaded to the server. However, in most cases you
upload them to the server so that they can be processed or stored. You can, of course, discard some of the
selected files based on processing logic and upload a subset of the selected files. As far as the File API is
concerned, it doesn’t play any role in uploading the files to the server. It’s your responsibility to devise a
mechanism that takes care of uploading the required files to the server.

Uploading files selected using a file field control or a custom button is easy because all you need to do
is POST the web form to the server. In the server-side code, you can then access the selected file as shown in
Listing 9-22.

Listing 9-22. Uploading Files by POSTing a Web Form

foreach (HttpPostedFile file in FileUpload1.PostedFiles)
{
 string fileName = file.FileName;
 fileName = Server.MapPath("~/uploads/" + fileName);
 file.SaveAs(fileName);
}

In the server-side code, you use the PostedFiles collection of the FileUpload control. Each element of
PostedFiles is of type HttpPostedFile. The SaveAs() method of the HttpPostedFile class allows you to save
an uploaded file to the server.

Uploading files selected using the drag-and-drop technique is slightly tricky. That’s because the
selected files don’t belong to a <form> control, and as such they aren’t POSTed to the server. You need to
programmatically send them to the server. The jQuery $.ajax() method comes to the rescue here too.
Listing 9-23 shows how you can use $.ajax() to upload files.

Listing 9-23. Using $.ajax() to Upload Files

function UploadFiles() {
 var data = new FormData();
 for (var i = 0; i < files.length; i++) {
 data.append(files[i].name, files[i]);
 }
 $.ajax({
 type: "POST",
 url: "UploadFiles.ashx",
 contentType: false,
 processData: false,
 data: data,
 success: function (result) {
 alert(result);
 },
 error: function () {
 alert("There was error uploading files!");
 }
 });
}

This listing shows the UploadFiles() function that uploads the selected files to the server. You can’t
send the File objects from the FileList directly to the server; you first need to convert them into FormData

www.it-ebooks.info

http://www.it-ebooks.info/

247

chapter 9 n deaLing with LocaL fiLes using the fiLe api

objects. As the name suggests, the FormData object represents the form data that should accompany the
request. The append() method of the FormData object allows you to append the individual files that you
wish to upload. The code makes a POST request to a generic handler UploadFiles.ashx, which is
responsible for accepting the posted files and saving them on the server. Upon successful uploading of the
files, a success message is shown to the user.

Notice that the $.ajax() call sets contentType and processData options to false. You don’t need to
provide the content type because the FormData object defaults to a content type of multipart/form-data. If
you don’t set the processData option to false, $.ajax() automatically converts the data being posted to
URL-encoded form, which is undesirable.

Listing 9-24 shows how files POSTed using the $.ajax() method are handled on the server side using
the generic handler UploadFiles.ashx.

Listing 9-24. Saving Files Uploaded Using a Generic Handler

public void ProcessRequest(HttpContext context)
{
 if (context.Request.Files.Count > 0)
 {
 HttpFileCollection files = context.Request.Files;
 foreach (string key in files)
 {
 HttpPostedFile file = files[key];
 string fileName = file.FileName;
 fileName = context.Server.MapPath("~/uploads/" + fileName);
 file.SaveAs(fileName);
 }
 }
 context.Response.ContentType = "text/plain";
 context.Response.Write("File Uploaded Successfully!");
}

The generic handler’s ProcessRequest() method saves the posted file on the server. ProcessRequest()
receives HttpContext as a parameter. This can be used to access intrinsic objects such as Request, Response,
and Server.

The uploaded files are accessed using the Request.Files collection. Each element of the Files
collection is of type HttpPostedFile. The SaveAs() method of the HttpPostedFile class allows you to save a
file on the server. Once all the files are saved, a success message is sent to the client. This message is
displayed in the success function of the $.ajax() call.

Using the File API in ASP.NET MVC
In this section, you develop an ASP.NET MVC application that uses the File API. The application is
intended to serve two purposes: upload XML files to the server, and validate the uploaded files against an
XSD schema.

Consider a hypothetical situation in which a desktop application stores its data as XML files on the
local machine. Periodically you’re required to upload the XML files thus generated to a central web server
for further processing. Such an application can use the File API to do the following:

•	 Ensure that only XML files are being uploaded to the server.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 9 n deaLing with LocaL fiLes using the fiLe api

248

•	 Check that the XML files contain specific XML tags. Although such a validation can’t
replace XSD schema validation, it can act as a first-level validation.

•	 Show a preview of the XML files being uploaded to the server.

The application that you develop in this section resembles Figure 9-11.

Figure 9-11. An ASP.NET MVC application for uploading XML files

The application lets you select files using a file field control or by dragging them from Windows
Explorer. Once the files are selected, the number of files selected is displayed below the basket along with a
list of file names as links. If you hover over the file names, a short preview (up to 500 characters) of the file
content is displayed in the link’s tooltip. When you click the Upload button, all the files are uploaded to the
server and are validated against an XSD schema. If the uploaded XML files don’t match the schema
specifications, an error is returned.

The XML file-uploading application works along the same lines as the image-preview application you
developed earlier; hence this section focuses only on the areas that are different. Listing 9-25 shows the
markup of the application’s index view.

www.it-ebooks.info

http://www.it-ebooks.info/

249

chapter 9 n deaLing with LocaL fiLes using the fiLe api

Listing 9-25. Index View of the XML File-Upload Application

<% using (Html.BeginForm()) { %>
 <div class="message">
 Select files using a field field or drop them on the basket
 </div>
 <%= Html.TextBox("file1", "",new {type="file",multiple="multiple"})%>
 <div class="message">OR</div>
 <div id="basket" class="dropDiv"></div>
 <div id="filecount" class="message"></div>
 <div id="errors" class="error"></div>
 <input id="upload" type="button" value="Upload" />
<%}%>

The <form> consists of a file field control and a basket <div> element acting as a drop target. The
Upload button triggers the file-upload operation. The jQuery code that wires various event handlers is
shown in Listing 9-26.

Listing 9-26. Wiring Event Handlers for Drag-and Drop Events

var files;
$(document).ready(OnChange);
 var basket;
 basket = document.getElementById("basket");
 basket.addEventListener("dragenter", OnDragEnter, false);
 basket.addEventListener("dragleave", OnDragLeave, false);
 basket.addEventListener("dragover", OnDragOver, false);
 basket.addEventListener("drop", OnDrop, false);

 $("#upload").click(UploadFiles);
});

This code declares a global variable, files, that is used later in the code to store a reference to the
selected files. The change event handler of the file field is wired to the OnChange function. Similarly,
dragenter, dragleave, dragover, and drop are wired to OnDragEnter, OnDragLeave, OnDragOver, and OnDrop,
respectively. The OnChange and OnDrop events are important and are shown in Listing 9-27.

Listing 9-27. OnChange and OnDrop Event Handlers

function OnChange(evt) {
 files = evt.target.files;
 ShowFileDetails();
}

function OnDrop(e) {
 e.stopPropagation();
 e.preventDefault();
 files = e.dataTransfer.files;
 ShowFileDetails();
}

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 9 n deaLing with LocaL fiLes using the fiLe api

250

The OnChange event-handler function grabs the selected files using the files property of the file field
control. OnChange then calls a helper function ShowFileDetails() that displays a list of files selected as
anchor elements.

OnDrop grabs the files using the files property of the dataTransfer object and cancels event bubbling.
ShowFileDetails() is then called.

The ShowFileDetails() function is shown in Listing 9-28.

Listing 9-28. ShowFileDetails() Function

function ShowFileDetails() {
 var html = "";
 html += files.length + " files selected!";
 html += "<div class='fileName'>"
 for(var i=0;i<files.length;i++)
 {
 if (files[i].type == "text/xml") {
 html += "" + files[i].name + " ";
 }
 else {
 html += "" + files[i].name + " ";
 }
 }
 html += "</div>";
 $("#filecount").html(html);
 $("a").hover(ShowPreview,HidePreview);
}

The application is intended to upload XML files only, and hence only XML files can be previewed.
ShowFileDetails() iterates through the selected files (files global variable) and checks the type property of
every File object. For XML files, the type property returns text/xml; only such file names are displayed as
anchors. Other file types are displayed as elements and hence can’t be previewed.

The jQuery hover() method binds to the hyperlink elements two handler functions that are invoked
when the mouse pointer enters and leaves the hyperlinks. The ShowPreview() function is responsible for
displaying a short preview of the XML file in the tooltip. This is done by setting the title attribute of the
corresponding anchor elements. Listing 9-29 shows ShowPreview().

Listing 9-29. ShowPreview() Function

function ShowPreview(evt) {
 evt.stopPropagation();
 evt.preventDefault();
 var reader = new FileReader();
 $(reader).bind("load", function (e) {
 var xmlData = e.target.result;
 if (xmlData.length > 500) {
 xmlData = xmlData.substr(0, 500);
 }
 $(evt.target).attr('title', xmlData);
 });
 var fileIndex = $(evt.target).attr('data-file-index');
 reader.readAsText(files[fileIndex]);
}

www.it-ebooks.info

http://www.it-ebooks.info/

251

chapter 9 n deaLing with LocaL fiLes using the fiLe api

ShowPreview() creates a FileReader object. Because XML files are essentially text files, the
readAsText() method is used to read the files. The load event handler of the FileReader accesses the XML
file content using the result property. The XML file may be very large, and for preview purposes only part
of the file (up to 500 characters) is extracted. The title attribute of the underlying anchor element is then
set to the extracted XML data.

The HidePreview() function doesn’t do anything special in this case because the browser
automatically hides the tooltip when mouse pointer leaves a hyperlink under consideration.

The task of uploading the XML files to the server is accomplished by the UploadFiles() function,
shown in Listing 9-30.

Listing 9-30. UploadFiles() Function

function UploadFiles() {
 var data = new FormData();
 for (var i = 0; i < files.length; i++) {
 if (files[i].type == "text/xml") {
 data.append(files[i].name, files[i]);
 }
 }
 $.ajax({
 type: "POST",
 url: "/Upload/UploadFiles",
 contentType: false,
 processData: false,
 data: data,
 success: function (result) {
 $("#errors").empty();
 $("#errors").html(result);
 },
 error: function () {
 alert("There was error uploading files!");
 }
 });
}

UploadFile() iterates through the selected files and appends only the XML files to a FormData object.
The $.ajax() method then makes a POST request to the UploadFiles() action method of the Upload
controller. The contentType and processData options are set to false as before. If there are any schema
validation errors, they’re displayed in a <div> element.

The UploadFiles() action method that saves and validates the XML files is shown in Listing 9-31.

Listing 9-31. UploadFiles() Action Method

[HttpPost]
public JsonResult UploadFiles()
{
 if (Request.Files.Count > 0)
 {
 HttpFileCollectionBase files = Request.Files;
 foreach (string key in files)
 {
 HttpPostedFileBase file = files[key];

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 9 n deaLing with LocaL fiLes using the fiLe api

252

 string fileName = file.FileName;
 fileName = Server.MapPath("~/Content/Uploads/" + fileName);
 file.SaveAs(fileName);

 XmlReaderSettings settings = new XmlReaderSettings();
 settings.Schemas.Add(“”, Server.MapPath(“~/Content/Employees.xsd”));
 settings.ValidationType = ValidationType.Schema;
 settings.ValidationEventHandler += OnValidationError;
 XmlReader reader = XmlReader.Create(fileName, settings);
 while (reader.Read())
 {
 }
 reader.Close();
 }
 }
 Response.ContentType = "text/plain";
 StringBuilder sb = new StringBuilder();
 sb.Append("");
 foreach (string error in errors)
 {
 sb.Append("" + error + "");
 }
 sb.Append("");
 return Json(sb.ToString());
}

void OnValidationError(object sender, ValidationEventArgs e)
{
 string fileName = Path.GetFileName(((XmlReader)sender).BaseURI);
 errors.Add(fileName + " encountered an error - " + e.Exception.Message);
}

The code from Listing 9-31 that saves the uploaded XML files is identical to the previous example. The
code marked in bold is responsible for validating the XML files against an XSD schema file: Employees.xsd.
The Employees.xsd schema file expects the XML markup in the format shown in Listing 9-32.

Listing 9-32. Sample XML File

<?xml version="1.0" encoding="utf-8" ?>
<employees>
 <employee employeeid="1">
 <firstname>Nancy</firstname>
 <lastname>Davolio</lastname>
 <homephone>(206) 555-9857</homephone>
 <notes>
 <![CDATA[...]]>
 </notes>
 </employee>

Although this example uses a fixed schema file, you can pick a schema file based on a condition. The
XmlReader class is used to read XML documents. The XmlReaderSettings class attaches Employees.xsd to
the XmlReader. When you call the Read() method of the XmlReader class, the XML document is read and

www.it-ebooks.info

http://www.it-ebooks.info/

253

chapter 9 n deaLing with LocaL fiLes using the fiLe api

validated against the schema. If there are any validation errors, the ValidationEventHandler event is
raised. The event-handler function OnValidationError stores the XML file name and the error message in a
generic list.

Once all the uploaded XML files are validated, the code iterates through the generic list of errors and
creates a bulleted list of the error messages. The error list is returned to the jQuery success function by
converting it to JSON format.

To test the application, run it and try uploading XML files—some matching the schema and some
violating the schema (for example, keep some <employee> elements without an employeeid attribute). You
should get error messages for any invalid XML files.

Summary
HTML5’s File API allows you to read files residing in the user’s local file system. The files, however, must be
explicitly selected by the user using a file field control’s Open File dialog or by dragging them from
Windows Explorer and dropping them onto a predefined area of a web page.

The File API consists of three main objects: File, FileList, and FileReader. The File object gives
information about a file such as its name, size, and MIME type. The FileList object is a collection of File
objects and is obtained either via the files property of a file field or via the files property of a dataTransfer
object. The FileReader object lets you read selected files in asynchronous fashion.

Although drag-and-drop is an independent feature of HTML5, it can be coupled with the File API to
enhance the user experience. Selected files can be uploaded to the server using the $.ajax() method.

The next chapter introduces another interesting feature—web workers—that allows you to run code
in the background. Web workers are like threads used in a multithreaded desktop application in that they
let you run lengthy processes in the background without obstructing the user interface.

www.it-ebooks.info

http://www.it-ebooks.info/

255

n n n

chapter 10

Multithreading in Web Pages
Using Web Workers

The creators of JavaScript invented the language as an aid to developing interactive web pages. HTML
markup by itself is purely static in nature and lacks any programming abilities. JavaScript was introduced
to compensate for this lack of programmability. Considering the needs that were felt that time, JavaScript
was created as a simple, lightweight, easy-to-use language.

In earlier days, JavaScript was primarily used to add interactivity and fancy graphical effects to
otherwise static web pages. However, over the years the situation has changed dramatically. Modern web
applications rely extensively on JavaScript for a variety of tasks. A web page of a modern web application
no longer uses JavaScript merely for fancy hover effects or animations. It relies heavily on JavaScript for
business validations, making Ajax calls to the server, and business domain-specific processing.

A web page that uses JavaScript executes the script in foreground. That means as long as the script is
running, user interaction with the page is blocked. In other words, user interactions and the script run on
a single thread. Such an approach can be troublesome when the script is performing an intensive and
time-consuming operation. To overcome this limitation, HTML5 and JavaScript provide web workers that
allow you to run JavaScript processing in the background. This chapter gives you a detailed understanding
of web workers. Specifically, you learn the following:

•	 What web workers are and how they work

•	 Flavors of web workers

•	 Restrictions on web workers

•	 Using web workers to develop a multithreaded web page

•	 Communicating with the server from the worker thread

Overview of Multithreading in Web Pages
If you’ve ever developed desktop applications in C# or Visual Basic, chances are you’re aware of the Thread
class residing in the System.Threading namespace. The Thread class represents a thread. A thread is the
smallest unit of processing. When you run any application, the application code runs on a thread. Threads
are handled by the operating system, and most modern programming languages provide classes that

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 10 n MuLtithreading in web pages using web workers

256

encapsulate them. A single-threaded application runs all the code (including user interface and business
processing) in a single thread. A multithreaded application runs application code in multiple threads.

A multithreaded application offers the following benefits:

•	 It can significantly improve the application’s user responsiveness. This benefit is
useful when you’re developing web applications. Rather than your JavaScript code
blocking user interactions, by using multithreading you can keep the user interface
responsive as the script runs in the background.

•	 It can improve the overall performance of your application. However, this benefit
depends on several other factors such as number of CPUs and whether the code is
running locally or remotely. Although a detailed discussion of how multithreading
affects application performance is beyond the scope of this book, suffice to say that
multithreading can improve the performance of an application that runs on a
machine with multiple processors rather than a single processor. This is so because
a multiprocessor machine can run different threads on different processors
simultaneously, resulting in improved performance.

Now that you have a basic idea of single-threaded and multithreaded applications, let’s apply these
concepts to a web page. Consider the markup shown in Listing 10-1.

Listing 10-1. Web Page Running the UI and JavaScript in a Single Thread

<head>
 …
 <script type="text/javascript">
 $(document).ready(function () {
 if (!Modernizr.webworkers) {
 alert("This browser doesn't support HTML5 Web Workers!");
 return;
 }
 $("#button1").click(function () {
 alert("Processing started!");
 var date = new Date();
 var currentDate = null;
 do {
 currentDate = new Date();
 }
 while (currentDate - date < 10000);
 alert("Processing done!");
 });
 });
 </script>
</head>
<body>
…
 <input id="button1" type="button" value="Click" />
…
</body>

This markup consists of a button and a block of JavaScript that is executed when the button is clicked.
The ready() function uses Modernizr to check whether the browser supports web workers. This is done by

www.it-ebooks.info

http://www.it-ebooks.info/

257

chapter 10 n MuLtithreading in web pages using web workers

checking the webworkers property of the Modernizr object. If the browser doesn’t support web workers, an
error message is displayed to the user.

The button’s click event handler first displays an alert box to indicate the start of processing. The do-
while condition is written in such a way that it simply loops for 10 seconds. The looping is achieved by
calculating the difference between the current date-time and the date-time when the looping operation
begins. The do-while loop is intended to mimic lengthy processing. In a real-world application, you have
actual business processing instead of the loop. Once the loop is exited, another alert box flags the end of
processing.

If you run this web page in the browser and click the button, you obviously get to see the start and end
alert boxes; but more important, you observe that while the loop is running, the web page’s UI becomes
nonresponsive. During this time, your browser stops responding to keyboard inputs and mouse operations
such as clicking and scrolling. These operations may be queued and played when the do-while loop is
finished, but as long as the loop is running, the UI doesn’t respond. The reason for this bottleneck is that
the UI and the JavaScript are running on the same thread. So, at any given time, either the script can run or
the UI can function.

The UI bottleneck can be avoided if you run the JavaScript code in a thread of its own. Consider Figure
10-1.

Look at the single-threaded execution model shown in the figure. In this case, the same thread runs
the JavaScript code and also handles user interactions. Now look at the multithreaded execution model.
Here the UI is handled by a dedicated thread (UI thread), and the JavaScript is executed in a thread of its
own. The thread running the JavaScript is often called a worker thread because its primary job is
processing. Typically, a worker thread doesn’t have access to the UI-level elements. It can, however, receive
input from the UI thread and may return the result of the processing back to the UI thread. In the
multithreaded model, the UI thread is also referred as a foreground thread and the worker thread as a
background thread. In HTML5 terms, a worker thread is called a web worker and is represented by the
Worker object.

Figure 10-1. Single-threaded and multithreaded execution in web pages

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 10 n MuLtithreading in web pages using web workers

258

Figure 10-1 shows only one worker thread, but you can spawn as many threads as you want.
Remember, though, that each additional thread has overhead and may eventually degrade application
performance. In many web applications, just one worker thread is sufficient for background processing
needs.

Types of Web Workers
HTML5 web workers come in two flavors: dedicated and shared. Dedicated web workers are attached to
the web page that creates them. They come into existence and die with the associated web page. Their
scope is the web page in which they’re created. In other words, dedicated web workers can be used only by
a single web page. A dedicated web worker is represented by the Worker object.

Shared web workers are created by a web page, but once created they can be shared by multiple web
pages within the same web application (that is, having the same origin). Creating a web worker requires
resources. If you find yourself executing the same script in many pages of your web application, you may
want to use shared web workers instead of creating a new thread in every web page. However, compared to
dedicated web workers, they’re more complex to code and are best used only in cases where you need to
share a thread across multiple application pages. A shared web worker is represented by the SharedWorker
object.

What Web Workers Can Access and What They Can’t
Although web workers solve the problem of a blocked UI by running JavaScript processing in a separate
thread, they also require careful design of the JavaScript code. As mentioned in the previous sections, web
workers are worker threads and can’t have any UI-level access. That means you can’t access any DOM
elements in the JavaScript code that you intend to run using web workers. This implies the following:

•	 Web workers can’t access HTML elements from the web page.

•	 Web workers don’t have access to global variables and JavaScript functions from the
web page.

•	 Web workers can’t use functions such as alert() and confirm() that require user
attention.

•	 Objects such as window, document, and parent can’t be accessed in the web-worker
code.

•	 You can’t use the jQuery library in web-worker code.

You may wonder why web workers can’t access the HTML DOM. The main reason behind this
restriction is that it isn’t thread-safe to do so. Suppose, for example, that two web workers are running in
the background. If both are allowed to access the HTML DOM, it’s possible that one web worker may
accidently overwrite the changes made by the other web worker. In the absence of any synchronization
between multiple threads, such an execution is bound to produce unwanted results. That’s why HTML5
web workers don’t allow individual worker threads to access the DOM elements. When you pass data from
the web page to the web worker, a copy of the data is sent to the worker thread. Each worker thread
maintains its own data that is local to that worker thread.

A side effect of the “no DOM access” rule is that you can’t use the jQuery library in web workers. The
jQuery library is tied to the HTML DOM, and allowing it would violate the previous rule. This can be a little
painful because even methods such as $.ajax() can’t be used in web workers. Luckily, you can use the
XMLHttpRequest object to make Ajax requests.

www.it-ebooks.info

http://www.it-ebooks.info/

259

chapter 10 n MuLtithreading in web pages using web workers

You can access navigator and location objects in the web-worker code. You can also use the
setTimeout(), setInterval(), clearTimeout(), and clearInterval() methods in web workers.

n Note The XMLHttpRequest object is covered in Chapter 11. For the purpose of this chapter, it’s sufficient to
know that XMLHttpRequest is an object that allows you to make requests (GET/POST) to server-side resources.
Instead of using the $.ajax() method you can use XMLHttpRequest object to call web methods, MVC action
methods, and generic handlers.

Using Web Workers
Now that you have a basic understanding of what web workers are and what they can do, let’s convert the
web page from Listing 10-1 so that it doesn’t block the UI. This essentially calls for running the processing
logic (do-while loop) in a worker thread, to free up the UI thread to handle user interactions. Listing 10-2
shows how this can be done.

Listing 10-2. Creating a Web Worker

<script type="text/javascript">
 var worker;
 $(document).ready(function () {
 $("#btnStart").click(function () {
 worker = new Worker("scripts/processing.js");
 worker.addEventListener("message", ReceiveMessageFromWorker, false);
 worker.postMessage("Hello Worker!");
 });
</script>

This code creates a global variable—worker—in a web form. This global variable is used to store the
web worker object you create in the button’s click event handler. The ready() function wires the click
event handler of btnStart. In the click event handler the code creates a new Worker object. The JavaScript
code that you wish to execute in a worker thread is placed in a separate script file. The path of the script
file (scripts/processing.js) that includes the JavaScript code to be executed in the Worker is passed to the
constructor.

Although not mandatory, often you’re interested in receiving the result of processing from the worker
thread so you know the outcome. The message event of the Worker object lets you listen to messages sent by
the worker thread. The addEventListener() method wires the message event to the
ReceiveMessageFromWorker() function. ReceiveMessageFromWorker()is a developer-defined function and is
discussed shortly. The code then calls the postMessage() method of the Worker object. postMessage() acts
as a trigger for starting the worker thread. You can pass it input data as a parameter. Although the code
passes a string to the worker thread, the data can be in some other form such as a JSON object. If you don’t
want to pass any data, you can simply pass an empty string.

ReceiveMessageFromWorker() displays the result of processing as returned by the worker thread, like
this:

function ReceiveMessageFromWorker(evt) {
 alert(evt.data);
}

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 10 n MuLtithreading in web pages using web workers

260

The evt.data property returns the processing result sent by the worker thread. The actual processing
(do-while loop) now resides in the Processing.js script file (see Listing 10-3).

Listing 10-3. Code Running in a Worker Thread

addEventListener("message", ReceiveMessageFromPage, false);

function ReceiveMessageFromPage(evt) {
 var date = new Date();
 var currentDate = null;
 do {
 currentDate = new Date();
 }
 while (currentDate - date < 10000);
 postMessage("Page said : " + evt.data + "\r\n Worker Replied : Hello Page!");
}

Earlier, you wired the web page’s message event handler to receive the message sent by the worker
thread. Along the same lines, you need to wire the message event handler for the Worker to receive the
message sent by the web form. The addEventHandler() call in Listing 10-3 does that job. The message event
for the worker thread is raised when the web form calls the postMessage() method on the Worker object. In
this case, the Worker’s message event is handled by the ReceiveMessageFromPage() function.

ReceiveMessageFromPage() contains the same do-while loop as before. Notice, however, that there are
no alert() calls because the worker thread can’t have user interactions. Once the do-while loop completes,
the worker thread calls postMessage() to send the processing result back to the web form. Notice how the
data sent by the web form (“Hello Worker!”) is retrieved in ReceiveMessageFromPage() using the evt.data
property.

Figure 10-2 shows a sample run of the web form.

The web form passes the string “Hello Worker!” to the worker thread. The worker thread forms a string
by prefixing the evt.data value with “Page said :” and suffixing “Worker Replied : Hello Page!”. The string is
then returned to the web form. The ReceiveMessageFromWorker() function written in the web form displays
the return value in an alert() box. Using the web worker object, the UI isn’t blocked when you click the
Start Work button. You can interact with the page freely because the processing is taking place in the
background. When the processing is finished, you’re notified and the result of the processing is displayed.

To make the interaction between the web form and the worker thread clear, Figure 10-3 displays the
working of this application in pictorial form.

Figure 10-2. Processing.js running in a worker thread

www.it-ebooks.info

http://www.it-ebooks.info/

261

chapter 10 n MuLtithreading in web pages using web workers

As shown in the figure, the sequence of execution is as follows:

1. The user clicks the Start Work button.

2. postMessage() is called, and “Hello Worker!” is sent to the worker thread.

3. The worker’s message event is raised, and the ReceiveMessageFromPage() function
handles it.

4. postMessage() is called, and “Hello Page!” is returned to the page.

5. The page’s message event is raised, and the ReceiveMessageFromWorker() function
handles it.

6. An alert box is shown to the user.

Importing External Script Files
In the preceding example, the entire processing logic was included in a single file. At times, your
processing logic may reside in different script files. In a normal web page, one or more <script> tags point
to the files and consume their functionality. However, the same trick doesn’t work with web workers
because web workers don’t have access to any DOM elements, including <script>.

There is an alternative with web workers: the importScripts() function. You use importScripts() in
the script file intended to run on a worker thread. The importScripts() function takes a comma-separated
list of script files that you wish to refer to and imports them into the current file in synchronous fashion.
The files are executed in the order you specify when calling importScripts(). The following code shows a
sample usage of importScripts():

importScripts("Helper1.js");
importScripts("Helper1.js","Helper2.js","Helper3.js");

Figure 10-3. Pictorial representation of web worker execution

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 10 n MuLtithreading in web pages using web workers

262

The first call to importScripts() imports the Helper1.js file. The second call imports three files:
Helper1.js, Helper2.js, and Helper3.js. The scripts in the second call are executed in the order specified.

Handling Errors
Typically, web workers involve lengthy processing, and at times they may encounter unexpected errors.
Because web workers don’t have access to DOM, they can’t report the errors by displaying dialog boxes or
alerts. Any unhandled errors in the worker thread raise error event. The web page can wire an event
handler to the error event of the web worker object and be notified when there is any error. Listing 10-4
shows how this is done.

Listing 10-4. Handling Errors

$("#btnStart").click(function () {
 worker = new Worker("scripts/Processing.js");
 worker.addEventListener("message", ReceiveMessageFromWorker, false);
 worker.addEventListener(“error”, HandleError, false);
 worker.postMessage("Hello Worker!");
});

function HandleError(evt) {
 var msg="There was an error in the worker thread!\r\n";
 msg += "Message : " + evt.message + "\r\n";
 msg += "Source : " + evt.filename + "\r\n";
 msg += "Line No. : " + evt.lineno;
 alert(msg);
}

Notice the line of code shown in bold. The addEventListener() method attaches an event-handler
function HandleError() to the error event. The HandleError() function receives an ErrorEvent object. The
three properties of the ErrorEvent—message, filename, and lineno—give you the error message, the file
name in which error occurred, and the line number at which the error occurred. Figure 10-4 shows a
sample run of the HandleError() event-handler function.

The alert box shows the error message “Uncaught Unexpected Error !!!”. It also tells the user that the
source of the error is Processing.js and that there is problem at line 6.

Figure 10-4. Error details being displayed by handling the error event

www.it-ebooks.info

http://www.it-ebooks.info/

263

chapter 10 n MuLtithreading in web pages using web workers

Terminating Web Workers
When you trigger a lengthy operation on a web worker, the only way you hear back from the worker thread
is when it sends you the result of processing using the postMessage() method or when an error takes place
during the execution of the worker thread. If the operation being executed on the worker thread is long-
running, you may wish to allow the user to cancel the operation before its completion. The Worker object’s
terminate() method allows you to do that. The following piece of code shows how you use terminate():

$("#btnStop").click(function () {
 worker.terminate();
});

This code handles the click event of a button (btnStop) and cancels the operation running on the
worker thread by calling terminate(). Once a web worker is terminated, you can’t reuse or restart it. The
only way to restart the operation is to create a new Worker object.

Monitoring Web Workers During Development
As an ASP.NET developer, you interact with web workers using the Worker object. You don’t need to know
the internal details of how the browser creates and manages the threads. However, during the
development and testing phase, you may want to see the effect of using web workers on the number of
threads created by the browser. If so, you can use the Windows Resource Monitor to peek inside the
browser’s internal thread handling. You can access the Resource Monitor from the Performance tab of the
Task Manager dialog.

Figure 10-5 shows entries for Chrome.exe in the Resource Monitor when the web form you developed
earlier is loaded in Chrome.

Figure 10-5. Resource Monitor showing thread utilization

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 10 n MuLtithreading in web pages using web workers

264

As you can see, before the Start Work button is clicked, the thread counts for two instances of
Chrome.exe are 29 (main process) and 6 (a single tab), respectively. When the Start Work button is clicked,
thread utilization changes to 29 and 7, respectively. As you might guess, the thread count increments from
6 to 7 due to the creation of a web worker. When the web worker completes, however, the count doesn’t go
back to 6: although the operation has completed, the web worker is still active and will be reclaimed when
the page is closed. If you click the Stop Work button that calls the terminate() method, the thread count
goes back to 6 because you’re explicitly terminating the thread. If you click the Start Work button multiple
times without first terminating the previous worker thread, the thread count keeps incrementing,
indicating that the previous thread isn’t immediately reclaimed by the browser.

n Note The previous thread counts (29 and 6) are taken from a sample run of the web form. The values may vary
from browser to browser or even across multiple runs on the same browser. The point is to provide insight as to how
the browser creates and destroys the worker threads.

Using Shared Web Workers
Creating and managing a worker thread is a resource-intensive operation. As you observed in the
preceding section, dedicated web workers are created on per-page basis. If many pages of your web
application need to execute the same script, using dedicated web workers may be costly in terms of thread
utilization and memory. For example, if you open three web pages in three browser tabs, and each creates
a Worker object, then three worker threads are created and naturally resource consumption is high. In such
cases, you can use shared web workers, represented by the SharedWorker object.

As the name suggests, shared web workers share a worker thread across multiple pages of the web
application. For example, suppose you have three web pages Page1, Page2, and Page3. All of them wish to
execute the same script file, SharedProcessing.js. Let’s further assume that Page1 is loaded in the browser
and an instance of SharedWorker is created for running SharedProcessing.js. Later, Page2 is loaded in the
browser and also tries to create an instance of SharedWorker to run SharedProcessing.js. However,
because Page1 has already created a SharedWorker for processing SharedProcessing.js, Page2 doesn’t
create a new worker thread; instead it uses the same SharedWorker created earlier to get the job done. The
same procedure is followed if Page3 is loaded in the browser. A shared web worker is reclaimed only when
all the connections using it are closed.

Although using shared web workers conserves system resources, the downside is that they’re slightly
more complex to code than dedicated web workers. To understand how shared web workers are
programmed, let’s modify the earlier example to use the SharedWorker object.

Listing 10-5 illustrates how a SharedWorker object is created in a web form.

Listing 10-5. Creating a SharedWorker Object

<script type="text/javascript">
 var worker;
 $(document).ready(function () {
 $("#btnStart").click(function () {
 worker = new SharedWorker("scripts/SharedProcessing.js");
 worker.port.addEventListener("message", ReceiveMessageFromWorker, false);
 worker.port.start();
 worker.port.postMessage("Hello Shared Worker!");
 });
 });

www.it-ebooks.info

http://www.it-ebooks.info/

265

chapter 10 n MuLtithreading in web pages using web workers

...
</script>

This code creates a global variable named worker to hold the SharedWorker reference. The ready()
function wires the click event handler of the Start Work button. In the click event handler, an instance of
SharedWorker is created. A JavaScript file path that this shared web worker is supposed to run
(SharedProcessing.js) is passed in the constructor.

In the case of the Worker object, the message event is raised on the object. In the case of SharedWorker,
however, the message event is raised on the port object of the SharedWorker instance. That’s why the
addEventListener() method is called on the port object. addEventListener() wires an event handler
function—ReceiveMessageFromWorker()—to the message event. Next, you need to call the port object’s
start() method to start that port. Finally, postMessage() is called on the port object, and a string message
is sent to the shared worker thread. The ReceiveMessageFromWorker() function that acts as the message
event handler is as follows:

function ReceiveMessageFromWorker(evt) {
 alert(evt.data);
}

This function simply displays in an alert box the data sent back by the shared worker thread.
This completes the web form–level code. Now let’s see what goes in the SharedProcessing.js file

(Listing 10-6).

Listing 10-6. Code Running in a Shared Web Worker

var port;
addEventListener("connect", ReceiveMessageFromPage, false);

function ReceiveMessageFromPage(evt) {
 port = evt.ports[0];
 port.addEventListener("message", SendMessageToPage, false);
 port.start();
}

function SendMessageToPage(evt) {
 var date = new Date();
 var currentDate = null;
 do {
 currentDate = new Date();
 }
 while (currentDate - date < 10000);
 port.postMessage("Page said : " + evt.data +
 "\r\n Shared Worker Replied : Hello Page!");
}

This code begins by creating a global variable named port to hold a reference to a port object.
Whenever a new SharedWorker object obtains a reference to a shared worker thread, the connect event is
raised. To receive any messages from the web form in which the SharedWorker object exists, you need to
handle this event. The addEventListener() method attaches an event-handler function—
ReceiveMessageFromPage()—to the connect event.

The ReceiveMessageFromPage() event-handler function grabs the port object of the incoming
communication using evt.ports[0]. Although it appears that the ports array might have more than one

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 10 n MuLtithreading in web pages using web workers

266

port object, in the current implementation of shared web workers there is always only one port in the
ports array; thus you access the port object at array index 0.

The addEventListener() method wires an event-handler function—SendMessageToPage()—for the
port object’s message event. The start() method of the port object starts the communication channel.

n Note Although it isn’t used in this example, the port object also has a close() method. This method closes a
port and stops any further communication on that port.

The SendMessageToPage() event-handler function contains the same processing logic (do-while loop)
as before. To send the result of the processing back to the web form, postMessage() is called on the port
object. The string message sent by the web form is retrieved using the evt.data property, and extra string
data is appended to it.

If you run the web form and click the Start Work button, you should see an alert box as shown in
Figure 10-6.

Figure 10-6. Shared web worker in action

Figure 10-6 shows that the script is being executed properly by the shared web worker. If you wish to
see the effect on thread utilization of using shared web workers, open the Resource Monitor and look at
the entries for Chrome.exe as before (Figure 10-7).

Figure 10-7 shows the Resource Monitor when the web form is open in two Chrome tabs. In all, there
are four active entries for Chrome.exe. The one with 29 threads is for the main browser window. Every open
tab takes 6 threads. So, the 2 entries with 6 threads each are for the 2 tabs in which the web form is loaded.
Another set of 6 threads is created when you click the Start Work button for the first time; they’re used for
running the shared web workers. If you click Start Work multiple times, there is no further increase in the
thread count because the previously created shared worker threads are reused by subsequent requests.

n Note Subsequent executions of the script running in a shared web worker get the previous state of the global
variables. Also, if a shared web worker is already being used by a page, other pages interested in gaining access to
the same shared web worker need to wait until the current processing is complete.

www.it-ebooks.info

http://www.it-ebooks.info/

267

chapter 10 n MuLtithreading in web pages using web workers

Communicating With the Server
Web workers may need to make requests to server-side resources for their functioning. For example, a
script running in a web worker may need to retrieve data residing in a SQL Server database. To fulfill this
requirement, you may immediately think of using the jQuery $.ajax() method. After all, throughout this
book you’ve been using jQuery to make Ajax calls to the server. However, you can’t use jQuery with web
workers because jQuery requires DOM access. As mentioned previously, web workers don’t have access to
any DOM elements. So, if you wish to make Ajax calls to the server, you need to use the XMLHttpRequest
object.

Listing 10-7 uses XMLHttpRequest to access a server-side resource.

Listing 10-7. Using the XMLHttpRequest Object to Make Ajax Calls

function GetOrders(customerId) {
 var xhr = new XMLHttpRequest();
 xhr.open("POST", "/Home/GetOrders");
 xhr.setRequestHeader('Content-Type', 'application/json');
 xhr.onreadystatechange = function () {
 if (xhr.readyState == 4) {
 postMessage(xhr.responseText);
 }
 }
 var param = '{ "customerid": "' + customerId + '"}';
 xhr.send(param);
}

Figure 10-7. Observing shared worker threads using the Resource Monitor

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 10 n MuLtithreading in web pages using web workers

268

This code shows a JavaScript function—GetOrders()—intended to retrieve order data for a specific
customer from the SQL Server. The GetOrders() function accepts a customer ID whose orders are to be
retrieved.

Inside, the function creates a new instance of XMLHttpRequest. The open() method of the
XMLHttpRequest object opens a communication channel with a remote request. The first parameter of the
open() method is the type of request (GET/POST) being made, and the second parameter is the location of
the remote resource. In this example, a POST request is made to an MVC action method named GetOrders.
The XMLHttpRequest object’s setRequestHeader() method sets the MIME content type of the request to
application/json.

The XMLHttpRequest object raises the onreadystatechange event when the state of the request changes.
The onreadystatechange event-handler function checks the readyState property of the XMLHttpRequest
object. The readyState object indicates the current state of the request and can have values from 0 to 4. A
value of 4 indicates that the request is completed. If the request is completed, you can use the
postMessage() method to send the data returned by the remote resource back to the web page. The
responseText property of the XMLHttpRequest object returns the response from the remote resource. In this
case, the MVC action method is assumed to return data in JSON format, and hence responseText is sent
directly to the web page.

To initiate the request, you need to call the XMLHttpRequest object’s send() method. send() takes
request parameters, if any. Because you wish to send request data in JSON format, you convert the
customer ID to a JSON object and then pass it as a parameter to send().

Using Web Workers That Require Server-side Data
In this final example, you develop an ASP.NET MVC application that uses web workers to fetch data from
the server and display it in a view. The main view of the application is shown in Figure 10-8.

Figure 10-8. Order History application

www.it-ebooks.info

http://www.it-ebooks.info/

269

chapter 10 n MuLtithreading in web pages using web workers

The Order History application lets the user specify a customer ID along with a date range. It then
fetches all the existing order data from the Orders and Order Details tables of the Northwind database
and returns them to the view. The Entity Framework data model for the Orders and Order Details tables is
shown in Figure 10-9.

Figure 10-9. Entity Framework data model for the Orders table

Although the Order and Order_Detail classes have several properties. For the purpose of this example,
you use only some of them: OrderID, CustomerID, OrderDate, Quantity, and UnitPrice. The total amount of
an order is calculated in the JavaScript code.

Order History View
The view displays the order information in an HTML table. The task of fetching Order records from the SQL
Server database is accomplished using a web worker. The HTML markup from the view is shown in Listing
10-8.

Listing 10-8. HTML Markup of the Order History View

<form id="form1" runat="server">
 <h3>Order History</h3>
 <div>Customer ID :</div>
 <input id="customerID" type="text" />

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 10 n MuLtithreading in web pages using web workers

270

 <div>Start Date :</div>
 <input id=”startDate” type=”date” />
 <div>End Date :</div>
 <input id=”endDate” type=”date” />

 <input id="getOrders" type="button" value="Get Orders" />

 <table id="orderTable" border="1" cellPadding="3"></table>
</form>

The Order History view consists of a text box to specify a customer ID and two date fields. Notice the
markup in bold: the <input> fields accepting date range are of type date. This way, browsers capable of
showing a pop-up date picker can render the fields accordingly. Clicking the Get Orders button triggers the
web-worker operation. The returned order details are displayed in the orderTable HTML table.

Creating a Web Worker
After entering a customer ID and a date range for selecting Order records, the user clicks the Get Orders
button. The jQuery code responsible for creating a web worker and executing the required script is
contained in this button’s click event handler; see Listing 10-9.

Listing 10-9. Creating a Web Worker to Fetch Order Records

var worker;
$(document).ready(function () {
 …
 $("#getOrders").click(function () {
 $(this).attr("disabled", "disabled");
 $(this).val("Wait...");
 worker = new Worker("../../scripts/Processing.js");
 worker.addEventListener("message", ReceiveDataFromWorker, false);
 worker.addEventListener("error", HandleError, false);
 var settings = { "CustomerID": $("#customerID").val(),
 "StartDate": $("#startDate").val(),
 "EndDate": $("#endDate").val() };
 worker.postMessage(settings);
 });
});

The code first declares a global variable (worker) to store a reference to the web worker. The ready()
function wires the click event handler of the Get Orders button. The click event-handler function
disables the button by adding a disabled attribute to it using the jQuery attr() method. This is done so
the user can’t click the button multiple times and thus create multiple worker threads. To give a hint to the
user that processing is going on, the value of the button is changed to “Wait…” using the val() method.

A new Worker object is then instantiated. The JavaScript code that fetches data from the server resides
in Processing.js, and the path of the script file is specified while creating the Worker object. Then the
event-handler functions for the message and error events are attached using the addEventListener()
method. The respective event-handler functions, ReceiveDataFromWorker() and HandleError(), are
discussed shortly.

The view needs to pass three pieces of information to the worker thread: the customer ID whose order
details are to be fetched, the start date, and the end date. The postMessage() method can take only one

www.it-ebooks.info

http://www.it-ebooks.info/

271

chapter 10 n MuLtithreading in web pages using web workers

parameter to pass to the worker thread. Hence, these pieces of data are grouped in a JSON object with
three properties: CustomerID, StartDate, and EndDate.

To begin processing, the Worker object’s postMessage() method is invoked and the JSON settings
object is passed to it as a parameter.

Event Handlers for message and error Events
The ReceiveDataFromWorker() event-handler function receives the order data returned by the worker
thread. This function is shown in Listing 10-10.

Listing 10-10. Receiving and Displaying Order Details

function ReceiveDataFromWorker(evt) {
 var data = evt.data;
 $("#orderTable").empty();
 $("#orderTable").append("<tr><th>Order ID</th><th>Customer ID</th>
 <th>Order Date</th><th>Order Amount</th></tr>");
 for (var i = 0; i < data.length; i++) {
 $("#orderTable").append("<tr>" +
 "<td>" + data[i].OrderID + "</td>" +
 "<td>" + data[i].CustomerID + "</td>" +
 "<td>" + ToJSDate(data[i].OrderDate) + "</td>" +
"<td>" + data[i].OrderAmount + "</td>" +
 "</tr>");
 }
 $("#getOrders").removeAttr("disabled");
 $("#getOrders").val("Get Orders");
}

ReceiveDataFromWorker() receives order data from the worker thread as an array. Each element of the
array represents an order and has properties: OrderID, CustomerID, OrderDate, and OrderAmount. The evt.
data property gives you access to this array.

The orderTable HTML table is emptied to remove any previously added rows. A for loop iterates
through the JSON collection. With every iteration, a row is added to the table and the OrderID, CustomerID,
OrderDate, and OrderAmount property values are displayed.

Notice that unlike OrderID and CustomerID, OrderDate isn’t directly displayed in the table. The
OrderDate value is first passed to a helper function—ToJSDate()—and the return value of ToJSDate() is
displayed in the table. The OrderDate column is a date-time column in the database, but the JSON format
doesn’t have a date data type. So, when dates are serialized from the server to the client, they’re sent in a
special format. For example, if OrderDate is 8/12/1996 (mm/dd/yyyy) in the database, the JSON equivalent
is /Date(839788200000)/. The number in Date() is the number of milliseconds between that date and
midnight of 1 January 1970. The ToJSDate() helper function converts this cryptic-looking value into a
readable form. ToJSDate() is shown in Listing 10-11.

Listing 10-11. Converting a JSON Date Value into a JavaScript Date

function ToJSDate(value) {
 var pattern = /Date\(([^)]+)\)/;
 var results = pattern.exec(value);
 var dt = new Date(parseFloat(results[1]));
 return (dt.getMonth() + 1) + "/" + dt.getDate() + "/" + dt.getFullYear();
}

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 10 n MuLtithreading in web pages using web workers

272

ToJSDate() uses regular expression and the JavaScript exec() method. exec() is called on a regular
expression and accepts a parameter. It tests the specified value against the regular expression and returns
the matched text. A new JavaScript Date object is then constructed, and a date string in mm/dd/yyyy
format is returned to the caller.

n Note JSON doesn’t have a specific format to represent date and time. This poses difficulty when you’re
serializing and deserializing date-time data between client and server. A recent trend is to use the ISO date and time
format on the wire (for example, Json.NET and the Web API use this format). In ISO format, a date and time are
represented as follows: YYYY-MM-DDThh:mm:ssTZD (for example, 2010-08-20T19:20:10+01:00).

After the order details are displayed in the HTML table, the button is enabled again by removing the
disabled attribute added previously. The button value is again set to Get Orders.

The event handler of the error event simply displays an error message in an alert box, as follows:

function HandleError(evt) {
 var msg="There was an error in the worker thread!\r\n\r\n";
 msg += "Message : " + evt.message + "\r\n";
 msg += "Source : " + evt.filename + "\r\n";
 msg += "Line No. : " + evt.lineno;
 alert(msg);
 }

The HandleError() function displays the error message, source file name, and line at which the error
occurred using the three properties of the ErrorEvent object: message, filename, and lineno.

Code Running in the Web Worker
Now that you’ve finished coding the view, let’s move to the Processing.js file that is executed by the web
worker. The JavaScript from Processing.js retrieves order data from the server using the XMLHttpRequest
object. Listing 10-12 shows the contents of Processing.js.

Listing 10-12. Retrieving Data from the Server Using XMLHttpRequest

addEventListener("message", ReceiveMessageFromPage, false);

function ReceiveMessageFromPage(evt) {
 GetOrders(evt.data);
}

function GetOrders(settings) {
 var xhr = new XMLHttpRequest();
 xhr.open("POST", "/Home/GetOrders");
 xhr.setRequestHeader('Content-Type', 'application/json');
 xhr.onreadystatechange = function () {
 if (xhr.readyState == 4) {
 var data = JSON.parse(xhr.responseText);
 var orderAmount = 0;
 var finalData = new Array();
 var currOrderId = data[0].OrderID;

www.it-ebooks.info

http://www.it-ebooks.info/

273

chapter 10 n MuLtithreading in web pages using web workers

 for (var i = 0; i < data.length; i++) {
 if (data[i].OrderID != currOrderId || i == (data.length - 1)) {
 if (i == (data.length - 1)) {
 orderAmount += (data[i].Quantity * data[i].UnitPrice);
 }
 finalData.push({ CustomerID: data[i].CustomerID,
 OrderID: currOrderId,
 OrderAmount: orderAmount,
 OrderDate: data[i].OrderDate });
 currOrderId = data[i].OrderID;
 orderAmount = 0;
 }
 orderAmount += (data[i].Quantity * data[i].UnitPrice);

 }
 postMessage(finalData);
 }
 }
 var param = JSON.stringify(settings);
 xhr.send(param);
}

This code attaches an event handler for the web worker’s message event. The event-handler function
ReceiveMessageFromPage() calls another function, GetOrders(). Recollect that the view passes a JSON
object containing a customer ID and a date range to the worker thread. This JSON object is obtained using
the evt.data property and passed to the GetOrders() function.

GetOrders() creates a new instance of XMLHttpRequest and opens a POST request with a controller
action method (Home/GetOrders). The Content-Type header is set to application/json because the data
being sent as a part of the request is in JSON format.

The onreadystatechange event-handler function checks the readyState property of the
XMLHttpRequest object. If readyState is 4 (meaning the request is complete), it processes the returned data.
The value of the responseText property is converted into JSON format using the JSON.parse() method. A
for loop iterates through the order data and calculates the total amount for each order. It does so by
multiplying the Quantity and UnitPrice values.

Based on the processing result, a JSON object is constructed with four properties: CustomerID, OrderID,
OrderDate, and OrderAmount. This order data is stored in an array—finalData—using the push() method.
Finally, the postMessage() method is invoked on the web worker to send the finalData array to the page.
Before the request is initiated, the JSON settings are converted into their string equivalents using the
JSON.stringify() method. The send() method makes the request and passes the settings to the
GetOrders() action method.

GetOrders() Action Method
The GetOrders() action method resides in the HomeController and returns order data for a specific
customer ID and date range. GetOrders() is shown in Listing 10-13.

Listing 10-13. GetOrders() Action Method

[HttpPost]
public JsonResult GetOrders(OrderSettings settings)
{

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 10 n MuLtithreading in web pages using web workers

274

 NorthwindEntities1 db = new NorthwindEntities1();

var data = from item in db.Orders
 join item2 in db.Order_Details on item.OrderID
 equals item2.OrderID
 where
 item.CustomerID == settings.CustomerID
 &&
 item.OrderDate >= settings.StartDate
 &&
 item.OrderDate <= settings.EndDate
 orderby item.OrderID ascending
 select new { item.CustomerID, item.OrderID,item.OrderDate,
 item2.UnitPrice, item2.Quantity };
 return Json(data.ToArray());
}

GetOrders() takes one parameter of type OrderSettings. The OrderSettings class’s properties match
those of the JSON object being sent from the client. This way, ASP.NET MVC automatically maps incoming
JSON object to the OrderSettings class. OrderSettings looks like this:

public class OrderSettings
{
 public string CustomerID { get; set; }
 public DateTime StartDate { get; set; }
 public DateTime EndDate { get; set; }
}

A LINQ to Entities query then selects all the Order and Order Details records with matching
CustomerID and falling within the specified date range. The query returns a custom type that contains the
CustomerID, OrderID, and OrderDate properties from the Orders table and the Quantity and UnitPrice
properties from the Order Details table. The return type of GetOrders() is JsonResult. The Json() method
converts the query results into the equivalent JSON format.

That’s it! You can now run the Order History view and test its functionality.

n Note While testing the Order History application, you may find that the worker thread completes too quickly if
the database is running on the local machine. For the sake of testing and confirming that the UI isn’t blocked, you
can deliberately introduce some delay in the worker thread. As an alternative to adding a dummy do-while loop
that introduces delay, you can call the postMessage() method using the setTimeout() function, like this: var t
= setTimeout(postMessage, 10000, xhr.responseText);.

Summary
Traditional JavaScript code runs in the same thread as the UI. Due to this single-threaded nature, the UI is
blocked when JavaScript code is being executed. HTML5 web workers add multithreaded capabilities to
JavaScript. Using web workers, you can execute script files in the background. This way, the UI isn’t
blocked while the script is running. Web workers can be a great help when a script is lengthy and long-

www.it-ebooks.info

http://www.it-ebooks.info/

275

chapter 10 n MuLtithreading in web pages using web workers

running. Web workers come in two flavors: dedicated and shared, represented by the Worker and
SharedWorker objects, respectively. Web workers don’t have access to HTML DOM. Using web workers, you
can develop user-responsive web pages and improve the overall user experience.

In this chapter, you saw web applications that benefitted from new multithreading features. The next
chapter covers more features that allow client-server communication as well as cross-domain
communication.

www.it-ebooks.info

http://www.it-ebooks.info/

277

n n n

chapter 11

Using the Communication API
and Web Sockets

So far in this book, you’ve learned about HTML5 features that require no server-side communication.
Although you used some techniques such as jQuery $.ajax() to send and receive data between the client
and the server, doing so wasn’t an integral part of the HTML5 feature being discussed. In this chapter,
however, you learn about a few HTML5 features that are specifically designed to facilitate communication
between the client browser and the server. Using these features, you can pass data to and from web pages
from the same web application or from different applications. Additionally, some of these techniques
provide one-way (client to server) communication, and others provide two-way (client to server and server
to client) communication. Specifically, you learn about the following:

•	 Cross-document messaging and Cross-Origin Resource Sharing (CORS)

•	 Using the postMessage API to send data to documents from different web
application

•	 Using the new XMLHttpRequest Level 2 features to make GET and POST requests

•	 Notifying the client using server-sent events

•	 Performing two-way communication using Web Sockets

Understanding Cross-Domain Communication
A web application often needs to perform one of the following two kinds of communication:

•	 A web page may want to communicate with another web page from the same web
application.

•	 A web page may want to communicate with another web page belonging to some
another web application.

Performing the first type of communication is relatively simple because there are no restrictions
enforced by the browser on such communication. Additionally, JavaScript-based libraries such as jQuery
are readily available for performing this type of communication. However, things become tricky when you
wish to communicate to web pages from a different web application.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 11 n using the coMMunication api and web sockets

278

The main problem in achieving the second type of communication is that all browsers prohibit what
is known as cross-domain communication due to security concerns. If cross-domain communication is
allowed, it’s possible that a malicious web page may exploit this feature to cause security threats to your
web application.

Communication is said to be cross-domain if the origin of the two parties taking part in the
communication isn’t the same. An origin consists of a scheme, a host, and a port. For example, consider
the origin http://www.domain1.com. In this URL, the scheme is http, the host is www.domain1.com, and no
explicit port is specified. If two URLs don’t have the same origin, they can’t communicate with each other.
So, http://www.domain1.com/Page1.aspx and http://www.domain2.com/Page2.aspx can’t communicate
because their hosts are different. On the same lines, https://www.domain1.com and http://www.domain1.
com are considered different origins because their schemes are different (http and https). However,
http://www.domain1.com/Page1.aspx and http://www.domain1.com/Page2.aspx belong to the same origin.

Just because cross-domain communication poses security threats doesn’t mean it’s unsuitable in
every situation. Suppose you’re building a network of web sites. Each web site is independent and provides
different content to the user. However, a member of the web-site network may want to share some features
(member chat, for example) with other web sites in the network. This is a genuine case of cross-domain
communication. Luckily, HTML5 understands the problems faced by developers today in achieving cross-
domain communication and provides two approaches for doing this:

•	 Cross-document messaging

•	 Cross-Origin Resource Sharing (CORS)

Let’s look at these in more detail.

Cross-Document Messaging
Cross-domain messaging refers to communication between two or more web pages belonging to different
origins, where one web page either embeds or opens another web page. Consider a case where a web page
of WebSite1 declares an <iframe> and embeds a web page of WebSite2 in that <iframe>. A similar situation
arises when a web page of WebSite1 opens a web page of WebSite2 using the window.open() method. In
both of these examples, the two web pages belong to different origins. If they wish to communicate with
one another, there was no easy and standard way prior to HTML5.

HTML5 facilitates cross-document messaging with the help of the postMessage API. This is a standard
approach that enables secure cross-origin communication across <iframe> elements, tabs, and windows.
To enable cross-document messaging using the postMessage API, you don’t need to do any configuration
at the server end. The postMessage API is secure and doesn’t pose a security threat because you need to
explicitly receive the messages in your web application. The web site receiving the request from a page
from another origin must explicitly make available specific pages for accepting the cross-document
requests. So, even if someone sends malicious script or data to you, there won’t be any damage unless you
explicitly permit and receive that data. You’ll understand this better when you develop a sample
application that uses the postMessage API.

n Note The postMessage API discussed in this chapter bears a striking resemblance to web workers as far as
syntax is concerned. That’s because they use the same HTML5 messaging system. Web workers, however, serve an
entirely different purpose than the postMessage API.

www.it-ebooks.info

http://www.domain1.com
http://www.domain1.com
http://www.domain1.com/Page1.aspx
http://www.domain2.com/Page2.aspx
https://www.domain1.com
http://www.domain1
http://www.domain1.com/Page1.aspx
http://www.domain1.com/Page2.aspx
http://www.it-ebooks.info/

279

chapter 11 n using the coMMunication api and web sockets

Cross-Origin Resource Sharing (CORS)
During cross-document messaging, one document needs a handle to the other document. This handle is
typically in the form of an <iframe> or window object. However, in many real-world cases, you just want to
make a cross-domain GET or POST request. Cross-document messaging won’t allow you to do that. What
you need in such cases is Cross-Origin Resource Sharing (CORS).

Unlike the postMessage API, to enable CORS you need to do little configuration at the web server end.
All cross-domain requests have an Origin header. This header is added by the browser and provides the
request origin to the web server. The application code can’t tamper with the header. To accept requests
from a different origin, the web server should be configured to have an Access-Control-Allow-Origin HTTP
header. You can add this header using either IIS Manager or web.config. Figure 11-1 shows the IIS Manager
dialog in which you can add the Access-Control-Allow-Origin header.

Figure 11-1. Adding the Access-Control-Allow-Origin header using IIS Manager

The value for the Access-Control-Allow-Origin header can be either * (all domains allowed) or a list of
specific domains. You can achieve the same effect using the web.config file, as shown in Listing 11-1.

Listing 11-1. Adding the Access-Control-Allow-Origin Header Using web.config

<system.webServer>
 <httpProtocol>
 <customHeaders>
 <add name=”Access-Control-Allow-Origin” value=”*” />
 </customHeaders>
 </httpProtocol>
 </system.webServer>

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 11 n using the coMMunication api and web sockets

280

The <customHeaders> section of web.config allows you to add custom headers. In this case, the Access-
Control-Allow-Origin header is added and its value is set to *, indicating that all domains are allowed.

To implement CORS communication, HTML5 enhances the XMLHttpRequest object (these
improvements are collectively referred as Level 2) so that cross-domain HTTP requests can be made.

Now that you have a basic understanding of cross-document messaging and CORS, let’s peek into the
code-level details of these techniques.

n Note A common way to fetch data from another origin without using any specific technology such as cross-
document messaging or CORS is JSONP: JSON with Padding. JSONP works on the basis that even though browsers
don’t allow you to make cross-domain requests, they do allow you to use <script> tags that point to a remote
resource. In this technique, the script URL also specifies the name of a callback function in the query string. Instead
of returning JSON data, the remote resource returns a function call to this callback function with the JSON data as a
parameter. This technique suffers from the drawback that you must trust the remote server, which can pose a
security threat.

Using the postMessage API
In order to use the postMessage API, you need a handle to the window of the target document. The target
document receives the data sent by the main web page. Optionally, the target document can return a value
to the main web page to indicate the result of the operation being performed. To obtain this handle, you
can use either of two common techniques:

•	 Use the <iframe> element in the main web page, and load the target web page in the
<iframe>. You can then use the contentWindow property of the <iframe> DOM
element to get a reference of the target window.

•	 Use the window.open() method in the main web page. This method returns the
reference to the target window object.

Using postMessage with <iframe>
Using the postMessage API with <iframe> involves embedding the target web page in the main page using
the <iframe> element and then sending data to the target page using the postMessage() method. Listing
11-2 shows the main web form with an <iframe> element.

Listing 11-2. Using the <iframe> Element to Embed a Target Web Form

<form id=”form1” runat=”server”>
 <div>Send Data :</div>
 <input id=”txtData” type=”text” /><input id=”btnSend” type=”button” value=”Send” />
 <div>Data Received from Target Web Form :</div>
 <div id=”divReceived”></div>
 <h3>Target Page in IFRAME</h3>
 <iframe id=”target” src=”http://localhost:1052/Target.aspx”>
 </iframe>
</form>

www.it-ebooks.info

http://www.it-ebooks.info/

281

chapter 11 n using the coMMunication api and web sockets

This listing shows markup of the main web form (Iframe.aspx) that embeds the target web form
(Target.aspx) using an <iframe> element. Note that for the sake of testing, Iframe.aspx and Target.aspx
are created in two separate web applications. Although this won’t make them cross-domain in a real sense,
they’re still cross-origin because the Visual Studio development web server assigns different port number
to different web applications.

The main web form contains a text box to accept the data to be sent to the target web form. The Send
button triggers some jQuery code that actually sends the data to the target web form. The src attribute of
the <iframe> element points to http://localhost:1052/Target.aspx. The <div> element is used to output
the data returned by the target web form.

The target web form markup is simple and consists of a <div> element that outputs the data received
from the main web form. The markup of the Target.aspx is shown next:

<form id=”form1” runat=”server”>
 <div>Data Received from Main Web Form :</div>
 <div id=”divReceived”></div>
</form>

Figure 11-2 shows the main web form and the embedded target web form at runtime.

Figure 11-2. Target web form loaded in an <iframe>

Figure 11-2 shows a sample run of the main web form. The main web form sends the string data
“Hello World!” to the target web form. The target web form outputs the data and sends back a success
message. The origin of the main form as well as that of the target web form are also displayed along with
their respective data.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 11 n using the coMMunication api and web sockets

282

The main web form contains jQuery code that handles the Send button’s click event. This code is
shown in Listing 11-3.

Listing 11-3. Sending Data to the Target Web Form

var targetOrigin = “http://localhost:1052”;
$(document).ready(function () {
 if (!Modernizr.postmessage) {
 alert(“This browser doesn’t support the HTML5 postMessage API!”);
 return;
 }
 var targetWindow = $(“#target”).get(0).contentWindow;
 window.addEventListener(“message”, ReceiveMessage, false);
 $(“#btnSend”).click(function () {
 targetWindow.postMessage($(“#txtData”).val(), targetOrigin);
 });
});

This code uses the Modernizr library to detect whether the browser supports the postMessage API.
This is done using the postmessage property of the Modernizr object. As mentioned earlier, you need a
handle to the target window in order to send data to the target web form. To get the window object attached
to the <iframe> element, you use the contentWindow property of the <iframe> DOM element.

If you’re interested in receiving the return value sent by the target web form, you need to wire an event
handler for the message event. The addEventListener() method can wire an event-handler function—
ReceiveMessage, in this example—to the main window’s message event.

The Send button’s click event handler calls the postMessage() method on the target window object.
The first parameter of the postMessage() method is the data you wish to pass to the target web form. The
second parameter is the origin of the target web form.

The ReceiveMessage() event-handler function is shown in Listing 11-4.

Listing 11-4. Handling the message Event in the Main Web Form

function ReceiveMessage(evt) {
 if (evt.origin != targetOrigin)
 return;
 $(“#divReceived”).append(evt.origin + “ : “ + evt.data + “
”);
}

This code first checks whether the origin of the message being received is a permitted one. It does so
using the origin property of the event parameter. This way, the developer of the other web site (the web
site whose service is being consumed by your web site) can white-list only certain origins. If the origin
doesn’t belong to the approved set, you can simply ignore it during further processing.

To access the data sent by the target web form, the code uses the data property of the event parameter.
The origin and the data are appended to the <div> element using the jQuery append() method.

The target web form contains jQuery code that receives the data sent by the main web form. This code
is shown in Listing 11-5.

Listing 11-5. Receiving the Data Sent by the Main Web Form

var targetOrigin = “http://localhost:1050”;
$(document).ready(function () {
...

www.it-ebooks.info

http://www.it-ebooks.info/

283

chapter 11 n using the coMMunication api and web sockets

 window.addEventListener(“message”, ReceiveMessage, false);
});

function ReceiveMessage(evt) {
 if (evt.origin != targetOrigin)
 return;
 $(“#divReceived”).append(evt.origin + “ : “ + evt.data + “
”);
 evt.source.postMessage(“Data received successfully!”, evt.origin);
}

Earlier it was mentioned that the postMessage API offers a secure way to do cross-document
messaging. Here you can understand why. The author of the main page doesn’t get direct access to the
target web page: everything is mediated by the code from the target web page.

The code in Listing 11-5 wires an event handler—ReceiveMessage()—to the target window’s message
event. The ReceiveMessage() event-handler function then performs checking on the origin property and,
if the data is being received from an expected origin, appends the data to a <div> element. A success
message is sent back to the main web form using the source property of the event parameter. The source
property refers to the window object of the main web form.

n Note Unless you’re developing a general-purpose service that is exposed for public consumption, it’s a good
idea to include a white-listing mechanism in applications that use the postMessage API. In the absence of such a
white-list, any origin can send data to your web pages, and it will be processed by the message event handler. If
your white-list is small, you can store it in an array; otherwise an XML file or a database table is a better choice.

Using postMessage with the window Object
Using the postMessage API with the window object is similar to using it with the <iframe> element. The only
difference is that instead of the contentWindow property, you need to use the window reference returned by
the window.open() method. Listing 11-6 makes this clear.

Listing 11-6. Using postMessage() with window.open()

$(document).ready(function () {
 ...
 var targetWindow = window.open(targetOrigin + “/Target.aspx”);

 window.addEventListener(“message”, ReceiveMessage, false);

 $(“#btnSend”).click(function () {
 targetWindow.postMessage($(“#txtData”).val(), targetOrigin);
 });
});

This code resides in the main web form. Notice that this time, instead of using an <iframe> to load the
target web form, you use the window.open() method. The open() method accepts the URL of the target web
form and returns a reference to the window object of the target web form. Once a reference to the target
window is obtained, it’s used in exactly the same manner as in the <iframe> example discussed earlier.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 11 n using the coMMunication api and web sockets

284

Making Requests Using XMLHttpRequest
A very common and popular way of communicating with the server is the XMLHttpRequest object. The
XMLHttpRequest object allows you to programmatically make HTTP requests to the web server, such as GET,
POST, PUT, and DELETE. The primary reason for the popularity of XMLHttpRequest is that the leading browsers
support it. XMLHttpRequest was first introduced by Internet Explorer, but it was soon absorbed in all the
other browsers too. Today, XMLHttpRequest is the basis of most Ajax-based communication. In fact, the
jQuery $.ajax() method that you’ve been using throughout this book internally uses XMLHttpRequest for
its functionality. Using XMLHttpRequest, you can make synchronous and asynchronous requests to the web
server, although asynchronous mode is used more often.

XMLHttpRequest existed prior to HTML5, but with HTML5 it has been improved. Some of the main
improvements include the following:

•	 You can make cross-origin requests using the XMLHttpRequest object and the CORS
specifications.

•	 You can track the progress of data download and upload operations using progress
events.

•	 XMLHttpRequest now supports sending binary data.

Together, these improvements to the XMLHttpRequest object are referred as Level 2. You used
XMLHttpRequest briefly while working with web workers. The following sections dissect the XMLHttpRequest
object in more details.

Properties of XMLHttpRequest
Before using the XMLHttpRequest object, let’s take a quick look at its properties, methods, and events. Table
11-1 lists the properties of XMLHttpRequest. Some of these properties are set before making a request, and
others are accessed after the completion of the request.

Table 11-1. Properties of the XMLHttpRequest Object

Property Description
readyState Indicates the state of a request at a given point of time. The readyState property can

change during the lifetime of a request and can take one of the following values:
0—The request has not yet been sent to the server.
1—The request has been opened by the server using the open() method, but the send()
method hasn’t yet been called.
2—The send() method has been called, and the response headers and status are
available.
3—The response is being downloaded but isn’t complete.
4—The operation is complete.
The readyState property is commonly used inside the readystatechange event.

responseType Tells the server the desired response type. Common values include text, json, and
document.

responseText Returns the response to the request as text data.

responseXML Returns the response to the request as an XML document.

status Indicates an HTTP status code (such as 200).

statusText Indicates an HTTP status text (such as “200 OK”).

www.it-ebooks.info

http://www.it-ebooks.info/

285

chapter 11 n using the coMMunication api and web sockets

Property Description
timeout Specifies the number of milliseconds to wait before terminating a request. A value of 0

indicates no timeout.

upload Tracks the progress of the data upload.

In a typical usage, you set responseType and timeout before initiating a request. You then track the
readyState of the request and, when it becomes 4 (complete), access the responseText, responseXML,
status, and statusText properties.

Methods of XMLHttpRequest
The XMLHttpRequest object provides methods that allow you to initiate a request, send data with the
request, and terminate a request before its completion. Table 11-2 lists these methods for your quick
reference.

Table 11-2. Methods of the XMLHttpRequest Object

Method Description
open() Sets the HTTP method and request URL before the request is made. By

default, a request is made in asynchronous fashion, but you can make a
request synchronously using a parameter.

send() Actually sends a request to the server. For all request types other than GET, you
can also pass data as a parameter. The type of data depends on the content
type of the request.

abort() Cancels a request before its completion.

getResponseHeader() Returns the value of a specified HTTP response header once a request is
complete.

getAllResponseHeaders() Returns all the HTTP response headers once a request is complete.

setRequestHeader() Sets a request header (such as Content-Type). This method must be called
between open() and send().

In a typical usage, you call the open() method followed by setRequestHeader(), and then call send() to
actually make the request. In most cases, you use the GET or POST verb with the open() method. However,
open() can be used for other verbs too. For example, while using the ASP.NET Web API, you need to pass
PUT and DELETE in addition to GET and POST.

send() can be used to send data depending on the content type. Common data formats are text and
JSON. You can also use FormData object to bundle data as key-value pairs and send it to the server.

Events of XMLHttpRequest
Events of the XMLHttpRequest object allow you to track the request being made and determine its status.
Table 11-3 lists these events.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 11 n using the coMMunication api and web sockets

286

Table 11-3. Events of the XMLHttpRequest Object

Event Description
readystatechange Raised whenever the readyState value changes for an asynchronous request. You

can use this event to track the request from the time it’s made to its completion.

loadstart Indicates that the request operation has begun.

load Raised when the request has completely downloaded. The load event can be an
alternative to using the readystatechange event to track request completion.

loadend Indicates that the request operation has stopped.

progress Raised multiple times while the data is being downloaded or uploaded.

timeout Raised when a request is timed out.

abort Raised when a request is cancelled.

error Raised whenever there is an error while making the request.

If you used XMLHttpRequest prior to HTML5, recollect that developers mostly relied on the
readystatechange event for any sort of tracking including request completion and error handling.
However, XMLHttpRequest Level 2 provides task-specific events that you can use to make your code cleaner
and neater.

Note that the progress event is fired for the XMLHttpRequest object itself and also for the upload object
of the XMLHttpRequest instance. The former event tracks the progress of data being downloaded, whereas
the latter tracks the progress of the data being uploaded. By handling the progress event, you can display
the progress of the operation to the user, say in a progress bar.

Making Requests Using XMLHttpRequest
Now that you know the properties, methods, and events of the XMLHttpRequest object, let’s develop an
application that illustrates how they’re used. In this section, you develop an ASP.NET Web Forms–based
application as shown in Figure 11-3.

Figure 11-3. Customer List application developed using XMLHttpRequest

www.it-ebooks.info

http://www.it-ebooks.info/

287

chapter 11 n using the coMMunication api and web sockets

This web form displays all the records from the Customers table of the Northwind database in an
HTML table. The row at the top allows the user to insert a new customer. Existing customers can be
modified or deleted using the Update or Delete button, respectively. The SELECT, INSERT, UPDATE, and
DELETE (CRUD) operations are performed through ASP.NET Web API. The methods exposed by the Web API
controller class are invoked using the XMLHttpRequest object. The web form markup is simple and is shown
in Listing 11-7.

Listing 11-7. Markup for the Customer List Web Form

<h3>Customer List</h3>
<form id=”form1” runat=”server”>
<table id=”tblCustomers”>
</table>
</form>

The web form consists of a table: tblCustomers. The rows of the table are added programmatically
depending on the number of customer records in the database. The Entity Framework data model
required by the application is shown in Figure 11-4.

Figure 11-4. Entity Framework data model class for the Customers table

The Customer data model class has several properties, but only four are used in the application:
CustomerID, CompanyName, ContactName, and Country.

Developing a Web API Controller
To perform CRUD operations on the Customers table, you develop a Web API controller
(CustomerController). A Web API controller is a class that inherits from the ApiController base class and
contains an implementation for the following methods:

•	 Get(): Represents an HTTP GET request that SELECTs data items and returns them to
the caller.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 11 n using the coMMunication api and web sockets

288

•	 Get(id): Represents an HTTP GET request and SELECTs a single data item that is to be
returned to the caller based on the ID specified.

•	 Post(): Represents an HTTP POST request and is used to INSERT a data item into a
database.

•	 Put(id): Represents an HTTP PUT request and is used to UPDATE a data item from the
database matching the specified ID.

•	 Delete(id): Represents an HTTP DELETE request and is used to DELETE a data item
from the database.

Note that though this example needs CRUD functionality, it isn’t necessary that the Web API and
XMLHttpRequest be used exclusively for such scenarios. Listing 11-8 shows the Get() and Post() methods of
CustomerController.

Listing 11-8. Get() and Post() Methods of the CustomerController Class

public class CustomerController : ApiController
{
 public IEnumerable<Customer> Get()
 {
 NorthwindEntities db = new NorthwindEntities();
 var data = from item in db.Customers
 orderby item.CustomerID
 select item;
 return data;
 }

 public void Post(Customer obj)
 {
 NorthwindEntities db = new NorthwindEntities();
 db.Customers.AddObject(obj);
 db.SaveChanges();
 }
 …
}

The Get() method returns an IEnumerable of Customer items. Inside, Get() selects all the Customer
items and returns them to the caller after sorting them based on the CustomerID column.

The Post() method accepts a Customer object as a parameter. This parameter comes from the jQuery
code you writer later. Post() adds the supplied Customer object to the Customers table using the
AddObject() method. To persist the data back to the database, you call SaveChanges().

To successfully call a Web API from the client, you also need to add the following routing information
in the Global.asax file:

protected void Application_Start(object sender, EventArgs e)
{
 RouteTable.Routes.MapHttpRoute(
 name: “DefaultApi”,
 routeTemplate: “api/{controller}/{id}”,
 defaults: new { id = System.Web.Http.RouteParameter.Optional }
);
}

www.it-ebooks.info

http://www.it-ebooks.info/

289

chapter 11 n using the coMMunication api and web sockets

The MapHttpRoute() method maps the incoming requests to the Web API controller classes. For
example, a sample URL pointing to the Customer Web API controller is http://localhost:1050/api/
Customer.

Using XMLHttpRequest to Invoke the Web API
Now let’s write the client-side jQuery code that invokes the Customer Web API controller using the
XMLHttpRequest object. The jQuery code primarily consists of four functions: GetCustomers(),
InsertCustomer(), UpdateCustomer(), and DeleteCustomer(). These functions perform the respective
operations by calling a Web API method.

When the web form is loaded, it needs to display the Customer data; hence the GetCustomers()
function is called in the jQuery ready() function. Listing 11-9 shows how this is done. Some code has been
omitted for the sake of readability.

Listing 11-9. Creating an XMLHttpRequest Object and Displaying Data

$(document).ready(function () {
 GetCustomers();
});

function GetCustomers() {
 $(“#tblCustomers”).empty();
 $(“#tblCustomers”).append(“<tr><th>…</tr>”);
 var emptyRow = “<tr>”;
 emptyRow += “<td><input size=’5’ type=’text’/></td>”;
 …
 emptyRow += “<td><input type=’button’ value=’Insert’/></td>”;
 emptyRow += “</tr>”;
 $(“#tblCustomers”).append(emptyRow);

 var xhr = new XMLHttpRequest();
 xhr.open(“GET”, “api/Customer”);
 xhr.setRequestHeader(‘Accept’, ‘application/json’);
 xhr.setRequestHeader(‘Content-Type’, ‘application/json’);
 xhr.onreadystatechange = function () {
 if (xhr.readyState == 4) {
 var data = JSON.parse(xhr.responseText);
 for (var i = 0; i < data.length; i++) {
 var row = “<tr>”;
 row += “<td><input size=’5’ type=’text’ value=’” + data[i].CustomerID +
 “’ readonly=’readonly’/></td>”;
 …
 row += “<td><input type=’button’ value=’Update’/>”;
 row += “<input type=’button’ value=’Delete’/></td>”;
 row += “</tr>”;
 $(“#tblCustomers”).append(row);
 }
 $(“#tblCustomers input[value=’Insert’]”).click(InsertCustomer);
 $(“#tblCustomers input[value=’Update’]”).click(UpdateCustomer);
 $(“#tblCustomers input[value=’Delete’]”).click(DeleteCustomer);

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 11 n using the coMMunication api and web sockets

290

 }
 }
 xhr.send();
}

This code declares a global XMLHttpRequest object so that all the other methods can use it. Inside the
jQuery ready() function, the GetCustomers() function is called. GetCustomers() first adds table headers
and an empty row for accepting new Customer details.

A new XMLHttpRequest object is then created. The open() method of the XMLHttpRequest object
specifies the request method as GET and the URL as api/Customer. Note that you need not specify the Web
API method name in the URL. Based on the HTTP verb (GET in this case), the appropriate Web API method
is automatically invoked.

You set two request headers: Accept and Content-Type. The Accept header is mainly for the Web API
and controls the format of the returned data (text, JSON, and so on). Because you want to access the
Customer data items in JSON format, the Accept header is set to application/json.

The onreadystatechange event-handler function checks the readyState property of the
XMLHttpRequest object. If readyState is 4 (complete), the responseText is parsed into a JSON object using
the JSON.parse() method. Recollect that the Get() Web API method returns an IEnumerable of Customer
objects. Hence you use a for loop to iterate through the data object. With each iteration, a new table row is
added. Each new table row consists of text boxes filled with the existing customer information (for
example, data[i].CustomerID).

Next, you add the click event handler for the Insert, Update, and Delete buttons. Note how you use
the attribute selector to compare the value of the <input> elements against Insert, Update, and Delete. The
corresponding InsertCustomer, UpdateCustomer, and DeleteCustomer functions are wired as the event
handlers.

Once the readystatechange event-handler function is wired, the request is sent to the server using the
XMLHttpRequest object’s send() method.

The InsertCustomer(), UpdateCustomer(), and DeleteCustomer() functions are similar as far as their
usage of XMLHttpRequest is concerned. InsertCustomer() is shown in Listing 11-10. The other functions
follow a similar pattern.

Listing 11-10. Inserting a New Customer

function InsertCustomer(evt) {
 var customerID = $(this).closest(‘tr’).children().eq(0).children().eq(0).val();
 var companyName = $(this).closest(‘tr’).children().eq(1).children().eq(0).val();
 var contactName = $(this).closest(‘tr’).children().eq(2).children().eq(0).val();
 var country = $(this).closest(‘tr’).children().eq(3).children().eq(0).val();
 var obj = { “CustomerID”: customerID, “CompanyName”: companyName,
 “ContactName”: contactName, “Country”: country };

 var xhr = new XMLHttpRequest();
 xhr.open(“POST”, “api/Customer”);
 xhr.setRequestHeader(‘Content-Type’, ‘application/json’);
 xhr.onreadystatechange = function () {
 if (xhr.readyState == 4) {
 alert(“Customer Inserted!”);
 GetCustomers();
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

291

chapter 11 n using the coMMunication api and web sockets

 var param = JSON.stringify(obj);
 xhr.send(param);
}

InsertCustomer() acts as the event handler for the Insert button. The first thing the function does is
grab the newly entered Customer details, such as CustomerID, CompanyName, ContactName, and Country.
Observe how the jQuery selector retrieves the values from the <input> elements. Inside the
InsertCustomer() function, the keyword this refers to the Insert button. The jQuery closest() method
returns the nearest surrounding <tr> element. This way, you reach the table row that contains the text
boxes. The children() method called on the table row returns all the <td> elements it contains. The eq()
method returns a specified child element based on the index, allowing you to reach the individual <td>
element. Another set of children() and eq() methods gives you access to the <input> elements in the table
cells.

The values entered in the text boxes are stored in local variables: customerID, companyName,
contactName, and country. A JSON object is formed using these values. Note that the JSON object must have
the same key names as the Customer data-model property names so that ASP.NET can map the JSON object
to the data-model class.

A new XMLHttpRequest object is then created, and a POST request is opened using its open() method.
Because you’re sending JSON data to the server, the Content-Type header is set to application/json using
the setRequestHeader() method. The readystatechange event handler displays a success message to the
user if readyState is 4 (complete). GetCustomers() is called again to refresh the customer list with the newly
added record.

After you wire the readystatechange event handler, the request is sent to the server using send(). The
send() method takes the string representation of the JSON Customer object as its parameter. This JSON
object is received by the Post() method of the Customer Web API controller.

You can now run the Customer List application and test the CRUD operations on it. You might wonder
how you can make cross-origin requests using the XMLHttpRequest object. Luckily, you need not make any
code-level changes to XMLHttpRequest to make cross-origin requests. All you need to do is ensure that the
IIS running the other domain allows CORS requests. You can configure the CORS header using either IIS
Manager or web.config, as described earlier.

Uploading Files Using XMLHttpRequest
In Chapter 9, you learned about the File API. In that chapter you also learned how to select and upload
files from the client machine onto the web server using the jQuery $.ajax() method. You can accomplish
the same task using the XMLHttpRequest object. One advantage of using XMLHttpRequest is that it allows you
to track the upload operation via progress events. By handling the progress event, you can display some
sort of progress indicator (say, a progress bar) to the user. Figure 11-5 shows a web form that uses the
upload progress event.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 11 n using the coMMunication api and web sockets

292

This web form should look familiar: you developed something similar in Chapter 9. The web form
allows you to drag and drop files from Windows Explorer or the Desktop onto the basket image. You can
then upload the files to the server using the Upload button. An upload operation can be cancelled with the
Cancel button. The progress of the file-upload operation is shown in a progress bar.

The web form’s markup is straightforward. The only unfamiliar element is the HTML5 <progress>
element, which render a progress bar at the bottom of the web form. The <progress> element looks like
this:

<progress id=”uploadProgress” value=”1” max=”100”></progress>

This <progress> element uses two attributes: value and max. The value attribute indicates progress
made by an operation. The max attribute controls the scale of the value attribute. For example, if you wish
to display upload progress as a percentage (%), you need to set the max attribute to 100 so the value
attribute can take a maximum value of 100. Note that the <progress> element by itself doesn’t
automatically increment. You need to set the value attribute programmatically in order for the progress
bar to show the correct progress.

When you click the Upload button, a JavaScript function—UploadFiles()—is called that initiates the
upload operation. UploadFiles() is shown in Listing 11-11.

Figure 11-5. The progress of a file upload is shown using a progress bar.

www.it-ebooks.info

http://www.it-ebooks.info/

293

chapter 11 n using the coMMunication api and web sockets

Listing 11-11. Uploading Files Using the XMLHttpRequest Object

var xhr = new XMLHttpRequest();

function UploadFiles() {
 var data = new FormData();
 for (var i = 0; i < files.length; i++) {
 data.append(files[i].name, files[i]);
 }
 xhr.upload.addEventListener(“progress”, OnProgress, false);
 xhr.addEventListener(“load”, OnComplete, false);
 xhr.addEventListener(“error”, OnError, false);
 xhr.addEventListener(“abort”, OnAbort, false);
 xhr.open(“POST”, “UploadHandler.ashx”);
 xhr.send(data);
}

This code declares a global XMLHttpRequest object (xhr). The UploadFiles() function first creates a
new FormData object. It then iterates through all the files selected by the user. The files collection contains
the File objects as selected using the drag-and-drop operation. All the selected files are appended to the
FormData object using the FormData object’s append() method.

Next, the addEventListener() method wires event handlers for the four events: progress, load, error,
and abort. Note that because you’re interested in tracking the progress of the data-upload operation, the
progress event of the upload object is handled rather than the progress event of the XMLHttpRequest object.
The event-handler functions OnProgress(), OnComplete(), OnError(), and OnAbort() are discussed shortly.

The XMLHttpRequest object’s open() method is then called by specifying POST as the request type and
UploadHandler.ashx as the URL. UploadHandler.ashx is an ASP.NET generic handler that saves the
uploaded files on the server. Finally, you call the XMLHttpRequest object’s send() method and pass the
FormData object to it as a parameter.

The Cancel button calls the XMLHttpRequest object’s abort() method, as shown here:

function CancelUpload() {
 xhr.abort();
}

The event-handler functions that handle the progress, load, error, and abort events are shown in
Listing 11-12.

Listing 11-12. Handling Events of the XMLHttpRequest Object

function OnProgress(evt) {
 if (evt.lengthComputable) {
 var progress = Math.round(evt.loaded * 100 / evt.total);
 $(“#uploadProgress”).attr(“value”, progress);
 }
}

function OnComplete(evt) {
 alert(evt.target.responseText);
}

function OnError(evt) {
 alert(“Error Uploading File(s)!”);

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 11 n using the coMMunication api and web sockets

294

}

function OnAbort(evt) {
 alert(“File Upload Aborted!”);
}

The OnProgress() event-handler function receives an event parameter of type ProgressEvent that
provides progress information about the upload operation. The lengthComputable property returns a
Boolean value indicating whether the progress of the operation can be determined. The loaded and total
properties indicate the number of bytes uploaded and the total number of bytes to be uploaded. Based on
these two values, a progress percentage is calculated. The value attribute of the <progress> element is set
to this calculated value using the jQuery attr() method.

The other event-handler functions are straightforward and simply display a message (success, error,
or cancellation) to the user.

Notifying the Browser Using Server-Sent Events
So far in this book you’ve been using techniques that initiate communication from the client to the server
($.ajax() or XMLHttpRequest, for example). In such client-to-server techniques, once a request is sent and
a response is received from the server, the underlying communication channel is closed. Consider a case
where a server is continuously performing a business operation. A web page displays the status of the
processing for the user. Because the operation is continuing on the server, you want that status to be
periodically updated. How do you accomplish this task? A common approach is to poll the server
periodically and retrieve the status of the operation. You can use functions such as setTimeout() and
setInterval() and make a request to the server in an attempt to retrieve the operation’s status.

The disadvantage of this polling technique is that there are too many request-response cycles. The
client keeps sending requests, and the server keeps responding to every request. Each request-response
cycle needs its own communication channel, which is closed once the cycle is complete. Wouldn’t it be
nice if the server notified you when something interesting happened, without any need for polling? This is
what server-sent events allow you to do.

As the name suggests, server-sent events are dispatched by the server. Instead of the client
periodically checking the server for updates, the server notifies the client if anything interesting happens
on the server. Server-sent events use a common communication channel to send multiple notifications,
thus avoiding continuous request-response cycles. The server-side resource that sends the notifications to
the client is wrapped in an EventSource object. The open, message, and error events of the EventSource
object are then used to open a communication channel, receive messages from the server, and deal with
the errors, respectively.

Let’s develop an application that illustrates how to use server-sent events. Figure 11-6 shows the
application’s main web form.

www.it-ebooks.info

http://www.it-ebooks.info/

295

chapter 11 n using the coMMunication api and web sockets

The web form consists of a Start Listening button. Clicking the button opens a connection with a
generic handler (ClientNotifier.ashx) residing on the server. The generic handler is designed in such a way
that it sends a notification in the form of the server time to the client every 15 seconds for 1 minute. You
see the outputted time at those intervals. The messages, including the notification data, are displayed in a
<div> element.

The JavaScript code behind the working of the web form is shown in Listing 11-13.

Listing 11-13. Initiating the Server-Sent Events

$(document).ready(function () {
 if (window.EventSource == undefined) {
 alert(“This browser doesn’t support HTML5 Server Sent Events.”);
 return;
 }

 $(“#btnListen”).click(function () {
 var source = new EventSource(‘ClientNotifier.ashx’);
 source.addEventListener(“open”, function (event) {
 $(‘#targetDiv’).append(‘<h3>Connection Opened.</h3>’);
 },false);

 source.addEventListener(“error”, function (event) {
 if (event.eventPhase == EventSource.CLOSED) {
 $(‘#targetDiv’).append(‘<h3>Connection Closed.</h3>’);
 }
 },false);

 source.addEventListener(“message”,function (event) {
 $(‘#targetDiv’).append(‘<h3>’ + event.data + ‘</h3>’);
 },false);
});
});

Figure 11-6. Server-sent events in action

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 11 n using the coMMunication api and web sockets

296

This code first checks whether the browser supports server-sent events. It does so by checking for the
existence of the window.EventSource object.

The code then proceeds to wire the click event handler of the Start Listening button. This event
handler creates a new EventSource object. The path of the ASP.NET generic handler that sends the events is
passed as the parameter while creating the EventSource.

Event handlers are then wired for the EventSource object’s three events: open, message, and error. The
open event is raised when the browser makes a request to the server resource for the first time. When the
data sent by the server arrives at the client, the message event is raised. In case of an error, such as closed
connection, the error event is raised. The open and error event handlers add a message to the targetDiv
<div> element. The error handler uses the eventPhase property to decide whether the underlying
connection is closed. The possible values for eventPhase are CONNECTING (0), OPEN (1), and CLOSED (2). The
message event handler receives an event parameter, and its data property returns the data sent by the
server.

The server-side code that sends the events to the client resides in the ASP.NET generic handler,
ClientNotifier.ashx. This code is shown in Listing 11-14.

Listing 11-14. Sending Events to the Client

public void ProcessRequest(HttpContext context)
{
 HttpResponse Response = context.Response;
 DateTime startDate = DateTime.Now;
 Response.ContentType = “text/event-stream”;
 while (startDate.AddMinutes(1) > DateTime.Now)
 {
 Response.Write(string.Format(“data: {0}\n\n”, DateTime.Now.ToString(“hh:mm:ss”)));
 Response.Flush();
 System.Threading.Thread.Sleep(15000);
 }
 Response.Close();
}

This code sets the ContentType of the Response to text/event-stream. This way, the client browser
knows that this response belongs to server-sent events. A while loop then iterates for 1 minute. Within the
loop, the event data is dispatched to the client in batches. The Response.Write() method writes the event
data on the response stream, and Response.Flush() ensures that it’s sent directly to the client without any
buffering. The event data sent to the client must be in a predefined format. A sample format is as follows:

data: Hello World!\n\n

Every piece of event data should begin with data: and end with two newline characters (\n\n). The
event data can also be sent in multiple-line format:

data: {\n
data: “CustomerID”: “ALFKI”,\n
data: “Country”: “USA”\n
data: }\n\n

This markup sends data to the client in JSON format. The client can parse the data to construct a JSON
object.

The operation is halted for 15 seconds using the Thread.Sleep() method, to introduce a delay
between notifications. In addition to the developer-defined data, the server also sends the client a unique

www.it-ebooks.info

http://www.it-ebooks.info/

297

chapter 11 n using the coMMunication api and web sockets

event ID and a retry interval. These pieces of information can be accessed as the id and retry properties of
the event parameter.

Although you don’t need to do so in this example, you can stop receiving server-sent events by calling
the EventSource object’s close() method.

n Note In the example discussed in this section, server-side processing takes place for 1 minute, after which the
server terminates the underlying connection. The browser, however, thinks there was a connection problem and after
a brief interval tries to reconnect with the server, causing the same logic to run again. If you don’t wish to receive
further events, you need to call the EventSource object’s close() method.

Two-Way Communication Using Web Sockets
Typically, communication over the Web consists of two distinct parties participating: the client and the
web server. So far in this chapter you’ve learned about two client-server communication techniques: one-
way communication and request-response communication.

Server-sent events use the one-way communication model. In one-way communication, one party
communicates with the other party. In the case of server-sent events, the server keeps “talking” with the
client by sending notifications. This is also referred to as simplex communication. A real-life example of
simplex communication is radio broadcasting, where radio signals are sent from the radio station but the
station doesn’t receive anything back.

The postMessage API and XMLHttpRequest object use the request-response model to communicate
with the server. In this model, a client initiates a request with the server to trigger some processing or fetch
some data. The server then sends the response back to the client once the processing is finished. The
underlying communication channel is held open during only one request-response cycle. If you send
multiple requests to the server, you’re essentially opening and closing the communication channel that
many times. Such a communication pattern is sometimes called half-duplex communication because at
any one time, either the client or the server is talking to the other party. Of course, in a web application, the
browser has to initiate communication with the server; only then is the server allowed to respond. A real-
life example of half-duplex communication is a walkie-talkie: only one person can talk at a time.

There is a third type of communication—two-way or duplex communication. In this case, both parties
can communicate at the same time. A real-life example is a telephone call: both the parties can talk
simultaneously. A common application of duplex communication in software applications is chat systems
such as MSN, Yahoo! Messenger, and Google Talk. In any chat system, two or more members can chat with
each other at the same time. Another example is multiplayer online games, where multiple players can
participate at once. As far as HTML5 is concerned, the technique to achieve two-way communication is
Web Sockets.

Understanding Web Sockets
Unlike the request-response model, Web Sockets keep the underlying communication channel open
throughout the course of communication. Web Socket–based communication typically involves three
steps:

1. Establish a connection between the client and the server or handshake.

2. Ask the Web Socket server to listen to the incoming communication.

3. Send and receive data.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 11 n using the coMMunication api and web sockets

298

Web applications use the HTTP protocol for their functioning, and HTTP essentially uses the request-
response model. Plain HTTP isn’t well suited for performing two-way communication. Web Sockets,
therefore, need to upgrade plain HTTP to the WebSocket protocol. This upgrade takes place while
establishing the connection between the client and the server. WebSocket is a TCP-based protocol and
uses HTTP only during the handshake and upgrade process. Once a connection is established between the
client and the server, WebSocket communication takes place over a single TCP connection. The WebSocket
protocol can deal with text as well as binary data. Due to these features, the WebSocket protocol offers
performance benefits over the HTTP request-response model.

The request and response headers in Figure 11-7 show how this upgrade takes place.

Notice how the request and response headers set the Connection and Upgrade headers. In order to
upgrade the communication from plain HTTP to WebSocket, you need a web server that is capable of
doing this upgrade. IIS 8.0, which ships with Windows 8, can accept Web Socket communications. If you’re
developing a web application that uses HTML5 Web Sockets, you may need to install WebSocket support
in IIS 8.0. Figure 11-8 shows how you can use the “Turn Windows features on or off” option from the
Control Panel to install the WebSocket protocol.

Figure 11-7. Request and response during a handshake, shown in Chrome Developer Tools

www.it-ebooks.info

http://www.it-ebooks.info/

299

chapter 11 n using the coMMunication api and web sockets

If the WebSocket protocol isn’t enabled, your ASP.NET applications won’t be able to receive and
respond to Web Socket requests on the server.

Once a handshake takes place between the client and the server, and a communication channel is
established between them, you can communicate using the upgraded connection. A Web Socket–based
application consists of code divided into two parts: Web Socket server-side code and Web Socket client-
side code. The Web Socket server-side code resides on the web server and listens to incoming
communication from clients. When a communication is received from the client, the Web Socket server-
side code processes the communication and typically sends a communication back to the client. If there is
no communication from the client, the Web Socket server can either keep waiting or can terminate the
communication channel.

Although you can develop Web Socket server-side code from scratch, many times you can use a third-
party server. For example, if you wish to implement online chat in your web application, you can use a
third-party or open source chat server and develop the client web pages as needed.

Note that HTML5 restricts itself to developing the Web Socket clients. Different web servers and
server-side technologies may have their own way of developing the Web Socket server. The Web Socket
client and the Web Socket server can now communicate with each other and transmit data. Web Socket
clients use the HTML5 WebSocket object to send data to and receive data from the Web Socket server.

Figure 11-8. Enabling WebSocket protocol support in IIS 8.0

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 11 n using the coMMunication api and web sockets

300

The WebSocket Object
The HTML5 WebSocket object provides properties, methods, and events that you can use to develop a Web
Socket client application. Table 11-4 shows them for your quick reference.

Table 11-4. Properties, Methods, and Events of the WebSocket Class

Member
Property / Method /
Event Description

readyState Property Read-only property that returns the current state of the
connection. Possible values are 0 (CONNECTING), 1 (OPEN), 2
(CLOSING), and 3 (CLOSED).

bufferedAmount Property Read-only property that returns the number of bytes of data that
have been queued for transmission over the network.

send() Method Sends data to the Web Socket server over an established
connection.

close() Method Closes the previously established connection with the Web Socket
server.

open Event Raised when the readyState property changes to 1 (OPEN) and
indicates that the connection is ready to send and receive data.

close Event Raised when the readyState property changes to 3 (CLOSED).

message Event Raised when a message is received from the Web Socket server.

error Event Raised when an error occurs during communication with the Web
Socket server.

When you create an instance of WebSocket, you need to supply the endpoint URL that connects the
client to the Web Socket server. As you can see from Table 11-4, the data-sending and -receiving pattern
used by WebSocket is similar to earlier techniques. Once a connection is established, you send data using
send() as and when required. At the same time, the message event-handler function keeps receiving
messages sent by the server.

Using WebSocket in ASP.NET
As mentioned earlier, while developing a Web Socket application you have two distinct pieces of code: the
Web Socket client and the Web Socket server. The Web Socket client is developed using JavaScript and the
HTML5 WebSocket object. So, this piece of code follows the same coding pattern regardless of your web
server software. However, when you’re developing the Web Socket server, you need to use the framework
provided by the web server software and the server-side framework you’re using. As far as ASP.NET is
concerned, IIS 8 and certain .NET framework classes together allow you to develop a Web Socket server.

To understand how the client-side and server-side code go hand in hand, let’s develop a simple Echo
server that echoes whatever the client sends to it. Although the Echo server doesn’t perform simultaneous
two-way communication like a chat application, it does illustrate how the Web Socket client and server
interact. The web form that acts as a Web Socket client is shown in Figure 11-9.

www.it-ebooks.info

http://www.it-ebooks.info/

301

chapter 11 n using the coMMunication api and web sockets

As you can see, the Web Socket client web form consists of a text box and a button. The user enters
some data in the text box and clicks the Send button. The Web Socket server sitting on IIS 8.0 listens to the
incoming communication, receives the data sent by the client, and echoes it back to the client. The echoed
data is displayed on the web form by appending it to a <div> element.

n Note Although you can develop this application using Visual Studio 2012 installed on Windows 7, you won’t be
able to run and test it. To run the example, you need Windows 8 with IIS 8.0 installed. You must also enable the
WebSocket protocol in IIS 8.0 if it’s not already enabled.

Developing the Echo Server
Before developing the Web Socket client, let’s develop the server part. You develop the Echo server as an
ASP.NET generic handler (.ashx). The job of the generic handler is to trigger the listening code. Listing 11-
15 shows how this is done.

Listing 11-15. Using a Generic Handler to Start the Echo Server

public class WebSocketGenericHandler : IHttpHandler
{
 public void ProcessRequest(HttpContext context)
 {
 if (context.IsWebSocketRequest)
 {
 context.AcceptWebSocketRequest(EchoServer);
 }
 }
 …
}

Figure 11-9. Web Form acting as a Web Socket client

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 11 n using the coMMunication api and web sockets

302

This code shows a generic handler—WebSocketGenericHandler—that triggers the Web Socket server.
The generic handler’s ProcessRequest() method first checks whether the incoming request is a Web Socket
request. It does so by checking the IsWebSocketRequest property of the HttpContext object. This property
works hand in hand with the IIS 8.0 WebSocket module and returns true if an incoming request is a
WebSocket request. A WebSocket request is different than an ordinary HTTP request in that instead of
using the http:// protocol it uses the ws:// (WebSocket) protocol. For example, a WebSocket request to
this generic handler looks like this:

ws://localhost:49428/WebSocketGenericHandler.ashx

If IsWebSocketRequest returns true, the AcceptWebSocketRequest() method of the HttpContext is
called. This method takes one parameter—a user function—that supplies a function that listens and
responds to the client requests. In this case, the EchoServer function contains the logic to listen to the
incoming data and echo it to the client. The user function supplied to the AcceptWebSocketRequest()
method should be an asynchronous function, as shown in Listing 11-16.

Listing 11-16. EchoServer Asynchronous Function

public async Task EchoServer(AspNetWebSocketContext context)
{
 WebSocket socket = context.WebSocket;
 while (true)
 {
 ArraySegment<byte> buffer = new ArraySegment<byte>(new byte[1024]);
 WebSocketReceiveResult result = await
 socket.ReceiveAsync(buffer, CancellationToken.None);
 if (socket.State == WebSocketState.Open)
 {
 string userMessage = Encoding.UTF8.GetString(buffer.Array, 0, result.Count);
 userMessage = “You sent: “ + userMessage + “ at “ +
 DateTime.Now.ToLongTimeString();
 buffer = new ArraySegment<byte>(Encoding.UTF8.GetBytes(userMessage));
 await socket.SendAsync(buffer, WebSocketMessageType.Text,
 true, CancellationToken.None);
 }
 else
 {
 break;
 }
 }
}

The EchoServer() method is marked as async, indicating that the code inside it runs in asynchronous
fashion. An async method is a convenient way to execute a long-running operation without blocking the
main thread. In this example, the Echo server is supposed to continuously listen for incoming requests—
that is, a long-running operation. EchoServer() returns a Task object. The Task class acts as a wrapper to
the asynchronous code. EchoServer() receives a parameter of type AspNetWebSocketContext. The
AspNetWebSocketContext class gives you access to the WebSocket through its WebSocket property. The
WebSocket class is the server-side counterpart of the HTML5 WebSocket object. An endless while loop is
then started so the Echo server can continuously listen to incoming requests.

To receive incoming data, you use the WebSocket class’s ReceiveAsync() method. This method is
invoked along with the await operator. The await operator indicates that the execution of the calling

www.it-ebooks.info

http://www.it-ebooks.info/

303

chapter 11 n using the coMMunication api and web sockets

method will be suspended until the awaited task completes. In this case, the awaited task is to receive
incoming data and store it in an ArraySegment, a byte array. The results of the receive operation are stored
in a WebSocketReceiveResult object.

If the WebSocket is open, as indicated by the State property, the received data is echoed to the client
using the SendAsync() method. Before sending the message back to the client, you append a date-time
stamp to the message. If the State property has any value other than Open, the while loop is exited, thus
terminating the server.

n Note The System.Net.WebSockets and System.Web.WebSockets namespaces contain classes that deal
with server-side Web Socket programming. Detailed discussion of asynchronous programming in .NET and using
Web Socket classes is beyond the scope of this book. Refer to the MSDN documentation to learn more about these
topics.

Developing the Web Socket Client
Now that you’ve completed the Echo server, let’s develop the client web form that sends data to the Echo
server and receives echoed messages. Listing 11-17 shows the jQuery code that uses the HTML5 WebSocket
object.

Listing 11-17. Using the HTML5 WebSocket Object

var socket;
$(document).ready(function () {
 if (!Modernizr.websockets) {
 alert(“This browser doesn’t support HTML5 Web Sockets!”);
 return;
 }
 socket = new WebSocket(“ws://localhost:49428/WebSocketGenericHandler.ashx”);
 socket.addEventListener(“open”, function (evt) {
 $(“#divHistory”).append(‘<h3>Connection Opened with the Echo server.</h3>’);
 }, false);
 socket.addEventListener(“message”, function (evt) {
 $(“#divHistory”).append(‘<h3>’ + evt.data + ‘</h3>’);
 }, false);
 socket.addEventListener(“error”, function (evt) {
 $(“#divHistory”).append(‘<h3>Unexpected Error.</h3>’);
 }, false);
 …
});

This code declares a global variable named socket to hold a reference to a WebSocket object. The
jQuery ready() method first checks whether HTML5 Web Sockets are supported in the client browser. It
does so using the Modernizr’s websockets property.

You then create a WebSocket instance by passing the URL of WebSocketGenericHandler.ashx. Notice
how the URL uses ws:// instead of http://. Next, event handlers for the three events—open, message, and
error—are wired using the addEventListener() method. In the message event handler, the data sent by the
Echo server is retrieved using the evt.data property. The echoed data is then appended to a <div> element.
The other event handlers output the specified messages in the <div> element.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 11 n using the coMMunication api and web sockets

304

The data from the client is sent to the server when you click the Send button. The Send button’s click
event handler looks like this:

$(“#btnSend”).clickhow(function () {
 if (socket.readyState == WebSocket.OPEN) {
 socket.send($(“#txtMsg”).val());
 }
 else {
 $(“#divHistory”).append(‘<h3>The underlying connection is closed.</h3>’);
 }
});

The click event handler checks the readyState property of the WebSocket object. If it’s OPEN, the click
event handler calls the WebSocket instance’s send() method. The text entered in the text box is passed as a
parameter to send(). Although not used in this application, you can close the underlying connection by
calling the WebSocket object’s close() method:
socket.close();

That’s it! You can now run the web form and test the Echo server by sending messages to the server.

n Note The Windows Communication Foundation (WCF) in .NET Framework 4.5 also supports Web Sockets. Two
new bindings have been added to WCF for this purpose: NetHttpBinding and NetHttpsBinding. Detailed
discussion of how WCF supports Web Sockets is beyond the scope of this book. Refer to the MSDN documentation
for more details.

Summary
Web applications often need to communicate with the server. Especially in Ajax-driven applications, you
need to communicate with the server without a full page post-back. HTML5 offers several ways to achieve
client-server communication. The postMessage API allows you to perform cross-document messaging, by
means of which you can send data to a web page having a different origin. XMLHttpRequest is the basis of
Ajax-based communication between the client and the server. XMLHttpRequest Level 2 lets you monitor the
progress of the data-upload and -download operations. It also allows cross-origin communication through
CORS.

Typical web communication uses the request-response model. You can use server-sent events if you
need one-way communication from server to client. This way, the server can notify the client about
happenings on the server. Web Sockets offer full-duplex communication between client and server. IIS 8.0,
which ships with Windows 8, provides server-side support for the WebSocket protocol. The .NET
framework also offers a set of classes to work with Web Sockets.

The next chapter peeks into yet another feature that can be useful in certain types of web applications:
geolocation. Using geolocation, you can determine the geographical location of a user and change how
your web application responds accordingly.

www.it-ebooks.info

http://www.it-ebooks.info/

305

n n n

chapter 12

Finding Location with the
Geolocation API

Most of today’s web applications don’t care where you’re accessing them from. Regardless of your
geographical location, they present the same content in the browser. However, if you make such
information available to web applications, they can make innovative use of it. For example, a social
networking web application can suggest friends who are in the same locality as you. User-location
information can also be used in job portals to suggest jobs near the user’s geographical location.

The idea of tracking user location isn’t new, but at first there was no standard way to find this
information. Luckily, over the years a standardized approach—geolocation—has evolved to address this
need. The Geolocation API allows you to find a user’s location by using various location sources such as IP
address, Global Positioning System (GPS), Global System for Mobile Communications (GSM), and general
packet radio service (GPRS). Strictly speaking, the Geolocation API isn’t part of HTML5. However, most
often it’s used and grouped with HTML5 features and technologies. This chapter gives you a detailed
introduction to the Geolocation API. Specifically, you learn the following:

•	 What is geolocation?

•	 Finding and tracking user location using the Geolocation API

•	 Integrating the Geolocation API with Google Maps and Bing Maps

•	 Using the Geolocation API to present location-specific data to the user

Overview of the Latitude and Longitude Coordinate System
To convey a user’s geographical location, you need a standard system that can be understood by all the
parties involved in the process. In day-to-day life, location information is expressed in terms of city, state,
country, and so on. However, such information is of little use for calculation purposes. For example,
looking at two city names, you can’t tell the distance between them. That is why location is specified using
a geographic coordinate system. The system used by the Geolocation API consists of latitude and
longitude coordinates.

A latitude coordinate specifies the north-south position of a point on the Earth’s surface. Points with
the same latitude run east-west as circles parallel to the equator. Latitude is an angle ranging from 0° at the
equator to 90° (north or south) at the poles.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 12 n finding Location with the geoLocation api

306

A longitude coordinate specifies the east-west position of a point on the Earth’s surface. Points with
the same longitude lie on lines running from the North Pole to the South Pole. Longitude is an angle that
varies between 0° at the Prime Meridian to 180° toward the east or west.

Latitude and longitude coordinates are specified in decimal/minute/second (DMS) format or decimal
degrees. For example, in DMS format, the latitude of Mumbai is 18° 55’ N and the longitude is 72° 54’ E. In
decimal format, the same coordinates are represented as 18.91667 and 72.9, respectively. Positive decimal
numbers indicate north-east positions, whereas negative decimal numbers indicate south-west positions.
The Geolocation API uses latitude and longitude values in decimal format.

Sources of Location Information
The Geolocation API doesn’t dictate where the location information is to be fetched from. The source of
location information can vary greatly depending on the type of device you’re using. For example, a desktop
computer may use an IP address as the source of information, whereas a mobile phone may use GPS-
based location information. The common sources of location information include the following:

•	 IP address

•	 GPS

•	 Wi-Fi

•	 Mobile phones (GSM or Code-Division Multiple Access [CDMA])

These location sources are discussed briefly in the following sections.

IP Address
Using the IP address through which a user is accessing a web application is possibly the oldest way of
determining the user’s location. With this technique, the IP address allotted to a user by the Internet
service provider (ISP) is used to detect the origin of requests. This technique is only a guess, rather than a
precise result, because the ISP might be located far from the user’s actual location—so, you can’t rely on
the location information provided by this technique.

In addition to being widely used, this technique offers the advantage that the IP-detection and
location-finding logic happen in the server-side code. The client browser doesn’t come into picture at all.
However, due to its lack of precision, you can’t use this technique in situations where a higher degree of
accuracy is expected.

GPS
You can use signals from GPS satellite stations located around the globe to determine a user’s exact
location. Although GPS gives much more accurate location information than other techniques, it’s not well
suited for closed or indoor locations. Another pitfall of using GPS is the associated higher battery
consumption, which may require the user to charge the device frequently.

Wi-Fi
Using the Wi-Fi technique, the user’s location is determined by calculating the distance between Wi-Fi
access points and the user. This technique works well in closed and indoor locations and gives accurate
results. However, it suffers from the disadvantage that Wi-Fi access isn’t available everywhere. Especially in

www.it-ebooks.info

http://www.it-ebooks.info/

307

chapter 12 n finding Location with the geoLocation api

rural areas, the availability of Wi-Fi connectivity is often poor, and location information may become
unavailable.

Mobile Phones (GSM or CDMA)
This technique uses the distance between mobile-phone towers and the user to determine the user’s
location. The technique works only with mobile phones and only in the areas where mobile stations are
available. The results are reasonably accurate and can be used for applications specifically developed for
mobile phones.

n Note The specific technique used by the Geolocation API is determined by the device and the software that is
using the Geolocation API, and not by the Geolocation API itself.

The Geolocation API
The Geolocation API allow you to perform three operations: find a user’s location at a given point in time,
track a user’s location as the user moves from one place to another, and stop tracking the user’s location.
The API is encapsulated in a geolocation object that’s available as a property on the browser window’s
navigator object. These three tasks are accomplished with the help of three methods:
getCurrentPosition(), watchPosition(), and clearWatch(). These three methods are described in Table
12-1.

Table 12-1. Methods of the geolocation Object

Method Description
getCurrentPosition() Determines the user’s current location. It accepts a success function, an error

function, and an options object as parameters. The success function is then
used to find the latitude and longitude coordinates of the user’s location. You
can use the error function to flag the user about an error while determining
the location. The latitude and longitude values are in decimal format.

watchPosition() Similar to getCurrentPosition() but keeps monitoring the user’s location
periodically unless the clearWatch() method is called. This method is suited
for tracking user movements as the user moves from one place to another.

clearWatch() Stops monitoring the user’s location. This method is triggered using the
watchPosition() method.

Looking at Table 12-1, you might wonder how these results can benefit the end user. The Geolocation
API merely gives you the user’s location. How you use this data in innovative ways is up to you. Consider
the following situations in which the Geolocation API can be of great use:

•	 Travel companies can use the location to provide a list of nearby pick-up points.

•	 A mapping application can suggest driving directions to the user based on the
location information.

•	 A job portal can present only those jobs located within a specified distance of the
user.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 12 n finding Location with the geoLocation api

308

•	 E-commerce web sites can use the location information to suggest shipping costs to
the user.

•	 Real-estate applications can customize search results based on the user’s location.

•	 Museums, theaters, gathering halls, and such establishments can calculate the
approximate travel time from a user’s location to the venue.

Geolocation and User Privacy
The user’s geographical location is considered a private piece of information, and the user needs to
provide explicit approval before the browser can send the data to the server for further processing.
Whenever you access a web page that uses the Geolocation API, the browser notifies you that you’re about
to share your location information with the page and prompts you to confirm this action. For example,
Figure 12-1 shows how Firefox, Chrome, and IE9 prompt the user to confirm the use of Geolocation API.

Figure 12-1. Browsers asking permission to send location information to the server

As you can see, unless the user explicitly grants permission to transmit their location on the Web, the
web application can’t use the Geolocation API. The user can revoke this permission at any time using their
browser options.

In certain cases, you may also want to send the user’s location information to a third-party system. As
a good practice, it’s better to keep the user informed about such sharing.

Using the Geolocation API to obtain User’s Location
Now that you have a basic understanding of what the Geolocation API does, let’s develop a simple Web
Forms–based application that illustrates how you can use the getCurrentPosition() method to find the
user’s location. The application’s main web form is shown in Figure 12-2.

www.it-ebooks.info

http://www.it-ebooks.info/

309

chapter 12 n finding Location with the geoLocation api

The web form consists of a button and a table. Clicking the Show Current Location button fills the
table with the location information. Note that some of the table cells contain undefined values, indicating
that those pieces of information are unavailable.

The jQuery code responsible for retrieving the location information is given in Listing 12-1.

Listing 12-1. Retrieving the User’s Location Information

$(document).ready(function () {

 if (!Modernizr.geolocation) {
 alert("This browser doesn't support the Geolocation API.");
 return;
 }

 $("#btnShowCurrent").click(function () {
 var options = {
 enableHighAccuracy: false,
 timeout: 5000,
 maximumAge: 3000
 };
 window.navigator.geolocation.getCurrentPosition(OnSuccess, OnError, options);
 });

});

This code shows the ready() function that checks whether the Geolocation API is supported in the
browser. This is done using the geolocation property of the Modernizr object. The code then wires an
event-handler function to the click event of the Show Current Location button.

Figure 12-2. Finding the user’s location using the getCurrentPosition() method

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 12 n finding Location with the geoLocation api

310

The click event-handler function defines an options object with three settings: enableHighAccuracy,
timeout, and maximumAge. This object specifies the options to be used by the getCurrentPosition() method.
The significance of these three options is described in Table 12-2.

Table 12-2. Options for the getCurrentPosition() Method

Option Description
enableHighAccuracy Boolean option that indicates whether to use the high-accuracy GPS technique to

find the user’s location. A value of true indicates that GPS is to be used if available.
Of course, the device must have GPS support as well as the user’s permission to
use this mode. Otherwise, this setting is ignored.

timeout Indicates the number of milliseconds the web page should wait before giving up
location detection.

maximumAge Indicates how much old cached location data can be used. The value is in
milliseconds. The default is 0, indicating that cached data is never used. You may
set this option if you wish to reduce the number of geolocation calls or save power.
However, the downside of setting maximumAge is that the location information can
be outdated, in which case the specified value may cause calculation errors.

The code in Listing 12-1 then calls the geolocation object’s getCurrentPosition() method. This
method accepts three parameters: a success function that is called when the geolocation data is
successfully retrieved, an error function that is called if an error occurs while retrieving the geolocation
information, and the options object. Specifying the error function and options object is optional.

The OnSuccess() function that acts as a success callback is shown in Listing 12-2.

Listing 12-2. OnSuccess() Callback Function

function OnSuccess(position) {
 var html = "";
 html += "<tr><td>Latitude : </td>";
 html += "<td>" + position.coords.latitude + "</td></tr>";
 html += "<tr><td>Longitude : </td>";
 html += "<td>" + position.coords.longitude + "</td></tr>";
 html += "<tr><td>Accuracy : </td>";
 html += "<td>" + position.coords.accuracy + "</td></tr>";
 html += "<tr><td>Altitude : </td>";
 html += "<td>" + position.coords.altitude + "</td></tr>";
 html += "<tr><td>Altitude Accuracy : </td>";
 html += "<td>" + position.coords.altitudeAccuracy + "</td></tr>";
 html += "<tr><td>Heading : </td>";
 html += "<td>" + position.coords.heading + "</td></tr>";
 html += "<tr><td>Speed : </td>";
 html += "<td>" + position.coords.speed + "</td></tr>";
 html += "<tr><td>Timestamp : </td>";
 html += "<td>" + new Date(position.timestamp).toString() + "</td></tr>";
 $("#tblInfo").append(html);
}

OnSuccess() receives a position object that provides information about the user’s location including
latitude and longitude. Most of these properties (except the timestamp) are available in the position
object’s coords property. The pieces of information given by the position object are listed in Table 12-3.

www.it-ebooks.info

http://www.it-ebooks.info/

311

chapter 12 n finding Location with the geoLocation api

Table 12-3. Properties of the position Object

Property Description
latitude Returns the latitude value in decimal format.

longitude Returns the longitude value in decimal format.

accuracy Contains a distance in meters that specifies how close the latitude and longitude
values are to the actual location. The value of the accuracy property increases as the
accuracy of the location data decreases.

altitude Returns the height of the user’s location in meters above the ellipsoid.

altitudeAccuracy Provides the accuracy of the altitude value in meters.

heading Indicates the direction of travel in degrees relative to north.

speed Gives the ground speed in meters per second.

timestamp Gives the timestamp at which the location data was returned. It’s returned as
number of milliseconds since 1 January 1970. You can convert this value into a
JavaScript Date object for further use.

Not all the properties discussed in Table 12-3 are available on all the devices. For example, a desktop
computer doesn’t supply properties such as speed and heading. The four properties latitude, longitude,
accuracy, and timestamp are available on all devices; the other properties aren’t guaranteed to be
supported. If no data is available for a property, null is returned.

The code in Listing 12-2 reads various properties and appends the values in a HTML table (tblInfo). If
an error occurs while finding the user location, the OnError() function is called. OnError() is shown in
Listing 12-3.

Listing 12-3. OnError() Function to Display Error Information

function OnError(err) {
 alert(err.code + " : " + err.message);
}

The OnError() function is quite straightforward. The err object passed to the function has two
properties that give more information about the error: code and message. The possible error codes are 1
(PERMISSION_DENIED), 2 (POSITION_UNAVAILABLE), and 3 (TIMEOUT). The message property gives a descriptive
error message. Figure 12-3 shows an error message when permission to use the Geolocation API is denied.

Figure 12-3 shows the code and message properties in an alert box. You can, of course, check the code
property and display a friendlier message for each error code.

Figure 12-3. Error message after permission to use the Geolocation API is denied

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 12 n finding Location with the geoLocation api

312

Using the Geolocation API with Mapping Applications
One of the common uses of the Geolocation API is integrating mapping services with web applications.
Such integration can be useful for showing the user’s location with respect to a set of other locations,
suggesting driving routes, and calculating the distance between two places. The Google Maps and Bing
Maps mapping services are popular and commonly used by developers in web applications. Using these
services involves the following steps:

1. Obtain an API key from the service provider (Google or Bing).

2. Refer to the map API library that allows you to program the mapping service in
your web page.

3. Embed a map into your ASP.NET web application.

4. Integrate the mapping service with the Geolocation API to customize the map as
per your need.

Google Maps and Bing Maps require that you have an API key to consume their mapping services in
your web application. An API key is allotted for an account, and you can obtain the API key from the
corresponding web site. The examples discussed later in this section assume that you’ve obtained a valid
API key from the mapping service provider.

Google Maps and Bing Maps allow you to program a map using a JavaScript-based API developed by
the provider. You need to add a reference to this JavaScript library in your web pages to consume its
features. The features exposed by these libraries include showing a particular location on a map, setting a
map’s zooming level, showing a callout for a location, and many others. The examples in this section use
some of the libraries’ basic features.

Using the JavaScript libraries, you can easily embed a map into your own web page. For example, you
can show a map in a <div> element.

The Geolocation API and the mapping services are independent of each other. However, you can
integrate them to provide a better user experience. For example, instead of showing a map of a fixed
location and expecting users to zoom in or out to their location, it’s better if by default the map shows the
user’s location prominently.

n Note The Google Maps API and Bing Maps API expose many programmable features that you can use in a web
application. Detailed discussion of these features is beyond the scope of this book. This chapter uses Google Maps
and Bing Maps only to the extent of illustrating the integration of the Geolocation API with mapping services. You can
visit the mapping service providers’ web sites (https://developers.google.com/maps and www.microsoft.
com/maps/developers/web.aspx) for complete documentation.

Integrating the Geolocation API with Google Maps
In this section, you learn to integrate the Geolocation API with Google Maps. Figure 12-4 shows the web
form you develop.

www.it-ebooks.info

https://developers.google.com/mapsandwww.microsoft.com/maps/developers/web.aspx
https://developers.google.com/mapsandwww.microsoft.com/maps/developers/web.aspx
http://www.it-ebooks.info/

313

chapter 12 n finding Location with the geoLocation api

As you can see, the web form consists of a button and a <div> element that holds a map. When the
page is loaded in the browser, by default the map is centered on Mumbai. If you click Show Current
Location, a callout is displayed that points to the user’s current location.

To develop this application, you need to reference the Google Maps JavaScript library in the markup.
Listing 12-4 shows how this is done.

Listing 12-4. Referencing the Google Maps API Library

<html>
 <head>
 …

Figure 12-4. Integrating the Geolocation API with Google Maps

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 12 n finding Location with the geoLocation api

314

 <script type=”text/javascript” src=”http://maps.googleapis.com/maps/api/
 js?key=<%= ConfigurationManager.AppSettings[“GoogleMapsAPIKey”] %>&
 sensor=true”>
</script>
 …
 <input type="button" id="btnShowCurrent" value="Show Current Location" />
 …
 <div id="divMap" style="…"></div>
 …
</html>

The line of markup shown in bold refers to the Google Maps API library. The URL includes two
mandatory query string parameters: key and sensor. The key query string parameter specifies an API key.
Because the key may change depending on the Google account being used, it isn’t embedded in the
markup. Instead, the key is stored in the <appSettings> section of the web.config file and retrieved in the
<%= and %> block. GoogleMapsAPIKey is the name of the key in the <appSettings> section. The sensor query
string parameter indicates whether the device running this web application uses a sensor such as a GPS
locator to determine the user’s location.

The other markup in Listing 12-4 is simple and includes an <input> tag that renders the Show Current
Location button and a <div> that acts as a container for the map.

The jQuery code that uses the Google Maps API to display Mumbai when the page loads in the
browser is shown in Listing 12-5.

Listing 12-5. Displaying a Map Using the Google Maps API

var map;
var defaultPos;

$(document).ready(function () {
 …
 defaultPos = new google.maps.LatLng(18.916667, 72.9);
 var mapOptions = {
 center: defaultPos,
 zoom: 8,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
 map = new google.maps.Map($("#divMap").get(0), mapOptions);

 $("#btnShowCurrent").click(function () {
 window.navigator.geolocation.getCurrentPosition(OnSuccess, OnError);
 });
});

This code begins by declaring two global variables named map and defaultPos. The map variable holds
a reference to a Google Map object, whereas the defaultPos variable holds a default position on the map.
The ready() method handler creates a LatLng object provided by the Google Maps API by passing the
latitude and longitude of Mumbai. This LatLng object acts as the default center of the map. The code then
creates a mapOptions object containing configuration settings for the map. The center option defines the
map’s center coordinate. The zoom setting affects the map’s zoom level. The larger the zoom value, the more
magnified the map is. The mapTypeId setting governs the type of map displayed. The value for mapTypeId
can be assigned from constants such as ROADMAP, SATELLITE, HYBRID, and TERRAIN. The value of ROADMAP
means that a two-dimensional map is displayed. A Map object is then constructed by passing the DOM

www.it-ebooks.info

http://maps.googleapis.com/maps/api/
http://www.it-ebooks.info/

315

chapter 12 n finding Location with the geoLocation api

reference to the <div> element that is acting as the map container, and the map options. This displays a
map in the <div> element with Mumbai as its center.

The code also shows the click event-handler function of the Show Current Position button. The click
event handler calls the getCurrentPosition() method on the geolocation object and passes two callback
functions—OnSuccess() and OnError()—in the parameter. OnSuccess() and OnError() are shown in Listing
12-6.

Listing 12-6. OnSuccess() and OnError() Callback Functions

function OnSuccess(position) {
 var curPos = new google.maps.LatLng(position.coords.latitude,
 position.coords.longitude);
 map.setCenter(curPos);
 var callout = new google.maps.InfoWindow();
 callout.setContent("This is your current location.");
 callout.setPosition(curPos);
 callout.open(map);
}

function OnError(err) {
 alert(err.message);
 map.setCenter(defaultPos);
 var callout = new google.maps.InfoWindow();
 callout.setContent("This is the default location.");
 callout.setPosition(defaultPos);
 callout.open(map);
}

OnSuccess() creates a new LatLng object using the latitude and longitude properties provided by the
coords object. This LatLng object represents the user’s location. The setCenter() method of the map object
is then used to set the center to the new LatLng object. To display a callout to the user pointing to the user’s
location, you use an InfoWindow object provided by the Google Maps API. The setContent() method of the
InfoWindow object indicates the callout’s content. The setPosition() method of the InfoWindow object
governs the location where the callout is to be placed. Finally, the open() method of the InfoWindow object
shows the callout on the specified map object.

OnError() is similar to OnSuccess() but is called in the event of an error while retrieving the user’s
location. OnError() displays an error message to the user and displays a callout at the default position
(Mumbai, in this case).

Integrating the Geolocation API with Bing Maps
The process of integrating the Geolocation API with Bing Maps is similar to that used for Google Maps.
This time, however, you need to use the Bing Maps API and the corresponding API key. The following line
of markup shows how to reference the Bing Maps API in a web page:

<script src="http://dev.virtualearth.net/mapcontrol/
mapcontrol.ashx?v=7.0" type="text/javascript">
</script>

Note that the Bing Maps documentation refers this library as an Ajax control but it’s actually a
JavaScript library and can be referenced using the normal <script> tag as shown. This time, the API key

www.it-ebooks.info

http://dev.virtualearth.net/mapcontrol/mapcontrol.ashx?v=7.0
http://dev.virtualearth.net/mapcontrol/mapcontrol.ashx?v=7.0
http://www.it-ebooks.info/

chapter 12 n finding Location with the geoLocation api

316

isn’t added in the library’s URL. Instead, the API key is specified in the map options, as illustrated in Listing
12-7.

Listing 12-7. Displaying a Map Using the Bing Maps API

$(document).ready(function () {
 …
 defaultPos = new Microsoft.Maps.Location(18.916667, 72.9);
 var mapOptions = {
 credentials: '<%= ConfigurationManager.AppSettings["BingMapsAPIKey"] %>',
 center: defaultPos,
 mapTypeId: Microsoft.Maps.MapTypeId.road,
 zoom: 8
 };
 map = new Microsoft.Maps.Map($("#divMap").get(0), mapOptions);
 …
});

This listing is similar to the previous example. Here, instead of a LatLng object, a Location object is
used to represent a map location. The map options include credentials, center, zoom, and mapTypeId. The
credentials setting holds the Bing Map API key stored in the <appSettings> section of the web.config file.
The other settings are obvious and need no explanation.

The OnSuccess() and OnError() functions this time use an Infobox object to display the location
callout. These functions are shown in Listing 12-8.

Listing 12-8. Using the Infobox Object of the Bing Maps API

function OnSuccess(position) {
 var curPos = new Microsoft.Maps.Location(position.coords.latitude,
 position.coords.longitude);
 var calloutOptions = {title: "Location Information",
 description: "This is your current location."};
 var callout = new Microsoft.Maps.Infobox(curPos, calloutOptions);
 map.entities.push(callout);
}

function OnError(err) {
 alert(err.message);
 var calloutOptions = {title: "Location Information",
 description: "This is the default location."};
 var callout = new Microsoft.Maps.Infobox(defaultPos, calloutOptions);
 map.entities.push(callout);
}

A new Location object is created based on the user’s location. The calloutOptions object holds the
title and description shown in the callout. An Infobox object is created by passing the desired location (the
user’s location, in this case) and the calloutOptions object. Finally, the callout is displayed by calling the
push() method of the entities object and passing the Infobox as the parameter. Figure 12-5 shows a map
in Bing Maps.

www.it-ebooks.info

http://www.it-ebooks.info/

317

chapter 12 n finding Location with the geoLocation api

As you can see, clicking the Show Current Location button opens the Infobox. The title setting
controls the title of the Infobox, and the description setting controls its content.

Using the Geolocation API to Present Location-Specific Data
The Geolocation API isn’t restricted to mapping applications. You can use it in innovative ways to add
location awareness to your web applications. In this section, you develop an ASP.NET MVC application
that displays job openings based on the user’s location. The application consists of a single view that looks
like Figure 12-6.

Figure 12-5. Bing Maps showing an Infobox

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 12 n finding Location with the geoLocation api

318

The view has a numeric <input> field at the top. The user can specify a distance in meters to indicate
that only jobs within the specified distance are to be listed. When the user clicks the Show button, their
location is captured using the Geolocation API; based on the user’s location and the distance specified,
only job postings that fall within the specified distance range are displayed. For example, if the user’s
location is Mumbai and the distance specified is 150000 meters (150km), then job postings from Mumbai
and Pune will be displayed because these two locations fall within the specified range of 150km. Job
postings from Bangalore and Chennai won’t be displayed because those locations are outside the specified
range.

The application uses two tables—Jobs and Locations—that store job postings and location,
coordinates respectively. The Entity Framework data model for these tables is shown in Figure 12-7.

Figure 12-6. Searching for jobs based on the user’s location

www.it-ebooks.info

http://www.it-ebooks.info/

319

chapter 12 n finding Location with the geoLocation api

The Jobs table stores JobTitle, Description, and LocationName, whereas the Locations table stores
LocationName, Latitude, and Longitude. The code that performs the job of finding the user’s location and
fetching the relevant job postings is shown in Listing 12-9.

Listing 12-9. Finding Job Postings Based on User Location and Ddistance

$(document).ready(function () {
…
 $("#btnShow").click(function () {
 window.navigator.geolocation.getCurrentPosition(function (position) {
 var lat1 = position.coords.latitude;
 var long1 = position.coords.longitude;
 var distance = $("#txtDistance").val();
 var data = '{ "lat1" : "' + lat1 + '","long1":"' + long1 +
 '","distance":"' + distance + '"}';
 $.ajax({
 type: "POST",
 url: '/home/GetJobs',
 data: data,
 contentType: "application/json; charset=utf-8",
 dataType: "json",
 success: function (jobs) {
 $("#tblJobs").empty();
 $("#tblJobs").append("<tr><th>Job Title</th><th>Description</th><th>Location</th></
tr>");
 for (var i = 0;i<jobs.length;i++)
 {
 $("#tblJobs").append("<tr><td>" + jobs[i].JobTitle + "</td><td>" +
 jobs[i].Description + "</td><td>" + jobs[i].LocationName +
 "</td></tr>");
 }
 },
 error: function (err) {
 alert(err.status + " - " + err.statusText);
 }
 });

Figure 12-7. Entity Framework data model forJobs and Location tables

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 12 n finding Location with the geoLocation api

320

 });
 });
});

This code shows the Show button’s click event-handler function. It first retrieves the user’s location
using the getCurrentPosition() method of the geolocation object. This time, a success function is
provided inline with the getCurrentPosition() call instead of as a separate function. The user’s location’s
latitude and longitude values are stored in the local variables lat1 and long1. A JSON object with three
keys—lat1, long1, and distance—is formed using the values from the variables and the <input> field.

Next, an Ajax request is made to the GetJobs() action method using the jQuery $.ajax() method.
GetJobs() returns zero or more Job objects and is discussed shortly. The success function of the $.ajax()
method receives the Job objects returned by GetJobs(). It then iterates through the jobs array and adds the
jobs to an HTML table. The table contains the Title, Description, and LocationName properties of the Job
objects.

The error-handler function of the $.ajax() method displays the error message in an alert box. The
GetJobs() action method that returns the relevant jobs based on the user’s location and the specified
distance is shown in Listing 12-10.

Listing 12-10. GetJobs() Action Method

[HttpPost]
public JsonResult GetJobs(double lat1, double long1, double distance)
{
 JobsDbEntities db = new JobsDbEntities();
 var data = from item in db.Jobs
 select item;
 List<Job> selectedJobs = new List<Job>();

 foreach(Job job in data)
 {
 var temp = from item in db.Locations
 where item.LocationName==job.LocationName
 select item;

 double lat2 = (double)((Location)temp.SingleOrDefault()).Latitude;
 double long2 = (double)((Location)temp.SingleOrDefault()).Longitude;

 if (GetDistance(lat1, long1, lat2, long2) <= distance)
 {
 selectedJobs.Add(job);
 }
 }
 var finalData = from obj in selectedJobs
 orderby obj.LocationName
 select obj;
 return Json(finalData);
}

The GetJobs() action method from the Home controller takes three parameters of type double. The
lat1 and long1 parameters represent the latitude and longitude of the user’s location. The distance
parameter represents the distance specified by the user. The method then iterates through all the available
job postings. With each iteration, the latitude and longitude of the job location are determined. The

www.it-ebooks.info

http://www.it-ebooks.info/

321

chapter 12 n finding Location with the geoLocation api

GetDistance() helper method determines the distance between the user’s location (lat1, long2) and the
job location (lat2, long2). If the distance returned by GetDistance() is less than or equal to the distance
specified by the user, the job posting is added to a generic List of Job objects. Before the filtered job
postings are sent to the user, the selectedJobs generic List is sorted on LocationName. Finally, the sorted
list of Job objects is sent to the caller in JSON format using the Json() method. The GetDistance() method
that determines the distance between the user’s location and the job location is shown in Listing 12-11.

Listing 12-11. Finding the Distance Between the User’s Location and the Job Location

private double GetDistance(double lat1,double long1,double lat2,double long2)
{
 GeoCoordinate point1 = new GeoCoordinate(lat1, long1);
 GeoCoordinate point2 = new GeoCoordinate(lat2, long2);
 double distance = point1.GetDistanceTo(point2);
 return distance;
}

This code uses the GeoCoordinate class from the System.Device.Location namespace (located in the
System.Device.dll assembly). GeoCoordinates represents the geographical coordinates of a location. The
GeoCoordinate constructor accepts a location’s latitude and longitude. The GetDistance() method of the
GeoCoordinate class returns the distance between that point and another point as specified in the
parameter. The distance, in meters, is then returned to the caller.

Note that for the sake of simplicity, this code retrieves all the rows from the table and then iterates
through them one by one. A more sophisticated solution would calculate the maximum latitude and
longitude values and then retrieve only rows that fall in that range.

n Note The .NET Framework’s GeoCoordinate class is similar to the Geolocation API’s coords object in terms
of its properties. GeoCoordinate uses the haversine formula to calculate the distance. This formula treats Earth as
spherical rather than an ellipsoid and doesn’t use altitude for distance calculation. The haversine formula introduces
an error of less than 0.1 percent while calculating long distances.

Tracking Movement Using the Geolocation API
In the preceding examples, you used the geolocation object’s getCurrentPosition() method to get the
user’s current location. This works well when you want to know the user’s location at the time you call the
method and you aren’t interested in continuously tracking the user. In some cases, however, you need to
keep watching the user’s location as the user moves from one place to the other. For example, you may
want to monitor the distance travelled by a user who is moving from a location toward some other
location, and you may want to inform the user regularly about the distance remaining to the target
location. You can use the watchPosition() method of the geolocation object in such cases. This method is
similar to getCurrentPosition() in terms of syntax; but unlike getCurrentPosition(), it keeps invoking the
success function at regular intervals. The exact interval between successive calls to the success function is
governed by the device. The success callback function is invoked only if the user’s location has changed.
So, on a desktop computer, getCurrentPosition() and watchPosition() behave in the same fashion
because the location of the computer doesn’t change.

What if, based on a condition, you wish to stop watching the user’s location? The watchPosition()
method returns a number that acts like a handle to that invocation of watchPosition(). You can pass this

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 12 n finding Location with the geoLocation api

322

number to the clearWatch() method to stop watching the user’s location. The code in Listing 12-12 shows
how you can use watchPosition() and clearWatch().

Listing 12-12. Using the watchPosition() and clearWatch() Methods

var watchId;
function StartWatch() {
 watchId = window.navigator.geolocation.watchPosition(OnSuccess, OnError);
}

function StopWatch() {
 window.navigator.geolocation.clearWatch(watchId);
};

This code defines a global variable named watchId to store the watch handle returned by
watchPosition(). The StartWatch() function calls geolocation object’s watchPosition() method and
passes OnSuccess and OnError callback functions as before. The returned numeric handle is stored in the
watchId variable. StopWatch() calls the geolocation object’s clearWatch() method and passes watchId as a
parameter to clear that watch.

Summary
The Geolocation API allows you to find the user’s geographic location in terms of latitude and longitude.
The geolocation object property of the navigator object exposes the methods responsible for retrieving
the user’s location. The getCurrentPosition() method returns the user’s current location. The
watchPosition() method keeps monitoring that location until the clearWatch() method is called.

Using the Geolocation API, you can build location-aware web applications that present data based on
the user’s location. You can also integrate the Geolocation API with mapping services such as Google Maps
and Bing Maps.

You’ve learned about all of HTML5’s prominent programmable features. Although, as a web developer,
your core focus is on programmable features, at times you also need to style your web applications using
Cascading Style Sheets (CSS). CSS3 offers the latest in this area. The next chapter covers some new and
improved features.

www.it-ebooks.info

http://www.it-ebooks.info/

323

n n n

chapter 13

Styling Web Forms and
Views with CSS3

As an ASP.NET developer wishing to harness the power of HTML5, your primary area of interest is the
programmable features of HTML5. However, as a part of developing real-world professional web
applications, you also need to look into the styling aspects of those web applications. When it comes to
styling web forms and views, Cascading Style Sheets (CSS) is the de facto standard, and CSS3 adds many
enhancements that make styling even better. CSS3 isn’t part of HTML5, but they’re evolving together and
complement each other well.

CSS3 specifications group improvements over CSS 2.1 into what are known as modules. There are
around 50 modules in CSS3. The idea behind grouping the improvements and additions into modules is
that browser vendors can decide which modules to implement in their products. When a module is
implemented, developers also know which features they can use. Because CSS3 is still an evolving
specification, this modular approach makes it easy for browser vendors to support and refine CSS3
features in an incremental fashion.

There are many new additions to CSS3, including things such as rounded borders, web fonts,
shadows, transparency, and transforms. This chapter gives you a detailed overview of some important
CSS3 features that are frequently needed by developers because they’re commonly used while styling web
pages. Using these features, you can beautify web forms and views in a better way. Specifically, you learn
the following:

•	 Working with CSS3 selectors

•	 Using custom fonts that are downloaded automatically at the client side

•	 Enhancing boxes using rounded corners, shadows, gradients, and transparency

•	 Using transitions and transforms

•	 Targeting different devices with media queries

The chapter concludes with information about using Modernizr to apply CSS3-specific features.

CSS3 Selectors
In Chapter 2, you learned about jQuery selectors that allow you to select elements for further manipulation
in your jQuery code. CSS selectors do exactly the same job, with the difference that they select elements for

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 13 n styLing web forMs and views with css3

324

the sake of applying styling. In fact, jQuery selectors are based on the idea of CSS selectors. CSS3 adds
many new selectors to those that already existed in CSS. This section introduces some of the important
ones.

If you’ve used CSS in the past, chances are you’re already familiar with the concept of selectors.
Consider the following CSS class:

#mydiv{ border: 2px #f00 solid; }

This class uses the ID selector and is applied to a DOM element whose ID attribute is mydiv. The other
two commonly used CSS selectors are the element selector and the class selector. An element selector
selects all the elements of specific tag name, whereas a class selector selects all the elements whose class
attribute is set to a specific CSS class name. The following examples show these two selectors:

div{ border: 2px #f00 solid; }
.myclass{ border: 2px #f00 solid; }

The first CSS class uses an element selector that selects all the <div> elements and applies to them a
border with a specified color and width. The second class selects all the DOM elements whose class
attribute is set to myclass and applies to them a border with a specified color and width.

n Note In addition to the selectors just discussed, CSS 2.1 offers a few others, but this chapter doesn’t discuss
them. Here we focus only on the newly added selectors in CSS3.

The newly added selectors of CSS3 that are discussed in the following sections can be grouped in four
categories:

•	 Attribute-substring selectors: Allow you to select elements whose attribute value
starts with, ends with, or contains a specified string

•	 Structural pseudo-classes: Let you select elements based on their structural position,
such as a specific child element

•	 Element-state pseudo-classes: Allow you to select elements that are in a specific state,
such as enabled, disabled, or checked

•	 Miscellaneous pseudo-classes: Provide miscellaneous functionality that doesn’t fit in
any other category

The following sections discuss each of these groups of selectors in detail.

Attribute-Substring Selectors
The attribute-substring selectors allow you to select DOM elements whose attribute values start with, ends
with, or contain a specified string. These three selectors are listed in Table 13-1.

Table 13-1. Attribute Substring Selectors

Selector Operator Description
Attribute starts with ^= Matches the start of an attribute value with a specified string

Attribute ends with $= Matches the end of an attribute value with a specified string

Attribute contains *= Checks whether an attribute value contains a specified string

www.it-ebooks.info

http://www.it-ebooks.info/

325

chapter 13 n styLing web forMs and views with css3

Let’s illustrate these three attribute-substring selectors with an example. Suppose you have a web page
with multiple hyperlinks. Some of them point to URLs and some point to e-mail addresses, as shown here:

Go to Microsoft's website.
Contact us here.

Now assume that you wish to display all hyperlinks starting with http:// in red and all hyperlinks
starting with mailto: in blue. You can do so using an attribute-substring selector:

a[href^="http://"] {
 color:red;
 font-size:30px;
}
a[href^="mailto:"] {
 color:blue;
 font-size:30px;
}

The CSS selectors used in these classes use ^= operator to match the start of the href attribute of
anchor elements with a specific string. The first selector selects all hyperlinks that begin with http:// and
sets their color to red; the other selector selects all hyperlinks that begin with mailto: and sets their color
to blue. Figure 13-1 shows how these links look in the browser.

Now, further assume that the same page contains the URLs of certain PDF files, and you wish to
render these hyperlinks in green. In this case, you can use the “attribute ends with” selector as shown next:

a[href$=".pdf"] {
 color:green;
 font-size:30px;
}

The “attribute ends with” selector uses the $= operator to match the end of an attribute value with a
specified string. In this example, the end of the href attribute value is matched against ".pdf", and all
hyperlinks that match the criteria are shown in green. An example of a matching hyperlink is as follows:

Download eBook here.

Extending the idea further, you can also display hyperlinks that contain (rather than start or end with)
specific text. For example, to display in orange all hyperlinks that contain the word google, you use

a[href*="google"] {
 color:orange;
 font-size:30px;
}

Figure 13-1. “Attribute starts with” selector in action

www.it-ebooks.info

http://www.microsoft.com
mailto:contact@somedomain.com
http://www.it-ebooks.info/

chapter 13 n styLing web forMs and views with css3

326

As you can see, the *= operator checks the href attribute of each hyperlink element to see if it contains
the word google. If so, the hyperlink color is set to orange. Here’s an example of a matching hyperlink:

…

The specified string can exist at the start of the attribute value, at the end of the attribute value, or
anywhere in between.

Structural Pseudo-Classes
Sometimes you want to apply styling to elements based on their structural position in the DOM tree. For
example, you may want to apply certain styling to the first and last rows of a table. In such cases, structural
pseudo-classes come in handy. Table 13-2 lists the structural pseudo-classes.

Table 13-2. Structural Pseudo-Classes

Pseudo-Class Description
:root Matches an element that is the root of the document (typically the <html> element)

:first-child Matches any element that is the first child of its parent

:last-child Matches any element that is the last child of its parent

:nth-child Matches any element that is the nth child of its parent

:nth-last-child Matches any element that is the nth child of its parent, counting from the last child

:only-child Matches any elements that is the only child of its parent

:first-of-type Matches any element that is the first sibling of its type

:last-of-type Matches any element that is the last sibling of its type

:nth-of-type Matches any element that is the nth sibling element of its type

:nth-last-of-type Matches any element that is the nth sibling element of its type, counting from the
last child

:only-of-type Matches any element that is the only sibling of its type

:empty Matches any element that has no children

Let’s see some examples of using structural pseudo-classes. Suppose you wish to display the last row
of an HTML table in a certain color. You can do so using the :last-child pseudo-class, as shown here:

tr:last-child {
 background-color:#808080;
 font-size:20px;
}

This CSS selector selects all <tr> elements that are the last child of their parent (that is, the <table>
element) and applies to them the specified background color and font size. Figure 13-2 shows how a table
looks with the styling applied.

www.it-ebooks.info

http://www.somedomain.com/google/api%22%3E%E2%80%A6%3C/
http://www.it-ebooks.info/

327

chapter 13 n styLing web forMs and views with css3

A common requirement while working with tables is to show the alternate rows in different colors.
This can be achieved using the :nth-child selector. The following CSS selectors apply different styling to
the odd and even rows of a table:

tr:nth-child(odd) {
 background-color:#fff;
}
tr:nth-child(even) {
 background-color:#808080;
}

Here, all the odd rows have the background color #fff and all the even rows have the background
color #808080. The resulting table is shown in Figure 13-3.

The odd and even keywords denote odd and even rows, respectively. You can also specify a row
number: for example, tr:nth-child(2) {…}. The numbering starts from 1.

The type selectors are similar to child selectors, but they’re applicable to siblings of a specified type
rather than children. Consider a case where you have many <p> elements and you want the first letter of

Figure 13-2. Last row of a table styled using the :last-child pseudo-class

Figure 13-3. Odd and even rows of a table with different styles applied using an :nth-child pseudo-class

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 13 n styLing web forMs and views with css3

328

the first paragraph to be displayed in a specific way. Because all the <p> elements are siblings of each other,
you use a type pseudo-class. For this particular case, you can use :first-of-type as follows:

p:first-of-type::first-letter {
 font-size:50px;
 float:left;
 line-height:1;
 margin-right:5px;
}

This :first-of-type selector selects the first <p> element. The double colon (::) syntax then selects the
first letter of that paragraph using the ::first-letter pseudo-element and applies the styling as specified.
Figure 13-4 shows how the paragraph looks.

Figure 13-4. Using a :first-of-type selector to select the first paragraph of content

Note that the specific styling is applied only to the first letter of the first paragraph because the :first-
of-type pseudo-class is used. The other <p> elements remain unaffected by the styling.

n Note Prior to CSS3, pseudo-classes and pseudo-elements were prefixed by a colon (:). To distinguish between
them, CSS3 prefixes pseudo-classes with a single colon (:) and pseudo-elements with a double colon (::). This
enables you to quickly identify that :first-of-type is a pseudo-class whereas ::first-letter is a pseudo-
element.

Element-State Pseudo-Classes
The element-state pseudo-classes are useful when you’re working with form fields because they select
elements based on their state. For example, suppose you want to apply specific styling to all check boxes

www.it-ebooks.info

http://www.it-ebooks.info/

329

chapter 13 n styLing web forMs and views with css3

that are checked, or display disabled elements in a specific way. These pseudo-classes are listed in Table
13-3.

Table 13-3. Element-State Pseudo-Classes

Pseudo-Class Description
:enabled Matches any form field that is enabled

:disabled Matches any form field that is disabled

:checked Matches any form field that is checked

To understand how element-state pseudo-classes are used, consider the following selectors:

input[type="text"]:enabled { background:#fff; }
input[type="text"]:disabled { background:#808080; }
input:checked { border:2px #f00 solid; }

The :enabled pseudo-class, when applied to input elements of type text, returns all text boxes that are
enabled and applies the specified styling to them. Similarly, the :disabled pseudo-class selects all text
boxes that are disabled and applies the specified styling. The :checked pseudo-class selects all check boxes
and adds a border to them as specified. Figure 13-5 shows these pseudo-classes in action.

Figure 13-5. :enabled, :disabled, and :checked pseudo-classes in action

Miscellaneous Pseudo-Classes
The CSS pseudo-classes discussed in this section don’t fit in any of the categories discussed earlier. These
pseudo-classes include the negation pseudo-class (:not()) and the general sibling combinator pseudo-
class.

The negation pseudo-class is used when you wish to select elements that don’t match a specific
condition. For example, suppose a form contains several <input> elements. Of all those <input> elements,
only one is of type submit; all the rest are of type text, checkbox, and radio. If you wish to apply styling to
all of the <input> elements except the Submit button, you can do so using the :not() pseudo-class as
shown next:

input:not([type="submit"]) {
 background-color:#808080;
}

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 13 n styLing web forMs and views with css3

330

This selector selects elements whose type attribute isn’t submit. The background color of these
elements is then set to #808080.

The general sibling combinator consists of two simple selectors separated by a tilde (~) character. It
selects elements of the second type that are preceded by an element of the first type. Both elements must
have the same parent, but the second element doesn’t have to be immediately preceded by the first
element. For example, let’s say you have a <div> element containing other elements such as , <input>,
and , as shown here:

<div>

 One
 Two

</div>

 Three
 Four

You wish to apply styling to sibling elements that appear after the <div> element and occurring
anywhere within the <div>. You can do so using the following CSS rule:

div ~ ul {
 background-color:#ff6a00;
}

Figure 13-6 shows the final outcome.

Figure 13-6. General sibling combinator

As you can see, the first is a child of the <div> and not a sibling, and hence the specified styling isn’t
applied it to it. The second is a sibling of the <div> element, so the general sibling combinator selects it
and applies the specified background color.

Browser-Specific Property Prefixes
As mentioned earlier, the CSS3 specifications are still evolving, and different browser vendors support
them in varying degrees. Currently, the CSS3-specific features implemented by browsers fall into two

www.it-ebooks.info

http://www.it-ebooks.info/

331

chapter 13 n styLing web forMs and views with css3

broad categories: features that meet the specification completely, and features that are implemented but
don’t yet meet the specifications completely. To distinguish between these two types, the browser vendors
use their own prefixes for the features belonging to the second category. These prefixes are listed in Table
13-4.

Table 13-4. Browser-Specific Prefixes for CSS3 Properties

Prefix Description
-ms- Used by Microsoft Internet Explorer

-moz- Used by Mozilla Firefox

-webkit- Used by Google Chrome and Apple Safari

-o- Used by Opera

Consider a CSS class named rotate, as shown next:

.rotate
{
 border-radius: 25px;
 -ms-transform: rotate(10deg);
}

The rotate CSS class uses two CSS3 properties: border-radius and -ms-transform. The border-radius
property doesn’t have a prefix attached to it, which indicates that it’s feature-complete. The transform
property, on the other hand, uses the -ms- prefix, indicating that the feature-incomplete implementation
specific to Internet Explorer should be used. You use the browser-specific prefixes listed in Table 13-4 in
some of the examples discussed later.

n Note You can use Modernizr to detect browser support of CSS3 features in JavaScript code just like other
HTML5 features. However, Modernizr doesn’t provide detection properties for all CSS3 features.

Using Web Fonts
You can make your web pages catchy and easy to read by making the proper use of fonts. Unfortunately,
web developers and designers have had to be satisfied with a small set of fonts to ensure that their web
applications look the same on all browsers running on a variety of operating systems. If you use a font in
your web pages that doesn’t come bundled with the operating system, there is no guarantee that the client
machine has the same font installed. As a result, your web page may look different to the end user than it
does on your machine. That is why web developers and designers have often restricted themselves to using
well-known web-safe fonts, which are likely to be available on a wide range of computer systems; these
fonts include Arial, Verdana, and Times New Roman.

CSS3 provides a new way to use fonts called web fonts. Using this feature, you can host nonstandard
fonts used by web pages on your web site. You then declare a custom font definition using the @font-face
CSS3 rule. At runtime, the client browser reads the custom font definition from the style sheet and
downloads the font to the client machine. The font is then used for your web pages. Each web site that
wants to use a nonstandard font must define it in the web site’s style sheet.

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 13 n styLing web forMs and views with css3

332

Web Font Formats
Although CSS3 makes it easy for you to use nonstandard fonts in your web pages, one more area needs to
be addressed: font file formats. Just like media files, font files come in a variety of formats, and there is no
one web standard for these formats. Table 13-5 shows a list of font file formats that are in use today.

Table 13-5. Font Formats Used on the Web

Format Description Browser Support
True Type Font (.ttf)
Open Type Font (.otf)

The TTF and OTF formats are most
commonly used on desktop
computers.

Firefox, Chrome, Opera, and Safari

Embedded Open Type (.eot) EOT is a proprietary Microsoft
format and is used mainly in older
versions of IE

IE

Scalable Vector Graphics (SVG) SVG is a general graphical format. Mobile devices using the Android
operating system and Safari Mobile

Web Open Font Format (.woff) All newer versions of browsers
support WOFF. It may become a
standard at some point.

All newer versions of IE, Firefox,
Chrome, Opera, and Safari

Because there is no single standard file format for web fonts, and developers may need to host
multiple file formats on their web sites, some web sites offer fonts in these file formats for downloading.
One popular web site is Font Squirrel (www.fontsquirrel.com), which provides what is known as @font-
face kits—sets of fonts in these file formats. Figure 13-7 shows the Font Squirrel download page for a font
named Magenta.

Figure 13-7. Downloading a @font-face kit from the Font Squirrel web site

www.it-ebooks.info

http://www.fontsquirrel.com
http://www.it-ebooks.info/

333

chapter 13 n styLing web forMs and views with css3

Figure 13-8. Google Web Fonts web site

You can select font formats to download. By default, the TIF, EOT, WOFF, and SVG formats are selected.
The downloaded @font-face kit (a Zip file) contains all the font formats, licensing information, and a demo
HTML page.

There is an alternative to downloading a @font-face kit from a web site and then uploading it to your
own web site: Google Web Fonts. Google Web Fonts offer web fonts to use in your web pages without any
need to download them. All you need to do is to add a Style Sheet reference in your web pages, as
instructed on the Google Web Font web site (www.google.com/webfonts). At runtime, the Google Web Font
web site automatically detects the browser and sends it a font in a supported format. Figure 13-8 shows the
Google Web Fonts web site.

In the following section, you learn how to use @font-face kit files as well as the Google Web Fonts web
site.

Using @font-face Rules
Now that you know what web fonts are and how to get them, let’s see how you can put them to use in a web
page. Suppose you’ve downloaded the Magenta font mentioned in the preceding example. To use that web
font, you need to create a custom font definition in your style-sheet file. A sample font definition is shown
here:

@font-face
{
font-family: MyWebFont;
src: url('Fonts/Magenta_BBT-webfont.ttf'),
 url('Fonts/Magenta_BBT-webfont.eot'),

www.it-ebooks.info

http://www.google.com/webfonts
http://www.it-ebooks.info/

chapter 13 n styLing web forMs and views with css3

334

 url('Fonts/Magenta_BBT-webfont.svg'),
 url('Fonts/Magenta_BBT-webfont.woff');
}

The @font-face rule begins by defining a font family named MyWebFont. The font-family name can
be any developer-defined name. If you have multiple @font-face rules, each should have a unique font-
family name to avoid ambiguity. The src property then points to one or more URLs where the font files are
located, using the url() function. In this example, all the font files are located in a folder named Fonts. For
each font format that you wish to support, you must specify a URL.

Once you define a custom font definition using @font-face, you can use that font in other CSS rules.
For example, the following CSS rule uses MyWebFont for <h1> tags:

h1 {
 font-family: 'MyWebFont';
 font-size:40px;
 text-align:center;
}

As you can see, in a CSS rule you can use the custom font like any other standard font. In this case, the
font-family property is set to MyWebFont, and the font-size and text-align properties are also set. Figure
13-9 shows a top-level heading in the browser.

Figure 13-9. @font-face applied to a page heading

Even if the local machine doesn’t have a specific font, the web page can display text in that font
because @font-face provides the location of the font files.

If you’re using a font from Google Web Fonts, then you don’t need to define a font with @font-face
because that is already done for you. All you have to do is refer to a style sheet provided by Google Web
Fonts and then use the font-family name in your CSS rules. For example, if you click the Quick Use button
for the font Peralta, you see a style-sheet reference link and a font-family name (Peralta). With this
information, you can define a CSS rule as follows:

h2 {
 font-family:'Peralta';
 font-size:20px;
 text-align:center;
}

www.it-ebooks.info

http://www.it-ebooks.info/

335

chapter 13 n styLing web forMs and views with css3

Here, you create a CSS rule for <h2> elements and specify the font-family as Peralta. You can then refer
to the style sheets in a web page as follows:

 <link href='http://fonts.googleapis.com/
 css?family=Peralta' rel='stylesheet' type='text/css'>
 <link rel="stylesheet" type="text/css" href="StyleSheet.css" />

Figure 13-10. Using web fonts from Google Web Fonts

Note that you should refer to the style sheet provided by Google Web Fonts prior to using the Peralta
font definition in your own style sheet (StyleSheet.css). Figure 13-10 shows how <h2> headings look in the
browser.

As you can see, the subheading is displayed using the Peralta font face provided by Google Web Fonts.
In the preceding examples, you used fonts provided by a third party (Font Squirrel or Google), but if

required you can also use your own fonts by generating a @font-face kit for them. The Font Squirrel web
site allows you to generate your own @font-face kits by uploading your own fonts. Once the @font-face kit
is generated for such fonts, you can use them in your web pages as discussed in this section.

Rounded Corners, Shadows, Gradients, and Transparency
One of the most common effects applied to DOM elements in a web page is to put them in a box. Box
attributes such as borders, border width and style, color, and so on are configured using various CSS
properties. CSS3 offers features that help you enhance the box layout even further. These cool additions
may very well become the CSS3 features you use most frequently. Using them, you can do the following:

•	 Add boxes with rounded corners to DOM elements.

•	 Add shadows to boxes.

•	 Set more than one image as the background.

•	 Add a gradient fill to the background.

Let’s see how you can apply each of these features to DOM elements.

www.it-ebooks.info

http://fonts.googleapis.com/
http://www.it-ebooks.info/

chapter 13 n styLing web forMs and views with css3

336

Rounded Corners
Whenever you put a box around an element using border properties, by default the box gets sharp corners.
You can turn a box with sharp corners into a box with rounded corners using the border-radius property.
With border-radius, you can specify the radius of a circle whose circumference governs the rounding of
the corners. The following CSS rule shows how to use the border-radius property:

.boxRoundedCorners {
 padding:15px;
 background-color:#d0bdbd;
 border: 2px solid #071394;
 border-radius: 25px 25px 25px 25px;
}

border-radius sets the radius of the circles for the rectangle’s four corners in the order top-left, top-
right, bottom-right, and bottom-left. Although this example sets the radius of every circle to 25px, that’s
not necessary. You can specify that a radius value be different, and the corresponding corner (top-left, top-
right, bottom-right, or bottom-left) will change its curve accordingly.

You can also use an ellipse to control the curve rather than a circle. This way, the horizontal curve and
vertical curve can be different. To do this, you need to set the border radius of the individual corners as
follows:

.boxRoundedCorners2 {
 padding:15px;
 background-color:#d0bdbd;
 border: 2px solid #071394;
 border-top-left-radius: 25px 15px;
 border-top-right-radius: 25px 15px;
 border-bottom-left-radius: 50px 40px;
 border-bottom-right-radius: 50px 40px;
}

This time, individual properties—border-top-left-radius, border-top-right-radius, border-bottom-
left-radius, and border-bottom-right-radius—specify the horizontal and vertical radius of the ellipse,
respectively. Figure 13-11 shows two ASP.NET FormView server controls placed inside <div> elements that
have the boxRoundedCorners and boxRoundedCorners2 CSS classes applied.

www.it-ebooks.info

http://www.it-ebooks.info/

337

chapter 13 n styLing web forMs and views with css3

The first FormView’s borders all have an equal radius of 25px, as specified in the border-radius
property. The second FormView has top corners with radii of 25px, 15px and bottom corners with radii of
50px, 40px respectively.

Shadows
CSS3 lets you add shadows to boxes as well as text. The box-shadow and text-shadow properties control the
box shadow and text shadow, respectively. You can specify a horizontal offset, a vertical offset, a blur
amount, and a color for both types of shadows.

The following CSS rule uses the box-shadow and text-shadow properties just discussed:

.shadow {
 padding:15px;
 background-color:#d0bdbd;
 border: 2px solid #071394;
 border-radius: 25px 25px 25px 25px;
 box-shadow: 5px 5px 5px #808080;
 text-shadow: 2px 2px 2px #808080;
}

As you can see, box-shadow specifies horizontal and vertical offsets of 5px. A positive offset means the
shadow is dropped down and to the right with respect to the box, whereas a negative value means the
shadow is dropped up and to the left. The box-shadow property specifies the blur amount as 5px. The larger
the value, the more blurred the shadow is. Finally, the shadow color is specified as #808080 (grey).

Figure 13-11. FormView controls with rounded corners

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 13 n styLing web forMs and views with css3

338

The text-shadow property is similar and specifies the horizontal and vertical offset as 2px. The blur
value is also set to 2px. Figure 13-12 shows the resulting box.

Figure 13-12. Adding shadows to the box and the text

Note that text-shadow isn’t supported in all browsers (IE9 for example), but box-shadow has good
support in all the leading browsers.

By default, a box shadow is placed outside the box. You can change this behavior using the inset
keyword like this:

box-shadow: 5px 5px 5px #808080 inset;

When you add the inset keyword at the end, the shadow appears inside the box rather than outside
(Figure 13-13).

Figure 13-13. Shadow after adding the inset keyword

www.it-ebooks.info

http://www.it-ebooks.info/

339

chapter 13 n styLing web forMs and views with css3

Image Backgrounds
In the preceding examples, the CSS rules used a color for the box’s background. Instead of specifying a
background color, you can use a background image. New in CSS3 is the ability to use multiple images in a
single background. For example, you can use four different images and place them in the top-left, top-
right, bottom-left, and bottom-left areas of the box. Of course, the actual area occupied by the image is
governed by the image’s size. Consider the following CSS rule:

.imageBackground {
 padding:15px;
 font-size:20px;
 border: 2px solid #071394;
 border-radius: 25px 25px 25px 25px;
 background-image: url(‘images/RedFlower.png’), url(‘images/BlueFlower.png’);
 background-position: left top, right bottom;
 background-repeat: no-repeat, no-repeat;
 height:300px;
}

This CSS rule uses the background-image property to specify two image URLs: RedFlower.png and
BlueFlower.png. The placement of these two images is controlled by the background-position property. For
every image URL in the background-image property, there must be an entry in the background-position
property. In this example, RedFlower.png is placed in the top-left corner of the box and BlueFlower.png is
placed in the bottom-right corner.

You also need to specify the background-repeat property. In this example, because you don’t repeat the
images horizontally or vertically, you set background-repeat to no-repeat. Figure 13-14 shows the resulting
box background.

Figure 13-14. Using multiple images for the box background

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 13 n styLing web forMs and views with css3

340

RedFlower.png appears at upper left and BlueFlower.png appears at lower right.

Gradients
In Chapter 4, you learned to draw gradients—linear and radial—on the canvas. CSS3 provides ways to
draw a gradient background. You can do this using two CSS functions: linear-gradient() and radial-
gradient(). They draw box backgrounds with linear and radial gradients, respectively. As of this writing,
linear-gradient() and radial-gradient() aren’t fully implemented by some browsers, so you need to use
them with the browser prefixes (-ms-, -moz-, -webkit-, and so on) discussed earlier. The following CSS rule
shows how to use linear-gradient():

.linearGradient {
 padding:15px;
 background-color:#d0bdbd;
 border: 2px solid #071394;
 background: -moz-linear-gradient(left, yellow, white);
 background: -webkit-linear-gradient(left, yellow, white);
 background: -o-linear-gradient(left, yellow, white);
}

The function prefixed with -moz- targets Firefox, the one prefixed with -webkit- targets Chrome and
Safari, and the one prefixed with -o- targets Opera. The function’s first parameter specifies the starting
edge for drawing a gradient. Left means a gradient is drawn starting from the left until it reaches the right
side of the box. If you specify top, the direction of gradient is from top to bottom. The second and the third
parameters specify the start and end colors for the gradient. Figure 13-15 shows how this gradient looks.

The example gradient starts with a yellow color and gradually fades to white. You can also specify the
starting point (first parameter) as an angle. For example, 0deg, 90deg, 180deg, and 270deg mean left,
bottom, right, and top, respectively. Any angle between these values shifts the starting point in the corner
accordingly. Additionally, you can specify a series of colors for the gradient rather than just the start and
end colors:

-webkit-linear-gradient(left, orange, yellow, white);

Figure 13-15. Drawing a linear gradient

www.it-ebooks.info

http://www.it-ebooks.info/

341

chapter 13 n styLing web forMs and views with css3

In this example, three colors are specified: orange, yellow, and white. So, the gradient is orange to
begin with, then turns yellow, and finally fades to white.

Drawing a radial gradient is similar to drawing a linear gradient. The only difference is that instead of
starting from one edge and ending at another edge, the gradient begins in the center and ends at the box’s
boundary. The following CSS rule shows how to use radial-gradient():

.radialGradient {
 padding:15px;
 background-color:#d0bdbd;
 border: 2px solid #071394;
 background: -moz-radial-gradient(circle, yellow, white);
 background: -webkit-radial-gradient(circle, yellow, white);
 background: -o-radial-gradient(circle, yellow, white);

}

The first parameter of the radial-gradient() function indicates the start position of the gradient’s
center. The most common value is center, which means the center of the box is the starting point. The
other two parameters represent the start and end color of the gradient, as with linear-gradient(). Figure
13-16 shows the radial gradient.

Note that this section discusses only basic use of the gradient functions. These functions provide more
complex ways of drawing and fine-tuning gradients. You can read more on the Internet (https://
developer.mozilla.org/en-US/docs/CSS/CSS_Reference, for example).

Transparency
In addition to displaying a background, you can control the box’s opacity. CSS3 provides two ways to
handle the opacity of an element: the rgba() function and the opacity property. The rgba() function
specifies red, green, and blue color values as numbers as well as an alpha value that controls an element’s
opacity. The r, g, and b numbers take a value between 0 and 255; the alpha parameter can be any value
between 0 to 1, where 0 means fully transparent and 1 means fully opaque. The following CSS rule shows
how to use rgba():

Figure 13-16. Using the radial-gradient() function to draw a radial gradient

www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/CSS/CSS_Reference
https://developer.mozilla.org/en-US/docs/CSS/CSS_Reference
http://www.it-ebooks.info/

chapter 13 n styLing web forMs and views with css3

342

.transparency {
 padding:15px;
 background-color:rgba(10,200,0,0.3);
 border: 2px solid #071394;
}

This function specifies the red, green, and blue components as 10, 200, and 0, respectively. The alpha
parameter is specified as 0.3. Figure 13-17 shows how a box looks when you apply transparency of 0.3.

In the figure, the second box is styled using rgba(). Notice how the background doesn’t show through
the first box but does show through the second box, due to the transparency alpha value of 0.3.

You can obtain a similar effect using the opacity property instead of rgba():

.transparency2 {
 padding:15px;
 background-color:#ffd800;
 opacity:0.75;
 border: 2px solid #071394;
}

The opacity property takes any value between 0 and 1, just like the alpha parameter discussed earlier.
Figure 13-18 shows the resulting box .

Figure 13-17. Setting a box’s transparency using the rgba() function

www.it-ebooks.info

http://www.it-ebooks.info/

343

chapter 13 n styLing web forMs and views with css3

There are some differences between using rgba() and the opacity property. rgba() only makes the
background color transparent, whereas opacity makes the background, the border, and text inside the
element transparent. The opacity property also comes in handy if you wish to control the opacity (but not
the background color) programmatically (say, by using the jQuery css() method). This way, without
knowing or touching the background color, you can set the opacity property and achieve the desired level
of transparency. The following line of code shows how to do this:

$("<jQuery_selector>").css("opacity", "0.75");

This code uses the jQuery css() method to set to 0.75 the opacity of all the elements matched by a
jQuery selector.

Adding Effects Using Transitions and Transforms
Professional web sites often spice up their pages by adding jazzy and attractive effects. CSS3 provides two
techniques that allow you to add cool effects to your web pages: transitions and transforms. CSS3
transitions let you add effects to an element as the element is transitioning from one CSS rule to another.
On the other hand, CSS3 transforms change an element’s appearance by adding effects such as rotating or
skewing the element.

Transitions
CSS pseudo-classes such as :hover allow you to change the styling rules applied to an element when the
user interacts with the element in a specific way. For example, using the :hover pseudo-class, you can
change an element’s appearance when the user hovers the mouse pointer over the element. The limitation
with pseudo-classes is that they toggle the element’s appearance from one state to another. You can’t
control the element’s appearance between the “about to change” and “changed” stages. That means you
can’t add animation effects during this change of CSS rules.

CSS3 transitions are means to fill this gap. Consider the following CSS rules that define the styling for a
<div> element in the normal and hover states:

.employeeData {
 padding:15px;
 background-color:#f3f3f3;
 border: 2px solid #071394;
}

Figure 13-18. Setting transparency using the opacity property

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 13 n styLing web forMs and views with css3

344

.employeeData:hover {
 color:#682020;
 background-color:#ff6a00;
 font-weight:bold;
}

The CSS properties specified in employeeData are applied when the <div> is in the normal state (the
user isn’t hovering the mouse over it), whereas the CSS properties specified in employeeData:hover are
applied when the user hovers the mouse pointer over the <div>. Currently, using these CSS rules doesn’t
add any transition effect to the <div>. To add a transition effect, you need to modify the employeeData rule
as follows:

.employeeData {
 ...
 -moz-transition: color 3s,background-color 3s;
 -webkit-transition: color 3s,background-color 3s;
 -o-transition: color 3s,background-color 3s;
}

The modified employeeData rule uses the transition property prefixed with browser-specific prefixes.
The transition property consists of a comma-separated list of properties to be included in the transition
effect and the time duration in seconds for which the transition effect is played. In this example, the color
and background-color properties change from their old values to new values in three seconds. Figure 13-19
shows how the <div> looks before and after the transition.

In the absence of the transition property, the <div> instantaneously changes its background color
from #f3f3f3 to #ff6a00 when hovering begins and from #ff6a00 to #f3f3f3 when the mouse leaves the
<div>. However, with transition in place, the same change of background color takes place in three
seconds rather than instantly, resulting in an animation effect.

n Note You can also add other details to the transition effect, such as timing functions. You can read more at www.
w3.org/TR/css3-transitions and https://developer.mozilla.org/en-US/docs/CSS/CSS_
transitions.

Figure 13-19. Applying transitions during mouse hover

www.it-ebooks.info

http://www.w3.org/TR/css3-transitions
http://www.w3.org/TR/css3-transitions
https://developer.mozilla.org/en-US/docs/CSS/CSS_
http://www.it-ebooks.info/

345

chapter 13 n styLing web forMs and views with css3

Transforms
Transitions add effects during the transition from one style to another. Transforms, on the other hand,
change the appearance of an element using effects such as rotating, skewing, and scaling. Consider the
following CSS rule:

.rotate {
 padding:15px;
 margin:20px;
 background-color:#f3f3f3;
 border: 2px solid #071394;
 -ms-transform:rotate(5deg);
 -moz-transform:rotate(10deg);
 -webkit-transform:rotate(10deg);
 -o-transform:rotate(10deg);
}

This rule uses the transform property prefixed with vendor prefixes to rotate the element by 10
degrees. The rotate function accepts an angle by which the element is to be rotated. A positive number
indicates rotation in the clockwise direction, and a negative number indicates rotation in the
counterclockwise direction. Figure 13-20 shows the resulting <div>.

As you can see, the <div> element and the FormView inside it are rotated 10 degrees clockwise.
You can also add a skewing effect and change the scaling using the skew() and scale() functions,

respectively. You can also use multiple functions together, as the following CSS rule shows:

.skew {
 padding:15px;
 margin:20px;
 background-color:#f3f3f3;

Figure 13-20. Rotating an element using the transform property

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 13 n styLing web forMs and views with css3

346

 border: 2px solid #071394;
 -ms-transform:skew(10deg) scale(0.9);
 -moz-transform:skew(10deg) scale(0.9);
 -webkit-transform:skew(-10deg) scale(0.9);
 -o-transform:skew(10deg) scale(0.9);
}

This rule uses the skew() function as well as the scale() function. skew() takes an angle in degrees
that specifies how much the element is skewed. scale() takes a number indicating how much the element
should be shrunk or stretched. For example, a scale value of 2 means the element is stretched to twice its
original size. You can also use the scaleX() and scaleY() functions to control x and y scaling values,
respectively. Figure 13-21 shows the resulting element.

Figure 13-21. Skewing and scaling effects applied to an element

You can also use transforms and transitions together, as shown in the following CSS rules:

.myclass {
 -moz-transition: all 3s;
 -webkit-transition: all 3s;
 -o-transition: all 3s;
}

.myclass:hover {
 -ms-transform:rotate(10deg);
 -moz-transform:rotate(10deg);
 -webkit-transform:rotate(10deg);
 -o-transform:rotate(10deg);
}

The .myclass:hover rule uses the rotate() function to transform the element. The .myclass rule uses
the transition property to specify that all properties from the :hover pseudo-class should be animated for
three seconds. This way, when you hover mouse pointer on the <div>, the <div> is rotated 10 degrees
clockwise.

n Note You can read about more transform techniques at https://developer.mozilla.org/en-US/docs/
CSS/transform.

www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/
http://www.it-ebooks.info/

347

chapter 13 n styLing web forMs and views with css3

Using Media Queries to Target Different Devices
As the use of mobile devices such as smart phones and tablets increases, more people are accessing web
sites over mobile devices. A problem in such cases is that a web page designed for a desktop browser
doesn’t look as expected when viewed on a mobile browser. For example, a hover menu with a sleek
animation effect that looks stunning in a desktop browser may not display correctly in a mobile browser
and may appear overlapped and disproportionate. A traditional approach to deal with users accessing a
web application via both desktop computers and mobile devices is to develop two versions of the web
application—a normal version and a mobile version. Although this approach works, the downside is that
you need to maintain two different versions of the web application.

CSS3 offers some help when you’re targeting your web application to mobile devices. Support for
media queries allows you to detect certain features of the requesting device and apply a styling rule
accordingly. This way, you don’t need to create different versions of the web site targeting different devices.
You can dynamically change the styles being applied to page elements in two ways:

•	 You can attach a different style sheet (.css) to a page if the requesting device meets
certain criteria.

•	 You can change the CSS rules, depending on the requesting device.

n Note This book isn’t about developing web sites for mobile devices and hence discusses media queries only to
make you familiar with this new CSS3 feature. See www.w3.org/TR/css3-mediaqueries for more details.

Typically, media queries use the following parameters to change the style rules being applied to a page
or element:

•	 Minimum and maximum width of the browser window (min-width and max-width)

•	 Width of the device screen (max-device-width)

•	 Orientation of the device screen (horizontal or vertical: orientation)

•	 Height of the device screen (device-height)

Changing a Style Sheet Using Media Queries
Using media queries and device properties as discussed in the preceding section, you can attach a
different style sheet to a web page at runtime. Suppose you have two style sheets Desktop.css and Mobile.
css that contain CSS style rules to be used when the target is a desktop or a mobile device, respectively. You
want to attach Desktop.css to a web page if it’s being viewed by a device with a minimum width of 800
pixels (if a device’s screen is at least this wide, chances are it’s a desktop computer). Along the same lines, if
the screen width is a maximum of 480 pixels (a typical value for mobile phones), then you wish to attach
Mobile.css. You can accomplish this task by referring to the style sheets as follows:

<link rel="stylesheet" type="text/css"
 media="(min-device-width:800px)" href="Desktop.css" />
<link rel="stylesheet" type="text/css"
 media="(max-width:480px) and (orientation:portrait)" href="Mobile.css" />

www.it-ebooks.info

http://www.w3.org/TR/css3-mediaqueries
http://www.it-ebooks.info/

chapter 13 n styLing web forMs and views with css3

348

The first <link> element tells the browser that if the device’s minimum width is 800 pixels, it should
attach Desktop.css to the page. The second <link> element says that if this device has a maximum width
of 480 pixels and is using portrait mode, the browser should attach Mobile.css to the page.

Note the use of the and operator in the second <link> element, to check multiple conditions. You can
also use the all, not, and only keywords: all indicates that the style sheet applies to all media types, not
negates the result of the query, and only hides style sheets from older browsers. Although older browsers
ignore such a style sheet, browsers that support CSS3 media queries process media queries starting with
only as if the only keyword wasn’t present.

If you don’t have a mobile device on which to test this page, you can change the min-device-width
property to something higher than your desktop screen resolution and then view the page in your desktop
browser. Because none of the <link> elements match the criteria, the browser won’t apply a style sheet,
resulting in a plain default rendering of the HTML elements. Then change min-device-width to a value
smaller than the screen resolution and view the page again. The browser should display the HTML
elements as per the style rules defined in Desktop.css.

Changing a Style Rule Using Media Queries
In the preceding example, you changed the entire style sheet at runtime based on device properties. This
approach works well if the two style sheets are different. However, if only a few CSS rules need to be
tweaked to target different devices, you can put them in a single style sheet. In this case, you need to use a
@media block in your style sheet. The following example illustrates how to use a @media block:

@media (min-device-width: 800px) {
 body {
 background-color:blue;
 color:white;
 }
}

@media (max-width: 480px) and (orientation:portrait) {
 body {
 background-color:red;
 color:white;
 }
}

The first @media block groups CSS rules for a device whose minimum screen width is 800 pixels. The
second @media block groups CSS rules for devices with a maximum width of 480 pixels and portrait
orientation. This style sheet is attached to a web page as usual:

<link rel="stylesheet" type="text/css" href="StyleSheet.css" />

If you run a web page with this style sheet attached on a desktop computer, you should see the web
page background painted blue color. On mobile phones, the background is red.

Using Modernizr to Apply CSS3-Specific Features
As mentioned earlier, CSS3 is an evolving specification. Not all browsers support all CSS3 features. If you
know that your web application will be used by the modern browsers, you can use the CSS3 features that
they all support. The advantage of this approach is that you have a good number of CSS3 features at your

www.it-ebooks.info

http://www.it-ebooks.info/

349

chapter 13 n styLing web forMs and views with css3

disposal that you can use in your web applications. However, the downside is that very old browsers may
not display your web pages as expected. A solution to tackle this problem is to create different CSS classes
encapsulating traditional versus CSS3-specific properties. At runtime, based on whether a browser
supports a specific CSS3 feature, either a CSS3-specific class or a class with traditional properties is
applied to an element. But doing so calls for more work because it involves creating multiple CSS classes
and applying them at runtime based on the level of support offered by the target browser.

To assist you in this job, you can use the Modernizr library. Throughout this book, you’ve been using
Modernizr to detect HTML5 features. The same Modernizr library also allows you to detect support for
CSS3 features. Let’s see how.

A web page that uses Modernizr refers to it using a <script> tag as shown next:

<script type="text/javascript" src="scripts/modernizr.js"></script>

At runtime, the Modernizr library modifies the <html> tag of the HTML5 document to include all
supported HTML5 and CSS3 features as well as those not supported on a given browser. The following
<html> tag from a sample HTML5 document shows how this happens:

<html class=" js flexbox canvas canvastext webgl no-touch geolocation
postmessage websqldatabase indexeddb hashchange history draganddrop websockets
rgba hsla multiplebgs backgroundsize borderimage borderradius boxshadow
textshadow opacity cssanimations csscolumns cssgradients cssreflections
csstransforms csstransforms3d csstransitions fontface generatedcontent video
audio localstorage sessionstorage webworkers applicationcache svg inlinesvg
smil svgclippaths">

In this markup, Modernizr has added a class attribute to the <html> tag. The value of the class
attribute is a string containing CSS classes separated by white space. Each class represents an HTML5 or
CSS3 feature. The features that aren’t supported on a given browser are prefixed with no-. For example, this
markup includes a no-touch class, indicating that touch events aren’t supported. The plain feature names
(such as video, audio, and webworkers) indicate that they’re supported by the browser.

n Note The <html> tag with the class attribute added isn’t visible in the HTML source of the web page because
it’s added programmatically by Modernizr. You need to inspect the page in a tool such as Chrome Developer Tools.

Now, suppose you have a <div> element on the page and you wish to set its background-color, text-
align, padding, border, and border-radius CSS properties. Of these, border-radius is CSS3-specific,
whereas the others are traditional CSS properties. The border-radius property allows you to create borders
with rounded corners, as discussed earlier in this chapter. You can create three CSS classes as shown here:

.div {
 background-color: #d3a584;
 padding: 10px;
 text-align: center;
}
.borderradius .div {
 border: 2px #f00 solid;
 border-radius: 25px;
}
.no-borderradius .div {
 border: 2px #f00 solid;
}

www.it-ebooks.info

http://www.it-ebooks.info/

chapter 13 n styLing web forMs and views with css3

350

One CSS class contains CSS properties that are to be applied regardless of whether border-radius is
supported, another contains CSS properties that are to be applied when border-radius is supported, and
the third contains CSS properties that are to be applied when border-radius isn’t supported. Note that the
second (borderradius) and third (no-borderradius) CSS class names are the same as the corresponding
class names from the <html> tag. The borderradius class sets the border and border-radius properties,
whereas the no-borderradius class sets only the border property. Once the CSS classes are created, you can
use them on a <div> element as follows:

<div class="div">Hello World!</div>

At runtime, the div CSS class is applied to the <div> element. Additionally, one of the two classes
(borderradius or no-borderradius) is applied depending on whether the border-radius property is
supported. Figure 13-22 shows a sample run of the web page in Chrome.

Figure 13-22. Modernizr applies the borderradius CSS class in Chrome.

As you can see, because Chrome supports the border-radius property, the CSS properties from the div
and borderradius CSS classes are applied to the <div> element.

Summary
CSS is a de facto standard for applying styling rules to web pages. CSS3 adds many new features to CSS 2.1
to make it more appealing and useful to web developers. This chapter covered some of the important
features of CSS3.

With CSS3, you can use nonstandard fonts in web pages by creating custom font definitions using @
font-face. At runtime, the font file is downloaded at the client and is used to display the web page’s text.
Another nice improvement of CSS3 is the ability to add fancy frills to box layouts, such as shadows,
gradients, and transparency. You can also add effects using transitions and transforms.

As mobile and handheld devices become more common, web sites are increasingly being accessed
over mobile devices. Using media queries, you can detect device properties such as width and orientation.
You can then apply different styling rules to web pages or elements to ensure that they look great in the
target device.

HTML5, JavaScript, and CSS3 together will, no doubt, change the way people develop and use web
applications. The momentum has begun, and in the future you’ll see these technologies gain increasing
acceptance and widespread use. This book has attempted to give you all the necessary skills to ride the
HTML5 wave and harness the power of this futuristic technology.

www.it-ebooks.info

http://www.it-ebooks.info/

351

n n n

appendix a

HTML5 Learning Resources

W3C and WHATWG Specifications
W3C HTML5 specifications
http://www.w3.org/TR/2011/WD-html5-20110525/

WHATWG HTML5 specifications for developers
http://developers.whatwg.org

Documentation from Browser Companies
Microsoft Internet Explorer documentation on MSDN
http://msdn.microsoft.com/en-us/library/ie/

HTML5 page on Mozilla Developer Network
https://developer.mozilla.org/en-US/docs/HTML/HTML5

HTML5 articles on Dev.Opera
http://dev.opera.com/articles/tags/html5

HTML5 page on Apple Developer
https://developer.apple.com/technologies/safari/html5.html

Other Web Sites of Interest
W3Schools.com HTML5 tutorials
http://www.w3schools.com/html5/default.asp

HTML5 Rocks
www.html5rocks.com/en/

www.it-ebooks.info

http://www.w3.org/TR/2011/WD-html5-20110525/
http://developers.whatwg.org
http://msdn.microsoft.com/en-us/library/ie/
https://developer.mozilla.org/en-US/docs/HTML/HTML5
http://dev.opera.com/articles/tags/html5
https://developer.apple.com/technologies/safari/html5.html
http://www.w3schools.com/html5/default.asp
http://www.html5rocks.com/en/
http://www.it-ebooks.info/

appendix a n htML5 Learning resources

352

HTML Goodies, HTML5 Development Center
www.htmlgoodies.com/html5/index.php

Author’s web site presenting HTML5- and ASP.NET-related articles
www.bipinjoshi.net

HTML5 section of Visual Studio Magazine
http://visualstudiomagazine.com/articles/list/html5.aspx

www.it-ebooks.info

http://www.htmlgoodies.com/html5/index.php
http://www.bipinjoshi.net
http://visualstudiomagazine.com/articles/list/html5.aspx
http://www.it-ebooks.info/

353

n n n

Index
n a, B
Adobe flash, 64
Ajax techniques, 55, 172

jQuery $.ajax() method
MVC application, 60
in web form application, 57

methods, 56
requests, 56
submit() method, 55
web application, 57

API and data attributes, 165
custom attributes, 176

access using JavaScripts, 178
dataset to access, 178
emit validation message, 179–182
ErrorMessages, 180
HTML5 data attributes, 165, 177
jQuery, attribute access, 178–179

history API, 172
methods and events, history object, 172
OnSuccess() without HTML5, 173
optional image ID, 174
popstate event, handling, 174
pushState() method, 173, 175
URLs history, pushState() method, 175

history object, 165
back () and forward () method, 168
data model, 167
Index() action method, database, 167
methods and properties, 166
user interface, 166

solutions, 171
hash fragment in URls, 171
HTML5 history, API, 172

supporting browsers, 176
tracking problem, history, 168

AjaxHomeController, 169

AJAX techniques, 168
browser bookmark effects, 171
client side event handling, 169
GetImage() action method, 170
OnSuccess() function, 170
search engine listing effects, 171
web forms, 168

ASP.NET, 1, 218
features of, 15

browserTesting, 19
HTML formatting, 15–16
intelliSense, 16–17
JavaScript intelliSense, 18
renaming end tags, 18
snippets, 17
validation error, 17

vs. HTML5, 14
MVC application, 26
offline application

button properties, 221
cache manifest, 220
conversion steps, 218
Get functions, 220
IsOnline(), 222
MVC example, 218
network connectivity, 221
survey application, 219

server side, 14
stack, 13
web applications, 20

jQuery code, 25–26
master page, 21–24
modernizr, 23
web forms, 20–21
web methods, 24–25

Audio and video, 63
custom video player, 75

<div> elements, 76

www.it-ebooks.info

http://www.it-ebooks.info/

n index

354

Audio and video, custom video player (cont.)
HTML markups, 76–77
jQuery $ ajax() method, 75–76

duration and progress, display of, 80
bind() method, 81
loadmetadata event, 81
OnPlay() method, 81
timeupdate event, 81
wiring events, 80

embedding media files, using <object> tag, 63
audios, 64
flash videos, 64
silverlight videos, 64–65

fallback mechanism, 72
flash based system, 73
handling scenarios, 72
multiple media support, 72
scenarios, 72
silverlight based system, 73
to test Flash/Silverlight systems, 74

GetPlayList() method , 78
HTML5 tags, 65

<audio> tag, 65–67
<video> tag, 67

native support, 63
play, pause, and stop

canPlayType() method, 80
click event, 80
handling events, 79

programming, APIs, 74
DOM elements, 74
mordenizr library, 75

SQL server DB and framework, 77–78
supporting formats, 69

browsers , 69, 71
error message, 69
HTML5, 70
MIME mapping, IIS, 71
MIME type, 70

n c
Cache manifest, 205, 207

applicationCache, 216
CACHE section, 207
configuring IIS, 211
creation, 207
FALLBACK section, 209
NETWORK section, 208
referring, 209

in web forms and views, 209

jQuery, 210
version number, 215

Canvas, 83
<canvas> element, 83
coordinate system, 85
drawing (see Drawing)
effects, 98

gradient filling, 101–103
pattern filling, 103–104
shadow, 98–99
transparency, 100

pie charts, 110
data, adding, 113–114
drawing, 114–116
MVC control, 112
MVC views, 113
saving, 116–117
SQL server DB, 111–112

saving, 104
drawing, 106
image file, server, 108–110
 object, 107
in SQL server, 107–108
restore() method, 105
save() method, 105
toDataURL() method, 106

CDN (see Content Delivery Network (CDN))
Communication API, 277

cross domain, 277
approaches, 278
cross-document messaging, 278
cross-origin resource sharing, 279–280
define, 277
IIS manager, 279
JSON, 280
web config, 279–280
XMLHttpRequest object, 280

postMessage, 280
data transfer, 282
embed a form, 280–281
event handling, 282
Modernizr, 282
receive data, 282–283
target web in <iframe>, 280–281
web form, 281
window object, 283
window.open(), 283
with <iframe>, 280–283

server-sent events, 294
in action, 295

www.it-ebooks.info

http://www.it-ebooks.info/

355

 n index

to client, 296
EventSource object, 294
generic handler, 296
initialisation, 295–296
JSON, 296
polling, 294
request-response, 294
response, 296

XMLHttpRequest, 284
button, insert, 291
CRUD operations, 287
entity framework, 287
events, 285
file upload, 291
Get() and Post() methods, 288
GetCustomers(), 290
handling events, 293
headers, 290
insertion, 290–291
invoke web API, 289–291
jQuery attr() method, 294
list application, 286
make request, 286–287
mapping, 288–289
markup, 287
methods, 285, 293
object and data, 284, 289–290
progress bar, upload, 292
properties, 284–285
readyState property, 290
UploadFiles(), 293
web API, 287–289

Content delivery network (CDN), 21, 37, 204
Controls, 119

customizing validation, 139
code messages, 141–143
pseudo classes, 140–141

dealing required fields, 132
HTML5, 122

types, 122–123
colors, 129–130
date and times, 127–129
mail addresses, 124–125
numbers, 125–127
searching, 130
selecting ranges, 127
URLs, 125

<input> element, 143
autocomplete, off, 144–145
autofocus, 143
drop down list, 145

placeholders, help, 143–144
setting methods and actions, 145–146
spell check, enabling, 144

MVC views, types, 131
on and off, validations , 133
pattern matching, 132
types in web forms, 130
validations, 134

HTML5 types and controls, 136–137
server side, MVC application, 137–139
techniques, 135
unobstructive, 139

CRUD methods, 150–151

n d
DNS spoofing, 201
Drawing

context, 85
curves, 88

arc() method, 89–92
arcTo() method, 91
radians, 88

images, 96
cropping, 98
drawImage() method, 96, 97
width and height, 96

lines, 85
linecap property, 86–88
lineTo() method, 87
lineWidth property , 86, 88

paths, 92
closePath() method, 93
fill() method, 93
fillStyle property, 94
stroke() method, 92
strokeStyle property, 93

text, 94
fillStyle property, 95
fillText() methods, 95
strokeStyle property, 95
strokeText() methods, 94
textAlign property, 95
textBaseLine property, 95

n e
Edge caching technique, 37
Event handling, jQuery, 36, 39

bind() method, 44
blur events, 43
character counter, 40

www.it-ebooks.info

http://www.it-ebooks.info/

n index

356

Event handling, jQuery, character counter (cont.)
event wiring, 41
handling events, 42–43
HTML markup, 41
warning message, 44

client-side evevts, 39
DOM element, 47
eventData Object, 42
keyup events, 42
object properties, 40
preventDefault() method, 40

n F
File API, 223

ASP.NET, 247
action, UploadFiles(), 251
file upload application, 249
OnChange and OnDrop events, 249
ShowFileDetails() function, 250
ShowPreview() function, 250
UploadFiles() functions, 251
uploading XML files, 248
wiring events, 249
XML file, 252

define, 223
drag and drop, working, 231

data transfer, 233
events, 232
HTML elements, enabling, 232
wiring event, 232

dragging and dropping, 240
events, 241
handling, 240
web form, 240

FileList object, 224
File object, 225
FileReader object, 225

events, 226
methods, 225
properties, 226

implementing
cart form, web, 239
cart web form, 233
catalog and cart, 234
data passage, 238
drag and drop event handling, 235
duplicacy checking, products, 237
framework model, cart, 234
OnDragEnd, 238
OnDragEnter, 236

OnDragLeave, 236
OnDragOver, 236
OnDragStart, 235
OnDrop, 237
PlaceOrder() method, 238
saving data, server, 238
shopping cart, 233
wiring drag and drop, 235

objects, 224
read and display information, 241

image preview, 245
markup, 242
object, show, 244
OnChange and OnDrop, 244
preview, 245
reading, 242
ShowFileDetails(), 245
web form, 242
wiring event, 243

selecting files, to use with, 226
controlling field, 228
custom button, 229
drag and drop, 231
field, 226, 227
FileUpload , 229
image, custom, 230
multiple selection, 228
triggering, 230

uploading, 246
ajax() method, 246
generic handler, 247
POST, 246

ways, creative, 224
Forms, 119

ASP.NET, 119
MVC, 121–122
web forms, 120–121

employee data, 146
CRUD methods, 150–151
CSS pseudo classes, 154–155
formatting date, 149–150
FormView control, 147
input types and attributes , 147–149
jQuery code, 152–154
validating requirements, 153–154

GetTitles() method, 152–153
user registration, 155

controllers, 158–160
duplicate display, 161–162
field comparing, 162
framework and annotations, 157–158

www.it-ebooks.info

http://www.it-ebooks.info/

357

 n index

invalid event, 163
MVC views, display, 160–161
server side validations, 164
validation display, 162–164

validation error, 155

n G
Geolocation API, 305

define, 307
latitude and longitude, 305
location specific, 317

Ajax request, 320
distance information, 321
entity framework, 318–319
GeoCoordinate class, 321
GetJobs() method, 320
job search, 317–318
namespace, 321
user location, 319–320

mapping, 312
API, 312
Bing maps, 312, 315, 316
callback functions, 315
calloutOptions, 316
display Google Maps, 314
event handling, 315
Google Maps, 312
Infobox, 316, 317
integrate, Google maps, 312
JavaScript, 312
LatLng object, 314
referencing, API library, 313–314
services, 312
variables, 314

methods, 307
movement tracking, 321–322
sources information, 306

GPS, 306
GSM or CDMA, 307
IP address, 306
Wi-Fi technique, 306–307

user’s location, 308
error message, 311
getCurrentPosition() method, 308–309
OnError(), 311
OnSuccess() callback, 310
options, 310
position object, 311
property, 309
retrieve, 309

and user privacy, 308
uses, 307–308

getAttribute() method, 178

n h
HTML5, 1, 65

and browser support, 9
dynamically, 11–13
statically, 9–11

API history, 172
ASP.NET (see ASP.NET)
<audio> tag

autoplay attribute, 67
loop attribute , 67
preload attribute , 67
rendering in browsers, 66
shortcuts in IE9, 67

controls, 122
default web form markup, 4
elements, 6
features, 6

audio and video, 7
canvas, 7
CSS3, 9
file API, 8
geolocation, 8
history API, 7
offline web application, 8
web sockets, 8
web storage, 7
web workers, 8

history of, 1
page structure, 2–5
rules, 1
specific markup tags, 4
specific tags, 6
validation, 5
<video> tag, 67–69

n i
Internet Information Services (IIS), 70

n J, K
JavaScript object notation (JSON), 30, 188, 198
jQuery, 35

accesing data attributes, 178
Ajax techniques, 55

calls, 36
jQuery $.ajax() method, 57

www.it-ebooks.info

http://www.it-ebooks.info/

n index

358

jQuery, Ajax techniques (cont.)
methods, 56
requests, 56
submit() method, 55
web application, 57

definition, 35
downloading and referring, 36–39
event handling, 36
HTML DOM modification, 54–55
javascript, 36
minified and non-minified versions, 37
selectors

attributes, 48
categories, 45
form elements, 51
GridView control, 46
HTML elements , 46
marking odd and even rows, 47
 using ID, Tag name and CSS class, 45

JSON, (see JavaScript object notation (JSON))

n L
Local storage, 191

accessing data, 193
database tables, 193
entity framework, 193
event handling, 193–194
fetching data, 192
GetChoices(), 195–196
Getquestions(), 194–195
global variance, 194
hidden forms, 200–201

Postback, 200
transfer, 200

JSON , 197–198
SavaResults(), 198–199
SubmitData(), 197
survey, 191–192
SurveyDb, 192
testing, 199

n M, n
Microsoft’s Silverlight, 64
Model view controller (MVC), 27
Modernizr, 176
Modernizr library, 12, 21
Multipurpose Internet Mail Extension (MIME), 70,

71
Multithreading, 255

benefits, 256

creating Web Workers, 259–261
loding script files, 261
UI and javascript web page, 256
using sharedWorkers , 264–267
web pages, 255
web workers, 255, 258

can/cant access UI-level, 258–259
communication with server, 267–268
handling errors, 262
pictorial representation, 261
processing js, 260
resource monitoring, 263
server-side data, 268–269

MVC (see Model view controller (MVC))
MVC application, ASP.NET

controller and action methods, 29–31
index view, 31–32
jQuery code, 32–33
MVC creation, 27–29

n O
Offline applications, 203

access, 203
application buliding, 205

cache manifest, 205
clock, 206
javascript digital clock, 206

ASP.NET, 218
cache manifest creation, 219–220
conversion steps , 218–219
enable or disable, 221–222
Get functions, 220–221
IsOnline(), 222
network connectivity, 221–222
survey applications, 218–219

cache manifest, 207
CACHE section, 207
clock files, 207
configuring IIS, 211–212
FALLBACK section, 209
jQuery, 210
NETWORK section, 208
referring, forms and views, 209

define, 204
events, 216

applicationCache object, 216–218
object events, 217

and HTTP caching, 204
in browser, 205
CDN, 204

www.it-ebooks.info

http://www.it-ebooks.info/

359

 n index

firefox vs. other browsers, 204
IIS configure, 211

mapping MIME, 212
MIME , 211

to online using AJAX, 213
available networks, 213
IsOnline() web method, 214

testing, 212
chrome, details, 213
IIS list, 212

updating, 214
cache manifest, 214
timestamp, 215
version number, 215

using object, 217
wired, 203

n p, Q, r
Plain old CLR objects (POCOs), 14

n S, t
Secure socket layer (SSL), 201
Selectors, jQuery, 44

attributes, 48
filtering downloads, 49
hide or show downloads, 50–51
jQuery attr(), 51

categories, 45
form elements, 51

check boxes, changing events of, 53
Click event handler of clear buttons, 54
list box, change event handler of, 53
radio buttons, change event handler of, 53
usage syntax , 51

GridView control, 46
HTML elements , 46
marking odd and even rows, 47
using ID, Tag name and CSS class, 45

Server-side data
event-handler function, 271–272
GetOrder(), 273–274
retrieving data, 272–273
view of history, 269–270
web workers, 270–271

Session and local storage, 184
data types, 186

conversion, 187
dates, 187–188
dealing JSON, 188
format, date, 188

JSON objects, 188
numbers, 186–187

events, 189
adding key, 189–190
handling, 189
parameters, 189

properties, 184
web form creation, 185

event handlers, 186
using localStorage, 185
variable, 186

setAttribute() method, 178
Styling, CSS3, 323

attributes, 335
adding shadows, 338
background, rules, 339–340
box and text shadow, 337
FormView controls, 336–337
gradients, 340–341
image backgrounds, 339–340
linear gradient, 340
-moz- targets, 340
multiple images, 339
opacity property, 342–343
parameter gradients, 340
properties, corner, 336
radial gradient, 341
radius property, 336
rgba() function, 342
rounded corners, 336–337
shadows, 337–338
transparency, 341–343

browser specific prefixes, 330–331
effects, 343

appearance, 345
<div> state, 344
hover, 343
mouse hover, transitions, 344
.myclass, 346
rotate, transform, 345
scale() and skew(), 346
transforms, 345–346
transitions, 343–344

media queries, 347
element or page, 347
style rule changing, 348
style sheet change, 347–348
web application, 347

Modernizr, 348
apply features, 348
attribute class, 349

www.it-ebooks.info

http://www.it-ebooks.info/

n index

360

Styling, CSS3, Modernizr (cont.)
borderradius in chrome, 350
class, borderradius, 350
CSS properties, 350
<div> element, 349
HTML5, 349
library, 349

selectors, 323
action, attributes, 325
attribute-substring, 324–326
classes, 324, 325
combinator, sibling, 330
of CSS3, 324
element selector, 324
element state class, 328–329
first-of-type, 328
hyperlink, 325
ID selector, 324
last-child class, 327
miscellaneous class, 329–330
negation class, 329
nth child class, 327
pseudo classes in action, 329
siblings class, 329, 330
structural pseudo classes, 326–328
 sibling, 330

web fonts, 331
family, 334
@font-face rules, 333–335
Font Squirrel, 332
formats, 332
Google fonts, 333, 335
page head, @font-face, 334
Peralta, family, 334
properties, 334

web forms and views, 323
System.Threading, 255

n U
URL, 170

n V
Validations, 134

HTML5 types and controls, 136–137
server side, MVC application, 137–139
techniques, 135
unobstructive, 139

n W, x, Y, Z
W3C (see World Wide Web Consortium (W3C))
Web applications (see Offline applications)
Web Hypertext Application Technology Working

Group (WHATWG), 2
Web sockets, 277

namespaces, 303
two-way communication, 297

in ASP.NET, 300–301
asynchronous function, EchoServer, 302
async method, 302
data to server, 304
Echo server, 301–303
enabling protocol, 298–299
events, 300
half-duplex, 297
handler, EchoServer, 301–302
HTML5 object, 303
instance method, 304
methods, 300
Modernizr, 303
object, 300
protocol, 298
request and response, 298
simplex, 297
socket based, 297
socket parts, 299
techniques, 297
web socket client, 301, 303
WebSocketGenericHandler.ashx, 303
WebSocket properties, 300
web socket server, 300

Web storage, 183
data passage to server, 191

AJAX calls, 191
hidden, 191

data types, 186
conversion, 187
dates, 187
dealing JSON, 188
JSON objects, 188
numbers, 186

define, 183
events, session and local storage, 189

adding key, 190
handling, 189
parameters, 189

flavors, 183
objects, session and local, 184
using session and local, 185–186

www.it-ebooks.info

http://www.it-ebooks.info/

361

 n index

local storage
accessing data, 193
application testing, 199
client side functions, GetQuestions(), 194–

195
client side, GetChoices(), 195–196
database tables, 193
dictionary, JSON, 198
entity framework, 193
fetching data, 192
GetChoices(), 196
GetQuestions(), 194–195
global variance, 194
hidden forms, 200
JSON data, 197
Postback, 200

ready() event handler, 193
SaveResults(), 198–199
SubmitData(), 197
SurveyDb, 192
survey form, 191–192
transferring to hidden forms, 200

manual clearing, 190–191
security, 201
SSL, 201

Web Workers, terminating, 263
WHATWG (see Web Hypertext Application

Technology Working Group (WHATWG))
Windows Communication Foundation (WCF), 191,

304
Worker thread, 257
World Wide Web Consortium (W3C), 1

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Programming for
ASP.NET Developers

n n n
Bipin Joshi

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Programming for ASP.NET Developers

Copyright © 2012 by Bipin Joshi

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4719-7

ISBN-13 (electronic): 978-1-4302-4720-3

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

President and Publisher: Paul Manning
Lead Editor: Gwenan Spearing
Development Editor: Louise Corrigan
Technical Reviewer: Peter Vogel
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel, Jonathan

Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew
Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Anamika Panchoo
Copy Editor: Tiffany Taylor
Compositor: Bytheway Publishing Services
Indexer: SPI Global
Artist: SPI Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to www.
apress.com/source-code.

www.it-ebooks.info

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code
http://www.apress.com/source-code
http://www.it-ebooks.info/

At the holy feet of Lord Shiva.

– Bipin Joshi

www.it-ebooks.info

http://www.it-ebooks.info/

v

Contents

n About the Author ...xv
n About the Technical Reviewer ...xvi
n Acknowledgments ...xvii
n Introduction ..xviii
n Chapter 1: Overview of HTML5 and ASP.NET 4.5 ..1

History of HTML5 ..1
HTML5 Page Structure ...2
A Quick Look at HTML5-specific Tags ..6
HTML5 Features of Interest ..6

Audio and Video ..7

Canvas ..7

History API ..7

Web Storage ...7

Offline Web Applications ...8

File API ..8

Web Workers ...8

Web Sockets ...8

Geolocation ...8

CSS3 ...9

HTML5 and Browser Support ...9
Checking for HTML5 Support Statically ...9

Checking for HTML5 Support Dynamically ...11

HTML5 and ASP.NET ...13
Features of the Visual Studio HTML Editor ...15

HTML Formatting ..15

www.it-ebooks.info

http://www.it-ebooks.info/

 n contents

vi

IntelliSense and Validations for HTML5 Tags ..16

HTML5 Snippets ...17

Automatically Renaming End Tags ...18

JavaScript IntelliSense ...18

Testing a Web Page in a Specific browserTesting ..19

Sample Web Applications ...20
A Simple ASP.NET Web Forms–based Web Application
Using HTML5 ..20

A Simple ASP.NET MVC-Based Web Site Using HTML5 ...26

Summary ..33
n Chapter 2: Overview of jQuery ..35

What Is jQuery? ..35
jQuery Is a JavaScript Library ...36

jQuery Is Fast and Concise ...36

jQuery Simplifies Traversing HTML Documents,
Event Handling, Animation, and Ajax Interactions...36

jQuery Is Designed to Change the Way You Write JavaScript ...36

Downloading and Referring to jQuery ..36
Event Handling ...39

Event Wiring Using the bind() Method ..44

jQuery Selectors ...44
Selecting Elements Based on ID, Tag Name, and CSS Class ...45

Selecting Elements Based on Their Attribute Value ...48

Selecting Form Elements ...51

Modifying the DOM Using jQuery ..54
jQuery Ajax Techniques...55

Using the jQuery $.ajax() Method in a Web Forms Application ...57

Using the jQuery $.ajax() Method in an MVC Application ..60

Summary ..61
n Chapter 3: Working with Audio and Video ..63

Embedding Media Files Using the <object> Tag ..63
Embedding Audio Files ...64

Embedding Flash Video Files ..64

Embedding Silverlight Video Files ...64

HTML5 Audio and Video Tags ..65
Playing Audio ...65

www.it-ebooks.info

http://www.it-ebooks.info/

vii

 n contents

Playing Video ...67

Supported Audio and Video Formats ..69
Implementing a Fallback Mechanism ..72

Supporting Multiple Media Formats ...72

Flash or Silverlight Fallback ...73

Programming with the Audio and Video APIs ...74
Creating a Custom Video Player Using the Video API ..75

HTML5 Markup ..76

SQL Server Database and Entity Framework Data Model ..77

Fetching the Video Playlist..78

Playing, Pausing, and Stopping a Video ..79

Displaying Duration and Progress ...80

Summary ..82
n Chapter 4: Drawing with the Canvas ...83

The <canvas> Element ..83
Drawing on the Canvas ..84
Drawing Lines ...85

Changing the Line Width and Cap ...86

Drawing Curves ..88
A Quick Introduction to Radians ...88

Drawing an Arc Using the arc() Method ..89

Drawing Paths ..92
Drawing Text ...94
Drawing Images ...96
Adding Special Effects..98

Shadows ...98

Transparency ..100

Gradient Filling ...101

Pattern Filling ...103

Saving the Canvas State ...104
Using the save() and restore() Methods ..105

Saving the Canvas Drawing ..106
Using the toDataURL() Method ..106

Saving the Canvas Drawing in an Object ..107

Saving the Canvas Drawing in SQL Server ...107

www.it-ebooks.info

http://www.it-ebooks.info/

 n contents

viii

Saving the Canvas Drawing as an Image File on the Server ..108

Creating Pie Charts Using Canvas Drawing Techniques ...110
SQL Server Database ..111

MVC Controller ..112

MVC View ..113

Adding Chart Data...113

Drawing a Pie Chart ..114

Saving a Pie Chart ..116

Summary ..118
n Chapter 5: Working with Forms and Controls ..119

Understanding HTML Forms in ASP.NET ...119
The <form> Element in ASP.NET Web Forms ...120

The <form> Element in ASP.NET MVC ..121

HTML5 Controls ..122
Using HTML5-Specific Input Types ...123

E-mail Addresses ..124

URLs ...125

Numbers and Telephone Numbers ...125

Range Selectors ...127

Dates and Times ...127

Colors..129

Search ..130

Using the New Input Types in Web Forms ..130

Using the New Input Types in MVC Views ...131

Other Validation Attributes ..132
Dealing with Required Fields ..132

Pattern-Matching Using Regular Expressions ..132

Turning HTML5 Validations On and Off ...133

Performing Custom Validations ...134
HTML5 Input Types and ASP.NET Validation Techniques ...135

HTML5 Input Types and Validation Controls ..136

HTML5 Input Types and Server-Side Validations
in an MVC Application ...137

HTML5 Input Types and Unobstructive Validation ...139

Customizing Validation Messages ..139

www.it-ebooks.info

http://www.it-ebooks.info/

ix

 n contents

Customizing the Appearance of an Input Field
Using CSS Pseudo-Classes ...140

Customizing Validation Messages Through Code ...141

Other Improvements to the <input> Element ..143
Setting Autofocus ...143

Displaying Help Text Using Placeholders ..143

Enabling Spell-Check ...144

Turning Off Autocomplete ...144

Providing a Drop-Down List ..145

Setting a Form’s Action and Method...145

Designing an Employee Data Form ..146
Configuring the FormView Control ..147

Using HTML5 Input Types and Related Attributes ...147

Taking Care of Date Formatting ..149

Writing the CRUD Methods ...150

jQuery Code ..152

CSS Pseudo-Classes ...154

Designing a User Registration Form ...155
Entity Framework Data Model and Data Annotations ...157

User Controller ..158

Displaying the User Registration Form in an MVC View ...160

Checking for Duplicate Display Names and E-mail Addresses ...161

Comparing the Password and Confirm Password Fields ..162

Handling the invalid Event and Displaying Validation Errors ..162

Summary ..164
n Chapter 6: Using History API and Custom Data Attributes ..165

The History Object ..165
Understanding the History-Tracking Problem ..168

Effect on Browser Bookmarks ..171

Effect on Search Engine Listings ..171

The Solution ...171
Using Hash Fragment in URLs ..171

HTML5 History API ..172

Understanding the History API ..172
Browser Support ..176

www.it-ebooks.info

http://www.it-ebooks.info/

n contents

x

Custom Data Attributes . ..176
Overview of Custom Data Attributes ...177

Accessing Custom Data Attributes Using JavaScript ..178

Accessing Custom Data Attributes Using jQuery ..178

Using Custom Data Attributes to Emit Validation Messages ...179

Summary ..182
n Chapter 7: Storing Data in Web Storage183

Overview of Web Storage ...183
Session Storage and Local Storage Objects ...184
Using the sessionStorage and localStorage Objects ..185
Storing Numbers, Dates, and Objects ...186
Session Storage and Local Storage Events ..189
Clearing Web Storage Manually ...190
Passing Data from Web Storage to the Server ...191
An Example of Using Local Storage in a Survey Form ...191

Passing Data as Hidden Form Field ..200

Security Considerations for Web Storage ...201
Summary ..201
n Chapter 8: Developing Offline Web Applications ..203

When to Use Offline Applications203
HTTP Caching and Offline Applications ..204
Building an Offline Application205
Creating a Cache Manifest207
The CACHE Section of the Cache Manifest ..207

The NETWORK Section of the Cache Manifest ...208

The FALLBACK Section of the Cache Manifest ..209

Referring to the Cache Manifest in Web Forms and Views ...209
Configuring IIS to Recognize the Cache Manifest File ..211
Testing an Offline Application212
Going Online Using Ajax . ..213
Updating an Offline Application . ..214
Offline Application Events216
ASP.NET MVC Example: the Survey Application Revisited ..218

Creating a Cache Manifest File ...219

www.it-ebooks.info

http://www.it-ebooks.info/

xi

 n contents

Getting the Questions and Choices ...220

Checking for a Network Connection ...221

Summary ..222
n Chapter 9: Dealing with Local Files Using the File API ..223

Understanding the File API ...223
FileList Object ...224

File Object ...225

FileReader Object ...225

Selecting Files to Be Used With the File API ...226
Using a File Field to Select Files ...226

Using a Custom Button to Select Files..229

Using Drag-and-Drop to Select Files ..231

Working with Drag-and-Drop ...231
Enable Dragging for HTML Elements ..232

Drag-and-Drop Events ..232

Transferring Data Between Drag-and-Drop Operations ..233

Implementing Drag-and-Drop: A Shopping Cart ...233
Entity Framework Data Model ..234

Product Catalog and Shopping Cart ..234

Handling Drag-and-Drop Events ...235

Dragging and Dropping Files ..240
Reading Files and Displaying File Information ...241
Uploading Files to the Server ...246
Using the File API in ASP.NET MVC ..247
Summary ..253

n Chapter 10: Multithreading in Web Pages Using Web Workers255
Overview of Multithreading in Web Pages ..255
Types of Web Workers ..258
What Web Workers Can Access and What They Can’t ..258
Using Web Workers ...259
Importing External Script Files ...261
Handling Errors ...262
Terminating Web Workers ...263
Monitoring Web Workers During Development ...263

www.it-ebooks.info

http://www.it-ebooks.info/

 n contents

xii

Using Shared Web Workers ..264
Communicating With the Server ...267
Using Web Workers That Require Server-side Data ..268

Order History View ..269

Creating a Web Worker ...270

Event Handlers for message and error Events ...271

Code Running in the Web Worker ...272

GetOrders() Action Method..273

Summary ..274
n Chapter 11: Using the Communication API and Web Sockets ...277

Understanding Cross-Domain Communication ..277
Cross-Document Messaging ..278

Cross-Origin Resource Sharing (CORS) ..279

Using the postMessage API ..280
Using postMessage with <iframe> ..280

Using postMessage with the window Object ..283

Making Requests Using XMLHttpRequest ..284
Properties of XMLHttpRequest ...284

Methods of XMLHttpRequest ..285

Events of XMLHttpRequest ...285

Making Requests Using XMLHttpRequest ..286

Uploading Files Using XMLHttpRequest..291

Notifying the Browser Using Server-Sent Events ...294
Two-Way Communication Using Web Sockets ...297

Understanding Web Sockets ...297

The WebSocket Object ..300

Using WebSocket in ASP.NET ..300

Developing the Echo Server ...301

Developing the Web Socket Client ..303

Summary ..304
n Chapter 12: Finding Location with the Geolocation API ..305

Overview of the Latitude and Longitude Coordinate System ...305
Sources of Location Information ..306

IP Address ...306

GPS ...306

www.it-ebooks.info

http://www.it-ebooks.info/

xiii

 n contents

Wi-Fi ...306

Mobile Phones (GSM or CDMA) ...307

The Geolocation API ..307
Geolocation and User Privacy ...308

Using the Geolocation API to obtain User’s Location ..308
Using the Geolocation API with Mapping Applications ...312

Integrating the Geolocation API with Google Maps ...312

Integrating the Geolocation API with Bing Maps...315

Using the Geolocation API to Present Location-Specific Data ..317
Tracking Movement Using the Geolocation API ..321
Summary ..322

n Chapter 13: Styling Web Forms and Views with CSS3 ...323
CSS3 Selectors ...323

Attribute-Substring Selectors ...324

Structural Pseudo-Classes ...326

Element-State Pseudo-Classes ..328

Miscellaneous Pseudo-Classes ..329

Browser-Specific Property Prefixes ..330
Using Web Fonts ...331

Web Font Formats ..332

Using @font-face Rules ..333

Rounded Corners, Shadows, Gradients, and Transparency ...335
Rounded Corners ..336

Shadows ...337

Image Backgrounds ..339

Gradients ..340

Transparency ..341

Adding Effects Using Transitions and Transforms ..343
Transitions ..343

Transforms ..345

Using Media Queries to Target Different Devices ...347
Changing a Style Sheet Using Media Queries...347

Changing a Style Rule Using Media Queries ...348

Using Modernizr to Apply CSS3-Specific Features ...348
Summary ..350

www.it-ebooks.info

http://www.it-ebooks.info/

 n contents

xiv

n Appendix A: HTML5 Learning Resources ...351
W3C and WHATWG Specifications ..351
Documentation from Browser Companies ..351
Other Web Sites of Interest ...351

n Index ..353

www.it-ebooks.info

http://www.it-ebooks.info/

xv

About the Author

 Bipin Joshi is an independent blogger and author who writes about apparently unrelated topics—yoga
and technology. A former software consultant and trainer by profession, Bipin has been programming
since 1995 and has worked with the .NET framework since its inception. He is a published author and has
authored or co-authored more than a half dozen books and numerous articles on .NET technologies. Bipin
was a Microsoft Most Valuable Professional (MVP) and a Microsoft Certified Trainer (MCT) during his
tenure as a software consultant and trainer. He has also penned a few books on yoga. Having embraced
yoga way of life, he enjoys the intoxicating presence of God and writes about yoga, life, and technology. He
can be reached at www.bipinjoshi.com.

www.it-ebooks.info

http://www.bipinjoshi.com
http://www.it-ebooks.info/

xvi

About the Technical Reviewer

 Peter Vogel began working in information technology in 1984 and by 1994 was the head of the IT
department for a multinational heavy-equipment manufacturer. He has received many awards throughout
his career, including the President’s Award for excellence at Imperial Oil, marking only the second time the
award had been given to the IT department; and the Quality in IT award at Bayer AG. Peter branched out
as an independent consultant in 1997, supplying both management insight and technical support to
companies including Bayer AG, Exxon, Christie Digital, Volvo, the Canadian Imperial Bank of Commerce,
Service Brands International, and Microsoft, among others. As an industry expert, Peter has presented at
conferences in Canada, the US, the UK, Australia, and Europe and is frequently a keynote speaker at
software conferences.

In addition to providing consulting services, Peter has had a parallel career as a technical writer.
Currently, Peter is an editor for Visual Studio Magazine, where he also writes the “Practical .NET” column
and the occasional feature article. He has written several articles for MSDN Magazine. Peter was the editor
of the Smart Access newsletter, the founding editor of the XML Developer newsletter, and the editor of
Advisor magazine. He currently edits Learning Tree’s Management Insights newsletter. Peter has had four
books published (his Visual Basic Object and Component Handbook was called “the definitive guide to
‘thinking with objects’”). He recently self-published a book on creating effective user manuals (rtfm*: the
little book on how to write and actually get read). He also wrote the “Contractor Skills” column for Contract
Professional magazine.

Peter also teaches for Learning Tree International. In addition to teaching in Canada, the US, England,
Sweden, and Hong Kong, Peter has written four courses for Learning Tree in both the management and
technical curricula. He has also acted as a technical editor or subject matter expert for an equal number of
courses, mostly in management curricula.

Peter has a BA from the University of Western Ontario, has an MBA from Wilfrid Laurier University, has
been a Microsoft MVP, and was one of the first Microsoft Certified Solution Developers.

Peter lives in Goderich, Ontario, Canada—officially the “prettiest town in Canada.”

www.it-ebooks.info

http://www.it-ebooks.info/

xvii

Acknowledgments

Although name of an author alone appears on the book, many contribute to the process directly or
indirectly. I must express my deep feeling of devotion toward Lord Shiva. Without His blessings and yogic
teachings this would not have been possible.

Writing a book is about teamwork. Input from the technical reviewer, Peter Vogel, was very useful in
rendering the book accurate. The whole team at Apress—Gwenan, Anamika, Louise, Tiffany, and others
—were very helpful. Thank you, team, for playing your part wonderfully.

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Who Is This Book For?
	Web Forms or MVC
	Software Required
	Structure of This Book
	Downloading the Source Code
	Contacting the Author

	Chapter 1 Overview of HTML5 and ASP.NET 4.5
	History of HTML5
	HTML5 Page Structure
	A Quick Look at HTML5-specific Tags
	HTML5 Features of Interest
	Audio and Video
	Canvas
	History API
	Web Storage
	Offline Web Applications
	File API
	Web Workers
	Web Sockets
	Geolocation
	CSS3

	HTML5 and Browser Support
	Checking for HTML5 Support Statically
	Checking for HTML5 Support Dynamically

	HTML5 and ASP.NET
	Features of the Visual Studio HTML Editor
	HTML Formatting
	IntelliSense and Validations for HTML5 Tags
	HTML5 Snippets
	Automatically Renaming End Tags
	JavaScript IntelliSense
	Testing a Web Page in a Specific browserTesting

	Sample Web Applications
	A Simple ASP.NET Web Forms–based Web Application Using HTML5
	A Simple ASP.NET MVC-Based Web Site Using HTML5

	Summary

	Chapter 2 Overview of jQuery
	What Is jQuery?
	jQuery Is a JavaScript Library
	jQuery Is Fast and Concise
	jQuery Simplifies Traversing HTML Documents, Event Handling, Animation, and Ajax Interactions
	jQuery Is Designed to Change the Way You Write JavaScript

	Downloading and Referring to jQuery
	Event Handling
	Event Wiring Using the bind() Method

	jQuery Selectors
	Selecting Elements Based on ID, Tag Name, and CSS Class
	Selecting Elements Based on Their Attribute Value
	Selecting Form Elements

	Modifying the DOM Using jQuery
	jQuery Ajax Techniques
	Using the jQuery $.ajax() Method in a Web Forms Application
	Using the jQuery $.ajax() Method in an MVC Application

	Summary

	Chapter 3 Working with Audio and Video
	Embedding Media Files Using the <object> Tag
	Embedding Audio Files
	Embedding Flash Video Files
	Embedding Silverlight Video Files

	HTML5 Audio and Video Tags
	Playing Audio
	Playing Video

	Supported Audio and Video Formats
	Implementing a Fallback Mechanism
	Supporting Multiple Media Formats
	Flash or Silverlight Fallback

	Programming with the Audio and Video APIs
	Creating a Custom Video Player Using the Video API
	HTML5 Markup
	SQL Server Database and Entity Framework Data Model
	Fetching the Video Playlist
	Playing, Pausing, and Stopping a Video
	Displaying Duration and Progress

	Summary

	Chapter 4 Drawing with the Canvas
	The <canvas> Element
	Drawing on the Canvas
	Drawing Lines
	Changing the Line Width and Cap

	Drawing Curves
	A Quick Introduction to Radians
	Drawing an Arc Using the arc() Method

	Drawing Paths
	Drawing Text
	Drawing Images
	Adding Special Effects
	Shadows
	Transparency
	Gradient Filling
	Pattern Filling

	Saving the Canvas State
	Using the save() and restore() Methods

	Saving the Canvas Drawing
	Using the toDataURL() Method
	Saving the Canvas Drawing in an Object
	Saving the Canvas Drawing in SQL Server
	Saving the Canvas Drawing as an Image File on the Server

	Creating Pie Charts Using Canvas Drawing Techniques
	SQL Server Database
	MVC Controller
	MVC View
	Adding Chart Data
	Drawing a Pie Chart
	Saving a Pie Chart

	Summary

	Chapter 5 Working with Forms and Controls
	Understanding HTML Forms in ASP.NET
	The <form> Element in ASP.NET Web Forms
	The <form> Element in ASP.NET MVC

	HTML5 Controls
	Using HTML5-Specific Input Types
	E-mail Addresses
	URLs
	Numbers and Telephone Numbers
	Range Selectors
	Dates and Times
	Colors
	Search
	Using the New Input Types in Web Forms
	Using the New Input Types in MVC Views

	Other Validation Attributes
	Dealing with Required Fields
	Pattern-Matching Using Regular Expressions
	Turning HTML5 Validations On and Off

	Performing Custom Validations
	HTML5 Input Types and ASP.NET Validation Techniques
	HTML5 Input Types and Validation Controls
	HTML5 Input Types and Server-Side Validations in an MVC Application
	HTML5 Input Types and Unobstructive Validation

	Customizing Validation Messages
	Customizing the Appearance of an Input Field Using CSS Pseudo-Classes
	Customizing Validation Messages Through Code

	Other Improvements to the <input> Element
	Setting Autofocus
	Displaying Help Text Using Placeholders
	Enabling Spell-Check
	Turning Off Autocomplete
	Providing a Drop-Down List
	Setting a Form’s Action and Method

	Designing an Employee Data Form
	Configuring the FormView Control
	Using HTML5 Input Types and Related Attributes
	Taking Care of Date Formatting
	Writing the CRUD Methods
	jQuery Code
	CSS Pseudo-Classes

	Designing a User Registration Form
	Entity Framework Data Model and Data Annotations
	User Controller
	Displaying the User Registration Form in an MVC View
	Checking for Duplicate Display Names and E-mail Addresses
	Comparing the Password and Confirm Password Fields
	Handling the invalid Event and Displaying Validation Errors

	Summary

	Chapter 6 Using History API and Custom Data Attributes
	The History Object
	Understanding the History-Tracking Problem
	Effect on Browser Bookmarks
	Effect on Search Engine Listings

	The Solution
	Using Hash Fragment in URLs
	HTML5 History API

	Understanding the History API
	Browser Support
	Custom Data Attributes
	Overview of Custom Data Attributes
	Accessing Custom Data Attributes Using JavaScript
	Accessing Custom Data Attributes Using jQuery
	Using Custom Data Attributes to Emit Validation Messages

	Summary

	Chapter 7 Storing Data in Web Storage
	Overview of Web Storage
	Session Storage and Local Storage Objects
	Using the sessionStorage and localStorage Objects
	Storing Numbers, Dates, and Objects
	Session Storage and Local Storage Events
	Clearing Web Storage Manually
	Passing Data from Web Storage to the Server
	An Example of Using Local Storage in a Survey Form
	Passing Data as Hidden Form Field

	Security Considerations for Web Storage
	Summary

	Chapter 8 Developing Offline Web Applications
	When to Use Offline Applications
	HTTP Caching and Offline Applications
	Building an Offline Application
	Creating a Cache Manifest
	The CACHE Section of the Cache Manifest
	The NETWORK Section of the Cache Manifest
	The FALLBACK Section of the Cache Manifest

	Referring to the Cache Manifest in Web Forms and Views
	Configuring IIS to Recognize the Cache Manifest File
	Testing an Offline Application
	Going Online Using Ajax
	Updating an Offline Application
	Offline Application Events
	ASP.NET MVC Example: the Survey Application Revisited
	Creating a Cache Manifest File
	Getting the Questions and Choices
	Checking for a Network Connection

	Summary

	Chapter 9 Dealing with Local Files Using the File API
	Understanding the File API
	FileList Object
	File Object
	FileReader Object

	Selecting Files to Be Used With the File API
	Using a File Field to Select Files
	Using a Custom Button to Select Files
	Using Drag-and-Drop to Select Files

	Working with Drag-and-Drop
	Enable Dragging for HTML Elements
	Drag-and-Drop Events
	Transferring Data Between Drag-and-Drop Operations

	Implementing Drag-and-Drop: A Shopping Cart
	Entity Framework Data Model
	Product Catalog and Shopping Cart
	Handling Drag-and-Drop Events

	Dragging and Dropping Files
	Reading Files and Displaying File Information
	Uploading Files to the Server
	Using the File API in ASP.NET MVC
	Summary

	Chapter 10 Multithreading in Web Pages Using Web Workers
	Overview of Multithreading in Web Pages
	Types of Web Workers
	What Web Workers Can Access and What They Can’t
	Using Web Workers
	Importing External Script Files
	Handling Errors
	Terminating Web Workers
	Monitoring Web Workers During Development
	Using Shared Web Workers
	Communicating With the Server
	Using Web Workers That Require Server-side Data
	Order History View
	Creating a Web Worker
	Event Handlers for message and error Events
	Code Running in the Web Worker
	GetOrders() Action Method

	Summary

	Chapter 11 Using the Communication API and Web Sockets
	Understanding Cross-Domain Communication
	Cross-Document Messaging
	Cross-Origin Resource Sharing (CORS)

	Using the postMessage API
	Using postMessage with <iframe>
	Using postMessage with the window Object

	Making Requests Using XMLHttpRequest
	Properties of XMLHttpRequest
	Methods of XMLHttpRequest
	Events of XMLHttpRequest
	Making Requests Using XMLHttpRequest
	Uploading Files Using XMLHttpRequest

	Notifying the Browser Using Server-Sent Events
	Two-Way Communication Using Web Sockets
	Understanding Web Sockets
	The WebSocket Object
	Using WebSocket in ASP.NET
	Developing the Echo Server
	Developing the Web Socket Client

	Summary

	Chapter 12 Finding Location with the Geolocation API
	Overview of the Latitude and Longitude Coordinate System
	Sources of Location Information
	IP Address
	GPS
	Wi-Fi
	Mobile Phones (GSM or CDMA)

	The Geolocation API
	Geolocation and User Privacy

	Using the Geolocation API to obtain User’s Location
	Using the Geolocation API with Mapping Applications
	Integrating the Geolocation API with Google Maps
	Integrating the Geolocation API with Bing Maps

	Using the Geolocation API to Present Location-Specific Data
	Tracking Movement Using the Geolocation API
	Summary

	Chapter 13 Styling Web Forms and Views with CSS3
	CSS3 Selectors
	Attribute-Substring Selectors
	Structural Pseudo-Classes
	Element-State Pseudo-Classes
	Miscellaneous Pseudo-Classes

	Browser-Specific Property Prefixes
	Using Web Fonts
	Web Font Formats
	Using @font-face Rules

	Rounded Corners, Shadows, Gradients, and Transparency
	Rounded Corners
	Shadows
	Image Backgrounds
	Gradients
	Transparency

	Adding Effects Using Transitions and Transforms
	Transitions
	Transforms

	Using Media Queries to Target Different Devices
	Changing a Style Sheet Using Media Queries
	Changing a Style Rule Using Media Queries

	Using Modernizr to Apply CSS3-Specific Features
	Summary

	Appendix A HTML5 Learning Resources
	W3C and WHATWG Specifications
	Documentation from Browser Companies
	Other Web Sites of Interest

	Index

