
www.it-ebooks.info

http://www.it-ebooks.info/

WordPress Theme Development
Beginner's Guide
Third Edition

Learn how to design and build great WordPress themes

Rachel McCollin

Tessa Blakeley Silver

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress Theme Development Beginner's Guide
Third Edition

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2008
Second edition: November 2009
Third edition: March 2013

Production Reference: 1130313

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-422-4

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Authors

Rachel McCollin

Tessa Blakeley Silver

Reviewers

Srikanth AD

Steve Graham

Acquisition Editor

Kartikey Pandey

Lead Technical Editors

Ankita Shashi

Unnati Shah

Technical Editors

Worrell Lewis

Amit Ramadas

Project Coordinator

Michelle Quadros

Proofreader

Kevin McGowan

Indexer

Rekha Nair

Graphics

Valentina D'Silva

Production Coordinator

Conidon Miranda

Cover Work

Conidon Miranda

www.it-ebooks.info

http://www.it-ebooks.info/

 About the Authors

Rachel McCollin is a web designer and developer specializing in WordPress development.
She discovered WordPress when looking for a CMS that made the transition from static
HTML relatively straightforward, and hasn't looked back since.

Rachel runs Compass Design, a web design agency based in Birmingham, England, but with
clients across the UK and internationally. The agency was established in 2010 and quickly
began specializing in building WordPress themes and sites, with a slant towards responsive
themes. The agency now has a great team of designers and developers, including some
WordPress specialists.

I've learned most of what I know about WordPress from the web design
community. I'd like to thank all of the WordPress developers and designers
who have inspired and taught me, in particular the organizing team for
WordCampUK, without whom I never would have even thought of writing
about WordPress.

A number of friends and colleagues have provided support with my
writing and have helped me develop my WordPress skills, as well as giving
useful feedback for this book. They include Mark Wilkinson, Jon Hickman,
Scott Evans, Tammie Lister, Nivi Morales, and Jonny Allbut. Rob Ashton at
Emphasis has set me straight on grammar when I've needed it. Kartikey
Pandey at Packt Publishing showed the confidence in my work to ask me to
take on my second project for Packt Publishing—I'm grateful for this, and
for his positivity and encouragement. Most importantly, my husband Pete
has encouraged and supported me all along, and has spent many Saturdays
entertaining our two boys, so that I could get on with the task of writing.

www.it-ebooks.info

http://www.it-ebooks.info/

Tessa Blakeley Silver's background is in print design and traditional illustration. She
evolved over the years into web and multi-media development, where she focuses on
usability and interface design. Prior to starting her consulting and development company,
hyper3media (pronounced hyper-cube media) http://hyper3media.com, Tessa was
the VP of Interactive Technologies at eHigherEducation, an online learning and technology
company developing compelling multimedia simulations, interactions, and games that
met online educational requirements like 508, AICC, and SCORM. She has also worked
as a consultant and freelancer for J. Walter Thompson and The Diamond Trading Company
(formerly known as DeBeers) and was a Design Specialist and Senior Associate for
PricewaterhouseCoopers' East Region Marketing department. Tessa authors several
design and web technology blogs. Joomla! Template Design is her first book.

www.it-ebooks.info

http://hyper3media.com/
http://www.it-ebooks.info/

About the Reviewers

Srikanth is a web developer, passionate about developing and optimizing websites
for better user experience, performance, and search engine visibility. He is particularly
interested in adapting content management systems for developing structured and
scalable websites.

Check out his portfolio at http://srikanth.me.

Steve Graham is a programmer turned web-developer with years of experience, building
large-scale databases to run manufacturing control and international banking systems.
His experience at the back-end of the IT industry has given him a keen understanding of the
needs of the final users and it's this knowledge and expertise that he brings to his work with
WordPress. As one half of the Internet Mentor team (www.internet-mentor.co.uk)
his passion is developing themes that help to solve some of the most frustrating aspects of
marketing online. Focusing on the key business objectives, his aim for all clients is to ensure
that they derive measurable and sustainable direct results that drive business growth.

He spends much of his time working on theme development for niche areas. Rather than
producing themes that are so generic that the only real reason they appeal to a market is
the name of the theme or the type of background image, these themes are designed to
provide real solutions and are created with a a knowledge and thorough understanding
of the challenges their end users have to overcome.

Steve is also a passionate speaker and networking skills coach, who is able to bring
a different perspective to the messages his clients are delivering in the online world.
Relationship marketing is key to success in the 21st century and having an understanding
of how effective both the on and off-line networks can be, is essential to the success of
almost all businesses.

www.it-ebooks.info

http://srikanth.me
http://www.internet-mentor.co.uk
http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt�s online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 � Fully searchable across every book published by Packt

 � Copy and paste, print and bookmark content

 � On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface 1

Chapter 1: Getting Started as a WordPress Theme Designer 7
Overview of WordPress perks 8
Does a WordPress site have to be a blog? 8
Pick a theme or design of your own 9

Drawbacks of using an off-the-shelf theme 9
What about premium themes and frameworks? 9

What exactly is a premium theme 10
What is a framework theme 10

Core technology you should understand 12
WordPress 12
CSS 13
HTML 13
PHP 13
Other helpful technologies 14

Tools of the trade 14
HTML editor 14
Graphics editor 15
Web browser 15

Basics of a WordPress theme 16
The template hierarchy 17
The Loop 17
Template tags and API hooks 17

Our development strategies 18
Fonts and typefaces 18

A CSS strategy – font sizing with ems 19

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

A CSS strategy – working with a CSS framework 20
960 20
Blueprint 21
Layoutcore 21

Setting up your WordPress sandbox 23
Using WAMP 24
Using MAMP 24
Choosing a hosting provider 24
Rolling out WordPress 25

Summary 25

Chapter 2: Preparing a Design for Our WordPress Theme 27
Getting ready to design 28

Designing in the browser 28
Starting our design 29

Planning and sketching our design 31
Time for action – planning our design 31
Creating your design – from the sketch to the screen 32
Time for action – creating our static HTML file 32

The semantic body 32
Time for action – adding in basic HTML structure 33
Time for action – adding in the semantic structure 33

Attaching our CSS stylesheet 36
Time for action – creating and including a style.css shell into your index.php page 36

Prepping for responsiveness – viewport and apple-mobile meta tags 36
Time for action – adding in the viewport and apple-mobile meta tags 37

Adding in content 37
Starting with the text 38

Time for action – adding sample text to our semantic sections 38
Styling our fonts 41

Styling font families 41

Time for Action – assigning your font families 41
Styling font sizes 42

Time for action – sizing your fonts 43
Time for action – handling search engine bots/screen reader text 45

Setting up our layout with CSS 46
Time for action – referencing our layout core to set up our positions 47
Time for Action: Adding our media queries 48

Setting up the desktop view 49
Time for action – standard settings 49
Time for action – checking in on larger desktops 51
Time for action – making sure smaller screens are handled 51

Setting up the tablet view 52

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Time for action – adjusting the standard layout for tablets 53
Setting up the small screen view 54

Time for action – setting up our small screen layout 55
Adding design treatments 57
Time for action – setting up our graphic treatments in the stylesheet 57
Adding graphics and background images 60

Setting up our background images in our stylesheet 61
Time for action – adding background images to our design 61
Time for action – adding background image styling to the media queries 63
Don't forget the favicon and touch icon 67

Adding a favicon 67
Time for action – adding the favicon you just created 67

Touch icons 68
Time for action – adding a touch icon 69
Summary 70

Chapter 3: Coding it Up 71
WordPress theme basics 71

The Template hierarchy 72
Why the Template hierarchy works the way it does 76

The WordPress theme API 76
Setting up your WordPress workflow 78

Building your WordPress theme template files 79
Starting with a blank slate 79

Creating a new theme directory 79

Time for action – setting up our theme directory 80
Including WordPress content 82

Time for action – getting your CSS styles to show up 83
Understanding WordPress template tags and hooks 84

Looping it! – The WordPress Loop 86
The Loop in a nutshell – how it works 86

Time for action – creating a basic Loop 87
Time for action – adding content 90
Time for action – adding metadata, the timestamp, and author template tags 91

Keeping up-to-date with WordPress 93

Adding to the Loop 93
Time for action – displaying the number of comments 93
Time for action – adding in autogenerated classes 95

One last look – our full loop 97

Breaking the code up into template files 98
Including everyone 98
Creating a header file 98

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Time for action – creating the header.php file 99
Separating out our sidebar 101

Time for action – creating the sidebar.php file 101
Finishing off with the footer 102

Time for action – creating the footer.php template file 103
Time for action – don't forget the plugin hooks 104

Creating a template file for static pages 105
Time for action – creating a custom page.php template file 106
Summary 108

Chapter 4: Advanced Theme Features 109
Site settings 110
Time for action – configuring your site settings 110
Time for action – adding the site title and description to your theme 111
Pretty permalinks 112
Time for action – setting up pretty permalinks 113

Permalinks – a quick guide 115
Menus 115

Registering navigation menus 116
Time for action – registering a navigation menu 116
Time for action – adding menus to our theme's header.php file 117

Setting up our menu 119
Defining our Reading settings 119

Time for action – defining Reading settings 119
Creating a menu 120

Time for action – creating a new WordPress menu 121
Adding pages and other content to our menu 122

Time for action – adding pages to a menu 122
Time for action – adding a custom link to the menu 123
Time for action – adding a category link to the menu 124

The WordPress Menus admin – the possibilities 126

Widgets 128
Registering sidebars or widget areas 129

Time for action – registering sidebars in functions.php 130
Time for action – adding widget areas to sidebar.php 132
Time for action –adding widget areas to footer.php 134

Widget areas – not just for the sidebar and footer 135

Adding widgets in the Widgets admin screen 136
What widgets will we need 136

Time for action – adding sidebar widgets 137
Time for action – adding footer widgets 138
Featured images 142

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Time for action – adding featured images to our theme 142
Time for action – adding featured images to the site 143
Time for action – displaying featured images differently in different template files 148
Parent and child themes 150
Summary 153

Chapter 5: Debugging and Validation 155
Debugging and validation workflow 155
Browser tools for debugging 156

Firefox 156
The Web Developer toolbar 156
Firebug 157

Google Chrome 158
Safari 159

Validation 159
Validating HTML 160

Time for action – validating your HTML 160
Time for action – finding and fixing errors 162
Time for action – fixing our code 163

Validating CSS 164
Time for action – using the W3C's CSS validator 164
Testing on multiple browsers and platforms 166

Which browsers to support 166
Approaches to browser support 166

Graceful degradation 166
Progressive enhancement 167

Troubleshooting basics 167
PHP template tags 168
CSS quick fixes 169

Fixing CSS across browsers 169
Common browser problems 169
Adding an IE-specific stylesheet 171

Time for action – setting up an alternative IE stylesheet 171
Checking your work in Internet Explorer 172
Time for action – testing our theme with BrowserLab 172
Testing on mobile devices 174
Summary 174

Chapter 6: Your Theme in Action 175
The WordPress Theme Review guidelines 175
The theme preview screenshot 176
Time for action – snagging a thumbnail of your theme 177

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vi]

Packaging your theme up 178
Tidying up your theme 178

Time for action – tidying up your theme 178
Describing your theme in the stylesheet 179

Time for action – describing your theme 179
Your theme's license 180

Time for action – adding license information to our theme 180
Zipping up your theme 181
Time for action – zipping up your theme 181
One last test 182
Time for action – testing the theme 182
Summary 185

Chapter 7: Tips and tricks 187
Adding more template files to your theme 187

A search.php file for search results 188
Time for action – creating a search.php template file 190

Creating a custom page template 194
Time for action – creating a custom page template 195
Time for action – assigning a custom page template to a page in our site 196
Working with conditional tags 198

Conditional tags' syntax 198
Incorporating conditional tags in our theme 199
Using conditional tags to hide the home page's title 200

Time for action – using CSS to hide our home page's title 201
Time for action – using a conditional tag to hide our home page's title 204

The Theme Customizer 206
Time for action - adding the Theme Customizer to our theme 208
Time for action – adding some more options to the Theme Customizer 210
Time for action – ensuring Theme Customizer changes are carried
through to the CSS 212

Theme Customizer – the possibilities 214

Search engine optimization 214
SEO checklist 215
Clean, valid, standards-compliant code 215
Semantic HTML5 215
Making your theme run faster 216
Search-engine optimized permalinks 217
Optimizing images and links with alt and title attributes 217

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vii]

Time for action – optimizing a logo for SEO 218
Using optimized meta tags – page titles and descriptions 219

Time for action – optimizing our theme's page meta tags 220
Summary 223

Pop Quiz Answers 225
Chapter 2, Preparing a Design for Our WordPress Theme 225
Chapter 3, Coding it Up 225
Chapter 4, Advanced Theme Features 226
Chapter 6, Your Theme in Action 226

Index 227

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
WordPress has evolved significantly since the last edition of this book. It's now recognized
as much more than a blogging platform, and is the Content Management System (CMS)
powering 22 percent of the world's websites.

You may have used WordPress to build a site or two, perhaps using themes you've
downloaded from the WordPress theme repository, bought from a theme vendor, or
come with a theme framework. But if you want more control over your themes, you're
going to have to build you own.

These are the cornerstones of WordPress. Without them, WordPress sites just wouldn't
work. In this book, you'll learn how to take a design you create using static HTML and CSS
and turn that into a great WordPress theme. You'll create the template files your theme
needs and add extra functionality such as widgets and featured image support. We'll also
cover how to validate and debug your theme and how to release it to other developers.

By the end of this book you'll have built a fully functional WordPress theme and you'll
have the skills you need to build more, either for yourself or your clients.

What this book covers
Chapter 1, Getting Started as a WordPress Theme Designer, gives an introduction to the
world of WordPress theme building. It covers the basics of how themes work, theme
coding strategies using HTML and CSS, and setting up your theme design process.

Chapter 2, Preparing a Design for our WordPress Theme, takes you through the process
of creating a design for your theme, including wireframing, creating your design concepts,
and designing responsively in the browser.

Chapter 3, Coding it Up, is when you'll start to build an actual theme by taking your HTML
from Chapter 3 and inserting that into theme template files along with the PHP needed to
make your theme work.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

Chapter 4, Advanced Theme Features, covers additional features you can add to your theme.
These include site settings, reading settings, permalinks, featured image support, and widgets.

Chapter 5, Debugging and Validation, shows you how to check for any bugs in your code and
test that your site meets the W3C requirements for validity. We'll also look at browser testing
and troubleshooting.

Chapter 6, Your Theme in Action, is all about shipping your theme to other WordPress
users and developers. You'll learn how to use the WordPress theme repository to make
your themes publicly available and the steps you need to take to package up a theme.

Chapter 7, Tips & Tricks, will help you take your WordPress theme development skills further.
You'll learn how to add some more advanced features to your theme, including additional
template files, conditional tags to display different content according to context, how to give
your theme's users access to the theme customizer, and how to optimize your theme for SEO.

Who this book is for
This book is aimed at web designers and developers with some experience of using WordPress
and of coding using HTML and CSS. It assumes you are familiar with the WordPress interface
and know how to manage a site and add content via that interface. You should also have
experience of writing HTML and CSS. The ability to write PHP is not needed but the book
does include some PHP code so you will learn something about this along the way.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple choice questions intended to help you test your own understanding.

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The Loop won't work unless you close it, so
below your closing </article> tag, add the following:".

A block of code is set as follows:

<?php endwhile; ?>
<?php else : ?>
 <h2 class="center">Not Found</h2>
 <p class="center">Sorry, but you are looking for
something that isn't here.</p>
 <?php get_search_form(); ?>
<?php endif; ?>

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

/* Text meant only for screen readers */
.screen-text{
 position: absolute;
 left: -5000em;
}

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Click on Publish to
save your post.".

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/support, selecting your
book, clicking on the errata submission form link, and entering the details of your errata. Once
your errata are verified, your submission will be accepted and the errata will be uploaded to
our website, or added to any list of existing errata, under the Errata section of that title.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

mailto:copyright@packtpub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

1
Getting Started as a WordPress

Theme Designer

Welcome to WordPress 3.2 Theme Design! This book is intended to take you
through the process of creating sophisticated professional themes for the
WordPressweb publishing platform. Since its inception, WordPress has evolved
way beyond mere blogging capabilities and has many standard features
that are expandable with content types, plugins, and widgets, which make it
comparable to a full Content Management System (CMS).

In this chapter and upcoming chapters, we'll walk through:

 � The perks of using WordPress and basics of how a theme works

 � The core technology you should understand and tools you should use to develop
your theme

 � The essential elements you need to consider when planning your theme design

 � An overview of theme development strategies

 � Starting with semantic HTML5 markup

 � An overview of typography for the web

 � Using a CSS layout framework

 � Sizing typography with ems

 � Using "object-oriented CSS" techniques for graphic treatments

 � Setting up your WordPress theme design process

This chapter is mostly the background and overview of the key concepts you'll need to
understand once it's "time for action" in the following chapters. Let's get started.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started as a WordPress Theme Designer

[8]

Overview of WordPress perks
As you're interested in generating custom themes for WordPress, you'll be very happy to
know (especially all you web standards evangelists) that WordPress really does separate
content from design.

You may already know from painful experience that many content management and blog
systems end up publishing their content prewrapped in (sometimes large) chunks of layout
HTML, peppered with all sorts of predetermined selector id and class names.

You usually have to do a fair amount of sleuthing to figure out what these IDs and classes
are so that you can create custom CSS rules for them. This is very time consuming.

The good news is, WordPress publishes only two things:

 � The site's textual content—the text you enter into the post and the page
administration panels

 � Supplemental site content such as widgets, banners, and menus, wrapped in
div tags, li tags, or nav tags depending on how the theme is coded

WordPress can also include classes which let you add styling based on a variety of
circumstances. Most of those classes are controlled directly by the template tags
(which we'll get into later).

That's it! You decide how everything published via WordPress is styled and displayed.

The culmination of all those styling and display decisions, along with WordPress template tags
that pull your site's content into your design, are what your WordPress theme consists of.

Does a WordPress site have to be a blog ?
The answer to this question is—no. WordPress has been capable of managing static pages
and subpages since Version 1.5. Static pages are different from blog posts in that they aren't
constrained by the chronology of posts. This means that you can manage a wide variety of
content with pages and their subpages.

WordPress also has a great community of developers supporting it with an ever-growing
library of plugins. Using plugins, you can expand the capabilities of your server-installed
WordPress site to include infinite possibilities such as event calendars, image galleries,
sidebar widgets, and even shopping carts. For just about anything you can think of, you
can probably find a WordPress plugin to help you out.

By considering how you want to manage content via WordPress, what kind of additional
plugins you might employ, and how your theme displays all that content, you can easily
create a site that is completely unique and original in concept as well as design.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

Pick a theme or design of your own
It's a good idea to approach theme design from two angles:

 � Simplicity: Sometimes it suits the client and/or the site to go as barebones as
possible. In that case, it's quick and easy to use a very basic, already built theme
and modify it.

 � Unique and beautiful: Occasionally, the site's theme needs to be created from
scratch so that everything displayed caters to the specific kind of content the site
offers. This ensures that the site is something eye-catching, which no one else will
have. This is often the best route when custom branding is a priority or you just
want to show off your design skills.

There are many benefits to using or tweaking off-the-shelf themes. First, you save a lot
of time getting your site up with a nice theme design. Second, you don't need to know as
much about CSS, HTML, or PHP. This means that with a little web surfing, you can have
your WordPress site up and running with a stylish look in no time at all.

Drawbacks of using an off-the-shelf theme
Using an off-the-shelf theme is a great way to get started with WordPress. It means you can
build your first WordPress site with a coding experience, or with experience of writing code
but not of building themes. You can also work with an existing theme to create your own,
either editing the theme directly or by using a child theme (which we'll come to later).

But if you need to build a bespoke site, using an off-the-shelf theme will have its drawbacks
and may not save you as much time as you would hope for.

Perhaps your site needs a special third-party plugin for a specific type of content; it might not
look quite right without a lot of tweaking. And while we're discussing tweaking, every CSS
designer is different and sets up their theme's template files and stylesheets accordingly. While
it makes perfect sense to them, it can be confusing and time consuming to work through.

Working with an off-the-shelf theme starts off feeling like the simplest approach, but as you
delve deeper into the code, you may find yourself making more and more changes until you
reach the point where it would have been easier to start form scratch.

Before making use of an existing theme, check if it really has everything you'll need for your
project with minimal tweaking. And check its license—it should be GPL, like WordPress itself.

What about premium themes and frameworks?
If you've done any research on the internet, you will have come across a host of WordPress
frameworks and premium themes (which can often be used as frameworks).

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started as a WordPress Theme Designer

[10]

What exactly is a premium theme
First off, a premium theme is simply a nicely (sometimes an amazingly) designed WordPress
theme that often also has many, really cool features. The author may have taken the time
to include a host of JavaScript enhancements, like a rotating header slideshow, "Ajaxified"
comment forms and endless "widgetized" areas, as well as additional custom areas in the
administration panel where you can easily manage and update all the custom enhancements.

Secondly (and more importantly), a premium theme is one that the developer wants you
to pay for because they took the time to code up that design and include all those nice
enhancements. Hence the "premium" on the theme.

Be careful with customizing premium themes

While premium theme designers often offer many ways to easily customize
their theme (a perk of choosing their theme over others), the images, CSS,
and JavaScripts of the theme are not required to fall under the WordPress
GPL license (we'll learn all about this in Chapter 6,Your Theme in Action).
The authors may require you to leave their name, link, or other copyright/
attribution information somewhere within the theme. Essentially, read the
seller's license information to understand what you have the right to change
and use common sense. Don't steal other people's design work to pass off
as your own. Really, it's just not nice.

What is a framework theme
Frameworks are in many ways similar to premium themes, but the focus of the framework
is not so much to be a "theme" all by itself but to be more of a "starter kit" that strips the
need for understanding the WordPress'Theme API out of the design process and usually also
adds great additional features and functionality. Most frameworks work on the assumption
that you'll create a child theme of your own for the look and feel you want. Because
frameworks do offer designers a "quick start" as well as extra features, similar to premium
themes, some frameworks require purchasing or licensing for each site you use them on.
There are also some very good open source frameworks that are free to download and use.

Frameworks are particularly useful to designers who are short on time, very good with
CSS, and don't want to deal with the learning curve of having to understand the WordPress
template page hierarchy, template tags, and plugin API hooks.

What are child themes?

We'll learn later in Chapter 4, Advanced Theme Features, of this book that you
can actually create a child theme off any theme, be it a framework theme, a
premium theme, or your best friend's WordPress theme experiment.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

The whole point of this book is to introduce you to these concepts and introduce you to the
basics of WordPress theme features so that you can create elegant comprehensive themes
from scratch. You can then see how getting a little creative will enable you to develop any
kind of site you can imagine with WordPress.

You'll also be able to better take advantage of a theme framework, as you'll understand
what the framework is accomplishing for you "under the hood", and you would also be
able to better customize the framework if you need to.

For many frameworks, there is still some amount of learning curve to getting up and running
with them. But less of it will deal directly with futzing with PHP code to get WordPress to do
what you want.

We'd encourage you to take a look at development with a framework and compare it to
development from scratch. Having the skills this book provides you with under your belt
will only help, even if you choose to go with a framework to save time.

Popular theme frameworks to choose from

More and more frameworks show up every day, and each framework tries to
address and handle slightly different needs. As a bonus, some frameworks add
options into the WordPress administration panel that allow the end user to add
and remove features to/from the child theme they've selected.

The right framework for you will depend on your development style and the
needs of your site, but some popular frameworks are listed next.

Themes that offer a lot of child themes which you can customize yourself:

 � Thematic (http://themeshaper.com/thematic/)

 � Hybrid (http://themehybrid.com/)

Premium frameworks with additional features are as follows:

 � Carrington (http://carringtontheme.com/)
 � Thesis (http://diythemes.com/)

These frameworks may appear complex at first, but offer a range of rich features
for developing themes and, especially if you understand the essentials of creating
WordPress themes (as you will after reading this book), can really aid you in
speeding up your theme development.

Again, there are many theme frameworks available. A quick Google search for
"WordPress Theme Frameworks" will turn up quite a range to choose from.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started as a WordPress Theme Designer

[12]

Core technology you should understand
This book is geared towards visual designers (with no server-side scripting or programming
experience) who are used to working with the common industry standard tools such as
Photoshop and Dreamweaver or other popular graphic, HTML, and text editors.

Regardless of your web development skillset or level, you'll be walked through clear,
step-by-step instructions. But there are many web development skills and WordPress
know-how that you'll need to be familiar with to gain maximum benefit from this book.

WordPress
Most importantly, you should be at least somewhat familiar with the most current stable
version of WordPress. You should understand how to add content to the WordPress system
and how its posts, categories, and pages work. If available in the theme you're using, you
should be aware of how to set up a custom menu (the WordPress default Twenty Ten theme
will allow you to play with custom menus). Understanding the basics of installing and using
plugins will also be helpful (though we will cover that to some extent in the later chapters
of the book as well).

Even if you'll be working with a more technical WordPress administrator, you should
have an overview of what the WordPress site that you're designing entails, and what
(if any) additional plugins or widgets will be needed for the project. If your site does require
additional plugins and widgets, you'll want to have them handy and/or installed in your
WordPress development installation (or sandbox—a place to test and play without messing
up a live site). This will ensure that your design will cover all the various types of content
that the site intends to provide. We'll cover the basics of setting up your sandbox in just
a minute in this chapter.

What version of WordPress does this book use?

This book focuses on WordPress 3.4.2. While this book's case study is developed
using Version 3.4.2, any newer version of WordPress should have the same core
capabilities, meaning you can develop themes for it using these techniques.
Bug fixes and new features for each new version of WordPress are documented
at http://wordpress.org. If you are new to WordPress, then it's worth
reading WordPress 3 Complete, April Hodge Silver, Packt Publishing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

CSS
We'll be giving detailed explanations of the CSS rules and properties used in this book,
especially the CSS3 rules and how to use progressive enhancement to support browsers
that don't support CSS3. We'll also let you in on the "how and why" behind creating our
style sheets. You should know a bit about what CSS is, and the basics of setting up a
cascading stylesheet and including it within an HTML page. You'll find that the more
comfortable you are with CSS markup and how to use it effectively with HTML, the
better will be your WordPress theme-creating experience.

HTML
You don't need to have every markup tag in the XHTML or HTML5 standard memorized.
If you really want, you can still switch to the Design view in your HTML editor to drop in
those markup tags that you keep forgetting. However, the more HTML and HTML5 basics
you understand, the more comfortable you'll be working in the Code view of your HTML
editor or with a plaintext editor. The more you work directly with the markup, the quicker
you'll be able to create well-built themes that are quick loading, semantic, expand easily
to accommodate new features, and are search engine friendly.

PHP
You definitely don't have to be a PHP programmer to get through this book, but be aware
that WordPress uses liberal doses of PHP to work its magic. A lot of this PHP code will be
directly visible in your theme's various template files. PHP code is needed to make your
theme work with your WordPress installation, as well as make individual template files
work with your theme.

If you at least understand how basic PHP syntax is structured, you'll be much less likely to
make mistakes while retyping or copying and pasting code snippets of PHP and WordPress
template tags into your theme's template files. You'll be able to more easily recognize
the difference between your template files, XHTML, and PHP snippets, so that you don't
accidentally delete or overwrite anything crucial.

If you get more comfortable with PHP, you'll have the ability to change variables and call
new functions or even create new functions on your own, again infinitely expanding the
possibilities of your WordPress site.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started as a WordPress Theme Designer

[14]

Other helpful technologies
If your project will be incorporating any other special technologies such as JavaScript,
AJAX, or Flash content, the more you know and understand how these scripting
languages and technologies work, the better it is for your theme-making experience
(again http://www.w3schools.com/ is a great place to start).

The more web technologies you have a general understanding of, the more
likely you'll be able to intuitively make a more flexible theme that will be
able to handle anything you may need to incorporate into your site in the
future. You don't need to be an expert in all of them to build a WordPress
theme though.

Tools of the trade
Skills are one thing, but the better your tools are, and the more command you have over
those tools, the better your skills can be put to use. Just ask any carpenter, golfer, or app
programmer about the sheer importance of their favorite "tools of the trade", you're likely
to get quite an earful.

In order to get started in the next chapter, you'll need the following tools to help you out:

HTML editor
You'll need a good HTML editor. Text editors which a lot of web developers trust include:

 � Dreamweaver (http://www.adobe.com/products/dreamweaver/)

 � Coda for Mac (http://www.panic.com/coda/)

 � TextWrangler (http://www.barebones. com/products/textwrangler/)

 � HTML-kit (http://www.htmlkit.com/)

An HTML or text editor that includes the following features will work just great:

 � View line numbers: Can help you find specific lines in a theme file, to help you
identify any problems

 � View syntax colors: Helps you identify where you're working in PHP, HTML, CSS,
and where the code is working

 � View nonprinting characters: Helps you see hard returns, spaces, tabs, and other
special characters that you may or may not want in your code

 � Text wrapping: Lets you wrap text, so you don't have to scroll horizontally to edit
a long line of code

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

 � Load files with FTP or local directories: Lets you work on remote files (or upload
local files to a remote server) from your code editor

Free open source HTML editors

Free, open source text editors include:
 � Nvu (http://www.net2.com/nvu/)
 � KompoZer (http://kompozer.net/)
 � Bluefish (http://bluefish.openoffice.nl)

Graphics editor
The next piece of software you'll need is a graphics editor. While you can find plenty of
CSS-only WordPress themes out there (and CSS3 gives you much more opportunity to
create graphic effects with code), chances are that you'll want to expand on your design
a little more and add nice visual enhancements.

The most popular graphics programs are Photoshop (or its lighter cousin, Photoshop
Elements) and Fireworks, both from Adobe (http://www.adobe.com/products/).

If you're looking for a free, open source graphics program, you could try one of
the following:

 � GIMP (http://gimp.org/)

 � Inkscape (http://inkscape.org).

Web browser
Finally, you'll need a web browser. Many developers use Firefox, available at
http://mozilla.com/firefox/. It includes some advanced developer tools which
are useful for debugging and delving into your code. If you're getting started though,
you might find Google Chrome easier to use at first. It's fast and standards-compliant
and available at https://www.google.com/intl/en/chrome/browser/.

You'll also need to use other web browsers to test your theme on, as it will need to be
compatible with the latest versions of the main browsers. Browsers you should be testing
on include:

 � Firefox

 � Chrome

 � Safari for Mac

 � Opera

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started as a WordPress Theme Designer

[16]

 � Internet Explorer (Version 7 or 8 upwards)

It's unlikely that you'll have access to all of these browsers on your machine—Internet
Explorer only runs on Windows and Safari only runs on a Mac, for example. To test them,
you can use the AdobeBrowser lab tool, available at http://browserlab.adobe.com.

Basics of a WordPress theme
According to the WordPress codex a WordPress theme is:

A collection of files that work together to produce a graphical interface with an
underlying unifying design for a weblog.

Themes are comprised of a collection of template files and web collateral such as images,
CSS stylesheets, and JavaScript.

The next diagram illustrates how the WordPress theme works with the WordPress system:
core installation, theme files, plugin files, and MySQL database, to serve up a complete
HTML page to the browser:

We'll go over the specifics and code examples of each part of a WordPress theme in detail in
Chapter 3, Coding it Up, but here are the basics to get you started:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

The template hierarchy
The most important part of a WordPress theme to start realizing now is the template
hierarchy. A WordPress theme is comprised of many file types including template pages.
Template pages have a structure or hierarchy to them. That means, if one template file is
not present, then the WordPress system will call up the next level template file. This allows
developers to create themes that are fantastically detailed, which take full advantage of all
of the hierarchy's available template files, and yet make the setup unbelievably simple. It's
also possible to have a fully functioning WordPress theme that consists of no more than an
index.php file and a stylesheet.

You can see the template hierarchy in detail at http://codex.
wordpress.org/Template_Hierarchy.

The Loop
Within most template pages in the hierarchy (not necessarily all of them), we'll be adding
a piece of code called "the Loop". The Loop is an essential part of your WordPress theme.
It displays your posts in chronological order and lets you define custom display properties
with various WordPress template tags wrapped in HTML markup.

Template tags and API hooks
Looking within a template page's "Loop", you'll find some interesting bits of code wrapped
in PHP tags. The code isn't pure PHP, most of them are WordPress-specific tags and functions
such as template tags, which only work within a WordPress system. Most tags and functions
can have various parameters passed through them.

Not all WordPress tags and functions go inside the Loop. If you were to poke around the
header.php file included in the default Twenty Ten theme, you'll find several tags that work
outside the Loop. Specifically in the header.php template page (as well as the footer.php
and sidebar.php template pages), you'll also find several WordPress-specific functions that
are part of the Plugin API and Script API.

Again, no need to worry about the specifics of these now. We'll be covering all these terms
in detail with examples in Chapter 3, Coding it Up, plus the Appendix will have a complete
Quick Reference Cheat Sheet for you to quickly look up all of these specifics.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started as a WordPress Theme Designer

[18]

Our development strategies
The approach of this book is going to take you through the unique and beautiful route
(or unique and awesome, whatever your design aesthetics call for) with the idea that once
you know how to create a theme from scratch, you'll be better at understanding what to
look for in other WordPress themes, premium themes, and frameworks. You'll then be able
to assess when it really is better or easier to use an already built theme versus building up
something of your own from scratch.

Chapter 2, Preparing a Design for Our WordPress Theme will cover creating an HTML5-and
CSS3-based, design "mock-up" that will work across all browsers as well as be responsive and
mobile ready. In Chapter 3, Coding it Up, we'll take that working HTML/CSS code and break it
down into template pages injected with template tags and essentially "WordPress-ize" it into a
fully functional theme. In Chapter 4, Advanced Theme Features and beyond, we'll learn how to
add some great advanced features as well as properly validate and package our theme to share
it with the world. Don't let the "Beginner" series this title is under fool you. By the end of this
book you'll probably be ready to create your own polished, professional themes for clients or
even premium themes.

Fonts and typefaces
The Cufon JavaScript technique, but for now, let's get some basic typography under
our belts.

When envisioning the theme's typography, think about the type of information the site
will (or might) hold, and what's expected along with what's in vogue right now. Try to think
in terms of headers, secondary fonts, block-quotes, specialty text (for code), and paragraph
page text.

You can use any fonts you want as long as you think there's a really good chance that others
will have the same font on their computers. Here is a list of the basic fonts that work well on
the screen:

 � Fonts designed for viewing on screen:

 � Georgia (serif)

 � Verdana (sans serif)

 � Fonts available on most Macs and/or PCs:

 � Arial

 � Helvetica

 � Times New Roman

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

 � Fonts commonly used for code:

 � Monaco

 � Consolas

A CSS strategy – font sizing with ems
It is possible to set text in one of five different units – keywords, points, pixels, percentages,
and ems. These work in the following way:

 � Keywords include xx-small, x-small, small, medium, large, x-large, and
xx-large. The medium option is the same as the default font size set by the browser,
and the others are set in relation to this, for example, the x-small keyword equates
to 9 pixels on desktop browsers in their default setting. Keywords are limited, with
only seven choices, and they are imprecise as it's impossible to know if the user has
changed the browser's default size or if different browsers are using a different default
size. It's therefore not a good idea to use keywords.

 � Points will be familiar to you if you use a word processing or desktop publishing
program, and they are related to the size of text on the printed page. Their only real
application in websites is for a separate print stylesheet—they generally aren't used
in screen stylesheets.

 � Pixels are probably the most commonly used, and relate to the pixels on the screen.
They provide fine control over exact dimensions but because the font size for each
element (for example, headings) has to be set separately, you have to edit each one
if you want to make the font sizes larger or smaller across the site.

 � Percentages change the text size in relation to the size set by the browser (a bit like
keywords), but give much finer control. You can also use them to set the size of text
in an element relative to the size it would normally inherit from elements higher in
the html structure. For example, if you set the <body> element to have a font size
of 16 pixels, and the <h1> tag to have a font size of 120 percent, its size will be 120
percent of 16 pixels, which is 19.2 pixels.

 � Ems are also relative, and work in exactly the same way as percentages, so 1.2em
is the equivalent of 120 percent. Some developers find that the smaller numbers
are easier to work with. They're also useful when styling layout relative to text size.
For example, in the Carborelli's call to action box, the padding is in ems, so it would
be based on the size of the text in that element. If we used percentages for that
padding, the browser would use a percentage of the width or height of the call to
action's containing element instead.

Because ems and percentages are relative values, they have two major advantages over pixels:

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started as a WordPress Theme Designer

[20]

 � If you set the site's base text size at 14 pixels, for example, using the <body>
element, and set other elements with different font sizes using ems, then at a later
date decide to make the text size larger, all you need to do is change the size for
the <body> element and this will have a knock-on effect on all other elements or
selectors that have been set in ems or pixels. This also means that you can adjust
the text size for all parts of the site on mobile devices using one change – to the
font size of the <body> element.

 � As ems are relative, they adjust when the user changes their text size settings in
their browser, for example if he or she is visually impaired or short-sighted. Pixel
values won't do this so well. This makes ems much better for accessibility.

You could use either, but ems are more commonly used as they're simpler to work with.

A CSS strategy – working with a CSS framework
As we're about to learn, there are lots of CSS frameworks to choose from. Regardless
of which one you end up with, this is where a lot of time-saving "magic" can start to
happen for you and your design process. By using a CSS framework, you can quickly
set up layout positioning for your mock-up. Let's take a quick tour of the top two CSS
framework systems available.

960
960 grid is probably the most popular CSS framework out there because of the fact that
960 can be divided by a lot of numbers, giving you a great deal of flexibility for your layout.

You can find it at http://960.gs/.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

Blueprint
Blueprint includes typography, form starters, and other plugins to choose from. It's based
on a grid of 24 columns that are 30-pixel wide, with a 10-pixel margin, and the default is
950-pixels wide. You can find out all about it at: http://www.blueprintcss.org.

Layoutcore
The tutorial in this book usesthe layout core framework developed by me.

Layoutcore is very simple. It uses object-oriented CSS, meaning that, instead of assigning
styling to specific elements in your markup, you add classes defined in layoutcore which
are designed to style whichever elements they're applied to. For example, these will
control floats, widths, backgrounds, and fonts.

To learn more about object-oriented CSS, see http://coding.
smashingmagazine.com/2011/12/12/an-introduction-
to-object-oriented-css-oocss/.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started as a WordPress Theme Designer

[22]

Here's an example of a layout using layoutcore:

...
<div id="container">
<div class="left eighth margin-right">
</div>
<div class="left eighth margin-right">
</div>
<div class="left quarter">
</div>

<div class="right half">
<div class="push"></div>
<div class="right third">
</div>
<div class="left two-thirds">
</div>
</div>
<div class="push"></div>
</div><!--//#container-->
…

This markup would create a layout similar to the following screenshot:

A quick overview of the layoutcore CSS is as follows:

 � It has several vertical lists and horizontal "grid list" options that can be applied to
ul and ol lists, which turn them into horizontal lists that wrap from 2 up, to 8 up.

 � It also makes the suckerfish method for drop-down menus a breeze (we'll break down
the CSS for this in detail in Chapter 4, Advanced Theme Features). You simply assign
the.sfTabclass for horizontal menus or .sfList for vertical menus. Using the
vertical .sfList class, you can also assign the classes.dropRight or .dropLeft
to determine on which side the drop-down menus appear or just assign
.currentLevel if you want to have a vertical drop-down menu that automatically
shows what section you're active in.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

 � It also accommodates some very basic @media queries that appropriately size the
#container and footer element's width property and turn off the .left and
.right float properties to get the layout's basic responsiveness set up and ready
 to roll.

 � As with any other framework you use (or just plain stylesheet you create), the
layout-core.css file uses the Eric-Meyers reset so that the layout and style
rules you set up look as consistent as possible across all browsers.

 � Last, for good measure, it accommodates some very common mime-type
assignment images and social networking icons.

More CSS frameworks

There are tons of great frameworks out there, each one taking in different
approaches or end solutions into account.

You may find one that works better for you than the ones
mentioned here. For some examples, see http://speckyboy.
com/2011/11/17/15-responsive-css-frameworks-worth-
considering/

To find out more about it and download a 10k minified version, visit my CSS site
http://csscheatsheet.net/layout-core (you get the unminified version with
this chapter's code pack so you can look through it in detail).

Multiple class styles assigned to the same HTML object tag?

Hopefully, this is not a totally new CSS concept for you, but as you can
see by the description of CSS frameworks and my quick layout-core.
css examples given previously, you can have as many classes as you
want assigned to an HTML object tag. Simply separate the class names
with a blank space and they'll affect your HTML object in the order that
you assign them. Keep in mind that the rules of cascading apply, so if
your second CSS rule has properties in it that match the first, the first rule
properties will be overwritten by the second. We'll delve even further
into using this technique later on in this chapter and there are more
suggestions for this trick in Chapter 7, Tips and Tricks.

Setting up your WordPress sandbox
If you have a version of WordPress running that you can play with, great. If you don't, it's a
good idea to have a locally running installation. Installing and running a small web server on
your local machine or laptop has become very easy with the release of WAMP (Windows,
Apache, MySQL, and PHP) and MAMP (Mac, Apache, MySQL, and PHP). A local server offers
you several conveniences compared to working with WordPress installed on a hosting provider.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started as a WordPress Theme Designer

[24]

Using WAMP
WAMP stands for Windows, Apache, MySQL, and PHP, and it lets you run a local web server
on a Windows machine. To download it, go to http://www.wampserver.com.

The installation wizard includes instructions which will help you set up WAMP correctly for
your system—make sure you follow them!

Using MAMP
Similar to WAMP, MAMP stands for (you guessed it!) Mac, Apache, MySQL, and PHP. Mac
users will head on over to http://mamp.info and download the free version of the server.

Once you download and unpack the ZIP and launch the .dmg file, it's a pretty straightforward
process for copying the MAMP folder to your Applications folder and launching the app.

Again, like WAMP, MAMP from the start page offers you an easy way to launch phpMyAdmin.
phpMyAdmin will allow you to easily create a database and a database user account, which
is required for installing WordPress.

Choosing a hosting provider
If you want to work remotely, or to publish your site to the web, you'll need hosting. There
are hundreds of hosting providers out there so finding the right one can be tricky – the
important thing is that they provide support for WordPress.

Your hosting will need to include Apache, MySQL, and PHP in order for WordPress to
operate. It's also a big help if you have access to CPanel and phpMyAdmin.

Many hosting providers offer Fantastico or Softaculous for one-click installs, which can
speed up the installation process and be useful for WordPress beginners. But be sure that
this gives you the latest version of WordPress—if not, upgrade immediately after installing.
It's important to use the latest version of WordPress to avoid any security problems. If you
want maximum control over your WordPress installation, it's best to install it yourself.

For details of WordPress hosting requirements, see http://wordpress.
org/hosting/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[25]

Rolling out WordPress
You'll be pleased to know that WordPress is easy to install. Once you have a MySQL
database set up with a username and password, you simply unzip the latest WordPress
version and copy it to your site's root folder and then run the installation by navigating to
http://localhost/wp-admin/install.php, or for a remote installation, to http://
example.com/wp-admin/install.php, where example.com is your domain name.

WordPress in 5 minutes (or less)

For a complete overview of installing WordPress, take a look at the
WordPress 5-minute installation guide from the Codex: http://codex.
wordpress.org/Installing_WordPressAgain. Also, the book
we mentioned earlier, WordPress 3.0 Complete, April Hodge Silver,Packt
Publishing will walk you through a WordPress installation, step by step.

Summary
To get going on your WordPress theme design, you'll want to understand how the
WordPress blog system works, and have your head wrapped around the basics of the
WordPress project you're ready to embark on. If you'll be working with a more technical
WordPress administrator and/or PHP developer, make sure your development installation
or sandbox will have the same WordPress plugins that the final site needs to have. You'll
want to have all the recommended tools installed and ready to use, as well as brush up
on those web skills, especially XHTML and CSS. Get ready to embark on designing a great
theme for one of the most popular, open source blog systems available for the Web today.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

2
Preparing a Design for Our

WordPress Theme

The purpose of this chapter is to help you create a working HTML5- and
CSS3-based template mockup, with an eye towards having it end up being
a WordPress theme. This theme will be responsive, meaning it will display
content optimally on mobile devices as well as desktop browsers. All the while,
we'll be staying compliant with W3C standards and following good usability
practices. Our hope for this chapter is that even you design pros may discover
interesting tidbits that will help you in your WordPress theme design creation.

WordPress theme design is essentially web design so, throughout the chapter,
we'll be focusing a bit more on thinking about semantics, standards, and usability
first. We'll then focus on what we want to design (keeping in mind it will end up
in WordPress) using the most simple, straightforward means possible: pencil
and paper, HTML, and CSS, and last, our graphic editor/drawing programs.
This approach will give us a more flexible, yet solid HTML and CSS structure.

While you might find this approach a little strange at first, it's by no means
set in stone as the only right way to design a theme. Simply read through the
chapter and, even if you already have a polished, Photoshop-designed mockup,
go ahead and try to set up your HTML and CSS using the steps laid out in this
chapter. You may find it helps your process.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing a Design for Our WordPress Theme

[28]

In this chapter, we're going to take a look at implementing the following strategies
we learned in Chapter 1, Getting Started as a WordPress Theme Designer by:

 � Building out our layout based on semantic content

 � Adding in our content, fonts, and sizing

 � Setting up our layout using our CSS layout framework

 � Adding in our graphic elements using CSS3 and our object-oriented approach
to CSS (which we'll explain when we come to it)

By the end of this chapter, we'll have a working HTML5- and CSS3-based template "comp"
or "mockup" of our WordPress theme design, ready to be broken down, coded up, and
assembled into a fully functional WordPress theme.

Already got a design? Not a designer at all?

That's fine! This chapter covers basic, web design best practices, with an eye
towards ending up with a unique and custom WordPress theme. It contains
time honored and tested methods for approaching compliant, accessible,
and responsive HTML and CSS creation. If you're a total HTML and CSS design
wizard, you can skim this chapter for any new tips and tricks that might be
of use to you and then move on to Chapter 3, Coding it Up. If you're not a
designer at all and you just need to convert an existing HTML/CSS template
into WordPress, we'd still recommend you skim this chapter, as it may help
you better understand some of the HTML markup and CSS in your template.
You can then move on to Chapter 3, Coding it Up to learn how to code working
HTML and CSS templates and mockups into WordPress.

Getting ready to design
Design Comp is an abbreviation used in design and print. It refers to a preliminary design
or sketch as "comp", as in "comprehensive artwork" or "composite". It is also known as
"mockup", "sample artwork", or "dummy artwork". We'll be creating one of these in this
chapter to then use to create our WordPress theme in Chapter 4, Advanced Theme Features.

You may already have a design process similar to the one detailed next; if so, just skim the
next section and skip down to the next main heading.

Designing in the browser
Historically, most web designers have used Photoshop or another graphics program to
create a static design for a site and then either develop the site themselves or pass this
to a developer to create the code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

This approach reflected the fact that web design had its background in print design, which
makes good use of this sort of process. It gives you a nice static mockup that you can give
to a client for approval.

But this approach isn't so effective anymore. Now that our sites need to look good on a
variety of devices, a single static design won't apply to every screen size. Does this mean
we have to prepare a full design for every conceivable screen size?

Of course not. The approach we're moving towards is replacing designing in a graphics
program with designing in the browser.

The way you approach this will depend on your own preferences and the needs of your
project, but a process which works for a lot of designers is:

1. Generate design concepts and ideas for the site using a mood board or similar
technique, so you know what styling and graphics you'll be using.

2. Prepare some wireframes for the site's layout at different screen widths. These
can be a rough sketch on paper or use a wireframing tool.

3. Create a static mockup of the design in the browser, using the layouts defined in
your wireframes and the graphical treatments in your mood board. This gives you
a working prototype of your design which is much more effective for demonstrating
to clients how their site will actually work for users on different devices.

4. Turn that static design into a WordPress theme, using the HTML and CSS you've
used for your mockup and adding WordPress goodness to it.

This is the process we'll be using in this chapter, which will take us up to step 3 of the
process. In Chapter 4, Advanced Theme Features, we'll move on to the final step, turning
our mockup into a WordPress theme.

Of course, you may already have a fully worked-up static design which you've been given by
a designer, which doesn't mean you can't follow this chapter. Just skip to the Creating your
design – from the sketch to the screen section and instead of using wireframes and a mood
board to decide how to code your design, use the design you've been given.

Starting our design
As mentioned, for the third edition of this title, we're going to stick with the magazine site.
The difference is, it's been almost four years since the original design was created (eons in
internet years) and it's time for an update that reflects today's newest web standards,
design aesthetics, and practices.

But the design of the magazine needs a "post 2010" update. This time around, we need
something a little less "Martha Stewart" and a little more "Wired".

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing a Design for Our WordPress Theme

[30]

For those of you who haven't seen the previous version, here's a look at what the previous
edition's design looked like:

And here's what our final, responsive HTML5- and CSS3-based design will look like:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

Planning and sketching our design
The first step is to plan our design and layout.

Before doing this, you'll need to think about the requirements of the site and of your client,
if you have one. If you're designing a theme for release to other users, consider how they're
likely to use it.

Imagine you are someone who has come to the site for the information it contains. What
do you think the user will actually do? What kind of goals might they have for coming to
your site? How hard or easy will it be for them to attain those goals? How hard or easy
do you want it to be for them to attain those goals?

Are you adhering to standard usability conventions? Web standards and conventions are more
than what's laid out in a lengthy W3C document. A lot of them are just adhering to what we, as
web users, expect. For example, if text has underlines in it and/or is a different color, we expect
that text to be a link. If something looks like a button, we expect clicking on it to do something,
like process the comment form we just filled out or add an item to our cart.

It's perfectly fine to get creative and break away from the norm and not use all the web
conventions. But be sure to let your viewers know up front what to expect, especially as
most of us are simply expecting a web page to act like a web page.

Time for action – planning our design
If you don't already have a full-blown design, you'll need to create some graphics as a
starting point and some wireframes too. You can do this as follows:

1. Using your preferred graphics program, create some design elements and concepts,
such as buttons, color schemes, logos, backgrounds, or whatever else your site
needs. Our design elements are all included in the design that we've seen in the
previous figure.

2. Either on paper or by using a wireframing tool, create some wireframes for the
screen widths you're targeting with your responsive design. We'll do ours on paper
for now. You may need to prepare wireframes for more than one area of the site,
for example for sections of the site that have a different sidebar or no sidebar at all.

3. Now revisit the considerations for your design and your site's users. Make any
adjustments to your wireframes that you need to.

What just happened?
You've created your design. It may not be what you're used to, but you'll find it will include
everything you need to create your mockup in the browser. Obviously we've just skimmed
this process—depending on the needs of your site, this may have taken you a very long time.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing a Design for Our WordPress Theme

[32]

Clean it up?

This might seem to defeat the purpose of rapid design—comping, but if
you're working within a large design team, you may need to take an hour
or so to clean your sketch up into a nicer line drawing. This may help
other developers on your team to understand your WordPress theme
idea more clearly.

Creating your design – from the sketch to the screen
We're now ready to open our HTML editor and start producing our design mockup.
We'll work through the layout in HTML and CSS using our sketch and then the final
visual elements will be created in an image editor at the end.

Time for action – creating our static HTML file
We'll need a single HTML file for this design, so let's create it and start setting it up:

1. Open your HTML or text editor and create a new, fresh index.html file.

2. Add the following to the very first line in the document:

<!DOCTYPE html>

3. Save your index.html file.

What just happened?
We created a new HTML file to contain our mockup and added the DOCTYPE declaration
to it.

You must always specify DOCTYPE in all HTML documents, so that the browser knows what
type of document to expect. If you're familiar with the different DOCTYPE declarations for
HTML 4.0, or XHTML Strict, or Transitional, you probably remember it being a fairly lengthy
line of code. The great news is that with HTML5, things just got a whole lot simpler.

Don't forget, even though it's such a simple declaration, you still need
the basic DOCTYPE declaration when using HTML5.

The semantic body
After our DOCTYPE, we can add the other essential requirements of an HTML file, the html
tags, head tags, title tags, and body tags.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

Time for action – adding in basic HTML structure
The next step is to give our HTML file some basic structure:

1. Immediately below the DOCTYPE declaration, add in the basic HTML markup
structure required for any web page to work:

<html dir="ltr" lang="en-US">
<head>
<meta charset="UTF-8" />
 <title> </title>
</head>

<body>

</body>
</html>

2. Save your index.html file.

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

What just happened?
Our page now has the core HTML structure that all site pages need. It has defining html
tags, head tags where meta and other defining and included information are placed, and
most importantly, body tags. HTML body tags are where everything that's seen on a web
page goes.

Now we'll add some more elements for our theme's content.

Time for action – adding in the semantic structure
The markup for our mockup now needs to go between those body tags we created.

1. Between your <body> tags in index.html, add the code for a very basic semantic
overview of your theme:

<div id="container"><!--layout container-->
<header>

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing a Design for Our WordPress Theme

[34]

Header: background image and text elements for header
will go inside this div.
</header><!--//header-->

<!-- Begin #container2 this holds the content and sidebars-->
<div id="container2">

<!-- Begin first section holds the left content columns-->
<section>
<!-- Begin content -->
<article>
Main Content: Post content will go here inside this div.
</article>
</section>

<!-- Second section holds the right columns-->
<section>
<!-- #left sidebar -->
<aside class="sidebar1">
Left Side Bar: Will contain WordPress content related
links
</aside><!--//.sidebar1 -->

<!-- #right sidebar -->
<aside class="sidebar2">
Right Side Bar: This will include additional ads, or non-
content relevant items.
</aside><!--//.sidebar2-->
</section>

</div><!--//#container2-->

<nav id="mainNav">
Top Nav: For reading through straight text, it's best to
have links at bottom (css will place it up top, for visual ease of
use)
</nav><!--//mainNav-->

</div><!--//container-->

<footer>
Footer: Useful information and quick links for CSS design
users who've had to scroll to the bottom plus site information and
copyright will go here

</footer>

2. Save your index.html file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

What just happened?
We added some semantic markup to our HTML file to give us an idea of what will be going
where. Note that the actual text won't be the same in our final theme, this is just to give
us some direction as we complete our design.

So, what does this page look like if we open it in a browser?

As you can see, it's very simple right now, but it's a start.

If a search engine bot or someone using a text-only/text-to-speech browser or mobile
device arrived and viewed our site, the following is the order they'd see things in:

 � Header: Because it's good to know whose stuff you're looking at

 � Main content: Get right to the point of what you're looking for

 � Left column content: Under the main content, we should have the next most
interesting items features list, category (sometimes referred to as columns links),
and archives (sometimes called "Past Issues" links)

 � Right column content: It is the secondary information such as advertisements
and non-content related items

 � Top page navigation: Even though in the design this will be on the top, we've
coded it at the bottom in text-only viewing with an anchor link to it for easy access

 � Footer information: If this was a page of real content, it's nice to see whose site
we're on again, especially if we've been scrolling or reading down for some time

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing a Design for Our WordPress Theme

[36]

Attaching our CSS stylesheet
So, now that we have an HTML file set up, the next step is to create a stylesheet for our CSS.

Here's a quick refresher on how to apply the following CSS selectors (if these seem unfamiliar
or new to you, you may want to check out the resources in Chapter 1, Getting Started as
a WordPress Theme Designer and brush up on your CSS skills):

 � HTML object tags (header, paragraph, list items, div tags, and so on) can just be
listed as a CSS selector for example, div{...} p{...}.

 � ID names that are attributes and should only be used once on a page, have a
"#" hash mark in front of their CSS selector for example, #container{...}
#sidebar{...}.

 � Class names are attributes that can be applied multiple times on a page and
combined with other classes, have a period (.) in front of the selector's name
for example, .floatLeft{...}.

Time for action – creating and including a style.css shell into
your index.php page

Let's create our stylesheet:

1. In your text editor, create a new file and name it style.css. Make sure it's in
the same directory as your index.php file.

2. Open your index.html file, and inside the <head> tags, just under the <title>
tags, add the following link to your style.css file:

<link rel="stylesheet" type="text/css" media="all" href="style.
css" />

What just happened?
We created a new stylesheet called style.css and attached it to our index.html file
with a line of code inside the <head> section of our HTML file.

For now our stylesheet is still empty, but we'll change that shortly.

Prepping for responsiveness – viewport and apple-mobile
meta tags
Our theme is going to be responsive—its layout will adapt to the width of the device it's being
viewed on. In order for this to work, and for mobile devices to display the site at the correct
width, we need to add some more code to our <head> section in our index.html file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

Time for action – adding in the viewport and apple-mobile
meta tags

Adding the tags is very simple.

1. In your index.html head tags, place the following meta tags:

<meta name="viewport" content="width=device-width">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style"
content="black">

What just happened?
We added three meta tags to our file to ensure the theme behaves as it should on mobile
devices. Let's have a look at each:

 � The viewport meta tag is a Webkit requirement and not (yet) a W3C standard.
The width property controls the viewport. As we'll be styling our layout based
on the screen size, we'll want this set to device-width.

 � By setting the apple-mobile-web-app-capable meta tag to yes, the site will
run in full screen mode (when selected by the users), meaning it will bump the
address bar up out of the screen view once the page has loaded. Even though this
meta tag has the word apple in it, it actually affects all Webkit-based browsers,
so even Android devices should benefit from this tag.

 � On iOS devices the apple-mobile-web-app-status-bar-style specifies the
status bar settings. This setting changes the color of the bar and then moves it out
of the way or allows it to stay up at the top. If we set it to default it will stay its
normal "iOS gradient-gray", but move up out of the way. We've changed to black
(the only color you're allowed to change it to).

 � If we were to change it to black-translucent it would stay permanently over
the top of the HTML content and be slightly transparent. If your users need access
to the status bar while browsing the site, you might want to consider making this
setting black-translucent.

Adding in content
We're now ready to add some text-based content. Even if you're designing a very visual
theme, text is the most common element of a site, so you should be prepared to put a
fair amount of thought into how it will be displayed.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing a Design for Our WordPress Theme

[38]

Starting with the text
We'll start by adding some dummy text to our site. As we go along, we'll create elements
for that content to go into, which will use up-to-date, semantic HTML5 elements.

Time for action – adding sample text to our semantic sections
If you're adding dummy text, you can either use lorem ipsum text (you can access
examples of it at http://www.lipsum.com), or you could add some more descriptive
text (an example of which you can find at http://notloremipsum.com). The second
approach often helps when building sites for clients as it helps them see what sort of
content will go where. For our purpose we'll just use lorem ipsum.

1. Still in index.html, delete any HTML you may have already added in between the
body tags.

2. Add your semantic elements with their content. A section of the code used in our
mockup is shown next (to save space here we've only included a sample, but you
can download the full code pack for this chapter from the book's pages on the
Packt website):

<div id="container"><!--container goes here-->
<header>
 <hgroup class="screen-text">
 <h1>OpenSource</h2>
 <h2>Online Magazine</h2>
 <p>Using Open Source for work and play</p>
 </hgroup>
 <div id="date">Current Month and Year</div>
</header><!--//header-->

<!-- Begin #container2 this holds the content and sidebars-->
<div id="container2">

<!-- Begin #container3 keeps the left col and body positioned-->
<section class="">
<h2 class="thisMonth">This Month</h2>

<!-- Begin #content -->
<article class="post">
<h2>Really Long Article Title Name The More Text The
Better Cause You Never Know</h2>
Main Content: Post content will go here inside this div.
<p>by Author Name for Column Type</p>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

<div class="entry-content"><!--//post-->
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Sed a
eros nec orci volutpat vestibulum. Ut pellentesque sagittis metus.
In euismod tellus id ante. Ut lectus. Nunc adipiscing. Praesent
luctus, massa quis vulputate rhoncus, justo turpis mollis dolor,
nec blandit nisl mauris et pede.</p>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Sed
a eros nec orci volutpat vestibulum. Ut pellentesque sagittis
metus.</p>

<p>Read the rest of this entry »</p>
</div><!--//.entry-content-->

3. Save your index.html file.

What just happened?
We added some semantic elements to our site, with content.

Let's look at some of the elements we've included:

 � A #container div to contain our page content—useful for styling

 � The header element—containing the site title and description, inside an
hgroup tag with a .screen-text class so we can make it invisible to
browsers with CSS turned on

 � A #container2 div to hold the post or page content and sidebars

 � A section to contain all of the post or page content

 � An article element with a .post class—it mirrors the class WordPress
will eventually assign to this element, as we'll see in Chapter 4, Advanced
Theme Features

 � An h2 element for the title of the post

 � A p element with author information

 � A div with the .entry-content class to hold the post content itself—this
also mirrors the class WordPress will assign once we set that up

 � More p elements to contain the content itself, these will eventually be
automatically populated by WordPress from the site's database but for
now we're using dummy text

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing a Design for Our WordPress Theme

[40]

The trick: Start with a lot of text

Use a lot of sample text. It's tempting to create a nice mockup that's got clean,
little, two-word headers, followed by trim and tight, one or two-sentence
paragraphs (which are also easier to handle if you did the entire mockup in
Photoshop, right?).

In this optimally minimalist sample, the design looks beautiful. However, the
client then dumps all their content into WordPress and your theme, which
includes long, boring, two-sentence headlines and reams of unscannable text.
Your beautiful theme design now seems dumpy and all of a sudden the client
isn't so happy, and they are full of suggestions they want you to incorporate in
order to compensate for their text-heavy site.

Just design for lots of text upfront. If the site ends up having less text than
what's in your mockup, that's perfectly fine; less text will always look better.
Getting lots of it to look good after the fact is what's hard.

Now let's see what our page looks like when viewed in the browser:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

You can see it has a basic structure in place, but it now needs some styling. After all, this
isn't 1992!

Styling our fonts
So, now we're going to add some styling for our text, starting with the fonts, or font families
used to display it.

Styling font families
By assigning font families to our CSS rules, we can set up backup font choices. This means if
someone doesn't have our preferred font, then they'll probably have the backup we specify,
and if they don't have that? Well, at the very least we can rely on their browser's built-in
"generic" assigned font. Just specify serif, sans-serif, or mono-space.

When specifying font families, it's a good idea to include one or more of the
fonts which are both commonly held on PCs, Macs, and mobile devices, and
which look good on screen (as against on paper). Fonts designed for screens
include Verdana and Georgia, and other fonts commonly available on your
users' systems will be Arial and Times New Roman.

Our headers will be Helvetica with Arial as a fallback, and the body content of our text will
be Trebuchet with Helvetica and then Verdana as a fallback.

Time for Action – assigning your font families
Let's add some font families to our stylesheet:

1. In your style.css file, under the TYPOGRAPHY comment, add the following code:

/*------------------TYPOGRAPHY -------------------*/
/*
Set font stacks here
Assign default colors only. Otherwise color is handled at BOTTOM
of sheet.
*/

body
 {font-family: 'Trebuchet MS', Helvetica, Arial, Verdana, sans-serif;
}

h1, h3, h5{
 font-family: Helvetica, Arial, sans-serif;

}

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing a Design for Our WordPress Theme

[42]

h2, h4, h6{
 font-family: 'Helvetica Neue', Helvetica, 'Arial Condensed', Arial,
sans-serif;

}
a {

 font-family: Helvetica, Arial, sans-serif;
}
pre, code{

 font-family: Courier, monospace;
}

2. Save your stylesheet.

What just happened?
We set the font families that our theme will use, including:

 � The default font for the body element, which will apply to anything we don't
specify an alternative font family for, because of CSS inheritance

 � Font families for our headings and links

 � Finally, a font family for pre and code element, in other words for the display
of code in our theme

@font-face techniques
You'll be pleased to know we can take advantage of a much wider world of typography than
just what's hopefully installed on other people's computers. Using @font-face and other
techniques, you can serve up fonts of your choice to your site's users. We'll go over these
techniques in detail in Chapter 7, Tips and Tricks.

Warning: Most fonts are licensed! You must not violate the terms and
licensing of fonts. As most were expecting to be used with print, many have
licenses which will be violated if you use them on the web with the @font-
face, Cufon (or sIFR) techniques. Your best bet is to use open source fonts.
A great repository is http://www.fontsquirrel.com/. We'll also
be using Google's new font repository: http://www.google.com/
webfonts.

The next step is to specify sizing for our fonts.

Styling font sizes
We have our font families in place, but we need to tell browsers at what size to display
the text in our theme.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

Time for action – sizing your fonts
Let's add some styling for font sizes to the CSS declarations we've set up for our font families.

1. In style.css, edit the font styling so it reads as follows:

/*------------------TYPOGRAPHY -------------------*/
/*
Set font stacks here
Assign default colors only. Otherwise color is handled at BOTTOM
of sheet.
*/

body{
 font-family: 'Trebuchet MS', Helvetica, Arial, Verdana, sans-
serif;
 font-size: 0.9em;
 color: #333;
}
h1, h2, h3, h4, h5, h6 {
 font-weight: 100;
 margin: 20px 0 10px 0;
}
h1, h3, h5{
 font-family: Helvetica, Arial, sans-serif;
 line-height: 120%;
 color: #666;
}
h2, h4, h6{
 font-family: 'Helvetica Neue', Helvetica, 'Arial Condensed',
Arial, sans-serif;
 line-height: 110%;
 color: #999;
}
a {
 font-family: Helvetica, Arial, sans-serif;
 font-size: 100%;
 color: #666;
 font-weight: 100;
 text-decoration: none;
}

pre, code{
 font-family: Courier, monospace;
 font-size: 100%;
 margin-bottom:10px;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing a Design for Our WordPress Theme

[44]

2. Now add some more specific height styling for some other elements. Add the
following code below the code you've just added:

 h1 {
 font-size: 280%;

 font-weight: 600;
}
h2 {

 font-size: 220%;
 border-bottom: 1px solid #ccc;
 padding-bottom: 10px;
}
h3 {

 font-size: 180%;
}
h4{

 font-size: 200%;
 color: #999
}
h5{

 font-size: 115%;
}
h6{

 font-size: 100%;
}
p {

 line-height: 150%;
 margin-bottom: 170%;

}

3. Save your stylesheet.

What just happened?
We added some additional styling for font sizing. You'll notice that we've also included
some styling for margins as well, to give our text some extra space where it's needed.

As you can see, in the previous code examples, the only em size we used was in the body
rule. The rest of our header, paragraph, and other typography-based rules rely on increasing
or decreasing the font size based on percentages. 90% = 0.9em and so 90% would size
down the font a tad, while 280% sizes the font up considerably. Now, if our client asks to
just "bump down" (or up) the size on everything "a little" all we have to do is change the
main em size in the body rule. Everything else will size up or down, relatively, based on
the percentage we assigned it. Easy!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

We then moved on to using percentages to help us with the line-height property and
also made sure our a href links stand out with a different font-family, yet still have
the familiar underline appear on :hover.

Using ems and percentages in this way is also far better for accessibility than using pixels,
as it means that, if a user has set their browser to resize text, this will be applied across
our theme, and not be overridden by any pixel-based text styling.

The final stage in styling our text is to deal with text we want to hide from browsers with
CSS turned on, while making them visible to screen readers and search engine bots.

Time for action – handling search engine bots/screen reader
text

You'll note in the HTML5 markup, we have several headers and hgroups assigned a class
called .screen-text. This is the text that users viewing the styled site in a browser won't
see, but makes things clear for text screen readers and may have some SEO benefits.
Let's add the styling for it:

1. In the TYPOGRAPHY section of your stylesheet, add the following:

/* Text meant only for screen readers */
.screen-text{

 position: absolute;
 left: -5000em;

}

2. Save your style.css file.

What just happened?
We added some property settings to move any text that has the .screen-text class
assigned to it, 5000em units to the left. Assuming most people have a screen that's
smaller than 5000ems, this will be hidden from view.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing a Design for Our WordPress Theme

[46]

Let's take a look at our basic text styling so far. The following image shows our mockup
starting to take shape:

If you don't like how your text looks here, then a bunch of graphics, columns,
and layout adjustments won't help! Take your time getting the text to look
nice and read well now. You'll have less edits and tweaks to make later.

Setting up our layout with CSS
Now that we've got our initial typography set up, let's start making this stuff look like our
sketch! First up, we'll add a call to the layout-core stylesheet to give our theme some
basic layout styling.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[47]

Time for action – referencing our layout core to set up our
positions

Let's make sure our stylesheet references the layout core:

1. At the very top of your stylesheet, add the following code:

/*

NOTE: This style sheet leverages: layout-core.css.
*/
@import url(layout-core.css);

2. Make sure you have a copy of layout-core.css in the same directory as your
style.css and index.html files. You can find a copy in the code bundle for this
chapter.

3. Save your stylesheet.

What just happened?
We added the @import directive to call an external stylesheet, meaning we can make
use of the layout styling already set up in layout-core.css and won't have to add it
all in manually.

Layoutcore uses a few classes to help us achieve our layout. To use them, you'll simply assign
whether a div, section, article, or aside tag should float, left or right and then
assign an additional class of full, half, two-thirds, three-quarters, third,
or quarter to set the width of that HTML element. We'll come to this later in this chapter.

CSS Resets

Of course, you might be building your own stylesheet from scratch and won't
want to include layout-core.css. If so, it's a good idea to include a CSS
Reset at the beginning of your stylesheet. This resets any browser-specific
CSS so we can start with a clean sheet regardless of what browser the user is
viewing our site in.

Our layout-core.css file includes a reset, so if you're importing that, you
don't need to add another one.

For more on CSS Resets, and an example of a great one to use, see http://
meyerweb.com/eric/tools/css/reset/.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing a Design for Our WordPress Theme

[48]

Now that we have our @import directive set up, we'll move on to add some media queries
to make our theme responsive.

Media queries sit at the end of a stylesheet and they specify the styling to apply depending
on the width of the screen the site's being viewed on. For much more on building responsive
themes and leveraging media queries, see WordPress Mobile Web Development: Beginner's
Guide, Rachel McCollin, Packt Publishing.

Time for Action: Adding our media queries
The following steps will allow you to add your media queries:

1. Below your typography section in your style.css stylesheet (or at the bottom
of the stylesheet if you have other code below your typography section), add
the following media queries:

 @media (min-width: 1220px) {

}
@media (max-width: 1024px) {

}

@media (min-width: 480px) and (max-width: 800px) {

}
@media (max-width: 480px) {

}
@media only screen and (min-width: 320px) and (max-width: 480px) {

}

2. Save your stylesheet.

What just happened?
We added some media queries to target the screen sizes most commonly used. Let's have
a look at how they work:

 � @media (min-width: 1220px) targets very large screens

 � @media (max-width: 1024px) targets small desktop screens and larger
tablet screens

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[49]

 � @media (min-width: 480px) and (max-width: 800px) target small
tablet screens or larger tablet screens in portrait

 � @media (max-width: 480px) targets small screens including phones in
landscape

 � @media only screen and (min-width: 320px) and (max-width:
480px) target phones in portrait

These media queries work for the vast majority of devices available at the
time of writing. But as more and more devices are released with different
screen widths, you may find these media queries don't continue to target
the devices you expect them to. When working on your theme, you may
find it helps to tweak these media queries so they target widths at which
the design needs to be altered for it to look good, rather than focusing on
specific devices.

Setting up the desktop view
We'll first start with our desktop browser view. We'll use layout-core.css to help us
set our columns up.

Time for action – standard settings
Now we'll set up the default styling for the desktop view:

1. Below the typography section in your stylesheet and above the media queries,
add the layout styling, shown as follows:

/*------------------ STANDARD STYLING -------------------*/
header{
 height: 110px;
}

#mainNav{
 position:absolute;
 top: 110px;
 width: 100%;
}
#mainNav li a{
 display: block;
 padding: 10px 15px 13px 15px;
 line-height: 100%;
 -size: 120%;

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing a Design for Our WordPress Theme

[50]

 border: none;
 color: #036;
}
#across{
 margin: 0;
 width:100%;
}/*for a stretched bottom only*/

h2.thisMonth{
 font-size: 260%;
}
.content{
 margin-top: 250px;
}
.sidebar{
 margin-top: 150px;
}
.sidebar div{
 margin-top: 30px;
 padding-bottom: 10px;
}
.sidebar h2{
 margin-left:20px;
}

2. Save your stylesheet.

What just happened?
We added styling for our layout on standard desktop screens. We don't need to examine
all of the CSS in detail but some points to note are as follows:

 � Our #mainNav navigation element has been positioned absolute so it could
be brought up to the top of our layout

 � We added some sizing for our .thisMonth h2 title

 � Our #across div is for larger desktops stretched all the way out to the full width
of the screen

 � We added margins and padding for our .content and .sidebar divs, in particular
margin-top to push them down (this is because we'll be adding in a background
image here in a bit)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[51]

Time for action – checking in on larger desktops
We've styled our standard, default view, but we'll also want to handle larger desktop
browsers. Let's add some CSS to our first media query, to widen the #mainNav nav
element out to match our #container div if we detect a larger screen:

1. Inside your first media query, add the following code:

@media (min-width: 1220px) {
 #mainNav{
 position:absolute;
 top: 110px;
 width: 1100px;
 }
}

2. Save your stylesheet.

What just happened?
Our layout-core.css stylesheet sets our div widths as percentages, so they'll expand
to whatever size the #container div is set to. It also sets the #container div to 1100
pixels. Our #mainNav nav will now match and not extend over the #container div on
larger screens.

Time for action – making sure smaller screens are handled
When our layout-core.css file snaps the #container div in on smaller screens to
950 pixels, we'll want #mainNav to match that as well:

1. In the next media query, add the following code:

@media (max-width: 1024px) {
 /*for netbook/tablet screens*/
 #mainNav{
 position:absolute;
 top: 110px;
 width: 950px;}
}

2. Save your stylesheet.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing a Design for Our WordPress Theme

[52]

What just happened?
Our #mainNav will now snap in to the width of our #container div if the media query
for 1024px or less is called. Let's see how it looks on the relevant size screen:

Setting up the tablet view
We're now ready to focus on our tablet and media player views. There are lots of devices out
there in this range. The following two media queries help catch the majority of these devices.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[53]

Time for action – adjusting the standard layout for tablets
We'll start with devices that range from 480 pixels wide up to 800 pixels. This range includes
the iPad when it's held in portrait orientation:

1. Add the following code to your media query:

@media (min-width: 480px) and (max-width: 800px) {
 header{
 height: 100px;
 }
 #mainNav{
 top:100px;
 width: 300px;
 }
 #mainNav li{
 float:none;
 clear:both;
 }
 #container2{
 background-position: 70% -90px;
 }
 .home article.post h2{
 font-size: 150%;
 margin-bottom: 10px;
 }
 .home article.post .entry-content,article.post .entry-meta,
article.post a.more{
 display:none;
 }
 .content.left.two-thirds, .sidebar.right.third{
 float:none;
 clear:both;
 margin: 0 auto;
 width:98%;
 }
 .sidebar div{
 width: 30%;
 margin: 1.2%;
 float:left;
 }
 .home .content.left.two-thirds{
 margin-top:180px;
 }
}

2. Save your stylesheet.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing a Design for Our WordPress Theme

[54]

What just happened?
We added some styling to adjust the layout on tablet devices. Specifically:

 � We removed the "tab" floats of our #mainNav list items li and set them to
list vertically

 � We changed some of the font sizes of our titles

 � We hid our article content, only displaying the titles

 � We turned off our .sidebar element's right float

 � We set each div in the .sidebar to float: left of each other, creating a
three-up box spread under our main article headlines

The end result looks like the following screenshot:

Setting up the small screen view
We're now ready to set our small screen view up, which will target smartphones and
other smaller devices in portrait orientation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[55]

Time for action – setting up our small screen layout
Here our media query will be a little different, only applying to screens (the other queries
will affect print layout as well).

1. In your final media query add the following CSS rules and changes:

@media only screen and (min-width: 320px) and (max-width: 480px) {
 header{
 height: 70px;
 }
 #mainNav{
 top:70px;
 width: 220px;
 }
 #mainNav li{
 float:none;
 clear:both;
 }
 #mainNav li a{
 font-size: 100%;
 padding: 10px
 }
 .home article.post h2{
 font-size: 120%;
 margin-bottom: 10px;
 padding-left: 50px;
 }
 .home article.post .entry-content,article.post .entry-meta,
article.post a.more{
 display:none;
 }
 .home article.post a.comments{
 position:absolute;
 margin-top: -55px;
 }
 .content.left.two-thirds{
 margin-top:150px;
 }
 .soc {
 text-indent: -5000em;
 }
}

2. Save your stylesheet.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing a Design for Our WordPress Theme

[56]

What just happened?
We've added some styling to improve the layout on small screens. In particular:

 � We shortened up our header even more and tightened up the width of
our #mainNav

 � We reduced font sizes in our #mainNav and titles

 � We reduced the margin-top of our .content div

The most notable thing that happens is actually handled by default in our layout-core.
css. All left and right floats are turned off, cleared on both sides, and all percentage widths
are set to 100%. This makes every div laid out in our phone view push edge to edge.
The result looks like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[57]

Adding design treatments
Finally! Now we have our mockup's responsive layout set up. Let's polish it off.

We'll be using CSS3 techniques, even in IE

We'll be taking advantage of many CSS3 techniques in our design, most
notably, simple gradients, rounded corners, and box shadows. Trouble is, IE7
and 8 don't really support any of those CSS3 features yet.

Not to worry, there's a wonderful library called CSS3PIE which we'll be using to
create polyfill fallbacks for IE 7 and 8.

The most recent (as of this writing) version is included in this chapter's code
files but you can also go and pick up the most recent version of the library
from http://css3pie.com/.

We'll talk about how to properly implement it for our mockup as well as how
to get it working in our WordPress theme in Chapter 3, Coding it Up.

Time for action – setting up our graphic treatments in the
stylesheet

Now we need to set up a section in our stylesheet for design treatment rules.

1. The first step is to upload our graphics files. Create a folder called images inside
the folder containing your other files. Upload your image files to it.

2. In style.css, below the STANDARD STYLING section, but above our media
queries, add in our color scheme for background colors:

/*------------------REUSABLE GRAPHIC TREATMENTS ------------------
-*/
/*main background colorscheme*/
.bg-main{
 background-color: #222;
}
.bg-secondary{
 background-color: #666;
}
.bg-tertiary{
 background-color: #999;
}
.bg-light1{
 background-color: #eee;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing a Design for Our WordPress Theme

[58]

.bg-light2{
 background-color: #ddd;
}
.bg-dark1{
 background-color: #000;
}
.bg-dark2{
 background-color: #444;
}

3. Next, add some gradient schemes below. You'll need to include the browser-prefixed
versions of the CSS as well—we've left it out here to save space.

.grd-vt-main{
 background: linear-gradient(top, #333, #000);
}
.grd-vt-secondary{
 background: linear-gradient(top, #555, #222);
}
.grd-vt-tertiary{
 background: linear-gradient(top, #ddd, #999);
}

4. Beneath this, add some rules for handling borders:

/*borders*/
.bdr{
 border: 1px solid;
}
 /*apply thickness*/
.bdr-2px{
 border: 2px solid;
}
 /*pick a side*/
.bdr-top{
 border-left:none;
 border-right: none;
 border-bottom: none;
}
.bdr-left{
 border-top:none;
 border-right: none;
 border-bottom: none;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[59]

.bdr-right{
 border-left:none;
 border-top: none;
 border-bottom: none;
}
.bdr-bottom{
 border-left:none;
 border-right: none;
 border-top: none;
}
 /*leverage selectors for border colors
 -be sure to apply your rules in this order*/
.bg-main.bdr{
 border-color: #aaa;
}
.bg-secondary.bdr{
 border-color: #999;
}
.bg-tertiary.bdr{
 border-color: #eee;
}

5. Next, set up the rounded corners. As with gradients, we've omitted the browser-
prefixed code to save space, but you'll find it in the code files of this chapter.

/*rounded corners*/
.rnd
 border-radius: 5px;
}
 /*only two corners*/
.rnd-top{
border-radius: 5px 5px 0 0;
}
.rnd-left{
border-radius: 5px 0 0 5px;
}
.rnd-right{
border-radius: 0 5px 5px 0;
}
.rnd-bottom{
border-radius: 0 0 5px 5px;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing a Design for Our WordPress Theme

[60]

6. Finally, set up some box shadows (again, browser-prefixed code has been omitted).

...
/*box-shadows*/
.shdw-centered{
box-shadow: 0 0 15px rgba(0, 0, 0, 0.5);
}
.shdw-offset{
box-shadow: 2px 2px 10px rgba(0, 0, 0, 0.5);
}

7. Now, save your stylesheet again.

What just happened?
We added styling for borders, gradients, rounded corners, and box shadows.

Keeping in mind our "object-oriented" CSS strategy, these rules have been added,
not because we'll definitely use them, but in case we need to use them. Just as the
layout-core.css sheet freed us to open up our index.html file and simply apply
class rules to our HTML elements to get our layout going, we can now go in and start
applying our color scheme and graphic embellishments to our layout. And of course,
if we want to change our mind about colors or gradients or borders, it's easy to update
in one or two places in the stylesheet and our entire site will evenly update.

Keeping WordPress in mind

In the next chapter, we'll get into "WordPress-ifying" this layout. Keep in
mind that WordPress can spit out quite a few classes of its own, and it
likes to take advantage of applying multiple classes to HTML objects as
well. The good news is, the majority of these classes are such that objects
can be identified and offered special styling. We'll come back to this as we
work through creating our theme in the next two chapters.

Adding graphics and background images
Having added all of the CSS-generated styling, we need to think about any graphics we'll be
using that can't be generated by CSS.

The beauty of CSS3 is that it reduces the need for these graphics, as we no longer need to
create background images for gradients, rounded corners, or shadows. But there are some
elements of our design that can't be handled by CSS.

We already have a number of images ready to import into our theme—you'll find them in
the code files that go with this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[61]

Our theme makes extensive use of background images to avoid any problems
with inline images conflicting with any other content that our theme's users
may add in future. You may prefer to use inline images in your markup, which
has the advantage of being better for accessibility and SEO but the disadvantage
that if a future user of your theme edits the template files, he or she may
accidentally delete images that are required for the design. Our images are for
design only and not part of the content, so we're using background images.

Setting up our background images in our stylesheet
We've exported our logos to one single image. Using the background-position
property we'll be displaying the different sized logos depending on which screen size
triggers our media query.

Wellstyled has an excellent tutorial on how to use a single image technique
(also referred to as "CSS sprites") to handle image background rollovers with
CSS: http://wellstyled.com/css-nopreload-rollovers.
html.

You can also check out CSS Tricks, and their article CSS Sprites: What They Are,
Why They're Cool, and How To Use Them at http://css- tricks.com/
css-sprites/.

Remember: To see the full and final CSS mockup style.css and
index.html page, please refer to the code download section in the preface.

Time for action – adding background images to our design
The images we've created need to be added to our stylesheet as background images.

1. In your stylesheet, edit the STANDARD STYLING section to add background images
and colors, with the following code. Best practice is to add each declaration within
the description blocks you've already set up. You can see the final code in the code
files of this chapter.

header{
 background: url(images/osmag-logos.png) no-repeat 0 0;
}
#mainNav li a:hover{
 color:#088fff;}
#across{
 border-top: 2px solid #444;
 background: #000
}
#container{

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing a Design for Our WordPress Theme

[62]

 background: url(images/osmag-container-bg.png) no-repeat 50%
-30px;
}
#container2{
 background: url(images/osmag-earth.jpg) no-repeat 50% 0;
}
h2.thisMonth{
 color: #fff;
}
h2.pastIssues{
 color:#222;
}
article h2{
 background: url(images/pngs/highlight-border.png) repeat-x 0
bottom;
}
.comments{
 background: url(images/pngs/comments-icon.png) no-repeat 0 0;
}

2. Now add the following new section below your STANDARD STYLING section:

/*------------------REUSABLE GRAPHIC TREATMENTS ------------------
-*/
/*reusable image backgrounds*/
.img-quote-light{
 background: url(images/pngs/r-quotes-light.png) no-repeat -10px
-7px;
 text-indent: 55px;
}
.img-quote-dark{
 background-image: url(images/pngs/r-quotes-dark.png);
 background-repeat: no-repeat;
 background-position: -10px -7px;
 text-indent: 55px;
}
.img-bottom-shadow{
 background: url(images/pngs/bot-r-shadow.png) no-repeat 50%
bottom;
}
.img-top-shadow{
 background: url(images/pngs/top-r-shadow.png) no-repeat 50% 0;
}
.img-line-hz{
 background: url(images/pngs/highlight-border.png) repeat-x left
bottom;
}

3. Save your style.css file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[63]

What just happened?
We added CSS for backgrounds and colors into our stylesheet. As you'll notice, we made
a lot of use of no-repeat to ensure our background images didn't repeat, and used
positioning of background images to place them in our design.

Now let's add any changes needed for those backgrounds to our media queries.

Time for action – adding background image styling to the
media queries

We'll need to edit the two media queries for the two smallest screen sizes.

1. Inside the media query targeted at small tablets and phones in landscape—@media
(min-width: 480px) and (max-width: 800px)—add the following code.
Again, you'll find you can add it to your existing declarations.

header{
 height: 100px;
 background-position: 0 -220px;
}
#mainNav{
 top:100px;
}
#mainNav li{
 background: url(images/pngs/highlight-border.png) repeat-x 0
bottom;
}
#container2{
 background-position: 70% -90px;
}

2. Next, in the media query targeting small screens—@media only screen and
(min-width: 320px) and (max-width: 480px)—add the following code:

header{
 height: 70px;
 background-position: 0 -425px;
}
#mainNav{
top:70px;
}
#mainNav li{
background: url(images/pngs/highlight-border.png) repeat-x 0
bottom;
}
#mainNav li a{
padding: 10px
}

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing a Design for Our WordPress Theme

[64]

3. Finally, save your stylesheet.

What just happened?
We loaded our graphics into our STANDARD STYLING rules and then moved on to each
media query, modifying the height, background-position and other visual properties
as needed along the way. Most notably, we changed our header height and, using the
CSS sprite technique, our logo loaded up with the different sized logo as our screen
dimension changed.

Our final desktop layout now looks like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[65]

Our final portrait tablet layout now looks like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing a Design for Our WordPress Theme

[66]

And last, our final phone layout now looks like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[67]

Don't forget the favicon and touch icon
You certainly don't need a favicon or touch icon, but it does add a finishing touch.
Let's work through the steps to do it.

Adding a favicon
Favicons are those little 16px x 16px icons that appear next to the URL in the address
bar of a web browser. They also show up on the tabs (if you're using a tabbed browser),
in your bookmarks, as well as on shortcuts on your desktop or other folders in Windows XP
and Vista.

The easiest (and quickest) way to create a favicon is to take your site's logo, or key graphic
(in this case, the "O" in opensource), and size it down to 16px x 16 px; then save it as
an .ico file.

For advice on creating a favicon, see the page on the WordPress codex at
http://codex.wordpress.org/Creating_a_Favicon.

Time for action – adding the favicon you just created
Having created a favicon, we need to upload it to our theme.

1. Once you have your favicon.ico, place the file in the same folder as your
stylesheet and index.html file.

2. Open index.html and add this code inside the <head> section:

<link rel="shortcut icon" href="favicon.ico" type="image/x-icon"
/>

What just happened?
We added a favicon, uploaded it to the correct place, and added a line of code in our index.
html file referencing it.

If you refresh your browser you'll see it in your navigation bar.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing a Design for Our WordPress Theme

[68]

Can't see your favicon?

Be sure to name your file favicon.ico correctly! It won't work if it's not
named favicon.ico.

You may also find that you need to clear your cache and reload several times
before you see your new favicon. Be sure to actually clear your cache through
your browser's preference panel. The keyboard shortcut Shift + F2(Refresh)
sometimes only clears the web page cache. Some browsers cache favicons in a
separate directory.

Have a go hero – making your favicon high-resolution
A little known fact about the .ico format is that it can contain multiple versions of itself
at different color depths and resolutions. This is how your operating system is able to
display those "smooth icons" that seem to be the right resolution no matter how large or
small they're displayed. You may have noticed that some favicons, if saved as shortcuts to
your desktop, look great and others look jaggy and terrible. The ones that look great take
advantage of this feature.

The three main sizes that Windows will display a favicon in are: 16 x 16, 32 x 32, and 48 x 48.
Sometimes favicons go all the way up to 128 x 128. It's up to you; just remember, the more
resolutions, color depths, and transparencies you add, the larger your favicon file is and
longer it will take to load.

You'd basically use the same steps listed previously to create your favicon, just starting
with 48 px x 48 px, then save it (so as to not overwrite your original file) down to 32 x 32
and last 16 x 16. It helps to save each icon initially in PNG format, especially if you want the
background to be transparent.

To find out more about favicons and generate your own, visit
http://www.favicon.co.uk.

Touch icons
Since we just took the time to add a great, multi-resolution favicon, we might as well go all out
and add in a nice touch icon. Touch icons are used by iOS and Android devices with versions
higher than 2.1.0. While you can technically just create one higher resolution image (for
example, 114 x 114) the other devices will size it down, but then why waste bandwidth time
loading in a larger image if you don't have to? It's better to create the three required sizes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[69]

Time for action – adding a touch icon
Once you have a touch icon (which you should have saved as .png or a set of them), you'll
need to add them to your theme.

1. Upload your touch icon to the same folder as your index.html file.

2. In index.html, add the following code inside the <head> section:

<link rel="apple-touch-icon" sizes="57x57" href="/apple-touch-
icon-57x57.png"/>
<link rel="apple-touch-icon" sizes="72x72" href="/apple-touch-
icon-72x72.png"/>
<link rel="apple-touch-icon" sizes="114x114" href="/apple-touch-
icon-114x114.png"/>

3. Save your index.html file.

What just happened?
We added a few lines of code to fetch our touch icon to index.php. You'll notice that we
included three file sizes:

 � The 57 x 57 pixel icon is what older iOS devices and Android devices will load in

 � The 114 x 114 pixel icon is for high-resolution Retina displays

 � The 72 x 72 pixel icon is for iPads

The icons become available when you save pages as web clips to the home screen like so:

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing a Design for Our WordPress Theme

[70]

Pop quiz – questions about theme design
Q1. What things should you take into consideration when planning your theme?

1. What type of site or blog your theme will be for?

2. How many layouts or "views" your theme will have?

3. What plugins or widgets will it support?

4. All of the above.

Q2. What does sketching your theme design accomplish?

1. It helps you add CSS classes to layout elements.

2. It helps you see what colors you will be using in your design.

3. It helps you write better code.

4. It helps you see your design quickly and start considering usability and content.

Q3. How much sample text should you start with?

1. Lots – it helps you see what your design will look like when lots of content
is added.

2. As little as possible – to avoid distraction from the design.

Summary
You have now learned the key theme design considerations to make when planning a
WordPress theme. We've walked through the basics of creating a functional mockup of
our theme design in the browser, with the following features:

 � Use of HTML5 semantic elements

 � CSS3 for gradients, shadows, and so on, to save on loading images

 � Font styling and sizing

 � A color scheme

 � Some graphic image treatments using background images

 � A favicon and touch icon

Now that we can see and even get a sense of the user experience of our mockup, the
next step is coding it up into a fully working WordPress theme, which is the topic of our
next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

3
Coding it Up

As we have our HTML and CSS in place, the next step is to turn it into a working
WordPress theme. This involves copying our code into WordPress template files
and adding some special code, which WordPress uses to display content. This is
what we'll do in this chapter.

In this chapter, you'll learn how to:

 � Turn your HTML files into PHP files for WordPress

 � Split your PHP into a number of template files, which split the code up into
manageable chunks WordPress can work with

 � Use the correct template files to display different kinds of content

 � Incorporate WordPress-specific PHP code, such as template tags and API hooks,
into the theme's template pages to create our functional theme

When we're done with this chapter, we'll be ready to move on to adding more advanced
features to our theme in the next chapter!

WordPress theme basics
To get started, you should already have an installation of WordPress to work with. If you
don't, please return to Chapter 1, Getting Started as a WordPress Theme Designer, to read
up on the best solution for setting up a sandbox installation of WordPress that you can build
your themes in.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding it Up

[72]

By now you've gotten the point that a WordPress theme essentially contains the HTML
and CSS that hold and style your WordPress content. WordPress themes are put together by
leveraging the WordPress Template hierarchy and the theme API (Application, Programming
Interface). The theme API is basically just WordPress-specific PHP code, which enables us
to create and customize the loop as well as leverage various template tags and hooks in
our theme.

The Template hierarchy
We've discussed the fact that a WordPress theme is comprised of many file types including
template pages. Template pages have a structure or hierarchy to them. That means if one
template page type is not present, then the WordPress system will call up the next available
template page type.

This allows developers to create themes that are fantastically detailed and take full
advantage of all of the WordPress hierarchy's available template page types. It is also
possible to have a fully functioning WordPress theme that consists of nothing more
than a single index.php file, but it's not necessarily good practice!

In addition to these template files, themes of course also include image files, CSS
stylesheets, custom template pages, and PHP code files. Essentially, you can have many
different default page templates in your WordPress theme, not including your style.css
sheet or include template files. You can have way more template pages than that, if you
take advantage of WordPress' capability for individual custom post, page, category, and
tag templates.

An include is a template file, which is called from the main files (such as
index.php)—in other words, they are included in a page using an include
template tag. Examples of includes are header.php, sidebar.php,
footer.php, and searchform.php. We'll work on these later in this
chapter.

Your theme does need to have the appropriate WordPress PHP code placed into it in order
for the content that is entered into the Administration panel to materialize on your site. To
help you organize and maintain that special WordPress PHP code, it helps if your theme is
broken down into some of these various template files, which make your theme easier to
maintain with less confusion.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[73]

The following screenshot illustrates how a theme's template files contribute to the final
rendered page that a user sees in the browser:

The next list contains the general template hierarchy rules. As we've mentioned, the
absolute simplest theme you can have must contain an index.php page. If no other
specific template pages exist, then index.php is the default.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding it Up

[74]

You can then begin expanding your theme by adding the following files:

For static pages:

 � page.php trumps index.php when looking at a static page

 � home.php trumps index.php and page.php when the main blog post listing
is viewed

 � front-page.php trumps index.php and home.php when the front page is
being viewed, whether that's a static page or the blog post listing

 � A custom template page-slug or page-ID page, such as page-about.php,
when selected through the page's Administration panel, trumps index.php
and page.php

For individual posts and attachments:

 � single.php trumps index.php when an individual post or attachment is viewed.

 � single-post_type.php trumps single.php when used with a custom post
type. For example, if you were using a post type of product, you would set up a
template file called single-product.php for viewing individual product details.
This can be useful if you want to display different metadata or have a different
layout for custom post types.

 � single-attachment.php trumps single.php when an attachment is viewed.
In turn, attachment.php trumps single-attachment.php

 � A custom MIME_type page trumps attachment.php when attachments of a
given MIME_type are viewed. For example you could use image.php or video.
php for displaying each of these types of attachment.

For archives which list posts or search results:

 � archive.php trumps index.php when a category, tag, date, or author listing
is viewed.

 � search.php trumps index.php when the results from a search are viewed.

 � category.php trumps archive.php when a category listing is viewed.

 � taxonomy.php trumps archive.php when a taxonomy listing is viewed.

 � A custom category-ID page trumps category.php. To set up a category listing
page you can either use the category ID (which would give you a category-12.
php filename, for example), or you can use the category's slug (which would give
you an example filename of category-featured.php).

 � tag.php trumps archive.php when a tag listing is viewed.

 � A custom tag-tagname page, such as tag-reviews.php, trumps tag.php.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[75]

 � author.php trumps archive.php when a list of posts by an author is viewed.

 � date.php trumps archive.php when a list of posts for a given date is viewed.

And finally, when the server can't find the page or post:

 � 404.php trumps everything else when the URL address finds no existing content.
You can use this to display some custom content for 404 pages, such as an error
message and search box.

Pages, posts, attachments, and custom post types are the different kinds of
content that you create in WordPress:

A page is a static page which isn't included in listings. For example, you might
have a static About page, or if your site isn't a blog, a static Home page. You can
tell WordPress whether to display a static Home page or a list of posts—we'll
come to that later in this chapter.

A post is a blog post or news article. Depending on the kind of site you're
developing, you might use these for most of your content or you might not use
them at all.

An attachment is a file you upload via the WordPress Media admin screen.
WordPress uses attachment pages to display media such as images, pdf files,
and videos.

A custom post type is a different kind of post from your blog or news posts.
For example, if you're developing a site for a business wanting to showcase its
products, you might create a products custom post type. These wouldn't show
up in the blog, but would have their own listings pages. We'll look at how to set
these up in Chapter 4, Advanced Theme Features.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding it Up

[76]

Why the Template hierarchy works the way it does
In a nutshell, WordPress does this for powerful flexibility. If your theme design is simple
and straightforward enough (that is, you're sure you want all your loops, posts, and pages
to look and work exactly the same), as mentioned, you can technically just dump everything
into a single index.php file that contains all the code for the header, footer, sidebar, and
plugin elements!

However, as your own theme developing skills progress (and as you'll see with the theme
we build in this book), you'll find that breaking the theme apart into individual template files
helps you take advantage of the features that WordPress has to offer, which lets you design
more robust sites that can easily accommodate many different types of content, layouts,
widgets, and plugins.

If all this talk of template files and hierarchies is making your head swim, don't worry!
We'll start by creating a simple theme using index.php, and then move on to creating
more template files as needed.

The WordPress theme API
A WordPress site uses PHP code and a MySQL database to keep content, design, and
functionality completely separate from each other, enabling us to easily upgrade and
enhance them.

To refresh ourselves, the WordPress system works as pictured in the following diagram,
which we first saw in Chapter 1, Getting Started as a WordPress Theme Designer:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[77]

Each file in a WordPress theme contains template tags, which allow us to call in different
aspects of our content, such as the title, the post, the author, and so on. On a traditional blog
page, we will probably place template tags inside what's called the loop—this code will retrieve
all the posts associated with the page's call (say, the ten most recent posts if the user is on the
blog listing page, or all the posts in a specific category if a category listing is being displayed).

Below is a graphic, which demonstrates how the WordPress Loop works with template tags.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding it Up

[78]

Setting up your WordPress workflow
Your workflow will pretty much look like the following:

You'll be editing CSS and HTML in your HTML editor. After each edit, you'll hit Save, then
use Alt + Tab, or the dock, or taskbar to switch over to your browser window. You'll then
hit Refresh and check the results. Depending on where you are in this process, you might
also have two or more browser windows or tabs open with your WordPress theme view
and others, with the key WordPress Administration screens that you'll be using.

Whether you're using Dreamweaver or a robust text editor, such as Coda, TextWrangler, or
HTML-Kit, all of these let you use FTP to access and update files from within the program if
they're stored on a remote server. Be sure to use this built-in FTP feature. It will let you edit
and save to the actual theme's template files and stylesheet, without having to stop and
copy to your working directory or upload your file with a standalone FTP client.

Be sure to save regularly and make backups!

Backups are sometimes more important than just saving. They enable you to
roll back to a previously stable version of your theme design, should you find
yourself in a position where your HTML and CSS has stopped playing nice.
Rather than continuing to mess with your code wondering where you broke it,
it's sometimes much more cost effective to roll back to your last good stopping
point and try again. You can set your preferences in some editors, such as
HTML-Kit, to autosave backups for you in a directory of your choice. However,
you know best when you're at a good "Hey, this is great!" spot. When you
get to these points, get in the habit of using the Save a Copy feature to make
backups. Your future-messing-self will love you for it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[79]

Building your WordPress theme template files
OK! We're ready to start. Open your HTML editor program and set it up to display your FTP
or local working directory in a files panel, giving you access to your WordPress installation
files. Also, have a couple of browser windows open with your WordPress home page loaded
into one, as well as the WordPress Administration panel available in another.

Starting with a blank slate
The approach we'll use here includes the following steps (we'll go over each step in detail):

1. Create a new, empty theme directory (but don't delete the default theme—leave
that safely where it is).

2. Upload your mockup's image directory as well as your index.html and
style.css mockup files to the directory.

3. Add some commented-out code to your stylesheet for WordPress to work with.

4. Rename your index.html file to index.php.

5. Add the WordPress template tag PHP code, specifically the blog_info tag and
the loop, to your design so that your stylesheet styles and some WordPress
content shows up.

6. Once your theme's WordPress content is loading in and your HTML and CSS still
work and look correctly, then you can pull it apart into your theme's corresponding
template files, such as header.php, footer.php, sidebar.php and so on.

7. Once your theme design is separated out into logical template files, you can begin
finalizing any special display requirements your theme has, such as a different home
page layout, internal page layouts, and extra features using template tags and API
hooks, so your theme works with plugins. That will be a job for a later chapter.

The other advantage to this approach is that if any part of your theme starts to break, you
can narrow it down to WordPress PHP code that wasn't copied into its own template file
correctly. You'll always have your backup files to return to if anything goes wrong.

Creating a new theme directory
To get started, we'll create a copy of the existing default theme. We'll be using a
development installation of WordPress 3.4.2 on a remote server, and using TextWrangler
with its inbuilt FTP capability to edit the code. If you prefer, you can work on a local
installation of WordPress.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding it Up

[80]

Time for action – setting up our theme directory
The first step is to create a directory to contain our theme.

1. Create a new directory that has a completely unique name that best suits your
project. This needs to go in the wp-content/themes/ directory. You can see the
theme folders for our theme in the illustration below, which is taken from the FTP
client FileZilla.

We've given the theme directory a name of opensourcemagazine_ch3,
as we'll be saving a version of the theme for each chapter to capture our
progress. We'll also add the chapter number to the Theme Name in the
stylesheet and save it into the code packs so you can work along and see the
progress of the theme as you move through the book. This also helps us see
in the WordPress Theme Manager screen what theme to select to work on.
You'll just name your theme whatever you'd like it to appear as in the Theme
Manager screen.

2. Copy your HTML/CSS mockup files and the image directory into this new directory.

3. Rename your index.html file as index.php. Again, because WordPress template
files follow the template hierarchy, that hierarchy looks first for all sorts of other
template page types, but will always settle for the index.php page if none of the
others exist. Leaving the page as .html, or attempting to name it anything else at
this point, will result in your template not working correctly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[81]

4. Open the style.css file and add the following at the very top, above any
other code:

/*
Theme Name: Open Source Online Magazine chapter 3
Theme URI: http://rachelmccollin.co.uk/opensourcemagazine
Author: Tessa Blakeley Silver / Rachel McCollin
Author URI:
Description: Theme to accompany WordPress 3.4 Theme Development
Beginners Guide
Version:
Tags:
*/

The details of what you add will be different for your theme—you'll need to
replace our theme name, URI, author, and description with your own and add
more information as relevant.

5. Save your stylesheet.

6. Now, in WordPress, go to Appearance | Themes. There, you'll be able to select
and Activate the new theme you just created. (Note that our theme doesn't have a
thumbnail image, which would be displayed in the Administration panel Dashboard,
as we haven't created one.)

www.it-ebooks.info

http://www.it-ebooks.info/

Coding it Up

[82]

What just happened?
We created a new theme folder and uploaded our code to it.

By making sure the properly formatted WordPress information was at the top of the
stylesheet, we were able to see the new folder and files we created as a theme in the
Administration panel's Theme Manager and select it.

Including WordPress content
When you point your browser to your WordPress installation, you should see your mockup's
unstyled HTML as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[83]

The next step is to attach the stylesheet to the index.php page so that WordPress reads
your styles.

To get the index.php page to read your style.css page, we need to find the call to the
stylesheet in the index.php file. This will take one of the following two forms:

<link rel="stylesheet" href="[stylesheet name]">

or

<style>@import "[stylesheet name]"</style>

Time for action – getting your CSS styles to show up
The first of the two options discussed previously is better practice, and is what we're using
in our stylesheet.

1. First, find the call to the stylesheet—in our theme it's as follows:

<link media="all" rel="stylesheet" type="text/css"
href="style.css" />

As you can see, we've also specified a few extra parameters for our stylesheet.

2. Replace the href attribute with following WordPress template tag:
bloginfo('stylesheet_url') like so:

<link media="all" rel="stylesheet" type="text/css" href="<?php
bloginfo('stylesheet_url'); ?>" />

www.it-ebooks.info

http://www.it-ebooks.info/

Coding it Up

[84]

What just happened?
Congratulations! That's your first bit of WordPress code! It's a template tag called
bloginfo() that can actually be passed several parameters, as we'll discover throughout
this book. You should now see your styled mockup, when you point your browser at your
WordPress installation:

Understanding WordPress template tags and hooks
In the upcoming sections, we'll run into many more template tags and a few API hooks
that will help our template play well with plugins. Let's go over the basics of template
tags and hooks.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[85]

Template tags
Template tags are most commonly used in templates to help you retrieve, and most
importantly display information from your WordPress CMS into your theme design. If you
delve more deeply into WordPress development, you'll find that most template tags have
a similar function in the WordPress system. The difference between the template tag and
its corresponding function is that template tags have a return built in to them so they'll
automatically display the WordPress content. The function will not display the content
unless you specifically use a PHP echo or print command. For example, the template
tag which reads:

<? php the_author_meta('name');?>

would have the same result as the following function:

<? php echo get_author_meta('name');?>

WordPress functions can also prove useful for when you don't want content to display right
away, say for special scripts that you write in your template's function.php file, which
we'll get into in the next chapter or if you start developing custom plugins to add extra
functionality to WordPress.

Some template tags can also be used to include or call in other template files, as we'll see
later in this chapter.

The bloginfo() template tag is a typical example of a tag that can be passed a parameter.
In the previous section, we passed it the stylesheet_url parameter, to make sure we
targeted our style.css page, but in other parts of our template we may wish to pass
that template tag the name parameter or the version parameter. It's up to you where
and how you might want to use a template tag. For a list of parameters of this tag, see
http://codex.wordpress.org/Function_Reference/bloginfo.

Hooks
Hooks are part of the plugin API and are mostly used by WordPress plugin developers to
access and manipulate WordPress CMS data, then serve it up or activate at certain points
in the theme, for that theme's use. Your theme does need some preparation in order to
work with most plugins.

Hooks include action hooks, which are used for adding content or functions, and filter
hooks, which are used to manipulate the way data is output. You don't need to worry
about the difference between these for now.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding it Up

[86]

The most important hook we'll work with is the wp_head() hook. This allows plugins to
activate and write information in your WordPress theme's header files, such as CSS links
to any special CSS the plugin might need or JavaScript files the plugin might use to enhance
your site. We'll take a look at a few other hooks later in this book that will enhance our
theme and make sure it's plugin-ready.

Looping it! – The WordPress Loop
After the bloginfo template tag, the next (and probably the most important) bit of
WordPress code to add to our theme is the Loop. The Loop is an essential part of your
WordPress theme. It displays your posts in chronological order and lets you define custom
display properties with various WordPress template tags and queries wrapped in your
HTML markup.

The Loop in a nutshell – how it works
The following illustration shows how the Loop is constructed, and how it pulls in posts
from the WordPress database to construct the post content of a site:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[87]

Really get to know the Loop

The Loop is one of those core pieces of WordPress PHP code you should brush
up on. Understanding how the Loop works in WordPress is incredibly helpful in
letting you achieve any special requirements or effects of a custom professional
template. To find out more about The Loop, its uses in the main index file and
other template files, and how to customize it, check out the following links on
the WordPress codex:

http://codex.wordpress.org/The_Loop_in_Action

http://codex.wordpress.org/The_Loop

Time for action – creating a basic Loop
We'll start by placing the following loop code into the widest column under the This Month
header, overwriting the sample content. This code is the Loop at its most basic. As we'll see,
it will need some tweaking later on to be in line with our theme design.

1. Find the code for the first sample article in the mockup:

<article class="post">
 <h2>Really Long Article Title Name The More Text
The Better Cause You Never Know</h2>
 <p class="entry-meta">by Author Name for Column
Type</p>
 <div class="entry-content"><!--//post-->
 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Sed a eros nec orci volutpat vestibulum. Ut pellentesque
sagittis metus. In euismod tellus id ante.</p>
 <blockquote class="left margin-right third bg-dark2 img-
quote-dark bdr rnd rnd-right shdw-centered">Lorem ipsum dolor
sit amet, consectetuer adipiscing elit.</blockquote>
 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Sed a eros nec orci volutpat vestibulum. Ut pellentesque
sagittis metus. In euismod tellus id ante.</p>
 </div><!--//.entry-content-->
 <p class="left">Read more
»</p>
 <p class="right"><a class="comments-count"
href="#">150</p>
 <div class="push"></div>
</article>

In our mockup, this code appears more than once; so, we start by deleting all but
the first example of it.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding it Up

[88]

2. Now, working with the code you've left in and above the opening <article> tag,
add the code to start the Loop:

<?php if (have_posts()) :?>
 <?php while (have_posts()) : the_post();?>

Next, add the code to display the title of the post in place of our old static heading:

<h2 class=""><a href="<?php the_permalink() ?>" rel="bookmark"
title="Permanent Link to <?php the_title_attribute(); ?>"><?php
the_title();?></h2>

3. Add the code which will display the content for the article. This goes inside <div
class="entry-content">, and replaces any static text (paragraphs
and blockquotes) we had in there before:

<?php the_content();?>

4. Under the content, where we have a Read more link, replace the existing
code with:

<p class="left"><a class="more" href="<?php the_permalink()
?>">Read more »</p>

5. The Loop won't work unless you close it, so below your closing </article> tag,
add the following:

<?php endwhile; ?>
<?php else : ?>
 <h2 class="center">Not Found</h2>
 <p class="center">Sorry, but you are looking for
something that isn't here.</p>
 <?php get_search_form(); ?>
<?php endif; ?>

6. Now save your index.php file, open your site in your browser and refresh
the screen.

What just happened?
You've just completed a major step towards developing your WordPress theme, namely
allowing WordPress to display posts on a page. Well done! Let's work through the code:

<?php if (have_posts()) :?>
 <?php while (have_posts()) : the_post();?>
 <article class="post">
 <h2>a href="<?php the_permalink() ?>" rel="bookmark"
title="Permanent Link to <?php the_title_attribute(); ?>"><?php
the_title();?></h2>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[89]

 <p class="entry-meta">by Author Name for Column
Type</p>
 <div class="entry-content"><!--//post-->
 <?php the_content();?>
 </div><!--//.entry-content-->
 <p class="left"><a class="more" href="<?php the_permalink()
?>">Read more »</p>
 <p class="right">150</p>
 <div class="push"></div>
 </article>
<?php endwhile; ?>
<?php else : ?>
 <h2 class="center">Not Found</h2>
 <p class="center">Sorry, but you are looking for something
that isn't here.</p>
 <?php get_search_form(); ?>
<?php endif; ?>

 � The first two lines open the Loop by checking if there are posts to display, and
then if that is the case, start to work with the first post.

 � The code we added to the <h2> tag displays the post title using <?php the_
title();?> and creates a link using the tag <?php the_permalink() ?>.
This means that when users click on the title, they'll be taken to a page displaying
that post on its own—the permalink is the url for that post.

 � Inside our entry-content div, we used <?php the_content;?> to display the
content of the post.

 � Our Read more link uses <?php the_permalink() ?> to link to the full post.

 � We stopped displaying posts with the code <?php endwhile; ?>.

 � Before ending the Loop completely, we added some text to display if no posts
were found, along with a search form, called using the tag get_search_form.

 � Finally, we closed the Loop with <?php endif; ?>.

You must include the code to close the Loop, or it won't display anything.
The Loop has to have the following lines in the appropriate places to
work:

<?php if (have_posts()) :?>

<?php while (have_posts()) : the_post();?>

<?php endwhile; ?>

<?php endif; ?>

www.it-ebooks.info

http://www.it-ebooks.info/

Coding it Up

[90]

Time for action – adding content
We've added the code for the Loop to display content in our site, but it doesn't actually
have any content to display yet!

1. In the WordPress admin, clik on Add New in the Posts menu.

2. Copy in the text from the first post in our original HTML file.

3. Click on Publish to save your post.

4. Repeat steps 1-3 for the other posts in our mockup.

What just happened?
We added some content to display on the front page of our site. So, does WordPress
display our posts when we refresh the screen? You bet it does!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[91]

Time for action – adding metadata, the timestamp, and author
template tags

In our mockup, we have included some metadata—information about each post being
displayed. Specifically, we've included the author's name and the column the article is
featured in. In WordPress, what a magazine editor might call a column is referred to as
a category. To add these, we do the following:

Inside the Loop below the <h2> tag, add the following in place of the existing <p> tag and
its contents:

<p class="entry-meta">by <?php the_author_meta('first_name'); ?>
<?php the_author_meta('last_name'); ?> in <?php the_category(", ")
?></p>

Save index.php and refresh your browser.

What just happened?
We added two template tags to display metadata about the post:

 � <?php the_author_meta('first_name'); ?> displays the author's first
name and, unsurprisingly, <?php the_author_meta('last_name'); ?>
displays the author's last name

 � <?php the_category(", ") ?> displays a list of categories assigned to the
post, with a comma in between each listing

www.it-ebooks.info

http://www.it-ebooks.info/

Coding it Up

[92]

When we refresh the browser, the metadata is now displayed:

Help! It's not showing what I expected it to!

If your page isn't showing the name of the author or it's displaying
Uncategorized instead of a list of categories, don't worry.

The author name probably isn't displaying, because you haven't added your
full name to your user profile. Go to Users | Your Profile in the WordPress
admin and add your first and last name, remembering to save your changes.

If a list of categories isn't being displayed, that's simply because you haven't
assigned any categories to your post(s). In the post editing screen, assign a
category or create one.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[93]

Keeping up-to-date with WordPress
In older versions of WordPress you could use the_author_firstname and the_author_
lastname template tags. While those tags still work in version 3.4.2, they have been
deprecated and the the_author_meta template tag has been introduced.

This meta tag offers more flexibility than the previous template tags, by allowing the theme
to take advantage of all the user registration information with a single tag, as well as any
additional information a custom plugin may add to the user registration database table.
For a list of parameters you can send to this template tag, see https://codex.
wordpress.org/Function_Reference/the_author_meta.

Adding to the Loop
Because this is the web and not a paper magazine, there are WordPress features we should
take advantage of. We want to take advantage of having people's comments and ideas on the
article to help keep it fresh. So, we'll show how many comments have been added to the post.

For now, we'll just display the number of comments for the post instead of displaying all
of those comments. In the next chapter, we'll edit the single.php file to display comments
when a user is viewing the individual post. For the time being, we'll show how many
comments there are and include a link, so that if the user clicks on the number of comments,
he or she is taken to the post's individual page.

Time for action – displaying the number of comments
So let's do it!

1. Find the code that reads:

<p class="right">850</p>

2. Replace it with:

<p class='right'><a class='comments-count' href='<?php
the_permalink() ?>'><?php comments_number('0', '1', '%')
?></p>

3. Save index.php and refresh your browser.

What just happened?
We added the comments_number tag to display a count of the comments for each post,
and used <?php the_permalink(); ?> to add a link to the individual post, when the
user clicks on the number of comments.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding it Up

[94]

The result now looks like this:

Even though we had most of these text elements handled in our mockup, we're now seeing
what's available via the WordPress template tags. Using these tags means, we can pull in
content automatically from the database, making full use of WordPress' CMS capabilities.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[95]

Beyond the Loop: WP_Query and template tags

Once you get to rummaging around in your loop (or loops, if you create custom
ones for other template pages), you'll quickly see that the default theme's
template tags are a bit limiting. There are thousands of custom template tags
you can call and reference within the Loop (and outside of it) to display the
WordPress content. In Chapter 4, Advanced Theme Features, we'll customize our
theme with advanced features using the WP Query function. Chapter 6, Your
Theme in Action, will have a template tag and WP_Query reference and you can
also check out the following links to find out what template tags are available:

http://codex.wordpress.org/Template_Tags

http://codex.wordpress.org/Function_Reference/WP_Query

The final touch to our loop is to add some automatically generated classes, which will help
us if we want to use different styling for different areas of the site at a later stage. This also
applies to parts of the page outside the Loop.

Time for action – adding in autogenerated classes
To add in some WordPress classes, make the following changes to index.php:

1. Edit the <body> tag to remove any existing classes, and add a new template tag
so it reads:

<body <?php body_class($class); ?>>

2. Edit the <article> tag in your Loop, again removing any existing classes, so it
reads:

<article <?php post_class(); ?> id="post-<?php the_ID(); ?>">

3. Still in the Loop, find the <h2> tag that displays the post title and add
class="post-title" to it so it reads:

<h2 class="post-title"><a href="<?php the_permalink(); ?>"
rel="bookmark" title="Permanent Link to <?php
the_title_attribute(); ?>"><?php the_title(); ?></h2>

4. Finally, save your file and make any adjustments to your CSS; you might have to to
apply it to the new classes instead of any old ones you were using. For example, if
you've used a class for styling your <body> tag, you may need to apply that styling
to the <body> tag itself, or to body.home if it just applies to the home page. As
we'll see in a moment, WordPress now automatically adds a class of home to the
home page's <body> tag.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding it Up

[96]

What just happened?
We added some functions to automatically give our content classes based on what the
content is and where it's being displayed.

 � <?php body_class($class); ?> will give the <body> tag of each page a set
of classes according to what kind of content is being viewed. For example:

 � home when the home page is being displayed

 � blog when the main blog listing is being displayed (which may or may
not be the home page)

 � single-post when a single post is being displayed

 � category-slug when a category listing for the category with a given
slug is being displayed.

There are many more classes WordPress will automatically append using this
function. For a full list, see http://codex.wordpress.org/Function_
Reference/body_class.

 � We also used <?php post_class(); ?> to append the post class to our
<article> tag plus an id of the post ID. This lets us style each type of post
differently if we want to, as well as styling individual posts using the ID.
Depending on how the post is being viewed, classes it might add include:

 � post when a post is being displayed

 � attachment when an attachment is being displayed

 � category-ID and category-name mean we can style posts from
different categories differently – useful in a site where you want to
color-code different categories, for example.

 � sticky for posts which have been designated as "sticky", sticking to
the front page of the blog or the top of the blog listing

There are more classes which WordPress will append here. For a full list see
http://codex.wordpress.org/Function_Reference/post_class.

 � Finally, we added class="post-title" to each post title listing. This will
help us to style the post titles in a specific way should we want to override
or add to the styling for the <h2> tag.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[97]

One last look – our full loop
We now have come up with a main loop that looks something like the following:

<?php if (have_posts()) :?>
 <?php while (have_posts()) : the_post();?>

 <article <?php post_class(); ?> id="post-<?php the_ID(); ?>">
 <h2 class="post-title"><a href="<?php the_permalink(); ?>"
rel="bookmark" title="Permanent Link to <?php the_title_attribute();
?>"><?php the_title();?></h2>
 <p class="entry-meta">by <?php the_author_meta('first_name'); ?>
<?php the_author_meta('last_name'); ?> in <?php the_category(", ");
?></p>

 <div class="entry-content"><!--//post-->
 <?php the_content();?>
 </div><!--//.entry-content-->

 <p class="left"><a class="more" href="<?php the_permalink();
?>">Read more »</p>
 <p class="right"><a class="comments-count" href="<?php
the_permalink(); ?>"><?php comments_number("0", "1", '%'); ?></p>
 <div class="push"></div>

 </article>
<?php endwhile; ?>
<?php else : ?>
 <h2 class="center">Not Found</h2>
 <p class="center">Sorry, but you are looking for something
that isn't here.</p>
 <?php get_search_form(); ?>
<?php endif; ?>

By now, you can see that by leveraging WordPress' template tags and functions, we can
easily move on to including other WordPress content and features into our HTML mockup,
making it a fully functional and dynamic theme. We'll move on to doing more of that in
Chapter 4, Advanced Theme Features, but first we have to break our index.php file into
its component parts.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding it Up

[98]

Breaking the code up into template files
Now that we've got the Loop working in our theme, it's time to start breaking the theme
down into template files, which will help us make sure edits flow consistently across all
of the various aspects of the theme.

A good rule of thumb for separating markup and code into its own template file is:

 � First and foremost, avoid duplicate markup and code

 � Secondly, you'll be able to create template files to address any unique markup
and code that should only appear in special circumstances, like on a home page,
but nowhere else

The most common template files we'll look at first are the header.php, footer.php,
and sidebar.php template files. Each of these template files will be used in various
types of pages on the site.

The header should be the same for a post or an archive as for a static page. The footer
should remain consistent across all types of content on the site. If we update or change
the header or footer, we'll want that change to appear everywhere it's used and not have
to edit two or three different template files. The same goes for the sidebar—we may want
it on several types of pages, or not. This is easy to manage if it's contained in its own file,
and included where needed into other template files which control different content types.

Including everyone
These three template files (mentioned in the previous section) are so common that they
have their own include template tags in WordPress, namely get_header, get_sidebar,
get_footer. The tags are used like so in your template file:

 � <?php get_header(); ?>—to call the header.php file

 � <?php get_sidebar(); ?>—to call the sidebar.php file

 � <?php get_footer (); ?>—to call (yes, you've guessed it) the footer.php file

Let's start by creating the header.php file and adding the tag to include that in our
index.php file.

Creating a header file
The header is more than just the beginning of the HTML5 file and the specific <head> tag.
It includes the opening <body> tag and everything that is in the header of the theme's
design—what is often referred to as the banner.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[99]

Time for action – creating the header.php file
To start, we create header.php as follows:

1. Create a file called header.php in your theme directory.

2. Open up your index.php file and cut everything from DOCTYPE at the very top of
the file down to the end of the <header> tag or the main <nav> tag, depending on
the structure of your markup. For our theme, the code we need to cut is as follows:

<html lang="en" class='no-js'>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=utf-8">

<!--for mobile ready-->
<meta name="viewport" content="width=device-width, initial-
scale=1.0, user-scalable=0, minimum-scale=1.0, maximum-
scale=1.0">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style"
content="black">

<link rel="apple-touch-icon" sizes="57x57"
href="images/pngs/apple-touch-icon-57x57.png"/>
<link rel="apple-touch-icon" sizes="72x72"
href="images/pngs/apple-touch-icon-72x72.png"/>
<link rel="apple-touch-icon" sizes="114x114"
href="images/pngs/apple-touch-icon-114x114.png"/>

<meta name="description" content="Description of content that
contains top keyword phrases"></meta>
<meta name="keywords" content="Key words and phrases, comma
separated, not directly used in content - Google ignores this
tag but used in other engines as a fall back"></meta>

<title>Open Source Online Magazine</title>

<!--//style sheets-->
<link media="all" rel="stylesheet" type="text/css" href="<?php
bloginfo('stylesheet_url'); ?>" />

<!--//javascripts-->
<script src="js/modernizr.custom.20796.js"></script>

www.it-ebooks.info

http://www.it-ebooks.info/

Coding it Up

[100]

<!--[if lt IE 9]>
 <script src="http://html5shim.googlecode.com/svn/trunk/html5.
js"></script>
 <link media="all" rel="stylesheet" type="text/css"
href="css/style-ie.css" />
<![endif]-->

</head>
<body <?php body_class($class); ?>>
<div id="container">
<header class="">
<hgroup class="screen-reader-text">
 <h1>OpenSource</h1>
 <h2>Online Magazine</h2>

 <p>Using Open Source for work and play</p>
 </hgroup>
</header>

<nav id="mainNav" class="grd-vt-tertiary shdw-centered">
 <h2 class="screen-reader-text">Main Navigation:</h2>
 <ul class="sfTab">
 <li class="current_page_item">The
Zine
 About Us
 Resources
 Contact

</nav><!--//top_navlist-->

3. Paste that into your header.php file, and in your index.php file include the
header back in with the get_header include template tag at the very beginning
of the file:

<?php get_header(); ?>

4. Save both the header.php and index.php files and refresh your browser.
Your page should look exactly the same.

What just happened?
We cut the <head> section of the index.php file as well as the header of our site design,
and pasted that into a new header.php file.

We then added an include to make sure that index.php still displays the content of
header.php: <?php get_header(); ?>.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[101]

Separating out our sidebar
The next step is to create a template file for the sidebar. This will include widget areas, which
we will create in Chapter 4, Advanced Theme Features, replacing our existing static text.

Time for action – creating the sidebar.php file
We create a sidebar file as follows:

1. Create a file called sidebar.php in your theme directory.

2. Open up your index.php file and cut everything from the sidebar in your design.
This is usually below the closing </content> tag. For our theme, the code we
need to cut is as below:

<!-- #right sidebar -->
<aside class="sidebar right third">
 <div class="bdr grd-vt-main rnd shdw-centered">
 <h2 class="features embossed">Features:</h2>
 <ul class="tocNav">
 Article Name 01 Lorem ipsum dolor sit
amet consectetuer adipiscing elit
 Article Name 02 Lorem ipsum dolor sit
amet
 Article Name 03 Lorem ipsum

 </div>
 <div class="bdr grd-vt-secondary rnd shdw-centered">
 <h2 class="columns embossed">Columns:</h2>
 <ul class="tocNav">
 Name of Category 01 Lorem ipsum
(#)
 Name of Category 02 Lorem (#)
 Name of Category 03 Lorem ipsum dolor
(#)

 </div>
 <div class="bdr bg-light2 rnd shdw-centered">
 <h2 class="pastIssues embossed">Past Issues:</h2>
 <ul class="tocNav">
 Archive Link year/month 01
 Archive Link year/month 02
 Archive Link year/month 03

 </div>
 <div class="push"></div>
</aside><!--//.sidebar1 -->

www.it-ebooks.info

http://www.it-ebooks.info/

Coding it Up

[102]

The previous code doesn't include any widget areas and still consists of
static markup—don't worry, we'll change all this in Chapter 4, Advanced
Theme Features, and make our sidebars much more jazzy.

3. Paste that into your sidebar.php file, and in your index.php file, include the
sidebar back in with the get_sidebar include template tag at the very beginning
of the file:

<?php get_sidebar(); ?>

4. Save both the sidebar.php and index.php files and refresh your browser.
Again, your page won't have changed.

Warning!

The code you paste into your sidebar.php file should contain only
the code required to display the sidebar and nothing else. Don't copy any
additional code between the closing </aside> tag and the opening
<footer> tag, as the template files don't have a sidebar and so they
don't include the sidebar.php file.

What just happened?
We created a sidebar.php template file to hold the code for our sidebar, moved the code
for the sidebar into it, and then included it in index.php with the get_sidebar include
template tag.

We'll finish off by repeating this process for our footer.

Finishing off with the footer
The final element of our theme, which we need to give its own file, is the footer. Footers
these days are often much more than just a copyright notice and designer credit. Lots of
sites make use of fat footers, which display much more information and list content from
elsewhere in the site. You may have noticed that our design for Open Source Magazine
includes one of these fat footers.

To create our fat footer, we'll add widget areas to our footer as well as our sidebar, but
not just yet. First we need to create our footer.php file—we'll move on to adding the
widgets in Chapter 4, Advanced Theme Features.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[103]

Time for action – creating the footer.php template file
We follow the same steps to create our footer template file as we did for the header
and sidebar.

1. Create a file called footer.php in your theme directory.

2. Open up your index.php file and cut everything from the footer and below in
your design. This will be everything from the opening <footer> tag to the closing
</html> tag. In our theme, the code is:

<footer>
 <h2 class="screen-reader-text">Footer Information:</h2>
 <aside class="general left two-thirds">
 <h3>Socialize</h3>
 <ul class="grid4up">
 facebook
 twitter
 rss
 gmail

 <div class="push"></div>
 <h3>About us</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing
elit, sed do eiusmod tempor incididunt ut labore et dolore
magna aliqua. Ut enim ad minim veniam.</p>
 </aside>

 <aside class="navigate right third">
 <h3>Navigate</h3>

 title to link01

 another
link02
 a different title:
link03
 yet another
link04

 </aside>

 <div class="push"></div>

</footer>
</div><!--//#across-->
</body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

Coding it Up

[104]

Again, this code doesn't include any widget areas yet—we'll correct
this in Chapter 4, Advanced Theme Features.

3. Paste that into your footer.php file, and in your index.php file include the
footer back in with the get_footer include template tag at the very beginning
of the file:

<?php get_footer(); ?>

4. Save both the footer.php and index.php files and refresh your browser.
Once again, your page won't have changed.

What just happened
When you save these files and reload your WordPress site, the result should look no
different than when your footer markup and code was inside the index.php file. Now
from here onwards, for each new page type we create, we can just include the footer
code with the get_footer template tag.

Time for action – don't forget the plugin hooks
WordPress plugins take advantage of plugin API hooks placed in themes so they can execute
various commands inside the plugin and/or get and write information to your website.

To make sure our markup and code are able to play well with various plugins, we need
to include a hook in each of the header.php and footer.php files as follows:

In header.php, just before the closing </head> tag, add the following:

<?php wp_head(); ?>

In footer.php, right before your closing </body> tag, add the following:

<?php wp_footer(); ?>

What just happened
We added the wp_head and wp_footer hooks in the header.php and footer.php
files respectively.

The wp_head hook is used by many plugins to add elements to <head> such as styles,
scripts, and meta tags.

Plugins generally use the wp_footer hook to reference JavaScript files.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[105]

Creating a template file for static pages
As we've mentioned, WordPress makes use of a variety of content types including pages,
posts, and attachments. You can create specific template files to display each of these.

The most commonly used template file in addition to index.php is probably page.php,
which is used to display static pages. This is because you'll often find that a static page
doesn't need to display all of the information shown in a single post or archive listing, such
as metadata or comments.

Let's have a look at how one of our static pages looks right now, using index.php:

Currently, it's displaying the text This Month: plus a comment count, a Read more link, and
the author metadata. We want to remove those.

So the final step we'll take in this chapter is to create a page.php file based on our index.
php file, which WordPress will use to display all static pages correctly.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding it Up

[106]

Time for action – creating a custom page.php template file
We create our page.php template file by copying index.php and making some adjustments.

1. Create a new file called page.php.

2. Open index.php, copy its entire contents, and paste them into page.php.

3. In page.php, find the code to display the This Month: heading and delete it:

<h2 class="thisMonth embossed" style="color:#fff;">This Month:</
h2>

4. Now find the code to display the author metadata and delete that:

<p class="entry-meta">by <?php the_author_meta('first_name');
?> <?php the_author_meta('last_name'); ?> in <?php
the_category(", ") ?></p>

5. Next, find the code for the Read more link and the comments count and delete
that:

<p class="left"><a class="more" href="<?php the_permalink()
?>">Read more »</p>
<p class="right"><a class="comments-count" href="<?php
the_permalink() ?>"><?php comments_number("0", "1", '%')
?></p>

6. Finally, save page.php and refresh your browser.

What just happened?
We created a new file called page.php to display static pages, and edited it to remove
any content we don't need on those pages.

Now the About us page looks like the screenshot below:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[107]

Much better—the metadata has gone, as well as the Read more link, the comments count,
and the confusing heading.

In Chapter 4, Advanced Theme Features, we'll look at doing more with page templates,
for example, creating a template that doesn't display a sidebar.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding it Up

[108]

Pop Quiz – questions about WordPress theme structure
Q1. According to the WordPress hierarchy, which of the following is true and which is false?

1. page.php trumps index.php when viewing a static page

2. archive.php trumps category.php when viewing a category archive

3. single.php trumps index.php when viewing a static page

Q2. What does the header.php file contain?

1. The <head> tag and its contents

2. The <header> tag and its contents, taken from the theme design

3. Everything from the opening DOCTYPE to the end of the <header> tag

Q3. Which files normally include widgets?

1. footer.php

2. sidebar.php

3. header.php

Summary
We've now got a working theme for Open Source Online Magazine. Great Job!

It's probably clear that you can take advantage of all sorts of custom WordPress template
hierarchy pages and template tags to endlessly continue to tweak your theme, in order to
display custom information and layouts for all types of different scenarios.

How much customization your theme requires depends entirely on what you want to use it
for. If you know exactly how it's going to be used and you'll be the administrator controlling
it, you can save time by covering the most obvious page displays the site will need to get it
rolling, and occasionally create new template files should the need arise. If you intend to
release the theme to the public, the more customized page views you cover, the better.
You never know how someone will want to apply your theme to their site.

You've now learnt how to set up your development environment and an HTML editor for
a smooth workflow. You also have a theme design that uses semantic, SEO-friendly HTML5
and CSS3 with fallbacks for IE7 and 8, which has been broken down into WordPress
template pages for flexibility in your layouts. Believe it or not, we're not quite done!

In the next chapter, we'll continue working with our new theme and add additional features
to it, such as widget areas and an improved menu, as well as learning ways to allow users
to tweak the theme without delving into code. Let's get started!

www.it-ebooks.info

http://www.it-ebooks.info/

4
Advanced Theme Features

So, you now have a working WordPress theme, but your job isn't done yet. For
the theme to support a fully functioning site, it'll need a few more things added
to it.

In this chapter you'll learn how to add more to your theme so you (or anyone
else who downloads the theme) can use it to set up a great website. We'll
look at using site settings to give our site a name and description, configuring
the Reading settings and permalinks, adding featured images, and setting up
widget areas.

So let's get started!

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Theme Features

[110]

Site settings
Now that you have your theme installed and powering the Open Source Magazine site, you
need to make a few changes to the theme settings. You access these via Settings | General.

Time for action – configuring your site settings
Once you are in the Settings screen, make the following changes:

1. Site Title: Change this to Open Source Magazine.

2. Tagline: Change this to Using Open Source for work and play.

3. TimeZone: Change this to the city nearest to you or to your readership,
to ensure that any time metadata for your posts works correctly.

4. Click on the Save Changes button.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[111]

What just happened?
You edited your site's settings so it now has the correct title and description, and the
time settings are correct for you or your readership. At the moment this won't make
any difference to your site as the theme isn't displaying the site title or the tagline
(sometimes known as the description). Let's fix that.

Time for action – adding the site title and description to your
theme

To add the site title and description, do the following:

1. Open the header.php file that you created in the previous chapter.

2. Find the following code:

<hgroup class="screen-reader-text">
 <h1>OpenSource</h1>
 <h2>Online Magazine</h2>
 <p>Using Open Source for work and play</p>
</hgroup>

3. Replace it with the following:

<hgroup class="screen-reader-text">
 <h1 id="site-title">
 <a href="<?php bloginfo('url'); ?>" title="<?php
bloginfo('name'); ?>"><?php bloginfo('name'); ?>
 </h1>
 <h2 id="site-description"><?php bloginfo('description'); ?></
h2>
</hgroup>

4. Save your file.

What just happened?
We added some PHP code to tell WordPress to insert our site's title and description in
place of the static code that was there before. Let's have a closer look at the code:

 � First we have an <h1> element with a #site-title ID. This ID will help us to
style the title if we need to.

 � Inside the <h1> tag is a link with the href attribute of <?php bloginfo('url'
); ?> which WordPress uses to fetch the site's URL. This link also has a title
attribute of <?php bloginfo('name'); ?>, which is the site title.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Theme Features

[112]

 � Inside the link is the site title itself, displayed using <?php bloginfo('name'); ?>.

 � After the <h1> element is an <h2> element displaying the site description (or
tagline), using <?php bloginfo('description'); ?>. This element has
an ID of #site-description so we can target it for styling if we need to.

These changes won't make any difference to our site as it's displayed in the browser,
because the contents of the <hgroup> element are hidden offscreen. But it does change
the underlying code. Let's have a look at what WordPress generates as the source code
in our header now:

<hgroup class="screen-reader-text">
 <h1 id="site-title">
 <a href="http://rachelmccollin.co.uk/opensourcemagazine"
title="Open Source Magazine">Open Source Magazine</h1>
 <h2 id="site-description">Using Open Source for work and play</
h2>
</hgroup>

As you can see, it's using the bloginfo tag to provide browsers (and users, if you set your
CSS up that way) with information on the site. Having added this code to your header.php
file, if we need to change the site title or description in future we just do this in the Settings
screen and don't need to touch the code. And if you or anyone else uses your theme for
another site, this will work out of the box.

For more on the bloginfo tag and ways you can use it in your themes,
see http://codex.wordpress.org/Function_Reference/
bloginfo.

Pretty permalinks
The next thing to configure is our permalinks. Permalinks are the unique URLs that a
browser uses to display a given page in our site. At the moment our site uses the default
style of permalinks, which means they look something like this:

http://rachelmccollin.co.uk/opensourcemagazine/?p=7

That ?p=7 at the end of the URL isn't very helpful for two main reasons:

 � User-friendliness: The URL tells users nothing about the content of the page or
post being viewed and isn't very easy to remember.

 � SEO: Search engines use URLs for information when indexing sites. That URL won't
help search engines to determine what the page is about.

Luckily, WordPress makes it easy to improve our permalinks.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[113]

Time for action – setting up pretty permalinks
Setting up permalinks is simple and you do it in the WordPress admin.

1. Go to Settings | Permalinks to view the screen shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Theme Features

[114]

2. As you can see from the screenshot, our permalinks are set to Default, which is why
they aren't very pretty. Click on the Post name radio button to change this, as shown
in the following screenshot:

3. Click on the Save Changes button.

What just happened?
We made a quick change in the Permalinks Settings screen to configure pretty permalinks.
Now let's see what the URL is for that post:

http://rachelmccollin.co.uk/opensourcemagazine/post-with-a-slightly-
shorter-title-but-more-text/

That's better! It's much more descriptive—if a little long! The text after the URL for the site
(that is, post-with-a-slightly-shorter-title-but-more-text is known as the
slug). You can edit the slug in the page or post editing screen when you're setting up your
pages, which you might find helpful for user-friendliness or SEO.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[115]

To find out how to change the slug, and therefore the URL, of individual
pages and posts, see http://codex.wordpress.org/
Pages#Changing_the_URL_of_Your_Pages.

Permalinks – a quick guide
You may have noticed that when you clicked on the Post name radio button on the
Permalinks screen, the text /%postname%/ appeared in the Custom structure field
below it. This is the tag which WordPress uses to generate the URL based on the post
name. Other tags are:

 � %year% – the year the post was published using four digits, for example 2013.

 � %monthnum% – the numerical month the post was published, for example 05.

 � %day% – the day of the month the post was published, for example 28.

 � %hour% – the hour the post was published, using the 24-hour clock, for example 15.

 � %minute% – the minute of the hour the post was published, for example 43.

 � %second% – the second of the minute the post was published, for example 57.

 � %post_id% – the unique ID of the post, for example 7.

 � %postname% – the post name, using the slug which is automatically generated from
the post name or which you can edit manually.

 � %category% – the slug for the category, which is either generated based on the
category name or which you specify when setting up the category. For example,
WordPress would give the slug new-products to a category called New Products.

 � %author% – the author name, for example Rachel McCollin would become
rachel-mccollin.

Occasionally permalink settings may not work right out of the box, as
it depends on your server configuration. In some cases, you may have
to change the file permissions for the .htaccess file at the root of
your site. For more on this, see http://codex.wordpress.org/
Using_Permalinks.

Menus
The next step is to get our menus working correctly. Since Version 3.0, WordPress provides
a great interface for creating and configuring menus using the Menus admin screen, which
means, once you've added some PHP to set this up in your theme, you don't need to touch
your code if you need to edit the navigation menu.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Theme Features

[116]

Registering navigation menus
In order for any menus added in the WordPress admin to show up on your site, you'll need
to create those menus by registering them. This refers to the code you add to your functions
file to create the menu. You'll then add some code to header.php to display the menu in
the correct place.

Time for action – registering a navigation menu
Let's start by registering the menu. This involves creating a new file called functions.php.

1. Create a new blank file in your theme directory and name it functions.php.

2. At the beginning of the file, type the following:

<?php
function register_my_menus() {
 register_nav_menus(
 array('header-menu' => __('Header Menu'))
);
 }
add_action('init', 'register_my_menus');
?>

3. Save the file.

What just happened?
We created a new file called functions.php and added a function to it to register a menu.
The functions.php file is a special file which is used to store extra functions which the
theme needs in order to work. This will be PHP code that isn't included in WordPress itself
and isn't in your theme files, but is used by them.

Let's have a look at each line of the function we added:

 � <?php starts running PHP, this line must be the very first line of your file with no
spaces before it.

 � function register_my_menus() { defines a new function with the name
register_my_menus.

 � register_nav_menus(uses a WordPress function called register_nav_menus
to tell WordPress that this is what we're doing here.

 � array('header-menu' => __('Header Menu')) is an array with a list
of menus that you're setting up. We're just setting up one menu here, the name
WordPress uses for it will be header-menu and the name shown in the menus
admin screen will be Header Menu.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[117]

 �); closes our array.

 � } closes our function.

 � add_action('init', 'register_my_menus'); makes things happen.
Any actions using init will be run after WordPress has finished loading but
before any content is sent to the browser. Here, we're telling WordPress to run the
register_my_menus function as part of the init action which it will always run.

 � ?> stops the PHP. This must be the final line of the functions.php file with no
spacing or empty lines afterwards.

Well done! You just defined your first function. Now let's add the code to our header.php
file to make the menu appear.

Time for action – adding menus to our theme's header.php file
The next step involves inserting a line of code into your header.php file.

1. Open the header.php file and find the following code:

<nav id="mainNav" class="grd-vt-tertiary shdw-centered">
 <h2 class="screen-reader-text">Main Navigation:</h2>
 <ul class="sfTab">
 <li class="current_page_item">The Zine
 About Us
 Resources
 Contact

</nav><!--//top_navlist-->

2. Replace that code with the following:

<nav id="mainNav" class="grd-vt-tertiary shdw-centered">
 <h2 class="screen-reader-text">Main Navigation:</h2>
 <?php wp_nav_menu(array('theme_location' => 'header-menu',
'container_class' => 'sfTab')); ?>
</nav><!--//top_navlist-->

3. Save the file and view the site in your browser to see what happens.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Theme Features

[118]

What just happened?
We added the wp_nav_menu tag to our header file to display the menu we'd registered
in the correct place. Let's have a closer look:

 � wp_nav_menu is the tag which calls and displays a navigation menu.

 � The first parameter we set is 'theme_location' => 'header-menu'. This tells
WordPress which menu to display – the header-menu we defined in functions.
php earlier.

 � The second parameter we set is 'container_class' => 'sfTab'. This adds
a containing <div> with the class .sfTab to the menu, which replaces the <ul
class="sfTab"> code we had originally.

Now let's have a look at our site with its new menu:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[119]

The menu is there but it isn't displaying what we want it to. If you don't set up your own
menu, WordPress just displays all the pages on the site in the order they were added (much
as it used to with the wp_page_menu tag before Version 3.0). Our site just includes an About
page which we set up in Chapter 3, Coding it Up. So we need to add some more pages and
set up our menu.

Setting up our menu
To finish our menu, we need to do three things:

 � Create some new pages, a custom link, and a category which the menu will link to

 � Define our Reading settings so WordPress knows which page our blog listings are on

 � Add a menu linking to the pages in the WordPress Menus screen

Setting up the new pages and category is simple so we won't show you how to do that
(if you're stuck, look at http://codex.wordpress.org/Pages and http://codex.
wordpress.org/Posts_Categories_Screen). We'll move straight on to configuring
our Reading settings and then creating our menu. So let's do it!

Defining our Reading settings
The first step is to ensure the site's Reading settings are set up correctly so that we can
add the content we need to our menu.

Time for action – defining Reading settings
WordPress gives you the option of having a blog listing on your home page or using a static
page instead. A blog listing is great for a magazine site like ours but on a business website,
for example, you might want to have a static page. In fact it's becoming more and more
common for WordPress sites to be set up with static front pages now.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Theme Features

[120]

1. Go to Settings | Reading to access the Reading Settings screen:

2. As you can see, the site is set to the default—the front page displays all your latest
posts. This is what we want, so we don't need to make any changes here.

3. Below this, you'll see that there are options to change the number of posts
displayed and whether a full post or an extract is displayed. We'll keep the number
of posts at 10 but tell WordPress to display a summary instead of each full post on
the front page.

4. To do this, click on the radio button next to Summary.

5. Click on the Save Changes button, switch to your site, and refresh your browser.

What just happened?
We edited our Reading settings in line with the site's design. If we wanted to use a static
page as our home page, we would click on the Static Page radio button and then choose
the static page we wanted to display as our home page.

Creating a menu
The next step is to set up our menu in the Menus admin screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[121]

Time for action – creating a new WordPress menu
As we have the correct code in place in our theme file, we can set up our menu in the Menus
admin screen.

1. Open the Menus screen by going to Appearance | Menus to see the Menus admin
screen as shown in the following screenshot:

2. At the moment, there isn't a menu defined. To add one, type the name of your
menu in the Menu Name field at the top-right side. For our site, let's call the
menu main-menu.

3. Click on the Save Menu button. You will see a message telling you that the menu
has been successfully created and you'll see its name in a tab above the Menu
Name field. Good job!

4. In the Theme Locations box, select your menu from the select field (make sure
you've followed step 3 and saved your menu first or it won't appear in the
select field).

5. Click on the Save button in the Theme Locations box.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Theme Features

[122]

What just happened?
We created a new menu and saved it. Now let's add some links to it.

Adding pages and other content to our menu
You can add all sorts of content to your menus including pages, posts, categories,
and custom links. Let's start by adding some static pages.

Time for action – adding pages to a menu
Now to add some links to our menu.

1. Click on the checkboxes next to each of the pages listed in the Pages box and
then click on Add to Menu.

2. You will see your pages listed in your new menu. To get them in the right order,
simply drag them up and down in the list until you're happy.

3. The Menus admin screen will now look like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[123]

What just happened?
We added some static pages to our menu. Most sites will include some static pages so it's
something you'll find yourself doing a lot. The next step is to add a custom link to our home
page, which we're calling The Zine.

Time for action – adding a custom link to the menu
WordPress lets you add custom links – which could be to a specific post in our site, to an
external site, or to any link within our site. We'll use a custom link to add a link to the home
page and call it The Zine.

1. In the Custom Links box, type the URL of the site in the URL field. In our case it's
http://rachelmccollin.co.uk/opensourcemagazine (or whatever URL
you're using for your site).

2. In the Label field, type the label you want WordPress to use for your link. It could
be Home or in our case, we'll type The Zine.

3. Click on the Add to Menu button. The custom link will appear in the menu on the
right-hand side.

4. Finally, drag the link up to the top of the menu so it's listed first and click on the
Save Menu button.

What just happened?
We added a custom link, saved it to our menu, and moved it to the correct position.

In this case, it was necessary to use a custom link because the front page displays blog posts
(which you set up in the Reading Settings page earlier). If the front page was a static page,
you would simply add that page to your menu.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Theme Features

[124]

Here's how the Menus admin screen looks now:

The final step in creating our menu is to add a link to the Resources category.

Time for action – adding a category link to the menu
Along with pages and custom links, you can use the navigation screen to provide links to
categories you define for your content. Let's do it!

1. Now our pages are in place, but not our Resources category. To add that, click
on the checkbox next to Resources in the Categories box and click on the Add
to Menu button.

2. Move the Resources link within the menu until everything is in the right order:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[125]

Can't see the Resources category?

If you can't see one of your categories in the Menus screen, that's because
you haven't assigned it to any posts yet. WordPress doesn't let you add empty
categories to your menu as that wouldn't be very helpful to users. Simply assign
that category to one of your posts and it will show up in the Menus screen, and if
you need to leave the Menus screen to do this, make sure you save your menu first.

3. Click on the Save Menu button to save your menu.

Important!

WordPress doesn't save any changes to your menu until you click on the Save
Menu button. So don't forget!

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Theme Features

[126]

What just happened?
We created a new WordPress menu in the Menus admin screen, told WordPress to display
it in our theme and added some links to it.

The WordPress Menus screen gives us even more functionality than we've used here.
Let's have a look at some of the possibilities.

The WordPress Menus admin – the possibilities
WordPress lets you set up your menus in a variety of ways and with a lot of flexibility. You
can add any links you like, call them whatever you want, and structure your menu however
you need.

Firstly, you can add different types of links to your menu:

 � Pages: You can add as many static pages as you want to the menu in whatever order.

 � Categories: As we've seen, you can add links to one or more categories to a menu.
If you want to add tags as well you can do this—if the list of tags isn't visible, click
on the Screen Options tab at the top of the Menus screen and then click on the
checkbox next to Tags. Your tags will appear and you can add them to the menu.

 � Custom taxonomies: If you've defined any custom taxonomies for your site, you
can link to these in your menu.

 � Custom post types: It's possible to add links to custom post types to your menu,
if you have those set up in your site.

 � Custom links: You can add any custom link to your menu and give it whatever
name you want. For example, you could link to an external site or to a specific
post in your site.

Once you've added your links, you can give them a custom navigation label, which doesn't
have to be the name of the page or post linked to. So if you wanted to link to a post with a long
name you could use an abbreviated label in the navigation menu. You do this by clicking on the
arrow next to the label's name in your menu and typing text into the Navigation Label field:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[127]

As well as this, you can change the structure of your menu by adding second level links, which
will be output as a tag inside your top level tag. You do this by dragging the link to
the right underneath the link you want it to appear below. This is great for drop-down menus
in larger sites. The following screenshot shows how this looks in the Menus admin screen:

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Theme Features

[128]

And here's the effect in our theme:

As you can see it doesn't quite work in this theme as we haven't added any styling for
second level navigation links, but a bit of CSS would soon fix that. We'll undo this and
make the menu all one level again to fit with our design.

Widgets
If you've ever set up a WordPress site, maybe using the default theme or one you
downloaded from the theme repository, chances are that you've used widgets. Widgets
are areas in a site or theme which can be set up via the WordPress admin, meaning site
owners can add their own content without having to write a line of code.

The most common place to include widgets are in the sidebar and footer, but you could
use them anywhere in your theme. For example, a widget area below the content gives
you somewhere to display content listings, some share buttons or a call to action button
beneath every single post.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[129]

WordPress comes with a number of widgets preinstalled and you can add more with
plugins. Some of the preinstalled widgets are:

 � Archives – a list of posts by the date they were published.

 � Recent posts – list the latest posts from your blog.

 � Text – add some text or HTML (for example, you could use this to code a call to
action button or add an image you've uploaded via the Media screen).

 � Categories – a list of the categories in your blog. If the user clicks one they'll see
a list of all posts in that category.

 � Custom menu – a widget enabling you to place a custom menu in a widget area.
For example, if you wanted to list your "small print" pages in the footer, you could
create a menu listing them and then use this widget to display that menu in a
footer widget area.

 � Tag cloud – a tag cloud showing the categories posts have been published to,
with the most popular categories shown in larger text.

There are plenty more. To see them all, just take a look at the Widgets admin screen
in WordPress.

But before we can add any widgets to our site we need to add widget areas to our theme,
these will hold the individual widgets. This is similar to adding menus and has two stages:

 � In functions.php, register our sidebars, or widget areas

 � In the relevant template files or includes, add the code to display the appropriate
widget area

So let's start by registering our sidebars in functions.php.

Registering sidebars or widget areas
For your theme to display any widget areas you must first register them in your theme's
functions file, in much the same way as we did earlier for the menu. You can register as
many as you need and then add the code to display them in the appropriate place in
your theme.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Theme Features

[130]

Time for action – registering sidebars in functions.php
This step involves adding some more functions below your menu's function in the theme
functions file:

1. Open functions.php.

2. Above the closing ?> tag, add the following:

function osmag_widgets_init() {
 register_sidebar (array(
 'name' => __('Sidebar','osmag'),
 'id' => "sidebar-widget-area",
 'before_widget' => '<li id="%1$s" class="widget %2$s">',
 'after_widget' => '',
 'before_title' => '<h2 class="widgettitle">',
 'after_title' => '</h2>')
);
 register_sidebar (array(
 'name' => __('Left Footer','osmag'),
 'id' => "footer-left-widget-area",
 'before_widget' => '<li id="%1$s" class="widget %2$s">',
 'after_widget' => '',
 'before_title' => '<h2 class="widgettitle">',
 'after_title' => '</h2>')
);
 register_sidebar (array(
 'name' => __('Right Footer','osmag'),
 'id' => "footer-right-widget-area",
 'before_widget' => '<li id="%1$s" class="widget %2$s">',
 'after_widget' => '',
 'before_title' => '<h2 class="widgettitle">',
 'after_title' => '</h2>')
);
}
add_action('init', 'osmag_widgets_init');

3. Save your functions.php file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[131]

What just happened?
We added the functions to register sidebars for our theme's footer and sidebar. Let's have
a look at what we did.

Firstly, the sidebars we registered:

 � One widget area in the sidebar – it's the area most commonly used by themes
for widgets. We called it sidebar but you don't have to, you could call it whatever
you like.

 � Two widget areas in the footer – this gives you the option to add two areas of
content in the footer using widgets.

Now let's take a look at the code we used to register each widget area:

 � The opening line function osmag_widgets_init defines a new function for our
theme based on widgets_init

 � The first sidebar is registered with the function register_sidebar and an array
of parameters

 � The parameters for the first sidebar are:

 � Name: __('Sidebar','osmag') defines the sidebar name. It won't
work without osmag which echoes the function osmag_widgets_init.

 � ID: sidebar-widget-area is the unique ID for the widget area which
we'll use shortly to add it to a template file. It's also used to give the widget
area an ID which you can use for styling.

 � HTML before each widget within the widget area: <li id="%1$s"
class="widget %2$s">, which opens a tag and gives it an ID and
class related to the widget name.

 � HTML after each widget: closes the list item.

 � HTML before the title of each widget: <h2 class="widgettitle">,
which opens an <h2> tag to display the title and gives it a class for styling.

 � HTML after each widget title: </h2> closes the <h2> element.

 � The two footer sidebars are set up in the same way, with only the name and ID
needing to change

 � Finally, the last line beginning add_action adds an action based on our function
to the init action which WordPress always runs on starting up

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Theme Features

[132]

So, we now have our widget areas registered. You'll now see them displayed on the Widgets
admin screen:

The next step is to add them to our theme.

Time for action – adding widget areas to sidebar.php
To make our widgets work in the sidebar, we'll need to replace some of the existing code
with a WordPress tag to display the correct widget area.

1. Open your theme's sidebar.php file.

2. Delete all of the code in the file and replace it with the following:

<aside class="sidebar right third">
<?php if (is_active_sidebar('sidebar-widget-area')) : ?>
 <div class="bdr grd-vt-main rnd shdw-centered">
 <?php dynamic_sidebar('sidebar-widget-area'); ?>
 </div>
<?php endif; ?>
</aside>

3. Save the sidebar.php file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[133]

What just happened?
We added a widget area to our sidebar. Let's have a look at the code in detail:

 � Firstly, the <aside> element to contain our sidebar—which is the same as in
our static mockup

 � The next line checks if there are any widgets in the widget area with the ID
of sidebar-widget-area

 � If that's the case, it displays the contents of the widget area, using the
dynamic_sidebar tag with the ID of our sidebar

 � It then closes all the relevant tags

Now let's see what the site looks like in the browser:

At the moment the sidebar is empty because we haven't added any widgets. We'll do that
in a moment but first let's add widget areas to our footer.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Theme Features

[134]

Time for action –adding widget areas to footer.php
We've added one widget area to the sidebar, now we're going to add two to the footer.

1. Open your theme's footer.php file.

2. Find the following code (the content of our first <aside> element):

 <h3>Socialize</h3>
 <ul class="grid4up">
 facebook
 twitter
 rss
 gmail

 <div class="push"></div>
 <h3>About us</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam.</p>

3. Copy that code somewhere safe, we'll be using it again shortly.

4. Delete the code and replace with the following:

<?php if (is_active_sidebar('footer-left-widget-area')) : ?>
 <?php dynamic_sidebar('footer-left-widget-area'); ?>
<?php endif; ?>

5. Now find the following code (it's inside the second <aside> element, you don't
need to save this):

<h3>Navigate</h3>

 title to link01
 another link02
 a different title: link03</
a>
 yet another link04

6. Delete that code and replace it with the following:

<?php if (is_active_sidebar('footer-right-widget-area')) : ?>
 <?php dynamic_sidebar('footer-right-widget-area'); ?>
<?php endif; ?>

7. Save your footer.php file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[135]

What just happened?
We added two footer areas to our footer. The code works in exactly the same way as the
code we used for the sidebar widget area.

If you check your site now you'll see that nothing is displayed in the footer, in fact the
footer has completely disappeared. That will soon change when we add some widgets.

Widget areas – not just for the sidebar and footer
If you wanted to, you could register more widget areas for use elsewhere in the theme,
for example:

 � Above the header – useful if you want to use a widget to add some important text
above the site content or add a login widget here.

 � Above the content – sometimes you might want to include a menu or some text
above the content of all your pages and posts, without having to manually add it
to every post.

 � Below the content – useful for messages you want users to read after the content,
lists of links for users to click after reading a post, call to action buttons, or social
sharing widgets.

 � A secondary sidebar – a second widget area in the sidebar. It may seem superfluous
to have two widget areas in one place but it can be useful, for example when you
want to add a styling element between the two widget areas, you want to position
or style them differently or anything else that you can think of. I developed a site
once where I used CSS to position the primary widget area across the width of the
page above the content and the secondary sidebar – this was done without having
to edit the PHP, simply with CSS positioning, widths, and margins.

 � More footer widget areas – our theme just uses two, but some themes use three
or four footer widget areas side by side, or two or three side by side and another
underneath them for the colophon—the small print such as site credits and
copyright.

 � Custom widget areas – you might want to register a widget area which will only be
used in one of your template files, or in a custom include file only called in certain
circumstances. This is more advanced territory!

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Theme Features

[136]

Adding widgets in the Widgets admin screen
Widgets are fun! They let you add all sorts of custom content to your site without
having to touch a line of code. If you're going to have people who can't code working on
your site, they're a great way for them to add extra content to the site, and they're even
better if you're going to release your theme to other WordPress users—people who don't
understand PHP can add custom content in your widget areas using the preinstalled
widgets and by adding to these by using plugins.

The possibilities from using widgets and plugins are huge!

Setting up widgets is something you've probably done before and it's very easy to do.
Let's add some widgets to replicate the static code we had in our mockup before we
turned it into a WordPress theme.

What widgets will we need
The mockup included one widget area in the sidebar and two in the footer. The sidebar
widget area contained three widgets, listing different kinds of content. So which widgets
will do that job for us?

 � Our first sidebar widget lists the three latest blog posts. We can add that using
the Latest Posts widget, which comes preinstalled with WordPress.

 � The second sidebar widget lists three categories. Again, WordPress has a
preinstalled widget for that – the Categories widget.

 � The third sidebar widget lists archives by month – the preinstalled Archives
widget will handle that.

 � Our first footer widget is for social sharing and some information about the
magazine – it lists a set of links to the Open Source Magazine's presence on
different social media platforms. We can add that with the Text widget, which
lets us add some HTML.

 � Our second footer widget is a list of internal links to static pages. We can use the
Custom Menu widget to achieve that, along with a new custom menu.

Great! That means we don't have to install any plugins, and can use the widgets already
at our disposal to display all the content and links we need.

Setting each of these up is pretty straightforward, so we won't go into too much detail here,
but let's just look at the steps involved.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[137]

Time for action – adding sidebar widgets
We add sidebar widgets in the Widgets admin screen, which you access via
Appearance | Widgets.

1. Drag the Recent Posts widget (in the list of available widgets on the left) to the
sidebar widget area on the right.

2. Give it a title of Features: and type 3 in the Number of posts to show field.

3. Click on Save to save the widget.

4. Drag the Categories widget to the sidebar widget area and give it a title of
Columns:. Click on Save to save it.

5. Drag the Archives widget to the sidebar widget area and give it a title of Past
Issues:. Click on Save to save it.

What just happened?
We added three widgets to our sidebar. Now let's see how they look in the live site:

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Theme Features

[138]

You'll notice that the styling is a little bit off:

 � There's a bullet point before each of our headings. That's because WordPress
automatically puts each widget inside a tag. We can easily fix that with
some CSS to tell browsers to display lists in the sidebar differently:

aside li {
 list-style-type: none;
}

 � You'll also notice that all of the sidebar widgets are displayed in one box with the
same styling, rather than in three separate boxes like our mockup. That's because
the mockup uses three separate <aside> elements while we've used just one.
There are three ways we could fix this:

 � Add three separate widget areas to our sidebar (instead of one widget area
with three widgets), each in an <aside> with the appropriate styling—not
best practice as it's adding lots of extra HTML just to achieve styling

 � Apply the styling we set for the mockup to the new classes WordPress has
given to our widgets inside the widget area

 � A better approach is to use the same classes and IDs that WordPress uses
when we're creating our mockup, that way the design will work perfectly
with no tweaks

We won't worry about that too much now as the site still looks fine, but if you want to tinker
with the CSS, go ahead!

Time for action – adding footer widgets
Now we have our sidebar widgets in place, let's add the footer widgets. We'll need to set
up a custom menu first, so that we can display it using the Custom Menu widget for the
Navigate: footer area from our mockup.

1. Now switch to the Menus screen, by going to Appearance | Menus. Add a new
menu using the same method we used previously to create our navigation menu,
starting by clicking on the + tab next to the tab for our existing menu. We'll call
this menu Footer Links.

2. Add the relevant pages to the new menu and save it. You'll see from the
following screenshot that we've added some more static pages to the site
for use in this menu:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[139]

3. Save the menu and switch to the Widgets page by going to Appearance | Widgets.

4. First, set up the text widget. Drag the Text widget over to the Left Footer
widget area.

5. In the text box, copy the HTML you saved earlier form the old footer:

<h3>Socialize</h3>
 <ul class="grid4up">
 facebook
 twitter
 rss
 gmail

<div class="push"></div>
<h3>About us</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam.</p>

6. Drag the Custom Menu widget to the Right Footer widget area.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Theme Features

[140]

7. In the drop-down menu, select the menu you've just added. In our case, the
Footer Links menu, as shown in the following screenshot:

8. Save the widget.

What just happened?
We added five new widgets to our widget areas, to display the content we need. We also set
up a new menu and copied some HTML that was used in our mockup for a text widget.

So, how do our widgets look? Switch to your browser and refresh the screen to check.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[141]

The footers look exactly as they should—no tweaks necessary. Well done!

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Theme Features

[142]

Featured images
If you've built a site before using the default Twenty Eleven theme, you may have used its
featured image functionality.

Featured images are images which you add to a page or post outside the content of the
post or page itself, as opposed to an image, which you would add into the flow of the
content. WordPress can then display your featured images however you want, for example
on an archive page it can display a small version of the featured image for each post above
or next to its excerpt.

Featured images were introduced with WordPress Version 2.9, before that many developers
created a special custom field, but it wasn't an ideal workaround. Featured images are a
feature of WordPress that make theme builders and site owners' lives easier.

So let's add them to our theme.

Time for action – adding featured images to our theme
For our theme to display featured images, we need to follow two steps – adding a new
function for featured image support to functions.php, and then add some code to
display the featured images to our template files.

1. Open your theme's functions.php file.

2. Above the closing ?> PHP tag, add the following code:

add_theme_support('post-thumbnails');

3. Save your functions.php file.

4. Open your theme's index.php file.

5. In the loop, insert a line break between the opening of <div class="entry-
content"> and above the PHP call for the content itself.

6. Add the following code:

<?php if (has_post_thumbnail()) {
 the_post_thumbnail('large');
} ?>

7. Save the file.

8. Now open your theme's page.php file and repeat step 2 to step 4.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[143]

What just happened?
We added the code needed to display featured images for each post and page. Let's look
at that code in detail:

 � First, it checks if the post or page has a thumbnail (or featured image) assigned to it

 � If so, it displays the image using the large size

Now let's add some featured images to our site and see how they look.

Time for action – adding featured images to the site
Adding featured images is done in the admin screen for each page or post.

1. Open the editing screen for a post or page, as shown in the following screenshot:

2. On the right-hand side, below the Categories box, is the box for uploading
featured images.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Theme Features

[144]

Can't see a featured images box?

If you can't see the box for uploading featured images, it's because you
don't have the functionality in your theme. Your theme's functions.
php file must have the code we added previously in order for this box to
show up.

3. Click on Set featured image to open the featured images pop up:

4. Upload your image as you would for any other image.

5. Once you've uploaded the image, don't click on the Insert into Post button,
instead, click on Use as featured image.

6. Click on the Save all changes button to return to the post editing screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[145]

7. To close the featured images pop up, click on the small X sign in the
upper-right corner.

8. Click on the Update button to save the changes to your post or page.

9. You will now see your featured image displayed in the editing screen:

10. Repeat steps 3 to step 8 for some more posts and pages.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Theme Features

[146]

What just happened?
We added featured images to some of the pages and posts in our site. Now let's see how
they look on the site.

First, in a single post:

Next, on our home page which lists all of our posts:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[147]

The image on the single post looks great and fits well into our layout. But the images on the
home page are a bit large. Luckily, WordPress makes it easy for us to change that. We can set
up a new template file just for single posts, and then edit our index.php file so it displays
smaller featured images. This means when any archive listings are using index.php, they
will display the smaller image.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Theme Features

[148]

There is an alternative way to do this. We could set up an archive.php file
for displaying all our archive listings, and leave index.php as it is. Or we
could use both single.php and archive.php, for even greater control.
As you get more advanced with your WordPress theme development, you'll
find that there's often more than one way to solve a problem, and that the
best one may be simply the one that works best for you.

Time for action – displaying featured images differently in
different template files

To do this, we'll need to create a new file called single.php, and edit the index.php
file as well.

1. Make a copy of your theme's index.php file and call it single.php. Save it to
your theme directory.

2. Open index.php and find the code you added for displaying featured images:

<?php if (has_post_thumbnail()) {
 the_post_thumbnail('large');
} ?>

3. Edit that code so it reads:

<?php if (has_post_thumbnail()) {
 the_post_thumbnail('medium');
} ?>

4. Save the index.php file.

What just happened?
We created a new file called single.php. The reason we copied index.php for this and
not page.php is that we want single posts to include post metadata. You may remember
that in Chapter 3, Coding it Up, we deleted the code to display that metadata, which was
why we set up the page.php file in the first place.

We then edited the index.php file so that any pages on your site using that file to
display content will display a smaller image.

Let's see how our home page looks now:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[149]

It needs a bit of styling, maybe floating the text to the left of the image for example, but
it's already much better—the images aren't so dominant and we can see more content.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Theme Features

[150]

Featured image sizes

When we upload an image to the media gallery, either directly into the gallery
or into a post or page, WordPress saves the uploaded image plus up to three
versions of it:

The thumbnail, a version of the photo which is cropped to a square, whose
default size is 150 px x 150 px.

The medium size, with a default maximum size of 300 px x 300 px. This size
doesn't involve cropping so if the image isn't square, then one side will be less
than 300 px.

The large size, with a default maximum of 640 px x 640 px, again not cropped.

WordPress will only save each of these images if the original image is large
enough. so if, for example, we load an image 500 px x 400 px, it will save the
original image plus the thumbnail and medium sizes but not the large size. It's
a good idea to upload images which are the same size as the large size in your
theme, to save on server space, but sometimes it may be necessary to upload a
wider image and use it in full size, for example for a full width banner.

If the featured image sizes don't fit in your design, you can always change them via the
Settings | Media screen.

Parent and child themes
This topic doesn't apply to the Open Source Online Magazine but it's worth explaining as
it's a really useful feature of WordPress theme development.

Say you've been working with the Open Source Online Magazine theme or another one
you've developed yourself or downloaded. You decide you want to build a second theme
or site with a similar layout and design, or with the content structured in a similar way,
but you don't want to start again from scratch.

You could just edit the theme you've already got to create a brand new one. But if your
changes aren't huge, it may be better to build a child theme.

A child theme is a theme which is associated with another theme, called the parent theme.
It takes most of its styling and content from the parent theme but has a few things which are
different say, for example the archive listings are displayed differently. To do this, you would
set up a child theme with its own stylesheet (all child themes need a stylesheet as we'll see
shortly), and an archive.php file. It wouldn't need any other files—not even an index.
php file, as it would take that from the parent theme.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[151]

To tell WordPress that a theme is the child of another theme, you have to add some text
to the very top of its stylesheet—the style.css file:

/*
Theme Name: My child theme
Theme URI: http://example.com/
Description: Child theme for the Open Source Magazine theme
Author: Your name here
Author URI: http://example.com/about/
Template: opensourcemagazine
Version: 1.0
*/

Some notes on this text:

 � It's commented out, browsers won't read it but WordPress will

 � The theme must have a name and a template, the other information is optional

 � The template is the parent theme – here you need to enter the directory your
parent theme is in, in your themes directory (not its name)

Below this commented out code, you add a call to the parent theme's stylesheet:

@import url("../opensourcemagazine /style.css");

After this, you add any styling that's specific to the child theme. You don't need to repeat
any styling that's in the parent theme.

When activating your theme in the WordPress theme's admin screen, you simply activate
the child theme—WordPress does the rest for you.

Child themes are a great way to build up your own bank of great
WordPress themes with less effort than it takes to develop them all from
scratch. For more on child themes see http://codex.wordpress.
org/Child_Themes.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Theme Features

[152]

Pop Quiz – understanding advanced theme features
Q1. What are pretty permalinks?

1. Images in a theme's design which make the site look pretty.

2. User-friendly URLs which use post titles instead of numerical IDs.

3. URLs which are better for SEO.

Q2. Where might you add a widget area to your themes?

1. In the sidebar.php file.

2. In the footer.php file.

3. In the header.php file.

4. All of the above.

Q3. What steps do you need to take to add a menu to a theme?

1. Register the menu in the functions.php file, add it to the correct place in
the theme (normally in header.php) and set it up in the Menus admin screen.

2. Register a widget area and then add that to the header.php file.

3. Add the wp_nav_menu() code to header.php then set up the menu using
the Menus admin screen.

4. Code the links directly into the header.php file.

Q4. I'm building a child theme. My parent theme and child theme both have an index.php
and a style.css file. My parent theme has an archive.php file and my child theme has
a page.php file. When I visit a category listing on my site, which template file will be used
to display it?

1. index.php from the parent theme.

2. index.php from the child theme.

3. archive.php from the parent theme.

4. page.php from the child theme.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[153]

Summary
In this chapter, we took our theme building skills to the next level, and added some
more advanced functionality to our theme.

Specifically, we covered:

 � Site settings, including the site title and description, and the code needed to
display these in our theme

 � Setting up "pretty" permalinks to make your site more user-friendly and improve
search engine rankings

 � Adding menus to our theme and configuring them in the Menus admin screen

 � Registering multiple widget areas and adding widgets to them

 � Adding featured image functionality to our theme and customizing where and
how images are displayed

 � Child themes – understanding how they work and their benefits

We now have a great theme in place, which reflects our original design and incorporates
some advanced theme features. The next step is to test that it validates and is free of bugs,
which we'll do in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

5
Debugging and Validation

In this chapter, we'll cover the advantages of debugging and validating your
theme. We'll learn about validation and the validation services available online,
and use them to validate our theme. Then we'll cover browser compatibility—a
look at some of the most common reasons why markup and CSS don't always
work how you expect them to, especially in Internet Explorer (IE), and the
various ways to remedy the problems.

As you work further and develop your own WordPress themes, you'll find that things will be
much smoother if you debug and validate at each step of your theme development process,
using a process we'll cover in detail in this chapter.

Depending on how your theme fares when validated and tested, you may not need to follow
all of the steps here, but you may find them useful at a later date.

So let's get on with it.

Debugging and validation workflow
It's a good idea to adopt a consistent workflow when it comes to testing your code, which
could look something like the following:

 � Add some code

 � Check if the page looks good in a modern browser

 � Validate

 � Check it in IE and other browsers you're using

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Validation

[156]

 � Make any necessary changes

 � Validate again, if necessary

 � Add the next bit of code

 � Repeat, as necessary, until your theme is complete

So, having added your code, the first step is to validate and debug it. Let's look at some
browser tools you'll use to help you do this, and then have a look at validation.

Browser tools for debugging
Before you start debugging your code, it's helpful to get to know the tools that come
with your browser to help you with this. Let's look at what's available.

Firefox
Firefox has traditionally been the web developer's browser of choice because of the great
developer tools it offers. However, in the last year or so, more developers are using Chrome
as that also has developer tools, as well as the benefit of being slightly more reliable in terms
of rendering code.

Let's look at some of Firefox's developer tools.

The Web Developer toolbar
This extension adds a toolbar to the Firefox browser. You can download it from
http://chrispederick.com/work/web-developer/.

The toolbar lets you link directly to the W3C's HTML5 and CSS validation tools. It also lets
you toggle and view your CSS output in various ways, and lets you view and manipulate a
myriad of information your page is outputting on-the-fly.

The following screenshot shows some of the options available with the Web Developer toolbar:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[157]

Firebug
A more robust tool is the Firebug extension for Firefox, available at http://www.
getfirebug.com/.

Firebug includes features for reviewing HTML, CSS, and the Document Object Model (DOM).
Also, the latest version of Firebug lets you make edits on-the-fly to easily experiment with
different fixes before committing them to your actual document.

The Document Object Model, or DOM, defines the structure of the markup
in your HTML pages. For more, see http://www.w3.org/TR/DOM-
Level-2-Core/introduction.html.

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Validation

[158]

The following screenshot shows how Firebug displays source code:

There's also a Firebug Lite version for Internet Explorer, Safari, and Opera
available at http://www.getfirebug.com/. Once you have Firebug
installed in your browser, you can turn it off and on by hitting F12 or going
to View | Firebug.

Google Chrome
Google Chrome also includes developer tools, which come bundled with Chrome—you don't
need to download any extensions. You can find out about them at https://developers.
google.com/chrome-developer-tools/docs/overview.

To access the developer tools, click on View | Developer. This presents you with a list of
three types of tools:

 � View Source, which gives you a full-screen view of the source code in a new tab

 � Developer Tools, which displays the source code alongside the open page, using a
number of panels to display different items, such as elements, resources, and sources

 � JavaScript Console, which displays the JavaScript console, enabling you to see how
JavaScript is operating and debug it

The screenshot shows the Elements pane as seen using the Developer Tools option, with
the header element in the page highlighted.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[159]

Safari
The Safari browser also has developer tools, but unfortunately, since the Safari 6 update,
these aren't as useful or wide-ranging as those in Chrome. So, I would always recommend
developing in Chrome, if you're on a Mac.

What Safari does have, however, is a means to view code being output on an iOS device,
if you're developing a theme aimed at mobile users. You can find out more about this at
http://mobile.smas.hingmagazine.com/2012/12/10/ios6-new-features-
developers-mobile-safari/.

Validation
So, you've got your developer tools set up and have a great process in place for testing.
Let's get on with validating the code in our theme.

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Validation

[160]

Validating HTML
The first step is to validate your markup. You do this using the W3C's validation service
at http://validator.w3.org/.

Time for action – validating your HTML
Let's see how validation works. The process for validating your code is different, depending
on whether you're working locally or remotely. First, the process for working remotely:

1. Go to http://validator.w3.org/.

2. Type in the URL of the site running your theme—in the case of my site, it's
http://rachelmccollin.co.uk/opensourcemagazine/.

3. Click on the Check button.

Next, the process if you're working locally:

1. Save a static HTML file with the markup that WordPress outputs from your theme.
To do this, in your browser, click on Save Page As and save as an HTML file.

2. Go to http://validator.w3.org/.

3. Click on the Validate by File Upload tab.

4. Upload your file.

5. Click on the Check button.

What just happened?
You used the W3C validation service to check the code in your theme.

Let's see what the results are:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[161]

As you can see from the previous screenshot, there are some problems at the moment. To
find out what they are, let's scroll down the page:

There are three instances of the same error relating to a category tag.

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Validation

[162]

Time for action – finding and fixing errors
The next step is to find the error, so that we can fix it.

1. Open the page you've just validated in your browser.

2. Using your browser's developer tools, display the page source. I'm working in
Chrome, so I'll navigate to View | Developer | View Source.

3. Look for the line numbers where the errors are—lines 61 and 78, as shown in the
previous screenshot. Here they are as displayed in Chrome. I've highlighted line
number 61 and you can also see line number 78:

4. The code on line number 61 is as follows (I've taken out the links to save space):

<p class="entry-meta">by Rachel McCollin in <a href=""
title="View all posts in Resources" rel="category
tag">Resources, <a href=" " title="View all posts in
Software" rel="category tag">Software</p>

5. Looking at the code, identify which template file it's being generated by. In this
case, the relevant lines are inside <div class="content">, so I know they're
in the main template file and not in one of the include files, such as sidebar.php
or footer.php. Both lines 61 and 78 are displaying metadata and are enclosed in
a <p class="entry-meta"> tag.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[163]

6. Now, open the relevant template file and find the PHP which generates that markup.
In the case of this page, the template file is index.php. The PHP generating those
two lines is inside the loop, which is shown below:

<p class="entry-meta">by <?php the_author_meta('first_name');
?> <?php the_author_meta('last_name'); ?> in <?php
the_category(", ") ?></p>

What just happened?
We opened the page we checked with the validator, identified the code causing the problem,
and then found the PHP generating that code in the template file.

Sniffing out PHP from the HTML it generates in this way may seem a bit daunting at first,
but the trick is to find HTML elements which form major areas of the site, such as <div
class="content">. Then you can identify the HTML tags immediately surrounding the
offending markup and trace that back to the PHP in the template file. If in doubt, always
make a backup before you make any changes.

Time for action – fixing our code
The next step is to fix the code we've identified as the cause for the problem.

1. The code causing the problem is the link which reads:

<a href="" title="View all posts in Resources" rel="category
tag">Resources

2. This is being generated by the the_category() template tag.

3. The best way to find out what this tag does is to check out its Codex page at
http://codex.wordpress.org/Function_Reference/the_category
and its source code in the category-template.php file, which is a part of the
core WordPress installation (you can see this at http://core.trac.wordpress.
org/browser/tags/3.5.1/wp-includes/category-template.php—it's
daunting, so be warned!).

4. Through my investigations I've discovered that this markup is generated by
WordPress and not by my theme. I, therefore, have two options, either I can live
with it, or I can delete that template tag.

5. In this case, let's delete the tag to get the theme to validate. Select the following
code in your index.php file and delete it:

in <?php the_category(", ") ?>

6. Save your index.php file and repeat the validation process at http://
validator.w3.org/.

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Validation

[164]

What just happened?
Having identified the offending code, we found out how it was being generated and removed
it. If the code is generated by your theme's markup rather than by WordPress, you may find
that you can change it instead of deleting it.

If you ever come across problems like this which are thrown up by
WordPress, you can always go to the WordPress trac site at http://
core.trac.wordpress.org to see if a ticket has been raised
about it, or you can submit one yourself. In this case, there is a ticket at
http://core.trac.wordpress.org/ticket/17632.

Now let's see what the validator makes of our page:

Validating CSS
Now that we have valid HTML5 markup, we can move on to checking the CSS.

Time for action – using the W3C's CSS validator
Let's use the W3C's CSS validator service to check that. Again, the process for validating our
code is different, depending on whether you're working locally or remotely. First, the process
for working remotely:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[165]

1. Go to http://jigsaw.w3.org/css-validator/.

2. Type in the URL of the site running your theme—in the case of my site, it's
http://rachelmccollin.co.uk/opensourcemagazine/.

3. Click on the Check button.

Next, the process if you're working locally:

1. Save a static HTML file with the markup that WordPress outputs from your theme.
To do this, in your browser, click on Save Page As and save as an HTML file.

2. Go to http://jigsaw.w3.org/css-validator/.

3. Click on the Validate by File Upload tab.

4. Upload your file.

5. Click on the Check button.

What just happened?
Here you'll want to see another screen with a green bar that says Congratulations! No
Error Found.

However, for our theme, we won't get this screen! We're using several new CSS3 properties,
that haven't made it officially into the specification, yet browsers are implementing them
by adding their own, specific browser prefixes. This means our rounded corner and gradient
properties fail, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Validation

[166]

You'll simply need to be aware of which CSS3 properties you're using, and if you don't get the
green bar, the validator will display the offending error and again offer suggestions on how to
fix it. The CSS validator will also show you the line the offending code is on. This is handy, as
your stylesheet is not affected by WordPress output, so you can go directly to the line in your
stylesheet file and make the suggested fix.

Testing on multiple browsers and platforms
No doubt you'll have a browser that you prefer to develop in, which is likely to be a modern,
standards-compliant browser, such as Chrome, Firefox, or perhaps Safari. But you'll need to
ensure that your themes work just as well in other browsers too. By debugging throughout
your development process, you'll reduce the number of browser compatibility problems and
spend less time at the end hacking your code, or putting in place fixes aimed at one browser
(normally IE).

Which browsers to support
You'll need to decide which browsers your theme will support and which versions of them.
This will depend on what you're developing your theme for—is it for a client or for release
to the public? The browsers supported by most developers at the time of writing are:

 � Google Chrome

 � Firefox

 � Safari for Mac

 � Opera

 � Internet Explorer version 7 onwards (or sometimes 8 onwards).

Very few themes now support IE6, and this is the right approach. Microsoft themselves
want us to stop supporting IE6, as you can discover at http://www.ie6countdown.com.

Approaches to browser support
There are two approaches to ensuring cross-browser compatibility—progressive enhancement
and graceful degradation. Let's take a quick look at the difference between these.

Graceful degradation
Graceful degradation is the process web developers have traditionally used. It involves
developing in a modern browser and then putting in place fixes for anything that doesn't
work in older browsers, such as IE6 and IE7.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[167]

This approach feels easier to start with, as it makes the initial development more
straightforward, but can mean a lot of extra work at the end of the process, and a
lot of extra code to get things working in older browsers.

Progressive enhancement
Progressive enhancement is the opposite of graceful degradation. It involves developing in a
way which is cross-browser compatible, so that your layout and basic styling works across all
of the browsers you're supporting, and then adding extras for those browsers that support it,
such as CSS3 styling. The extras you add aren't essential to the site, so it won't matter if users
on older browsers can't see them.

This method can be much more efficient and result in tidier code, but for many developers,
it entails a shift in thinking.

Whichever approach you adopt, I would recommend one very important thing—don't save
your browser testing till the end of your development process. Keep checking as you go
along, and then you can make small adjustments or fixes instead of having to do a lot of
extra work at the end.

Troubleshooting basics
Suffice to say, it will usually be obvious when something is wrong with your WordPress
theme. The most common reasons for things being off are:

 � CSS rules that use incorrect syntax or conflict with other rules

 � Mis-named, mis-targeted, or inappropriately-sized images

 � Markup text or PHP code that affects or breaks the Document Object Model (DOM)
due to being inappropriately placed or having syntax errors in it

 � WordPress PHP code or template tags and hooks that are copied over incorrectly,
producing PHP error displays in your template rather than content

The second point is pretty obvious when it happens. You see no images, or worse, you might
get those little ugly "x'd" boxes in IE if they're called directly from the WordPress posts or
pages. Fortunately, the solution is also obvious: you have to go in and make sure your images
are named and referenced correctly inside any img tags in your markup or background-
image declarations in your stylesheet.

For images that are not appearing correctly because they were mis-sized, you can go back
to your image editor, fix them, and then re-export them, or you might be able to make
adjustments in your stylesheet to display a height and/or width that is more appropriate
to the image you designed.

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Validation

[168]

For the latter two points, one of the best ways to debug syntax errors that cause visual
"wonks" is not to have syntax errors in the first place.

This is why, in your workflow, you should be constantly checking for validation.

Let's have a look at some of the most common causes of problems with code.

PHP template tags
The next issue you'll most commonly run into is mistakes and typos that are created by
copying and pasting your WordPress template tags and other PHP code incorrectly. The
most common result you'll get from invalid PHP syntax is a Fatal Error. Fortunately, PHP
does a decent job of trying to let you know in which file and line of code in the file
the offending syntax lives.

If you get a Fatal Error in your template, your best bet is to open the filename that is
listed and go to the line in your editor. Once there, search for missing <?php ?> tags.
Your template tags should also be followed with parentheses, followed by a semicolon,
such as ();. If the template tag has parameters passed in it, make sure each parameter
is surrounded by single quote marks, for example, template_tag_name('parameter
name', 'next_parameter');.

Be aware of proper PHP notation

The proper way to notate PHP is as mentioned earlier, with a <?php at the
beginning and a ?> at the end. The server will look for the beginning <?php
tag and start processing the PHP. Some developers use PHP shorthand—
starting with just a <? (no php added). This is risky as not all servers support
it, so stick with <?php in your opening tags.

The following screenshot shows the results of a PHP error, with reference to the line
number in the file generating the problem:

As you can see, this is a simple typo - the have_posts() template tag has been mis-typed.
This tag appears at the beginning of the loop, so it should be easy to find and fix.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[169]

CSS quick fixes
Finally, your CSS file might get fairly big, fairly quickly. It's easy to forget you already made
a rule and/or just accidentally created another rule with the same name. It's all about
cascading, so whatever comes last overwrites what came first.

The biggest cause of problems is duplicating selectors with different properties set. Beware
of duplicating in this way, and if you do need to, ensure that the rule you want to be used by
the browser is after any rule with duplicated selectors in your stylesheet.

For example, you may have the following rule for all of your headings:

h1, h2, h3, h4, h5, h6 {
 color: #333;
}

And then, elsewhere in your stylesheet, you have a separate rule for h3 headings, which
you want to be a different color:

h3 {
 color: #000;
}

For the second rule to be implemented by the browser, you must put it lower down in the
stylesheet than the first, so that it can override it.

Again, validating your markup and CSS as you're developing will alert you to syntax errors,
deprecated properties, and duplicate rules that could compound and cause issues in your
stylesheet down the line.

Fixing CSS across browsers
If you've been following our debug and validate method described in the chapter, then for all
intents and purposes, your layout should look pretty spot-on between both the browsers.

Common browser problems
In the vast majority of cases, it will be IE that doesn't render your CSS correctly. Common
issues include:

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Validation

[170]

 � Box model problems: IE can calculate the size of block elements differently from
other browsers. In most browsers, the total space taken up by an element is the
sum of its width and height plus the width and height of its margins and padding.
However, IE6, 7, and 8 will sometimes calculate the space taken up by an element
differently, including its padding in the width defined by the width property, and so
deducting this from the total space taken up by the element, as you can see in the
following diagram:

 � The hasLayout model: In IE6 and 7, hasLayout is a property that must be assigned
to elements for them to be rendered correctly. In some cases, you'll need to add
extra styling to trigger hasLayout in IE.

 � Float problems: IE6 and 7 sometimes drop elements which should be floated next
to each other, due to the way their width is calculated.

 � List spacing problems: IE6 will sometimes add white space between list items—a
pain if you're styling lists as boxes next to each other for navigation.

 � The peekaboo bug: In IE6 and 7, this bug causes floated elements to disappear
seemingly at random.

 � The guillotine bug: This bug makes elements, floated next to each other, change
height when the user hovers their mouse over one of them.

Fortunately, there is a fix (or often more than one fix) for each of these bugs. For a
comprehensive guide to the bugs and how to fix them, refer to The CSS Detective by Denise
R. Jacobs, published by New Riders (http://cssdetectiveguide.com).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[171]

Adding an IE-specific stylesheet
If IE is causing you problems which you can't fix by making tweaks to your main stylesheet,
then it's time for some hacks.

The neatest way to do this is to create two stylesheets for your theme—one for general
browser use and one for IE browsers, and let each browser call them in.

This isn't as bad as it seems. The bulk of your CSS can stay in your main CSS file; you'll
then call in the following specific IE stylesheet code, which will load additionally only if
the browser is IE.

In the IE stylesheet, you'll duplicate the rules and correct the properties that were not
looking correct in IE. Because this stylesheet will load in underneath your main stylesheet,
any duplicated rules will overwrite the original rules in your first stylesheet.

Time for action – setting up an alternative IE stylesheet
Let's set up an IE stylesheet.

1. In your header.php template file, add the following code after your full
stylesheet call:

<!--[if IE]>
<link rel='stylesheet" type='text/css" href="ie-fix.css"
media='screen, projection" />
<![endif]-->

2. Save the header.php file.

3. Now create a new stylesheet called ie-fix.css and save it to your theme's
directory (that is, the same folder your stylesheet is in). This is where any
IE-specific CSS will go.

What just happened?
We created a new IE-only stylesheet, and added a conditional tag in the header.php file
to call it only when the theme is being run in IE.

The <!--[if IE]> and <![endif]--> tags are essential. The first one checks if the page
is being viewed in IE, and the second ends the conditional tag, ensuring that all code after
it is run by all browsers.

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Validation

[172]

Checking your work in Internet Explorer
If you're not running Windows, or you are but aren't running all of the versions of IE
you need to test for, you have a couple of options for testing your theme in IE:

 � On a Mac, use Boot Camp (http://support.apple.com/kb/
HT1461?viewlocale=en_US&locale=en_US) or Parallels (http://www.
parallels.com/products/desktop/) to run Windows alongside OS X.

 � On any machine, use a browser emulator, such as Adobe BrowserLab
(https://browserlab.adobe.com) to emulate browsers which you aren't
running, including IE.

Time for action – testing our theme with BrowserLab
Let's test our site in IE using Adobe BrowserLab.

1. Go to https://browserlab.adobe.com.

2. You'll need to sign in with an Adobe user ID, so if you don't have one, create
one and then sign in.

3. Select the browsers you want to test for in the dropdown list.

4. Type in the URL of the page you want to test and hit Return.

5. Your page will be displayed as it renders in the browser you've selected.

What just happened?
We tested our theme using BrowserLab. Here's how it looks in IE9:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[173]

As you can see, there are some issues with the sidebar, as it uses a gradient for its
background—IE isn't picking that up. This means that we need to adjust the background-
color property for that element (or the relevant class) in our IE-only stylesheet to fix
the problem.

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Validation

[174]

Testing on mobile devices
Testing your themes on small screens and different devices brings a new set of challenges.
Again, you have a few options:

 � Test on the devices themselves. This is an expensive option given the range of
devices out there, but it can be helpful to test on one iOS and one Android device
if possible.

 � Resize your browser window to see how your layout appears when the screen is
resized. This will give you a good indication of how your responsive layout behaves
across screen widths.

 � Use a mobile browser emulator, such as the excellent versions for Opera Mobile
at http://www.opera.com/developer/tools/mobile/ and Opera Mini at
http://www.opera.com/developer/tools/mini/.

The book, WordPress Mobile Development Beginner's Guide by Rachel
McCollin, published by Packt Publishing, gives you a full guide to making
your theme mobile and testing across a variety of mobile browsers and
devices. Find out more at http://www.packtpub.com/wordpress-
mobile-web-development-beginners-guide/book.

Summary
In this chapter, we reviewed the basic process of debugging and validating your theme.
We learnt about:

 � Using a thorough validation and debugging process during development

 � Using browser tools to help with debugging

 � Using the W3C validator to validate HTML and CSS

 � Ensuring our PHP has the correct syntax

 � Testing across browsers and fixing problems in Internet Explorer

Next, it's time to package up the theme and send it to our client!

www.it-ebooks.info

http://www.it-ebooks.info/

6
Your Theme in Action

Now that we've got our theme designed, styled, and looking great, we just have
one last thing to do. It's time to share your theme with your client, friends, and/
or the rest of the WordPress community. This is the whole point of creating a
theme in WordPress; your designs are separate from the WordPress CMS content
and therefore easily shareable. This means that anyone can create a WordPress
theme, and anybody else can install that theme in their WordPress installation.

In this chapter, you'll learn how to check your theme against the WordPress Theme Review
guidelines, set it up so its stylesheet and license are correct, compress your theme as a ZIP
file, and run some test installations before uploading it.

The WordPress Theme Review guidelines
Before any theme can be published to the WordPress theme repository at
http://wordpress.org/extend/themes/, it has to conform to the WordPress
Theme Review guidelines. These include the following:

 � Code quality: Make sure your code is up to date.

 � Presentation versus functionality: Themes are for presentation, not functionality.

 � Theme features: Your theme should support implementation of core
WordPress features.

 � Template tags and hooks: Make sure your theme implements template tags
and hooks properly.

 � WordPress-generated CSS classes: Make sure you use WordPress-generated
CSS classes.

www.it-ebooks.info

http://www.it-ebooks.info/

Your Theme in Action

[176]

 � Theme template files: Theme template files should be used properly.

 � Security and privacy: The theme shouldn't present any issues with security
and privacy.

 � Licensing: A GPL-compatible license is required.

 � Theme name: The theme name must be appropriate.

 � Credit links: Credit links should be used and should be appropriate.

 � Theme unit tests: Your theme must pass these tests.

 � Theme obsolescence: Your theme should be kept current on an ongoing
basis, keeping up-to-date with WordPress updates.

There are a lot of hoops you have to jump through, as you can see, but none of them
are too tough. For more details, see the codex page on Theme Review at http://codex.
wordpress.org/Theme_Review, and the Theme Review team site at http://make.
wordpress.org/themes/.

In this chapter, you'll learn about the specifics of some of these criteria so you can share
your theme.

You can find a copy of these at http://codex.wordpress.org/Theme_Review.

In this chapter, we'll take a look at WordPress' licensing requirements. We'll also spend some
time properly naming our theme and crediting it, as well as creating a screenshot for our
theme, and giving it a run through WordPress' Theme Unit Test criteria using the following:

http://codex.wordpress.org/Theme_Unit_Test

Let's get started packaging our theme up.

The theme preview screenshot
Before we begin wrapping up our theme package, we'll need one more asset—the theme's
preview thumbnail.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[177]

Time for action – snagging a thumbnail of your theme
Let's create a screenshot for our theme.

1. Using whatever screen capture software you have on your system, take a
screenshot of a site running your theme.

2. Save the file and open it in an image editor.

3. Crop the image and resize it so that it's 600px wide x 450px high.

4. Save the image as screenshot.png—it must have this name or it won't work.

5. Copy the new screenshot.png file to your theme directory.

What just happened?
We created a screenshot of our theme and saved it in the format used by WordPress.

Now, when I view the theme in the Themes admin screen, the following screenshot
is displayed:

For more on theme screenshots, see http://codex.wordpress.org/Theme_
Development#Screenshot.

www.it-ebooks.info

http://www.it-ebooks.info/

Your Theme in Action

[178]

Packaging your theme up
To make sure your template is ready to go public, you'll need to run through the following
steps before packaging it up:

 � Removing any unnecessary files and code

 � Checking the stylesheet to ensure its information text is accurate

 � Creating a README.TXT file to package with the theme

 � Zipping the theme into a ZIP file and testing it using the Unit Test specs

Let's work through each of these steps in turn.

Tidying up your theme
Before you can do anything else, you need to ensure your theme is tidy.

Time for action – tidying up your theme
Let's tidy up the theme directory and code files. Perform the following steps for the same:

1. Open the theme directory in your file manager. Make a backup of your theme
just in case.

2. Check there aren't any files in your theme folder that aren't used by the theme.
If so, remove them.

3. Open your code files in turn and check them. If you've commented out any code,
remove that. Check that you haven't unnecessarily duplicated code, such as
stylesheet declarations.

4. Review your code. Is it clear and easy to work with? Is it laid out well so other users
could see what's happening and how your files are structured? See the WordPress
coding standards at http://codex.wordpress.org/WordPress_Coding_
Standards.

5. Now save all of the files you've edited.

What just happened?
You tidied up your files and your code. You should now have a theme which is well coded
and meets the WordPress coding standards. Well done!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[179]

Describing your theme in the stylesheet
The next step is to ensure that your stylesheet has all of the information users of your
theme will need. In Chapter 3, Coding It Up, we added text at the top of the stylesheet
inside comments to tell WordPress the name of the theme and provide more information.
Now let's add to that.

The opening lines of the stylesheet are commented out and contain the following
information about your theme:

 � Theme Name: The full name of your theme.

 � Theme URI: Where the theme can be downloaded from.

 � Description: A quick description of what the theme looks like, any specific
purpose it's best suited for, and/or any other theme it's based on or inspired by.

 � Author: Your name as the theme's author goes here.

 � Author URI: A URL to a page, where people can find out more about you.

 � Version: The version number—1.0 if it's a new theme. Each time you edit the
theme, change this by adding a 0.1 increment for small changes or going up to
the next whole number for major changes.

 � Tags: A list of tags applying to your theme, which will help people searching for
themes with certain characteristics.

You can also add license information—this won't be displayed on the Themes admin page,
but will be visible to anyone who opens your stylesheet. This can take the form of the full
license information or a short description of the license (for example, GPL).

Time for action – describing your theme
Now it's time to describe our theme.

1. Open the style.css file.

2. At the top of the file, edit the existing information so that it reads something like
the following:

/*
Theme Name: Open Source Online Magazine chapter 6
Theme URI: http://rachelmccollin.co.uk/opensourcemagazine
Description: Theme to accompany WordPress 3.4 Theme Development
Beginners Guide Chapter 6
Author: Tessa Blakeley Silver / Rachel McCollin
Author URI: http://rachelmccollin.co.uk/
Version: 1.0
Tags: Black, blue, dark, responsive, magazine
*/

3. Save your style.css file.

www.it-ebooks.info

http://www.it-ebooks.info/

Your Theme in Action

[180]

What just happened?
You added the information users need to understand what your theme is, who developed it,
and what attributes it has (using the tags). Now, when you refresh the Themes admin screen,
the new information is displayed:

Your theme's license
The requirement for the theme repository is that themes are derivative works of the
WordPress code base and, therefore, should be released with a standard GPL license that
does not conflict with the WordPress GPL license. If you're not familiar with the GNU/GPL
license, you can learn more about it here: http://www.gnu.org/copyleft/gpl.html

Again, if you're hoping to get into the WordPress theme repository, this is the license that
you must use for your theme. You'll want to refer to the WordPress theme review guidelines
for more information. The link for the same is http://codex.wordpress.org/Theme_
Review#Licensing.

Time for action – adding license information to our theme
Let's add some licensing information to our theme.

1. Open your theme's stylesheet.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[181]

2. Under the information you just added, and again inside comments, add the
following:

License: GNU General Public License v2.0
License URI: http://www.gnu.org/licenses/gpl-2.0.html

3. Save the file.

What just happened?
We added license information to our theme. This makes it clear that the theme is released
under the GPL so it will meet the WordPress theme repository criteria.

Zipping up your theme
Now the theme is ready to go, we just need to compress it for upload to wordpress.
org. To do this, we'll need to create a .zip file, but the way you do this will be different
depending on what platform you're using—Windows or Mac.

Time for action – zipping up your theme
Let's zip our theme up. First, the process for doing this on a Mac:

1. In Finder, select your theme's folder.

2. Right-click or command + click on it and select Compress from the shortcut menu.

3. A zip file will automatically be created for you.

The method for doing this will vary on Windows depending on what version of Windows
you're using. Firstly, for Windows Vista:

1. In File Manager, select your theme's folder.

2. Right-click or Ctrl + click on it and select Send to from the shortcut menu.

3. Select Compressed (zipped) folder.

4. A zip file will automatically be created for you.

If you're using an earlier version of Windows, you'll have to use compression software on
your PC to do this. For details of free compression software for Windows, see http://www.
top5freeware.com/top-5-free-file-compression-software. The most popular
compression software is WinZip, which isn't free, but you can download a free trial at
http://www.winzip.com/index.htm.

www.it-ebooks.info

http://www.it-ebooks.info/

Your Theme in Action

[182]

What just happened?
We made a .zip file with a compressed version of our theme contained in it. This file can
now be sent to other users or developers or uploaded to the WordPress theme directory
at http://wordpress.org/extend/themes/upload/.

One last test
You're now ready to test the package. This involves unzipping and uploading the theme to
a WordPress installation, which mirrors a live environment where it will be used.

Ideally, you'll want to install your theme on a web server installation, preferably the one
where the theme is going to be used (if it's a custom design for a single client), or under the
circumstances you feel your theme's users are most likely to use (for example, if you're going
to post your theme for download on the WordPress theme repository, then test your theme
on an installation of WordPress on a shared hosting environment which most people use).

Don't assume that the ZIP file you made is going to unzip or unpack properly (files have
been known to be corrupt).

Time for action – testing the theme
Let's install our theme in a site and test it. Perform the following steps:

1. Open a clean WordPress installation.

2. Go to the Themes screen by clicking on Appearance.

3. Click on the Install Themes tab.

4. At the top of the screen, click on Upload as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[183]

5. Click on the Choose File button and select your ZIP file.

6. Your file will upload to WordPress. Click on Activate.

7. Now test the theme, checking that it displays properly in the site and that all of
the functions you expect are available. You may have to amend the Permalinks
and Reading settings to do this—for a recap on how to do this, see Chapter 4,
Advanced Theme Features.

What just happened?
You uploaded your theme to a fresh WordPress installation and tested it. Hopefully, it's
all working ok—well done!

www.it-ebooks.info

http://www.it-ebooks.info/

Your Theme in Action

[184]

Have a go hero – using the WordPress Theme Unit Test
You've already learned about the Theme Review guidelines earlier in this chapter, but if you
want to submit your theme to the theme repository, you'll also need to make sure it passes
the Theme Unit Test.

As part of the theme review, the Theme Review Team will run tests on your theme, known as
the Theme Unit Test (http://codex.wordpress.org/Theme_Unit_Test). You can
do this yourself for your own theme to test it. To do so, you follow a few steps:

1. Download an XML file from https://wpcom-themes.svn.automattic.com/
demo/theme-unit-test-data.xml to your theme.

2. Import some text data by navigating to Tools | Import.

3. In the wp-config.php file in your WordPress installation, set WP_DEBUG to true,
using the instructions at http://codex.wordpress.org/WP_DEBUG.

4. Install some specific plugins and follow the testing process. You can find the full
instructions at http://make.wordpress.org/themes/about/how-to-join-
wptrt/.

Try doing this for your theme—it helps to know if your theme will pass before you submit
it, and is a useful way to learn about the standards required for themes listed on the
WordPress website.

Pop Quiz - questions on packaging up your theme
Q1. What license should a WordPress theme have to be accepted to the theme repository?

1. GPL

2. Creative Commons

3. Split license

Q2. Where do you place information that will be displayed in your theme's listing on the
Themes admin screen?

1. In functions.php

2. In the <head> tag of header.php

3. In a separate file of its own

4. In style.css

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[185]

Q3. What type of file should you upload to the WordPress theme submission page?

1. A PHP file

2. A ZIP file

3. A README.TXT file

Q4. What is the Theme Unit Test?

1. Specifications for the files your theme should include

2. A list of template tags your theme has to use

3. Guidelines on theme templates

4. A process for testing if your theme meets the Theme Review guidelines

Summary
In this chapter, you've learned how to package your theme up, so that other WordPress
users and developers can make use of it. You've also learned the following:

 � How to check your theme against the WordPress Theme Review guidelines

 � How to create a screenshot.png file for your theme

 � How to provide appropriate information in your stylesheet for users of the theme

 � How to compress your theme so that it can be uploaded to the WordPress theme
repository or sent to other users

 � How to run some final tests on your theme

Congratulations, you now know about getting a WordPress theme design off that coffee
shop napkin and into the real world! In the next chapter, we'll get down into the real-world
nitty-gritty of getting things done quickly with some slick tips and tricks for your WordPress
theme development.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

7
Tips and tricks

You now have a great working WordPress theme, which uses valid,
standards-compliant code and is fit for release to the public. Congratulations!

In this chapter we'll look at some added extras, some additional bells and
whistles you can use to make your theme just that bit better.

You'll learn how to create and make use of additional template files to add extra
flexibility and functionality to your theme, as well as how to use conditional tags
to display different content in different parts of your site. You'll also learn how to
make use of the Theme Customizer and optimize your site for SEO.

You can create perfectly good, workable WordPress themes without any of
these extras, but you'll find that you can take your WordPress themes much
further with these techniques.

So let's get going!

Adding more template files to your theme
In Chapter 3, Coding it Up, we looked at the template files you need for a basic WordPress
theme, and we spent some time creating them. We also learned about includes, files
which you call from your main template files, such as header.php.

www.it-ebooks.info

http://www.it-ebooks.info/

Tips and tricks

[188]

So far we've created the following template files for our theme:

 � Template files:

 � index.php

 � page.php

 � Includes:

 � header.php

 � sidebar.php

 � footer.php

 � The functions file:

 � functions.php

 � The stylesheet:

 � style.css

But let's say our site needed to display posts from a specific category differently from the
rest of the site, or we needed the home page to work differently, or maybe we wanted to
have more control over how search results or 404 pages were displayed.

With template files, we can do all that.

A search.php file for search results
WordPress handles search results pretty well already. Let's see what's displayed in our
theme if we try to search for example post (Note that we've now added a Search widget
to the right-hand side footer widget area to make this possible):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[189]

As you can see, it' s using our index.php template file, so the heading reads This Month:.
We'd rather make it more obvious that these are search results.

www.it-ebooks.info

http://www.it-ebooks.info/

Tips and tricks

[190]

Now let's see what happens if we search for something that can't be found:

Again, the heading isn't great. Our theme gives the user a message telling them what's
happened (which is coded into index.php as we'll see), but we could beef that up a bit,
for example by adding a list of the most recent posts.

Time for action – creating a search.php template file
Let's create our search.php file and add some code to get it working in the way we'd
like it to:

1. In your theme folder, make a copy of index.php and call it search.php.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[191]

2. Find the following code near the top of the file:

<h2 class="thisMonth embossed" style="color:#fff;">This Month:</
h2>

3. Edit the contents of the h2 element so the line of code now reads:

<h2 class="thisMonth embossed" style="color:#fff;">Search
results:</h2>

4. Find the loop. This will begin with:

<?php if (have_posts()) :?>
 <?php while (have_posts()) : the_post();?>

5. The first section of the loop displays any posts found by the search, leave this as it
is. The second section of the loop specifies what happens if no search results are
found. It's in the following lines of code:

<?php else : ?>
 <h2 class="center">Not Found</h2>
 <p class="center">Sorry, but you are looking for something
that isn't here.</p>
 <?php get_search_form(); ?>
<?php endif; ?>

6. Underneath the line that reads <?php get_search_form(); ?> and before
<?php endif; ?>, add the following lines of code:

<h3>Latest articles:</h3>
<?php $query = new WP_Query(array ('post_type' => 'post', 'post_
count' => '5'));
 while ($query->have_posts()) : $query->the_post(); ?>

 <a href="<?php the_permalink(); ?>">
 <?php the_title(); ?>

<?php endwhile; ?>

7. Save your search.php file and try searching for something which isn't included in
the site.

www.it-ebooks.info

http://www.it-ebooks.info/

Tips and tricks

[192]

What just happened?
We created a new template file called search.php, which will be used to display the
results of a site search. We then edited the heading to make it clearer, and added some
code to display the latest posts if the search had no results.

We actually did something pretty advanced, we added a second loop inside our original loop.

Let's have a look at the code we added after the search form:

 � The function $query = new WP_Query() runs a new query on the database,
based on the WordPress WP_Query function, which is the function you should
use when running a loop inside the main loop.

 � We gave WP_Query the following parameters:

 � 'post_type' => 'post' – this ensures that the query will only look
for posts, not for any other kind of content.

 � 'post_count' => '5' – this tells WordPress how many posts to show.
Five, in this case.

 � We then output the title of each post with the php the_title() tag which
we've already used higher up in the loop to display post titles. We wrapped this
in a link inside a list item. The link uses the_permalink() to link to the blog
post whose title is displayed. This is very similar to the main loop.

 � Finally, we added endwhile() to stop this loop. This doesn't replace the
endwhile() at the end of our main loop, which is higher up in the file.

For more on WP_Query and how to use it to create multiple loops,
see http://codex.wordpress.org/Class_Reference/
WP_Query.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[193]

Let's have a look at what our users will see when they do a search now. First,
a successful search:

www.it-ebooks.info

http://www.it-ebooks.info/

Tips and tricks

[194]

Next, an unsuccessful search:

So that's how we set up a template file for search results. Our search page is only displaying
two posts because that's all we have on our site. If there were more than five, it would just
display the five most recent.

Now let's set one up to display some pages differently.

Creating a custom page template
In many themes, all pages will need the same basic layout and content, with the same sidebars
and footer and the same styling. But sometimes you may need some pages to look different.

For example, you might want to use different sidebars in different pages, or you might want
a different layout. Here we'll look at the second of those two options.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[195]

Time for action – creating a custom page template
Imagine that you have some pages containing a lot of content which you want to display
across the full width of the page, without the sidebar getting in the way. The way to handle
this is to create a page template which doesn't include the sidebar, and then select that
page template when you're creating or editing those pages. Let's try it out.

1. In the same folder as your other theme files, make a copy of your page.php file
and call it page-no-sidebar.php.

2. At the very top of the file, above the line reading <?php get_header(); ?>,
insert the following code:

<?php
/*
Template Name: Full width page without sidebar
*/
?>

3. Find the following line of code:

<div class="content left two-thirds">

4. Edit it so it reads:

<div class="content left full">

5. Now find the line that reads <?php get_sidebar(); ?> and delete it.

6. Save your file.

What just happened?
We created a new template file called page-no-sidebar.php, and edited it to display
content differently from our default page template:

 � We edited the classes for our .content div, using the object-oriented approach
to styling used by the layout-core.css file. This will apply styling for the .full
class to this div, so that it displays a full width instead of two-thirds of its
containing element.

 � We removed the line calling the get_sidebar include, so that it won't be
displayed on any pages using this template.

www.it-ebooks.info

http://www.it-ebooks.info/

Tips and tricks

[196]

The lines we added at the top are essential for WordPress to pick up on our page template
and make it available in the WordPress admin. Page editors will see a drop-down list of page
templates available, and the name we defined in the template is what they'll see in that list,
as shown in the following screenshot:

As you can see, in the Page Attributes box to the right-hand side, a new select box has
appeared called Template. Our new page template is listed in that select box, along with
Default Template, which is page.php.

Now we can try it out by assigning this template to a page and seeing how it looks.

Time for action – assigning a custom page template to a page in
our site

It's very simple to make a page in our site use our new page template.

1. In the WordPress admin, open the editing screen for one of your pages.
Here we'll use the About Us page.

2. In the Page Attributes box, select the template called Full width page
without sidebar.

3. Click on the Update button to save changes to the page.

4. Now visit the page to see how it looks.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[197]

What just happened?
We edited one of our pages so it uses the page template we just set up. This is how it now
looks in the browser:

The page is displayed without a sidebar, and the content stretches to the full width of the
page. Good job!

Have a go hero – styling the custom page template
You may remember that in Chapter 3, Coding it Up, we added the body_class() template
tag to the <body> tag in our theme's header.php file, using the following code:

<body <?php body_class($class); ?>>

This tag automatically assigns classes to the <body> tag depending on what type of content
is being displayed and the template file being used. The great news is that you can use it to
target our new page template.

www.it-ebooks.info

http://www.it-ebooks.info/

Tips and tricks

[198]

Try doing this with your theme, using the .page-template-page-no-sidebar-php
class, which will be assigned to the <body> tag for any pages using this template.

For example, you could try:

 � Changing the color or size of the page title, using the .page-template-page-no-
sidebar-php h2.page-title selector

 � Hiding some content on this page only, using the display:none declaration
(although it's much better to delete the content from the template file as then the
content won't be output in the first place)

 � Moving the sidebar to the left-hand side instead of removing it altogether— using
layout styling for the sidebar and the content

 � Adding an additional background image (or a different one) to those pages

There are plenty of possibilities!

For more on creating custom page templates, see http://codex.
wordpress.org/Pages#Creating_Your_Own_Page_
Templates.

Working with conditional tags
Along with using page templates to display different content in different parts of your site,
you can also use conditional tags. These are bits of PHP that tell WordPress to check if
something is the case and, if so, run some code or, if not, to either run a different piece
of code or to do nothing at all.

We'll scrape the surface of conditional tags here as it's a huge subject that you can do a
great deal with, but it can get very complicated.

First, let's have a quick look at what conditional tags should look like.

Conditional tags' syntax
The basic syntax for conditional tags is as follows:

<?php
if ([condition])
{
 // code to output when condition is met
}
?>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[199]

If the condition isn't met, WordPress would just skip the contents of the conditional tag
and go straight on to the next bit of code. We'll create an example of this shortly.

You can also check when a condition is not true, using an exclamation mark:

<?php
if (![condition])
{
 // code to output when condition is not met
}
?>

Or you can use else to add an alternative action if the condition is not met:

<?php
if ([condition])
{
 // code to output when condition is met
}
else
{
 // code to output when condition is not met
}
?>

These are the three basic ways of using conditional tags.

Incorporating conditional tags in our theme
Can you think of any examples where we've already used conditional tags in this book? For
a start, there's our loop, which we've used in all of our template files. When looking for posts
to output, WordPress checks if there are any posts to display, and displays them if this is the
case; if not, it does nothing.

The code in the loop which does this is shown as follows:

<?php if (have_posts()) : ?>
 // code to display our post titles and content
<?php else : ?>
 /// code to output if there are no posts
<?php endif; ?>

www.it-ebooks.info

http://www.it-ebooks.info/

Tips and tricks

[200]

You may have noticed that this code is slightly different from what you've
already seen in the loop, which uses while (have_posts). An if
statement checks if there are posts, but a while statement just tells
WordPress to do something while there are posts to display, and isn't used
for checking conditions.

The else statement and its contents are optional, but it helps to have something there just
in case WordPress can't find anything to display. In our search.php template, as you'll
remember, we added some code to output a list of recent posts inside that else statement,
so that it's only displayed if the search finds no results:

<?php if (have_posts()) : ?>
 // code to output posts if the search is successful
<?php else : ?>
 <h2 class="center">Not Found</h2>
 <p class="center">Sorry, but you are looking for something that
isn't here.</p>
 <?php get_search_form(); ?>
 <h3>Latest articles:</h3>
 <?php $query = new WP_Query(array ('post_type' => 'post',
'post_count' => '5'));
 while ($query->have_posts()) : $query->the_post(); ?>

 <a href="<?php the_permalink() ?>"><?php the_title();
?>

 <?php endwhile; ?>
<?php endif; ?>

This means you've already been working with conditional tags and you didn't even know it!
Now let's work on another example of using conditional tags – hiding the page title on the
home page.

Using conditional tags to hide the home page's title
Let's imagine that we're working on a site which needs a static page as the home page
instead of the blog listing we're using for Open Source Magazine. If we created a site like
this we'd probably want to call our home page Home. But would users need to see that
Home title on the home page? Not really, as they know it's the home page.

Let's try a really easy way to do this using CSS first, before moving on to using a
conditional tag.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[201]

Time for action – using CSS to hide our home page's title
Before we can hide our home page title, we'll need to change the settings on our site so it
displays a static page as the home page.

1. In the WordPress admin, go to the Reading screen via the Settings menu:

www.it-ebooks.info

http://www.it-ebooks.info/

Tips and tricks

[202]

2. Change the Front page displays settings so that your site displays the About us page
as the home page:

3. Click on Save Changes to save your settings.

4. Switch to your browser and visit the home page of your site. It's now changed:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[203]

5. Now open your theme's style.css stylesheet.

6. Above the media queries in your stylesheet add the following:

/* hide home page title */
.home h2.post-title {
 display: none;
}

7. Save style.css and switch to your browser. Refresh the home page screen.

What just happened?
We changed our Reading settings to display a static home page, and then we added some
CSS to hide the home page title on that page:

 � .home targets the home page only, the .home class is generated by body_class()
which we used earlier

 � h2.post-title targets the h2 element in the loop, which displays the post title
of any posts found (in this case actually a page, but that's not important)

 � display: none tells the browser not to display the content we've targeted

So now what does our home page look like?

www.it-ebooks.info

http://www.it-ebooks.info/

Tips and tricks

[204]

The title isn't there anymore! What's left would need some styling as the margin between
our image and our content is a bit small, but the CSS has done what we set out to achieve.

Now let's look at the HTML that WordPress generates on the home page. This is just a
snippet of the full page HTML showing the elements affected by what we've just done:

<div class="content left full">
 <article class="post-16 page type-page status-publish hentry"
id="post-16">
 <h2 class="post-title"><a href="http://rachelmccollin.co.uk/
opensourcemagazine/" rel="bookmark" title="Permanent Link to About
Us">About Us</h2>
 <div class="entry-content"><!--//post-->
 <p>Lorem ipsum...

The title is still output in the markup—it's the line beginning <h2 class="post-title">.
This means that anyone viewing our site without CSS, either because they've turned it off or
they're using assistive technology such as a screen reader will still see or hear that title.

We want to remove the title altogether, so we use a conditional tag instead.

Time for action – using a conditional tag to hide our home
page's title

Now we'll use a conditional tag to completely remove the home page title.

1. Open your style.css file and remove the styling you just added to hide the
home page title. Check your home page in the browser, it should be displaying
the title again.

2. Open the page-no-sidebar.php file, which is the template file our About Us
page uses.

3. Find the following code:

<h2 class="post-title"><a href="<?php the_permalink() ?>"
rel="bookmark" title="Permanent Link to <?php the_title_
attribute(); ?>"><?php the_title();?></h2>

4. Add a conditional tag around it so it reads:

<?php if (!is_front_page ()) { ?>
 <h2 class="post-title"><a href="<?php the_permalink() ?>"
rel="bookmark" title="Permanent Link to <?php the_title_
attribute(); ?>"><?php the_title();?></h2>
 <?php } ?>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[205]

5. Save your template file.

6. Now repeat this process for the page.php template file and save that.

7. Switch to your browser and refresh the home page.

What just happened?
We added a conditional tag to tell WordPress to not output the post title on the site's
front page. Let's have a look at that code:

 � <?php if (!is_front_page ()) { ?> checks if the user is not on the
front page (by inserting an exclamation mark). The } ?> at the end is important
as the braces will contain the code to output if the condition is met, and ?> closes
PHP so that the next line of HTML can be read by the browser.

 � The next line is unchanged, it's the output of our h2 element and its contents.

 � Finally, <?php } ?> tells the browser we're using PHP again. We use the closing
brace (}) to end the code that's output if the condition in our conditional tag is
met, and then uses ?> to close PHP again.

When you refresh your home page again you'll see that the title isn't displayed. It looks
exactly the same as the previous screenshot which was the result of using CSS to hide
the title.

But the difference is in the code. Let's see the HTML that WordPress outputs for our home
page now:

<article class="post-16 page type-page status-publish hentry"
id="post-16">
 <div class="entry-content"><!--//post-->
 <p>Lorem ipsum...

The h2 element and its contents have gone completely. Much better!

Before moving on to the next section, we'll just take a moment to restore our
Reading settings to the way they were, so that the blog page is shown as the
home page instead of a static page. Don't undo the changes you've made to
your template files though. If you should ever change the Reading settings
back in the future, or someone else who needs a static home page should
use your theme, this conditional tag will be useful.

www.it-ebooks.info

http://www.it-ebooks.info/

Tips and tricks

[206]

Have a go hero – other ways of showing conditional content
Can you think of any other ways of hiding the title in our home page?

Yes, you could use a template file. You could either set up a custom page template for use
on the home page, or (even better) create a front-page.php file which WordPress will
automatically use to display home page content. In your new template file, you'd remove
the h2 element and its contents altogether. We've used the conditional tag to create a
whole new template file just to remove one line of code seems a bit disproportionate.

Can you think of any other uses for conditional tags? Try to identify how you might use
them in other places in your theme, and give it a go.

For a full list of the conditional tags available and how to use them, see
http://codex.wordpress.org/Conditional_Tags.

The Theme Customizer
You could quite happily stop where you are and you'd have a great theme. It's structured
well, it makes use of the bloginfo tag to display site information, it has a menu and some
cool widgets, as well as using template files and conditional tags to display the right content
in the right place.

But if your theme is going to be used by other people, you can add more options to
help make their lives easier. By activating the Theme Customizer, you can let users tweak
settings such as colors and fonts or add content to be displayed in the theme. These are
great features if you're going to release your theme to the public, but can also be useful
for client sites.

The Theme Customizer was introduced with WordPress 3.4. The Theme Customizer for
the default Twenty Eleven theme looks like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[207]

To give your theme users access to the Theme Customizer you need to add some code to your
functions.php file, and then you need to add the relevant code for each option you want to
provide them with. We'll start by adding Theme Customizer functionality to our theme.

www.it-ebooks.info

http://www.it-ebooks.info/

Tips and tricks

[208]

Time for action - adding the Theme Customizer to our theme
To do this, we need to add some code to our functions.php file.

1. Open your theme's functions.php file.

2. Before the closing ?> tag, add the following:

function add_theme_customizer($wp_customize)
 {

 }
 add_action('customize_register', ' add_theme_customizer');

3. Save the functions.php file.

4. To view the Theme Customizer, go to Appearance | Themes, and then in the
links below your theme, click on Customize.

What just happened?
We added a new function to add Theme Customizer capability to our theme. Let's have
a look at that function:

 � First we define our function, add_theme_customizer. You can give this any
name you want, the name we've used makes it easy to see what the function does.

 � The space between the braces is where all the code will go to add specific options
to our Theme Customizer.

 � After closing the braces, we add an action. This will run the code inside our add_
theme_customizer function when WordPress runs the customize_register
function, which is a default function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[209]

Now we can view the Theme Customizer for our theme. As we haven't defined any
additional functions, it currently includes the default options provided by WordPress:

We can see the default customizations added by WordPress:

 � Site Title & Tagline: Here we can change the site's name and description

 � Navigation: Change the menu used in the main navigation area

 � Static Front Page: Change the Reading settings if you want the front page to
display a static page instead of the latest posts

We can add more options to the Theme Customizer, so let's do it.

www.it-ebooks.info

http://www.it-ebooks.info/

Tips and tricks

[210]

Time for action – adding some more options to the Theme
Customizer

WordPress provides some default options in the Theme Customizer, and we can also add
our own. Let's add the option for users to tweak the color of links.

1. In functions.php, add the following code between the curly braces in the
function you just defined:

// SETTINGS
 $wp_customize->add_setting('content_link_color', array(
 'default' => '#088fff',
 'transport' => 'refresh',
));
// CONTROLS
 $wp_customize->add_control(new WP_Customize_Color_Control($wp_
customize, 'content_link_color', array(
 'label' => 'Content Link Color',
 'section' => 'colors',
)));

2. Save your functions.php file.

What just happened?
We added a function to enable users to change the link colors in their site using the Theme
Customizer. This is the most complex piece of PHP code we've added yet so let's have a look
at how it works:

 � Firstly, it defines the settings which are available in our Theme Customizer, using
the WordPress $wp_customize->add_setting function:

 � content_link_color is the ID of our setting

 � the default value is #088fff, which is the link color coded into our
theme's stylesheet

 � 'transport' => 'refresh' tells WordPress to display any changes
users may make in the Theme Customizer as they are making them

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[211]

 � Next, it specifies the control which users will use to edit the setting, using the new
WP_Customize_Color_Control function:

 � content_link_color is the ID for our setting that tells WordPress that
this control will amend that setting

 � The label value is what WordPress will display in the Theme
Customizer screen

 � section is the section within that screen in which WordPress will
place our control, in this case, colors

Let's see what our Theme Customizer looks like now:

Any changes the user makes won't actually have any effect yet, because we haven't told
WordPress to alter the CSS based on their modifications.

www.it-ebooks.info

http://www.it-ebooks.info/

Tips and tricks

[212]

Time for action – ensuring Theme Customizer changes are
carried through to the CSS

To ensure any changes made by users actually take effect, we need to add another function
telling WordPress to alter the CSS.

1. In your functions.php file, below the functions you've just added, add the
following lines:

function theme_customize_css()
 {
 ?>
 <style type="text/css">
 a { color:<?php echo get_theme_mod('content_link_
color'); ?>; }
 </style>
 <?php
 }
add_action('wp_head', 'theme_customize_css');

2. Save your functions.php file.

What just happened?
We added a final function which tells WordPress to amend CSS based on any changes
the user makes in the Theme Customizer screen. In detail, the code is as follows:

 � We start with the theme_customize_css() function which defines our
function's name.

 � Inside the function's settings, we set styling using <style type="text/css">
which is inline CSS to be inserted in our page's <head> section:

 � The styling uses echo get_theme_mod('content_link_color'). What this
does is fetch the value of content_link_color (the setting we defined earlier)
and echoes it, which means it outputs it.

 � Finally, after closing the HTML tags and PHP braces, we define an action: add_
action('wp_head', 'theme_customize_css'). This defines an action to
be run with the wp_head hook, which means WordPress will use it whenever it
encounters wp_head in our page's <head> section. You may remember we added
that to our theme in the Finishing off with the footer section in Chapter 3, Coding
It Up. The action runs our function theme_customize_css, at this point. What
this will then do is output the HTML into the <head> section of each page,
generating inline CSS.

Now when our users amend the link color, it will show up on the Theme Customizer screen:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[213]

If they then save changes by clicking on the Save button, the changes will be reflected in the
live site, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Tips and tricks

[214]

Before continuing, we'll use the Theme Customizer to change the color
back to the default CSS as it fits with our design.

Theme Customizer – the possibilities
We've just added one option to the Theme Customizer—of course you could add more.
Possibilities include:

 � changing any of the colors

 � tweaking the layout

 � adding content in specific areas of the site

 � uploading images

The great thing about using the Theme Customizer is that users can see the effect of their
changes before saving, which means they'll be less likely to break the site than if they tried
to hack your theme files.

For more on the Theme Customizer, see http://codex.
wordpress.org/Theme_Customization_API.

Have a go hero – adding a theme options screen
Along with activating the Theme Customizer, you could also create a theme options
screen which lets users configure a wider range of options in your theme. This involves
using functions to create admin screens and menu items, as well as getting to grips with
the WordPress Settings API.

Try creating a theme options screen for your theme. You can find out how to do it at
http://codex.wordpress.org/Creating_Options_Pages.

Search engine optimization
WordPress is great for SEO. It lets you add meta tags to your pages which will help search
engines to index them properly, it makes it easy for you to add information to your images
to help search engines to find them, and with the use of plugins, you can do even more.

As SEO is so important to most site owners, we're going to spend some time looking at SEO
and how you can develop themes that enhance SEO for the owners of any sites using them.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[215]

SEO checklist
There are a few basic checks you can make to ensure your theme is SEO-friendly. Many
of them have other benefits too, such as making the site more accessible or faster.

The main things you should be doing in your themes include:

 � Using clean, valid, standards-compliant code

 � Using semantic elements which will help search engines (and browsers)
understand how the content is organized

 � Ensuring your theme isn't sluggish

 � Configuring pretty permalinks which make use of search keywords

 � Optimizing images with alt and title attributes

 � Using optimized meta tags: title and description

Of course, in addition to these it's important for a site's content to be SEO-friendly
but we won't deal with that here as it's not related to the theme itself.

Let's have a look at each of those in turn.

Clean, valid, standards-compliant code
A theme which is well coded will have immediate SEO benefits, as well and speed and
usability benefits too. Search engines will find it easier to index well-coded sites and will
be less likely to blacklist them. In addition, by using semantic elements you can give search
engines some pointers as to how your theme's content is structured, for example by using
elements such as header, article, aside, and footer correctly.

We covered validation in detail in Chapter 5, Debugging and Validation, and ran our site
through the W3C validator. If you haven't gone through that process, it's a good idea to
do so, especially if you're going to be releasing your theme to the public.

Semantic HTML5
You'll remember from Chapter 3, Coding it Up, that we coded our theme using HTML5.
This latest version of HTML gives us some new semantic elements to work with that
make more sense of our files. The elements we used included:

 � header – the site header, which you may have coded in the past as <div
ID="header">.

 � article – the element containing each of our posts.

www.it-ebooks.info

http://www.it-ebooks.info/

Tips and tricks

[216]

 � aside – it contains sidebars. An aside is anything that is separate from the
main content and sits outside the flow of the page.

 � footer – the site footer. You can also use this for a footer within any other element,
for example an article's footer might contain some metadata about the article.

These elements tell search engines more about the structure of a page than the div tags we
may have used in the past, which have no semantic meaning at all.

For more information on HTML5 and how to implement it, see the
excellent HTML5 Doctor website at http://html5doctor.com. For
an overview of how HTML5 and WordPress fit together, see http://
rachelmccollin.co.uk/blog/wordpress-and-html5/.

Making your theme run faster
This isn't really so much about themes as it is about the sites they're used on, but there
are some tips for faster sites that can also be applied to themes.

Some tips for making your theme lean and fast, so it doesn't slow down the sites it's
installed in include:

 � Keep your code tidy – only use what's necessary and delete anything that's not
being used.

 � Avoid duplication in your code – for example, when using CSS for styling. A lot of
themes will include the same styling for multiple elements or classes, repeating
the same declarations over and over. Our object-oriented approach means we only
have to add each bit of styling once and then use classes to apply it to our theme.

 � Avoid inline JavaScript and CSS – store them in external files such as style.css
and then call them from your template files.

Occasionally inline CSS and scripts may be unavoidable, such as when we
added styling earlier using the Theme Customizer. This was because we
needed to attach it to the get_option() function, which we can't run
in a stylesheet.

 � Call stylesheets at the top of each page (in header.php) and scripts at the bottom
(in footer.php) where possible.

 � Minimize HTTP requests by using only the images you need. For example, by
using CSS3 for gradients and rounded corners we avoided a large number of HTTP
requests for images that older themes would have made to achieve these effects.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[217]

Once you have your theme installed on a site, there's more you can do to make the site
itself faster, for example:

 � Use a caching plugin such as WP Supercache (available at http://wordpress.
org/extend/plugins/wp-super-cache/) to cache your site. The way this
works is by generating static HTML from the PHP generated by WordPress. This
HTML is then stored on the server with your site and displayed when a user
accesses the site. This is much faster than running all the PHP every time.

 � Minify your code with a plugin such as WP Minify (http://wordpress.org/
extend/plugins/wp-minify/), which compresses the code in your site to
make it run faster.

Search-engine optimized permalinks
In Chapter 4, Advanced Theme Features we looked at how to configure so-called "pretty"
permalinks, and how to edit the slug for each page and post to give us more control over
those permalinks. A slug is a unique identifier for a page or post which appears at the end
of its URL, so the page http://rachelmccollin.co.uk/opensourcemagazine/
contact/ has the slug contact. When editing your slugs, you will help search engine
rankings if you ensure those slugs include some of your search keywords, in other words,
the words or phrases people are likely to use when looking for sites like yours.

Identifying the best search engine keywords to target can be a mammoth task,
especially for sites where being found by search engines is crucial and there's
a lot of competition. To learn how to do this, check out WordPress 3 Search
Engine Optimization, Michael David, Packt Publishing, and the article on the
subject at http://www.packtpub.com/article/customizing-
wordpress-settings-seo.

Optimizing images and links with alt and title attributes
This is a topic more for site owners than for theme builders, as they will be uploading more
images and adding more links to their site. However, it does have its place in theme building.

Our theme includes images as background images which can't have alt or title attributes
assigned to them. But let's imagine your theme included a logo as part of the HTML markup.
How would you optimize that image for SEO?

www.it-ebooks.info

http://www.it-ebooks.info/

Tips and tricks

[218]

Time for action – optimizing a logo for SEO
Here we'll add a linked image to our site header and optimize it for SEO. We don't need
to check the visual impact on the theme, as it will break the design—after all, this is just
an example.

1. Open your theme's header.php file.

2. Inside the <header> element, and above the <hgroup> element, insert the
following code:

<a href="<?php bloginfo('url'); ?>" title="<?php bloginfo('name');
?>">
 <img src="<?php bloginfo('stylesheet_directory')?>/images/osmag-
logos.png" alt="<?php bloginfo('name')?> - logo" title="Logo -
click for home page"/>

3. Save your header.php file.

4. Switch to the browser and check the code generated by WordPress.

What just happened?
We added an image inside a link, and optimized both for SEO. Let's look at each.

First the link, which has the following attributes:

 � href="<?php bloginfo('url'); ?>" – this ensures that the link is directed
to the site's home page, using the bloginfo template tag we first encountered
in Chapter 3, Coding it Up.

 � title="<?php bloginfo('name'); ?>" – the link has a title which
corresponds to the site name, again using bloginfo. This tells browsers,
search engines, and screen readers more about the link.

Now the image. Its attributes are:

 � src="<?php bloginfo('stylesheet_directory')?>/images/osmag-
logos.png" – the image is contained in the images directory within our theme
directory.

 � alt="<?php bloginfo('name')?> - logo" – the alt attribute is what
a screen reader would read out to a user, so it needs to be descriptive. As well
as adding the name of the site we've added a note that it's the logo.

 � title="Logo - click for home page" – the title gives users some
helpful information about how to use this link.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[219]

Using bloginfo like this means you can code these attributes into your theme without
worrying about what will be generated by different sites using the theme—WordPress
will fetch the correct information for you.

When managing images and links in a site, you don't have to worry about
writing the code. WordPress handles attributes via its links and media
upload interfaces. That's a relief!

Let's see the code generated by WordPress for that image and its link:

<a href="http://rachelmccollin.co.uk/opensourcemagazine" title="Open
Source Magazine">
 <img src="http://rachelmccollin.co.uk/opensourcemagazine/wp-content/
themes/opensourcemagazine_ch7/images/osmag-logos.png" alt="Open Source
Magazine - logo" title="Logo - click for home page"/>

As you can see, the HTML which WordPress generates includes useful information for
search engines and screen readers.

Before moving on, we'll quickly delete the code we added here, as it breaks
our site's design. You might want to keep it in your theme if you're including
a logo in your markup instead of as a background image. If you wanted
to, you could make this an image your theme's users could upload via the
Theme Customizer.

Using optimized meta tags – page titles and descriptions
Along with using alt and title attributes for our images and links, we can also use meta
tags for each page to tell search engines what the page is about. These are very important
for SEO, as they are the text that's displayed when Google (for example) displays your site
on a search results page. Along with influencing the likelihood that your site will be found,
they also influence the chances of a user clicking that link in the search results page and
visiting your site.

www.it-ebooks.info

http://www.it-ebooks.info/

Tips and tricks

[220]

For example, here's the listing Google displays when it finds the small business websites
page in my agency site, http:compass-design.co.uk in a search:

The underlined text in purple is the title of this page, while the black text below the
link is its description. In this case it's been optimized using a plugin called SEO by Yoast
(http://wordpress.org/extend/plugins/wordpress-seo/). We won't go into
that here as it's a task for site owners, not theme builders. The blue text at the bottom
is the business address—something which Google has in its database because Compass
Design is registered with Google Places.

As a theme builder you can optimize these meta tags for your theme users—great if users
don't want to use a plugin or don't know how.

Time for action – optimizing our theme's page meta tags
The meta tags go in the <head> section of each page, which in a WordPress theme is in
header.php.

1. Open your theme's header.php file.

2. Find the following code and delete it:

<meta name="description" content="Description of content that
contains top keyword phrases"/>
<meta name="keywords" content="Key words and phrases, comma
separated, not directly used in content - google ignores this tag
but used in other engines as a fall back"/>
<title>Open Source Online Magazine</title>

3. Add an optimized title meta tag. In the space where you've just deleted the
existing code, add the following:

<title><?php wp_title('|','true','right'); ?><?php
bloginfo('name'); ?></title>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[221]

4. Now, below that, add the code for the description:

<meta name="description" content="<?php bloginfo('description');
?>" >

5. Save your header.php file and switch to your browser. Visit the page for one
of your blog posts and take a look at the title displayed.

What just happened?
We added some meta tags to our theme, specifically the title tag and a description
meta tag. Let's check the code we used:

Our title tag includes two elements:

 � Firstly, the name of the current post or page that is output using wp_
title('|','true','right'):

 � wp_title is the WordPress template tag which displays the title of the
current post or page

 � The first parameter '|' displays a separator

 � The second parameter, 'true' tells WordPress to display (or echo, in
PHP terms) the page title, rather than just fetching it for later use

 � The third parameter tells WordPress where to display the separator—to
the right of the page title

 � Next, we use bloginfo('name') to display the site name—it's that handy
bloginfo tag again.

Our description meta tag uses the content attribute to display the site description using
bloginfo('description').

Why no meta tag for keywords?

We haven't included a meta tag for keywords as Google no longer uses
keywords when generating search results. This is because keywords were so
widely abused in the past that they became unreliable. If you wanted to use
keywords (for example, if you're optimizing for a search engine that does still
use keywords), the best approach is to use a plugin.

www.it-ebooks.info

http://www.it-ebooks.info/

Tips and tricks

[222]

So let's have a look at our post, as viewed in the Safari browser:

You can see our title displayed by the browser. However, you can't see the description.
To check that, let's look at the code generated for this page:

<title>Post with a shorter title but more text | Open Source
Magazine</title>
<meta name="description" content="Using Open Source for work and play"
>

As you can see, our description is there too. Well done!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[223]

Summary
In this chapter, we learned some extra tips and tricks to make your themes even better.
We learned about:

 � Template files – creating them and using them to display different content in
different parts of your site. We created a custom page template for pages needing
full width content and no sidebar.

 � Conditional tags – we looked at how to use them to display different content or
hide content when certain conditions are met. We used a conditional tag to hide
the page title on the home page.

 � Theme Customizer – we added this functionality to our theme and gave users the
option of tweaking some colors.

 � SEO – we worked through an SEO checklist for theme building and optimized our
theme's images, links, and meta tags for SEO.

You're now at the end of this book and have worked through the process of creating your
first WordPress theme from scratch, congratulations! You've learned how to:

 � Design a theme and prepare wireframes and mockups

 � Write the HTML and CSS for your theme

 � Convert your HTML to PHP and split that into template files

 � Add template tags, menus, widgets, and more

 � Debug and validate your theme

 � Package your theme up for users

 � Enhance your theme with advanced features

You now have an all-singing, all-dancing theme which goes beyond the basics and will
enable you (and other users) to create great websites.

Being able to build WordPress themes is a core skill without which you can't really achieve
very much with the platform. You now have the skills you need to design and develop great
themes for your own or your client sites or for release to other WordPress users.

Now all that's left is for you to put what you've learned into practice on some more themes
and enjoy being a theme developer. Good luck!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Pop Quiz Answers

Chapter 2, Preparing a Design for Our WordPress Theme

Pop quiz – questions about theme design

Q1 4. All of the above.

Q2 4. It helps you see your design quickly and start
considering usability and content.

Q3 1. Lots—it helps you see what your design will look
like when lots of content is added.

Chapter 3, Coding it Up
Pop quiz – questions about WordPress theme structure

Q1 1. Only the first statement is true—page.php trumps
index.php when viewing a static page. When
viewing a category archive, it's category.php that
trumps archive.php (not the other way round).
single.php trumps index.php when viewing an
individual post or attachment—it isn't used for viewing
static pages.

Q2 3. The header.php file contains everything from the
opening the DOCTYPE declaration to the end of the
header in the design, which is generally the end of the
<header> tag (or the end of the main <nav> tag).

www.it-ebooks.info

http://www.it-ebooks.info/

Q3 All three. The files which most commonly contain
widgets are sidebar.php and footer.php.
However, there is no reason you couldn't add widgets
to header.php—they can be useful if you want a
widget area in your header or above your content.

Chapter 4, Advanced Theme Features
Pop quiz – understanding advanced theme features

Q1 2 and 3. Pretty permalinks are user-friendly and will
benefit SEO

Q2 4. The sidebar is the most common place for widget
areas and the footer is the second most common. But
there's nothing to stop you adding them anywhere
you like. They can be very useful above and below the
content, for example.

Q3 1. To add a menu, you need to follow three steps:
register it in functions.php, add it to header.
php (or whichever template file you want it in), and
then set it up in the Menus admin screen.

Q4 3. archive.php from the parent theme, as a
category listing is an archive page. If the child theme
had an archive.php or category.php file, they
would override the file in the parent theme.

Chapter 6, Your Theme in Action
Pop quiz – questions on packaging up your theme

Q1 1.

Q2 4.

Q3 2.

Q4 4.

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
960grid 20
.ico format 68

A
About us page 106
Adobe 15
Alt + Tab 78
Appearance | Menus 138
apple-mobile meta tags

adding 37
attachment 75

B
background-color property 173
background images

about 60
adding, to images 61-63
adding, to media queries 63-66
setting up 61

banner 98
bloginfo() template tag 85
Bluefish 15
blueprint 21
browser support

about 166
approaches 166

C
Carrington 11
categories 126
child theme 150
child themes 10
Coda for Mac 14
code, breaking into template files

footer 102
header file, creating 98
sidebar, separating 101
steps 98
template file , creating 105

conditional tags
incorporating, in theme 199
syntax 198
Theme Customizer 206
using, for home page title hiding 200-206
working with 198

content
adding 37
sample text, adding 38-41
text, adding 38

CSS 13
CSS framework

960 grid 20
blueprint 21
layout core 21-23
working with 20

www.it-ebooks.info

http://www.it-ebooks.info/

[228]

CSS issues
box model problem 170
Float problems 170
guillotine bug 170
hasLayout model 170
IE-specific stylesheet, adding 171
List spacing problems 170
vpeekaboo bug 170

CSS stylesheet
attaching 36
creating 36

CSS validation
using 164-166

Cufon JavaScript 18
custom page template

about 194
assigning, to page 196, 197
creating 195, 196
styling 197

custom post links 126
custom post type 75
custom taxonomies 126

D
debugging browser tools

Firefox 156
Google Chrome 158
Safari 159

design
creating 32
layout 31
planning 31
starting with 29, 30

Design Comp 28
designing

about 28
in browser 28, 29

design treatments
adding 57
graphic treatments, setting up 57-60

desktop view
larger desktops 51
setting up 49
smaller screens 51
standard settings 49, 50

Document Object Model. See DOM
DOM 157
Dreamweaver 14
dynamic_sidebar tag 133

E
Ems

about 19
advantages 19

F
Fatal Error 168
fat footers 102
favicon

adding 67, 68
high-resolution 68

featured images
about 142
adding, to site 143-148
adding, to theme 142, 143
displaying, in different files 148-150

featured images
sizes 150

FireFox
about 156
Firebug 157, 158
Web Developer toolbar 156

font
@font-face techniques 42
font families, assigning 41, 42
font families, styling 41
search engine bots, handling 45, 46
sizing 42, 44
styling 41

fonts 18
footer.php template file

creating 103, 104
framework theme 10, 11

G
get_option() function 216
GIMP 15
Google Chrome 158

www.it-ebooks.info

http://www.it-ebooks.info/

[229]

Graphics editor
GIMP 15
Inkscape 15

H
have_posts() template tag 168
header file

header.php file, creating 99, 100
hooks

about 85
action hooks 85
filter hooks 85

HTML 13
HTML editor

Coda for Mac 14
Dreamweaver 14
features 14, 15
HTML-kit 14
TextWrangler 14

HTML-kit 14
HTML object tags 36
HTML validation

error, finding 162, 163
error, fixing 162-164
steps 160, 161

Hybrid 11

I
IE-specific stylesheet

adding 171
setting up 171

index.php file 148
Inkscape 15
Internet Explorer (IE) 155

K
keywords 19
KompoZer 15

L
layout core

about 21
overview 22
referencing 47

using 21
layout-core.css file 23
loop 77
lorem ipsum text 38

M
Mac, Apache, MySQL, and PHP. See MAMP
MAMP

about 23
using 24

media queries
about 48
adding 48, 49

menu
about 115
category link, adding 124, 126
custom link, adding 123
navigation menu, registering 116
pages, adding 122, 123
setting, requirements 119
WordPress Menus admin 126-128

Menus admin screen 124
menu setup

new WordPress menu, creating 121
Reading settings, defining 119, 120
requirements 119

mobile devices testing 174

N
navigation menu

adding, to theme’s header.php file 117-119
Nvu 15

O
open source HTML editors

Bluefish 15
KompoZer 15
Nvu 15

Opera Mini 174
Opera Mobile 174

P
page 75, 126
Parallels 172

www.it-ebooks.info

http://www.it-ebooks.info/

[230]

parent theme 150
percentages 19
permalinks

about 112
features 112
setting up 113, 114
tags 115

PHP 13
phpMyAdmin 24
pixels 19
Plugin API 17
plugin API hooks 104
points 19
post 75
premium themes

about 10
customizing 10

R
Read more link 105
Recent Posts widget 137

S
Safari 159
sandbox 12
Script API 17
search.php file

about 188-190
search.php template file, creating 190-194

semantic body
about 32
basic HTML structure 33
semantic structure, adding 33-35

SEO
about 214
benefits 215
checklists 215
logo, optimizing 218, 219
optimized meta tags, using 219
optimized permalinks 217
semantic HTML5 215
theme’s page meta tags, optimizing 220-222
theme speed, increasing 216

SEO by Yoast 220
Settings | Media screen 150
Shift + F2 68
sidebar

sidebar.php file, creating 101, 102
site settings

about 110
configuring 110
description, adding to theme 111, 112
site title, adding 111, 112

slug 114
small screen view

setting up 54, 56
static HTML file

creating 32
static pages

custom page.php template file,
creating 106, 107

template file, creating for 105

T
tablet view

setting up 52
standard layout, adjusting 53, 54

template files 188
template hierarchy 17

about 72-75
working 76

template pages 17
template tags 8
text setting

Ems 19
keywords 19
percentages 19
pixels 19
points 19

TextWrangler 14
the Loop 17
Thematic 11
theme

testing 182, 183
Theme Unit Test, using 184
zipping 181

www.it-ebooks.info

http://www.it-ebooks.info/

[231]

Theme Customizer
about 206, 207
adding, to theme 208, 209
changes, incorporating 212, 214
options, adding 210
possibilities 214
theme option screen, adding 214

theme design
off-the-shelf theme, drawbacks 9
selecting 9

Theme Locations box 121
theme packup

presteps 178
theme packup, steps

license information, adding 180
theme description, in stylesheet 179, 180
tidying 178

theme preview screenshot
creating 177

theme testing
BrowserLab, using 172, 173
in IE 172

Theme Unit Test 184
Thesis 11
The Zine 123
thumbnail 150
tools

about 14
Graphics editor 15
HTML editor 14, 15
web browser 15

touch icons
about 68
adding 69

troubleshooting
basics 167
CSS quick fixes 169
PHP template tags 168

U
Update button 145

V
viewport

adding 37

W
WAMP

about 23
using 24

widgets
about 128
adding, in Widgets admin screen 136
archives 129
areas, registering 129
categories 129
custom menu 129
recent posts 129
tag cloud 129
text 129

widgets, adding in Widgets admin screen
footer widgets, adding 138-141
requirements 136
sidebar widgets, adding 137, 138

Widgets admin screen
widgets, adding 136

widget areas
about 102
adding, to footer.php 134, 135
adding, to sidebars.php 132, 133
registering 129, 135
sidebars, registering in functions.php 130-132

Windows, Apache, MySQL, and PHP. See WAMP
WordPress

about 7, 12
as a blog 8
overview 8

WordPress Loop
about 86
adding 93
auto-generated classes, adding 95, 96
basic loop, creating 87-89
comment count, displaying 93-95
content, adding 90
metadata, adding 91
template tags, adding 91, 92
version, updating 93
viewing 97
working 86, 87

www.it-ebooks.info

http://www.it-ebooks.info/

[232]

WordPress sandbox
hosting provider, selecting 24
rolling out 25
setting up 23
WAMP, using 24

WordPress theme
API 76
API hooks 17
basics 71
defining 16
review guidelines 175, 176
template files, building 79
template hierarchy 17, 72
template tags 17
the Loop 17
workflow, setting up 78

WordPress theme template files
building, steps 79
CSS styles 83
hooks 85
new theme directory, creating 79
template tags 85
theme directory, setting up 80, 81
WordPress content, including 82, 83
WordPress Loop 86

workflow
debugging 155
validation 155

wp_head hook 104
WP Minify 217
WP Supercache 217

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying

WordPress Theme Development – Beginners’ Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress Theme Design
ISBN: 978-1-847193-09-4 Paperback: 224 pages

A complete guide to creating professional
WordPress themes

1. Take control of the look and feel of your
WordPress site

2. Simple, clear tutorial to creating Unique and
Beautiful themes

3. Expert guidance with practical step-by-step
instructions for theme design

WordPress 2.8 Theme Design
ISBN: 978-1-849510-08-0 Paperback: 292 pages

Create flexible, powerful, and professional themes
for your WordPress blogs and websites

1. Take control of the look and feel of your WordPress
site by creating fully functional unique themes that
cover the latest WordPress features

2. Add interactivity to your themes using Flash and
AJAX techniques

3. Expert guidance with practical step-by-step
instructions for custom theme design

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress 3.0 jQuery
ISBN: 978-1-849511-74-2 Paperback: 316 pages

Enhance your WordPress website with the
captivating effects of jQuery

1. Enhance the usability and increase visual interest
in your WordPress 3.0 site with easy-to-implement
jQuery techniques

2. Create advanced animations, use the UI plugin
to your advantage within WordPress, and create
custom jQuery plugins for your site

3. Turn your jQuery plugins into WordPress plugins
and share with the world

WordPress 3 Complete
ISBN: 978-1-849514-10-1 Paperback: 344 pages

Create your own complete website or blog from
scratch with WordPress

1. Learn everything you need for creating your own
feature-rich website or blog from scratch

2. Clear and practical explanations of all aspects
of WordPress

3. In-depth coverage of installation, themes, plugins,
and syndication

4. Explore WordPress as a fully functional content
management system

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started as a WordPress Theme Designer
	Overview of WordPress perks
	Does a WordPress site have to be a blog
	Pick a theme or design of your own
	Drawbacks to using an off-the-shelf theme

	What about premium themes and frameworks
	What exactly is a premium theme
	What is a framework theme

	Core technology you should understand
	WordPress
	CSS
	HTML
	PHP
	Other helpful technologies

	Tools of the trade
	HTML editor
	Graphics editor
	Web browser

	Basics of a WordPress theme
	The template hierarchy
	The Loop
	Template tags and API hooks

	Our development strategies
	Fonts and typefaces
	A CSS strategy –font sizing with ems

	A CSS strategy –working with a CSS framework
	960
	Blueprint
	Layoutcore

	Setting up your WordPress sandbox
	Using WAMP
	Using MAMP
	Choosing a hosting provider
	Rolling out WordPress

	Summary

	Chapter 2: Preparing a Design for Our WordPress Theme
	Getting ready to design
	Designing in the browser

	Starting our design
	Planning and sketching our design

	Time for action – planning our design
	Creating your design – from the sketch to the screen
	Time for action – creating our static HTML file
	The semantic body

	Time for action – adding in basic HTML structure
	Time for action – adding in the semantic structure
	Attaching our CSS stylesheet

	Time for action – creating and including a style.css shell into your index.php page
	Prepping for responsiveness – viewport and apple-mobile metatags

	Time for action – adding in the viewport and apple-mobile metatags
	Adding in content
	Starting with the text

	Time for action – adding sample text to our semantic sections
	Styling our fonts
	Styling font families

	Time for Action – assigning your font families
	Styling font sizes

	Time for action – sizing your fonts
	Time for action – handling search engine bots/screen reader text
	Setting up our layout with CSS

	Time for action – referencing our layout core to set up our positions
	Time for Action: Adding our media queries
	Setting up the desktop view

	Time for action – standard settings
	Time for action – checking in on larger desktops
	Time for action – making sure smaller screens are handled
	Setting up the tablet view

	Time for action – adjusting the standard layout for tablets
	Setting up the small screen view

	Time for action – setting up our small screen layout
	Adding design treatments
	Time for action – setting up our graphic treatments in the stylesheet
	Adding graphics and background images
	Setting up our background images in our stylesheet

	Time for action – adding background images to our design
	Time for action – adding background image styling to the
media queries
	Don't forget the favicon and touch icon
	Adding a favicon

	Time for action – adding the favicon you just created
	Touch icons

	Time for action – adding a touch icon
	Summary

	Chapter 3: Coding it up
	WordPress theme basics
	The Template hierarchy
	Why the Template hierarchy works the way it does

	The WordPress theme API
	Setting up your WordPress workflow

	Building your WordPress theme template files
	Starting with a blank slate
	Creating a new theme directory

	Time for action – setting up our theme directory
	Including WordPress content

	Time for action – getting your CSS styles to show up
	Understanding WordPress template tags and hooks
	Looping it! – The WordPress Loop
	The Loop in a nutshell – how it works

	Time for action – creating a basic Loop
	Time for action – adding content
	Time for action – adding metadata, the timestamp, and author template tags
	Keeping up-to-date with WordPress
	Adding to the Loop

	Time for action – displaying the number of comments
	Time for action – adding in auto-generated classes
	One last look – our full loop

	Breaking the code up into template files
	Including everyone
	Creating a header file

	Time for action – creating the header.php file
	Separating out our sidebar

	Time for action – creating the sidebar.php file
	Finishing off with the footer

	Time for action – creating the footer.php template file
	Time for action – don't forget the plugin hooks
	Creating a template file for static pages

	Time for action – creating a custom page.php template file
	Summary

	Chapter 4: Advanced Theme Features
	Site settings
	Time for action – configuring your site settings
	Time for action – adding the site title and description to your theme
	Pretty permalinks
	Time for action – setting up pretty permalinks
	Permalinks – a quick guide

	Menus
	Registering navigation menus

	Time for action – registering a navigation menu
	Time for action – adding menus to our theme's header.php file
	Setting up our menu
	Defining our Reading settings

	Time for action – defining Reading settings,
	Creating a menu

	Time for action – creating a new WordPress menu
	Adding pages and other content to our menu

	Time for action – adding pages to a menu
	Time for action – adding a custom link to the menu
	Time for action – adding a category link to the menu
	The WordPress Menus admin – the possibilities

	Widgets
	Registering sidebars or widget areas

	Time for action – registering sidebars in functions.php
	Time for action – adding widget areas to sidebar.php
	Time for action –adding widget areas to footer.php
	Widget areas – not just for the sidebar and footer
	Adding widgets in the Widgets admin screen
	What widgets will we need

	Time for action – adding sidebar widgets
	Time for action – adding footer widgets
	Featured images
	Time for action – adding featured images to our theme
	Time for action – adding featured images to the site
	Time for action – displaying featured images differently in different template files
	Parent and child themes
	Summary

	Chapter 5: Debugging and Validation
	Debugging and validation workflow
	Browser tools for debugging
	Firefox
	The Web Developer toolbar
	Firebug

	Google Chrome
	Safari

	Validation
	Validating HTML

	Time for action – validating your HTML
	Time for action – finding and fixing errors
	Time for action – fixing our code
	Validating CSS

	Time for action – using the W3C's CSS validator
	Testing on multiple browsers and platforms
	Which browsers to support
	Approaches to browser support
	Graceful degradation
	Progressive enhancement

	Troubleshooting basics
	PHP template tags
	CSS quick fixes

	Fixing CSS across browsers
	Common browser problems
	Adding an IE-specific stylesheet

	Time for action – setting up an alternative IE stylesheet
	Checking your work in Internet Explorer
	Time for action – testing our theme with BrowserLab
	Testing on mobile devices
	Summary

	Chapter 6: Your Theme in Action
	The WordPress Theme Review guidelines
	The theme preview screenshot
	Time for action – snagging a thumbnail of your theme
	Packaging your theme up
	Tidying up your theme

	Time for action – tidying up your theme
	Describing your theme in the stylesheet

	Time for action – describing your theme
	Your theme's license

	Time for action – adding license information to our theme
	Zipping up your theme
	Time for action – zipping your theme up
	One last test
	Time for action – testing the theme
	Summary

	Chapter 7: Tips and tricks
	Adding more template files to your theme
	A search.php file for search results

	Time for action – creating a search.php template file
	Creating a custom page template

	Time for action – creating a custom page template
	Time for action – assigning a custom page template to a page in our site
	Working with conditional tags
	Conditional tags syntax
	Incorporating conditional tags in our theme
	Using conditional tags to hide the home page title

	Time for action – using CSS to hide our home page title
	Time for action – using a conditional tag to hide our home
page title
	The Theme Customizer

	Time for action - adding the Theme Customizer to our theme
	Time for action – adding some more options to the Theme Customizer
	Time for action – ensuring Theme Customizer changes are carried through to the CSS
	Theme Customizer – the possibilities

	Search engine optimization
	SEO checklist
	Clean, valid, standards-compliant code
	Semantic HTML5
	Making your theme run faster
	Search-engine optimized permalinks
	Optimizing images and links with alt and title attributes

	Time for action – optimising a logo for SEO
	Using optimized meta tags – page titles and descriptions

	Time for action – optimizing our theme's page meta tags
	Summary

	Pop Quiz Answers
	Chapter 2, Preparing a Design for Our WordPress Theme
	Chapter 3, Coding it Up
	Chapter 4, Advaced Theme Features
	Chapter 6, Your Theme in Action

	Index

