Covers PowerShell v/

- Windows
PowerShell

SECOND EDITION

Bruce Payette

.it-ebooks.info

http://www.it-ebooks.info/

PRAISE FOR THE FIRST EDITION

The book on PowerShell, it has all the secrets.
—James Truher, PowerShell Program Manager, Microsoft

If all it had going for it was the authoritative pedigree of the writer, it might be worth it, but it’s also
well-written, well-organized, and thorough, which I think makes it invaluable as both a learning tool
and a reference.

—Slashdot.org

...an encyclopedic tome of PowerShell scripting bringing the reader through the basics with simple shell
scripts through powerful and flexible scripts any Windows systems administrator will find immediately
useful.

—ArsGeek.com

The nuances of PowerShell from the lead language designer himself! Excellent content and easy read-
ability!
—Keith Hill, Software Architect

[1t gives you] inside information, excellent examples, and a colorful writing style.
—Marc van Orsouw (MOW), PowerShell MVP

Theres no better way to learn PowerShell than from someone on the core PowerShell team—and that’s
exactly what you get with this book.
—TJoe Topjian, adminspotting.net

Wheres the 6 stars option? I haven’t enjoyed a software engineering book to the same extent for a long
time.

—T. Kirby Green, Technical Architect, SunGard

Consider this book the definitive reference for PowerShell. As one of the designers of the PowerShell
environment, the author knows all the ins and outs, back alleys, hidden rooms, and secret handshakes
the language offers, and isnt afraid to grab you by the hand and drag you along (like it or not!) for the
tour of your life.

—TJase T. Wolfe, Amazon reader

1 love this book!
—Scott Hanselman ComputerZen.com

www.it-ebooks.info

http://books.slashdot.org/books/07/05/02/1345254.shtml
http://www.arsgeek.com/?p=1635
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Windows PowerShell
in Action, Second Edition

BRUCE PAYETTE

MANNING
Shelter Island

www.it-ebooks.info

http://www.it-ebooks.info/

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
20 Baldwin Road

PO Box 261

Shelter Island, NY 11964
Email: orders@manning.com

©2011 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

@ Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine

Manning Publications Co. Development Editor Cynthia Kane

20 Baldwin Road Copyeditor: Liz Welch

PO Box 261 Typesetter: Marija Tudor

Shelter Island, NY 11964 Coverdesigner: Marija Tudor
ISBN 9781935182139

Printed in the United States of America
12345678910 - MAL-161514131211

www.it-ebooks.info

http://www.it-ebooks.info/

brief contents

Part 1 Learning PowerShell 1
1 Welcome to PowerShell 3

2 Foundations of PowerShell 36

3 Working with types 72

4 Operators and expressions 110

5 Advanced operators and variables 151

6 Flow control in scripts 198

7 PowerShell functions 236

8 Advanced functions and scripts 275

9 Using and authoring modules 322
10 Module manifests and metadata 361
11 Metaprogramming with scriptblocks and dynamic code 392
12 Remoting and background jobs 447
13 Remoting: configuring applications and services 502
14 Errors and exceptions 553
15 The PowerShell ISE and debugger 606

www.it-ebooks.info

http://www.it-ebooks.info/

Part 2 Using PowerShell 661

vi

16
17
18
19
20
21

Working with files, text, and XML 663
Extending your reach with NET 719

Working with COM 760

Management objects: WMI and WS-MAN 797

Responding in real time with eventing 847

Security, security, security 888

www.it-ebooks.info

BRIEF CONTENTS

http://www.it-ebooks.info/

contents

Part 1

preface xix

acknowledgments xxi

about this book xxiii

about the cover illustration xxix

Learning PowerShell 1

1 Welcome to PowerShell 3
1.1 What is PowerShell? 5

Shells, command lines, and scripting languages 6 ¢ Why a new
shell? Why now? 7 4 The last mile problem 8

1.2 Soul of a new language 9
Learning from history 9 4 Leveraging NET 10

1.3 Brushing up on objects 11
Reviewing object-oriented programming 11 4 Objects in
PowerShell 13

1.4 Up and running with PowerShell 13
PowerShell 14 4 Starting PowerShell 14 4 The PowerShell
console host 14 4 The PowerShell Integrated Scripting
Environment 17 4 Command completion 20

1.5 Dude! Where’s my code? 22
Navigation and basic operations 22 4 Basic expressions and
variables 23 4 Processing data 25 4 Flow control
statements 30 4 Scripts and functions 31 4 Remoting and
the Universal Execution Model 32

1.6 Summary 35

vii

www.it-ebooks.info

http://www.it-ebooks.info/

2 Foundations of PowerShell 36

2.1 Getting a sense of the PowerShell language 37
2.2 The core concepts 38

Command concepts and terminology 38 4 Commands and
cmdlets 38 4 Command categories 42
2.3 Aliases and elastic syntax 46

2.4 Parsing and PowerShell 50
How PowerShell parses 51 4+ Quoting 51 4 Expression-
mode and command-mode parsing 54 4 Statement
termination 56 4 Comment syntax in PowerShell 58

2.5 How the pipeline works 60
Pipelines and streaming behavior 61 4 Parameters and
parameter binding 62

2.6 Formatting and output 64
The formatting cmdlets 64 4 The outputter cmdlets 67

2.7 Summary 70

3 Working with types 72

3.1 Type management in the wild, wild West 72
PowerShell: a type-promiscuous language 73 4 The type
system and type adaptation 75

3.2 Basic types and literals 77

String literals 77 4 Numbers and numeric literals 82

3.3 Collections: dictionaries and hash tables 85
Creating and inspecting hash tables 85 4+ Modifying and
manipulating hash tables 88 4 Hash tables as reference
types 90

3.4 Collections: arrays and sequences 91
Collecting pipeline output as an array 91 4 Array
indexing 92 4 Polymorphism in arrays 92 4 Arrays as
reference types 93 4 Singleton arrays and empty arrays 94

3.5 Type literals 96
Type namealiases 96 4 Generictypeliterals 98 4 Accessing
static members with type literals 99

3.6 Type conversions 101
How type conversion works 101 4 PowerShell’s type-
conversion algorithm 104 4 Special type conversions in
parameter binding 107

3.7 Summary 109

viii CONTENTS

www.it-ebooks.info

http://www.it-ebooks.info/

4 Operators and expressions 110

4.1 Arithmetic operators 112
The addition operator 113 4 The multiplication operator 116
Subtraction, division, and the modulus operator 117

4.2 The assignment operators 119
Multiple assignments 120 + Multiple assignments with type
qualifiers 121 4 Assignment operations as
value expressions 123

4.3 Comparison operators 124
Scalar comparisons 125 4 Comparisons and case
sensitivity 127 4 Using comparison operators
with collections 129

4.4 Pattern matching and text manipulation 131
Wildcard patterns and the -like operator 132 4 Regular
expressions 133 ¢ The-match operator 134 4 The -replace
operator 137 + The -join operator 139 4 The -split
operator 143

4.5 Logical and bitwise operators 148
4.6 Summary 150

5 Advanced operators and variables 151

5.1 Operators for working with types 152
5.2 The unary operators 154

5.3 Grouping and subexpressions 157
Subexpressions $(...) 159 4 Array subexpressions @(...) 160
5.4 Array operators 162
The comma operator 162 4 The range operator 165
Array indexing and slicing 167 4 Using the range
operator with arrays 170 4+ Working with
multidimensional arrays 171
5.5 Property and method operators 173
The dot operator 174 4 Static methods and the double-colon
operator 177 4 Indirect method invocation 178
5.6 The format operator 179
5.7 Redirection and the redirection operators 181

5.8 Working with variables 184
Creating variables 185 4 Variable name syntax 186
Working with the variable cmdlets 188
Splatting a variable 193

5.9 Summary 196

CONTENTS

www.it-ebooks.info

x

http://www.it-ebooks.info/

6 Flow control in scripts 198

6.1 The conditional statement 200

6.2 Looping statements 203
The while loop 203 4 The do-while loop 204 4 The for
loop 205 4 The foreach loop 207

6.3 Labels, break, and continue 212

6.4 The switch statement 215
Basic use of the switch statement 215 4 Using wildcard
patterns with the switch statement 216 4 Using regular
expressions with the switch statement 217 4 Processing files
with the switch statement 221 4 Using the $switch loop
enumerator in the switch statement 222

6.5 Flow control using cmdlets 223
The ForEach-Object cmdlet 223 4 The Where-Object
cmdlet 228

6.6 Statements as values 231
6.7 A word about performance 233
6.8 Summary 234

7 PowerShell functions 236

7.1 Fundamentals of PowerShell functions 237
Passing arguments using $args 237 + Example functions:
gland qs 239 + Simplifying $args processing with multiple
assignment 240

7.2 Declaring formal parameters for a function 241
Mixing named and positional parameters 242 4 Adding type
constraints to parameters 243 4 Handling variable numbers of
arguments 245 4 Initializing function parameters with default
values 246 4 Handling mandatory parameters, vl-style 248
Using switch parameters to define command switches 248
Switch parameters vs. Boolean parameters 252

7.3 Returning values from functions 257
Debugging problems in function output 259 4 The return
statement 262

7.4 Using simple functions in a pipeline 263

Filters and functions 265 4 Functions with begin, process, and

end blocks 266

7.5 Managing function definitions in a session 267

CONTENTS

www.it-ebooks.info

http://www.it-ebooks.info/

7.6 Variable scoping in functions 269
Declaring variables 270 + Using variable scope modifiers 272

7.7 Summary 273

8 Advanced functions and scripts 275
8.1 PowerShell scripts 276

Script execution policy 276 4 Passing arguments to
scripts 278 4 Exiting scripts and the exit statement 280
Scopes and scripts 281 4+ Managing your scripts 284
Running PowerShell scripts from other applications 285

8.2 Writing advanced functions and scripts 287
Specifying script and function attributes 288 4 The
CmdletBinding attribute 289 4 The OutputType
attribute 293 4 Specifying parameter attributes 296
Creating parameter aliases with the Alias attribute 303
Parameter validation attributes 305

8.3 Dynamic parameters and dynamicParam 311
Steps for adding a dynamic parameter 312 4+ When should
dynamic parameters be used? 314

8.4 Documenting functions and scripts 314
Automatically generated help fields 315 4 Creating manual help
content 315 4 Comment-based help 316 4 Tags used in

documentation comments 318

8.5 Summary 321

9 Using and authoring modules 322

9.1 The role of a module system 323
Module roles in PowerShell 324 4+ Module mashups: composing
an application 324

9.2 Module basics 325
Module terminology 326 4 Modules are single-instance
objects 326

9.3 Working with modules 327
Finding modules on the system 327 4 Loading a module 331
Removing a loaded module 335

9.4 Writing script modules 337
A quick review of scripts 338 4 Turning a script into a
module 340 + Controlling member visibility with Export-
ModuleMember 343 4 Installing a module 347 + How
scopes work in script modules 348 4 Nested modules 350

CONTENTS x1

www.it-ebooks.info

http://www.it-ebooks.info/

9.5 Binary modules 353
Binary modules versus snap-ins 354 4 Creating a binary
module 355 4 Nesting binary modules in script modules 357

9.6 Summary 360

10 Module manifests and metadata 361

10.1 Module folder structure 362
10.2 Module manifest structure 363

10.3 Production manifest elements 366
Module identity 368 + Runtime dependencies 368

10.4 Construction manifest elements 370
The loader manifest elements 371 4 Module component
load order 374

10.5 Content manifest elements 375

10.6 Language restrictions in a manifest 376

10.7 Advanced module operations 378
The PSModulelnfo object 378 4 Using the PSModulelnfo
methods 382 4 The defining module versus the calling
module 384 4 Setting module properties from inside a script
module 388 4 Controlling when modules can be unloaded 388
Running an action when a module is removed 389

10.8 Summary 390

11 Metaprogramming with scriptblocks and dynamic code 392

11.1 Scriptblock basics 393
Invoking commands 394 4 The scriptblock literal 397
Defining functions at runtime 398

11.2 Building and manipulating objects 400
Looking at members 400 + Using Add-Member to
extend objects 402 + Adding note properties with
New-Object 409

11.3 Using the Select-Object cmdlet 410

11.4 Dynamic modules 412
Dynamic script modules 412 4 Closures in PowerShell 414
Creating custom objects from modules 417

11.5 Steppable pipelines 418
How steppable pipelines work 418 4 Creating a proxy command
with steppable pipelines 420

11.6 A closer look at the type-system plumbing 423
Adding a property 425 4 Shadowing an existing
property 427

xii CONTENTS

www.it-ebooks.info

http://www.it-ebooks.info/

11.7 Extending the PowerShell language 428
Little languages 428 + Adding a CustomClass keyword to
PowerShell 428 + Type extension 433

11.8 Building script code at runtime 436
The Invoke-Expression cmdlet 436 4+ The ExecutionContext
variable 437 4 The ExpandString() method 437 + The
InvokeScript() method 438 4 Mechanisms for creating
scriptblocks 438 4 Creating functions using the function:
drive 439

11.9 Compiling code with Add-Type 440
Defining a new .NET class: C# 440 4 Defining a new enum at
runtime 442 4 Dynamic binary modules 443

11.10 Summary 445

12 Remoting and background jobs 447

CONTENTS

12.1 Getting started with remoting 448
Commands with built-in remoting 448 4 The PowerShell
remoting subsystem 449 4 Enabling remoting 450
Additional setup steps for workgroup environments 451
Enabling remoting in the enterprise 452

12.2 Applying PowerShell remoting 454
Basic remoting examples 454 4 Adding concurrency to the
examples 455 4 Solving a real problem: multimachine
monitoring 457

12.3 Sessions and persistent connections 462
Additional session attributes 466 + Using the New-PSSession
cmdlet 468 4 Interactive sessions 469 4 Managing
PowerShell sessions 472

12.4 Implicit remoting 473
Using implicit remoting 474 + How implicit remoting
works 476
12.5 Background jobs in PowerShell 481
The job commands 483 + Working with the job cmdlets 483

Working with multiple jobs 487 4 Starting jobs on remote
computers 489 + Running jobs in existing sessions 492

12.6 Considerations when running commands remotely 493
Remote session startup directory 494 4+ Profiles and
remoting 494 4 Issues running executables remotely 495
Reading and writing to the console 496 4 Remote output vs. local
output 497 4 Processor architecture issues 498

12.7 Summary 500

www.it-ebooks.info

Xiii

http://www.it-ebooks.info/

13 Remoting: configuring applications and services 502

13.1 Remoting infrastructure in depth 503
The PowerShell remoting protocol stack 503 4 Using the
WSMan cmdlets and providers 509 4 Authenticating the target
computer 511 4 Authenticating the connecting user 514
Addressing the remoting target 518 4+ Windows version-specific
connection issues 520 4 Managing resource consumption 522
13.2 Building custom remoting services 527
Remote service connection patterns 527 4+ Working with custom
configurations 530 4 Creating a custom configuration 531
Access controls and endpoints 533 4 Constraining a PowerShell
session 535 4 Creating a constrained execution environment 543

13.3 Summary 551

14 Errors and exceptions 553
14.1 Error handling 554

ErrorRecords and the error stream 555 4 The $error variable and
—ErrorVariable parameter 560 4 Determining if a command had
anerror 564 4 Controlling the actions taken on an error 566
14.2 Dealing with errors that terminate execution 569
The trap statement 570 4 The try/catch/finally statement 575
The throw statement 578
14.3 Debugging with the host APIs 580
Catching errors with strict mode 582 4 The Set-StrictMode
cmdlet in PowerShell v2 584 4 Static analysis of scripts 589
14.4 Capturing session output 593
Starting the transcript 593 + What gets captured in the
transcript 595
14.5 PowerShell and the event log 597
The EventLog cmdlets 597 4 Examining the PowerShell
event log 603

14.6 Summary 605

15 The PowerShell ISE and debugger 606

15.1 The PowerShell ISE 607
Controlling the ISE pane layout 607 + Using the ISE
editor 610 + Executing commands in the ISE 614
Considerations when running scripts in the ISE 616
15.2 Using multiple PowerShell tabs 618

Local in-memory session tabs 619 4 Remote session tabs in

PowerShell ISE 619

Xiv CONTENTS

www.it-ebooks.info

http://www.it-ebooks.info/

15.3 Extending the ISE 622
The $psISE variable 622 4 Using the Options property 624
Managing tabs and files 625 + Working with text panes 629
Adding a custom menu 633

15.4 PowerShell script debugging features 638
The Set-PSDebug cmdlet 638 4 Nested prompts and the
Suspend operation 643

15.5 The PowerShell v2 debugger 647
The graphical debugger 648

15.6 Command-line debugging 652
Working with breakpoint objects 653 4 Setting breakpoints
on commands 656 4 Setting breakpoints on variable
assignment 657 4 Debugger limitations and issues 658

15.7 Summary 659

Part 2 Using PowerShell 661
16 Working with files, text, and XML 663

CONTENTS

16.1 PowerShell and paths 664
Providers and the core cmdlets 664 ¢ Working with
PSDrives 665 + Working with paths that contain
wildcards 667 4 Suppressing wildcard processing
in paths 668 4 The -LiteralPath parameter 670
The Registry provider 671

16.2 File processing 672
Reading and writing files 674 + Writing files 679 + All
together now—reading and writing 680 + Performance caveats
with Get-Content 680

16.3 Processing unstructured text 681
Using System.String to work with text 681 4 Using hashtables to
count unique words 684 4 Using regular expressions to
manipulate text 686 4 Searching files with the Select-String
cmdlet 688

16.4 XML structured text processing 693
Using XML as objects 693 + Adding elements to an XML
object 695 4 Loading and saving XML files 697
Processing XML documents in a pipeline 701 4 Processing
XML with XPath 702 + A hint of XLing 709 4 Rendering
objects as XML 711

16.5 Summary 717

www.it-ebooks.info

http://www.it-ebooks.info/

17 Extending your reach with NET 719

17.1 Using .NET from PowerShell 720

NET basics 720 4+ Working with assemblies 721 4 Finding

types 725 4 Creating instances of types 727 4 Defining new

types with Add-Type 729 + Working with generic types 739
17.2 PowerShell and the internet 740

Retrieving a web page 740 4 Processing an RSS feed 742
17.3 PowerShell and graphical user interfaces 743

PowerShell and WinForms 744 4 Creating a winforms

module 750

PowerShell and Windows Presentation Foundation 753

17.4 Summary 759

18 Working with COM 760

18.1 Working with COM in PowerShell 761
Creating COM objects 761 + Identifying and locating COM
classes 762

18.2 Automating Windows with COM 764
Exploring with the Shell. Application class 765 + Managing
browser windows using COM 767 + A browser window
management module 770

18.3 Working with the WScript.Shell class 777

18.4 Using COM to manage applications 779
Looking up a word using Internet Explorer 779 4 Using
Microsoft Word to do spell checking 781

18.5 The WSH ScriptControl class 783
Embedding VBScript code in a PowerShell script 784
Embedding JScript code in a PowerShell script = 785

18.6 Working with the Windows Task Scheduler 786
Getting started with the Schedule.Service class 786 4 Listing
running tasks 787 4 Creating a new scheduled task 788
Credentials and scheduled tasks 789 4 Viewing the life cycle
ofatask 792

18.7 Issues with COM 793
64-bit vs. 32-bitissues 793 4 Threading model problems 793
Interop assemblies, wrappers, and typelibs 793

18.8 Summary 795

19 Management objects: WMI and WS-MAN 797

19.1 Working with WMI in PowerShell 798
Exploring WMI 798 4 The WMI infrastructure 799

xvi CONTENTS

www.it-ebooks.info

http://www.it-ebooks.info/

19.2 The WMI cmdlets 801
The WMI cmdlet common parameters 802 4 The Get-WmiObject
cmdlet 804 4 The Set-Wmilnstance cmdlet 813 4+ The
Invoke-WmiMethod cmdlet 819 4+ The Remove-WmiObject
cmdlet 822

19.3 The WMI object adapter 824
The WMI type accelerators 825 4 Putting modified WMI objects
back 828

19.4 Exploring WS-Man 830
The WS-Man cmdlets 831 4 Using Get-WSManlInstance to
retrieve management data 832 4 Updating resources using
Set-WSManlnstance 840 4 Invoking methods with
Invoke-WSManAction 841

19.5 Summary 845

20 Responding in real time with eventing 847

20.1 Foundations of event handling 848

20.2 Synchronous events 849
Synchronous eventing in GUIs 850 4 Delegates and
delegation 850

20.3 Asynchronous events 853
Subscriptions, registrations, and actions 854 4 The eventing
cmdlets 854

20.4 Working with asynchronous .NET events 855
Writing a timer event handler 856 4 Managing event
subscriptions 859

20.5 Asynchronous event handling with scriptblocks 860

Automatic variables in the event handler 860 4 Dynamic
modules and event handler state 862

20.6 Queued events and the Wait-Event cmdlet 863

20.7 Working with WMI events 866
WMI event basics 866 4 Class-based WMI event
registration 867 4 Query-based WMI event
registrations 871
20.8 Engine events 875
Predefined engine events 875 4 Generating events in functions
and scripts 876
20.9 Remoting and event forwarding 877
Handling remote EventLog events 879 4 Serialization issues with
remote events 880

20.10 How eventing works 882

CONTENTS xvii

www.it-ebooks.info

http://www.it-ebooks.info/

20.11 Summary 885

21 Securz’ly, security, security 888

21.1 Introduction to security 889
What security is and what itisn’t 889 4 Security: perception and
reality 890

21.2 Security modeling 891
Introduction to threat modeling 891 4 Classifying threats using
the STRIDE model 892 4 Security basics: threats, assets, and
mitigations 893

21.3 Securing the PowerShell environment 897
Secure by default 897 4 Enabling scripting with execution
policy 898

21.4 Signing scripts 904
How public key encryption and one-way hashing work 904
Signing authorities and certificates 905 4 Self-signed
certificates 905 + Using a certificate to sign a script 909
Enabling strong private key protection 913 4 Using the PFX file
tosignafile 915

21.5 Writing secure scripts 916

21.6 Using the SecureString class 916
Creating a SecureString object 917 4 The SecureString
cmdlets 918 + Working with credentials 919 + Avoiding
Invoke-Expression 923

21.7 Summary 926

index 929

appendix A Comparing PowerShell to other languages
appendix B Examples

appendix C PowerShell Quick Reference

appendix D Additional PowerShell ropics

Appendixes are available for download from
www.manning.com/WindowsPowerShellinActionSecondEdition

Xviii CONTENTS

www.it-ebooks.info

http://www.it-ebooks.info/

preface

Well, it’s been a wild ride since the first edition of this book was released. At that
time, PowerShell had just shipped and had a fairly limited scope of influence. Things
have changed a lot. PowerShell now ships in the box with Windows (at least Win-
dows 7 and Server 2008 R2). The number of PowerShell users is now in the hundreds
of thousands, if not millions (this is not a formal estimate—I just looked at some of
the download counters for PowerShell-related tools and went from there).

One of the biggest events from my perspective was the release of PowerShell version
2 in July of 2009. Obviously it was time for a sequel to the book. I put together a short
proposal and estimate of the amount of work needed to update the book. The initial
estimate was for a few months of work—a couple of new chapters, a few updates here
and there, and we’re good to go. Wow, was I ever wrong about that! PowerShell v2
was a really big release.

When you are in the middle of something, working heads down, you tend to lose
perspective of the overall project—that old forest/trees problem. It wasn’t until I was
preparing a talk for MMS (Microsoft Management Summit) that I realized just how
BIG it was. In a one-hour talk, we barely had time to /st all of the new stuff, much
less describe it in detail. But describing it in detail was exactly what I needed to do and
that’s why this book took a great deal longer to write than anticipated. It’s also much
bigger than I had expected or wanted. At one point it was double the size of the first
edition. So we cut some stuff that was no longer as relevant with PowerShell v2, moved
some stuff into the online appendixes, and capped the book at about 1000 pages.

So why write the book in the first place? The answer is the same now as it was
then—TI wanted the PowerShell community to have a way to see “inside the box” and
have a more intimate insight into the goals and motivations behind PowerShell.
Although PowerShell draws heavily from existing technologies, it combines them in

Xix

www.it-ebooks.info

http://www.it-ebooks.info/

XX

novel ways. This kind of novelty leads to misunderstandings which then turn into
urban myths, like PowerShell does X because its designers were kitten-eating aliens.
(Trust me—we’re not.)

As we showed our work to the world I found that there were a number of questions
that were being asked over and over again. These questions would usually arise as a
result of some prior language experience that the user had. Typically a simple expla-
nation was all it took to clear up the confusion. Unfortunately we couldn’t keep
answering these questions over and over on a one-by-one basis; that just couldn’t scale.
There needed to be a way to gather this information together in one place. The book
was my attempt to address that problem, and the second edition continues on with
this goal.

I continue to be amazed at just how much power comes out of the synergy of the
various technologies underlying PowerShell. We see this in our own internal uses of
PowerShell at Microsoft as well as in what the community has done with it. And so
a second goal of this book was to try and foster that creativity by conveying just how
capable PowerShell is.

And finally, this is the book I wanted to read. I love programming languages and
the best books are the ones that explain not only what but also why. Look at the books
that continue to sell year after year: Kernighan and Ritchie’s 7he C Programming Lan-
guage, Stroustrup’s book on C++, and Ousterhout’s book on TCL. The TCL book in
particular describes a very early version of the TCL language, has never been updated,
and yet it continues to sell. Why? Because these books give the reader something more
than just technical detail. They convey a sense of the overall design and some element
of the intent of the designer. (Let me know if I succeeded, okay?)

PREFACE

www.it-ebooks.info

http://www.it-ebooks.info/

acknowledgments

First and foremost, this book is for my wife Tina. I could not have done it without
her patience, support, and encouragement. She kept me fed and sane, and she even
read early drafts of material about which she knows nothing. Now that’s support! She
also contributed the Gnome picture in chapter 21 and the bird-watching information
and pictures in chapter 2. And I can now recognize the call of the California quail.

Thanks to my parents for their love and support over the years. Yes, I am finally
done with the second edition!

Of course, there wouldn’t be a PowerShell book without a PowerShell product in
the first place and PowerShell wouldn’t exist without the vision of its chief architect
Jeffrey Snover. He was kind enough to do extensive reviews of both editions of the
book. The book, like the product, has benefited greatly from his insight and sugges-
tions.

PowerShell v2 would also not have been possible without the continued efforts on
the part of Kenneth Hansen, lead Program Manager of the PowerShell team. Kenneth
provided most of the day-to-day leadership during the Version 2/Windows 7 release
cycle. He continues to be one of the strongest advocates for the customer that I've seen
at Microsoft.

I’d like to thank the following PowerShell team members who took time to review
specific chapters: Jason Shirk, who implemented most (all?) of the advanced function
features in v2, reviewed chapters 7 and 8. Refaat Issa and Lucio Silveira, who were
responsible for the design (Refaat) and implementation (Lucio) of the ISE, reviewed
chapter 15 which covers the ISE.

To all of the MEAP readers and reviewers, many thanks for your feedback. I've
incorporated as much of it as possible (boy, I make a lot of typos). In particular, I'd
like to thank the following: Peter Johnson, Jonathan Medd, Sam Abraham, Andrew

xxi

www.it-ebooks.info

http://www.it-ebooks.info/

xxii

Tearle, Keith Hill, Richard Siddaway, Paul Grebenc, Kirk Freiheit, Tony Niemann,
Amos Bannister, Jeff Copeland, Marcus Baker, Massimo Perga, Tomas Restrepo,
Jason Zions, Oisin Grehan, Kanwal Khipple, Brandon Shell, Bernd Schandl, and
Matthew Reynolds. Thanks to all of you for your patience. This book took way, way
too long to complete.

Finally, special thanks to all of the people who piled on at the end of the project
to finally get it done: Cynthia Kane, my development editor, who is still talking to me
(I think), even after all of the missed deadlines; also Liz Welch, Mary Piergies, Tiffany
Taylor, and everyone else at Manning who helped get this book out the door. All I
can say is thanks, and thanks again.

And more super-special thanks to three of our wonderful PowerShell MVPs who
helped enormously with the final reviews. Marco Shaw was the technical proofreader
who read the chapters during production. Jeffrey Hicks, a fine author in his own right,
helped with the last set of “author” reviews. And Aleksandar Nikoli¢ went above and
beyond the call, turning around reviewed chapters stunningly quickly, and then
reviewing the reviews! Dude, you’re a lifesaver!

ACKNOWLEDGMENTS

www.it-ebooks.info

http://www.it-ebooks.info/

about this book

Windows PowerShell is the next-generation scripting environment created by Micro-
soft. It’s designed to provide a unified solution for Windows scripting and automa-
tion, able to access the wide range of technologies such as .NET, COM, and WMI
through a single tool. Since its release in 2006, PowerShell has become the central
component of any Windows management solution. In addition, due to PowerShell’s
comprehensive support for .NET, it also has broad application potential outside of the
system administration space. PowerShell can be used for text processing, general
scripting, build management, creating test frameworks, and so on.

This book was written by one of the principal creators of PowerShell to enable users
to get the most out of the PowerShell environment. Using many examples, both small
and large, this book illustrates the features of the language and environment and shows
how to compose those features into solutions, quickly and effectively.

Note that, because of the broad scope of the PowerShell product, this book has a
commensurately broad focus. It was not designed as a cookbook of pre-constructed
management examples, like how to deal with Active Directory or how to script
Exchange. Instead it provides information about the core of the PowerShell runtime
and how to use it to compose solutions the “PowerShell Way.” After reading this book,
the PowerShell user should be able to take any example written in other languages like
C# or Visual Basic and leverage those examples to build solutions in PowerShell.

Who should read this book?

This book is designed for anyone who wants to learn PowerShell and use it well.
Rather than simply being a book of recipes to read and apply, this book tries to give

Xx1ii

www.it-ebooks.info

http://www.it-ebooks.info/

XXV

the reader a deep knowledge about how PowerShell works and how to apply it. As a
consequence, all users of PowerShell should read this book.

So, if you’re a Windows sysadmin, this book is for you. If you’re a developer and
you need to get things done in a hurry, if you're interested in .NET, or just if you like
to experiment with computers, PowerShell is for you and this book is for you.

Roadmap

The book is divided into two major parts plus four appendixes (which are available
online from the publisher’s website). The two parts of the book are “Learning Power-
Shell” and “Using PowerShell.”

Part 1, “Learning PowerShell,” is a comprehensive tour of the PowerShell language
and runtime. The goal is to introduce new PowerShell users to the language as well
as to provide experienced users with a deep insight into how and why things are the
way they are.

In part 1, we look at all aspects of the PowerShell language including the syntax,
the type system, and so on. Along the way we present examples showing how each fea-
ture works. Because the goal of the first part of the book is to focus on the individual
features of the environment, most of the examples are quite small and are intended to
be entered in an interactive session. The second part of this book focuses on larger
examples that bring the individual features together to build larger applications.

Chapter 1 begins with some history and the rationale for why PowerShell was cre-
ated in the first place. It then proceeds through a quick tour of the features of the envi-
ronment. The remaining chapters in part 1 cover each element of the language,
starting with basic PowerShell concepts in chapter 2.

Chapter 3 introduces the PowerShell type system and discusses its relationship to
.NET. This chapter also presents the syntax for each of the PowerShell literal data types.

The discussion of operators and expressions (PowerShell has lots of these) begins in
chapter 4 which covers the basic arithmetic, comparison, and assignment operators.
It also covers the wildcard and regular expression pattern matching operators.

Chapter 5 continues the discussion of operators with the advanced operations for
working with arrays (indexing, slicing) and objects (properties and methods). It also
covers output redirection and the formatting operator, and introduces PowerShell
variables.

Chapter 6 covers the PowerShell language constructs like i f statements and loops.

Chapter 7 introduces programming in PowerShell and covers basic functions, vari-
able scoping, and other programming-related topics.

Chapter 8 builds on the material in chapter 7, covering advanced function meta-
data, scripting, and how to create in-line documentation for scripts and functions.

Chapter 9 covers the basics of how to use PowerShell modules and how to create
your own basic modules.

ABOUT THIS BOOK

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 looks at more advanced module features covering module manifests
and how to use them to add information like a version number, dependences, and
nested modules.

Chapter 11 builds on the material in chapters 7-10, introducing advanced pro-
gramming techniques like object construction and extensions. It also covers first-class
functions (scriptblocks) and shows how to extend the PowerShell language itself using
these features.

Chapter 12 introduces PowerShell remoting, starting with basic configuration and
setup. It then covers the various forms of remoting (interactive and non-interactive)
and how to apply these techniques.

Chapter 13 explores remoting and the underlying protocols in more detail. Creation
of custom remoting endpoints, including constrained endpoints, is included as well.

Chapter 14 covers the PowerShell Integrated Scripting Environment (ISE). This
coverage includes basic editor operation and the debugger (graphics and command
line), and looks briefly at the ISE extension model which allows you to do things like
add custom menu items to the ISE.

Chapter 15 completes part 1, covering the various features available in PowerShell
for handling errors and debugging scripts.

In part 2 of the book, “Using PowerShell,” we shift our focus from individual fea-
tures towards combining those features into larger examples. This part of the book
looks at applying PowerShell in specific technology areas and problem domains.

We begin in chapter 16 looking at how PowerShell can be used to attack the kind
of text processing tasks that have traditionally been the domain of languages like Perl.
This chapter begins with basic string processing, then introduces file processing
(including handling binary files), and finishes up with a section on working with XML
documents.

Then, in chapter 17, we look at how we can explore and apply the vast capabilities
of the .NET framework. We cover locating, exploring, and instantiating types in the
NET framework, including generic types. Then we look at a number of applications
using these types, including network programming and graphical programming with
WinForms and WPF.

In chapter 18 we look at how to work with COM objects. This includes using the
application automation models to script applications like Microsoft Word with
PowerShell.

Chapter 19 covers Windows Management Instrumentation (WMI) and Web Ser-
vices for Management (WS-Man). We look at how to use WMI from the command
line and in scripts to inspect, update, and manage a Windows system.

Chapter 20 looks at the asynchronous eventing subsystem in PowerShell. Eventing
allows PowerShell scripts to respond to external events in real time—an important
characteristic in systems automation.

ABOUT THIS BOOK XxXv

www.it-ebooks.info

http://www.it-ebooks.info/

XXVL

Finally, in chapter 21, we introduce the security features in PowerShell along with
a general discussion of security. This is a very important chapter to read. Like all pow-
erful scripting tools (Perl, Python, and so on), PowerShell can be used to create mal-
ware-like virus and worm programs. The PowerShell runtime contains a number of
features to allow you to deploy it in a manner that minimizes these risks.

In addition, there are four appendixes, available online from the publisher’s website
at www.manning.com/WindowsPowerShellinActionSecondEdition.

Appendix A compares and contrasts PowerShell with other languages that the
reader may already know. This appendix tries to highlight similarities and the impor-
tant differences with each of the languages.

Appendix B includes more examples showing how to apply PowerShell to solve
problems. While it’s by no means a complete management cookbook, it does show
what can be done with PowerShell and how to do it.

Appendix C is a PowerShell quick reference that condenses much of the content
of the book into a relatively short quick-reference document. Finally, appendix D con-
tains information about a number of additional, less commonly used features and
techniques in PowerShell.

Code conventions

Because PowerShell is an interactive environment, we show a lot of example com-
mands as the user would type them, followed by the responses the system generates.
Before the command text there is a prompt string that looks like this: ps (2) >. Fol-
lowing the prompt, the actual command is displayed. PowerShell’s responses follow
on the next few lines. Because PowerShell doesn’t display anything in front of the out-
put lines, you can distinguish output from commands by looking for the prompt
string. These conventions are illustrated as follows:

PS (1) > get-date

Sunday, October 08, 2006 11:24:42 PM

Sometimes commands will span multiple lines. In this case subsequent lines of user
input will be preceded by >> as shown:

PS (2) > 1..3 |

>> foreach {"+" * $_}

>>

.

++

+++

PS (4) >

Note that the actual prompt sequence you see in your PowerShell session will be
somewhat different than what is shown in the book. The prompt display is user-
controllable by redefining the “prompt” function (see appendix A section 1.8 for

ABOUT THIS BOOK

www.it-ebooks.info

http://www.it-ebooks.info/

more information). For this book, a prompt sequence was chosen that includes com-
mand numbers to make it easier to follow the examples.

Code annotations accompany many of the listings, highlighting important con-
cepts. In some cases, numbered bullets link to explanations that follow the listing.

Source code downloads

Source code forall working examples in this book is available for download from the pub-
lisher’s website at www.manning.com/WindowsPowerShellinActionSecondEdition.

Author Online

Purchase of Windows PowerShell in Action, Second Edition includes free access to a pri-
vate web forum run by Manning Publications where you can make comments about
the book, ask technical questions, and receive help from the author and from other
users. To access the forum and subscribe to it, point your web browser to www
.manning.com/WindowsPowerShellinActionSecondEdition. This page provides
information on how to get on the forum once you are registered, what kind of help is
available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It is not a commitment to any specific amount of participation on the part of the
author, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray!

The Author Online forum and the archives of previous discussions will be acces-
sible from the publisher’s website as long as the book is in print.

About the author

Bruce Payette is one of the founding members of the Windows PowerShell team. He
is co-designer of the PowerShell language along with Jim Truher and the principal
author of the language implementation. He joined Microsoft in 2001 working on
Interix, the POSIX subsystem for Windows, then moved to help found the Power-
Shell project shortly after that. Prior to joining Microsoft, he worked at various com-
panies including Softway (the creators of Interix) and MKS (producers of the MKS
Toolkit) building UNIX tools for Windows. He lives in Bellevue, Washington, with
his wife, many computers, and two extremely over-bonded codependent cats.

About the title

By combining introductions, overviews, and how-to examples, the /n Action books
are designed to help learning and remembering. According to research in cognitive
science, the things people remember are things they discover during self-motivated
exploration.

ABOUT THIS BOOK xxvii

www.it-ebooks.info

www.manning.com/WindowsPowerShellinActionSecondEdition
www.manning.com/WindowsPowerShellinActionSecondEdition
http://www.it-ebooks.info/

XxXViii

Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play, and,
interestingly, retelling of what is being learned. People understand and remember new
things, which is to say they master them, only after actively exploring them. Humans
learn in action. An essential part of an /n Action book is that it is example driven. It
encourages the reader to try things out, to play with new code, and explore new ideas.

Thereisanother, more mundane, reason for the title of thisbook: our readers are busy.
They use books to do ajob or solve a problem. They need books that allow them to jump
in and jump out easily and learn just what they want just when they want it. They need
books that aid them in action. The books in this series are designed for such readers.

ABOUT THIS BOOK

www.it-ebooks.info

http://www.it-ebooks.info/

about the cover illustration

The figure on the cover of Windows PowerShell in Action, Second Edition is a “Muft,”
the chief of religion or the chief scholar who interpreted the religious law and whose
pronouncements on matters both large and small were binding to the faithful. The
illustration is taken from a collection of costumes of the Ottoman Empire published
on January 1, 1802, by William Miller of Old Bond Street, London. The title page is
missing from the collection and we have been unable to track it down to date. The
booK’s table of contents identifies the figures in both English and French, and each
illustration bears the names of two artists who worked on it, both of whom would no
doubt be surprised to find their art gracing the front cover of a computer program-
ming book...two hundred years later.

The collection was purchased by a Manning editor at an antiquarian flea market
in the “Garage” on West 26th Street in Manhattan. The seller was an American based
in Ankara, Turkey, and the transaction took place just as he was packing up his stand
for the day. The Manning editor did not have on his person the substantial amount
of cash that was required for the purchase and a credit card and check were both
politely turned down. With the seller flying back to Ankara that evening the situation
was getting hopeless. What was the solution? It turned out to be nothing more than
an old-fashioned verbal agreement sealed with a handshake. The seller simply pro-
posed that the money be transferred to him by wire and the editor walked out with
the bank information on a piece of paper and the portfolio of images under his arm.
Needless to say, we transferred the funds the next day, and we remain grateful and
impressed by this unknown person’s trust in one of us. It recalls something that might
have happened a long time ago.

The pictures from the Ottoman collection, like the other illustrations that appear
on our covers, bring to life the richness and variety of dress customs of two centuries

XXIX

www.it-ebooks.info

http://www.it-ebooks.info/

XXX

ago. They recall the sense of isolation and distance of that period—and of every other
historic period except our own hyperkinetic present.

Dress codes have changed since then and the diversity by region, so rich at the time,
has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life. Or a more varied and interesting intellectual
and technical life.

We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
centuries ago—brought back to life by the pictures from this collection.

ABOUT THE COVER ILLUSTRATION

www.it-ebooks.info

http://www.it-ebooks.info/

PART

Learning PowerShell

I he first part of this book focuses primarily on the PowerShell language and its
runtime environment. We'll cover the complete syntax for PowerShell in detail: the
various kinds of conditional and loop statements, the operators, and the syntax for
defining functions and modules. We'll look at how to configure and use PowerShell
remoting to do remote access.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

1

Welcome to PowerShell

1.1 What is PowerShell? 5 1.4 Up and running with PowerShell 13
1.2 Soul of a new language 9 1.5 Dude! Where’s my code? 22
1.3 Brushing up on objects 11 1.6 Summary 35

Space is big. Really big! You just won’t believe how vastly hugely mind-bogglingly
big it is. I mean you may think it’s a long way down the road to the chemist, but
that’s just peanuts compared to space!

Don'’t Panic.
—Douglas Adams, The Hitchhikers Guide to the Galaxy

Welcome to Windows PowerShell, the new command and scripting language from
Microsoft. We begin this chapter with two quotes from The Hitchhiker’s Guide to the
Galaxy. What do they have to do with a new scripting language? In essence, where a
program solves a particular problem or problems, a programming language can solve
any problem, at least in theory. That’s the “big, really big” part. The “Don’t Panic” bit
is, well—don’t panic. Although PowerShell is new and different, it’s been designed to
leverage what you already know, making it easy to learn. It’s also designed to allow
you to learn it a bit at a time. Starting at the beginning, here’s the traditional “Hello
world” program in PowerShell:

"Hello world."

www.it-ebooks.info

http://www.it-ebooks.info/

As you can see, no panic needed. But “Hello world” by itself isn’t very interesting.
Here’s something a bit more complicated:

dir $env:windir*.log | Select-String -List error |
Format-Table path,linenumber -AutoSize

Although this is more complex, you can probably still figure out what it does. It
searches all the log files in the Windows directory, looking for the string “error”, and
then prints the full name of the matching file and the matching line number. “Useful,
but not very special,” you might think, because you can easily do this using cmd.. exe
on Windows or bash on UNIX. So what about the “big, really big” thing? Well, how
about this example?

([xml] (New-Object net.webclient) .DownloadString (

"http://blogs.msdn.com/powershell/rss.aspx"
)) .rss.channel.item | Format-Table title,link

Now we're getting somewhere. This script downloads the RSS feed from the Power-
Shell team blog and then displays the title and a link for each blog entry.

NOTE RSS stands for Really Simple Syndication. This is a mechanism
that allows programs to download blogs automatically so they can be
read more conveniently than in the browser.

By the way, you weren't expected to figure out this example yet. If you did, you can
move to the head of the class!
Finally, one last example:

[void] [reflection.assembly] : :LoadWithPartialName (
"System.Windows.Forms")
Sform = New-Object Windows.Forms.Form
Sform.Text = "My First Form"
Sbutton = New-Object Windows.Forms.Button
Sbutton. text="Push Me!"
Sbutton.Dock="fil1l"
Sbutton.add_click({$Sform.close()})
$form.controls.add (Sbutton)
Sform.Add_Shown ({Sform.Activate()})
Sform.ShowDialog ()

-

This script uses the Windows Forms library (Win-
Forms) to build a graphical user interface (GUI)
that has a single button displaying the text “Push
Me!” The window this script creates is shown in
ﬁgure 1.1. Push Me!

|1

ozl My First Form |ﬂ

Figure 1.1 When you run the code from the example,
this window will be displayed. If you don’t see it, it may I
be hidden behind another window.

CHAPTER 1 WELCOME TO POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

When you click the button, it closes the form and exits the script. With this you go
from "Hello world" to a GUI application in less than two pages.

Now let’s come back down to Earth for a minute. The intent of chapter 1 is to set
the stage for understanding PowerShell—what it is, what it isn’t, and, almost as
important, why the PowerShell team made the decisions they made in designing the
PowerShell language. Chapter 1 covers the goals of the project, along with some of
the major issues the team faced in trying to achieve those goals. By the end of the
chapter you should have a solid base from which to start learning and using Power-
Shell to solve real-world problems. All theory and no practice is boring, so the chap-
ter concludes with a number of small examples to give you a feel for PowerShell. But
first, a philosophical digression: while under development, from 2002 until just
before the first public release in 2006, the codename for this project was Monad. The
name Monad comes from 7he Monadology by Gottfried Wilhelm Leibniz, one of the
inventors of calculus. Here’s how Leibniz defined the Monad:

The Monad, of which we shall here speak, is nothing but a simple substance,
which enters into compounds. By “simple” is meant “without parts.”

—From 7he Monadology by Gottfried Wilhelm Leibniz (translated
by Robert Latta)

In The Monadology, Leibniz described a world of irreducible components from which
all things could be composed. This captures the spirit of the project: to create a tool-
kit of simple pieces that you compose to create complex solutions.

1.1 WHAT IS POWERSHELL?

What is PowerShell, and why was it created? PowerShell is the new command-line/
scripting environment from Microsoft. The overall goal for this project was to provide
the best shell scripting environment possible for Microsoft Windows. This statement
has two parts, and they’re equally important, because the goal wasn’t just to produce a
good generic shell environment but rather to produce one designed specifically for the
Windows environment. Although drawing heavily from existing command-line shell
and scripting languages, the PowerShell language and runtime were designed from
scratch to be an optimal environment for the modern Windows operating system.

Historically, the Windows command line has been weak. This is mainly the result
of Microsoft’s early focus on computing for the average user, who is considered nei-
ther particularly technical nor particularly interested in computers. Most of the devel-
opment effort for Windows was put into improving the graphical environment for
the nontechnical user, rather than creating an environment for the computer profes-
sional. Although this was certainly an enormously successful commercial strategy for
Microsoft, it has left some segments of the community underserved.

WHAT 1S POWERSHELL? 5

www.it-ebooks.info

http://www.it-ebooks.info/

In the next couple of sections, I'll go over some of the other environmental forces
that led to the creation of PowerShell. By environmental forces, I mean the various
business pressures and practical requirements that needed to be satisfied. But first
let’s refine our definitions of shell and scripting.

Shells, command lines, and scripting languages

In the previous section, I called PowerShell a command-line shell. You may be asking,
what’s a shell? And how is that different from a command interpreter? What about
scripting languages? If you can script in a shell language, doesn’t that make it a script-
ing language? In answering these questions, let’s start with shells.

Defining what a shell is can be a bit tricky, especially at Microsoft, because pretty
much everything at Microsoft has something called a shell. Windows Explorer is a
shell. Visual Studio has a component called the shell. Heck, even the Xbox has some-
thing they call a shell.

Historically, the term shell describes the piece of software that sits over an operating
system’s core functionality. This core functionality is known as the operating system ker-
nel (shell.. .kernel...get it?). A shell is the piece of software that lets you access the func-
tionality provided by the operating system. Windows Explorer is properly called a shell
because it lets you access the functionality of a Windows system. For our purposes,
though, we’re more interested in the traditional text-based environment where the user
types a command and receives a response. In other words, a shell is a command-line
interpreter. The two terms can be used for the most part interchangeably.

Scripting languages vs. shells

If this is the case, then what is scripting and why are scripting languages not shells? To
some extent, there’s no difference. Many scripting languages have a mode in which
they take commands from the user and then execute those commands to return
results. This mode of operation is called a Read-Evaluate-Print loop, or REPL. Not all
scripting languages have these interactive loops, but many do. In what way is a script-
ing language with a Read-Evaluate-Print loop not a shell? The difference is mainly in
the user experience. A proper command-line shell is also a proper user interface. As
such, a command line has to provide a number of features to make the user’s experi-
ence pleasant and customizable. The features that improve the user’s experience
include aliases (shortcuts for hard-to-type commands), wildcard matching so you
don't have to type out full names, and the ability to start other programs without hav-
ing to do anything special such as calling a function to start the program. Finally,
command-line shells provide mechanisms for examining, editing, and re-executing
previously typed commands. These mechanisms are called command history.

If scripting languages can be shells, can shells be scripting languages? The answer
is, emphatically, yes. With each generation, the UNIX shell languages have grown
increasingly powerful. It’s entirely possible to write substantial applications in a mod-
ern shell language, such as bash or zsh. Scripting languages characteristically have an

CHAPTER 1 WELCOME TO POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

1.1.2

advantage over shell languages, in that they provide mechanisms to help you develop
larger scripts by letting you break a script into components, or modules. Scripting lan-
guages typically provide more sophisticated features for debugging your scripts. Next,
scripting language runtimes are implemented in a way that makes their code execu-
tion more efficient, so that scripts written in these languages execute more quickly
than they would in the corresponding shell script runtime. Finally, scripting language
syntax is oriented more toward writing an application than toward interactively issu-
ing commands.

In the end, there’s no hard-and-fast distinction between a shell language and a
scripting language. Some of the features that make a good scripting language result in
a poor shell user experience. Conversely, some of the features that make for a good
interactive shell experience can interfere with scripting. Because PowerShell’s goal is
to be both a good scripting language and a good interactive shell, balancing the trade-
offs between user experience and scripting authoring was one of the major language

design challenges.
Why a new shell? Why now?

In the early 2000s, Microsoft commissioned a study to identify areas where it could
improve its offerings in the server space. Server management, and particularly com-
mand-line management of Windows systems, was called out as a critical area for
improvement. Some might say that this is like discovering that water is wet, but the
important point is that people cared about the problem. When the survey team com-
pared the command-line manageability of a Windows system to a UNIX system,
Windows was found to be limited, and this was a genuine pain point with customers.

There are a couple of reasons for the historically weak Windows command line.
First, as mentioned previously, limited effort had been put into improving the com-
mand line. The average desktop user doesn’t care about the command line, so it
wasn’t considered important. Second, when writing GUISs, you need to access what-
ever you're managing through programmer-style interfaces called application pro-
gramming interfaces (APIs). APIs are almost universally binary (especially on
Windows), and binary interfaces aren’t command-line friendly.

Managing Windows through objects

Another factor that drove the need for a new shell model is that, as Windows
acquired more and more subsystems and features, the number of issues we had to
think about when managing a system increased dramatically. To help us deal with this
increase in complexity, the manageable elements were factored into structured data
objects. This collection of management objects is known internally at Microsoft as the
Windows management surface.

NOTE Microsoft wasn’t the only company that was running into issues
due to increased complexity. Pretty much everyone in the industry was

WHAT 1S POWERSHELL? 7

www.it-ebooks.info

http://www.it-ebooks.info/

having this problem. This led to the Distributed Management Task
Force (dmtf.org), an industry organization, creating a standard for man-
agement objects called the Common Information Model (CIM). Micro-
soft’s implementation of this standard is called the Windows
Management Instrumentation (WMI). Chapter 19 covers PowerShell’s
support for WML

Although this factoring addressed overall complexity and worked well for graphical
interfaces, it made it much harder to work with using a traditional text-based shell
environment.

Finally, as the power of the PC increased, Windows began to move off the desktop
and into the corporate datacenter. In the corporate datacenter, we had a large number
of servers to manage, and the graphical point-and-click management approach that
worked well for one machine didn’t scale. All these elements combined to make it
clear that Microsoft could no longer ignore the command line.

The last mile problem

Why should you care about command-line management and automation? Because it
helps to solve the IT professional’s version of the last mile problem. The last mile prob-
lem is a classical problem that comes from the telecommunications industry. It goes
like this: The telecom industry can effectively amortize its infrastructure costs across
all its customers until it gets to the last mile, where the service is finally run to an
individual location. Installing service across this last mile can't be amortized because it
serves only a single location. Also, what’s involved in servicing any particular location
can vary significantly. Servicing a rural farmhouse is different and significantly more
expensive than running service to a house on a city street.

In the IT industry, the last mile problem is figuring out how to manage each IT
installation effectively and economically. Even a small IT environment has a wide
variety of equipment and applications. One approach to solving this is through con-
sulting: IT vendors provide consultants who build custom last mile solutions for each
end user. This, of course, has problems with recurring costs and scalability (it’s great
for the vendor, though). A better solution for end users is to empower them to solve
their own last mile problems. We do this by providing a toolkit to enable end users to
build their own custom solutions. This toolkit can’t merely be the same tools used to
build the overall infrastructure—the level of detail required is too great. Instead, we
need a set of tools with a higher level of abstraction. This is where PowerShell comes
in—its higher-level abstractions allow us to connect the various bits of your IT envi-
ronment together more quickly and with less effort.

Now that you grasp the environmental forces that led to the creation of Power-
Shell—the need for command-line automation in a distributed object-based operat-
ing environment—Iet’s look at the form the solution took.

CHAPTER 1 WELCOME TO POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

12 SOUL OF A NEW LANGUAGE

The title of this section was adapted from Tracey Kidder’s Sou/ of @ New Machine, one
of the best nontechnical technical books ever written. Kidder’s book described how
Data General developed a new 32-bit minicomputer, the Eclipse, in a single year. At
that time, 32-bit minicomputers werent just new computers; they represented a
whole new class of computers. It was a bold, ambitious project; many considered it
crazy. Likewise, the PowerShell project wasnt just about creating a new shell lan-
guage. It required developing a new class of object-based shell languages—and we
were told more than a few times that we were crazy.

In this section, I'll cover some of the technological forces that shaped the develop-
ment of PowerShell.

1.2.1 Learning from history

In section 1.1.2, I described why Microsoft needed to improve the command line.
Now let’s talk about how the company decided to improve it. In particular, let’s talk
about why Microsoft created a new language. This is certainly one of the most com-
mon questions people ask about PowerShell (right after “What, are you guys nuts?”).
People ask, “Why not just use one of the UNIX shells?” or “Why not extend the exist-
ing Windows command line?”

In practice, the team did start with an existing shell language. The original Power-
Shell grammar was based on the shell grammar for the POSIX standard shell defined
in IEEE Specification 1003.2. The POSIX shell is a mature command-line environ-
ment available on a huge variety of platforms, including Microsoft Windows. It’s
based on a subset of the UNIX Korn shell, which is itself a superset of the original
Bourne shell. Starting with the POSIX shell gave Microsoft a well-specified and stable
base. Then we had to consider how to accommodate the differences that properly
supporting the Windows environment would entail. The PowerShell team wanted to
have a shell optimized for the Windows environment in the same way that the UNIX
shells are optimized for this UNIX environment.

To begin with, traditional shells deal only with strings. Even numeric operations
work by turning a string into a number, performing the operation, and then turning
it back into a string. Given that a core goal for PowerShell was to preserve the struc-
ture of the Windows data types, the PowerShell team couldn’t simply use the POSIX
shell language as is. This factor impacted the language design more than any other.
Next, the team wanted to support a more conventional scripting experience where,
for example, expressions could be used as you’d normally use them in a scripting lan-
guage such as VBScript, Perl, or Python. With a more natural expression syntax, it
would be easier to work with the Windows management objects. Now the team just
had to decide how to make those objects available to the shell.

SOUL OF A NEW LANGUAGE 9

www.it-ebooks.info

http://www.it-ebooks.info/

1.2.2

10

Leveraging .NET

One of the biggest challenges in developing any computer language is deciding how
to represent data in that language. For PowerShell, the key decision was to leverage
the .NET object model. .NET is a unifying object representation that’s being used
across all the groups at Microsoft. It was a hugely ambitious project that took years to
come to fruition. With this common data model, all the components in Windows
can share and understand each other’s data.

One of .NET’s most interesting features for PowerShell is that the .NET object
model is self-describing. By this, I mean that the object itself contains the information
that describes the object’s structure. This is important for an interactive environment,
as you need to be able to look at an object and see what you can do with it. For exam-
ple, if PowerShell receives an event object from the system event log, the user can
inspect the object to see that it has a data stamp indicating when the event was gener-
ated.

Traditional text-based shells facilitate inspection because everything is text. Text is
great—what you see is what you get. Unfortunately, what you see is 2// you get. You
can’t pull off many interesting tricks with text until you turn it into something else.
For example, if you want to find out the total size of a set of files, you can get a direc-
tory listing, which looks something like the following:

02/26/2004 10:58 PM 45,452 0810833.1og
02/26/2004 10:59 PM 47,808 0811493.1og
02/26/2004 10:59 PM 48,256 0811630.1og
02/26/2004 11:00 PM 50,681 0814033.1og

You can see where the file size is in this text, but it isn’t useful as is. You have to extract
the sequence of characters starting at column 32 (or is it 33?) until column 39,
remove the comma, and then turn those characters into numbers. Even removing the
comma might be tricky, because the thousands separator can change depending on
the current cultural settings on the computer. In other words, it may not be a
comma—it may be a period. Or it may not be present at all.

It would be easier if you could just ask for the size of the files as a number in the first
place. This is what .NET brings to PowerShell: self-describing data that can be easily
inspected and manipulated without having to convert it to text until you need to.

Choosing to use the .NET object model also brings an additional benefit in that it
allows PowerShell to directly use the extensive libraries that are part of the .NET
Framework. This brings to PowerShell a breadth of coverage rarely found in a new
language. Here’s a simple example that shows the kinds of things .NET brings to the
environment. Say you want to find out what day of the week December 13, 1974
was. You can do this in PowerShell as follows:

PS (1) > (Get-Date "December 13, 1974") .DayOfWeek
Friday

CHAPTER 1 WELCOME TO POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

In this example, the Get-Date command returns a .NET object, which has a property
that will calculate the day of the week corresponding to that date. The PowerShell
team didn’t need to create a library of date and time manipulation routines for Power-
Shell—they got them for free by building on top of .NET. And the same DateTime
objects are used throughout the system. For example, say you want to find out which
of two files is newer. In a text-based shell, you'd have to get a string that contains the
time each file was updated, convert those strings into numbers somehow, and then
compare them. In PowerShell, you can simply do this:

PS (6) > (dir data.txt).lastwritetime -gt

>> (dir hello.psl) .lastwritetime

>>
True

You use the dir command to get the file information objects and then compare the
last write time of each file. No string parsing is needed.

Now that you're sold on the wonders of objects and .NET, let’s make sure we’re
all talking about the same thing when we use words like object, member, method, and
instance. The next section discusses the basics of object-oriented programming.

13 BRUSHING UP ON OBJECTS

Because the PowerShell environment uses objects in almost everything it does, it’s
worth running through a quick refresher on objects and how they’re used in program-
ming. If youre comfortable with this material, feel free to skip most of this section,
but do please read the section on objects and PowerShell.

There’s no shortage of “learned debate” (also known as bitter feuding) about what
objects are and what object-oriented programming is all about. For our purposes,
we'll use the simplest definition. An object is a unit that contains both data (proper-
ties) and the information on how to use that data (methods). Let’s look at a simple
example. In this example, you’re going to model a lightbulb as an object. This object
would contain data describing its state—whether it’s off or on. It would also contain
the mechanisms or methods needed to change the on/off state. Non-object-oriented
approaches to programming typically put the data in one place, perhaps a table of
numbers where 0 is off and 1 is on, and then provide a separate library of routines to
change this state. To change its state, the programmer would have to tell these rou-
tines where the value representing a particular 1ight bulb was. This process could
be complicated and is certainly error prone. With objects, because both the data and
the methods are packaged as a whole, the user can work with objects in a more direct
and therefore simpler manner, allowing many errors to be avoided.

1.3.1 Reviewing object-oriented programming

That’s the basics of what objects are. Now, what’s object-oriented programming? Well,
it deals mainly with how you build objects. Where do the data elements come from?
Where do the behaviors come from? Most object systems determine the object’s

BRUSHING UP ON OBJECTS 11

www.it-ebooks.info

http://www.it-ebooks.info/

capabilities through its type. In the lightbulb example, the type of the object is (sur-
prise) LightBulb. The type of the object determines what properties the object has
(for example, Ts0n) and what methods it has (for example, Turnon and Turnoff).

Essentially, an object’s type is the blueprint for what an object looks like and how
you use it. The type LightBulb would say that it has one data element—IsOn—and
two methods—Turnon () and Turnoff (). Types are frequently further divided into
two subsets:

* Types that have an actual implementation of Turnon () and Turnoff (). These
are typically called classes.

* Types that only describe what the members of the type should look like but not
how they work. These are called 7nzerfaces.

The pattern IsOn/TurnOn () /TurnOff () could be an interface implemented by a
variety of classes such as LightBulb, KitchenSinkTap, or Television. All these
objects have the same basic pattern for being turned on and off. From a programmer’s
perspective, if they all have the same interface (that is, the same mechanism for being
turned on and off), once you know how to turn one of these objects on or off, you
can use any type of object that has that interface.

Types are typically arranged in hierarchies with the idea that they should reflect
logical taxonomies of objects. This taxonomy is made up of classes and subclasses. A
sample taxonomy is shown in figure 1.2.

In this taxonomy, Book is the parent class, Fiction and Non-fiction are sub-
classes of Book, and so on. Although taxonomies organize data effectively, designing a
good taxonomy is hard. Frequently, the best arrangement isn’t immediately obvious.
In figure 1.2, it might be better to organize by subject matter first, instead of the
Novel/Short-Story Collection grouping. In the scientific world, people spend entire
careers categorizing items. Because categorizing well isn’t easy, people also arrange
instances of objects into collections by containment instead of by type. A library con-
tains books, but it isn’t itself a book. A library also contains other things that aren’t
books, such as chairs and tables. If at some point you decide to re-categorize all of the
books in a library, it doesn’t affect what building people visit to get a book—it only

Mystery
Novel
Fiction
Historical
Short-story
Book collection
Figure 1.2 This diagram shows
N how books can be organized in a
on- ;

fiction History hierarchy of classes, just as object
types can be organized into classes.

CHAPTER 1 WELCOME TO POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

1.3.2

14

changes how you find a book once you reach that building. If the library moves to a
new location, you have to learn where it is. Once inside the building, however, your
method for looking up books hasn’t changed. This is usually called a Aas-a relation-
ship—a library Aas-a bunch of books. Now let’s see how these concepts are used in
the PowerShell environment.

Objects in PowerShell

Earlier I said that PowerShell is an object-based shell as opposed to an object-oriented
language. What do I mean by object-based? In object-based scripting, you typically
use objects somebody else has already defined for you. Although it’s possible to build
your own objects in PowerShell, it isn’t something that you need to worry about—at
least not for most basic PowerShell tasks.

Returning to the light bulb example, PowerShell would probably use the Light-
Bulb class like this:
$1lb = Get-LightBulb -Room bedroom
$1b.TurnOff ()
Don’t worry about the details of the syntax for now—we'll cover that later. The key
point is that you usually get an object foo by saying

Get-Foo -Optionl -Option2 bar
rather than saying something like

new Foo ()

as you would in an object-oriented language.

PowerShell commands, called cmdlets, use verb-noun pairs like Get-Date. The
Get-* verb is used universally in the system to get at objects. Note that we didn’t
have to worry about whether LightBulb is a class or an interface, or care about where
in the object hierarchy it comes from. You can get all the information about the
member properties of an object through the Get-Member cmdlet (see the pattern?),
which will tell you all about an object’s properties.

But enough talk! By far the best way to understand PowerShell is to use it. In the
next section, you’ll get up and going with PowerShell, and we’ll quickly tour through
the basics of the environment.

UP AND RUNNING WITH POWERSHELL

In this section, we'll look at the things you need to know to get going with Power-
Shell as quickly as possible. This is a brief introduction intended to provide a taste of
what PowerShell can do and how it works. We'll begin with how to download and
install PowerShell and how to start it once it’s installed. Then we’ll cover the basic for-
mat of commands, command-line editing, and how to use command completion
with the Tab key to speed up command entry. Once you're up and running, you'll
learn what you can do with PowerShell.

UP AND RUNNING WITH POWERSHELL 13

www.it-ebooks.info

http://www.it-ebooks.info/

1.4.1

14.2

1.4.3

14

NOTE The PowerShell documentation package also includes a short
Getting Started guide that will include up-to-date installation informa-
tion and instructions. You may want to take a look at this as well.

PowerShell

How you get PowerShell depends on what operating system you're using. If you're
using Windows 7 or Windows Server 2008 R2, you have nothing to do—it’s already
there. All Microsoft operating systems beginning with Windows 7 include Power-
Shell as part of the system. If youre using Windows Server 2008, PowerShell was
included with this operating system but as an optional component that will need to
be turned on before you can use it. For earlier Microsoft operating systems, you'll
have to download and install the PowerShell package on your computer. For details
about supported platforms, go to the PowerShell page on the Microsoft website:
http://microsoft.com/powershell.

This page contains links to the appropriate installers as well as documentation
packages and other relevant materials. Alternatively, you can go to Microsoft Update
and search for the installer there. Once you've located the installer, follow the
instructions to install the package.

Starting PowerShell

Now let’s look at how you start PowerShell running. PowerShell follows a model
found in many modern interactive environments. It’s composed of two main parts:

* The PowerShell engine, which interprets the commands

* A host application that passes commands from the user to the engine

Although there’s only one PowerShell engine, there can be many hosts, including
hosts written by third parties. In PowerShell v1, Microsoft provided only one basic
PowerShell host based on the old-fashioned Windows console. Version 2 intro-
duced a much more modern host environment, called the PowerShell Integrated
Scripting Environment (PowerShell ISE). We'll look at both of these hosts in the
next few sections.

The PowerShell console host

To start an interactive PowerShell session using the console host, choose Start > All
Programs > Accessories > Windows PowerShell > Windows PowerShell. PowerShell
will start, and you’ll see a screen like the one shown in figure 1.3.

This window looks a lot like the old Windows command window (except that it’s
blue and very pale yellow instead of black and white). Now type the first command
most people type: dir. This produces a listing of the files on your system, as shown
in figure 1.4.

CHAPTER 1 WELCOME TO POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

B PS (STA) CA\Users\brucepay l (= [E] 5 |

Hindows PowerShell
Copyright (C> 2BA? Microsoft Corporation. All rights reserved.

PS (STA> <1> >

Figure 1.3 When you start an interactive PowerShell session, the first thing
you see is the PowerShell logo and then the prompt. As soon as you see the
prompt, you can begin entering commands.

As youd expect, the dir command prints a listing of the current directory to standard
output.

NOTE Let’s stop for a second and talk about the conventions we’re
going to use in examples. Because PowerShell is an interactive environ-
ment, we'll show a lot of example commands as the user would type
them, followed by the responses the system generates. Code font is
used to distinguish examples from the rest of the text. Before the com-
mand text, there will be a prompt string that looks like PS (2) >. Fol-
lowing the prompt, the actual command will be displayed and then
PowerShell’s responses will follow on the next few lines. PowerShell
doesn’t display anything in front of the output lines, so you can distin-
guish output from commands by looking for the prompt string. These
conventions are illustrated in figure 1.5.

4 PS (STA) CAUsers\brucepay

Mindows PowerShell
Copyright (C> 2BA? Microsoft Corporation. All rights reserved.

PS (STA> (1) > dir c:nfiles

Directory: GC:~\files

LastWritelime Length Name

5-4-2818 108:08 PM
5-4-2818 1@:81 PM 76 h.txt
5-4-28018 18:82 PM 82 c.txt

PS (STA> <2> >

W

Figure 1.4 At the prompt, type dir and press Enter. PowerShell
will then execute the dir command and display a list of files in the
current directory.

UP AND RUNNING WITH POWERSHELL 15

www.it-ebooks.info

http://www.it-ebooks.info/

16

First prompt User enters

“142+3+4”

PowerShell PS (1) > 1+2+3+4 Figure 1.5 This diagram illustrates the con-
outputs the 10 ventions we're using for showing examples in
result: 10 PS (2) > this book. The code that the user enters ap-

pears to the right of the prompt. Any output
generated by that command is shown on the
Next prompt following lines.

Command editing in the console

Typing in commands is all well and good, but you also want to be able to edit and
rerun commands. Command-line editing works the same way in the PowerShell con-
sole window as it does for cmd . exe. The available editing features and keystrokes are
listed in table 1.1.

Table 1.1 Command editing features

Keyboard sequence Editing operation

Left/right arrows Moves the editing cursor left and right through the current
command line.

Ctrl-left arrow, Ctrl-right arrow Holding the Ctrl key down while pressing the left and right
arrow keys moves the editing cursor through the current
command line one word at a time, instead of one character

at a time.

Home Moves the editing cursor to the beginning of the current
command line.

End Moves the editing cursor to the end of the current com-
mand line.

Up/down arrow Moves up and down through the command history.

Insert key Toggles between character insert and character overwrite
modes.

Delete key Deletes the character under the cursor.

Backspace key Deletes the character to the left of the cursor.

These key sequences let you create and edit commands effectively at the command
line. In fact, they’re not part of PowerShell at all. These command-line editing fea-
tures are part of the Windows console subsystem, so they’re the same across all con-
sole applications.

Users of cmd.exe or any modern UNIX shell will also expect to be able to do
command completion. Because this component is common to both host environ-
ments, we'll cover how it works in its own section.

Now let’s leap into the 21st century and look at a modern shell environment: the
PowerShell ISE.

CHAPTER 1 WELCOME TO POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

144

The PowerShell Integrated Scripting Environment

Starting with v2, PowerShell includes a modern integrated environment for working
with PowerShell: the Integrated Scripting Environment (ISE). To start the Power-
Shell ISE, choose Start > All Programs > Accessories > Windows PowerShell > Win-
dows PowerShellISE. PowerShell will start, and you'll see a screen like that shown in
figure 1.6.

You can see that, by default, the window is divided into three parts: the command
entry area at the bottom, the output window in the middle, and an editor at the top.
As you did in the console window, let’s run the dir command. Type dir into the
bottom pane, and press Enter. The command will disappear from the bottom pane
and reappear in the middle pane, followed by the output of the command, as shown
in figure 1.7.

Because the ISE is a real Windows application, it follows all of the Windows
Common User Access (CUA) guidelines. The left and right arrows work as expected.
The up and down arrows will move you through the history of commands that
you've entered.

Something that requires special mention is how Ctrl-C works. By defaul, this is the
key sequence for copying into the clipboard in Windows. It’s also the way to interrupt
a running command in most shells. As a result, the ISE has to treat Ctrl-C in a special
way. When something is selected, Ctrl-C copies the selection. If there’s a command
running and there’s no selection, then the running command will be interrupted.

There’s also another way to interrupt a running command. You may have noticed
the two buttons immediately above the command entry pane—the ones that look

L3 PS (STA) C\wpia_v2\text\chapter0L o {51

File Edit View Debug Help
el 4 0 > 0| % B|[B00

| Uniitled1ps1 X | &
1

PS (STA) (1) > 0
gl

tnl ol | 79 4p

Figure 1.6 The PowerShell Integrated Scripting Environment

UP AND RUNNING WITH POWERSHELL 17

www.it-ebooks.info

http://www.it-ebooks.info/

18

43 PS (STA) CAUsers\brucepay (=[E] =)
File Edit View Debug Help
DEE&cOM| 91 &% 8|Eoo

| Untitled1.pst X &
1

PS (5TA) (2) » dir

=

Directory: C:\Users\brucepay

Mode LastWriteTime Length Name

d-r-- 12/26/2008 8:50 PM Contacts

d-r-- 7/17/2009 9:22 PM Desktop

d-r-- 7/22/2009 8:56 PM Documents

d-r-- 7/19/2009 1:30 PM Downloads

d---- 1/13/2009 10:16 PM dwhelper

d-r-- 6/27/2009 5:38 PM Favorites

d-r-- 12/26/2008 8:51 PM Links

Aerien 13/22/7008 __6.20 Dm Mucic

PS (STA) (3) > @
>

Completed InlColl | 1) 12

Figure 1.7 This figure shows running the dir command in the PowerShell ISE. The
command is entered in the bottom pane and the result of the command is shown in
the output pane in the middle.

like the play and stop buttons on a media player. As you might expect, the green
“play” button will run a command just like if you press Enter. If there’s a command
running, the play button is disabled (grayed out) and the red “stop” button is
enabled. Clicking this button will stop the currently running command.

Using the editor pane

The topmost pane in the ISE is a script editor that understands the PowerShell lan-
guage. This editor will do syntax highlighting as you type in script text. It will also let
you select a region and either press the play button above the pane or press the F8 key
to execute the part of the script you want to test out. If nothing is selected in the win-
dow, then the whole script will be run. If you're editing a script file, the ISE will ask if
you want to save the file before running it.

Another nice feature of the ISE editor is the ability to have multiple files open at
once, each in individual tabs, as shown in figure 1.8.

And finally, in addition to offering multiple editor tabs, the ISE allows you to have
multiple session tabs, as shown in figure 1.9. In this figure you can see that there are
four session tabs and, within each tab, there can be multiple editor tabs. This makes
the ISE a powerful way to organize your work and easily multitask between different
activities.

CHAPTER 1 WELCOME TO POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

L PS (STA) CA\Users\brucepay\documents\scripts =[E] 2)

File Edit View Debug Help
HedieaM 9@ bl % 8|Boo,

[norpst | sievepst | tictactoepst X @

Windows PowerShell in Action =
Chapter 11 PowerShell Graphics Examples

This script implements a simple Tic-Tac-Toe game
in PowerShell using WinForms.

O R

This is an additional example, not covered in the book.

A N A WA A A A

winform

LRI

trap { break }

R

$form = Form Form @{
17 Text = "PowerShell TicTacToe"
P5 (5TA) (11) > psedit tictactoe.psl

PS5 (STA) (12) > @®

-

Completed lnl Coll |

Figure 1.8 This figure shows using multiple tabs in the ISE editor. Each new file
that’s opened gets its own tab. Files can be opened from the File menu or by
using the psedit command in the command window, as shown.

(& ps (5TA) CAUseraBriuce pay\documentshscripts =[E] = J

File Edit View Debug Help
NEaEiz0x 96 b0 % 8 Emo,

‘ PowerShell 1 | PowerShell 2 | PowerShell 3 x | PowerShell 4 i

| sievepsi® | tictactoepsl | mandelbrot3psl X @
28 S5zRealSq = 0.0
S $zImSq 0.0
31
82 Scount = 0 -
33 SxOrd [} | |
34 Syord o
35
36 function ql { Sargs }
37 SColorMap = q1 Blue DarkBlue Green DarkGreen Cyan DarkCyan Yellow °
28 DarkYellow Gray DarkGray Magenta DarkMagenta Red DarkRed White
33
ag #
41 # Initialize the colour cell array.
@8 scolorCells = $(
43 foreach (Scolor in $ColorMap)
4 { ¥

°
“

(5TA) (3) > psedit sieve.psl

el

'S (STA) (4) > psedit tictactoe.psi

PS (5TA) (5) = psedit mandelbrot3.psi

PS (STA) (6) > @

=

Completed Lnl Coll |

Figure 1.9 This figure shows how multiple session tabs are displayed in the ISE.
Note that each session tab has its own set of editor tabs.

UP AND RUNNING WITH POWERSHELL

www.it-ebooks.info

19

http://www.it-ebooks.info/

145

20

These are the basic concepts in the ISE. But the ISE isn’t just a tool for writing, test-
ing, and debugging PowerShell scripts. It’s also scriptable by PowerShell. This means
that you can use scripts to manipulate the contents of buffers, create new tabs and
menu items, and so forth. This allows you to use the ISE as part of your application
in much the same way that the Emacs editor was a component of custom applica-
tions. There are some limitations to this in the first version of the ISE—the Power-
Shell team didn’t have time to do everything they wanted (there’s never enough time),
but the result is still powerful. You'll see more of this later on.

NOTE Okay, so why is this an “ISE” instead of an “IDE” like Visual
Studio? The big difference is that the ISE is intended for interactive use
of PowerShell, not just the creation of PowerShell applications. One of
the biggest differences between the two approaches is the lack of a proj-
ect system in the ISE.

Command completion

One of the most useful editing features in PowerShell is command completion, also
called zab completion. Although cmd.exe does have tab completion, PowerShell’s
implementation is significantly more powerful. Command completion allows you to
partially enter a command, then press the Tab key, and have PowerShell try to fill in
the rest of the command. By default, PowerShell will do tab completion against the
file system, so if you type a partial filename and then press Tab, the system matches
what you've typed against the files in the current directory and returns the first
matching filename. Pressing Tab again takes you to the next match, and so on. Pow-
erShell also supplies the powerful capability of tab completion on wildcards (see
chapter 4 for information on PowerShell wildcards). This means that you can type

PS (1) > cd c:\pro*files<tab>
and the command is expanded to
PS (2) > cd 'C:\Program Files'

PowerShell will also do tab completion on partial cmdlet names. If you enter a cmdlet
name up to the dash and then press the Tab key, the system will step through the
matching cmdlet names.

So far, this isn’t much more interesting than what cmd. exe provides. What's sig-
nificantly different is that PowerShell also does completion on parameter names. If
you enter a command followed by a partial parameter name and press Tab, the sys-
tem will step through all of the possible parameters for that command.

PowerShell also does tab completion on variables. If you type a partial variable
name and then press Tab, PowerShell will complete the name of the variable.

Finally, PowerShell does completion on properties in variables. If you’ve used the
Microsoft Visual Studio development environment, you've probably seen the

CHAPTER 1 WELCOME TO POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

IntelliSense feature. Property completion is kind of a limited IntelliSense capability at
the command line. If you type something like

PS (1) > Sa="abcde"
PS (2) > Sa.len<tab>

the system expands the property name to

PS (2) > S$Sa.Length

Again, the first Tab returns the first matching property or method. If the match is a

method, an open parenthesis is displayed

PS (3) > Sa.sub<tab>

which produces

PS (3) > Sa.Substring(

Note that the system corrects the capitalization for the method or property name to

match how it was actually defined. This doesn’t impact how things work. PowerShell

is case insensitive by default whenever it has to match against something. (There are

operators thatallow you to do case-sensitive matching, which are discussed in chapter 3.)
Version 2 of PowerShell introduced an additional tab completion feature (sug-

gested by a PowerShell user, no less). PowerShell remembers each command you

type. You can access previous commands using the arrow keys or show them using

the Get-History command. A new feature was added to allow you to do tab com-

pletion against the command history. To recall the first command containing the

string “abc”, type the # sign, followed by the pattern of the command you want to
find, and then press the Tab key:

PS (4) > f#abc<tab>
This will expand the command line to
PS (4) > Sa="abcde"

You can also select a command from the history by number. To do so, type the # sign,
followed by the number of the command to run, and press Tab:
PS (5) > #2<tab>

And this should expand to

PS (5) > Sa="abcde"

NOTE The PowerShell tab completion mechanism is user extendable.
Although the path completion mechanism is built into the executable,
features such as parameter and property completion are implemented
through a shell function that users can examine and modify. The name
of this function is TabExpansion. Chapter 7 describes how to write
and manipulate PowerShell functions.

UP AND RUNNING WITH POWERSHELL 21

www.it-ebooks.info

http://www.it-ebooks.info/

1.5

1.5.1

22

DUDE! WHERE'S MY CODE?

Okay, enough talk, let’s see some more example code! First, we'll revisit the dir exam-
ple. This time, instead of simply displaying the directory listing, you'll save it into a
file using output redirection just like in other shell environments. In the following
example, you'll use dir to get information about a file named somefile.txt in the root
of the C: drive. Using redirection, you direct the output into a new file, c:\foo.txt,
and then use the type command to display what was saved. Here’s what this looks

like:

PS (2) > dir c:\somefile.txt > c:\foo.txt
PS (3) > type c:\foo.txt

Directory: Microsoft.PowerShell.Core\FileSystem: :C:\

Mode LastWriteTime Length Name
-a--- 11/17/2004 3:32 AM 0 somefile.txt
PS (4) >

As you can see, commands work more or less as youd expect.

NOTE Okay, nobody has a file named somefile.txt in the root of their
C: drive (except me). For the purpose of this example, just choose any
file that does exist and the example will work fine, though obviously
the output will be different.

Let’s go over some other things that should be familiar to you.

Navigation and basic operations

The PowerShell commands for working with the file system should be pretty familiar
to most users. You navigate around the file system with the cd command. Files are
copied with the copy or cp commands, moved with the move and mv commands, and
removed with the del or rm commands. Why two of each command, you might ask?
One set of names is familiar to cmd. exe/DOS users and the other is familiar to
UNIX users. In practice theyre actually aliases for the same command, designed to
make it easy for people to get going with PowerShell. One thing to keep in mind,
however, is that although the commands are similar they’re not exactly the same as
either of the other two systems. You can use the Get-Help command to get help
about these commands. Here’s the output of Get-Help for the dir command:

PS (1) > Get-Help dir

NAME
Get-ChildItem

SYNOPSIS
Gets the items and child items in one or more specified locations.

CHAPTER 1 WELCOME TO POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

SYNTAX
Get-ChildItem [-Exclude <string[]>] [-Forcel]l [-Include <string[]>]
[-Name] [-Recurse] [[-Path] <string[]>] [[-Filter] <string>]
[<CommonParameters>]

Get-ChildItem [-Exclude <string[]>] [-Force] [-Include <string[]>]
[-Name] [-Recurse] [[-Filter] <string>] [-LiteralPath] <string[]>
[<CommonParameters>]

DETAILED DESCRIPTION
The Get-Childitem cmdlet gets the items in one or more specified
locations. If the item is a container, it gets the items inside the
container, known as child items. You can use the Recurse parameter
to get items in all child containers.

A location can be a file system location, such as a directory,
or a location exposed by another provider, such as a registry
hive or a certificate store.

RELATED LINKS
About_Providers
Get-Item
Get-Alias
Get-Location
Get-Process

REMARKS
To see the examples, type: "get-help Get-ChildItem -examples".
For more information, type: "get-help Get-ChildItem -detailed".
For technical information, type: "get-help Get-ChildItem -full".

The PowerShell help subsystem contains information about all of the commands pro-
vided with the system and is a great way to explore what’s available. You can even use
wildcard characters to search through the help topics (v2 and later). Of course, this is
the simple text output. The PowerShell ISE also includes help in the richer Windows
format and will even let you select an item and then press F1 to view the help for the
item. Finally, by using the -Online option to Get-Help, you can view the help text
for a command or topic using a web browser.

NOTE Get-Help -Online is the best way to get help because the
online documentation is constantly being updated and corrected,
whereas the local copies are not.

1.5.2 Basic expressions and variables

In addition to running commands, PowerShell can evaluate expressions. In effect, it
operates as a kind of calculator. Let’s evaluate a simple expression:

PS (4) > 242
4

DUDE! WHERES MY CODE? 23

www.it-ebooks.info

http://www.it-ebooks.info/

24

Notice that as soon as you typed the expression, the result was calculated and displayed.
It wasn’t necessary to use any kind of print statement to display the result. It's impor-
tant to remember that whenever an expression is evaluated, the result of the expression
is output, not discarded. We'll explore the implications of this in later sections.

Here are a few more examples of PowerShell expressions:
PS (5) > (2+2)*3
12
PS (6) > (2+2)*6/2
12
PS (7) > 22/7
3.14285714285714
You can see from these examples that PowerShell supports most of the basic arithme-
tic operations youd expect, including floating point.

NOTE PowerShell supports single and double precision floating
points, as well as the NET decimal type. See chapter 3 for more details.

Because I've already shown you how to save the output of a command into a file
using the redirection operator, let’s do the same thing with expressions:

PS (8) > (2+2)*3/7
1.71428571428571

PS (9) > (2+2)*3/7 > c:\foo.txt
PS (10) > type c:\foo.txt
1.71428571428571

Saving expressions into files is useful; saving them in variables is more useful:

PS (11) > S$n = (2+2)*3
PS (12) > S$n
12

PS (13) > s$n / 7
1.71428571428571

Variables can also be used to store the output of commands:

PS (14) > s$files = dir

PS (15) > sfiles[1]
Directory: Microsoft.PowerShell.Core\FileSystem: :C:\Document
s and Settings\brucepay

Mode LastWriteTime Length Name
d---- 4/25/2006 10:32 PM Desktop

In this example, you extracted the second element of the collection of file informa-
tion objects returned by the dir command. You were able to do this because you
saved the output of the dir command as an array of objects in the $files variable.

NOTE Collections in PowerShell start at 0, not 1. This is a character-
istic we've inherited from .NET. This is why $files[1] is extracting
the second element, not the first.

CHAPTER 1 WELCOME TO POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

Given that PowerShell is all about objects, the basic operators need to work on more
than just numbers. So, for example, you can also use the plus sign (+) to add or con-
catenate strings as follows:

PS (16) > "hello" + " world"
hello world

In this case, the + operator adds the two strings together to produce a new, longer
string. You can also mix and match argument types. You can add a number to a string
and PowerShell will take care of turning the number into a string and then concate-
nating the two strings. Here’s how this looks:

PS (17) > "a number: " + 123
a number: 123

The + operator also works with the object arrays we mentioned earlier. You can create
an array of numbers simply by typing the numbers you want in the collection sepa-
rated by a comma. You can then add these collections using the + operator as follows:

PS (18) > 1,2 + 3,4

B W N

As with strings, the + operator adds the two arguments together to produce a new,
longer array. You can even add an array to a string:

PS (19) > "Numbers: " + 1,2,3,4
Numbers: 1 2 3 4

And again, PowerShell takes care of turning the array into a string and then append-
ing it to the argument on the right-hand side. These examples only scratch the sur-
face of what can be done with the PowerShell operators. Chapters 5 and 6 cover these
features in detail.

15.3 Processing data

As you've seen in the preceding sections, you can run commands to get information,
perform some basic operations on this information using the PowerShell operators,
and then store the results in files and variables. Now let’s look at some additional ways
you can process this data. First you'll see how to sort objects and how to extract prop-
erties from those objects. Then we'll look at using the PowerShell flow-control state-
ments to write scripts that use conditionals and loops to do more sophisticated
processing.

Sorting objects

First let’s sort the list of file information objects returned by dir. Because you're sort-
ing objects, the command you'll use is Sort-Object. For convenience, you'll use the

DUDE! WHERES MY CODE? 25

www.it-ebooks.info

http://www.it-ebooks.info/

shorter alias sort in these examples. Start by looking at the default output, which
shows the files sorted by name:
PS (16) > cd c:\files

PS (17) > dir
Directory: Microsoft.PowerShell.Core\FileSystem::C:\files

Mode LastWriteTime Length Name
-a--—- 4/25/2006 10:55 PM 98 a.txt
-a--- 4/25/2006 10:51 PM 42 Db.txt
-a--—- 4/25/2006 10:56 PM 102 c.txt
-a--—- 4/25/2006 10:54 PM 66 d.txt

The output shows the basic properties on the file system objects sorted by the name
of the file. Now, let’s run it through sort:

PS (18) > dir | sort
Directory: Microsoft.PowerShell.Core\FileSystem::C:\files

Mode LastWriteTime Length Name
-a--- 4/25/2006 10:55 PM 98 a.txt
-a--- 4/25/2006 10:51 PM 42 Db.txt
-a--—- 4/25/2006 10:56 PM 102 c.txt
-a--—- 4/25/2006 10:54 PM 66 d.txt

Granted, it’s not very interesting. Sorting an already sorted list by the same propert

y g g y y property
gives you the same result. Let’s do something a bit more interesting. Lets sort by
name in descending order:

PS (19) > dir | sort -Descending
Directory: Microsoft.PowerShell.Core\FileSystem::C:\files

Mode LastWriteTime Length Name
-a--- 4/25/2006 10:54 PM 66 d.txt
-a--- 4/25/2006 10:56 PM 102 c.txt
-a--—- 4/25/2006 10:51 PM 42 b.txt
-a--—- 4/25/2006 10:55 PM 98 a.txt

So there you have it—files sorted by name in reverse order. Now let’s sort by some-
thing other than the name of the file: file length. You may remember from an earlier
section how hard it would be to sort by file length if the output were just text.

Sort on UNIX

On a UNIX system, the sort command looks like

ls -1 | sort -n -k 5

which, though pithy, is pretty opaque. Here's what it's doing. The -n option tells the

sort function that you want to do a numeric sort. -k tells you which field you want
to sort on.

CHAPTER 1 WELCOME TO POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

(continued)

(The sort utility considers space-separated bits of text to be fields.) In the output of
the 1s -1 command, the field containing the length of the file is at offset 5, as
shown in the following:

-rw-r--r-- 1 brucepay brucepay 5754 Feb 19 2005 index.html
-rw-r--r-- 1 brucepay brucepay 204 Aug 19 12:50 pagel.htm

You need to set things up this way because 1s produces unstructured strings. You
have to tell sort how to parse those strings before it can sort them.

In PowerShell, when you use the Sort-Object cmdlet, you don’t have to tell it to
sort numerically—it already knows the type of the field, and you can specify the sort
key by property name instead of a numeric field offset. The result looks like this:

PS (20) > dir \ sort -Property length
Directory: Microsoft.PowerShell.Core\FileSystem::C:\files

Mode LastWriteTime Length Name
-a--- 4/25/2006 10:51 PM 42 b.txt
-a--- 4/25/2006 10:54 PM 66 d.txt
-a--- 4/25/2006 10:55 PM 98 a.txt
-a--- 4/25/2006 10:56 PM 102 c.txt

This illustrates what working with pipelines of objects gives you:
* You have the ability to access data elements by name instead of using substring
indexes or field numbers.
* By having the original type of the element preserved, operations execute cor-

rectly without you having to provide additional information.

Now let’s look at some other things you can do with objects.

Selecting properties from an object

In this section, we'll introduce another cmdlet for working with objects: Select-
Object. This cmdlet allows you to select a subrange of the objects piped into it and
to specify a subset of the properties on those objects.

Say you want to get the largest file in a directory and put it into a variable:

PS (21) > $a = dir | sort -Property length -Descending |
>> Select-Object -First 1

PS (22) > Sa
Directory: Microsoft.PowerShell.Core\FileSystem::C:\files

Mode LastWriteTime Length Name
-a--—- 4/25/2006 10:56 PM 102 c.txt
DUDE! WHERE'S MY CODE? 27

www.it-ebooks.info

http://www.it-ebooks.info/

28

From this you can see that the largest file is c.txt.

NOTE You'll notice the secondary prompt >> in the previous exam-
ple. The first line of the command ended in a pipe symbol. The Power-
Shell interpreter noticed this, saw that the command was incomplete,
and prompted for additional text to complete the command. Once the
command is complete, you type a second blank line to send the com-
mand to the interpreter. If you just want to cancel the command, you
can press Ctrl-C at any time to return to the normal prompt.

Now say you want only the name of the directory containing the file and not all the
other properties of the object. You can also do this with Select-Object. As with the
Sort-Object cmdlet, Select-Object takes a -Property parameter (you'll see this
frequently in the PowerShell environment—commands are consistent in their use of
parameters):

PS (23) > $a = dir | sort -Property length -Descending |

>> Select-Object -First 1 -Property directory

>>
PS (24) > Sa

Directory

You now have an object with a single property.

Processing with the ForEach-Object cmdlet

The final simplification is to get just the value itself. T'll introduce a new cmdlet that
lets you do arbitrary processing on each object in a pipeline. The ForEach-Object
cmdlet executes a block of statements for each object in the pipeline:

PS (25) > $a = dir | sort -Property length -Descending |

>> Select-Object -First 1 |

>> ForEach-Object { $_.DirectoryName }

>>

PS (26) > Sa

C:\files

This shows that you can get an arbitrary property out of an object and then do arbi-
trary processing on that information using the ForEach-0Object command. Com-
bining those features, here’s an example that adds up the lengths of all the objects in a
directory:

PS (27) > Stotal = 0

PS (28) > dir | ForEach-Object {$total += $_.length }

PS (29) > Stotal
308

CHAPTER 1 WELCOME TO POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

In this example, you initialize the variable $total to 0, and then add to it the length
of each file returned by the dir command and finally display the total.

Processing other kinds of data

One of the great strengths of the PowerShell approach is that once you learn a pattern
for solving a problem, you can use this same pattern over and over again. For exam-
ple, say you want to find the largest three files in a directory. The command line
might look like this:

PS (1) > dir | sort -Descending length | select -First 3
Directory: Microsoft.PowerShell.Core\FileSystem::C:\files

Mode LastWriteTime Length Name
-a--- 4/25/2006 10:56 PM 102 c.txt
-a--- 4/25/2006 10:55 PM 98 a.txt
-a--—- 4/25/2006 10:54 PM 66 d.txt

Here, the dir command retrieved the list of file information objects, sorted them in
descending order by length, and then selected the first three results to get the three
largest files.

Now let’s tackle a different problem. You want to find the three processes on the
system with the largest working set size. Here’s what this command line looks like:

PS (2) > Get-Process | sort -Descending ws | select -First 3
Handles NPM(K) PM(K) WS (K) VM(M) CPU(s) Id ProcessName
1294 43 51096 81776 367 11.48 3156 OUTLOOK
893 25 55260 73340 196 79.33 5124 iexplore
2092 64 42676 54080 214 187.23 988 svchost

This time you run Get-Process to get data about the processes on this computer
and sort on the working set instead of the file size. Otherwise, the pattern is identical
to the previous example. This command pattern can be applied over and over again.
For example, to get the three largest mailboxes on an Exchange mail server, the com-

mand might look like this:
Get-MailboxStatistics | sort -descending TotalltemSize | select -First 3

Again the pattern is repeated except for the Get-MailboxStatistics command and
the property to filter on.

Even when you don’t have a specific command for the data you’re looking for and
have to use other facilities such as WMI, you can continue to apply the pattern. Say
you want to find the three drives on the system that have the most free space. To do
this you need to get some data from WMI. Not surprisingly, the command for this is
Get-WmiObject. Here’s how you'd use this command:

PS (4) > Get-WmiObject -Class Win32_LogicalDisk |
>> sort -Descending freespace | select -First 3 |

DUDE! WHERES MY CODE? 29

www.it-ebooks.info

http://www.it-ebooks.info/

1.5.4

30

>> Format-Table -AutoSize deviceid, freespace
>>
deviceid freespace

C: 97778954240
T: 31173663232
D: 932118528

Once again, the pattern is almost identical. The Get-wmioObject command returns a
set of objects from WMI. You pipe these objects into sort and sort on the
freespace property, and then use Select-Object to extract the first three.

NOTE Because of this ability to apply a command pattern over and
over, most of the examples in this book are deliberately generic. The
intent is to highlight the pattern of the solution rather than show a spe-
cific example. Once you understand the basic patterns, you can effec-
tively adapt them to solve a multitude of other problems.

Flow-control statements

Pipelines are great, but sometimes you need more control over the flow of your script.
PowerShell has the usual script flow-control statements found in most programming
languages. These include the basic if statements, a powerful switch statement, and
various loops like a while loop, for and foreach loops, and so on. Here’s an exam-
ple showing use of the while and if statements:

PS (1) > $i=0

PS (2) > while ($i++ -1t 10) { 1if ($i % 2) {"$i is odd"}}
is odd

is odd

is odd

is odd

is odd

PS (3) >

O J Ul W

This example uses the while loop to count through a range of numbers, printing out
only the odd numbers. In the body of the while loop is an if statement that tests to
see whether the current number is odd, and then writes out a message if it is. You can
do the same thing using the foreach statement and the range operator (. .), but
much more succinctly:

PS (3) > foreach ($i in 1..10) { if ($1i % 2) {"$1 is odd"}}

is odd

is odd

is odd

is odd
is odd

O J Ul W

The foreach statement iterates over a collection of objects, and the range operator is
a way to generate a sequence of numbers. The two combine to make looping over a
sequence of numbers very clean.

CHAPTER 1 WELCOME TO POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

Of course, because the range operator generates a sequence of numbers and num-
bers are objects like everything else in PowerShell, you can implement this using
pipelines and the ForEach-0Object cmdlet:

PS (5) > 1..10 | foreach { if ($_ % 2) {"$S_ is odd"}}
is odd
is odd
is odd
is odd
is odd

O J Ul W

These examples only scratch the surface of what you can do with the PowerShell
flow-control statements (just wait until you see the switch statement!). The com-
plete set of control structures is covered in detail in chapter 6 with lots of examples.

155 Scripts and functions

What good is a scripting language if you can’t package commands into scripts? Power-
Shell lets you do this by simply putting your commands into a text file with a .psl
extension and then running that command. You can even have parameters in your
scripts. Put the following text into a file called hello.ps1:

param(Sname = "bub")
"Hello $name, how are you?"

Notice that the param keyword is used to define a parameter called $name. The para-
meter is given a default value of "bub". Now you can run this script from the Power-

Shell prompt by typing the name as . \hello. You need the .\ to tell PowerShell to get
the command from the current directory (chapter 21 explains why this is needed).

NOTE Before you can run scripts on a machine in the default config-
uration, you'll have to change the PowerShell execution policy to allow
scripts to run. See Get-Help -Online about_execution_policies
for detailed instructions.

The first time you run this script, you won’t specify any arguments:
¥ pt, y! p y arg

PS (1) > .\hello
Hello bub, how are you?

You see that the default value was used in the response. Run it again, but this time
specify an argument:

PS (2) > .\hello Bruce
Hello Bruce, how are you?

Now the argument is in the output instead of the default value. Sometimes you just
want to have subroutines in your code. PowerShell addresses this need through func-
tions. Let’s turn the hello script into a function. Here’s what it looks like:

PS (3) > function hello {
>> param(Sname = "bub")

DUDE! WHERES MY CODE? 31

www.it-ebooks.info

http://www.it-ebooks.info/

1.5.6

32

>> "Hello S$name, how are you"
>> }
>>

The body of the function is exactly the same as the script. The only thing added is the
function keyword, the name of the function, and braces around the body of the
function. Now run it, first with no arguments as you did with the script:

PS (4) > hello

Hello bub, how are you

and then with an argument:

PS (5) > hello Bruce
Hello Bruce, how are you

Obviously the function operates in the same way as the script except that PowerShell
didn’t have to load it from a disk file so it’s a bit faster to call. Scripts and functions are
covered in detail in chapter 7.

Remoting and the Universal Execution Model

In the previous sections, you've seen the kinds of things you can do with PowerShell
on a single computer. But the computing industry has long since moved beyond a
one-computer world. Being able to manage groups of computers, without having to
physically visit each one, is critical in the modern IT world. To address this, Power-
Shell v2 introduced built-in remote execution capabilities (remoting) and the Univer-
sal Execution Model—a fancy term that just means that if it works locally, then it
should work remotely.

NOTE At this point you should be asking “If this is so important why
wasn’t it in v1?” In fact it was planned from shortly before day one of
the PowerShell project. But, to make something universal, secure, and
simple is, in fact, very hard.

The core of PowerShell remoting is the Invoke-Command command, which, again for
convenience, has a much shorter alias: icm. This command allows you to invoke a
block of PowerShell script on the current computer, on a remote computer, or on a
thousand remote computers. Let’s see some of this in action. The example scenario will
be to check the version of the Microsoft Management Console (MMC) host program
installed on a computer. You might need to do this because you want to install an MMC
extension (called a szap-in) on a set of machines and this snap-in requires a minimum
version of the MMC host. You can do this locally by using the Get -Command command
(gcm) to retrieve information about mmc . exe, the executable for the MMC host:

PS (1) > (gcm mmc.exe) .FileVersionInfo.ProductVersion
6.1.7069.0

This is a simple one-line command, and it shows that version 6.1 of mmc.exe is
installed on the local machine. Now let’s run it on a remote machine. (We'll assume

CHAPTER 1 WELCOME TO POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

that your target machine names are stored in the variables $ml and $m2.) Let’s check
the version on the first machine. Run the same command as before, but this time
enclose it in braces as an argument to icm. Also give the icm command the name of
the host to execute on:

PS {2) > icm Sml {

>> (gcm mmc.exe) .FileVersionInfo.ProductVersion

>> }

>>
6.0.6000.16386

Oops—this machine has an older version of mmc.exe. Okay, let’s try machine 2.
Run exactly the same command, but pass in the name of the second machine this
time:

PS {3) > icm sm2 {

>> (gcm mmc.exe) .FileVersionInfo.ProductVersion

>> }

>>
6.1.7069.0

This machine is up to date. At this point you've addressed the need to physically go to
each machine but you're still executing the commands one at a time. Let’s fix that too
by putting the machines to check into a list. You'll use an array variable for this exam-
ple, but this list could come from a file, an Excel spreadsheet, a database, or a web ser-
vice. First, run the command with the machine list:

PS {4) > Smlist = $ml, $m2

PS {5) > icm $mlist {

>> (gcm mmc.exe) .FileVersionInfo.ProductVersion

>> }

>>

6.0.6000.16386
6.1.7069.0

You get same the same results as last time but as a list instead of one at a time. In prac-
tice, most of your machines are probably up to date, so you really only care about the
ones that don’t have the correct version of the software. You can use the where com-
mand to filter out the machines you don’t care about:

PS {6) > icm S$mlist {

>> (gcm mmc.exe) .FileVersionInfo.ProductVersion

>> } | where { $_ -notmatch '6\.1' }

>>
6.0.6000.16386

This returns the list of machines that have out-of-date mmc . exe versions. There’s
still a problem, though: you see the version number but not the computer’s name.
Obviously you'll need this too if youre going to update those machines. To address

DUDE! WHERES MY CODE? 33

www.it-ebooks.info

http://www.it-ebooks.info/

34

this, PowerShell remoting automatically adds the name of the originating computer
to each received object using a special property called PSComputerName.

Now let’s jump ahead a bit and see how much effort it’d be to produce a nice
table of computer names and version numbers. You'll run the remote command
again, use where to filter the results, extract the fields you want to display using the
select command, and finally format the report using the Format-Table command.
For the purpose of this example, you’ll add the machine lists together so you know
you'll get two records in your report. Here’s what the command looks like:

PS {7) > icm (Smlist + Smlist) {

>> (gcm mmc.exe) .FileVersionInfo.ProductVersion } |
>> where { $_ -notmatch '6\.1' } |

>> select @{n="Computer"; e={$_.PSComputerName}},

>> @{n="MMC Version"; e={$_1}} |

>> Format-Table -auto

>>

Computer MMC Version

brucepaydev07 6.0.6000.16386
brucepaydev07 6.0.6000.16386

Although the command may look a bit scary, you were able to produce your report
with little effort. And the techniques you used for formatting the report can be used
over and over again. This example shows how easily PowerShell remoting can be used
to expand the reach of your scripts to cover one, hundreds, or thousands of comput-
ers all at once. But sometimes you just want to work with a single remote machine
interactively. Let’s see how to do that.

The Invoke-Command command is the way to programmatically execute Power-
Shell commands on a remote machine. When you want to connect to a machine so
you can interact with it on a one-to-one basis, you use the Enter-pPSSession com-
mand. This command allows you to start an interactive one-to-one session with a
remote computer. Running Enter-pssession looks like this:

PS (11) > Enter-PSSession server(0l

[server0l]: PS > (gcm mmc.exe) .FileVersionInfo.ProductVersion
6.0.6000.16386
[brucepaydev07]: PS > Get-Date

Sunday, May 03, 2009 7:40:08 PM

[server0l]: PS > exit
PS (12) >

As shown here, when you connect to the remote computer, your prompt changes to
indicate that youre working remotely. Otherwise, once connected, you can pretty
much interact with the remote computer the same way you would with a local
machine. When you're done, exit the remote session with the exit command, and

CHAPTER 1 WELCOME TO POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

this pops you back to the local session. This brief introduction covers some powerful
techniques, but we've only begun to cover all the things remoting lets you do.

At this point, we’ll end our “Cook’s tour” of PowerShell. We've only breezed over
the features and capabilities of the environment. There are many other areas of Pow-
erShell that we haven’t covered here, especially in v2, which introduced advanced
functions and scripts, modules, eventing support, and many more features. In
upcoming chapters, we'll explore each of the elements discussed here in detail and a
whole lot more.

1.6 SUMMARY

This chapter covered what PowerShell is and, just as important, why it is. We also
took a whirlwind tour through some simple examples of using PowerShell interac-
tively. Here are the key points that we covered:

* PowerShell is the new command-line/scripting environment from Microsoft.
Since its introduction with Windows Server 2008, PowerShell has rapidly
moved to the center of Microsoft server and application management technolo-
gies. Many of the most important server products, including Exchange, Active
Directory, and SQL Server, now use PowerShell as their management layer.

* The Microsoft Windows management model is primarily object based, through
.NET, COM, and WMI. This required Microsoft to take a novel approach to
command-line scripting, incorporating object-oriented concepts into a com-
mand-line shell. PowerShell uses the .NET object model as the base for its type
system but can also access other object types like WMI.

* PowerShell is an interactive environment with two different host applications:
the console host PowerShell.exe and the graphical host powershell_
ise.exe. It can also be “hosted” in other applications to act as the scripting
engine for those applications.

* Shell operations like navigation and file manipulation in PowerShell are similar
to what you're used to in other shells.

* The way to get help about things in PowerShell is to use the Get-Help com-
mand (or by selecting text and pressing F1 in the ISE).

* PowerShell is sophisticated with a full range of calculation, scripting, and text
processing capabilities.

* PowerShell v2 introduced a comprehensive set of remoting features to allow you
to do scripted automation of large collections of computers.

In the following chapters, we'll look at each of the PowerShell features we showed you
here in much more detail. Stay tuned!

SUMMARY 35

www.it-ebooks.info

http://www.it-ebooks.info/

2

Foundations of PowerShell

2.1 Getting a sense of the 2.4 Parsing and PowerShell 50

PowerShell language 37 2.5 How the pipeline works 60
2.2 The core concepts 38 2.6 Formatting and output 64
2.3 Aliases and elastic syntax 46 2.7 Summary 70

“Begin at the beginning,” the king said
“and then go on till you come to the end, then stop.”
—Lewis Carroll, Alice in Wonderland

Vizzini: Inconceivable!

Inigo: You keep on using that word. I do not think it means what
you think it means.

—William Goldman, 7he Princess Bride

This chapter introduces the foundational concepts underlying the PowerShell lan-
guage and its environment. We'll cover language details that are specific to PowerShell
and look at how the interpreter parses the commands we type. This chapter also cov-
ers the various types of commands you'll encounter along with the anatomy and
operation of the pipeline itself. We'll look at the basic syntax for expressions and com-
mands, including how to add comments to scripts and how arguments and parame-
ters are handled. Finally, we'll close the chapter with a discussion of how the
formatting and output subsystem works in PowerShell.

36

www.it-ebooks.info

http://www.it-ebooks.info/

2.1

The chapter presents many examples that aren’t completely explained. If you
don’t understand everything when you read the examples, don’t worry—we’ll revisit
the material in later chapters. In this chapter, we just want to cover the core con-
cepts—we’ll focus on the details in subsequent chapters.

GETTING A SENSE OF THE POWERSHELL LANGUAGE

Before digging too deep into PowerShell concepts and terminology, let’s capture some
first impressions of the language: what does the PowerShell language look and feel
like? Birdwatchers have to learn how to distinguish hundreds of species of fast-
moving little brown birds (or LBBs, as they’re known). To understand how they do
this, I consulted with my wife, the “Master Birder.” (The only bird I can identify is a
chicken, preferably stuffed and roasted.) Birdwatchers use something called the GISS
principle, which stands for General Impression, Size, and Shape. It’s that set of char-
acteristics that allow us to determine what we've seen even though we've had only a
very brief or distant glance. Take a look at the silhouettes shown in figure 2.1. The
figure shows the relative sizes of four birds and highlights the characteristic shape of
each one. This is more than enough information to recognize each bird.

What does this have to do with computers (other than to prove we aren’t the only
ones who make up strange acronyms)? In essence, the GISS principle also works well
with programming languages. The GISS of the PowerShell syntax is that it’s like any
of the C programming language descendents with specific differences such as the fact
that variables are distinguished by a leading dollar (%) sign.

NOTE PowerShell uses the at symbol (@) in a few places, has $_ as a
default variable, and uses & as the function call operator. These ele-
ments lead people to say that PowerShell looks like Perl. In practice, at
one point, we did use Perl as a root language, and these elements stem

Cardinal

¥

Hummingbird

Figure 2.1 This figure illustrates the GISS principle—the general impression, size, and
shape of some common birds. Even without any detail, the basic shape and size is enough
for most people to identify these birds. This same principle can be applied when learning
programming languages; a sense of the overall shape of the language allows you to iden-
tify common coding patterns in the language.

GETTING A SENSE OF THE POWERSHELL LANGUAGE 37

www.it-ebooks.info

http://www.it-ebooks.info/

2.2

2.2.1

2.2.2

38

from that period. Later on, the syntax was changed to align more with
C#, but we kept these elements because they worked well. In Perl ter-
minology, they contributed significantly to the “whipupitude quo-
tient” of the language. In fact, the language that PowerShell looks most
like is PHP. (This wasn’t deliberate. It’s a case of parallel evolu-
tion—great minds thinking alike, and all that.) But don’t let this fool
you; semantically, PowerShell and PHP are quite different.

THE CORE CONCEPTS

The core PowerShell language is based on the IEEE standard POSIX 1003.2 grammar
for the Korn shell. This standard was chosen because of its maturity and long history
as a successful basis for modern shells like bash and zsh. The language design team
(Jim Truher and I) deviated from this standard where necessary to address the specific
needs of an object-based shell. We also deviated in areas where we wanted to make it
easier to write sophisticated scripts. Originally, Perl idioms were appropriated for
some of the advanced scripting concepts such as arrays and hash tables. As the project
progressed, it became clear that aligning PowerShell syntax with C# was more appro-
priate. If nothing else, this would facilitate migrating code between PowerShell and
C#. The major value this brings is that PowerShell code can be migrated to C# when
necessary for performance improvements, and C# examples can be easily converted to
PowerShell. This second point is important—the more examples you have in a new
language, the better off you are.

Command concepts and terminology

As with any piece of new technology, PowerShell has its own terminology, although
we've tried to stick to existing terms as much as we could. Consequently, much of the
terminology used in PowerShell will be familiar if youve used other shells in the
Linux or Windows world. But because PowerShell is a new kind of shell, there are a
number of terms that are different and a few new terms to learn. In this section, we’ll
go over the PowerShell-specific concepts and terminology for command types and
command syntax.

Commands and cmdlets

Commands are the fundamental part of any shell language; they’re what you type to
get things done. As you saw in the previous chapter, a simple command looks like
this:

command -parameterl -parameter2 argumentl argument2

A more detailed illustration of the anatomy of this command is shown in figure 2.2.
This figure calls out all the individual elements of the command.

CHAPTER 2 FOUNDATIONS OF POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

Command Parameter with Figure 2.2 The anatomy of a basic
name argument command. It begins with the name of
the command, followed by some num-
ber of parameters. These may be switch
command -parameterl -parameter2 argl arg?2 parameters that take no arguments,
regular parameters that do take argu-
ments, or positional parameters, where
) Positional the matching parameter is inferred by the
Switch parameter argument argument’s position on the command line.

All commands are broken down into the command name, the parameters specified to
the command, and the arguments to those parameters.

NOTE The distinction between parameter and argument may seem a
bit strange from a programmer’s perspective. But if you're used to lan-
guages such as Python and Visual Basic that allow for keyword param-
eters, PowerShell parameters correspond to the keywords, and
arguments correspond to the values.

The first element in the command is the name of the command to be executed. The
PowerShell interpreter looks at this name and determines what has to be done. It
must figure out not only which command to run but which 47nd of command to run.
In PowerShell, there are four categories of commands: cmdlets, shell function com-
mands, script commands, and native Windows commands. (We'll cover the different
categories in detail in the following sections.) Following the command name come
zero or more parameters and/or arguments. A parameter starts with a dash, followed
by the name of the parameter. An argument, on the other hand, is the value that will
be associated with, or bound to, a specific parameter. Let’s look at an example:

PS (1) > Write-Output -InputObject Hello
Hello

In this example, the command is Write-Output, the parameter is -InputObject,
and the argument is Hello.

What about the positional parameters mentioned in figure 2.1? When a Power-
Shell command is created, the author of that command specifies information that
allows PowerShell to determine which parameter to bind an argument to, even if the
parameter name itself is missing. For example, the Write-Output command has
been defined so that the first parameter is - InputObject. This lets you write
PS (2) > Write-Output Hello
Hello
instead of having to specify -InputObject. The piece of the PowerShell interpreter
that figures all of this out is called the parameter binder. The parameter binder is

THE CORE CONCEPTS 39

www.it-ebooks.info

http://www.it-ebooks.info/

smart—it doesn’t require that you specify the full name of a parameter as long as you
specify enough for it to uniquely distinguish what you mean. This means you can
write any of the following

PS (3) > Write-Output -input Hello

Hello
PS (4) > Write-Output -IN Hello
Hello
PS (5) > Write-Output -i Hello
Hello

and the parameter binder still does the right thing. (Notice that it doesn’t matter
whether you use uppercase or lowercase letters either.)

What else does the parameter binder do? It’s in charge of determining how to
match the types of arguments to the types of parameters. Remember that PowerShell
is an object-based shell. Everything in PowerShell has a type. For this to work seam-
lessly, PowerShell has to use a fairly complex type-conversion system to correctly put
things together, a subject that’s covered in chapter 3. When you type a command at
the command line, you're really typing strings. What happens if the command
requires a different type of object? The parameter binder uses the type converter to
try to convert that string into the correct type for the parameter.

Here’s a simple example. Let’s use the Get-Process command to get the process
with the process ID 0. Instead of passing it the number 0, put the argument in quotes
to force the argument to be a string. This means that the -id parameter, which
requires a number, will be passed a string instead:

PS (7) > Get-Process -Id "O"

Handles NPM(K) PM (K) WS (K) VM (M) CPU (s) Id ProcessName

0 0 0 28 0 0 Idle
When you attempt to run this command, the parameter binder detects that -id
needs a number, not a string, so it takes the string “0” and tries to convert it into a
number. If this succeeds, the command continues, as you see in the example. What
happens if it can’t be converted? Let’s try it:
PS (8) > Get-Process -Id abc
Get-Process : Cannot bind parameter 'Id'. Cannot convert value "abc"
to type "System.Int32". Error: "Input string was not in a correct
format."
At line:1 char:16

+ Get-Process -Id <<<< abc
PS (9) >

You get an error message explaining that the type conversion failed. We'll discuss this
in more detail in chapter 3 when we talk about types. Because we've introduced the
use of quotation marks, let’s see one more example. What happens if the argument

CHAPTER 2 FOUNDATIONS OF POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

you want to pass to the command starts with a dash? This is where the quotes come
in. Let’s use Write-Output to print out the string “-InputObject™:

PS (1) > Write-Output -InputObject "-InputObject"
-InputObject

And it works as desired. Alternatively, you could type this:

PS (2) > Write-Output "-InputObject"
-InputObject
The quotes keep the parameter binder from treating the quoted string as a parameter.

Another, less frequently used way of doing this is by using the special “end-of-
parameters” parameter, which is two hyphens back to back (--). Everything after this
sequence will be treated as an argument, even if it looks like a parameter. For exam-
ple, using -- you can also write out the string -InputObject without using quotes:
PS (3) > Write-Output -- -InputObject

-InputObject
The -- sequence tells the parameter binder to treat everything after it as an argument,
even if it looks like a parameter. This is a convention adopted from the UNIX shells
and is standardized in the POSIX Shell and Utilities specification.

The final element of the basic command pattern is the switch parameter. These are
parameters that don’t require an argument. They’re usually either present or absent
(so obviously they can’t be positional). A good example of this is the -Recurse
parameter on the dir command. This switch tells the dir command to display files
from a specified directory as well as all its subdirectories:

PS (1) > dir -Recurse -Filter c*d.exe c:\windows
Directory: Microsoft.PowerShell.Core\FileSystem: :C:\windows\

system32
Mode LastWriteTime Length Name
-a--—- 8/10/2004 12:00 PM 102912 clipbrd.exe
-a--- 8/10/2004 12:00 PM 388608 cmd.exe
PS (2) >

As you can see, the -Recurse switch takes no arguments.

NOTE Although it’s almost always the case that switch parameters
don’t take arguments, it’s possible to specify arguments to them. We'll
save discussion of when and why you might do this for section 7.2.6,
which focuses on scripts (shell functions and scripts are the only time
you need this particular feature, so we'll keep you in suspense for the
time being).

THE CORE CONCEPTS 41

www.it-ebooks.info

http://www.it-ebooks.info/

223

42

Now that we've covered the basic anatomy of the command line, let’s go over the
types of commands that PowerShell supports.

Command categories

As we mentioned earlier, there are four categories of commands in PowerShell: cmd-
lets, functions, scripts, and native Win32 executables.

Cmdlets

The first category of command is a cmdlet (pronounced “command-let”). Cmdlet is a
term that’s specific to the PowerShell environment. A cmdlet is implemented by a
NET class that derives from the Cmdlet base class in the PowerShell Software Devel-
opers Kit (SDK).

NOTE Building cmdlets is a developer task and requires the Power-
Shell SDK. This SDK is freely available for download from Microsoft
and includes extensive documentation along with many code samples.
Our goal is to coach you to effectively use and script in the PowerShell
environment, so we’re not going to do much more than mention the
SDK in this book. We'll look at how to write inline cmdlets when we
come to the 2dd-Type cmdlet in later chapters.

This category of command is compiled into a dynamic link library (DLL) and then
loaded into the PowerShell process, usually when the shell starts up. Because the com-
piled code is loaded into the process, it’s the most efficient category of command to
execute.

Cmdlets always have names of the form Verb-Noun, where the verb specifies the
action and the noun specifies the object to operate on. In traditional shells, cmdlets
correspond most closely to what’s usually called a built-in command. In PowerShell,
though, anybody can add a cmdlet to the runtime, so there isn’t any special class of
built-in commands. Cmdlets have the most support in version 1 of PowerShell: full
online help support, localization, and the best parameter binding support. (Power-
Shell v2 expands this support to fully include scripts and functions; see appendix D.)

In listing 2.1, you can see the C# source code for a simple cmdlet. This cmdlet
just copies its input to its output. If -Parameterl is specified, its argument will be
used as a prefix on the output string. We included this example to show you the basic
structure of a cmdlet. There are a couple of important things to note in this listing.
The first is the way the parameters are declared using the parameter attribute. This
information is used by the PowerShell runtime to automatically determine the
parameters for the cmdlet. The cmdlet author doesn’t have to write any code to do
parameter parsing; the runtime takes care of all this work. Another thing to note is
the ValueFromPipeline=true notation. This indicates that this parameter may be

CHAPTER 2 FOUNDATIONS OF POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

fulfilled by values coming from the pipeline. (We’ll discuss what this means when we
talk about pipelines later in this chapter.)

Listing 2.1 C# source code for a simple cmdlet

[Cmdlet ("Write", "InputObject")] a declarati
public class MyWriteInputObjectCmdlet : Cmdlet <F4J ass declaration

{

[Parameter] <}4W Mark ¢
public string Parameterl; arks parameter

[Parameter (Mandatory = true, ValueFromPipeline=true)] < Takes pipeline

public string InputObject;

input
protected override void ProcessRecord()
(Process block
if (Parameterl != null)
WriteObject (Parameterl + ":" + InputObject);
else

WriteObject (InputObject) ;

}

If you aren't a programmer, this listing probably won’t mean much to you. It’s just here
to show the basic pattern used by PowerShell commands. (When we get to advanced
functions in chapter 8, you may want to come back and look at this example again.)

Functions

The next type of command is a function. This is a named piece of PowerShell script
code that lives in memory while the interpreter is running and is discarded on exit. (See
chapter 7 for more information on how you can load functions into your environ-
ment.) Functions consist of user-defined code that’s parsed once when defined. This
parsed representation is preserved so it doesn't have to be reparsed every time it’s used.

Functions in PowerShell version 1 could have named parameters like cmdlets but
were otherwise fairly limited. In version 2, this was fixed, and scripts and functions now
have the full parameter specification capabilities of cmdlets. Notice, though, that the
same basic structure is followed for both types of commands. The section in the script
that begins with the process keyword (line 4 of listing 2.2) corresponds to the Pro-
cessRecord method shown in listing 2.1. This allows functions and cmdlets to have
the same streaming behavior. (See section 2.5.1 for more information on streaming.)

Listing 2.2 Source code for a simple shell function command

function Write-InputObject

{
param($Parameterl) Parameters
process { Process scriptblock

if ($Parameterl)

THE CORE CONCEPTS 43

www.it-ebooks.info

http://www.it-ebooks.info/

44

{

"${Parameterl}:$_"
} else {

n $_ n
}

}

Scripts

A script command is a piece of PowerShell code that lives in a text file with a .psl
extension. These script files are loaded and parsed every time they’re run, making
them somewhat slower than functions to start (although once started, they run at the
same speed). In terms of parameter capabilities, shell function commands and script
commands are identical. An example of a script is shown in listing 2.3. The astute
observer will notice that the only difference between this example and the previous
function example is that the function keyword, the function name, and the braces
enclosing the body are missing. This is because they aren’t necessary anymore. A
script takes its name from the name of the file and is delimited by the file itself, so no
braces are needed.

Listing 2.3 Source code for the simple shell script command my-script.psl

param(SParameterl)
process {
if ($Parameterl)

{

Parameters
Process scriptblock

"${Parameterl}:S_"
} else {
" $_ n
}
}

Native commands (applications)

The last type of command is called a native command. These are external programs
(typically executables) that can be executed by the operating system.

NOTE Choosing names for things is always difficult, and the term
native command does sound a bit strange. We had originally called
external executables legacy commands, but the feedback was that legacy
was perceived as being a negative term. On the other hand, simply call-
ing them executables wasn’t suitable, because this class of command
also includes cmd . exe batch files. In the end, we settled on native com-
mand as sufficiently distinctive.

Because running a native command involves creating a whole new process for the
command, native commands are the slowest of the command types. Also, native

CHAPTER 2 FOUNDATIONS OF POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

commands do their own parameter processing and so don’t necessarily match the syn-
tax of the other types of commands.

Native commands cover anything that can be run on a Windows computer, so
you get a wide variety of behaviors. One of the biggest issues is when PowerShell
waits for a command to finish but it just keeps on going. For example, say you're
starting a text document at the command line:

PS (1) > .\foo.txt

You get the prompt back more or less immediately, and your default text editor will
pop up (probably notepad.exe because that’s the default). The program to launch
is determined by the file associations that are defined as part of the Windows
environment.

NOTE In PowerShell, unlike in cmd.exe, you have to prefix a com-
mand with ./ or .\ if you want to run it out of the current directory.
This is part of PowerShell’s “Secure by Design” philosophy. This par-
ticular security feature was adopted to prevent Trojan horse attacks
where the user is lured into a directory and then told to run an innocu-
ous command such as notepad.exe. Instead of running the system
notepad. exe, they end up running a hostile program that the attacker
has placed in that directory and named notepad. exe. Chapter 21 cov-
ers the security features of the PowerShell environment in detail.

What about when you specify the editor explicitly?

PS (2) > notepad foo.txt
PS (3) >
The same thing happens—the command returns immediately. But what about when
you run the command in the middle of a pipeline?
PS (3) > notepad foo.txt | sort-object
<exit notepad>
PS (4) >
Now PowerShell waits for the command to exit before giving you back the prompt.
This can be handy when you want to insert something such as a graphical form editor
in the middle of a script to do some processing. This is also the easiest way to make
PowerShell wait for a process to exit.

Finally, let’s run the edit.com program. This is the old console-based full screen
editor included with MS-DOS and Windows since about DOS 4.0. (This also works
with other console editors—vi, Emacs, and so forth.)

PS (6) > edit.com ./foo.txt
PS (7) >

THE CORE CONCEPTS 45

www.it-ebooks.info

http://www.it-ebooks.info/

46

As you'd expect, the editor starts up, taking over the console window. You can edit the
file and then exit the editor and return to PowerShell. As you can see, the behavior of
native commands depends on the type of native command, as well as where it appears
in the pipeline.

A useful thing to remember is that the PowerShell interpreter itself is a native com-
mand: powershell.exe. This means you can call PowerShell from within Power-
Shell. When you do this, a second PowerShell process is created. In practice there’s
nothing unusual about this—that’s basically how all shells work. PowerShell just
doesn’t have to do it very often, making it much faster than conventional shell lan-
guages.

The ability to run a child PowerShell process is particularly useful if you want to
have isolation in portions of your script. A separate process means that the child script
can’t impact the caller’s environment. This feature is useful enough that PowerShell
has special handling for this case, allowing you to embed the script to run inline. If
you want to run a fragment of script in a child process, you can do so by passing the
block of script to the child process delimited by braces. Here’s an example:

PS {1) > powershell { Get-Process *ss } | Format-Table name, handles
Name Handles
csrss 1077
lsass 1272
smss 28

There are two things to note in this example. The script code in the braces can be any
PowerShell code, and it will be passed through to the new PowerShell process. The
special handling takes care of encoding the script in such a way that it’s passed prop-
erly to the child process. The other thing to note is that, when PowerShell is executed
this way, the output of the process is serialized objects—the basic structure of the out-
put is preserved—and so can be passed into other commands. We'll look at this seri-
alization in detail when we cover remoting—the ability to run PowerShell scripts on a
remote computer—in chapter 12.

Now that we've covered all four PowerShell command types, let’s get back to
looking at the PowerShell syntax. Notice that a lot of what we’ve examined so far is a
bit verbose. This makes it easy to read, which is great for script maintenance, but it
looks like it would be a pain to type on the command line. PowerShell addresses these
two conflicting goals—readability and writeability—with the concept of elastic syn-
tax. Elastic syntax allows you to expand and collapse how much you need to type to
suit your purpose. We'll see how this works in the next section.

CHAPTER 2 FOUNDATIONS OF POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

2.3 ALIASES AND ELASTIC SYNTAX

We haven't talked about aliases yet or how they’re used to achieve an elastic syntax in
PowerShell. Because this concept is important in the PowerShell environment, we
need to spend some time on it.

The cmdlet Verb-Noun syntax, while regular, is, as we noted, also verbose. You may
have noticed that in most of the examples we’re using commands such as dir and
type. The trick behind all this is aliases. The dir command is really Get-ChildItem,
and the type command is really Get-Content. You can see this by using the Get-
Command command:

PS (1) > get-command dir
CommandType Name Definition

Alias dir Get-ChildItem

This tells you that the command is an alias for Get-ChildIten. To get information
about the Get-ChildItem command, you then do this

PS (2) > get-command get-childitem
CommandType Name Definition

Cmdlet Get-ChildItem Get-ChildItem [[-P..

which truncates the information at the width of the console window. To see all the
information, pipe the output of Get-Command into £1:

PS (3) > get-command get-childitem | £l

Name : Get-ChildItem

CommandType : Cmdlet

Definition : Get-ChildItem [[-Path] <String[]>] [[-Filter]
<String>] [-Include <String[]>] [-Exclude <S
tring[]>] [-Recurse] [-Force] [-Name] [-Verbo
se] [-Debug] [-ErrorAction <ActionPreference>
] [-ErrorVariable <String>] [-OutVariable <St
ring>] [-OutBuffer <Int32>]
Get-ChildItem [-LiteralPath] <String[]l> [[-Fi
lter] <String>] [-Include <String[]>] [-Exclu
de <Stringl[]>] [-Recurse] [-Force] [-Name] [-
Verbose] [-Debug] [-ErrorAction <ActionPrefer
ence>] [-ErrorVariable <String>] [-OutVariabl
e <String>] [-OutBuffer <Int32>]

Path

AssemblyInfo :

DLL : C:\WINDOWS\assembly\GAC_MSIL\Microsoft.PowerS
hell.Commands.Management\1.0.0.0__31bf3856ad3
64e35\Microsoft.PowerShell.Commands .Managemen
t.dll

HelpFile : Microsoft.PowerShell.Commands.Management.dll-
Help.xml

ParameterSets : {Items, Literalltems}

ImplementingType : Microsoft.PowerShell.Commands.GetChildItemCom

ALIASES AND ELASTIC SYNTAX 47

www.it-ebooks.info

http://www.it-ebooks.info/

48

mand
Verb : Get
Noun : ChildItem

This shows you the full detailed information about this cmdlet. But wait—what’s the
£1 command? Again you can use Get-Command to find out:

PS (4) > get-command fl
CommandType Name Definition

Alias f1 Format-List

PowerShell comes with a large set of predefined aliases. There are two basic categories
of aliases—+ransitional aliases and convenience aliases. By transitional aliases, we mean
a set of aliases that map PowerShell commands to commands that people are accus-
tomed to using in other shells, specifically cmd. exe and the UNIX shells. For the
cmd . exe user, PowerShell defines dir, type, copy, and so on. For the UNIX user,
PowerShell defines 1s, cat, cp, and so forth. These aliases allow a basic level of func-
tionality for new users right away.

The other set of aliases are the convenience aliases. These aliases are derived from
the names of the cmdlets they map to. So Get-Command becomes gcm, Get-
ChildItem becomes gci, Invoke-Item becomes ii, and so on. For a list of the
defined aliases, type Get-Alias at the command line. You can use the Set-Alias
command (whose alias is sal, by the way) to define your own aliases.

NOTE Aliases in PowerShell are limited to aliasing the command
name only. Unlike in other systems such as ksh, bash, and zsh, Power-
Shell aliases can’t take parameters. If you need to do something more
sophisticated than simple command-name translations, you’ll have to
use shell functions or scripts.

This is all well and good, but what does it have to do with elastics? Glad you asked!
The idea is that PowerShell can be terse when needed and descriptive when appropri-
ate. The syntax is concise for simple cases and can be stretched like an elastic band for
larger problems. This is important in a language that is both a command-line tool
and a scripting language. The vast majority of “scripts” that you’ll write in PowerShell
will be no more than a few lines long. In other words, they’ll be a string of commands
that you'll type on the command line and then never use again. To be effective in this
environment, the syntax needs to be concise. This is where aliases like £1 come
in—they allow you to write concise command lines. When you're scripting, though,
it’s best to use the long name of the command. Sooner or later, you'll have to read the
script you wrote (or—worse—someone else will). Would you rather read something

that looks like this

gem| ?{$_.parametersets.Count -gt 3}|£fl name

or this?

CHAPTER 2 FOUNDATIONS OF POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

get-command |
where-object {$_.parametersets.count -gt 3} |
format-list name

I'd certainly rather read the latter. (As always, we'll cover the details of these examples
later in the book.)

NOTE PowerShell has two (or more) names for many of the same
commands. Some people find this unsettling—they prefer having only
one way of doing things. In fact, this “only one way to do it” principle
is also true for PowerShell, but with a significant variation: we wanted
to have one best way of doing something for each particular scenario or
situation. Fundamentally this is what computers are all about; at their
simplest, everything is just a bunch of bits. To be practical, you start
from the simple bits and build solutions that are more appropriate for
the problem you’re trying to solve. Along the way, you create an inter-
mediate-sized component that may be reused to solve other problems.
PowerShell uses this same approach: a series of components at different
levels of complexity intended to address a wide range of problem
classes. Not every problem is a nail, so having more tools than a ham-
mer is a good idea even if requires a bit more learning.

There’s a second type of alias used in PowerShell: parameter aliases. Unlike command
aliases, which can be created by end users, parameter aliases are created by the author
of a cmdlet, script, or function. (You'll see how to do this when we look at advanced
function creation in chapter 8.)

A parameter alias is just a shorter name for a parameter. But wait a second. Earlier
we said that you just needed enough of the parameter name to distinguish it from
other command parameters. Isn’t this enough for convenience and elasticity? So why
do you need parameter aliases? The reason you need these aliases has to do with scripr
versioning. The easiest way to understand versioning is to look at an example.

Say you have a script that calls a cmdlet Process-Message. This cmdlet has a
parameter -Reply. You write your script specifying just

Process-Message —-Re

Run the script, and it works fine. A few months later, you install an enhanced version
of the Process-Message command. This new version introduces a new parameter:
-receive. Just specifying -Re is no longer sufficient. If you run the old script with
the new cmdlet, it will fail with an ambiguous parameter message. In other words, the
script is broken.

How do you fix this with parameter aliases? The first thing to know is that Power-
Shell always picks the parameter that exactly matches a parameter name or alias over a
partial match. By providing parameter aliases, you can achieve pithiness without also
making scripts subject to versioning issues. (We do recommend always using the full

ALIASES AND ELASTIC SYNTAX 49

www.it-ebooks.info

http://www.it-ebooks.info/

24

50

parameter name for production scripts or scripts you want to share. Readability is
always more important in that scenario.)

Now that we've covered the core concepts of how commands are processed, let’s
step back a bit and look at PowerShell language processing overall. PowerShell has a
small number of important syntactic rules that you should learn. When you under-
stand these rules, your ability to read, write, and debug PowerShell scripts will
increase tremendously.

PARSING AND POWERSHELL

In this section, we'll cover the details of how PowerShell scripts are parsed. Before the
PowerShell interpreter can execute the commands you type, it first has to parse the
command text and turn it into something the computer can execute, as shown in
figure 2.3.

More formally, parsing is the process of turning human-readable source code into
a form the computer understands. This is one area of computer science that deserves
both of these words—computer and science. Science in this case means formal lan-
guage theory, which is a branch of mathematics. And because it’s mathematics, dis-
cussing it usually requires a collection of Greek letters. We’ll keep things a bit simpler
here. A piece of script text is broken up into tokens by the rokenizer (or lexical ana-
lyzer, if you want to be more technical). A token is a particular type of symbol in the
programming language, such as a number, a keyword, or a variable. Once the raw
text has been broken into a stream of tokens, these tokens are processed into struc-
tures in the language through syntactic analysis.

In syntactic analysis, the stream of tokens is processed according to the grammati-
cal rules of the language. In normal programming languages, this process is straight-
forward—a token always has the same meaning. A sequence of digits is always a
number; an expression is always an expression, and so on. For example, the sequence

3+2

would always be an addition expression, and “Hello world” would always be a con-
stant string. Unfortunately, this isn't the case in shell languages. Sometimes you can’t

3492 Parser converts this

Parser to an internal

representation
-

Execution engine

User types an evaluates the

expression that is @ @ internal
passed to the represenation Figure 2.3 The flow of pro-
parser cessing in the PowerShell in-
terpreter, where an expression
Engine |—» 5 is transformed and then exe-

cuted to produce a result

CHAPTER 2 FOUNDATIONS OF POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

tell what a token is except through its context. In the next section, we go into more
detail on why this is and how the PowerShell interpreter parses a script.

241 How PowerShell parses

For PowerShell to be successful as a shell, it can’t require that everything be quoted.
PowerShell would fail if it required people to continually type

cd n .. n
or
copy "foo.txt" "bar.txt"

On the other hand, people have a strong idea of how expressions should work:

2

This is the number 2, not a string “2”. Consequently, PowerShell has some rather
complicated parsing rules. The next three sections will cover these rules. We'll discuss
how quoting is handled, the two major parsing modes, and the special rules for new-
lines and statement termination.

24.2 Quoting

Quoting is the mechanism used to turn a token that has special meaning to the Pow-
erShell interpreter into a simple string value. For example, the Wirite-oOutput cmdlet
has a parameter -InputObject. But what if you want to actually use the string
“-InputObject” as an argument, as mentioned earlier? To do this, you have to quote it;
that is, you surround it with single or double quotes. The result looks like this:

PS (2) > Write-Output '-InputObject'
-inputobject

What would happen if you hadn’t put the argument in quotes? Let’s find out:

PS (3) > Write-Output -InputObject

Write-Output : Missing an argument for parameter 'InputObject'.

Specify a parameter of type 'System.Management.Automation.PSObject[]’and
try again.

At line:1 char:25

+ Write-Output -inputobject <<<<

PS (4) >

As you can see, this produces an error message indicating that an argument to the
parameter -InputObject is required.

PowerShell supports several forms of quoting, each with somewhat different
meanings (or semantics). Putting single quotes around an entire sequence of charac-
ters causes them to be treated like a single string. This is how you deal with file paths
that have spaces in them. For example, if you want to change to a directory whose
path contains spaces, you type this:

PS (4) > cd 'c:\program files'

PARSING AND POWERSHELL 51

www.it-ebooks.info

http://www.it-ebooks.info/

52

PS (5) > pwd
Path

C:\Program Files
What happens if you don’t use the quotes?

PS (6) > cd c:\program files

Set-Location : A parameter cannot be found that matches paramete
r name 'files'.

At line:1 char:3

+ cd <<<< c:\program files

When you don’t use the quotes, you receive an error complaining about an unex-
pected parameter in the command because "c:\program" and "files" are treated
as two separate tokens.

NOTE Notice that the error message reports the name of the cmdlet,
not the alias that was used. This way you know what is being executed.
The position message shows you the text that was entered so you can
see that an alias was used.

One problem with using matching quotes as we did in the previous examples is that
you have to remember to start the token with an opening quote. This raises an issue
when you want to quote a single character. You can use the backquote (*) character to
do this (the backquote is usually the upper-leftmost key, below Esc):

PS (6) > cd c:\program files

PS (7) > pwd

Path

C:\Program Files

The backquote, or backtick, as it tends to be called, has other uses that we'll explore
later in this section. Now let’s look at the other form of matching quote: double
quotes. Once again, here’s our favorite example:

PS (8) > cd "c:\program files"
PS (9) > pwd

Path

C:\Program Files

It looks pretty much like the example with single quotes, so what’s the difference? In
double quotes, variables are expanded. In other words, if the string contains a variable
reference starting with a $, it will be replaced by the string representation of the value
stored in the variable. Let’s look at an example. First assign the string “files” to the
variable $v:

PS (10) > sv = "files"

CHAPTER 2 FOUNDATIONS OF POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

Now reference that variable in a string with double quotes:

PS (11) > cd "c:\program $v"
PS (12) > pwd

Path

C:\Program Files

The cd succeeded and the current directory was set as you expected. What happens if
you try it with single quotes? Here you go:

PS (13) > cd 'c:\program Sv'

set-location : Cannot find path 'C:\program $v' because it does

not exist.

At line:1 char:3

+ cd <<<< 'c:\program Sv'

PS (14) >

Because expansion is performed only in double quotes and not in single quotes, you
get an error because the unexpanded path doesnt exist.

Take a look at another example:
PS (14) > '$v is S$Sv!'
Sv is Sv
PS (15) > "$Sv is Sv"
files is files
In the single-quoted case, $v is never expanded; and in the double-quoted case, it’s
always expanded. But what if you really want to show what the value of $v is? To do
this, you need to have expansion in one place but not in the other. This is one of
those other uses we had for the backtick. It can be used to quote or escape the dollar
sign in a double-quoted string to suppress expansion. Let’s try it:

PS (16) > Write-Output
Sv is files

Sv is Sv"

Here’s one final tweak to this example—if $v contained spaces, youd want to make
clear what part of the output was the value. Because single quotes can contain double
quotes and double quotes can contain single quotes, this is straightforward:

PS (17) > Write-Output " $v is '$v'"

Sv is 'files’

PS (18) >

Now, suppose you want to display the value of $v on another line instead of in
quotes. Here’s another situation where you can use the backtick as an escape charac-
ter. The sequence ‘n in a double-quoted string will be replaced by a newline charac-
ter. You can write the example with the value of $v on a separate line as follows:

PS (19) > "The value of ‘$v is: ' n$v"

The value of $v is:
Files

PARSING AND POWERSHELL 53

www.it-ebooks.info

http://www.it-ebooks.info/

243

54

Table 2.1 lists the special characters that can be generated using backtick (also called
escape) sequences.

Table 2.1 The PowerShell escape sequences

Escape sequence Corresponding Special Character
‘n Newline

‘t Horizontal tab

‘a Alert

‘b Backspace

T Single quote

Double quote
*0 The NULL character (in other words, 0)

A single backtick

Note that escape sequence processing, like variable expansion, is only done in double-
quoted strings. In single-quoted strings, what you see is what you get. This is particu-
larly important when writing a string to pass to a subsystem that does additional lev-
els of quote processing.

If you've used another language such as C, C#, or Perl, you’ll be accustomed to
using the backslash instead of the backtick for escaping characters. Because Power-
Shell is a shell and has to deal with Windows’ historical use of the backslash as a
path separator, it isn’t practical to use the backslash as the escape character. Too
many applications expect backslash-separated paths, and that would require every
path to be typed with the slashes doubled. Choosing a different escape character was
a difficult decision that the PowerShell team had to make, but there wasn’t any
choice. It’s one of the biggest cognitive bumps that experienced shell and script lan-
guage users run into with PowerShell, but in the end, most people adapt without too

much difficulty.

Expression-mode and command-mode parsing

As mentioned earlier, because PowerShell is a shell, it has to deal with some parsing
issues not found in other languages. In practice, most shell languages are collections
of mini-languages with many different parsing modes. PowerShell simplifies this con-
siderably, trimming the number of modes down to two: expression mode and com-
mand mode.

In expression mode, the parsing is conventional: strings must be quoted, numbers
are always numbers, and so on. In command mode, numbers are treated as numbers
but all other arguments are treated as strings unless they start with $, @, ', ", or (.
When an argument begins with one of these special characters, the rest of the argument
is parsed as a value expression. (There’s also special treatment for leading variable

CHAPTER 2 FOUNDATIONS OF POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

references in a string, which we’ll discuss later.) Table 2.2 shows some examples that
illustrate how items are parsed in each mode.

Table 2.2 Parsing mode examples

Example command line Parsing mode and explanation

2+2 Expression mode; results in 4.

Write-Output 2+2 Command mode; results in 2+2.

Sa=2+2 Expression mode; the variable $a is assigned the value 4.
Write-Output (2+2) Expression mode; because of the parentheses, 2+2 is evaluated as

an expression producing 4. This result is then passed as an argu-
ment to the Write-Output cmdlet.

Write-Output S$a Expression mode; produces 4. This is ambiguous—evaluating it in
either mode produces the same result. The next example shows
why the default is expression mode if the argument starts with a

variable.
Write-Output Expression mode; $a.Equals (4) evaluates to true so Write-
$a.Equals (4) Output writes the Boolean value True. This is why a variable is

evaluated in expression mode by default. You want simple method
and property expressions to work without parentheses.

Write-Output $a/ Command mode; $a/foo.txt expands to 4/foo. txt. Thisis the

foo.txt opposite of the previous example. Here you want it to be evaluated
as a string in command mode. The interpreter first parses in
expression mode and sees that it's not a valid property expression,
so it backs up and rescans the argument in command mode. As a
result, it's treated as an expandable string.

Notice that in the Write-Output (2+2) case, the open parenthesis causes the inter-
preter to enter a new level of interpretation where the parsing mode is once again
established by the first token. This means the sequence 2+2 is parsed in expression
mode, not command mode, so the result of the expression (4) is emitted. Also, the
last example in the table illustrates the exception mentioned previously for a leading
variable reference in a string. A variable itself is treated as an expression, but a variable
followed by arbitrary text is treated as though the whole thing were in double quotes.
This is so you can write

cd SHOME/scripts
instead of
cd "SHOME/scripts"

As mentioned earlier, quoted and unquoted strings are recognized as different tokens
by the parser. This is why

Invoke-MyCmdlet -Parm arg

treats -Parm as a parameter and

PARSING AND POWERSHELL 55

www.it-ebooks.info

http://www.it-ebooks.info/

244

56

Invoke-MyCmdlet "-Parm" arg

treats "-Parm" as an argument. There’s an additional wrinkle in the parameter bind-
ing. If an unquoted parameter like -NotAparameter isn’t a parameter on Invoke-
MyCmdlet, it will be treated as an argument. This lets you say

Write-Host -this -is -a parameter

without requiring quoting.

This finishes our coverage of the basics of parsing modes, quoting, and com-
mands. Commands can take arbitrary lists of arguments, so knowing when the state-
ment ends is important. We’'ll cover this in the next section.

Statement termination

In PowerShell, there are two statement terminator characters: the semicolon (;) and
(sometimes) the newline. Why is a newline a statement separator only sometimes? The
rule is that if the previous text is a syntactically complete statement, a newline is con-
sidered to be a statement termination. If it isnt complete, the newline is simply
treated like any other whitespace. This is how the interpreter can determine when a
command or expression crosses multiple lines. For example, in the following

PS (1) > 2 +

>> 2

>>

4

PS (2) >

the sequence 2 + is incomplete, so the interpreter prompts you to enter more text.
(This is indicated by the nest prompt characters, >>.) On the other hand, in the next
sequence

PS (2) > 2

2

PS (3) > + 2
2

PS (4) >

the number 2 by itself is a complete expression, so the interpreter goes ahead and
evaluates it. Likewise, + 2 is a complete expression and is also evaluated (+ in this case
is treated as the unary plus operator). From this, you can see that if the newline comes
after the + operator, the interpreter will treat the two lines as a single expression. If the
newline comes before the + operator, it will treat the two lines as two individual
expressions.

Most of the time, this mechanism works the way you expect, but sometimes you
can receive some unanticipated results. Take a look at the following example:

PS (22) > $b = (2

>> + 2)

>>

Missing closing ')' in expression.

CHAPTER 2 FOUNDATIONS OF POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

At line:2 char:1
+ + <<<< 2)
PS (23) >

This was a question raised by one of the PowerShell beta testers. They were surprised
by this result and thought there was something wrong with the interpreter, but in
fact, this is not a bug. Here’s what’s happening,.

Consider the following text:

> Sb = (2 +

> 2)
It's parsed as $b = (2 + 2) because a trailing + operator is only valid as part of a
binary operator expression. Because the sequence $b = (2 + can't be a syntactically

complete statement, the newline is treated as whitespace. On the other hand, con-
sider the text

> $b = (2

> + 2)

In this case, 2 is a syntactically complete statement, so the newline is now treated as a
line terminator. In effect, the sequence is parsed like Sb = (2 ; + 2); thatis, two
complete statements. Because the syntax for a parenthetical expression is

(<expr>)

you get a syntax error—the interpreter is looking for a closing parenthesis as soon as
it has a complete expression. Contrast this with using a subexpression instead of just
the parentheses:

>> Sb = $(

>> 2

>> +2
>>)

PS (24) > $b

Here the expression is valid because the syntax for subexpressions is
$(<statementList>)

But how do you deal with the case when you do need to extend a line that isn’t exten-
sible by itself? This is another place where you can use the backtick escape character.
If the last character in the line is a backtick, then the newline will be treated as a sim-
ple breaking space instead of as a newline:

PS (1) > Write-Output °
>> —inputobject °
>> "Hello world"
>>

Hello world

PS (2) >

PARSING AND POWERSHELL 57

www.it-ebooks.info

http://www.it-ebooks.info/

245

58

Finally, one thing that surprises some people is that strings aren’t terminated by a
newline character. Strings can carry over multiple lines until a matching, closing
quote is encountered:

PS (1) > Write-Output "Hello

>> there

>> how are

>> you?"

>>

Hello

there

how are

you?

PS (2) >

In this example, you see a string that extended across multiple lines. When that string
was displayed, the newlines were preserved in the string.

The handling of end-of-line characters in PowerShell is another of the trade-offs
that had to be made for PowerShell to be useful as a shell. Although the handling of
end-of-line characters is a bit strange compared to non-shell languages, the overall
result is easy for most people to get used to.

Comment syntax in PowerShell

Every computer language has some mechanism for annotating code with expository
comments. Like many other shells and scripting languages, PowerShell comments
begin with a number sign (#) symbol and continue to the end of the line. The # char-
acter must be at the beginning of a token for it to start a comment. Here’s an example
that illustrates what this means:

PS (1) > echo hi#there

hi#there

In this example, the number sign is in the middle of the token hi#there and so isn't
treated as the starting of a comment. In the next example, there’s a space before the
number sign:

PS (2) > echo hi #there

hi

Now the # is treated as starting a comment and the following text isn't displayed. It
can be preceded by characters other than a space and still start a comment. It can be
preceded by any statement-terminating or expression-terminating character like a
bracket, brace, or semicolon, as shown in the next couple of examples:

PS (3) > (echo hi)#there

hi

PS (4) > echo hi;#there

hi

In both of these examples, the # symbol indicates the start of a comment.

CHAPTER 2 FOUNDATIONS OF POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

Finally, you need to take into account whether you’re in expression mode or com-
mand mode. In command mode, as shown in the next example, the + symbol is
included in the token hi+#there:

PS (5) > echo hi+#there
hi+#there

But in expression mode, it’s parsed as its own token. Now the # indicates the start of
a comment, and the overall expression results in an error:

PS (6) > "hi"+#there

You must provide a value expression on the right-hand side of the '+'
operator.

At line:1 char:6
+ "hi"+ <<<< #there

The # symbol is also allowed in function names:

PS (3) > function hi#fthere { "Hi there" }
PS (4) > hi#there
Hi there

The reason for allowing the # in the middle of tokens was to make it easy to accom-
modate path providers that used # as part of their path names. People conventionally
include a space before the beginning of a comment, so this doesn’t appear to cause
any difficulties.

Multiline Comments

In PowerShell version 2, a new type of multiline comment was introduced, primarily
to allow you to embed inline help text in scripts and functions. A multiline comment
begins with <# and ends with #>. Here’s an example:
<#
This is a comment
that spans

multiple lines
#>

This type of comment can be entered from the command line, which looks like this:

PS {1) > <#

>> this is a comment
>> that spans

>> multiple lines

>> #>

PS {2) >

This type of comment need not span multiple lines, so you can use this notation to
add a comment preceding some code:

PS {2) > <# a comment #> "Some code"
Some code
PS {3) >

PARSING AND POWERSHELL 59

www.it-ebooks.info

http://www.it-ebooks.info/

2.5

60

In this example, the line is parsed, the comment is read and ignored, and the code
after the comment is executed.

One of the things this type of comment allows you to do is easily embed chunks
of preformatted text in functions and scripts. The PowerShell help system takes
advantage of this feature to allow functions and scripts to contain inline documenta-
tion in the form of special comments. These comments are automatically extracted by
the help system to generate documentation for the function or script. You'll learn
how the comments are used by the help subsystem in chapter 8.

Now that you have a good understanding of the basic PowerShell syntax, let’s
look at how what you type gets executed by the PowerShell execution engine. We'll
start with the pipeline.

How THE PIPELINE WORKS

At long last we get to the Parameter with
details of pipelines. We've Command argument

been talking about them
throughout this chapter, but
here we discuss them in
detail. A pipeline is a series
of commands separated by Switch parameter Pipe operator Positional
the pipe operator (|), as argument

Command

dir -recurse -filter *.cs|format-table name,length

shown in figure 2.4. In some Figure 2.4 Anatomy of a pipeline

ways, the term production

line better describes pipelines in PowerShell. Each command in the pipeline receives
an object from the previous command, performs some operation on it, and then
passes it along to the next command in the pipeline.

NOTE This, by the way, is the great PowerShell Heresy. All previous
shells passed strings only through the pipeline. Many people had diffi-
culty with the notion of doing anything else. Like the character in 7he
Princess Bride, they’d cry “Inconceivable!” And we’d respond, “I do not
think that word means what you think it means.”

All of the command categories take parameters and arguments. To review, a parameter
is a special token that starts with a hyphen (-) and is used to control the behavior of
the command. An argument is a data value consumed by the command. In the fol-
lowing example

get-childitem -filter *.dll -path c:\windows -recurse

-filter is a parameter that takes one argument, *.d11. The string “c:\windows” is
the argument to the positional parameter -path.
Next we'll discuss the signature characteristic of pipelines—streaming behavior.

CHAPTER 2 FOUNDATIONS OF POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

25.1 Pipelines and streaming behavior

Streaming behavior occurs when objects are processed one at a time in a pipeline. As
mentioned, this is one of the characteristic behaviors of shell languages. In stream
processing, objects are output from the pipeline as soon as they become available. In
more traditional programming environments, the results are returned only when the
entire result set has been generated—the first result and the last result are returned at
the same time. In a pipelined shell, the first result is returned as soon as it’s available
and subsequent results return as they also become available. This flow is illustrated in
figure 2.5.

At the top of figure 2.5 you see a PowerShell command pipeline containing four
commands. This command pipeline is passed to the PowerShell parser, which does
all the work of figuring out what the commands are, what the arguments and param-
eters are, and how they should be bound for each command. When the parsing is
complete, the pipeline processor begins to sequence the commands. First it runs the
begin clause of each of the commands, in sequence from first to last. After all the
begin clauses have been run, it runs the process clause in the first command. If the
command generates one or more objects, the pipeline processor passes these objects,
one at a time, to the second command. If the second command also emits an object,
this object is passed to the third command, and so on.

When processing reaches the end of the pipeline, any objects emitted are passed
back to the PowerShell host. The host is then responsible for any further processing.

This aspect of streaming is important in an interactive shell environment, because
you want to see objects as soon as they’re available. The next example shows a simple
pipeline that traverses through C:\Windows looking for all of the DLLs whose names
start with the word “system”:

PS (1) > dir -rec -fil *.dll | where {$_.name -match "system.*dll"}

Directory: Microsoft.Management.Automation.Core\FileSystem: :
[CA]C:\WINDOWS\assembly\ [CA]GAC\System\1.0.3300.0__b77a5c561934e089

| PS> Get-Process | Where { §__handles —gt 500 } | Sort handles | Fomat—'I‘ab];-|

Common PowerShell P

Figure 25 How
objects flow
through a pipeline
one at a time. A
common parser
constructs each of
the command ob-
jects and then
starts the pipeline
processor, stepping
each object
through all stages
of the pipeline.

Ja|pLig ssaacy

PowerShell Pipeline P

HOW THE PIPELINE WORKS 61

www.it-ebooks.info

http://www.it-ebooks.info/

2.5.2

62

Mode LastWriteTime Length Name

-a--- 2/26/2004 6:29 PM 1167360 System.dll

Directory: Microsoft.Management.Automation.Core\FileSystem: :
[CA]C:\WINDOWS\assembly
[CA]J\GAC\System\1.0.5000.0__b77a5c561934e089

Mode LastWriteTime Length Name

-a--- 2/26/2004 6:36 PM 1216512 System.dll

With streaming behavior, as soon as the first file is found, it’s displayed. Without
streaming, you'd have to wait until the entire directory structure has been searched
before you'd start to see any results.

In most shell environments, streaming is accomplished by using separate processes
for each element in the pipeline. In PowerShell, which only uses a single process (and
a single thread as well), streaming is accomplished by splitting cmdlets into three
clauses: BeginProcessing, ProcessRecord, and EndProcessing. In a pipeline,
the BeginProcessing clause is run for all cmdlets in the pipeline. Then the pro-
cessRecord clause is run for the first cmdlet. If this clause produces an object, that
object is passed to the ProcessRecord clause of the next cmdlet in the pipeline, and
so on. Finally the EndProcessing clauses are all run. (We cover this sequencing
again in more detail in chapter 7, which is about scripts and functions, because they
can also have these clauses.)

Parameters and parameter binding

Now let’s talk about more of the details involved in binding parameters for com-
mands. Parameter binding is the process in which values are bound to the parameters
on a command. These values can come from either the command line or the pipeline.
Here’s an example of a parameter argument being bound from the command line:

PS (1) > Write-Output 123

123

And here’s the same example where the parameter is taken from the input object
stream:

PS (2) > 123 | Write-Output

123

The binding process is controlled by declaration information on the command itself.
Parameters can have the following characteristics: they are either mandatory or
optional, they have a type to which the formal argument must be convertible, and
they can have attributes that allow the parameters to be bound from the pipeline.
Table 2.3 describes the actual steps in the binding process.

CHAPTER 2 FOUNDATIONS OF POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

Table 2.3 Steps in the parameter binding process

Binding step

Description

1. Bind all named parameters.

2. Bind all positional parameters.

3. Bind from the pipeline by value
with exact match.

4. If not bound, then bind from
the pipe by value with conver-
sion.

5. If not bound, then bind from
the pipeline by name with exact
match.

6. If not bound, then bind from
the pipeline by name with con-
version.

Find all unquoted tokens on the command line that start with a
dash. If the token ends with a colon, an argument is required. If
there’s no colon, look at the type of the parameter and see if an
argument is required. Convert the type of actual argument to the
type required by the parameter, and bind the parameter.

If there are any arguments on the command line that haven't
been used, look for unbound parameters that take positional
parameters and try to bind them.

If the command is not the first command in the pipeline and
there are still unbound parameters that take pipeline input, try to
bind to a parameter that matches the type exactly.

If the previous step failed, try to bind using a type conversion.

If the previous step failed, look for a property on the input object
that matches the name of the parameter. If the types exactly
match, bind the parameter.

If the input object has a property whose name matches the
name of a parameter, and the type of the property is convertible
to the type of the parameter, bind the parameter.

As you can see, this binding process is quite involved. In practice, the parameter
binder almost always does what you want—that’s why a sophisticated algorithm is
used. But there are times when you’ll need to understand the binding algorithm to
get a particular behavior. PowerShell has built-in facilities for debugging the parame-
ter-binding process that can be accessed through the Trace-Command cmdlet.
(Trace-Command is covered in detail in appendix D.) Here’s an example showing how
to use this cmdlet:

Trace-Command -Name ParameterBinding -Option All °
-Expression { 123 | Write-Output } -PSHost

In this example, you're tracing the expression in the braces—that’s the expression:
123 | Write-Output

This expression pipes the number 123 to the cmdlet Write-Output. The write-
Output cmdlet takes a single mandatory parameter -InputObject, which allows
pipeline input by value. (The tracing output is long but fairly self-explanatory, so we
haven’t included it here. This is something you should experiment with to see how it
can help you figure out what’s going on in the parameter-binding process.)

And now for the final topic in this chapter: formatting and output. The format-
ting and output subsystem provides the magic that lets PowerShell figure out how to
display the output of the commands you type.

HOW THE PIPELINE WORKS 63

www.it-ebooks.info

http://www.it-ebooks.info/

2.6

2.6.1

64

FORMATTING AND OUTPUT

We've reached this point without discussing how PowerShell figures out how to dis-
play output. In general, we've just run commands and depended on the system to fig-
ure out how to display the results. Occasionally, we've used commands such as
Format-Table and Format-List to give general guidance on the shape of the dis-
play but no specific details. Let’s dig in now and see how this all works.

As always, because PowerShell is a type-based system, types are used to determine
how things are displayed. But normal objects don’t usually know how to display
themselves. PowerShell deals with this by including a database of formatting informa-
tion for various types of objects. This is part of the extended type system, which is an
important component of the overall system. This extended type system allows Power-
Shell to add new behaviors to existing .NET objects. The default formatting database
is stored in the PowerShell install directory, which you can get to by using the
$PSHOME shell variable. Here’s a list of the files that were included as of this writing:

PS (1) > dir $PSHOME/*format* | Format-Table name

Name

Certificate.format.pslxml
Diagnostics.Format.pslxml
DotNetTypes. format.pslxml
FileSystem. format.pslxml
Help.format.pslxml
PowerShellCore. format.pslxml
PowerShellTrace. format.pslxml
Registry.format.pslxml
WSMan.Format .pslxml

You can more or less figure out what types of things each of these files contains
descriptions for. (The others should become clear after reading the rest of this book.)
These files are XML documents that contain descriptions of how each type of object
should be displayed. These descriptions are fairly complex and somewhat difficult to
write. It’s possible for end users to add their own type descriptions, but that’s beyond
the scope of this chapter. The important thing to understand is how the formatting
and outputting commands work together.

The formatting cmdlets

Display of information is controlled by the type of the objects being displayed, but
the user can choose the “shape” of the display by using the Format-* commands:

PS (5) > Get-Command Format-* | Format-Table name

Name

Format-Custom
Format-List
Format-Table
Format-Wide

CHAPTER 2 FOUNDATIONS OF POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

By shape, we mean things such as a table or a list. Here’s how they work. The Format-
Table cmdlet formats output as a series of columns displayed across your screen:

PS (1) > Get-Item c:\ | Format-Table
Directory:

Mode LastWriteTime Length Name

d--hs 4/9/2006 10:04 PM C:\

By default, it tries to use the maximum width of the display and guesses at how wide
a particular field should be. This allows you to start seeing data as quickly as possible
(streaming behavior) but doesn’t always produce optimal results. You can achieve a
better display by using the -AutoSize switch, but this requires the formatter to pro-
cess every element before displaying any of them, and this prevents streaming. Power-
Shell has to do this to figure out the best width to use for each field. The result in this
example looks like this:

PS (3) > Get-Item c:\ | Format-Table -AutoSize
Directory:

Mode LastWriteTime Length Name

d--hs 4/9/2006 10:04 PM C:\

Okay—so it doesn’t look much different: things are more compressed with less
whitespace.

In practice, the default layout when streaming is pretty good and you don’t need
to use -autosize, but sometimes it can help make things more readable.

The Format-List command displays the elements of the objects as a list, one
after the other:

PS (2) > Get-Item c:\ | Format-List

Directory:
Name : C:\
CreationTime : 2/26/2001 3:38:39 PM
LastWriteTime : 4/9/2006 10:04:38 PM

LastAccessTime : 4/11/2006 9:33:51 PM
If there’s more than one object to display, they’ll appear as a series of lists. Let’s try it:

PS (3) > Get-Item c:\,d:\ | Format-List

Directory:
Name : C:\
CreationTime : 2/26/2001 3:38:39 PM
LastWriteTime : 6/21/2006 1:20:06 PM

LastAccessTime : 6/21/2006 9:14:46 PM

FORMATTING AND OUTPUT 65

www.it-ebooks.info

http://www.it-ebooks.info/

66

Name : D=\

CreationTime : 12/31/1979 11:00:00 PM
LastWriteTime : 12/31/1979 11:00:00 PM
LastAccessTime : 12/31/1979 11:00:00 PM

This is usually the best way to display a large collection of fields that won't fit well
across the screen. (Obviously the idea of an -AutoSize switch makes no sense for
this type of formatter.)

The Format-wide cmdlet is used when you want to display a single object prop-
erty in a concise way. It'll treat the screen as a series of columns for displaying the
same information. Here’s an example:

PS (1) > Get-Process -Name s* | Format-Wide -Column 8 id
1372 640 516 1328 400 532 560 828
876 984 1060 1124 4

In this example, you want to display the process IDs of all processes whose names start
with “s” in eight columns. This formatter allows for dense display of information.

The final formatter is Format-Custom, which displays objects while preserving
the basic structure of the object. Because most objects have a structure that contains
other objects, which in turn contain other objects, this can produce extremely ver-
bose output. Here’s a small part of the output from the Get-Item cmdlet, displayed
using Format-Custom:

PS (10) > Get-Item c:\ | Format-Custom -Depth 1
v
class DirectoryInfo
{
PSPath = Microsoft.PowerShell.Core\FileSystem: :C:\
PSParentPath =
PSChildName = C:\
PSDrive =
class PSDrivelInfo

{

CurrentLocation =

Name = C

Provider = Microsoft.PowerShell.Core\FileSystem

Root = C:\

Description = C_Drive

Credential = System.Management.Automation.PSCredential

}

The full output is considerably longer, and notice that we've told it to stop walking
the object structure at a depth of 1. You can imagine how verbose this output can be!
So why have this cmdlet? Mostly because it’s a useful debugging tool, either when
you're creating your own objects or for exploring the existing objects in the .NET class
libraries. You can see that this is a tool to keep in your back pocket for when you're
getting down and dirty with objects, but not something that you'll typically use on a
day-to-day basis.

CHAPTER 2 FOUNDATIONS OF POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

2.6.2 The outputter cmdlets

Now that you know how to format something, how do you output it? You don't have
to worry because, by default, things are automatically sent to (can you guess?) out-
Default.

Note that the following three examples do exactly the same thing:
dir | Out-Default

dir | Format-Table
dir | Format-Table | Out-Default

This is because the formatter knows how to get the default outputter, the default out-
putter knows how to find the default formatter, and the system in general knows how
to find the defaults for both. The Mébius strip of subsystems!

As with the formatters, there are several outputter cmdlets available in PowerShell
out of the box. You can use the Get-Command command to find them:

PS (1) > Get-Command Out-* | Format-Table Name

Name

Out-Default

Out-File

Out-Gridview

Out-Host

Out-Null

Out-Printer

Out-String

Here we have a somewhat broader range of choices. We've already talked about out-
Default. The next one we'll talk about is Out-Null. This is a simple outputter; any-
thing sent to Out-Null is simply discarded. This is useful when you don’t care about
the output for a command; you want the side effect of running the command. For
example, the mkdir command outputs a listing of the directory it just created:

PS (1) > mkdir foo
Directory: Microsoft.PowerShell.Core\FileSystem: :C:\Temp
Mode LastWriteTime Length Name

d---- 6/25/2010 8:50 PM foo

If you don’t want to see this output, pipe it to Out-Null. First remove the directory
you created, and then create the directory:

PS (2) > rmdir foo
PS (3) > mkdir foo | out-null
PS (4) > get-item foo

Directory: Microsoft.PowerShell.Core\FileSystem: :C:\Temp

FORMATTING AND OUTPUT 67

www.it-ebooks.info

http://www.it-ebooks.info/

Mode LastWriteTime Length Name

d---- 6/25/2010 8:50 PM foo

And finally, because you didn’t get the message, you should verify that the directory
was actually created.

Null redirect

For the 1/O redirection fans in the audience; piping to Out-Null is essentially
equivalent to doing redirecting to Snull. So

mkdir foo | out-null
is equivalent to

mkdir foo > $null

Next we have out-File. Instead of sending the output to the screen, this command
sends it to a file. (This command is also used by 1/O redirection when doing output
to a file.) In addition to writing the formatted output, Out-File has several flags that
control how the output is written. The flags include the ability to append to a file
instead of replacing it, to force writing to read-only files, and to choose the output
encodings for the file. This last item is the trickiest one. You can choose from a num-
ber of the text encodings supported by Windows. Here’s a trick—enter the command
with an encoding that you know doesn’t exist:

PS (9) > out-file -encoding blah

Out-File : Cannot validate argument "blah" because it does

not belong to the set "unicode, utf7, utf8, utf32, ascii,

bigendianunicode, default, oem".

At line:1 char:19

+ out-file -encoding <<<< blah

PS (10) >

You can see in the error message that all the valid encoding names are displayed. If
you don’t understand what these encodings are, don’t worry about it, and let the sys-
tem use its default value.

NOTE Where you're likely to run into problems with output encod-
ing (or input encoding for that matter) is when you’re creating files
that are going to be read by another program. These programs may
have limitations on what encodings they can handle, especially older
programs. To find out more about file encodings, search for “file
encodings” on http://msdn.microsoft.com. MSDN contains a wealth of
information on this topic. Chapter 5 also contains additional informa-
tion about working with file encodings in PowerShell.

The out-pPrinter cmdlet doesnt need much additional explanation; it routes its
text-only output to the printer instead of to a file or to the screen.

CHAPTER 2 FOUNDATIONS OF POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

The Out-Host cmdlet is a bit more interesting—it sends its output back to the
host. This has to do with the separation in PowerShell between the interpreter or
engine and the application that hosts that engine. In theory, the host could be any
application. It could be Visual Studio, it could be one of the Microsoft Office appli-
cations, or it could be a custom third-party application. In each of those cases, the
host application would have to implement a special set of interfaces so that Out-Host
could render its output properly. (We see this used in version 2 of PowerShell, which
includes two hosts: the console host and the ISE.)

NOTE Out-Default delegates the actual work of outputting to the
screen to Out-Host.

The last output cmdlet to discuss is Out-String. This one’s a bit different. All the
other cmdlets send the output off somewhere else and dont write anything to the
pipeline. The Out-String cmdlet formats its input and sends it as a string to the
next cmdlet in the pipeline. Note that we said string, not strings. By default, it sends
the entire output as a single string. This is not always the most desirable behavior—a
collection of lines is usually more useful—but at least once you have the string, you
can manipulate it into the form you want. If you do want the output as a series of
strings, use the -Stream switch parameter. When you specify this parameter, the out-
put will be broken into lines and streamed one at a time.

Note that this cmdlet runs somewhat counter to the philosophy of PowerShell;
once you've rendered the object to a string, you’ve lost its structure. The main reason
for including this cmdlet is for interoperation with existing APIs and external com-
mands that expect to deal with strings. So, if you find yourself using Out-String a
lot in your scripts, stop and think if it’s the best way to attack the problem.

PowerShell version 2 introduced one additional output command: Out-Gridview.
As you might guess from the name, this command displays the output in a grid, but
rather than rendering the output in the current console window, a new window is
opened with the output displayed using a sophisticated grid control (see figure 2.6).

=]=] = |

B3 PowerShell

out—gridview

~ Query

Handles | NPMK | PMe | wsik) | vMiv) | cPu) [1 | Processhame |

1,066 15 3500 9876 175 616 csrss
908 29 5868 22988 203 668 csrss

1,258 37 8948 10568 79 756 lsass
28 Z 450 1012 6 552

smss

Figure 2.6 Displaying
output with
Out-GridView

FORMATTING AND OUTPUT 69

www.it-ebooks.info

http://www.it-ebooks.info/

2.7

70

B gps *ss | out-gridview | =B R |

Search E| A Query
and Handles is less than or equal to 1000 = |‘_| I+ Add * |
Handles | NPMOQ | PMOK | WS | vmiv) | cPuts) | 18 | Processhame |

891 29 5868 23196 204 668 csrss

28 2 480 1012 6 552 smes

Figure 2.7 With the filtering features of control used by Out-GridvView,
you can drill into the dataset without having to regenerate the data.

The underlying grid control used by Out-Gridview has all the features youd expect
from a modern Windows interface: columns can be reordered by dragging and drop-
ping them, and the output can be sorted by clicking a column head. This control also
introduces sophisticated filtering capabilities. This filtering allows you to drill into a
dataset without having to rerun the command. Figure 2.7 shows an example of this
filtering.

In figure 2.7, we've added a filter clause by clicking the Add button. This launches
a dialog box that allows you to select a field to filter on as well as the criteria to use for
the filter. In this case we’ve chosen to sort based on the Handles field, selecting rows
where the number of handles is less than 1,000.

That’s it for the basics: commands, parameters, pipelines, parsing, and presenta-
tion. You should now have a sufficient foundation to start moving on to more
advanced topics in PowerShell.

SUMMARY

This chapter covered the basic structure of PowerShell commands, pipelines, and syntax:

* We began the chapter with an overview of the major concepts in PowerShell.

* We discussed the basic command and pipeline syntax and command parameter
binding.

* PowerShell has four types of commands: cmdlets, functions, script commands,
and native commands, each with slightly different characteristics.

* We discussed the notion of elastic syntax—concise on the command line and
complete in scripts—and how aliases are used to facilitate elastic syntax.

* The fact that PowerShell is a command language as well as a scripting language
impacts how it parses text in a number of ways:

— PowerShell parses scripts in two modes: expression mode and command
mode, which is a critical point to appreciate when using PowerShell.

CHAPTER 2 FOUNDATIONS OF POWERSHELL

www.it-ebooks.info

http://www.it-ebooks.info/

— The PowerShell escape character is a backtick (%), not a backslash.

— PowerShell supports both double quotes and single quotes; variable and
expression expansion is done in double quotes but not in single quotes.

— Line termination is handled specially in PowerShell because it's a command
language.

— PowerShell has two types of comments: line comments that begin with # and
block comments that start with <# and end with #>. The block comment
notation was introduced in PowerShell version 2 with the intent of support-
ing inline documentation for scripts and functions.

* PowerShell uses a sophisticated formatting and outputting system to determine
how to render objects without requiring detailed input from the user.

SUMMARY 71

www.it-ebooks.info

http://www.it-ebooks.info/

3.1

3

Working with types

3.1 Type management in the wild, wild 3.4 Collections: arrays and sequences 91
West 72 3.5 Type literals 96

3.2 Basic types and literals 77 3.6 Type conversions 101

3.3 Collections: dictionaries and hashta- 3.7 Summary 109
bles 85

“When I use a word,” Humpty Dumpty said, in rather a scornful tone,

“it means just what I choose it to mean—neither more nor less.”

—Lewis Carroll, Through the Looking Glass

Most shell environments can only deal with strings, so the ability to use objects makes
PowerShell different. Where you have objects, you also have object zpes. Much of the
power of PowerShell comes from the innovative way it uses types. In this chapter,
we'll look at the PowerShell type system, show how to take advantage of it, and exam-
ine some of the things you can accomplish with types in PowerShell.

TYPE MANAGEMENT IN THE WILD, WILD WEST

Shell languages are frequently called zpeless languages. That characterization isn’t
really accurate because, fundamentally, programming is all about working with differ-
ent types of objects. The more interesting question is how much implicit work the
system does in handling types and how much work is required of you. This spectrum
of effort is conventionally split into static and dynamic typing. In swtically ryped

72

www.it-ebooks.info

http://www.it-ebooks.info/

3.1.1

systems, much of the work is done for you as long as you stay within the domain of
the types youre working on. Once you move outside that domain, it’s up to the user
to figure out how to move objects between those domains. The other cost of static
typing is that you're required to declare the type of every variable, even when the
compiler can figure it out for itself. Take the following C# statement, for example:

string myString = "hello world";

The variable myString is declared to be a string, even though it’s obvious that it has
to be a string. You're assigning a string to it, so what else could it be? It’s this kind of
redundancy that dynamic languages try to avoid. In dyrnamically typed languages, the
user is rarely required to specify the type of a variable. Typically you don’t even have
to declare the variable at all.

NOTE Thestatically typed language community recognizes that requir-
ing the user to repeatedly specify type information is a problem. They
address this, at least in part, through something called #ype inferencing.
This is a mechanism where the language processor tries to figure out the
type of each expression by looking at the types of each component of the
expression. C# 3.0 is an example of a statically typed mainstream lan-
guage that uses type inference for local variables and expressions.

PowerShell: a type-promiscuous language

The tendency is to characterize PowerShell as a dynamically typed language, but a
better description is that PowerShell is a type-promiscuous language (sounds sala-
cious, doesn't it?). By #ype-promiscuous, we mean that PowerShell will expend a tre-
mendous amount of effort trying to turn what you have into what you need with as
lictle work on your part as it can manage. When you ask for a property v, PowerShell
doesn’t care if the object foo is a member of class x. It only cares whether foo has a
property Y.

People who are used to strongly typed environments find this approach—
well—disturbing. It sounds too much like “wild wild West” management. In practice,
the interpreter is careful about making sure its transformations are reasonable and that
no information is unexpectedly lost. This is particularly important when dealing with
numeric calculations. In PowerShell, you can freely mix and match different types of
numbers in expressions. You can even include strings in this mix. PowerShell converts
everything as needed without specific guidance from the user, as long as there’s no loss
in precision. We'll use the remainder of this section to present a number of examples
that illustrate this point. We'll look at operations where the conversions succeed and
the type of the result of the operations. (For convenience, we'll use the .NET Get-
Type () method to look at the base type of the results of the various expressions.) We'll
also explore some examples where there’s an error because the conversion causes some
significant loss of information.

TYPE MANAGEMENT IN THE WILD, WILD WEST 73

www.it-ebooks.info

http://www.it-ebooks.info/

74

In our first example, you’ll add an integer, a floating-point number, and a string
that contains only digits:
PS (1) > 2 + 3.0 + "4"
9

PS (2) > (2 + 3.0 + "4") .GetType () .FullName
System.Double

As you can see from the result, everything was widened to a double-precision float-
ing-point number. (Widening means converting to a representation that can handle
larger or wider numbers: a [long] is wider than an [int], and so forth.) Now let’s
be a bit trickier: put the floating-point number within quotes this time:

PS (3) > 2 + "3.0" + 4

9

PS (4) > (2 + "3.0" + 4) .GetType () .FullName
System.Double

Once again the system determines that the expression has to be done in floating point.

NOTE The .NET single-precision floating-point representation isn’t
typically used unless you request it. In PowerShell, there usually isn’t a
performance benefit for using single precision, so there’s no reason to
use this less precise representation.

Now let’s see a few simple examples that involve only integers. As you'd expect, all these
operations result in integers as long as the result can be represented as an integer:

PS (5) > (3 + 4)

7

PS (6) > (3 + 4).GetType() .FullName

System.Int32

PS (7) > (3 * 4).GetType() .FullName
System.Int32

Try an example using the division operator:

PS (8) > 6/3

2

PS (9) > (6/3) .GetType() .FullName
System.Int32

Because 6 is divisible by 3, the result of this division is also an integer. But what hap-
pens if the divisor isn’t a factor? Try it and see:

PS (10) > 6/4

1.5

PS (11) > (6/4) .GetType() .FullName
System.Double

The result is now a [double] type. The system noticed that there would be a loss of
information if the operation were performed with integers, so it’s executed using dou-
bles instead.

CHAPTER 3 WORKING WITH TYPES

www.it-ebooks.info

http://www.it-ebooks.info/

3.1.2

Finally, try some examples using scientific notation. Add an integer to a large
decimal:
PS (10) > 1e300
1E+300

PS (11) > 1e300 + 12
1E+300

The operation executed with the result being a double. In effect, adding an integer to
a number of this magnitude means that the integer is ignored. This sort of loss is con-
sidered acceptable by the system. But there’s another numeric type that’s designed to
be precise: System.Decimal. Normally you only use this type when you care about
the precision of the result. Try the previous example, this time adding a decimal
instead of an integer:

PS (12) > 1e300 + 124

Cannot convert "1E+300" to "System.Decimal". Error: "Value was
either too large or too small for a
Decimal."

At line:1 char:8
+ 1e300 + <<<< 12d
PS (13) >

This results in an error because when one of the operands involved is a [decimal]
value, all operands are converted to decimal first and then the operation is performed.
Because 1e300 is too large to be represented as a decimal, the operation will fail with
an exception rather than lose precision.

From these examples, you can see that although the PowerShell type conversion
system is aggressive in the types of conversions it performs, it’s also careful about how
it does things.

Now that you have a sense of the importance of types in PowerShell, let’s look at
how it all works.

The type system and type adaptation

Everything in PowerShell involves types in one way or another, so it’s important to
understand how the PowerShell type system works. That’s what we're going to cover
in this section. At the core of the PowerShell type system is the .NET type system. Lit-
tle by little, the NET Framework is expanding to encapsulate everything in the Win-
dows world, but it hasn’t swallowed everything yet. There are still several other object
representations that Windows users, especially Windows system administrators, have
to deal with. There’s Common Object Model (COM) (essentially the precursor to
.NET); Windows Management Instrumentation (WMI), which uses Management
Object Format (MOF) definitions; ActiveX Data Objects (ADO) database objects;
Active Directory Services Interface (ADSI) directory service objects; and so on (wel-
come to object alphabet soup). There’s even everyone’s favorite old/new (as in “every-
thing old is new again") object representation: XML. And finally the .NET libraries,
as well designed as they are, aren’t always quite what you want them to be.

TYPE MANAGEMENT IN THE WILD, WILD WEST 75

www.it-ebooks.info

http://www.it-ebooks.info/

76

PSObject layer
.NET object adapter

.NET object PowerShell script
that accesses

objects

WMI object adapter

WMI obj
Figure 3.1 The architecture of the PowerShell type-

adaptation system. For each kind of data that Power-
COM obiject adapter Shell works with, there’s a corresponding adapter. An
instance of a particular data object is subsequently
wrapped in an instance of the associated type adapter.
This type adapter instance acts as an intermediary be-
tween the object and PowerShell, proxying all accesses.

COM object

In an effort to bring harmony to this object soup and fix some of the shortcomings of
the various object representations, PowerShell uses a type-adaptation system that masks
all the details of these different objects” representations. A PowerShell script never
directly accesses an object. It always goes through the type-adaptation layer—the
psobject (PowerShell Object) layer—that rationalizes the interfaces presented to the
user. The PSObject layer allows for a uniquely consistent user experience when
working with the different types of objects. This architecture is shown in figure 3.1.
When you see an expression like

$x.Count

you don’t have to know or care about the type of object stored in $x. You only care
that it has a property named Count. PowerShell never generates code to directly
access the Count property on a particular type of object. Instead, it makes an indirect
call through the psobject layer, which figures out how a Count property for the
object can be accessed. If $x contains a .NET object, it will return the value from that
object’s Length property. If $x contains an XML document, the XML adapter will
look for a node called “count” on the top level of that XML document. The object in
the variable might not even contain a Count property at all. With PowerShell, you
can have a type system with a synthetic property (called a PSMember) defined by the
type system itself, instead of on the object. Table 3.1 lists the set of available Power-
Shell object adapters.

Table 3.1 The basic set of object adapters available in PowerShell

Adapted object type Description

.NET Adapter This is the basic adapter for all .NET types. This adapter directly
maps the properties on the .NET object and adds several new
ones that start with a PS prefix.

COM Object Adapter This adapter provides access to COM objects. Supported
objects include the Windows Script Host classes and script-
able applications such as Microsoft Word or Internet Explorer.

CHAPTER 3 WORKING WITH TYPES

www.it-ebooks.info

http://www.it-ebooks.info/

3.2

Table 3.1 The basic set of object adapters available in PowerShell (continued)

Adapted object type Description

WMI Adapter This adapts objects returned from a WMI provider.

ADQO Adapter This adapter allows you to treat the columns in ADO data
tables as though they were properties.

Custom Object This adapter manages objects for which there's no actual

Adapter underlying object, only synthetic properties.

ADSI Object Adapter This adapts objects returned from the Active Directory Service
Interfaces.

Let’s recap. In chapter 2, you saw how cmdlets produced various kinds of objects.
These are the objects you have to manipulate to get your work done. In this section,
we discussed how these manipulations work—how the adapter mechanism provides a
uniform experience for the various types of objects. Now let’s look at one more source
of objects: the constants embedded in the script itself, which is accomplished through
the various types of literals. All languages need to have some form of literal data for
initializing variables, comparing against objects, and so on. To say, “Get me all the
files smaller than 10 MB,” you need a way to express /0 MB in your script. You'll
learn how this is done in the next section.

BASIC TYPES AND LITERALS

All programming languages have a set of basic or primitive types from which every-
thing else is built. These primitive types usually have some form of corresponding
syntactic literal. Literal tokens in the language are used to represent literal data objects
in the program. In PowerShell there are the usual literals—strings, numbers, and
arrays—but there are some other literals that aren’t typically found outside of
dynamic languages: dictionaries and hashtables. PowerShell also makes heavy use of
type literals that correspond to type objects in the system. In this section, we'll go
through each of the literals, illustrate how they’re represented in script text, and
explore the details of how they’re implemented in the PowerShell runtime.

3.2.1 String literals
There are four kinds of string literals in PowerShell: single-quoted strings, double-
quoted strings, single-quoted here-strings, and double-quoted here-strings. The
underlying representation for all of these strings is the same.
String representation in PowerShell
In PowerShell, a string is a sequence of 16-bit Unicode characters and is directly
implemented using the .NET System.String type. Because PowerShell strings use
Unicode, they can effectively contain characters from every language in the world.
BASIC TYPES AND LITERALS 77

www.it-ebooks.info

http://www.it-ebooks.info/

78

Encoding matters

The encoding used in strings is obviously important in international environments. If
you're interested in the nitty-gritty details of the encoding used in System.String,
here's what the Microsoft Developer’'s Network documentation has to say:

Each Unicode character in a string is defined by a Unicode scalar value,
also called a Unicode code point or the ordinal (numeric) value of the
Unicode character. Each code point is encoded using UTF-16 encoding,
and the numeric value of each element of the encoding is represented
by a Char. The resulting collection of Char objects constitutes the String.

A single Char usually represents a single code point, that is, the numeric
value of the Char equals the code point. However, a code point might
require more than one encoded element. For example, a Unicode supple-
mentary code point (a surrogate pair) is encoded with two Char objects.

Refer to the Microsoft Developer Network (MSDN) documentation for additional details.

There are a couple of other characteristics that strings in PowerShell inherit from the
underlying .NET strings. They can also be arbitrarily long and theyre immuta-
ble—the contents of a string can be copied but can’t be changed without creating an
entirely new string.

Single- and double-quoted strings

Because of the expression mode/command mode parsing dichotomy described in
chapter 2, strings can be represented in several ways. In expression mode, a string is
denoted by a sequence of characters surrounded by matching quotes, as shown in the
following example:
PS (1) > "This is a string in double quotes"
This is a string in double quotes
PS (2) > 'This is a string in single quotes'
This is a string in single quotes
PS (3) >
Literal strings can contain any character, including newlines, with the exception of an
unquoted closing quote character. In double-quoted strings, to embed the closing
quote character you have to either quote it with the backtick character or double it
up. In other words, two adjacent quotes become a single literal quote in the string. In
single-quoted strings, doubling up the quote is the only way to embed a literal quote
in the string. This is one area where an important difference exists between single-
and double-quoted strings: in single-quoted strings, the backtick isn’t special. This
means that it cant be used for embedding special characters such as newlines or
escaping quotes.

Like the Unix shells, PowerShell supports variable substitutions. These variable
substitutions or expansions are only done in double-quoted strings (which is why
these are sometimes called expandable strings).

CHAPTER 3 WORKING WITH TYPES

www.it-ebooks.info

http://www.it-ebooks.info/

NOTE Arguments to commands are treated as though they were in
double quotes, so variables will be expanded in that situation as well.
You'll see examples of this later on.

Let’s look at an example of string expansion:

PS (1) > $foo = "FOO"

PS (2) > "This is a string in double quotes: S$foo"

This is a string in double quotes: FOO

PS (3) > 'This is a string in single quotes: $foo'

This is a string in single quotes: $foo

PS (4) >

In the preceding lines, you can see that $foo in the double-quoted string was
replaced by the contents of the variable FOO but not in the single-quoted case.

Subexpression expansion in strings

Expandable strings can also include arbitrary expressions by using the subexpression
notation. A subexpression is a fragment of PowerShell script code that’s replaced by
the value resulting from the evaluation of that code. Here are examples of subexpres-
sion expansion in strings:

PS (1) > "2+42 is $(2+2)"

2+2 is 4

PS (2) > $x=3

PS (3) > "$x * 2 is $($x * 2)"

3 %2 is 6

PS (4) >

The expression in the $(...) sequence in the string is replaced by the result of

evaluating the expression. $ (2+2) is replaced by 4, and so on.

Using complex subexpressions in strings

So far, these examples show only simple embedded expressions. In fact, subexpres-
sions allow statement lists—a series of PowerShell statements separated by semico-
lons—to be embedded. Here’s an example where the subexpression contains three
simple statements. First execute the three simple statements:

PS (1) > 1;2;3 # three statements

3

Now execute the same set of statements in a subexpression expansion:

PS (2) > "Expanding three statements in a string: $(1; 2; 3)"
Expanding three statements in a string: 1 2 3
PS (3) >

BASIC TYPES AND LITERALS 79

www.it-ebooks.info

http://www.it-ebooks.info/

80

The result shows the output of the three statements concatenated together, space sep-
arated, and inserted into the result string. Here’s another example of using a for
statement in a subexpression expansion:

PS (1) > "Numbers 1 thru 10: $(for ($i=1; $i -le 10; $i++) { $i })."
Numbers 1 thru 10: 1 2 3 4 5 6 7 8 9 10.

PS (2) >

The output of all the iterations for the loop are gathered up, turned into a string with
one value separated from the next by a space, and then substituted into the overall
string. As you can see, this can be quite powerful. Using a subexpression in a string is
one way to quickly generate formatted results when presenting data.

String expansion considerations

PowerShell expands strings when an assignment is executed. It doesn’t reevaluate
those strings when the variable is used later. This is an important point. Let’s look at
two examples that will make this clear. These examples use the postincrement opera-
tor ++, which adds 1 to a variable, and the range operator, which expands to a
sequence of numbers.

In the first example, initialize $x to 0 and then assign a string with an expansion
that increments $x to a variable $a. Next output $a three times to see what happens
to the value of $x:

(1) > $x=0
PS (2) > Sa = "x 1s $(Sx++; Sx)"
(4) > 1..3 | foreach {$a}

As you can see, $x was incremented once when $a was assigned but didn’t change on
subsequent references. Now inline the string literal into the body of the loop and see
what happens:

PS (5) > 1..3 | foreach {"x is $($x++; $x)"}

x is 1

x is 2

x is 3

This time around, you can see that $x is being incremented each time. To reiterate,
string literal expansion is done only when the literal is assigned.

NOTE There’s a way to force a string to be expanded if you need to
do it. You can do this by calling $ExecutionContext.InvokeCom-
mand.ExpandString('a is $a'). This method will return a new
string with all the variables expanded.

Here-string literals

Getting back to the discussion of literal string notation, there’s one more form of
string literal, called a here-string. A here-string is used to embed large chunks of text

CHAPTER 3 WORKING WITH TYPES

www.it-ebooks.info

http://www.it-ebooks.info/

inline in a script. This can be powerful when you're generating output for another
program. Here’s an example that assigns a here-string to the variable $a:

PS (1) > Sa = @"

>> Line one

>> Line two

>> Line three
>> "@

PS (2) > Sa
Line one
Line two
Line three

NOTE Here’s a note for C# users. There’s a lexical element in C# that
looks a lot like PowerShell here-strings. In practice, the C# feature is
most like PowerShell’s single-quoted strings. In PowerShell, a here-
string begins at the end of the line and the terminating sequence must
be at the beginning of the line that terminates the here-string. In C#,
the string terminates at the first closing quote that isn’t doubled up.

When $a is displayed, it contains all the lines that were entered. Now you're probably
saying, “Wait a minute—you told me I can do the same thing with a regular string.
What makes here-strings so special?” It has to do with how quoting is handled. Here-
strings have special quoting rules.

Here-strings start with @<quote><newline> and end with <newline><quote>@.
The <newlines> are important because the here-string quote sequences won’t be
treated as quotes without them. The content of the here-string is all the lines between
the beginning and ending quotes but not the lines the quotes are on. Because of the
fancy opening and closing quote sequences, other special characters (such as quotes
that would cause problems in regular strings) are fine here. This makes it easy to gen-
erate string data without having quoting errors. Here’s a more elaborate example:

PS (1) > Sa = @"
>> One is "1"

>> Two is '2'

>> Three is $(2+1)

>> The date is "$(get-date)"
>> "@ + "A trailing line"

PS (2) > Sa

One is "1"

Two is '2"'

Three is 3

The date is "1/8/2006 9:59:16 PM"A trailing line
PS (3) >

On line 1, the here-string is assigned to the variable $a. The contents of the here-
string start on line 2, which has a string containing double quotes. Line 3 has a string
with single quotes. Line 4 has an embedded expression, and line 5 calls the Get-Date

BASIC TYPES AND LITERALS 81

www.it-ebooks.info

http://www.it-ebooks.info/

3.2.2

82

cmdlet in a subexpression to embed the current date into the string. Finally, line 6
appends some trailing text to the whole string. When you look at the output of the
variable shown in lines 9-12, you see that the quotes are all preserved and the expan-
sions are shown in place.

Here-strings come in single and double-quoted versions just like regular strings,
with the significant difference being that variables and subexpressions aren’t
expanded in the single-quoted variant, as shown here:

PS (1) > $a=123
PS (2) > @

>> a is Sa

>> "@

>>

a is 123

In the double-quoted here-string, the variable $a is expanded, but in the single-
quoted here-string
PS (3) > @'
>> a is S$a
>> '@
>>
a is sa
PS (4) >
it isnt. The single-quoted version is best for embedding large blocks of literal text
where you don’t want to have to deal with individually quoting $ everywhere. You'll
see how useful this can be when we look at the Add-Type cmdlet in chapter 9.

That should be enough about strings for now. Let’s move on to numbers and
numeric literals. This will finally let us express that “10 MB” value we wanted to
compare against earlier.

Numbers and numeric literals

As mentioned earlier, PowerShell supports all the basic .NET numeric types and per-
forms conversions to and from the different types as needed. Table 3.2 lists these
numeric types.

Table 3.2 Numeric literals

Example numeric literal .NET full type name Short type name
1 System.Int32 [int]

0x1FE4

10000000000 System.Int64 [long]

101

1.1 System.Double [double]

le3

CHAPTER 3 WORKING WITH TYPES

www.it-ebooks.info

http://www.it-ebooks.info/

Table 3.2 Numeric literals (continued)

Example numeric literal .NET full type name Short type name
There is no single-precision System.Single [single] or
numeric literal but you can use [float]

a cast:

[float] 1.3

1d System.Decimal [decimall
1.123d

Now that you know the basic numeric types, you need to understand how literals of
each type are specified.

Specifying numeric literals

In general, you don't specify a literal having a particular type; the system will figure
out the best way to represent the number. By default, an integer will be used. If the
literal is too large for a 32-bit integer, a 64-bit integer will be used instead. If it’s still
too big or if it contains a decimal point, a System.Double will be used. (The
System.Single single-precision floating point isn’t used for numeric literals because
it offers no advantages and just complicates the process.) The one case where you do
want to tell the system that youre requesting a specific type is with the System
.Decimal type. These are specified by placing the letter 4 at the end of the number
with no intervening space, as shown:

PS (1) > (123).gettype().fullname

System.Int32

PS (2) > (123d) .gettype() .fullname

System.Decimal

PS (3) > (123.456) .gettype().fullname

System.Double

PS (4) > (123.456d) .gettype().fullname
System.Decimal

You can see that in each case where there’s a trailing 4, the literal results in a [deci-

mal] value being created. (If there’s a space between the number and the 4, you'll get
an error.)

The multiplier suffixes

Plain numbers are fine for most applications, but in the system administration world,
there are many special values that you want to be able to conveniently represent,
namely, those powers of two—kilobytes, megabytes, gigabytes, terabytes, and peta-
bytes (terabyte and petabyte suffixes aren’t available in PowerShell v1).

PowerShell provides a set of multiplier suffixes for common sizes to help with this,
as listed in table 3.3. These suffixes allow you to easily express common very large
numbers.

BASIC TYPES AND LITERALS 83

www.it-ebooks.info

http://www.it-ebooks.info/

84

Table 3.3 The numeric multiplier suffixes supported in PowerShell. Suffixes marked v2 are
only available in version 2 or PowerShell.

Multiplier

suffix Multiplication factor Example Equivalent value .NET type

kb or KB 1024 1 KB 1024 System.Int32
kb or KB 1024 2.2 KB 2252.8 System.Double
mbor MB 1024*1024 1 MB 1048576 System.Int32
mbor MB 1024*1024 2.2 MB 23068672 System.Double
gb or GB 1024%*1024*1024 1GB 1073741824 System.Int32
gb or GB 1024*1024%1024 214 GB 2297807503.36 System.Double
tborTB 1024*1024%1024* 17B 1099511627776 System.Int64
(v2 only) 1024

tborTB 1024*1024*1024* 2.147TB 2352954883440.64 System.Double
(v2 only) 1024

pb or PB 1024*1024%1024* 1PB 1125899906842624 System.Int64
(v2 only) 1024*%1024

pb or PB 1024*1024%1024* 2.14 PB 2.40942580064322E+15 System.Int64

(v2 only) 1024*1024

NOTE Yes, the PowerShell team is aware that these notations aren’t
consistent with the ISO/IEC recommendations (kilobyte, and so on).
Because the point of this notation is convenience and most IT people
are more comfortable with KB than with Ki, we choose to err on the
side of comfort over conformance in this one case. This particular issue
generated easily the second-most heated debate on the PowerShell
internal and external beta tester lists. We'll cover the most heated
debate later when we get to the comparison operators.

Hexadecimal literals

The last item we'll cover in this section is hexadecimal literals. When working with
computers, it's obviously useful to be able to specify hex literals. PowerShell uses the
same notation as C, C#, and so on—preceding the number with the sequence 0x and
allowing the letters A-F as the extra digits. As always, the notation is case insensitive,
as shown in the following examples:

PS (1) > 0x10

16

PS (2) > 0x55

85

PS (3) > 0x123456789%abcdef
81985529216486895

PS (4) > OxDeadBeef
-559038737

CHAPTER 3 WORKING WITH TYPES

www.it-ebooks.info

http://www.it-ebooks.info/

3.3

3.3.1

Now that we've covered the “basic” literals, strings, and numbers, let’s move on to the
more interesting and less common ones. This is one of the areas where the power of
scripting languages shines. These literals let you express complex configuration data,
inline in your script, in a clear and direct fashion. This, in turn, means that you don’t
have to use an external data language like XML or INI files to encode this configura-
tion data. PowerShell lets you express this information in PowerShell itself.

COLLECTIONS: DICTIONARIES AND HASHTABLES
Perhaps the most flexible data type in PowerShell is the hashtable. This data type lets

you map a set of keys to a set of values. For example, we may have a hashtable that
maps “red” to 1, “green” to 2, and “yellow” to 4.

NOTE A dictionary is the general term for a data structure that maps
keys to values. In the .NET world, this takes the form of an interface
(system.Collections.IDictionary) that describes how a collec-
tion should do this mapping. A hashtable is a specific implementation
of that interface. Although the PowerShell hashtable literal syntax only
creates instances of System.Collections.Hashtable, scripts that
you write will work properly with any object that implements
IDictionary.

Creating and inspecting hashtables

In PowerShell, you use hash literals to create a hashtable inline in a script. Here’s a
simple example:
PS (26) > Suser = @{ FirstName = "John"; LastName = "Smith";

>> PhoneNumber = "555-1212" }
PS (27) > Suser

Key Value

LastName Smith
FirstName John
PhoneNumber 555-1212

This example created a hashtable that contains three key-value pairs. The hashtable

starts with the token @{ and ends with }. Inside the delimiters, you define a set of

key-value pairs where the key and value are separated by an equals sign (=). Formally,

the syntax for a hash literal is

<hashLiteral> = '@{' <keyExpression> '=' <pipeline> [<separator>
<keyExpression> '=' <pipeline>] * '}

Now that you've created a hashtable, let’s see how you can use it. PowerShell allows

you to access members in a hashtable in two ways—through property notation and

through array notation. Here’s what the property notation looks like:

PS (3) > Suser.firstname
John

COLLECTIONS: DICTIONARIES AND HASHTABLES 85

www.it-ebooks.info

http://www.it-ebooks.info/

86

PS (4) > Suser.lastname

Smith

This notation lets you treat a hashtable like an object. This access method is intended
to facilitate the use of hashtables as a kind of lightweight data record. Now let’s look
at using the array notation:

PS (5) > Suser["firstname"]

John

PS (6) > Suser["firstname", "lastname"]

John
Smith

Property notation works pretty much the way youd expect; you specify a property
name and get the corresponding value back. Array notation, on the other hand, is
more interesting. In the second command in the example, you provided two keys and
got two values back.

Here’s an example that shows some additional features of the underlying
hashtable object. The underlying object for PowerShell hashtables is the .NET type
System.Collections.Hashtable. This type has a number of properties and meth-
ods that you can use. One of these properties is keys. This property will give you a

list of all the keys in the hashtable:

PS (7) > Suser.keys
LastName

FirstName
PhoneNumber

In the array access notation, you can use keys to get a list of all the values in the
table:

PS (8) > Suser[Suser.keys]

Smith

John
555-1212

NOTE A more efficient way to get all of the values from a hashtable is
to use the Values property. The point of this example is to demon-
strate how you can use multiple indexes to retrieve the values based on
a subset of the keys.

You might have noticed that the keys property didn't return the keys in alphabetical
order. This is because of the way hashtables work—keys are randomly distributed in
the table to speed up access. If you do need to get the values in alphabetical order,
here’s how you can do it:

PS (10) > $user.keys | sort-object

FirstName

LastName
PhoneNumber

CHAPTER 3 WORKING WITH TYPES

www.it-ebooks.info

http://www.it-ebooks.info/

The Sort-Object (or just sort) cmdlet sorts the keys into alphabetical order and
returns a list. Use this list to index the table:

PS (11) > $user[[string[]] ($user.keys | sort)]

John

Smith
555-1212

You'll notice something funny about the last example: we had to cast or convert the
sorted list into an array of strings. This is because the hashtable keys mechanism
expects strings, not objects, as keys. There’s much more on casts later in this chapter.

A digression: sorting, enumerating, and hashtables

Let’s digress for a second and address a question that comes up sometimes when peo-
ple, especially .NET programmers, first encounter hashtables in PowerShell. The
question is, “Are hashtables collections or scalar objects?” From the .NET perspective,
they’re enumerable collections just like arrays except they contain a collection of key-
value pairs. However, and this is important, PowerShell treats hashtables like scalar
objects. It does this because, in scripting languages, hashtables are commonly used as
on-the-fly structures or data records. Using hashtables this way, you don’t have to pre-
define the fields in a record; you just make them up as you go. If PowerShell treated
hashtables as enumerable collections by default, this wouldn’t be possible because
every time you passed one of these “records” into a pipeline, it would be broken up
into a stream of individual key-value pairs and the integrity of the original table
would be lost.

This causes the most problems for people when they use hashtables in the
foreach statement. In a NET language like C#, the foreach statement iterates over
all the pairs. In PowerShell, the foreach loop will run only once because the
hashtable isn’t considered an enumerable, at least not by default. So, if you do want
to iterate over the pairs, you'll have to call the GetEnumerator () method yourself.

This looks like

PS (12) > $h = @{a=1l; b=2; c=3}

PS (13) > foreach ($pair in S$h.GetEnumerator())
>> {

>> Spair.key + " is " + $pair.value

>> 3}

a is 1
b is 2
c is 3
In each iteration, the next pair is assigned to $pair and processing continues.

A significant part of the reason this behavior confuses people is that when Power-
Shell displays a hashtable, it uses enumeration to list the key-value pairs as part of the
presentation. The result is that there’s no visible difference between when you call

COLLECTIONS: DICTIONARIES AND HASHTABLES 87

www.it-ebooks.info

http://www.it-ebooks.info/

3.3.2

88

GetEnumerator () in the foreach loop and when you don’t. Let’s look at this. First,
the no GetEnumerator () case:

PS (14) > foreach ($pair in $h) { S$Spair }

Name Value
a 1
b 2
c 3

Now call GetEnumerator () in the loop:

PS (15) > foreach ($pair in S$h.GetEnumerator()) { Spair }
Name Value

a 1

b 2

c 3

As you can see, the output is identical in both cases. This is desirable in the sense that
it’s a good way to present a hashtable and doesn’t require effort from the user to do
this. On the other hand, it masks the details of what’s really going on. As always, it’s
difficult to serve all audiences perfectly.

Another aspect of the hashtable collection question is that people want to be able
to “sort” a hashtable the way you’d sort a list of numbers. In the case of a hashtable,
this usually means that the user wants to be able to control the order in which keys
will be retrieved from the hashtable. Unfortunately this can’t work because the
default hashtable object that PowerShell uses has no way to store any particular key
ordering in the table. The keys are just stored in random order, as you saw earlier in
this section. If you want to have an ordered dictionary, you’ll have to use a different

type of object, such as
[Collections.Generic.SortedDictionary[object, object]]

This is a sorted generic dictionary (we'll get to type literals and generics later in this
chapter). And now, back to our regularly scheduled topic.

Modifying and manipulating hashtables

Next let’s look at adding, changing, and removing elements in the hashtable. First let’s
add the date and the city where the user lives to the Suser table.

PS (1) > Suser.date = get-date
PS (2) > Suser

Key Value

LastName Smith

date 1/15/2006 12:01:10 PM
FirstName John

PhoneNumber 555-1212

CHAPTER 3 WORKING WITH TYPES

www.it-ebooks.info

http://www.it-ebooks.info/

PS (3) > Suser["city"] = "Seattle"

PS (4) > Suser

Key Value

city Seattle

LastName Smith

date 1/15/2006 12:01:10 PM
FirstName John

PhoneNumber 555-1212

A simple assignment using either the property or array accessor notation allows you
to add an element to a hashtable. Now let’s say you got the city wrong—John really

lives in Detroit. Let’s fix that:

PS (5) > Suser.city = "Detroit"
PS (6) > Suser

Key

city

LastName

date

FirstName

PhoneNumber

Detroit

Smith

1/15/2006 12:01:10 PM
John

555-1212

As this example shows, simple assignment is the way to update an element. Finally,
you don’t want this element, so remove it from the table with the remove () method:

PS (7) > Suser.remove("city")
PS (8) > Suser

Key

LastName

date

FirstName

PhoneNumber

Smith

1/15/2006 12:01:10 PM
John

555-1212

The hashtable no longer contains the element.

If you want to create an empty hashtable, use @{ } with no member specifications
between the braces. This creates an empty table that you can then add members to
incrementally:

PS (1) > $newHashTable = @{}

PS (2) > S$newHashTable

PS (3) > S$SnewHashTable.one =1

PS (4) > $newHashTable.two = 2

PS (5) > S$newHashTable

Key Value
two 2

one 1

In the example, there were no members initially; you added two by making assign-
ments. The members are created on assignment.

COLLECTIONS: DICTIONARIES AND HASHTABLES 89

www.it-ebooks.info

http://www.it-ebooks.info/

3.3.3

90

Hashtables as reference types

Hashtables are reference types, so if you create a hashtable, assign it to a variable
$foo, and assign $foo to another variable, $bar, you'll have two variables that point
to, or reference, the same object. Consequently, any changes that are made to one vari-
able will affect the other, because they’re pointing to the same object. Let’s try this
out. Create a new hashtable and assign it to $foo:

PS (2) >
>> a =1
> b = 2
> c =3
>> }
>>

PS (3) > S$foo

Key Value
a 1
b 2
c 3

Now assign $foo to $bar and verify that it matches $foo as you'd expect:

PS (4) > Sbar = S$foo
PS (5) > S$bhar

Key Value
a 1
b 2
c 3

Next assign a new value to the element a in $foo:

PS (6) > $foo.a = "Hi there"
PS (7) > sfoo.a
Hi there

And see what happened to $bar:

PS (8) > Sbar.a

Hi there

PS (9) > Sbar

Key Value

a Hi there
b 2

c 3

The change that was made to $foo has been reflected in $bar.
Now if you want to make a copy of the hashtable instead of just copying the refer-
ence, you can use the Clone () method on the object:

PS (1) > S$foo=@{a=1; b=2; c=3}
PS (2) > Sbar = $foo.Clone()

CHAPTER 3 WORKING WITH TYPES

www.it-ebooks.info

http://www.it-ebooks.info/

3.4

3.4.1

Change the a member in the table
PS (3) > $foo.a = "Hello"
and verify that the hashtable in $foo has changed

PS (4) > $foo.a
Hello

but the hashtable in $bar hasnt

PS (5) > Sbar.a
1
because it’s a copy, not a reference. This technique can be useful if you're creating a
number of tables that are mostly the same. You can create a “template” table, make
copies, and then change the pieces you need to.

There’s still more to know about hashtables and how they work with operators,
but we'll cover that in chapters 4 and 5. For now, let’s move on to the next data type.

COLLECTIONS: ARRAYS AND SEQUENCES

In the previous section, we talked about hashtables and hash literals. Now let’s talk
about the PowerShell syntax for arrays and array literals. Most programming languages
have some kind of array literal notation similar to the PowerShell hash literal notation,
where there’s a beginning character sequence followed by a list of values, followed by
a closing character sequence. Here’s how array literals are defined in PowerShell:
They're not. Theres no array literal notation in PowerShell.

Yes, you read that correctly. There’s no notation for an array literal in PowerShell. So
how exactly does this work? How do you define an inline array in a PowerShell script?
Here’s the answer: instead of having array literals, there’s a set of operations that create
collections as needed. In fact, collections of objects are created and discarded trans-
parently throughout PowerShell. If you need an array, one will be created for you. If
you need a singleton (or scalar) value, the collection will be unwrapped as needed.

Collecting pipeline output as an array

The most common operation resulting in an array in PowerShell is collecting the out-
put from a pipeline. When you run a pipeline that emits a sequence of objects and
assign that output to a variable, it automatically collects the elements into an array,
specifically into a .NET object of type [object[]].

But what about building a simple array in an expression? The simplest way to do
this is to use the comma operator (,). For example, at the command line, type

1,2,3

and you'll have created a sequence of numbers. (See chapter 5 for more information
about using the comma operator.) When you assign that sequence to a variable, it’s

COLLECTIONS: ARRAYS AND SEQUENCES 91

www.it-ebooks.info

http://www.it-ebooks.info/

3.4.2

3.4.3

92

stored as an array. Assign these three numbers to a variable, $a, and look at the
result type:
PS (1) > $a = 1,2,3

PS (2) > Sa.gettype().fullname
System.Object[]

As in the pipeline case, the result is stored in an array of type [object[]].

Array indexing

Let’s explore some of the operations that can be performed on arrays. As is commonly

the case, getting and setting elements of the array (array indexing) is done with square

brackets. The length of an array can be retrieved with the Length property:

PS (3) > Sa.length

3

PS (4) > sal0]

1

Note that arrays in PowerShell are origin-zero; that is, the first element in the array is

at index 0, not index 1. As the example showed, the first element of $a is in $a[0].
As with hashtables, changes are made to an array by assigning new values to

indexes in the array. The following example assigns new values to the first and third

elements in $a:

PS (5) > $a[0] = 3.1415
PS (6) > Sa

3.1415

2

3

PS (7) > S$a[2] = "Hi there"
PS (8) > Sa

3.1415

2

Hi there

PS (9) >

Looking at the output, you can see that elements of the array have been changed.
Simple assignment updates the element at the specified index.

Polymorphism in arrays

Another important thing to note from the previous example is that arrays are poly-
morphic by default. By polymorphic we mean that you can store any type of object in
an array. (A VBScript user would call these variant arrays.) When you created the
array, you assigned only integers to it. In the subsequent examples, you assigned a
floating-point number and a string. The original array was capable of storing any
kind of object. In formal terms, PowerShell arrays are polymorphic by default
(though it’s possible to create type-constrained arrays).

CHAPTER 3 WORKING WITH TYPES

www.it-ebooks.info

http://www.it-ebooks.info/

344

Earlier you saw how to get the length of an array. What happens when you try to
assign to an element past the end of the array? The next example illustrates this:
PS (9) > Sa.length
3
PS (10) > $al[4] = 22
Array assignment failed because index '4' was out of range.
At line:1 char:4
+ Sald <<<<] = 22
PS (11) >

Attempts to assign outside the bounds of an array will result in a range error. This is
because PowerShell arrays are based on .NET arrays and their size is fixed. So how can
you add more elements to a PowerShell array if the underlying objects are fixed in
size? This is easily done through array concatenation using the plus (+) or plus-equals
(+=) operators. Let’s add two more elements to the array from the previous example:

PS (11) > Sa += 22,33
PS (12) > S$a.length

5

Ps (13) > sal4]
33

PS (14) >

So the length of the array in $a is now 5. The addition operation did add elements.
Here’s how this works:

1 PowerShell creates a new array large enough to hold the total number of elements.
2 It copies the contents of the original array into the new one.
3 It copies the new elements into the end of the array.

You didnt add any elements to the original array after all. Instead, you created a new,
larger one.

Arrays as reference types

This copying behavior has some interesting consequences. You can explore this fur-
ther by first creating a simple array and looking at the value. Let’s use string expan-
sion here so that the values in the variable are all displayed on one line:

PS (1) > $a=1,2,3

PS (2) > "sa"
123

Now assign $a to a new variable, $b, and check that $a and $b have the same elements:
PS (3) > $b = %a

PS (4) > "$b

123

Next, change the first element in $a:

COLLECTIONS: ARRAYS AND SEQUENCES 93

www.it-ebooks.info

http://www.it-ebooks.info/

3.45

94

PS (5) > sa[0] = "Changed"
PS (6) > "sa"
Changed 2 3

Yes, the first element in $a was changed. But what about $b?

PS (7) > n$b||
Changed 2 3

It was also changed. As with hashtables, array assignment is done by reference. When
you assigned $a to $b, you got a copy of the reference to the array instead of a copy of
contents of the array. Add a new element to $b:

PS (8) > $b += 4

PS (9) > "Sb"

Changed 2 3 4

$b is now four elements long. Because of the way array concatenation works, $b con-
tains a copy of the contents of the array instead of a reference. If you change $a now,
it won't affect $b. Let’s verify that:

PS (10) > $a[0] = "Changed again"

PS (11) > "sSa"

Changed again 2 3

PS (12) > "Sb"
Changed 2 3 4

You see that $b wasn’t changed. Conversely, changing $b should have no effect on $a:

PS (13) > s$b[0] =1
PS (14) > "$a"; "Sb"
Changed again 2 3
12314

PS (15) >

Again, there was no change.

To reiterate, arrays in PowerShell, like arrays in other .NET languages, are refer-
ence types, not value types. When you assign them to a variable, you get another
reference to the array, not another copy of the array.

Singleton arrays and empty arrays

You saw how to use the comma operator to build up an array containing more than
one element. You can also use the comma operator as a prefix operator to create an
array containing only one element. The next example shows this:

PS (1) > , 1

1

PS (2) > (, 1).length
1

PS (3) >

This code creates an array containing a single element, 1.

CHAPTER 3 WORKING WITH TYPES

www.it-ebooks.info

http://www.it-ebooks.info/

How about empty arrays? The comma operator always takes an argument to work
on. Even using $null as an argument to the comma operator will result in a one-
element array containing the $null reference. Empty arrays are created through a
special form of subexpression notation that uses the @ symbol instead of the $ sign to
start the expression. Here’s what it looks like:

PS (3) > @()

PS (4) > @().length
0

PS (5) >

In the preceding example, you created an array of length 0. This notation is more
general—it takes the result of the expression it encloses and ensures that it’s always
returned as an array. If the expression returns $null or a scalar value, it will be
wrapped in a one-element array. Given this behavior, the other solution to creating an
array with one element is

PS (1) > @(1)

1

PS (2) > @(1).length

1

That is, you place the value you want in the array in @(...) and you get an
array back.

Use this notation when you don’t know whether the command you’re calling is
going to return an array. By executing the command in this way, you’re guaranteed
to get an array back. Note that if what you’re returning is already an array, it won’t be
wrapped in a new array. Compare this to the use of the comma operator:

PsS (1) > 1,2,3

3
PS (2) > (1,2,3).Length

3
Ps (3) > (, (1,2,3)).Length
1
PS (4) > (@(1,2,3)).Length

3

Line 1 created a regular array; on line 5, you get the length and see that it’s 3. Next,
on line 7, you apply the prefix operator to the array and then get the length. The
result now is only 1. This is because the unary comma operator always wraps its argu-
ments in a new array. Finally, on line 9, you use the @(...) notation and then get
the length. This time it remains 3. The @(...) sequence doesnt wrap unless the
object isn’t an array.

Now let’s look at the last type of literal: the zype literal. Because object types are so
important in PowerShell, you need to be able to express types in a script. Remember
with numbers, when you wanted to say, “Get me all the files larger than 10 MB,” you

COLLECTIONS: ARRAYS AND SEQUENCES 95

www.it-ebooks.info

http://www.it-ebooks.info/

3.5

3.5.1

96

needed numeric literals? The same concept applies to types. If you want to be able to
say, “Get me all the objects of a particular type,” you need to be able to express that
type in the script.

TYPE LITERALS

In earlier sections, you saw a number of things that looked like [type]. These are the
type literals. In PowerShell, you use type literals a variety of ways. You use them to
specify a particular type. They can be used as operators in a cast (an operation that
converts an object from one type to another), as part of a fype-constrained variable
declaration (see chapter 4), or as an object itself. Here’s an example of a cast using a
type literal:

$i = [int] "123"

In this example, you're casting or converting a string into a number, specifically an
instance of primitive .NET type System.Int32. You could use the longer .NET type
name to accomplish the same thing:

$i = [System.Int32] "123"

Now let’s look at something a bit more sophisticated. If you wanted to make this into
an array of integers, youd do this:

$i = [int[]][object[]] "123"

In this example, you're not just casting the basic type, you're also changing it from a
scalar object to an array. Notice that you had to do this in two steps. In the first step,
you converted it into a collection but without changing the element type. In the sec-
ond step, you converted the types of the individual elements. This follows the general
type converter rule that no more than one conversion will be performed in a single
step. This rule makes it much easier to predict what any given conversion will do.

NOTE In this case, converting a scalar value into an array is so com-
mon that we added support for doing this directly in PowerShell v2.
You can simply say $1 = [int[]] "123".

Type name aliases

Obviously, the shorter type name (or gpe alias, as it’s known) is more convenient.
Table 3.4 lists all the type aliases defined in PowerShell and the .NET types they cor-
respond to. It also indicates which version of PowerShell the alias is available in.
(Another change that was made in v2 is that there are no longer separate aliases for
arrays of the base type. As a result, these aren’t shown in the table as they were in the
first version of the book.) Anything in the System.Management.Automation
namespace is specific to PowerShell. The other types are core .NET types and are cov-
ered in the MSDN documentation.

CHAPTER 3 WORKING WITH TYPES

www.it-ebooks.info

http://www.it-ebooks.info/

Type resolution

When PowerShell resolves a type name, it first checks the type name alias table;
then it checks to see whether a type exists whose full name matches the string
specified. Finally it prepends the type with system. and checks to see whether a
type exists that matches the new string. This means things that are in the System
namespace look like they might be aliased.

For example, the type System. IntPtr can be referred to as [intpr] even though
it's not in the alias table. For the most part, this referral is transparent. The one time
it does matter is if, for some reason, a type was added to the system that lives in the
top-level namespace. In this case, [intptr] would refer to the new type and you'd
have to use [system.intptr] to refer to the system type. This should never
happen because types should always be in namespaces.

Table 3.4 PowerShell type aliases and their corresponding .NET types

Type alias Corresponding .NET type Version
[int] System.Int32 1,2
[long] System.Int64 1,2
[string] System.String 1,2
[char] System.Char 1,2
[bool] System.Boolean 1,2
[bytel System.Byte 1,2
[double] System.Double 1,2
[decimall System.Decimal 1,2
[float] System.Single 1,2
[single] System.Single 1,2
[regex] System.Text.RegularExpressions.Regex 1,2
[array] System.Array 1,2
[xml] System.Xml.XmlDocument 1,2
[scriptblock] System.Management .Automation.ScriptBlock 1,2
[switch] System.Management .Automation.SwitchParameter 1,2
[hashtable] System.Collections.Hashtable 1,2
[ref] System.Management .Automation.PSReference 1,2
[typel System.Type 1,2
[psobject] System.Management .Automation.PSObject 1,2
[pscustomobject] System.Management .Automation.PSObject 2
[psmoduleinfo] System.Management .Automation.PSModuleInfo 2
TYPE LITERALS 97

www.it-ebooks.info

http://www.it-ebooks.info/

3.5.2

98

Table 3.4 PowerShell type aliases and their corresponding .NET types (continued)

Type alias Corresponding .NET type Version
[powershell] System.Management .Automation.PowerShell 2
[runspacefactory] System.Management.Runspaces.RunspaceFactory 2
[runspace] System.Management .Automation.Runspaces.Runspace 2
[ipaddress] System.Net.IPAddress 2
[wmi] System.Management .ManagementObject 1,2
[wmisearcher] System.Management .ManagementClass 1,2
[wmiclass] System.Management .ManagementClass 1,2
[adsi] System.DirectoryServices.DirectoryEntry 1,2
[adsisearcher] System.DirectoryServices.DirectorySearcher 1,2

Generic type literals

There’s a special kind of type in .NET called a generic type, which let you say some-
thing like “a list of strings” instead of just “a list.” And although you could do this
without generics, youd have to create a specific type for the type of list. With gener-
ics, you create one generic list type (hence the name) and then parameterize it with
the type it can contain.

NOTE Generic type literal support was added in v2. In v1, it was pos-
sible to express a type literal, but it was a painful process. You'll learn
how to do this later in the book.

This example shows the type literal for a generic list (System.Collections
.Generic.List) of integers:

PS (1) > [system.collections.generic.list[int]] | ft -auto

IsPublic IsSerial Name BaseType

True True List'1l System.Object

If you look at the type literal, its easy to see how the collection element type is
expressed: [int]. This is essentially a nested type literal where the type parameter is
enclosed in nested square brackets. Create an instance of this type:

PS (2) > $1 = new-object system.collections.generic.list[int]
Then add some elements to it:

PS (3) > $l.add(1)
PS (4) > $l.add(2)

Get the count of elements added and list the elements:

PS (5) > $l.count
2

CHAPTER 3 WORKING WITH TYPES

www.it-ebooks.info

http://www.it-ebooks.info/

PS (6) > sl
1
2

Try to add something that isn’t an integer:

PS (7) > $l.add("hello")

Cannot convert argument "0", with value: "hello", for "Add" to
type "System.Int32": "Cannot convert value "hello" to type "System
.Int32". Error: "Input string was not in a correct format.""

at line:1 char:7
$l.add <<<< ("hello")
+ CategoryInfo : NotSpecified: (:) [], MethodExcep
tion
+ FullyQualifiedErrorId : MethodArgumentConversionInvalidCa
stArgument

This results in a type error because "hello" can’t be converted into an integer. Now,
if the string could be converted to a number, as in this example
PS (8) > $1.add("123")

PS (9) > $1.count
3

PowerShell would take care of the conversion and the operation could proceed with-
out error.

Finally, let’s look at a type that requires more than one type parameter. For exam-
ple, a generic dictionary requires two type parameters: the type of the keys and the
type of the values. Here’s what this looks like:

PS (10) > [system.collections.generic.dictionary([string,int]] |
>> Format-List -auto

IsPublic IsSerial Name BaseType

True True Dictionary 2 System.Object

The two type parameters are separated by a comma inside the square brackets.

Now let’s take a trip into the “too-much-information” zone and look in detail at
the process PowerShell uses to perform all of these type conversions. On first reading,
you’ll probably want to skim this section but read it in detail later when you’re more
comfortable with PowerShell. This is a “spinach” section—you may not like it, but
it’s good for you.

The primary uses for type literals are in performing type conversions and invoking
static methods. We'll look at both of these uses in the next two sections.

3.5.3 Accessing static members with type literals
As mentioned, a common use for type literals is for accessing static methods on .NET
classes. You can use the Get-Member cmdlet to look at the members on an object. To
view the static members, use the -Static flag:

TYPE LITERALS 99

www.it-ebooks.info

http://www.it-ebooks.info/

100

PS (1) > [string] | get-member -static

TypeName: System.String

Name MemberType Definition

Compare Method static System.Int32 Compare (String...
CompareOrdinal Method static System.Int32 CompareOrdinal...
Concat Method static System.String Concat (Object...
Copy Method static System.String Copy(String str)
Equals Method static System.Boolean Equals (Strin...
Format Method static System.String Format (String...
Intern Method static System.String Intern(String...
IsInterned Method static System.String IsInterned(St...
IsNullOrEmpty Method static System.Boolean IsNullOrEmpt...
Join Method static System.String Join(String s...
op_Equality Method static System.Boolean op_Equality(...
op_Inequality Method static System.Boolean op_Inequalit...
ReferenceEquals Method static System.Boolean ReferenceEqu. ..
Empty Property static System.String Empty {get;set;

This code will dump out all the static members on the .NET System. String class. If
you want to call one of these methods, you need to use the : : operator. Let’s use the
join method to join an array of string. First create the array:

PS (2) > $s = "one","two", "three"

Then use the join method to join all the pieces into a single string with plus signs in
between:

PS (3) > [string]::Join(' + ', $s)
one + two + three
PS (4) >

Example: using advanced math functions

A good example of the power of static methods is the [math] class from the .NET
Framework. This class—[System.Math]—is a pure static class. This means you cant
create an instance of it—you can only use the static methods it provides. Again, let’s
use the Get-Member cmdlet to look at the methods. Here’s a truncated listing of the
output youd see:

PS (1) > [math] | get-member -static

TypeName: System.Math

Name MemberType Definition

Abs Method static System.Single Abs(Single va...
Acos Method static System.Double Acos (Double 4d)
Asin Method static System.Double Asin(Double 4d)
Atan Method static System.Double Atan (Double d)

Atan2 Method static System.Double Atan2 (Double

CHAPTER 3 WORKING WITH TYPES

www.it-ebooks.info

http://www.it-ebooks.info/

3.6

sSart Method static System.Double Sgrt (Double d)

Tan Method static System.Double Tan (Double a)
Tanh Method static System.Double Tanh (Double v...
Truncate Method static System.Decimal Truncate (Dec...
E Property static System.Double E {get;}

PI Property static System.Double PI {get;}

As you can see, it contains a lot of useful methods and properties. For example, it
contains useful constants like Pi and e as static properties:

PS (2) > [math]::Pi

3.14159265358979

PS (3) > [math]::e

2.71828182845905

PS (4) >

There are also all the trigonometric functions:

PS (4) > [math]::sin(22)

-0.00885130929040388

PS (5) > [math]::cos(22)

-0.999960826394637

PS (6) >

As we've said, types in PowerShell provide tremendous power and breadth of capabil-
ities. In many cases, before rolling your own solution it's worth browsing the MSDN
documentation on the .NET libraries to see if there’s something you can use to solve
your problems. Now that you've seen the types, let’s look at how PowerShell does type
conversions.

TYPE CONVERSIONS

In the previous section, we introduced type literals and the major data types used in
PowerShell. But how do all these types work together? This is a critical question we
had to address in designing PowerShell. In shell languages, there’s usually only string
data, so you never have to worry about things being of the wrong type. So how could
the PowerShell team achieve this “typeless” behavior in PowerShell? The answer was a
comprehensive system for handling type conversions automatically.

Automatic type conversion is the “secret sauce” that allows a strongly typed language
like PowerShell to behave like a typeless command-line shell. Withouta comprehensive
type conversion system to map the output of one command to the input type required
by another command, PowerShell would be nearly impossible to use as a shell.

In the next few sections, we'll go through an overview of how the type-conversion
system works. Then we’ll look at the conversion algorithm in detail. Finally, we’ll
explore special conversion rules that apply only when binding cmdlet parameters.

3.6.1 How type conversion works
Type conversions are used any time an attempt is made to use an object of one type in
a context that requires another type (such as adding a string to a number). Here’s a
TYPE CONVERSIONS 101

www.it-ebooks.info

http://www.it-ebooks.info/

102

good example: In the previous chapter, we talked about how parameters are bound to
cmdlets. The parameter binder uses the type conversion system heavily when trying
to bind incoming objects to a particular parameter. If the user has supplied a string
and the cmdlet requires a number, the system will quietly convert the source object to
the destination type as long as it’s not a destructive conversion. A destructive conver-
sion is one where the sense of the original object has been lost or distorted in some
significant way. With numbers, this typically means a loss of precision.

The type-conversion facility is also surfaced directly to the shell user through cast
operations in the PowerShell language, as we mentioned in the previous section. In
PowerShell, you use types to accomplish many things that you’d do with methods or
functions in other languages. You use type literals as operators to convert (or cast)
one type of object to another. Here’s a simple example:

PS (1) > [int] "0x25"

37
PS (2) >

In this example, a string representing a hexadecimal number is converted into a num-
ber by using a cast operation. A token specifying the name of a type in square brack-
ets can be used as a unary operator that will try to convert its argument into the
desired type. These type cast operations can be composed—that is, several casts can
be chained together. Here’s an example of that type of composition. To get the ordi-
nal value for a character, you can do this:

PS (2) > [int] [char]"a"
97

Notice that you first cast the string into a char and then into an int. This is necessary
because the simple conversion would try to parse the entire string as a number. This
only works for a string containing exactly one character, however. If you want to con-
vert an entire string, you need to use array types. Here’s what that looks like:

PS (3) > [int[]] [char([]] "Hello world"
72
101
108
108
111
32
119
111
114
108
100

The string was split into an array of characters, then that array of characters was con-
verted into an array of integers and finally displayed as a list of decimal numbers. If

CHAPTER 3 WORKING WITH TYPES

www.it-ebooks.info

http://www.it-ebooks.info/

you wanted to see those numbers in hex, you'd have to use the -f format operator
and a format specifier string:

PS (4) > "0x{0:x}" -f [int] [char] "a"

0x61

And then, if you want to make a round trip, string to char to int to char to string, you
can do this:

PS (6) > [string][char][int] ("0x{0:x}" -f [int] [char] "a")

a

Finally, here’s a somewhat extreme example (for 2001: A Space Odyssey fans). You'll
take the string “HAL” and increment each of the characters in the string by 1:

PS (7) > $s = "HAL"

PS (8) > $OFS=""; [string] [char[]] ([int[]] [char[]] $s |

>> foreach {$_+1})

>>
IBM

Creepy, but cool (or just weird if you're not a 2001 fan)! Moving closer to home, we
know that the Windows NT kernel was designed by the same person who designed
the VMS operating system. Let’s prove that Windows NT (WNT) is just VMS plus 1:
PS (9) > $s = "VMS"

PS (10) > SOFS=""; [string] [char[]] ([int[]] [char[]] Ss |

>> foreach {$_+1})

>>
WNT

One final issue you may be wondering about: what is the $0FS (Output Field Separa-
tor) variable doing in the example? When PowerShell converts arrays to strings, it
takes each array element, converts that element into a string, and then concatenates
all the pieces together. Because this would be an unreadable mess, it inserts a separa-
tor between each element. That separator is specified using the $OFS variable. It can
be set to anything you want, even the empty string. Here’s an interesting example.
Say you want to add the numbers from 1 to 10. Let’s put the numbers into an array:

PS (1) > $data = 1,2,3,4,5,6,7,8,9,10
Now convert them to a string:

PS (2) > [string] S$data
123456782910

As an aside, variable expansion in strings goes through the same mechanism as the
type converter, so you'll get the same result:

PS (3) > "Sdata"
123456782910

Change $OFS to be the plus operator, and then display the data.

1YPE CONVERSIONS 103

www.it-ebooks.info

http://www.it-ebooks.info/

3.6.2

104

PS (4) > $OFS='+'
PS (5) > "Sdata"

1+2+3+4+5+6+7+8+9+10

Previously, the fields had been separated by spaces. Now theyre separated by plus
operators. This is almost what you need. You just have to find a way to execute this
string. PowerShell provides that ability through the Invoke-Expression cmdlet.
Here’s how it works:

PS (6) > invoke-expression "S$data"

55

PS (7) >

Ta-da! Note that this isn’t an efficient way to add a bunch of numbers. The looping
constructs in the language are a much better way of doing this.

PowerShell’s type-conversion algorithm

In this section, we'll cover the steps in the conversion process in painful detail—much
more than you'll generally need to know in your day-to-day work. But if you want to
be an expert on PowerShell, this stuff’s for you.

NOTE Type conversion is one of the areas of the PowerShell project
that grew “organically.” In other words, we sat down, wrote a slew of
specifications, threw them out, and ended up doing something com-
pletely different. This is one of the joys of this type of work. Nice,
clean theory falls apart when you put it in front of real people. The
type conversion algorithm as it exists today is the result of feedback
from many of the early adopters both inside Microsoft as well as out-
side. The PowerShell community helped us tremendously in this area.

In general, the PowerShell type conversions are separated into two major buckets; a
description follows.

PowerShell language standard conversions

These are built-in conversions performed by the engine itself. They're always pro-
cessed first and consequently cant be overridden. This set of conversions is largely
guided by the historical behavior of shell and scripting languages, and isn’t part of the
normal .NET type-conversion system.

.NET-based custom converters

This class of converters uses (and abuses in some cases) existing .NET mechanisms for
doing type conversion.

Table 3.5 lists the set of built-in language conversions that PowerShell uses. The
conversion process always starts with an object of a particular type and tries to pro-
duce a representation of that object in the requested target type. The conversions are

CHAPTER 3 WORKING WITH TYPES

www.it-ebooks.info

http://www.it-ebooks.info/

applied in the order shown in table 3.5. Only one conversion is applied at a time.
The PowerShell engine doesn’t automatically chain conversions.

Table 3.5 The PowerShell language standard conversions

Converting from To target type Result description
$null [string] """ (empty string)
[char] "0 (string containing a single character 0)
Any kind of The object corresponding to O for the correspond-
number ing numeric type.
[bool] $false
[PSObject] Snull
Any other type $null
of object

Derived class Base class The original object is returned unchanged.

Anything [void] The object is discarded.

Anything [string] The PowerShell internal string converter is used.

Anything [xml] The original object is first converted into a string
and then into an XML document object.

Array of type [X] Array of type PowerShell creates a new array of the target type,

[Y] then copies and converts each element in the
source array into an instance for the target array
type.

Non-array (singleton) object Array of type Creates an array containing one element and then

[yl places the singleton object into the array, convert-
ing if necessary.

System.Collections [Hashtable] A new instance of

.IDictionary System.Collections.Hashtable is created,
and then the members of the source
IDictionary are copied into the new object.

[string] [char[]] Converts the string to an array of characters.

[string] [regex] Constructs a new instance of a .NET regular
expression object.

[string] Number Converts the string into a number using the small-
est representation available that can accurately
represent that number. If the string is not purely
convertible (i.e., only contains numeric informa-
tion), then an error is raised.

[int] System.Enum Converts the integer to the corresponding enumer

ation member if it exists. If it doesn’t, a conversion
error is generated.

If none of the built-in PowerShell language-specific conversions could be applied suc-
cessfully, then the .NET custom converters are tried. Again, these converters are tried

1YPE CONVERSIONS 105

www.it-ebooks.info

http://www.it-ebooks.info/

in order until a candidate is found that will produce the required target type. This
candidate conversion is applied. If the candidate conversion throws an exception
(that is, a matching converter is found but it fails during the conversion process), no
further attempt to convert this object will be made and the overall conversion process
will be considered to have failed.

NOTE Developing an understanding of these conversions depends on
a fair knowledge of the .NET type conversion mechanisms. You’ll need
to refer to additional documentation if you want to understand every-
thing in table 3.6. On the other hand, with the .NET docs, you can see
exactly what steps are being applied in the type-conversion process.

Custom converters are executed in the order described in table 3.6.

Table 3.6 Custom type conversions

Converter type Description

PSTypeConverter A PSTypeConverter can be associated with a particular type using the
TypeConverterAttribute or the <TypeConverter> tag in the
types.ps1xml file. If the value to convert has a PSTypeConverter that can
convert to the target type, then it's called. If the target type has a
PSTypeConverter that can convert from values to convert, then it's called.
The PSTypeConverter allows a single type converter to work for a number
of different classes. For example, an enum type converter can convert a
string to any enum (there doesn’t need to be separate type to convert each
enum). Refer to the PowerShell SDK documentation from MSDN for com-
plete details on this converter.

TypeConverter This is a CLR defined type that can be associated with a particular type using
the TypeConverterAttribute or the <TypeConverter> tag in the
types file. If the value to convert has a TypeConverter that can convert to
the target type, then it is called. If the target type has a TypeConverter
that can convert from the source value, then it is called.

The CLR TypeConverter doesn't allow a single type converter to work for
a number of different classes. Refer to the PowerShell SDK documentation
and the Microsoft .NET Framework documentation for details on the
TypeConverter class.

Parse () method If the value to convert is a string and the target type has a Parse () method,
then that Parse () method is called. Parse () is a well-known method
name in the CLR world and is commonly implemented to allow conversion
of strings to other types.

Constructors If the target type has a constructor that takes a single parameter matching
the type of the value to convert; then this constructor is used to create a
new object of the desired type.

Implicit cast operator If the value to convert has an implicit cast operator that converts to the tar
get type, then it's called. Conversely, if the target type has an implicit cast
operator that converts from value to convert’s type, then that's called.

106 CHAPTER 3 WORKING WITH TYPES

www.it-ebooks.info

http://www.it-ebooks.info/

Table 3.6 Custom type conversions (continued)

Converter type Description

Explicit cast operator If the value to convert has an explicit cast operator that converts to the target

type, then it's called. Alternatively, if the target type has an explicit cast oper
ator that converts from value to convert's type, then that'’s called.

IConvertable System.Convert .ChangeType is then called.

This section covered the set of type conversions that PowerShell will apply in expres-
sions. In the parameter binder are a few extra steps that are applied first.

3.6.3 Special type conversions in parameter binding

In this final section, we'll go over the extra type-conversion rules that are used in

. . 5 . 5
parameter binding that haven’t already been covered. If these steps are tried and aren’t
successful, the parameter binder goes on to call the normal PowerShell type converter

code.

NOTE If at any time failure occurs during the type conversion, an
exception will be thrown.

Here are the extra steps:

1

If there’s no argument for the parameter, the parameter type must be either a
[bool] or the special PowerShell type Switchparameter; otherwise, a parame-
ter binding exception is thrown. If the parameter type is a [bool], its set to
true. If the parameter type is a SwitchParameter, it’s set to SwitchParame-
ter.Present.

If the argument value is null and the parameter type is [bool], it’s set to false. If
the argument value is null and the parameter type is SwitchParameter, it’s set
to SwitchParameter.Present. Null can be bound to any other type, so it just
passes through.

If the argument type is the same as the parameter type, the argument value is
used without any type conversion.

If the parameter type is [object], the current argument value is used without
any coercion.

If the parameter type is a [booll, use the PowerShell Boolean IsTrue()
method to determine whether the argument value should set the parameter to
true or false.

If the parameter type is a collection, the argument type must be encoded into
the appropriate collection type. You'll encode a scalar argument type or a collec-
tion argument type to a target collection parameter type. You won't encode a
collection argument type into a scalar parameter type (unless that type is Sys-
tem.Object or PSObject).

1YPE CONVERSIONS 107

www.it-ebooks.info

http://www.it-ebooks.info/

108

7 If the argument type is a scalar, create a collection of the parameter type (cur-
rently only arrays and IList are supported) of length 1 and set the argument
value as the only value in the collection. If needed, the argument type is con-
verted to the element type for the collection using the same type coercion pro-
cess this section describes.

8 If the argument type is a collection, we create a collection of the parameter type
with length equal to the number of values contained in the argument value.
Each value is then coerced to the appropriate element type for the new collec-
tion using the recursive application of this algorithm.

9 If none of these steps worked, use the conversions in table 3.6. If those fail, then
the overall parameter binding attempt fails.

Once again, this is a level of detail that you don’t often need to consider, but it’s useful
to know it’s available when you need it.

Scriptblock parameters

And finally, there’s one last aspect of the parameter binder type converter to cover: a
feature called scriptblock parameters.

First, a bit of a preview of things to come. PowerShell has something called a
scriptblock. A scriptblock is a small fragment of code that you can pass around as an
object itself. This is a powerful concept, and we’ll cover scriptblocks in great detail in
later chapters, but for now we’re just going to look at them in the context of parame-
ter binding.

Here’s how scriptblock parameters work. Normally, when you pipe two cmdlets
together, the second cmdlet receives values directly from the first cmdlet. Scriptblock
parameters (you could also call them computed parameters) allow you to insert a piece
of script to perform a calculation or transformation in the middle of the pipelined
operation. This calculation can do pretty much anything you want since a scriptblock
can contain any element of PowerShell script.

The following example shows how this works. You want to take a collection of
XML files and rename them as text files. You could write a loop to do the processing,
but scriptblock parameters greatly simplify this problem. To rename each file, use the
Rename-Item cmdlet. This cmdlet takes two parameters: the current name of the file
and the new name. Use a scriptblock parameter as an argument to the -NewName
parameter to generate the new filename. This scriptblock will use the -replace oper-
ator to replace the .xml file extension with the desired .txt. Here’s the command line
that performs this task:

dir *.xml \ Rename-Item -Path {$_.name}
-NewName {$_.name -replace '\.xmlS$', '.txt'} -whatif

The original path for -path is just the current name of the file. The -NewName
parameter is the filename with the extension replaced. The -WhatIf parameter will

CHAPTER 3 WORKING WITH TYPES

www.it-ebooks.info

http://www.it-ebooks.info/

3.7

SUMMARY

let you see what the command will do before actually moving anything. Once you're
happy that the correct operations are being performed, just remove the -WhatIf and
the renaming will proceed.

Scriptblock parameters can be used with any pipelined parameter as long as the
type of that parameter is not [object] or [scriptblock]. In these cases, the script-
block is passed as the actual parameter instead of using it to calculate a new value.
You’ll see why this is important when we look at the Where-0Object and ForEach-
Object cmdlets later on.

You now know everything you need to know about how types work on Power-
Shell. Well, not quite everything. In the next two chapters, we’ll discuss how the
PowerShell operators build on this basic type foundation. But for now, we’re
through!

SUMMARY

A solid understanding of the PowerShell type system will allow you to use PowerShell
most effectively. By taking advantage of the built-in type system and conversions, you
can accomplish startlingly complex tasks with little code. In this chapter, we covered
the following topics:

* The PowerShell type system, how it works, and how you can use it

* The basic PowerShell types and how they are represented in PowerShell script
(literals)

* Some of the more advanced types—hashtables and arrays

* The use of type literals in type casts and as a way to call static methods

* The added support in PowerShell version 2 for generic type literals that greatly
simplify working with generic types

* The type conversion process for language conversions, the pre-conversion steps

that are used by the parameter binder, and the relationship between the Power-
Shell types and the underlying .NET types

* Scriptblock parameters, which allow you to calculate new values for pipelined
parameters instead of having to write a loop to do this (we'll look at scriptblocks
in detail in chapter 9)

109

www.it-ebooks.info

http://www.it-ebooks.info/

Operators and expressions

4.1 Arithmetic operators 112 4.4 Pattern matching and text
4.2 The assignment operators 119 manipulation 131
4.3 Comparison operators 124 4.5 Logical and bitwise operators 148

4.6 Summary 150

Operators, Mr. Rico! Millions of them!
—Robert A. Heinlein, Starship Troopers (paraphrased)

So far, we've covered the basics, and we've covered the type system in considerable
depth. Now let’s look at how you can combine all this stuff and get some real work
done. As in any language, objects are combined with operators to produce expres-
sions. When these expressions are evaluated, the operators perform their operations
on objects, giving you (hopefully) useful results. This chapter covers the set of basic
operators in PowerShell and how theyre used in expressions. The operators we're
going to cover in this chapter are shown in figure 4.1.

As you can see, PowerShell has operators. Lots of operators—the full complement
you’d expect in a conventional programming language and several more. In addition,
PowerShell operators are typically more powerful than the corresponding operators in
conventional languages such as C or C++. So, if you invest the time to learn what the
PowerShell operators are and how they work, in a single line of code you’ll be able to
accomplish tasks that would normally take a significant amount of programming.

110

www.it-ebooks.info

http://www.it-ebooks.info/

Arithmetic operators

Assignment operators

Containment operators

—-contains -notcontains

Pattern-matching and text operators

Logical and bitwise operators

-like -notlike -match -notmatch -and -or -not -xor
-replace -split -join -band -bor -bnot -bxor

Figure 4.1 The broad groups of operators we’ll cover in this chapter

Here’s an example of the kind of thing that can be done using just the PowerShell
operators. Say we have a file, old.xt, with the following text in it:

Hello there.

My car is red. Your car is blue.

His car is orange and hers is gray.

Bob's car is blue too.
Goodbye.

Our task is to copy this content to a new file, making certain changes. In the new file,
the word “is” should be replaced with “was,” but only when it’s in front of the word
“red” or “blue.” In most languages, this would require a fairly complex program. In
PowerShell, it takes exactly one line. Here’s the “script™:

${c:0ld.txt} -replace 'is (red|blue)', 'was $1' > new.txt

It uses the -replace operator along with output redirection and variable
namespaces. (The -replace operator is described later in this chapter.) Redirection
and variable namespaces are features for working with files that are covered in chapter
5. After running this script, the content of new.txt looks like this:

Hello there.

My car was red. Your car was blue.

His car is orange and hers is gray.

Bob's car was blue too.
Goodbye.

NOTE For the impatient reader, the notation ${c:old.txt} says,
“Return the contents of the file old.txt from the current working direc-
tory on the C: drive.” In contrast, ${c:\old.txt} says, “Get the file
old.txt from the root of the C: drive.”

111

www.it-ebooks.info

http://www.it-ebooks.info/

4.1

112

As you can see, only the second and fourth lines have been changed as desired. The
phrases “is red” and “is blue” have been changed to “was red” and “was blue.” The “is
orange” and “is gray” phrases weren't changed. From this example, you can also see
that it’s possible to do quite a bit of work just with the operators.

One of the characteristics that makes PowerShell operators powerful is the fact
that they’re polymorphic. This simply means that they work on more than one type of
object. Although this is generally true in other object-based languages, in those lan-
guages the type of the object defines the behavior of the operator.

NOTE Ifyou’re a C# or Visual Basic user, here’s something you might
want to know. In “conventional” .NET languages, the operator sym-
bols are mapped to a specific method name on a class called
op_<operatorName>. For example, in C#, the plus operator (+) maps
to the method op_addition(). Although PowerShell is a .NET lan-
guage, it takes a different approach that’s more consistent with
dynamic scripting languages, as you’ll see in the following sections.

In PowerShell, the interpreter primarily defines the behavior of the operators, at least
for common data types. Type-based polymorphic methods are only used as a backup.
By common types, we mean strings, numbers, hashtables, and arrays. This allows
PowerShell to provide more consistent behavior over this range of common objects
and also to provide higher-level behaviors than are provided by the objects them-
selves, especially when dealing with collections. We'll cover these special behaviors in
the sections for each class of operator. (The following sections have many examples,
but the best way to learn is to try the examples in PowerShell yourself.) Now let’s get
going and start looking at the operators.

ARITHMETIC OPERATORS

First we’ll cover the basic arithmetic Avithmetic operators

operators shown in figure 4.2.
. - * %

We touched on the polymorphic ¥ !
behavior of these operators briefly in
chapter 3, where we discussed the vari- Figure 4.2 The arithmetic operators in
ous type conversions. The operators PowerShell that will be covered in this

. . . section
themselves are listed with examples in
table 4.1.
Table 4.1 The basic arithmetic operators in PowerShell
Operator Description Example Result
+ Add two values together. 2+4 6
"Hi " + "there" "Hi there"

1,2,3 + 4,5,6 1,2,3,4,5,6

CHAPTER 4 OPERATORS AND EXPRESSIONS

www.it-ebooks.info

http://www.it-ebooks.info/

Table 4.1 The basic arithmetic operators in PowerShell (continued)

Operator Description Example Result
* Multiply two values. 2 * 4 8
"a" * 3 "aaa"
1,2 * 2 1,2,1,2
- Subtract one value from another. 6-2 4
/ Divide two values. 6/2 3
7/4 1.75
% Return the remainder from a division operation. 7%4 3

In terms of behavior, the most interesting operators are + and *. We'll cover these
operators in detail in the next two sections.

4.1.1 The addition operator

As mentioned earlier, PowerShell defines the behavior of the + and * operators for
numbers, strings, arrays, and hashtables. Adding or multiplying two numbers pro-
duces a numeric result following the numeric widening rules. Adding two strings per-
forms string concatenation, resulting in a new string, and adding two arrays joins the
two arrays (array concatenation), producing a new array. Adding two hashtables cre-
ates a new hashtable with combined elements. The interesting part occurs when you
mix operand types. In this situation, the type of the left operand determines how the
operation will proceed. We'll look at how this works with addition first.

NOTE The “left-hand” rule for arithmetic operators: the type of the
left-hand operand determines the type of the overall operation. This is
an important rule to remember.

If the left operand is a number, PowerShell will try to convert the right operand to a
number. Here’s an example. In the following expression, the operand on the left is a
number and the operand on the right is the string “123”:

PS (1) > 2 + "123"

125

Because the operand on the left is a number, according to the conversion rule the
operand “123” must be converted into a number. Once the conversion is complete,
the numeric addition operation proceeds and produces the result 125, as shown.
Conversely, in the next example, when a string is on the left side

PS (2) > "2" + 123

2123

the operand on the right (the number 123) is converted to a string and appended to
“2” to produce a new string, “2123”.

ARITHMETIC OPERATORS 113

www.it-ebooks.info

http://www.it-ebooks.info/

114

If the right operand can’t be converted into the type of the left operand, then a
type-conversion error will be raised:
PS (3) > 2 + "abc"
Cannot convert "abc" to "System.Int32". Error: "Input string was not
in a correct format."

At line:1 char:4
+ 2 + <<<< "abc"

Because “abc” can't be converted into a number, you'll receive a type-conversion error.
Now if this had been done using the hex notation as discussed in section 3.3.2, every-
thing would be fine:

PS (4) > 2 + "Oxabc"

2750

« »

Because “a”, “b”, and “c” are valid hex digits, the string “Oxabc” converts into the
number 2748 and is then added to 2, yielding 2750.

The next PowerShell-defined polymorphic behavior for + involves arrays or col-
lections. If the operand on the left is an array or collection, the operand on the right
will be appended to that collection. If the right operand is a scalar value, it will be
added to the array as is. If it’s already an array (or any type of enumerable collection),
it will be appended to the collection.

At this point, it’s probably a good idea to reiterate how array catenation is done in
PowerShell. Because the underlying .NET array objects are of fixed size (as discussed in
chapter 3), catenation is accomplished by creating a new array of type [object[]]
and copying the elements from the operands into this new array. In the process of cre-
ating the new array, any type constraint on the original arrays will be lost. For example,
if the left operand is [int[]]—that is, an array of type [int]—and you add a non-
numeric string to it, a new array will be created that will be of type [object []], which
can hold any type of object. Let’s look at an example. First create an integer array:

PS (1) > Sa = [int[]] (1,2,3,4)

PS (2) > $Sa.GetType() .FullName
System.Int32[]

Now let’s do some assignments. First assign an integer:
PS (3) > $al0] = 10

This works without error. Next try it with a string that can be converted into an inte-
ger. Use the hex string mentioned earlier:

PS (4) > $a[0] = "Oxabc™"
This also works fine. Finally, try assigning a non-numeric string to the array element:

PS (5) > $a[0] = "hello"

Array assignment to [0] failed: Cannot convert "hello" to
"System.Int32". Error: "Input string was not in a correct format.".
At line:1 char:4

+ $al0 <<<<] = "hello"

CHAPTER 4 OPERATORS AND EXPRESSIONS

www.it-ebooks.info

http://www.it-ebooks.info/

This fails, as you might expect. An array of type [int[]] can only hold integers.
Because "hello" can’t be converted into an integer, you get the type-conversion error
shown. So far, so good. Now let’s do an array concatenation:

PS (6) > Sa = Sa + "hello"

And now try the assignment that failed previously:

PS (7) > $al[0] = "hello"
PS (8) > Sa

hello

2

3

4

hello

This time the assignment succeeds without error. What happened here? Let’s look at
the type of the array:

PS (9) > Sa.GetType() .FullName
System.Object[]

When the new, larger array was created to hold the combined elements, it was created
as type [object[]], which isn’t type constrained. It can hold any type of object, so
the assignment proceeded without error.

Finally, let’s see how addition works with hashtables. Similar to arrays, addition of
hashtables creates a new hashtable and copies the elements of the original tables into
the new one. The left elements are copied first; then the elements from the right
operand are copied. (This only works if both operands are hashtables.) If any colli-
sions take place—that is, if the keys of any of the elements in the right operand match
the keys of any element in the left operand—then an error will occur saying that the
key already exists in the hashtable. (This was an implementation decision; the Power-
Shell team could’ve had the new element overwrite the old one, but the consensus
was that generating an error message is usually the better thing to do.)

PS (1) > sleft=@{a=1;b=2;c=3}

PS (2) > Sright=@{d=4;e=5}

PS (3) > Snew = S$left + Sright

PS (4) > Snew

Key Value
d 4

a 1

b 2

e 5

c 3

The new hashtable is of type System.Collections.Hashtable:

PS (5) > S$new.GetType () .FullName
System.Collections.Hashtable

ARITHMETIC OPERATORS 115

www.it-ebooks.info

http://www.it-ebooks.info/

4.1.2

116

The table is created in such a way that the strings that are used as keys are compared
in a case-insensitive way.

This completes our discussion of the behavior of the addition operator. We cov-
ered how it works with numbers, strings, hashtables, and arrays. Now that we've fin-
ished with addition, let’s move on to the multiplication operator.

The multiplication operator

As with addition, PowerShell defines multiplication behavior for numbers, strings,
and arrays. (We don’t do anything special for hashtables for multiplication.) Multiply-
ing numbers works as expected and follows the widening rules discussed in chapter 3.
In fact, the only legal right-hand operand for multiplication is a number. If the oper-
and on the left is a string, then that string is repeated the number of times specified in
the right operand. Let’s try this out. Multiply the string “abc” by 1, 2, and then 3:

PS (1) > "abc" * 1

abc

PS (2) > "abc" * 2
abcabc

PS (3) > "abc" * 3
abcabcabc

The results are “abc”, “abeabc”, and “abeabcabe”, respectively. What about multiply-
ing by 02

PS (4) > "abc" * 0
PS (5) >

The result appears to be nothing—but which “nothing”—spaces, empty string, or
null? The way things are displayed, you can’t tell by looking. Here’s how to check.
First check the type of the result:

PS (5) > ("abc" * 0).GetType () .FullName
System.String

You see that it’s a string, not $null. But it could still be spaces, so you need to check
the length:

PS (6) > ("abc" * 0).Length
0

And, because the length is 0, you can tell that it is in fact an empty string.

Now let’s look at how multiplication works with arrays. Because multiplication
applied to a string repeats the string, logically you’d expect that multiplication
applied to an array should repeat the array, which is exactly what it does. Let’s look at
some examples of this. First create an array with three elements:

PS (1) > $a=1,2,3

PS (2) > Sa.Length
3

CHAPTER 4 OPERATORS AND EXPRESSIONS

www.it-ebooks.info

http://www.it-ebooks.info/

Now multiply it by 2:

PS (3) > Sa = Sa * 2
PS (4) > $Sa.Length
6

The length of the new array is 6. Looking at the contents of the array (using variable

>«

expansion in strings to save space), you see that it's “1 2 3 1 2 3”"—the original array

doubled.
PS (5) > "sa"
123123

Multiply the new array by 3:
PS (6) > Sa = $a * 3
And check that the length is now 18:

PS (7) > Sa.Length
18

It is, so looking at the contents

PS (8) > "sa"
123123123123123123
you see that it is six repetitions of the original three elements.

As with addition, first a new larger array is created during multiplication, and
then the component elements are copied into it. This has the same issue that addition
had, where the new array is created without type constraints. Even if the original
array could only hold numbers, the new array can hold any type of object.

4.1.3 Subtraction, division, and the modulus operator

Addition and multiplication are the most interesting of the arithmetic operators in
terms of polymorphic behavior, but let’s go over the remaining operators. Subtraction,
division, and the modulus (%) operators are only defined for numbers by PowerShell.
(Modulus returns the remainder from a division operation.) Again, as with all numeric
computations, the widening rules for numbers are obeyed. For the basic scalar types
(such as strings and numbers), these operations are only defined for numbers, so if
either operand is a number (not just the left-hand operand), an attempt will be made
to convert the other operand into a number as well, as shown here:

PS (1) > "123" / 4

30.75

PS (2) > 123 / "4r
30.75

PS (3) >

In the first example, the string “123” is converted into a number. In the second exam-
ple, the string “4” will be converted into a number.

ARITHMETIC OPERATORS 117

www.it-ebooks.info

http://www.it-ebooks.info/

118

NOTE Here’s an important characteristic about how division works in
PowerShell that you should keep in mind. Integer division underflows
into floating point (technically System.Double). This means that 5
divided by 4 in PowerShell results in 1.25 instead of 1, as it would in C#.
If you want to round the decimal part to the nearest integer, simply cast
the result into [int]. You also need to be aware that PowerShell uses
what’s called “Banker’s rounding” when converting floating point num-
bers into integers. Banker’s rounding rounds .5 up sometimes and down
sometimes. The convention is to round to the nearest even number, so

that both 1.5 and 2.5 round to 2, and 3.5 and 4.5 both round to 4.

If neither operand is a number, the operation is undefined and you'll get an error:

PS (3) > "123" / "4v

Method invocation failed because [System.String] doesn't contain

a method named 'op_Division'.

At line:1 char:8

+ "123" / <<<< 4"

PS (4) >

Take note of this particular error message, though. PowerShell has no built-in defini-
tion for this operation, so as a last step it looks to see whether the type of the left
operand defines a method for performing the operation. In fact, PowerShell looks for
the op_<operation> methods on the left operand if the operation isn’t one of those
defined by PowerShell itself. This allows the operators to work on types such as sys-
tem.Datetime (the .NET representation of dates) even though there’s no special sup-
port for these types in PowerShell.

Here’s an example. Suppose you want to find the total number of days between
January 1, 2006, and February 1, 2006. You can create objects representing these
dates by casting strings into DateTime objects. Once you have these objects, you can
convert them:

PS (1) > ([DateTime] "2006-2-1" - [DateTime]"2006-1-1").TotalDays

31

For those of you with children, here’s a more useful example. Jeffrey Snover, the
architect of PowerShell, tells a story about his daughter:

My daughter loves Christmas. She often asks me, “How long is it ‘il
Christmas?” The problem with that is that I'm one of those people who
can barely remember what year it is, much less the date. Well, it’s one
thing to be a flawed person and it’s another thing to disappoint your
daughter. PowerShell to the rescue!

Here’s a little date math routine I wrote to help me out:

function tillXmas ()
{
Snow = [DateTime] : :Now
[DateTime] ([string] S$now.Year + "-12-25") - SNow

CHAPTER 4 OPERATORS AND EXPRESSIONS

www.it-ebooks.info

http://www.it-ebooks.info/

4.2

PS> tillxmas

Days : 321

Hours : 18

Minutes : 8

Seconds : 26

Milliseconds 171

Ticks : 277997061718750
TotalDays : 321.755858470775
TotalHours : 7722.14060329861
TotalMinutes : 463328.436197917
TotalSeconds : 27799706.171875

TotalMilliseconds : 27799706171.875

Thanks to PowerShell, I can tell my daughter how many seconds to go
until Christmas! Now if I can only get her to stop asking me in the car.

To take a look at the operator methods defined for System.DateTime, you can use
the GetMembers () method. Here’s a partial listing of the operator methods defined.
This example uses the PowerShell select-String cmdlet to limit what's displayed
to only those methods whose names contain the string “op_":
PS (5) > [DateTime].GetMembers ()| foreach{"$_"}| Select-String op_
System.DateTime op_Addition(System.DateTime, System.TimeSpan)
System.DateTime op_Subtraction(System.DateTime, System.TimeSpan)
System.TimeSpan op_Subtraction(System.DateTime, System.DateTime)
As you can see, not all the arithmetic operator methods are defined. In fact, no meth-
ods are defined for any operations other than addition and subtraction. If you try to
divide a DateTime object by a number, you’ll get the same error you saw when you
tried to divide two strings:
PS (4) > [DateTime] "1/1/2006" / 22
Method invocation failed because [System.DateTime] doesn't contain
a method named 'op_Division'.
At line:1 char:24
+ [DateTime] "1/1/2006" / <<<< 22
PS (5) >
The error occurred because PowerShell was looking for an op_Division() on the
object on the left. It didn't find one, and therefore the operation failed.

Okay, now that you know all about arithmetic operators and operations in Power-
Shell, you need to have a way to save the results of these operations. Variable assign-
ment is the answer, so we’ll look at assignment and the assignment operators next.

THE ASSIGNMENT OPERATORS

In this section we'll cover the assignment Assignment operators
operators, which are shown in figure 4.3
and listed with examples in table 4.2.

As you can see, along with simple

assignment, PowerShell supports the Figure 4.3 The PowerShell assignment
compound operators that are found in operators

THE ASSIGNMENT OPERATORS 119

www.it-ebooks.info

http://www.it-ebooks.info/

4.2.1

120

C-based languages. These compound operators retrieve, update, and reassign a vari-
able’s value all in one step. The result is a much more concise notation for expressing
this type of operation.

In table 4.2, for each of the compound assignment operators, the third column
shows the equivalent decomposed operation.

Table 4.2 PowerShell assignment operators

Operator Example Equivalent Description
= Sa= 3 Sets the variable to the specified value
+= Sa += 2 $a = Sa + 2 Performs the addition operation in the existing value,

and then assigns the result back to the variable

-= $a -= 13 $a = $a - 13 Performs the subtraction operation in the existing
value, and then assigns the result back to the variable

*= Sa *= 3 $a = $a * 3 Multiplies the value of a variable by the specified value
or appends to the existing value

/= Sa /=3 $a = $a / 3 Divides the value of a variable by the specified value

%= Sa %= 3 $a = $a % 3 Divides the value of a variable by the specified value

and assigns the remainder (modulus) to the variable

Of course, the arithmetic parts of the compound arithmetic/assignment operators
follow all the rules for the arithmetic operators described in the previous section. The
formal syntax for an assignment expression looks like this:

<lvalueList> <assignmentOperator> <pipeline>

<lvalueList> := <lvalue> [, <lvalue>] *
<lvalue> := <variable> | <propertyReference> | <arrayReference>

One interesting thing to note from this syntax is that multiple assignments are
allowed. For example, the expression

$a,$b,$c = 1,2,3,4

is a perfectly legal statement. It says, “Assign 1 to $a, assign 2 to $b, and assign the
remaining elements 3 and 4 of the list to $c.” Multiple assignments can be used to
greatly simplify certain types of operations, as you'll see in the next section.

Multiple assignments

Multiple assignment works only with the basic assignment operator. You can't use it
with any of the compound operators. It can, however, be used with any type of
assignable expression such as an array element or property reference. Here’s a quick
example where multiple assignment is particularly useful. The canonical pattern for
swapping two variables in conventional languages is

Stemp = Sa
Sa = $b
Sb = Stemp

CHAPTER 4 OPERATORS AND EXPRESSIONS

www.it-ebooks.info

http://www.it-ebooks.info/

422

This takes three lines of code and requires you to use a temporary variable. Here’s
how to do it using multiple assignments in PowerShell:

$a,sb = s$b, $a

It’s simple and clean—only one line of code with no temporary variables to worry
about. Here’s a more interesting example. The Fibonacci sequence is a sequence of
numbers where each element is defined as the sum of the previous two numbers in
the sequence. It looks like this:

11235813 21 ..

NOTE The Fibonacci sequence is an oddly popular bit of mathematics.
Itshows up in books, movies, and seashells. In the West, itwas first studied
by Leonardo of Pisa, a.k.a. Fibonacci. He used this sequence to describe
how rabbits multiply. Rabbits aren’t good at math, so it wasn’t very accu-
rate. The sequence also describes the progression of the spiral found in
some shells. Mollusks are better at math than rabbits, apparently.

Here’s how to generate this sequence in PowerShell using multiple assignments:

PS (53) > $c=$p=1; 1; while ($c -1t 100) { $c; $c,$p = ($c+$p),$c }

This example begins by initializing the two variables $c (current) and $p (previous)
to 1. Then it loops while $c is less than 100. $c contains the current value in the
sequence, so that value is emitted. Next comes the double assignment, where $c
becomes the next element in the sequence and $p becomes the current (now previ-
ous) value in the sequence. So far, you've seen that using multiple assignments can
simplify basic operations such as swapping values. But when combined with some of
PowerShell’s other features, it lets you do much more interesting things than that.
You'll see this in the next section.

Multiple assignments with type qualifiers

This is all interesting, but let’s look at a more practical example. Say you're given a
text file containing some data that you want to parse into a form you can work with.
First let’s look at the data file:

quiet 0 25
normal 26 50

THE ASSIGNMENT OPERATORS 121

www.it-ebooks.info

http://www.it-ebooks.info/

loud 51 75

noisy 75 100

This file contains a set of sound-level descriptions. The format is a string describing
the level, followed by two numbers describing the upper and lower bounds for these
levels out of a possible 100. You want to read this information into a data structure so
you can use it to categorize a list of sounds later on. Here’s the fragment of PowerShell
code needed to do this:

PS (2) > Sdata = get-content data.txt | foreach {

>> Se=@{}

>> Se.level, [int] Se.lower, [int] S$e.upper = -split $_
>> Se

>> }

>>

You start by using the Get-Content cmdlet to write the data into a pipeline. Each line
of the file is sent to the ForEach-0Object cmdlet to be processed. The first thing you
do in the body of the foreach cmdlet is initialize a hashtable in $e to hold the result.
You take each line stored in the $_ variable and apply the -split operator to it. This
splits the string into an array at each space character in the string. (The -split oper-
ator is covered in detail later in this chapter.) For example, the string
"quiet 0 25"
becomes an array of three strings:
Ilquietll , IIOII , II25II
Then you assign the split string to three elements of the hashtable: $e.level,
$e.lower, and $e.upper. But there’s one more thing you want to do. The array
being assigned is all strings. For the upper and lower bounds, you want numbers, not
strings. To do this, add a cast before the assignable element. This causes the value
being assigned to first be converted to the target type. The end result is that the upper
and lower fields in the hashtable are assigned numbers instead of strings. Finally, note
that the result of the pipeline is being assigned to the variable $data, so you can use it
later on.

Let’s look at the result of this execution. Because there were four lines in the file,
there should be four elements in the target array:
PS (3) > S$data.Length
4

You see that there are. Now let’s see if the value stored in the first element of the array
is what you expect: it should be the “quiet” level.

PS (4) > $datal0]

Key Value
upper 25
level quiet
lower 0
122 CHAPTER 4 OPERATORS AND EXPRESSIONS

www.it-ebooks.info

http://www.it-ebooks.info/

It is. Finally, lets verify that the types were properly converted:

PS (5) > Sdatal[0].level

quiet

PS (6) > Sdatal[0].lower
0

PS (7) > sdatal0].upper
25

PS (8) > sdatal0].level.GetType() .FullName
System.String

PS (9) > sdatal0].lower.GetType () .FullName
System.Int32

PS (10) > sdatal0].upper.GetType () .FullName
System.Int32

Again you use the GetType () method to look at the types, and you can see that the
level description field is a string and that the two bounds fields are integers, as
expected.

In this last example, you’ve seen how array assignment can be used to perform
sophisticated tasks in only a few lines of code. By now, you should have a good sense
of the utility of assignments in processing data in PowerShell. There’s one last point
to cover about assignment expressions, which we’ll discuss in the next section.

423 Assignment operations as value expressions
The last thing you need to know about assignment expressions is that they’re expres-
sions. This means that you can use them anywhere youd use any other kind of
expression. This lets you initialize multiple variables at once. Let’s initialize $a, $b,
and $c to the number 3:
PS (1) > Sa = $b = $c = 3
Now verify that the assignments worked:
PS (2) > $a, $b, sc
3
3
3
Yes, they did. So what exactly happened? Well, it’s the equivalent of the following
expression:
PS (3) > Sa = (8b = (8Sc=3))
That is, $c is assigned 3. The expression ($c = 3) returns the value 3, which is in
turn assigned to $b, and the result of that assignment (also 3) is finally assigned to $a,
so once again, all three variables end up with the same value:
PS (4) > $a, $b, sc
3
3

THE ASSIGNMENT OPERATORS 123

www.it-ebooks.info

http://www.it-ebooks.info/

4.3

124

Now, because you can “intercept” the expressions with parentheses, you can perform
additional operations on the values returned from the assignment statements before
this value is bound in the outer assignment. Here’s an example that does this:

PS (5) > $%a = ($b=($c=3)+1)+1
In this expression, $c gets the value 3. The result of this assignment is returned, and 1

is added to that value, yielding 4, which is then assigned to $b. The result of this second
assignment also has 1 added to it, so $a is finally assigned 5, as shown in the output:

PS (6) > $Sa, Sb, Sc
5
4
3

Now you understand assignment and arithmetic operators. But a language isn’t much
good if you can’t compare things, so let’s move on to the comparison operators.

COMPARISON OPERATORS

In this section, we'll cover what the comparison operators are in PowerShell and how
they work. These operators are shown in figure 4.4.

Comparison operators (case-insensitive)

-eq -ne -gt -ge -1t -le
-ieq -ine -igt -ige -ilt -ile

Comparison operators (case-sensitive)

Figure 4.4 The comparison
-ceq —EEe —cgt -cge _clt _cle operators in PowerShell. Each
operator has case-sensitive
and case-insensitive versions.

We'll cover how case sensitivity factors into comparisons and how the operators work
for scalar values and for collections of values. The ability of these operators to work
on collections eliminates the need to write looping code in a lot of scenarios.

PowerShell has a sizable number of comparison operators, in large part because
there are case-sensitive and case-insensitive versions of all the operators. These are
listed with examples in table 4.3.

Table 4.3 PowerShell comparison operators

Operator Description Example Result
-eq, —ceq, Equals 5 -eq 5 Strue
-ieqg

-ne, -cne, —ine Not equals 5 -ne 5 $false

CHAPTER 4 OPERATORS AND EXPRESSIONS

www.it-ebooks.info

http://www.it-ebooks.info/

Table 4.3 PowerShell comparison operators (continued)

Operator Description Example Result
-gt, —cgt, —igt Greater than 5 —gt 3 $true
-ge, —cge, -ige Greater than or equal to 5 -ge 3 $true
-1t, —clt, -1i1t Less than 5 -1t 3 $false
-le, -cle, -ile Less than or equal to 5 -le 3 $false

In table 4.3, you can see that for each operator there’s a base or unqualified operator
form, like -eq and its two variants, -ceq and -ieq. The “c” variant is case sensitive
and the “i” variant is case insensitive. This raises the question, what’s the behavior for
the base operators with respect to case? The answer is that the unqualified operators
are case insensitive. All three variants are provided to allow script authors to make
their intention clear—that they meant a particular behavior rather than accepting

the default.

Design decisions

Let's talk about the most contentious design decision in the PowerShell language.
And the winner is: why the heck didn’t we use the conventional symbols for compar-
ison like >, >=, <, <=, ==, and ! =? The answer is that the > and < characters are used
for output redirection. Because PowerShell is a shell and all shell languages in the
last 30 years have used > and < for I/O redirection, people expected that PowerShell
should do the same. During the first public beta of PowerShell, this topic generated
discussions that went on for months. We looked at a variety of alternatives, such as
modal parsing where sometimes > meant greater-than and sometimes it meant redi-
rection. We looked at alternative character sequences for the operators like : > or ->,
either for redirection or comparison. We did usability tests and held focus groups,
and in the end, settled on what we had started with.

The redirection operators are > and <, and the comparison operators are taken from
the Unix test (1) command. We expect that, because these operators have a
30-year pedigree, they're adequate and appropriate to use in PowerShell. (We also
expect that people will continue to complain about this decision, though hopefully
not for 30 more years.)

Now that you're clear on the case-sensitivity issue, let’s move on to discuss the seman-
tics of the comparison operators. We'll begin in the next section by describing their
operation on scalar data types; then in the subsequent section, we'll describe how they
work with collections of objects.

4.3.1 Scalar comparisons

In this section, we'll explore how the comparison operators work with scalar objects.
In particular, we'll cover their polymorphic behavior with the scalar data types.

COMPARISON OPERATORS 125

www.it-ebooks.info

http://www.it-ebooks.info/

126

Basic comparison rules

As with the assignment operators, the behavior of the comparison operators is signifi-
cantly affected by the type of the left operand. If you're comparing a number and a
string, the string will be converted into a number and a numerical comparison will be
done. If the left operand is a string, the right operand will be converted to a string,
and the results compared as strings. Let’s look through some examples. First a simple
numeric comparison:

PS (26) > 01 -eq 001

True

Because youre doing a numeric comparison, the leading zeros don’t matter and the
numbers compare as equal. Now let’s try it when the right operand is a string:

PS (28) > 01 -eqg "001"

True

Following the rule, the right operand is converted from a string into a number; then
the two are compared and are found to be equal. Finally, try the comparison when
the left operand is a string:

PS (27) > "01" -eq 001

False

In this example, the right operand is converted to a string, and consequently they no
longer compare as equal. You can always use casts to force a particular behavior. In
the next example, let’s force the left operand to be a number:

PS (29) > [int] "01" -eqg 001
True

And because you forced a numeric comparison, once again they’re equal.

Type conversions and comparisons

As with any PowerShell operator that involves numbers, when comparisons are done
in a numeric context, the widening rules are applied. This can produce somewhat
unexpected results. Here’s an example that illustrates this. In the first part of the
example, you use a cast to convert the string “123” into a number. Once you're doing
the conversion in a numeric context, the numbers get widened to double because the
right operand is a double; and because 123.4 is larger than 123.0, the -1t operator
returns true:

PS (37) > [int] "123" -1t 123.4

True

Now try it using a string as the right operand. The cast forces the left operand to be
numeric, but the right operand is not yet numeric. It’s converted to the numeric type

CHAPTER 4 OPERATORS AND EXPRESSIONS

www.it-ebooks.info

http://www.it-ebooks.info/

of the left operand, which is [int], not [double]. This means that the value is trun-
cated and the comparison now returns false:

PS (38) > [int] "123" -1t "123.4"

False

Finally, if you force the context to be [double] explicitly, the comparison again
returns true:

PS (39) > [double] "123" -1t "123.4"
True

Although all these rules seem complicated (and, speaking as the guy who imple-
mented them, they are), the results are generally what you'd intuitively expect. This
satisfies the principle of least astonishment. So most of the time you don’t need to
worry about the specifics and can let the system take care of the conversions. It’s only
when things don’t work as expected that you need to understand the details of the
conversion process. To help you debug cases where this happens, PowerShell provides
a type-conversion tracing mechanism to help you track down the problems. Chapter
7 describes how to use this debugging feature. Finally, you can always apply a set of
casts to override the implicit behavior and force the results you want.

4.3.2 Comparisons and case sensitivity
Next let’s look at the “i” and “c” versions of the comparison operators—the case-
sensitive and case-insensitive versions. Obviously, case sensitivity only applies to
strings. All the comparison operators have both versions. For example, the -eq opera-
tor has the following variants:
PS (1) > "abc" -eqg "ABC"
True
PS (2) > "abc" -ieqg "ABC"
True
PS (3) > "abc" -ceqg "ABC"
False
The default case -eqg is case insensitive, as is the explicitly case-insensitive operator
-ieq, so in the example, “abc” and “ABC” compare as equal. The -ceq operator is
case sensitive, so with this operator, “abc” and “ABC” compare as not equal.

The final item to discuss with scalar comparisons is how things that aren’t
strings and numbers are compared. In this case, the .NET comparison mechanisms
are used. If the object implements the .NET IComparable interface, then that will
be used. If not, and if the object on the left side has an .Equals () method that can
take an object of the type of the right operand, this is used. If there’s no direct
mechanism for comparing the two, an attempt will be made to convert the right
operand into an instance of the type of the left operand, and then PowerShell will

COMPARISON OPERATORS 127

www.it-ebooks.info

http://www.it-ebooks.info/

128

try to compare the resulting objects. This lets you compare things such as [Date-
Time] objects, as shown here:

PS (4) > [DateTime] "1/1/2010" -gt [DateTime] "1/1/2009"

True

PS (5) > [DateTime] "1/1/2010" -gt [DateTime] "2/1/2010"
False

PS (6) >

Not all objects are directly comparable. For example, there’s no direct way to compare
a System.DateTime object to a System.Diagnostics.Process object:

PS (6) > [DateTime] "1/1/2010" -gt (Get-Process) [0]

The '-gt' operator failed: Cannot convert

"System.Diagnostics.Process (ALCXMNTR)" to "System.DateTime"..

At line:1 char:26

+ [] "1/1/2010" -gt <<<< (Get-Process) [0]

PS (7) >

In this example, because there’s no direct way to compare a DateTime object to a
Process object, the next step is to try to convert the Process object into an instance
of DateTime. This also failed, and as this is the last step in the comparison algorithm,
an error message is produced explaining what happened. This is where a human has
to intervene. The obvious field on a Process object to compare is the StartTime of
the process. Use the property notation to do this:

PS (7) > [DateTime] "1/1/2010" -gt (Get-Process) [0].StartTime

False

PS (8) > [DateTime] "1/1/2011" -gt (Get-Process) [0].StartTime
True

In this expression, you're looking to see whether the first element in the list of Pro-
cess objects had a start time greater than the beginning of this year (no) and whether

it had a start time from before the beginning of next year (obviously true). You can
use this approach to find all the processes on a computer that started today:

Get-Process | where {$_.starttime -ge [DateTime]::today}

The Get-Process cmdlet returns a list of all the processes on this computer, and the
where cmdlet selects those processes where the StartTime property of the process is
greater than or equal to today.

NOTE The where used in the previous example is an alias for the
Where-Object cmdlet, which is described in chapter 6.

This completes our discussion of the behavior of the comparison operators with sca-
lar data. We paid a lot of attention to the role types play in comparisons, but so far
we've avoided discussing collection types—Ilists, arrays, and so on. We'll get to that in
the next section.

CHAPTER 4 OPERATORS AND EXPRESSIONS

www.it-ebooks.info

http://www.it-ebooks.info/

4.3.3 Using comparison operators with collections
In this section, we'll focus on the behavior of the comparison operators when they're
used with collections of objects.
Basic comparison operations involving collections
Here’s the basic behavior. If the left operand is an array or collection, the comparison
operation will return the elements of that collection that match the right operand.
Let’s illustrate the rule with an example:
PS (1) > 1,2,3,1,2,3,4 -eq 2
2
2
This expression searches the list of numbers on the left side and returns those that
match—the two “2”s. And this works with strings as well:
PS (2) > "one","two", "three", "two", "one" -eqg "two"
two
two
When processing the array, the scalar comparison rules are used to compare each ele-
ment. In the next example, the left operand is an array containing a mix of numbers
and strings, and the right operand is the string “2”:
PS (3) > 1,"2",3,2,"1" -eq "2"
2
2
Again, it returns the two “2”s. Let’s look at some more examples where you have lead-
ing zeros in the operands. In the first example
PS (4) > 1,702",3,02,"1" -eq "2"
2
you only return the number 2 because 2 and “02” compare equally in a numeric con-
text, but “2” and “02” are different in a string context. The same thing happens in the
next example:
PS (5) > 1,"02",3,02,"1" -eq 2
2
When the elements are compared as numbers, they match. When compared as
strings, they don’t match because of the leading zero. Now one final example:
PS (6) > 1,"02",3,02,"1" -eq "02"
02
2
They both match. In a numeric context, the leading zeros don’t matter; and in the
string context, the strings match.

COMPARISON OPERATORS 129

www.it-ebooks.info

http://www.it-ebooks.info/

Containment operators (case-insensitive)

-contains -notcontains -icontains -inotcontains
Containment operators (case-sensitive) Figure 4.5 The Power-
Shell containment
-ccontains -cnotcontains ?perat9r5|n case-
insensitive and
case-sensitive versions

The containment operators

All of the comparison operators we've discussed so far return the matching elements
from the collection. Although this is extremely useful, there are times when you just
want to find out whether or not an element is there. This is what the -contains and
-notcontains operators, shown in figure 4.5, are for.

These operators return $True if the set contains the element you’re looking for
instead of returning the matching elements. They’re listed in table 4.4 with examples.

Table 4.4 PowerShell containment operators

Operator Description Example Result
-contains The collection on the left side 1,2,3 -contains 2 Strue
-ccontains contains the value specified on

-icontains the right side

-notcontains The collection on the left side 1,2,3 -notcontains 2 Sfalse

-cnotcontains doesn't contain the value specified
-inotcontains on the right side

Let’s redo the example at the end of the previous section, but this time you'll use
-contains instead of -eq:

PS (1) > 1,"02",3,02,"1l" -contains "02"

True

PS (2) > 1,"02",3,02,"1l" -notcontains "02"

False

Now, instead of returning 02 and 2, you just return a single Boolean value. Because
all values in PowerShell can be converted into a Boolean value, this doesn’t seem as if
it would particularly matter, and usually it doesnt. The one case where it does matter
is if the matching set of elements is something that’s false. This even includes Bool-
eans. The concept is easier to understand with an example:

PS (3) > sfalse,Strue -eq S$false

False
PS (4) > sfalse,S$Strue -contains S$false
True
130 CHAPTER 4 QOPERATORS AND EXPRESSIONS

www.it-ebooks.info

http://www.it-ebooks.info/

In the first command, -eq searches the list for $false, finds it, and then returns the
matching value. But because the matching value was literally $false, a successful
match looks as if it failed. When you use the -contains operator in the expression,
you get the result youd expect, which is $true. The other way to work around this
issue is to use the @ (..) construction and the Count property:

PS (5) > @(Sfalse,Strue -eqg S$false) .count
1

The @ (...) sequence forces the result to be an array and then takes the count of
the results. If there are no matches the count will be zero, which is equivalent to
$false. If there are matches the count will be nonzero, equivalent to $true. There
can also be some performance advantages to -contains, because it stops looking on
the first match instead of checking every element in the list.

NOTE The@(..) construction is described in detail in chapter 5.

In this section, we covered all the basic comparison operators. We addressed the issue
of case sensitivity in comparisons, and we covered the polymorphic behavior of these
operations, first for scalar data types, then for collections. Now let’s move on to look at
PowerShell’s operators for working with text. One of the hallmark features of dynamic
languages is great support for text manipulation and pattern matching. In the next sec-
tion, we'll cover how PowerShell incorporates these features into the language.

4.4 PATTERN MATCHING AND TEXT MANIPULATION

In this section, we explore the pattern-matching and text-manipulation operators in
PowerShell (see figure 4.6).

Beyond the basic comparison operators, PowerShell has a number of pattern-
matching operators. These operators work on strings, allowing you to search through
text, extract pieces of it, and edit or create new strings. The other text-manipulation

Pattern-matching and text-manipulation operators (case-insensitive)

-like -notlike -match -notmatch -replace -split
-ilike -inotlike -imatch -inotmatch -ireplace -isplit

Figure 4.6

The pattern-
matching and
text-manipulation
-clike -cnotlike -cmatch -cnotmatch -creplace -csplit operators in
PowerShell. All the
operators that use
The -join operator patterns (every-
thing except -join)
have case-sensitive
and case-insensitive
forms.

Pattern-matching and text-manipulation operators (case-sensitive)

-join

PATTERN MATCHING AND TEXT MANIPULATION 131

www.it-ebooks.info

http://www.it-ebooks.info/

441

132

operators allow you to break strings apart into pieces or add individual pieces back
together into a single string.

We'll start with the pattern-matching operators. PowerShell supports two built-
in types of patterns—uwildcard expressions and regular expressions. Each of these pattern
types is useful in distinct domains. We’ll cover the operation and applications of
both types of patterns along with the operators that use them.

Wildcard patterns and the -like operator

You usually find wildcard patterns in a shell for matching filenames. For example, the
command

dir *.txt
finds all the files ending in .txt. Similarly
cp *.txt c:\backup

will copy all the text files into the directory c:\backup. In these examples, the *
matches any sequence of characters. Wildcard patterns also allow you to specify char-
acter ranges. In the next example, the pattern

dir [st]*.txt

will return all the files that start with either the letter s or # that have a .txt extension.
Finally, you can use the question mark (?) to match any single character.

The wildcard pattern-matching operators are listed in table 4.5. This table lists the
operators and includes some simple examples of how each one works.

Table 4.5 PowerShell wildcard pattern-matching operators

Operator Description Example Result

-like, -clike,-ilike Do a wildcard pattern match. "one" -like "o*" $true

-notlike, —cnotlike, Do awildcard pattern match;true "one" -notlike "o*" S$false
-inotlike if the pattern doesn’t match.

You can see from the table that there are several variations on the basic -1ike opera-
tor. These variations include case-sensitive and case-insensitive versions of the opera-
tor, as well as variants that return true if the target doesn't match the pattern. Table 4.6
summarizes the special characters that can be used in PowerShell wildcard patterns.

Table 4.6 Special characters in PowerShell wildcard patterns

Wildcard Description Example Matches Doesn’t match
* Matches zero or more charac- a* a bc
ters anywhere in the string aa babc
abc
ab
? Matches any single character a?»c abc a~
aXc ab

CHAPTER 4 OPERATORS AND EXPRESSIONS

www.it-ebooks.info

http://www.it-ebooks.info/

442

Table 4.6 Special characters in PowerShell wildcard patterns (continued)

Wildcard Description Example Matches Doesn’t match
[<char>-<char>] Matchesasequentialrangeof al[b-d]lc abc aac
characters acc aec
adc afc
abbc
[<char><char>..] Matches any one character albclc abc a
from a set of characters acc ab
Ac
adc

Although wildcard patterns are simple, their matching capabilities are limited, so
PowerShell also provides a set of operators that use regular expressions.

Regular expressions

Regular expressions are conceptually (if not syntactically) a superset of wildcard
expressions. By this, we mean that you can express the same patterns in regular
expressions that you can in wildcard expressions, but with slightly different syntax.

NOTE In fact, in versions 1 and 2 of PowerShell, wildcard patterns
are translated internally into the corresponding regular expressions
under the covers.

With regular expressions, instead of using * to match any sequence of characters as
you would in wildcard patterns, you use . *—and, instead of using ? to match any
single character, you use the dot (.).

Why is the expression regular?

The name regular expressions comes from theoretical computer science, specifically
the branches of automata theory (state machines) and formal languages. Ken
Thompson, one of the creators of the Unix operating system, saw an opportunity to
apply this theoretical aspect of computer science to solve a real-world prob-
lem—finding patterns in text in an editor—and the rest is history.

Most modern languages and environments that work with text now allow you to use
regular expressions. This includes languages such as Perl, Python, and VBScript, and
environments such as Emacs and Microsoft Visual Studio. The regular expressions
in PowerShell are implemented using the .NET regular expression classes. The pat-
tern language implemented by these classes is powerful, but it's also very large, so
we can't completely cover it in this book. On the other hand, because PowerShell
directly uses the .NET regular expression classes, any source of documentation for
.NET regular expressions is also applicable to PowerShell. For example, the Micro-
soft Developer Network has extensive (if rather fragmented) online documentation
on .NET regular expressions.

Although regular expressions are similar to wildcard patterns, they’re much more
powerful and allow you to do sophisticated text manipulation with small amounts

PATTERN MATCHING AND TEXT MANIPULATION 133

www.it-ebooks.info

http://www.it-ebooks.info/

443

134

of script. We'll look at the kinds of things you can do with these patterns in the
next few sections.

The -match operator

The PowerShell version 1 operators that work with regular expressions are -match
and -replace. These operators are shown in table 4.7 along with a description and
some examples. PowerShell v2 introduced an additional -split operator, which we'll
cover a bit later.

Table 4.7 PowerShell regular expression -match and -replace operators

Operator Description Example Result
-match Do a pattern match using regular "Hello" -match "[jk1]" Strue
-cmatch expressions.

-imatch

-notmatch Do a regex pattern match; return "Hello" -notmatch "[jk1]" $false
-cnotmath true if the pattern doesn’t match.

-inotmatch

-replace Do a regular expression substitu- "Hello" -replace "ello","i" "Hi"

-creplace tion on the string on the left side
-ireplace and return the modified string.

Delete the portion of the string "abcde" -replace "bcd" "ae"
matching the regular expression.

The -match operator is similar to the -1ike operator in that it matches a pattern and
returns a result. Along with that result, though, it also sets the $matches variable.
This variable contains the portions of the string that are matched by individual parts
of the regular expressions. The only way to clearly explain this is with an example:

PS (1) > "abc" -match " (a) (b) (c)"
True

Here, the string on the left side

. Match operator (0) Complete pattern

of the -match operator is

matched against the pattern on

the right side. In the pattern

string, you can see three sets of "abc" -match "(a) (b) (c)"
parentheses. Figure 4.7 shows

this expression in more detail. .

String to match

You can see on the right side of (1)First (2) Second (3) Third

the -match operator that each submatch submatch submatch
of the components in paren-

theses is a “submatch.” We'll Figure 4.7 The anatomy of a regular expression match

L. . operation where the pattern contains submatches. Each

get to Why tf‘us Is important 1n of the bracketed elements of the pattern corresponds to

the next section. a submatch pattern.

CHAPTER 4 OPERATORS AND EXPRESSIONS

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4.7 shows the anatomy of a regular expression match operation where the pat-
tern contains submatches. Each of the bracketed elements of the pattern corresponds
to a submatch pattern.

The result of this expression was true, which means that the match succeeded. It
also means that $matches should be set, so let’s look at what it contains:

PS (2) > S$matches

Key Value
3 c

2 b

1 a

0 abc

$matches contains a hashtable where the keys of the hashtable are indexes that corre-
spond to parts of the pattern that matched. The values are the substrings of the target
string that matched. Note that even though you only specified three subpatterns, the
hashtable contains four elements. This is because there’s always a default element that
represents the entire string that matched. Here’s a more complex example that shows
multiple nested matches:

PS (4) > "abcdef" -match "(a) (((b) (c))de)f"

True
PS (5) > Smatches

Key Value
5 c

4 b

3 bc

2 bcde

1 a

0 abcdef

Now you have the outermost match in index 0, which matches the whole string. Next
you have a top-level match at the beginning of the pattern that matches “a” at index
1. At index 2, you have the complete string matched by the next top-level part, which
is “bede”. Index 3 is the first nested match in that top-level match, which is “bc”.
This match also has two nested matches: b at element 4 and c at element 5.

Matching using named captures

Calculating these indexes is fine if the pattern is simple. If it’s complex, as in the pre-
vious example, it’s hard to figure out what goes where—and even if you do, when you
look at what you've written a month later, you'll have to figure it out all over again.
The .NET regular expression library provides a way to solve this problem by using
named captures. You specify a named capture by placing the sequence ?<name>
immediately inside the parentheses that indicate the match group. This allows you to

PATTERN MATCHING AND TEXT MANIPULATION 135

www.it-ebooks.info

http://www.it-ebooks.info/

136

reference the capture by name instead of by number, making complex expressions
easier to deal with. Here’s what this looks like:
PS (10) > "abcdef" -match " (?a) (?<02>((?<e3>b) (?<ed>c))de)f"

True
PS (11) > S$matches

Key Value
ol a

e3 b

ed c

02 bcde

1 bc

0 abcdef

Now let’s look at a more realistic example.

Parsing command output using regular expressions

Existing utilities for Windows produce text output, so you have to parse the text to
extract information. (As you may remember, avoiding this kind of parsing was one of
the reasons PowerShell was created. But it still needs to interoperate with the rest of
the world.) For example, the net . exe utility can return some information about your
computer configuration. The second line of this output contains the name of the
computer. Your task is to extract the name and domain for this computer from that
string. One way to do this is to calculate the offsets and then extract substrings from
the output. This is tedious and error prone (since the offsets might change). Here’s
how to do it using the $matches variable. First let’s look at the form of this string:

PS (1) > (net config workstation) [1]
Full Computer name brucepay64.redmond.corp.microsoft.com

It begins with a well-known pattern, Full Computer name, so start by matching
against that to make sure there are no errors. You'll see that there’s a space before the
name, and the name itself is separated by a period. Youre pretty safe in ignoring the
intervening characters, so here’s the pattern you'll use:

PS (2) > Sp='"Full Computer.* (?<computer>[".]+)\. (?<domain>[".]+)"

Figure 4.8 shows this pattern in more detail.

A anchors Sequ'er?ce Figure 4.8 Thisis a}n example
the string cont.alnlng of a regular expression pattern
anything but . that uses the named submatch
capability. When this expres-
sion is used with the -match
~Full Computer.* (?<computer>[".]+)\.(?<domain>[".]+)" operator, instead of using
simple numeric indexes in
. the $Smatches variable for
" sequence matches any Matches the literal . character the substrings, the names
characters will be used.

CHAPTER 4 OPERATORS AND EXPRESSIONS

www.it-ebooks.info

http://www.it-ebooks.info/

You check the string at the beginning, and then allow any sequence of characters that
ends with a space, followed by two fields that are terminated by a dot. Notice that
you don't say that the fields can contain any character. Instead, you say that they can
contain anything but a period. This is because regular expressions are greedy—that is,
they match the longest possible pattern, and because the period is any character, the
match won't stop at the period. Now let’s apply this pattern:

PS (3) > (net config workstation) [1] -match $p
True

It matches, so you know that the output string was well formed. Now let’s look at
what you captured from the string:

PS (4) > Smatches.computer

brucepay64

PS (5) > Smatches.domain
redmond

You see that youve extracted the computer name and domain as desired. This
approach is significantly more robust than using exact indexing for the following rea-
sons. First, you checked with a guard string instead of assuming that the string at
index 1 was correct. In fact, you could have written a loop that went through all the
strings and stopped when the match succeeded. In that case, it wouldn’t matter which
line contained the information; youd find it anyway. You also didn’t care about where
in the line the data actually appeared, only that it followed a basic well-formed pat-
tern. With a pattern-based approach, output format can vary significantly, and this
pattern would still retrieve the correct data. By using techniques like this, you can
write more change-tolerant scripts than you would otherwise do.

The -match operator lets you match text; now let’s look at how to go about making
changes to text. This is what the -replace operator is for, so we’ll explore that next.

44.4 The -replace operator
The -replace operator allows Replace operator Replacement
you to do regular expres- string
sion—based text substitution on
. . . "1,2,3,4" -replace "\s*,\s*","+"
a string or collection of strings.
The syntax for this operator is
shown in figure 4.9. Target string Pattern to replace
Let’s run the example from
. Figure 4.9 The syntax of the -replace operator
the syntax diagram:
PS {1) > "1,2,3,4" -replace "\s*,\s*",6 "+"
1+2+3+4
What this has done is replace every instance of a comma surrounded by zero or more
spaces with a + sign. Now let’slook at the example you saw at the beginning of this chapter:
${c:0ld.txt} -replace 'is (red|blue)','was $1' > new.txt
PATTERN MATCHING AND TEXT MANIPULATION 137

www.it-ebooks.info

http://www.it-ebooks.info/

We can now discuss what the -replace operator is doing in this case. First look at
the pattern to replace: 'is (red|blue) '. From our earlier discussion about regular
expressions with -match, you know that parentheses establish a submatch. Now look
at the replacement string. It contains '$1', which might be assumed to be a Power-
Shell variable. But because the string is in single quotes, it wont be expanded.
Instead, the regular expression engine uses this notation to allow submatches to be
referenced in the replacement expression. This allows PowerShell to intelligently
replace "is" with "was":

PS {2) > "The car is red" -replace 'is (red|blue)', 'was $1'
The car was red
PS {3) > "My boat is blue" -replace 'is (red|blue)', 'was S$1'

My boat was blue

The pattern matches "is red" or "is blue" but you only want to replace "is".
These substitutions make this possible. The complete set of substitution character
sequences is shown in table 4.8.

Finally, what happens if the pattern doesn’t match? Let’s try it:

PS {4) > "My bike is yellow" -replace 'is (red|blue)', 'was $1°'
My bike is yellow

You see that if the pattern isn’t matched, the string is returned as is.

Table 4.8 Character sequences for doing substitutions in the replacement pattern for the
-replace operator

Character sequence Description

$number Substitutes the last submatch matched by group number

${name} Substitutes the last submatch matched by a named capture of the form
(?<name>)

$$ Substitutes a single "$" literal

$& Substitutes a copy of the entire match itself

$° Substitutes all the text from the argument string before the matching
portion

$ Substitutes all the text of the argument string after the matching portion

S+ Substitutes the last submatch captured

$_ Substitutes the entire argument string

Sometimes you'll want to use regular expression substitutions and PowerShell variable
expansion at the same time. You can do this by escaping the ' $' before the substitu-

tion with a backtick (*). The result looks like this:

PS {5) > $Sa = "really"
PS {6) > "The car is red" -replace 'is (red|blue)', "was $a “S1"
The car was really red

138 CHAPTER 4 OPERATORS AND EXPRESSIONS

www.it-ebooks.info

http://www.it-ebooks.info/

445

In the output string, the word “red” was preserved using the regular expression substi-
tution mechanism and the word “really” was added by expanding the $a variable.
We've looked at lots of ways to substitute one thing for something else. But some-
times you don’t want to substitute something—you want to substitute nothing. More
simply, you just want to remove the matching parts. You can do this using -replace
by omitting the replacement string:
PS {7) > "The quick brown fox" -replace 'quick'
The Dbrown fox
In this example, the word “quick” was removed from the sentence.
Here’s one final point we should make clear. The -replace operator doesn’t
change strings—it returns a new string with the necessary edits applied. To illustrate
this, put a string in a variable and then use it in a -replace expression:

PS {8) > Sorig = "abc"

PS {9) > Sorig -replace "b","B"
aBc

PS {10) > Sorig

abc

PS {11) >

In the resulting output from the -replace expression, the lowercase & has been
changed to an uppercase B. But when you look at the original string, you see that it’s
unchanged. The result string is a new string with the substitutions performed on it
rather than on the original.

Up to this point, all the operations we’ve looked at have involved transformations
on a single string. Now let’s look at how to take strings apart and put them back
together using two more string operators: -split and -join. This will complete
your knowledge of the set of operators PowerShell provides for manipulating strings.

The -join operator

PowerShell version 2 introduced two new operators for working with collections and
strings: -split and -join. These operators allow you to join the elements of a col-
lection into a single string or split strings into a collection of substrings. We'll look at
the -join operator first as it’s the simpler of the two.

As we mentioned, the -join operator allows you to join collections of objects into
a single string. This operator can be used both as a unary operator and a binary oper-
ator. The syntax for the unary form of the -join operator is shown in figure 4.10.

Join operator Collection to join ~ Figure 4.10 The unary join operator
allows you to join a collection of objects
into a single string with nothing

-j0in 1,2
join 1,2,3 between each element.

PATTERN MATCHING AND TEXT MANIPULATION 139

www.it-ebooks.info

http://www.it-ebooks.info/

140

The unary form of the -join operator allows you to concatenate a collections of
strings into a single string with no separator between each item in the resulting string.
Here’s a simple example. First assign an array of numbers to the variable $in:

PS {1) > $in = 1,2,3
Now check the type of the variable’s value

PS {2) > $in.GetType () .FullName
System.Object[]

and you see that it’s an array of objects. (Remember that PowerShell arrays are always
created as polymorphic arrays, regardless of the content of the arrays.) Now use the
-join operator on this variable and assign the result to a new variable, $out:

PS {3) > Sout = -join $in
Checking the type of the result

PS {4) > Sout.GetType () .FullName
System.String

you see that it’s a string. The -join operator first converted each array element into a
string and then joined the results into a single larger string. Let’s look at the contents
of $out to see what the result looks like:

PS {5) > Sout

123

Its “123”, as expected. Next, let's do something a bit more sophisticated. Say you
want to reverse a string. Unfortunately the .NET [string] type has no built-in
reverse operator, but the [array] type does have a static method for reversing arrays.
This method takes an array as input and sorts it in place. To use this, you need to do
two conversions: from a string to an array of characters and from an array of charac-
ters back to a string. From chapter 3, you know that you can use a cast to convert a
string into a character array:

PS {6) > Sca = [char[]] "abcd"
Now that you have a character array, you can use the Reverse () method.
PS {7) > [array]::Reverse(S$ca)

This method reverses the contents of the array in-place so when you look at the
result, you see that it’s reversed as desired. But it’s still an array of characters and you
need a string:

PS {8) > Sca
a

c
b
a

CHAPTER 4 OPERATORS AND EXPRESSIONS

www.it-ebooks.info

http://www.it-ebooks.info/

This is where the unary -join comes into play. Use it to convert the character array
back into a string:

PS {9) > Sra = -join S$ca
And verify that the string has been created properly:

PS {10) > Sra

dcba

Yes, it has. Now let’s look at one potential gotcha using the unary form of the opera-
tor. Let’s redo the join of 1,2,3 again, but without using a variable to hold the value.
Here’s what that looks like:

PS {11) > -join 1,2,3

1

2
3

Surprise! Instead of joining the array members into a single string, it just returned the
same array. This is because unary operators have higher precedence than binary oper-
ators and, in PowerShell, the comma is a binary operator. As a result, the expression is

parsed like

PS {12) > (-join 1),2,3
1

2

3

So, to use the unary -join operator in a more complex expression, make sure you
put parentheses around the argument expression:

PS (13) > -join (1,2,3)

123

When parentheses are used, the result of the expression is as expected. Next let’s look
at the (much more useful) binary form.

The binary form for the -join operator is shown in figure 4.11.

The obvious difference with this operator is that you can specify the string to use
as an element separator instead of always using the default of nothing between the
joined strings. Let’s execute the example from the figure. Place the array to join into a
variable called $numbers and put the joined result into a variable called $exp:

PS {1) > Snumbers = 1,2,3
PS {2) > Sexp = S$numbers -join '+'

Join operator

Figure 4.11 The binary form of the
-join operator allows you to join a
collection of objects into a single string
using the specified join string. Collection to join String to join with

1,2,3 -join "+"

PATTERN MATCHING AND TEXT MANIPULATION 141

www.it-ebooks.info

http://www.it-ebooks.info/

142

Look at the contents of Sexp:

PS {3) > Sexp
1+2+3

It contains the numbers with a plus sign between each number. Because this is a valid
PowerShell expression, you can pass the resulting string to the Invoke-Expression
cmdlet for evaluation:

PS {4) > Invoke-Expression S$exp
6

The result is 6. Of course, this works on any operator. Lets use the range operator
(see chapter 5) and the multiply operator to calculate the factorial of 10. Here’s what
the code looks like:

PS {5) > Sfact = Invoke-Expression (1..10 -join '*')
This code is evaluating 1*2+*3 and so on up to 10, with the result

PS {6) > Sfact

3628800

Although this is a simple way to calculate factorials, it’s not efficient. Later on you’ll
see more efficient ways of writing this type of expression. For now, let’s look at a more
practical example and do some work with a file. Let’s use a here-string to generate a
test file on disk:

ps {7) > e

>> linel

>> line2

>> line3

>> '@ > out.txt
>>

Now use the Get-Content cmdlet to read that file into a variable, $text:
PS {8) > Stext = Get-Content out.txt
Use the text property to see how long the file was:

PS {9) > S$Stext.Count
3

Clearly this isnt the number of characters in the file. It’s actually the number of lines
in the file. The Get-Content cmdlet returns the contents of a file as an array of
strings. For example, to see the second line in the file, use this:

PS {10) > Stext[1l]
line2

To check the type of the value in $text, you can again use the GetType () method:

PS {11) > Stext.GetType () .FullName
System.Object[]

CHAPTER 4 OPERATORS AND EXPRESSIONS

www.it-ebooks.info

http://www.it-ebooks.info/

As you can see, it's an [object] array, which you should be used to by now.
Although this is exactly what you want most of the time, sometimes you just want the
entire file as a single string. The Get-Content cmdlet, as of PowerShell v2, has no
parameter for doing this, so you'll have to take the array of strings and turn it back
into a single string. You can do this with the binary -join operator if you specify the
line separator as the string to use when joining the array elements. On Windows, the
line separator is two characters: carriage return ('r) and a line feed (*n). In a single
string, this is expressed as “*r'n”. Now you can use this separator string in a -join
expression:

PS {12) > $single = $text -join "‘r'n"

PS {13) > S$single.Length
19

That’s more like it. And when you check index zero

PS {14) > $single[0]
1
you see that it’s now a single character instead of a string.
Let’s see one more example, which shows how to generate a string containing
comma-separated values—a CSV string:

PS {16) > Scsv = -join ('"', ($numbers -join '","'), '""')

PS {17) > Scsv

" l " , " 2 " , n 3 n

PS {18) >

You use -join to insert the sequence ", " between each element and then use string
concatenation to add double quotes to either end. It’s a very simple one-line CSV
generator.

Now that you know how to put things together, we’ll show you how to take them
apart with -split.

4.4.6 The -split operator

The -split operator performs the opposite operation to -join: it splits strings into
a collection of smaller strings. Again, this operator can be used in both binary and
unary forms. The unary form of split is shown in figure 4.12.

In its unary form, this operator will split a string on whitespace boundaries, where
whitespace is any number of spaces, tabs, or newlines. You saw this in an example
earlier in this chapter.

The binary form of the operator
is much more, ahem, sophisti- Split operator
cated. It allows you to specify the
pattern to match on, the type of i .

. Figure 4.12 The unary -split operator
matchlng to do, and the number of allows you to split a string into a collection
elements to return, as well as match of smaller strings.

—split "a b c" String to split

PATTERN MATCHING AND TEXT MANIPULATION 143

www.it-ebooks.info

http://www.it-ebooks.info/

144

Split operator Pattern to split Match type

with specific options ~ Figure 4.13 The -split
operator allows you to splita
"a, b ,c" -split "\w*,\w*",n, MatchType, Options string into a collection of

smaller strings. It lets you
)) specify a variety of argu-
Maximum number Type of matching ments and options to control

String to split of substrings to use how the target string is split.
type-specific options. The full (and rather intimidating) syntax for this operator is
shown in figure 4.13.

Although figure 4.13 looks intimidating, most of the time you just need to specify
an argument string and split pattern and let the rest of the options use their default
values. Let’s take a look at the basic application of this operator. First, split a string on
a character other than whitespace:

PS {11) > 'a:b:c:d:e' -split ':'
a

o Q0o

This is pretty straightforward. The string is split into five elements at the : character.
But sometimes you don’t want all the matches. The -split operator allows you to
limit the number of elements to return. Do so by specifying an integer after the
match pattern:

PS {12) > 'a:b:c:d:e' -split ':',3
a

b

c:d:e

In this case, you only asked for three elements to be returned. Notice that the third
piece is the entire remaining string. If you specify a split count number less than or
equal to 0, then all the splits take place:

PS {13) > 'a:b:c:d:e' -split ':',0
a

o Q0o

You'll see why this is important in a minute.

By default, -split uses regular expressions just like -match and -replace. Butif
the string you’re trying to split contains one of the many characters that have special
meaning in regular expressions, things become a bit more difficult because you’ll have
to escape these characters in the split pattern. This can be inconvenient and error

CHAPTER 4 OPERATORS AND EXPRESSIONS

www.it-ebooks.info

http://www.it-ebooks.info/

prone, so -split allows you to choose simple matching through an option known as
simplematch. When you specify simplematch, instead of treating the split pattern
as a regular expression, it’s handled as a simple literal string that must be matched.
For example, say you want to split on *:
PS {14) > 'a*b*c' -split "*"
Bad argument to operator '-split': parsing "*" - Quantifier
{x,y} following nothing..

At line:1 char:15
+ 'a*b*c' -split <<<< "M

+ CategoryInfo : InvalidOperation: (:) [],

RuntimeException
+ FullyQualifiedErrorId : BadOperatorArgument

This results in a regular expression parsing error. Now try it again with simplematch:

PS {15) > 'a*b*c' -split "*",0,"simplematch"
a
b
c

This time it worked properly. This option is particularly handy when you arent using
literal split strings but instead are getting them from a script argument or input file.
In those cases, it’s much simpler to use simplematch instead of escaping all the spe-
cial regular expression characters.

-split operator options

The last element shown in the -split operator syntax diagram (figure 4.7) is the
match options string. These options are shown in table 4.9. Multiple options can be
specified in a string with commas between them, like RegexMatch, Ignore-
Case,MultiLine or SimpleMatch, IgnoreCase.

Table 4.9 Match options for the -split operator

Option Description Applies to

IgnoreCase Allows you to override default case-sensitive RegexMatch,
behavior when using the -csplit variant of SimpleMatch
the operator.

CultureInvariant Disables any culture-specific matching behav- RegexMatch
jor (e.g., what constitutes uppercase) when
matching the separator strings.

IgnorePatternWhitespace Ignores unescaped whitespace and comments RegexMatch
embedded in the pattern. This allows for com-
menting complex patterns.

MultiLine Treat a string as though it's composed of multi- RegexMatch
ple lines. A line begins at a newline character
and will be matched by the ~ pattern.

PATTERN MATCHING AND TEXT MANIPULATION 145

www.it-ebooks.info

http://www.it-ebooks.info/

146

Table 4.9 Match options for the -split operator (continued)

Option Description Applies to

SingleLine This option, which is the default, tells the pat- RegexMatch
tern matcher to treat the entire string as a sin-
gle line. Newlines in the string aren’t
considered the beginning of a line.

ExplicitCapture This option specifies that the only valid cap- RegexMatch
tures are explicitly named or numbered ones of
the form (?<name>..). This allows unnamed
parentheses to act as noncapturing groups
without the syntactic clumsiness of the
expression (?:..). See section 4.4.3 earlier in
this chapter on how captures work.

We won't cover all the options here. In practice, you aren’t likely to need most of
them, but we'll examine the ones that are typically useful, as well as some techniques
for using them. The first one we'll look at is the Ignorecase option. This option lets
you change how case is handled when splitting the string. Normally this behavior is
controlled by the name of the operator (case-sensitive for -csplit and case-insensi-
tive for -split or -isplit). This is determined at parse time; then the script is
transformed into an executable form. There are cases where you want to be able to
override the parse time behavior at runtime. You can do this by using a variable to
pass in the option instead of a constant string. Let’s see how this works. Start with a
$opts variable that contains an empty string:

PS {1) > Sopts = "'
Now pass this in the options position for the operator:

PS {2) > 'axbXcxdXe' -csplit 'x',0, Sopts

a

bXc

dXe

Because the option variable, $opts, was empty, you get the expected behavior: the
split is done in the case-sensitive manner as determined by -csplit. Assign ignore-
case to the variable, and try it again:

PS {3) > Sopts = 'ignorecase'

PS {4) > 'axbXcxdXe' -csplit 'x',0, Sopts
a

b

c

d

e

This time the string splits on all instances of x regardless of case, even though the
-csplit operator was used. This shows how the parse-time defaults can be overrid-
den at runtime.

CHAPTER 4 OPERATORS AND EXPRESSIONS

www.it-ebooks.info

http://www.it-ebooks.info/

The next option we want to look at is the multiline option. This option can
only be used with regular expression matches and changes what the pattern matcher
considers the beginning of the string. In regular expressions, you can match the
beginning of a line with the » metacharacter. In the default singleline mode, the
beginning of the line is the beginning of the string. Any newlines in the string aren’t
treated as the beginning of a line. When you use the multiline option, embedded
newlines are treated as the beginning of a line. Here’s an example. First you need
some text to split—let’s use a here-string to put this text into the $text variable:

PS {5) > $text = @'
>> 1

>> aaaaaaa

>> aaaaaaa

>> 2

>> bbbbbbb

>> 3

>> ccccccce

>> cccceccecce

>> 4

>> ddddddd
>> '@

In the example text, each section of the document is numbered. You want to split
these “chapters” into elements in an array, so $a[1] is chapter 1, $a[2] is chapter 2,
and so on. The pattern you're using (*\d) will match lines that begin with a number.
Now use this pattern to split the document in multiline mode, assigning the result
to Sa:

PS {6) > $Sa = Stext -split '~\d', 0, "multiline"
If all went as planned, $a should now contain four elements:

PS {7) > S$Sa.Length
5

Wait a minute—the result is 5! But there were only four sections! There are actually
five sections because the empty text before the 1 gets its own chapter. Now let’s look
at chapter 1, which should be in $a[1]

PS {8) > $all]

aaaaaaa
aaaaaaa

and chapter 2 in $a[2]:

PS {9) > $al2]
bbbbbbb

PS {10) >

PATTERN MATCHING AND TEXT MANIPULATION 147

www.it-ebooks.info

http://www.it-ebooks.info/

4.5

148

As you can see, the multiline option with regular expressions allows for some pretty
slick text processing.

Using scriptblocks with the -split operator

As powerful as regular expressions are, sometimes you may need to split a string in a
way that isn’t convenient or easy to handle with regular expressions. To deal with
these cases, PowerShell allows you to pass a scriptblock to the operator. The script-
block is used as a predicate function that determines whether there’s a match. Here’s an
example. First set up a string to split. This string contains a list of colors that you
want to split into pairs, two colors per pair:

PS {17) > S$colors = "Black,Brown,Red,Orange,Yellow, " +
>> "Green,Blue,Violet,Gray,White'"

Next initialize a counter variable that will be used by the scriptblock. You're using an
array here because you need to be able to modify the contents of this variable.

Because the scriptblock is executed in its own scope, you must pass it an array so it
can modify the value:

PS {18) > Scount=@(0)

And now split the string. The scriptblock, in braces in the example, splits the string
on every other comma:

PS {19) > Scolors -split {$_ -eq "," -and ++Scount[0] % 2 -eq 0 }

Black, Brown

Red, Orange

Yellow, Green

Blue,Violet
Gray,White'

This gives you the color pairs you were looking for.

Whew! So that’s it for the pattern-matching and text-manipulation operators. In
this section, we covered the two types of pattern-matching operators—wildcard pat-
terns and regular expressions. Wildcard patterns are pretty simple, but learning to use
regular expressions effectively requires more work. On the other hand, you’ll find
that the power of regular expressions is more than worth the effort invested to learn
them. (We'll come back to these patterns again in chapter 6 when we discuss the
switch statement.) We also looked at how to split strings into collections and join
collections into strings. All very spiffy, but let’s come back down to Earth now and
cover the last of the basic operators in the PowerShell language. These are the logical
operators (-and, -or, -not) and their bitwise equivalents (-band, -bor, -bnot).

LOGICAL AND BITWISE OPERATORS

Finally, PowerShell has logical operators -and, -or, -xor, and -not for combining
simpler comparisons into more complex expressions. The logical operators convert
their operands into Boolean values and then perform the logical operation.

CHAPTER 4 OPERATORS AND EXPRESSIONS

www.it-ebooks.info

http://www.it-ebooks.info/

Logical operators

-and -or -not -xor

Bitwise operators

-band -bor -bnot -bxor
Figure 4.14 The logical and bitwise

operators available in PowerShell

PowerShell also provides corresponding bitwise operators for doing binary operations
on integer values. These operators can be used to test and mask bit fields. Both of
these sets of operators are shown in figure 4.14.

Table 4.10 lists these operators with examples showing how each of these opera-
tors can be used.

Table 4.10 Logical and bitwise operators

Operator Description Example Result

-and Do a logical and of the left and right 0xff -and $false $false
values.

-or Do a logical or of the left and right $false —-or 0x55 $true
values.

-xor Do a logical exclusive-or of the left and $false —-xor S$true $true
right values. Strue -xor Strue

Sfalse

-not Do the logical complement of the -not $true $false
argument value.

-band Do a binary and of the bits in the values 0xff -band 0x55 85 (0x55)
on the left and right side.

-bor Do a binary or of the bits in the values 0x55 -bor Oxaa 255 (0xff)
on the left and right side.

-bxor Do a binary exclusive-or of the left and 0x55 -bxor Oxaa 255 (0xff)
right values. 0x55 -bxor 0xab 240 (0xf0)

-bnot Do the bitwise complement of the -bnot 0xff -256
argument value. (0x £E££££00)

As with most languages based on C/C++, the PowerShell logical operators are shorz-
circuit operators—they only do as much work as they need to. With the -and opera-
tor, if the left operand evaluates to $false, then the right operand expression isn’t
executed. With the -or operator, if the left operand evaluates to $true, then the
right operand isn’t evaluated.

NOTE In PowerShell v1, the bitwise operators were limited in that
they only supported 32-bit integers ([int]). In v2, support was added
for 64-bit integers ([long]). If the arguments to the operators are

LOGICAL AND BITWISE OPERATORS 149

www.it-ebooks.info

http://www.it-ebooks.info/

4.6

150

neither [int] nor [long], PowerShell will attempt to convert them
into [long] and then perform the operation.

SUMMARY

That concludes our tour of the basic PowerShell operators. We covered a lot of infor-
mation, much of it in great detail. We explored the basic PowerShell operators and
expressions with semantics and applications of those operators. Here are the impor-
tant points to remember:

PowerShell operators are polymorphic with special behaviors defined by Power-
Shell for the basic types: numbers, strings, arrays, and hashtables. For other
object types, the op_ methods are invoked.

The behavior of most of the binary operators is determined by the type of the
operand on the left.

PowerShell uses widening when working with numeric types. For any arithme-
tic operation, the type of the result will be the narrowest .NET numeric type
that can properly represent the result. Also note that integer division will under-
flow into floating point if the result of the operation isn’t an integer. Casts can
be used to force an integer result.

There are two types of pattern matching operations in PowerShell: wildcard
patterns (usually used for matching filenames) and regular expressions.

Because the comparison and pattern-matching operators work on collections, in
many cases you don’t need a looping statement to search through collections.

Regular expressions are powerful and can be used to do complex text manipula-
tions with very little code. PowerShell uses the .NET regular expression classes
to implement the regular expression operators in the language.

PowerShell version 2 introduced two new operators for working with text:
-split and -join. With the addition of these two, the set of text-manipula-
tion operators is now complete.

PowerShell has built-in operators for working with binary values: -band, -bor,
-bxor, and -bnot.

But we're not done yet! In the next chapter, we'll finish our discussion of operators
and expressions and also explain how variables are used. Stay tuned!

CHAPTER 4 OPERATORS AND EXPRESSIONS

www.it-ebooks.info

http://www.it-ebooks.info/

5

Advanced operators and
variables

5.1 Operators for working with types 152 5.6 The format operator 179

5.2 The unary operators 154 5.7 Redirection and the redirection
5.3 Grouping and subexpressions 157 operators 181
5.4 Array operators 162 5.8 Working with variables 184

5.5 Property and method operators 173 5.9 Summary 196

The greatest challenge to any thinker is stating the problem in a way that
will allow a solution.

—Bertrand Russell

The previous chapter covered the basic operators in PowerShell, and in this chapter
we'll continue our discussion of operators by covering the advanced ones, which
include things that some people don’t think of as operators at all. We'll break the
operators into related groups, as shown in figure 5.1.

In this chapter, we’ll look at how to work with types, properties, and methods and
how to use these operators to build complex data structures. The chapter concludes
with a detailed discussion of how variables work in PowerShell and how you can use
them with operators to accomplish significant tasks.

151

www.it-ebooks.info

http://www.it-ebooks.info/

5.1

152

Operators for working with types Unary operators

-is —-isnot -as -not + - -- 4+ [cast] ,

Grouping, expression, and
subexpression operators Array operators

(<pipeline>) $(<statements>)

<i EXpIr>
@(<statements>) [<indexExpr>] ,

Property and method

reference operators Format operator Redirection operators
<type>::<expr>() <fmtstrn'zg> -f S 5> 2> 25> 2581
<expr>.<expr>() <argsList>

Figure 5.1 The broad groups of operators we’ll cover in this chapter

OPERATORS FOR WORKING WITH TYPES

The type of an object is fundamental to determining the sorts of operations you can
perform on that object. Up until now, you've allowed the type of the object to implic-
itly determine the operations that are performed. But sometimes you want to do this
explicitly. PowerShell provides a set of operators that can work with types, as shown
in figure 5.2. They're also listed in table 5.1 with examples and more description.

These operators let you test whether an object is of a particular type and enable
you to convert an object to a new type. The -is operator returns true if the object on
the left side is of the type specified on the right side. By “is,” I mean that the left oper-
ator is either of the type specified on the right side or is derived from that type. (See
section 1.3 in chapter 1 for an explanation of derivation.)

The -isnot operator returns true if the left side is not of the type specified on the
right side. The right side of the operator must be represented as a type or a string that
names a type. This means that you can use either a type literal such as [int] or the
literal string “int”. The -as operator will try to convert the left operand into the type

Operators for working with types

<value> -is <type> <expr> -isnot <type> <expr> -as <type>

Figure 5.2 The binary operators for working with types

CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

www.it-ebooks.info

http://www.it-ebooks.info/

specified by the right operand. Again, either a type literal can be used, or you can use
a string naming a type.

NOTE The PowerShell -is and -as operators are directly modeled
on the corresponding operators in C#. But PowerShell’s version of -as
uses PowerShell’s more aggressive approach to casting. For example,
C# won’t cast the string “123” into the number 123, whereas the Pow-
erShell operator will do so. The PowerShell -as operator will also work
on any type, and the C# operator is restricted to reference types.

You may be wondering why you need the -as operator when you can just use a cast.
The reason is that the -as operator allows you to use a runtime expression to specify
the type, whereas the cast is fixed at parse time. Here’s an example showing how you
can use this runtime behavior:

PS (1) > foreach (St in [float], [int], [string]) {"0123.45" -as St}

123.45
123
0123.45

This example loops over a list of type literals and converts the string into each of the
types. This isn't possible when types are used as casts.

Finally, there’s one additional difference between a regular cast and using the -as
operator. In a cast, if the conversion doesn’t succeed an error is generated. With the
-as operator, if the cast fails, then the expression returns $null instead of generating
an error.

PS (2) > [int] "abc" -eq $null
Cannot convert "abc" to "System.Int32". Error: "Input string was not

in a correct format."
At line:1 char:6

+ [int] <<<< "abc" -eq S$null

PS (3) > ("abc" -as [int]) -eqg $null
True

PS (4) >

You can see this here. Casting “abc” to [int] generated an error, but the -as opera-
tor just returned $null instead. Table 5.1 provides several more examples of how to
use the type operators PowerShell provides.

Table 5.1 PowerShell operators for working with types

Operator Example Results Description

-is $true -is [bool] Strue True if the type of the left side matches the
type of the object on the right side.

$true -is [object] Strue This is always true—everything is an object
except $Snull.

OPERATORS FOR WORKING WITH TYPES 153

www.it-ebooks.info

http://www.it-ebooks.info/

5.2

154

Table 5.1 PowerShell operators for working with types (continued)

Operator Example Results Description

$true -is [ValueType] Strue The left side is an instance of a .NET value
type such as an integer or floating-point
number.

"hi" -is [ValueTypel $false A string is not a value type; it's a reference
type so this expression returns FALSE.

"hi" -is [object] Strue A string is still an object.

12 -is [int] Strue 12 is an integer.

12 -is "int" Strue The right side of the operator can be either

a type literal or a string naming a type.

-isnot S$true -isnot [string] Strue The object on the left side is not of the
type specified on the right side.

$null -isnot [object] Strue The null value is the only thing that isn’t an
object.
-as "123" -as [int] 123 Takes the left side and converts it to the

type specified on the right side.

123 -as "string" "123" Turns the left side into an instance of the
type named by the string on the right.

In practice, most of the time the automatic type conversion mechanism will be all
you need, and explicit casts will take care of the majority of the remaining cases. So
why have these operators? They’re mostly used in scripting. For example, if you want
to have a script that behaves differently based on whether it’s passed a string or a
number, you'll need to use the -is operator to select which operation to perform.
Obvious examples of this kind of functionality are the binary operators described in
the previous chapter. The addition operator has different behavior depending on the
type of its left argument. To write a script that did the same thing, you'd have to use
-is to select the type of the operation to perform and -as to convert the right
operand to the correct type.

THE UNARY OPERATORS

Now let’s take a detailed look at the unary operators, which take only one argument.
These operators are shown in figure 5.3 and listed with examples in table 5.2.

Unary operators including increment and decrement operators

-not <value> +<value> -<value> [cast] <value> ,<value>
-- <assignableExpr> <assignableExpr> -- Figure 5.3
++ <assignableExpr> <assignableExpr> ++ The binary
various unary
operators

CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

www.it-ebooks.info

http://www.it-ebooks.info/

You've seen most of these operators already in previous sections. The unary + and -
operators do what youd expect for numbers. Applying them to any other type results
in an error.

The use of the type casts as unary operators was discussed at length in chapter 3, so
we won’t go into it again. The interesting operators in this section are the increment
and decrement operators. They match the behavior of the equivalent operators in the
C programming language with both the prefix and postfix forms of the operators.

These operators are special in that they take an assignable expression as an argu-
ment. An assignable expression is, well, anything that can be assigned to. This
includes variables, array elements, and object properties. These operators retrieve the
current value of the assignable expression, increment (add 1) or decrement (subtract
1) that value, and then assign it back to the assignable expression. For example, if
you're using ++ with a variable, the value of the variable will be retrieved, incre-
mented by 1, and then assigned back to the variable. As with the unary + and - oper-
ators, the increment (++) and decrement (--) operators are only defined for variables
containing numbers. Applying them to a variable containing anything other than
numbers results in an error.

Table 5.2 PowerShell unary operators

Operator Example Results Description

- - (2+2) -4 Negation. Tries to convert its argument to a
number, and then negates the result.

+ + "123 " 123 Unary plus. Tries to converts its argument
to a number and returns the result. This is
effectively a cast to a number.

- --%a ; Sa-- Depends on the Pre- and postdecrement operator. Converts
current value of the content of the variable to a number, and
the variable then tries to subtract one from that value.

The prefix version returns the new value;
the postfix version returns the original value.

4+ ++%a; Sa++ Depends on the Pre- and postincrement. Converts the variable
current value of to a number, and then adds 1 to the result.
the variable The prefix version returns the new value; the

postfix version returns the original value.

[<type>] [int] "0x123" 291 Type cast. Converts the argument into an
instance of the type specified by the cast.

, , (1+2) One-element array Unary comma operator. Creates a new
containing the value one-element array of type [object[]]
of the expression and stores the operand in it.

There’s another thing that’s special about these operators. The increment and decre-
ment operators were almost not included in PowerShell because they introduced a
problem. In languages such as C and C#, when you use one of these operators

Sa++

THE UNARY OPERATORS 155

www.it-ebooks.info

http://www.it-ebooks.info/

as a statement, nothing is displayed. This is because statements in C and C# don’t
return values. In PowerShell, all statements return a value, which led to confusion.
People would write scripts like this

$sum=0

$1=0

while ($i -1t 10) { $sum += $i; Si++ }

$sum

and be surprised to see the numbers 0 through 9 displayed. This was because $a++
returned a value and PowerShell was displaying the results of every statement. This was
so confusing that the language design team almost removed these operators from the
language. Then we hit on the idea of a voidable statement. Basically, this means that cer-
tain types of expressions, when used as statements, aren’t displayed. Voidable statements
include assignment statements and the increment/decrement operators. When incre-
ment and decrement are used in an expression, they return a value, but when they’re
used as a stand-alone statement, they return no value. Again, this is one of those details
that won't affect how you use PowerShell other than to make it work as you expect. Now,
if you do want the value of the expression to be output, there’s a trick you can use. If
the expression is enclosed in parentheses, the result will be returned instead of discarded.
This can be convenient sometimes, especially in string expansions. Let’s try this. Your
task is to print out a list of strings prefixed with the string number. Here’s how:

PS (1) > $1=1

PS {2) > foreach ($s in "one","two", "three")
>> { "$($1l++): $s")}
>>

one

two

three

The foreach statement loops over the strings and emits your output. The ++ in the
subexpressions (which we’ll get to next) causes the variable to be incremented. But
because the expression is treated as a statement, there’s no output in the string. Here’s
how you can fix it. You'll make one small change and add parentheses around the
increment expression. Let’s try it again:

PS (3) > $1=1

PS {4) > foreach ($s in "one", "two", "three")

>> { "S((S1l++)): $s" }

>>

1: one
2: two
3: three
PsS {5) >

This time it works properly—you see the numbers in the output strings.

NOTE Only some statements are considered voidable. For other state-
ment types, you'll have to explicitly discard the output of a statement.

156 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

www.it-ebooks.info

http://www.it-ebooks.info/

5.3

In effect, you want to turn a regular statement into a voidable one. The
way to do this through an explicit cast is to use [void], as in [void]
(Write-Output "discard me"). The statement whose value you
want to discard is enclosed in parentheses, and the whole thing is cast
to void. You'll see another way to accomplish the same effect using the
redirection operators later in this chapter.

Having touched on subexpressions in our discussion of voidable statements, let’s take
a more formal look at them in the next section, where we'll cover all the grouping
constructs in the language.

GROUPING AND SUBEXPRESSIONS

Grouping, expression, and subexpression operators

(<pipeline>) $(<statementList>) Q(<statementList>)

Figure 5.4 The PowerShell operators for grouping expressions and statements

So far you've seen a variety of situations where collections of expressions or statements
have been grouped together. You've even used these grouping constructs in string
expansions. These operators are shown in figure 5.4.

Now let’s look at them in more detail. Table 5.3 provides more details and some
examples.

Table 5.3 Expression and statement grouping operators

Operator Example Results Description
(...) (2+2) *3 12 Parentheses group expression
(get-date) .dayofweek Returns the current operations and may contain
weekday either a simple expression or a

simple pipeline. They may not
contain more than one statement
or things like while loops.

$(...) $(Sp = "a*"; Returns the pro- Subexpressions group collec-
get-process S$p) cess objects for all tions of statements as opposed
processes starting to being limited to a single
with the letter a expression. If the contained

statements return a single value,
that value will be returned as a
scalar. If the statements return
more than one value, they will be
accumulated in an array.

GROUPING AND SUBEXPRESSIONS 157

www.it-ebooks.info

http://www.it-ebooks.info/

158

Table 5.3 Expression and statement grouping operators (continued)

Operator Example Results Description
@(...) @(dir «c:\; dir a:\) Returns an array The array subexpression operator
containing the groups collections of statements

FileInfo objects inthe same manner as the regu-

inthe root of the C: lar subexpression operator, but

and D: drives with the additional behavior that
the result will always be returned
as an array.

The first grouping notation is the simple parenthetical notation. As in most lan-
guages, the conventional use for this notation is to control the order of operations, as
shown by the following example:

PS (1) > 2+3*4

14

PS (2) > (2+3)*4

20

The parentheses in the second expression cause the addition operation to be per-
formed first. In PowerShell, parentheses also have another use. Looking at the syntax
specification shown in figure 5.4 for parenthetical expressions illustrates this:

(<pipeline>)

From the syntax, you can see that pipelines are allowed between simple parentheses.
This allows you to use a command or pipeline as a value in an expression. For exam-
ple, to obtain a count of the number of files in a directory, you can use the dir com-
mand in parentheses, then use the Count property to get the number of objects
returned:

PS (1) > (dir).count

46

Using a pipeline in the parentheses lets you get a count of the number of files match-
ing the wildcard pattern *.doc:

PS (2) > (dir \ where {$_.name -like '*.doc'}).count
32

NOTE People familiar with other languages tend to assume that the
expression (1,2,3,4) is an array literal in PowerShell. In fact, as you
learned in chapter 3, this isn’t the case. The comma operator, discussed
in the next section, allows you to easily construct arrays in PowerShell,
but there are no array literals as such in the language. All that the
parentheses do is control the order of operations. Otherwise, there’s
nothing special about them. In fact, the precedence of the comma
operator is such that you typically never need parentheses for this pur-
pose. More on that later.

CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

www.it-ebooks.info

http://www.it-ebooks.info/

Now let’s move on to the next set of grouping constructs—the subexpressions. There
are two forms of the subexpression construct, as shown in the following:

$(<statementList>)
@(<statementList>)

5.3.1 Subexpressions $(...)
The syntactic difference between a subexpression (either form) and a simple paren-
thetical expression is that you can have any list of statements in a subexpression
instead of being restricted to a single pipeline. This means that you can have any
PowerShell language element in these grouping constructs, including loop state-
ments. It also means that you can have several statements in the group. Let’s look at
an example. Earlier in this chapter, you saw a short piece of PowerShell code that cal-
culates the numbers in the Fibonacci sequence below 100. At the time, you didn’t
count the number of elements in that sequence. You can do this easily using the sub-
expression grouping construct:
PS (1) > $($c=sp=1; while ($c -1t 100) {S$c; c,Sp=($c+$p),$c}) .count
10
By enclosing the statements in $(...), you can retrieve the result of the enclosed
collection of statements as an array.
NOTE Many languages have a special notation for generating collec-
tions of objects. For example, Python and functional languages such as
Haskell have a feature called /st comprehensions for doing this. Power-
Shell (and shell languages in general) don’t need special syntax for this
kind of operation. Collections occur naturally as a consequence of the
shell pipeline model. If a set of statements used as a value returns mul-
tiple objects, they’ll automatically be collected into an array.
Another difference between the subexpression construct and simple parentheses is how
voidable statements are treated. We looked at this concept earlier with the increment
and decrement operators. A voidable expression is one whose result is discarded when
used directly as a statement. Here’s an example that illustrates this. First initialize $a to
0; then use a postincrement expression in parentheses and assign it to the variable $x:
PS (1) > S$a=0
PS (2) > $x=(Sa++)
Checking the value of $x, you see that it is 0, as expected, and that $a is now 1:
PS (3) > $x
0
PS (4) > sa
1
Now do a second assignment, this time with the expressionin $ (...):
PS (5) > sx=$(Sa++)
GROUPING AND SUBEXPRESSIONS 159

www.it-ebooks.info

http://www.it-ebooks.info/

5.3.2

160

Checking the value, you see that it’s actually $null:

PS (6) > $x

PS (7) > $x -eqg S$null

True

This is because the result of the postincrement operation was discarded, so the expres-
sion returned nothing. Try a more complex statement in the subexpression:

PS (8) > $x=$(Sa++;S$a;Sa++;5a)

PS (9) > $x

3
4

Notice that even though there are four statements in the subexpression, $x only
received two values. Again, the results of the postincrement statements were discarded
so they don’t appear in the output.

Next, let’s take a look at the difference between the array subexpression @ (...)
and the regular subexpression.

Array subexpressions @(...)

The difference is that in the case of the array subexpression, the result is always returned
as an array; this is a fairly small but useful difference. In effect, it’s shorthand for
[object[]] $(...)

This shorthand exists because in many cases you don’t know if a pipeline operation is
going to return a single element or a collection. Rather than writing complex checks,
you can use this construction and be assured that the result will always be a collec-
tion. If the pipeline returns an array, no new array is created and the original value is
returned as is. If the pipeline returns a scalar value, that value will be wrapped in a
new one-element array. Is important to understand how this is different from the
behavior of the comma operator, which always wraps its argument value in a new
one-element array. Doing something like @ (@ (1)) doesn’t give you a one-element
array containing a second one-element array containing a number. These expressions
e(1)

@(e(1))
e(e(e(1)))

all return the same value. On the other hand,
.1
nests to one level,

.1

nests to two levels, and so forth.

NOTE How to figure out what the pipeline returns is the single hard-
est thing to explain in the PowerShell language. The problem is that

CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

www.it-ebooks.info

http://www.it-ebooks.info/

people get confused; they see that @(12) returns a one-element array
containing the number 12. Because of prior experience with other lan-
guages, they expect that @(@(12)) should therefore produce a nested
array, an array of one element containing an array of one element,
which is the integer 12. As mentioned previously, this is 7oz the case.
@(@(12)) returns exactly the same thing as @ (12). If you think of
rewriting this expression as [object[]]1$([object[]] $(12)),
then it’s clear why this is the case—casting an array into an array of the
same type has no effect; it’s already the correct type, so you just get the
original array.

Here’s an example of where this feature is useful: a pipeline expression that sorts some
strings, then returns the first element in the sorted collection. Start by sorting an
array of three elements:

PS (1) > $("bbb","aaa", "ccc" | sort) [0]
aaa

This returns “aaa,” as you expect. Now do it with two elements:

PS (2) > $("bbb","aaa" | sort)[0]
aaa

Still “aaa,” so everything makes sense. Now try it with one element:

PS (3) > $("aaa" | sort)I[0]

a

Wait a minute—whar happened here? Well, what happened is that you sorted one ele-
ment, and in a pipeline, you can’t tell if the commands in the pipeline mean to return
a single object (a scalar) or an array containing a single object. The default behavior in
PowerShell is to assume that if you return one element, you intended to return a scalar.
In this case, the scalar is the string “aaa” and index 0 of this array is the letter #, which
is what the example returns. This is where you use the array subexpression notation
because it ensures that you always get what you want. you know you want the pipeline
to return an array, and by using this notation, you can enforce the correct behavior.
Here are the same three examples again, but this time using the array subexpression:

PS (4) > @("bbb","aaa","ccc" | sort)[0]
aaa

PS (5) > @("bbb","aaa" | sort)I[0]

aaa

PS (6) > @("aaa" | sort)I[0]

aaa

Ps (7) >

This time, all three commands return “aaa” as intended. So why have this notation?
Why not just use the casts? Well, here’s what it looks like using the cast notation:

PS (7) > ([object[]l] ("aaa" | sort))I[0]
aaa
GROUPING AND SUBEXPRESSIONS 161

www.it-ebooks.info

http://www.it-ebooks.info/

5.4

5.4.1

162

Because of the way precedence works, you need an extra set of parentheses to get the
ordering right, which makes the whole expression harder to write. In the end, the
array subexpression notation is easy to use, although it’s a bit difficult to grasp at first.
The advantage is that you only have to learn something once, but you have to use it
over and over again.

Now let’s move on to the other operations PowerShell provides for dealing with
collections and arrays of objects. The ability to manipulate collections of objects
effectively is the heart of any automation system. You can easily perform a single
operation manually, but the problem is performing operations on a large set of
objects. Let’s see what PowerShell has to offer here.

ARRAY OPERATORS

Array operators

<indexableValue>[<indexExpression>]

<valuel> , <value2> , <value3>
Figure 5.5 The

<lowerBound> .. <upperBound> PowerShell array

operators

Arrays or collections of objects occur naturally in many of the operations that you
execute. An operation such as getting a directory listing in the file system results in a
collection of objects. Getting the set of processes running on a machine or a list of
services configured on a server both result in collections of objects. Not surprisingly,
PowerShell has a set of operators and operations for working with arrays and collec-
tions. These operators are shown in figure 5.5.

We'll go over these operators in the following sections.

The comma operator

You've already seen many examples using the comma operator to build arrays. We
covered this topic in some detail in chapter 3, but there are a couple of things we still
need to cover. In terms of precedence, the comma operator has the highest prece-
dence of any operator except for casts and property or array references. This means
that when you're building an array with expressions, you need to wrap those expres-
sions in parentheses. In the next example, you'll build an array containing the values
1, 2, and 3. You'll use addition to calculate the final value. Because the comma opera-
tor binds more strongly than the plus operator, you won't get what you want:

PS (1) > 1,2,1+2

N =N

CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

www.it-ebooks.info

http://www.it-ebooks.info/

The result is an array of the four elements 1,2,1,2 instead of 1,2,3. This is because the
expression was parsed as (1,2,1)+2, building an array of three elements and then
appending a fourth. You have to use parentheses to get the desired effect:

PS (2) > 1,2, (1+2)

w N

Now you get the result you want.

NOTE The comma operator has higher precedence than any other
operator except type casts and property and array references. This is
worth mentioning again because it’s important to keep in mind when
writing expressions. If you don’t remember this, you’ll produce some
strange results.

The next thing we'll look at is nested arrays. Because a PowerShell array can hold any
type of object, obviously it can also hold another array. You've already seen that using
the array subexpression operation was 7ot the way to build a nested array. Now let’s
talk about how you do it using assignments and the comma operator. Your task will
be to build the tree structure shown in figure 5.6.

This data structure starts with an array of two elements. These two elements are
also both arrays of two elements, and they, in turn, contain arrays of two numbers.
Let’s see how to go about constructing something like this.

There are a couple of ways you can approach this. First, you can build nested
arrays one piece at a time using assignments. Alternatively, you can just nest the
comma operator within parentheses. Starting with last things first, here’s how to
build a nested array structure using commas and parentheses. The result is concise:

PS (1) > $a = (((1,2),(3,4)),((5,6),(7,8)))

NOTE LISP users should feel fairly comfortable with this expression if
they ignore the commas. Everybody else is probably shuddering.

O @O0 E E @ @eE

Figure 5.6 A binary tree (arrays of arrays of arrays)

ARRAY OPERATORS 163

www.it-ebooks.info

http://www.it-ebooks.info/

164

And here’s the same construction using intermediate variables and assignments. Its
rather less concise but hopefully easier to understand.

$t1 = 1,2
$t2 = 3,4
$t3 = 5,6
$t4 = 7,8
$t1 1 = $tl,$t2

$t1.2 = $t3,5t4

$a = $tl_1, $t2_2

In either case, what you've done is build a data structure that looks like the tree shown

in figure 5.6.

NOTE For Perl and PHP users: in those languages, you have to do
something special to get reference semantics with arrays. In PowerShell,
arrays are always reference types, so no special notation is needed.

Let’s verify the shape of this data structure. First, use the length property to verify
that $a does hold an array of two elements:

PS (2) > S$Sa.Length
2

Next, check the length of the array stored in the first element of that array:

PS (3) > $a[0].Length
2

It’s also two elements long, as is the array stored in the second element:

PS (4) > Sa[l].Length

2

Now let’s look two levels down. This is done by indexing the result of an index as
shown:

PS (5) > $al[l1]1[0].Length

2

Note that $a[0][0] isnt the same as $a[0, 0], which is either a subset of the ele-
ments in the array called a s/ice if $a is one-dimensional, or a single index if the array is
two-dimensional (see section 5.4.3 for more information on slices). You can compose
index operations as deeply as you need to. This example retrieves the second element
of the first element of the second element stored in $a:

PS (6) > sal1][0][1]

6

To see exactly what's going on here, take a look at figure 5.7. In this figure, the dotted
lines show the path followed to get to the value 6.

CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

www.it-ebooks.info

http://www.it-ebooks.info/

$af[l][0][1] @ [1]
I T FARN

5011

A =:@EE @oE

Figure 5.7 Indexing through a binary tree with the expression $a[1] [0] [1]

Here’s another example. Index with $a[0] [0] [0], which follows the leftmost edge of
the tree, thus producing 1 (as shown in figure 5.8).

$al0]1([0]([0] @

1

o

10

g) 0 o

S 0T\ /) | ']\
EA R N e I R

Figure 5.8 Indexing the leftmost edge of the same tree with $a[0] [0] [0]

These examples show how you can construct arbitrarily complex data structures in
PowerShell. Although this isn’t something you'll need to use frequently, the capability
is there if you need it. In section 5.4.3, when we discuss array slices, you'll see an
example using nested arrays to index multidimensional arrays.

5.4.2 The range operator

The next operator we'll discuss is the range operator (. .). This operator is effectively
a shortcut for generating a sequential array of numbers. For example, the expression

1..5
is equivalent to
1,2,3,4,5

although it's somewhat more efficient than using the commas. The syntax for the
range operator is

<valueExpression> .. <valueExpression>

ARRAY OPERATORS 165

www.it-ebooks.info

http://www.it-ebooks.info/

166

It has higher precedence than all the binary operators except for the comma operator.
This means that expressions like

PS (1) > 1..3+4..6

work, but the following gives you a syntax error:

PS (2) > 1+43..4+6

Cannot convert "System.Object[]" to "System.Int32".
At line:1 char:3

+ 1+3 <<<< ..4+6

It’s an error because the expression is being parsed like

1+ (3..4) + 6

This is because the range operator has higher precedence than the addition operator.
In a range operator expression, the left and right operands represent bounds, but

either the left or the right can be the upper bound. If the left operand is greater than
the right operand, a descending sequence is generated:

PS (3) > 5..1

PN WU

The boundaries can also be negative:

PS (4) > -5..-1

-5

-4

-3

-2

-1

Finally, the upper and lower bounds must resolve to integers after applying the usual
type conversions. A string that looks like a number will automatically be converted
into a number and a floating-point value will automatically be converted to an inte-
ger using the banker’s rounding algorithm described in chapter 4:

PS (5) > "1.1" .. 2.6

2
3

The range operator is most commonly used with the foreach loop because it allows
you to easily loop a specific number of times or over a specific range of numbers. This
is done so often that the PowerShell engine treats it in a special way. A range like

CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

www.it-ebooks.info

http://www.it-ebooks.info/

1..10mb doesn’t generate a 10 MB array—it just treats the range endpoints as the
lower and upper bounds of the loop, making it very efficient. (The foreach loop is
described in detail in the next chapter.)

NOTE In version 1 of PowerShell, the range operator was limited to
an upper bound of 40 KB to avoid accidentally creating arrays that
were too large. In practice this was never a problem, so this limit was
removed in version 2 with one exception. In restricted language mode,
this limit is still enforced. Restricted language mode is covered in
appendix D on the book’s website.

The other place where the range operator gets used frequently is with array slices,
which you'll learn about next.

543 Array indexing and slicing

Most people don't think of indexing into an array as involving operators or that [] is
an operator, but in fact, that’s exactly what it is. It has a left operand and a right oper-
and (the “right” operand is inside the square brackets). The syntax for an array index-
ing expression is

<valueExpression> [<valueExpression> |

There are a couple of things to note here. First, this is one of the few areas where you
can’t directly use a pipeline. That’s because square brackets don’t (and can’t) delimit a
pipeline. Square brackets are used in pipeline arguments as wildcard patterns, as
shown in the following command:

dir [abc]l*.txt | sort length

This pipeline returns all the text files in the current directory that start with a, b, or ¢,
sorted by length. Now, if the square bracket ended the pipeline, youd have to type
this instead:

dir "[abcl*.txt" | sort length

So, if you do want to use a pipeline as an index expression, you have to use parenthe-
ses or the subexpression notation.

The second thing to note is that spaces aren’t allowed between the last character of
the expression being indexed and the opening square bracket. This is necessary to dis-
tinguish array expressions on the command line from wildcard patterns. Here’s an
example to illustrate why this is a problem. First assign an array of three elements to $a:

PS (14) > sa=1,2,3

Now write out the entire array along with the string “[0]” (remember, on the com-
mand line, strings don't need to be quoted):

PS (15) > write-host $a [0]
12 3 [0]

ARRAY OPERATORS 167

www.it-ebooks.info

http://www.it-ebooks.info/

168

Next, just write out the first element of the array:

PS (16) > write-host $a[0]
1

You can see that the only difference between the first and second command lines is
the presence of a space between the array variable and the opening square bracket.
This is why spaces aren’t permitted in array indexing operations. The square bracket
is used for wildcard expressions, and we don’t want those confused with array index-
ing on the command line.

From the syntax (and from previous examples), you can see that array indexing
works on more than just variables; it can be applied to any expression that returns a
value. Because the precedence of the square brackets is high (meaning that they get
evaluated before most other operators), you usually have to put the expression in
parentheses. If you don’t, you'll get an error, as in the following example:

PS (1) > 1,2,3[0]
Unable to index into an object of type System.Int32.

At line:1 char:7
+ 1,2,3[0 <<<<]

The error occurred because, due to precedence rules, you were in effect trying to
index into the scalar quantity “3”, which is not indexable. If you put the left value
expression in parentheses, it works as desired:

PS (2) > (1,2,3)1[0]

1

PS (3) >

In this example, you retrieved the first element in the collection, which is at index 0.
(Like all .NET-based languages, indexes start at 0 in PowerShell.) PowerShell also sup-
ports negative indexes, which index from the end of the array. Let’s try it out:

PS (3) > (1,2,3)[-1]

3
PS (4) > (1,2,3)[-2]
2
PS (5) > (1,2,3)[-3]
1

Specifying -1 retrieves the last element in the array, -2 retrieves the second-to-last ele-
ment, and so on. In fact, negative indexes are exactly equivalent to taking the length
of the array and subtracting the index from the array:

PS (7) > sal[Sa.Length - 1]

3
PS (8) > Sal[$Sa.Length - 2]
2
PS (9) > Sal[$Sa.Length - 3]
1

In the example, $a.Length - 1 retrieves the last element of the array just like -1 did.
In effect, negative indexing is just a shorthand for $array.Length - $index.

CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

www.it-ebooks.info

http://www.it-ebooks.info/

$a:‘1‘2‘3‘4‘5‘6‘7ﬂ Original array

Figure 5.9 How an array
slice is generated from the ;

_| 3 5 Array slice
original array $a [21 3/ 4! 5] = -n-nl y

Array slices

You've seen how to get individual elements out of an array. You can get sequences of
elements out of arrays as well. Extracting these sequences is called array slicing and the
results are array slices, as illustrated in figure 5.9.

Slicing is done by specifying an array of indexes instead of just a single index. The
corresponding element for each index is extracted from the original array and
returned as a new array that’s a slice of the original. From the command line, this
operation looks like this:

PS (1) > sa =1,2,3,4,5,6,7
PS (2) > $al2,3,4,5]

This example used the array 2,3, 4,5 to get the corresponding elements out of the
array in $a. Here’s a variation on this example:

PS (3) > S$Sindexes = 2,3,4,5
PS (4) > Sal[S$Sindexes]

o Ul W

This time, the code stored the list of indexes in a variable, and then used the variable
to perform the indexing. The effect was the same. Now let’s process the values that
are stored in the $indexes variable. You'll use the Foreach-0Object cmdlet to pro-
cess each element of the array and assign the results back to the array:

PS (5) > $indexes = 2,3,4,5 | foreach {$_-1}

You want to adjust for the fact that arrays start at index 0, so subtract 1 from each
index element. Now when you do the indexing

PS (6) > Sal[Sindexes]

Ul W N

ARRAY OPERATORS 169

www.it-ebooks.info

http://www.it-ebooks.info/

544

170

you get the elements that correspond to the original index value—2 returns 2, and so
on. But do you need to use the intermediate variable? Lets try it:

PS (7) > $al2,3,4,5 | foreach {$_-1}]

Missing ']' after array index expression.

At line:1 char:12
+ %$al2,3,4,5 | <<<< foreach {$_-1}]

So you get a parsing error. This doesnt mean that you can’t do it. It just means that
you have to wrap the expression in brackets so it will be treated as a single value:

PS (8) > $sal[(2,3,4,5 | foreach {$_-11})1

2

3

4

5
PS (9) >

This time there was no error, and you get the values you expected.

Using the range operator with arrays

There’s one other tool in the indexing toolkit: the range operator discussed in the pre-
vious section. This operator is a convenient way to get slices of arrays. Say you have
an array of 10 elements, 0 through 9. To get the first four elements of an array, you
can use the range operator as follows:

PS (2) > $al0..3]

0

1

2

3

By taking advantage of the way negative indexing works, you can get the last four ele-
ments of the array by doing this:

PS (3) > $al-4..-1]

6

7

8

9

You can even use ranges to reverse an array. To do this, you need to know the length
of the array, which you can get through the length property. You can see this in the
following example, which casts the result of the expression to a string so it will be dis-
played on one line:

PS (6) > [string] S$al (Sa.Length-1) .. 0]
9876543210

NOTE This isn’t an efficient way of reversing the array. Using the
Reverse static member on the [array] class is more efficient. See

section 5.4.4 for more information on how to use .NET methods in
PowerShell.

CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

www.it-ebooks.info

http://www.it-ebooks.info/

In PowerShell, slicing works for retrieving elements of an array, but you can’t use it for
assignments. You get an error if you try. For example, try to replace the slice (2,3, 4]
with a single value 12:

pPs (1) > $a =1,2,3,4,5,6,7,8

PS (2) > $al2,3,4] = 12

Array assignment to [2,3,4] failed because assignment to slices is

not supported.

At line:1 char:4

+ $al2 <<<< ,3,4] = 12

As you can see, you get an error telling you that assignment to slices isn't supported.
Here’s what you have to do to get the desired transformation:

PS (3) > $a = sa[0,1] + 12 + $a[5 .. 7]
PS (4) > Sa

Basically, you have to take the array slices before and after the desired values and then
concatenate all three pieces together to produce a new array.

545 Working with multidimensional arrays

So far we've covered one-dimensional arrays as well as arrays of arrays (which are also
called jagged arrays). The reason for the term “jagged” is shown in figure 5.10.

In figure 5.10, $a is an array of arrays as you’ve seen before, but each of the mem-
ber arrays is a different length. So instead of having a regular structure, you have a
jagged one because the counts are uneven.

$af[01[2] -eq 2

g LI oo
. |

sa4] ‘ 0 ‘ 1 ‘ 2 \ 3 H $a[31[3] -eq 3
Sal5]

=
@ $al4]1[0] -eq O
ol

$a[5][1] -eq 1

Figure 5.10 An example of a jagged array in the variable $a. Each member of Sa
is also an array but they are all of different lengths—hence the term “jagged.”

ARRAY OPERATORS 171

www.it-ebooks.info

http://www.it-ebooks.info/

172

$a = new-object 'object[,]' 6,4

1 2 3 4 5 $a[0, 0] -eqg O

6 7 8 9 | 10| 11 $al[5, 0] -eg 5

12 | 13 | 14 | 15| 16 | 17 : i i
$al0, 3] -eqg 18 Figure 5.11 Atwo-dimensional

18 | 19 | 20 | 21 | 22 | 23 sal5, 3] —eq 23 6 x 4 array of numbers

Now that you understand what a jagged array is, we'll move on to multidimensional
arrays. PowerShell needs to support multidimensional arrays because .NET allows for
arrays to be multidimensional and PowerShell is built on top of .NET. Figure 5.11
shows a two-dimensional array.

As shown in figure 5.11, PowerShell indexes into multidimensional arrays by
looking at the type of the array and mapping the set of indexes onto the number of
dimensions or rank the array has. If you specify two indexes and the array is one-
dimensional, you'll get two elements back. If the array is two-dimensional, you’ll get
one element back. Let’s try this.

First, construct a multidimensional array using the New-0Object cmdlet:

PS (1) > $2d = new-object 'object[,]' 2,2

This statement created a 2 x 2 array of objects. Look at the dimensions of the array by
retrieving the Rank property from the object:

PS {2) > $2d.Rank
2

Now set the value in the array to particular values. Do this by indexing into the array:

PS (3) > $2d[0,0] = "a"
PS (4) > $2d([(1,0] = 'b’
PS (5) > $24[0,1] = 'c¢'
PS (6) > $2d[1,1] = 'd'
PS (7) > s$2d[1,1]

d

This appears to imply that slices don’t work in multidimensional arrays, but in fact
they do when you use nested arrays of indexes and wrap the expression by using the
comma operator in parentheses:
PS (8) > $2d[(0,0) , (1,0)]

a
b

This example retrieved the elements of the array at indexes (0,0) and (1,0). And, as in
the case of one-dimensional arrays, you can use variables for indexing:

PS (9) > Sone=0,0 ; S$two=1,0

PS (10) > $2d [$one, Stwo]

Unexpected token ' $one, $two ' in expression or statement.

At line:1 char:18
+ $2d [$one, $two] <<<<

CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

www.it-ebooks.info

http://www.it-ebooks.info/

5.5

PS (11) > s$2d[S$one, Stwo]
a
b

And you can even use a variable containing a pair of index arrays:

PS (12) > S$pair = S$one, Stwo
PS (13) > $2d[$pair]

a

b

This covers pretty much everything we need to say about arrays. Now let’s move on to
properties and methods. As you'll remember from chapter 1, properties and methods
are the attributes of an object that let you inspect and manipulate that object. Because
PowerShell is an object-based shell, a good understanding of how properties and
methods work is necessary if you want to master PowerShell. We're going to be
spending a fair bit of time on these features, so let’s get started.

PROPERTY AND METHOD OPERATORS

Property and method reference operators

<typeValue>::<memberNameExpr> <typeValue>::<memberNameExpr>(<arguments>)

<value>.<memberNameExpr> <value>.<memberNameExpr>(<arguments>)

Figure 5.12 The property and method operators in PowerShell

As you've seen in many examples so far, the property dereference operator in Power-
Shell is the dot (.). As was the case with array indexing, this is properly considered an
operator in PowerShell with left and right operand expressions. This operator, along
with the static member operator : :, is shown in figure 5.12.

We'll get to what that means in a second.

NOTE When we say property here, we're talking about any kind of
data member on an object, regardless of the underlying Common Lan-
guage Runtime representation (or implementation) of the member. If
you don’t know what this means, good—because it doesn’t matter. But
some people do like to know all the details of what’s going on.

First let’s look back at the basics. Everything in PowerShell is an object (even scripts
and functions, as you'll see later on). As discussed in chapter 1, objects have proper-
ties (data) and methods (code). To get at both, you use the dot operator. To get the
length of a string, you use the length property:

PS (1) > "Hello world!".Length
12

PROPERTY AND METHOD OPERATORS 173

www.it-ebooks.info

http://www.it-ebooks.info/

5.5.1

174

In a similar fashion, you can get the length of an array:

PS (3) > (1,2,3,4,5) .Length

5

As was the case with the left square bracket in array indexing, spaces arent permitted
between the left operand and the dot:

PS (4) > (1,2,3,4,5) .count

Unexpected token '.count' in expression or statement.

At line:1 char:18

+ (1,2,3,4,5) .count <<<<

This is necessary to make sure that arguments to cmdlets aren’t mistaken for property
reference operations:

PS (5) > write-output (1,2,3,4,5) .count

g W N

.count

The dot operator

So much for the basics—now let’s get back to this statement about the dot being an
operator. What's special about it? Well, just as the left operand can be an expression,
so can the right operand. The right operand is evaluated, which results in a value.
That value is then used as the name of the property on the left operand to retrieve.
This series of steps is illustrated in figure 5.13.

Initial expression ("*" * 5) . ("len" + "gth")

Vi

Evaluates right-hand side ("*" * 5) . length
to get property name

Evaluates left-hand side

to get object from which "**%kxx" _ length
to retrieve property
Evaluates . to retrieve 5

value of property

Figure 5.13 The steps performed to retrieve a calculated property from an object

CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s look at an example of how this process can be used with variables. First define a
variable to hold the name of the property you want to retrieve:

PS (6) > Sprop = "length"
Now, use that variable in an expression to retrieve the property:

PS (7) > "Hello world".Sprop
11

This mechanism gives you that magic “one more level of indirection” computer sci-
ence people are so fond of. Let’s expand on this. To get a list of all the properties on
an object, use the Get-Member (or gm) cmdlet on an object. This example uses dir to
geta FileInfo object to work with:

PS (1) > @(dir c:\windows*.d1l1l) [0] | gm -type property

TypeName: System.IO.FileInfo

Name MemberType Definition

Attributes Property System.IO.FileAttributes Attributes
CreationTime Property System.DateTime CreationTime {get;s
CreationTimeUtc Property System.DateTime CreationTimeUtc {ge
Directory Property System.IO.DirectoryInfo Directory
DirectoryName Property System.String DirectoryName {get;}
Exists Property System.Boolean Exists {get;}
Extension Property System.String Extension {get;}
FullName Property System.String FullName {get;}
IsReadOnly Property System.Boolean IsReadOnly {get;set;}
LastAccessTime Property System.DateTime LastAccessTime {get;s
LastAccessTimeUtc Property System.DateTime LastAccessTimeUtc {ge
LastWriteTime Property System.DateTime LastWriteTime {get;se
LastWriteTimeUtc Property System.DateTime LastWriteTimeUtc {get
Length Property System.Int64 Length {get;}

Name Property System.String Name {get;}

This gives you a list of all the properties. Of course, you only need the name, so you
can use the Name property on these objects:

PS (2) > @(dir c:\windows*.d1l1l) [0] | gm -type property |
>>> foreach {$_.name}
Attributes
CreationTime
CreationTimeUtc
Directory
DirectoryName

Exists

Extension

FullName

IsReadOnly
LastAccessTime
LastAccessTimeUtc
LastWriteTime

PROPERTY AND METHOD OPERATORS 175

www.it-ebooks.info

http://www.it-ebooks.info/

176

LastWriteTimeUtc
Length
Name

Next you'll use this list of names to get the corresponding values from the original
object. First get the object into a variable:

PS (1) > Sobj = @(dir c:\windows*.dll) [0]

And get the list of names; for brevity’s sake, just get the properties that start with the
letter /£

PS (2) > $names = $obj | gm -type property 1* | foreach {$_.name}
Finally, use the list of names to print out the value:

PS (3) > $names | foreach { "$_ = $($obj.$_)" }
LastAccessTime = 3/25/2006 2:18:50 AM
LastAccessTimeUtc = 3/25/2006 10:18:50 AM
LastWriteTime = 8/10/2004 12:00:00 PM
LastWriteTimeUtc = 8/10/2004 7:00:00 PM

Length = 94784

PS (4) >

Next let’s look at using methods. The method call syntax is

<valueExpression> . <methodName> (<argument> , <argument> , ...)

As always, spaces aren’t allowed before or after the dot or before the opening paren-
thesis for the reasons discussed earlier. Here’s a basic example:

PS (1) > "Hello world!".substring(0,5)
Hello

This example uses the Substring method to extract the first five characters from the
left operand string. As you can see, the syntax for method invocations in PowerShell
matches what you see in pretty much every other language that has methods. Con-
trast this with how commands are called. In method calls, arguments in the argument
list are separated by commas and the whole list is enclosed in parentheses. With com-
mands, the arguments are separated with spaces and the command ends at the end of
line or at a command terminator, such as the semicolon or the pipe symbol.

This is another area where the language design team experimented with alternate
syntaxes. One of the experiments we conducted resulted in a command-like method
invocation syntax that looked something like

"Hello world!". (substring 0 5)

The team chose not to use this syntax for two reasons (which, by the way, means that
you'll get an error if you try using it). First, it collided with the ability to perform indi-
rect property name retrievals. The second (and more important) reason was that people
also found it uncomfortably strange. Empirically, a programmer-style syntax for pro-
grammer-style activities like method invocations and a shell-style syntax for shell-style

CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

www.it-ebooks.info

http://www.it-ebooks.info/

activities like command invocation seems to work best. This approach is not without
some small issues. First, if you want to pass an expression to a method, you have to wrap
that array in parentheses so the array comma operator isn’t confused with the argument
separator commas. Second, if you want to use the output of a command as an argu-
ment, you have to wrap the command in parentheses. Here’s an example:

PS (1) > [string]::join('+',(1,2,3))
1+2+3

This example uses the [string]::Join method to create a string out of the array
1,2, 3 with a plus sign between each one. Now let’s do the same thing with the out-
put of a command. Here’s a command that returns the handle count for the rundll
processes:

PS (1) > get-process rundll* | foreach{s$_.handles}

58
109

Now join that output into a string, again separated with the plus sign (with spaces on
either side this time):

PS (2) > [stringl::join(" + ", (get-process rundll* |
>>> foreach{$_.handles}))
58 + 109

The observant reader will have noticed the use of the double-colon operator (::) in
these examples. We briefly discussed this operator in chapter 3 as part of our discus-
sion of types in PowerShell. In the next section, we’ll look at it in more detail.

5.5.2 Static methods and the double-colon operator
The :: operator is the static member accessor. Whereas the dot operator retrieved
instance members, the double-colon operator accesses static members on a class, as is
the case with the join method in the example at the end of the last section. The left
operand to the static member accessor is required to be a type—either a type literal or
an expression returning a type as you see here:
PS (1) > St = [string]
PS (2) > S$t::join('+',(1,2,3))
1+2+3
PS (3) >
The language design team chose to use a separate operator for accessing static meth-
ods because of the way static methods are accessed. Here’s the problem. If you had a
type MyModule with a static property called Module, then the expression
[MyModule] .Module
is ambiguous. This is because there’s also an instance member Module on the System
.Type instance representing the type MyModule. Now you can’t tell if the “Module”
PROPERTY AND METHOD OPERATORS 177

www.it-ebooks.info

http://www.it-ebooks.info/

5.5.3

178

instance member on System.Type or the “Module” static member on MyModule
should be retrieved. By using the double-colon operator, you remove this ambiguity.

NOTE Other languages get around this ambiguity by using the
typeof () operator. Using typeof () in this example, typeof (My
Module) .Module retrieves the instance property on the Type object
and MyModule.Module retrieves the static property implemented by
the MyModule class.

Indirect method invocation

Earlier we talked about how you could do indirect property references by using a vari-
able on the right side of the dot operator. You can do the same thing with methods,
but it’s a bit more complicated. The obvious approach

$x.8y(2)

doesn’t work. What happens is that $x.$y returns an object that describes the
method you want to invoke:

PS {1) > "abc".substring

MemberType : Method

OverloadDefinitions : {string Substring(int startIndex), st
ring Substring(int startIndex, int le
ngth) }

TypeNameOfvalue : System.Management .Automation.PSMethod

Value : string Substring(int startIndex), str
ing Substring(int startIndex, int len
gth)

Name : Substring

IsInstance : True

This turns out to be a handy way to get information about a method. Let’s pick out the
overloads for Substring—that is, the different forms of this method that you can use:
PS {2) > "abc".substring | foreach {

>> $_.OverloadDefinitions -split '\),"' }

>>

string Substring(int startIndex)

string Substring(int startIndex, int length)

PS (3) >

Now you have this information object—what else can you do with it? The thing you
most probably want to do is to invoke it. The way to do this is to use the Invoke
method on the method information object:

PS {3) > "abc".substring.Invoke(1l)
bc

In version 2 of PowerShell, this also works for static methods. First assign the name of
the operation to invoke to a variable:

PS {4) > Smethod = "sin"

CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

www.it-ebooks.info

http://www.it-ebooks.info/

5.6

Look at the information about that method:

PS {5) > [math]::$method

MemberType : Method

OverloadDefinitions : {static double Sin(double a)}
TypeNameOfVvalue : System.Management .Automation.PSMethod
Value : static double Sin(double a)

Name : Sin

IsInstance : True

And, finally, invoke it:

PS {6) > [math]::S$method.invoke(3.14)
0.00159265291648683

Although it’s an advanced technique, the ability to invoke properties and methods
indirectly turns out to be powerful because it means that the behavior of your script
can be configured at runtime. You'll learn how this can be used when we talk about
scriptblocks in chapter 8.

This finishes our discussion of properties and methods. You may have noticed
that in some of the examples so far, you’ve had to do some fairly complicated things
to display the results in the way you want. Clearly, on occasion you’ll need a better
way to present output, and that’s the purpose of the format operator, covered in the
next section.

THE FORMAAT OPERATOR

Most of the time, PowerShell’s Format operator

built-in formatting and output

systen1\ViH.take care of[)resent— <formatSpecificationString> -f <argumentList>

ing your results, but some-
times you need more explicit Figure 5.14 The format operator lets you control the
control over the formatting of formatting of your output.
your output. You may also
want to format text strings in a specific way, like displaying numbers in hexadecimal
format. PowerShell allows you to do these things with the format operator, shown in
figure 5.14.

The format operator (-£f) is a binary operator that takes a format string as its left
operand and an array of values to format as its right operand. Here’s an example:

PS (1) > '{2} {1} {0}' -f 1,2,3
321

In the format string, the values enclosed in braces correspond to the index of the ele-
ment in the right operand array. The element is converted into a string and then dis-
played. Along with reordering, when the elements are displayed, you can control how
they’re laid out.

THE FORMAT OPERATOR 179

www.it-ebooks.info

http://www.it-ebooks.info/

180

NOTE For people familiar with the Python language, the PowerShell
format operator is modeled on the Python % operator. But because
PowerShell doesn’t use the % character as part of its formatting direc-
tives, it didn’t make mnemonic sense for the format operator in Power-
Shell to be %. Instead, the language design team chose -£.

Here are some more examples:

PS (3) > ']{0,10}] Ox{l:x}|{2,-10}|" -£ 10,20,30
| 10| o0x14[30 |
Here, the first format specifier element (, 10) tells the system to pad the text out to 10
characters. The next element is printed with the specifier :x, telling the system to dis-
play the number as a hexadecimal value. The final display specification has a field
width specifier, but this time it’s a negative value, indicating that the field should be
padded to the right instead of to the left.

The -f operator is shorthand for calling the .NET Format method on the
System.String class. The previous example can be rewritten as
PS (4) > [string]::Format('|{0,10}| Ox{Ll:x}|{2,-10}|",10,20,30)
| 10| 0x14]30 |
and you'll get exactly the same results. The key benefit of the - operator is that it’s a
lot shorter to type. This is useful when youre typing on the command line. The
underlying Format () method has a rich set of specifiers. The basic syntax of these
specifiers is

{<index>[,<alignment>] [:<formatString>]}

Some examples of using format specifiers are shown in table 5.4.

Table 5.4 Examples of using format specifiers

Format

specifier Description Example Output

{0} Displays a particular element "{0} {1}" -f "a","b" a b

{0:x} Displays a number in hexadecimal "0x{0:x}" -f 181342 0x2c45e

{0:X} Displays a number in hexadecimal with "0x{0:X}" -f 181342 0x2C45E
the letters in uppercase

{0:dn} Displays a decimal number left-justified, "{0:d8}" -f 3 00000003
padded with zeros

{0:p} Displays a number as a percentage "{0:p}" -f .123 12.30 %

{0:C} Display a number as currency "{0:c}" -f 12.34 $12.34

{0, n} Displays with field width n, left-aligned " |{0,5}|" -f "hi" | hi]

{0,-n) Displays with field width n, right- "]{0,-5}|" -£ "hi" |hi |

aligned

CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

www.it-ebooks.info

http://www.it-ebooks.info/

5.7

Table 5.4 Examples of using format specifiers (continued)

Format s

specifier Description Example Output
{0:hh} Displays the hours and minutes froma " {0:hh}:{0:mm}" -£f 01:34

{0 :mm} DateTime value (get-date)

{0:C} Displays using the currency symbol for " |{0,10:C}|" -f 12.4 | $12.40]

the current culture

There are many more things you can do with formatting. Refer to the Microsoft
MSDN documentation for the full details of the various options.

Now that you know how to format strings, let’s look at how you can direct your
output to files with the redirection operators.

REDIRECTION AND THE REDIRECTION OPERATORS

Redirection operators

<pipeline> > <outputFile>
<pipeline> 2> <errorFile>

<pipeline>

<pipeline> >> <outputFile>
<pipeline> 2>> <errorFile>

2>&1

Figure 5.15 The redirection operators that are available in PowerShell

All modern shell languages have input and output redirection operators, and Power-
Shell is no different. The redirection operators supported in PowerShell are shown in

figure 5.15.

Table 5.5 presents the operators with examples and more details about their

semantics.

Table 5.5 PowerShell redirection operators

Operator Example Results Description
> dir > out.txt Contents of out.txt are Redirect pipeline output to a file,
replaced. overwriting the current contents.
>> dir >> out.txt Contents of out.txt are Redirect pipeline output to a file,
appended to. appending to the existing content.
2> dir nosuchfile.txt Contents of err.txtare Redirect error output to a file, over
2> err.txt replaced by the error writing the current contents.
messages.
2>> dir nosuchfile.txt Contents of err.txtare Redirect error output to a file,
2>> err.txt appended with the appending to the current contents.
error messages.
2>&1 dir nosuchfile.txt The error message is The error messages are written to

2>&1

written to the output.

the output pipe instead of the error
pipe.

REDIRECTION AND THE REDIRECTION OPERATORS

www.it-ebooks.info

181

http://www.it-ebooks.info/

182

Table 5.5 PowerShell redirection operators (continued)

Operator Example Results Description
< Not implemented in This operator is reserved for input
PowerShell v1.0 or v2.0 redirection, which isn't imple-

mented in v1.0 or v2.0 of Power
Shell. Using this operator in an
expression will result in a syntax
error.

The redirection operators allow you to control where output and error objects are
written (including discarding them if that’s what you want to do). The following
example saves the output of the Get-Date cmdlet to a file called out.txt:

PS (1) > get-date > out.txt
Now display the contents of this file:

PS (2) > type out.txt

Tuesday, January 31, 2006 9:56:25 PM

You can see that the object has been rendered to text using the same mechanism as
youd use when displaying on the console. Now let’s see what happens when you redi-
rect the error output from a cmdlet. You'll let the output be displayed normally:

PS (3) > dir out.txt,nosuchfile 2> err.txt

Directory: Microsoft.Management.Automation.Core\FileSystem: :C:\
working

Mode LastWriteTime Length Name

-—a--- 1/31/2006 9:56 PM 40 out.txt

Obviously no error was displayed on the console. Let’s see what was written to the
error file:

PS (4) > type err.txt

get-childitem : Cannot find path 'C:\working\nosuchfile' because it
does not exist.

At line:1 char:4

+ dir <<<< out.txt,nosuchfile 2> err.txt

You see the full error message that would’ve been displayed on the console. Now try
the append operator. Add another line to the output file you created earlier and dis-
play the contents of the file:

PS (5) > get-date >> out.txt
PS (6) > type out.txt

Tuesday, January 31, 2006 9:56:25 PM
Tuesday, January 31, 2006 9:57:33 PM

CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

www.it-ebooks.info

http://www.it-ebooks.info/

You see that there are now two records containing the current date. You can also
append error records to a file using the 2>> operator.

The next operator to discuss is the stream combiner, 2>&1. This operator causes
error objects to be routed into the output stream instead of going to the error stream.
This allows you to capture error records along with your output. For example, if you
want to get all the output and error records from a script to go to the same file, you'd
just do

myScript > output.txt 2>&1
or
myScript 2>&1 > output.txt

The order doesn’t matter. Now all the error records will appear inline with the output
records in the file. This technique also works with assignment.

Sa = myScript 2>&l

This code causes all the output and error objects from myScript to be placed in $a.
You can then separate the errors by checking for their type with the -is operator, but
itd be easier to separate them up front. This is another place where you can use the
grouping constructs. The following construction allows you to capture the output
objects in $output and the error objects in $error:

Serror = $(Soutput = myScript) 2>&1

Youd use this idiom when you wanted to take some additional action on the error
objects. For example, you might be deleting a set of files in a directory. Some of the
deletions might fail. These will be recorded in $error, allowing you to take addi-
tional actions after the deletion operation has completed.

Sometimes you want to discard output or errors. In PowerShell, you do this by
redirecting to $null. For example, if you don’t care about the output from
myScript, then you'd write

myScript > Snull
and to discard the errors, you'd write
myScript 2> $null

The last thing to mention for I/O redirection is that, under the covers, redirection is
done using the out-File cmdlet. In fact,

myScript > file.txt

. . <« . b2l

1S JuSt Syntactlc Sugar fOr

myScript | out-file -path file.txt

In some cases, you'll want to use Out-File directly because it gives you more control
over the way the output is written. The synopsis for out-File is

REDIRECTION AND THE REDIRECTION OPERATORS 183

www.it-ebooks.info

http://www.it-ebooks.info/

5.8

184

Out-File [-FilePath] <String> [[-Encoding] <String>]
[-Append] [-Force] [-NoClobber] [-Width <Int32>]
[-InputObject <PSObject>]

[-Verbose] [-Debug] [-ErrorAction <ActionPreference>]
[-ErrorVariable <String>] [-OutVariable <String>]
[-OutBuffer <Int32>] [-WhatIf] [-Confirm]]

The interesting parameters are -encoding, which lets you specify the encoding
(such as ASCII, Unicode, UTFS, and so on); -append, which appends to an existing
file instead of overwriting it; -noclobber, which prevents you from overwriting
(clobbering) an existing file; and -width, which tells the cmdlet how wide you want
the output formatted. The full details for this cmdlet are available by running the
command

get-help out-file

at the PowerShell command line.

Earlier in this section, we talked about assignment as being a kind of output redi-
rection. This analogy is even more significant than we alluded to there. We'll go into
details in the next section, when we finally cover variables themselves.

WORKING WITH VARIABLES

In many of the examples so far, you've used variables. Now let’s look at the details of
PowerShell variables. First, PowerShell variables aren’t declared; theyre just created as
needed on first assignment. There also isn’t any such thing as an uninitialized vari-
able. If you reference a variable that doesnt yet exist, the system will return the value
$null (although it wont create a variable):

PS (1) > S$SNoSuchVariable
PS (2) > SNoSuchVariable -eq $null
True

This example looks at a variable that doesn’t exist and returns $null.

NOTE $null, like $true and $false, is a special constant variable
that’s defined by the system. You can’t change the value of these variables.
You can tell whether a variable exists by using the Test-Path cmdlet:

PS (3) > test-path variable:NoSuchVariable
False

This works because variables are part of the PowerShell unified namespaces. Just as
files and the Registry are available through virtual drives, so are PowerShell variables.
You can get a list of all of the variables that currently exist by using

dir variable:/

So how do you create a variable? Let’s find out.
y

CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

www.it-ebooks.info

http://www.it-ebooks.info/

5.8.1 Creating variables
There are a number of variables that are defined by the system: $true, $false, and
$null are the ones you've seen so far (we'll look at the others as we come to them).
User variables are created on first assignment, as you can see here:
PS (3) > $var = 1
PS (4) > $var
1
PS (5) > $var = "Hi there"
PS (6) > Svar
Hi there
PS (7) > Svar = get-date
PS (8) > $var
Sunday, January 29, 2006 7:23:29 PM
In this example, first you assigned a number, then a string, then a DateTime object.
This illustrates that PowerShell variables can hold any type of object. If you do want
to add a type attribute to a variable, you use the cast notation on the left of the vari-
able. Let’s add a type attribute to the variable $val:
PS (1) > [int] $var = 2
Looking at the result, you see the number 2.
PS (2) > $var
2
That’s fine. What happens if you try to assign a string to the variable?
PS (3) > Svar = "0123"
PS (4) > s$var
123
First, there was no error. Second, by looking at the output of the variable, you can see
that the string “0123” was converted into the number 123. This is why we say that
the variable has a type attribute. Unlike strongly typed languages where a variable can
only be assigned an object of the correct type, PowerShell will allow you to assign any
object as long as it’s convertible to the target type using the rules described in chapter
3. If the type isn’t convertible, you'll get a runtime type-conversion error (as opposed
to a “compile-time” error):
PS (5) > Svar = "abc"
Cannot convert "abc" to "System.Int32". Error: "Input string was no
t in a correct format."
At line:1 char:5
+ $var <<<< = "abc"
This code tried to assign “abc” to a variable with the type attribute [int]. Because
“abc” can’t be can’t be converted to a number, you see a type-conversion error.

WORKING WITH VARIABLES 185

www.it-ebooks.info

http://www.it-ebooks.info/

5.8.2

186

Variable name syntax

Now what about variable names? What characters are allowed in a variable name?
The answer is, any character you want, with some caveats. There are two notations
for variables. The simple notation starts with a dollar sign followed by a sequence of
characters, which can include letters, numbers, the underscore, and the colon. The
colon has a special meaning that we'll get to in a minute. The second notation allows
you to use any character in a variable name. It looks like this:

${This is a variable name}

You can use any character you want in the braces. You can even use a close brace if
you escape it, as you see here:

PS (7) > ${this is a variable name with a '} in it}

PS (8) > ${this is a variable name with a "} in it} = 13
PS (9) > ${this is a variable name with a '} in it}
13

Earlier, we said that the colon character was special in a variable name. This is used to
delimit the namespace that the system uses to locate the variable. For example, to
access PowerShell global variables, you use the global namespace:

PS (1) > S$Sglobal:var = 13

PS (2) > $global:var
13

This example set the variable var in the global context to the value 13. You can also
use the namespace notation to access variables at other scopes. This is called a scope
modifier. Scopes will be covered in chapter 7, so we won't say anything more about
that here.

Along with the scope modifiers, the namespace notation lets you get at any of the
resources surfaced in PowerShell as drives. For example, to get at the environment
variables, you use the env namespace:

PS (1) > Senv:SystemRoot

C: \WINDOWS

In this example, you retrieved the contents of the SystemRoot environment variable.
You can use these variables directly in paths. For example:

PS (3) > dir Senv:systemroot\explorer.exe

Directory: Microsoft.Management.Automation.Core\FileSystem: :C:\
WINDOWS

Mode LastWriteTime Length Name

-a--- 8/10/2004 12:00 PM 1032192 explorer.exe

This expression retrieved the file system information for explorer.exe.

CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

www.it-ebooks.info

http://www.it-ebooks.info/

NOTE For cmd.exe or command.com users, the equivalent syntax
would be %systemroot%\explorer.exe. There, the percent signs
delimit the variable. In PowerShell, this is done with braces.

Many of the namespace providers are also available through the variable notation (but
you usually have to wrap the path in braces). Let’s look back at an example you saw at
the beginning of chapter 4:

${c:0ld.txt} -replace 'is (red|blue)', 'was $1' > new.txt

The initial construct should now start to make sense. The sequence ${c:0ld.txt} is
a variable that references the file system provider through the C: drive and retrieves
the contexts of the file named old.txt. With this simple notation, you read the con-
tents of a file. No open/read/close—you treat the file itself as an atomic value.

NOTE Using variable notation to access a file can be startling at first,
but it’s a logical consequence of the unified data model in PowerShell.
Because things like variables and functions are available as drives,
things such as drives are also available using the variable notation. In
effect, this is an application of the Model-View-Controller (MVC) pat-
tern. Each type of data store (file system, variables, Registry, and so
forth) is a “model.” The PowerShell provider infrastructure acts as the
controller, and there are (by default) two views: the “file system” navi-
gation view and the variable view. The user is free to choose and use
the view most suitable to the task at hand.

You can also write to a file using the namespace variable notation. Here’s that example
rewritten to use variable assignment instead of a redirection operator (remember, ear-
lier we said that assignment can be considered a form of redirection in PowerShell):

${c:new.txt} = ${c:o0ld.txt} -replace 'is (red|blue)', 'was $1'

You can even do an in-place update of a file by using the same variable on both sides
of the assignment operator. To update the file old.txt instead of making a copy, use

${c:0ld.txt} = ${c:o0ld.txt} -replace 'is (red|blue)', 'was $1'

All you did was change the name in the variable reference from new.txt to old.txt.
This won’t work if you use the redirection operator, because the output file is opened
before the input file is read. This would have the unfortunate effect of truncating the
previous contents of the output file. In the assignment case, the file is read atomically;
that is, all at once, processed, then written atomically. This allows for “in-place” edits
because the file is buffered entirely in memory instead of in a temporary file. To do
this with redirection, youd have to save the output to a temporary file and then
rename the temporary file so it replaces the original. Now let’s leverage this feature
along with multiple assignments to swap two files, f1.txt and f2.txt. Earlier in this

WORKING WITH VARIABLES 187

www.it-ebooks.info

http://www.it-ebooks.info/

5.8.3

188

chapter you saw how to swap two variables. You can use the same technique to swap
two files:

S{c:fl.txt},${c:f2.txt} = ${c:f2.txt},${c:fl.txt}

NOTE All of these examples using variables to read and write files
cause the entire contents of files to be loaded into memory as a collec-
tion of strings. On modern computers it’s possible to handle moder-
ately large files this way, but doing it with large files is memory
intensive and inefficient, and might even fail under some conditions.
Keep this in mind when using these techniques.

When the file system provider reads the file, it returns the file as an array of strings.

NOTE When accessing a file using the variable namespace notation,
PowerShell assumes that it’s working with a text file. Because the nota-
tion doesn’t provide a mechanism for specifying the encoding, you
can’t use this technique on binary files. You'll have to use the Get-
Content and Set-Content cmdlets instead.

This provides a simple way to get the length of a file:

S{c:file.txt}.Length

The downside of this simple construct is that it requires reading the entire file into
memory and then counting the result. It works fine for small files (a few megabytes),
but it won’t work on files that are gigabytes in size.

Working with the variable cmdlets

So far you've been using the PowerShell language features to access variables, but you
can also work with variables using the variable cmdlets. These cmdlets let you do a
couple of things you can’t do directly from the language.

Indirectly setting a variable

Sometimes it’s useful to be able to get or set a variable when you won't know the
name of that variable until runtime. For example, you might want to initialize a set of
variables from a CSV file. You can’t do this using the variable syntax in the language
because the name of the variable to set is resolved at parse time. Let’s work through
this example. First you need a CSV file:

PS (1) > cat variables.csv

"Name", "Value"

"srcHost", "machinel"

"srcPath", "c:\data\source\mailbox.pst"
"destHost", "machine2"

"destPath", "d:\backup"

CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

www.it-ebooks.info

http://www.it-ebooks.info/

As you can see, the CSV file is simply a text file with rows of values separated by com-
mas, hence CSV or comma-separated values. Now you'll use the Import-csv cmdlet
to import this file as structured objects:

PS (2) > import-csv variables.csv

Name Value

srcHost machinel

srcPath c:\data\source\mailbox.pst
destHost machine2

destPath d:\backup

You can see the cmdlet has treated the first row in the table as the names of the prop-
erties to use on the objects and then added the name and value property to each
object. The choice of Name and Value was deliberate because these are the names of
the parameters on the Set-variable cmdlet. This cmdlet takes input from the pipe-
line by property name so you can pipe the output of Import-Csv directly into Set-
Variable

PS (3) > import-csv variables.csv | set-variable

and it’s as simple as that. If you wanted to see the full details, you could specify the
-verbose parameter to the cmdlet and it would display each variable as it was set.
Now use the normal variable syntax to verify that you've set things up the way you

planned:

PS (4) > S$srcHost

Name Value
;;;;ost ;;;é;nel

Okay, good. You can use the parameters on the cmdlet to directly set this variable

PS (5) > set-variable -name srcHost -value machine3
PS (6) > $srcHost
machine3

or use the (much) shorter alias sv to do it:

PS (7) > sv srcHost machined
PS (8) > S$srcHost
machine4

Now let’s see what else you can do with the cmdlets.

Getting and setting variable options

If there’s a cmdlet to set a variable, obviously there should also be a variable to get
variables—the Get-vVariable cmdlet:

PS (9) > get-variable -value srcHost
machine4

WORKING WITH VARIABLES 189

www.it-ebooks.info

http://www.it-ebooks.info/

Notice that this example specified the -Value parameter. What happens if you don’t
do that?

PS (10) > get-variable srcHost | gm

TypeName: System.Management.Automation.PSVariable

Name MemberType Definition

Equals Method bool Equals (System.Object obj)
GetHashCode Method int GetHashCode ()

GetType Method type GetType ()

IsValidvalue Method bool Isvalidvalue (System.Object
ToString Method string ToString()

Attributes Property System.Collections.ObjectModel.C...
Description Property System.String Description {get;s...

Module Property System.Management .Automation.PSM. ..
ModuleName Property System.String ModuleName {get;}
Name Property System.String Name {get;}

Options Property System.Management .Automation. Sco. ..
Value Property System.Object Value {get;set;}

Visibility Property System.Management .Automation.Ses. ..

If a value for -variable isnt specified, Get-Variable returns the PSvariable
object that PowerShell uses to represent this object. You can see the Name and value
properties on this object, but there are a lot of other properties as well. Let’s explore
the Options property. This property allows us to set options on the variable includ-
ing things like Readonly and Constant. The variables you've read from the CSV file
are still changeable:

PS (11) > S$srcHost = "machine9"
PS (12) > S$srcHost
machine9

Bug, if you're using them to configure the environment, you may not want them to
be. To address this, you can set the ReadOnly option using Set-Variable and the
-Option parameter:

PS (13) > set-variable -option readonly srcHost machinel
PS (14) > S$srcHost = "machine4"
Cannot overwrite variable srcHost because it is read-only o
r constant.
At line:1 char:9
+ $srcHost <<<< = "machine4"
+ CategoryInfo : WriteError: (srcHost:String)
[], SessionStateUnauthorizedAccessException
+ FullyQualifiedErrorId : VariableNotWritable

Now when you try and change the value of this variable, you get an error. The vari-
able is unchanged:

190 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

www.it-ebooks.info

http://www.it-ebooks.info/

PS (15) > get-variable -value srcHost

Name Value

srcHost machinel
If you can’t change it, how about removing it? Try just the remove command:

PS (16) > remove-variable srcHost

Remove-Variable : Cannot remove variable srcHost because it
is constant or read-only. If the variable is read-only, tr

vy the operation again specifying the Force option.

At line:1 char:16

+ remove-variable <<<< srcHost

+ CategoryInfo : WriteError: (srcHost:String)
[Remove-Variable], SessionStateUnauthorizedAccessExce
ption

+ FullyQualifiedErrorId : VariableNotRemovable,Microso
ft.PowerShell.Commands.RemoveVariableCommand

This failed with the expected error. But you can still force the removal of a read-only
variable by using the -Force parameter on Remove-Variable:

PS (17) > remove-variable -force srcHost

When you specify -Force, the variable is removed and there’s no error. If you don't
want the value to be changed, you can use the Constant option:

PS (18) > set-variable -option constant srcHost machinel
When this option is specified, even using -Force will fail:

PS (19) > remove-variable -force srcHost

Remove-Variable : Cannot remove variable srcHost because it
is constant or read-only. If the variable is read-only, tr

v the operation again specifying the Force option.

At line:1 char:16

+ remove-variable <<<< -force srcHost
+ CategoryInfo : WriteError: (srcHost:String)
[Remove-Variable], SessionStateUnauthorizedAccessExce
ption

+ FullyQualifiedErrorId : VariableNotRemovable,Microso
ft.PowerShell.Commands.RemoveVariableCommand

And now for one last trick. You've looked at how to use the name of a variable to
access it indirectly. You can bypass the name-lookup process and use the variable ref-
erence directly. Let’s see how this works.

Using PSVariable objects as references

To use a PSVariable object as a reference, first you have to get one. Earlier you saw
how to do this with Get-variable (or its alias gv):

PS (21) > Sref = gv destHost

WORKING WITH VARIABLES 191

www.it-ebooks.info

http://www.it-ebooks.info/

Now that you have a reference, you can use the reference to get the variable’s name

PS (22) > Sref.Name
destHost

or its value:

PS (23) > Sref.value
machine?2

Having the reference also allows you to set the variable’s value:
PS (24) > Sref.vValue = "machinel2"
When you check the variable using the language syntax, you see the change.

PS (25) > SdestHost
machinel?2

Variable names vs. variable values

Here’s a tip to keep in mind if you're trying to do these tricks. You need to keep vari-
able name and variable value firmly separated in your thinking. If you don’t think
about what youre doing closely enough, trying to use $name to get the value of the
variable seems reasonable:

PS (26) > gv S$srcPath

Get-Variable : Cannot find a variable with name '@{Name=src

Path; Value=c:\data\source\mailbox.pst}"'.

At line:1 char:3
+ gv <<<< S$srcPath

+ CategoryInfo : ObjectNotFound: (@{Name=srcP
ath;...ce\mailbox.pst}:String) [Get-Variable], ItemNot
FoundException

+ FullyQualifiedErrorId : VariableNotFound,Microsoft.P
owerShell.Commands .GetVariableCommand

But it gives you a rather confusing error. This is because PowerShell resolved the
token $srcPath and passed its value to the cmdlet, not the name. Even quoting it but
still having the $ sign in the string is wrong:
PS (27) > gv 'S$SsrcPath'
Get-Variable : Cannot find a variable with name 'S$srcPath'.
At line:1 char:3
+ gv <<<< ‘'SsrcPath'
+ CategoryInfo : ObjectNotFound: (SsrcPath:St
ring) [Get-Variable], ItemNotFoundException

+ FullyQualifiedErrorId : VariableNotFound,Microsoft.P
owerShell.Commands.GetVariableCommand

This error seems bizarre because you know that there’s such a variable. The reason it
fails is because $ isn’t part of the variable’s name. It’s part of a token in the PowerShell
language indicating that whatever follows the $ is the name of a variable.

The correct way to do this is to use the variable name without the leading $.

192 CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

www.it-ebooks.info

http://www.it-ebooks.info/

5.84

PS (28) > gv srcPath

Name Value

srcPath @{Name=srcPath; Value=c:\...

Finally, here’s why all of this works the way it does. Define a variable $n that has part
of the path name:

PS (29) > $n = 'src'

Now combine that variable with another fragment using string expansion, and it
works properly:

PS (30) > gv "${n}Path"

Name Value
srcPath @{Name=srcPath; Value=c:\...
PS (31) >

This gives you a great deal of flexibility when dealing with variable names. It can be
complex but any situation where you need to do this is, by definition, complex. Hav-
ing this facility doesn’t complicate normal day-to-day activities but does make some
more sophisticated scenarios possible. Now let’s look at another set of potentially
complex scenarios that can be solved by using variables in a special way.

Splatting a variable

The last topic that were going to touch on in this chapter is something called variable
splatting, which was added to PowerShell in version 2. This is a term taken from the
Ruby scripting language and affects how argument variables are passed to commands.

Normally, when you have a variable containing an array or hashtable and you use
this variable as a command argument, its value is passed as a single argument. Splat-
ting turns each value in the collection into individual arguments. So, if you have an
array with three elements in it, those elements will be passed as three individual argu-
ments. If you have a hashtable, each name-value pair becomes a named parame-
ter—argument pair for the command.

To do this is, when referencing the variable that you want to pass to the com-
mand, you use @ instead of $ as the prefix to the variable. Here’s an example to show
how this works. First you need a command to work with—you’ll define a function
(see chapter 7) that takes three arguments:

PS {1) > function s ($x, $y, $z) { "x=$x, y=S8y, z=$z" }

This function uses string expansion to display the value of each of its parameters.
Now create an array to pass into this command:

PS {2) > $list =1,2,3

WORKING WITH VARIABLES 193

www.it-ebooks.info

http://www.it-ebooks.info/

194

The variable $1ist contains three integers. Pass this using the normal variable
notation:

PS {3) > s $list

x=1 2 3, y=, z=

From the output, you can see that all three values in the argument were assigned to
the $x parameter. The other two parameters didn’t get assigned anything. Next, splat
the variable by calling the function with @1ist instead of $1ist:

PS {4) > s @list

x=1, y=2, z=3

This time the output shows that each parameter was assigned one member of the
array in the variable. What happens if there are more elements than there are vari-
ables? Let’s try it. First add some elements to your $1ist variable:

PS {5) > $list += 5,6,7
PS {6) > S$list

N o U N

Now the variable contains seven elements. Pass this to the function:

PS {7) > s @list

x=1, y=2, z=3

It appears that the last four arguments have vanished. In fact, what has happened is that
they’re assigned to the special variable $args. Let’s redefine the function to show this:

PS {8) > function s ($x, Sy, $z) { "S$x,S8y,S$z args=S$Sargs" }

Print out the three formal arguments $x, $, and $z along with the special $args vari-
able. When you run the new function

PS {9) > s @list

1,2,3 args=5 6 7

you see that the missing arguments have ended up in $args. The most important use
for splatting is for enabling one command to effectively call another. You'll see how
this can be used to wrap existing commands and either extend or restrict their behav-
ior in later chapters. (Variable parameters and how they’re bound is covered in much
more detail in chapter 7.)

Now that you understand how an array of values can be splatted, let’s look at how
you work with named parameters. In the previous example, you could have used the
explicit names of the parameters to pass things in instead of relying on position. For
example, you can use the names to explicitly pass in values for -x and -y, in the
reverse order

CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

www.it-ebooks.info

http://www.it-ebooks.info/

PS {10) > s -y first -x second

second, first, args=

and you see that second is in the first (x) position and first is in the second posi-
tion. How can you use splatting to do this? Well, parameters and their values are
name-value pairs, and in PowerShell, the way to work with name-value pairs is with
hashtables. Let’s try this out. First create a hashtable with the values you want:

PS {11) > sh = @{x='second'; y='first'}
Now splat the hashtable the same way you splatted the variable containing an array

PS {12) > s @h
second, first, args=

and, as before, the x parameter gets the value second and the v parameter gets the
value first. The next question you should have is, what happens if you also want to
explicitly pass in -z? Try it:

PS {13) > s -z third @eh 1 2 3
second, first, third args=1 2 3

It works exactly the way you want. If you specify the parameter both in the hashtable
and explicitly on the command line, you'll get an error:
PS {14) > s -x boo @h 1 2 3
s : Cannot bind parameter because parameter 'x' is specifie
d more than once. To provide multiple values to parameters
that can accept multiple values, use the array syntax. For
example, "-parameter valuel,value2,value3".
At line:1 char:2
+ S8 <<<< -x boo @h 1 2 3
+ CategoryInfo : InvalidArgument: (:) [s], Pa
rameterBindingException
+ FullyQualifiedErrorId : ParameterAlreadyBound, s

Let’s look at a practical example using this feature. The write-Host cmdlet allows
you to write strings to the screen specifying the foreground and background colors.
This is great, but if you need to write a lot of strings or parameterize the colors that
are used, repeatedly setting both parameters will get a bit tedious:

PS {16) > write-host -foreground black -background white Hi

Hi

Specifying the parameters takes up more space than the string you want to write!
Using splatting, instead of passing in both parameters all the time, you can set up a
hashtable once and pass that around instead:

PS {17) > S$colors = @{foreground="black";background="white"}

PS {18) > write-host @Qcolors "Hi there"
Hi there

WORKING WITH VARIABLES 195

www.it-ebooks.info

http://www.it-ebooks.info/

5.9

196

This approach is more convenient and less error prone than having to explicitly pass
both color parameters, making it an effective way to “style” your output using a single
variable.

NOTE By now I'm sure you’re wondering why this technique is it
called splatting. Here’s the reasoning behind this term. Think of a rock
hitting a car windshield. A rock is a solid object that remains intact
after it bounces off your car. Next, think of a bug hitting the wind-
shield instead of a rock. Splat! The contents of the bug are distributed
over the windshield instead of remaining as a single object. This is
what splatting does to a variable argument. It distributes the members
of the argument collection as individual arguments instead of remain-
ing a single intact argument. (The other rational behind this term is
that, in Ruby, the operator is *, which is what the aforementioned
insect looks like post-impact. PowerShell can’t use * because it would
be confused with the wildcard character. Instead it uses @ because splat-
ting involves arrays and PowerShell uses @ for many array operations.) I
submit that this is the most visceral mnemonic in the programming
language field (at least that I'm aware of).

This is all we're going to say about variables here. In chapter 7, we'll return to vari-
ables and talk about how variables are defined in functions and how they’re scoped in
the PowerShell language. We'll also look at splatting again when we cover how com-
mands can call other commands.

SUMMARY

In this chapter, we finished our coverage of PowerShell operators and expressions. We
looked at how to build complex data structures in PowerShell and how to use the
redirection operators to write output to files. We covered arrays, properties, and
methods. Finally, we explored the basics of PowerShell variable semantics and variable
namespaces. Here are the important points to remember:

* The type operators allow you to write scripts that have polymorphic behavior. By
using these operators to examine the types of objects, you can decide how to
process different types of objects. You can also use the operators to dynamically
convert from one type of object to another.

* The prefix and postfix operators ++ and -- are a convenient way of increment-
ing and decrementing variables.

* The subexpression operator $(...) allows you to use arbitrary PowerShell
script code anywhere that you can use a value expression. The array subexpres-
sion operator @(...) also guarantees that the result of an expression will
always be an array.

CHAPTER 5 ADVANCED OPERATORS AND VARIABLES

www.it-ebooks.info

http://www.it-ebooks.info/

SUMMARY

PowerShell arrays support both jagged arrays—that is, arrays that contain or ref-
erence other arrays and multidimensional arrays. Array slicing is supported,
both for one-dimensional and multidimensional arrays when retrieving values.
It isn’t supported when assigning to an array index.

Use the comma operator (,)to build arrays and complex nested data structures
such as jagged arrays.

Use the dot operator (.) for accessing instance members and the double-colon
(::) operator for accessing static members. We looked at how to indirectly
invoke both properties and methods using these operators.

The PowerShell redirection operators allow you to control where the output
and error objects are written. They also allow you to easily discard these objects
if so desired by redirecting to $null. The redirection operators are just “syntac-
tic sugar” for the Out-File cmdlet. Using the cmdlet directly allows you to
control things such as what file encoding will be used when writing to a file.

The format operator - £ can be used to perform complex formatting tasks when
the default formatting doesn’t produce the desired results. The formatting
sequences are the same as the sequences used by the System.String.Format ()
method in the .NET Framework.

PowerShell variable namespaces let you access a variety of Windows “data
stores,” including environment variables and the file system using the variable
notation.

It’s possible to use the variable cmdlets to set options on variables and do indi-
rect variable accesses using either the variable name or a PSvariable object.

PowerShell version 2 introduced a new variable notation called splatting that
allows you to take collections of values, either arrays or hashtables, and distrib-
ute the members of these collections as individual arguments to a command.

197

www.it-ebooks.info

http://www.it-ebooks.info/

6

Flow control in scripts

6.1 The conditional statement 200 6.5 Flow control using cmdlets 223
6.2 Looping statements 203 6.6 Statements as values 231

6.3 Labels, break, and continue 212 6.7 A word about performance 233
6.4 The switch statement 215 6.8 Summary 234

I may not have gone where I intended to go, but I think I have ended up where
I needed to be.

—Douglas Adams, The Long Dark Tea-Time of the Soul

Previous chapters showed how you can solve surprisingly complex problems in
PowerShell using only commands and operators. You can select, sort, edit,you and
present all manner of data by composing these elements into pipelines and expres-
sions. In fact, commands and operators were the only elements available in the earli-
est prototypes of PowerShell. Sooner or later, though, if you want to write significant
programs or scripts, you must add custom looping or branch logic to your solution.
This is what we're going to cover in this chapter: PowerShell’s take on the traditional
programming constructs that all languages possess.

The PowerShell flow-control statements and cmdlets are listed in figure 6.1,
arranged in groups.

We'll go through each group in this chapter. As always, behavioral differences

exist with the PowerShell flow-control statements that new users should be aware of.

198

www.it-ebooks.info

http://www.it-ebooks.info/

Conditional statements

if (<expr>) { <statements> }
if (<expr>) { <statements> } else { <statements> }
if (<expr>) { <statements> } elseif (<expr>) { <statements> } else { <statements> }

Loop statements

while (<expr>) { <statements> }

do { <statements> } while (<expr>)

do { <statements> } until (<expr>)

for (<expr> ; <expr> ; <expr>) { <statements> }
foreach ($var in <pipeline>) { <statements> }

Break and continue statements

break break <label>
continue continue <label>

The switch statement

switch (<expr>) { <patternl> { <statements> } <pattern2> { <statements> } }
switch (<expr>) { <patternl> { <statements> } default { <statements> } }

Flow-control cmdlets

. | ForEach-Object <scriptBlock>
. | ForEach-Object -Begin <scriptBlock> -Process <scriptBlock> -End <scriptBlock>
. | Where-Object <scriptBlock>

Figure 6.1 The PowerShell flow-control statements

The most obvious difference is that PowerShell typically allows the use of pipelines
in places where other programming languages only allow simple expressions. An
interesting implication of this pipeline usage is that the PowerShell switch state-
ment is both a looping construct and a conditional statement—which is why it gets
its own group.

This is also the first time we’ve dealt with keywords in PowerShell. Keywords are
part of the core PowerShell language. This means that, unlike cmdlets, keywords
can’t be redefined or aliased. Keywords are also case insensitive so you can write
foreach, ForEach, or FOREACH and they’ll all be accepted by the interpreter. (By
convention, though, keywords in PowerShell scripts are usually written in lower-
case.) Keywords are also context sensitive, which means that they’re only treated as
keywords in a statement context—usually as the first word in a statement. This is
important because it lets you have both a foreach loop statement and a foreach
filter cmdlet, as you'll see later in this chapter. Let’s begin our discussion with the
conditional statement.

199

www.it-ebooks.info

http://www.it-ebooks.info/

Conditional statements

if (<expr>) { <statements> }
if (<expr>) { <statements> } else { <statements> }
if (<expr>) { <statements> } elseif (<expr>) { <statements> } else { <statements> }

Figure 6.2 The syntax of the PowerShell conditional statements

6.1 THE CONDITIONAL STATEMENT

PowerShell has one main conditional statement: the i statement shown in figure 6.2.
This statement lets a script decide whether an action should be performed by eval-
uating a conditional expression, then selecting the path to follow based on the results
of that evaluation. The PowerShell if statement is similar to the if statement found
in most programming languages. The one thing that’s a bit different syntactically is
the use of elseif as a single keyword for subsequent clauses. Figure 6.3 shows the
structure and syntax of this statement in detail.
Let’s work through some examples that illustrate how the if statement works.
You'll use all three of the elements—if, elseif, and else—in this example:
if ($x -gt 100)
{
"It's greater than one hundred"
}
elseif ($x -gt 50)
{
"It's greater than 50"
} else
{

"It's not very big."
}

In this example, if the variable $x holds a value greater than 100, the string “It’s

greater than one hundred” will be emitted. If $x is greater than 50 but less than 100,
it will emit “It’s greater than 50”; otherwise, you'll get “It’s not very big.” Of course,

Executed when if

condition is true elseif keyword Executed when elseif

elseif pipeline to test condition is true

if keyword else keyword

if (<pipeline>) {<statementList>} elseif (<pipeline>) {<statementList>} else {<statementList>}

Pipeline to test, enclosed in
parentheses Braces marking beginning and
end of blocks

Figure 6.3 PowerShell’s version of the if statement, which is the basic conditional state-
ment found in all scripting and programming languages

200 CHAPTER 6 FLOW CONTROL IN SCRIPTS

www.it-ebooks.info

http://www.it-ebooks.info/

you can have zero or more elseif clauses to test different things. The elseif and
else parts are optional, as is the case in other languages.

As you might have noticed, the PowerShell if statement is modeled on the if
statement found in C-derived languages, including C#, but a couple of differences
exist. First, elseif is a single keyword with no spaces allowed between the words.
Second, the braces are mandatory around the statement lists, even when you have
only a single statement in the list (or no statements for that matter, in which case you
would have to type {}). If you try to write something like

if ($x -gt 100) "It's greater than one hundred"
you'll get a syntax error:

PS (1) > if ($x -gt 100) "It's greater than one hundred"
Missing statement block after if (condition).

At line:1 char:17

+ 1f ($x -gt 100) " <<<< It's greater than one hundred"
PS (2) >

Grammar lessons

The PowerShell grammar technically could support the construction shown in the
preceding example. In fact, we did enable this feature at one point, but when people
tried it out, it resulted in a lot of errors. The problem is that a newline or a semicolon is
required to terminate a command. This leads to the situation where you write
something like

if ($x -gt 3) write x is $x while ($x--) $x

and discover that, because you've missed the semicolon before the while statement,
it writes out the while statementinstead of executing it. In the end, the cost of typing
a couple of additional characters was more than offset by a decreased error rate. For
this reason, the language design team decided to make the braces mandatory.

In general, the syntax of the if statement (and all the PowerShell flow-control state-
ments) is freeform with respect to whitespace. In other words, you can lay out your
code pretty much any way you want. You can write an i f statement that looks like this

if(Strue) {"true"}else{"false"}

with no whitespace whatsoever. Alternatively, you could also write it like this
if

(

Strue

)

{

"true"

}

else

THE CONDITIONAL STATEMENT 201

www.it-ebooks.info

http://www.it-ebooks.info/

202

{

"false"

}

where each element is on a separate line.

There’s one constraint on how you can format an if statement: when PowerShell
is being used interactively, the else or elseif keyword has to be on the same line as
the previous closing brace; otherwise, the interpreter will consider the statement com-
plete and execute it immediately.

It’s important to note that the PowerShell i £ statement allows a pipeline in the con-
dition clause, not just a simple expression. This means it’s possible to do the following:
if (dir telly*.txt | select-string penguin)

{

"There's a penguin on the telly."

}

In this example, the pipeline in the condition part of the if statement will scan all
the text files whose names start with “telly” to see whether they contain the word
“penguin.” If at least one of the files contains this word, the statement block will be
executed, printing out

There's a penguin on the telly.
Here’s another example:

if ((dir *.txt | select-string -List spam).Length -eqg 3)
{
"Spam! Spam! Spam!"
}
In this case, you search all the text files in the current directory looking for the word
“spam.” If exactly three files contain this word, then you print out

Spam! Spam! Spam!

NOTE Yes, these are, in fact, Monty Python references. This is where
the Python language got its name. If you're familiar with Python or
Perl, you'll occasionally recognize cultural references from those lan-
guages in PowerShell examples here and elsewhere. Many of the Pow-
erShell development team members had their first scripting experiences
with those languages.

Because you can use pipelines and subexpressions in the conditional part of an if
statement, you can write quite complex conditional expressions in PowerShell. With
subexpressions, you can even use an if statement inside the condition part of another
if statement. Here’s what this looks like:

PS (2) > $x = 10
PS (3) > if ($(if ($x -1t 5) { $false } else { $x }) -gt

CHAPTER 6 FLOW CONTROL IN SCRIPTS

www.it-ebooks.info

http://www.it-ebooks.info/

>>> 20) { S$false } else {Strue}

True

PS (4) > $x = 25

PS (5) > if ($(if ($x -1t 5) { $false } else { $x }) -gt
>>> 20) { Sfalse } else {Strue}

False

PS (6) > $x = 4

PS (7) > if ($(if (Sx -1t 5) { sfalse } else { $x }) -gt
>>> 20) { Sfalse } else {Strue}

True

PS (8) >

If looking at this makes your head hurt, welcome to the club—it made mine hurt to
write it. Let’s dissect this statement and see what it’s doing. Let’s take the inner if
statement first:

if ($x -1t 5) { S$false } else { S$x }

You can see that this statement is straightforward. If $x is less than the number 5, it
returns false; otherwise, it returns the value of $x. Based on this, let’s split the code
into two separate statements:

Stemp = $(if ($x -1t 5) { Sfalse } else { $x })
if (Stemp -gt 20) { Sfalse } else {Strue}

What the outer if statement is doing is also pretty obvious: if the result of the first
(formally inner) statement is greater than 20, return $false; otherwise return $true.
Now that you can do branching, let’s move on to the looping statements.

6.2 LOOPING STATEMENTS

Loop statements

while (<expr>) { <statements> }

do { <statements> } while (<expr>)

do { <statements> } until (<expr>)

for (<expr> ; <expr> ; <expr>) { <statements> }
foreach ($var in <pipeline>) { <statements> }

Figure 6.4 The PowerShell loop statements

Looping is the ability to repeat a set of actions some specific number of times, either
based on a count or a condition expression. The PowerShell loop statements cover
both of these cases and are shown in figure 6.4.

6.2.1 The while loop

In this section, we'll cover the basic looping statement in PowerShell: the while state-
ment. The while statement (also known as a while Joop) is the most basic Power-
Shell language construct for creating a loop. It executes the commands in the

LOOPING STATEMENTS 203

www.it-ebooks.info

http://www.it-ebooks.info/

6.2.2

204

Statement list, executed while

while keyword pipeline to test evaluates to true

while (<pipelineToTest>) { <statementList> }

Braces marking beginning and

Pipeline to test, enclosed end of statement block

in parentheses

Figure 6.5 The PowerShell while loop statement syntax

statement list as long as a conditional test evaluates to true. Figure 6.5 shows the
while statement syntax.

When you execute a while statement, PowerShell evaluates the <pipeline> sec-
tion of the statement before entering the <statementList> section. The output
from the pipeline is then converted to either true or false, following the rules for the
Boolean interpretation of values described in chapter 3. As long as this result converts
to true, PowerShell reruns the <statementList> section, executing each statement
in the list.

For example, the following while statement displays the numbers 1 through 3:
Sval = 0

while($Sval -ne 3)
{
Sval++
write-host "The number is Sval"

}

In this example, the condition ($val isn't equal to 3) is true while $val is 0, 1, and 2.
Each time through the loop, $val is incremented by 1 using the unary ++ increment
operator ($val++). The last time through the loop, $val is 3. When $val equals 3,
the condition statement evaluates to false and the loop exits.

To more conveniently enter this command at the PowerShell command prompt,
you can simply enter it all on one line:

$val=0; while ($val -ne 3){$val++; write-host "The number is $val"}
Notice that the semicolon separates the first command that adds 1 to $val from the
second command, which writes the value of $val to the console.

You can accomplish all the basic iterative patterns just using the while loop, but

PowerShell provides several other looping statements for common cases. Let’s look at
those next.

The do-while loop

The other while loop variant in PowerShell is the do-while loop. This is a botzom-
tested variant of the while loop. In other words, it always executes the statement list

CHAPTER 6 FLOW CONTROL IN SCRIPTS

www.it-ebooks.info

http://www.it-ebooks.info/

6.2.3

Statement list, executed while
pipeline to test evaluates to true while keyword

do keyword

do { <statementList> } while (<pipelineToTest>)

Braces marking beginning and Pipeline to test, enclosed
end of statement block in parentheses

Figure 6.6 The PowerShell do-while loop statement syntax

at least once before checking the condition. The syntax of the do-while loop is
shown in figure 6.6.
The do-while loop is effectively equivalent to
<statementList>
while (<pipeLine>)
{

<statementList>
}

where the two statement lists are identical. The final variation of the while loop is
the do/until statement. It’s identical to the do/while loop except that the sense of
the test is inverted and the statement will loop until the condition is true instead of
while it is true, as shown in this example:

PS (1) > $i=0
PS (2) > do { $i } until ($i++ -gt 3)

B~ W NP o

In this case, the statement loops until $1 is greater than 3.
Having covered the two variations of the while loop, we'll look at the for and
foreach loops next.

The for loop

The for loop is the basic counting loop in PowerShell. It’s typically used to step
through a collection of objects. It’s not used as often in PowerShell as in other lan-
guages because there are usually better ways for processing a collection, as you'll see
with the foreach statement in the next section. But the for loop is useful when you
need to know explicitly which element in the collection you're working with. Figure
6.7 shows the for loop syntax.

Notice that the three pipelines in the parentheses are just general pipelines. Con-
ventionally, the initialization pipeline initializes the loop counter variable, the test

LOOPING STATEMENTS 205

www.it-ebooks.info

http://www.it-ebooks.info/

206

Statement list, executed while

Pipeline to test pipeline to test evaluates to true

for keyword

for (<pipeline> ; <pipeline> ; <pipeline>) { <statementList> }

Initialization piveli Increment pipeline Braces marking beginning and
nitalization pipeline end of statement block

Figure 6.7 The PowerShell for loop statement syntax

pipeline tests this variable against some condition, and the increment pipeline incre-
ments the loop counter. The canonical example is

PS (1) > for ($i=0; $i -1t 5; $i++) { $i }

=W N R o

PS (2) >

But because these are arbitrary pipelines, they can do anything. (Note that if initial-
ization and increment pipelines produce output, it’s simply discarded by the inter-
preter.) Here’s an example where the condition test is used to generate a side effect
that’s then used in the statement list body:

PS (2) > for ($i=0; $(Sy = $i*2; $i -1t 5); $i++) { Sy }

W o i N O

PS (3) >

In this example, the pipeline to be tested is a subexpression that first sets $y to be
twice the current value of $i and then compares $i to 5. In the loop body, you use
the value in $y to emit the current loop counter times 2. A more practical example
would be initializing two values in the initialization pipeline:

PS (3) > for ($(Sresult=@(); $i=0); $i -1t 5; $i++) {Sresult += $i }

PS (4) > "Sresult"
01234

Here you use a subexpression in the initialization pipeline to set $result to the
empty array and the counter variable $i to 0. Then the loop counts up to 5, adding
each value to the result array.

NOTE It’s a little funny to talk about the initialization and increment
pipelines. You usually think of pipelines as producing some output. In
the for statement, the output from these pipelines is discarded and
the side effects of their execution are the interesting parts.

CHAPTER 6 FLOW CONTROL IN SCRIPTS

www.it-ebooks.info

http://www.it-ebooks.info/

6.2.4

Now let’s look at one more example using the for loop. Here you'll use it to sum up
the number of handles used by the svchost processes. First you'll get a list of these
processes:

PS (1) > S$svchosts = get-process svchost
You'll loop through this list and add the handle count for the process to $total

PS (2) > for ($(Stotal=0;$i=0); $i -1t S$svchosts.count; Si++)
>> {Stotal+=$svchosts[$i] .handles}
>>

and then print out the total:

PS (3) > S$total

3457

So using the for loop is straightforward, but it’s somewhat annoying to have to manage
the loop counter. Wouldn't it be nice if you could just let the loop counter count take
care of itself? That’s exactly what the foreach loop does for you, so let’s move on.

The foreach loop

Collections are important in any shell (or programming) environment. The whole
point of using a scripting language for automation is so that you can operate on more
than one object at a time. As you've seen in chapters 3 and 4, PowerShell provides
many ways of operating on collections. Perhaps the most straightforward of these
mechanisms is the foreach loop.

NOTE Astute readers will remember that we mentioned a foreach
cmdlet (which is an alias for the ForEach-0Object cmdlet) as well as
the foreach statement at the beginning of the chapter. To reiterate,
when the word “foreach” is used at the beginning of a statement, it’s
recognized as the foreach keyword. When it appears in the middle of
a pipeline, it’s treated as the name of a command.

This statement is syntactically identical to the C# foreach loop with the exception
that you don't have to declare the type of the loop variable (in fact, you can’t do this).
Figure 6.8 shows you the syntax for the foreach statement.

Statement list, executed once for each element
foreach keyword in keyword produced by pipeline to loop over

foreach (<variable> in <pipeline>) { <statementList> }

. o Braces marking beginning and
Loop variable Pipeline to loop over end of statement block

Figure 6.8 The PowerShell foreach loop statement syntax

LOOPING STATEMENTS 207

www.it-ebooks.info

http://www.it-ebooks.info/

208

Here’s an example. This example loops over all the text files in the current directory,
calculating the total size of all the files:

$1 = 0; foreach ($f in dir *.txt) { $1 += $f.length }

First you set the variable that will hold the total length to 0. Then, in the foreach
loop, you use the dir command to get a list of the text files in the current directory
(that is, files with the .txt extension). The foreach statement assigns elements from
this list one at a time to the loop variable $f and then executes the statement list with
this variable set. At the end of the statement, $f will retain the last value that was
assigned to it, which is the last value in the list. Compare this example to the for
loop example at the end of the previous section. Because you don't have to manually
deal with the loop counter and explicit indexing, this example is significantly simpler.

NOTE In C#, the foreach loop variable is local to the body of the
loop and is undefined outside of the loop. This isn’t the case in Power-
Shell; the loop variable is simply another variable in the current scope.
After the loop has finished executing, the variable is still visible and
accessible outside the loop and will be set to the last element in the list.
If you do want to have a locally scoped variable, you can do this with
scriptblocks, which are discussed in detail in chapter 8.

Now let’s use a variation of a previous example. Say you want to find out the number
of text files in the current directory and the total length of those files. First you'll ini-
tialize two variables: $c to hold the count of the files and $1 to hold the total length:

PS (1) > S$c=0
PS (2) > $1=0

Next run the foreach statement:
PS (3) > foreach ($f in dir *.txt) {Sc += 1; $1 += S$f.length }
Finally display the results accumulated in the variables:

PS (4) > Sc

5

PS (5) > $1
105

PS (6) >

Let’s look at the actual foreach statement in detail now. The <pipeline> part in
this example is

dir *.txt

This produces a collection of System.I0.FileInfo objects representing the files in
the current directory. The foreach statement loops over this collection, binding each
object to the variable $£ and then executing the loop body.

CHAPTER 6 FLOW CONTROL IN SCRIPTS

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluation order in the foreach loop

It’s important to note that this statement doesn't stream the results of the pipeline.
The pipeline to loop over is run to completion and only then does the loop body
begin executing. Let’s take a second to compare this behavior with the way the
ForEach-Object cmdlet works. Using the ForEach-Object cmdlet, this statement
would look like

dir *.txt | foreach-object { $c += 1; $1 += $_.length }

In the case of the ForEach-Object, the statement body is executed as soon as each
object is produced. In the foreach statement, all the objects are collected before the
loop body begins to execute. This has two implications.

First, because in the foreach statement case all the objects are gathered at once,
you need to have enough memory to hold all these objects. In the ForEach-0Object
case, only one object is read at a time, so less storage is required. From this, you'd
think that ForEach-Object should always be preferred. In the bulk-read case,
though, there are some optimizations that the foreach statement does that allow it
to perform significantly faster than the ForEach-Object cmdlet. The result is a clas-
sic speed versus space trade-off. In practice, you rarely need to consider these issues,
so use whichever seems most appropriate to the solution at hand.

NOTE The ForEach-Object cmdlet is covered later on in this chap-
ter. For Ruby language fans, ForEach-Object is effectively equivalent
to the .map () operator.

The second difference is that, in the ForEach-Object case, the execution of the
pipeline element generating the object is interleaved with the execution of the
ForEach-Object cmdlet. In other words, the command generates one object at a
time and then passes it to foreach for processing before generating the next element.
This means that the statement list can affect how subsequent pipeline input objects
are generated.

NOTE Unlike traditional shells where each command is run in a sepa-
rate process and can therefore run at the same time, in PowerShell
they’re alternating—the command on the left side runs and produces
an object, and then the command on the right side runs.

Using the $foreach loop enumerator in the foreach statement

Executing the foreach statement also defines a special variable for the duration of
the loop. This is the $foreach variable, and it’s bound to the loop enumerator. (An
enumerator is a .NET object that captures the current position in a sequence of
objects. The foreach statement keeps track of where it is in the collection through

LOOPING STATEMENTS 209

www.it-ebooks.info

http://www.it-ebooks.info/

210

the loop enumerator.) By manipulating the loop enumerator, you can skip forward in
the loop. Here’s an example:

PS (1) > foreach ($i in 1..10)

>> { [void] S$foreach.MoveNext (); $i + S$foreach.current }

>>

3

7

11

15

19

PS (2) >

In this example, the foreach loop iterates over the collection of numbers from 1 to
10. In the body of the loop, the enumerator is used to advance the loop to the next
element. It does this by calling the $foreach.MoveNext () method and then retriev-
ing the next value using $foreach.current. This lets you sum up each pair of num-
bers—(1,2), (3,4), and so on as the loop iterates.

NOTE The foreach statement can be used to iterate over anything
PowerShell considers enumerable. This typically includes anything
that implements the .NET IEnumerable interface, but PowerShell
adapts that slightly. In particular, there are some classes that imple-
ment IEnumerable that PowerShell doesn’t consider enumerable.
This includes strings and dictionaries or hashtables. Because Power-
Shell unravels collections freely, you don’t want a string to suddenly be
turned into a stream of characters or a hashtable to be shredded into a
sequence of key-value pairs. Hashtables in particular are commonly
used as lightweight (that is, typeless) objects in the PowerShell environ-
ment, so you need to preserve their scalar nature.

The value stored in $foreach is an instance of an object that implements the [Sys-
tem.Collections. IEnumerator] interface. Here’s a quick example that shows you
how to look at the members that are available on this object:
PS (1) > [System.Collections.IEnumerator].Getmembers()|foreach{”$_”}
Boolean MoveNext ()
System.Object get_Current ()
Void Reset ()
System.Object Current
PS (2) >
The output of this statement shows the Current and MoveNext () members you've
used. There’s also a Reset () member that will reset the enumerator back to the start
of the collection.

One final thing you need to know about the foreach statement is how it treats
scalar objects. Because of the way pipelines work, you don’t know ahead of time if the
pipeline will return a collection or a single scalar object. In particular, if the pipeline

CHAPTER 6 FLOW CONTROL IN SCRIPTS

www.it-ebooks.info

http://www.it-ebooks.info/

returns a single object, you can’t tell if it’s returning a scalar or a collection consisting
of one object. You can use the @ (...) construction described in chapter 5 to force
an array interpretation, but this ambiguity is common enough that the foreach
statement takes care of this by itself. A scalar object in the foreach statement is auto-
matically treated as a one-element collection:

PS (2) > foreach ($i in "hi") {$i }

hi

In this example, the value to iterate over is the scalar string “hi”. The loop executes
exactly once, printing hi. This works great most of the time, but there’s one “corner
case” that can cause some problems, as you'll see in the next section.

The foreach loop and $null

Now here’s something that really surprises (and sometimes irritates) people. What
happens if the value to iterate over is $null? Let’s find out:

PS (3) > foreach ($i in $null) { "executing" }

Executing

So the loop executes. This illustrates that PowerShell treats $null as a scalar value.
Now compare this with the empty array:

PS (4) > foreach ($i in @()) { "executing" }

Ps (5) >

This time it doesn’t execute. The empty array is unambiguously a collection with no
elements, which is quite different from a collection having one member whose value
is $null. In other words, @ () and @ ($null) aren’t the same thing. For programmers
who are used to $null being nothing, this is a jarring notion. So why does Power-
Shell work this way? Let’s look at some more examples. First we'll consider an exam-
ple where you pass in an array of three nulls:

PS {6) > foreach ($i in $null, $null, $null) {"hi"}

hi

hi

hi

The statement prints hi three times because there were three elements in the array.
Now use an array of two elements

PS {7) > foreach ($i in $null, $null) {"hi"}

hi
hi

and it prints hi twice. Logically, if there’s only one $null, it should loop exactly once

PS {8) > foreach ($i in $null) {"hi"}
hi

which is exactly what it does. PowerShell is deeply consistent, even in this case. This is
not, though, the expected or even desired behavior in a foreach loop in many cases,

LOOPING STATEMENTS 211

www.it-ebooks.info

http://www.it-ebooks.info/

6.3

212

so here’s how to work around it. You can use the write-output cmdlet (aliased to
write) to preprocess the collection you want to iterate over. If the argument to
Write-Output is $null, it doesnt write anything to the output pipe:

PS {9) > foreach ($i in write $null) {"hi"}

PS {10) >

And you see that the loop didn’t execute. So let’s run through the previous example
with the arrays of nulls. First, with three nulls

PS {10) > foreach ($i in write $null, $null, $null) {"hi"}

hi

hi
hi

and you get three iterations. Now with two

PS {11) > foreach ($i in write $null,$null) {"hi"}
hi
hi

and you get two iterations. Finally, with one $null

PS {12) > foreach ($i in write $null) {"hi"}

PS {13) >

and this time the loop doesnt execute. Although this is inconsistent behavior, it
matches user expectations and is a good trick to have in your toolkit.

NOTE In the first edition of this book, I called this a corner case and
suggested that most readers didn’t need to know about this. I was
wrong. It comes up on a surprisingly regular basis. In fact, the work-
around using Write-Output was suggested by a user, not by the
PowerShell team. Let’s hear it for the community!

On that note, let’s move on to a slightly different topic and talk about break, con-
tinue, and using labeled loops to exit out of nested loop statements.

LABELS, BREAK, AND CONTINUE

In this section, we'll discuss how to do nonstructured exits from the various looping
statements using the break and continue statements shown in figure 6.9. We'll also
cover labeled loops and how they work with break and continue. But first, some
history.

In the dawn of computer languages, there was only one flow-control statement:
goto. Although it was simple, it also resulted in programs that were hard to

The break and continue statements

Figure 6.9 The PowerShell break
break break <label> and continue statements, which
continue continue <label> may optionally take a label indicat-
ing which loop statement to break to

CHAPTER 6 FLOW CONTROL IN SCRIPTS

www.it-ebooks.info

http://www.it-ebooks.info/

understand and maintain. Then along came structured programming. Structured
programming introduced the idea of loops with single entry and exit points. This
made programs much easier to understand and therefore maintain. Constructs such as
while loops and if/then/else statements made it simpler to write programs that
are easy to follow.

NOTE For the academically inclined reader, Wikipedia.org has a nice
discussion on the topic of structured programming.

So structured programming is great—that is, until you have to exit from a set of deeply
nested while loops. That’s when pure structured programming leads to pathologically
convoluted logic because you have to litter your program with Boolean variables and
conditionals trying to achieve the flow of control you need. This is when being a little
“impure” and allowing the use of unstructured flow-control elements (including the
infamous goto statement) is useful. Now, PowerShell doesn’t actually have a goto
statement. Instead, it has break and continue statements and labeled loops. Let’s look
at some simple examples. Here’s a while loop that stops counting at 5:

PS (1) > $i=0; while (Strue) { if ($i++ -ge 5) { break } $i }

Notice in this example that the while loop condition is simply $true. Obviously,
this loop would run forever were it not for the break statement. As soon as $1i hits 5,
the break statement is executed and the loop terminates. Now let’s look at the con-
tinue statement. In this example, you have a foreach loop that loops over the num-
bers from 1 to 10:

PS (1) > foreach ($i in 1..10)

>> {

>> if ($1 % 2)

>> {

>> continue

>> }

>> Si

PS (2) >

If the number isn’t evenly divisible by 2, then the continue statement is executed.
Where the break statement immediately terminates the loop, the continue state-
ment causes the flow of execution to jump back to the beginning of the loop and

LABELS, BREAK, AND CONTINUE 213

www.it-ebooks.info

http://www.it-ebooks.info/

214

move on to the next iteration. The end result is that only even numbers are emitted.
The continue statement skips the line that would have printed the odd numbers.
So the basic break and continue statements can handle flow control in a single

loop. But what about nested loops, which was the real problem you wanted to address?
This is where /abels come in. Before the initial keyword on any of PowerShell’s loop
statements, you can add a label naming that statement. Then you can use the break
and continue keywords to jump to that statement. Here’s a simple example:
:outer while (1)
{

while (1)

{

break outer;
}
}
In this example, without the break statement, the loop would repeat forever. Instead,
the break will take you out of both the inner and outer loops.

NOTE In PowerShell, labeled break and continue statements have
one rather strange but occasionally useful characteristic: they’ll con-
tinue to search up the calling stack until a matching label is found. This
search will even cross script and function call boundaries. This means
that a break inside a function inside a script can transfer control to an
enclosing loop in the calling script. This allows for wide-ranging trans-
fer of control. This will make more sense when you get to chapter 7,
where functions are introduced.

One last thing to know about the break and continue statements—the name of the
label to jump to is actually an expression, not a constant value. You could, for exam-
ple, use a variable to name the target of the statement. Let’s try this out. First set up a
variable to hold the target name:

PS (1) > Starget = "foo"

Now use it in a loop. In this loop, if the least significant bit in the value stored in $1
is 1 (yet another way to test for odd numbers), you skip to the next iteration of the
loop named by $target

PS (2) > :foo foreach ($i in 1..10) {
>> if ($i1i -band 1) { continue Starget } $i
>> }

which produces a list of the even numbers in the range 1..10.

CHAPTER 6 FLOW CONTROL IN SCRIPTS

www.it-ebooks.info

http://www.it-ebooks.info/

6.4

6.4.1

The switch statement

switch (<expr>) { <patternl> { <statements> } <pattern2> { <statements> } }
switch (<expr>) { <patternl> { <statements> } default { <statements> } }

Figure 6.10 The PowerShell switch statement syntax

At this point, we've covered all of the basic PowerShell flow-control statements, as
well as using labels and break/continue to do nonlocal flow-control transfers. Now
let’s move on to the switch statement, which in PowerShell combines both looping
and branching capabilities.

THE SWITCH STATEMENT

The switch statement, shown in figure 6.10, is the most powerful statement in the
PowerShell language. This statement combines pattern matching, branching, and
iteration all into a single control structure. This is why it gets its own section instead
of being covered under either loops or conditionals.

At the most basic level, the switch statement in PowerShell is similar to the
switch statement in many other languages—it’s a way of selecting an action based
on a particular value. But the PowerShell switch statement has a number of addi-
tional capabilities. It can be used as a looping construct where it processes a collection
of objects instead of just a single object. It supports the advanced pattern matching
features that you’ve seen with the -match and -1ike operators. (How the pattern is
matched depends on the flags specified to the switch statement.) Finally, it can be
used to efficiently process an entire file in a single statement.

Basic use of the switch statement

Let’s begin by exploring the basic functions of the switch statement. See figure 6.11
for a look at its syntax in detail.

Pipeline producing values

Switch options :
to switch on

switch keyword

switch -options (<pipeline>)

<pattern> { <statementList> '}
<pattern> { <statementList> '}
default { <statementList> '}

Default keyword

Pattern/action clauses

Figure 6.11 The PowerShell switch statement syntax. The switch options control
how matching is done. These options are ~-regex, ~-wildcard, -match, and -case.
The pipeline produces values to switch on; alternatively, you can specify the sequence
-file <expr>instead of (<pipeline>). All matching pattern/action clauses
are executed; the default clause is executed only if there are no other matches.

THE SWITCH STATEMENT 215

www.it-ebooks.info

http://www.it-ebooks.info/

6.4.2

216

This is a pretty complex construct, so let’s start by looking at the simplest form of the
statement. Here’s the basic example:
PS (1) > switch (1) { 1 { "One" } 2 { "two" } }
One
The value to switch on is in the parentheses after the switch keyword. In this exam-
ple, it’s the number 1. That value is matched against the pattern in each clause and a//
matching actions are taken. You'll see how to change this in a second.

In this example, the switch value matches 1 so that clause emits the string “one”.
Of course, if you change the switch value to 2, you get
PS (2) > switch (2) { 1 { "One" } 2 { "two" } }
two
Now try a somewhat different example. In this case, you have two clauses that match
the switch value:
PS (4) > switch (2) { 1 { "One" } 2 { "two" } 2 {"another 2"} }

two
another 2

You can see that both of these actions are executed. As we stated earlier, the switch
statement executes all clauses that match the switch value. If you want to stop at the
first match, you use the break statement:

PS (5) > switch (2) {1 {"One"} 2 {"two"; break} 2 {"another 2"}}

two

This causes the matching process to stop after the first matching statement was exe-
cuted. But what happens if no statements match? Well, the statement quietly returns
nothing:

PS (6) > switch (3) { 1 { "One" } 2 { "two"; break } 2 {"another 2"} }

PS (7) >

To specify a default action, you can use the default clause:

PS (7) > switch (3) { 1 { "One" } 2 { "two" } default {"default"} }
default

PS (8) > switch (2) { 1 { "One" } 2 { "two" } default {"default"} }
Two

In this example, when the switch value is 3, no clause matches and the default clause
is run. But when there’s a match, the default isn’t run, as it’s not considered a match.
This covers the basic mode of operation. Now let’s move on to more advanced features.

Using wildcard patterns with the switch statement

By default, the matching clauses make an equivalence comparison against the object
in the clause. If the matching object is a string, the check is done in a case-insensitive
way, as you see in the next example:

CHAPTER 6 FLOW CONTROL IN SCRIPTS

www.it-ebooks.info

http://www.it-ebooks.info/

PS (1) > switch ('abc') {'abc' {"one"} 'ABC' {"two"}}
one
two

The switch value “abc” in this example was matched by both “abc” and “ABC”. You
can change this behavior by specifying the -casesensitive option:

PS (2) > switch -case ('abc') {'abc' {"one"} 'ABC' {"two"}}
one

Now the match occurs only when the case of the elements match.

NOTE In this example, we only used the prefix -case instead of the
full option string. In fact, only the first letter of the option is checked.

Next, let’s discuss the next switch option, the -wildcard option. When -wildcard
is specified, the switch value is converted into a string and the tests are conducted
using the wildcard pattern. (Wildcard patterns were discussed in chapter 4 with the
-1ike operator.) This is shown in the next example:

PS (4) > switch -wildcard ('abc') {a* {"astar"} *c {"starc"}}

astar
starc

In this example, the pattern a* matches anything that begins with the letter “a” and
the pattern *c matches anything that ends with the letter “c.” Again, all matching
clauses are executed.

There’s one more element to mention at this point. When a clause is matched, the
element that matched is assigned to the variable $_ before running the clause. This is
always done, even in the simple examples we discussed earlier, but it wasn’t interest-
ing because you were doing exact comparisons so you already knew what matched.
Once you introduce patterns, it’s much more useful to be able to get at the object
that matched. For example, if you’re matching against filename extensions, you’d
want to be able to get at the full filename to do any processing on that file. We'll look
at some more practical uses for this feature in later sections. For now, here’s a basic
example that shows how this match works:

PS (5) > switch -wildcard ('abc') {a* {"a*: $_"} *c {"*c: $_"}}

a*: abc

*c: abc

In the result strings, you can see that $_ was replaced by the full string of the actual
switch value.

6.4.3 Using regular expressions with the switch statement
As we discussed in chapter 4, the wildcard patterns, while useful, have limited capa-
bilities. For more sophisticated pattern matching, you used regular expressions.
THE SWITCH STATEMENT 217

www.it-ebooks.info

http://www.it-ebooks.info/

218

Regular expressions are available in the switch statement through the -regex flag.
Let’s rewrite the previous example using regular expressions instead of wildcards:

PS (6) > switch -regex ('abc') {"a {"a*: $_"} 'c$' {"*c: $_"}}

a*: abc

*c: abc

As you see, $_ is still bound to the entire matching key. But one of the most powerful
features of regular expressions is submatches. A submatch, or caprure, is a portion of
the regular expression that’s enclosed in parentheses, as discussed in chapter 4 with
the -match operator. With the -match operator, the submatches are made available
through the $matches variable. This same variable is also used in the switch state-
ment. The next example shows how this works:

PS (8) > switch -regex ('abc') {'(%a) (.*$)' {Smatches}}

Key Value
2 bc

1 a

0 abc

In the result shown here, $matches[0] is the overall key; $matches[1] is the first
submatch, in this case the leading “a”; and $matches[2] is the remainder of the
string. As always, matching is case insensitive by default, but you can specify the
-case option to make it case sensitive, as shown here:

PS (9) > switch -regex ('abc') {'("A) (.*$)' {Smatches}}

Key Value

2 bc

1 a

0 abc

PS (10) > switch -regex -case ('abc') {'("A) (.*S)' {Smatches}}

In the first command, you changed the match pattern from a to 2 and the match still
succeeded because case was ignored. In the second command, you added the -case
flag and this time the match didn’t succeed.

So far we've discussed three ways to control how matching against the switch
value works—in other words, three matching modes (actually six, because the -case
flag can be used with any of the previous three). But what if you need something a bit
more sophisticated than a simple pattern match? The switch statement lets you han-
dle this by specifying an expression in braces instead of a pattern. In the next exam-
ple, you specify two expressions that check against the switch value. Again the switch
value is made available through the variable $_:

PS (11) > switch (5) {

>> {$_ -gt 3} {"greater than three"}
>> {$_ -gt 7} {"greater than 7"}}

CHAPTER 6 FLOW CONTROL IN SCRIPTS

www.it-ebooks.info

http://www.it-ebooks.info/

>>
greater than three

PS (12) > switch (8) {

>> {$_ -gt 3} {"greater than three"}
>> {$_ -gt 7} ("greater than 7"}}

greater than three
greater than 7
PS (13) >

In the first statement, only the first clause was triggered because 5 is greater than 3
but less than 7. In the second statement, both clauses fired.

You can use these matching clauses with any of the other three matching modes:
PS (13) > switch (8) {
>> {$_ -gt 3} {"greater than three"}
>> 8 {"Was $_n}}
>>

greater than three
Was 8

The first expression, {$_ -gt 3}, evaluated to true so “greater than three” was
printed, and the switch value matched 8 so “Was 8” also printed (where $_ was
replaced by the matching value).

Now you have exact matches, pattern matches, conditional matches, and the
default clause. But what about the switch value itself? So far, all the examples have
been simple scalar values. What happens if you specify a collection of values? This is
where the switch statement acts like a form of loop.

NOTE switch works like the other looping statements in that the
expression in the parentheses is fully evaluated before it starts iterating
over the individual values.

Let’s look at another example where you specify an array of values:

PS (2) > switch(1,2,3,4,5,6) {
>> {$S_ % 2} {"0dd s$_"; continue}
>> 4 {"FOUR"}

>> default {"Even $_"}

>> }

odd 1
Even 2
odd 3
FOUR
odd 5
Even 6

In this example, the switch value is 1,2,3,4,5, 6. The switch statement loops over
the collection, testing each element against all the clauses. The first clause returns
“Odd s_7 if the current switch element isn't evenly divisible by 2. The next clause
prints out “FOUR” if the value is 4. The default clause prints out “Even $_" if the

THE SWITCH STATEMENT 219

www.it-ebooks.info

http://www.it-ebooks.info/

220

number is even. Note the use of continue in the first clause. This tells the switch
statement to stop matching any further clauses and move on to the next element in
the collection. In this instance, the switch statement is working in the same way that
the continue statement works in the other loops. It skips the remainder of the body
of the loop and continues on with the next loop iteration. What happens if you used
break instead of continue?

PS (3) > switch(1,2,3,4,5,6) {

>> {$_ % 2} {"0dd $_"; break}

>> 4 {"FOUR"}

>> default {"Even $_"}

>> }

>>
odd 1

As with the other loops, break doesn't just skip the remainder of the current itera-
tion; it terminates the overall loop processing. (If you want to continue iterating, use
continue instead. More on that later.)

Of course, iterating over a fixed collection isn’t very interesting. In fact, you can
use a pipeline in the switch value, as the next example shows. In this example, you
want to count the number of DLLs, text files, and log files in the directory c:\win-
dows. First you initialize the counter variables:

PS (1) > $dll=S$txt=$log=0

Now you run the actual switch statement. This switch statement uses wildcard pat-
terns to match the extensions on the filenames. The associated actions increment a
variable for each extension type:

PS (2) > switch -wildcard (dir c:\windows)
>> {*.dll {$dll++} *.txt {Stxt++} *.log {Slog++}}

Once you have the totals, display them:

PS (3) > "dlls: $dll text files: stxt log files: $log"
dlls: 6 text files: 9 log files: 120

Note that in this example the pipeline element is being matched against every clause.
Because a file can’t have more than one extension, this doesn’t affect the output, but it
does affect performance somewhat. It’s faster to include a continue statement after
each clause so the matching process stops as soon as the first match succeeds.

Here’s something else we glossed over earlier in our discussion of $_—it always
contains the object that was matched against. This is important to understand when
you're using the pattern matching modes of the switch statement. The pattern
matches create a string representation of the object to match against, but $_ is still
bound to the original object. Here’s an example that illustrates this point. This is
basically the same as the previous example, but this time, instead of counting the
number of files, you want to calculate the total size of all the files having a particular
extension. Here are the revised commands:

CHAPTER 6 FLOW CONTROL IN SCRIPTS

www.it-ebooks.info

http://www.it-ebooks.info/

6.4.4

PS (1) > sdll=stxt=$log=0

PS (2) > switch -wildcard (dir) {

>> * . dll {$dll+= $_.length; continue}
>> * txt {$txt+=$_.length; continue}
>> * . log {$Slog+=$_.length; continue}
>> }

PS (3) > "dlls: $dll text files: $txt log files: $log"

dlls: 166913 text files: 1866711 log files: 6669437

PS (4) >

Notice how you're using $_.length to get the length of the matching file object. If
$_ were bound to the matching string, youd be counting the lengths of the filenames
instead of the lengths of the actual files.

Processing files with the switch statement

There’s one last mode of operation for the switch statement to discuss: the -file
option. Instead of specifying an expression to iterate over as the switch value, the -file
option allows you to name a file to process. Here’s an example that processes the Win-
dows update log file. Again start by initializing the counter variables:

PS (1) > Sau=$du=$su=0

Next use the -regex and -file options to access and scan the file Windows-
Update.log, and check for update requests from Windows Update, Windows
Defender, and SMS:

PS (2) > switch -regex -file c:\windows\windowsupdate.log {
>> 'START.*Finding updates.*AutomaticUpdates' {Sau++}

>> 'START.*Finding updates.*Defender' {Sdu++}

>> 'START.*Finding updates.*SMS' {S$Ssu++}

>> }

Print the results:

PS (3) > "Automatic:$au Defender:$du SMS:S$Ssu"
Automatic:195 Defender:10 SMS:34

Now it’s possible to do basically the same thing by using Get-Content or even the
file system name trick you learned in chapter 4:

PS (4) > Sau=$du=S$su=0

PS (5) > switch -regex (${c:windowsupdate.log}) {

>> 'START.*Finding updates.*AutomaticUpdates' {Sau++}
>> 'START.*Finding updates.*Defender' {sdu++}

>> 'START.*Finding updates.*SMS' {S$Ssu++}

>> }

PS (6) > "Automatic:S$au Defender:sdu SMS:Ssu"
Automatic:195 Defender:10 SMS:34

This code uses ¢ {c:windowsupdate.log} to access the file content instead of ~-file.
So why have the -fi1le option? There are two reasons.

THE SWITCH STATEMENT 221

www.it-ebooks.info

http://www.it-ebooks.info/

6.4.5

222

The -file operation reads one line at a time, so it uses less memory than the
Get-Content cmdlet, which has to read the entire file into memory before process-
ing. Also, because -file is part of the PowerShell language, the interpreter can do
some optimizations, which gives -file performance advantages.

So, overall, the -file option can potentially give you both speed and space
advantages in some cases (the space advantage typically being the more significant,
and therefore the more important of the two). When your task involves processing a
lot of text files, the -file switch can be a useful tool.

Using the $switch loop enumerator in the switch statement

One more point: just as the foreach loop used $foreach to hold the loop enumera-
tor, the switch statement uses $switch to hold the switch loop enumerator. This is
useful in a common pattern—processing a list of options. Say you have a list of
options where the option -b takes an argument and -a, -c, and -d don’t. You'll write
a switch statement to process a list of these arguments. First set up a list of test
options. For convenience, start with a string and then use the -split operator to
break it into an array of elements:

PS (1) > Soptions= -split "-a -b Hello -c"
Next initialize the set of variables that will correspond to the flags:

PS (2) > Sa=Sc=sd=sfalse

PS (3) > $b=%null

Now you can write your switch statement. The interesting clause is the one that
handles -b. This clause uses the enumerator stored in $switch to advance the item
being processed to the next element in the list. Use a cast to [void] to discard the
return value from the call to $switch.movenext () (more on that later). Then use
$switch.current to retrieve the next value and store it in $b. The loop continues
processing the remaining arguments in the list.

PS (4) > switch ($Soptions)

>> {

>> '-a' { Sa=S$Strue }

>> '-b' { [void] S$switch.movenext(); S$b= $switch.current }
>> '-¢c' { S$c=Strue }

>> '-d' { $d=Strue }

>> }

>>

The last step in this example is to print the arguments in the list to make sure they
were all set properly:

PS (5) > "a=%$a b=%$b c=$c d=sda"
a=True b=Hello c=True d=False
PS (6) >

You see that $a and $c are true, $b contains the argument “Hello”, and $4 is still false
because it wasn't in your list of test options. The option list has been processed correctly.

CHAPTER 6 FLOW CONTROL IN SCRIPTS

www.it-ebooks.info

http://www.it-ebooks.info/

NOTE This isn’t a robust example because it’s missing all error hand-
ing. In a complete example, you'd have a default clause that generated
errors for unexpected options. Also, in the clause that processes the
argument for -b, rather than discarding the result of MoveNext () it
should check the result and generate an error if it returns false. This
would indicate that there are no more elements in the collection, so -b
would be missing its mandatory argument.

This finishes the last of the flow-control statements in the PowerShell language, but as
you saw at the beginning of this chapter, there’s another way to do selection and iter-
ation in PowerShell by using cmdlets. In the next section, we'll go over a couple of the
cmdlets that are a standard part of the PowerShell distribution. These cmdlets let you
control the flow of your script in a manner similar to the flow-control statements. (In
later sections, we'll look at how you can create your own specialized flow-control ele-
ments in PowerShell.)

6.5 FLOW CONTROL USING CMDLETS

PowerShell’s control statements are part of the language proper, but there are also
some cmdlets, shown in figure 6.12, that can be used to accomplish similar kinds of
things.

Flow-control cmdlets

.. | ForEach-Object <scriptBlock>
.. | ForEach-Object -Begin <scriptBlock> -Process <scriptBlock> -End <scriptBlock>
.. | Where-Object <scriptBlock>

Figure 6.12 Flow-control cmdlets

These cmdlets use blocks of PowerShell script enclosed in braces to provide the
“body” of the control statement. These pieces of script are called scriptblocks and are
described in detail in chapter 8. The two most frequent flow-control cmdlets that
you'll encounter are ForEach-Object and Where-Object.

6.5.1 The ForEach-Object cmdlet

The ForEach-0Object cmdlet operates on each object in a pipeline in much the same
way that the foreach statement operates on the set of values that are provided to it.
For example, here’s a foreach statement that prints the size of each text file in the
current directory:

PS (1) > foreach ($f in dir *.txt) { $f.length }

48

889

23723

328
279164

FLOW CONTROL USING CMDLETS 223

www.it-ebooks.info

http://www.it-ebooks.info/

224

Using the ForEach-0Object cmdlet, the same task can be accomplished this way:

PS (2) > dir *.txt \ foreach-object {$_.length}
48

889

23723

328

279164

The results are the same, so what’s the difference? One obvious difference is that you
don't have to create a new variable name to hold the loop value. The automatic vari-
able $_ is used as the loop variable.

NOTE Automatic variables are common in scripting languages. These
variables aren’t directly assigned to in scripts. Instead, they are set as
the side effect of an operation. One of the earlier examples of this is in
AWK. When a line is read in AWK, the text of the line is automatically
assigned to $0. The line is also split into fields. The first field is placed
in $1, the second is in $2, and so on. The Perl language is probably the
most significant user of automatic variables. In fact, as mentioned pre-
viously, Perl inspired the use of $_ in PowerShell. Automatic variables
can help reduce the size of a script, but they can also make a script hard
to read and difficult to reuse because your use of automatics may collide
with mine. From a design perspective, our approach with automatic
variables follows the salt curve. A little salt makes everything taste bet-
ter. Too much salt makes food inedible. The language design team
tried to keep the use of automatics in PowerShell at the “just right”
level. Of course, this is always a subjective judgment. Some people
really like salt.

A more subtle difference, as discussed previously, is that the loop is processed one
object at a time. In a normal foreach loop, the entire list of values is generated
before a single value is processed. In the ForEach-Object pipeline, each object is
generated and then passed to the cmdlet for processing.

The ForEach-Object cmdlet has an advantage over the foreach loop in the
amount of space being used at a particular time. For example, if you’re processing a
large file, the foreach loop would have to load the entire file into memory before
processing. When you use the ForEach-Object cmdlet, the file will be processed
one line at a time. This significantly reduces the amount of memory needed to
accomplish a task.

You'll end up using the ForEach-Object cmdlet a lot in command lines to per-
form simple transformations on objects (you’ve already used it in many examples so
far). Given the frequency of use, there are two standard aliases for this cmdlet. The
first one is (obviously) foreach. But wait a second—didn’t we say earlier in this
chapter that foreach is a keyword and keywords can’t be aliased? This is true, but

CHAPTER 6 FLOW CONTROL IN SCRIPTS

www.it-ebooks.info

http://www.it-ebooks.info/

remember, keywords are only special when they’re the first unquoted word in a state-
ment (in other words, not a string). If they appear anywhere else (for example, as an
argument or in the middle of a pipeline), they’re just another command with no spe-
cial meaning to the language. Here’s another way to think about it: the first word in a
statement is the key that the PowerShell interpreter uses to decide what kind of state-
ment it’s processing, hence the term “keyword.”

This positional constraint is how the interpreter can distinguish between the key-
word foreach

foreach ($i in 1..10) { $i }
and the aliased cmdlet foreach:
1..10 | foreach {$_}

When foreach is the first word in a statement, it’s a keyword; otherwise it’s the name
of a command.

Now let’s look at the second alias. Even though foreach is significantly shorter
than ForEach-0Object, there have still been times when users wanted it to be even
shorter.

NOTE Users wanted to get rid of this notation entirely and have
foreach be implied by an open brace following the pipe symbol. This
would have made about half of PowerShell users very happy. Unfortu-
nately, the other half were adamant that the implied operation be
Where-Object instead of ForEach-0Object.

Where extreme brevity is required, there’s a second built-in alias that’s simply the per-
cent sign (%). Now readers are saying, “You told us the percent sign is an operator!”
Well, thats true, bur only when its used as a binary operator. If it appears as the first
symbol in a statement, it has no special meaning, so you can use it as an alias for
ForEach-Object. As with keywords, operators are also context sensitive.

The % alias you write results in very concise (but occasionally hard-to-read) state-
ments such as the following, which prints the numbers from 1 to 5, times 2:
PS (1) > 1..5|%{s_*2}
2
4
6
8

10
PS (2) >

Clearly this construction is great for interactive use where brevity is important, but it
probably shouldn’t be used when writing scripts. The issue is that ForEach-Object
is so useful that a single-character symbol for it, one that is easy to distinguish, is
invaluable for experienced PowerShell users. But unlike the word foreach, % isn't
immediately meaningful to new users. So this notation is great for “conversational”

FLOW CONTROL USING CMDLETS 225

www.it-ebooks.info

http://www.it-ebooks.info/

226

PowerShell, but generally terrible for scripts that you want other people to be able to
read and maintain.

The last thing to know about the ForEach-0Object cmdlet is that it can take mul-
tiple scriptblocks. If three scriptblocks are specified, the first one is run before any
objects are processed, the second is run once for each object, and the last is run after
all objects have been processed. This is good for conducting accumulation-type oper-
ations. Here’s another variation that sums the number of handles used by the service
host svchost processes:

PS (3) > gps svchost |[%{$t=0}{$t+=$_.handles}{st}

3238

The standard alias for Get-pProcess is gps. This is used to get a list of processes
where the process name matches svchost. These process objects are then piped into
ForEach-Object, where the handle counts are summed up in $t and then emitted
in the last scriptblock. This example uses the % alias to show how concise these
expressions can be. In an interactive environment, brevity is important.

And here’s something to keep in mind when using ForEach-Object. The
ForEach-Object cmdlet works like all cmdlets: if the output object is a collection, it
gets unraveled. One way to suppress this behavior is to use the unary comma opera-
tor. For example, in the following, you assign $a an array of two elements, the second
of which is a nested array:

PS (1) > $a = 1,(2,3)
When you check the length, you see that it is 2 as expected

PS (2) > Sa.length
2

and the second element is still an array:

PS (3) > $all]
2
3

But if you run it through ForEach-0Object, you'll find that the length of the result is
now 3, and the second element in the result is the number 2:

PS (4) > $b = $a | foreach { $_ }

PS (5) > $b.length

3

PS (6) > sb[2]
2

In effect, the result has been “flattened.” But if you use the unary comma operator
before the $_ variable, the result has the same structure as the original array:

PS (7) > $b = $a | foreach {, $_ }
PS (8) > $b.length

2

PS (9) > $b[l]

CHAPTER 6 FLOW CONTROL IN SCRIPTS

www.it-ebooks.info

http://www.it-ebooks.info/

3
When chaining foreach cmdlets, you need to repeat the pattern at each stage:

PS (7) > $b = $a | foreach {, $_ } | foreach {, $_1}
PS (8) > S$b.length

2

PS (9) > S$b[1l]

2

3

Why don't you just preserve the structure as you pass the elements through instead of

unraveling by default? Well, both behaviors are, in fact, useful. Consider the follow-
ing example, which returns a list of loaded module names:

Get-Process | %${$_.modules} | sort -u modulename

Here the unraveling is exactly what you want. When we were designing PowerShell,
we considered both cases; and in applications, on average, unraveling by default was
usually what we needed. Unfortunately, it does present something of a cognitive
bump that surprises users learning to use PowerShell.

Using the return statement with ForEach-Object

Here’s another tidbit of information about something that occasionally causes prob-
lems. Although the ForEach-Object cmdlet looks like a PowerShell statement,
remember that it is in fact a command and the body of code it executes is a script-
block, also known as an anonymous function. (By anonymous, we just mean that we
haven’t given it a name. Again, we cover this in detail in chapter 11.) The important
thing to know is that the return statement (see chapter 7), when used in the script-
block argument to ForEach-Object, only exits from the ForEach-Object script-
block, not from the function or script that is calling ForEach-0Object. So, if you do
want to return out of a function or script in a foreach loop, either use the foreach
statement where the return will work as desired, or use the nonlocal labeled break
statement discussed earlier in this chapter.

How ForEach-Object processes its arguments

Let’s talk for a moment about how the ForEach-0Object cmdlet processes its argu-
ment scriptblocks. A reader of the first edition of this book observed what he thought
was an inconsistency between how the cmdlet is documented and how the following
example behaves:

$words | ForEach-Object {$h=@{}} {$h[s$_] += 1}

The help text for the cmdlet (use help ForEach-Object -Full to see this text) says
that the -Process parameter is the only positional parameter and that it’s in position
1. Therefore, according to the help file, since the -Begin parameter isn’t positional,
the example shouldn’t work. This led the reader to assume that either there was an
error in the help file, or that he misunderstood the idea of positional parameters.

FLOW CONTROL USING CMDLETS 227

www.it-ebooks.info

http://www.it-ebooks.info/

6.5.2

228

In fact the help file is correct (because the cmdlet information is extracted from
the code) but the way it works is tricky.

If you look at the signature of the -Process parameter, you'll see that, yes, it is
positional, but it also takes a collection of scriptblocks and receives all remaining
unbound arguments. So, in the case of

dir | foreach {$sum=0} {Ssum++} {$sum}

the -Process parameter is getting an array of three scriptblocks, whereas -Begin and
-End are empty. Now here’s the trick. If -Begin is empty and -Process has more
than two scriptblocks in the collection, then the first one is treated as the -Begin
scriptblock and the second one is treated as the -Process scriptblock. If -Begin is
specified but -End is not and there are two scriptblocks, then the first one is treated as
the Process clause and the second one is the End clause. Finally, if both -Begin and
-End are specified, the remaining arguments will be treated as multiple Process
clauses. This allows

| foreach {$sum=0} {$sum++} {Ssum}

dir | foreach -begin {$sum=0} {Ssum++} {$sum}
|
|

dir foreach {$sum=0} {S$Ssum++} -end {Ssum}

dir foreach -begin {$sum=0} {$sum++} -end {$Ssum}

and

dir | foreach -begin {$sum=0} -process {$sum++} -end {$sum}

to all work as expected.

On that note, we're finished with our discussion of ForEach-Object. We'll
touch on it again in chapter 8 when we discuss scriptblocks, but for now, let’s move
on to the other flow-control cmdlet commonly used in PowerShell (which, by the
way, also uses scriptblocks—you may detect a theme here).

The Where-Object cmdlet

The other common flow-control cmdlet is the Where-0bject cmdlet. This cmdlet
is used to select objects from a stream, kind of like a simple switch cmdlet. It takes
each pipeline element it receives as input, executes its scriptblock (see!) argument,
passing in the current pipeline element as $_, and then, if the scriptblock evaluates to
true, the element is written to the pipeline. We'll show this with yet another way to
select even numbers from a sequence of integers:

PS (4) > 1..10 | where {-not ($_ -band 1)}

2

4

6

8
10

The scriptblock enclosed in the braces receives each pipeline element, one after
another. If the least significant bit in the element is 1, then the scriptblock returns the

CHAPTER 6 FLOW CONTROL IN SCRIPTS

www.it-ebooks.info

http://www.it-ebooks.info/

logical complement of that value ($false) and that element is discarded. If the least
significant bit is 0, the logical complement of that is $true and the element is written
to the output pipeline. Notice that the common alias for Where-Object is simply
where. And, as with ForEach-Object, because this construction is so commonly
used interactively, there’s an additional alias, which is simply the question mark (?).
This allows the previous example to be written as

PS (5) > 1..10|?{!($_-band 1)}
2

6
8
10

Again, this is brief, but it looks like the cat walked across the keyboard (trust me on
this one). So, as before, although this is fine for interactive use, it isn’t recommended
in scripts because it’s hard to understand and maintain. As another, more compelling
example of “Software by Cats,” here’s a pathological example that combines elements
from the last few chapters—type casts, operators, and the flow-control cmdlets—to
generate a list of strings of even-numbered letters in the alphabet, where the length of
the string matches the ordinal number in the alphabet (“A” is 1, “B” is 2, and so on):

PS (1) > 1..26\?{!($_—band l)}|%{[string][char]([int][char]‘A‘+$_—1)*$_}
>>

BB

DDDD

FFFFFF

HHHHHHHH

JJJJJgagdJagda
LLLLLLLLLLLL
NNNNNNNNNNNNNN
PPPPPPPPPPPPPPPP
RRRRRRRRRRRRRRRRRR
TTTTTTTTTTTTTTTTTTTT
VVVVVVVVVVVVVVVVVVVVVV

XXXXXXKXXX XXXXX
2722272722272222722227222222272722
PS (2) >

The output is fairly self-explanatory, but the code isn’t. Figuring out how this works is
left as an exercise to the reader and as a cautionary tale not to foist this sort of rubbish
on unsuspecting coworkers. They know where you live.

Where-Object and Get-Content’s -ReadCount Parameter

On occasion, a question comes up about the Get-Content cmdlet and how its
-ReadCount parameter works. This can be an issue particularly when using this cmd-
let and parameter with Where-Object to filter the output of Get-Content. The issue
comes up when the read count is greater than 1. This causes PowerShell to act as if
some of the objects returned from Get-Content are being skipped and affects both

FLOW CONTROL USING CMDLETS 229

www.it-ebooks.info

http://www.it-ebooks.info/

230

ForEach-Object and Where-Object. After all, these cmdlets are supposed to process

or filter the input one object at a time and this isnt what appears to be happening.
Here’s what’s going on. Unfortunately the -ReadCount parameter has a confusing

name. From the PowerShell user’s perspective, it has nothing to do with reading.

What it does is control the number for records written to the next pipeline element, in

this case Where-Object or ForEach-Object . The following examples illustrate how

this works. In these examples, youll use a simple text file named test.txt, which

contains 10 lines of text and the ForEach-Object cmdlet (through its alias %) to

count the length of each object being passed down the pipeline. Youll use the @ (...)

construct to guarantee that you're always treating $_ as an array. Here are the exam-

ples with -readcount varying from 1 to 4:

PS (119) > gc test.txt -ReadCount 1 | % { @(S_).count } | select -fir 1

1

PS (120) > gc test.txt -ReadCount 2 | % { @($_).count } | select -fir 1

2

PS (121) > gc test.txt -ReadCount 3 | % { @(S_).count } | select -fir 1

3

PS (122) > gc test.txt -ReadCount 4 | % { @($_).count } | select -fir 1
4

In each case where -ReadCount is greater than 1, the variable $_ is set to a collection
of objects where the object count of that collection is equivalent to the value specified
by -ReadCount. In another example, you'll use ForEach-0Object to filter the pipeline:
PS (127) > gc test.txt -read 5 | ? {$_ -like '*'} | % { $_.count }

5
5

You can see that the filter result contains two collections of 5 objects each written to
the pipeline for a total of 10 objects. Now use ForEach-Object and the if state-
ment to filter the list:

PS (128) > (gc test.txt -read 10 | % {if ($_ -match '.') {S$_}} |
>>> Measure-Object) .count

>>>

10

This time you see a count of 10 because the value of $_ in the ForEach-Object
cmdlet is unraveled when written to the output pipe. And now let’s look at one final
example using ihere-Object:

PS (130) > (gc test.txt -read 4 | %{$_} | where {$_ -like '*a*'} |

>>> Measure-Object) .count

>>>

10

Here you've inserted one more ForEach-Object command between the gc and the
Where-Object, which simply unravels the collections in $_ and so you again see a
count of 10.

CHAPTER 6 FLOW CONTROL IN SCRIPTS

www.it-ebooks.info

http://www.it-ebooks.info/

NOTE Here’s the annoying thing: from the Get-Content developer’s
perspective, it actually is doing a read of ~ReadCount objects from the
provider. Get-Content reads -ReadCount objects and then writes them
as a single object to the pipeline instead of unraveling them. (I suspect
that this is a bug that’s turned into a feature.) Anyway, the name makes
perfect sense to the developer and absolutely no sense to the user. This
is why developers always have to be aware of the user’s perspective even
if it doesn’t precisely match the implementation details.

In summary, whenever ~ReadCount is set to a value greater than 1, usually for perfor-
mance reasons, object collections are sent through the pipeline to Where-Object
instead of individual objects. As a result, you have to take extra steps to deal with
unraveling the batched collections of objects.

At this point we’ve covered the two main flow-control cmdlets in detail. We've
discussed how they work, how they can be used, and some of the benefits (and pit-
falls) you’ll encounter when using them. An important point to note is that there’s
nothing special about these cmdlets—they can be implemented by anyone and
require no special access to the inner workings of the PowerShell engine. This is a
characteristic we’ll explore in later chapters where you’ll see how you can take advan-
tage of it. In the meantime, let’s look at one final feature of the PowerShell language:
the ability to use all these statements we’ve been talking about as expressions that
return values. Although not unique to PowerShell, this feature may seem a bit

unusual to people who are used to working with languages like VBScript or C#. Let’s
take a look.

6.6 STATEMENTS AS VALUES

Let’s return to something we discussed a bit earlier when we introduced subexpres-
sions in chapter 5—namely, the difference between statements and expressions. In
general, statements don’t return values, but if they’re used as part of a subexpression
(or a function or script as you'll see later on), they do return a result. This is best illus-
trated with an example. Assume that you didn’t have the range operator and wanted
to generate an array of numbers from 1 to 10. Here’s the traditional approach you
might use in a language such as C#:

PS (1) > Sresult = new-object System.Collections.ArrayList

PS (2) > for ($i=1; $i -le 10; S$i++) { Sresult.Append($i) }

PS (3) > "S$(Sresult.ToArray())"
12345678910

First you create an instance of System.Collections.ArrayList to hold the result.
Then you use a for loop to step through the numbers, adding each number to the
result ArrayList. Finally you convert the ArrayList to an array and display the
result. This is a straightforward approach to creating the array, but requires several

STATEMENTS AS VALUES 231

www.it-ebooks.info

http://www.it-ebooks.info/

232

steps. Using loops in subexpressions, you can simplify it quite a bit. Here’s the
rewritten example:

PS (4) > Sresult = $(for ($i=1; $i -le 10; S$i++) {s$i})

PS (5) > "Sresult"

123456780910

Here you don’t have to initialize the result or do explicit adds to the result collection.
The output of the loop is captured and automatically saved as a collection by the
interpreter. In fact, this is more efficient than the previous example, because the inter-
preter can optimize the management of the collection internally. This approach
applies to any kind of statement. Let’s look at an example where you want to condi-
tionally assign a value to a variable if it doesn’t currently have a value. First verify that
the variable has no value:

PS (1) > Svar

Now do the conditional assignment. This uses an 1f statement in a subexpression:

PS (2) > Svar = S$(if (! svar) { 12 } else {Svar})
PS (3) > Svar
12

From the output, you can see that the variable has been set. Change the variable, and
rerun the conditional assignment:

PS (4) > Svar="Hello there"

PS (5) > $var = $(if (! S$var) { 12 } else {Svar})

PS (6) > Svar

Hello there

This time the variable isn't changed.

For PowerShell version 2, the ability to assign the output of a flow-control state-
ment has been simplified so you can directly assign the output to a variable. Although
this doesn’t add any new capabilities, it does make things simpler and cleaner. For
instance, the previous example can be simplified to

PS (7) > Svar = if (! $var) { 12 } else {$var}
using this feature. And the for example you saw earlier can be simplified to
PS (4) > Sresult = for ($i=1; $i -le 10; $i++) {$i}

making it (somewhat) easier to read.

Used judiciously, the fact that statements can be used as value expressions can
simplify your code in many circumstances. By eliminating temporary variables and
extra initializations, creating collections is greatly simplified, as you saw with the for
loop. On the other hand, it’s entirely possible to use this statement-as-expression
capability to produce scripts that are hard to read. (Remember the nested if state-
ment example we looked at earlier in this chapter?) You should always keep that in
mind when using these features in scripts. The other thing to keep in mind when

CHAPTER 6 FLOW CONTROL IN SCRIPTS

www.it-ebooks.info

http://www.it-ebooks.info/

you use statements is the performance of your scripts. Let’s dig into this in a bit
more detail.

6.7 A WORD ABOUT PERFORMANCE

Now that we've covered loops in PowerShell, this is a good time to talk about perfor-
mance. PowerShell is an interpreted language, which has performance implications.
Tasks with a lot of small repetitive actions can take a long time to execute. Anything
with a loop statement can be a performance hotspot for this reason. Identifying these
hotspots and rewriting them can have a huge impact on script performance. Let’s take
a look at a real example. I was writing a script to process a collection of events,
extracting events having a specific name and ID and placing them into a new collec-
tion. The script looked something like this:

Sresults = @()

for ($1=0; $i -1t S$EventList.length ; S$i++)

{

Sname = [string] S$Events([$i].ProviderName
$id = [long] $Events[$i].Id

if ($Sname -ne "My-Provider-Name")
{

continue

if ($id -ne 3005) {

continue

Sresults += S$Events[$i]

}

This script indexed through the collection of events using the for statement, and
then used the continue statement to skip to the next event if the current event
didn’t match the desired criteria. If the event did match the criteria, it was appended
to the result collection. Although this worked correctly, for large collections of events
it was taking several minutes to execute. Let’s look at some ways to speed it up and
make it smaller.

First, consider how you’re indexing through the collection. This requires a lot of
index operations, variable retrievals and increments that aren’t the most efficient
operations in an interpreted language like PowerShell. Instead, PowerShell has a
number of constructs that let you iterate through a collection automatically. Given
that the task is to select events where some condition is true, the Where-Object
cmdlet is an obvious choice. The second optimization is how the result list is built.
The original code manually adds each element to the result array. If you remember
our discussion on how array catenation works, this means that the array has to be
copied each time an element is added. The alternative approach, as we discussed, is to

A WORD ABOUT PERFORMANCE 233

www.it-ebooks.info

http://www.it-ebooks.info/

6.8

234

simply let the pipeline do the collection for you. With these design changes, the new
script looks like

$BranchCache3005Events = $events | where {
S_.Id -eq 3005 -and $_.ProviderName -eq "My-Provider-Name"}

The revised script is both hundreds of times faster and significantly shorter and
clearer.

So, the rule for writing efficient PowerShell scripts is to let the system do the work
for you. Use foreach instead of explicit indexing with for if you can. If you ever
find yourself doing catenation in a loop to build up a string or collection, look at
using the pipeline instead. You can also take advantage of the fact that all PowerShell
statements return values so an even faster (but less obvious or simple) way to do this
is to use the foreach statement:
$BranchCache3005Events = @(foreach ($e in S$events) {

if ($e.Id -eqg 3005 -or

Se.ProviderName -eq "Microsoft-Windows-BranchCacheSMB") {S$e}})
The key here is still letting the system implicitly build the result array instead of con-
structing it manually with +=. Likewise for string catenation, this

$s = -join $(foreach ($i in 1..40kb) { "a" })
is faster than
$s = ""; foreach ($i in 1..40kb) { $s += "a" }

By following these guidelines, not only will your scripts be faster, they’ll also end up
being shorter and frequently simpler and clearer (though not always.)

SUMMARY

In chapter 6, we covered the branching and looping statements in the PowerShell lan-
guage as summarized in the following list:

* PowerShell allows you to use pipelines where other languages only allow expres-
sions. This means that, although the PowerShell flow-control statements appear
to be similar to the corresponding statements in other languages, enough differ-
ences exist to make it useful for you to spend time experimenting with them.

* There are two ways of handling flow control in PowerShell. The first is to use
the language flow-control statements such as while and foreach. But when
performing pipelined operations, the alternative mechanism—the flow-control
cmdlets ForEach-Object and Where-Object—can be more natural and
efficient.

* When iterating over collections, you should keep in mind the trade-offs
between the foreach statement and the ForEach-0Object cmdlet.

* Any statement can be used as a value expression when nested in a subexpression.
For example, you could use a while loop in a subexpression to generate a

CHAPTER 6 FLOW CONTROL IN SCRIPTS

www.it-ebooks.info

http://www.it-ebooks.info/

SUMMARY

collection of values. In PowerShell v2, for simple assignments, the subexpression
notation is no longer needed and the output of a statement can be assigned
directly to a variable. This mechanism can be a concise way of generating a col-
lection, but keep in mind the potential complexity that this kind of nested
statement can introduce.

The PowerShell switch statement is a powerful tool. On the surface it looks
like the switch statement in C# or the select statement in Visual Basic, but
with powerful pattern matching capabilities, it goes well beyond what the state-
ments in the other languages can do. And, along with the pattern matching, it
can be used as a looping construct for selecting and processing objects from a
collection or lines read from a file. In fact, much of its behavior was adapted
from the AWK programming language.

The choice of statements and how you use them can have a significant effect on
the performance of your scripts. This is something to keep in mind, but
remember, only worry about performance if it becomes a problem. Otherwise,
try to focus on making things as clear as possible.

235

www.it-ebooks.info

http://www.it-ebooks.info/

7

PowerShell functions

7.1 Fundamentals of PowerShell 7.4 Using simple functions in a pipeline 263
functions 237 7.5 Managing function definitions in a

7.2 Declaring formal parameters for a session 267
function 241 7.6 Variable scoping in functions 269

7.3 Returning values from functions 257 7.7 Summary 273

Porcupine quills. We've always done it with porcupine quills.
—Dilbert

In this chapter, we'll begin looking at how to combine the features from the previous
chapters into reusable commands. As you'll recall from chapter 2, there are four types
of PowerShell commands: functions, cmdlets, scripts, and external commands. Func-
tions and scripts are the two command types that can be written in the PowerShell
language. We'll start with functions as they’re the simpler of the two and are also easy
to enter interactively in a session. In the next chapter we'll expand our discussion to
include scripts as well as introduce advanced programming features available to both
functions and scripts.

Before we dive in, there’s one thing you need to be aware of if you have prior pro-
gramming experience. This prior experience can be both a blessing and a curse when
learning to program in PowerShell. Most of the time, what you already know makes
it easier to program in PowerShell. The syntax and most of the concepts will probably
be familiar. Unfortunately, similar isn’t identical, and this is where prior experience
can trip you up. You'll expect PowerShell to work like your favorite language, and it

236

www.it-ebooks.info

http://www.it-ebooks.info/

won’t work quite the same way. We’'ll call out these issues as we encounter them. So,
put away your porcupine quills and let’s get started.

71 FUNDAMENTALS OF POWERSHELL FUNCTIONS

In this section we'll cover the basic concepts and features of PowerShell functions.
Functions are the most lightweight form of PowerShell command. They only exist in
memory for the duration of a session. When you exit the shell session, the functions
are gone. They’re also simple enough that you can create useful functions in a single
line of code. We'll start by working through a number of examples showing you how
to create simple functions. Let’s take a look at our first example:

PS (1) > function hello { "Hello world" }

In this example, hello is pretty obviously a function because it’s preceded by the
function keyword. And, equally obvious, this function should emit the string
“Hello world.” Execute it to verify this:

PS (2) > hello; hello; hello

Hello world

Hello world
Hello world

Yes, it works exactly as expected. You've created your first command.

Okay, that was easy. Now you know how to write a simple PowerShell function.
The syntax is shown in figure 7.1.

But a function that writes only “Hello world” isn’t very useful. Let’s see how to
personalize this function by allowing an argument to be passed in.

711 Passing arguments using $args

The ability to pass values into a function is called parameterizing the function. In
most languages, this means modifying the function to declare the parameters to pro-
cess. For simple PowerShell functions, we dont have to do this because there’s a
default argument array that contains all the values passed to the function. This
default array is available in the variable $args. Here’s the previous hello example
modified to use $args to receive arguments:

PS (3) > function hello { "Hello there $args, how are you?" }

PS (4) > hello Bob
Hello there Bob, how are you?

List of statements that make up

Function name function body

function <name> { <statementList> }

Figure 7.1

The simplest form of

a function definition . Braces marking beginning and

in PowerShell function keyword end of function body
FUNDAMENTALS OF POWERSHELL FUNCTIONS 237

www.it-ebooks.info

http://www.it-ebooks.info/

238

This example uses string expansion to insert the value stored in $args into the string
that is emitted from the hello function. Now let’s see what happens with multiple
arguments:

PS (5) > hello Bob Alice Ted Carol
Hello there Bob Alice Ted Carol, how are you?

Following the string expansion rules described in chapter 3, the values stored in
$args get interpolated into the output string with each value separated by a
space—or, more specifically, separated by whatever is stored in the $0FS variable. So
let’s take one last variation on this example. We'll set $OFS in the function body with
the aim of producing a more palatable output. You can take advantage of the interac-
tive nature of the PowerShell environment to enter this function over several lines:

PS (6) > function hello

>> |

>> Sofg=","

>> "Hello there S$args and how are you?"

>> }

>>

PS (7) > hello Bob Carol Ted Alice
Hello there Bob,Carol,Ted,Alice and how are you?

Thats better. Now at least you have commas between the names. Lets try it again,
with commas between the arguments:

PS (8) > hello Bob,Carol,Ted,Alice
Hello there System.Object[] and how are you?

This isn’t the result you were looking for! So what happened? Let’s define a new func-
tion to clear up what happened:
PS (1) > function count-args {

>> "‘Sargs.count=" + S$Sargs.count

>> "‘Sargs[0].count=" + Sargs[0].count

>> }
>>

This function will display the number of arguments passed to it as well as the number
of elements in the first argument. First you use it with three scalar arguments:

PS (2) > count-args 1 2 3

Sargs.count=3

$args[0] .count=

As expected, it shows that you passed three arguments. It doesn’t show anything for
the Count property on $args[0] because $args[0] is a scalar (the number 1) and
consequently doesn’t have a Count property. Now try it with a comma between each
of the arguments:

PS (3) > Count-Args 1,2,3

Sargs.count=1
Sargs[0].count=3

CHAPTER 7 POWERSHELL FUNCTIONS

www.it-ebooks.info

http://www.it-ebooks.info/

Now you see that the function received one argument, which is an array of three ele-
ments. And finally, try it with two sets of comma-separated numbers:
PS (4) > count-args 1,2,3 4,5,6,7

Sargs.count=2
Sargs[0] .count=3

The results show that the function received two arguments, both of which are arrays.
The first argument is an array of three elements and the second is an array with four
elements. Hmm, you should be saying to yourself—this sounds familiar. And it
is—the comma here works like the binary comma operator in expressions, as dis-
cussed in chapter 5.

Two values on the command line with a comma between them will be passed to
the command as a single argument. The value of that argument is an array of those
elements. This applies to any command, not just functions. If you want to copy three
files, f1.txt, f2.txt, and f3.txt, to a directory, the command is

copy-item fl.txt,f2.txt,f3.txt target

The Copy-TItem cmdlet receives two arguments: the first is an array of three file-
names, and the second is a scalar element naming the target directory. Now let’s look
at a couple of examples where $args enables simple but powerful scenarios.

71.2 Example functions: gl and gs

The way $args works is straightforward, but it allows you to write some pretty slick
commands. Here are two functions that aren’t in the PowerShell base installation
(although they may be in the future, but not in either v1 or v2 ... sigh):
function gl { S$Sargs }
function gs { "Sargs" }
They may not look like much, but they can significantly streamline a number of
tasks. The first function is g1, which stands for quote list. This is a Perl-ism. Here’s
what you can do with it. Say you want to build a list of the colors. To do this with the
normal comma operator, youd do the following,
Scol = "black", "brown", "red", "orange", "yellow", "green",

"blue", "violet", "gray", "white"
which requires lots of quotes and commas. With the g1 function, you could write it
this way:

Scol = gl black brown red orange yellow green blue violet gray white

This is much shorter and requires less typing. Does it let you do anything you
couldn’t do before? No, but it lets you do something more efficiently when you have
to. Remember that elastic syntax concept? When you're trying to fit a complex
expression onto one line, things like g1 can help. What about the other function, gs?

FUNDAMENTALS OF POWERSHELL FUNCTIONS 239

www.it-ebooks.info

http://www.it-ebooks.info/

71.3

240

It does approximately the same thing but uses string concatenation to return its argu-
ments as a single string instead of an array:

PS (1) > S$string = gs This is a string

PS (2) > $string

This is a string

PS (3) >

Note that the arguments are concatenated with a single space between them. The
original spacing on the command line has been lost, but that usually doesnt matter.

Simplifying $args processing with multiple assignment

As handy as $args is, it can become awkward when trying to deal with parameters in
a more complex way. Let’s look at an example that illustrates this. You'll write a func-
tion that takes two arguments and adds them together. With what you've seen so far,
you could use array indexing to get each element and then add them together. The
result might look like this:

PS (1) > function Add-Two { S$Sargs[0] + Sargs[l] }

PS (2) > add-two 2 3
5

Notice that most of the work in this function is getting the arguments out of the
array. This is where multiple assignment comes in. It allows you to extract the ele-
ments of the array in $args into name variables in a convenient way. Using this fea-
ture, the updated function looks like

PS (3) > function Add-Two {

>> $x,$y=Sargs

>> Sx+Sy

>> }

>>

PS (4) > add-two 1 2

3

In this example, the first statement in the function assigns the values passed in $args
to the local variables $x and $y. Perl users will be familiar with this approach for deal-
ing with function arguments, and, although it’s a reasonable way to deal with param-
eters, it isn’t the way most languages do it.

NOTE The $args approach will be familiar to Perl 5 or earlier users.
Perl 6 has a solution to the problem that’s similar to what PowerShell
does. I'd claim great minds think alike, but it’s just the most obvious
way to solve the problem.

For this reason, PowerShell provides other ways to declare the formal parameters.
We'll cover those approaches in the next couple of sections.

CHAPTER 7 POWERSHELL FUNCTIONS

www.it-ebooks.info

http://www.it-ebooks.info/

List of statements that make up

function keyword) function body
Function name

function <name> (<parameter list>) { <statementList> }

List of parameters Braces marking beginning and end of
for function function body

Figure 7.2 The syntax for defining a function with explicit parameters in
PowerShell. The parameter list is optional: you can either have empty
parentheses or omit them, as you saw in figure 7.1.

72 DECLARING FORMAL PARAMETERS FOR A FUNCTION

With the fundamentals out of the way, we'll start to look at some of the more sophis-
ticated features of PowerShell functions. We'll begin with a better way for declaring
function parameters. Although the $args variable is a simple and automatic way of
getting at the arguments to functions, it takes a fair amount of work to do anything
with a level of sophistication, as you saw in the previous section. PowerShell provides
a much more convenient (and probably more familiar to many people) way to declare
parameters, which is shown in figure 7.2.
Here’s a simple example of what this looks like in a real function:

function subtract ($from, S$count) { $from - S$count }

In this function definition, there are two formal parameters: $from and $count.
When the function is called, each actual argument will be bound to the correspond-
ing formal parameter, either by position or by name. What does that mean? Well,
binding by position is obvious:

PS (1) > subtract 5 3
2

In this case, the first argument, 5, is bound to the first formal parameter, $x, and the
second argument is bound to the second parameter, $y. Now let’s look at using the
parameter names as keywords:

PS (2) > subtract -from 5 -count 2

3

PS (3) > subtract -from 4 -count 7

-3

What happens if you try and use the same parameter twice? You'll receive an error
message that looks like this:

PS (4) > subtract -count 4 -count 7

subtract : Cannot bind parameter because parameter 'count' is

specified more than once. To provide multiple values to parameters that
can accept multiple values, use the array syntax. For example,

DECLARING FORMAL PARAMETERS FOR A FUNCTION 241

www.it-ebooks.info

http://www.it-ebooks.info/

72.1

242

"-parameter valuel,value2,value3".
At line:1 char:25
+ subtract -count 4 -count <<<< 7

As the message says, you cant specify a named parameter more than once. So you
now know that there are two ways to match formal parameters with actual argu-
ments. Can you mix and match? Let’s try it:

PS (5) > subtract -from 5 6

-1

You see that it did work as you'd expect. $from is set to 5, $count is set to 6, and you
know that 5 minus 6 is -1. Now change which parameter is named:

PS (6) > subtract -count 5 6
1

Now $count is set to 5 and $from is set to 6. This may seem a bit odd. Let’s dig into
the details of how it works next.

Mixing named and positional parameters

In this section, we'll explain the rules for how parameters are bound to named and
positional parameters. Any named parameters are bound and then removed from the
list of parameters that still need to be bound. These remaining parameters are then
bound positionally. Now let’s go back to the example function:

function subtract ($from, S$count) { $from - $count }

When calling this function, if no named parameters are specified, then $from is posi-
tion 0 and $count is position 1. If you specify -from, then $from is bound by name
and removed from the list of things that need to be bound positionally. This means
that $count, which is normally in position 2, is now in position 1. Got all that? Prob-
ably not, as I have a hard time following it myself. All you need to think about is
whether you're using named parameters or positional ones. Try to avoid mixing and
matching if possible. If you do want to mix and match, always put the parameters
that you want to specify by name at the end of the parameter list. In other words, put
them at the end of the param statement or the function argument list. That way, they
don’t affect the order of the parameters you want to bind by position. (In chapter 8,
you'll learn a better way to control how parameters are processed.)

Functions as commands

The way functions are called in PowerShell tends to cause people with prior pro-
gramming experience to make a common error. They see the word function and try
to call a PowerShell function the way they would in whatever other language they're
used to. So, instead of calling it like a command (which is what functions are), they
try to call it by doing something like this:

subtract(1l,2)

CHAPTER 7 POWERSHELL FUNCTIONS

www.it-ebooks.info

http://www.it-ebooks.info/

(continued)

PowerShell will happily accept this because there’s nothing syntactically wrong with
it. The problem is that the statement is totally wrong semantically. Functions (as
opposed to methods on objects) in PowerShell are commands like any other com-
mand. Arguments to commands are separated by spaces. If you want to provide
multivalued arguments for a single command, then you separate those multiple val-
ues with commas (more on this later). Also, parentheses are only needed if you
want the argument to be evaluated as an expression (see chapter 2 on parsing
modes). So—what this “function call” is actually doing is passing a single argument,
which is an array of two values. And that’s just wrong. Consider yourself warned.
Really. This has tripped up some very smart people. If you remember this discus-
sion, then someday, somewhere, you'll be able to lord this bit of trivia over your
coworkers, crushing their spirits like—oh—wait—sorry—it’s that darned inner voice
leaking out again...

So far, all your work has been with typeless parameters, and this has its advantages. It
means that your functions can typically work with a wider variety of data types. But
sometimes you want to make sure that the parameters are of a particular type (or at
least convertible to that type). Although you could do this the hard way and write a
bunch of type-checking code, PowerShell is all about making life easier for the user,
so let’s talk about a better way to do this by specifying typed parameters.

72.2 Adding type constraints to parameters
Scripting languages don’t usually allow types to be specified for the parameters to a
function and, as you've seen, you don't have to specify types for PowerShell function
parameters either. But sometimes it can be quite useful because it allows you to catch
type mismatches in function calls earlier and provide better error messages. Adding
type constraints to parameters is what we'll cover in this section.
To type-constrain a parameter, you provide a type literal before the variable name
in the parameter list. Figure 7.3 shows what this looks like.
. Function name List of parameter
function keyword S
specifications Function body
function <name> ([int] $pl, [datetime] $p2, $p3) { <statementList> }
Integer type constraint
for parameter $p1 Constrains values that $p2 can hold
to be DateTime objects
Figure 7.3 How type constraints are added to some of the parameters of a function.
Type constraints aren’t required for all parameters; in this case, $p3 is left
unconstrained.
DECLARING FORMAL PARAMETERS FOR A FUNCTION 243

www.it-ebooks.info

http://www.it-ebooks.info/

244

Let’s work through an example. Define a function nadd that takes two parameters
that you'll constrain to be integers:

PS (1) > function nadd ([int] $x, [int] Sy) {$x + Sy}
Now use this function to add two numbers:

PS (2) > nadd 1 2
3

Adding 1 and 2 gives 3. No surprise there. Now add two strings:

PS (3) > nadd "1" "2"
3

The answer is still 3. Because of the type constraints on the parameters, numeric
addition is performed even though you passed in two strings. Now let’s see what hap-
pens when you pass in something that can’t be converted to a number:

PS (4) > nadd @{a=1;b=2} "2"

nadd : Cannot convert "System.Collections.Hashtable" to "System.

Int32".

At line:1 char:5

+ nadd <<<< @{a=1;b=2} "

You get an error message mentioning where the function was used and why it failed.
Now define another function that doesn’t have the type constraints:

PS (5) > function add ($x, Sy) {$x + Sy}
Call this function with a hashtable argument:

PS (6) > add @{a=1;b=2} "2"

You can add another hash table only to a hash table.
At line:1 char:28

+ function add (S$x, Sy) {S$x + <<<< Sy}

You still get an error, but notice where the error message is reported. Because it hap-
pened in the body of the function, the error message is reported in the function itself,
not where the function was called as it was in the previous function. It's much more
useful for the user of the function to know where the call that failed was rather than
knowing where in the function it failed.

Now let’s look at the other two examples with the unconstrained function, first
with strings and then with numbers:

PS (7) > add "1" "2"
12

PS (8) > add 1 2

3

This function has the normal polymorphic behavior you expect from PowerShell.
The type-constrained version only worked on numbers. Of course, if the arguments
can be safely converted to numbers, then the operation will proceed. Lets try the
type-constrained function with strings:

CHAPTER 7 POWERSHELL FUNCTIONS

www.it-ebooks.info

http://www.it-ebooks.info/

PS (9) > nadd "4" "2"
6

Because the strings “2” and “4” can be safely converted into numbers, they are, and
the operation proceeds. If not, as in the following example,

PS (10) > nadd "da" "222"

nadd : Cannot convert value "4a" to type "System.Int32". Error:

"Input string was not in a correct format."

At line:1 char:5

+ nadd <<<< "4a" "222"

you'll get a type-conversion error. In effect, the type constraints on function parame-
ters are really casts, and follow the type-conversion rules described in chapter 3.

PowerShell and overloading

If you're used to traditional object-oriented languages, you might expect to be able to
create overloads for a particular function name by specifying different signatures, but
overloading isn’t supported in PowerShell. If you define a

function a ([int] S$b) { }
and later define
function a ([string] S$b) { }

the new definition will replace the old definition rather than adding a new overload.

When we started our discussion of parameters, you used $args, which was a bit awk-
ward, but it let you specify a variable number of arguments to a function. In the next
section, we'll see how you can do this even when you have a formal parameter list.

723 Handling variable numbers of arguments
Now that you know how to create explicit argument specifications, youre probably
wondering if you can still handle variable numbers of arguments. The answer is, yes.
By default, any remaining arguments that don’t match formal arguments will be cap-
tured in $args. The following example function illustrates this:
PS (11) > function a ($x, Sy) {
>> "x is $x"
>> "y is Sy"
>> "args is Sargs"
>> }
>>
Now let’s use it with a single argument:
PS (12) > a 1
x is 1
vy is
args is
DECLARING FORMAL PARAMETERS FOR A FUNCTION 245

www.it-ebooks.info

http://www.it-ebooks.info/

The single argument is bound to $x. $y is initialized to $null and $args has zero
elements in it. Now try it with two arguments:

PS (13) > a 1 2

x is 1

y is 2

args 1is

This time $x and $y are bound but $args is still empty. Next try it with three argu-
ments, and then with five:

PS (14) >a 12 3

x is 1

y is 2

args is 3

PS (15) >a 12 3 45

x is 1

vy is 2

args is 3 4 5

Now you can see that the extra arguments end up in $args.

This automatic handling of excess arguments is useful behavior, but in a lot of cases,
you prefer that extra arguments be treated as an error. One way to make sure that no
extra arguments are passed to your function is to check whether the length of $args
.length is 0 in the function body. If it’s not 0, some arguments were passed. This is,
however, a bit awkward. In chapter 8, we’ll look at a much better way to handle this.

Earlier we mentioned that formal arguments that don’t have corresponding actual
arguments are initialized to $null. Although this is a handy default, it would be
more useful to have a way of initializing the parameters to specific values instead of
having to write a lot of extra code in the body of the function to handle this. We'll
look at that next.

724 Initializing function parameters with default values

In this section, we'll show you how to initialize the values of function parameters.
The syntax for this is shown in figure 7.4.

. Function name
function keyword List of parameter

specifications
function <name> ($pl = <exprl> , $p2 = <expr2> ...) { <statementList> }
Parameter name followed by = symbol Additional parameter specifications,
followed by expression separated by commas

Figure 7.4 The more complex function definition syntax where initializer expressions are
provided for each variable. Note that the initializers are constrained to be expressions, but,
using the subexpression notation, you can put anything here.

246 CHAPTER 7 POWERSHELL FUNCTIONS

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s move right into an example:
PS (14) > function add ($x=1, $y=2) { $x + $y }

This function initializes the formal parameters $x to 1 and $y to 2 if no actual
parameters are specified. So when you use it with no arguments

PS (15) > add
3

it returns 3. With one argument

PS (16) > add 5
7
it returns the argument plus 2, which in this case is 7. And finally with two actual
arguments
PS (17) > add 5 5
10
it returns the result of adding them. From this example, it’s obvious that you can ini-
tialize the variable to a constant value. What about something more complex? The
initialization sequence as shown in figure 7.2 says that an initializer can be an expres-
sion. If you remember from chapter 5, an expression can be a subexpression and a
subexpression can contain any PowerShell construct. In other words, an initializer can
do anything: calculate a value, execute a pipeline, reformat your hard drive (not rec-
ommended), or send out for snacks from Tahiti by carrier pigeon (personally, I've not
had much luck with this one).

Let’s try this feature out. Define a function that returns the day of the week for a
particular date:
PS (28) > function dow ([datetime] $d = $(get-date))
>> {
>> $d.dayofweek

>> }
>>

This function takes one argument, $d, that’s constrained to be something that
matches a date or time. If no argument is specified, it’s initialized to the result of exe-
cuting the Get-Date cmdlet (which returns today’s date). Now lets try it out. First
run it with no arguments,

PS (29) > dow
Tuesday

and it prints out what day today is. Then run it with a specific date

PS (30) > dow "jun 2, 2001"
Saturday

and you see that June 2, 2001, was a Saturday. This is a simple example of using a
subexpression to initialize a variable.

DECLARING FORMAL PARAMETERS FOR A FUNCTION 247

www.it-ebooks.info

http://www.it-ebooks.info/

725

72.6

248

Handling mandatory parameters, v1-style

There’s one interesting scenario that we should still talk about. What happens if you
dont want a default value? In other words, how can you require the user to specify
this value? This is another thing you can use initializer expressions for, though it’s a

bit of a hack.

NOTE This hack was the best way to handle mandatory parameters in
PowerShell v1. It’s not recommended for v2. A much better approach
is to use parameter metadata and the Mandatory property, as described
in chapter 8.

Here’s how it works. Because the variable initializer expression can, by using a subex-
pression notation, be any piece of PowerShell code, you can use it to generate an error
rather than initialize the variable. You'll do this using the throw statement (we'll
cover the throw statement in detail in chapter 13). Here’s how you can use the
throw statement to generate the error. First define the function:

PS (31) > function zed ($x=$(throw "need x")) { "x is $x" }

Notice how the throw statement is used in the initializer subexpression for $x. Now
run the function—first with a value to see whether it works properly,

PS (32) > zed 123
x is 123

and then without an argument:

PS (33) > zed

need x
At line:1 char:25
+ function zed ($x=$(throw <<<< "need x")) { "x is $x" }

Without the argument, the initializer statement is executed and this results in an
exception being thrown. This is how you make arguments mandatory in Power-
Shell v1.

Finally, there’s one other thing we need to discuss with function parameters: how
to define what are traditionally called flags or switches in shell languages. In most shell
languages, you often provide just the name of a parameter with arguments to control
a command’s behavior. Let’s see how this is handled in PowerShell.

Using switch parameters to define command switches

In this section, were going to cover how to specify switch parameters, but before
we do that, let’s talk a bit more about parameter processing in general. In all shell
environments, commands typically have three kinds of parameters, as shown in

table 7.1.

CHAPTER 7 POWERSHELL FUNCTIONS

www.it-ebooks.info

http://www.it-ebooks.info/

Table 7.1 Typical classifications of parameter types found in all command shells

Parameter type Description

Switches Switches are present or absent, such as Get-ChildItem -Recurse.
Options Options take an argument value, such as Get-ChildItem -Filter *.cs.
Arguments These are positional and don't have a name associated with them.

This pattern holds true for most shells, including cmd. exe, the Korn Shell, and so
on, although the specific details of the syntax may vary. In PowerShell we've canoni-
calized things a bit more. In other words, we've used formal terms for each of these, as
shown in table 7.2.

Table 7.2 Formal names for parameter types in PowerShell

Parameter type Formal name in PowerShell
Switches Switch parameters

Options Parameters

Arguments Positional parameters

Arguments are positional parameters because they’re always associated with a parame-
ter name. But you can leave out the name and the interpreter will figure out what
parameter it is from its position on the command line. For example, in the dir com-
mand, the -path parameter is a positional parameter whose position is 0. Therefore
the command

dir c:\
is equivalent to
dir -path c:\

and the system infers that “c:\” should be associated with -path.

Switch parameters are just the opposite; you specify the parameter but the argu-
ment is left out. The interpreter assigns the parameter a value based on whether the
parameter is present or absent. The -recurse parameter for Get-ChildItem is a
good example. If it’s present, then you’ll get a recursive directory listing starting at
the current directory:

dir -recurse

So how do you indicate that something should be a switch parameter? Because Power-
Shell characteristically uses types to control behavior, it makes sense to indicate that a
parameter is a switch parameter by marking it with the type [switch]. This is illus-
trated in figure 7.5.

DECLARING FORMAL PARAMETERS FOR A FUNCTION 249

www.it-ebooks.info

http://www.it-ebooks.info/

250

Function name .
function keyword List of parameter

specifications

function <name> ($pl, [switch] $sl1) { <statementList> }

[switch] type annotation marks
variable $s1 as switch parameter

Figure 7.5 Marking a parameter as a switch or flag by adding the [switch]
type constraint to it

Because the value of a switch is highly constrained, initializing switches is neither nec-
essary nor recommended. Here’s an example function that uses a switch parameter:

PS (1) > function get-soup (

>> [switch] S$please,

>> [string] $soup= "chicken noodle"
>>)

>> {

>> if ($Splease) {

>> "Here's your S$soup soup"
>> }

>> else

>> {

>> "No soup for you!"

>> }

>> }

>>

Try out this function:

PS (2) > get-soup
No soup for you!
PS (3) > get-soup -please
Here's your chicken noodle soup
PS (4) > get-soup -please tomato
Here's your tomato soup
PS (5) >
So if you say, “please,” you get soup. If not, no soup for you!
Soup or no soup, we’re going to move on with our exploration of switch parame-
ters and take a look at a feature that seems almost contradictory.

Specifying arguments to switch parameters

By definition, switch parameters don't take arguments. Nonetheless, PowerShell pro-
vides a way to do this. It sounds like a contradiction but it turns out that there’s one
very important scenario where you do need to do exactly this. The case in question
happens when you need to pass the value of a switch parameter on one function to a

CHAPTER 7 POWERSHELL FUNCTIONS

www.it-ebooks.info

http://www.it-ebooks.info/

switch parameter on another function. For example, consider a function foo that has
a switch parameter -s. From function bar, you want to call

foo

sometimes and

foo -s

other times, and this will be controlled by a switch parameter on the bar function.
You could use 1 f statements to handle this, but even if there’s only one parameter you
need to pass through this way, you significantly complicate your code. And if there’s
more than one—well, let’s just say it gets ugly very quickly. To avoid this, there’s a fea-
ture in PowerShell designed with exactly this scenario in mind. Here’s how it works.
Although switch parameters don’t require arguments, they can take one if you specify
the parameter with a trailing colon:

dir -recurse: S$true

Here’s an example showing how the two functions mentioned previously would
work. You'll define a bar function that passes its $x switch parameter to the -s switch
parameter on function foo. First define the foo function:

PS (77) > function foo ([switch] $s) { "s is $s" }

PS (78) > foo -s

s is True

PS (79) > foo
s 1s False

Now define function bar, which will call foo as discussed previously:
PS (80) > function bar ([switch] $x) { "x is $x"; foo -s: $x }
Call bar without passing -x,

PS (81l) > bar
x 1s False
s 1s False

and you see that $s emitted from foo is false. Now call bar again, but specify -x this
time,
PS (82) > bar -x

x is True
s is True

and you see that specifying -x has caused -s to be set to true as well.

This functions-calling-functions pattern is pretty much the only time you should
ever have to pass an argument to a switch function. As a corollary to this, a script author
should zever have to write a function, script, or cmdlet where a switch parameter is ini-
tialized to $true because it makes the commands very hard to use. Switch parameters
are designed so that they need only be present or absent to get the desired effect. If you
do have a situation where you’re considering initializing a switch to $true, you

DECLARING FORMAL PARAMETERS FOR A FUNCTION 251

www.it-ebooks.info

http://www.it-ebooks.info/

712.7

252

probably should be using a Boolean parameter instead of a switch parameter. In the
next section, we’'ll investigate how these two types of parameters are related.

Switch parameters vs. Boolean parameters

Having both Boolean and switch parameters in PowerShell may seem redun-
dant—Dboth types can only be true or false. But they’re used to solve two quite differ-
ent problems. To reiterate, the important difference between the two is that switch
parameters don’t require an argument and Booleans do. Simply specifying a switch
parameter on the command line is sufficient for PowerShell to know that the param-
eter should be set to true:

PS (1) > function ts ([switch] $x) { [bool] $x }

PS (2) > ts

False

PS (3) > ts -x
True

With the ts function, if -x isnt present, the return value is $false. If it’s present,
then the return value is $true. For Boolean parameters (identified with the [bool]
type accelerator), an argument must be specified each time the parameter is present.
This is illustrated in the following example:
PS (4) > function tb ([bool] $x) { [bool] S$x 1}
PS (5) > tb
False
PS (6) > tb -x
tb : Missing an argument for parameter 'x'. Specify a parameter of type
'System.Boolean' and try again.
At line:1 char:6
+ tbh -x <<<<
+ CategoryInfo : InvalidArgument: (:) [tb],
ParameterBindingException
+ FullyQualifiedErrorId : MissingArgument, tb
PS (7) > tb -x $true
True
PS (8) > tb -x sfalse
False

With the tb function, if -x isn’t present, the return value is $false. If it’s present but

no argument is specified, an error occurs. If it’s present and a Boolean value is pro-
vided as the argument, then the return value is the same as the argument.

NOTE There’s a characteristic in how Boolean type conversions work
for [bool] parameters that you need to be aware of. The argument to
a [bool] parameter must either be an actual Boolean value ($true,
$false, or the result of an expression that returns a Boolean) or a
number where 0 is treated as $false and non-zero is treated as $true.
This is a departure from how objects are converted to Boolean else-
where in PowerShell. This inconsistency was introduced deliberately

CHAPTER 7 POWERSHELL FUNCTIONS

www.it-ebooks.info

http://www.it-ebooks.info/

because new PowerShell users would try commands like Get-
Something -boolParameter false and be surprised when -bool-
parameter ended up being true, not false. (Remember, non-zero-
length strings are considered true everywhere else in the system.) The
cognitive dissonance resulting from having "false" evaluate to $true
was a stumbling block for some new users. To mitigate this, Power-
Shell makes passing anything other than a number or a Boolean value
an error condition. This seems to be the least inconsistent solution
because the new behavior is a proper subset of normal type conversion.

The behavior of switch parameters is specifically designed for creating command
switches. The scenario where you need Boolean parameters is quite different. You use
Boolean parameters when you're writing a command to change the value of some of
the properties on the object passing through the pipeline. This is part of the common
Get/Update/Set pattern where you get an object from a store, change some properties
on that object, and then pass it to an update command. In this pattern, you only
want to change the value of the property if there’s a corresponding parameter on the
command line. This is where the [bool] parameter is useful—it’s how you handle
this pattern for Boolean properties. If the parameter is present, you want to set the
property on the pipeline object to be the value passed to the parameter. If the para-
meter is absent, then you don’t want to change it. We'll dig into this a bit more in the
next section, but first we’ll digress for a while to investigate a common configuration
management pattern and how you deal with it in PowerShell.

A digression: the Get/Update/Set pattern

A lot of management data is contained in database-like remote stores. Microsoft
Exchange and Active Directory are two examples of this kind of thing. The character-
istic usage pattern for working with these stores is as follows:

1 Get a record from the remote store.

2 Modify some property or properties on this object.

3 Send the modified object back to the store where the changes are recorded.
For example, when managing Exchange mailboxes, the mailbox objects are retrieved
from the server, modified, and then sent back to the server to update the database.
This is the Get/Update/Set pattern in action. It’s an important enough pattern that
we're going to work through a somewhat extended example illustrating this approach

in PowerShell. The following listing implements a simple database that contains
information about familiar characters from the comic strips.

Listing 7.1 The Get-Character function

ScharacterData = @{ .
wy " o _ _ Stores character data in
Linus" = @{ age = 8; human = S$true}
hashtable of hashtables
"Lucy" = @{ age = 8; human = S$true}

DECLARING FORMAL PARAMETERS FOR A FUNCTION 253

www.it-ebooks.info

http://www.it-ebooks.info/

"Snoopy" = @{ age = 2; human = S$true}
}

£ ion Get-Ch e Gets data
{unctlon et-Character (Sname =) from table
foreach ($entry in S$characterData.GetEnumerator () | Write-Output)
{
if (Sentry.Key -like S$name) .
(Builds merged

$properties = @{ "Name" = $entry.Key } + hashtable
Sentry.Value

New-Object PSCustomObject -Property S$properties Emits character

record
}

function Set-Character {
process {
$characterData[$_.name] =
e{
age = S$_.age
human = $_.human

Processes record;
updates character entry

}

function Update-Character (
[string] S$name = '*',
[int] Sage,
[bool] S$human
)
{
begin
{
if ($PSBoundParameters."name")
{
Sname = $PSBoundParameters.name
[void] $PSBoundParameters.Remove ("name")

}
process
{
if ($_.name -like $name)
{
foreach ($p in $PSBoundParameters.GetEnumerator ())
{

$—-(Sp.Key) = Sp.value Updates properties

on object

NOTE To make this example work, you need to use a few features
that haven’t been covered yet: the process keyword used in Update-
Character, custom objects, and the $PSBoundParameters automatic

254 CHAPTER 7 POWERSHELL FUNCTIONS

www.it-ebooks.info

http://www.it-ebooks.info/

variable. We'll cover the process keyword later in this chapter and the
$PSBoundparameters is discussed in chapter 8. This variable is key to
making this example work as it lets you see which parameters were
specified on the command line. Creating custom objects using the
New-Object command is explored in chapter 11. Of these features,
only the process keyword is available in v1. The others are only avail-
able in v2.

In this example, the character data is stored in nested hashtables, making it easy to
access by name. The Get-Character function retrieves characters from the table and
emits custom objects for each character. The Set-Character data reverses this pro-
cess and uses the inbound records to update the character table. The Update-
Character function is where you see the use case for Boolean parameters mentioned
in the previous section. Let’s apply this code to manage your character database. First
you'll get a listing of all the characters in the table:

PS (1) > Get-Character | Format-Table -auto

human Name age

True Snoopy 2
True Lucy 8
True Linus 8

You're passing the output of Get -Character through Format-Table -auto to geta
nice, concise table showing the character data. Immediately you see that there’s a
problem with this data. It lists Snoopy as being human even though you know he’s a
dog (well, at least if you're a Peanuts fan). You'll need to use the Update-Character
function to fix this:

PS (2) > Get-Character |

>> Update-Character -name snoopy -human S$false |
>> Format-Table -auto

human Name age

False Snoopy 2
True Lucy 8
True Linus 8

Note that you haven’t updated the table yet—you're just looking at how the updated
table will look. You can verify the data hasn't changed by calling Get -Character again:

PS (3) > Get-Character | Format-Table -auto

human Name age

True Snoopy 2

True Lucy 8
True Linus 8
DECLARING FORMAL PARAMETERS FOR A FUNCTION 255

www.it-ebooks.info

http://www.it-ebooks.info/

256

Now do the Set part of Get/Update/Set:

PS (4) > Get-Character |

>> Update-Character -name snoopy -human S$false |
>> Set-Character

>>

Then, dump the table to verify that change:

PS (5) > Get-Character | Format-Table -auto

human Name age

False Snoopy 2
True Lucy 8
True Linus 8

Now Snoopy is no longer marked as human. But there’s also something else you want
to check on. You'll dump the records that show the data for characters whose names
begin with L:

PS (6) > Get-Character L* | Format-Table -auto

human Name age

True Lucy 8
True Linus 8

And there’s the problem: the table lists Lucy and Linus as being the same age. Because
Linus is Lucy’s younger brother, you know the current age property must be wrong.
Again you'll use Update-Character piped to Set-Character to update the data,
correcting the character’s age:

PS (7) > Get-Character Linus |

>> Update-Character -age 7 |

>> Set-Character

>>
PS (8) > Get-Character | Format-Table -auto

human Name age

False Snoopy 2
True Lucy 8
True Linus 7

Now the table is correct.

In this extended example, you looked at a common pattern for working with
management data—Get/Update/Set—which you’re likely to run into many times
doing systems management. In the process, we demonstrated the reason for Boolean
parameters being distinct from switch parameters: they address two quite different
usage patterns.

CHAPTER 7 POWERSHELL FUNCTIONS

www.it-ebooks.info

http://www.it-ebooks.info/

By now, you've probably had enough discussion on how stuff gets passed into
functions. Let’s talk about how stuff comes out of functions instead. In the next sec-
tion, we'll look at the various ways objects can be returned from functions.

73 RETURNING VALUES FROM FUNCTIONS

Now it’s time to talk about returning values from functions. We've been doing this all
along, but there’s something we need to highlight. Because PowerShell is a shell, it
doesn’t return results—it writes output or emits objects. As you've seen, the result of
any expression or pipeline is to emit the result object to the caller. At the command
line, if you type three expressions separated by semicolons, the results of all three
statements are output:

PS (1) > 2+42; 9/3; [math]::sqgrt(27)

4

3
5.19615242270663

In this example, there are three statements in the list, so three numbers are displayed.
Now let’s put this into a function:

PS (2) > function numbers { 2+2; 9/3; [math]::sqgrt(27) }
Now run that function:

PS (3) > numbers
4
3
5.19615242270663

Just as when you typed it on the command line, three numbers are output. Now run
it and assign the results to a variable:

PS (4) > Sresult = numbers
Then, check the content of that variable:

PS (5) > Sresult.length

3
PS (6) > Sresult[0]
4
PS (7) > Sresult[l]
3

PS (8) > Sresult[2]

5.19615242270663

From the output, you can see that $result contains an array with three values in it.
Here’s what happened. As each statement in the function was executed, the result of
that statement was captured in an array, and then that array was stored in $result.
The easiest way to understand this is to imagine variable assignments working like
redirection, except the result is stored in a variable instead of in a file.

RETURNING VALUES FROM FUNCTIONS 257

www.it-ebooks.info

http://www.it-ebooks.info/

258

Let’s try something more complex. The goal here is twofold. First, you want to
increase your understanding of how function output works. Second, you want to
see how to take advantage of this feature to simplify your scripts and improve
performance.

Let’s redefine the function numbers to use a while loop that generates the num-
bers 1 to 10:

PS (11) > function numbers
>> |

>> $i=1

>> while ($i -le 10)

>> {

>> $1

>> Si++

>> }

>> }

>>

Now run it:

PS (12) > numbers

P W oo Jo Ul i WN R

0

Capture the results in a variable:

PS (13) > $result = numbers

What ended up in the variable? First check the type

PS (14) > Sresult.gettype().fullname
System.Object[]

and the length:

PS (15) > Sresult.length
10

The output of the function ended up in an array of elements, even though you never
mentioned an array anywhere. This should look familiar by now, because we talked
about it extensively in chapter 5 in our discussion of arrays. The PowerShell runtime
will spontaneously create a collection when needed. Compare this to the way youd
write this function in a traditional language. Lets rewrite this as a new function,
tradnum. In the traditional approach, you have to initialize a result variable,

CHAPTER 7 POWERSHELL FUNCTIONS

www.it-ebooks.info

http://www.it-ebooks.info/

73.1

$result, to hold the array being produced, add each element to the array, and then
emit the array:

PS (16) > function tradnum

>> {

>> Sresult = @()

>> $i=1

>> while ($i -le 10)
>> |

>> Sresult += $i
>> Si++

>> }

>> Sresult

>> }

>>

This code is significantly more complex: you have to manage two variables in the func-
tion now instead of one. If you were writing in a language that didn’t automatically
extend the size of the array, it would be even more complicated, as youd have to add
code to resize the array manually. And even though PowerShell will automatically resize
the array, it’s not efficient compared to capturing the streamed output. The point is to
make you think about how you can use the facilities that PowerShell offers to improve
your code. If you find yourself writing code that explicitly constructs arrays, consider
looking at it to see if it can be rewritten to take advantage of streaming instead.

Of course, every silver lining has a cloud. As wonderful as all this automatic col-
lecting of output is, there are some potential pitfalls. Sometimes you’ll find things in
the output collection that you didn’t expect and have no idea how they got there.
This can be hard (and frustrating) to figure out. In the next section we’ll explore the
reasons why this might happen and you’ll learn how to go about debugging the prob-
lem if you encounter it.

Debugging problems in function output

When writing a function, there’s something you need to keep in mind that’s specific
to shell environments. The result of all statements executed will appear in the output
of the function. This means that if you add debug message statements that write to
the output stream to your function, this debug output will be mixed into the actual
output of the function.

NOTE In text-based shells, the usual way to work around mixing
debug information with output is to write the debug messages to the
error stream (stderr). This works fine when the error stream is simple
text; however, in PowerShell, the error stream is composed of error
objects. All the extra information in these objects, while great for
errors, makes them unpalatable for writing simple debug messages.
There are better ways of handling this, as you’ll see in chapter 9 when
we talk about debugging.

RETURNING VALUES FROM FUNCTIONS 259

www.it-ebooks.info

http://www.it-ebooks.info/

260

Here’s an example function where we've added a couple of debug statements:

PS (1) > function my-func ($x) {

>> "Getting the date"

>> $x = get-date

>> "Date was $x, now getting the day"
>> Sday = $x.day

>> "Returning the day"

>> Sday

>> }

>>
Let’s run the function:

PS (2) > my-func

Getting the date

Date was 5/17/2006 10:39:39 PM, now getting the day
Returning the day

17

You see the debug output as well as the result. That’s fine—that’s the point of debug-
ging messages. But now let’s capture the output of the function into a variable:

PS (3) > $x = my-func

This time you see no output, which is expected, but neither do you see the debugging
messages and that wasn't expected or desired. Take a look at what ended up in $x:

PS (4) > $x

Getting the date

Date was 5/17/2006 10:39:39 PM, now getting the day

Returning the day
17

You see that everything is there: output and debug, all mixed together. This is a trivial
example and I'm sure it feels like were beating the issue to death, but this is the kind
of thing that leads to those head-slapping how-could-I-be-so-dumb moments in
which you'll be writing a complex script and wonder why the output looks funny.
Then you'll remember that debugging statement you forgot to take out. “Duh!” you
cry, “How could I be so dumb!”

NOTE This, of course, isn’t exclusive to PowerShell. Back before the
advent of good debuggers, people would do printf-debugging
(named after the printf output function in C). It wasn’t uncommon
to see stray output in programs because of this. Now, with good
debuggers, stray output is pretty infrequent. PowerShell provides
debugging features (which we’ll cover in chapters 14 and 15) that you
can use instead of printf -debugging. In particular, the Integrated
Scripting Environment (ISE) included with PowerShell v2 has a built-
in graphical debugger for scripts.

CHAPTER 7 POWERSHELL FUNCTIONS

www.it-ebooks.info

http://www.it-ebooks.info/

Another thing to be careful about is operations that emit objects when you don't
expect them to. This is particularly important to keep in mind if you use a lot of
NET methods in your scripts. The problem is that many of these methods return val-
ues that you dont need or care about. This isn’t an issue with languages like C#
because the default behavior in these languages is to discard the result of an expres-
sion. In PowerShell, though, the default is to always emit the result of an expression;
consequently, these method results unexpectedly appear in your output. One of the
most common times when people encounter this problem is when using the Sys-
tem.Collections.ArrayList class. The Add() method on this class helpfully
returns the index of the object that was added by the call to 2dd () ('m aware of no
actual use for this feature—it probably seemed like a good idea at the time). This

behavior looks like this:

PS (1) > Sal = new-object system.collections.arraylist
PS (2) > $al.count

0

PS (3) > $al.add(l)

0

PS (4) > S$al.add(2)

1

PS (5) > $al.add(3)

2

Every time you call 2dd (), a number displaying the index of the added element is
emitted. Now say you write a function that copies its arguments into an ArrayList.

This might look like

PS (6) > function addArgsToArrayList {

>> Sal = new-object System.Collections.ArrayList
>> $args | foreach { $al.add($_) }

>> }

It’s a pretty simple function, but what happens when you run it? Take a look:

PS (7) > addArgsToArrayList a b c d

w N P o

As you can see, every time you call Add (), a number gets returned. This isn’t very
helpful. To make it work properly, you need to discard this undesired output. Let’s fix
this. Here’s the revised function definition:

PS (8) > function addArgsToArrayList {

>> $al = new-object System.Collections.ArrayList

>> $args | foreach { [void] $al.add($_) }

>> }
>>

RETURNING VALUES FROM FUNCTIONS 261

www.it-ebooks.info

http://www.it-ebooks.info/

73.2

262

It looks exactly like the previous one except for the cast to void in the third line. Now
let’s try it out:

PS (9) > addArgsToArrayList a b ¢ d

PS (10) >

This time you don’t see any output, as desired. This is a tip to keep in mind when
working with .NET classes in functions.

The return statement

Now that you've got your output all debugged and cleaned up, let’s talk about Power-
Shell’s return statement. Yes, PowerShell does have a return statement, and yes, it’s
similar to the return statement in other languages. But remember—similar isn't the
same.

Remember we talked about how functions in PowerShell are best described as writ-
ing output rather than returning results? So why, then, does PowerShell need a return
statement? The answer is, flow control. Sometimes you want to exit a function early.
Without a return statement, you’d have to write complex conditional statements to
get the flow of control to reach the end. In effect, the return statement is like the break
statement we covered in chapter 6—it “breaks” to the end of the function.

The next question is, is it possible to “return” a value from a function using the
return statement? The answer is, yes. This looks like

return 2+2
which is really just shorthand for
Write-Output (2+42) ; return

The return statement is included in PowerShell because it's a common pattern that
programmers expect to have. Unfortunately, it can sometimes lead to confusion for
new users and nonprogrammers. They forget that, because PowerShell is a shell, every
statement emits values into the output stream. Using the return statement can make
this somewhat less obvious. Because of this potential for confusion, you should gener-
ally avoid using the return statement unless you need it to make your logic simpler.
Even then, you should probably avoid using it to return a value. The one circum-
stance where it makes sense is in a “pure” function where you're only returning a sin-
gle value. For example, look at this recursive definition of the factorial function:

PS (5) > function fact ($x) {

>> if ($x -1t 2) {return 1}

>> $x * (fact ($x-1))

>> }

>>

PS (6) > fact 3

6

This is a simple function that returns a single value with no side effects. In this case, it
makes sense to use the return statement with a value.

CHAPTER 7 POWERSHELL FUNCTIONS

www.it-ebooks.info

http://www.it-ebooks.info/

74

Factorial facts

The factorial of a number x is the product of all positive numbers less than or equal
to x. Therefore, the factorial of 6 is

6 * 5 * 4 *x 3 %2 %]
which is really

6 * (fact 5)

which, in turn, is

6 * 5 * (fact 4)

and so on down to 1.

Factorials are useful in calculating permutations. Understanding permutations is use-
ful if you're playing poker. This should not be construed as an endorsement for
poker—it's just kind of cool. Bill Gates plays bridge.

USING SIMPLE FUNCTIONS IN A PIPELINE

So far, we've only talked about using functions as stand-alone statements. But what
about using functions in pipelines? After all, PowerShell is all about pipelines, so
shouldn’t you be able to use functions in pipelines? Of course, the answer is, yes, with
some considerations that need to be taken into account. The nature of a function is
to take a set of inputs, process it, and produce a result. So how do you make the
stream of objects from the pipeline available in a function? This is accomplished
through the $input variable. When a function is used in a pipeline, a special variable,
$input, is available that contains an enumerator that allows you to process through
the input collection. Let’s see how this works:

PS (1) > function sum {

>> $total=0;

>> foreach ($n in S$input) { Stotal += $n }

>> Stotal
>> }

A function sum is defined that takes no arguments but has one implied argument,
which is sinput. It will add each of the elements in $input to $total and then
return $total. In other words, it will return the sum of all the input objects. Let’s try
this on a collection of numbers:
PS (2) > 1..5 | sum
15
Clearly it works as intended.

We said that $input is an enumerator. You may remember our discussion of enu-
merators from chapter 6 when we talked about the $foreach and $switch variables.
The same principles apply here. You move the enumerator to the next element using

USING SIMPLE FUNCTIONS IN A PIPELINE 263

www.it-ebooks.info

http://www.it-ebooks.info/

264

the MoveNext () method and get the current element using the Current property.
Here’s the sum function rewritten using the enumerator members directly:

PS (3) > function sum2 {

>> Stotal=0

>> while (S$input.movenext())
>> |

>> Stotal += $input.Current
>> }

>> Stotal

>> }

>>

Of course, it produces the same result:

PS (4) > 1..5 | sum2
15

Now write a variation of this that works with something other than numbers. This
time you'll write a function that has a formal parameter and also processes input. The
parameter will be the name of the property on the input object to sum up. Here’s the
function definition:

PS (7) > function sum3 (Sp)

>> {

>> Stotal=0

>> while (S$input.MoveNext ())
>> |

>> Stotal += S$input.current.S$p
>> }

>> Stotal

>> }

>>

In line 6 of the function, you can see the expression $input . current. $p. This expres-
sion returns the value of the property named by $p on the current object in the enu-
meration. Use this function to sum the lengths of the files in the current directory:

PS (8) > dir
9111

sum3 length

You invoke the function passing in the string “length” as the name of the property to
sum. The result is the total of the lengths of all of the files in the current directory.

This shows that it’s pretty easy to write functions that you can use in a pipeline,
but there’s one thing we haven’t touched on. Because functions run all at once, they
can’t do streaming processing. In the previous example, where you piped the output
of dir into the function, what happened was that the dir cmdlet ran to completion
and the accumulated results from that were passed as a collection to the function. So
how can you use functions more effectively in a pipeline? That’s what we’ll cover next
when we talk about the concept of filters.

CHAPTER 7 POWERSHELL FUNCTIONS

www.it-ebooks.info

http://www.it-ebooks.info/

741

icerkewonl s ramo

filter <name> (<parameter list>) { <statementList> }

List of parameters Braces marking beginning and
for filter end of filter body

Figure 7.6 Defining a filter in PowerShell. The syntax is identical to the basic function
definition except that it uses the £ilter keyword instead of the function keyword.

Filters and functions

In this section, we'll talk about filters and the £ilter keyword. Filters are a variation
on the general concept of functions. Where a function in a pipeline runs once, a filter
is run for each input object coming from the pipeline. The general form of a filter is
shown in figure 7.6. PowerShell includes a £ilter keyword to make it easy to define
this type of function.

As you can see, the only syntactic difference between a function and a filter is the
keyword. The significant differences are all semantic. A function runs once and runs
to completion. When used in a pipeline, it halts streaming—the previous element in
the pipeline runs to completion; only then does the function begin to run. It also has
a special variable $input defined when used as anything other than the first element
of the pipeline. By contrast, a filter is run once and to completion for each element in
the pipeline. Instead of the variable $input, it has a special variable, $_, that contains
the current pipeline object.

At this point, we should look at an example to see what all this means. First, write
a filter to double the value of all the input objects:

PS (1) > filter double {$_*2}
PS (2) > 1..5 | double

= 0 o N

0

You should now be feeling a nagging sense of déja vu. A little voice should be telling
you, “I've seen this before.” Remember the ForEach-Object cmdlet from chapter 62

PS (3) > 1..5 | foreach {$_*2}
2
4
6
8
10

USING SIMPLE FUNCTIONS IN A PIPELINE 265

www.it-ebooks.info

http://www.it-ebooks.info/

74.2

266

The ForEach-0Object cmdlet is, in effect, a way of running an anonymous filter. By
anonymous, we mean that you don't have to give it a name or predefine it. You just
use it when you need it.

NOTE When we first created PowerShell, we thought this shortcut
way to create named filters would be useful. In fact, we were wrong
and this keyword is rarely used. The foreach cmdlet and the process
block in functions that you’ll see in the next section pretty much elim-
inated the need for the keyword. Of course, we can’t take it out
because someone somewhere will have a script that uses it and we don’t
want to break existing scripts.

Functions in a pipeline run when all the input has been gathered. Filters run once for
each element in the pipeline. In the next section, we'll talk about generalizing the role
of a function so that it can be a first-class participant in a pipeline.

Functions with begin, process, and end blocks

You've seen how to write a function that sums up values in a pipeline but can’t
stream results. And you've seen how to write a filter to calculate the sum of values in
a pipeline, but filters have problems with setting up initial values for variables or
conducting processing after all the objects have been received. It would be nice if you
could write user-defined cmdlets that can initialize some state at the beginning of the
pipeline, process each object as it’s received, then do cleanup work at the end of the
pipeline. And of course you can. The full structure of a function cmdlet is shown in
figure 7.7.

In figure 7.7 you see that you can define a clause for each phase of the cmdlet pro-
cessing. This is exactly like the phases used in a compiled cmdlet, as mentioned in
chapter 2. The begin keyword specifies the clause to run before the first pipeline

Function name
List of formal

function keyword .
parameters to function

function <name> (<parameter list>)

{

begin { Statements to process
<statementList> in begin phase

}

process { ‘ Statements to process

) <statementList> for each pipeline object

end { , Statements to process
<statementList> during end phase

} g p

}

Figure 7.7 The complete function definition syntax for a function in PowerShell
that will have cmdlet-like behavior

CHAPTER 7 POWERSHELL FUNCTIONS

www.it-ebooks.info

http://www.it-ebooks.info/

object is available. The process clause is executed once for each object in the pipeline,
and the end clause is run once all the objects have been processed.

As with filters, the current pipeline object is available in the process clause in the
special variable $_. As always, an example is the best way to illustrate this:

PS (1) > function my-cmdlet ($x) {
>> begin {$c=0; "In Begin, c¢ is $c, x is $x"}

>> process {Sc++; "In Process, c¢ 1s $c, x is $x, '$_ is S$_"}
>> end {"In End, c is $c, x is $x"}
>> }

>>

You define all three clauses in this function. Each clause reports what it is and then
prints out the values of some variables. The variable $x comes from the command
line; the variable $c is defined in the begin clause, incremented in the process clause,
and displayed again in the end clause. The process clause also displays the value of the
current pipeline object. Now let’s run it. You'll pass the numbers 1 through 3 in
through the pipeline and give it the argument 22 to use for $x. Here’s what the out-
put looks like:

PS (2) > 1,2,3 | my-cmdlet 22

In Begin, ¢ is 0, x is 22

In Process, c¢ is 1, x is 22, $_ is 1

In Process, ¢ is 2, x 1is 22, $_ is 2

In Process, ¢ is 3, x 1is 22, $_ is 3
In End, ¢ is 3, x 1is 22

As you can see, the argument 22 is available in all three clauses and the value of $c is
also maintained across all three clauses. What happens if there’s no pipeline input?
Let’s try it:

PS (3) > my-cmdlet 33

In Begin, ¢ is 0, x is 33

In Process, c¢ is 1, x is 33, $_ is
In End, ¢ is 1, x is 33

Even if there’s no pipeline input, the process clause is still run exactly once. Of course,
you don’t have to specify all three of the clauses. If you specify only the process clause,
you might as well just use the filter keyword, because the two are identical.

If you’ve been following along with the examples in this chapter, by now you’ll
have created quite a number of functions. Care to guess how to find out what you've

defined?

75 MANAGING FUNCTION DEFINITIONS IN A SESSION

Because it’s easy to create functions in PowerShell, it also needs to be easy to manage
those functions. Rather than provide a custom set of commands (or worse yet, a set of
keywords) to manage functions, you can take advantage of the namespace capabilities
in PowerShell and provide a function drive. Because it's mapped as a drive, you can

MANAGING FUNCTION DEFINITIONS IN A SESSION 267

www.it-ebooks.info

http://www.it-ebooks.info/

get a list of functions the same way you get a listing of the contents of any other drive.
Let’s use dir to find out about the mkdir function:

PS (7) > dir function:\mkdir

CommandType Name Definition

Function mkdir param([string[]]Spat...

By doing a dir of the path function:\mkdir, you can see mkdir exists and is a
function. Wildcards can be used, so you could’ve just written mk* as shown:

PS (8) > dir function:\mk*

CommandType Name Definition

Function mkdir param([string[]]S$pat...

And, if you just do dir on the function drive, you'll get a complete listing of all func-
tions. Let’s do this but just get a count of the number of functions:

PS (9) > (dir function:\).count
78

In my environment, I have 78 functions defined. Now let’s create a new one,
PS (10) > function clippy { "I see you're writing a function." }
and check the count again:

PS (11) > (dir function:\).count
79

Yes—there’s one more function than was there previously. Now check for the func-
tion itself:

PS (12) > dir function:\clippy

CommandType Name Definition

Function clippy "T see you're writin...

Running dir on function:clippy gives you the function definition entry for this
function.

Now that you know how to add functions to your session, let’s see how to remove
them. You’ll remove the c1ippy function you just created. Because you're removing
an item from the function: drive, you’ll remove the function the same way you’d
remove a file from a file system drive with the Remove-Item command:

PS (13) > Remove-Item function:/clippy
And make sure that it’s gone:

PS (14) > (dir function:/) .count
78

268 CHAPTER 7 POWERSHELL FUNCTIONS

www.it-ebooks.info

http://www.it-ebooks.info/

76

PS (15) > dir function:clippy

Get-ChildItem : Cannot find path 'clippy' because it does not ex
ist.

At line:1 char:4

+ dir <<<< function:clippie

Yes! You've removed clippy from the system.

NOTE Longtime Microsoft Office users will no doubt be feeling an
intense burst of satisfaction with this last example. We've all longed to
eradicate that annoying paperclip “assistant,” and at last we have the
pleasure, if in name only. And, even more amusing: Microsoft Word
doesn’t even recognize “clippy”—it keeps trying to autocorrect to
“clippie.” Some unresolved issues, perhaps?

The techniques we've covered in this section allow you to manipulate the functions
defined in your current session. As with any drive, you can list the functions, create
new ones, delete them, and rename them. But regardless, all these functions will dis-
appear when the session ends when you exit PowerShell. What about “permanent”
functions? How can you define functions that are always available? This is where
scripts come in, as you'll see in chapter 8. In the meantime, there’s one more topic
that impacts how functions work: variable scoping and lifetime. We've ignored it so
far but we do need to cover it in some depth. So let’s begin now.

VARIABLE SCOPING IN FUNCTIONS

In the final section of this chapter, we're going to cover the lifetime of variables. So far
we've just ignored when variables are created, but there are specific rules that cover
this. These rules govern when variables come into existence and where they’re visible.
The set or rules that cover variable lifetime and visibility are called the scoping rules of
the language.

First, let’s introduce some terminology for our discussion. In programming lan-
guage design, there are two general approaches to scoping—/exical and dynamic.
Most programming languages and many scripting languages are lexically scoped. In a
lexically scoped language, it’s where the name of something is defined that matters.
Names are visible in the block they’re defined in and in any nested blocks, but aren’t
visible outside the enclosing block unless they’re explicitly exported in some way.
Because where they’re defined controls the visibility for the variable, this is deter-
mined at “compile” time and is therefore called lexical (or sometimes static) scoping.

On the other hand, dynamic scoping involves when the variable is defined. In other
words, the visibility of the variable is controlled by the runtime or dynamic behavior
of the program, not the compile-time or static behavior (hence the term dynamic).

NOTE For the language folks in the audience, PowerShell actually uses
a variation on traditional dynamic scoping: hygienic dynamic scoping.
This has also been called dynamic scoping with implicit let binding (if you

VARIABLE SCOPING IN FUNCTIONS 269

www.it-ebooks.info

http://www.it-ebooks.info/

76.1

270

care.) This significant difference is in how assignment is done. In tradi-
tional dynamic scoping, if a variable exists in an outer scope, then it will
be assigned to the current scope. In PowerShell, even if there’s an exist-
ing variable in an outer scope, a new local variable will be created on first
assignment. This guarantees that a function, in the absence of scope
modifiers, won’t mess up the calling scopes (hence the term hygienic).

Declaring variables

Ignoring function parameters (which are a form of declaration), PowerShell has no
variable declaration statement. In contrast to a language like Visual Basic, which uses
Dim to declare a variable, in PowerShell a variable simply comes into existence on first
assignment. We discussed this in chapter 5, but it's more important now. Figure 7.8
shows a diagram of how variable names are resolved in PowerShell.

Let’s look at an example. First define two simple functions, one and two:
PS (1) > function one { "x is $x" }
PS (2) > function two { $x = 22; one }
Function one prints out a string displaying the value of $x. Function two sets the
variable $x to a particular value, and then calls function one. Now let’s try them out.
Before you work with the functions, set $x to 7 interactively, to help illustrate how
scoping works:

PS (3) > $x=7
Now call function one:

PS (4) > one
x is 7

. User calls function two
Global scope:

$x =7; $y.= 2

Function scope:
funetion two{ $x = 22; one }

two calls one

Function scope:
function one{ "x is $x y is $y" }
returns “xis 22y is 2”

Figure 7.8 How variables are resolved across different scopes. They're resolved first in
the local scope, then in the immediate caller’s scope, and so on until the global scope is
reached. In this case, lookup of $x resolves to 22 in the scope for function one. Lookup
of Sy resolves to 2 in the global scope, resulting in the output string “x is 22 y is 2".

CHAPTER 7 POWERSHELL FUNCTIONS

www.it-ebooks.info

http://www.it-ebooks.info/

As expected, it prints x is 7. Now call function two:

PS (5) > two
x is 22

Not surprisingly, because two sets $x to 22 before calling one, you see x is 22
returned. So what happened to $x? Let’s check:

PS (6) > $x
7

Its still 7! Now call one again:

PS (7) > one
x is 7
It prints x is 7. So what exactly happened here? When you first assigned 7 to $x,
you created a new global variable, $x. When you called function one the first time, it
looked for a variable $x, found the global definition, and used that to print the mes-
sage. When you called function two, it defined a new local variable called $x before
calling one. This variable is local—that is, it didn’t change the value of the global $x,
but it did put a new $x on the scope stack. When it called one, this function searched
up the scope stack looking for $x, found the new variable created by function two,
and used that to print x is 22. On return from function two, the scope containing
its definition of $x was discarded. The next time you called function one, it found
the top-level definition of $x. Now let’s compare this to a language that’s lexically
scoped. I happen to have Python installed on my computer, so from PowerShell, T’ll
start the Python interpreter:
PS (1) > python
Python 2.2.3 (#42, May 30 2003, 18:12:08) [MSC 32 bit (Intel)] on

win32

Type "help", "copyright", "credits" or "license" for more informa
tion.

Now let’s set the global variable x to 7. (Note—even if you aren’t familiar with
Python, these examples are very simple, so you shouldn’t have a problem following
them.)

>>> x=7
Now print x to make sure it was properly set:

>>> print x
7

You see that it is, in fact, 7. Now let’s define a Python function one:

>>> def one():
print "x is " + str(x)

VARIABLE SCOPING IN FUNCTIONS 271

www.it-ebooks.info

http://www.it-ebooks.info/

76.2

272

And now define another function two that sets x to 22 and then calls one:

>>> def two():
x=22
one ()

As with the PowerShell example, one prints x is 7.

>>> one()
x is 7

Now call two:

>>> two ()

x is 7

Even though two defines x to be 22, when it calls one, one still prints 7. This is
because the local variable x isn’t lexically visible to one—it will always use the value of
the global x, which you can see hasn’t changed:

>>> print x

7
>>>

At this point, I hope you have a basic understanding of how variables are looked up
in PowerShell. Sometimes, though, you want to be able to override the default lookup
behavior. We'll discuss this in the next section.

NOTE Unix shells used dynamic scoping because they didn’t have a
choice. Each script is executed in its own process and receives a copy of
the parent’s environment. Any environment variables that a script
defines will then be inherited by any child scripts that it, in turn, calls.
The process-based nature of the Unix shells predetermines how scop-
ing can work. The interesting thing is that these semantics are pretty
much what PowerShell uses, even though the PowerShell team wasn’t
limited by the process boundary. The team tried a number of different
schemes and the only one that was satisfactory was the one that most
closely mimicked traditional shell semantics. I suppose this shouldn’t
be a surprise—it’s worked well for several decades now.

Using variable scope modifiers

We've now arrived at the subject of variable scope modifiers. In the previous section
we discussed scope and the default PowerShell lookup algorithm. Now you'll see that
you can override the default lookup by using a scope modifier. These modifiers look
like the namespace qualifiers mentioned in chapter 6. To access a global variable
$var, youd write

Sglobal:var

CHAPTER 7 POWERSHELL FUNCTIONS

www.it-ebooks.info

http://www.it-ebooks.info/

77

SUMMARY

Let’s revisit the functions from the previous section:
PS (1) > function one { "x is $global:x" }

This time, in the function one, you'll use the scope modifier to explicitly reference

the global $x:

PS (2) > function two { $x = 22; one }

The definition of function two is unchanged. Now set the global $x to 7 (com-
mands at the top level always set global variables, so you don’t need to use the

global modifier):
PS (3) > s$x=7
Now run the functions:

PS (4) > one

x is 7

PS (5) > two

x is 7

This time, because you told one to bypass searching the scope change for $x and go
directly to the global variable, calls to both one and two return the same result,
x is 7.

When we look at scripts in chapter 8, you’ll see that there are additional scoping
rules and qualifiers, but for now, you have all you need to work with functions.

In the next chapter, you’ll extend your PowerShell programming knowledge to
include writing scripts. We'll also look at some of the advanced features in Power-
Shell, especially new features introduced with PowerShell v2 that you can use for
your work.

SUMMARY
This chapter introduced the idea of programming in PowerShell. We covered a lot of
material; here are the key points:
* PowerShell programming can be done either with functions or scripts, though
in this chapter we focused only on functions.
* Functions are created using the function keyword.
* The simplest form of function uses $args to receive parameters automatically.

* More sophisticated parameter handling for functions requires the use of param-
eter declarations. This can be done by placing the parameter names in parenthe-
ses after the name of the function or in the body of the function using the
param keyword.

* PowerShell uses dynamic scoping for variables. You can modify how a variable
name is resolved by using the scope modifiers in the variable names.

273

www.it-ebooks.info

http://www.it-ebooks.info/

274

Functions stream their output. In other words, they return the results of every
statement executed as though it were written to the output stream. This feature
means that you almost never have to write your own code to accumulate results.

Because of the differences between how functions work in PowerShell and how
they work in more conventional languages, you may receive some unexpected
results when creating your functions, so you picked up some tips on debugging
these problems.

Functions can be used as filters using the filter keyword or by specifying
begin, process, and end blocks in the function body.

The function: drive is used to manage the functions defined in your session.
This means that you use the same commands you use for managing files to
manage functions.

CHAPTER 7 POWERSHELL FUNCTIONS

www.it-ebooks.info

http://www.it-ebooks.info/

8

Advanced functions
and scripts

8.1 PowerShell scripts 276 8.4 Documenting functions and
8.2 Writing advanced functions and scripts 314

scripts 287 8.5 Summary 321
8.3 Dynamic parameters and dynamic-

Param 311

And now for something completely different. ..
—Monty Python

In chapter 7, we introduced the basic elements needed for programming in Power-
Shell when we looked at PowerShell functions. In this chapter we're going to expand
our repertoire by introducing PowerShell scripts.

NOTE If you skipped chapter 7, you should probably go back and
read it before proceeding. Why? Because all the material we covered on
functions also applies to scripts.

Once we're finished with the basics of scripts (which won't take long), we'll move on
to the advanced production scripting features introduced in PowerShell v2. With
these new features, it’s possible to use the PowerShell language to write full-featured
applications complete with proper documentation. By the end of this chapter, you
should be well on your way to becoming an expert PowerShell programmer.

275

www.it-ebooks.info

http://www.it-ebooks.info/

8.1

8.1.1

276

POWERSHELL SCRIPTS

In this section we're going to dig into scripts to see what behaviors they have in com-
mon with functions and what additional features you need to be aware of. We'll begin
by looking at the execution policy that controls what scripts can be run. Then you'll
see how parameters and the exit statement work in scripts. We'll also spend some
time on the additional scoping rules that scripts introduce. Finally, you'll learn ways
you can apply and manage the scripts you write.

Let’s begin with defining what a script is. A PowerShell script is simply a file with
a .psl extension that contains some PowerShell commands. Back in chapter 1, we
talked about how PowerShell has the world’s shortest “Hello world” program. The
full text of that script was

"Hello world"

That’s it—one line. Let’s create this script now. You can do it from the command line
using redirection to write the script text to a file called hello.psl:

PS (2) > '"Hello world"' > hello.psl

Note the double quotes in the example. You want the script to contain
"Hello world"

with the quotes intact, not

Hello world

Now execute the script:

PS (3) > ./hello.psl
Hello world

You see that the file executed and returned the expected phrase.

NOTE In this example, even though hello.psl is in the current direc-
tory, you had to put ./ in front of it to run it. This is because Power-
Shell doesn’t execute commands out of the current directory by
default. This prevents accidental execution of the wrong command.
See chapter 13 on security for more information.

Script execution policy

Now there’s a possibility that instead of getting the expected output, you received a
nasty-looking error message that looked something like this:

PS (5) > ./hello.psl

The file C:\Documents and Settings\brucepay\hello.psl cannot be

loaded. The file C:\Documents and Settings\brucepay\hello.psl is

not digitally signed. The script will not execute on the system
Please see "get-help about_signing" for more details.

At line:1 char:11

+ ./hello.psl <<<<

CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

www.it-ebooks.info

http://www.it-ebooks.info/

This is another security feature in PowerShell. When PowerShell is first installed, by
default you can’t run any scripts. This is controlled by a feature called the execution
policy. The execution policy setting controls what kind of scripts can be run and is
intended to prevent virus attacks like the “I-love-you” virus from a few years back.
Users were being tricked into accidentally executing code mailed to them. The
default execution policy for PowerShell prevents this type of attack.

A scripting tool is no good if you can’t script, so there’s a cmdlet called set-
ExecutionPolicy that can be used to change the execution policy. If you got the
error when you tried to execute the script, you should run the following command as
Administrator.

Running elevated

Running elevated is a term used on Windows Vista or later that has to do with the
User Access Control (UAC) feature added in Vista. It essentially means that you're
running with administrative privileges. This can only be done when starting a pro-
cess. Interactively, you can start an elevated PowerShell session by right-clicking the
PowerShell icon and selecting Run as Administrator. You then get the UAC prompt
asking if you want to allow this action.

If you want to run a single command elevated in a script, you can do so with the
Start-Process cmdlet and the —Verb parameter. For example, you can run Set-
ExecutionPolicy in an elevated PowerShell session as follows:

Start-Process -Verb runas -FilePath powershell.exe
—-ArgumentList 'Set-ExecutionPolicy -ExecutionPolicy RemoteSigned'

When this command is run, you're prompted to allow the action. If you say yes, a
new console window appears, the command executes, and the newly created con-
sole window closes after the command is complete.

If you don’t have administrator access, there’s an alternative we'll get to in a second.
Here’s the command:

PS (6) > Set-ExecutionPolicy remotesigned
After the command has run successfully, you should be able to run hello.ps1:

PS (7) > ./hello.psl
Hello world

NOTE Running the cmdlet as shown will change the execution policy
so that you can execute local scripts that you create yourself. Power-
Shell still won’t execute scripts that come from remote sources such as
email or a website unless they’re signed. Of course, for this check to
work, the mail tool or the web browser used to do the download must
set the Zone Identifier Stream to indicate where the file came from.
Internet Explorer and Microsoft Outlook set this properly. At a

POWERSHELL SCRIPTS 277

www.it-ebooks.info

http://www.it-ebooks.info/

8.1.2

278

minimum, I recommend you use the RemoteSigned policy. Chapter 17
covers all these security topics in detail.

Setting the execution policy for a single session

If you can't run Set-ExecutionPolicy with the necessary administrator privileges
but you have PowerShell v2 installed, you can use the -Scope parameter on the cmd-
let to just set the execution policy for the current session (the current process). This

looks like

PS (1) > Set-ExecutionPolicy -Scope process remotesigned

Execution Policy Change

The execution policy helps protect you from scripts that

you do not trust. Changing the execution policy might

expose you to the security risks described in the

about_Execution_Policies help topic. Do you want to change

the execution policy?

[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"): y

PS (2) >

Note the prompt to confirm this operation. You reply v to tell the system to proceed

to make the change. (You'll see more on confirmation of actions in section 8.2.2,

where I show how to implement this feature in scripts.) Now when you try to run

scripts, theyll work, but remember, you changed the execution policy only for this

session. The next time you start PowerShell, you'll have to rerun the command.
Okay, now that you’ve got your basic script running, let’s start adding functional-

ity to this script.

Passing arguments to scripts

The first thing we'll look at is how you can pass arguments to a script. The answer is
pretty much the same way you did it for basic functions. We'll start with the $args
variable and look at a modified version of the basic script. Again, you can use redirec-
tion to create the script from the command line. In fact, this version overwrites the
old version of the script:

PS (8) > '"Hello Sargs"' > hello.psl

and run it with an argument:

PS (9) > ./hello Bruce
Hello Bruce

Great—hello PowerShell! But if you don’t supply an argument

PS (10) > ./hello
Hello

you get a very impersonal greeting. (Notice, by the way, that I didn’t have to specify
the .psl extension when running the script. PowerShell adds this automatically when
looking for a script file.)

CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s see what we can do to make the script a bit chattier. You can take advantage
of a here-string to generate a slightly longer script:
PS (11) > @
>> if (Sargs) { Sname = "Sargs" } else { Sname = "world" }
>> "Hello S$name!"

>> '@ > hello.psl
>>

This script has two lines. The first sets a local variable $name to the value of $args if
it’s defined. If it’s not defined, it sets $name to world. If you run the script with no
arguments, you get the generic greeting:

PS (12) > ./hello
Hello world!

If you run it with an argument, you get a specific greeting:

PS (13) > ./hello Bruce

Hello Bruce!

PS (14) >

These are the same basic things you did with functions, and, as was the case with
functions, they have limitations. It would be much more useful to have named, typed
parameters as was the case with functions. But there’s a slight wrinkle: as you'll
remember from chapter 7, the formal arguments to a function are defined outside the
body of the function, or inside the body with the param statement. Obviously, the
external definition isnt going to work with scripts because there’s no “external.” Con-
sequently, there’s only one way to define formal parameters for a script: through the
param statement.

Using the param statement in scripts

As mentioned in the previous section, if you want to specify formal parameters for a
script, you need to use the param statement. The paran statement must be the first
executable line in the script just as it must be the first executable line in a function.
Only comments and empty lines may precede it. Let’s visit the hello example one
more time. Again you'll use a here-string and redirection to create the script. The
here-string makes it easy to define a multiline script:

PS (14) > @

>> param(Sname="world")

>> "Hello S$name!"

>> '@ > hello.psl
>>

Here you're adding a second line to the script to declare the script parameter. When
you run the script, you find the expected results, first with no arguments

PS (15) > ./hello
Hello world!

POWERSHELL SCRIPTS 279

www.it-ebooks.info

http://www.it-ebooks.info/

8.1.3

280

and then with a name argument:

PS (16) > ./hello Bruce

Hello Bruce!

PS (17) >

The script could be written as a single line but splitting it across two lines makes it
easier to read:

PS (17) > 'param($name="world") "Hello Sname"' > hello.psl

PS (18) > ./hello

Hello world

PS (19) > ./hello Bruce
Hello Bruce

The interesting thing that this example illustrates is that there’s no need for any kind
of separator after the param statement for the script to be valid. Because PowerShell
lends itself to one-liner type solutions, this can be handy.

Obviously, scripts must have some additional characteristics that you don’t find
with functions. Let’s explore those now.

Exiting scripts and the exit statement

You've seen that you can exit scripts (or functions) simply by getting to the end of the
script. We've also looked at the return statement in our discussion of functions (sec-
tion 7.3.2). The return statement lets you exit early from a function. It will also let
you return early from a script but only if called from the “top” level of a script (not
from a function called in the script). The interesting question is what happens when
you return from a function defined inside a script. As discussed in chapter 7, what the
return statement does is let you exit from the current scope. This remains true
whether that scope was created by a function or a script. But what happens when you
want to cause a script to exit from within a function defined in that script? Power-
Shell has the exit statement to do exactly this. So far, you've been using this state-
ment to exit a PowerShell session. But when exit is used inside a script, it exits that
script. This is true even when called from a function in that script. Here’s what that

looks like:

PS (1) > @'

>> function callExit { "calling exit from callExit"; exit}
>> CallExit

>> "Done my-script"

>> '@ > my-script.psl

>>

The function CallExit defined in this script calls exit. Because the function is
called before the line that emits

"Done my-script"

you shouldn’t see this line emitted. Let’s run it:

CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

www.it-ebooks.info

http://www.it-ebooks.info/

PS (2) > ./my-script.psl

calling exit from CallExit

You see that the script was correctly terminated by the call to exit in the function
CallExit.

The exit statement is also how you set the exit code for the PowerShell process
when calling Powershell . exe from another program. Here’s an example that shows
how this works. From within cmd. exe, run PowerShell.exe, passing it a string to
execute. This “script” will emit the message “Hi there” and then call exit with an
exit code of 17:

C:\>powershell "'Hi there'; exit 17"
Hi there

And now you're back at the cmd. exe prompt. Cmd. exe makes the exit code of a pro-
gram it’s run available in the variable ERRORLEVEL, so check that variable:
C:\>echo %ERRORLEVELS%
17
You see that it’s 17 as expected. This shows how a script executed by PowerShell can
return an exit code to the calling process.

Let’s recap: so far in our discussion of scripts behaviors, we've covered execution

policy, parameterization, and how to exit scripts. In the next section we’ll look at
another feature of scripts that you need to understand: variable scoping.

8.1.4 Scopes and scripts

In chapter 7, we covered the scoping rules for functions. These same general rules also
apply to scripts:

* Variables are created when they're first assigned.
* They're always created in the current scope, so a variable with the same name in
an outer (or global) scope isn’t affected.

* In both scripts and functions, you can use the $global :name scope modifier to
explicitly modify a global variable.

Now let’s see what’s added for scripts.

Scripts introduce a new named scope called the seripr scope, indicated by using the
$script: scope modifier. This scope modifier is intended to allow functions defined
in a script to affect the “global” state of the script without affecting the overall global
state of the interpreter. This is shown in figure 8.1.

Let’s look at an example. First, set a global variable $x to be 1:

PS (1) > $x =1

Then, create a script called my-script. In this script, you'll create a function called
1func. The 1func function will define a function-scoped variable $x to be 100 and a
script-scoped variable $x to be 10. The script itself will run this function and then

POWERSHELL SCRIPTS 281

www.it-ebooks.info

http://www.it-ebooks.info/

Global scope:
$a =1, & =2, $c = 3; $d=4

Script s 1 scope:
$b = 20

v Script calls function one

Function one scope:
function oney{ $b=200; c = 300; two }

Function one calls
function two

Function two scope:
function two{$d = 4000; "$a $script:b $c $dv" }
returns “1 20 300 4000

Figure 8.1 How variables are resolved across different scopes when scripts are in-
volved. Variables prefixed with the $script: modifier resolve in the script scope. Vari-
able references with no scope modifier resolve using the normal lookup rules. In this
figure, the user calls script s1, which creates a new script scope. s1 calls function one,
which causes a new function scope to be created. one calls function two, creating a sec-
ond function scope, and resulting in a total of four scopes in the scope chain. In function
two, $aresolvesinthe global scope, $script:bresolvesin the script scope (skipping
the function one scope because of the $script: modifier), $c resolves in the function
one scope, and $d resolves in the function two scope ($d is local to two).

print the script-scoped variable $x. Use a here-string and redirection to create the
script interactively:

PS (2) > @'

>> function lfunc { $x = 100; S$script:x = 10 ; "lfunc: x = $x"}
>> 1lfunc

>> "my-script:x = S$x"

>> '@ > my-script.psl

>>

Now run the script:

PS (3) > ./my-script.psl
lfunc: x = 100
my-script:x = 10

You see that the function-scoped variable $x was 100; the script-scoped $x was 10

PS (4) > "global: x = $x"
global: x =1

and the global $x is still 1.

282 CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

www.it-ebooks.info

http://www.it-ebooks.info/

Simple libraries: including one script from another

As you build libraries of useful functions, you need to have a mechanism to “include”
one script inside another (or to run in the global environment) to make these library
functions available. PowerShell allows you to do this through a feature called “dot-
sourcing” a script or function.

NOTE The dot-sourcing mechanism (sometimes called “dotting”) is
the only way to build libraries in PowerShell v1. In PowerShell v2, dot-
sourcing is still used for configuration, but the modules feature (chap-
ters 9 and 10) is the recommended way to create script libraries.

So far in our discussions, you've usually focused on the results of a function and wanted
all the local variables when the script or function exits. This is why scripts and func-
tions get their own scope. But sometimes you do care about all the intermediate by-
products. This is typically the case when you want to create a library of functions or
variable definitions. In this situation, you want the script to run in the current scope.

How cmd.exe works
This is how cmd. exe works by default, as this example shows. Say you have a CMD
file, foo.cmd:

C:\files>type foo.cmd
set a=4

Set a variable to 1 and display it:

C:\files>set a=1
C:\files>echo %a%
1

Next run the CMD file

C:\files>foo
C:\files>set a=4

and you see that the variable has been changed:

C:\files>echo %a%
4

As a consequence of this behavior, it's common to have CMD files that do nothing
but set a bunch of variables. To do this in PowerShell, you'd dot the script.

Dot-sourcing scripts and functions

So how do you “dot-source” a script? By putting a dot or period in front of the name
when you execute it. Note that there has to be a space between the dot and the name;
otherwise it will be considered part of the name. Let’s look at an example. First create
a script that sets $x to 22

PS (5) > e

>> "Setting x to 22"
>> $x = 22

POWERSHELL SCRIPTS 283

www.it-ebooks.info

http://www.it-ebooks.info/

8.1.5

284

>> '@ > my-script.psl
>>

and test it. Set $x to a known value

PS (6) > $x=3
PS (7) > S$x
3

and then run the script as you would normally:

PS (8) > ./my-script
Setting x to 22

Checking $x, you see that it is (correctly) unchanged:

PS (9) > S$x
3

Now dot the script:

PS (10) > . ./my-script
Setting x to 22
PS (11) > $x
22
This time, $x is changed. What follows the . isn’t limited to a simple filename; it
could be a variable or expression, as was the case with &:
PS (12) > S$name = "./my-script"
PS (13) > . $name
Setting x to 22
The last thing to note is that dot-sourcing works for both scripts and functions.
Define a function to show this:
PS (17) > function set-x ($x) {$x = $x}
PS (18) > . set-x 3
PS (19) > $x
3
In this example, you've defined the function set-x and dotted it, passing in the value 3.
The result is that the global variable $x is set to 3. This covers how scoping works
with scripts and functions. When we look at modules in chapter 9, you'll see another
variation on scoping.
Now that you know how to build simple script libraries, we’ll show you how to
manage all these scripts you’re writing.

Managing your scripts

Earlier we looked at managing functions using the function: drive. Because scripts
live in the file system, there’s no need to have a special drive for them—the file system
drives are sufficient. But this does require that you understand how scripts are found
in the file system. Like most shells, PowerShell uses the PATH environment variable to
find scripts. You can look at the contents of this variable using the environment vari-
able provider $ENV: PATH.

CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

www.it-ebooks.info

http://www.it-ebooks.info/

8.1.6

The other thing to know (and we’ve mentioned it previously but people still for-
get it) is that PowerShell doesn’t run scripts out of the current directory (at least not
by default). If you want to run a script out of the current directory, you can either
add that directory to the path or prefix your command with ./ as in . /mycnd.psl
or simply . /mycmd. The script search algorithm will look for a command with the
.psl extension if there isn’t one on the command. A common approach is to have a
common scripts directory where all your personal scripts are placed and a share for
sharing scripts between multiple users. Scripts are just text, so using a version control
system like RCS or Subversion will work well for managing your scripts.

Now let’s look at one more variation on scripting. So far, you've been running
PowerShell scripts only from within PowerShell console. There are times when you
need to run a PowerShell script from a non-PowerShell application like cmd. exe. For
example, you may have an existing batch file that needs to call PowerShell for one
specific task. To do this, you need to launch a PowerShell process to run the script or
command. You also have to do this when creating shortcuts that launch PowerShell
scripts because PowerShell . exe isn’t the default file association for a .ps1 file (secu-
rity strikes again—this prevents accidental execution of scripts).

Running PowerShell scripts from other applications

Let’s look at what’s involved in using Powershell.exe to run a script and go over a
few issues that exist.

Here’s something that can trip people up when using Powershell.exe to execute
a script. The PowerShell v2 interpreter has two parameters that let you run Power-
Shell code when PowerShell is started. These parameters are -Command and -File, as
shown in figure 8.2.

Command: c: \my Argument 1: scripts\scriptl.psl Argument2: data.csv

powershell.exe -Command "c:\my scripts\scriptl.psl" data.csv

Command: c:\my scripts\scriptl.psl Argument 2: data.csv

powershell.exe -File "c:\my scripts\scriptl.psl" data.csv

Figure 8.2 How the command line is processed when using the ~-Command parameter (top)
versus the ~-File parameter (bottom). With ~-Command, the first argument is parsed into
two tokens. With —-File, the entire first argument is treated as the name of a script to run.

POWERSHELL SCRIPTS 285

www.it-ebooks.info

http://www.it-ebooks.info/

286

If you use the -Command parameter, the arguments to PowerShell.exe are accumu-
lated and then treated as a script to execute. This is important to remember when you
try to run a script using PowerShell from cmd.exe using this parameter. Here’s the
problem people run into: because the arguments to Powershell.exe are a script to
execute, not the name of a file to run, if the path to that script has a space in it, then
because PowerShell treats the spaces as delimiters, you'll get an error. Consider a
script called “my script.ps1”. When you try to run this

powershell "./my script.psl"

PowerShell will complain about my being an unrecognized command. It treats my as a
command name and script.psl as an argument to that command. To execute a
script with a space in the name, you need to do the same thing youd do at the Power-
Shell command prompt: put the name in quotes and use the call (&) operator:

powershell.exe "& './my script.psl'"

Now the script will be run properly. This is one of the areas where having two types
of quotes comes in handy. Also note that you still have to use the relative path to find
the script even if it’s in the current directory.

To address this problem, in v2, PowerShell.exe now has a second parameter
that makes this easier: the -File parameter. This parameter takes the first argument
after the parameter as the name of the file to run and the remaining arguments are
passed to the script. The example now simplifies to

powershell -File "my script.psl"

This is clearly much simpler than the v1 example.

There’s one more advantage to using -File. When you run a script using
-Command, the exit keyword will exit the script but not the PowerShell session
(though usually it looks like it did). This is because the arguments to -~Command are
treated the same way commands typed interactively into PowerShell work. You
wouldn’t want a script you're running to cause your session to exit accidentally. If you
use -File instead of -Command, calling exit in the script will cause the Power-
Shell.exe process to exit. This is because -File treats the entire contents of the script
as the command to execute instead of executing a command that names the script file.

Now let’s see why this is important. It matters if you're depending on the exit
code of the PowerShell process to decide some condition in the calling script. If you
use -Command, the exit code of the script is set but the process will still exit with 0. If
you use -File, PowerShell.exe will exit with the correct exit code. Let’s try this.
Create a script called exit33.psl that looks like this:

PS (1) > gc exit33.psl
exit 33

CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

www.it-ebooks.info

http://www.it-ebooks.info/

8.2

This is a simple script—all it does is exit with the exit code 33. Now run it using
-command and check the exit code:
PS (2) > powershell.exe -Command ./exit33.psl

PS (3) > SLASTEXITCODE
0

You see that the exit code of the PowerShell . exe process is 0, not 33, which is what
you wanted. Let’s take a closer look. Run the command again, but follow it with
SLASTEXITCODE to emit the code returned from the script:

PS (6) > powershell.exe -Command °

>> './exit33.psl ; SLASTEXITCODE'

>>

33

You see that 33 was output because that was the last exit code of the script. But when
you check the exit code of the process

PS (7) > SLASTEXITCODE
0

you see that it’s still 0. (In fact, the piece of script that emits the exit code shouldn’t
even have run if the call to exit in the script had caused the process to exit.) In con-
trast, when you use -File or -Command

PS (4) > powershell.exe -File ./exit33.psl

PS (5) > SLASTEXITCODE
33

you get the correct exit code because the -File option runs the specified command
directly. This means that if the caller of Powershell.exe depends on the exit code of
the process, it will get the correct value.

This concludes our coverage of the basic information needed to run PowerShell
scripts. If you've used other scripting languages, little of what you've seen so far
should seem unfamiliar. In the next few sections we’re going to look at things that are
rather more advanced.

WRITING ADVANCED FUNCTIONS AND SCRIPTS

For the most part, all the features we've discussed so far were available in PowerShell v1.
Although v1 scripts and functions were powerful, they didn’t have all the features that
compiled cmdlets did. In particular, there wasn’t a good way to write production-
quality scripts complete with integrated help, and so on. Version 2 introduced features
that addressed these problems: commands written in the PowerShell language have all
the capabilities available to cmdlets. In this section, we'll introduce these new features,
and you'll learn how to use the create functions and scripts that have all the capabilities
of cmdlets. We'll be using functions for all the examples just for simplicity’s sake.
Everything that applies to functions applies equally to scripts.

WRITING ADVANCED FUNCTIONS AND SCRIPTS 287

www.it-ebooks.info

http://www.it-ebooks.info/

All these new features are enabled by adding metadata to the function or script
parameters. Metadata is information about information, and you use it in PowerShell
to declaratively control the behavior of functions and scripts. What this means is that
you're telling PowerShell what you want to do but not how to do it. It’s like telling a
taxi driver where you want to go without having to tell them how to get there
(although, it’s always a good idea to make sure you’re ending up where you want to be).

We're all ready to dive in now, but first, a warning. There’s a lot of material here
and some of it is a bit complex, so taking your time and experimenting with the fea-
tures is recommended.

NOTE This stuff is much more complex than the PowerShell team
wanted. Could it have been simpler? Maybe, but the team hasn’t fig-
ured out a way to do it yet. The upside of the way these features are
implemented is that they match how things are done in compiled cmd-
lets. This way, the time invested in learning this material will be of
benefit if you want to learn to write cmdlets at some point. And at the
same time, if you know how to write cmdlets, then all this stuff will be
pretty familiar.

8.2.1 Specifying script and function attributes

In this section, we'll look at the features you can control through metadata attributes
on the function or script definition (as opposed to on parameters, which we'll get to
in a minute). Figure 8.3 shows how the metadata attributes are used when defining a
function, including attributes that affect the function as well as individual parameters
on that function.

Notice that there are two places where the attributes can be added to functions: to
the function itself and to the individual parameters. With scripts, the metadata attribute

function keyword Function name Attribute specifying

function metadata
Attribute declaring
function <name> output type of function
{
[CmdletBinding (<options>)]
[OutputType (<type and parameterSet>)]
param (
[Parameter (ParameterSet="setl" , Position=0,Mandatory=$true)]
[int] $pl = <InitializationExpressionl> ,
[Parameter (ParameterSet="set2" , Position=0,Mandatory=$true)]
[string] $p2 = <InitializationExpression2>

)
<statementl>)
<statement2> List of parameter

. " specifications
Attribute specifying

} . parameter metadata
Function body

Figure 8.3 Attributes that apply to the entire function appear before the param statement,
and attributes for an individual parameter appear before the parameter declaration.

288 CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

www.it-ebooks.info

http://www.it-ebooks.info/

has to appear before the param statement. (Earlier, I said param has to be the first
noncomment line. This is still true because the metadata attributes are considered part
of the param statement.)

The cmdletBinding attribute is used to add metadata to the function, specifying
things like behaviors that apply to all parameters as well as things like the return type
of the function. You should notice that the attribute syntax where the attribute
names are enclosed in square brackets is similar to the way you specify types. This is
because attributes are implemented using .NET types. The important distinction is
that an attribute must have parentheses after the name. As you can see in figure 8.3,
you can place properties on the attribute in the parentheses. But even if you're speci-
fying no attributes, the parentheses must still be there so the interpreter can distin-
guish between a type literal and an attribute. Now let’s look at the most important
attribute: CmdletBinding.

8.2.2 The CmdletBinding attribute
The cmdletBinding attribute is used to specify properties that apply to the whole
function or script. In fact, simply having the attribute in the definition changes how
excess parameters are handled. If the function is defined without this attribute, the argu-
ments for which there are no formal parameters are simply added to the $args variable,
as shown in the next example. First, define a function that takes two formal parameters:
PS (1) > function x {param($a, $b) "a=S%$a b=$b args=Sargs"}
Now call that function with four arguments:
PS (2) >x 123 4
a=1 b=2 args=3 4
You see that the excess arguments end up in $args. As discussed earlier, although this
can be useful, it’s usually better to generate an error for this situation. You can check
for this case and see if Sargs.Count is greater than 0, but it’s easier to handle this
declaratively by adding the metadata attribute, as shown here:
PS (3) > function x {[CmdletBinding()] param(S$Sa, $b)
>> "a=$a b=S$b args=Sargs"}
>>
When you run the command with extra arguments
PS (4) >x 123 4
x : A positional parameter cannot be found that accepts argument '3'.
At line:1 char:2
+ x <<<< 1 2 3 4

+ CategoryInfo : InvalidArgument: (:) [x],
ParameterBindingException
+ FullyQualifiedErrorId : PositionalParameterNotFound, x

the system catches this and generates the error message for you. The fact that the sys-
tem generates the error message instead of having to create the message yourself is a

WRITING ADVANCED FUNCTIONS AND SCRIPTS 289

www.it-ebooks.info

http://www.it-ebooks.info/

290

CmdletBinding attribute
matetsinding Sets default

parameter set name List of arguments to

attribute
[CmdletBinding (

DefaultParameterSet="parametersetname",

ConfirmImpact=$true,

SupportsShouldProcess=$true,

)1
Controls whether confirm-impact Tells interpreter that script or function
processing should be performed implements ShouldProcess pattern

Figure 8.4 All the properties that can be specified for the CmdletBinding attribute.
These properties are used by the PowerShell runtime to control the execution of the
associated function or script.

significant feature: it means that you get standard, complete, and consistent error
messages that are already set up to display in many languages.

Now let’s look at the properties that can be specified for the CmdletBinding
attribute. These properties are shown in figure 8.4.

We'll describe what each of these properties does and how to use them in the next
few subsections.

The SupportsShouldProcess property

When the SupportsShouldProcess property is set to true, it tells the runtime to
enable the -Confirm and -whatIf standard parameters because the function prom-
ises to make the necessary calls to the Shouldprocess () method on the object in the
$pSCmdlet wvariable. The ShouldProcess () method is used to either ask the user
for feedback before proceeding with the operation or to show what the operation
might have done to the system. The $pSCmdlet variable is an automatic variable that
provides the callback mechanisms that the function needs to make the expected calls.
(We'll cover the sPsCmdlet variable in more detail at the end of this section.) Let’s
write an example function that shows how it all works. The purpose of this function
is to allow the user to stop processes on the system. Because stopping the wrong pro-
cess could have undesirable consequences, you want to be able to use ~Confirm and
~ihatIf parameters. The example code is shown in figure 8.5 with the necessary
annotations highlighted.

This function uses the win32_Process WMI class to get objects representing
processes on the system (see chapter 19 for more information about WMI). You filter
the set of processes using the Where-Object cmdlet and then call the Terminate ()
method on the process object. Obviously this is a potentially destructive operation, so
you want to call the shouldprocess () method before proceeding with the action
(you saw this behavior with the Set-ExecutionPolicy cmdlet). You call this

CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

www.it-ebooks.info

http://www.it-ebooks.info/

CmdletBinding must precede param statement

function Stop-ProcessUsingWMI
{
[CmdletBinding (SupportsShouldProcess=$True)] param(
[regex] Spattern = "notepad"
) .
foreach (Sprocess in Get-WmiObject Win32 Process | Function must call
where {$.Name -match $pattern}) ShouldProcess ()
(method
if ($PSCmdlet.ShouldProcess (
"process $($process.Name) (id: $($process.ProcessId))",
"Stop Process"))

{
Sprocess.Terminate ()

} Action message

Caption for prompting
If call to ShouldProcess () returns
true, execute action

Figure 8.5 The function annotations needed to enable ShouldProcess support. The
SupportsShouldProcess property of the CmdletBinding attribute should be set to
true, and there must be a call to the ShouldProcess () method in the body of the code.

method passing two [string] arguments. The first argument is used to tell the user
what object you're going to operate on. The second argument describes the operation
to be performed—essentially an operation caption. If this method returns true, you
call Terminate () to end the process. Let’s try it. First, define the function:

PS (1) > function Stop-ProcessUsingWMI

>> {

>> [CmdletBinding (SupportsShouldProcess=$True)] param
>> [parameter (mandatory=Strue)] [regex] Spattern
>>)

>> foreach ($process in Get-WmiObject Win32_Process |
>> where { $_.Name -match S$pattern })

>> {

>> if ($PSCmdlet.ShouldProcess (

>> "process $(Sprocess.Name) " +

>> " (id: $($process.ProcessId))"

>> "Stop Process"))

>> {

>> Sprocess.Terminate ()

>> }

>> }

>> }

>>

Next, start a Notepad process:

PS (2) > notepad

WRITING ADVANCED FUNCTIONS AND SCRIPTS 291

www.it-ebooks.info

http://www.it-ebooks.info/

292

Now call Stop-ProcessUsingiMI, specifying the -WhatIf parameter:

PS (3) > Stop-ProcessUsingWMI notepad -Whatif
What if: Performing operation "Stop Process" on Target "proc
ess notepad.exe (id: 6748)".

You see a description of the operation that would be performed. The -WhatIf option
was only supposed to show what it would have done but not actually do it, so you'll
use Get-Process to verify that the command is still running:

PS (4) > Get-Process notepad | ft name,id -auto

Name Id

notepad 6748

Let’s perform the operation again but this time use the -Confirm flag. This requests
that you be prompted for confirmation before executing the operation. When you get
the prompt, you'll respond vy to continue with the operation:

PS (5) > Stop-ProcessUsingWMI notepad -Confirm

Confirm

Are you sure you want to perform this action?
Performing operation "Stop Process" on Target "process
notepad.exe (id: 6748)".

[Y] Yes [A] Yes to All [N] No [L] No to All

[S] Suspend[?] Help (default is "Y"): vy

__GENUS : 2

__CLASS : __PARAMETERS
__SUPERCLASS

__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 1
__DERIVATION {1}

__SERVER :

__NAMESPACE

__PATH

Returnvalue : 0

And the operation was performed. Use Get-Process to confirm that the Notepad
process no longer exists:

PS (6) > Get-Process notepad | ft name,id -auto
Get-Process : Cannot find a process with the name "notepad"
Verify the process name and call the cmdlet again.
At line:1 char:12
+ get-process <<<< notepad | ft name,id -auto
+ CategoryInfo : ObjectNotFound: (notepad:Str
ing) [Get-Process], ProcessCommandException
+ FullyQualifiedErrorId : NoProcessFoundForGivenName, M
icrosoft.PowerShell.Commands.GetProcessCommand

PS (7) >

CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

www.it-ebooks.info

http://www.it-ebooks.info/

8.2.3

Using the ShouldProcess mechanism in your scripts and functions when they’ll
perform destructive operations is a scripting best practice. Although it requires a bit
of effort on the script author’s part, it adds tremendous value for the script user.

The $PSCmdlet variable

As mentioned earlier, the $PSCmdlet variable gives the script or function author the
necessary callbacks and properties needed to be able to take advantage of all the
advanced function features. As well as being able to call Shouldprocess (), this vari-
able gives you access to the parameter set name through the $Pscmdlet . Parameter-
SetName property. It allows you to halt a pipeline containing this command by calling
the $psCmdlet.ThrowTerminatingError () method. It basically makes all the fea-
tures available to compiled cmdlet writers available to script and function authors.
Refer to the PowerShell SDK documentation to get complete details on the features
available through $pscmdlet. For now, we'll continue with our discussion of the prop-
erties on the CmdletBinding attribute.

The Confirmlmpact property

This is an extension on the idea of “should process.” Not all commands have the
same consequences, so you have a way to indicate this with this property. The
ConfirmImpact property specifies when the action of the function should be con-
firmed by calling the shouldpProcess () method. The call to the shouldprocess ()
method displays a confirmation prompt only when the ConfirmImpact argument is
equal to or greater than the value of the $ConfirmPreference preference variable.
(The default value of the argument is Medium.) Obviously this property should be
used only when SupportssShouldprocess is also specified.

The DefaultParameterSetName property

The DefaultpParameterSetName property specifies the name of the parameter set
that the runtime will use if it can’t figure out the parameter set from the specified
parameters. We'll look at this a bit more when we cover the parameter metadata.

This completes our discussion of the CmdletBinding attribute and the properties
that apply to the function or script as a whole. Next, we'll explore the other attribute
that can be applied to function or script: OutputType.

The OutputType attribute

The OutputType attribute allows you to declare the expected return type of a func-
tion or script. Like the CmdletBinding attribute, this attribute applies to the whole
function. In PowerShell v2, this attribute doesn’t affect the output type and isn’t
checked by the runtime at any point. What it does do is allow you to document the
expected return type in such a way that tools like editors can use it to do things like
provide IntelliSense for the next cmdlet to add to a pipeline. In this scenario, the edi-
tor would show the list of cmdlets that take the previous output type as an input.

WRITING ADVANCED FUNCTIONS AND SCRIPTS 293

www.it-ebooks.info

http://www.it-ebooks.info/

294

NOTE They could, but this feature was added late in the v2 ship cycle
and Microsoft didn’t have time to make use of it in either the ISE or
the console host. Some of the third-party editors may be able to use it.

Specifying the return type sounds like it should be easy, but functions may return
more than one type. In fact, some cmdlets like Where-Object can return any type
because they just return what they were passed. A more common and manageable
case occurs when you have different types of objects being returned when different
parameters sets are used:

PS (1) > function Test-OutputType

>> |

>> [CmdletBinding (DefaultParameterSetName = "Int")]

>> [OutputType ("asInt", [int])]

>> [OutputType ("asString", [stringl)]

>> [OutputType ("asDouble", ([double], I[single]))]

>> [OutputType("lie", [int])]

>> param (

>> [parameter (ParameterSetName="asInt")] [switch] S$asInt,

>> [parameter (ParameterSetName="asString")] [switch] S$asString,
>> [parameter (ParameterSetName="asDouble")] [switch] S$asDouble,
>> [parameter (ParameterSetName="1ie")] [switch] $lie

>>)
>> Write-Host "Parameter set: $($SPSCmdlet.ParameterSetName)"
>> switch ($PSCmdlet.ParameterSetName) {

>> "asInt" { 1 ; break }

>> "asString" { "1" ; break }

>> "asDouble" { 1.0 ; break }

>> "lie" { "Hello there"; break } }
>> }

>>

Now let’s try out each of the different switches:

PS (2) > (Test-OutputType -asString) .GetType () .FullName
Parameter set: asString

System.String

PS (3) > (Test-OutputType -asInt).GetType() .FullName
Parameter set: asInt

System.Int32

PS (4) > (Test-OutputType -asDouble) .GetType () .FullName
Parameter set: asDouble

System.Double

Okay—everything is as expected; in each case the correct type was returned. Now use
the -1ie parameter:

PS (5) > (Test-OutputType -lie) .GetType() .FullName
Parameter set: lie
System.String

Even though you specified the OutputType to be [int], the function returned a
string. As we said, the attribute is only documentation—it doesn’t enforce the type.

CHAPTER 8 ADVANCED FUNCTIONS AND SCRIPTS

www.it-ebooks.info

http://www.it-ebooks.info/

So, if it’s just documentation, then at least there must be an easy way to get at it,
right? Well, unfortunately that’s not the case either. This is another feature that was
added right at the end of the ship cycle. As a consequence, there’s no real interface to
get this information. Instead, you have to look at the compiled attributes directly to
see the values. For functions and scripts, you can retrieve this information from the
scriptblock that defines the function body. This looks like
PS (6) > (Get-Command Test-OutputType) .ScriptBlock.Attributes |

>> Select-Object typeid, type |
>> Format-List

TypeId : System.Management.Automation.CmdletBindingAttribute
type

TypeId : System.Management.Automation.OutputTypeAttribute
Type : {asInt, int}

TypeId : System.Management.Automation.OutputTypeAttribute
Type : {asString, string}

TypeId : System.Management.Automation.OutputTypeAttribute
Type : {asDouble, System.Double System.Single}

TypeId : System.Management.Automation.OutputTypeAttribute

Type : {lie, int}

For cmdlets, it’s even less friendly because you have to go through the .NET type that
was used to define the cmdlet. Here’s what that looks like:

PS (9) > Sct = (Get-Command Get-Command) .ImplementingType

PS (10) > $ct.GetCustomAttributes($true) |

>> Select-Object typeid, type |
>> Format-List

TypeId : System.Management.Automation.CmdletAttribute
type

TypeId : System.Management.Automation.OutputTypeAttribute

Type : {System.Management.Automation.AliasInfo, System.Management.A
utomation.ApplicationInfo, System.Management.Automation.Func
tionInfo, System.Management.Automation.CmdletInfo...}

At this point, you might be saying, “Why bother to specify this?” The answer is that
good scripts will last beyond any individual release of PowerShell. This information is
somewhat useful now and will probably be much more useful in the future. As a best
practice, it’s strongly recommended that this information be included in scripts that
you want to share with others.

Something we skipped over in the OutputType example was the Parameter attri-
bute. We used it but didn’t actually talk about what it does. We’ll remedy this in the
next section.

WRITING ADVANCED FUNCTIONS AND SCRIPTS 295

www.it-ebooks.info

http://www.it-ebooks.info/

8.2.4 Specifying parameter attributes

We specify additional information on parameters using the Parameter attribute.
This information is used to control how the parameter is processed. The attribute is
placed before the parameter definition, as shown in figure 8.6.

As was the case with the CmdletBinding attribute, specific behaviors are con-
trolled through a set of properties provided as “arguments” to the attribute. Although
figure 8.6 shows all the properties that can be specified, you only have to provide the
ones you want to set to something other than the default value. Let’s look at an exam-
ple first and then go through each of the properties.

The following example shows a parameter declaration that defines the -Path
parameter. Say you want the parameter to have the following characteristics:

* It’s mandatory—that is, the user must specify it or there’s an error.
* It takes input from the pipeline.

* It requires its argument to be convertible to an array of strings.

The parameter declaration needed to do all of this looks like

param (
[parameter (Mandatory=Strue, ValueFromPipeline=S$true)]
[string[]] $Parameter

)

The result is fairly simple because you only need to specify the things you want to
change. All other properties keep their default values. In the next few sections, we'll
look at each of the possible properties, what it does, and how it can be used.

Attribute specifying

Property indicating this
parameter metadata perty 9

parameter is required

Parameter set this

. - parameter belongs to
Parameter is positional,

ocupying position 1in [Parameter (Mandatory=$true,

arameter set set1 Position=0
P ParameterSetName="setl", Can take argument from
ValueFromPipeline=$false, a property on object

ValueFromPipelineByPropertyName=$true, coming from pipeline
ValueFromRemainingArguments=$false,

HelpMessage="some help this is")]

[int]

$pl =0

Can'’t take argument
from pipeline as is
