|
Gathering and Managing XML Information

Essenticls

O“REILLY® Micab Dubinko

CHAPTER 2
XForms Building Blocks

“What the world really needs is more love and
less paperwork.”

—-Pearl Bailey

“XML lets organizations benefit from structured,
predictable documents. Thus, XML breeds forms.
QED.”

—-David Weinberger

The previous chapter ended with a look at the simple syntax of XForms.
This chapter goes into greater detail on the concepts underlying the design
of XForms, as well as practical issues that come into play, including a com-
plete, annotated real-world example.

A key concept is the relationship between forms and documents, which will
be addressed first. After that, this chapter elaborates on the important issue
of host languages and how XForms integrates them.

More Than Forms

Despite the name, XForms is being used for many applications beyond sim-
ple forms. In particular, creating and editing XML-based documents is a
good fit for the technology.

A key advantage of XML-based documents over, say, paper or word proces-
sor templates, is that an entirely electronic process eliminates much uncer-
tainty from form processing. Give average “information workers” a paper
form, and they’ll write illegibly, scribble in the margins, doodle, write in new
choices, and just generally do things that aren’t expected. All of these behav-
iors are manually intensive to patch up, in order to clean the data to a point

19

where it can be placed into a database. With XForms, it is possible to restrict
the parts of the document that a user is able to modify, which means that
submitted data needs only a relatively light double-check before it can be
sent to a database. (One pitfall to avoid, however, is a system that is exces-
sively restrictive, so that the person filling the form is unable to accurately
provide the needed data. When that happens, users typically give bad infor-
mation or avoid the electronic system altogether.)

Various efforts are underway to define XML vocabularies for all sorts of doc-
uments. Perhaps one of the most ambitious is UBL, the Universal Business
Language, currently being standardized through OASIS (the Organization
for the Advancement of Structutured Information Standards). The goal of
UBL is to represent all different sorts of business documents—purchase
orders, invoices, order confirmations, and so on—using a family of XML
vocabularies. XForms is a great tool with which to create and edit UBL doc-
uments.

A Real-World Example

As an example, this section will develop an XForms solution for creating and
editing a UBL purchase order. The first step is to define the initial instance
data, which is a skeleton XML document that contains the complete struc-
ture of the desired final document, but with only initial data. This docu-
ment serves as a template for newly-created purchase orders, and provides a
framework on which to hang the rest of the form.

N
< This complete example form is available online at http://
“‘i . dubinko.info/writing/xforms/ubl/.
153

Example 2-1 shows what a UBL purchase order document looks like.
Figure 2-1 shows, in the X-Smiles browser, an XForms document capable of
creating such a document.

20 | Chapter2: XForms Building Blocks

=2 Create a Purchase Order

File Edit View Bookmarks Help

Create a Purchase Order I

e >xKa a@@ é‘hﬁp'uduhmknmfnl\nvntlngmnrmsfumfed\txml

Order Date Currency to use throughout this form
February 2, 2003 ~|Eura -
Order Total:
422,50
Show Details ‘
Quantity 5 Description
| o 1 I 1 [Pencils, box #Z2 red |
Part Number Price
[32145-12 [2.50 |
Quantity 12 Description
| | "1 11 i[Heorox Paper- case |
Part Number Price
[78-637-24 [30.00 |
Quantity 10 Description
| o I o i i[pens, box, blue finepoint |
Part Number Price
[091356-3 [5.00 |
Insert new line Remove current line
Write to disk

Figure 2-1. An XML purchase order being created with XForms

Example 2-1. An XML purchase order using UBL

<Order xmlns="urn:oasis:names:tc:ubl:Order:1.0:0.70"
xmlns:cat="urn:oasis:names:tc:ubl:CommonAggregateTypes:1.0:0.70">

<cat:ID/>
<cat:IssueDate/>

<cat:LineExtensionTotalAmount currencyID="USD"/>

<cat:BuyerParty>
<cat:ID/>
<cat:PartyName>
<cat:Name/>
</cat:PartyName>
<cat:Address>
<cat:ID/>
<cat:Street/>
<cat:CityName/>
<cat:PostalZone/>
<cat:CountrySub-Entity/>
</cat:Address>
<cat:BuyerContact>
<cat:ID/>
<cat:Name/>
</cat:BuyerContact>
</cat:BuyerParty>

A Real-World Example

21

Example 2-1. An XML purchase order using UBL (continued)

<cat:SellerParty>
<cat:ID/>
<cat:PartyName>
<cat:Name/>
</cat:PartyName>
<cat:Address>
<cat:ID/>
<cat:Street/>
<cat:CityName/>
<cat:CountrySub-Entity/>
</cat:Address>
</cat:SellerParty>
<cat:DeliveryTerms>
<cat:ID/>
<cat:SpecialTerms/>
</cat:DeliveryTerms>
<cat:0rderLine>
<cat:BuyersID/>
<cat:SellersID/>
<cat:LineExtensionAmount currencyID=""/>
<cat:Quantity unitCode="">1</cat:Quantity>
<cat:Item>
<cat:ID/>
<cat:Description>Enter description here</cat:Description>
<cat:SellersItemIdentification>
<cat:ID>Enter part number here</cat:ID>
</cat:SellersItemIdentification>
<cat:BasePrice>
<cat:PriceAmount currencyID=
</cat:BasePrice>
</cat:Item>
</cat:0OrderLine>
</Order>

>0.00</cat:PriceAmount>

The markup used by UBL seems slightly verbose, but this is necessary to
capture all the small variations that occur in the purchase orders used by dif-
ferent organizations. Note that the cat:OrderLine element can repeat as
many times as necessary, though only a single occurrence is needed for the
initial instance data. Also note that the root element uses a different XML
namespace than the rest of the document. Thanks to the context node rules
in XForms, the root element never needs to be directly referred to, and thus
form authors can happily ignore this minor detail.

The next step is to create an XForms document that will serve to edit the ini-
tial instance data. XForms itself does not define a document format. Instead,
a host language such as XHTML or SVG, combined with XForms, needs to
be used. As of this writing, XHTML 2.0, which natively includes XForms, is

22 | Chapter2: XForms Building Blocks

progressing through the W3C Recommendation track. This example, how-
ever, uses the established XHTML 1.1, with XForms elements inserted in
the appropriate places. As a result, this example will not validate against any
XHTML DTD. Even so, it is still XML well-formed, and browsers that
understand XForms presently do a good job rendering this document.

The latter part of this chapter describes complications that occur when com-
bining vocabularies; the opening lines of the XForms document shown in
Example 2-2 provide a foregleam, using an arcane XML syntax called an
internal DTD subset to declare certain attributes as document-unique IDs.

Example 2-2. Opening lines of an XForms document

<?xml version="1.0"?>
<?xml-stylesheet type="text/css" href="style.css" ?>

<!-- the following extremely ugly code is necessary
to make ID attributes behave as expected -->
<IDOCTYPE html [
<IATTLIST object id ID #IMPLIED>
<IATTLIST model id ID #IMPLIED>
<IATTLIST bind id ID #IMPLIED>
<IATTLIST instance id ID #IMPLIED>
<IATTLIST submission id ID #IMPLIED>
<IATTLIST group id ID #IMPLIED>
<IATTLIST repeat id ID #IMPLIED>
<IATTLIST case id ID #IMPLIED>
1>

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ev="http://www.w3.0rg/2001/xml-events"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:u="urn:oasis:names:tc:ubl:CommonAggregateTypes:1.0:0.70"
xmlns:xforms="http://www.w3.0rg/2002/xforms">

<head>
<title>Create a Purchase Order</title>

After the usual XML declaration, the document starts out with a reference to
a CSS file to provide style information. Next, the DOCTYPE declaration and
the several ATTLIST statements are necessary to make sure that the several
ID-typed attributes that will be used are actually treated as IDs.

Following that is the beginning of a normal html element, with several
namespace declarations that will be used later in the document. Last is the
standard HTML head element, with a title.

The next several lines, in Example 2-3, make up the XForms Model—essen-
tially everything there is to know about the form other than how it will look
or otherwise be rendered.

AReal-World Example | 23

Example 2-3. Starting the XForms Model

<xforms:model id="default">
<!-- schema="schema.xsd" -->
<xforms:instance src="ubl samp.xml"/>
<xforms:submission action="file://tmp/ubl.xml" method="put" id="submit"/>

<!-- a few things are always required -->

<xforms:bind nodeset="u:IssueDate" required="true()" type="xs:date"/>

<xforms:bind nodeset="u:OrderLine/u:Quantity" required="true()"
type="xs:nonNegativeInteger"/>

<xforms:bind nodeset="u:0OrderLine/u:Item/u:BasePrice/u:PriceAmount"”
required="true()" type="xs:decimal"/>

<xforms:bind nodeset="u:0rderLine/u:Item/u:SellersItemIdentification/u:ID"
required="true()"/>

<!-- a few basic calculations -->

<xforms:bind nodeset="u:OrderLine/u:LineExtensionAmount” type="xs:decimal"
calculate="../u:Quantity * ../u:Item/u:BasePrice/u:PriceAmount"/>

<xforms:bind nodeset="u:LineExtensionTotalAmount" type="xs:decimal"
calculate="sum(../u:OrderLine/u:LineExtensionAmount)"/>

The xforms :model element is the container for the entire XForms Model. In a
document with only one such element, an id attribute isn’t strictly needed,
though it is good practice to always include one. With the addition of the
attribute schema="UBL_Library 0p70 Order.xsd" it would be possible to asso-
ciate a pre-existing XMLSchema with this form, though that option is com-
mented out here. XML Schema processing would add significant overhead,
and the few places that require additional datatype information can be eas-
ily specified separately. The xforms:instance element, with the src attribute,
points to the initial instance data that was listed earlier. The xforms:
submission element indicates that activating submit on this form will write
XML to the local file system.

The next several lines contain xforms:bind elements, each of which selects a
specific part or parts of the instance data, applying various XForms proper-
ties to the selection. The language used to select the XML parts, or nodes, is
called XPath, which is perhaps better known as the selection language used
in XSLT, XPointer, and XML Signature. The next chapter describes XPath in
detail. XForms includes defaulting rules that simplify most of the XPath
selection expressions, declared on the nodeset attribute, and called model
binding expressions. The first model binding expression selects the one-and-
only u:IssueDate instance data node, marking it as required and of the XML
Schema datatype date, which provides the hint that this particular data
should be entered with a date-optimized form control, such as a calendar
picker. The second model binding expression applies to however many u:
Quantity elements happen to exist at any given time, and marks all of them

24 | Chapter2: XForms Building Blocks

as requiring user entry, along with the XML Schema datatype xs:
nonNegativeInteger.

The next few model binding expressions set up the two calculations that are
fundamental to a purchase order: calculating the total amount for a line item
(price times quantity), and the total for the whole order (sum of all line
items). The calculate attribute holds an XPath expression that gets evalu-
ated to determine a new value for the node to which it is attached. The cal-
culation for line items is ../u:Quantity * ../u:Item/u:BasePrice/u:
PriceAmount, where the asterisk means multiply, and the operands on either
side of it are path expressions, relative to the u:LineExtensionAmount ele-
ment. In turn, the calculation for the grand total is sum(../u:OrderLine/u:
LineExtensionAmount), which uses the function sum() to add up all the val-
ues from individual u:LineExtensionAmount nodes. Like a spreadsheet, recal-
culations will occur whenever needed, and dependencies among calculations
will automatically be handled in the correct order. For example, individual
line items will always be multiplied out before the overall total is summed

up.
The definition of the XForms Model continues with the lines in
Example 2-4.

Example 2-4. The rest of the XForms Model

<!-- a second instance, temporary data not to be submitted -->
<xforms:instance id="scratchpad">
<temp xmlns="">
<currencyOptions>
<option value="EUR">Euro</option>
<option value="GBP">Pound</option>
<option value="USD">Dollar</option>
</currencyOptions>
</temp>
</xforms:instance>

<!-- global setting of currencyID -->

<xforms:bind nodeset="u:0rderLine/u:LineExtensionAmount/@currencyID"
calculate="../../u:LineExtensionTotalAmount/@currencyID"/>

<xforms:bind nodeset="u:0rderLine/u:Item/u:BasePrice/u:PriceAmount/

@currencyID"
calculate="../../../../u:LineExtensionTotalAmount/@currencyID"/>

</xforms:model>
</head>

An XForms Model can have more than one xforms:instance element. The
usual reason for this is to hold temporary, non-submittable data that is used
in the form. In this example, various currency codes, and the longer descrip-
tions of each, are kept in a separate location for maintainability. This is also

AReal-World Example | 25

a good example of initial instance data occurring inline in the XForms
Model, though it could easily also be another external XML document. The
instance data XML itself is not defined in any namespace, so the xmlns=""
declaration is essential to turn off the default XHTML namespace that
would otherwise be in effect at this point.

The last two xforms:bind elements set up a mapping across the several
currencyID attributes that can occur in a UBL document. The form is set up
to include a form control that selects the current currency, placing it in the
node at u:LineExtensionTotalAmount/@currencyID. The two bind elements in
this section then copy the value to the appropriate two places in each line
item. In theory, each line item could use a different currency type but, for
simplicity, this example sets up two calculations that copy the main selec-
tion, which is kept on the u:LineExtensionTotalAmount element, to every
other currencyID attribute (the number of which will depend on how many
line items are in the order). With this, the XForms Model and the head sec-
tion of the XHTML document come to a close.

From here on out, the rest of the code is the visible user interface to con-
struct an UBL purchase order. Example 2-5 continues with the definition.
Figure 2-2 shows the user interface that results from this portion of the
XForms code.

Example 2-5. XForms markup for date, currency type, and total amount

<body>
<xforms:group>
<xforms:input ref="u:IssueDate">
<xforms:label>Order Date</xforms:label>
</xforms:input>

<xforms:selectl ref="u:LineExtensionTotalAmount/@currencyID"
appearance="minimal" selection="open">
<xforms:label>Currency to use throughout this form</xforms:label>
<xforms:itemset nodeset="instance('scratchpad')/currencyOptions/option">
<xforms:label ref="."/>
<xforms:value ref="@value"/>
</xforms:itemset>
</xforms:select1>

<xforms:output ref="u:LineExtensionTotalAmount">
<xforms:label>Order Total: </xforms:label>
</xforms:output>
</xforms:group>

The opening of the XHTML body element marks the start of the content that
is intended to be rendered. The rest of the content in this section is orga-
nized inside an xforms:group element. The first form control is a basic input

26 | Chapter2: XForms Building Blocks

Order Date Currency to use throughout this form
February 2, 2003 -[Euro Rd
Order Total;

422,50

Figure 2-2. The user interface rendered for date, currency type, and total amount

control, though due to the XML Schema datatype set up in the XForms
Model, most implementations will provide a date-specific entry control,
such as a pop-up calendar.

The second form control is a single select control, with a hint attribute
appearance="minimal" to suggest that this part of the interface should be
given minimal screen estate when not activated—in other words, a pop-up
list. Another attribute selection="open" indicates that the user should be
able to enter arbitrary values not on the list, in which case the entered value
would have to be a three-letter currency code, not the friendlier text descrip-
tion that comes with the built-in choices. The xforms:itemset element pulls
the choices from the instance data, in this case from the secondary instance
data, as can be seen by the instance() function in the XPath, which is
needed any time the non-default instance data is referenced. A kind of repe-
tition is going on here; despite the single xforms:itemset element, the list
will have one choice for each node matched in the secondary instance data.

The output control displays data but doesn’t provide any interface for
changing it.

Example 2-6 is lengthier, but not difficult to understand.

Example 2-6. XForms markup for addresses

<xforms:switch id="DetailHider">
<xforms:case id="detail hide">
<xforms:trigger>
<xforms:label>Show Details</xforms:label>
<xforms:toggle ev:event="DOMActivate" case="detail_show"/>
</xforms:trigger>
</xforms:case>

<xforms:case id="detail show">
<xforms:group id="SellerParty" ref="u:SellerParty">
<xforms:label>Seller Information:</xforms:label>
<xforms:input ref="u:PartyName/u:Name">
<xforms:label>Name</xforms:label>
</xforms:input>
<xforms:group ref="u:Address">
<xforms:input ref="u:Street">
<xforms:label>Street</xforms:label>
</xforms:input>
<xforms:input ref="u:CityName">

AReal-World Example | 27

Example 2-6. XForms markup for addresses (continued)

<xforms:label>City</xforms:label>

</xforms:input>

<xforms:input ref="u:PostalZone">
<xforms:label>Postal Code</xforms:label>

</xforms:input>

<xforms:input ref="u:CountrySub-Entity">
<xforms:label>State or Province</xforms:label>

</xforms:input>

</xforms:group>
</xforms:group>

<xforms:group id="BuyerParty" ref="u:BuyerParty">
<xforms:label>Buyer Information:</xforms:label>
<xforms:input ref="u:PartyName/u:Name">
<xforms:label>Name</xforms:label>
</xforms:input>
<xforms:group ref="u:Address">
<xforms:input ref="u:Street">
<xforms:label>Street</xforms:label>
</xforms:input>
<xforms:input ref="u:CityName">
<xforms:label>City</xforms:label>
</xforms:input>
<xforms:input ref="u:PostalZone">
<xforms:label>Postal Code</xforms:label>
</xforms:input>
<xforms:input ref="u:CountrySub-Entity">
<xforms:label>State or Province</xforms:label>
</xforms:input>
</xforms:group>
</xforms:group>

<xforms:trigger>
<xforms:label>Hide Details</xforms:label>
<xforms:toggle ev:event="DOMActivate" case="detail hide"/>
</xforms:trigger>
</xforms:case>
</xforms:switch>

Figure 2-3 shows the initial state of the user interface produced by this por-
tion of the XForms code. Figure 2-4 shows the result of toggling the switch,
revealing the form controls for entering the buyer and seller information.

Show Details ‘

Figure 2-3. The user interface for the XForms switch element, collapsed

28 | Chapter2: XForms Building Blocks

Seller Information;
Name
[Toes office suppl

Street City

[32 W. Lakeshcore Dr [chicago
State or Providence

[IT |

Buyer Information:
Name
[Eills Microdevices

Street City

[413 spring st [Elgin

Postal Code State or Providence

[601z23 [Tr |

Hide Details ‘

Figure 2-4. The user interface for the XForms switch element, expanded

The xforms:switch element is a useful tool to show different portions of the
user interface on command. In this case, the form controls for seller and
buyer information are either entirely shown or entirely hidden. A declara-
tive element, xforms:toggle, changes which of the xforms:case elements get
to have its contents rendered, with all others suppressed. The first case,
which is the default, displays only an xforms:trigger that toggles itself away,
showing all the form controls in the next case in its place.

Within another group for organizational purposes, the form controls in the
next section capture all the information needed about the seller referenced
by the purchase order. In this case, the overall group has a label, in addition
to labels on the individual form controls.

The next group, for the buyer information, is nearly identical to the one that
precedes it. While earlier drafts of XForms had a technique to combine this
duplicated code in a single place, that feature was dropped in favor of con-
centrating on getting the underlying framework correct. (One proposal
involves combining XSLT with XForms, using the element template to
define a template that can be instantiated multiple times throughout the
document.)

The last part of this section is another xforms:toggle displayed along with
the buyer and shipper information. Upon activation, it causes the contents
of the first case to be displayed, which has the effect of hiding all the buyer
and shipper interface. The XML instance data, however, continues to exist
even when the means of viewing or changing are hidden from view.

Example 2-7 creates a dynamically expandable list of line items.

AReal-World Example | 29

Example 2-7. Using XForms to create an expandable list.

<!-- repeating sequence for line items -->
<xforms:repeat id="lineitems" nodeset="u:0rderLine">
<xforms:group>
<xforms:range ref="u:Quantity" class="narrow"
start="1" end="9" step="1" incremental="true">
<xforms:label>Quantity <xforms:output ref="."/></xforms:label>
</xforms:range>

<xforms:input ref="u:Item/u:Description” class="wide">
<xforms:label>Description</xforms:label>
</xforms:input>
<xforms:input ref="u:Item/u:SellersItemIdentification/u:ID" class="wide">
<xforms:label>Part Number</xforms:label>
</xforms:input>
<xforms:input ref="u:Item/u:BasePrice/u:PriceAmount" class="narrow">
<xforms:label>Price</xforms:label>
</xforms:input>
</xforms:group>
</xforms:repeat>

<xforms:group id="RepeatDashboard">
<xforms:trigger>
<xforms:label>Insert new line</xforms:label>
<xforms:insert ev:event="DOMActivate" position="after"
nodeset="u:0rderLine" at="index('lineitems"')"/>
</xforms:trigger>

<xforms:trigger>
<xforms:label>Remove current line</xforms:label>
<xforms:delete ev:event="DOMActivate" nodeset="u:0rderLine"
at="index('lineitems')"/>
</xforms:trigger>
</xforms:group>

Figure 2-5 shows the user interface that results from this portion of the
XForms code, with the first line item highlighted.

Like xforms:itemset seen earlier, xforms:repeat causes a repetition of con-
tent, once for each node in a given set of nodes—exactly the behavior
needed to populate the u:0rderLine elements from UBL. All the content of
xforms:repeat is effectively duplicated as many times as there are line items,
which can be dynamically added and removed. The first form control on
each line item is xforms:range, which allows a smoother way to select a
value than typing a number; for example, a sliding indicator. The range here
is from 1 to 9.

The rest of the repeating form controls are similar to ones already used in
this example. One difference is the class attribute on the final xforms:input,
which is used by the associated CSS to style the form control.

30 | Chapter2: XForms Building Blocks

Quantity 5 Description

1 1 1 1 T 1 1 1 E\Pencils, box #2 red |
Part Number Price

G2145-12 [Z.50]
Quantity 12 Description

i o I I [1 1 [eorox Paper- case |
Part Number Price

[76-6£97-24 [30.00 |
Quantity 10 Description

"+ 1+ 1+« 1 1 1 TPens, box, blue finepoint |
Part Number Price

[091356-3 [5.00]

Inzert new line ‘ Remove current line

Figure 2-5. The user interface for repeating line items

Outside of the repeat, a few interesting things are happening. Inside another
group, an xforms:trigger is configured to insert a new line item. Another
declarative action, xforms:insert, accomplishes this feat. The location of the
inserted line item is either just before or just after a specific location (from
the at attribute) within a particular node-set (from the nodeset attribute).

The xforms:delete action works similarly. Any repeating set keeps track of
the currently active item, called the index. Both the insert and delete actions
make use of the index, as obtained through the index() function.

The concluding part of the sample document, in Example 2-8, allows the
completed document to be written to disk.

Example 2-8. XForms markup to submit the data

<xforms:submit submission="submit">
<xforms:label>Write to disk</xforms:label>
</xforms:submit>
</body>
</html>

Figure 2-6 shows the rendering for this piece of XForms code.

Write to disk

Figure 2-6. The user interface to finalize the purchase order

The xforms:submit element is another form control, like xforms:trigger, but
able to invoke the submission procedure without any additional coding
needed. It contains a reference to the xforms:submission element contained
in the XForms Model, which ultimately determines what happens when this

AReal-World Example | 31

control is activated. After the last form control, the XHTML document
comes to its usual conclusion.

Host Language Issues

The philosophy of the XForms specification can be summed up in a single
line, found in the Abstract of the official W3C XForms document.

XForms is not a free-standing document type, but is intended to be inte-
grated into other markup languages, such as XHTML or SVG.

This approach has benefits as well as drawbacks. The benefits are that the
XForms specification was completed more quickly, and without host lan-
guage dependencies that otherwise might exist. The primary disadvantage is
that more work needs to be done to actually integrate XForms with
XHTML, SVG, or any other language.

Another W3C specification, Modularization of XHTML, provides a frame-
work in which XHTML, or any other combination of XML-based lan-
guages, can be mixed and matched in order to provide a combined
document type. Such combinations can take advantage of specific language
features; for example, in XHTML a non-rendered head section can contain
the XForms Model, and in SVG, a foreignObject element can enclose indi-
vidual form controls.

Combined Document Types

Any document that uses XForms will necessarily be a combined document
type, involving multiple XML namespaces. Such compound documents are
still largely uncharted territory in the realm of W3C specifications, which
leads to several headaches. For one thing, XML has the concept of attributes
of type ID, specifying a document-unique value. Unfortunately, the id-ness
of the attribute needs to be declared in a DTD or some kind of schema,
which can only occur at the top of the overall document, not at the point
where a subdocument starts. DTDs in general are poorly suited to valida-
tion, so until further work is done within the W3C, some XForms docu-
ments will have to suffice with being simply well-formed.

32 | Chapter2: XForms Building Blocks

N
Although often scorned by developers, XML namespaces are
ﬁ{ a fact of life, particularly for W3C specifications. XForms
T 944 elements conforming to the final W3C Recommendation are
" defined in a namespace of http://www.w3.0rg/2002/xforms.
Other specifications could, in theory, include all the XForms
elements in their own namespace, though this seems unlikely
for official W3C specifications. Examples in this book show
a mixture of both approaches.

One glimmer of hope is a recurring proposal for an attribute named xm1:1id,
which would be recognized as having id-ness without a separate DTD or
Schema. In examples throughout this book, any attributes named id will be
considered to have been appropriately declared to be unique identifiers.

In a similar category is an attribute usually named class, which serves as a
hook for attaching style sheets. As used throughout this chapter, the host
language is responsible for defining this attribute and attaching it to the
XForms elements.

Linking Attributes

Another attribute, src, has caused nearly as much controversy as its big
brother in XHTML, href. The problem stems from tension with XLink 1.0, a
W3C Recommendation, which asserts itself as the preferred technique to
define any “explicit relationship between resources or portions of resources.”
Originally, this standard was envisioned by some as a solution that could
apply to any XML, but the final solution worked only with an attribute
named xlink:href (complete with a separate namespace).

The inflexibility of XLink causes problems in modularized documents,
including XForms, since there are different kinds of links but only one
allowed attribute name. As an example, an element might both serve as a
launching point for a hyperlink, and at the same time link to external inline
content, as in the following fragment that might result from a combination
of XForms and SVG (which uses x1ink:href):

<xforms:label src="label2.svg" xlink:href="homepage.html"/>

In this example, the src attribute from XForms points to a SVG file to be
used as the label, and the x1link:href attribute from SVG makes the label a
clickable hyperlink to homepage.html. 1t’s a good thing that the XForms
attribute is named src and not xlink:href, because a conflict would have
resulted when trying to combine the languages, since an element can’t have
two attributes with the same name.

Linking Attributes | 33

As an alternative to XLink, the HTML Working Group proposed another
standard, called HLink, to annotate any XML with link descriptions. The
proposal met with almost as little enthusiasm as XLink. The Technical
Architecture Group (TAG) of the W3C is looking into the issue; the long
term resolution remains to be seen. Controversies aside, in XForms, src con-
sistently means one thing: that the URI in the attribute value is to be fetched
as part of loading the document, and the contents rendered in place of what-
ever element contains the attribute (much like the img element in earlier ver-
sions of XHTML).

34 | Chapter2: XForms Building Blocks

