
Veritas Storage Foundation™ 5.0
Dynamic Multi-pathing

Optimizing Availability and Performance in Multi-Vendor Environments

May 2007

Table of Contents

1 THE IMPORTANCE OF MULTIPLE STORAGE I/O PATHS ..5
1.1 MULTIPLE I/O PATHS ENHANCE AVAILABILITY...6
1.2 MULTIPLE I/O PATHS ENHANCE I/O PERFORMANCE ..7

2 DIFFERENT FORMS OF MULTI-PATH ACCESS...8
2.1 DISCOVERING MULTIPLE I/O PATHS ..9

3 COMMON MULTI-PATH HARDWARE CONFIGURATIONS..10
3.1 DIRECTLY CONNECTED DISK ARRAYS ...10
3.2 ONE STORAGE NETWORK SWITCH ...11
3.3 REDUNDANT STORAGE NETWORKS..12
3.4 DUAL PORT ARRAY CONTROLLERS & REDUNDANT STORAGE NETWORK FABRICS13

4 VERITAS STORAGE FOUNDATION 5.0 DYNAMIC MULTI-PATHING (DMP)14
4.1 DMP AND THE UNIX STORAGE I/O SOFTWARE STACK ...15
4.2 DMP MULTI-PATH DEVICES IN THE OPERATING SYSTEM DEVICE TREE..16
4.3 DMP DEVICE DISCOVERY DURING SYSTEM OPERATION..18
4.4 DMP’S MODULAR ARCHITECTURE FOR ADVANCED STORAGE SUBSYSTEMS SUPPORT19
4.5 DMP ENHANCEMENTS TO DEVICE DISCOVERY...23
4.6 MAXIMIZING THROUGHPUT PERFORMANCE...24

5 I/O PATH FAILOVER WITH DMP ...29
5.1 DMP MULTI-THREADED CORE DESIGN...30
5.2 SUBPATH FAILOVER GROUPS ...31
5.3 SUSPECT PATHS AND PRO-ACTIVE FAILURE HANDLING ...31
5.4 PATH ANALYSIS ...32

6 DMP CONFIGURATION AND TUNING CONSIDERATIONS...34
6.1 RECOMMENDED DMP 5.0 TUNING ...34
6.2 RECOMMENDED DMP BACKPORT TUNING...34
6.3 DMP TUNING ...35
6.4 STORAGE NETWORK HARDWARE SETTINGS...37

7 CONCLUSION ..40

Table of Figures

FIGURE 1: GENERAL I/O PATH MODEL...5
FIGURE 2: MULTIPLE I/O PATHS IMPROVE DATA AVAILABILITY ...6
FIGURE 3: DIRECTLY ATTACHED LUNS...10
FIGURE 4: I/O PATHS THROUGH A NON-REDUNDANT STORAGE NETWORK...11
FIGURE 5: MULTIPLE I/O PATHS IN A STORAGE NETWORK WITH REDUNDANT FABRICS..12
FIGURE 6: MULTI-PORT CONTROLLERS CROSS-CONNECTED TO REDUNDANT FABRICS...13
FIGURE 7: GENERIC MODEL OF THE UNIX STORAGE I/O SOFTWARE STACK...15
FIGURE 8: VXVM SUBTREE FOR A SINGLE-PATH DEVICE (SOLARIS)...17
FIGURE 9: VXVM SUBTREE FOR A DUAL-PATH DEVICE (SOLARIS)...17
FIGURE 10: THE DMP DEVICE DISCOVERY LAYER (DDL) ARCHITECTURE...20
FIGURE 11: BALANCED I/O POLICY PATH SELECTION..25
FIGURE 12: CONSEQUENCE OF A SWITCH FAILURE IN A LARGE SAN...29
FIGURE 13: DMP AND SCSI BYPASS FOR ERROR ANALYSIS..30

Scope

This paper describes the Dynamic Multi-pathing (DMP) feature of Veritas Storage Foundation™. The
product architecture described herein was introduced with DMP release 5.0. It was subsequently back-
ported to the Solaris 4.1 code base in SxRT 4.1 MP2, the AIX 4.0 code base in AxRT 4.0 MP4 and the
Linux 4.1 code base in LxRT 4.1 MP4. These three releases and up are collectively referred to as DMP
Backport releases throughout this document.

The paper should be used as a guide to understanding Dynamic Multi-pathing. For up-to-date information
on features and coverage, readers are advised to consult Symantec documentation and support sources.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

4/41

1 The Importance of Multiple Storage I/O Paths

The basic techniques for keeping business-critical computer applications and digital data available to us-
ers despite hardware and software failures are well-known:

• Applications. Applications can be protected against server failures by interconnecting two or more
servers to form a cooperative cluster controlled by software that enables an application running on
any of the servers to fail over and restart on another, should its own server fail.

• Data. Data can be preserved despite storage device failures by techniques such as mirroring identical
copies on two or more disks1 and writing all updates to both simultaneously. Mirroring, sometimes
called RAID-1, keeps data available if a disk fails, and also improves I/O performance by making two
or more disks available to satisfy each application read request.

In enterprise data centers, there is another increasingly important link in the information access chain—
the I/O path that connects servers with the data they process. The I/O path, represented in Figure 1, is a
complex chain consisting of host bus adapter, cables, storage network switch, storage device adapter
port, and, in disk arrays, a disk controller.

Disk Array
Controller

Port Port

Port Port

Switch
Port Port

HBA2HBA1

Host Server

I/O
Path

Figure 1: General I/O Path Model

1 In this paper, the term disk refers both to actual disk drives and to the logical units (LUNs) presented to storage

network ports by disk arrays.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

5/41

The I/O path shown in Figure 1 begins at a host bus adapter (HBA)2 that connects an I/O cable to a
server’s internal memory access bus. The cable connects the HBA to a corresponding port in a storage
network switch. As Figure 1 suggests, the switch manages logical connections between HBAs and ports
within disk array controllers, or between HBAs and disk drives. Disk array controllers, which typically have
more than one port, virtualize disks within the array and present them to the storage network as logical
units, or LUNs. 3

Usage Note

Each unique combination of these elements that can be used to communicate between a host server and a LUN within a
disk array or a disk connected directly to the network is a distinct I/O path.

1.1 Multiple I/O Paths Enhance Availability

With increasing deployment of storage networks, IT managers are becoming conscious of the important
role that I/O paths play in keeping data available. For example, two disks mirrored by a host-based vol-
ume manager may be connected to their hosting server either by the same I/O path, as shown on the left
side of Figure 2, or by different paths, as shown on the right. If multiple paths are available, mirroring not
only protects against data loss due to disk failure, it also protects against loss of access to data if an I/O
path element fails, as Figure 2 illustrates.

Alternate
Path

LUNs mirrored
by host-based volume manager

Disk Array
Controller

Port

Port
Switch

Port

HBA

Host Server

Failed element in
primary I/O path

Disk Array
Controller Controller

Port Port

Port Port
Switch

Port Port

HBAHBA

Host Server

Figure 2: Multiple I/O Paths Improve Data Availability

2 Some HBAs have multiple ports, each of which is the starting point of a separate path through the storage net-

work. Since each port is effectively a separate HBA, the model is simplified by treating an HBA as a port.
3 In addition to disk array virtualization, both disks and LUNs are sometimes virtualized by appliances or switches

within the storage network, and by host-based volume managers such as VxVM. The virtual devices that result
from disk array virtualization are universally referred to as LUNs. Virtual devices that result from switch and
host-based virtualization are called virtual disks or volumes.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

6/41

The server on the left in Figure 2 cannot access its data when the cable between its HBA and the network
switch port fails, even though the storage itself remains completely functional, because the cable is a sin-
gle point of failure. The server on the right, on the other hand, can continue to access data if one of its
HBAs fails, if a cable fails, or even if one of the disk array’s controllers fails, because in each case there is
an alternate path that does not include the failed element.

Thus, a second independent path between server and storage increases the number of component fail-
ures an I/O subsystem can withstand without loss of function. But even with an alternate path, I/O path
failure can still be tantamount to storage device failure unless the system recognizes that it has an alter-
nate path and reroutes I/O requests to it. If a server does not recognize an alternate path to a storage
device, the device may as well have failed. Even with failure-tolerant mirrored devices, for example, only
devices on still-functioning paths are updated after a path failure. Data redundancy is diminished, even
though the unreachable device is still functional. Moreover, I/O performance decreases because one less
device is available to satisfy read requests.

Thus, an ability to recognize and utilize alternate I/O paths to storage devices would clearly be preferable.
If a path failed, I/O requests would be re-routed to the alternate. Mirrored data would remain fully pro-
tected, and the effect on I/O performance would be smaller.

1.2 Multiple I/O Paths Enhance I/O Performance

Multiple I/O paths between server and storage device can also improve I/O performance. In many appli-
cations, disk arrays satisfy a significant percentage of I/O requests from cache. For example, most disk
arrays recognize sequential read patterns, and begin to read data into cache in advance of host I/O re-
quests. In this scenario, I/O path bandwidth can actually limit LUN performance. With multiple I/O paths to
a LUN however, all can be delivered concurrently as fast as applications request it. Similarly, if an I/O
path that provides access to multiple LUNs becomes momentarily overloaded due to activity on one LUN,
other LUNs’ I/O requests can be routed to less-busy paths.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

7/41

2 Different Forms of Multi-Path Access

Disks and disk arrays support multi-path access to LUNs in several different ways. Fundamentally, there
is a distinction between:

• Active-active (A/A). If a disk array accepts and executes I/O requests to a single LUN on any port
simultaneously, it is called an active-active (A/A) array. If a path to an active-active array fails, I/O re-
quests can simply be re-routed to other paths, maintaining continuous access to data stored on the
array’s LUNs.

EMC’s Symmetrix and DMX arrays, Hitachi Data Systems’ 9900 Series (Lightning), and IBM’s ESS
series (Shark) are active-active arrays.

• Active-passive (A/P). If a disk array accepts and executes I/O requests to a LUN on one or more
ports to one array controller (the primary), but is able to switch, or “fail over,” access to the LUN to al-
ternate ports on another array controller (the secondary), it is called active-passive (A/P). A simple
A/P disk array triggers failover for a LUN based on where I/O for that LUN is received. Since a LUN
failover (also called trespass) is a slow operation that impacts performance, all I/Os should only be
flowing to only one of the available controllers for a LUN at a given point in time. Efficiently managing
LUN trespass on an A/P array is critical to provide high performance data access.

EMC’s Clariion Cx600 and Cx700, Hitachi Data Systems’ 95xx and 9200 series, IBM FASt-T, and
Sun’s T3 and T4 are active-passive arrays.

In addition to this broad classification, active-passive disk arrays capabilities differ in other ways that af-
fect availability and I/O performance:

• Multiple primary & secondary paths (A/PC). If an active-passive array accepts and executes simul-
taneous I/O requests to a LUN on two or more ports of the same array controller, it is called an active-
passive concurrent (A/P-C) array. Active-passive concurrent array LUNs fail over to secondary paths
on alternate array controllers only when all primary paths have failed. Note that DMP’s ability to do
load balancing over multiple primary or secondary paths to a LUN in an active passive array is fully
governed by the I/O policy configured for that enclosure (see Section 4.6.1 for details).

• Explicit failover (A/PF). A basic active-passive array fails over from primary I/O paths to secondary
ones automatically when it receives an I/O request to a LUN on a secondary path. An Explicit failover
active passive (A/PF) array fails over only when it receives special array model-specific SCSI com-
mands from their hosts. Explicit failover provides the control required to achieve high performance
with active-passive arrays in clusters, where multiple hosts can issue I/O requests directly to LUNs.
Without explicit failover capability, cluster software must carefully synchronize all hosts’ access to a
LUN before initiating implicit failover so that I/O requests from multiple hosts do not result in continu-
ous failovers.
Note: It is generally recommended to configure arrays capable of A/PF as such in cluster con-
figurations to ensure optimum performance and minimize system boot times. A good exam-
ple is the EMC Clariion which should be set to Failovermode 1 (explicit)’ when used with DMP.
EMC’s CLARiiON and Sun Microsystems T3 and T4 arrays are A/PF arrays.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

8/41

• LUN group failover (A/PG). In general, LUNs fail over from one array controller to another individu-
ally. Some active-passive arrays, however, can fail administratively defined groups of LUNs over to-
gether. Arrays with this capability are called active-passive with group failover capability (A/PG). If all
primary paths to a LUN in an A/PG array fail, all the LUNs in its group fail over to secondary paths.
LUN group failover is faster than failover of individual LUNs, and can therefore reduce the application
impact of array controller failure, particularly in disk arrays that present large numbers of LUNs.
Hitachi Data Systems 9200 series arrays and Fujitsu ETERNUS 3000 are A/PG arrays.

• Active-active asymmetric (A/A-A). A/A-A arrays increasingly comply with the Asymmetric Logical
Unit Access (ALUA) method specified in SCSI-3 standards. While a LUN in an active-passive array
can only be accessed through the controller that owns it at a given point in time (accessing that LUN
through the other controller will either result in a LUN trespass or an I/O failure), a LUN in an active-
active asymmetric array can be accessed through both controllers without dramatic consequences.
The only limitation is that I/O serviced through a LUN’s secondary controller will experience slower
performance than I/O serviced through the primary controller. One can think of ALUA arrays as a
more forgiving version of active-passive arrays using standard SCSI-3 commands to control
LUN/array controller ownership.
HP EVA and Hitachi Data Systems TagmaStore AMS/WMS series are examples of A/A-A arrays.

As discussed in later sections, the Dynamic Multi-pathing (DMP) feature of Storage Foundation has a
modular architecture that allows it to support new and different types of multi-path access control quickly
and easily.

2.1 Discovering Multiple I/O Paths

UNIX operating systems “discover” the storage devices that are accessible to them automatically when
they start up. Operating system device discovery consists of:

• Scanning I/O buses or querying storage network fabrics to determine which bus or network ad-
dresses connect to actual disks or LUNs

• Creating in-memory data structures in the operating system device tree that identify and describe
discovered devices

• Loading any specialized drivers required to utilize the devices

At the end of device discovery, an operating system has an in-memory database, or device tree, that
represents the storage devices with which it can communicate, and has loaded the drivers required to
control them.

To an operating system, a storage device is an address on a network that responds appropriately to SCSI
storage device commands. UNIX operating systems are not inherently multi-path aware. They view a
storage device accessible on two or more paths as two devices at different network addresses. Path
management software, such as Storage Foundation’s Dynamic Multi-pathing , is required to analyze the
device tree and identify multi-path devices. DMP’s discovery process and the modifications it makes to
the operating system device tree are described in Section 4.3.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

9/41

3 Common Multi-Path Hardware Configurations

The hardware elements that comprise I/O paths can be configured in a variety of ways that affect both
system resiliency and I/O performance. This section describes the most commonly encountered multi-
path hardware configurations.

3.1 Directly Connected Disk Arrays

Although it is not often encountered in practice, the simplest multi-path hardware configuration consists of
a disk or disk array that can present LUNs on two or more ports, each of which is connected directly to a
host bus adapter (HBA) on a hosting server. Figure 3 illustrates this configuration.

Disk Array
Controller 1 Controller 2

Port2Port1

HBA2HBA1

Host Server

Paths: 2

LUNs: 4

“Devices” discovered by operating system: 8

A B C D

Figure 3: Directly Attached LUNs4

The array illustrated in Figure 3 contains four LUNs, each of which is accessible on both of its controller
ports. UNIX operating systems would discover the same four LUNs on both paths, so an operating sys-
tem device tree would contain a total of eight device entries (two for each LUN).

This array might be active-active (able to present LUNs on both ports simultaneously), or active-passive
(able to present a LUN on either port, but not on both). If it were active-passive, the array might or might
not be capable of explicit failover and LUN group failover. With only one port per controller however, the
array could not provide active-passive concurrent LUN access.

4 For simplicity, Figure 3 and the figures that follow show artificially small numbers of LUNs.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

10/41

3.2 One Storage Network Switch

A more common multi-path configuration, especially in large data centers, uses a storage network to con-
nect host computers and disk arrays. Figure 4 illustrates this configuration. Assuming open zoning, each
HBA can connect through the switch to each of the disk array’s controller ports. There are therefore four
unique paths between server and disk array:

HBA1↔Port1↔Port3↔Port5
HBA1↔Port1↔Port4↔Port6
HBA2↔Port2↔Port3↔Port5
HBA2↔Port2↔Port4↔Port6

In this configuration, operating system discovery would report a total of 16 devices (four LUNs on each of
the four paths).

Disk Array
Controller Controller

Port6Port5

Port4Port3

Switch
Port2Port1

HBA2HBA1

Host Server

Paths: 4

LUNs: 4

“Devices” discovered by operating system: 16

A B C D

Figure 4: I/O Paths Through a Non-Redundant Storage Network

As with the configuration in Figure 3, the array illustrated in Figure 4 might be active-active or active-
passive, with or without explicit and LUN group failover capability. Again, with only one port per controller,
active-passive concurrent operation would not be possible. Even if this array were active-passive, concur-
rent execution of I/O requests to a LUN from both HBAs might be possible, although both would access
the same controller port, e.g.:

HBA1↔Port1↔Port3↔Port5
HBA2↔Port2↔Port3↔Port5

This might be slightly advantageous from an availability point of view, since it eliminates failover time for
failures of path elements on the host side of the switch, but there is no performance benefit, because ac-
cess to any given LUN is limited by the performance of the single controller port on which it is presented.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

11/41

3.3 Redundant Storage Networks

A common (and good) storage network design practice, illustrated in Figure 5, is the configuration of iden-
tical parallel fabrics connected to the same storage devices and servers, but not to each other. With this
configuration, even a complete storage network outage (e.g., a total switch or director failure) leaves all
host servers still able to communicate with all storage devices.

In the configuration illustrated in Figure 5, each HBA is connected to a different fabric (represented in the
figure by a single switch for simplicity). Similarly, each disk array port is connected to a different fabric,
creating two paths between any LUN and the host computer:

HBA1↔Port1↔Port3↔Port5
HBA2↔Port2↔Port4↔Port6

Operating system discovery would report a total of eight devices (four on each of the two paths).

Disk Array
Controller Controller

Port6Port5

Port4Port3
Switch Switch

Port1 Port2

HBA2HBA1

Host Server

Paths: 2

LUNs: 4

“Devices” discovered by operating system: 8

A B C D

Figure 5: Multiple I/O Paths in a Storage Network with Redundant Fabrics

As in the preceding configurations, this array might be capable of either active-active or active-passive
operation. If active-passive, it might be capable of explicit and LUN group failover. But with only one port
per controller, active-passive concurrent LUN access would not be possible.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

12/41

3.4 Dual Port Array Controllers & Redundant Storage Network Fabrics

The configuration illustrated in Figure 6 is identical to that of Figure 5 in that it includes two parallel fab-
rics. It differs, however in that each disk array controller has two ports and is connected to both fabrics.
Assuming that each LUN can be accessed on any of the four ports (again, for simplicity, Figure 6 illus-
trates only the LUN B and C port connections.) and open zoning in the fabric, the operating system dis-
covery would report each LUN on four paths:

HBA1↔Port1↔Port3↔Port5
HBA1↔Port1↔Port7↔Port6
HBA2↔Port2↔Port4↔Port9
HBA2↔Port2↔Port8↔Port0

The disk array in Figure 6 might be active-active or active-passive, and if active-passive, might be capa-
ble of explicit failover and LUN group failover. Because each array controller has two ports, active-
passive concurrent operation is possible. LUNs might be presented on primary ports 5 and 9, for exam-
ple, with ports 6 and 0 designated as secondary ports. EMC Clariion Cx700 arrays can be configured in
this fashion. This configuration offers enhanced availability since a controller failure would still leave both
fabrics usable. Similarly, failure of a fabric would leave the disk array able to use both of its controllers.

Disk Array
Controller Controller

Port6Port5 Port0Port9

Port4Port3 Port8Port7

Switch Switch
Port1 Port2

HBA2HBA1

Host Server

Paths: 4

LUNs: 4

“Devices” discovered by operating system: 16

A B C D

Figure 6: Multi-Port Controllers Cross-Connected to Redundant Fabrics

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

13/41

4 Veritas Storage Foundation 5.0 Dynamic Multi-pathing (DMP)

DMP is a leading multi-pathing solution on the market for maximum availability and performance in large
heterogeneous SANs. As such, DMP allows users to confidently standardize on Storage Foundation and
take full advantage of the agility that results from no longer being locked in to a single storage hardware
vendor.

From a technical perspective, with Storage Foundation 5.0, DMP improves on the architecture of previous
versions in order to scale to the largest data centers. It incorporates a number of innovations to ensure
that it can not only work harder but that it also works smarter.

DMP provides the following benefits:

• Storage Connectivity Virtualization. By fully virtualizing connectivity from the host to storage, DMP
increases data center agility. A storage administrator benefits by being able to choose the type of
storage hardware that best suits his/her needs, knowing that the multi-pathing driver on the hosts ei-
ther already support that storage hardware or can easily be enhanced to support it.

• Data availability. If an I/O path to a multi-path storage subsystem fails, DMP automatically re-routes
I/O requests to an alternate path transparently to applications and without administrator intervention.
When a failed path returns to service, DMP restores the original path configuration automatically and
transparently as well.

• Optimized I/O performance. For storage subsystems that support simultaneous access to a single
storage device on multiple paths, DMP enhances I/O performance by distributing I/O requests across
all available paths according to pre-defined load balancing policies.

• Cluster configuration support. DMP provides full, integrated support of SCSI-3 Persistent Reserva-
tions and I/O fencing. These features are required for Storage Foundation Oracle RAC and are
strongly recommended for protecting against the risk of data corruption in cluster configurations.

• Reduced complexity and increased efficiency. By being an integral part of Veritas Storage Foun-
dation, all DMP paths in a data center can be centrally managed and monitored from Veritas Storage
Foundation Manager (SFM).

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

14/41

4.1 DMP and the UNIX Storage I/O Software Stack

DMP is a layer in the UNIX storage I/O software stack. While different platform implementations differ in
detail, UNIX I/O software stacks share a common overall structure, simply because all perform the same
basic functions to provide I/O services. Figure 7 shows a simplified model of a generic UNIX storage I/O
software stack that includes VxVM and DMP.

HBA2HBA1

Host Server

to
storage devices

DMP Path Management Layer

VxVM Virtualization Layer

Operating System HBA Drivers

Operating System SCSI Driver

File System or Database Manager

Figure 7: Generic Model of the UNIX Storage I/O Software Stack

In a typical server, almost all I/O requests to a server’s I/O subsystem are issued by a file system (in
some cases, database managers issue I/O requests to “raw” storage). File systems issue their I/O re-
quests to VxVM virtual volumes (e.g., /dev/vx/rdsk/diskgroup/volume). The VxVM virtualiza-
tion layer converts them into equivalent requests to physical disks or LUNs. For example, if a file system
issues a write request to a mirrored volume, the VxVM virtualization layer converts it into write requests to
corresponding block ranges of each of the mirrors that comprise the volume.

Path management software like DMP necessarily occupies a position below virtualization in the I/O stack.
It receives I/O requests from the VxVM virtualization layer, determines which path should carry each one,
and issues it to the operating SCSI system driver on that path.

UNIX operating systems have two layers of storage I/O drivers—a SCSI layer that converts operating sys-
tem I/O request structures into SCSI command data blocks (CDBs) and one that sends and receives
messages containing CDBs and data on the storage network or I/O bus.

Sitting above the operating system SCSI layer provides a clean consistent interface to storage devices
across multiple UNIX operating systems. This is turn ensures consistency of DMP features and function-
ality across all platforms on which it is supported. It also allows DMP to benefit from the design and per-
formance improvements that are incorporated in the OS SCSI layers from one UNIX release to the next.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

15/41

4.2 DMP Multi-Path Devices in the Operating System Device Tree

For each disk or LUN it detects, a UNIX operating system creates data structures sometimes called
nodes or device handles, in its device tree. For example, the Solaris operating system creates nodes in
both the /dev/rdsk and /dev/dsk paths for each device it detects. If a device is accessible on two
or more paths, operating systems treat each path as a separate device, and create nodes corresponding
to each path.

During its discovery process, VxVM’s vxconfigd daemon creates similar structures called metanodes
in the /dev/vx/rdmp and /dev/vx/dmp trees for each storage device it detects. Each metanode
represents a metadevice, a VxVM abstraction that corresponds to a disk or LUN and all the I/O paths on
which it can be accessed. The VxVM virtualization layer issues its I/O requests to these metadevices.

The vxconfigd daemon identifies multiple paths to a device by issuing a SCSI inquiry command to
each operating system device. A disk or LUN responds to a SCSI inquiry command with information
about itself, including vendor and product identifiers and a unique serial number. An administrator can
use the command /etc/vx/diag.d/vxdmpinq to issue a SCSI inquiry to a device and display the
response, as Dialog 1 illustrates.

/etc/vx/diag.d/vxdmpinq /dev/vx/rdmp/HDS9970V0_4s2
Inquiry for /dev/vx/rdmp/HDS9970V0_4s2, evpd 0x0, page code 0x0, flags 0x4
 Vendor id : HITACHI
 Product id : OPEN-9 -SUN
 Revision : 2106
 Serial Number : 045175F30009

Dialog 1: Information Returned by SCSI Inquiry Command

If two operating system devices respond to SCSI inquiry commands with the same serial number, they
are assumed to be the same physical disk or LUN responding on two different paths.5

If VxVM discovery encounters only one instance of a particular serial number, the device can only be ac-
cessed on a single path. DMP links its metanode for each single-path device to the corresponding node in
the operating system tree, as Figure 8 illustrates, and marks the device for “fast path” access by the
VxVM virtualization layer. During system operation, the VxVM virtualization layer sends I/O requests to
fast-path devices directly to the operating system’s SCSI driver without passing them to DMP. This opti-
mizes usage of system resources.

5 A consequence of this method of detecting multiple paths to a device is that DMP can only support disks and

LUNs that return the same unique disk identifier in response to SCSI inquiry commands on all paths. This is
generally true for all path management software.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

16/41

/dev/vx/rdmp/c1t0d0s2

/dev/rdsk/c1t0d0s2

DMP metanode

Operating sys-
tem device tree

node

Figure 8: VxVM Subtree for a Single-Path Device (Solaris)

A device that is accessible on multiple paths returns the same serial number to inquiry commands on all
paths. When DMP encounters the same serial number on different paths, it creates a metanode and links
it to all operating system nodes that represent paths to the device, as Figure 9 illustrates.

/dev/vx/rdmp/c1t0d0s2

/dev/rdsk/c1t0d0s2 /dev/rdsk/c2t0d0s2

DMP metanode

Operating system de-
vice nodes

Figure 9: VxVM Subtree for a Dual-Path Device (Solaris)

An administrator can use either the vxdmpadm or the vxdisk path command to display information
about VxVM metadevices and the paths to which they correspond. Dialog 2 illustrates the use of the
vxdisk path command.

vxdisk path
SUBPATH DANAME DMNAME GROUP STATE
c1t0d0s2 c1t0d0s2 mydg01 mydg ENABLED
c2t0d0s2 c1t0d0s2 mydg01 mydg ENABLED
c1t1d0s2 c1t1d0s2 mydg02 mydg ENABLED
c2t1d0s2 c1t1d0s2 mydg02 mydg ENABLED

Dialog 2: vxdisk path Command for Multi-Path Disks

For the dual-path device illustrated in Figure 9, the vxdisk path command in Dialog 2 shows the
metanode c1t0d0s2 (in the /dev/vx/rdmp subtree) as corresponding to operating system nodes
c1t0d0s2 and c2t0d0s2. Information displayed by the VxVM vxdisk path command includes:
• The disk access name (DANAME, or VxVM metanode name, e.g., c1t0d0s2 in Dialog 2) of each

metadevice. The DANAME is the name used by the operating system to manage the LUN.
• The disk media name (DMNAME, or VxVM user-friendly device name, e.g., mydg01 in Dialog 2), of

each metadevice. The DMNAME is used in VxVM management operations.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

17/41

• The operating system device nodes (SUBPATHs) corresponding to each metadevice (e.g.,
c1t0d0s2 and c2t0d0s2 corresponding to VxVM metanode c1t0d0s2 in Dialog 2)

• The VxVM disk group membership of metadevices (mydg in Dialog 2)
• The operational state of each metadevice on all access paths. Dialog 2 indicates that all paths are

ENABLED, or eligible to handle I/O requests. Paths may also be DISABLED, either by administra-
tive command, or by DMP itself it fails to recover from an I/O error.

4.3 DMP Device Discovery during System Operation

If a system’s storage device configuration changes, for example because a device fails, or because addi-
tional disks or arrays are added, these must be discovered as well. Rebooting an operating system after a
storage configuration change causes discovery, but rebooting is almost never desirable, especially for
enterprise-class systems. UNIX operating systems therefore provide commands that an administrator can
invoke to discover storage devices on demand. Table 1 lists the device discovery commands in each of
the UNIX operating systems supported by DMP.

Operating
System Storage Device Discovery Commands

Solaris devfsadm command performs subsystem scan, updates the device tree and loads drivers
as necessary

AIX cfgmgr command performs subsystem scan, updates the device tree and loads drivers as
necessary

HPUX
Administrators should use the ioscan command to survey the old configuration,
followed by the insf -e command to update the device tree and load drivers as
necessary.

Linux makedev command can be used to update the device tree, but I/O subsystem scan and
driver loading are only done at boot time.

Table 1: UNIX Operating System Commands for Run-Time Storage Device Discovery

Whenever an operating system rediscovers its storage configuration, VxVM must also discover any ef-
fects of the change on virtualization and multi-path access. Administrators can use one of two VxVM
commands to cause rediscovery by the vxconfigd daemon:
vxdctl enable. This command causes vxconfigd to scan all storage devices and reconstruct
DMP metanodes and other structures to reflect the current device configuration.
vxdisk scandisks. This command may specify complete discovery, or it may be constrained to scan
only newly added devices, or designated enclosures, array controllers or device address ranges. A limited
scan can be considerably faster than a full one if a small number of changes have been made to a large
storage configuration.

Both commands use the vxconfigd daemon to re-scan the storage configuration and update in-
memory data structures to reflect changes since the previous scan. VxVM on-demand discovery does not
interrupt system or application operation.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

18/41

4.4 DMP’s Modular Architecture for Advanced Storage Subsystems
Support

Because its value is greatest in large enterprise data centers, DMP is more often used with disk array
LUNs than with directly attached disks. Although disks and disk arrays adhere to standards for data trans-
fer (SCSI, Fibre Channel and iSCSI), each disk array model has its own unique way of controlling multi-
path LUN and disk access. To support a particular disk array model, DMP can be customized to handle
the array’s multi-path access capabilities and to interact properly with its interface protocols. The need to
support new disk array models as they reach the market rather then on VxVM release cycles prompted
the introduction of a then unique modular architecture in Version 3.2 of VxVM. This architecture has been
enhanced with every subsequent release of DMP and remains a key attribute.

DMP is able to provide basic multi-pathing and failover functionality to most disk arrays without any cus-
tomization by treating that disk array’s LUNs as disks, provided that the array has the following properties:
• Multi-path access to LUNs is active-active
• LUNs respond to SCSI inquiry commands with unique serial numbers, and each LUN’s serial number

is reported identically on all paths
• LUNs’ unique serial numbers can be read from the SCSI standard mode page location

If an array has these properties, the vxddladm command with the addjbod option can be used to
add its LUNs (identified by the vendor ID and product ID reported in response to SCSI inquiry commands)
to DMP’s list of JBOD (physical disk) devices.

For fully optimized support of any array and for support of more complicated array types (as described in
Section 8), DMP requires the use of array-specific array support libraries (ASLs), possibly coupled with an
array policy modules (APMs). ASL and APMs effectively are array specific plugins that allow close tie-in
of DMP with any specific array model.

An ASL contains the set of instructions that allows DMP to properly claim devices during device discov-
ery, allowing DMP to correlate paths to the same device, gather device attributes, identify the array the
device is located in and identify the set of commands that DMP must use to efficiently manage multiple
paths to that device.

An APM contains the set of commands that DMP uses to efficiently manage multiple paths to a device.
The base DMP packages come with a default set of generic APMs to manage active-active arrays, basic
active-passive arrays and active-active asymmetric arrays. But the ASL/APM framework allows the crea-
tion of an array model specific APM to fully customize DMP for that array model if and when that is
needed.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

19/41

4.4.1 Array Support Libraries

Figure 10 illustrates how ASLs and APMs fit into VxVM’s configuration facilities and I/O path, with empha-
sis on the relationship to the vxconfigd configuration daemon.

File System

vxconfigd DDL

vxdmp Drivervxio Driver

APM 1 APM n

ASL 1

ASL n

●
●

User

Kernel

●

Read/write path

Configuration path

Figure 10: The DMP Device Discovery Layer (DDL) Architecture

After operating system device discovery, VxVM’s vxconfigd daemon executes its own discovery proc-
ess to elicit the information it requires to operate, and builds its own device tree of nodes similar to those
illustrated in Section 17. For each device in its tree, VxVM’s Device Discovery Layer (DDL) calls each
installed ASL in turn until an ASL “claims” the device based on its vendor and product identifiers. The
claim associates an array model with the device, which in turn determines the APM that vxdmp invokes
to perform such functions as I/O path selection, path failover, and SCSI reservation and release.

All ASLs that ship with VxVM are installed by default during VxVM installation. Dialog 3 lists the ASLs in-
stalled on a typical Solaris system, and the types of storage devices they support.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

20/41

vxddladm listsupport
LIBNAME VID
==
libvxCLARiiON.so DGC
libvxcscovrts.so CSCOVRTS
libvxemc.so EMC
libvxengenio.so SUN
libvxhds9980.so HITACHI
libvxhdsalua.so HITACHI
libvxhdsusp.so HITACHI
libvxhpalua.so HP, COMPAQ
libvxibmds4k.so IBM
libvxibmds6k.so IBM
libvxibmds8k.so IBM
libvxsena.so SENA
libvxshark.so IBM
libvxsunse3k.so SUN
libvxsunset4.so SUN
libvxvpath.so IBM
libvxxp1281024.so HP
libvxxp12k.so HP
libvxibmsvc.so IBM

vxddladm listsupport libname=libvxCLARiiON.so
ATTR_NAME ATTR_VALUE
===
LIBNAME libvxCLARiiON.so
VID DGC
PID CLARiiON
ARRAY_TYPE CLR-A/P, CLR-A/PF
ARRAY_NAME EMC_CLARiiON

Dialog 3: Partial Listing of DMP Array Support Libraries

ASLs can be installed dynamically while VxVM is running. This makes it possible to add multi-path access
control for new disk array models without stopping VxVM or rebooting the system. Installing an ASL does
not automatically cause VxVM to recognize LUNs presented by new arrays, however. After ASL installa-
tion, the vxdctl enable VxVM command must be run to cause VxVM to discover new devices and
their multi-path capabilities. Alternatively, if the locations of newly added devices are known, the vxdisk
scandisks command can be issued with constraints to cause a (faster) partial device scan.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

21/41

4.4.2 ASL Tuning

In releases prior to 5.0, the vxconfigd daemon calls each installed ASL for each device during discov-
ery. As a result, deactivating ASLs that are not required (e.g., because no storage devices of the types
they support are connected) can dramatically improve the speed with which a system running pre-5.0
code starts up. Dialog 4 illustrates the sequence of VxVM commands for deactivating an unused ASL (the
ASL remains installed on the system and can be reactivated).

vxddladm excludearray libname=libvxibmsvc.so
vxdctl enable
vxddladm listexclude all

The Diskarrays excluded

Based on Library names:

 libvxibmsvc.so

Based on VID, PID Combination:

Dialog 4: Deactivating an Unused ASL

When an ASL is deactivated in this way, the multi-path properties of the LUNs it controls do not change
until VxVM discovery runs. During VxVM discovery, LUNs that had been controlled by a deactivated ASL
are classified as generic disks. After the vxddladm command in Dialog 4 deactivates an ASL, the
vxdctl enable command causes DMP discovery and reconstruction of its metanodes to reflect
changes in device multi-path capabilities.

The process of deactivating unnecessary ASL is referred to as ASL Tuning. ASL Tuning is strongly rec-
ommended on all pre 5.0 releases of DMP (including those containing the DMP Backport). With Storage
Foundation 5.0, the DMP device discovery algorithms have been enhanced so that optimum boot time
performance is achieved out of the box, without any ASL Tuning.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

22/41

4.4.3 Array Policy Modules

Array Policy Modules (APMs) are dynamically loadable kernel modules invoked by the vxdmp driver to
perform disk array-specific path selection and failover, error processing, and SCSI reservation and re-
lease. While DMP contains default procedures for these common functions; installing an APM overrides
the default procedure for all arrays whose array models are associated with that APM.

The default DMP APMs support generic A/A, A/P, A/PG and A/A-A array types in both single-host and
multi-host configurations. Each array model includes a set of vectors that point to functions which imple-
ment policies such as:
• I/O request routing, using one of the six built-in load balancing policies.
• Error handling, including analysis, recovery, and DMP state changes. Built-in error handling policies

include inquiry (the most common policy, described later), read-only path (for certain active-active ar-
ray conditions such as EMC Symmetrix non-disruptive upgrade), and coordinated failover and fail-
back for active-passive arrays in clusters

• Get Path State, for obtaining information about current path and device configuration for use in error
handling and elsewhere

• LUN group failover, for active-passive arrays that support concurrent failover of entire LUN groups
triggered a single event

• Explicit failover, for arrays that support explicit failover functionality such as the EMC Clariion.
• Failover path selection, using first available path, primary path preferred, or other alternate path

selection algorithms

DMP includes one or more default procedures for each of these policies. Custom APMs that implement
array-specific procedures can be substituted by creating array models that vector to the procedures that
implement custom functions.

4.5 DMP Enhancements to Device Discovery

With Storage Foundation 5.0, DMP device discovery enhancements mainly come in two areas:
• Optimum boot time performance without the need for ASL Tuning. As was mentioned earlier, DMP

5.0 contains enhanced ASL selection logic in order to provide optimum boot time performance out of
the box.

• Fabric topology discovery through the use of the SNIA HBA API. DMP 5.0 introduces an event
source daemon: vxesd. This daemon monitors events on the system to trigger appropriate DMP
configuration updates. It also gathers fabric topology information through the SNIA HBA API when-
ever that API is available. This allows DMP to build and maintain a map of the fabric topology, corre-
lating port World Wide Names and array port ids with LUN paths information.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

23/41

4.6 Maximizing Throughput Performance

DMP maximizes I/O throughput to a given device by efficiently distributing the I/O load over the set of
paths available to that device. Throughput can be measured in terms of raw IOPS or Kbps, as well as in
terms of Kbps per CPU time used. DMP has historically been a top performer on both of those metrics.

For a device in an active-active array, DMP distributes the I/O load over all the paths to the device. For a
device in an active-passive array, DMP distributes the I/O load over the set of primary paths to the device.
The secondary paths to a device in an active-passive array are used only when all primary paths have
failed. If all the primary paths have failed and there are multiple secondary paths available to a device,
DMP will perform load balancing over those too.

4.6.1 DMP I/O policies

The “optimal” path to a device can change over time based on I/O load, but path selection can also be a
matter of system policy. DMP offers six different I/O policies that can be applied to multi-path storage de-
vices:

Balanced Path

DMP’s balanced path policy routes I/O requests to paths based on the starting block addresses they
specify. Effectively, this policy divides a device’s block address space into as many disjoint regions as
there are active paths, and assigns each I/O request to a path that corresponds to the region in which the
data it transfers falls.

For LUNs using the balanced path policy, DMP divides the starting data address specified each I/O re-
quest by the system-wide parameter DMP_PATHSWITCH_BLKS_SHIFT and discards the remainder.
The quotient of the division modulo the number of active paths is used to index the active path used to
issue the I/O command.

As an example, Figure 11 illustrates the balanced path I/O policy for an active-active device with two
paths. For graphic simplicity, DMP_PATHSWITCH_BLKS_SHIFT has an artificially low value of 4. In this
example, DMP would route read and write requests that specify a starting block addresses between 00
and 03 to path c1t0d0s0, those that specify one of blocks 04-07 to path c2t0d0s0, those that specify
one of blocks 08-11 to path c1t0d0s0, and so forth.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

24/41

 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

/dev/vx/dmp/c1t0d0s0

/dev/dsk/c1t0d0s0 /dev/dsk/c2t0d0s0

DMP_PATHSWITCH_BLKS_SHIFT=4

● ● ●

DMP metanode

Path 0 Path 1

Storage device blocks

Figure 11: Balanced I/O Policy Path Selection

To illustrate the general algorithm, for a read or write request specifying a starting address of block 13,
DMP would divide the address by DMP_PATHSWITCH_BLKS_SHIFT (13/4), giving an integer quotient
of three. Three modulo the number of active paths (two) is one, so DMP would issue an I/O request to the
operating system SCSI driver on path 1 (operating system device c2t0d0s0).

The balanced path policy is DMP’s default policy for active-active arrays’ LUNs (in earlier versions of
DMP, it was the only available policy). It is particularly useful for high-speed sequential reading from ac-
tive-active disk arrays and dual-port disk drives with read-ahead cache. Aligning the value of
DMP_PATHSWITCH_BLKS_SHIFT with the sequential I/O request size causes DMP to route succes-
sive requests to alternate paths, which frequently allows data for two or more requests to transfer concur-
rently.

The default value for DMP_PATHSWITCH_BLKS_SHIFT is 2048 blocks, or 1 megabyte. The value can
be overridden for individual arrays by using the setattr option of the vxdmpadm command. Overrid-
ing the global PATHSWITCH_BLKS_SHIFT value is useful in systems connected to two or more differ-
ent types of arrays.

Round-Robin

The round-robin I/O policy evenly distributes I/O requests on each active I/O path to a device. For each
request, DMP computes a pseudo-random number and assigns a path based on the computed number
modulo the number of active paths.

The round-robin policy is useful when most I/O requests to a LUN specify approximately the same
amount of data transfer, and in storage networks whose loading is relatively evenly distributed. In Storage
Foundation 5.0, DMP , round robin is the default I/O policy for active-passive arrays with multiple primary
paths enabled.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

25/41

Minimum Queue Length

The minimum queue policy routes each I/O request to the active path that is supported by the HBA port
(SCSI controller) with the smallest number of outstanding requests. Each time DMP assigns a request to
a path, it increments the controller’s outstanding request counter. Each time a request completes, the
controller’s request counter is decremented. For each new request, DMP selects the path with the small-
est outstanding request counter value. This policy tends to counteract momentary load imbalance auto-
matically, as for example, when a path bottlenecks because of error retries or overload from other LUNs.
In DMP 5.0, minimum queue is the default I/O policy for active-active arrays and is the recommended I/O
policy for all array types.

Adaptive

The adaptive routing policy allows DMP to dynamically route I/O requests based on calculated path priori-
ties. When this policy is in effect, DMP records the service time and amount of data transferred for each
request, and periodically calculates a priority for each path based on its recent throughput (bytes per sec-
ond). The priority calculation algorithm produces higher priorities for paths that have recently delivered
higher throughput. Incoming I/O requests are routed to paths in proportion to the paths’ relative priorities.
For example, if there are three active paths whose priorities are calculated as 3, 2, and 1 respectively,
half of incoming requests are routed to path 1, a third to path 2, and the remaining sixth to path 3. As total
I/O load on higher priority paths increases, the paths tend to deliver lower throughput, resulting in lower
priorities on the next recalculation cycle.

The adaptive policy is useful with rapidly varying I/O loads, such as database applications that include
both transactions (short transfers) and periodic table scans (long transfers). It is also useful in storage
networks where different paths have discernibly different average performance, such as paths with differ-
ent numbers of network “hops” or individual links of different speeds.

Priority

With the priority routing policy, DMP routes requests based on path priority as with the adaptive policy.
Path priorities are assigned by administrators rather than calculated by DMP, however, and do not
change without administrative action. The priority routing policy allows administrators to assign path priori-
ties based on considerations other than performance, such as applications’ relative importance to an en-
terprise.

Single Active Path (Preferred Path)

As its name implies, the single active path policy causes DMP to route all I/O requests to one path (called
the preferred path). Only if the preferred path fails does DMP route I/O to a secondary one. If this policy
is configured for an array, DMP routes all I/O requests to the single active path; all other paths are not
used unless the active one fails.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

26/41

Usage Note

I/O performance of active-passive arrays can be influenced by the assignment of different LUNs’ preferred paths to dif-
ferent controllers. For example, in an array with two controllers, odd numbered LUNs might be assigned to one controller
and even numbered LUNs to the other. If certain LUNs are known a priori to be heavily loaded, their primary path as-
signments can be distributed across controllers.

4.6.2 Determining the Effect of DMP Load Balancing Policies

Administrators can monitor the effect of any of these load balancing policies by using the vxdmpadm
iostat command, as Dialog 5 illustrates.

vxdmpadm iostat show all
 cpu usage = 19733393us per cpu memory = 32768b
 OPERATIONS MBYTES AVG TIME(ms)
PATHNAME READS WRITES READS WRITES READS WRITES
c0t1d0s2 159 0 79 0 10.670886 0.000000
c0t0d0s2 20 7 1220 162 0.042623 0.203704
c2t3d13s2 870 236 17426 2158 0.205153 0.101946
c3t3d13s2 334 4 15684 56 0.173871 0.017857
c2t3d12s2 9127 507 9236 18365 0.251299 0.076940
c3t3d12s2 45 649 255 18632 0.152941 0.074281
c2t3d11s2 1311 11 2068 185 0.133946 0.021622
c3t3d11s2 0 1 0 8 0.000000 0.000000
c2t3d10s2 1241887 1200897 19851284 19849637 0.306276 0.213964
c3t3d10s2 1241300 1285848 19850538 19968007 0.274636 0.190663
c2t3d9s2 1240586 1200829 19849347 19850382 0.288218 0.215717
c3t3d9s2 1240839 1204491 19852391 19886690 0.255909 0.190155
c2t3d8s2 1240585 1200814 19849319 19850598 0.272347 0.241037
c3t3d8s2 1241296 1199258 19850357 19878681 0.241508 0.213279
c2t3d7s2 1240584 1201024 19849315 19850304 0.293359 0.242801
c3t3d7s2 1246021 1201910 19846281 19881291 0.262374 0.215197
c2t3d6s2 1311 12 2068 161 0.132495 0.031056
c3t3d6s2 0 1 0 8 0.000000 0.000000
c2t3d5s2 10 18 131 800 0.473282 0.013750
c3t3d5s2 0 1 0 8 0.000000 0.000000
c2t3d4s2 17059295 11930299 137101333 76064118 0.102189 0.158222
c3t3d4s2 6703 2242672 625389 2373697 0.034997 0.899039
c2t3d3s2 82888 1923459 652854 8340732 0.291318 0.180282
c3t3d3s2 82119 913373 549421 4490416 0.357065 0.189884
c2t3d2s2 21 0 10 0 5.600000 0.000000
c3t3d2s2 0 0 0 0 0.000000 0.000000
c2t3d1s2 21 0 10 0 6.400000 0.000000
c3t3d1s2 0 0 0 0 0.000000 0.000000
c2t3d0s2 21 0 10 0 5.400000 0.000000
c3t3d0s2 0 0 0 0 0.000000 0.000000

Dialog 5: DMP Collection of I/O Statistics

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

27/41

The output of the vxdmpadm iostat command displays both the number of read and write opera-
tions, the amount of data read and written, and the average execution time for reads and writes for each
path since VxVM’s iostat daemon was started, or since its counters were last reset (using a variant of
the same command). The command can be executed on a specific dmpnode and at intervals to deter-
mine the efficacy of a given load balancing algorithm under actual system I/O loads.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

28/41

5 I/O Path Failover with DMP

Typically, the primary motivation for installing I/O path management software is to keep data accessible
when an I/O path fails.

One challenge of I/O path management is distinguishing between failure of a path to a device and failure
of the device itself. If a failed device is able to report its status (e.g., hard read error, unrecoverable posi-
tioning error, or write to a write-locked device), the determination is easy. More difficult to diagnose is a
device that simply does not respond to an I/O request:

• Has the device failed?

• Has the path to the device failed, leaving the device unable to communicate the status of outstanding
requests or accept new ones, even though it is functioning?

• Is the device simply too busy to respond within its timeout period?

When an I/O request fails, DMP must determine whether to re-route future I/O requests to alternate paths
or disconnect the device.

Another increasing challenge of I/O path management is being able to manage scaled up environments.
A host connected to an array with 500 LUNs and 2 paths to each LUN effectively requires the multi-
pathing driver to manage 1000 LUN paths. A host connected to an array with 2000 LUNs and 8 paths to
each LUN spread over 2 separate fabrics effectively results in 16,000 LUN paths for the multi-pathing
driver to manage. A failure of one of the fabrics translates in the concurrent failure of 8,000 LUN paths
(see Figure 12).

2000 LUNs
8 Paths per LUN Total

4 Paths per LUN Failing

16,000 LUN Paths

8,000 Failing LUN Paths
Figure 12: Consequence of a Switch Failure in a Large SAN

With Storage Foundation 5.0, these are the types of environments that DMP has been designed to effi-
ciently manage. DMP has been specifically architected to make failover time independent of the number
of LUNs actually affected by the failure. As such, DMP is able to failover thousands of LUN paths in a
matter of seconds to a couple of minutes depending on the OS platform and the location of the failure in
the SAN.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

29/41

5.1 DMP Multi-threaded Core Design

In order to support scaled up configurations, in Storage Foundation 5.0, DMP relies on a fully multi-
threaded, concurrent, non blocking core design. DMP comprises of a pool of generic worker threads in
the kernel (10 by default) that can be invoked to handle specific tasks, as those tasks come up. Tasks
can be any number of things, such as ‘issuing SCSI inquiries’, ‘analyzing SCSI inquiry responses’, ‘dis-
abling paths’, ‘restoring paths’, etc.

To maximize the effectiveness of those multiple threads, DMP’s position in the OS stack has also been
enhanced, as is depicted in Figure 13.

DiskDisk

HBA Drivers

OS SCSI Drivers

DMP

Regular
IO Error

Analysis

Figure 13: DMP and SCSI Bypass for Error Analysis

For regular application I/O, DMP effectively sits on top of the OS SCSI driver. This allows DMP to benefit
from all the improvements that are made by OS vendors in their HBA and SCSI driver stacks. This also
gives the HBA and SCSI layer a chance to recover without triggering a full failover for small transient er-
rors.

Once the HBA and SCSI layers give up on an I/O and return the error to DMP, DMP performs all its error
analysis by bypassing the SCSI layer and initiating SCSI commands and retrying the I/O directly to the
HBA. SCSI Bypass relies on OS APIs and as such remains independent of the specific HBA and HBA
driver on the system. This API is available on all OS platforms and provides the following benefits:

- Contrary to the regular SCSI interface, the SCSI bypass interface is an asynchronous interface: no
thread ever has to wait for the response to an I/O that was issued. This means that if DMP must ana-
lyze 100 I/O errors, a single thread can issue 100 SCSI inquiries to get path states information con-
currently. As responses return from the HBA, new tasks will be created to be picked up by DMP
threads for further processing. These enables DMP to take roughly the same amount of time to ana-
lyze thousands of errors as it takes to analyze one error since the longest part of the analysis (issuing
SCSI inquiries and waiting for responses) is now fully parallelized.

- Using this interface means all error analysis can be performed without wasting time in SCSI retries
and timeouts. The only layer doing retries during error analysis is the HBA driver.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

30/41

- Finally, the interface used for SCSI bypass is much richer than the regular SCSI interface in terms of
error codes exchanged with DMP. This provides DMP with finer grained information during error
analysis, allowing it to make better decisions.

5.2 Subpath Failover Groups

In addition to the increase in raw processing resources of the DMP driver, key algorithm enhancements
have been made in Storage Foundation 5.0 to ensure DMP leverages its knowledge of the SAN topology
when it comes to efficiently handling large failures.

We discussed earlier that DMP discovered the fabric topology. DMP uses this topology information to
build a map of the SAN correlating all LUN paths managed with all ports in the SAN. With this informa-
tion, DMP automatically configures Subpath Failover Groups (SFGs). An SFG is defined as the set of
LUN paths that are supported by the same two HBA port and array controller port. Looking at the con-
figuration depicted in Figure 12, one can see that the 16,000 LUN paths effectively translate in no more
than 8 SFGs.

The concept of SFG is particularly relevant in modern Storage Area Networks. When the storage is pro-
vided by modern arrays, all the LUNs seen by a host are virtualized by the disk array. As such, a host
seldom is exposed to single device failures. Instead, most failures originate in the network and translate
into multiple devices going off line at the same time. Given that insight, all the members of an SFG will
usually share the same state.

5.3 Suspect Paths and Pro-active Failure Handling

By default, an I/O error must reach DMP for error analysis to be triggered, a path to be disabled and I/O
failover to occur. In Storage Foundation 5.0, DMP contains logic to pro-actively stop using paths it deems
Suspect. A path that is deemed suspect is not used for new I/O. It is instead marked for background
analysis to confirm its actual state. Pro-actively stopping using a path that may be failing has the benefit
of reducing the amount of I/O that will have to be rerouted once the path actually fails.

There are three triggers that can get a path to be treated as suspect:

- The reception of a fabric event indicating that a port failed in the fabric. DMP registers on the SNIA
HBA API provided by modern HBA drivers and will receive Registered State Change Notifications
emitted by fabric switches following port logins, port failures, etc. Receiving a port failure event im-
mediately gets all the members of SFGs affected by that port to be marked suspect.

- The reception of an I/O error on a LUN path will cause all other members of the SFG to which that
LUN path belongs to be marked suspect.

- If the I/O response time on a path is seen to exceed a given threshold (10 seconds by default), then
the path is ‘throttled’ and effectively treated as suspect.

The suspect path state is an internal state for DMP. A path is in the suspect state for the time it takes
(milliseconds to seconds) DMP to confirm its actual state: enabled or disabled.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

31/41

5.4 Path Analysis

Path analysis is triggered following the reception of an I/O error, or as a result the need to confirm the
actual state of a suspect path, or as a time driven event that is part of path restoration policies.

DMP diagnoses path analysis requests by issuing one or more SCSI inquiry commands to the target de-
vice on the suspect path. (Most storage devices will respond to SCSI inquiry commands, even if they are
unable to transfer data). If DMP receives a valid response within the timeout interval, it concludes that the
device was simply too busy to respond, and re-queues the I/O request on the original path.

5.4.1 Path Failover

If a SCSI inquiry fails within a timeout interval, DMP fails I/O over to an alternate path. For active-active
arrays, path failover consists simply of adjusting the load balancing algorithm in effect to account for the
failed path. For active-passive arrays, a path failure may cause DMP initiates failover, either implicitly, by
re-queuing outstanding I/O commands to an alternate path, or explicitly by invoking services of the APM
that corresponds to the LUN being failed over. APMs for disk arrays that support LUN group failover can
fail over entire groups of LUNs in response to a single event.

5.4.2 Automated Path Restoration

Every dmp_restore_interval seconds (300 by default), a restore task is created. This task is
picked up by one of the DMP kernel threads and causes it to check I/O path state. By having kernel
threads handle paths restoration, DMP ensures that it can reliably restore previously failed paths in a
short amount of time without requiring any action on a host. In large datacenters where a single failure
can affect hundreds of hosts, knowing that the multi-pathing driver will recover failed paths automatically
in a matter of seconds is a significant operational efficiency gain.

In addition to time driver path restoration, DMP also leverages its ability to receive fabric events to re-
duce the time it takes to restore previously failed path. If a fabric event indicating that a port in the fabric
is repaired is received, DMP immediately triggers a check of the state of the paths that are supported by
this port without waiting for the next time based trigger.

The dmp_restore_policy tunable can be used to specify one of four path checking policies:

• check_all. This policy causes DMP to issue an inquiry command on every path to every device
controlled by DMP, irrespective of the path’s state. This policy provides timely notification of path fail-
ures, whether a path is idle or not. However, the large number of inquiry commands it issues may im-
pact application performance in systems with a large number of storage devices.

• check_disabled. This policy causes DMP to issue inquiry commands to failed paths (but not
administratively disabled ones). While it does not provide proactive notification of path failure, the low
overhead of this policy makes it attractive for some data center operations.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

32/41

• check_periodic. This policy causes DMP to execute the check_disabled policy except
during every dmp_restore_cyclesth dmp_restore_interval, when it executes the
check_all policy. For example, with a dmp_restore_interval of 300 seconds and a
dmp_restore_cycles of 10, the restored daemon would issue inquiries to FAILED paths
every 300 seconds (5 minutes), and to all devices on all paths every 3000 seconds (50 minutes). This
policy represents a compromise between overhead and timely discovery of failed paths.

• check_alternate. This policy is similar to the check_all policy, except that the restore
threads stops issuing inquiry commands to a device when it finds two operational paths. This policy is
useful with complex storage network topologies, where checking all paths might result in a large
number of inquiries, possibly impacting application performance. Because it checks for at least one
functional alternate path, this policy also protects against sudden path failure.

Administrators use the vxdmpadm utility to adjust the three tunables that control the restore kernel
threads behavior, dmp_restore_interval, dmp_restore_policy, and, for the
check_periodic policy only, dmp_restore_cycles.

5.4.3 Idle Lun Path Checking

By default, DMP includes idle LUN paths of imported disk groups in the set of paths that are checked
every time a restore task is created. This ensures that a system administrator is notified that an idle LUN
path failed before that path actually is needed for application I/O. By default, a LUN path is considered
idle by DMP if it has not carried I/O over the past one second interval.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

33/41

6 DMP Configuration and Tuning Considerations

6.1 Recommended DMP 5.0 Tuning

A lot of effort was specifically put into release 5.0 to ensure optimum out of the box performance. Still,
the following are considered best practices:

• Use Minimum Queue I/O policy for all arrays. Extensive performance testing has demonstrated that
minimum queue matches or beats the best alternative in terms of overall throughput for most work-
loads, while outperforming all alternatives in terms of availability.

• Increase the number of DMP threads on systems with 20 or more CPU cores. Best practice is to set
the dmp_daemon_count tunable to half the number of available CPU cores on the system.

• To reduce failover time in unusual scenarios, limit the number of retry attempts that DMP performs
before giving up on a path. The default behavior is for DMP to retry an I/O 5 times on paths that are
deemed recoverable. DMP can be configured such that it will not spend more than 10 seconds retry-
ing I/O on such path with the following:

vxdmpadm setattr {enclosure enc-name} recoveryoption=timebound iotimeout=10

6.2 Recommended DMP Backport Tuning

All recommended DMP 5.0 tuning applies to 4.x DMP Backport releases. In addition:

• DMP Backport releases also benefit from ASL Tuning, as described in Section 4.4.2.

• On systems that are running with up to date HBA firmware and driver, DMP Backport releases can
benefit from Subpath Failover Groups as described in Section 5.2 by setting the monitor_fabric
tunable to on. This tunable controls the usage of the SNIA HBA API by DMP and is set to off by de-
fault in the DMP Backport releases.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

34/41

6.3 DMP Tuning

All DMP 5.0 tuning can be done online as long as all tuning is performed using the vxdmpadm set-
tune command. The set of tunables that can be configured online in DMP 5.0 MP1 are:

vxdmpadm gettune all
 Tunable Current Value Default Value
------------------------------ ------------- -------------
dmp_failed_io_threshold 57600 57600
dmp_retry_count 5 5
dmp_pathswitch_blks_shift 11 11
dmp_queue_depth 32 32
dmp_cache_open on on
dmp_daemon_count 10 10
dmp_scsi_timeout 30 30
dmp_delayq_interval 15 15
dmp_path_age 300 300
dmp_stat_interval 1 1
dmp_health_time 60 60
dmp_probe_idle_lun on on
dmp_log_level 1 1
dmp_retry_timeout 0 0
dmp_fast_recovery on on

Dialog 6: List of DMP Tunables Available DMP 5.0 MP1

There are three key DMP ‘tunable’ parameters that administrators should understand and actively man-
age, because they can affect system performance and availability significantly. The paragraphs that fol-
low describe the functions of a few key parameters.

6.3.1 DMP_DAEMON_COUNT

This tunable controls the number of available kernel threads maintained by DMP to handle I/O errors,
paths recovery, etc. The default is 10. Recommended tuning guideline is to set this to half the total num-
ber of CPU cores in a system.

6.3.2 DMP_FAILED_IO_THRESHOLD

The dmp_failed_io_threshold parameter represents the amount of time beyond which DMP
considers an I/O request failure to represent a storage device failure. As Figure 7suggests, the VxVM vir-
tualization layer issues I/O requests to DMP metadevices. Before forwarding a request to the operating
system SCSI driver DMP saves the current system time. If the SCSI driver signals that an I/O request has
failed, DMP samples the time at the moment of failure notification, and computes how long the request
was outstanding. If the request was outstanding longer than dmp_failed_io_threshold seconds,
DMP considers the device to have failed, and does not perform error recovery or path failover. If the re-
quest fails within dmp_failed_io_threshold seconds, DMP considers path failure as a possible
cause, and initiates the error analysis and recovery procedures described earlier.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

35/41

By default, the dmp_failed_io_threshold parameter is set to ten minutes. For non-redundant
volumes, this is typically adequate; too low a value can result in I/O request failures that are actually due
to transient storage network errors. For failure tolerant (mirrored) volumes, however, a lower value is usu-
ally appropriate, because the VxVM virtualization layer retries a failed I/O request on another of the vol-
ume’s plexes. For failure tolerant volumes, therefore, the dmp_failed_io_threshold parameter
should typically be set to a few tens of seconds. Of course, appropriate settings depend on steady-state
storage network and device loading as well as individual disk or LUN performance characteristics.

The dmp_failed_io_threshold parameter is not used on the HP-UX platform. The HP-UX operat-
ing system provides an I/O request timing capability, called pfto that causes the SCSI driver to abort I/O
requests that remain outstanding for too long. DMP treats I/O requests timed out by the HP-UX SCSI
driver identically to failed requests on other platforms for which the dmp_failed_io_threshold
time is exceeded. The pfto parameter can be set separately for each VxVM disk group using the
vxpfto utility.

6.3.3 DMP_RETRY_COUNT

When a DMP I/O request to a SCSI driver fails within the dmp_failed_io_threshold interval,
DMP begins error recovery by issuing SCSI inquiry commands to the target device on the suspect path. If
the SCSI inquiry fails, then DMP disables the path and fails over the I/O. But if the SCSI inquiry suc-
ceeds, DMP will retry the I/O on the same path. If that I/O fails again, DMP will issue another SCSI in-
quiry, going through the logic outlined above.

For the same application I/O request, DMP will issue as many as dmp_retry_count inquiries before
giving up on that path. The default value for dmp_retry_count is 5.6 To reduce failover times in stor-
age networks with extensive multi-path connectivity, this value can be lowered. A value of 2 is usually
appropriate for storage networks with two or more paths to each device.

Upper layers of the I/O software stack must ultimately interpret I/O failures. Success of a DMP inquiry
command followed by repeated failure of an I/O request can occur for a variety of reasons, some of them
application-related. For example, write commands to write-protected devices always fail immediately.
DMP’s SCSI inquiry will succeed, but the application’s command will continue to fail. Behavior like this
usually indicates an application or administrative error.

As another example, if a disk that is part of a non-redundant LUN is failing intermittently, an application
I/O request to the LUN might fail, but DMP’s SCSI inquiry to the LUN may succeed. In this case, the
hardware failure must be detected and diagnosed by means external to VxVM (e.g., by the disk array’s
error reporting mechanisms) and acted upon.

6 On the HP-UX platform, the default value for dmp_retry_count is 30 because the HP-UX SCSI driver does

fewer retries than those of other platforms.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

36/41

6.3.4 DMP_PATHSWITCH_BLKS_SHIFT

For LUNs configured to use the balanced path I/O policy, DMP divides the starting data address specified
in each I/O request by the parameter dmp_pathswitch_blks_shift and discards the remainder.
The quotient of the division modulo the number of active paths becomes an index to the active path on
which the I/O request is issued.

The dmp_pathswitch_blks_shift parameter is system-wide; it applies to all storage devices us-
ing the balanced path load balancing policy. Its default value is one megabyte (2048 blocks) on all sup-
ported platforms, but can be changed to match application requirements. For example, if an application
reads large files sequentially using 2-megabyte requests, setting the value of
dmp_pathswitch_blks_shift to 2 megabytes tends to alternate successive read requests
among active paths. If the disk array recognizes sequential access patterns and reads ahead, application
requests may be satisfied from data pre-read into cache.

6.3.5 An Additional AIX-Specific DMP Tuning Consideration

In addition to the three parameters that affect DMP availability and performance on all platforms, the
dmp_queue_depth parameter is unique to the AIX platform. The dmp_queue_depth parameter
limits the number of I/O requests to a single device that DMP will forward to the operating system driver in
order to limit the time required to abort and redirect outstanding requests when a path fails.

While DMP is analyzing a possible path failure, application I/O requests may continue to arrive. If error
analysis ultimately determines that the path has failed, DMP must abort all I/O requests outstanding to the
operating system driver and reissue them on alternate paths. The operating system driver may take a
long time to abort a large number of I/O requests, so DMP throttles, or limits the number of I/O requests
that it allows to be outstanding to the operating system driver to the value of the dmp_queue_depth
parameter.

DMP relays only dmp_queue_depth requests for a single device to the operating system driver; it re-
tains any additional ones in its own queue. Each time a request completes, the number outstanding drops
below dmp_queue_depth. If there are additional requests for the device in DMP’s queue, a DMP ker-
nel thread issues another one to the operating system driver.

The default value of the dmp_queue_depth parameter is 32.

On AIX, the value of dmp_queue_depth can also be changed by running the smit utility and select-
ing the vxvm subcommand.

6.4 Storage Network Hardware Settings

In addition to VxVM parameters, parameters that control the operation of host bus adapters and storage
network switches can affect the performance and function of DMP. These parameters differ from vendor
to vendor, but since similar components perform similar functions, conceptual similarity is found between
HBAs and switches designed by different vendors. The paragraphs that follow describe HBA and storage
network settings that may affect DMP operation and that are typically adjustable by system administra-
tors.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

37/41

6.4.1 Host Bus Adapter Settings

Host bus adapters (HBAs) send and receive user data, I/O requests, and control messages between host
server memory and storage devices. To accomplish this, they transform data between host memory for-
mat and I/O bus or storage network format, and add protocol information (for transmission) or remove it
(upon reception). The driver software that controls HBAs is at the lowest level of the storage I/O stack
(Figure 7).

Because HBA drivers control access to I/O paths, they are often the point at which host servers first de-
tect path failures. HBA designers build mechanisms into their drivers to help detect and analyze path fail-
ures. These mechanisms are typically controlled by adjustable parameters. These parameters should
generally be set according to the storage hardware vendor recommendations.

The types of HBA parameters that affect DMP performance include:

• Link-down timeouts. Operating system driver I/O request timeouts occur either because a device is
unable to respond to a host message in time, or because the path on which a message was sent has
failed. To detect path failure, HBAs typically start a timer each time a message is received, and report
link failure if the timer lapses without receipt of a message. Most HBAs provide for user adjustment of
a link-down timeout period. The link-down timeout interval should approximately equal DMP’s
dmp_failed_io_threshold parameter value. If the link-down timeout period is significantly
shorter than dmp_failed_io_threshold, DMP will not detect path failures as quickly it should.
If the HBA link-down timeout is significantly longer than dmp_failed_io_threshold, DMP may
time I/O requests out when in fact nothing is wrong.

• Link retry count. Links that are inherently noisy may experience more frequent transmission errors
than links in less noisy environments. Most HBAs include some type of adjustable link retry count that
can be adjusted upward if necessary to prevent premature failovers on links that experience periodic
noise bursts.

6.4.2 Storage Network Switch Settings

Storage network switches also expose settable configuration parameters that can affect the operation of
DMP. The two most common ones are:

• Interoperability mode. Switch and director vendors often build proprietary enhancements to stan-
dard protocols into their products. While these enhancements are useful in homogeneous networks
(those that include only one vendor’s switches), they may not function correctly or optimally in hetero-
geneous networks, or with disks and disk arrays that have not been certified for operation with the
switch vendor’s products. Switches typically have an interoperability mode in which they adhere
strictly to standard protocols for I/O and for inter-switch communications. Since DMP assumes stan-
dards-compliant storage device behavior, it is usually advisable to operate a storage network in this
interoperability mode.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

38/41

• Buffer credits. Buffer credits are a throttling mechanism used by HBAs and storage devices to avoid
being swamped by incoming message and user data frames. According to Fibre Channel protocols,
an originator is only permitted to send a frame to a receiver when the receiver has granted it a buffer
credit. For long paths, particularly those with multiple “hops” between intermediate switches, buffer
credit shortages can increase latency (the elapsed time for sending a message from originator to re-
ceiver) well beyond what would be expected given the bandwidth and loading of the link between the
two. Alternate paths with different numbers of “hops” might have significantly different average laten-
cies, and if timeout parameters are set for the shorter path, “false” timeouts might occur frequently on
the longer one. The best way to avoid timeouts caused by a lack of buffer credits is to increase the
number of buffer credits that HBAs and disk array ports grant for multi-hop links. If this cannot be
done, DMP and operating system driver timeouts should be raised to accommodate typical latencies
actually encountered on longer paths.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

39/41

7 Conclusion

Multi-pathing is the critical software layer that manages the set of connections between a server and its
storage in a datacenter. As such, an effective multi-pathing driver must meet technical requirements
(such as throughput performance, failover performance, scalability requirements) as well as business re-
quirements (total cost of operation, contribution to datacenter agility).

DMP is a leading multi-pathing solution for maximum availability and performance in large heterogene-
ous SANs. DMP is the only truly hardware independent multi-pathing solution in the industry, it offers the
broadest Hardware Compatibility List on the market, and is specifically architected to enable close tie in
with any type of storage hardware.

DMP provides the following benefits:

• Storage connectivity virtualization. By fully virtualizing connectivity from the host to storage, DMP
increases datacenter agility. A storage administrator benefits by being able to choose the type of
storage hardware that best suits his needs knowing that the multi-pathing driver on hosts either al-
ready supports that storage hardware or can easily be enhanced to support it.

• Data availability. If an I/O path to a multi-path storage subsystem fails, DMP automatically reroutes
I/O requests to an alternate path transparently to applications and without administrator intervention.
When a failed path returns to service, DMP restores the original path configuration automatically and
transparently as well.

• Optimized I/O performance. For storage subsystems that support simultaneous access to a single
storage device on multiple paths, DMP enhances I/O performance by distributing I/O requests across
all available paths according to pre-defined load balancing policies.

• Cluster configuration support. DMP provides full, integrated support of SCSI-3 Persistent Reserva-
tions and I/O fencing. These features are required for Storage Foundation Oracle RAC and are
strongly recommended for protecting against the risk of data corruption in cluster configurations.

• Reduced complexity and increased efficiency. By being an integral part of Veritas Storage Foun-
dation, all DMPpaths in a datacenter can be centrally managed and monitored from Veritas Storage
Foundation Manager.

DMP is specifically designed to scale to the largest data centers, and incorporates numerous innovations
to ensure that it not only works harder but that it also works smarter. DMP allows Veritas Storage Foun-
dation users to confidently standardize on Storage Foundation and take full advantage of the agility that
comes from no longer being locked in by any hardware vendor.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

40/41

Copyright © 2007 Symantec Corporation. All rights reserved. Symantec, the Symantec logo, Veritas and
Veritas Storage Foundation are trademarks or registered trademarks of Symantec Corporation or its affili-
ates in the U.S. and other countries. Other names may be trademarks of their respective owners. This
document is provided for informational purposes only. All warranties related to the information in this
document, either express or implied, are disclaimed to the maximum extent allowed by law. The informa-
tion in this document is subject to change without notice.

Veritas Storage Foundation Dynamic Multi-pathing
May 2007

41/41

	1 The Importance of Multiple Storage I/O Paths
	1.1 Multiple I/O Paths Enhance Availability
	1.2 Multiple I/O Paths Enhance I/O Performance

	2 Different Forms of Multi-Path Access
	2.1 Discovering Multiple I/O Paths

	3 Common Multi-Path Hardware Configurations
	3.1 Directly Connected Disk Arrays
	3.2 One Storage Network Switch
	3.3 Redundant Storage Networks
	3.4 Dual Port Array Controllers & Redundant Storage Network Fabrics

	4 Veritas Storage Foundation 5.0 Dynamic Multi-pathing (DMP)
	4.1 DMP and the UNIX Storage I/O Software Stack
	4.2 DMP Multi-Path Devices in the Operating System Device Tree
	4.3 DMP Device Discovery during System Operation
	4.4 DMP’s Modular Architecture for Advanced Storage Subsystems Support
	4.4.1 Array Support Libraries
	4.4.2 ASL Tuning
	4.4.3 Array Policy Modules

	4.5 DMP Enhancements to Device Discovery
	4.6 Maximizing Throughput Performance
	4.6.1 DMP I/O policies
	Balanced Path
	Round-Robin
	Minimum Queue Length
	Adaptive
	Priority
	Single Active Path (Preferred Path)
	4.6.2 Determining the Effect of DMP Load Balancing Policies

	5 I/O Path Failover with DMP
	5.1 DMP Multi-threaded Core Design
	5.2 Subpath Failover Groups
	5.3 Suspect Paths and Pro-active Failure Handling
	5.4 Path Analysis
	5.4.1 Path Failover
	5.4.2 Automated Path Restoration
	5.4.3 Idle Lun Path Checking

	6 DMP Configuration and Tuning Considerations
	6.1 Recommended DMP 5.0 Tuning
	6.2 Recommended DMP Backport Tuning
	6.3 DMP Tuning
	6.3.1 DMP_DAEMON_COUNT
	6.3.2 DMP_FAILED_IO_THRESHOLD
	6.3.3 DMP_RETRY_COUNT
	6.3.4 DMP_PATHSWITCH_BLKS_SHIFT
	6.3.5 An Additional AIX-Specific DMP Tuning Consideration

	6.4 Storage Network Hardware Settings
	6.4.1 Host Bus Adapter Settings
	6.4.2 Storage Network Switch Settings

	7 Conclusion

