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Related Technologies
● Sun Server Domains
● IBM mainframe LPAR
● IBM AIX WorkLoad Manager
● HP vPar (virtual partition)
● HP PRM (Process Resource Manager)
● VMWare
● Linux
– http://user-mode-linux.sourceforge.net/
– http://sourceforge.net/projects/xen



Resources
– www.sun.com/solaris/10

– http://www.sun.com/bigadmin/content/zones/

– http://www.blastwave.org/docs/Solaris-10-b51/DMC-0002/dmc-0002.html



Zones can be used for 
Server Consolidation
● Run multiple applications securely and 

in isolation on the same system
● Utilize the hardware resources more 

effectively
● Allow delegated administration of the 

application environment
● Streamline the effort in maintaining 

the system



Zones Summary

● Isolated application environments 
within a single Solaris instance

● Resource, name space, security and 
failure isolation

● Efficient and granular using a 
lightweight OS layer

● Delegated, simplified administration
● No porting as ABI/APIs are the same



Typical Uses for Zones

● Consolidating data center workloads 
such as multiple databases

● Hosting untrusted or hostile 
applications or those that require 
global resources like IP port space

● Hosting “complete” environments
● Deploying Internet facing services
● Software development
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● Each zone has a security boundary 
around it

● Runs with subset of privileges
(5)

● A compromised zone is unable to 
escalate its privileges

● Important name spaces are isolated
● Processes running in a zone are unable 

to affect activity in other zones

Security



Processes

● Certain system calls are not permitted 
or have restricted scope inside a zone

● From the global zone, all processes can 
be seen but control is privileged

● From within a zone, only processes in 
the same zone can be seen or affected

● proc(4) has been virtualized to only 
show processes in the same zone



File Systems

● Each zone is allocated its own root file 
system and cannot see that of others

● Unlike with chroot(2), processes 
cannot escape out of a zone

● File systems like /usr can be 
inherited in a read-only manner

● File systems such as autofs(4) and 
NFS have been virtualized per zone



Networking

● Single TCP/IP stack for the system so 
zones are shielded from configuration 
details for devices, routing and IPMP

● Each zone can be assigned IPv4/IPv6 
addresses and has its own port space

● Applications can bind to INADDR_ANY 
and will only get traffic for that zone

● Zones cannot see the traffic of others



Identity

● Each zone controls its node name, RPC 
domain name, time zone, locale and 
naming service like LDAP and NIS
– sysidtool(1M) can set this up

● Separate /etc/passwd files means 
that root can be delegated to the zone

● User ids may map to different names 
when domains differ (as with NFS 
now)



Interprocess Communication

● Expected IPC mechanisms such as 
System V IPC, STREAMS, sockets, 
libdoor(3LIB) and loopback 
transports are available inside a zone

● Key name spaces virtualized per zone
● Inter-zone communication is available 

using the network (software loopback)
● Global zone can setup rendezvous too



Devices

● Zones see an subset of “safe” pseudo 
devices in their /dev directory
– Devices like /dev/random are safe but others 

like /dev/ip are not

● Zones can modify the permissions of 
their devices but cannot mknod(2)

● Physical device files like those for raw 
disks can be put in a zone with caution



Resource Management

● Zones do not require dedicated 
hardware resources

● CPUs can be partitioned with an 
arbitrary granularity using FSS(7)

● Multiple zones can be multiplexed 
over a resource pool or a zone can be 
bound to a pool for service guarantees

● Resource limits can be set on a zone



Configuration/Administration

● zonecfg(1M) is used to specify 
resources (such as IP interfaces) and 
properties (such as a resource pool)

● zoneadm(1M) is used to perform 
administrative steps for a zone such as 
list, install, (re)boot, halt, et cetera

● Installation creates a root file system 
with factory-default editable files



Additional Features
● Support for read-only lofs(7FS)
● “nodevices” mount(2) option

● All NFS file systems in a zone are mounted 
as such

● Configuration stored in a private XML file
● Zone ids are dynamically assigned at zone boot
● ptree(1) can displays a zone's process tree
● traceroute(1M) supported inside a zone



● Updates to zonecfg(1M)
● Grammar changes with support for complex 

property values
● inherit-pkg-dir resource specifies a global 

zone file system to export read-only into a zone
● rctl resource specifies a zone resource control
● attr resource specifies a generic attribute
● autoboot property specifies action at global boot
● pool property specifies name of pool to bind to



●

– NFSv4 client support
– nfsstat(1M) virtualized per-zone

– Additional updates to zonecfg(1M)
● Disk-based file systems can (again) be configured
● Command line editing and history

– ps(1) can display processes from a list of 
zones or add a ZONE column to other reports

– Support for -p option to prtconf(1M)



● CPU visibility improvements
● Only take effect when resource pools are enabled
● Traditional commands and APIs that deal with 

processors will provide a “virtualized” view based 
on the pool (processor set) the zone is bound to
– Including iostat(1M), mpstat(1M), prstat(1M), 
psrinfo(1M), sar(1) and vmstat(1M)

– Including sysconf(3C) (when detecting number of 
processors configured/online) and getloadavg(3C)

– Including numerous kstat(3KSTAT) values from the 
cpu, cpu_info and cpu_stat publishers



● zones.max-lwps zone resource 
control

● This resource control can be further subdivided 
within the zone itself using project.max-lwps

● Zone-aware auditing
● Global zone administrator can specify whether 

auditing should be global or per-zone
● If per-zone, each zone administrator can configure 

and process their audit trails independently



●

– Support for -l and -s options to swap(1M)
– Zones can be booted in single-user mode
– Support for sysdef(1M) from within a zone

– Zones where no inherit-pkg-dir 
resources have been defined are supported



Discussion
● How/Why would you use server 

virtualization technologies?
● Advantages?
● Disadvantages?
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