
Zones (“N1 Grid Containers”)
in Solaris 10

Harry J. Foxwell, Ph.D.
Senior System Engineer
Sun Microsystems

Related Technologies
● Sun Server Domains
● IBM mainframe LPAR
● IBM AIX WorkLoad Manager
● HP vPar (virtual partition)
● HP PRM (Process Resource Manager)
● VMWare
● Linux
– http://user-mode-linux.sourceforge.net/
– http://sourceforge.net/projects/xen

Resources
– www.sun.com/solaris/10

– http://www.sun.com/bigadmin/content/zones/

– http://www.blastwave.org/docs/Solaris-10-b51/DMC-0002/dmc-0002.html

Zones can be used for
Server Consolidation
● Run multiple applications securely and

in isolation on the same system
● Utilize the hardware resources more

effectively
● Allow delegated administration of the

application environment
● Streamline the effort in maintaining

the system

Zones Summary

● Isolated application environments
within a single Solaris instance

● Resource, name space, security and
failure isolation

● Efficient and granular using a
lightweight OS layer

● Delegated, simplified administration
● No porting as ABI/APIs are the same

Typical Uses for Zones

● Consolidating data center workloads
such as multiple databases

● Hosting untrusted or hostile
applications or those that require
global resources like IP port space

● Hosting “complete” environments
● Deploying Internet facing services
● Software development

22%

65%

Zones Block Diagram

network device
(ce0)

storage complex

global zone (serviceprovider.com)

twilight zone (twilight.com)

web services
(Apache 1.3.22, J2SE 1.4.2)

enterprise services
(Oracle 9i, IAS 6)

drop zone (drop.net)

network services
(BIND 8.3, sendmail)

login services
(OpenSSH 3.4)

zoneadmd

fracture zone (fracture.org)

web services
(Apache 2.0, J2SE 5.0)

network services
(BIND 9.2, sendmail)

remote administration
(SNMP, SunMC, WBEM, ...)

platform administration
(syseventd, devfsadm, ...)

core services
(NIS, inetd, automountd)

core services
(NIS+, inetd, rpcbind)

core services
(DNS, inetd, automountd)

core services
(LDAP, inetd, rpcbind,
automountd, snmpd, dtlogin,
sendmail, sshd, ...)

zone root: /zone/twilight zone root: /aux0/drop zone root: /export/fracture

network device
(ge0)

zone management (zonecfg(1M), zoneadm(1M), zlogin(1), ...)

ce
0

:2

g
e

0
:2

ce
0

:1

zc
o

ns

zc
o

ns

zc
o

ns

zoneadmdzoneadmd

/u
sr

/u
sr

/o
p

t

A
pp

lic
at

io
n

E
nv

iro
nm

en
t

V
irt

ua
l

P
la

tf
or

m

g
e

0
:1

● Each zone has a security boundary
around it

● Runs with subset of privileges
(5)

● A compromised zone is unable to
escalate its privileges

● Important name spaces are isolated
● Processes running in a zone are unable

to affect activity in other zones

Security

Processes

● Certain system calls are not permitted
or have restricted scope inside a zone

● From the global zone, all processes can
be seen but control is privileged

● From within a zone, only processes in
the same zone can be seen or affected

● proc(4) has been virtualized to only
show processes in the same zone

File Systems

● Each zone is allocated its own root file
system and cannot see that of others

● Unlike with chroot(2), processes
cannot escape out of a zone

● File systems like /usr can be
inherited in a read-only manner

● File systems such as autofs(4) and
NFS have been virtualized per zone

Networking

● Single TCP/IP stack for the system so
zones are shielded from configuration
details for devices, routing and IPMP

● Each zone can be assigned IPv4/IPv6
addresses and has its own port space

● Applications can bind to INADDR_ANY
and will only get traffic for that zone

● Zones cannot see the traffic of others

Identity

● Each zone controls its node name, RPC
domain name, time zone, locale and
naming service like LDAP and NIS
– sysidtool(1M) can set this up

● Separate /etc/passwd files means
that root can be delegated to the zone

● User ids may map to different names
when domains differ (as with NFS
now)

Interprocess Communication

● Expected IPC mechanisms such as
System V IPC, STREAMS, sockets,
libdoor(3LIB) and loopback
transports are available inside a zone

● Key name spaces virtualized per zone
● Inter-zone communication is available

using the network (software loopback)
● Global zone can setup rendezvous too

Devices

● Zones see an subset of “safe” pseudo
devices in their /dev directory
– Devices like /dev/random are safe but others

like /dev/ip are not

● Zones can modify the permissions of
their devices but cannot mknod(2)

● Physical device files like those for raw
disks can be put in a zone with caution

Resource Management

● Zones do not require dedicated
hardware resources

● CPUs can be partitioned with an
arbitrary granularity using FSS(7)

● Multiple zones can be multiplexed
over a resource pool or a zone can be
bound to a pool for service guarantees

● Resource limits can be set on a zone

Configuration/Administration

● zonecfg(1M) is used to specify
resources (such as IP interfaces) and
properties (such as a resource pool)

● zoneadm(1M) is used to perform
administrative steps for a zone such as
list, install, (re)boot, halt, et cetera

● Installation creates a root file system
with factory-default editable files

Additional Features
● Support for read-only lofs(7FS)
● “nodevices” mount(2) option

● All NFS file systems in a zone are mounted
as such

● Configuration stored in a private XML file
● Zone ids are dynamically assigned at zone boot
● ptree(1) can displays a zone's process tree
● traceroute(1M) supported inside a zone

● Updates to zonecfg(1M)
● Grammar changes with support for complex

property values
● inherit-pkg-dir resource specifies a global

zone file system to export read-only into a zone
● rctl resource specifies a zone resource control
● attr resource specifies a generic attribute
● autoboot property specifies action at global boot
● pool property specifies name of pool to bind to

●

– NFSv4 client support
– nfsstat(1M) virtualized per-zone

– Additional updates to zonecfg(1M)
● Disk-based file systems can (again) be configured
● Command line editing and history

– ps(1) can display processes from a list of
zones or add a ZONE column to other reports

– Support for -p option to prtconf(1M)

● CPU visibility improvements
● Only take effect when resource pools are enabled
● Traditional commands and APIs that deal with

processors will provide a “virtualized” view based
on the pool (processor set) the zone is bound to
– Including iostat(1M), mpstat(1M), prstat(1M),
psrinfo(1M), sar(1) and vmstat(1M)

– Including sysconf(3C) (when detecting number of
processors configured/online) and getloadavg(3C)

– Including numerous kstat(3KSTAT) values from the
cpu, cpu_info and cpu_stat publishers

● zones.max-lwps zone resource
control

● This resource control can be further subdivided
within the zone itself using project.max-lwps

● Zone-aware auditing
● Global zone administrator can specify whether

auditing should be global or per-zone
● If per-zone, each zone administrator can configure

and process their audit trails independently

●

– Support for -l and -s options to swap(1M)
– Zones can be booted in single-user mode
– Support for sysdef(1M) from within a zone

– Zones where no inherit-pkg-dir
resources have been defined are supported

Discussion
● How/Why would you use server

virtualization technologies?
● Advantages?
● Disadvantages?

Zones (N1 Grid Containers)
Engineering Update

Harry.Foxwell@Sun.COM

