
man pages section 9: DDI and DKI Driver
Entry Points

Part No: 821–1476–10
November 2011

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

111206@25097

Contents

Preface ...7

Introduction ...11
Intro(9E) ... 12

Driver Entry Points ..19
aread(9E) ... 20
attach(9E) ... 22
audio_engine_channels(9E) .. 24
audio_engine_chinfo(9E) .. 25
audio_engine_count(9E) .. 27
audio_engine_format(9E) .. 28
audio_engine_open(9E) .. 29
audio_engine_playahead(9E) ... 31
audio_engine_qlen(9E) .. 32
audio_engine_rate(9E) .. 33
audio_engine_start(9E) .. 34
audio_engine_sync(9E) .. 35
awrite(9E) ... 36
chpoll(9E) ... 38
close(9E) ... 40
csx_event_handler(9E) .. 43
detach(9E) ... 49
devmap(9E) ... 51
devmap_access(9E) .. 55
devmap_contextmgt(9E) .. 58
devmap_dup(9E) ... 61

3

devmap_map(9E) ... 63
devmap_unmap(9E) ... 65
dump(9E) ... 68
_fini(9E) ... 69
getinfo(9E) ... 72
gld(9E) .. 74
identify(9E) ... 79
ioctl(9E) ... 80
ks_snapshot(9E) ... 84
ks_update(9E) ... 86
mac(9E) .. 88
mac_capab_rings(9E) .. 95
mac_group_info(9E) .. 97
mac_ring_info(9E) .. 100
mmap(9E) ... 103
open(9E) ... 107
power(9E) ... 110
print(9E) ... 112
probe(9E) ... 113
prop_op(9E) ... 114
put(9E) .. 116
quiesce(9E) ... 118
read(9E) ... 120
segmap(9E) ... 122
srv(9E) .. 124
strategy(9E) ... 126
tran_abort(9E) ... 127
tran_bus_reset(9E) .. 128
tran_dmafree(9E) ... 129
tran_getcap(9E) ... 130
tran_init_pkt(9E) .. 132
tran_quiesce(9E) ... 135
tran_reset(9E) ... 136
tran_reset_notify(9E) .. 138
tran_setup_pkt(9E) .. 139
tran_start(9E) ... 142

Contents

man pages section 9: DDI and DKI Driver Entry Points • November 20114

tran_sync_pkt(9E) .. 145
tran_tgt_free(9E) .. 146
tran_tgt_init(9E) .. 147
tran_tgt_probe(9E) .. 148
write(9E) ... 149

Contents

5

6

Preface

Both novice users and those familar with the SunOS operating system can use online man pages
to obtain information about the system and its features. A man page is intended to answer
concisely the question “What does it do?” The man pages in general comprise a reference
manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the information it
references:

■ Section 1 describes, in alphabetical order, commands available with the operating system.
■ Section 1M describes, in alphabetical order, commands that are used chiefly for system

maintenance and administration purposes.
■ Section 2 describes all of the system calls. Most of these calls have one or more error returns.

An error condition is indicated by an otherwise impossible returned value.
■ Section 3 describes functions found in various libraries, other than those functions that

directly invoke UNIX system primitives, which are described in Section 2.
■ Section 4 outlines the formats of various files. The C structure declarations for the file

formats are given where applicable.
■ Section 5 contains miscellaneous documentation such as character-set tables.
■ Section 7 describes various special files that refer to specific hardware peripherals and device

drivers. STREAMS software drivers, modules and the STREAMS-generic set of system calls
are also described.

■ Section 9E describes the DDI (Device Driver Interface)/DKI (Driver/Kernel Interface),
DDI-only, and DKI-only entry-point routines a developer can include in a device driver.

■ Section 9F describes the kernel functions available for use by device drivers.
■ Section 9S describes the data structures used by drivers to share information between the

driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section generally
follow this order, but include only needed headings. For example, if there are no bugs to report,

7

there is no BUGS section. See the intro pages for more information and detail about each
section, and man(1) for more information about man pages in general.

NAME This section gives the names of the commands or functions
documented, followed by a brief description of what they
do.

SYNOPSIS This section shows the syntax of commands or functions.
When a command or file does not exist in the standard
path, its full path name is shown. Options and arguments
are alphabetized, with single letter arguments first, and
options with arguments next, unless a different argument
order is required.

The following special characters are used in this section:

[] Brackets. The option or argument enclosed in
these brackets is optional. If the brackets are
omitted, the argument must be specified.

. . . Ellipses. Several values can be provided for the
previous argument, or the previous argument
can be specified multiple times, for example,
“filename . . .” .

| Separator. Only one of the arguments
separated by this character can be specified at a
time.

{ } Braces. The options and/or arguments
enclosed within braces are interdependent,
such that everything enclosed must be treated
as a unit.

PROTOCOL This section occurs only in subsection 3R to indicate the
protocol description file.

DESCRIPTION This section defines the functionality and behavior of the
service. Thus it describes concisely what the command
does. It does not discuss OPTIONS or cite EXAMPLES.
Interactive commands, subcommands, requests, macros,
and functions are described under USAGE.

IOCTL This section appears on pages in Section 7 only. Only the
device class that supplies appropriate parameters to the
ioctl(2) system call is called ioctl and generates its own
heading. ioctl calls for a specific device are listed
alphabetically (on the man page for that specific device).

Preface

man pages section 9: DDI and DKI Driver Entry Points • November 20118

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1man-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ioctl-2

ioctl calls are used for a particular class of devices all of
which have an io ending, such as mtio(7I).

OPTIONS This section lists the command options with a concise
summary of what each option does. The options are listed
literally and in the order they appear in the SYNOPSIS
section. Possible arguments to options are discussed under
the option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and describes
how they affect the actions of the command.

OUTPUT This section describes the output – standard output,
standard error, or output files – generated by the
command.

RETURN VALUES If the man page documents functions that return values,
this section lists these values and describes the conditions
under which they are returned. If a function can return
only constant values, such as 0 or –1, these values are listed
in tagged paragraphs. Otherwise, a single paragraph
describes the return values of each function. Functions
declared void do not return values, so they are not
discussed in RETURN VALUES.

ERRORS On failure, most functions place an error code in the global
variable errno indicating why they failed. This section lists
alphabetically all error codes a function can generate and
describes the conditions that cause each error. When more
than one condition can cause the same error, each
condition is described in a separate paragraph under the
error code.

USAGE This section lists special rules, features, and commands
that require in-depth explanations. The subsections listed
here are used to explain built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage or of how to use a
command or function. Wherever possible a complete

Preface

9

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mtio-7i

example including command-line entry and machine
response is shown. Whenever an example is given, the
prompt is shown as example%, or if the user must be
superuser, example#. Examples are followed by
explanations, variable substitution rules, or returned
values. Most examples illustrate concepts from the
SYNOPSIS, DESCRIPTION, OPTIONS, and USAGE
sections.

ENVIRONMENT VARIABLES This section lists any environment variables that the
command or function affects, followed by a brief
description of the effect.

EXIT STATUS This section lists the values the command returns to the
calling program or shell and the conditions that cause these
values to be returned. Usually, zero is returned for
successful completion, and values other than zero for
various error conditions.

FILES This section lists all file names referred to by the man page,
files of interest, and files created or required by commands.
Each is followed by a descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands, utilities,
and device drivers by defining the attribute type and its
corresponding value. See attributes(5) for more
information.

SEE ALSO This section lists references to other man pages, in-house
documentation, and outside publications.

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special conditions which
could seriously affect your working conditions. This is not
a list of diagnostics.

NOTES This section lists additional information that does not
belong anywhere else on the page. It takes the form of an
aside to the user, covering points of special interest.
Critical information is never covered here.

BUGS This section describes known bugs and, wherever possible,
suggests workarounds.

Preface

man pages section 9: DDI and DKI Driver Entry Points • November 201110

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Introduction

R E F E R E N C E

11

Intro – overview of device driver interfaces and introduction to driver entry points

This page provides an overview of device driver interfaces and all of the Section 9 man pages
(9E, 9F, 9P, and 9S). This overview is followed by an introduction to Section 9E, the driver
entry-point routines.

Section 9 provides reference information needed to write device drivers for the Solaris
operating environment. It describes the interfaces provided by the Device Driver Interface and
the Driver-Kernel Interface (DDI/DKI).

Porting

Software is usually considered portable if it can be adapted to run in a different environment
more cheaply than it can be rewritten. The new environment may include a different
processor, operating system, and even the language in which the program is written, if a
language translator is available. Likewise the new environment might include multiple
processors. More often, however, software is ported between environments that share an
operating system, processor, and source language. The source code is modified to
accommodate the differences in compilers or processors or releases of the operating system.

In the past, device drivers did not port easily for one or more of the following reasons:

■ To enhance functionality, members had been added to kernel data structures accessed by
drivers, or the sizes of existing members had been redefined.

■ The calling or return syntax of kernel functions had changed.
■ Driver developers did not use existing kernel functions where available, or relied on

undocumented side effects that were not maintained in the next release.
■ Architecture-specific code had been scattered throughout the driver when it could have

been isolated.

Operating systems are periodically reissued to customers as a way to improve performance, fix
bugs, and add new features. This is probably the most common threat to compatibility
encountered by developers responsible for maintaining software. Another common problem
is upgrading hardware. As new hardware is developed, customers occasionally decide to
upgrade to faster, more capable computers of the same family. Although they may run the
same operating system as those being replaced, architecture-specific code may prevent the
software from porting.

Scope of Interfaces

Although application programs have all of the porting problems mentioned, developers
attempting to port device drivers have special challenges. Before describing the DDI/DKI, it is
necessary to understand the position of device drivers in operating systems.

Device drivers are kernel modules that control data transferred to and received from
peripheral devices but are developed independently from the rest of the kernel. If the goal of
achieving complete freedom in modifying the kernel is to be reconciled with the goal of binary

Name

Description

Overview of Device
Driver Interfaces

Intro(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 15 May 200112

compatibility with existing drivers, the interaction between drivers and the kernel must be
rigorously regulated. This driver/kernel service interface is the most important of the three
distinguishable interfaces for a driver, summarized as follows:

■ Driver–Kernel. I/O System calls result in calls to driver entry point routines. These make
up the kernel-to-driver part of the service interface, described in Section 9E. Drivers may
call any of the functions described in Section 9F. These are the driver-to-kernel part of the
interface.

■ Driver–Hardware. All drivers (except software drivers) must include code for interrupt
handling, and may also perform direct memory access (DMA). These and other
hardware-specific interactions make up the driver/hardware interface.

■ Driver–Boot/Configuration Software. The interaction between the driver and the boot and
configuration software is the third interface affecting drivers.

Scope of the DDI/DKI

The primary goal of the DDI/DKI is to facilitate both source and binary portability across
successive releases of the operating systems on a particular machine. In addition, it promotes
source portability across implementations of UNIX on different machines, and applies only to
implementations based on System V Release 4. The DDI/DKI consists of several sections:

■ DDI/DKI Architecture Independent - These interfaces are supported on all
implementations of System V Release 4.

■ DKI-only - These interfaces are part of System V Release 4, and may not be supported in
future releases of System V. There are only two interfaces in this class, segmap(9E) and
hat_getkpfnum(9F)

■ Solaris DDI - These interfaces specific to Solaris.
■ Solaris SPARC specific DDI - These interfaces are specific to the SPARC processor, and

may not be available on other processors supported by Solaris.
■ Solaris x86 specific DDI - These interfaces are specific to the x86 processor, and may not be

available on other processors supported by Solaris.

To achieve the goal of source and binary compatibility, the functions, routines, and structures
specified in the DDI/DKI must be used according to these rules.

■ Drivers cannot access system state structures (for example, u and sysinfo) directly.
■ For structures external to the driver that may be accessed directly, only the utility functions

provided in Section 9F should be used. More generally, these functions should be used
wherever possible.

■ The headers <sys/ddi.h> and <sys/sunddi.h> must be the last header files included by
the driver.

Audience

Intro(9E)

Introduction 13

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1hat-getkpfnum-9f

Section 9 is for software engineers responsible for creating, modifying, or maintaining drivers
that run on this operating system and beyond. It assumes that the reader is familiar with
system internals and the C programming language.

PCMCIA Standard

The PC Card 95 Standard is listed under the SEE ALSO heading in some Section 9 reference
pages. This refers to documentation published by the Personal Computer Memory Card
International Association (PCMCIA) and the Japan Electronic Industry Development
Association (JEIDA).

How to Use Section 9

Section 9 is divided into the following subsections:

9E Driver Entry Points – contains reference pages for all driver entry point routines.

9F Kernel Functions – contains reference pages for all driver support routines.

9P Driver Properties – contains reference pages for driver properties.

9S Data Structures – contains reference pages for driver-related structures.

Compatibility Note

Sun Microsystem's implementation of the DDI/DKI was designed to provide binary
compatibility for third-party device drivers across currently supported hardware platforms
across minor releases of the operating system. However, unforeseen technical issues may force
changes to the binary interface of the DDI/DKI. We cannot therefore promise or in any way
assure that DDI/DKI-compliant device drivers will continue to operate correctly on future
releases.

Section 9E describes the entry-point routines a developer can include in a device driver. These
are called entry-point because they provide the calling and return syntax from the kernel into
the driver. Entry-points are called, for instance, in response to system calls, when the driver is
loaded, or in response to STREAMS events.

Kernel functions usable by the driver are described in section 9F.

In this section, reference pages contain the following headings:

■ NAME describes the routine's purpose.
■ SYNOPSIS summarizes the routine's calling and return syntax.
■ INTERFACE LEVEL describes any architecture dependencies. It also indicates whether the

use of the entry point is required, optional, or discouraged.
■ ARGUMENTS describes each of the routine's arguments.
■ DESCRIPTION provides general information about the routine.
■ RETURN VALUES describes each of the routine's return values.

Introduction to Section
9E

Intro(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 15 May 200114

■ SEE ALSO gives sources for further information.

Overview of Driver Entry-Point Routines and Naming Conventions

By convention, a prefix string is added to the driver routine names. For a driver with the prefix
prefix, the driver code may contain routines named prefixopen, prefixclose, prefixread,
prefixwrite, and so forth. All global variables associated with the driver should also use the
same prefix.

All routines and data should be declared as static.

Every driver MUST include <sys/ddi.h> and <sys/sunddi.h>, in that order, and after all
other include files.

The following table summarizes the STREAMS driver entry points described in this section.

Routine Type

put DDI/DKI

srv DDI/DKI

The following table summarizes the driver entry points described in this section.

Routine Type

_fini Solaris DDI

_info Solaris DDI

_init Solaris DDI

aread Solaris DDI

attach Solaris DDI

awrite Solaris DDI

chpoll DDI/DKI

close DDI/DKI

detach Solaris DDI

devmap Solaris DDI

devmap_access Solaris DDI

devmap_contextmgt Solaris DDI

devmap_dup Solaris DDI

Intro(9E)

Introduction 15

Routine Type

devmap_map Solaris DDI

devmap_unmap Solaris DDI

dump Solaris DDI

getinfo Solaris DDI

identify Solaris DDI

ioctl DDI/DKI

ks_update Solaris DDI

mapdev_access Solaris DDI

mapdev_dup Solaris DDI

mapdev_free Solaris DDI

mmap DKI only

open DDI/DKI

power Solaris DDI

print DDI/DKI

probe Solaris DDI

prop_op Solaris DDI

read DDI/DKI

segmap DKI only

strategy DDI/DKI

tran_abort Solaris DDI

tran_destroy_pkt Solaris DDI

tran_dmafree Solaris DDI

tran_getcap Solaris DDI

tran_init_pkt Solaris DDI

tran_reset Solaris DDI

tran_reset_notify Solaris DDI

tran_setcap Solaris DDI

tran_start Solaris DDI

Intro(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 15 May 200116

Routine Type

tran_sync_pkt Solaris DDI

tran_tgt_free Solaris DDI

tran_tgt_init Solaris DDI

tran_tgt_probe Solaris DDI

write DDI/DKI

The following table lists the error codes returned by a driver routine when it encounters an
error. The error values are listed in alphabetic order and are defined in sys/errno.h. In the
driver open(9E), close(9E), ioctl(9E), read(9E), and write(9E) routines, errors are passed
back to the user by calling bioerror(9F) to set b_flags to the proper error code. In the driver
strategy(9E) routine, errors are passed back to the user by setting the b_error member of the
buf(9S) structure to the error code. For STREAMS ioctl routines, errors should be sent
upstream in an M_IOCNAK message. For STREAMS read() and write() routines, errors
should be sent upstream in an M_ERROR message. The driver print routine should not return
an error code because the function that it calls, cmn_err(9F), is declared as void (no error is
returned).

Error Value Error Description

EAGAIN Kernel resources, such as the buf structure or cache memory, are not
available at this time (device may be busy, or the system resource is not
available). This is used in open, ioctl, read, write, and strategy.

EFAULT An invalid address has been passed as an argument; memory addressing
error. This is used in open, close, ioctl, read, write, and strategy.

EINTR Sleep interrupted by signal. This is used in open, close, ioctl, read, write,
and strategy.

EINVAL An invalid argument was passed to the routine. This is used in open, ioctl,
read, write, and strategy.

EIO A device error occurred; an error condition was detected in a device status
register (the I/O request was valid, but an error occurred on the device).
This is used in open, close, ioctl, read, write, and strategy.

ENXIO An attempt was made to access a device or subdevice that does not exist
(one that is not configured); an attempt was made to perform an invalid
I/O operation; an incorrect minor number was specified. This is used in
open, close, ioctl, read, write, and strategy.

EPERM A process attempting an operation did not have required permission. This
is used in open, ioctl, read, write, and strategy.

Intro(9E)

Introduction 17

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1bioerror-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cmn-err-9f

Error Value Error Description

EROFS An attempt was made to open for writing a read-only device. This is used
in open.

The table below cross references error values to the driver routines from which the error
values can be returned.

open close ioctl read, write and strategy

EAGAIN EFAULT EAGAIN EAGAIN

EFAULT EINTR EFAULT EFAULT

EINTR EIO EINTR EINTR

EINVAL ENXIO EINVAL EINVAL

EIO EIO EIO

ENXIO ENXIO ENXIO

EPERM EPERM

EROFS

Intro(9F), Intro(9S)See Also

Intro(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 15 May 200118

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-9s

Driver Entry Points

R E F E R E N C E

19

aread – asynchronous read from a device

#include <sys/uio.h>

#include <sys/aio_req.h>

#include <sys/cred.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

intprefix

aread(dev_t dev, struct aio_req *aio_reqp, cred_t *cred_p);

Solaris DDI specific (Solaris DDI). This entry point is optional. Drivers that do not support an
aread() entry point should use nodev(9F)

dev Device number.

aio_reqp Pointer to the aio_req(9S) structure that describes where the data is to be
stored.

cred_p Pointer to the credential structure.

The driver's aread() routine is called to perform an asynchronous read. getminor(9F) can be
used to access the minor number component of the dev argument. aread() may use the
credential structure pointed to by cred_p to check for superuser access by calling
drv_priv(9F). The aread() routine may also examine the uio(9S) structure through the
aio_req structure pointer, aio_reqp. aread() must call aphysio(9F) with the aio_req pointer
and a pointer to the driver's strategy(9E) routine.

No fields of the uio(9S) structure pointed to by aio_req, other than uio_offset or
uio_loffset, may be modified for non-seekable devices.

The aread() routine should return 0 for success, or the appropriate error number.

This function is called from user context only.

EXAMPLE 1 The following is an example of an aread() routine:

static int

xxaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)

{

int instance;

struct xxstate *xsp;

instance = getminor(dev);

xsp = ddi_get_soft_state(statep, instance);

/*Verify soft state structure has been allocated */

if (xsp == NULL)

return (ENXIO);

return (aphysio(xxstrategy, anocancel,

dev, B_READ, xxminphys, aio));

Name

Synopsis

Interface Level

Parameters

Description

Return Values

Context

Examples

aread(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 28 Mar 199720

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aio-req-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getminor-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1drv-priv-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uio-9s

EXAMPLE 1 The following is an example of an aread() routine: (Continued)

}

read(2), aioread(3C), awrite(9E), read(9E), strategy(9E), write(9E), anocancel(9F),
aphysio(9F), ddi_get_soft_state(9F), drv_priv(9F), getminor(9F), minphys(9F),
nodev(9F), aio_req(9S), cb_ops(9S), uio(9S)

Writing Device Drivers

There is no way other than calling aphysio(9F) to accomplish an asynchronous read.

See Also

Bugs

aread(9E)

Driver Entry Points 21

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aioread-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1anocancel-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-get-soft-state-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1drv-priv-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getminor-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1minphys-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aio-req-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aphysio-9f

attach – Attach a device to the system, or resume it

#include <sys/ddi.h>

#include <sys/sunddi.h>

int prefixattach(dev_info_t *dip, ddi_attach_cmd_t cmd);

Solaris DDI specific (Solaris DDI)

dip A pointer to the device's dev_info structure.

cmd Attach type. Possible values are DDI_ATTACH and DDI_RESUME. Other values are
reserved. The driver must return DDI_FAILURE if reserved values are passed to it.

The attach(9E) function is the device-specific initialization entry point. This entry point is
required and must be written.

The DDI_ATTACH command must be provided in the attach(9E) entry point. DDI_ATTACH is
used to initialize a given device instance. When attach(9E) is called with cmd set to
DDI_ATTACH, all normal kernel services (such as kmem_alloc(9F)) are available for use by the
driver. Device interrupts are not blocked when attaching a device to the system.

The attach(9E) function is called once for each instance of the device on the system with cmd
set to DDI_ATTACH. Until attach(9E) succeeds, the only driver entry point which may be called
is getinfo(9E). See the Writing Device Drivers for more information. The instance number
may be obtained using ddi_get_instance(9F).

At attach time, all components of a power-manageable device are assumed to be at unknown
levels. Before using the device, the driver needs to bring the required component(s) to a
known power level. The pm_raise_power(9F) function can be used to set the power level of a
component. This function must not be called before data structures referenced in power(9E)
have been initialized.

The attach() function may be called with cmd set to DDI_RESUME after detach(9E) has been
successfully called with cmd set to DDI_SUSPEND.

When called with cmd set to DDI_RESUME, attach() must restore the hardware state of a
device (power may have been removed from the device), allow pending requests to continue,
and service new requests. In this case, the driver must not make any assumptions about the
state of the hardware, but must restore the state of the device except for the power level of
components.

Name

Synopsis

Interface Level

Parameters

Description

DDI_ATTACH

DDI_RESUME

attach(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 7 Jan 200422

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-get-instance-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pm-raise-power-9f

If the device driver uses the automatic device Power Management interfaces (driver exports
the pm-components(9P) property), the Power Management framework sets its notion of the
power level of each component of a device to unknown while processing a DDI_RESUME
command.

The driver can deal with components during DDI_RESUME in one of the following ways:

1. If the driver can determine the power level of the component without having to power it
up (for example, by calling ddi_peek(9F) or some other device-specific method) then it
should notify the power level to the framework by calling pm_power_has_changed(9F).

2. The driver must also set its own notion of the power level of the component to unknown.
The system will consider the component idle or busy based on the most recent call to
pm_idle_component(9F) or pm_busy_component(9F) for that component. If the
component is idle for sufficient time, the framework will call into the driver's power(9E)
entry point to turn the component off. If the driver needs to access the device, then it must
call pm_raise_power(9F) to bring the component up to the level needed for the device
access to succeed. The driver must honor any request to set the power level of the
component, since it cannot make any assumption about what power level the component
has (or it should have called pm_power_has_changed(9F) as outlined above). As a special
case of this, the driver may bring the component to a known state because it wants to
perform an operation on the device as part of its DDI_RESUME processing (such as loading
firmware so that it can detect hot-plug events).

The attach() function returns:

DDI_SUCCESS Successful completion

DDI_FAILURE Operation failed

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

cpr(7), pm(7D), pm(9P), pm-components(9P), detach(9E), getinfo(9E), identify(9E),
open(9E), power(9E), probe(9E), ddi_add_intr(9F), ddi_create_minor_node(9F),
ddi_get_instance(9F), ddi_map_regs(9F), kmem_alloc(9F), pm_raise_power(9F)

Writing Device Drivers

Return Values

Attributes

See Also

attach(9E)

Driver Entry Points 23

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pm-components-9p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-peek-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pm-power-has-changed-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pm-idle-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pm-power-has-changed-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cpr-7
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pm-7d
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pm-9p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pm-components-9p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-add-intr-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-create-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-get-instance-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-map-regs-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kmem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

audio_engine_channels – return the number of channels for an audio engine

#include <sys/audio/audio_driver.h>

int prefix_channels(void *state);

state pointer to driver supplied soft state

Solaris DDI specific (Solaris DDI)

The audio_engine_channels() function is called by the framework to determine the number
of channels used by the engine.

The audio framework currently supports between one and 16 channels.

There is no standard convention for the layout of more than eight channels.

An audio engine may not change the number of channels it uses while it is open.

The audio_engine_channels() function returns the number of channels for the engine (such
as 1 for mono, 2 for stereo, 6 for 5.1 surround, or 8 for 7.1 surround.)

This function may be called from user or interrupt context.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

attributes(5), audio(7D), audio_engine_ops(9S)

Name

Synopsis

Parameters

Interface Level

Description

Return Values

Context

Attributes

See Also

audio_engine_channels(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 16 Apr 201024

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1audio-7d
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1audio-engine-ops-9s

audio_engine_chinfo – return channel layout information for an audio engine

#include <sys/audio/audio_driver.h>

void prefix_chinfo(void *state, int chan, unsigned *offsetp,
unsigned *incrementp);

state pointer to driver supplied soft state

chan a channel number

offsetp pointer to an unsigned integer where the driver stores the offset of the channel
within the first sample

incrementp pointer to an unsigned integer where the driver stores the increment for the
channel between samples

Solaris DDI specific (Solaris DDI)

The audio_engine_chinfo() function is used by the framework to determine the layout of
channel data within the audio stream.

The offset indicates the index to the channel's sample data within an audio frame.

The increment is the number of samples separating the channel between adjacent frames.

Both offset and increment are in units of the individual sample size. For example, for signed
16-bit linear PCM, the units are given as int16_t. This is true regardless of whether the engine
is monophonic, stereophonic, or in some other configuration.

For engines with typical interleaved samples, the offset value is the same as the channel
number, and the increment value is the number of channels for which the engine is
configured. If NULL is provided for this entry point, then this simple interleaved layout is
assumed.

Other layouts can be used to reorder the channels (by changing the offset value) or interleave
data from separate buffers together (by changing the increment value.) This can be used to
achieve a functionality similar to the “remux” feature of other audio systems.

This entry point is only supported for playback.

An audio engine may not change the layout of its buffers while it is open

This function may be called from user or kernel context.

See attributes(5) for descriptions of the following attributes:

Name

Synopsis

Parameters

Interface Level

Description

Context

Attributes

audio_engine_chinfo(9E)

Driver Entry Points 25

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

attributes(5), audio(7D), audio_engine_ops(9S)See Also

audio_engine_chinfo(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 16 Apr 201026

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1audio-7d
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1audio-engine-ops-9s

audio_engine_count – return the sample count for an audio engine

#include <sys/audio/audio_driver.h>

uint64_t prefix_count(void *state);

state pointer to driver supplied soft state

Solaris DDI specific (Solaris DDI)

The audio_engine_count() function returns the frame count of the engine, which is the
number of frames transferred by the engine since it was last opened with
audio_engine_open(9E).

For recording, this frame count will be the total number of frames that the engine has written
into the buffer. For playback, it will be the number of frames that the engine has read from the
buffer. This value is monotonically increasing and does not wrap.

The audio_engine_open() function, however, will reset the frame count to 0.

The frame count for the engine is related to the offset of the data in the buffer. Both normally
increase as the engine makes progress, but the engine index wraps when it reaches the end of
the buffer or when the device is stopped and restarted with audio_engine_stop(9E) and
audio_engine_start(9E).

The audio_engine_count() function returns the number of frames transferred by the engine
since audio_engine_open() was called.

This function may be called from user or interrupt context.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

attributes(5), audio(7D), audio_engine_open(9E), audio_engine_start(9E),
audio_engine_stop(9E), audio_engine_ops(9S)

Name

Synopsis

Parameters

Interface Level

Description

Return Values

Context

Attributes

See Also

audio_engine_count(9E)

Driver Entry Points 27

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Faudio-7d
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Faudio-engine-ops-9s

audio_engine_format – return the sample format for an audio engine

#include <sys/audio/audio_driver.h>

int prefix_format(void *state);

state pointer to driver supplied soft state

Solaris DDI specific (Solaris DDI)

The audio_engine_format() function is called by the framework to determine the format of
the engine.

The audio framework supports the following formats for audio engines:

AUDIO_FORMAT_S16_LE 16-bit signed little endian linear PCM

AUDIO_FORMAT_S16_BE 16-bit signed big endian linear PCM

AUDIO_FORMAT_S24_LE 24-bit signed little endian linear PCM

AUDIO_FORMAT_S24_BE 24-bit signed big endian linear PCM

AUDIO_FORMAT_S32_LE 32-bit signed little endian linear PCM

AUDIO_FORMAT_S32_BE 32-bit signed big endian linear PCM

The 24-bit bit types above store each 24-bit sample in a 32-bit word.

An audio engine may not change the format it uses while it is open.

The audio_engine_format() function returns the audio format of the engine.

This function may be called from user or interrupt context.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

attributes(5), audio(7D), audio_engine_ops(9S)

Name

Synopsis

Parameters

Interface Level

Description

Return Values

Context

Attributes

See Also

audio_engine_format(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 16 Apr 201028

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Faudio-7d
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Faudio-engine-ops-9s

audio_engine_open, audio_engine_close – open or close an audio engine

#include <sys/audio/audio_driver.h>

int prefix_open(void *state, int flag, unsigned *nframes
caddr_t *bufp);

void prefix_close(void *state);

state pointer to driver supplied soft state

flag integer mask of flags indicating mode of the engine. ENGINE_INPUT indicates the
engine is opened for recording. ENGINE_OUTPUT indicates the engine is opened for
playback. All other possible bits are reserved and should be ignored by the driver.

nframes pointer to an unsigned integer to receive the number of frames the associated
buffer can hold

bufp pointer to receive the address of the buffer for the engine. The buffer is allocated
by the engine, and is a circular FIFO big enough to hold all of the frames
configured. The driver has the responsibility for managing any resources
associated with the buffer. The driver should not make any assumptions about
the type of accesses to the buffer made by the framework or application.
Therefore, it should be configured with DDI_NEVERSWAP_ACC if the buffer is
allocated using ddi_dma_mem_alloc(9F).

Solaris DDI specific (Solaris DDI)

The audio_engine_open() function opens and initializes the DMA engine and configures
any associated hardware (such as sample rate or format conversion logic) for the device.

The audio_engine_open() function also ensures that resources for the data buffer are
properly allocated and that the circular buffer is primed and ready for use by the framework
and audio clients.

The audio_engine_open() function does not actually start any data transfer, but merely does
much of the initialization work. It can perform expensive operations, including sleeping
allocations or blocking on resources.

The audio_engine_close() function undoes the effects of audio_engine_open()and may
deallocate resources that were allocated during audio_engine_open(). The framework
ensures that audio_engine_stop(9E) is issued on any running engine before calling
audio_engine_close().

Once audio_engine_close() returns, the frame counter for the engine must be reset to 0.

The framework will not access the device buffer for an engine that is not open, so buffer
resources may be released at this point.

Name

Synopsis

Parameters

Interface Level

Description

audio_engine_open(9E)

Driver Entry Points 29

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fddi-dma-mem-alloc-9f

The audio_engine_open() function returns 0 on success or an error number on failure. See
open(2) for possible error numbers.

The audio_engine_open() and audio_engine_close() functions are called from user or
kernel context only.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

open(2), attributes(5), audio_engine_stop(9E), ddi_dma_mem_alloc(9F),
audio_engine_ops(9S)

Return Values

Context

Attributes

See Also

audio_engine_open(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 16 Apr 201030

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fopen-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fopen-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fddi-dma-mem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Faudio-engine-ops-9s

audio_engine_playahead – return the play-ahead sample count for an audio engine

#include <sys/audio/audio_driver.h>

uint_t prefix_playahead(void *state);

state pointer to driver supplied soft state.

Solaris DDI specific (Solaris DDI)

The audio_engine_playahead() function returns a driver-supplied hint indicating how
many frames the framework should queue up to the device to avoid device underruns. This
entry point is optional and NULL may be supplied, in which case the framework will assume a
default that is reasonable for most devices.

This entry point is most appropriate for devices with inconsistent scheduling, such as
emulated devices or devices backed by user programs. For these devices, this entry point
allows the driver to supply a larger value than the normal default.

The audio_engine_playahead() function returns the number of frames the framework
should queue for playback.

This function is only called after the device is first opened; the dynamically changing values
are not supported.

This function may be called from user or interrupt context.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

attributes(5), audio(7D), audio_engine_ops(9S)

Name

Synopsis

Parameters

Interface Level

Description

Return Values

Usage

Context

Attributes

See Also

audio_engine_playahead(9E)

Driver Entry Points 31

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Faudio-7d
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Faudio-engine-ops-9s

audio_engine_qlen – return the depth of an audio engine's queue

#include <sys/audio/audio_driver.h>

uint_t prefix_qlen(void *state);

state pointer to driver supplied soft state

Solaris DDI specific (Solaris DDI)

The audio_engine_qlen() function returns the depth, in frames, of any on-device FIFO. It is
used to improve the latency-related calculations in the framework. For most devices the value
0 is appropriate, since they DMA directly from the buffer into the codec.

The audio_engine_qlen() function returns the depth of any hardware FIFO as a count in
frames.

This function may be called from user or interrupt context.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

attributes(5), audio(7D), audio_engine_ops(9S)

Name

Synopsis

Parameters

Interface Level

Description

Return Values

Context

Attributes

See Also

audio_engine_qlen(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 16 Apr 201032

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Faudio-7d
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Faudio-engine-ops-9s

audio_engine_rate – return the sample rate of an audio engine

#include <sys/audio/audio_driver.h>

int prefix_rate(void *state);

state pointer to driver supplied soft state

Solaris DDI specific (Solaris DDI)

The audio_engine_rate() function is called by the framework to determine the sample rate
of the engine, represented in Hz.

The audio_engine_rate() function returns the sample rate of the engine expressed in Hz.

This function may be called from user or interrupt context.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

attributes(5), audio(7D), audio_engine_ops(9S)

Name

Synopsis

Parameters

Interface Level

Description

Return Values

Context

Attributes

See Also

audio_engine_rate(9E)

Driver Entry Points 33

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Faudio-7d
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Faudio-engine-ops-9s

audio_engine_start, audio_engine_stop – start or stop an audio engine

#include <sys/audio/audio_driver.h>

int prefix_start(void *state);

void prefix_stop(void *state);

state pointer to driver supplied soft state

Solaris DDI specific (Solaris DDI)

The audio_engine_start() function starts an audio engine that has been initialized with
audio_engine_open(9E). This initiates actual playback or recording of audio. The data
transfer must start at the first frame in the engine's buffer.

The audio_engine_stop() function stops an audio engine that was previously started with
audio_engine_start() and resets the frame index back to 0. The master frame counter for
the engine is not reset.

Once audio_engine_stop() returns, the engine must not perform any further data transfers
to or from the audio buffer. Furthermore, actual play back or capture of audio associated with
the engine shall have ceased.

The audio_engine_start() function returns 0 on success or an error number on failure.

These functions may be called from user, kernel, or interrupt context.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

attributes(5), audio(7D), audio_engine_open(9E), audio_engine_ops(9S)

Name

Synopsis

Parameters

Interface Level

Description

Return Values

Context

Attributes

See Also

audio_engine_start(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 16 Apr 201034

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Faudio-7d
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Faudio-engine-ops-9s

audio_engine_sync – synchronize DMA caches for an audio engine

#include <sys/audio/audio_driver.h>

void prefix_sync(void *state, unsigned nframes)

state pointer to driver supplied soft state

nframes integer value indicating the number of frames that have been either sent or
received and need to be synchronized in the cache since the last time
audio_engine_sync() was called

Solaris DDI specific (Solaris DDI)

The audio_engine_sync() function is used as a hook to request device drivers to perform
DMA cache synchronization of the buffer.

Drivers should call ddi_dma_sync(9F) when this function is called. The direction used for the
operation can be determined by the driver. Engines performing playback must use
DDI_DMA_SYNC_FORDEV, and engines performing record must use DDI_DMA_SYNC_FORKERNEL.

Drivers are responsible for maintaining a running index to keep track of the offset where
cache synchronization is needed, but the framework indicates how many frames need to be
synchronized in the nframes parameter. Many drivers elect to synchronize the entire buffer for
simplicity.

The index should be reset to 0 whenever audio_engine_start(9E) is called.

This function may be called from user or interrupt context.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

attributes(5), audio(7D), audio_engine_start(9E), ddi_dma_sync(9F),
audio_engine_ops(9S)

Name

Synopsis

Parameters

Interface Level

Description

Context

Attributes

See Also

audio_engine_sync(9E)

Driver Entry Points 35

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fddi-dma-sync-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Faudio-7d
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fddi-dma-sync-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Faudio-engine-ops-9s

awrite – asynchronous write to a device

#include <sys/uio.h>

#include <sys/aio_req.h>

#include <sys/cred.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

intprefixawrite(dev_t dev, struct aio_req *aio_reqp,
cred_t *cred_p);

Solaris DDI specific (Solaris DDI). This entry point is optional. Drivers that do not support an
awrite() entry point should use nodev(9F)

dev Device number.

aio_reqp Pointer to the aio_req(9S) structure that describes where the data is stored.

cred_p Pointer to the credential structure.

The driver's awrite() routine is called to perform an asynchronous write. getminor(9F) can
be used to access the minor number component of the dev argument. awrite() may use the
credential structure pointed to by cred_p to check for superuser access by calling
drv_priv(9F). The awrite() routine may also examine the uio(9S) structure through the
aio_req structure pointer, aio_reqp. awrite() must call aphysio(9F) with the aio_req
pointer and a pointer to the driver's strategy(9E) routine.

No fields of the uio(9S) structure pointed to by aio_req, other than uio_offset or
uio_loffset, may be modified for non-seekable devices.

The awrite() routine should return 0 for success, or the appropriate error number.

This function is called from user context only.

EXAMPLE 1 Using the awrite() routine:

The following is an example of an awrite() routine:

static int

xxawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)

{

int instance;

struct xxstate *xsp;

instance = getminor(dev);

xsp = ddi_get_soft_state(statep, instance);

/*Verify soft state structure has been allocated */

if (xsp == NULL)

return (ENXIO);

return (aphysio(xxstrategy, anocancel, dev, B_WRITE, \

Name

Synopsis

Interface Level

Parameters

Description

Return Values

Context

Examples

awrite(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 28 Mar 199736

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aio-req-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getminor-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1drv-priv-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uio-9s

EXAMPLE 1 Using the awrite() routine: (Continued)

xxminphys, aio));

}

write(2), aiowrite(3C), aread(9E), read(9E), strategy(9E), write(9E), anocancel(9F),
aphysio(9F), ddi_get_soft_state(9F), drv_priv(9F), getminor(9F), minphys(9F),
nodev(9F), aio_req(9S), cb_ops(9S), uio(9S)

Writing Device Drivers

There is no way other than calling aphysio(9F) to accomplish an asynchronous write.

See Also

Bugs

awrite(9E)

Driver Entry Points 37

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aiowrite-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1anocancel-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-get-soft-state-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1drv-priv-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getminor-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1minphys-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aio-req-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1aphysio-9f

chpoll – poll entry point for a non-STREAMS character driver

#include <sys/types.h>

#include <sys/poll.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

int prefixchpoll(dev_t dev, short events, int anyyet,
short *reventsp, struct pollhead **phpp);

This entry point is optional. Architecture independent level 1 (DDI/DKI).

dev The device number for the device to be polled.

events The events that may occur. Valid events are:

POLLIN Data other than high priority data may be read without
blocking.

POLLOUT Normal data may be written without blocking.

POLLPRI High priority data may be received without blocking.

POLLHUP A device hangup has occurred.

POLLERR An error has occurred on the device.

POLLRDNORM Normal data (priority band = 0) may be read without blocking.

POLLRDBAND Data from a non-zero priority band may be read without
blocking

POLLWRNORM The same as POLLOUT.

POLLWRBAND Priority data (priority band > 0) may be written.

anyyet A flag that is non-zero if any other file descriptors in the pollfd array have events
pending. The poll(2) system call takes a pointer to an array of pollfd structures
as one of its arguments. See the poll(2) reference page for more details.

reventsp A pointer to a bitmask of the returned events satisfied.

phpp A pointer to a pointer to a pollhead structure.

The chpoll() entry point routine is used by non-STREAMS character device drivers that
wish to support polling. The driver must implement the polling discipline itself. The following
rules must be followed when implementing the polling discipline:

1. Implement the following algorithm when the chpoll() entry point is called:

Name

Synopsis

Interface Level

Parameters

Description

chpoll(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 7 May 200838

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2

if (events_are_satisfied_now) {

*reventsp = satisfied_events & events;

} else {

*reventsp = 0;

if (!anyyet)

*phpp = &my_local_pollhead_structure;

}

return (0);

2. Allocate an instance of the pollhead structure. This instance may be tied to the per-minor
data structure defined by the driver. The pollhead structure should be treated as a “black
box” by the driver. Initialize the pollhead structure by filling it with zeroes. The size of this
structure is guaranteed to remain the same across releases.

3. Call the pollwakeup() function with events listed above whenever pollable events which
the driver should monitor occur. This function can be called with multiple events at one
time. The pollwakup() can be called regardless of whether or not the chpoll() entry is
called; it should be called every time the driver detects the pollable event. The driver must
not hold any mutex across the call to pollwakeup(9F) that is acquired in its chpoll() entry
point, or a deadlock may result.

chpoll() should return 0 for success, or the appropriate error number.

poll(2), nochpoll(9F), pollwakeup(9F)

Writing Device Drivers

Return Values

See Also

chpoll(9E)

Driver Entry Points 39

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pollwakeup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nochpoll-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pollwakeup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

close – relinquish access to a device

#include <sys/types.h>

#include <sys/file.h>

#include <sys/errno.h>

#include <sys/open.h>

#include <sys/cred.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

int prefixclose(dev_t dev, int flag, int otyp, cred_t *cred_p);

#include <sys/types.h>

#include <sys/stream.h>

#include <sys/file.h>

#include <sys/errno.h>

#include <sys/open.h>

#include <sys/cred.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

int prefixclose(queue_t *q, int flag, cred_t *cred_p);

Architecture independent level 1 (DDI/DKI). This entry point is required for block devices.

dev Device number.

flag File status flag, as set by the open(2) or modified by the fcntl(2) system calls. The
flag is for information only—the file should always be closed completely. Possible
values are: FEXCL, FNDELAY, FREAD, FKLYR, and FWRITE. Refer to open(9E) for
more information.

otyp Parameter supplied so that the driver can determine how many times a device was
opened and for what reasons. The flags assume the open() routine may be called
many times, but the close() routine should only be called on the last close() of a
device.

OTYP_BLK Close was through block interface for the device.

OTYP_CHR Close was through the raw/character interface for the device.

Name

Synopsis

Block and Character

STREAMS

Interface Level

Parameters

Block and Character

close(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 24 Apr 200840

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2

OTYP_LYR Close a layered process (a higher-level driver called the close()
routine of the device).

*cred_p Pointer to the user credential structure.

*q Pointer to queue(9S) structure used to reference the read side of the driver. (A
queue is the central node of a collection of structures and routines pointed to by a
queue.)

flag File status flag.

*cred_p Pointer to the user credential structure.

For STREAMS drivers, the close() routine is called by the kernel through the cb_ops(9S)
table entry for the device. (Modules use the fmodsw table.) A non-null value in the d_str field
of the cb_ops entry points to a streamtab structure, which points to a qinit(9S) containing a
pointer to the close() routine. Non-STREAMS close() routines are called directly from the
cb_ops table.

close() ends the connection between the user process and the device, and prepares the device
(hardware and software) so that it is ready to be opened again.

A device may be opened simultaneously by multiple processes and the open() driver routine
is called for each open. For all otyp values other than OTYP_LYR, the kernel calls the close()
routine when the last-reference occurs. For OTYP_LYR each close operation will call the driver.

Kernel accounting for last-reference occurs at (dev, otyp) granularity. Note that a device is
referenced once its associated open(9E) routine is entered, and thus open(9E)'s which have not
yet completed will prevent close() from being called. The driver's close() call associated
with the last-reference going away is typically issued as result of a close(2), exit(2),
munmap(2), or umount(2). However, a failed open(9E) call can cause this last-reference close()
call to be issued as a result of an open(2) or mount(2).

The kernel provides open() close() exclusion guarantees to the driver at the same devp, otyp
granularity as last-reference accounting. The kernel delays new calls to the open() driver
routine while the last-reference close() call is executing. For example, a driver that blocks in
close() will not see new calls to open() until it returns from close(). This effectively delays
invocation of other cb_ops(9S) driver entry points that also depend on an open(9E)
established device reference. If the driver has indicated that an EINTR return is safe via the
D_OPEN_RETURNS_EINTR cb_flag, then a delayed open() may be interrupted by a signal,
resulting in an EINTR return from open() prior to calling open(9E).

Last-reference accounting and open() close() exclusion typically simplify driver writing. In
some cases, however, they might be an impediment for certain types of drivers. To overcome
any impediment, the driver can change minor numbers in open(9E), as described below, or

STREAMS

Description

close(9E)

Driver Entry Points 41

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1queue-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1qinit-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fclose-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fexit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fmunmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fumount-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fopen-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fmount-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cb-ops-9s

implement multiple minor nodes for the same device. Both techniques give the driver control
over when close() calls occur and whether additional open() calls will be delayed while
close() is executing.

In general, a close() routine should always check the validity of the minor number
component of the dev parameter. The routine should also check permissions as necessary, by
using the user credential structure (if pertinent), and the appropriateness of the flag and otyp
parameter values.

close() could perform any of the following general functions:

■ disable interrupts
■ hang up phone lines
■ rewind a tape
■ deallocate buffers from a private buffering scheme
■ unlock an unsharable device (that was locked in the open() routine)
■ flush buffers
■ notify a device of the close
■ deallocate any resources allocated on open

The close() routines of STREAMS drivers and modules are called when a stream is
dismantled or a module popped. The steps for dismantling a stream are performed in the
following order. First, any multiplexor links present are unlinked and the lower streams are
closed. Next, the following steps are performed for each module or driver on the stream,
starting at the head and working toward the tail:

1. The write queue is given a chance to drain.
2. The close() routine is called.
3. The module or driver is removed from the stream.

close() should return 0 for success, or the appropriate error number. Return errors rarely
occur, but if a failure is detected, the driver should decide whether the severity of the problem
warrants either displaying a message on the console or, in worst cases, triggering a system
panic. Generally, a failure in a close() routine occurs because a problem occurred in the
associated device.

If you use qwait_sig(9F), cv_wait_sig(9F) or cv_timedwait_sig(9F), you should note that
close() may be called in contexts in which signals cannot be received. The
ddi_can_receive_sig(9F) function is provided to determine when this hazard exists.

close(2), fcntl(2), open(2), umount(2), detach(9E), open(9E), ddi_can_receive_sig(9F),
cb_ops(9S), qinit(9S), queue(9S)

Writing Device Drivers

STREAMS Programming Guide

Return Values

Notes

See Also

close(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 24 Apr 200842

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1qwait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cv-wait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cv-timedwait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-can-receive-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1umount-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-can-receive-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1qinit-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1queue-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=STREAMS

csx_event_handler – PC Card driver event handler

#include <sys/pccard.h>

int32_t prefixevent_handler(event_t event, int32_t priority,
event_callback_args_t *args);

Solaris architecture specific (Solaris DDI)

event The event.

priority The priority of the event.

args A pointer to the event_callback_t structure.

Each instance of a PC Card driver must register an event handler to manage events associated
with its PC Card. The driver event handler is registered using the event_handler field of the
client_req_t structure passed to csx_RegisterClient(9F). The driver may also supply a
parameter to be passed to its event handler function using the
event_callback_args.client_data field. Typically, this argument is the driver instance's
soft state pointer. The driver also registers which events it is interested in receiving through
the EventMask field of the client_req_t structure.

Each event is delivered to the driver with a priority, priority. High priority events with
CS_EVENT_PRI_HIGH set in priority are delivered above lock level, and the driver must use its
high-level event mutex initialized with the iblk_cookie returned by
csx_RegisterClient(9F) to protect such events. Low priority events with CS_EVENT_PRI_LOW

set in priority are delivered below lock level, and the driver must use its low-level event mutex
initialized with a NULL interrupt cookie to protect these events.

csx_RegisterClient(9F) registers the driver's event handler, but no events begin to be
delivered to the driver until after a successful call to csx_RequestSocketMask(9F).

In all cases, Card Services delivers an event to each driver instance associated with a function
on a multiple function PC Card.

The events and their indications are listed below; they are always delivered as low priority
unless otherwise noted:

CS_EVENT_REGISTRATION_COMPLETE A registration request processed in the background
has been completed.

CS_EVENT_CARD_INSERTION A PC Card has been inserted in a socket.

CS_EVENT_CARD_READY A PC Card's READY line has transitioned from the
busy to ready state.

Name

Synopsis

Interface Level

Parameters

Description

Event Indications

csx_event_handler(9E)

Driver Entry Points 43

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1csx-registerclient-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1csx-registerclient-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1csx-registerclient-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1csx-requestsocketmask-9f

CS_EVENT_CARD_REMOVAL A PC Card has been removed from a socket. This
event is delivered twice; first as a high priority event,
followed by delivery as a low priority event. As a high
priority event, the event handler should only note
that the PC Card is no longer present to prevent
accesses to the hardware from occurring. As a low
priority event, the event handler should release the
configuration and free all I/O, window and IRQ
resources for use by other PC Cards.

CS_EVENT_BATTERY_LOW The battery on a PC Card is weak and is in need of
replacement.

CS_EVENT_BATTERY_DEAD The battery on a PC Card is no longer providing
operational voltage.

CS_EVENT_PM_RESUME Card Services has received a resume notification
from the system's Power Management software.

CS_EVENT_PM_SUSPEND Card Services has received a suspend notification
from the system's Power Management software.

CS_EVENT_CARD_LOCK A mechanical latch has been manipulated preventing
the removal of the PC Card from the socket.

CS_EVENT_CARD_UNLOCK A mechanical latch has been manipulated allowing
the removal of the PC Card from the socket.

CS_EVENT_EJECTION_REQUEST A request that the PC Card be ejected from a socket
using a motor-driven mechanism.

CS_EVENT_EJECTION_COMPLETE A motor has completed ejecting a PC Card from a
socket.

CS_EVENT_ERASE_COMPLETE A queued erase request that is processed in the
background has been completed.

CS_EVENT_INSERTION_REQUEST A request that a PC Card be inserted into a socket
using a motor-driven mechanism.

CS_EVENT_INSERTION_COMPLETE A motor has completed inserting a PC Card in a
socket.

CS_EVENT_CARD_RESET A hardware reset has occurred.

CS_EVENT_RESET_REQUEST A request for a physical reset by a client.

CS_EVENT_RESET_COMPLETE A reset request that is processed in the background
has been completed.

CS_EVENT_RESET_PHYSICAL A reset is about to occur.

csx_event_handler(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 22 Nov 199644

CS_EVENT_CLIENT_INFO A request that the client return its client information
data. If
GET_CLIENT_INFO_SUBSVC(args->client_info.Attributes)

is equal to CS_CLIENT_INFO_SUBSVC_CS, the driver
should fill in the other fields in the client_info
structure as described below, and return
CS_SUCCESS. Otherwise, it should return
CS_UNSUPPORTED_EVENT.

args->client_data.Attributes

Must be OR'ed with CS_CLIENT_INFO_VALID.

args->client_data.Revision

Must be set to a driver-private version number.

args->client_data.CSLevel

Must be set to CS_VERSION.

args->client_data.RevDate

Must be set to the revision date of the PC Card
driver, using CS_CLIENT_INFO_MAKE_DATE(day,
month, year). day must be the day of the month,
month must be the month of the year, and year
must be the year, offset from a base of 1980. For
example, this field could be set to a revision date
of July 4 1997 with
CS_CLIENT_INFO_MAKE_DATE(4, 7, 17).

args->client_data.ClientName

A string describing the PC Card driver should be
copied into this space.

args->client_data.VendorName

A string supplying the name of the PC Card
driver vendor should be copied into this space.

args->client_data.DriverName

A string supplying the name of the PC Card
driver will be copied into this space by Card
Services after the PC Card driver has successfully
processed this event; the driver does not need to
initialize this field.

CS_EVENT_WRITE_PROTECT The write protect status of the PC Card in the
indicated socket has changed. The current write
protect state of the PC Card is in the args->info
field:

csx_event_handler(9E)

Driver Entry Points 45

CS_EVENT_WRITE_PROTECT_WPOFF Card is not
write
protected.

CS_EVENT_WRITE_PROTECT_WPON Card is write
protected.

The structure members of event_callback_args_t are:

void *info; /* event-specific information */

void *client_data; /* driver-private data */

client_info_t client_info; /* client information*/

The structure members of client_info_t are:

unit32_t Attributes; /* attributes */

unit32_t Revisions; /* version number */

uint32_t CSLevel; /* Card Services version */

uint32_t RevDate; /* revision date */

char ClientName[CS_CLIENT_INFO_MAX_NAME_LEN];

/*PC Card driver description */

char VendorName[CS_CLIENT_INFO_MAX_NAME_LEN];

/*PC Card driver vendor name */

char DriverName[MODMAXNAMELEN];

/* PC Card driver name */

CS_SUCCESS The event was handled successfully.

CS_UNSUPPORTED_EVENT Driver does not support this event.

CS_FAILURE Error occurred while handling this event.

This function is called from high-level interrupt context in the case of high priority events, and
from kernel context in the case of low priority events.

static int

xx_event(event_t event, int priority, event_callback_args_t *args)

{

int rval;

struct xxx *xxx = args->client_data;

client_info_t *info = &args->client_info;

switch (event) {

case CS_EVENT_REGISTRATION_COMPLETE:

ASSERT(priority & CS_EVENT_PRI_LOW);

mutex_enter(&xxx->event_mutex);

xxx->card_state |= XX_REGISTRATION_COMPLETE;

mutex_exit(&xxx->event_mutex);

rval = CS_SUCCESS;

break;

Structure
Members

Return Values

Context

Examples

csx_event_handler(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 22 Nov 199646

case CS_EVENT_CARD_READY:

ASSERT(priority & CS_EVENT_PRI_LOW);

rval = xx_card_ready(xxx);

mutex_exit(&xxx->event_mutex);

break;

case CS_EVENT_CARD_INSERTION:

ASSERT(priority & CS_EVENT_PRI_LOW);

mutex_enter(&xxx->event_mutex);

rval = xx_card_insertion(xxx);

mutex_exit(&xxx->event_mutex);

break;

case CS_EVENT_CARD_REMOVAL:

if (priority & CS_EVENT_PRI_HIGH) {

mutex_enter(&xxx->hi_event_mutex);

xxx->card_state &= ~XX_CARD_PRESENT;

mutex_exit(&xxx->hi_event_mutex);

} else {

mutex_enter(&xxx->event_mutex);

rval = xx_card_removal(xxx);

mutex_exit(&xxx->event_mutex);

}

break;

case CS_EVENT_CLIENT_INFO:

ASSERT(priority & CS_EVENT_PRI_LOW);

if (GET_CLIENT_INFO_SUBSVC_CS(info->Attributes) ==

CS_CLIENT_INFO_SUBSVC_CS) {

info->Attributes |= CS_CLIENT_INFO_VALID;

info->Revision = 4;

info->CSLevel = CS_VERSION;

info->RevDate = CS_CLIENT_INFO_MAKE_DATE(4, 7, 17);

(void)strncpy(info->ClientName,

"WhizBang Ultra Zowie PC card driver",
CS_CLIENT_INFO_MAX_NAME_LEN)

"ACME PC card drivers, Inc.",
CS_CLIENT_INFO_MAX_NAME_LEN);

rval = CS_SUCCESS;

} else {

rval = CS_UNSUPPORTED_EVENT;

}

break;

csx_event_handler(9E)

Driver Entry Points 47

case CS_EVENT_WRITE_PROTECT:

ASSERT(priority & CS_EVENT_PRI_LOW);

mutex_enter(&xxx->event_mutex);

if (args->info == CS_EVENT_WRITE_PROTECT_WPOFF) {

xxx->card_state &= ~XX_WRITE_PROTECTED;

} else {

xxx->card_state |= XX_WRITE_PROTECTED;

}

mutex_exit(&xxx->event_mutex);

rval = CS_SUCCESS;

break;

default:

rval = CS_UNSUPPORTED_EVENT;

break;

}

return (rval);

}

csx_Event2Text(9F), csx_RegisterClient(9F), csx_RequestSocketMask(9F)

PC Card 95 Standard, PCMCIA/JEIDA

See Also

csx_event_handler(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 22 Nov 199648

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1csx-event2text-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1csx-registerclient-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1csx-requestsocketmask-9f

detach – detach or suspend a device

#include <sys/ddi.h>

#include <sys/sunddi.h>

int prefix detach(dev_info_t dip, ddi_detach_cmd_t cmd);

Solaris DDI specific (Solaris DDI)

dip A pointer to the device's dev_info structure.

cmd Type of detach; the driver should return DDI_FAILURE if any value other than
DDI_DETACH or DDI_SUSPEND is passed to it.

The detach() function complements the attach(9E) routine.

If cmd is set to DDI_DETACH, detach() is used to remove the state associated with a given
instance of a device node prior to the removal of that instance from the system.

The detach() function will be called once for each instance of the device for which there has
been a successful attach(), once there are no longer any opens on the device. An attached
instance of a driver can be successfully detached only once. The detach() function should
clean up any per instance data initialized in attach(9E) and call kmem_free(9F) to free any
heap allocations. For information on how to unregister interrupt handlers, see
ddi_add_intr(9F). This should also include putting the underlying device into a quiescent
state so that it will not generate interrupts.

Drivers that set up timeout(9F) routines should ensure that they are cancelled before
returning DDI_SUCCESS from detach().

If detach() determines a particular instance of the device cannot be removed when requested
because of some exceptional condition, detach() must return DDI_FAILURE, which prevents
the particular device instance from being detached. This also prevents the driver from being
unloaded. A driver instance failing the detach must ensure that no per instance data or state is
modified or freed that would compromise the system or subsequent driver operation.

The system guarantees that the function will only be called for a particular dev_info node
after (and not concurrently with) a successful attach(9E) of that device. The system also
guarantees that detach() will only be called when there are no outstanding open(9E) calls on
the device.

The DDI_SUSPEND cmd is issued when the entire system is being suspended and power
removed from it or when the system must be made quiescent. It will be issued only to devices
which have a reg property or which export a pm-hardware-state property with the value
needs-suspend-resume.

If cmd is set to DDI_SUSPEND, detach() is used to suspend all activity of a device before power
is (possibly) removed from the device. The steps associated with suspension must include

Name

Synopsis

Interface Level

Parameters

Description

DDI_DETACH

DDI_SUSPEND

detach(9E)

Driver Entry Points 49

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kmem-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-add-intr-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1timeout-9f

putting the underlying device into a quiescent state so that it will not generate interrupts or
modify or access memory. Once quiescence has been obtained, detach() can be called with
outstanding open(9E) requests. It must save the hardware state of the device to memory and
block incoming or existing requests until attach() is called with DDI_RESUME.

If the device is used to store file systems, then after DDI_SUSPEND is issued, the device should
still honor dump(9E) requests as this entry point may be used by suspend-resume operation
(see cpr(7)) to save state file. It must do this, however, without disturbing the saved hardware
state of the device.

If the device driver uses automatic device Power Management interfaces (driver exports
pm-components(9P) property), it might need to call pm_raise_power(9F) if the current power
level is lower than required to complete the dump(9E) request.

Before returning successfully from a call to detach() with a command of DDI_SUSPEND, the
driver must cancel any outstanding timeouts and make any driver threads quiescent.

If DDI_FAILURE is returned for the DDI_SUSPEND cmd, either the operation to suspend the
system or to make it quiescent will be aborted.

DDI_SUCCESS For DDI_DETACH, the state associated with the given device was successfully
removed. For DDI_SUSPEND, the driver was successfully suspended.

DDI_FAILURE The operation failed or the request was not understood. The associated state
is unchanged.

This function is called from user context only.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

cpr(7), pm(7D), pm(9P), pm-components(9P), attach(9E), dump(9E), open(9E), power(9E),
ddi_add_intr(9F), ddi_map_regs(9F), kmem_free(9F), pm_raise_power(9F), timeout(9F)

Writing Device Drivers

Return Values

Context

Attributes

See Also

detach(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 28 Jun 201150

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cpr-7
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pm-components-9p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cpr-7
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pm-7d
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pm-9p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pm-components-9p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-add-intr-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-map-regs-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kmem-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1timeout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

devmap – validate and translate virtual mapping for memory mapped device

#include <sys/ddi.h>

#include <sys/sunddi.h>

int prefixdevmap(dev_t dev, devmap_cookie_t dhp, offset_t off,
size_t len, size_t *maplen, uint_t model);

Solaris DDI specific (Solaris DDI).

dev Device whose memory is to be mapped.

dhp An opaque mapping handle that the system uses to describe the mapping.

off User offset within the logical device memory at which the mapping begins.

len Length (in bytes) of the mapping to be mapped.

maplen Pointer to length (in bytes) of mapping that has been validated. maplen is less
than or equal to len.

model The data model type of the current thread.

devmap() is a required entry point for character drivers supporting memory-mapped devices
if the drivers use the devmap framework to set up the mapping. A memory mapped device has
memory that can be mapped into a process's address space. The mmap(2) system call, when
applied to a character special file, allows this device memory to be mapped into user space for
direct access by the user applications.

As a result of a mmap(2) system call, the system calls the devmap() entry point during the
mapping setup when D_DEVMAP is set in the cb_flag field of the cb_ops(9S) structure, and any
of the following conditions apply:

■ ddi_devmap_segmap(9F) is used as the segmap(9E) entry point.
■ segmap(9E) entry point is set to NULL.

■ mmap(9E) entry point is set to NULL.

Otherwise EINVAL will be returned to mmap(2).

Device drivers should use devmap() to validate the user mappings to the device, to translate
the logical offset, off, to the corresponding physical offset within the device address space, and
to pass the mapping information to the system for setting up the mapping.

dhp is a device mapping handle that the system uses to describe a mapping to a memory that is
either contiguous in physical address space or in kernel virtual address space. The system may
create multiple mapping handles in one mmap(2) system call (for example, if the mapping
contains multiple physically discontiguous memory regions).

Name

Synopsis

Interface Level

Parameters

Description

devmap(9E)

Driver Entry Points 51

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-devmap-segmap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2

model returns the C Language Type Model which the current thread expects. It is set to
DDI_MODEL_ILP32 if the current thread expects 32-bit (ILP32) semantics, or DDI_MODEL_LP64
if the current thread expects 64-bit (LP64) semantics. model is used in combination with
ddi_model_convert_from(9F) to determine whether there is a data model mismatch between
the current thread and the device driver. The device driver might have to adjust the shape of
data structures before exporting them to a user thread which supports a different data model.

devmap() should return EINVAL if the logical offset, off, is out of the range of memory exported
by the device to user space. If off + len exceeds the range of the contiguous memory, devmap()
should return the length from off to the end of the contiguous memory region. The system will
repeatedly call devmap() until the original mapping length is satisfied. The driver sets *maplen
to the validated length which must be either less than or equal to len.

The devmap() entry point must initialize the mapping parameters before passing them to the
system through either devmap_devmem_setup(9F) (if the memory being mapped is device
memory) or devmap_umem_setup(9F) (if the memory being mapped is kernel memory). The
devmap() entry point initializes the mapping parameters by mapping the control callback
structure (see devmap_callback_ctl(9S)), the device access attributes, mapping length,
maximum protection possible for the mapping, and optional mapping flags. See
devmap_devmem_setup(9F) and devmap_umem_setup(9F) for further information on
initializing the mapping parameters.

The system will copy the driver's devmap_callback_ctl(9S) data into its private memory so
the drivers do not need to keep the data structure after the return from either
devmap_devmem_setup(9F) or devmap_umem_setup(9F).

For device mappings, the system establishes the mapping to the physical address that
corresponds to off by passing the register number and the offset within the register address
space to devmap_devmem_setup(9F).

For kernel memory mapping, the system selects a user virtual address that is aligned with the
kernel address being mapped for cache coherence.

0 Successful completion.

Non-zero An error occurred.

EXAMPLE 1 Implementing the devmap()Entry Point

The following is an example of the implementation for the devmap() entry point. For mapping
device memory, devmap() calls devmap_devmem_setup(9F) with the register number,
rnumber, and the offset within the register, roff. For mapping kernel memory, the driver must
first allocate the kernel memory using ddi_umem_alloc(9F). For example,
ddi_umem_alloc(9F) can be called in the attach(9E) routine. The resulting kernel memory
cookie is stored in the driver soft state structure, which is accessible from the devmap() entry
point. See ddi_soft_state(9F). devmap() passes the cookie obtained from

Return Values

Examples

devmap(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 15 Jan 199752

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-model-convert-from-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-umem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-callback-ctl-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-umem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-callback-ctl-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-umem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-umem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-umem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-soft-state-9f

EXAMPLE 1 Implementing the devmap()Entry Point (Continued)

ddi_umem_alloc(9F) and the offset within the allocated kernel memory to
devmap_umem_setup(9F). The corresponding ddi_umem_free(9F) can be made in the
detach(9E) routine to free up the kernel memory.

. . .

#define MAPPING_SIZE 0x2000 /* size of the mapping */

#define MAPPING_START 0x70000000 /* logical offset at beginning

of the mapping */

static

struct devmap_callback_ctl xxmap_ops = {

DEVMAP_OPS_REV, /* devmap_ops version number */

xxmap_map, /* devmap_ops map routine */

xxmap_access, /* devmap_ops access routine */

xxmap_dup, /* devmap_ops dup routine */

xxmap_unmap, /* devmap_ops unmap routine */

};

static int

xxdevmap(dev_t dev, devmap_cookie_t dhp, offset_t off, size_t len,

size_t *maplen, uint_t model)

{

int instance;

struct xxstate *xsp;

struct ddi_device_acc_attr *endian_attr;

struct devmap_callback_ctl *callbackops = NULL;

ddi_umem_cookie_t cookie;

dev_info_t *dip;

offset_t roff;

offset_t koff;

uint_t rnumber;

uint_t maxprot;

uint_t flags = 0;

size_t length;

int err;

/* get device soft state */

instance = getminor(dev);

xsp = ddi_get_soft_state(statep, instance);

if (xsp == NULL)

return (-1);

dip = xsp->dip;

/* check for a valid offset */

if (off is invalid)

devmap(9E)

Driver Entry Points 53

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-umem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-umem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-umem-free-9f

EXAMPLE 1 Implementing the devmap()Entry Point (Continued)

return (-1);

/* check if len is within the range of contiguous memory */

if ((off + len) is contiguous.)
length = len;

else

length = MAPPING_START + MAPPING_SIZE - off;

/* device access attributes */

endian_attr = xsp->endian_attr;

if (off is referring to a device memory.) {

/* assign register related parameters */

rnumber = XXX; /* index to register set at off */

roff = XXX; /* offset of rnumber at local bus */

callbackops = &xxmap_ops; /* do all callbacks for this mapping */

maxprot = PROT_ALL; /* allowing all access */

if ((err = devmap_devmem_setup(dhp, dip, callbackops, rnumber, roff,

length, maxprot, flags, endian_attr)) < 0)

return (err);

} else if (off is referring to a kernel memory.) {

cookie = xsp->cookie; /* cookie is obtained from

ddi_umem_alloc(9F) */

koff = XXX; /* offset within the kernel memory. */

callbackops = NULL; /* don’t do callback for this mapping */

maxprot = PROT_ALL; /* allowing all access */

if ((err = devmap_umem_setup(dhp, dip, callbackops, cookie, koff,

length, maxprot, flags, endian_attr)) < 0)

return (err);

}

*maplen = length;

return (0);

}

mmap(2), attach(9E), detach(9E), mmap(9E), segmap(9E), ddi_devmap_segmap(9F),
ddi_model_convert_from(9F), ddi_soft_state(9F), ddi_umem_alloc(9F),
ddi_umem_free(9F), devmap_devmem_setup(9F), devmap_setup(9F),
devmap_umem_setup(9F), cb_ops(9S), devmap_callback_ctl(9S)

Writing Device Drivers

See Also

devmap(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 15 Jan 199754

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-devmap-segmap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-model-convert-from-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-soft-state-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-umem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-umem-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-umem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-callback-ctl-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

devmap_access – device mapping access entry point

#include <sys/ddi.h>

#include <sys/sunddi.h>

int prefixdevmap_access(devmap_cookie_t dhp, void *pvtp,
offset_t off, size_t len, uint_t type, uint_t rw);

Solaris DDI specific (Solaris DDI).

dhp An opaque mapping handle that the system uses to describe the mapping.

pvtp Driver private mapping data.

off User offset within the logical device memory at which the access begins.

len Length (in bytes) of the memory being accessed.

type Type of access operation. Possible values are:

DEVMAP_ACCESS Memory access.

DEVMAP_LOCK Lock the memory being accessed.

DEVMAP_UNLOCK Unlock the memory being accessed.

rw Direction of access. Possible values are:

DEVMAP_READ Read access attempted.

DEVMAP_WRITE Write access attempted.

DEVMAP_EXEC Execution access attempted.

The devmap_access() entry point is an optional routine. It notifies drivers whenever an
access is made to a mapping described by dhp that has not been validated or does not have
sufficient protection for the access. The system expects devmap_access() to call either
devmap_do_ctxmgt(9F) or devmap_default_access(9F) to load the memory address
translations before it returns. For mappings that support context switching, device drivers
should call devmap_do_ctxmgt(9F). For mappings that do not support context switching, the
drivers should call devmap_default_access(9F).

In devmap_access(), drivers perform memory access related operations such as context
switching, checking the availability of the memory object, and locking and unlocking the
memory object being accessed. The devmap_access() entry point is set to NULL if no
operations need to be performed.

pvtp is a pointer to the driver's private mapping data that was allocated and initialized in the
devmap_map(9E) entry point.

Name

Synopsis

Interface Level

Arguments

Description

devmap_access(9E)

Driver Entry Points 55

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-do-ctxmgt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-default-access-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-do-ctxmgt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-default-access-9f

off and len define the range to be affected by the operations in devmap_access(). type defines
the type of operation that device drivers should perform on the memory object. If type is
either DEVMAP_LOCK or DEVMAP_UNLOCK, the length passed to either devmap_do_ctxmgt(9F) or
devmap_default_access(9F) must be same as len. rw specifies the direction of access on the
memory object.

A non-zero return value from devmap_access() may result in a SIGSEGV or SIGBUS signal
being delivered to the process.

devmap_access() returns the following values:

0 Successful completion.

Non-zero An error occurred. The return value from devmap_do_ctxmgt(9F) or
devmap_default_access(9F) should be returned.

EXAMPLE 1 devmap_access() entry point

The following is an example of the devmap_access() entry point. If the mapping supports
context switching, devmap_access() calls devmap_do_ctxmgt(9F). Otherwise,
devmap_access() calls devmap_default_access(9F).

. . .

#define OFF_DO_CTXMGT 0x40000000

#define OFF_NORMAL 0x40100000

#define CTXMGT_SIZE 0x100000

#define NORMAL_SIZE 0x100000

/*

* Driver devmap_contextmgt(9E) callback function.

*/

static int

xx_context_mgt(devmap_cookie_t dhp, void *pvtp, offset_t offset,

size_t length, uint_t type, uint_t rw)

{

......

/*

* see devmap_contextmgt(9E) for an example

*/

}

/*

* Driver devmap_access(9E) entry point

*/

static int

xxdevmap_access(devmap_cookie_t dhp, void *pvtp, offset_t off,

size_t len, uint_t type, uint_t rw)

{

Return Values

Examples

devmap_access(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 17 Jan 199756

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-do-ctxmgt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-default-access-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-do-ctxmgt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-default-access-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-do-ctxmgt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-default-access-9f

EXAMPLE 1 devmap_access() entry point (Continued)

offset_t diff;

int err;

/*

* check if off is within the range that supports

* context management.

*/

if ((diff = off - OFF_DO_CTXMG) >= 0 && diff < CTXMGT_SIZE) {

/*

* calculates the length for context switching

*/

if ((len + off) > (OFF_DO_CTXMGT + CTXMGT_SIZE))

return (-1);

/*

* perform context switching

*/

err = devmap_do_ctxmgt(dhp, pvtp, off, len, type,

rw, xx_context_mgt);

/*

* check if off is within the range that does normal

* memory mapping.

*/

} else if ((diff = off - OFF_NORMAL) >= 0 && diff < NORMAL_SIZE) {

if ((len + off) > (OFF_NORMAL + NORMAL_SIZE))

return (-1);

err = devmap_default_access(dhp, pvtp, off, len, type, rw);

} else

return (-1);

return (err);

}

devmap_map(9E), devmap_default_access(9F), devmap_do_ctxmgt(9F),
devmap_callback_ctl(9S)

Writing Device Drivers

See Also

devmap_access(9E)

Driver Entry Points 57

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-default-access-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-do-ctxmgt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-callback-ctl-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

devmap_contextmgt – driver callback function for context management

#include <sys/ddi.h>

#include <sys/sunddi.h>

int devmap_contextmgt(devmap_cookie_t dhp, void *pvtp,
offset_t off, size_t len, uint_t type, uint_t rw);

Solaris DDI specific (Solaris DDI).

dhp An opaque mapping handle that the system uses to describe the mapping.

pvtp Driver private mapping data.

off User offset within the logical device memory at which the access begins.

len Length (in bytes) of the memory being accessed.

type Type of access operation. Possible values are:

DEVMAP_ACCESS Memory access.

DEVMAP_LOCK Lock the memory being accessed.

DEVMAP_UNLOCK Unlock the memory being accessed.

rw Direction of access. Possible values are:

DEVMAP_READ Read access attempted.

DEVMAP_WRITE Write access attempted.

devmap_contextmgt() is a driver-supplied function that performs device context switching
on a mapping. Device drivers pass devmap_contextmgt() as an argument to
devmap_do_ctxmgt(9F) in the devmap_access(9E) entry point. The system will call
devmap_contextmgt() when memory is accessed. The system expects devmap_contextmgt()
to load the memory address translations of the mapping by calling devmap_load(9F) before
returning.

dhp uniquely identifies the mapping and is used as an argument to devmap_load(9F) to
validate the mapping. off and len define the range to be affected by the operations in
devmap_contextmgt().

The driver must check if there is already a mapping established at off that needs to be
unloaded. If a mapping exists at off, devmap_contextmgt() must call devmap_unload(9F) on
the current mapping. devmap_unload(9F) must be followed by devmap_load() on the
mapping that generated this call to devmap_contextmgt(). devmap_unload(9F) unloads the
current mapping so that a call to devmap_access(9E), which causes the system to call
devmap_contextmgt(), will be generated the next time the mapping is accessed.

Name

Synopsis

Interface Level

Arguments

Description

devmap_contextmgt(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 16 Jan 199758

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-do-ctxmgt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-load-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-load-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-unload-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-unload-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-unload-9f

pvtp is a pointer to the driver's private mapping data that was allocated and initialized in the
devmap_map(9E) entry point. type defines the type of operation that device drivers should
perform on the memory object. If type is either DEVMAP_LOCK or DEVMAP_UNLOCK, the length
passed to either devmap_unload(9F) or devmap_load(9F) must be same as len. rw specifies the
access direction on the memory object.

A non-zero return value from devmap_contextmgt() will be returned to devmap_access(9E)
and will cause the corresponding operation to fail. The failure may result in a SIGSEGV or
SIGBUS signal being delivered to the process.

0 Successful completion.

Non-zero An error occurred.

EXAMPLE 1 managing a device context

The following shows an example of managing a device context.

struct xxcontext cur_ctx;

static int

xxdevmap_contextmgt(devmap_cookie_t dhp, void *pvtp, offset_t off,

size_t len, uint_t type, uint_t rw)

{

devmap_cookie_t cur_dhp;

struct xxpvtdata *p;

struct xxpvtdata *pvp = (struct xxpvtdata *)pvtp;

struct xx_softc *softc = pvp->softc;

int err;

mutex_enter(&softc->mutex);

/*

* invalidate the translations of current context before

* switching context.

*/

if (cur_ctx != NULL && cur_ctx != pvp->ctx) {

p = cur_ctx->pvt;

cur_dhp = p->dhp;

if ((err = devmap_unload(cur_dhp, off, len)) != 0)

return (err);

}

/* Switch device context - device dependent*/

...

/* Make handle the new current mapping */

cur_ctx = pvp->ctx;

/*

* Load the address translations of the calling context.

Return Values

Examples

devmap_contextmgt(9E)

Driver Entry Points 59

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-unload-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-load-9f

EXAMPLE 1 managing a device context (Continued)

*/

err = devmap_load(pvp->dhp, off, len, type, rw);

mutex_exit(&softc->mutex);

return (err);

}

devmap_access(9E), devmap_do_ctxmgt(9F) devmap_load(9F), devmap_unload(9F)

Writing Device Drivers

See Also

devmap_contextmgt(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 16 Jan 199760

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-do-ctxmgt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-load-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-unload-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

devmap_dup – device mapping duplication entry point

#include <sys/ddi.h>

#include <sys/sunddi.h

int prefixdevmap_dup(devmap_cookie_t dhp, void *pvtp,
devmap_cookie_t new_dhp, void **new_pvtp);

Solaris DDI specific (Solaris DDI).

dhp An opaque mapping handle that the system uses to describe the mapping
currently being duplicated.

pvtp Driver private mapping data for the mapping currently being duplicated.

new_dhp An opaque data structure that the system uses to describe the duplicated device
mapping.

new_pvtp A pointer to be filled in by device drivers with the driver private mapping data
for the duplicated device mapping.

The system calls devmap_dup() when a device mapping is duplicated, such as during the
execution of the fork(2) system call. The system expects devmap_dup() to generate new driver
private data for the new mapping, and to set new_pvtp to point to it. new_dhp is the handle of
the new mapped object.

A non-zero return value from devmap_dup() will cause a corresponding operation such as
fork() to fail.

devmap_dup() returns the following values:

0 Successful completion.

Non-zero An error occurred.

static int

xxdevmap_dup(devmap_cookie_t dhp, void *pvtp, \

devmap_cookie_t new_dhp,

void **new_pvtp)

{

struct xxpvtdata *prvtdata;

struct xxpvtdata *p = (struct xxpvtdata *)pvtp;

struct xx_softc *softc = p->softc;

mutex_enter(&softc->mutex);

/* Allocate a new private data structure */

prvtdata = kmem_alloc(sizeof (struct xxpvtdata), KM_SLEEP);

/* Return the new data */

prvtdata->off = p->off;

Name

Synopsis

Interface Level

Arguments

Description

Return Values

Examples

devmap_dup(9E)

Driver Entry Points 61

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2

prvtdata->len = p->len;

prvtdata->ctx = p->ctx;

prvtdata->dhp = new_dhp;

prvtdata->softc = p->softc;

*new_pvtp = prvtdata;

mutex_exit(&softc->mutex);

return (0);

}

fork(2), devmap_callback_ctl(9S)

Writing Device Drivers

See Also

devmap_dup(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 21 Jan 199762

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-callback-ctl-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

devmap_map – device mapping create entry point

#include <sys/ddi.h>

#include <sys/sunddi.h>

int prefixdevmap_map(devmap_cookie_t dhp, dev_t dev,
uint_t flags, offset_t off, size_t len, void **pvtp);

Solaris DDI specific (Solaris DDI).

dhp An opaque mapping handle that the system uses to describe the mapping currently
being created.

dev The device whose memory is to be mapped.

flags Flags indicating type of mapping. Possible values are:

MAP_PRIVATE Changes are private.

MAP_SHARED Changes should be shared.

off User offset within the logical device memory at which the mapping begins.

len Length (in bytes) of the memory to be mapped.

pvtp A pointer to be filled in by device drivers with the driver private mapping data.

The devmap_map() entry point is an optional routine that allows drivers to perform additional
processing or to allocate private resources during the mapping setup time. For example, in
order for device drivers to support context switching, the drivers allocate private mapping
data and associate the private data with the mapping parameters in the devmap_map() entry
point.

The system calls devmap_map() after the user mapping to device physical memory has been
established. (For example, after the devmap(9E) entry point is called.)

devmap_map() receives a pointer to the driver private data for this mapping in pvtp. The
system expects the driver to allocate its private data and set *pvtp to the allocated data. The
driver must store off and len, which define the range of the mapping, in its private data. Later,
when the system calls devmap_unmap(9E), the driver will use the off and len stored in pvtp to
check if the entire mapping, or just a part of it, is being unmapped. If only a part of the
mapping is being unmapped, the driver must allocate a new private data for the remaining
mapping before freeing the old private data. The driver will receive *pvtp in subsequent event
notification callbacks.

If the driver support context switching, it should store the mapping handle dhp in its private
data *pvtp for later use in devmap_unload(9F).

Name

Synopsis

Interface Level

Arguments

Description

devmap_map(9E)

Driver Entry Points 63

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-unload-9f

For a driver that supports context switching, flags indicates whether or not the driver should
allocate a private context for the mapping. For example, a driver may allocate a memory
region to store the device context if flags is set to MAP_PRIVATE.

devmap_map() returns the following values:

0 Successful completion.

Non-zero An error occurred.

EXAMPLE 1 devmap_map()implementation

The following shows an example implementation for devmap_map().

static int

xxdevmap_map(devmap_cookie_t dhp, dev_t dev, uint_t flags, \

offset_t off,size_t len, void **pvtp)

{

struct xx_resources *pvt;

struct xx_context *this_context;

struct xx_softc *softc;

softc = ddi_get_soft_state(statep, getminor(dev));

this_context = get_context(softc, off, len);

/* allocate resources for the mapping - Device dependent */

pvt = kmem_zalloc(sizeof (struct xx_resources), KM_SLEEP);

pvt->off = off;

pvt->len = len;

pvt->dhp = dhp;

pvt->ctx = this_context;

*pvtp = pvt;

}

devmap_unmap(9E), devmap_unload(9F), devmap_callback_ctl(9S)

Writing Device Drivers

Return Values

Examples

See Also

devmap_map(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 7 Jan 199764

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-unload-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-callback-ctl-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

devmap_unmap – device mapping unmap entry point

#include <sys/ddi.h>

#include <sys/sunddi.h>

void prefixdevmap_unmap(devmap_cookie_t dhp, void *pvtp,
offset_t off, size_tlen, devmap_cookie_t new_dhp1,
void **new_pvtp1, devmap_cookie_tnew_dhp2, void **new_pvtp2);

Solaris DDI specific (Solaris DDI).

dhp An opaque mapping handle that the system uses to describe the mapping.

pvtp Driver private mapping data.

off User offset within the logical device memory at which the unmapping begins.

len Length (in bytes) of the memory being unmapped.

new_dhp1 The opaque mapping handle that the system uses to describe the new region
that ends at (off - 1) . new_dhp1 may be NULL.

new_pvtp1 A pointer to be filled in by the driver with the driver private mapping data for
the new region that ends at (off – 1); ignored if new_dhp1 is NULL.

new_dhp2 The opaque mapping handle that the system uses to describe the new region
that begins at (off + len); new_dhp2 may be NULL.

new_pvtp2 A pointer to be filled in by the driver with the driver private mapping data for
the new region that begins at (off + len); ignored if new_dhp2 is NULL.

devmap_unmap() is called when the system removes the mapping in the range [off, off + len],
such as in the munmap(2) or exit(2) system calls. Device drivers use devmap_unmap() to free up
the resources allocated in devmap_map(9E).

dhp is the mapping handle that uniquely identifies the mapping. The driver stores the
mapping attributes in the driver's private data, pvtp, when the mapping is created. See
devmap_map(9E) for details.

off and len define the range to be affected by devmap_unmap(). This range is within the
boundary of the mapping described by dhp.

If the range [off, off + len] covers the entire mapping, the system passes NULL to new_dhp1,
new_pvtp1, new_dhp2, and new_pvtp2. The system expects device drivers to free all resources
allocated for this mapping.

If off is at the beginning of the mapping and len does not cover the entire mapping, the system
sets NULL to new_dhp1 and to new_pvtp1. The system expects the drivers to allocate new driver

Name

Synopsis

Interface Level

Arguments

Description

devmap_unmap(9E)

Driver Entry Points 65

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1munmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2

private data for the region that starts at off + len and to set *new_pvtp2 to point to it. new_dhp2
is the mapping handle of the newly mapped object.

If off is not at the beginning of the mapping, but off + len is at the end of the mapping the
system passes NULL to new_dhp2 and new_pvtp2. The system then expects the drivers to
allocate new driver private data for the region that begins at the beginning of the mapping (for
example, stored in pvtp) and to set *new_pvtp1 to point to it. new_dhp1 is the mapping handle
of the newly mapped object.

The drivers should free up the driver private data, pvtp, previously allocated in
devmap_map(9E) before returning to the system.

EXAMPLE 1 devmap_unmap() implementation

static void

xxdevmap_unmap(devmap_cookie_t dhp, void *pvtp, offset_t off,

size_t len, devmap_cookie_t new_dhp1, void **new_pvtp1,

devmap_cookie_t new_dhp2, void **new_pvtp2)

{

struct xxpvtdata *ptmp;

struct xxpvtdata *p = (struct xxpvtdata *)pvtp;

struct xx_softc *softc = p->softc;

mutex_enter(&softc->mutex);

/*

* If new_dhp1 is not NULL, create a new driver private data

* for the region from the beginning of old mapping to off.

*/

if (new_dhp1 != NULL) {

ptmp = kmem_zalloc(sizeof (struct xxpvtdata), KM_SLEEP);

ptmp->dhp = new_dhp1;

ptmp->off = pvtp->off;

ptmp->len = off - pvtp->off;

*new_pvtp1 = ptmp;

}

/*

* If new_dhp2 is not NULL, create a new driver private data

* for the region from off+len to the end of the old mapping.

*/

if (new_dhp2 != NULL) {

ptmp = kmem_zalloc(sizeof (struct xxpvtdata), KM_SLEEP);

ptmp->off = off + len;

ptmp->len = pvpt->len - (off + len - pvtp->off);

ptmp->dhp = new_dhp2;

*new_pvtp2 = ptmp;

}

Examples

devmap_unmap(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 21 Jan 199766

EXAMPLE 1 devmap_unmap() implementation (Continued)

/* Destroy the driver private data - Device dependent */

...

kmem_free(pvtp, sizeof (struct xxpvtdata));

mutex_exit(&softc->mutex);

}

exit(2), munmap(2), devmap_map(9E), devmap_callback_ctl(9S)

Writing Device Drivers

See Also

devmap_unmap(9E)

Driver Entry Points 67

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1munmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-callback-ctl-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

dump – dump memory to device during system failure

#include <sys/types.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

int dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);

Solaris specific (Solaris DDI). This entry point is required. For drivers that do not implement
dump() routines, nodev(9F) should be used.

dev Device number.

addr Address for the beginning of the area to be dumped.

blkno Block offset to dump memory.

nblk Number of blocks to dump.

dump() is used to dump a portion of virtual address space directly to a device in the case of
system failure. It can also be used for checking the state of the kernel during a checkpoint
operation. The memory area to be dumped is specified by addr (base address) and nblk
(length). It is dumped to the device specified by dev starting at offset blkno. Upon completion
dump() returns the status of the transfer.

When the system is panicking, the calls of functions scheduled by timeout(9F) and
ddi_trigger_softintr(9F) will never occur. Neither can delay(9F) be relied upon, since it is
implemented via timeout(). See ddi_in_panic(9F).

dump() is called at interrupt priority.

dump() returns 0 on success, or the appropriate error number.

cpr(7), nodev(9F)

Writing Device Drivers

Name

Synopsis

Interface Level

Arguments

Description

Return Values

See Also

dump(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 9 Oct 200168

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1timeout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-trigger-softintr-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-in-panic-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cpr-7
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

_fini, _info, _init – loadable module configuration entry points

#include <sys/modctl.h>

int _fini(void)

int _info(struct modinfo *modinfop);

int _init(void)

Solaris DDI specific (Solaris DDI). These entry points are required. You must write them.

modinfop A pointer to an opaque modinfo structure.

_init() initializes a loadable module. It is called before any other routine in a loadable
module. _init() returns the value returned by mod_install(9F). The module may optionally
perform some other work before the mod_install(9F) call is performed. If the module has
done some setup before the mod_install(9F) function is called, then it should be prepared to
undo that setup if mod_install(9F) returns an error.

_info() returns information about a loadable module. _info() returns the value returned by
mod_info(9F).

_fini() prepares a loadable module for unloading. It is called when the system wants to
unload a module. If the module determines that it can be unloaded, then _fini() returns the
value returned by mod_remove(9F). Upon successful return from _fini() no other routine in
the module will be called before _init() is called.

_init() should return the appropriate error number if there is an error, otherwise it should
return the return value from mod_install(9F).

_info() should return the return value from mod_info(9F)

_fini() should return the return value from mod_remove(9F). _fini() is permitted to return
EBUSY prior to calling mod_remove(9F) if the driver should not be unloaded. Driver global
resources, such as mutexes and calls to ddi_soft_state_fini(9F), should only be destroyed
in _fini() after mod_remove() returns successfully.

EXAMPLE 1 Initializing and Freeing a Mutex

The following example demonstrates how to initialize and free a mutex(9F).

#include <sys/modctl.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

static struct dev_ops drv_ops;

Name

Synopsis

Interface Level

Parameters

_info()

Description

Return Values

Examples

_fini(9E)

Driver Entry Points 69

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mod-install-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mod-install-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mod-install-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mod-install-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mod-info-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mod-remove-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mod-install-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mod-info-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mod-remove-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mod-remove-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-soft-state-fini-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mutex-9f

EXAMPLE 1 Initializing and Freeing a Mutex (Continued)

/*

* Module linkage information for the kernel.

*/

static struct modldrv modldrv = {

&mod_driverops, /* Type of module. This one is a driver */

"Sample Driver",
&drv_ops /* driver ops */

};

static struct modlinkage modlinkage = {

MODREV_1,

&modldrv,

NULL

};

/*

* Global driver mutex

*/

static kmutex_t xx_global_mutex;

int

_init(void)

{

int i;

/*

* Initialize global mutex before mod_install’ing driver.

* If mod_install() fails, must clean up mutex initialization

*/

mutex_init(&xx_global_mutex, NULL,

MUTEX_DRIVER, (void *)NULL);

if ((i = mod_install(&modlinkage)) != 0) {

mutex_destroy(&xx_global_mutex);

}

return (i);

}

int

_info(struct modinfo *modinfop)

{

return (mod_info(&modlinkage, modinfop));

_fini(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 22 Jan 200270

EXAMPLE 1 Initializing and Freeing a Mutex (Continued)

}

int

_fini(void)

{

int i;

/*

* If mod_remove() is successful, we destroy our global mutex

*/

if ((i = mod_remove(&modlinkage)) == 0) {

mutex_destroy(&xx_global_mutex);

}

return (i);

}

add_drv(1M), mod_info(9F), mod_install(9F), mod_remove(9F), mutex(9F), modldrv(9S),
modlinkage(9S), modlstrmod(9S)

Writing Device Drivers

Do not change the structures referred to by the modlinkage structure after the call to
mod_install(), as the system may copy or change them.

Even though the identifiers _fini(), _info(), and _init() appear to be declared as globals,
their scope is restricted by the kernel to the module that they are defined in.

On some implementations _info() may be called before _init().

See Also

Warnings

Notes

Bugs

_fini(9E)

Driver Entry Points 71

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1add-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mod-info-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mod-install-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mod-remove-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mutex-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1modldrv-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1modlinkage-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1modlstrmod-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

getinfo – get device driver information

#include <sys/ddi.h>

#include <sys/sunddi.h>

int prefixgetinfo(dev_info_t *dip, ddi_info_cmd_t cmd,
void *arg, void **resultp);

Solaris DDI specific (Solaris DDI). This entry point is required for drivers which export
cb_ops(9S) entry points.

dip Do not use.

cmd Command argument – valid command values are DDI_INFO_DEVT2DEVINFO and
DDI_INFO_DEVT2INSTANCE.

arg Command specific argument.

resultp Pointer to where the requested information is stored.

When cmd is set to DDI_INFO_DEVT2DEVINFO, getinfo() should return the dev_info_t
pointer associated with the dev_t arg. The dev_info_t pointer should be returned in the field
pointed to by resultp.

When cmd is set to DDI_INFO_DEVT2INSTANCE, getinfo() should return the instance number
associated with the dev_t arg. The instance number should be returned in the field pointed to
by resultp.

Drivers which do not export cb_ops(9S) entry points are not required to provide a getinfo()
entry point, and may use nodev(9F) in the devo_getinfo field of the dev_ops(9S) structure. A
SCSI HBA driver is an example of a driver which is not required to provide cb_ops(9S) entry
points.

getinfo() should return:

DDI_SUCCESS on success.

DDI_FAILURE on failure.

EXAMPLE 1 getinfo() implementation

/*ARGSUSED*/

static int

rd_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, \

void **resultp)

{

/* Note that in this simple example

* the minor number is the instance

Name

Synopsis

Interface Level

Arguments

Description

Return Values

Examples

getinfo(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 16 Jan 200872

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cb-ops-9s

EXAMPLE 1 getinfo() implementation (Continued)

* number. */

devstate_t *sp;

int error = DDI_FAILURE;

switch (infocmd) {

case DDI_INFO_DEVT2DEVINFO:

if ((sp = ddi_get_soft_state(statep,

getminor((dev_t) arg))) != NULL) {

*resultp = sp->devi;

error = DDI_SUCCESS;

} else

*result = NULL;

break;

case DDI_INFO_DEVT2INSTANCE:

*resultp = (void *) (uintptr_t) getminor((dev_t) arg);

error = DDI_SUCCESS;

break;

}

return (error);

}

ddi_no_info(9F), nodev(9F), cb_ops(9S), dev_ops(9S)

Writing Device Drivers

Non-gld(7D)-based DLPI network streams drivers are encouraged to switch to gld(7D).
Failing this, a driver that creates DLPI style-2 minor nodes must specify CLONE_DEV for its
style-2 ddi_create_minor_node(9F) nodes and use qassociate(9F). A driver that supports
both style-1 and style-2 minor nodes should return DDI_FAILURE for
DDI_INFO_DEVT2INSTANCE and DDI_INFO_DEVT2DEVINFO getinfo() calls to
style-2 minor nodes. (The correct association is already established by qassociate(9F)). A
driver that only supports style-2 minor nodes can use ddi_no_info(9F) for its getinfo()
implementation. For drivers that do not follow these rules, the results of a modunload(1M) of
the driver or a cfgadm(1M) remove of hardware controlled by the driver are undefined.

See Also

Notes

getinfo(9E)

Driver Entry Points 73

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-no-info-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gld-7d
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gld-7d
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-create-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1qassociate-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1qassociate-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-no-info-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1modunload-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cfgadm-1m

gld, gldm_reset, gldm_start, gldm_stop, gldm_set_mac_addr, gldm_set_multicast,
gldm_set_promiscuous, gldm_send, gldm_intr, gldm_get_stats, gldm_ioctl – Generic LAN
Driver entry points

#include <sys/gld.h>

int prefix_reset(gld_mac_info_t *macinfo);

int prefix_start(gld_mac_info_t *macinfo);

int prefix_stop(gld_mac_info_t *

macinfo);

int prefix_set_mac_addr(gld_mac_info_t *

macinfo, unsigned char *macaddr);

int prefix_set_multicast(gld_mac_info_t *

macinfo, unsigned char *multicastaddr,
int multiflag);

int prefix_set_promiscuous(gld_mac_info_t *macinfo,
int promiscflag);

int prefix_send(gld_mac_info_t *macinfo,
mblk_t *mp);

uint_t prefix_intr(gld_mac_info_t *macinfo);

int prefix_get_stats(gld_mac_info_t *macinfo,
struct gld_stats *stats);

int prefix_ioctl(gld_mac_info_t *macinfo,
queue_t *q, mblk_t *mp);

Solaris architecture specific (Solaris DDI).

macinfo Pointer to a gld_mac_info(9S) structure.

macaddr Pointer to the beginning of a character array containing a valid MAC
address. The array will be of the length specified by the driver in the
gldm_addrlen element of the gld_mac_info(9S) structure.

multicastaddr Pointer to the beginning of a character array containing a multicast, group,
or functional address. The array will be of the length specified by the driver
in the gldm_addrlen element of the gld_mac_info(9S) structure.

multiflag A flag indicating whether reception of the multicast address is to be
enabled or disabled. This argument is specified as GLD_MULTI_ENABLE or
GLD_MULTI_DISABLE.

promiscflag A flag indicating what type of promiscuous mode, if any, is to be enabled.
This argument is specified as GLD_MAC_PROMISC_PHYS,
GLD_MAC_PROMISC_MULTI, or GLD_MAC_PROMISC_NONE.

Name

Synopsis

Interface Level

Parameters

gld(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 3 Jan 200174

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gld-mac-info-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gld-mac-info-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gld-mac-info-9s

mp Pointer to a STREAMS message block containing the packet to be
transmitted or the ioctl to be executed.

stats Pointer to a gld_stats(9S) structure to be filled in with the current values
of statistics counters.

q Pointer to the queue(9S) structure to be used in the reply to the ioctl.

These entry points must be implemented by a device-specific network driver designed to
interface with the Generic LAN Driver (GLD).

As described in gld(7D), the main data structure for communication between the
device-specific driver and the GLD module is the gld_mac_info(9S) structure. Some of the
elements in that structure are function pointers to the entry points described here. The
device-specific driver must, in its attach(9E) routine, initialize these function pointers before
calling gld_register().

gldm_reset() resets the hardware to its initial state.

gldm_start() enables the device to generate interrupts and prepares the driver to call
gld_recv() for delivering received data packets to GLD.

gldm_stop() disables the device from generating any interrupts and stops the driver from
calling gld_recv() for delivering data packets to GLD. GLD depends on the gldm_stop()
routine to ensure that the device will no longer interrupt, and it must do so without fail.

gldm_set_mac_addr() sets the physical address that the hardware is to use for receiving data.
This function should program the device to the passed MAC address macaddr.

gldm_set_multicast() enables and disables device-level reception of specific multicast
addresses. If the third argument multiflag is set to GLD_MULTI_ENABLE, then the function sets
the interface to receive packets with the multicast address pointed to by the second argument;
if multiflag is set to GLD_MULTI_DISABLE, the driver is allowed to disable reception of the
specified multicast address.

This function is called whenever GLD wants to enable or disable reception of a multicast,
group, or functional address. GLD makes no assumptions about how the device does
multicast support and calls this function to enable or disable a specific multicast address.
Some devices may use a hash algorithm and a bitmask to enable collections of multicast
addresses; this is allowed, and GLD will filter out any superfluous packets that are not
required. If disabling an address could result in disabling more than one address at the device
level, it is the responsibility of the device driver to keep whatever information it needs to avoid
disabling an address that GLD has enabled but not disabled.

gldm_set_multicast() will not be called to enable a particular multicast address that is
already enabled, nor to disable an address that is not currently enabled. GLD keeps track of

Description

gld(9E)

Driver Entry Points 75

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gld-stats-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1queue-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gld-7d
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gld-mac-info-9s

multiple requests for the same multicast address and only calls the driver's entry point when
the first request to enable, or the last request to disable a particular multicast address is made.

gldm_set_promiscuous() enables and disables promiscuous mode. This function is called
whenever GLD wants to enable or disable the reception of all packets on the medium, or all
multicast packets on the medium. If the second argument promiscflag is set to the value of
GLD_MAC_PROMISC_PHYS, then the function enables physical-level promiscuous mode,
resulting in the reception of all packets on the medium. If promiscflag is set to
GLD_MAC_PROMISC_MULTI, then reception of all multicast packets will be enabled. If
promiscflag is set to GLD_MAC_PROMISC_NONE, then promiscuous mode is disabled.

In the case of a request for promiscuous multicast mode, drivers for devices that have no
multicast-only promiscuous mode must set the device to physical promiscuous mode to
ensure that all multicast packets are received. In this case the routine should return
GLD_SUCCESS. The GLD software will filter out any superfluous packets that are not required.

For forward compatibility, gldm_set_promiscuous() routines should treat any unrecognized
values for promiscflag as though they were GLD_MAC_PROMISC_PHYS.

gldm_send() queues a packet to the device for transmission. This routine is passed a
STREAMS message containing the packet to be sent. The message may comprise multiple
message blocks, and the send routine must chain through all the message blocks in the
message to access the entire packet to be sent. The driver should be prepared to handle and
skip over any zero-length message continuation blocks in the chain. The driver should check
to ensure that the packet does not exceed the maximum allowable packet size, and must pad
the packet, if necessary, to the minimum allowable packet size. If the send routine successfully
transmits or queues the packet, it should return GLD_SUCCESS.

The send routine should return GLD_NORESOURCES if it cannot immediately accept the packet
for transmission; in this case GLD will retry it later. If gldm_send() ever returns
GLD_NORESOURCES, the driver must, at a later time when resources have become available, call
gld_sched() to inform GLD that it should retry packets that the driver previously failed to
queue for transmission. (If the driver's gldm_stop() routine is called, the driver is absolved
from this obligation until it later again returns GLD_NORESOURCES from its gldm_send()
routine; however, extra calls to gld_sched() will not cause incorrect operation.)

If the driver's send routine returns GLD_SUCCESS, then the driver is responsible for freeing the
message when the driver and the hardware no longer need it. If the send routine copied the
message into the device, or into a private buffer, then the send routine may free the message
after the copy is made. If the hardware uses DMA to read the data directly out of the message
data blocks, then the driver must not free the message until the hardware has completed
reading the data. In this case the driver will probably free the message in the interrupt routine,
or in a buffer-reclaim operation at the beginning of a future send operation. If the send routine
returns anything other than GLD_SUCCESS, then the driver must not free the message.

gld(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 3 Jan 200176

gldm_intr() is called when the device might have interrupted. Since it is possible to share
interrupts with other devices, the driver must check the device status to determine whether it
actually caused an interrupt. If the device that the driver controls did not cause the interrupt,
then this routine must return DDI_INTR_UNCLAIMED. Otherwise it must service the interrupt
and should return DDI_INTR_CLAIMED. If the interrupt was caused by successful receipt of a
packet, this routine should put the received packet into a STREAMS message of type M_DATA
and pass that message to gld_recv().

gld_recv() will pass the inbound packet upstream to the appropriate next layer of the
network protocol stack. It is important to correctly set the b_rptr and b_wptr members of the
STREAMS message before calling gld_recv().

The driver should avoid holding mutex or other locks during the call to gld_recv(). In
particular, locks that could be taken by a transmit thread may not be held during a call to
gld_recv(): the interrupt thread that calls gld_recv() may in some cases carry out
processing that includes sending an outgoing packet, resulting in a call to the driver's
gldm_send() routine. If the gldm_send() routine were to try to acquire a mutex being held by
the gldm_intr() routine at the time it calls gld_recv(), this could result in a panic due to
recursive mutex entry.

The interrupt code should increment statistics counters for any errors. This includes failure to
allocate a buffer needed for the received data and any hardware-specific errors such as CRC
errors or framing errors.

gldm_get_stats() gathers statistics from the hardware and/or driver private counters, and
updates the gld_stats(9S) structure pointed to by stats. This routine is called by GLD when it
gets a request for statistics, and provides the mechanism by which GLD acquires device
dependent statistics from the driver before composing its reply to the statistics request. See
gld_stats(9S) and gld(7D) for a description of the defined statistics counters.

gldm_ioctl() implements any device-specific ioctl commands. This element may be specified
as NULL if the driver does not implement any ioctl functions. The driver is responsible for
converting the message block into an ioctl reply message and calling the qreply(9F) function
before returning GLD_SUCCESS. This function should always return GLD_SUCCESS; any errors
the driver may wish to report should be returned via the message passed to qreply(9F). If the
gldm_ioctl element is specified as NULL, GLD will return a message of type M_IOCNAK with an
error of EINVAL.

gldm_intr() must return:

DDI_INTR_CLAIMED if and only if the device definitely interrupted.

DDI_INTR_UNCLAIMED if the device did not interrupt.

The other functions must return:

Return Values

gld(9E)

Driver Entry Points 77

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gld-stats-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gld-stats-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gld-7d
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1qreply-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1qreply-9f

GLD_SUCCESS on success. gldm_stop() and gldm_ioctl() should always return this
value.

GLD_NORESOURCES if there are insufficient resources to carry out the request at this time.
Only gldm_set_mac_addr(), gldm_set_multicast(),
gldm_set_promiscuous(), and gldm_send() may return this value.

GLD_NOLINK if gldm_send() is called when there is no physical connection to a
network or link partner.

GLD_NOTSUPPORTED if the requested function is not supported. Only
gldm_set_mac_addr(), gldm_set_multicast(), and
gldm_set_promiscuous() may return this value.

GLD_BADARG if the function detected an unsuitable argument, for example, a bad
multicast address, a bad MAC address, or a bad packet or packet
length.

GLD_FAILURE on hardware failure.

gld(7D), gld(9F), gld_mac_info(9S), gld_stats(9S), dlpi(7P), attach(9E),
ddi_add_intr(9F)

Writing Device Drivers

See Also

gld(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 3 Jan 200178

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gld-7d
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gld-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gld-mac-info-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gld-stats-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dlpi-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-add-intr-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

identify – determine if a driver is associated with a device

Solaris DDI specific (Solaris DDI). This entry point is no longer supported. nulldev(9F) must
be specified in the dev_ops(9S) structure.

nulldev(9F), dev_ops(9S)

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Stability Level Obsolete

For Solaris 10 and later versions, drivers must remove the identify(9e) implementation to
recompile. Otherwise, the compiler generates errors about DDI_IDENTIFIED and
DDI_NOT_IDENTIFIED.

Name

Interface Level

See Also

Attributes

Warning

identify(9E)

Driver Entry Points 79

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nulldev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nulldev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ioctl – control a character device

#include <sys/cred.h>

#include <sys/file.h>

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

int prefixioctl(dev_t dev, int cmd, intptr_t arg, int mode,
cred_t *cred_p, int *rval_p);

Architecture independent level 1 (DDI/DKI). This entry point is optional.

dev Device number.

cmd Command argument the driver ioctl() routine interprets as the operation to be
performed.

arg Passes parameters between a user program and the driver. When used with
terminals, the argument is the address of a user program structure containing
driver or hardware settings. Alternatively, the argument may be a value that has
meaning only to the driver. The interpretation of the argument is driver dependent
and usually depends on the command type; the kernel does not interpret the
argument.

mode A bit field that contains:
■ Information set when the device was opened. The driver may use it to

determine if the device was opened for reading or writing. The driver can make
this determination by checking the FREAD or FWRITE flags. See the flag argument
description of the open() routine for further values.

■ Information on whether the caller is a 32-bit or 64-bit thread.
■ In some circumstances address space information about the arg argument. See

below.

cred_p Pointer to the user credential structure.

rval_p Pointer to return value for calling process. The driver may elect to set the value
which is valid only if the ioctl() succeeds.

ioctl() provides character-access drivers with an alternate entry point that can be used for
almost any operation other than a simple transfer of characters in and out of buffers. Most
often, ioctl() is used to control device hardware parameters and establish the protocol used
by the driver in processing data.

Name

Synopsis

Interface Level

Arguments

Description

ioctl(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 3 Dec 199680

The kernel determines that this is a character device, and looks up the entry point routines in
cb_ops(9S). The kernel then packages the user request and arguments as integers and passes
them to the driver's ioctl() routine. The kernel itself does no processing of the passed
command, so it is up to the user program and the driver to agree on what the arguments mean.

I/O control commands are used to implement the terminal settings passed from ttymon(1M)
and stty(1), to format disk devices, to implement a trace driver for debugging, and to clean up
character queues. Since the kernel does not interpret the command type that defines the
operation, a driver is free to define its own commands.

Drivers that use an ioctl() routine typically have a command to ‘‘read'' the current ioctl()
settings, and at least one other that sets new settings. Drivers can use the mode argument to
determine if the device unit was opened for reading or writing, if necessary, by checking the
FREAD or FWRITE setting.

If the third argument, arg, is a pointer to a user buffer, the driver can call the copyin(9F) and
copyout(9F) functions to transfer data between kernel and user space.

Other kernel subsystems may need to call into the drivers ioctl() routine. Drivers that
intend to allow their ioctl() routine to be used in this way should publish the
ddi-kernel-ioctl property on the associated devinfo node(s).

When the ddi-kernel-ioctl property is present, the mode argument is used to pass address
space information about arg through to the driver. If the driver expects arg to contain a buffer
address, and the FKIOCTL flag is set in mode, then the driver should assume that it is being
handed a kernel buffer address. Otherwise, arg may be the address of a buffer from a user
program. The driver can use ddi_copyin(9F) and ddi_copyout(9F) perform the correct type
of copy operation for either kernel or user address spaces. See the example on
ddi_copyout(9F).

Drivers have to interact with 32-bit and 64-bit applications. If a device driver shares data
structures with the application (for example, through exported kernel memory) and the driver
gets recompiled for a 64-bit kernel but the application remains 32-bit, binary layout of any
data structures will be incompatible if they contain longs or pointers. The driver needs to
know whether there is a model mismatch between the current thread and the kernel and take
necessary action. The mode argument has additional bits set to determine the C Language
Type Model which the current thread expects. mode has FILP32 set if the current thread
expects 32-bit (ILP32) semantics, or FLP64 if the current thread expects 64-bit (LP64)
semantics. mode is used in combination with ddi_model_convert_from(9F) and the FMODELS
mask to determine whether there is a data model mismatch between the current thread and
the device driver (see the example below). The device driver might have to adjust the shape of
data structures before exporting them to a user thread which supports a different data model.

To implement I/O control commands for a driver the following two steps are required:

ioctl(9E)

Driver Entry Points 81

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ttymon-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stty-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1copyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-copyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-copyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-model-convert-from-9f

1. Define the I/O control command names and the associated value in the driver's header and
comment the commands.

2. Code the ioctl() routine in the driver that defines the functionality for each I/O control
command name that is in the header.

The ioctl() routine is coded with instructions on the proper action to take for each
command. It is commonly a switch statement, with each case definition corresponding to an
ioctl() name to identify the action that should be taken. However, the command passed to
the driver by the user process is an integer value associated with the command name in the
header.

ioctl() should return 0 on success, or the appropriate error number. The driver may also set
the value returned to the calling process through rval_p.

EXAMPLE 1 ioctl() entry point

The following is an example of the ioctl() entry point and how to support 32-bit and 64-bit
applications with the same device driver.

struct passargs32 {

int len;

caddr32_t addr;

};

struct passargs {

int len;

caddr_t addr;

};

xxioctl(dev_t dev, int cmd, intptr_t arg, int mode,

cred_t *credp, int *rvalp) {

struct passargs pa;

#ifdef _MULTI_DATAMODEL

switch (ddi_model_convert_from(mode & FMODELS)) {

case DDI_MODEL_ILP32:

{

struct passargs32 pa32;

ddi_copyin(arg, &pa32, sizeof (struct passargs32),\

mode);

pa.len = pa32.len;

pa.address = pa32.address;

break;

}

case DDI_MODEL_NONE:

ddi_copyin(arg, &pa, sizeof (struct passargs),\

Return Values

Examples

ioctl(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 3 Dec 199682

EXAMPLE 1 ioctl() entry point (Continued)

mode);

break;

}

#else /* _MULTI_DATAMODEL */

ddi_copyin(arg, &pa, sizeof (struct passargs), mode);

#endif /* _MULTI_DATAMODEL */

do_ioctl(&pa);

. . . .

}

stty(1), ttymon(1M), dkio(7I), fbio(7I), termio(7I), open(9E), put(9E), srv(9E),
copyin(9F), copyout(9F), ddi_copyin(9F), ddi_copyout(9F),
ddi_model_convert_from(9F), cb_ops(9S)

Writing Device Drivers

Non-STREAMS driver ioctl() routines must make sure that user data is copied into or out of
the kernel address space explicitly using copyin(9F), copyout(9F), ddi_copyin(9F), or
ddi_copyout(9F), as appropriate.

It is a severe error to simply dereference pointers to the user address space, even when in user
context.

Failure to use the appropriate copying routines can result in panics under load on some
platforms, and reproducible panics on others.

STREAMS drivers do not have ioctl() routines. The stream head converts I/O control
commands to M_IOCTL messages, which are handled by the driver's put(9E) or srv(9E)
routine.

See Also

Warnings

Notes

ioctl(9E)

Driver Entry Points 83

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1stty-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ttymon-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dkio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fbio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1termio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1copyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-copyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-model-convert-from-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1copyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-copyout-9f

ks_snapshot – take a snapshot of kstat data

#include <sys/types.h>

#include <sys/kstat.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

int prefix_ks_snapshot(kstat_t *ksp, void *buf, int rw);

Solaris DDI specific (Solaris DDI).

ksp Pointer to a kstat(9S) structure.

buf Pointer to a buffer to copy the snapshot into.

rw Read/Write flag. Possible values are:

KSTAT_READ Copy driver statistics from the driver to the buffer.

KSTAT_WRITE Copy statistics from the buffer to the driver.

The kstat mechanism allows for an optional ks_snapshot() function to copy kstat data.
This is the routine that is called to marshall the kstat data to be copied to user-land. A driver
can opt to use a custom snapshot routine rather than the default snapshot routine; to take
advantage of this feature, set the ks_snapshot field before calling kstat_install(9F).

The ks_snapshot() function must have the following structure:

static int

xx_kstat_snapshot(kstat_t *ksp, void *buf, int rw)

{

if (rw == KSTAT_WRITE) {

/* set the native stats to the values in buf */

/* return EACCES if you don’t support this */

} else {

/* copy the kstat-specific data into buf */

}

return (0);

}

In general, the ks_snapshot() routine might need to refer to provider-private data; for
example, it might need a pointer to the provider's raw statistics. The ks_private field is
available for this purpose. Its use is entirely at the provider's discretion.

No kstat locking should be done inside the ks_update() routine. The caller will already be
holding the kstat's ks_lock (to ensure consistent data) and will prevent the kstat from being
removed.

Name

Synopsis

Interface Level

Parameters

Description

ks_snapshot(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 4 Dec 200284

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kstat-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kstat-install-9f

1. ks_snaptime must be set (via gethrtime(9F)) to timestamp the data.
2. Data gets copied from the kstat to the buffer on KSTAT_READ, and from the buffer to the

kstat on KSTAT_WRITE.

0 Success

EACCES If KSTAT_WRITE is not allowed

EIO For any other error

This function is called from user context only.

EXAMPLE 1 Named kstats with Long Strings (KSTAT_DATA_STRING)

static int

xxx_kstat_snapshot(kstat_t *ksp, void *buf, int rw)

{

if (rw == KSTAT_WRITE) {

return (EACCES);

} else {

kstat_named_t *knp = buf;

char *end = knp + ksp->ks_ndata;

uint_t i;

bcopy(ksp->ks_data, buf,

sizeof (kstat_named_t) * ksp->ks_ndata);

/*

* Now copy the strings to the end of the buffer, and

* update the pointers appropriately.

*/

for (i = 0; i < ksp->ks_ndata; i++, knp++)

if (knp->data_type == KSTAT_DATA_STRING &&

KSTAT_NAMED_STR_PTR(knp) != NULL) {

bcopy(KSTAT_NAMED_STR_PTR(knp), end,

KSTAT_NAMED_STR_BUFLEN(knp));

KSTAT_NAMED_STR_PTR(knp) = end;

end += KSTAT_NAMED_STR_BUFLEN(knp);

}

}

return (0);

}

ks_update(9E), kstat_create(9F), kstat_install(9F), kstat(9S)

Writing Device Drivers

Return Values

Context

Examples

See Also

ks_snapshot(9E)

Driver Entry Points 85

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gethrtime-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kstat-create-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kstat-install-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kstat-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

ks_update – dynamically update kstats

#include <sys/types.h>

#include <sys/kstat.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

int prefix_ks_update(kstat_t *ksp, int rw);

Solaris DDI specific (Solaris DDI)

ksp Pointer to a kstat(9S) structure.

rw Read/Write flag. Possible values are

KSTAT_READ Update kstat structure statistics from the driver.

KSTAT_WRITE Update driver statistics from the kstat structure.

The kstat mechanism allows for an optional ks_update() function to update kstat data. This
is useful for drivers where the underlying device keeps cheap hardware statistics, but
extraction is expensive. Instead of constantly keeping the kstat data section up to date, the
driver can supply a ks_update() function which updates the kstat's data section on demand.
To take advantage of this feature, set the ks_update field before calling kstat_install(9F).

The ks_update() function must have the following structure:

static int

xx_kstat_update(kstat_t *ksp, int rw)

{

if (rw == KSTAT_WRITE) {

/* update the native stats from ksp->ks_data */

/* return EACCES if you don’t support this */

} else {

/* update ksp->ks_data from the native stats */

}

return (0);

}

In general, the ks_update() routine may need to refer to provider-private data; for example, it
may need a pointer to the provider's raw statistics. The ks_private field is available for this
purpose. Its use is entirely at the provider's discretion.

No kstat locking should be done inside the ks_update() routine. The caller will already be
holding the kstat’s ks_lock (to ensure consistent data) and will prevent the kstat from
being removed.

Name

Synopsis

Interface Level

Parameters

Description

ks_update(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 27 May 199486

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kstat-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kstat-install-9f

ks_update() should return

0 For success.

EACCES If KSTAT_WRITE is not allowed.

EIO For any other error.

kstat_create(9F), kstat_install(9F), kstat(9S)

Writing Device Drivers

Return Values

See Also

ks_update(9E)

Driver Entry Points 87

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kstat-create-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kstat-install-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kstat-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

mac, mc_getstat, mc_start, mc_stop, mc_setpromisc, mc_multicst, mc_unicst, mc_tx,
mc_ioctl, mc_getcapab, mc_setprop, mc_getprop, mc_propinfo – MAC driver entry points

#include <sys/mac_provider.h>

#include <sys/mac_ether.h>

int prefix_getstat(void *driver_handle, uint_t stat,
uint64_t *stat_value);

int prefix_start(void *driver_handle);

void prefix_stop(void *driver_handle);

int prefix_setpromisc(void *driver_handle, boolean_t promisc_mode);

int prefix_multicst(void *driver_handle, boolean_t add,
const uint8_t *mcast_addr);

int prefix_unicst(void *driver_handle, const uint8_t *ucast_addr);

mblk_t *prefix_tx(void *driver_handle, mblk_t *mp_chain);

void prefix_ioctl(void *driver_handle, queue_t *q, mblk_t *mp);

boolean_t prefix_getcapab(void *driver_handle, mac_capab_t cap,
void *cap_data);

int prefix_setprop(void *driver_handle, const char *prop_name,
mac_prop_id_t prop_id, uint_t prop_val_size,
const void *prop_val);

int prefix_getprop(void *driver_handle, const char *prop_name,
mac_prop_id_t prop_id, uint_t prop_val_size, void *prop_val);

void prefix_propinfo(void *driver_handle, const char *prop_name,
mac_prop_id_t prop_id, mac_prop_info_handle_t prop_handle);

driver_handle pointer to the driver-private handle that was specified by the device driver
through the m_driver field of the mac_register(9S) structure during
registration.

stat statistic being queried

stat_val value of statistic being queried

promisc_mode promiscuous mode to be set

add whether to add or delete the multicast address

mcast_addr value of the multicast address to add or remove

ucast_addr value of the unicast address to set

q STREAMS queue for ioctl operation

mp message block for ioctl operation

Name

Synopsis

Parameters

mac(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 26 Mar 201088

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mac-register-9s

mp_chain chain of message blocks to be sent

cap capability type, MAC_CAPAB_HCKSUM or MAC_CAPAB_LSO

cap_data pointer to capability data. The type of data depends on the capability type
specified by cap.

prop_name name of a driver-private property

prop_id property identifier

prop_val_size property value size, in bytes

prop_val pointer to a property value

prop_flags property query flags

prop_perm property permissions

Solaris architecture specific (Solaris DDI)

The entry points described below are implemented by a MAC device driver and passed to the
MAC layer through the mac_register structure as part of the registration process using
mac_register(9F).

The mc_getstat() entry point returns through the 64 bit unsigned integer pointed to by
stat_value the value of the statistic specified by the stat argument. Supported statistics are
listed in the Statistics section below. The device driver mc_getstat() entry point should
return 0 if the statistics is successfully passed back to the caller, or ENOTSUP if the statistic is not
supported by the device driver.

The mc_start() entry point starts the device driver instance specified by driver_handle.

The mc_stop() entry point stops the device driver instance specified by driver_handle. The
MAC layer will invoke the stop entry point before the device is detached.

The mc_setpromisc() entry point is used to change the promiscuous mode of the device
driver instance specified by driver_handle. Promiscuous mode should be turned on if the
promisc_mode is set to B_TRUE and off if the promisc_mode is set to B_FALSE.

The mc_multicst() entry point adds or remove the multicast address pointed to by
mcast_addr to or from the device instance specified by driver_handle.

The mc_unicst() entry point sets the primary unicast address of the device instance specified
by driver_handle to the value specified by ucast_addr. The device must start passing back
through mac_rx() the packets with a destination MAC address which matches the new
unicast address.

The mc_tx() entry point is used to transmit message blocks, chained using the b_next pointer,
on the device driver instance specified by driver_instance. If all the message blocks could be

Interface Level

Description

mac(9E)

Driver Entry Points 89

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mac-register-9f

submitted to the hardware for processing, the entry point returns NULL. If the hardware
resources were exhausted, the entry point returns a chain containing the message blocks
which could not be sent. In that case, the driver is responsible to invoke the
mac_tx_update(9F) entry point once more hardware transmit resources are available to
resume transmission. The driver is responsible to free the message blocks once the packets
have been consumed by the hardware.

The mc_ioctl() entry point is a generic facility which can be used to pass arbitrary ioctl to a
driver from STREAMs clients. This facility is intended to be used only for debugging purpose
only. The STREAMs M_IOCTL messages can be generated by a user-space application and
passed done to the device libdlpi(3LIB).

The mc_getcapab() entry point queries a specific capability from the driver. The cap
argument specifies the type of capability being queried, and cap_data is used by the driver to
return the capability data to the framework, if any. It the driver does not support the capability
specified by the framework, it must return B_FALSE, otherwise the driver must return B_TRUE.
The following capabilities are supported:

MAC_CAPAB_HCKSUM

The cap_data argument points to a uint32_t location. The driver must return in cap_data
a combination of one of the following flags:

HCKSUM_INET_PARTIAL

Partial 1's complement checksum ability.

HCKSUM_INET_FULL_V4

Full 1's complement checksum ability for IPv4 packets.

HCKSUM_INET_FULL_V6

Full 1's complement checksum ability for IPv6 packets.

HCKSUM_IPHDRCKSUM

IPv4 Header checksum offload capability.

These flags indicate the level of hardware checksum offload that the driver is capable of
performing for outbound packets.

When hardware checksumming is enabled, the driver must use the mac_hcksum_get(9F)
function to retrieve the per-packet hardware checksumming metadata.

MAC_CAPAB_LSO

The cap_data argument points to a mac_capab_lso_t structure which describes the LSO
capabilities of the driver, and is described in details in mac_capab_lso(9S).

The mc_setprop() and mc_getprop() entry points set and get, respectively, the value of a
property for the device driver instance specified by driver_handle. The property is specified by
the prop_id argument, and is one of the properties identifier listed in section Properties

below. The value of the property is stored in a buffer at prop_val, and the size of that buffer is

mac(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 26 Mar 201090

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mac-tx-update-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Flibdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mac-hcksum-get-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mac-capab-lso-9s

specified by prop_val_size. The MAC layer ensures that the buffer is large enough to store the
property specified by prop_id. The type of each property is listed in the Properties section
below.

The mc_propinfo() entry point returns immutable attributes of a property for the device
driver instance specified by driver_handle. The property is specified by the prop_id argument,
and is one of the properties identifier listed in section Properties below. The entry point
invokes the mac_prop_info_set_perm(), mac_prop_info_set_default(), or
mac_prop_info_set_range() functions to associate specific attributes of the property being
queried. The opaque property handle passed to the mc_propinfo() entry point must be
passed as-is to these routines.

In addition to the properties listed in the Properties section below, drivers can also expose
driver-private properties. These properties are identified by property names strings. Private
property names always start with an underscore (_) character and must be no longer than 256
characters, including a null-terminating character. Driver-private properties supported by a
device driver are specified by the m_priv_props field of the mac_register data structure.
During a call to mc_setprop(), mc_getprop(), or mc_propinfo(), a private property is
specified by a property id of MAC_PROP_PRIVATE, and the driver property name is passed
through the prop_name argument. Private property values are always specified by a string.
The driver is responsible to encode and parse private properties value strings.

The mc_getstat() entry point returns 0 on success, or ENOTSUP if the specific statistic is not
supported by the device driver.

The mc_start(), mc_setpromisc(), mc_multicst(), and mc_unicst() entry points return 0
on success and one of the error values specified by Intro(2) on failure.

The mc_getcapab() entry point returns B_TRUE if the capability is supported by the device
driver, B_FALSE otherwise.

The mc_tx() entry point returns NULL if all packets could be posted on the hardware to be
sent. The entry point returns a chain of unsent message blocks if the transmit resources were
exhausted.

The mc_setprop() and mc_getprop() entry points return 0 on success, ENOTSUP if the
property is not supported by the device driver, or an error value specified by Intro(2) for
other failures.

The mc_tx() entry point can be called from interrupt context. The other entry points can be
called from user or kernel context.

The stat argument value of the mc_getstat() entry point is used by the framework to specify
the specific statistic being queried. The following statistics are supported by all media types:

MIB-II stats (RFC 1213 and RFC 1573):

Return Values

Context

Statistics

mac(9E)

Driver Entry Points 91

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fintro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fintro-2

MAC_STAT_IFSPEED

MAC_STAT_MULTIRCV

MAC_STAT_BRDCSTRCV

MAC_STAT_MULTIXMT

MAC_STAT_BRDCSTXMT

MAC_STAT_NORCVBUF

MAC_STAT_IERRORS

MAC_STAT_UNKNOWNS

MAC_STAT_NOXMTBUF

MAC_STAT_OERRORS

MAC_STAT_COLLISIONS

MAC_STAT_RBYTES

MAC_STAT_IPACKETS

MAC_STAT_OBYTES

MAC_STAT_OPACKETS

MAC_STAT_UNDERFLOWS

MAC_STAT_OVERFLOWS

The following statistics are specific to Ethernet device drivers:

RFC 1643 stats:

ETHER_STAT_ALIGN_ERRORS

ETHER_STAT_FCS_ERRORS

ETHER_STAT_FIRST_COLLISIONS

ETHER_STAT_MULTI_COLLISIONS

ETHER_STAT_SQE_ERRORS

ETHER_STAT_DEFER_XMTS

ETHER_STAT_TX_LATE_COLLISIONS

ETHER_STAT_EX_COLLISIONS

ETHER_STAT_MACXMT_ERRORS

ETHER_STAT_CARRIER_ERRORS

ETHER_STAT_TOOLONG_ERRORS

ETHER_STAT_MACRCV_ERRORS

MII/GMII stats:

ETHER_STAT_XCVR_ADDR

ETHER_STAT_XCVR_ID

ETHER_STAT_XCVR_INUSE

ETHER_STAT_CAP_1000FDX

ETHER_STAT_CAP_1000HDX

ETHER_STAT_CAP_100FDX

ETHER_STAT_CAP_100HDX

ETHER_STAT_CAP_10FDX

ETHER_STAT_CAP_10HDX

ETHER_STAT_CAP_ASMPAUSE

ETHER_STAT_CAP_PAUSE

ETHER_STAT_CAP_AUTONEG

ETHER_STAT_ADV_CAP_1000FDX

mac(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 26 Mar 201092

ETHER_STAT_ADV_CAP_1000HDX

ETHER_STAT_ADV_CAP_100FDX

ETHER_STAT_ADV_CAP_100HDX

ETHER_STAT_ADV_CAP_10FDX

ETHER_STAT_ADV_CAP_10HDX

ETHER_STAT_ADV_CAP_ASMPAUSE

ETHER_STAT_ADV_CAP_PAUSE

ETHER_STAT_ADV_CAP_AUTONEG

ETHER_STAT_LP_CAP_1000FDX

ETHER_STAT_LP_CAP_1000HDX

ETHER_STAT_LP_CAP_100FDX

ETHER_STAT_LP_CAP_100HDX

ETHER_STAT_LP_CAP_10FDX

ETHER_STAT_LP_CAP_10HDX

ETHER_STAT_LP_CAP_ASMPAUSE

ETHER_STAT_LP_CAP_PAUSE

ETHER_STAT_LP_CAP_AUTONEG

ETHER_STAT_LINK_ASMPAUSE

ETHER_STAT_LINK_PAUSE

ETHER_STAT_LINK_AUTONEG

ETHER_STAT_LINK_DUPLEX

Property Property Type

MAC_PROP_DUPLEX link_duplex_t

MAC_PROP_SPEED uint64_t

MAC_PROP_STATUS link_state_t

MAC_PROP_AUTONEG uint8_t

MAC_PROP_MTU uint32_t

MAC_PROP_FLOWCTRL link_flowctrl_t

MAC_PROP_ADV_10GFDX_CAP uint8_t

MAC_PROP_EN_10GFDX_CAP uint8_t

MAC_PROP_ADV_1000FDX_CAP uint8_t

MAC_PROP_EN_1000FDX_CAP uint8_t

MAC_PROP_ADV_1000HDX_CAP uint8_t

MAC_PROP_EN_1000HDX_CAP uint8_t

MAC_PROP_ADV_100FDX_CAP uint8_t

MAC_PROP_EN_100FDX_CAP uint8_t

Properties

mac(9E)

Driver Entry Points 93

Property Property Type

MAC_PROP_ADV_100HDX_CAP uint8_t

MAC_PROP_EN_100HDX_CAP uint8_t

MAC_PROP_ADV_10FDX_CAP uint8_t

MAC_PROP_EN_10FDX_CAP uint8_t

MAC_PROP_ADV_10HDX_CAP uint8_t

MAC_PROP_EN_10HDX_CAP uint8_t

MAC_PROP_PRIVATE char[]

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/header

Interface Stability Committed

libdlpi(3LIB), attributes(5), mac_hcksum_get(9F), mac_prop_info_set_perm(9F),
mac_register(9F), mac_tx_update(9F), mac_capab_lso(9S), mac_register(9S)

Attributes

See Also

mac(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 26 Mar 201094

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Flibdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mac-hcksum-get-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mac-prop-info-set-perm-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mac-register-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mac-tx-update-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mac-capab-lso-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mac-register-9s

mac_capab_rings, mr_rget, mr_gget, mr_gaddring, mr_gremring – MAC capab rings driver
entry points

#include <sys/mac_provider.h>

void prefix_ring_get(void *driver_handle, mac_ring_type_t rtype,
int ring_index, mac_ring_info_t *rinfop,
mac_ring_handle_t ring_handle);

void prefix_group_get(void *driver_handle, mac_ring_type_t rtype,
int group_index, mac_group_info_t *ginfop,
mac_group_handle_t group_handle);

void prefix_group_add_ring(mac_group_driver_t group_handle,
mac_ring_driver_t ring_handle, mac_ring_type_t rtype);

void prefix_group_remove_ring(mac_group_driver_t group_handle,
mac_ring_driver_t ring_handle, mac_ring_type_t, rtype);

driver_handle Pointer to the driver-private handle which was specified by the device
driver through the m_driver field of the mac_register(9S) structure during
registration.

rtype The ring type being queried, either RX or TX rings.

MAC_RING_TYPE_TX for TX rings or TX ring groups.

MAC_RING_TYPE_RX for RX rings or RX ring groups.

group_index The ring group index supplied by the MAC layer to query a specific driver
ring group. The group index should not exceed the number of ring groups
reported in response to a MAC_CAPAB_RINGS query.

ring_index The ring index supplied by the MAC layer to query a specific ring. The ring
index should not exceed the number of rings reported in a
MAC_CAPAB_RINGS query.

rinfop The mac_ring_info(9S) structure to be filled by the driver for the mac
layer. This structure provides the MAC layer the specific information it
requires to manipulate this specific driver ring.

ginfop The mac_group_info(9S) structure to be filled by the driver for the mac
layer. This structure provides the MAC layer the specific information it
requires to manipulate this specific driver ring group.

group_handle An opaque handle to the MAC layer's representation of this ring group.

ring_handle An opaque handle to the MAC layer's representation of this ring.

Solaris architecture specific (Solaris DDI).

Name

Synopsis

Parameters

Interface Level

mac_capab_rings(9E)

Driver Entry Points 95

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fmac-register-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fmac-ring-info-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fmac-group-info-9s

The entry points described below are implement the MAC device driver and passed to the
MAC layer through the mac_capab_rings structure as part of the response to a
MAC_CAPAB_RINGS request from the MAC layer.

The mr_gget() function requests the driver to fill in the mac_group_info structure in
response to the MAC layer. The MAC layer then uses the response to further manipulate the
ring group of the driver.

The mr_rget() function requests the driver to fill in the mac_ring_info structure in response
to the MAC layer. The MAC layer then uses the response to further manipulate a ring
controlled by the driver.

The mr_gaddring() function adds the specified ring to the specified ring group. This action
should be implemented only in MAC drivers that implement dynamic ring grouping as
described in mac_capab_rings(9S).

The mr_gremring() function removes the specified ring from the specified ring group. This
action should be implemented only in MAC drivers that implement dynamic ring grouping as
described in mac_capab_rings(9S).

None of these entry points have return values.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/header

Interface Stability Committed

attributes(5), mac_capab_rings(9S), mac_group_info(9S), mac_register(9S),
mac_ring_info(9S)

Description

Return Values

Attributes

See Also

mac_capab_rings(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 16 Jun 201196

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fmac-capab-rings-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fmac-capab-rings-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fmac-capab-rings-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fmac-group-info-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fmac-register-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fmac-ring-info-9s

mac_group_info, mgi_start, mgi_stop, mgi_addmac, mgi_remmac, mgi_add_vlanfilter,
mgi_rem_vlanfliter, mgi_setmtu, mgi_getsriov_info – MAC group info driver entry points

#include <sys/mac_provider.h>

int prefix_group_start(mac_group_driver_t group_handle);

void prefix_group_stop(mac_group_driver_t group_handle);

int prefix_group_addmac(void *arg, const uint8_t *macaddr,
uint64_t mflags);

int prefix_group_remmac(void *arg, const uint8_t *macaddr);

int prefix_group_add_vlanfilter(void *arg, uint16_t vlanid,
uint32_t vflags);

int prefix_group_remove_vlanfilter(void *arg, uint16_t vlanid);

int prefix_group_setmtu(void *arg, uint32_t mtu);

int prefix_group_getsriov_info(void *arg, mac_sriov_info_t *sriovinfop);

group_handle The private driver handle that identifies the driver ring group.

macaddr The MAC address that the MAC layer would like to be programmed into
the driver's hardware.

arg The opaque handle that identifies the driver ring group that is being
programmed.

mflags The flags associated with the programming of the specified MAC address.
Currently, the flag that can be specified is MAC_GROUP_PRIMARY_ADDRESS.
This enables a SRI-OV capable driver to understand that the MAC address
being programmed is the primary address for the VF associated with this
ring group.

vlanid The VLAN to be programmed into the driver's hardware.

vflags The flags associated with the specified VLAN. Currently, the flag possible is
MAC_GROUP_VLAN_TRANSPARENT_ENABLE. This enables VLAN
tagging/stripping.

sriovinfop The SR-IOV information structure to be filled in by the PF driver.
Currently, the information to be filled in is the VF index for the VF that
corresponds to this ring group.

mtu The MTU size to be programmed for the specified ring group.

Solaris architecture specific (Solaris DDI).

Name

Synopsis

Parameters

Interface Level

mac_group_info(9E)

Driver Entry Points 97

The driver entry points described below implement the actions the MAC layer can take on a
driver ring group. The entry points are passed to the MAC layer using the
mac_group_info(9S) structure in response to a call to the driver entry point mr_gget(9E) by
the MAC layer.

The mgi_start() function is the driver entry called by the MAC layer to start a ring group.
Driver's that implement dynamic grouping should implement this entry point to properly
initialize the ring group before rings are added to the ring group by the MAC layer.

The mgi_stop() function is the driver entry called by the MAC layer to stop a ring group. The
MAC layer will call this entry after all rings of the ring group have been stopped.

The mgi_addmac() function is the driver entry point to add a MAC address to the ring group.
The mflags argument specifies if the MAC address being added is the primary address for the
VF that corresponds to the ring group.

The mgi_remmac() function is the driver entry point to remove a MAC address from the ring
group.

The mgi_add_vlanfilter() function is the driver entry point to enable the MAC layer to
program a VLAN filter for the specified ring group. The flags will enable tag/strip for the ring
group.

The mgi_rem_vlanfliter() function is the driver entry point to remove a previously added
vlan filter.

The mgi_setmtu() function is the driver entry point to set the MTU for the ring group. This
entry point is implemented by SR-IOV capable drivers and is only valid when the PF driver is
operating in SR-IOV mode.

The mgi_getsriov_info() function is the driver entry for the MAC layer to query for the ring
group for it's SR-IOV mode information.

The mgi_start() function returns 0 on success and either EIO or ENXIO on failure.

The mgi_stop() function returns 0 on success and EIO or ENXIO on failure.

The mgi_setmtu() function returns 0 on success. If the MTU is an invalid size, then it returns
EINVAL.

The mgi_getsriov_info() function returns 0 on success and EIO or ENXIO on failure.

The mgi_addmac() function returns 0 on success, ENOSPC if there is no space to add the MAC
address, and EIO for other failures.

The mgi_add_vlanfilter() function returns 0 on success, ENOSPC if there is no room to add
the filter, and EIO for other failures.

Description

Return Values

mac_group_info(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 16 Jun 201198

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fmac-group-info-9s

The mgi_rem_vlanfilter() function returns 0 on success and EIO on failure.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/header

Interface Stability Committed

attributes(5), mr_gget(9E), mac_capab_rings(9S), mac_group_info(9S),
mac_register(9S)

Attributes

See Also

mac_group_info(9E)

Driver Entry Points 99

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fmac-capab-rings-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fmac-group-info-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fmac-register-9s

mac_ring_info, prefix_ring_start, prefix_ring_stop, prefix_ring_tx, prefix_ring_poll,
prefix_ring_stat, mri_intr_enable, mri_intr_disable – MAC ring info driver entry points

#include <sys/mac_provider.h>

int prefix_ring_start(mac_ring_driver_t ring_handle, uint64_t gen_num);

void prefix_ring_stop(mac_ring_driver_t ring_handle);

mblk_t *prefix_ring_tx(void *arg, mblk_t *mp);

mblk_t *prefix_ring_poll(void *arg, int nbytes, int npackets);

int prefix_ring_stat(mac_ring_driver_t ring_handle, uint_t stat,
uint64_t *val);

int mri_intr_enable(mac_intr_handle_t *ihandle);

int mri_intr_disable(mac_intr_handle_t *ihandle);

ring_handle The opaque handle to the driver's representation of the specified ring.

gen_num Generation number for this ring.

arg Opaque handle to the driver's ring.

mblk_t Chain of mblk packet buffers.

nbytes The number of total bytes that will be polled for this call to
prefix_ring_poll().

npackets The maximum number of packets that will be returned for this call to
prefix_ring_poll().

statsp The pointer to the ring statistic being queried.

ihandle The opaque handle to the driver private data representing this interrupt.

Solaris architecture specific (Solaris DDI).

The prefix_ring_start() function is the driver entry point called by the MAC layer to start
the ring processing packets. The prefix_ring_stop() function is the driver entry point called
by the MAC layer to stop the ring processing packets.

The mri_stop() function is the driver entry point called by the MAC layer to stop the ring
processing packets

The prefix_ring_tx() function is the driver entry point called by the MAC layer to transmit
packets. This is a TX ring only entry point.

The prefix_ring_poll() function is the driver entry point called by the MAC layer to poll
for the reception of incoming packets. This is RX ring only driver entry point. Packets are

Name

Synopsis

Parameters

Interface Level

Description

mac_ring_info(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 16 Jun 2011100

returned to the MAC layer as a chain of mblks. The parameters of nbytes is used to cap the
number of bytes that can be polled while the npackets parameters caps the number of packets
that can be polled.

The prefix_ring_stat() function is the driver entry point called to get various ring statistics.
Statistics included for TX/RX rings:

MAC_STAT_OERRORS

MAC_STAT_OBYTES

MAC_STAT_OPACKETS

MAC_STAT_IERRORS

MAC_STAT_IBYTES

MAC_STAT_IPACKETS

The mri_intr_enable() function is the driver entry point called by the MAC layer to enable
interrupts to re-enable interrupts while transitioning the ring from polling mode to interrupt
mode. This is an RX ring entry point.

The mri_intr_disable() function is the driver entry point called by the MAC layer to disable
interrupts for the specified ring while transitioning the ring to polling mode.

The prefix_ring_start() function returns 0 on success and EIO when the operation fails.

The prefix_ring_tx() function returns NULL if all packets are transmitted. It returns some or
all of the mblk chain if some or all of the packets where processed.

The prefix_ring_poll() function returns It returns a chain of packets received during this
poll call or NULL if no packets where received.

The prefix_ring_stat() function returns 0 on success and ENOTUSP if the statistic is not
supported.

The mri_intr_enable() function returns 0 on success.

The mri_intr_disable() function returns 0 on success.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/header

Interface Stability Committed

Return Values

Attributes

mac_ring_info(9E)

Driver Entry Points 101

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

attributes(5), mac_capab_rings(9S), mac_register(9S)See Also

mac_ring_info(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 16 Jun 2011102

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fmac-capab-rings-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fmac-register-9s

mmap – check virtual mapping for memory mapped device

#include <sys/types.h>

#include <sys/cred.h>

#include <sys/mman.h>

#include <sys/ddi.h>

int prefixmmap(dev_t dev, off_t off, int prot);

This interface is obsolete. devmap(9E) should be used instead.

dev Device whose memory is to be mapped.

off Offset within device memory at which mapping begins.

prot A bit field that specifies the protections this page of memory will receive. Possible
settings are:

PROT_READ Read access will be granted.

PROT_WRITE Write access will be granted.

PROT_EXEC Execute access will be granted.

PROT_USER User-level access will be granted.

PROT_ALL All access will be granted.

Future releases of Solaris will provide this function for binary and source compatibility.
However, for increased functionality, use devmap(9E) instead. See devmap(9E) for details.

The mmap() entry point is a required entry point for character drivers supporting
memory-mapped devices. A memory mapped device has memory that can be mapped into a
process's address space. The mmap(2) system call, when applied to a character special file,
allows this device memory to be mapped into user space for direct access by the user
application.

The mmap() entry point is called as a result of an mmap(2) system call, and also as a result of a
page fault. mmap() is called to translate the offset off in device memory to the corresponding
physical page frame number.

The mmap() entry point checks if the offset off is within the range of pages exported by the
device. For example, a device that has 512 bytes of memory that can be mapped into user space
should not support offsets greater than 512. If the offset does not exist, then -1 is returned. If
the offset does exist, mmap() returns the value returned by hat_getkpfnum(9F) for the physical
page in device memory containing the offset off.

Name

Synopsis

Interface Level

Parameters

Description

mmap(9E)

Driver Entry Points 103

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1hat-getkpfnum-9f

hat_getkpfnum(9F) accepts a kernel virtual address as an argument. A kernel virtual address
can be obtained by calling ddi_regs_map_setup(9F) in the driver's attach(9E) routine. The
corresponding ddi_regs_map_free(9F) call can be made in the driver's detach(9E) routine.
Refer to the example below mmap Entry Point for more information.

mmap() should only be supported for memory-mapped devices. See segmap(9E) for further
information on memory-mapped device drivers.

If a device driver shares data structures with the application, for example through exported
kernel memory, and the driver gets recompiled for a 64-bit kernel but the application remains
32-bit, the binary layout of any data structures will be incompatible if they contain longs or
pointers. The driver needs to know whether there is a model mismatch between the current
thread and the kernel and take necessary action. ddi_mmap_get_model(9F) can be use to get
the C Language Type Model which the current thread expects. In combination with
ddi_model_convert_from(9F) the driver can determine whether there is a data model
mismatch between the current thread and the device driver. The device driver might have to
adjust the shape of data structures before exporting them to a user thread which supports a
different data model. See ddi_mmap_get_model(9F) for an example.

If the protection and offset are valid for the device, the driver should return the value returned
by hat_getkpfnum(9F), for the page at offset off in the device's memory. If not, -1 should be
returned.

EXAMPLE 1 mmap()Entry Point

The following is an example of the mmap() entry point. If offset off is valid, hat_getkpfnum(9F)
is called to obtain the page frame number corresponding to this offset in the device's memory.
In this example, xsp→regp→csr is a kernel virtual address which maps to device memory.
ddi_regs_map_setup(9F) can be used to obtain this address. For example,
ddi_regs_map_setup(9F) can be called in the driver's attach(9E) routine. The resulting
kernel virtual address is stored in the xxstate structure, which is accessible from the driver's
mmap() entry point. See ddi_soft_state(9F). The corresponding ddi_regs_map_free(9F)
call can be made in the driver's detach(9E) routine.

struct reg {

uint8_t csr;

uint8_t data;

};

struct xxstate {

. . .

struct reg *regp

. . .

};

struct xxstate *xsp;

. . .

Return Values

Examples

mmap(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 27 Sep 2002104

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1hat-getkpfnum-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-regs-map-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-regs-map-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-mmap-get-model-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-model-convert-from-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-mmap-get-model-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1hat-getkpfnum-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1hat-getkpfnum-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-regs-map-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-regs-map-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-soft-state-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-regs-map-free-9f

EXAMPLE 1 mmap()Entry Point (Continued)

static int

xxmmap(dev_t dev, off_t off, int prot)

{

int instance;

struct xxstate *xsp;

/* No write access */

if (prot & PROT_WRITE)

return (-1);

instance = getminor(dev);

xsp = ddi_get_soft_state(statep, instance);

if (xsp == NULL)

return (-1);

/* check for a valid offset */

if (off is invalid)

return (-1);

return (hat_getkpfnum (xsp->regp->csr + off));

}

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Stability Level Obsolete

mmap(2), attributes(5), attach(9E), detach(9E), devmap(9E), segmap(9E), ddi_btop(9F),
ddi_get_soft_state(9F), ddi_mmap_get_model(9F), ddi_model_convert_from(9F),
ddi_regs_map_free(9F), ddi_regs_map_setup(9F), ddi_soft_state(9F),
devmap_setup(9F), getminor(9F), hat_getkpfnum(9F)

Writing Device Drivers

For some devices, mapping device memory in the driver's attach(9E) routine and unmapping
device memory in the driver's detach(9E) routine is a sizeable drain on system resources. This
is especially true for devices with a large amount of physical address space.

One alternative is to create a mapping for only the first page of device memory in attach(9E).
If the device memory is contiguous, a kernel page frame number may be obtained by calling
hat_getkpfnum(9F) with the kernel virtual address of the first page of device memory and
adding the desired page offset to the result. The page offset may be obtained by converting the
byte offset off to pages. See ddi_btop(9F).

Attributes

See Also

Notes

mmap(9E)

Driver Entry Points 105

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-btop-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-get-soft-state-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-mmap-get-model-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-model-convert-from-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-regs-map-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-regs-map-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-soft-state-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getminor-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1hat-getkpfnum-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1hat-getkpfnum-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-btop-9f

Another alternative is to call ddi_regs_map_setup(9F) and ddi_regs_map_free(9F) in
mmap(). These function calls would bracket the call to hat_getkpfnum(9F).

However, note that the above alternatives may not work in all cases. The existence of
intermediate nexus devices with memory management unit translation resources that are not
locked down may cause unexpected and undefined behavior.

mmap(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 27 Sep 2002106

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-regs-map-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-regs-map-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1hat-getkpfnum-9f

open – gain access to a device

#include <sys/types.h>

#include <sys/file.h>

#include <sys/errno.h>

#include <sys/open.h>

#include <sys/cred.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

int prefixopen(dev_t *devp, int flag, int otyp,
cred_t *cred_p);

#include <sys/file.h>

#include <sys/stream.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

int prefixopen(queue_t *q, dev_t *devp, int oflag, int sflag,
cred_t *cred_p);

Architecture independent level 1 (DDI/DKI). This entry point is required, but it can be
nulldev(9F)

devp Pointer to a device number.

flag A bit field passed from the user program open(2) system call that instructs the
driver on how to open the file. Valid settings are:

FEXCL Open the device with exclusive access; fail all other attempts to open
the device.

FNDELAY Open the device and return immediately. Do not block the open even
if something is wrong.

FREAD Open the device with read-only permission, If ORed with FWRITE,
allow both read and write access.

FWRITE Open a device with write-only permission. If ORed with FREAD, allow
both read and write access.

otyp Parameter supplied for driver to determine how many times a device was opened
and for what reasons. For OTYP_BLK and OTYP_CHR, the open() function can be

Name

Synopsis

Block and Character

STREAMS

Interface Level

Parameters

Block and Character

open(9E)

Driver Entry Points 107

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nulldev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2

called many times, but the close(9E) function is called only when the last
reference to a device is removed. If the device is accessed through file descriptors, it
is done by a call to close(2) or exit(2). If the device is accessed through memory
mapping, it is done by a call to munmap(2) or exit(2). For OTYP_LYR, there is exactly
one close(9E) for each open() operation that is called. This permits software
drivers to exist above hardware drivers and removes any ambiguity from the
hardware driver regarding how a device is used.

OTYP_BLK Open occurred through block interface for the device.

OTYP_CHR Open occurred through the raw/character interface for the device.

OTYP_LYR Open a layered process. This flag is used when one driver calls
another driver's open() or close(9E) function. The calling driver
ensures that there is one-layered close for each layered open. This
flag applies to both block and character devices.

cred_p Pointer to the user credential structure.

q A pointer to the read queue.

devp Pointer to a device number. For STREAMS modules, devp always points to the
device number associated with the driver at the end (tail) of the stream.

oflag Valid oflag values are FEXCL, FNDELAY, FREAD, and FWRITEL — the same as those
listed above for flag.. For STREAMS modules, oflag is always set to 0.

sflag Valid values are as follows:

CLONEOPEN Indicates that the open() function is called through the clone
driver. The driver should return a unique device number.

MODOPEN Modules should be called with sflag set to this value. Modules
should return an error if they are called with sflag set to a different
value. Drivers should return an error if they are called with sflag set
to this value.

0 Indicates a driver is opened directly, without calling the clone
driver.

cred_p Pointer to the user credential structure.

The driver's open() function is called by the kernel during an open(2) or a mount(2) on the
special file for the device. A device can be opened simultaneously by multiple processes and
the open() driver operation is called for each open. Note that a device is referenced once its
associated open(9E) function is entered, and thus open(9E) operations which have not yet
completed will prevent close(9E) from being called. The function should verify that the
minor number component of *devp is valid, that the type of access requested by otyp and flag
is appropriate for the device, and, if required, check permissions using the user credentials
pointed to by cred_p.

STREAMS

Description

open(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 24 Apr 2008108

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1munmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mount-2

The kernel provides open() close() exclusion guarantees to the driver at *devp, otyp
granularity. This delays new open() calls to the driver while a last-reference close() call is
executing. If the driver has indicated that an EINTR returns safe via the
D_OPEN_RETURNS_EINTR cb_ops(9S) cb_flag, a delayed open() may be interrupted by a signal
that results in an EINTR return.

Last-reference accounting and open() close() exclusion typically simplify driver writing. In
some cases, however, they might be an impediment for certain types of drivers. To overcome
any impediment, the driver can change minor numbers in open(9E), as described below, or
implement multiple minor nodes for the same device. Both techniques give the driver control
over when close() calls occur and whether additional open() calls will be delayed while
close() is executing.

The open() function is passed a pointer to a device number so that the driver can change the
minor number. This allows drivers to dynamically create minor instances of the device. An
example of this might be a pseudo-terminal driver that creates a new pseudo-terminal
whenever it is opened. A driver that chooses the minor number dynamically, normally creates
only one minor device node in attach(9E) with ddi_create_minor_node(9F). It then changes
the minor number component of *devp using makedevice(9F) and getmajor(9F). The driver
needs to keep track of available minor numbers internally. A driver that dynamically creates
minor numbers might want to avoid returning the original minor number since returning the
original minor will result in postponed dynamic opens when original minor close() call
occurs.

*devp = makedevice(getmajor(*devp), new_minor);

The open() function should return 0 for success, or the appropriate error number.

close(2), exit(2), mmap(2), mount(2), munmap(2), open(2), Intro(9E), attach(9E), close(9E),
ddi_create_minor_node(9F), getmajor(9F), getminor(9F), makedevice(9F), nulldev(9F),
cb_ops(9S)

Writing Device Drivers

STREAMS Programming Guide

Do not attempt to change the major number.

When a driver modifies the device number passed in, it must not change the major number
portion of the device number. Unless CLONEOPEN is specified, the modified device number
must map to the same driver instance indicated by the driver's getinfo(9e) implementation. In
other words, cloning across different drivers is not supported. Cloning across different
instances of the same driver in only permitted if the driver specified in CLONE_DEV in
ddi_create_minor_node(9F) is not supported.

Return Values

See Also

Warnings

open(9E)

Driver Entry Points 109

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-create-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1makedevice-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getmajor-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mount-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1munmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-create-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getmajor-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getminor-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1makedevice-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nulldev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=STREAMS
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-create-minor-node-9f

power – power a device attached to the system

#include <sys/ddi.h>

#include <sys/sunddi.h>

int prefixpower(dev_info_t *dip, int component, int level);

Solaris DDI specific (Solaris DDI). This entry point is required. If the driver writer does not
supply this entry point, the value NULL must be used in the cb_ops(9S) structure instead.

dip Pointer to the device's dev_info structure.

component Component of the driver to be managed.

level Desired component power level.

The power(9E) function is the device-specific Power Management entry point. This function
is called when the system wants the driver to set the power level of component to level.

The level argument is the driver-defined power level to which the component needs to be set.
Except for power level 0, which is interpreted by the framework to mean “powered off,” the
interpretation of level is entirely up to the driver.

The component argument is the component of the device to be power-managed. The
interpretation of component is entirely up to the driver.

When a requested power transition would cause the device to lose state, the driver must save
the state of the device in memory. When a requested power transition requires state to be
restored, the driver must restore that state.

If a requested power transition for one component requires another component to change
power state before it can be completed, the driver must call pm_raise_power(9F) to get the
other component changed, and the power(9E) entry point must support being re-entered.

If the system requests an inappropriate power transition for the device (for example, a request
to power down a device which has just become busy), then the power level should not be
changed and power should return DDI_FAILURE.

The power() function returns:

DDI_SUCCESS Successfully set the power to the requested level.

DDI_FAILURE Failed to set the power to the requested level.

The power() function is called from user or kernel context only.

See attributes(5) for descriptions of the following attributes:

Name

Synopsis

Interface Level

Parameters

Description

Return Values

Context

Attributes

power(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 12 Dec 2003110

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

attach(9E), detach(9E), pm_busy_component(9F), pm_idle_component(9F),
pm_raise_power(9F), cb_ops(9S)

Writing Device Drivers

Using Power Management

See Also

power(9E)

Driver Entry Points 111

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pm-idle-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

print – display a driver message on system console

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

int prefixprint(dev_t dev, char *str);

Architecture independent level 1 (DDI/DKI). This entry point is required for block devices.

dev Device number.

str Pointer to a character string describing the problem.

The print() routine is called by the kernel when it has detected an exceptional condition
(such as out of space) in the device. To display the message on the console, the driver should
use the cmn_err(9F) kernel function. The driver should print the message along with any
driver specific information.

The print() routine should return 0 for success, or the appropriate error number. The print
routine can fail if the driver implemented a non-standard print() routine that attempted to
perform error logging, but was unable to complete the logging for whatever reason.

cmn_err(9F)

Writing Device Drivers

Name

Synopsis

Interface Level

Parameters

Description

Return Values

See Also

print(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 15 Sep 1992112

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cmn-err-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cmn-err-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

probe – determine if a non-self-identifying device is present

#include <sys/conf.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

static intprefixprobe(dev_info_t *dip);

Solaris DDI specific (Solaris DDI). This entry point is required for non-self-identifying
devices. You must write it for such devices. For self-identifying devices, nulldev(9F) should
be specified in the dev_ops(9S) structure if a probe routine is not necessary.

dip Pointer to the device's dev_info structure.

probe() determines whether the device corresponding to dip actually exists and is a valid
device for this driver. probe() is called after identify(9E) and before attach(9E) for a given
dip. For example, the probe() routine can map the device registers using ddi_map_regs(9F)
then attempt to access the hardware using ddi_peek(9F) or ddi_poke(9F) and determine if
the device exists. Then the device registers should be unmapped using ddi_unmap_regs(9F).

To probe a device that was left powered off after the last detach(), it might be necessary to
power it up. If so, the driver must power up the device by accessing device registers directly.
pm_raise_power(9F) will be not be available until attach(9E). The framework ensures that
the ancestors of the node being probed and all relevant platform-specific power management
hardware is at full power at the time that probe() is called.

probe() should only probe the device. It should not change any software state and should not
create any software state. Device initialization should be done in attach(9E).

For a self-identifying device, this entry point is not necessary. However, if a device exists in
both self-identifying and non-self-identifying forms, a probe() routine can be provided to
simplify the driver. ddi_dev_is_sid(9F) can then be used to determine whether probe()
needs to do any work. See ddi_dev_is_sid(9F) for an example.

DDI_PROBE_SUCCESS If the probe was successful.

DDI_PROBE_FAILURE If the probe failed.

DDI_PROBE_DONTCARE If the probe was unsuccessful, yet attach(9E) should still be called.

DDI_PROBE_PARTIAL If the instance is not present now, but may be present in the future.

attach(9E), identify(9E), ddi_dev_is_sid(9F), ddi_map_regs(9F), ddi_peek(9F),
ddi_poke(9F), nulldev(9F), dev_ops(9S)

Writing Device Drivers

Name

Synopsis

Interface Level

Arguments

Description

Return Values

See Also

probe(9E)

Driver Entry Points 113

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nulldev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-map-regs-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-peek-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-poke-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-unmap-regs-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-dev-is-sid-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-dev-is-sid-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-dev-is-sid-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-map-regs-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-peek-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-poke-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nulldev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

prop_op – report driver property information

#include <sys/types.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

int prefixprop_op(dev_t dev, dev_info_t *dip,
ddi_prop_op_t prop_op, int flags, char *name, caddr_t valuep,
int *lengthp);

Solaris DDI specific (Solaris DDI). This entry point is required, but it can be ddi_prop_op(9F).

dev Device number associated with this device.

dip A pointer to the device information structure for this device.

prop_op Property operator. Valid operators are:

PROP_LEN Get property length only. (valuep unaffected).

PROP_LEN_AND_VAL_BUF Get length and value into caller's buffer. (valuep
used as input).

PROP_LEN_AND_VAL_ALLOC Get length and value into allocated buffer. (valuep
returned as pointer to pointer to allocated buffer).

flags The only possible flag value is:

DDI_PROP_DONTPASS Do not pass request to parent if property not found.

name Pointer to name of property to be interrogated.

valuep If prop_op is PROP_LEN_AND_VAL_BUF, this should be a pointer to the user's buffer.
If prop_op is PROP_LEN_AND_VAL_ALLOC, this should be the address of a pointer.

lengthp On exit, *lengthp will contain the property length. If prop_op is
PROP_LEN_AND_VAL_BUF then lengthp should point to an int that contains the
length of caller's buffer, before calling prop_op().

prop_op() is an entry point which reports the values of certain properties of the driver or
device to the system. Each driver must have a prefix prop_op entry point, but most drivers that
do not need to create or manage their own properties can use ddi_prop_op() for this entry
point. Then the driver can use ddi_prop_update(9F) to create properties for its device.

prop_op() should return:

DDI_PROP_SUCCESS Property found and returned.

DDI_PROP_NOT_FOUND Property not found.

Name

Synopsis

Interface Level

Arguments

Description

Return Values

prop_op(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 8 Jul 1996114

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-prop-op-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-prop-update-9f

DDI_PROP_UNDEFINED Prop explicitly undefined.

DDI_PROP_NO_MEMORY Property found, but unable to allocate memory. lengthp has
the correct property length.

DDI_PROP_BUF_TOO_SMALL Property found, but the supplied buffer is too small. lengthp
has the correct property length.

EXAMPLE 1 Using prop_op() to Report Property Information

In the following example, prop_op() intercepts requests for the temperature property. The
driver tracks changes to temperature using a variable in the state structure in order to avoid
frequent calls to ddi_prop_update(9F). The temperature property is only updated when a
request is made for this property. It then uses the system routine ddi_prop_op(9F) to process
the property request. If the property request is not specific to a device, the driver does not
intercept the request. This is indicated when the value of the dev parameter is equal to
DDI_DEV_T_ANY.

int temperature; /* current device temperature */

.

.

.

static int

xxprop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,

int flags, char *name, caddr_t valuep, int *lengthp)

{

int instance;

struct xxstate *xsp;

if (dev == DDI_DEV_T_ANY)

goto skip;

instance = getminor(dev);

xsp = ddi_get_soft_state(statep, instance);

if (xsp == NULL)

return (DDI_PROP_NOT_FOUND);

if (strcmp(name, "temperature") == 0) {

ddi_prop_update_int(dev, dip,\

"temperature", temperature);

}

/* other cases... */

skip:

return (ddi_prop_op(dev, dip, prop_op, flags,\

name, valuep, lengthp));

}

Intro(9E), ddi_prop_op(9F), ddi_prop_update(9F)

Writing Device Drivers

Examples

See Also

prop_op(9E)

Driver Entry Points 115

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-prop-update-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-prop-op-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-prop-op-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-prop-update-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

put – receive messages from the preceding queue

#include <sys/types.h>

#include <sys/stream.h>

#include <sys/stropts.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

int prefixrput(queue_t *q, mblk_t *mp/* read side */

int prefixwput(queue_t *q, mblk_t *mp/* write side */

Architecture independent level 1 (DDI/DKI). This entry point is required for STREAMS.

q Pointer to the queue(9S) structure.

mp Pointer to the message block.

The primary task of the put() routine is to coordinate the passing of messages from one queue
to the next in a stream. The put() routine is called by the preceding stream component
(stream module, driver, or stream head). put() routines are designated ‘‘write'' or ‘‘read''
depending on the direction of message flow.

With few exceptions, a streams module or driver must have a put() routine. One exception is
the read side of a driver, which does not need a put() routine because there is no component
downstream to call it. The put() routine is always called before the component's
corresponding srv(9E) (service) routine, and so put() should be used for the immediate
processing of messages.

A put() routine must do at least one of the following when it receives a message:

■ pass the message to the next component on the stream by calling the putnext(9F)
function;

■ process the message, if immediate processing is required (for example, to handle high
priority messages); or

■ enqueue the message (with the putq(9F) function) for deferred processing by the service
srv(9E) routine.

Typically, a put() routine will switch on message type, which is contained in the db_type
member of the datab structure pointed to by mp. The action taken by the put() routine
depends on the message type. For example, a put() routine might process high priority
messages, enqueue normal messages, and handle an unrecognized M_IOCTL message by
changing its type to M_IOCNAK (negative acknowledgement) and sending it back to the stream
head using the qreply(9F) function.

Name

Synopsis

Interface Level

Arguments

Description

put(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 12 Nov 1992116

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1queue-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1putnext-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1putq-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1qreply-9f

The putq(9F) function can be used as a module's put() routine when no special processing is
required and all messages are to be enqueued for the srv(9E) routine.

Ignored.

put() routines do not have user context.

srv(9E), putctl(9F), putctl1(9F), putnext(9F), putnextctl(9F), putnextctl1(9F),
putq(9F), qreply(9F), queue(9S), streamtab(9S)

Writing Device Drivers

STREAMS Programming Guide

Return Values

Context

See Also

put(9E)

Driver Entry Points 117

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1putq-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1putctl-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1putctl1-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1putnext-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1putnextctl-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1putnextctl1-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1putq-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1qreply-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1queue-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1streamtab-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=STREAMS

quiesce – quiesce a device

#include <sys/ddi.h>

#include <sys/sunddi.h>

int prefixquiesce(dev_info_t *dip);

int ddi_quiesce_not_needed(dev_info_t *dip);

Solaris DDI specific (Solaris DDI)

dip A pointer to the device's dev_info structure.

The quiesce() function quiesces a device so that the device no longer generates interrupts,
modifies or accesses memory. The driver should reset the device to a hardware state from
which the device can be correctly configured by the driver's attach() routine without a
system power cycle or being configured by the firmware. For devices with a defined reset state
configuration, the driver should return that device to that state as part of the quiesce
operation. Fast Reboot, where firmware is bypassed when booting to a new OS image, is such a
case.

quiesce() is only called for an attached device instance as one of the final operations of a
reboot sequence, and no other thread can be active for this device. The system guarantees that
no other driver entry point is active or invoked while quiesce() is invoked. The system also
guarantees that no timeout or taskq is invoked. The system is single-threaded and can not be
interrupted. Therefore, the driver's quiesce() implementation must not use locks or
timeouts, or rely on them being called. The driver must discard all outstanding I/O instead of
waiting for completion. At the conclusion of the quiesce() operation, the driver must
guarantee that the device no longer has access to memory or interrupts.

The only DDI interfaces that can be called by the quiesce() implementation are
non-blocking functions, such as the ddi_get*() and ddi_put*() functions.

If quiesce() determines a particular instance of the device cannot be quiesced when
requested because of some exceptional condition, quiesce() returns DDI_FAILURE. This
rarely happens.

If a driver has previously implemented the obsolete reset() interface, its functionality must
be merged into quiesce(). The driver's reset() routine is no longer called if an
implementation of quiesce() is present.

ddi_quiesce_not_needed() always returns DDI_SUCCESS. A driver can set its devo_quiesce
device function to ddi_quiesce_not_needed() to indicate that the device it manages does not
need to be quiesced.

quiesce() returns the following:

DDI_SUCCESS The device has been successfully quiesced.

Name

Synopsis

Interface Level

Parameters

Description

Return Values

quiesce(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 16 Sep 2008118

DDI_FAILURE The operation failed.

This function is called from kernel context only.

reboot(1M), uadmin(1M), uadmin(2), attach(9E), detach(9E), ddi_add_intr(9F),
ddi_map_regs(9F), pci_config_setup(9F), timeout(9F), dev_ops(9S)

When quiesce() is called, the system is single-threaded, therefore the driver's quiesce()
implementation must not be blocked. For example, the implementation must not create or
tear down mappings, call FMA functions, or create or cancel callbacks.

Context

See Also

Notes

quiesce(9E)

Driver Entry Points 119

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Freboot-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fuadmin-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fuadmin-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fddi-add-intr-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fddi-map-regs-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fpci-config-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Ftimeout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fdev-ops-9s

read – read data from a device

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/open.h>

#include <sys/uio.h>

#include <sys/cred.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

int prefixread(dev_t dev, struct uio *uio_p, cred_t *cred_p);

Architecture independent level 1 (DDI/DKI). This entry point is optional.

dev Device number.

uio_p Pointer to the uio(9S) structure that describes where the data is to be stored in user
space.

cred_p Pointer to the user credential structure for the I/O transaction.

The driver read() routine is called indirectly through cb_ops(9S) by the read(2) system call.
The read() routine should check the validity of the minor number component of dev and the
user credential structure pointed to by cred_p (if pertinent). The read() routine should
supervise the data transfer into the user space described by the uio(9S) structure.

The read() routine should return 0 for success, or the appropriate error number.

EXAMPLE 1 read() routine using physio()

The following is an example of a read() routine using physio(9F) to perform reads from a
non-seekable device:

static int

xxread(dev_t dev, struct uio *uiop, cred_t *credp)

{

int rval;

offset_t off;

int instance;

xx_t xx;

instance = getminor(dev);

xx = ddi_get_soft_state(xxstate, instance);

if (xx == NULL)

return (ENXIO);

off = uiop->uio_loffset;

rval = physio(xxstrategy, NULL, dev, B_READ,

xxmin, uiop);

Name

Synopsis

Interface Level

Parameters

Description

Return Values

Examples

read(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 19 Nov 1997120

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1physio-9f

EXAMPLE 1 read() routine using physio() (Continued)

uiop->uio_loffset = off;

return (rval);

}

read(2), write(9E), physio(9F), cb_ops(9S), uio(9S)

Writing Device Drivers

See Also

read(9E)

Driver Entry Points 121

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1physio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

segmap – map device memory into user space

#include <sys/types.h>

#include <sys/mman.h>

#include <sys/param.h>

#include <sys/vm.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

int prefixsegmap(dev_t dev, off_t off, struct as *asp, caddr_t *addrp,
off_t len, unsigned int prot, unsigned int maxprot, unsigned int flags,
cred_t *cred_p);

Architecture independent level 2 (DKI only).

dev Device whose memory is to be mapped.

off Offset within device memory at which mapping begins.

asp Pointer to the address space into which the device memory should be mapped.

addrp Pointer to the address in the address space to which the device memory should
be mapped.

len Length (in bytes) of the memory to be mapped.

prot A bit field that specifies the protections. Possible settings are:

PROT_READ Read access is desired.

PROT_WRITE Write access is desired.

PROT_EXEC Execute access is desired.

PROT_USER User-level access is desired (the mapping is being done as a
result of a mmap(2) system call).

PROT_ALL All access is desired.

maxprot Maximum protection flag possible for attempted mapping; the PROT_WRITE bit
may be masked out if the user opened the special file read-only.

flags Flags indicating type of mapping. Possible values are (other bits may be set):

MAP_SHARED Changes should be shared.

MAP_PRIVATE Changes are private.

cred_p Pointer to the user credentials structure.

Name

Synopsis

Interface Level

Arguments

segmap(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 14 Jan 1997122

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2

The segmap() entry point is an optional routine for character drivers that support memory
mapping. The mmap(2) system call, when applied to a character special file, allows device
memory to be mapped into user space for direct access by the user application.

Typically, a character driver that needs to support the mmap(2) system call supplies either an
devmap(9E) entry point, or both an devmap(9E) and a segmap() entry point routine (see the
devmap(9E) reference page). If no segmap() entry point is provided for the driver,
devmap_setup(9F) is used as a default.

A driver for a memory-mapped device would provide a segmap() entry point if it:

■ needs to maintain a separate context for each user mapping. See devmap_setup(9F) for
details.

■ needs to assign device access attributes to the user mapping.

The responsibilities of a segmap() entry point are:

■ Verify that the range, defined by offset and len, to be mapped is valid for the device.
Typically, this task is performed by calling the devmap(9E) entry point. Note that if you are
using ddi_devmap_segmap(9F) or devmap_setup(9F) to set up the mapping, it will call
your devmap(9E) entry point for you to validate the range to be mapped.

■ Assign device access attributes to the mapping. See ddi_devmap_segmap(9F), and
ddi_device_acc_attr(9S) for details.

■ Set up device contexts for the user mapping if your device requires context switching. See
devmap_setup(9F) for details.

■ Perform the mapping with ddi_devmap_segmap(9F), or devmap_setup(9F) and return the
status if it fails.

The segmap() routine should return 0 if the driver is successful in performing the memory
map of its device address space into the specified address space.

The segmap() must return an error number on failure. For example, valid error numbers
would be ENXIO if the offset/length pair specified exceeds the limits of the device memory, or
EINVAL if the driver detects an invalid type of mapping attempted.

If one of the mapping routines ddi_devmap_segmap() or devmap_setup()fails, you must
return the error number returned by the respective routine.

mmap(2), devmap(9E), devmap_setup(9F), ddi_devmap_segmap(9F),
ddi_device_acc_attr(9S)

Writing Device Drivers

Description

Return Values

See Also

segmap(9E)

Driver Entry Points 123

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-devmap-segmap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-devmap-segmap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-device-acc-attr-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-devmap-segmap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1devmap-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-devmap-segmap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-device-acc-attr-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

srv – service queued messages

#include <sys/types.h>

#include <sys/stream.h>

#include <sys/stropts.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

intprefixrsrv(queue_t *q/* read side */

intprefixwsrv(queue_t *q/* write side */

Architecture independent level 1 (DDI/DKI). This entry point is required for STREAMS.

q Pointer to the queue(9S) structure.

The optional service srv() routine may be included in a STREAMS module or driver for
many possible reasons, including:

■ to provide greater control over the flow of messages in a stream;
■ to make it possible to defer the processing of some messages to avoid depleting system

resources;
■ to combine small messages into larger ones, or break large messages into smaller ones;
■ to recover from resource allocation failure. A module's or driver's put(9E) routine can test

for the availability of a resource, and if it is not available, enqueue the message for later
processing by the srv() routine.

A message is first passed to a module's or driver's put(9E) routine, which may or may not do
some processing. It must then either:

■ Pass the message to the next stream component with putnext(9F).
■ If a srv() routine has been included, it may call putq(9F) to place the message on the

queue.

Once a message has been enqueued, the STREAMS scheduler controls the service routine's
invocation. The scheduler calls the service routines in FIFO order. The scheduler cannot
guarantee a maximum delay srv() routine to be called except that it will happen before any
user level process are run.

Every stream component (stream head, module or driver) has limit values it uses to
implement flow control. Each component should check the tunable high and low water marks
to stop and restart the flow of message processing. Flow control limits apply only between two
adjacent components with srv() routines.

Name

Synopsis

Interface Level

Arguments

Description

srv(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 12 Nov 1992124

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1queue-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1putnext-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1putq-9f

STREAMS messages can be defined to have up to 256 different priorities to support
requirements for multiple bands of data flow. At a minimum, a stream must distinguish
between normal (priority zero) messages and high priority messages (such as M_IOCACK). High
priority messages are always placed at the head of the srv() routine's queue, after any other
enqueued high priority messages. Next are messages from all included priority bands, which
are enqueued in decreasing order of priority. Each priority band has its own flow control
limits. If a flow controlled band is stopped, all lower priority bands are also stopped.

Once the STREAMS scheduler calls a srv() routine, it must process all messages on its queue.
The following steps are general guidelines for processing messages. Keep in mind that many of
the details of how a srv() routine should be written depend of the implementation, the
direction of flow (upstream or downstream), and whether it is for a module or a driver.

1. Use getq(9F) to get the next enqueued message.
2. If the message is high priority, process (if appropriate) and pass to the next stream

component with putnext(9F).
3. If it is not a high priority message (and therefore subject to flow control), attempt to send it

to the next stream component with a srv() routine. Use bcanputnext(9F) to determine if
this can be done.

4. If the message cannot be passed, put it back on the queue with putbq(9F). If it can be
passed, process (if appropriate) and pass with putnext().

Ignored.

put(9E), bcanput(9F), bcanputnext(9F), canput(9F), canputnext(9F), getq(9F),
nulldev(9F), putbq(9F), putnext(9F), putq(9F), qinit(9S), queue(9S)

Writing Device Drivers

STREAMS Programming Guide

Each stream module must specify a read and a write service srv() routine. If a service routine
is not needed (because the put() routine processes all messages), a NULL pointer should be
placed in module's qinit(9S) structure. Do not use nulldev(9F) instead of the NULL pointer.
Use ofnulldev(9F) for a srv() routine can result in flow control errors.

Return Values

See Also

Warnings

srv(9E)

Driver Entry Points 125

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getq-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1putnext-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1bcanputnext-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1putbq-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1bcanput-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1bcanputnext-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1canput-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1canputnext-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getq-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nulldev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1putbq-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1putnext-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1putq-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1qinit-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1queue-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=STREAMS
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1qinit-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nulldev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nulldev-9f

strategy – perform block I/O

#include <sys/types.h>

#include <sys/buf.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

int prefixstrategy(struct buf *bp);

Architecture independent level 1 (DDI/DKI). This entry point is required for block devices.

bp Pointer to the buf(9S) structure.

The strategy() routine is called indirectly (through cb_ops(9S)) by the kernel to read and
write blocks of data on the block device. strategy() may also be called directly or indirectly
to support the raw character interface of a block device (read(9E), write(9E) and ioctl(9E)).
The strategy() routine's responsibility is to set up and initiate the transfer.

In general, strategy() should not block. It can, however, perform a kmem_cache_create(9F)
with both the KM_PUSHPAGE and KM_SLEEP flags set, which might block, without causing
deadlock in low memory situations.

The strategy() function must return 0. On an error condition, it should call bioerror(9F) to
set b_flags to the proper error code, and call biodone(9F). Note that a partial transfer is not
considered to be an error.

ioctl(9E), read(9E), write(9E), biodone(9F), bioerror(9F), buf(9S), cb_ops(9S),
kmem_cache_create(9F)

Writing Device Drivers

Name

Synopsis

Interface Level

Parameters

Description

Return Values

See Also

strategy(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 6 Nov 2003126

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kmem-cache-create-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1bioerror-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1biodone-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1biodone-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1bioerror-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kmem-cache-create-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

tran_abort – abort a SCSI command

#include <sys/scsi/scsi.h>

int prefixtran_abort(struct scsi_address *ap,
struct scsi_pkt *pkt);

Solaris architecture specific (Solaris DDI).

ap Pointer to a scsi_address(9S) structure.

pkt Pointer to a scsi_pkt(9S) structure.

The tran_abort() vector in the scsi_hba_tran(9S) structure must be initialized during the
HBA driver's attach(9E) to point to an HBA entry point to be called when a target driver calls
scsi_abort(9F).

tran_abort() should attempt to abort the command pkt that has been transported to the
HBA. If pkt is NULL, the HBA driver should attempt to abort all outstanding packets for the
target/logical unit addressed by ap.

Depending on the state of a particular command in the transport layer, the HBA driver may
not be able to abort the command.

While the abort is taking place, packets issued to the transported layer may or may not be
aborted.

For each packet successfully aborted, tran_abort() must set the pkt_reason to CMD_ABORTED,
and pkt_statistics must be OR'ed with STAT_ABORTED .

tran_abort() must return:

1 upon success or partial success.

0 upon failure.

The tran_abort() function can be called from user or interrupt context. This requirement
comes from scsi_abort().

attach(9E), scsi_abort(9F), scsi_hba_attach(9F), scsi_address(9S),
scsi_hba_tran(9S), scsi_pkt(9S)

Writing Device Drivers

If pkt_reason already indicates that an earlier error had occurred, tran_abort() should not
overwrite pkt_reason with CMD_ABORTED.

Name

Synopsis

Interface Level

Arguments

Description

Return Values

Context

See Also

Notes

tran_abort(9E)

Driver Entry Points 127

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-address-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-abort-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-abort-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-attach-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-address-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

tran_bus_reset – reset a SCSI bus

#include <sys/scsi/scsi.h> int prefix

tran_bus_reset(dev_info_t *hba_dip, int level);

Solaris DDI

hba_dip The dev_info_t pointer associated with the SCSI HBA.

level The level of reset required.

The tran_bus_reset() vector in the scsi_hba_tran(9S) structure should be initialized
during the HBA driver's attach(9E). It is an HBA entry point to be called when a user initiates
a bus reset through device control interfaces.

tran_bus_reset() must reset the SCSI bus without resetting targets.

level will be one of the following:

RESET_BUS Reset the SCSI bus only, not the targets.

Implementation is hardware specific. If it is not possible to reset the SCSI bus without
changing the state and operating mode of the targets, the HBA driver should not initialize this
vector or return failure.

tran_bus_reset() should return:

1 on success.

0 on failure.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

attributes(5), tran_quiesce(9E), scsi_hba_tran(9S)

Name

Synopsis

Interface Level

Parameters

Description

Return Values

Attributes

See Also

tran_bus_reset(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 17 Mar 1999128

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s

tran_dmafree – SCSI HBA DMA deallocation entry point

#include <sys/scsi/scsi.h>

void prefixtran_dmafree(struct scsi_address *ap, struct scsi_pkt *pkt);

Solaris architecture specific (Solaris DDI).

ap A pointer to a scsi_address structure. See scsi_address(9S).

pkt A pointer to a scsi_pkt structure. See scsi_pkt(9S).

The tran_dmafree() vector in the scsi_hba_tran structure must be initialized during the HBA
driver's attach() to point to an HBA entry point to be called when a target driver calls
scsi_dmafree(9F). See attach(9E) and scsi_hba_tran(9S).

tran_dmafree() must deallocate any DMA resources previously allocated to this pkt in a call
to tran_init_pkt(9E). tran_dmafree() should not free the structure pointed to by pkt itself.
Since tran_destroy_pkt(9E) must also free DMA resources, it is important that the HBA
driver keeps accurate note of whether scsi_pkt(9S) structures have DMA resources allocated.

attach(9E), tran_destroy_pkt(9E), tran_init_pkt(9E), scsi_dmafree(9F),
scsi_dmaget(9F), scsi_hba_attach(9F), scsi_init_pkt(9F), scsi_address(9S),
scsi_hba_tran(9S), scsi_pkt(9S)

Writing Device Drivers

A target driver may call tran_dmafree() on packets for which no DMA resources were
allocated.

Name

Synopsis

Interface Level

Arguments

Description

See Also

Notes

tran_dmafree(9E)

Driver Entry Points 129

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-address-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-dmafree-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-dmafree-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-dmaget-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-attach-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-address-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

tran_getcap, tran_setcap – get/set SCSI transport capability

#include <sys/scsi/scsi.h>

int prefixtran_getcap(struct scsi_address *ap, char *cap, int whom);

int prefixtran_setcap(struct scsi_address *ap, char *cap, int value,
int whom);

Solaris architecture specific (Solaris DDI).

ap Pointer to the scsi_address(9S) structure.

cap Pointer to the string capability identifier.

value Defines the new state of the capability.

whom Specifies whether all targets or only the specified target is affected.

The tran_getcap() and tran_setcap() vectors in the scsi_hba_tran(9S) structure must be
initialized during the HBA driver's attach(9E) to point to HBA entry points to be called when
a target driver calls scsi_ifgetcap(9F) and scsi_ifsetcap(9F).

tran_getcap() is called to get the current value of a capability specific to features provided by
the HBA hardware or driver. The name of the capability cap is the NULL terminated capability
string.

If whom is non-zero, the request is for the current value of the capability defined for the target
specified by the scsi_address(9S) structure pointed to by ap; if whom is 0, all targets are
affected; else, the target specified by the scsi_address structure pointed to by ap is affected.

tran_setcap() is called to set the value of the capability cap to the value of value. If whom is
non-zero, the capability should be set for the target specified by the scsi_address(9S)
structure pointed to by ap; if whom is 0, all targets are affected; else, the target specified by the
scsi_address structure pointed to by ap is affected. It is recommended that HBA drivers do
not support setting capabilities for all targets, that is, whom is 0.

A device may support only a subset of the defined capabilities.

Refer to scsi_ifgetcap(9F) for the list of defined capabilities.

HBA drivers should use scsi_hba_lookup_capstr(9F) to match cap against the canonical
capability strings.

tran_setcap() must return 1 if the capability was successfully set to the new value, 0 if the
HBA driver does not support changing the capability, and −1 if the capability was not defined.

Name

Synopsis

Interface Level

Parameters

Description

Return Values

tran_getcap(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 30 Aug 1995130

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-address-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-ifgetcap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-ifsetcap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-address-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-address-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-ifgetcap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-lookup-capstr-9f

tran_getcap() must return the current value of a capability or −1 if the capability was not
defined.

attach(9E), scsi_hba_attach(9F), scsi_hba_lookup_capstr(9F), scsi_ifgetcap(9F),
scsi_address(9S), scsi_hba_tran(9S)

Writing Device Drivers

See Also

tran_getcap(9E)

Driver Entry Points 131

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-attach-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-lookup-capstr-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-ifgetcap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-address-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

tran_init_pkt, tran_destroy_pkt – SCSI HBA packet preparation and deallocation

#include <sys/scsi/scsi.h>

struct scsi_pkt *prefixtran_init_pkt(struct scsi_address *ap,
struct scsi_pkt *pkt, struct buf *bp, int cmdlen,
int statuslen, int tgtlen, intflags, int (*callback,
caddr_t),caddr_t arg);

void prefixtran_destroy_pkt(struct scsi_address *ap,
struct scsi_pkt *pkt);

Solaris architecture specific (Solaris DDI).

ap Pointer to a scsi_address(9S) structure.

pkt Pointer to a scsi_pkt(9S) structure allocated in an earlier call, or NULL.

bp Pointer to a buf(9S) structure if DMA resources are to be allocated for the pkt, or
NULL.

cmdlen The required length for the SCSI command descriptor block (CDB) in bytes.

statuslen The required length for the SCSI status completion block (SCB) in bytes.

tgtlen The length of the packet private area within the scsi_pkt to be allocated on
behalf of the SCSI target driver.

flags Flags for creating the packet.

callback Pointer to either NULL_FUNC or SLEEP_FUNC.

arg Always NULL.

The tran_init_pkt() and tran_destroy_pkt() vectors in the scsi_hba_tran structure
must be initialized during the HBA driver's attach(9E) to point to HBA entry points to be
called when a target driver calls scsi_init_pkt(9F) and scsi_destroy_pkt(9F).

tran_init_pkt() is the entry point into the HBA which is used to allocate and initialize a
scsi_pkt structure on behalf of a SCSI target driver. If pkt is NULL, the HBA driver must use
scsi_hba_pkt_alloc(9F) to allocate a new scsi_pkt structure.

If bp is non-NULL, the HBA driver must allocate appropriate DMA resources for the pkt, for
example, throughddi_dma_buf_setup(9F) or ddi_dma_buf_bind_handle(9F).

If the PKT_CONSISTENT bit is set in flags, the buffer was allocated by
scsi_alloc_consistent_buf(9F). For packets marked with PKT_CONSISTENT, the HBA
driver must synchronize any cached data transfers before calling the target driver's command
completion callback.

Name

Synopsis

Interface Level

Parameters

Description

tran_init_pkt()

tran_init_pkt(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 11 Jan 2009132

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-address-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-destroy-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-pkt-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-dma-buf-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-alloc-consistent-buf-9f

If the PKT_DMA_PARTIAL bit is set in flags, the HBA driver should set up partial data transfers,
such as setting the DDI_DMA_PARTIAL bit in the flags argument if interfaces such as
ddi_dma_buf_setup(9F) or ddi_dma_buf_bind_handle(9F) are used.

If only partial DMA resources are available, tran_init_pkt() must return in the pkt_resid
field of pkt the number of bytes of DMA resources not allocated.

If both pkt and bp are non-NULL, if the PKT_DMA_PARTIAL bit is set in flags, and if DMA
resources have already been allocated for the pkt with a previous call to tran_init_pkt() that
returned a non-zero pkt_resid field, this request is to move the DMA resources for the
subsequent piece of the transfer.

The contents of scsi_address(9S) pointed to by ap are copied into the pkt_address field of
the scsi_pkt(9S) by scsi_hba_pkt_alloc(9F).

tgtlen is the length of the packet private area in the scsi_pkt structure to be allocated on
behalf of the SCSI target driver.

statuslen is the required length for the SCSI status completion block. If the requested status
length is greater than or equal to sizeof(struct scsi_arq_status) and the auto_rqsense
capability has been set, automatic request sense (ARS) is enabled for this packet. If the status
length is less than sizeof(struct scsi_arq_status), automatic request sense must be
disabled for this pkt.

If the HBA driver is not capable of disabling ARQ on a per-packet basis and tran_init_pkt()

is called with a statuslen that is less than sizeof(struct scsi_arq_status), the driver's
tran_init_pkt routine should allocate at least sizeof(struct scsi_arq_status). If an ARS
is needed, upon successful ARS done by the HBA driver, the driver must copy the sense data
over and set STAT_ARQ_DONE in pkt_state.

cmdlen is the required length for the SCSI command descriptor block.

Note: tgtlen, statuslen, and cmdlen are used only when the HBA driver allocates the
scsi_pkt(9S), in other words, when pkt is NULL.

callback indicates what the allocator routines should do when resources are not available:

NULL_FUNC Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC Wait indefinitely for resources.

tran_destroy_pkt() is the entry point into the HBA that must free all of the resources that
were allocated to the scsi_pkt(9S) structure during tran_init_pkt().

tran_init_pkt() must return a pointer to a scsi_pkt(9S) structure on success, or NULL on
failure.

tran_destroy_pkt()

Return Values

tran_init_pkt(9E)

Driver Entry Points 133

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-dma-buf-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-address-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-pkt-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-pkt-9s

If pkt is NULL on entry, and tran_init_pkt() allocated a packet
throughscsi_hba_pkt_alloc(9F) but was unable to allocate DMA resources,
tran_init_pkt() must free the packet through scsi_hba_pkt_free(9F) before returning
NULL.

attach(9E), tran_setup_pkt(9E), tran_sync_pkt(9E), biodone(9F), bioerror(9F),
ddi_dma_buf_bind_handle(9F), ddi_dma_buf_setup(9F), kmem_cache_create(9F),
scsi_alloc_consistent_buf(9F), scsi_destroy_pkt(9F), scsi_hba_attach(9F),
scsi_hba_pkt_alloc(9F), scsi_hba_pkt_free(9F), scsi_init_pkt(9F), buf(9S),
scsi_address(9S), scsi_hba_tran(9S), scsi_pkt(9S)

Writing Device Drivers

If a DMA allocation request fails with DDI_DMA_NOMAPPING, indicate the error by calling
bioerror(9F) with bp and an error code of EFAULT.

If a DMA allocation request fails with DDI_DMA_TOOBIG, indicate the error by calling
bioerror(9F) with bp and an error code of EINVAL.

For increased performance, an HBA driver may want to provide a cache for scsi_pkt(9S)
allocation. This cache should be implemented by the HBA driver providing a
tran_setup_pkt(9E) implementation. Implementing this cache by direct use of
kmem_cache_create(9F) adds a compile-time dependency on scsi_pkt() size, which is
illegal.

See Also

Notes

tran_init_pkt(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 11 Jan 2009134

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-pkt-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-pkt-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1biodone-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1bioerror-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-dma-buf-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fkmem-cache-create-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-alloc-consistent-buf-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-destroy-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-attach-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-pkt-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-pkt-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-address-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1bioerror-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1bioerror-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN9Fkmem-cache-create-9f

tran_quiesce, tran_unquiesce – quiesce and unquiesce a SCSI bus

#include <sys/scsi/scsi.h>

int prefixtran_quiesce(dev_info_t *hba_dip);

int prefixtran_unquiesce(dev_info_t *hba_dip);

Solaris DDI

hba_dip The dev_info_t pointer associated with the SCSI HBA.

The tran_quiesce() and tran_unquiesce() vectors in the scsi_hba_tran(9S) structure
should be initialized during the HBA driver's attach(9E). They are HBA entry points to be
called when a user initiates quiesce and unquiesce operations through device control
interfaces.

tran_quiesce() should wait for all outstanding commands to complete and blocks (or
queues) any I/O requests issued. tran_unquiesce() should allow I/O activities to resume on
the SCSI bus.

Implementation is hardware specific.

tran_quiesce() and tran_unquiesce() should return:

0 Successful completion.

Non-zero An error occurred.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

attributes(5), tran_bus_reset(9E), scsi_hba_tran(9S)

Name

Synopsis

Interface Level

Parameters

Description

Return Values

Attributes

See Also

tran_quiesce(9E)

Driver Entry Points 135

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s

tran_reset – reset a SCSI bus or target

#include <sys/scsi/scsi.h>

int prefixtran_reset(struct scsi_address *ap, int level);

Solaris architecture specific (Solaris DDI).

ap Pointer to the scsi_address(9S) structure.

level The level of reset required.

The tran_reset() vector in the scsi_hba_tran(9S) structure must be initialized during the
HBA driver's attach(9E) to point to an HBA entry point to be called when a target driver calls
scsi_reset(9F).

tran_reset() must reset either the SCSI bus, a SCSI target device, or a SCSI logical unit as
specified by level.

level must be one of the following:

RESET_ALL Reset the SCSI bus.

RESET_TARGET Reset the target specified by ap.

RESET_LUN Reset the logical unit specified by ap.

tran_reset should set the pkt_reason field of all outstanding packets in the transport layer
associated with each target or logical unit that was successfully reset to CMD_RESET and the
pkt_statistics field must be OR'ed with either STAT_BUS_RESET (if the SCSI bus was reset)
or STAT_DEV_RESET (if the target or logical unit was reset).

The HBA driver should use a SCSI Bus Device Reset Message to reset a target device. The HBA
driver should use a SCSI Logical Unit Reset Message to reset a logical unit.

Packets that are in the transport layer but not yet active on the bus should be returned with
pkt_reason set to CMD_RESET and pkt_statistics OR'ed with STAT_ABORTED.

Support for RESET_LUN is optional but strongly encouraged for new and updated HBA drivers.
If an HBA driver provides RESET_LUN support, it must also create the lun-reset capability
with a value of zero for each target device instance represented by a valid ap. The HBA is also
required to provide the means to return the current value of the lun-reset capability in its
tran_getcap(9E) routine, as well as the means to change the value of the lun_reset capability
in its tran_getcap(9E) routine.

Name

Synopsis

Interface Level

Parameters

Description

tran_reset(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 17 Aug 2005136

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-address-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-reset-9f

tran_reset() should return:

1 on success.

0 on failure.

The tran_reset() function can be called from user or interrupt context. This requirement
comes from scsi_reset().

attach(9E), ddi_dma_buf_setup(9F), scsi_hba_attach(9F), scsi_reset(9F),
scsi_address(9S), scsi_hba_tran(9S)

Writing Device Drivers

If pkt_reason already indicates that an earlier error had occurred for a particular pkt,
tran_reset() should not overwrite pkt_reason with CMD_RESET.

Return Values

Context

See Also

Notes

tran_reset(9E)

Driver Entry Points 137

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-dma-buf-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-attach-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-reset-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-address-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

tran_reset_notify – request to notify SCSI target of bus reset

#include <sys/scsi/scsi.h>

int prefixtran_reset_notify(struct scsi_address *ap, int flag,
void (*callback, caddr_t),caddr_t arg);

Solaris architecture specific (Solaris DDI).

ap Pointer to the scsi_address(9S) structure.

flag A flag indicating registration or cancellation of a notification request.

callback A pointer to the target driver's reset notification function.

arg The callback function argument.

The tran_reset_notify() entry point is called when a target driver requests notification of a
bus reset.

The tran_reset_notify() vector in the scsi_hba_tran(9S) structure may be initialized in
the HBA driver's attach(9E) routine to point to the HBA entry point to be called when a
target driver calls scsi_reset_notify(9F).

The argument flag is used to register or cancel the notification. The supported values for flag
are as follows:

SCSI_RESET_NOTIFY Register callback as the reset notification function for the target.

SCSI_RESET_CANCEL Cancel the reset notification request for the target.

The HBA driver maintains a list of reset notification requests registered by the target drivers.
When a bus reset occurs, the HBA driver notifies registered target drivers by calling the
callback routine, callback, with the argument, arg, for each registered target.

For SCSI_RESET_NOTIFY requests, tran_reset_notify() must return DDI_SUCCESS if the
notification request has been accepted, and DDI_FAILURE otherwise.

For SCSI_RESET_CANCEL requests, tran_reset_notify() must return DDI_SUCCESS if the
notification request has been canceled, and DDI_FAILURE otherwise.

attach(9E), scsi_ifgetcap(9F), scsi_reset_notify(9F), scsi_address(9S),
scsi_hba_tran(9S)

Writing Device Drivers

Name

Synopsis

Interface Level

Parameters

Description

Return Values

See Also

tran_reset_notify(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 30 Aug 1995138

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-address-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-reset-notify-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-ifgetcap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-reset-notify-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-address-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

tran_setup_pkt, tran_teardown_pkt, tran_pkt_constructor, tran_pkt_destructor – SCSI HBA
packet allocation and deallocation

#include <sys/scsi/scsi.h>

struct scsi_pkt *prefix_tran_setup_pkt(struct scsi_pkt *pkt,
int (*callback) (caddr_t), caddr_t arg);

void prefix_tran_teardown_pkt(struct scsi_pkt *pkt);

int prefix_tran_pkt_constructor(struct scsi_pkt *pkt,
scsi_hba_tran_t *tranp, int kmflags);

void prefix_tran_pkt_destructor(struct scsi_pkt *pkt,
struct scsi_hba_tran_t *tranp);

Solaris architecture specific (Solaris DDI).

pkt Pointer to the scsi_pkt(9S) structure.

flags Flags for associating DMA resources with the packet.

callback Pointer to either NULL_FUNC or SLEEP_FUNC.

arg Always NULL.

kmflags Either KM_SLEEP or KM_NOSLEEP.

The tran_setup_pkt() and tran_destroy_pkt() vectors in the scsi_hba_tran(9S)
structure are alternatives to the tran_init_pkt() and tran_destroy_pkt() entry points.
They are initialized during the HBA driver's attach(9E) and they are used when a target
driver calls scsi_init_pkt(9F) and scsi_destroy_pkt(9F).

The tran_setup_pkt() vector is the entry point into the HBA which is used to initialize HBA
specific information in a scsi_pkt structure on behalf of a SCSI target driver. All fields
documented in scsi_pkt(9S) are initialized.

If the HBA driver chose not to preallocate memory for pkt_cdbp and/or pkt_scbp, it must
allocate the requested memory at this time and point pkt_cdbp and pkt_scbp to the allocated
memory.

An HBA driver which provides a tran_setup_pkt entry point inspects the pkt_numcookies
and pkt_cookies fields at tran_start time to set up the transfer. If pkt_numcookies is zero,
there are no DMA resources associated with this packet. If pkt_numcookies is not zero, it
indicates the number of DMA cookies that pkt_cookies points to.

The pkt_tgtlen field contains the length of the packet private area pointed to by
pkt_private, allocated on behalf of the SCSI target driver.

Name

Synopsis

Interface Level

Parameters

Description

tran_setup_pkt()

tran_setup_pkt(9E)

Driver Entry Points 139

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-destroy-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-pkt-9s

The pkt_scblen field contains the length of the SCSI status completion block pointed to by
pkt_scbp. If the status length is greater than or equal to sizeof (struct scsi_arq_status) and
the auto_rqsensecapability has been set, automatic request sense (ARS) is enabled for this
packet. If the status lengthislessthansizeof (struct scsi_arq_status), automatic request
sense should be disabled for this pkt if the HBA driver is capable of disabling ARQ on a
per-packet basis.

The pkt_cdblen field contains the length of the SCSI command descriptor block.

The callback argument indicates what the allocator routines should do when resources are not
available:

NULL_FUNC Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC Wait indefinitely for resources.

The tran_teardown_pkt() is the entry point into the HBA that must free all of the resources
that were allocated to the scsi_pkt(9S) structure during tran_setup_pkt().

When using tran_pkt_setup() and tran_pkt_teardown(), tran_pkt_constructor() and
tran_pkt_destructor() are additional optional entry points that perform the actions of a
constructor and destructor. The constructor is called after the following fields in the scsi_pkt
structure have been initialized:

pkt_address

pkt_ha_private

pkt_cdbp

pkt_private

pkt_scbp

pkt_cdblen

pkt_tgtlen

pkt_scblen

Allocating and freeing a DMA handle are examples of something that could be done in the
constructor and destructor. See kmem_cache_create(9F) for additional restrictions on what
actions can be performed in a constructor and destructor.

HBA drivers that implement tran_setup_pkt() must signal scsi_pkt(9S) completion by
calling scsi_hba_pkt_comp(9F). Direct use of the scsi_pkt pkt_comp field is not permitted
and results in undefined behavior.

tran_setup_pkt() must return zero on success, and -1 on failure.

attach(9E), tran_sync_pkt(9E), bioerror(9F), ddi_dma_buf_bind_handle(9F),
kmem_cache_create(9F), scsi_alloc_consistent_buf(9F), scsi_destroy_pkt(9F),

tran_teardown_pkt()

tran_pkt_constructor()
tran_pkt_destructor()

Return Values

See Also

tran_setup_pkt(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 29 Jan 2009140

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kmem-cache-create-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-pkt-comp-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1bioerror-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1kmem-cache-create-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-alloc-consistent-buf-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-destroy-pkt-9f

scsi_hba_attach(9F), scsi_hba_pkt_alloc(9F), scsi_hba_pkt_comp(9F),
scsi_hba_pkt_free(9F), scsi_init_pkt(9F), buf(9S), scsi_address(9S),
scsi_hba_tran(9S), scsi_pkt(9S)

Writing Device Drivers

tran_setup_pkt(9E)

Driver Entry Points 141

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-attach-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-pkt-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-pkt-comp-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-pkt-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1buf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-address-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

tran_start – request to transport a SCSI command

#include <sys/scsi/scsi.h>

int prefixtran_start(struct scsi_address *ap,
struct scsi_pkt *pkt);

Solaris architecture specific (Solaris DDI).

pkt Pointer to the scsi_pkt(9S) structure that is about to be transferred.

ap Pointer to a scsi_address(9S) structure.

The tran_start() vector in the scsi_hba_tran(9S) structure must be initialized during the
HBA driver's attach(9E) to point to an HBA entry point to be called when a target driver calls
scsi_transport(9F).

tran_start() must perform the necessary operations on the HBA hardware to transport the
SCSI command in the pkt structure to the target/logical unit device specified in the ap
structure.

If the flag FLAG_NOINTR is set in pkt_flags in pkt, tran_start() should not return until the
command has been completed. The command completion callback pkt_comp in pkt must not
be called for commands with FLAG_NOINTR set, since the return is made directly to the
function invoking scsi_transport(9F).

When the flag FLAG_NOINTR is not set, tran_start() must queue the command for execution
on the hardware and return immediately. The member pkt_comp in pkt indicates a callback
routine to be called upon command completion.

Refer to scsi_pkt(9S) for other bits in pkt_flags for which the HBA driver may need to
adjust how the command is managed.

If the auto_rqsense capability has been set, and the status length allocated in
tran_init_pkt(9E) is greater than or equal to sizeof(struct scsi_arq_status), automatic
request sense is enabled for this pkt. If the command terminates with a Check Condition, the
HBA driver must arrange for a Request Sense command to be transported to that
target/logical unit, and the members of the scsi_arq_status structure pointed to by
pkt_scbp updated with the results of this Request Sense command before the HBA driver
completes the command pointed by pkt.

The member pkt_time in pkt is the maximum number of seconds in which the command
should complete. Timeout starts when the command is transmitted on the SCSI bus. A
pkt_time of 0 means no timeout should be performed.

Name

Synopsis

Interface Level

Parameters

Description

tran_start(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 17 Aug 2005142

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-address-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-pkt-9s

For a command which has timed out, the HBA driver must perform some recovery operation
to clear the command in the target, typically an Abort message, or a Device or Bus Reset. The
pkt_reason member of the timed out pkt should be set to CMD_TIMEOUT, and pkt_statistics

OR'ed with STAT_TIMEOUT. If the HBA driver can successfully recover from the timeout,
pkt_statistics must also be OR'ed with one of STAT_ABORTED, STAT_BUS_RESET, or
STAT_DEV_RESET, as appropriate. This informs the target driver that timeout recovery has
already been successfully accomplished for the timed out command. The pkt_comp
completion callback, if not NULL, must also be called at the conclusion of the timeout recovery.

If the timeout recovery was accomplished with an Abort Tag message, only the timed out
packet is affected, and the packet must be returned with pkt_statistics OR'ed with
STAT_ABORTED and STAT_TIMEOUT.

If the timeout recovery was accomplished with an Abort message, all commands active in that
target are affected. All corresponding packets must be returned with pkt_reason,
CMD_TIMEOUT, and pkt_statistics OR'ed with STAT_TIMEOUT and STAT_ABORTED.

If the timeout recovery was accomplished with a Device Reset, all packets corresponding to
commands active in the target must be returned in the transport layer for this target. Packets
corresponding to commands active in the target must be returned returned with pkt_reason

set to CMD_TIMEOUT, and pkt_statistics OR'ed with STAT_DEV_RESET and STAT_TIMEOUT.
Currently inactive packets queued for the device should be returned with pkt_reason set to
CMD_RESET and pkt_statistics OR'ed with STAT_ABORTED.

If the timeout recovery was accomplished with a Bus Reset, all packets corresponding to
commands active in the target must be returned in the transport layer. Packets corresponding
to commands active in the target must be returned with pkt_reason set to CMD_TIMEOUT and
pkt_statistics OR'ed with STAT_TIMEOUT and STAT_BUS_RESET. All queued packets for
other targets on this bus must be returned with pkt_reason set to CMD_RESET and
pkt_statistics OR'ed with STAT_ABORTED.

Note that after either a Device Reset or a Bus Reset, the HBA driver must enforce a reset delay
time of ’scsi-reset-delay’ milliseconds, during which time no commands should be sent
to that device, or any device on the bus, respectively.

tran_start() should initialize the following members in pkt to 0. Upon command
completion, the HBA driver should ensure that the values in these members are updated to
accurately reflect the states through which the command transitioned while in the transport
layer.

pkt_resid For commands with data transfer, this member must be updated to
indicate the residual of the data transferred.

pkt_reason The reason for the command completion. This field should be set to
CMD_CMPLT at the beginning of tran_start(), then updated if the
command ever transitions to an abnormal termination state. To avoid

tran_start(9E)

Driver Entry Points 143

losing information, do not set pkt_reason to any other error state
unless it still has its original CMD_CMPLT value.

pkt_statistics Bit field of transport-related statistics.

pkt_state Bit field with the major states through which a SCSI command can
transition. Note: The members listed above, and pkt_hba_private

member, are the only fields in the scsi_pkt(9S) structure which may be
modified by the transport layer.

tran_start() must return:

TRAN_ACCEPT The packet was accepted by the transport layer.

TRAN_BUSY The packet could not be accepted because there was already a packet
in progress for this target/logical unit, the HBA queue was full, or the
target device queue was full.

TRAN_BADPKT The DMA count in the packet exceeded the DMA engine's maximum
DMA size, or the packet could not be accepted for other reasons.

TRAN_FATAL_ERROR A fatal error has occurred in the HBA.

The tran_start() function can be called from user or interrupt context. This requirement
comes from scsi_transport().

attach(9E), tran_init_pkt(9E), scsi_hba_attach(9F), scsi_transport(9F),
scsi_address(9S), scsi_arq_status(9S), scsi_hba_tran(9S), scsi_pkt(9S)

Writing Device Drivers

Return Values

Context

See Also

tran_start(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 17 Aug 2005144

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-attach-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-address-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-arq-status-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

tran_sync_pkt – SCSI HBA memory synchronization entry point

#include <sys/scsi/scsi.h>

void prefixtran_sync_pkt(struct scsi_address *ap,
struct scsi_pkt *pkt);

Solaris architecture specific (Solaris DDI).

ap A pointer to a scsi_address(9S) structure.

pkt A pointer to a scsi_pkt(9S) structure.

The tran_sync_pkt() vector in the scsi_hba_tran(9S) structure must be initialized during
the HBA driver's attach(9E) to point to an HBA driver entry point to be called when a target
driver calls scsi_sync_pkt(9F).

tran_sync_pkt() must synchronize a HBA's or device's view of the data associated with the
pkt, typically by calling ddi_dma_sync(9F). The operation may also involve HBA
hardware-specific details, such as flushing I/O caches, or stalling until hardware buffers have
been drained.

attach(9E), tran_init_pkt(9E), ddi_dma_sync(9F), scsi_hba_attach(9F),
scsi_init_pkt(9F), scsi_sync_pkt(9F), scsi_address(9S), scsi_hba_tran(9S),
scsi_pkt(9S)

Writing Device Drivers

A target driver may call tran_sync_pkt() on packets for which no DMA resources were
allocated.

Name

Synopsis

Interface Level

Parameters

Description

See Also

Notes

tran_sync_pkt(9E)

Driver Entry Points 145

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-address-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-sync-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-dma-sync-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ddi-dma-sync-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-attach-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-sync-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-address-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

tran_tgt_free – request to free HBA resources allocated on behalf of a target

#include <sys/scsi/scsi.h>

void prefixtran_tgt_free(dev_info_t *hba_dip, dev_info_t *tgt_dip,
scsi_hba_tran_t *hba_tran, struct scsi_device *sd);

Solaris architecture specific (Solaris DDI).

hba_dip Pointer to a dev_info_t structure, referring to the HBA device instance.

tgt_dip Pointer to a dev_info_t structure, referring to the target device instance.

hba_tran Pointer to a scsi_hba_tran(9S) structure, consisting of the HBA's transport
vectors.

sd Pointer to a scsi_device(9S) structure, describing the target.

The tran_tgt_free() vector in the scsi_hba_tran(9S) structure may be initialized during
the HBA driver's attach(9E) to point to an HBA driver function to be called by the system
when an instance of a target device is being detached. The tran_tgt_free() vector, if not
NULL, is called after the target device instance has returned successfully from its detach(9E)
entry point, but before the dev_info node structure is removed from the system. The HBA
driver should release any resources allocated during its tran_tgt_init() or
tran_tgt_probe() initialization performed for this target device instance.

attach(9E), detach(9E), tran_tgt_init(9E), tran_tgt_probe(9E), scsi_device(9S),
scsi_hba_tran(9S)

Writing Device Drivers

Name

Synopsis

Interface Level

Parameters

Description

See Also

tran_tgt_free(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 1 Nov 1993146

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

tran_tgt_init – request to initialize HBA resources on behalf of a particular target

#include <sys/scsi/scsi.h>

void prefixtran_tgt_init(dev_info_t *hba_dip, dev_info_t *tgt_dip,
scsi_hba_tran_t *hba_tran, struct scsi_device *sd);

Solaris architecture specific (Solaris DDI).

hba_dip Pointer to a dev_info_t structure, referring to the HBA device instance.

tgt_dip Pointer to a dev_info_t structure, referring to the target device instance.

hba_tran Pointer to a scsi_hba_tran(9S) structure, consisting of the HBA's transport
vectors.

sd Pointer to a scsi_device(9S) structure, describing the target.

The tran_tgt_init() vector in the scsi_hba_tran(9S) structure may be initialized during
the HBA driver's attach(9E) to point to an HBA driver function to be called by the system
when an instance of a target device is being created. The tran_tgt_init() vector, if not
NULL,is called after the dev_info node structure is created for this target device instance, but
before probe(9E) for this instance is called. Before receiving transport requests from the target
driver instance, the HBA may perform any initialization required for this particular target
during the call of the tran_tgt_init() vector.

Note that hba_tran will point to a cloned copy of the scsi_hba_tran_t structure allocated by
the HBA driver if the SCSI_HBA_TRAN_CLONE flag was specified in the call to
scsi_hba_attach(9F). In this case, the HBA driver may choose to initialize the
tran_tgt_private field in the structure pointed to by hba_tran, to point to the data specific to
the particular target device instance.

tran_tgt_init() must return:

DDI_SUCCESS the HBA driver can support the addressed target, and was able to initialize
per-target resources.

DDI_FAILURE the HBA driver cannot support the addressed target, or was unable to
initialize per-target resources. In this event, the initialization of this
instance of the target device will not be continued, the target driver's
probe(9E) will not be called, and the tgt_dip structure destroyed.

attach(9E), probe(9E), tran_tgt_free(9E), tran_tgt_probe(9E),
scsi_hba_attach_setup(9F), scsi_device(9S), scsi_hba_tran(9S)

Writing Device Drivers

Name

Synopsis

Interface Level

Parameters

Description

Return Values

See Also

tran_tgt_init(9E)

Driver Entry Points 147

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-attach-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-attach-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

tran_tgt_probe – request to probe SCSI bus for a particular target

#include <sys/scsi/scsi.h>

int prefixtran_tgt_probe(struct scsi_device *sd, int (*waitfunc,
void)););

Solaris architecture specific (Solaris DDI).

sd Pointer to a scsi_device(9S) structure.

waitfunc Pointer to either NULL_FUNC or SLEEP_FUNC.

The tran_tgt_probe() vector in the scsi_hba_tran(9S) structure may be initialized during
the HBA driver's attach(9E) to point to a function to be called by scsi_probe(9F) when
called by a target driver during probe(9E) and attach(9E) to probe for a particular SCSI target
on the bus. In the absence of an HBA-specific tran_tgt_probe() function, the default
scsi_probe(9F) behavior is supplied by the function scsi_hba_probe(9F).

The possible choices the HBA driver may make are:

■ Initialize the tran_tgt_probe vector to point to scsi_hba_probe(9F), which results in the
same behavior.

■ Initialize the tran_tgt_probe vector to point to a private function in the HBA, which may
call scsi_hba_probe(9F) before or after any necessary processing, as long as all the defined
scsi_probe(9F) semantics are preserved.

waitfunc indicates what tran_tgt_probe() should do when resources are not available:

NULL_FUNC Do not wait for resources. See scsi_probe(9F) for defined return values if no
resources are available.

SLEEP_FUNC Wait indefinitely for resources.

attach(9E), probe(9E), tran_tgt_free(9E), tran_tgt_init(9E), scsi_hba_probe(9F),
scsi_probe(9F), scsi_device(9S), scsi_hba_tran(9S)

Writing Device Drivers

Name

Synopsis

Interface Level

Parameters

Description

See Also

tran_tgt_probe(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 1 Nov 1993148

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

write – write data to a device

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/open.h>

#include <sys/cred.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

int prefixwrite(dev_t dev, struct uio *uio_p, cred_t *cred_p);

Architecture independent level 1 (DDI/DKI). This entry point is optional.

dev Device number.

uio_p Pointer to the uio(9S) structure that describes where the data is to be stored in user
space.

cred_p Pointer to the user credential structure for the I/O transaction.

Used for character or raw data I/O, the driver write() routine is called indirectly through
cb_ops(9S) by the write(2) system call. The write() routine supervises the data transfer from
user space to a device described by the uio(9S) structure.

The write() routine should check the validity of the minor number component of dev and
the user credentials pointed to by cred_p, if pertinent.

The write() routine should return 0 for success, or the appropriate error number.

The following is an example of a write() routine using physio(9F) to perform writes to a
seekable device:

static int

xxwrite(dev_t dev, struct uio *uiop, cred_t *credp)

{

int instance;

xx_t xx;

instance = getminor(dev);

xx = ddi_get_soft_state(xxstate, instance);

if (xx == NULL)

return (ENXIO);

return (physio(xxstrategy, NULL, dev, B_WRITE,

xxmin, uiop));

}

Name

Synopsis

Interface Level

Parameters

Description

Return Values

Examples

write(9E)

Driver Entry Points 149

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1physio-9f

read(2), write(2), read(9E), physio(9F), cb_ops(9S), uio(9S)

Writing Device Drivers

See Also

write(9E)

man pages section 9: DDI and DKI Driver Entry Points • Last Revised 28 Mar 1997150

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1physio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=DRIVER

	man pages section 9: DDI and DKI Driver Entry Points
	Preface
	Overview

	Introduction
	Intro(9E)

	Driver Entry Points
	aread(9E)
	attach(9E)
	audio_engine_channels(9E)
	audio_engine_chinfo(9E)
	audio_engine_count(9E)
	audio_engine_format(9E)
	audio_engine_open(9E)
	audio_engine_playahead(9E)
	audio_engine_qlen(9E)
	audio_engine_rate(9E)
	audio_engine_start(9E)
	audio_engine_sync(9E)
	awrite(9E)
	chpoll(9E)
	close(9E)
	csx_event_handler(9E)
	detach(9E)
	devmap(9E)
	devmap_access(9E)
	devmap_contextmgt(9E)
	devmap_dup(9E)
	devmap_map(9E)
	devmap_unmap(9E)
	dump(9E)
	_fini(9E)
	getinfo(9E)
	gld(9E)
	identify(9E)
	ioctl(9E)
	ks_snapshot(9E)
	ks_update(9E)
	mac(9E)
	mac_capab_rings(9E)
	mac_group_info(9E)
	mac_ring_info(9E)
	mmap(9E)
	open(9E)
	power(9E)
	print(9E)
	probe(9E)
	prop_op(9E)
	put(9E)
	quiesce(9E)
	read(9E)
	segmap(9E)
	srv(9E)
	strategy(9E)
	tran_abort(9E)
	tran_bus_reset(9E)
	tran_dmafree(9E)
	tran_getcap(9E)
	tran_init_pkt(9E)
	tran_quiesce(9E)
	tran_reset(9E)
	tran_reset_notify(9E)
	tran_setup_pkt(9E)
	tran_start(9E)
	tran_sync_pkt(9E)
	tran_tgt_free(9E)
	tran_tgt_init(9E)
	tran_tgt_probe(9E)
	write(9E)

