
man pages section 3: Networking Library
Functions

Part No: 821–1466–10
November 2011

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

111206@25097

Contents

Preface ...15

Networking Library Functions ..19
accept(3SOCKET) ... 20
accept(3XNET) .. 22
ber_decode(3LDAP) .. 24
ber_encode(3LDAP) .. 29
bind(3SOCKET) ... 33
bind(3XNET) ... 35
byteorder(3SOCKET) ... 38
cldap_close(3LDAP) .. 39
cldap_open(3LDAP) .. 40
cldap_search_s(3LDAP) .. 41
cldap_setretryinfo(3LDAP) ... 43
connect(3SOCKET) ... 44
connect(3XNET) .. 46
dial(3NSL) .. 49
dlpi_arptype(3DLPI) .. 51
dlpi_bind(3DLPI) .. 52
dlpi_close(3DLPI) .. 53
dlpi_disabnotify(3DLPI) ... 54
dlpi_enabmulti(3DLPI) ... 55
dlpi_enabnotify(3DLPI) ... 56
dlpi_fd(3DLPI) .. 58
dlpi_get_physaddr(3DLPI) ... 59
dlpi_iftype(3DLPI) .. 60
dlpi_info(3DLPI) .. 61
dlpi_linkname(3DLPI) ... 65

3

dlpi_mactype(3DLPI) .. 66
dlpi_open(3DLPI) .. 67
dlpi_promiscon(3DLPI) ... 69
dlpi_recv(3DLPI) .. 70
dlpi_send(3DLPI) .. 72
dlpi_set_physaddr(3DLPI) ... 74
dlpi_set_timeout(3DLPI) ... 75
dlpi_strerror(3DLPI) ... 76
dlpi_unbind(3DLPI) .. 77
dlpi_walk(3DLPI) .. 78
DNSServiceBrowse(3DNS_SD) ... 79
DNSServiceConstructFullName(3DNS_SD) ... 81
DNSServiceCreateConnection(3DNS_SD) ... 82
DNSServiceEnumerateDomains(3DNS_SD) ... 84
DNSServiceProcessResult(3DNS_SD) .. 86
DNSServiceQueryRecord(3DNS_SD) .. 87
DNSServiceReconfirmRecord(3DNS_SD) .. 89
DNSServiceRefDeallocate(3DNS_SD) .. 90
DNSServiceRefSockFD(3DNS_SD) .. 91
DNSServiceRegister(3DNS_SD) .. 92
DNSServiceResolve(3DNS_SD) .. 94
endhostent(3XNET) .. 96
endnetent(3XNET) .. 98
endprotoent(3XNET) .. 100
endservent(3XNET) .. 102
ethers(3SOCKET) ... 104
freeaddrinfo(3XNET) .. 106
gai_strerror(3XNET) .. 110
getaddrinfo(3SOCKET) ... 111
gethostbyname(3NSL) ... 118
gethostname(3XNET) .. 124
getifaddrs(3SOCKET) ... 125
getipnodebyname(3SOCKET) .. 127
getipsecalgbyname(3NSL) ... 133
getipsecprotobyname(3NSL) ... 136
getnameinfo(3XNET) .. 138

Contents

man pages section 3: Networking Library Functions • November 20114

getnetbyname(3SOCKET) ... 141
getnetconfig(3NSL) ... 145
getnetpath(3NSL) .. 147
getpeername(3SOCKET) ... 149
getpeername(3XNET) .. 150
getprotobyname(3SOCKET) .. 152
getpublickey(3NSL) ... 155
getrpcbyname(3NSL) ... 156
getservbyname(3SOCKET) .. 159
getsockname(3SOCKET) ... 163
getsockname(3XNET) .. 164
getsockopt(3SOCKET) ... 166
getsockopt(3XNET) .. 171
getsourcefilter(3SOCKET) .. 175
gss_accept_sec_context(3GSS) ... 178
gss_acquire_cred(3GSS) ... 184
gss_add_cred(3GSS) .. 187
gss_add_oid_set_member(3GSS) ... 191
gss_canonicalize_name(3GSS) ... 192
gss_compare_name(3GSS) ... 194
gss_context_time(3GSS) ... 195
gss_create_empty_oid_set(3GSS) .. 196
gss_delete_sec_context(3GSS) ... 197
gss_display_name(3GSS) ... 199
gss_display_status(3GSS) ... 201
gss_duplicate_name(3GSS) ... 203
gss_export_name(3GSS) ... 204
gss_export_sec_context(3GSS) ... 205
gss_get_mic(3GSS) .. 207
gss_import_name(3GSS) ... 209
gss_import_sec_context(3GSS) ... 211
gss_indicate_mechs(3GSS) ... 213
gss_init_sec_context(3GSS) ... 214
gss_inquire_context(3GSS) ... 221
gss_inquire_cred(3GSS) ... 224
gss_inquire_cred_by_mech(3GSS) .. 226

Contents

5

gss_inquire_mechs_for_name(3GSS) .. 228
gss_inquire_names_for_mech(3GSS) .. 230
gss_oid_to_str(3GSS) ... 231
gss_process_context_token(3GSS) .. 233
gss_release_buffer(3GSS) ... 235
gss_release_cred(3GSS) ... 236
gss_release_name(3GSS) ... 237
gss_release_oid(3GSS) ... 238
gss_release_oid_set(3GSS) ... 239
gss_store_cred(3GSS) ... 240
gss_str_to_oid(3GSS) ... 243
gss_test_oid_set_member(3GSS) ... 245
gss_unwrap(3GSS) .. 246
gss_verify_mic(3GSS) ... 248
gss_wrap(3GSS) .. 250
gss_wrap_size_limit(3GSS) ... 252
htonl(3XNET) .. 254
icmp6_filter(3SOCKET) ... 255
if_nametoindex(3SOCKET) .. 256
if_nametoindex(3XNET) ... 258
inet(3SOCKET) ... 260
inet6_opt(3SOCKET) ... 264
inet6_rth(3SOCKET) ... 267
inet_addr(3XNET) .. 270
inet_cidr_ntop(3RESOLV) ... 272
inet_ntop(3XNET) .. 274
ldap(3LDAP) ... 276
ldap_abandon(3LDAP) .. 286
ldap_add(3LDAP) ... 287
ldap_ber_free(3LDAP) .. 289
ldap_bind(3LDAP) .. 290
ldap_charset(3LDAP) .. 293
ldap_compare(3LDAP) .. 295
ldap_control_free(3LDAP) .. 297
ldap_delete(3LDAP) .. 298
ldap_disptmpl(3LDAP) .. 300

Contents

man pages section 3: Networking Library Functions • November 20116

ldap_entry2text(3LDAP) .. 306
ldap_error(3LDAP) .. 309
ldap_first_attribute(3LDAP) ... 313
ldap_first_entry(3LDAP) .. 314
ldap_first_message(3LDAP) ... 316
ldap_friendly(3LDAP) .. 317
ldap_get_dn(3LDAP) .. 318
ldap_get_entry_controls(3LDAP) ... 320
ldap_getfilter(3LDAP) .. 321
ldap_get_lang_values(3LDAP) ... 323
ldap_get_option(3LDAP) .. 325
ldap_get_values(3LDAP) .. 331
ldap_memcache(3LDAP) .. 333
ldap_memfree(3LDAP) .. 336
ldap_modify(3LDAP) .. 337
ldap_modrdn(3LDAP) .. 339
ldap_open(3LDAP) .. 341
ldap_parse_result(3LDAP) .. 343
ldap_result(3LDAP) .. 344
ldap_search(3LDAP) .. 346
ldap_searchprefs(3LDAP) .. 349
ldap_sort(3LDAP) .. 351
ldap_ufn(3LDAP) ... 353
ldap_url(3LDAP) ... 355
ldap_version(3LDAP) .. 358
listen(3SOCKET) ... 359
listen(3XNET) .. 360
netdir(3NSL) .. 362
ns_sign(3RESOLV) .. 366
rcmd(3SOCKET) ... 369
recv(3SOCKET) ... 372
recv(3XNET) ... 375
recvfrom(3XNET) .. 378
recvmsg(3XNET) .. 381
resolver(3RESOLV) .. 385
rexec(3SOCKET) ... 392

Contents

7

rpc(3NSL) .. 394
rpcbind(3NSL) .. 403
rpc_clnt_auth(3NSL) ... 405
rpc_clnt_calls(3NSL) ... 407
rpc_clnt_create(3NSL) ... 412
rpc_control(3NSL) ... 419
rpc_gss_getcred(3NSL) ... 421
rpc_gss_get_error(3NSL) ... 423
rpc_gss_get_mechanisms(3NSL) .. 424
rpc_gss_get_principal_name(3NSL) .. 426
rpc_gss_max_data_length(3NSL) .. 428
rpc_gss_mech_to_oid(3NSL) ... 429
rpc_gss_seccreate(3NSL) ... 431
rpc_gss_set_callback(3NSL) .. 433
rpc_gss_set_defaults(3NSL) .. 435
rpc_gss_set_svc_name(3NSL) .. 436
rpcsec_gss(3NSL) .. 437
rpc_soc(3NSL) .. 441
rpc_svc_calls(3NSL) ... 454
rpc_svc_create(3NSL) ... 458
rpc_svc_err(3NSL) ... 464
rpc_svc_input(3NSL) ... 466
rpc_svc_reg(3NSL) ... 468
rpc_xdr(3NSL) .. 470
rstat(3RPC) .. 472
rusers(3RPC) .. 473
rwall(3RPC) .. 474
sasl_authorize_t(3SASL) ... 475
sasl_auxprop(3SASL) ... 477
sasl_auxprop_add_plugin(3SASL) .. 480
sasl_auxprop_getctx(3SASL) ... 481
sasl_auxprop_request(3SASL) ... 482
sasl_canonuser_add_plugin(3SASL) .. 483
sasl_canon_user_t(3SASL) ... 484
sasl_chalprompt_t(3SASL) ... 486
sasl_checkapop(3SASL) ... 487

Contents

man pages section 3: Networking Library Functions • November 20118

sasl_checkpass(3SASL) ... 488
sasl_client_add_plugin(3SASL) .. 490
sasl_client_init(3SASL) ... 491
sasl_client_new(3SASL) ... 492
sasl_client_plug_init_t(3SASL) .. 494
sasl_client_start(3SASL) ... 495
sasl_client_step(3SASL) ... 497
sasl_decode(3SASL) .. 499
sasl_decode64(3SASL) ... 500
sasl_dispose(3SASL) ... 501
sasl_done(3SASL) .. 502
sasl_encode(3SASL) .. 503
sasl_encode64(3SASL) ... 504
sasl_erasebuffer(3SASL) ... 505
sasl_errdetail(3SASL) ... 506
sasl_errors(3SASL) .. 507
sasl_errstring(3SASL) ... 509
sasl_getcallback_t(3SASL) ... 510
sasl_getopt_t(3SASL) ... 511
sasl_getpath_t(3SASL) ... 512
sasl_getprop(3SASL) ... 513
sasl_getrealm_t(3SASL) ... 515
sasl_getsecret_t(3SASL) ... 516
sasl_getsimple_t(3SASL) ... 517
sasl_global_listmech(3SASL) ... 518
sasl_idle(3SASL) .. 519
sasl_listmech(3SASL) ... 520
sasl_log_t(3SASL) .. 522
sasl_server_add_plugin(3SASL) .. 524
sasl_server_init(3SASL) ... 525
sasl_server_new(3SASL) ... 526
sasl_server_plug_init_t(3SASL) .. 528
sasl_server_start(3SASL) ... 529
sasl_server_step(3SASL) ... 531
sasl_server_userdb_checkpass_t(3SASL) ... 532
sasl_server_userdb_setpass_t(3SASL) .. 533

Contents

9

sasl_set_alloc(3SASL) ... 534
sasl_seterror(3SASL) ... 535
sasl_set_mutex(3SASL) ... 536
sasl_setpass(3SASL) ... 537
sasl_setprop(3SASL) ... 538
sasl_utf8verify(3SASL) ... 540
sasl_verifyfile_t(3SASL) ... 541
sasl_version(3SASL) ... 542
sctp_bindx(3SOCKET) ... 543
sctp_connectx(3SOCKET) .. 545
sctp_getladdrs(3SOCKET) .. 547
sctp_getpaddrs(3SOCKET) .. 549
sctp_opt_info(3SOCKET) .. 551
sctp_peeloff(3SOCKET) ... 558
sctp_recvmsg(3SOCKET) ... 559
sctp_recvv(3SOCKET) ... 560
sctp_send(3SOCKET) ... 564
sctp_sendmsg(3SOCKET) ... 566
sctp_sendv(3SOCKET) ... 568
sdp_add_origin(3COMMPUTIL) ... 573
sdp_clone_session(3COMMPUTIL) .. 579
sdp_delete_all_field(3COMMPUTIL) .. 580
sdp_delete_media(3COMMPUTIL) .. 581
sdp_find_attribute(3COMMPUTIL) .. 582
sdp_find_media(3COMMPUTIL) ... 584
sdp_find_media_rtpmap(3COMMPUTIL) .. 585
sdp_new_session(3COMMPUTIL) .. 587
sdp_parse(3COMMPUTIL) ... 588
sdp_session_to_str(3COMMPUTIL) .. 594
secure_rpc(3NSL) .. 595
send(3SOCKET) ... 600
send(3XNET) ... 603
sendmsg(3XNET) .. 606
sendto(3XNET) .. 609
setsockopt(3XNET) .. 612
shutdown(3SOCKET) ... 616

Contents

man pages section 3: Networking Library Functions • November 201110

shutdown(3XNET) .. 617
sip_add_branchid_to_via(3SIP) .. 619
sip_add_from(3SIP) ... 620
sip_add_header(3SIP) ... 629
sip_add_param(3SIP) ... 630
sip_add_request_line(3SIP) .. 631
sip_branchid(3SIP) ... 633
sip_clone_msg(3SIP) ... 634
sip_copy_start_line(3SIP) .. 635
sip_create_dialog_req(3SIP) .. 637
sip_create_OKack(3SIP) ... 639
sip_create_response(3SIP) .. 641
sip_delete_dialog(3SIP) .. 642
sip_delete_start_line(3SIP) .. 643
sip_enable_counters(3SIP) .. 645
sip_enable_trans_logging(3SIP) .. 648
sip_get_contact_display_name(3SIP) ... 651
sip_get_cseq(3SIP) ... 662
sip_get_dialog_state(3SIP) .. 663
sip_get_header(3SIP) ... 666
sip_get_header_value(3SIP) .. 667
sip_get_msg_len(3SIP) ... 668
sip_get_num_via(3SIP) ... 669
sip_get_param_value(3SIP) .. 670
sip_get_request_method(3SIP) .. 672
sip_get_request_uri_str(3SIP) .. 674
sip_get_resp_desc(3SIP) .. 676
sip_get_trans(3SIP) ... 677
sip_get_trans_method(3SIP) .. 678
sip_get_uri_parsed(3SIP) .. 681
sip_guid(3SIP) ... 682
sip_hold_dialog(3SIP) ... 683
sip_hold_msg(3SIP) ... 684
sip_hold_trans(3SIP) ... 685
sip_init_conn_object(3SIP) .. 686
sip_is_sip_uri(3SIP) ... 687

Contents

11

sip_msg_is_request(3SIP) .. 691
sip_msg_to_str(3SIP) ... 692
sip_new_msg(3SIP) ... 694
sip_parse_uri(3SIP) ... 695
sip_process_new_packet(3SIP) .. 697
sip_register_sent_by(3SIP) .. 698
sip_sendmsg(3SIP) ... 699
sip_stack_init(3SIP) ... 701
slp_api(3SLP) ... 706
SLPClose(3SLP) ... 715
SLPDelAttrs(3SLP) .. 716
SLPDereg(3SLP) ... 717
SLPEscape(3SLP) .. 718
SLPFindAttrs(3SLP) .. 720
SLPFindScopes(3SLP) .. 722
SLPFindSrvs(3SLP) .. 724
SLPFindSrvTypes(3SLP) .. 726
SLPFree(3SLP) ... 728
SLPGetProperty(3SLP) .. 729
SLPGetRefreshInterval(3SLP) ... 730
SLPOpen(3SLP) ... 731
SLPParseSrvURL(3SLP) .. 733
SLPReg(3SLP) ... 735
SLPSetProperty(3SLP) .. 737
slp_strerror(3SLP) .. 738
SLPUnescape(3SLP) .. 739
sockatmark(3XNET) .. 741
socket(3SOCKET) ... 743
socket(3XNET) .. 746
socketpair(3SOCKET) ... 748
socketpair(3XNET) .. 749
spray(3SOCKET) ... 751
t_accept(3NSL) .. 753
t_alloc(3NSL) .. 757
t_bind(3NSL) .. 760
t_close(3NSL) .. 764

Contents

man pages section 3: Networking Library Functions • November 201112

t_connect(3NSL) .. 766
t_errno(3NSL) .. 770
t_error(3NSL) .. 772
t_free(3NSL) .. 774
t_getinfo(3NSL) .. 776
t_getprotaddr(3NSL) ... 780
t_getstate(3NSL) .. 782
t_listen(3NSL) .. 784
t_look(3NSL) .. 787
t_open(3NSL) .. 789
t_optmgmt(3NSL) .. 793
t_rcv(3NSL) .. 800
t_rcvconnect(3NSL) ... 803
t_rcvdis(3NSL) .. 806
t_rcvrel(3NSL) .. 808
t_rcvreldata(3NSL) ... 810
t_rcvudata(3NSL) .. 812
t_rcvuderr(3NSL) .. 815
t_rcvv(3NSL) .. 817
t_rcvvudata(3NSL) ... 820
t_snd(3NSL) .. 822
t_snddis(3NSL) .. 826
t_sndrel(3NSL) .. 828
t_sndreldata(3NSL) ... 830
t_sndudata(3NSL) .. 832
t_sndv(3NSL) .. 835
t_sndvudata(3NSL) ... 839
t_strerror(3NSL) .. 842
t_sync(3NSL) .. 844
t_sysconf(3NSL) .. 846
t_unbind(3NSL) .. 847
TXTRecordCreate(3DNS_SD) ... 849
xdr(3NSL) .. 851
xdr_admin(3NSL) .. 853
xdr_complex(3NSL) ... 855
xdr_create(3NSL) .. 858

Contents

13

xdr_simple(3NSL) .. 860
ypclnt(3NSL) .. 864
yp_update(3NSL) .. 870

Contents

man pages section 3: Networking Library Functions • November 201114

Preface

Both novice users and those familar with the SunOS operating system can use online man pages
to obtain information about the system and its features. A man page is intended to answer
concisely the question “What does it do?” The man pages in general comprise a reference
manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the information it
references:

■ Section 1 describes, in alphabetical order, commands available with the operating system.
■ Section 1M describes, in alphabetical order, commands that are used chiefly for system

maintenance and administration purposes.
■ Section 2 describes all of the system calls. Most of these calls have one or more error returns.

An error condition is indicated by an otherwise impossible returned value.
■ Section 3 describes functions found in various libraries, other than those functions that

directly invoke UNIX system primitives, which are described in Section 2.
■ Section 4 outlines the formats of various files. The C structure declarations for the file

formats are given where applicable.
■ Section 5 contains miscellaneous documentation such as character-set tables.
■ Section 7 describes various special files that refer to specific hardware peripherals and device

drivers. STREAMS software drivers, modules and the STREAMS-generic set of system calls
are also described.

■ Section 9E describes the DDI (Device Driver Interface)/DKI (Driver/Kernel Interface),
DDI-only, and DKI-only entry-point routines a developer can include in a device driver.

■ Section 9F describes the kernel functions available for use by device drivers.
■ Section 9S describes the data structures used by drivers to share information between the

driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section generally
follow this order, but include only needed headings. For example, if there are no bugs to report,

15

there is no BUGS section. See the intro pages for more information and detail about each
section, and man(1) for more information about man pages in general.

NAME This section gives the names of the commands or functions
documented, followed by a brief description of what they
do.

SYNOPSIS This section shows the syntax of commands or functions.
When a command or file does not exist in the standard
path, its full path name is shown. Options and arguments
are alphabetized, with single letter arguments first, and
options with arguments next, unless a different argument
order is required.

The following special characters are used in this section:

[] Brackets. The option or argument enclosed in
these brackets is optional. If the brackets are
omitted, the argument must be specified.

. . . Ellipses. Several values can be provided for the
previous argument, or the previous argument
can be specified multiple times, for example,
“filename . . .” .

| Separator. Only one of the arguments
separated by this character can be specified at a
time.

{ } Braces. The options and/or arguments
enclosed within braces are interdependent,
such that everything enclosed must be treated
as a unit.

PROTOCOL This section occurs only in subsection 3R to indicate the
protocol description file.

DESCRIPTION This section defines the functionality and behavior of the
service. Thus it describes concisely what the command
does. It does not discuss OPTIONS or cite EXAMPLES.
Interactive commands, subcommands, requests, macros,
and functions are described under USAGE.

IOCTL This section appears on pages in Section 7 only. Only the
device class that supplies appropriate parameters to the
ioctl(2) system call is called ioctl and generates its own
heading. ioctl calls for a specific device are listed
alphabetically (on the man page for that specific device).

Preface

man pages section 3: Networking Library Functions • November 201116

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1man-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ioctl-2

ioctl calls are used for a particular class of devices all of
which have an io ending, such as mtio(7I).

OPTIONS This section lists the command options with a concise
summary of what each option does. The options are listed
literally and in the order they appear in the SYNOPSIS
section. Possible arguments to options are discussed under
the option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and describes
how they affect the actions of the command.

OUTPUT This section describes the output – standard output,
standard error, or output files – generated by the
command.

RETURN VALUES If the man page documents functions that return values,
this section lists these values and describes the conditions
under which they are returned. If a function can return
only constant values, such as 0 or –1, these values are listed
in tagged paragraphs. Otherwise, a single paragraph
describes the return values of each function. Functions
declared void do not return values, so they are not
discussed in RETURN VALUES.

ERRORS On failure, most functions place an error code in the global
variable errno indicating why they failed. This section lists
alphabetically all error codes a function can generate and
describes the conditions that cause each error. When more
than one condition can cause the same error, each
condition is described in a separate paragraph under the
error code.

USAGE This section lists special rules, features, and commands
that require in-depth explanations. The subsections listed
here are used to explain built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage or of how to use a
command or function. Wherever possible a complete

Preface

17

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mtio-7i

example including command-line entry and machine
response is shown. Whenever an example is given, the
prompt is shown as example%, or if the user must be
superuser, example#. Examples are followed by
explanations, variable substitution rules, or returned
values. Most examples illustrate concepts from the
SYNOPSIS, DESCRIPTION, OPTIONS, and USAGE
sections.

ENVIRONMENT VARIABLES This section lists any environment variables that the
command or function affects, followed by a brief
description of the effect.

EXIT STATUS This section lists the values the command returns to the
calling program or shell and the conditions that cause these
values to be returned. Usually, zero is returned for
successful completion, and values other than zero for
various error conditions.

FILES This section lists all file names referred to by the man page,
files of interest, and files created or required by commands.
Each is followed by a descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands, utilities,
and device drivers by defining the attribute type and its
corresponding value. See attributes(5) for more
information.

SEE ALSO This section lists references to other man pages, in-house
documentation, and outside publications.

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special conditions which
could seriously affect your working conditions. This is not
a list of diagnostics.

NOTES This section lists additional information that does not
belong anywhere else on the page. It takes the form of an
aside to the user, covering points of special interest.
Critical information is never covered here.

BUGS This section describes known bugs and, wherever possible,
suggests workarounds.

Preface

man pages section 3: Networking Library Functions • November 201118

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Networking Library Functions

R E F E R E N C E

19

accept – accept a connection on a socket

cc [flag ...] file ... -lsocket -lnsl [library ...]

#include <sys/socket.h>

int accept(int s, struct sockaddr *addr, socklen_t *addrlen);

The argument s is a socket that has been created with socket(3SOCKET) and bound to an
address with bind(3SOCKET), and that is listening for connections after a call to
listen(3SOCKET). The accept() function extracts the first connection on the queue of
pending connections, creates a new socket with the properties of s, and allocates a new file
descriptor, ns, for the socket. If no pending connections are present on the queue and the
socket is not marked as non-blocking, accept() blocks the caller until a connection is present.
If the socket is marked as non-blocking and no pending connections are present on the queue,
accept() returns an error as described below. The accept() function uses the netconfig(4)
file to determine the STREAMS device file name associated with s. This is the device on which
the connect indication will be accepted. The accepted socket, ns, is used to read and write data
to and from the socket that connected to ns. It is not used to accept more connections. The
original socket (s) remains open for accepting further connections.

The argument addr is a result parameter that is filled in with the address of the connecting
entity as it is known to the communications layer. The exact format of the addr parameter is
determined by the domain in which the communication occurs.

The argument addrlen is a value-result parameter. Initially, it contains the amount of space
pointed to by addr; on return it contains the length in bytes of the address returned.

The accept() function is used with connection-based socket types, currently with
SOCK_STREAM.

It is possible to select(3C) or poll(2) a socket for the purpose of an accept() by selecting or
polling it for a read. However, this will only indicate when a connect indication is pending; it is
still necessary to call accept().

The accept() function returns −1 on error. If it succeeds, it returns a non-negative integer
that is a descriptor for the accepted socket.

accept() will fail if:

EBADF The descriptor is invalid.

ECONNABORTED The remote side aborted the connection before the accept() operation
completed.

EFAULT The addr parameter or the addrlen parameter is invalid.

EINTR The accept() attempt was interrupted by the delivery of a signal.

EMFILE The per-process descriptor table is full.

Name

Synopsis

Description

Return Values

Errors

accept(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 24 Mar 201120

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netconfig-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2

ENODEV The protocol family and type corresponding to s could not be found in the
netconfig file.

ENOMEM There was insufficient user memory available to complete the operation.

ENOSR There were insufficient STREAMS resources available to complete the
operation.

ENOTSOCK The descriptor does not reference a socket.

EOPNOTSUPP The referenced socket is not of type SOCK_STREAM.

EPROTO A protocol error has occurred; for example, the STREAMS protocol stack
has not been initialized or the connection has already been released.

EWOULDBLOCK The socket is marked as non-blocking and no connections are present to be
accepted.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

poll(2), bind(3SOCKET), connect(3SOCKET), listen(3SOCKET), select(3C),
socket.h(3HEAD), socket(3SOCKET), netconfig(4), attributes(5)

Attributes

See Also

accept(3SOCKET)

Networking Library Functions 21

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1socket.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netconfig-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

accept – accept a new connection on a socket

cc [flag ...] file ... -lxnet [library ...]

#include <sys/socket.h>

int accept(int socket, struct sockaddr *restrict address,
socklen_t *restrict address_len);

The accept() function extracts the first connection on the queue of pending connections,
creates a new socket with the same socket type protocol and address family as the specified
socket, and allocates a new file descriptor for that socket.

The function takes the following arguments:

socket Specifies a socket that was created with socket(3XNET), has been bound to
an address with bind(3XNET), and has issued a successful call to
listen(3XNET).

address Either a null pointer, or a pointer to a sockaddr structure where the address of
the connecting socket will be returned.

address_len Points to a socklen_t which on input specifies the length of the supplied
sockaddr structure, and on output specifies the length of the stored address.

If address is not a null pointer, the address of the peer for the accepted connection is stored in
the sockaddr structure pointed to by address, and the length of this address is stored in the
object pointed to by address_len.

If the actual length of the address is greater than the length of the supplied sockaddr structure,
the stored address will be truncated.

If the protocol permits connections by unbound clients, and the peer is not bound, then the
value stored in the object pointed to by address is unspecified.

If the listen queue is empty of connection requests and O_NONBLOCK is not set on the file
descriptor for the socket, accept() will block until a connection is present. If the
listen(3XNET) queue is empty of connection requests and O_NONBLOCK is set on the file
descriptor for the socket, accept() will fail and set errno to EAGAIN or EWOULDBLOCK.

The accepted socket cannot itself accept more connections. The original socket remains open
and can accept more connections.

When a connection is available, select(3C) will indicate that the file descriptor for the socket
is ready for reading.

Upon successful completion, accept() returns the nonnegative file descriptor of the accepted
socket. Otherwise, −1 is returned and errno is set to indicate the error.

Name

Synopsis

Description

Usage

Return Values

accept(3XNET)

man pages section 3: Networking Library Functions • Last Revised 1 Nov 200322

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c

The accept() function will fail if:

EAGAIN

EWOULDBLOCK O_NONBLOCK is set for the socket file descriptor and no connections are
present to be accepted.

EBADF The socket argument is not a valid file descriptor.

ECONNABORTED A connection has been aborted.

EFAULT The address or address_len parameter can not be accessed or written.

EINTR The accept() function was interrupted by a signal that was caught before a
valid connection arrived.

EINVAL The socket is not accepting connections.

EMFILE OPEN_MAX file descriptors are currently open in the calling process.

ENFILE The maximum number of file descriptors in the system are already open.

ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The socket type of the specified socket does not support accepting
connections.

The accept() function may fail if:

ENOBUFS No buffer space is available.

ENOMEM There was insufficient memory available to complete the operation.

ENOSR There was insufficient STREAMS resources available to complete the operation.

EPROTO A protocol error has occurred; for example, the STREAMS protocol stack has not
been initialized.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

bind(3XNET), connect(3XNET), listen(3XNET), socket(3XNET), attributes(5),
standards(5)

Errors

Attributes

See Also

accept(3XNET)

Networking Library Functions 23

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

ber_decode, ber_alloc_t, ber_free, ber_bvdup, ber_init, ber_flatten, ber_get_next,
ber_skip_tag, ber_peek_tag, ber_scanf, ber_get_int, ber_get_stringa, ber_get_stringal,
ber_get_stringb, ber_get_null, ber_get_boolean, ber_get_bitstring, ber_first_element,
ber_next_element, ber_bvfree, ber_bvecfree – Basic Encoding Rules library decoding
functions

cc [flag...] file... -lldap [library...]

#include <lber.h>

BerElement *ber_alloc_t(int options);

struct berval *ber_bvdup(const struct berval *bv);

void ber_free(BerElement *ber, int freebuf);

BerElement *ber_init(const struct berval *bv);

int ber_flatten(BerElement *ber, struct berval **bvPtr);

ber_tag_t ber_get_next(Sockbuf *sb, ber_len_t *len, BerElement *ber);

ber_tag_t ber_skip_tag(BerElement *ber, ber_len_t *len);

ber_tag_t ber_peek_tag(BerElement *ber, ber_len_t *len);

ber_tag_t ber_get_int(BerElement *ber, ber_int_t *num);

ber_tag_t ber_get_stringb(BerElement *ber, char *buf,
ber_len_t *len);

ber_tag_t ber_get_stringa(BerElement *ber, char **buf);

ber_tag_t ber_get_stringal(BerElement *ber, struct berval **bv);

ber_tag_t ber_get_null(BerElement *ber);

ber_tag_t ber_get_boolean(BerElement *ber, int *boolval);

ber_tag_t ber_get_bitstringa(BerElement *ber, char **buf,
ber_len_t *len);

ber_tag_t ber_first_element(BerElement *ber, ber_len_t *len,
char **last);

ber_tag_t ber_next_element(BerElement *ber, ber_len_t *len,
char *last);

ber_tag_t ber_scanf(BerElement *ber, const char *fmt [, arg...]);

void ber_bvfree(struct berval *bv);

void ber_bvecfree(struct berval **bvec);

These functions provide a subfunction interface to a simplified implementation of the Basic
Encoding Rules of ASN.1. The version of BER these functions support is the one defined for
the LDAP protocol. The encoding rules are the same as BER, except that only definite form
lengths are used, and bitstrings and octet strings are always encoded in primitive form. In

Name

Synopsis

Description

ber_decode(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 201124

addition, these lightweight BER functions restrict tags and class to fit in a single octet (this
means the actual tag must be less than 31). When a “tag”is specified in the descriptions below,
it refers to the tag, class, and primitive or constructed bit in the first octet of the encoding. This
man page describes the decoding functions in the lber library. See ber_encode(3LDAP) for
details on the corresponding encoding functions.

Normally, the only functions that need be called by an application are ber_get_next() to get
the next BER element and ber_scanf() to do the actual decoding. In some cases,
ber_peek_tag() may also need to be called in normal usage. The other functions are provided
for those applications that need more control than ber_scanf() provides. In general, these
functions return the tag of the element decoded, or −1 if an error occurred.

The ber_get_next() function is used to read the next BER element from the given Sockbuf,
sb. A Sockbuf consists of the descriptor (usually socket, but a file descriptor works just as well)
from which to read, and a BerElement structure used to maintain a buffer. On the first call, the
sb_ber struct should be zeroed. It strips off and returns the leading tag byte, strips off and
returns the length of the entire element in len, and sets up ber for subsequent calls to
ber_scanf(), and all to decode the element.

The ber_peek_tag() function returns the tag of the next element to be parsed in the
BerElement argument. The length of this element is stored in the *lenPtr argument.
LBER_DEFAULT is returned if there is no further data to be read. The decoding position within
the ber argument is unchanged by this call; that is, the fact that ber_peek_tag() has been
called does not affect future use of ber.

The ber_skip_tag() function is similar to ber_peek_tag(), except that the state pointer in
the BerElement argument is advanced past the first tag and length, and is pointed to the value
part of the next element. This function should only be used with constructed types and
situations when a BER encoding is used as the value of an OCTET STRING. The length of the
value is stored in *lenPtr.

The ber_scanf() function is used to decode a BER element in much the same way that
scanf(3C) works. It reads from ber, a pointer to a BerElement such as returned by
ber_get_next(), interprets the bytes according to the format string fmt, and stores the results
in its additional arguments. The format string contains conversion specifications which are
used to direct the interpretation of the BER element. The format string can contain the
following characters.

a Octet string. A char ** should be supplied. Memory is allocated, filled with the contents
of the octet string, null-terminated, and returned in the parameter.

s Octet string. A char * buffer should be supplied, followed by a pointer to an integer
initialized to the size of the buffer. Upon return, the null-terminated octet string is put
into the buffer, and the integer is set to the actual size of the octet string.

O Octet string. A struct ber_val ** should be supplied, which upon return points to a
memory allocated struct berval containing the octet string and its length. ber_bvfree()
can be called to free the allocated memory.

ber_decode(3LDAP)

Networking Library Functions 25

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1scanf-3c

b Boolean. A pointer to an integer should be supplied.

i Integer. A pointer to an integer should be supplied.

B Bitstring. A char ** should be supplied which will point to the memory allocated bits,
followed by an unsigned long *, which will point to the length (in bits) of the bitstring
returned.

n Null. No parameter is required. The element is simply skipped if it is recognized.

v Sequence of octet strings. A char *** should be supplied, which upon return points to a
memory allocated null-terminated array of char *'s containing the octet strings. NULL is
returned if the sequence is empty.

V Sequence of octet strings with lengths. A struct berval *** should be supplied, which
upon return points to a memory allocated, null-terminated array of struct berval *'s
containing the octet strings and their lengths. NULL is returned if the sequence is empty.
ber_bvecfree() can be called to free the allocated memory.

x Skip element. The next element is skipped.

{ Begin sequence. No parameter is required. The initial sequence tag and length are
skipped.

} End sequence. No parameter is required and no action is taken.

[Begin set. No parameter is required. The initial set tag and length are skipped.

] End set. No parameter is required and no action is taken.

The ber_get_int() function tries to interpret the next element as an integer, returning the
result in num. The tag of whatever it finds is returned on success, –1 on failure.

The ber_get_stringb() function is used to read an octet string into a pre-allocated buffer.
The len parameter should be initialized to the size of the buffer, and will contain the length of
the octet string read upon return. The buffer should be big enough to take the octet string
value plus a terminating NULL byte.

The ber_get_stringa() function is used to allocate memory space into which an octet string
is read.

The ber_get_stringal() function is used to allocate memory space into which an octet
string and its length are read. It takes a struct berval **, and returns the result in this
parameter.

The ber_get_null() function is used to read a NULL element. It returns the tag of the element
it skips over.

The ber_get_boolean() function is used to read a boolean value. It is called the same way that
ber_get_int() is called.

ber_decode(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 201126

The ber_get_bitstringa() function is used to read a bitstring value. It takes a char ** which
will hold the allocated memory bits, followed by an unsigned long *, which will point to the
length (in bits) of the bitstring returned.

The ber_first_element() function is used to return the tag and length of the first element in
a set or sequence. It also returns in last a magic cookie parameter that should be passed to
subsequent calls to ber_next_element(), which returns similar information.

The ber_alloc_t() function constructs and returns BerElement. A null pointer is returned
on error. The options field contains a bitwise-OR of options which are to be used when
generating the encoding of this BerElement. One option is defined and must always be
supplied:

#define LBER_USE_DER 0x01

When this option is present, lengths will always be encoded in the minimum number of octets.
Note that this option does not cause values of sets and sequences to be rearranged in tag and
byte order, so these functions are not suitable for generating DER output as defined in X.509
and X.680

The ber_init function constructs a BerElement and returns a new BerElement containing a
copy of the data in the bv argument. The ber_init function returns the null pointer on error.

The ber_free() function frees a BerElement which is returned from the API calls
ber_alloc_t() or ber_init(). Each BerElement must be freed by the caller. The second
argument freebuf should always be set to 1 to ensure that the internal buffer used by the BER
functions is freed as well as the BerElement container itself.

The ber_bvdup() function returns a copy of a berval. The bv_val field in the returned berval
points to a different area of memory as the bv_val field in the argument berval. The null
pointer is returned on error (that is, is out of memory).

The ber_flatten() function allocates a struct berval whose contents are BER encoding
taken from the ber argument. The bvPtr pointer points to the returned berval, which must be
freed using ber_bvfree(). This function returns 0 on success and −1 on error.

EXAMPLE 1 Assume the variable ber contains a lightweight BER encoding of the following ASN.1 object:

AlmostASearchRequest := SEQUENCE {

baseObject DistinguishedName,

scope ENUMERATED {

baseObject (0),

singleLevel (1),

wholeSubtree (2)

},

derefAliases ENUMERATED {

neverDerefaliases (0),

Examples

ber_decode(3LDAP)

Networking Library Functions 27

EXAMPLE 1 Assume the variable ber contains a lightweight BER encoding of the following ASN.1
object: (Continued)

derefInSearching (1),

derefFindingBaseObj (2),

alwaysDerefAliases (3N)

},

sizelimit INTEGER (0 .. 65535),

timelimit INTEGER (0 .. 65535),

attrsOnly BOOLEAN,

attributes SEQUENCE OF AttributeType

}

EXAMPLE 2 The element can be decoded using ber_scanf() as follows.

int scope, ali, size, time, attrsonly;

char *dn, **attrs;

if (ber_scanf(ber, "{aiiiib{v}}", &dn, &scope, &ali,

&size, &time, &attrsonly, &attrs) == –1)

/* error */

else

/* success */

If an error occurs during decoding, generally these functions return −1.

The return values for all of these functions are declared in the <lber.h> header. Some
functions may allocate memory which must be freed by the calling application.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ber_encode(3LDAP), attributes(5)

Yeong, W., Howes, T., and Hardcastle-Kille, S., “Lightweight Directory Access Protocol”,
OSI-DS-26, April 1992.

Information Processing - Open Systems Interconnection - Model and Notation - Service
Definition - Specification of Basic Encoding Rules for Abstract Syntax Notation One,
International Organization for Standardization, International Standard 8825.

Errors

Notes

Attributes

See Also

ber_decode(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 201128

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ber_encode, ber_alloc, ber_printf, ber_put_int, ber_put_ostring, ber_put_string,
ber_put_null, ber_put_boolean, ber_put_bitstring, ber_start_seq, ber_start_set, ber_put_seq,
ber_put_set – simplified Basic Encoding Rules library encoding functions

cc[flag...] file... -lldap[library...]

#include <lber.h>

BerElement *ber_alloc();

ber_printf(BerElement *ber, char **fmt[, arg...]);

ber_put_int(BerElement *ber, long num, char tag);

ber_put_ostring(BerElement *ber, char **str, unsigned long len,
char tag);

ber_put_string(BerElement *ber, char **str, char tag);

ber_put_null(BerElement *ber, char tag);

ber_put_boolean(BerElement *ber, int bool, char tag);

ber_put_bitstring(BerElement *ber, char *str, int blen, char tag);

ber_start_seq(BerElement *ber, char tag);

ber_start_set(BerElement *ber, char tag);

ber_put_seq(BerElement *ber);

ber_put_set(BerElement *ber);

These functions provide a subfunction interface to a simplified implementation of the Basic
Encoding Rules of ASN.1. The version of BER these functions support is the one defined for
the LDAP protocol. The encoding rules are the same as BER, except that only definite form
lengths are used, and bitstrings and octet strings are always encoded in primitive form. In
addition, these lightweight BER functions restrict tags and class to fit in a single octet (this
means the actual tag must be less than 31). When a “tag”is specified in the descriptions below,
it refers to the tag, class, and primitive or constructed bit in the first octet of the encoding. This
man page describes the encoding functions in the lber library. See ber_decode(3LDAP) for
details on the corresponding decoding functions.

Normally, the only functions that need be called by an application are ber_alloc(), to
allocate a BER element, and ber_printf() to do the actual encoding. The other functions are
provided for those applications that need more control than ber_printf() provides. In
general, these functions return the length of the element encoded, or −1 if an error occurred.

The ber_alloc() function is used to allocate a new BER element.

The ber_printf() function is used to encode a BER element in much the same way that
sprintf(3S) works. One important difference, though, is that some state information is kept
with the ber parameter so that multiple calls can be made to ber_printf() to append things to
the end of the BER element. Ber_printf() writes to ber, a pointer to a BerElement such as

Name

Synopsis

Description

ber_encode(3LDAP)

Networking Library Functions 29

returned by ber_alloc(). It interprets and formats its arguments according to the format
string fmt. The format string can contain the following characters:

b Boolean. An integer parameter should be supplied. A boolean element is output.

B Bitstring. A char * pointer to the start of the bitstring is supplied, followed by the
number of bits in the bitstring. A bitstring element is output.

i Integer. An integer parameter should be supplied. An integer element is output.

n Null. No parameter is required. A null element is output.

o Octet string. A char * is supplied, followed by the length of the string pointed to. An
octet string element is output.

O Octet string. A struct berval * is supplied. An octet string element is output.

s Octet string. A null-terminated string is supplied. An octet string element is output, not
including the trailing null octet.

t Tag. An int specifying the tag to give the next element is provided. This works across
calls.

v Several octet strings. A null-terminated array of char * is supplied. Note that a construct
like '{v}' is required to get an actual sequence of octet strings.

{ Begin sequence. No parameter is required.

} End sequence. No parameter is required.

[Begin set. No parameter is required.

] End set. No parameter is required.

The ber_put_int() function writes the integer element num to the BER element ber.

The ber_put_boolean() function writes the boolean value given by bool to the BER element.

The ber_put_bitstring() function writes blen bits starting at str as a bitstring value to the
given BER element. Note that blen is the length in bits of the bitstring.

The ber_put_ostring() function writes len bytes starting at str to the BER element as an octet
string.

The ber_put_string() function writes the null-terminated string (minus the terminating '')
to the BER element as an octet string.

The ber_put_null() function writes a NULL element to the BER element.

The ber_start_seq() function is used to start a sequence in the BER element. The
ber_start_set() function works similarly. The end of the sequence or set is marked by the
nearest matching call to ber_put_seq() or ber_put_set(), respectively.

ber_encode(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 201130

The ber_first_element() function is used to return the tag and length of the first element in
a set or sequence. It also returns in cookie a magic cookie parameter that should be passed to
subsequent calls to ber_next_element(), which returns similar information.

EXAMPLE 1 Assuming the following variable declarations, and that the variables have been assigned
appropriately, an BER encoding of the following ASN.1 object:

AlmostASearchRequest := SEQUENCE {

baseObject DistinguishedName,

scope ENUMERATED {

baseObject (0),

singleLevel (1),

wholeSubtree (2)

},

derefAliases ENUMERATED {

neverDerefaliases (0),

derefInSearching (1),

derefFindingBaseObj (2),

alwaysDerefAliases (3N)

},

sizelimit INTEGER (0 .. 65535),

timelimit INTEGER (0 .. 65535),

attrsOnly BOOLEAN,

attributes SEQUENCE OF AttributeType

}

can be achieved like so:

int scope, ali, size, time, attrsonly;

char *dn, **attrs;

/* ... fill in values ... */

if ((ber = ber_alloc()) == NULLBER)

/* error */

if (ber_printf(ber, "{siiiib{v}}", dn, scope, ali,

size, time, attrsonly, attrs) == –1)

/* error */

else

/* success */

If an error occurs during encoding, ber_alloc() returns NULL; other functions generally
return −1.

See attributes(5) for a description of the following attributes:

Examples

Return Values

Attributes

ber_encode(3LDAP)

Networking Library Functions 31

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ber_decode(3LDAP), attributes(5)

Yeong, W., Howes, T., and Hardcastle-Kille, S., “Lightweight Directory Access Protocol”,
OSI-DS-26, April 1992.

Information Processing - Open Systems Interconnection - Model and Notation - Service
Definition - Specification of Basic Encoding Rules for Abstract Syntax Notation One,
International Organization for Standardization, International Standard 8825.

The return values for all of these functions are declared in <lber.h>.

See Also

Notes

ber_encode(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 201132

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

bind – bind a name to a socket

cc [flag ...] file ... -lsocket -lnsl [library ...]

#include <sys/socket.h>

int bind(int s, const struct sockaddr *name, socklen_t namelen);

The bind() function assigns a name to an unnamed socket. When a socket is created with
socket(3SOCKET), it exists in a name space (address family) but has no name assigned. The
bind() function requests that the name pointed to by name be assigned to the socket.

Upon successful completion 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The bind() function will fail if:

EACCES The requested address is protected, and {PRIV_NET_PRIVADDR} is not
asserted in the effective set of the current process.

EADDRINUSE The specified address is already in use.

EADDRNOTAVAIL The specified address is not available on the local machine.

EBADF s is not a valid descriptor.

EINVAL namelen is not the size of a valid address for the specified address family.

The socket is already bound to an address.

Socket options are inconsistent with port attributes.

ENOSR There were insufficient STREAMS resources for the operation to
complete.

ENOTSOCK s is a descriptor for a file, not a socket.

The following errors are specific to binding names in the UNIX domain:

EACCES Search permission is denied for a component of the path prefix of the pathname
in name.

EIO An I/O error occurred while making the directory entry or allocating the inode.

EISDIR A null pathname was specified.

ELOOP Too many symbolic links were encountered in translating the pathname in
name.

ENOENT A component of the path prefix of the pathname in name does not exist.

ENOTDIR A component of the path prefix of the pathname in name is not a directory.

EROFS The inode would reside on a read-only file system.

Name

Synopsis

Description

Return Values

Errors

bind(3SOCKET)

Networking Library Functions 33

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

unlink(2), socket(3SOCKET), attributes(5), privileges(5), socket.h(3HEAD)

Binding a name in the UNIX domain creates a socket in the file system that must be deleted by
the caller when it is no longer needed by using unlink(2).

The rules used in name binding vary between communication domains.

Attributes

See Also

Notes

bind(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 24 Mar 201134

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1unlink-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1socket.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1unlink-2

bind – bind a name to a socket

cc [flag ...] file ... -lxnet [library ...]

#include <sys/socket.h>

int bind(int socket, const struct sockaddr *address,
socklen_t address_len);

The bind() function assigns an address to an unnamed socket. Sockets created with
socket(3XNET) function are initially unnamed. They are identified only by their address
family.

The function takes the following arguments:

socket Specifies the file descriptor of the socket to be bound.

address Points to a sockaddr structure containing the address to be bound to the
socket. The length and format of the address depend on the address family of
the socket.

address_len Specifies the length of the sockaddr structure pointed to by the address
argument.

The socket in use may require the process to have appropriate privileges to use the bind()
function.

An application program can retrieve the assigned socket name with the
getsockname(3XNET) function.

Upon successful completion, bind() returns 0. Otherwise, −1 is returned and errno is set to
indicate the error.

The bind() function will fail if:

EADDRINUSE The specified address is already in use.

EADDRNOTAVAIL The specified address is not available from the local machine.

EAFNOSUPPORT The specified address is not a valid address for the address family of the
specified socket.

EBADF The socket argument is not a valid file descriptor.

EFAULT The address argument can not be accessed.

EINVAL The socket is already bound to an address, and the protocol does not
support binding to a new address; or the socket has been shut down.

ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The socket type of the specified socket does not support binding to an
address.

Name

Synopsis

Description

Usage

Return Values

Errors

bind(3XNET)

Networking Library Functions 35

If the address family of the socket is AF_UNIX, then bind() will fail if:

EACCES A component of the path prefix denies search permission, or the requested
name requires writing in a directory with a mode that denies write
permission.

EDESTADDRREQ

EISDIR The address argument is a null pointer.

EIO An I/O error occurred.

ELOOP Too many symbolic links were encountered in translating the pathname in
address.

ENAMETOOLONG A component of a pathname exceeded NAME_MAX characters, or an entire
pathname exceeded PATH_MAX characters.

ENOENT A component of the pathname does not name an existing file or the
pathname is an empty string.

ENOTDIR A component of the path prefix of the pathname in address is not a
directory.

EROFS The name would reside on a read-only filesystem.

The bind() function may fail if:

EACCES The specified address is protected, and {PRIV_NET_PRIVADOR} is not
asserted in the effective set of the current process.

EINVAL The address_len argument is not a valid length for the address family.

EISCONN The socket is already connected.

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds PATH_MAX.

ENOBUFS Insufficient resources were available to complete the call.

ENOSR There were insufficient STREAMS resources for the operation to complete.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Attributes

bind(3XNET)

man pages section 3: Networking Library Functions • Last Revised 20 Feb 200336

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

connect(3XNET), getsockname(3XNET), listen(3XNET), socket(3XNET),
attributes(5), privileges(5), standards(5)

See Also

bind(3XNET)

Networking Library Functions 37

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

byteorder, htonl, htonll, htons, ntohl, ntohll, ntohs – convert values between host and network
byte order

cc [flag...] file... -lsocket -lnsl [library...]

#include <sys/types.h>

#include <netinet/in.h>

#include <inttypes.h>

uint32_t htonl(uint32_t hostlong);

uint64_t htonll(uint64_t hostlonglong);

uint16_t htons(uint16_t hostshort);

uint32_t ntohl(uint32_t netlong);

uint64_t ntonll(uint64_t hostlonglong);

uint16_t ntohs(uint16_t netshort);

These functions convert 16-bit, 32-bit, and 64–bit quantities between network byte order and
host byte order. On some architectures these routines are defined as NULL macros in the
include file <netinet/in.h>. On other architectures, the routines are functional when the
host byte order is different from network byte order.

These functions are most often used in conjunction with Internet addresses and ports as
returned by gethostent() and getservent(). See gethostbyname(3NSL) and
getservbyname(3SOCKET).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gethostbyname(3NSL), getservbyname(3SOCKET), inet.h(3HEAD), attributes(5)

Name

Synopsis

Description

Attributes

See Also

byteorder(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 10 Sep 200838

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1inet.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

cldap_close – dispose of connectionless LDAP pointer

cc[flag...] file... -lldap[library...]

#include <lber.h>

#include <ldap.h>

void cldap_close(LDAP *ld);

The cldap_close() function disposes of memory allocated by cldap_open(3LDAP). It should
be called when all CLDAP communication is complete.

ld The LDAP pointer returned by a previous call to cldap_open(3LDAP).

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap(3LDAP), cldap_open(3LDAP), cldap_search_s(3LDAP),
cldap_setretryinfo(3LDAP)

Name

Synopsis

Description

Parameters

Attributes

See Also

cldap_close(3LDAP)

Networking Library Functions 39

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

cldap_open – LDAP connectionless communication preparation

cc[flag...] file... -lldap[library...]

#include <lber.h>

#include <ldap.h>

LDAP *cldap_open(char *host, int port);

host The name of the host on which the LDAP server is running.

port The port number to connect.

The cldap_open() function is called to prepare for connectionless LDAP communication
(over udp(7P)). It allocates an LDAP structure which is passed to future search requests.

If the default IANA-assigned port of 389 is desired, LDAP_PORT should be specified for port.
host can contain a space-separated list of hosts or addresses to try. cldap_open() returns a
pointer to an LDAP structure, which should be passed to subsequent calls to
cldap_search_s(3LDAP), cldap_setretryinfo(3LDAP), and cldap_close(3LDAP).
Certain fields in the LDAP structure can be set to indicate size limit, time limit, and how
aliases are handled during operations. See ldap_open(3LDAP) and <ldap.h> for more details.

If an error occurs, cldap_open() will return NULL and errno will be set appropriately.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap(3LDAP) cldap_search_s(3LDAP), cldap_setretryinfo(3LDAP),
cldap_close(3LDAP), attributes(5), udp(7P)

Name

Synopsis

Parameters

Description

Errors

Attributes

See Also

cldap_open(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 201140

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1udp-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1udp-7p

cldap_search_s – connectionless LDAP search

cc[flag...] file... -lldap[library...]

#include <lber.h>

#include <ldap.h>

int cldap_search_s(LDAP *ld, char *base, int scope, char *filter,
char *attrs, int attrsonly, LDAPMessage **res, char *logdn);

The cldap_search_s() function performs an LDAP search using the Connectionless LDAP
(CLDAP) protocol.

cldap_search_s() has parameters and behavior identical to that of ldap_search_s(3LDAP),
except for the addition of the logdn parameter. logdn should contain a distinguished name to
be used only for logging purposed by the LDAP server. It should be in the text format
described by RFC 1779, A String Representation of Distinguished Names.

cldap_search_s() operates using the CLDAP protocol over udp(7P). Since UDP is a
non-reliable protocol, a retry mechanism is used to increase reliability. The
cldap_setretryinfo(3LDAP) function can be used to set two retry parameters: tries, a count
of the number of times to send a search request and timeout, an initial timeout that determines
how long to wait for a response before re-trying. timeout is specified seconds. These values are
stored in the ld_cldaptries and ld_cldaptimeout members of the ld LDAP structure, and
the default values set in ldap_open(3LDAP) are 4 and 3 respectively. The retransmission
algorithm used is:

Step 1 Set the current timeout to ld_cldaptimeout seconds, and the current LDAP server
address to the first LDAP server found during the ldap_open(3LDAP) call.

Step 2 Send the search request to the current LDAP server address.

Step 3 Set the wait timeout to the current timeout divided by the number of server
addresses found during ldap_open(3LDAP) or to one second, whichever is larger.
Wait at most that long for a response; if a response is received, STOP. Note that the
wait timeout is always rounded down to the next lowest second.

Step 4 Repeat steps 2 and 3 for each LDAP server address.

Step 5 Set the current timeout to twice its previous value and repeat Steps 2 through 5 a
maximum of tries times.

Assume that the default values for tries and timeout of 4 tries and 3 seconds are used. Further,
assume that a space-separated list of two hosts, each with one address, was passed to
cldap_open(3LDAP). The pattern of requests sent will be (stopping as soon as a response is
received):

Time Search Request Sent To:

+0 Host A try 1

+1 (0+3/2) Host B try 1

+2 (1+3/2) Host A try 2

Name

Synopsis

Description

Retransmission
Algorithm

Examples

cldap_search_s(3LDAP)

Networking Library Functions 41

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1udp-7p

+5 (2+6/2) Host B try 2

+8 (5+6/2) Host A try 3

+14 (8+12/2) Host B try 3

+20 (14+12/2) Host A try 4

+32 (20+24/2) Host B try 4

+44 (20+24/2) (give up - no response)

cldap_search_s() returns LDAP_SUCCESS if a search was successful and the appropriate
LDAP error code otherwise. See ldap_error(3LDAP) for more information.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap(3LDAP), ldap_error(3LDAP), ldap_search_s(3LDAP), cldap_open(3LDAP),
cldap_setretryinfo(3LDAP), cldap_close(3LDAP), attributes(5), udp(7P)

Errors

Attributes

See Also

cldap_search_s(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 201142

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1udp-7p

cldap_setretryinfo – set connectionless LDAP request retransmission parameters

cc[flag...] file... -lldap[library...]

#include <lber.h>

#include <ldap.h>

void cldap_setretryinfo(LDAP *ld, int tries, int timeout);

ld LDAP pointer returned from a previous call to cldap_open(3LDAP).

tries Maximum number of times to send a request.

timeout Initial time, in seconds, to wait before re-sending a request.

The cldap_setretryinfo() function is used to set the CLDAP request retransmission
behavior for future cldap_search_s(3LDAP) calls. The default values (set by
cldap_open(3LDAP)) are 4 tries and 3 seconds between tries. See cldap_search_s(3LDAP)
for a complete description of the retransmission algorithm used.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap(3LDAP), cldap_open(3LDAP), cldap_search_s(3LDAP), cldap_close(3LDAP),
attributes(5)

Name

Synopsis

Parameters

Description

Attributes

See Also

cldap_setretryinfo(3LDAP)

Networking Library Functions 43

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

connect – connect a socket

cc [flag ...] file ... -lsocket -lnsl [library ...]

#include <sys/socket.h>

int connect(int s, const struct sockaddr *name, socklen_t namelen);

The parameter s is a socket. If it is of type SOCK_DGRAM, connect() specifies the peer with
which the socket is to be associated. This address is the address to which datagrams are to be
sent if a receiver is not explicitly designated. This address is the only address from which
datagrams are to be received. If the socket s is of type SOCK_STREAM, connect() attempts to
make a connection to another socket. This behavior can be modified by the
SO_PASSIVE_CONNECT socket option provided by setsockopt(3SOCKET). The other socket is
specified by name, which is an address in the communication space of the socket. Each
communication space interprets the name parameter in its own way. If s is not bound, then s
will be bound to an address selected by the underlying transport provider. Generally, stream
sockets can successfully connect() only once. Datagram sockets can use connect() multiple
times to change their association. Datagram sockets can dissolve the association by
connecting to a null address.

If the connection or binding succeeds, 0 is returned. Otherwise, −1 is returned, errno is set to
indicate the error, and state of the socket is unspecified. Applications should close the file
descriptor and create a new socket before attempting to reconnect.

The call fails if:

EACCES Search permission is denied for a component of the path prefix of the
pathname in name.

EADDRINUSE The address is already in use.

EADDRNOTAVAIL The specified address is not available.

EAFNOSUPPORT Addresses in the specified address family cannot be used with this socket.

EALREADY The socket is non-blocking, and a previous connection attempt has not
yet been completed.

EBADF s is not a valid descriptor.

ECONNREFUSED The attempt to connect was forcefully rejected.

EINPROGRESS The socket is non-blocking, and the connection cannot be completed
immediately. You can use select(3C) to complete the connection by
selecting the socket for writing.

EINTR The connection attempt was interrupted before any data arrived by the
delivery of a signal. The connection, however, will be established
asynchronously.

EINVAL namelen is not the size of a valid address for the specified address family.

Name

Synopsis

Description

Return Values

Errors

connect(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 31May 201144

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c

EIO An I/O error occurred while reading from or writing to the file system.

EISCONN The socket is already connected.

ELOOP Too many symbolic links were encountered in translating the pathname
in name.

ENETUNREACH The network is not reachable from this host.

EHOSTUNREACH The remote host is not reachable from this host.

ENOENT A component of the path prefix of the pathname in name does not exist.

ENOENT The socket referred to by the pathname in name does not exist.

ENOSR There were insufficient STREAMS resources available to complete the
operation.

ENXIO The server exited before the connection was complete.

ETIMEDOUT Connection establishment timed out without establishing a connection.

EWOULDBLOCK The socket is marked as non-blocking, and the requested operation
would block.

The following errors are specific to connecting names in the UNIX domain. These errors
might not apply in future versions of the UNIX IPC domain.

ENOTDIR A component of the path prefix of the pathname in name is not a directory.

ENOTSOCK s is not a socket.

ENOTSOCK name is not a socket.

EPROTOTYPE The file that is referred to by name is a socket of a type other than type s. For
example, s is a SOCK_DGRAM socket, while name refers to a SOCK_STREAM
socket.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

close(2), accept(3SOCKET), getsockname(3SOCKET), select(3C),
setsockopt(3SOCKET), socket(3SOCKET), socket.h(3HEAD), attributes(5)

Attributes

See Also

connect(3SOCKET)

Networking Library Functions 45

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1socket.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

connect – connect a socket

cc [flag ...] file ... -lxnet [library ...]

#include <sys/socket.h>

int connect(int socket, const struct sockaddr *address,
socklen_t address_len);

The connect() function requests a connection to be made on a socket. The function takes the
following arguments:

socket Specifies the file descriptor associated with the socket.

address Points to a sockaddr structure containing the peer address. The length and
format of the address depend on the address family of the socket.

address_len Specifies the length of the sockaddr structure pointed to by the address
argument.

If the socket has not already been bound to a local address, connect() will bind it to an
address which, unless the socket's address family is AF_UNIX, is an unused local address.

If the initiating socket is not connection-mode, then connect() sets the socket's peer address,
but no connection is made. For SOCK_DGRAM sockets, the peer address identifies where all
datagrams are sent on subsequent send(3XNET) calls, and limits the remote sender for
subsequent recv(3XNET) calls. If address is a null address for the protocol, the socket's peer
address will be reset.

If the initiating socket is connection-mode, then connect() attempts to establish a connection
to the address specified by the address argument.

If the connection cannot be established immediately and O_NONBLOCK is not set for the file
descriptor for the socket, connect() will block for up to an unspecified timeout interval until
the connection is established. If the timeout interval expires before the connection is
established, connect() will fail and the connection attempt will be aborted. If connect() is
interrupted by a signal that is caught while blocked waiting to establish a connection,
connect() will fail and set errno to EINTR, but the connection request will not be aborted, and
the connection will be established asynchronously.

If the connection cannot be established immediately and O_NONBLOCK is set for the file
descriptor for the socket, connect() will fail and set errno to EINPROGRESS, but the
connection request will not be aborted, and the connection will be established
asynchronously. Subsequent calls to connect() for the same socket, before the connection is
established, will fail and set errno to EALREADY.

When the connection has been established asynchronously, select(3C) and poll(2) will
indicate that the file descriptor for the socket is ready for writing.

Name

Synopsis

Description

connect(3XNET)

man pages section 3: Networking Library Functions • Last Revised 10 Jun 200246

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2

The socket in use may require the process to have appropriate privileges to use the connect()
function.

If connect() fails, the state of the socket is unspecified. Portable applications should close the
file descriptor and create a new socket before attempting to reconnect.

Upon successful completion, connect() returns 0. Otherwise, −1 is returned and errno is set
to indicate the error.

The connect() function will fail if:

EADDRNOTAVAIL The specified address is not available from the local machine.

EAFNOSUPPORT The specified address is not a valid address for the address family of the
specified socket.

EALREADY A connection request is already in progress for the specified socket.

EBADF The socket argument is not a valid file descriptor.

ECONNREFUSED The target address was not listening for connections or refused the
connection request.

EFAULT The address parameter can not be accessed.

EINPROGRESS O_NONBLOCK is set for the file descriptor for the socket and the
connection cannot be immediately established; the connection will be
established asynchronously.

EINTR The attempt to establish a connection was interrupted by delivery of a
signal that was caught; the connection will be established asynchronously.

EISCONN The specified socket is connection-mode and is already connected.

ENETUNREACH No route to the network is present.

ENOTSOCK The socket argument does not refer to a socket.

EPROTOTYPE The specified address has a different type than the socket bound to the
specified peer address.

ETIMEDOUT The attempt to connect timed out before a connection was made.

If the address family of the socket is AF_UNIX, then connect() will fail if:

EIO An I/O error occurred while reading from or writing to the file system.

ELOOP Too many symbolic links were encountered in translating the pathname in
address.

ENAMETOOLONG A component of a pathname exceeded NAME_MAX characters, or an entire
pathname exceeded PATH_MAX characters.

Usage

Return Values

Errors

connect(3XNET)

Networking Library Functions 47

ENOENT A component of the pathname does not name an existing file or the
pathname is an empty string.

ENOTDIR A component of the path prefix of the pathname in address is not a
directory.

The connect() function may fail if:

EACCES Search permission is denied for a component of the path prefix; or write
access to the named socket is denied.

EADDRINUSE Attempt to establish a connection that uses addresses that are already in
use.

ECONNRESET Remote host reset the connection request.

EHOSTUNREACH The destination host cannot be reached (probably because the host is down
or a remote router cannot reach it).

EINVAL The address_len argument is not a valid length for the address family; or
invalid address family in sockaddr structure.

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds PATH_MAX.

ENETDOWN The local interface used to reach the destination is down.

ENOBUFS No buffer space is available.

ENOSR There were insufficient STREAMS resources available to complete the
operation.

EOPNOTSUPP The socket is listening and can not be connected.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

close(2), poll(2), accept(3XNET), bind(3XNET), getsockname(3XNET), select(3C),
send(3XNET), shutdown(3XNET), socket(3XNET), attributes(5), standards(5)

Attributes

See Also

connect(3XNET)

man pages section 3: Networking Library Functions • Last Revised 10 Jun 200248

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

dial, undial – establish an outgoing terminal line connection

cc [flag...] file... -lnsl [library...]

#include <dial.h>

int dial(CALL call);

void undial(int fd);

The dial() function returns a file-descriptor for a terminal line open for read/write. The
argument to dial() is a CALL structure (defined in the header <dial.h>).

When finished with the terminal line, the calling program must invoke undial() to release the
semaphore that has been set during the allocation of the terminal device.

CALL is defined in the header <dial.h> and has the following members:

struct termio *attr; /* pointer to termio attribute struct */

int baud; /* transmission data rate */

int speed; /* 212A modem: low=300, high=1200 */

char *line; /* device name for out-going line */

char *telno; /* pointer to tel-no digits string */

int modem; /* specify modem control for direct lines */

char *device; /* unused */

int dev_len; /* unused */

The CALL element speed is intended only for use with an outgoing dialed call, in which case its
value should be the desired transmission baud rate. The CALL element baud is no longer used.

If the desired terminal line is a direct line, a string pointer to its device-name should be placed
in the line element in the CALL structure. Legal values for such terminal device names are kept
in the Devices file. In this case, the value of the baud element should be set to -1. This value
will cause dial to determine the correct value from the <Devices> file.

The telno element is for a pointer to a character string representing the telephone number to
be dialed. Such numbers may consist only of these characters:

0-9 dial 0-9

* dail *

dail

= wait for secondary dial tone

- delay for approximately 4 seconds

The CALL element modem is used to specify modem control for direct lines. This element should
be non-zero if modem control is required. The CALL element attr is a pointer to a termio
structure, as defined in the header <termio.h>. A NULL value for this pointer element may be

Name

Synopsis

Description

dial(3NSL)

Networking Library Functions 49

passed to the dial function, but if such a structure is included, the elements specified in it will
be set for the outgoing terminal line before the connection is established. This setting is often
important for certain attributes such as parity and baud-rate.

The CALL elements device and dev_len are no longer used. They are retained in the CALL
structure for compatibility reasons.

On failure, a negative value indicating the reason for the failure will be returned. Mnemonics
for these negative indices as listed here are defined in the header <dial.h>.

INTRPT −1 /* interrupt occurred */

D_HUNG −2 /* dialer hung (no return from write) */

NO_ANS −3 /* no answer within 10 seconds */

ILL_BD −4 /* illegal baud-rate */

A_PROB −5 /* acu problem (open() failure) */

L_PROB −6 /* line problem (open() failure) */

NO_Ldv −7 /* can’t open Devices file */

DV_NT_A −8 /* requested device not available */

DV_NT_K −9 /* requested device not known */

NO_BD_A −10 /* no device available at requested baud */

NO_BD_K −11 /* no device known at requested baud */

DV_NT_E −12 /* requested speed does not match */

BAD_SYS −13 /* system not in Systems file*/

/etc/uucp/Devices

/etc/uucp/Systems

/var/spool/uucp/LCK..tty-device

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

uucp(1C), alarm(2), read(2), write(2), attributes(5), termio(7I)

Including the header <dial.h> automatically includes the header <termio.h>. An alarm(2)
system call for 3600 seconds is made (and caught) within the dial module for the purpose of
‘‘touching'' the LCK.. file and constitutes the device allocation semaphore for the terminal
device. Otherwise, uucp(1C) may simply delete the LCK.. entry on its 90-minute clean-up
rounds. The alarm may go off while the user program is in a read(2) or write(2) function,
causing an apparent error return. If the user program expects to be around for an hour or
more, error returns from read()s should be checked for (errno==EINTR), and the read()
possibly reissued.

This interface is unsafe in multithreaded applications. Unsafe interfaces should be called only
from the main thread.

Return Values

Files

Attributes

See Also

Notes

dial(3NSL)

man pages section 3: Networking Library Functions • Last Revised 30 Dec 199650

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uucp-1c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1alarm-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1termio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1alarm-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uucp-1c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2

dlpi_arptype – convert a DLPI MAC type to an ARP hardware type

cc [flag...] file... -ldlpi [library...]

#include <libdlpi.h>

uint_t dlpi_arptype(uint_t dlpitype);

The dlpi_arptype() function converts a DLPI MAC type to an ARP hardware type defined in
<netinet/arp.h>

Upon success, the corresponding ARP hardware type is returned. Otherwise, zero is returned.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libdlpi(3LIB), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

dlpi_arptype(3DLPI)

Networking Library Functions 51

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_bind – bind DLPI handle

cc [flag ...] file ... -ldlpi [library ...]

#include <libdlpi.h>

int dlpi_bind(dlpi_handle_t dh, uint_t sap, uint_t *boundsap);

The dlpi_bind() function attempts to bind the DLPI handle dh to the SAP sap. The handle
must be in the DL_UNBOUND DLPI state and will transition to the DL_IDLE DLPI state upon
success. Some DLPI MAC types can bind to a different SAP than the SAP requested, in which
case boundsap returns the actual bound SAP. If boundsap is set to NULL, dlpi_bind() fails if
the bound SAP does not match the requested SAP. If the caller does not care which SAP is
chosen, DLPI_ANY_SAP can be specified for sap. This is primarily useful in conjunction with
dlpi_promiscon() and DL_PROMISC_SAP to receive traffic from all SAPs. If DLPI_ANY_SAP is
specified, any transmitted messages must explicitly specify a SAP using dlpi_send(3DLPI).

Upon success, the caller can use dlpi_recv(3DLPI) to receive data matching the bound SAP
that is sent to the DLPI link associated with dh. In addition, the caller can use
dlpi_send(3DLPI) to send data over the bound SAP address associated with DLPI handle dh.
The physical address of the bound handle can be retrieved with dlpi_info(3DLPI).

Upon success, DLPI_SUCCESS is returned. If DL_SYSERR is returned, errno contains the specific
UNIX system error value. Otherwise, a DLPI error value defined in <sys/dlpi.h> or an error
value listed in the following section is returned.

DLPI_EBADMSG Bad DLPI message

DLPI_EINHANDLE Invalid DLPI handle

DLPI_ETIMEDOUT DLPI operation timed out

DLPI_EUNAVAILSAP Unavailable DLPI SAP

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

dlpi_info(3DLPI), dlpi_recv(3DLPI), dlpi_send(3DLPI), dlpi_unbind(3DLPI),
libdlpi(3LIB), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

dlpi_bind(3DLPI)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 200752

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_close – close DLPI link

cc [flag ...] file ... -ldlpi [library ...]

#include <libdlpi.h>

void dlpi_close(dlpi_handle_t dh);

The dlpi_close() function closes the open DLPI link instance associated with dh and
destroys dh after closing the DLPI link instance.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

dlpi_open(3DLPI), libdlpi(3LIB), attributes(5)

Name

Synopsis

Description

Attributes

See Also

dlpi_close(3DLPI)

Networking Library Functions 53

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_disabnotify – disable DLPI notification

cc [flag...] file... -ldlpi [library...]

#include <libdlpi.h>

int dlpi_disabnotify(dlpi_handle_t dh, dlpi_notifyid_t id,
void **argp);

The dlpi_disabnotify() function disables the notification registration associated with
identifier id. If argp is not NULL, the argument arg that was passed to
dlpi_enabnotify(3DLPI) during registration is also returned. This operation can be
performed in any DLPI state of a handle.

Closing the DLPI handle dh will also remove all associated callback functions.

Upon success, DLPI_SUCCESS is returned. If DL_SYSERR is returned, errno contains the specific
UNIX system error value. Otherwise, a DLPI error value defined in <sys/dlpi.h> or an error
value listed in the following section is returned.

DLPI_EINHANDLE A DLPI handle is invalid.

DLPI_EINVAL An argument is invalid.

DLPI_ENOTEIDINVAL The DLPI notification ID is invalid.

DLPI_FAILURE The DLPI operation failed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

dlpi_enabnotify(3DLPI), libdlpi(3LIB), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

dlpi_disabnotify(3DLPI)

man pages section 3: Networking Library Functions • Last Revised 21 Sep 200754

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_enabmulti, dlpi_disabmulti – enable or disable DLPI multicast messages for an address

cc [flag...] file... -ldlpi [library...]

#include <libdlpi.h>

int dlpi_enabmulti(dlpi_handle_t dh, const void *addrp,
size_t addrlen);

int dlpi_disabmulti(dlpi_handle_t dh, const void *addrp,
size_t addrlen);

The dlpi_enabmulti() function enables reception of messages destined to the multicast
address pointed to by addrp on the DLPI link instance associated with DLPI handle dh. The
DLPI link instance will pass up only those messages destined for enabled multicast addresses.
This operation can be performed in any DLPI state of a handle.

The dlpi_disabmulti() function disables a specified multicast address pointed to by addrp
on the DLPI link instance associated with DLPI handle dh. This operation can be performed in
any DLPI state of a handle.

Upon success, DLPI_SUCCESS is returned. If DL_SYSERR is returned, errno contains the specific
UNIX system error value. Otherwise, a DLPI error value defined in <sys/dlpi.h> or
DLPI_EINHANDLE is returned.

DLPI_EBADMSG Bad DLPI message

DLPI_EINHANDLE Invalid DLPI handle

DLPI_EINVAL Invalid argument

DLPI_ETIMEDOUT DLPI operation timed out

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libdlpi(3LIB), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

dlpi_enabmulti(3DLPI)

Networking Library Functions 55

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_enabnotify – enable DLPI notification

cc [flag...] file... -ldlpi [library...]

#include <libdlpi.h>

int dlpi_enabnotify(dlpi_handle_t dh, uint_t notes,
dlpi_notifyfunc_t *funcp, void *arg, dlpi_notifyid_t *id);

typedef void dlpi_notifyfunc_t(dlpi_handle_t,

dlpi_notifyinfo_t *, void *);

The dlpi_enabnotify() function enables a notification callback for the set of events specified
in notes, which must be one or more (by a logical OR operation) of the DLPI notifications
documented in dlpi(7P). The callback function funcp is registered with the DLPI handle dh
and is invoked when dh receives notification for any of the specified event types. Upon
success, id contains the identifier associated with the registration.

Multiple event types can be registered for a callback function on the DLPI handle dh.
Similarly, the same event type can be registered multiple times on the same handle.

Once a callback has been registered, libdlpi will check for notification events on the DLPI
handle dh, when exchanging DLPI messages with the underlying DLPI link instance. The
dlpi_recv(3DLPI) function will always check for notification events, but other libdlpi
operations may also lead to an event callback being invoked. Although there may be no
expected data messages to be received, dlpi_recv() can be called, as shown below, with a null
buffer to force a check for pending events on the underlying DLPI link instance.

dlpi_recv(dh, NULL, NULL, NULL, NULL, 0, NULL);

When a notification event of interest occurs, the callback function is invoked with the
arguments arg, originally passed to dlpi_disabnotify(3DLPI), and infop, whose members
are described below.

uint_t dni_note Notification event type.

uint_t dni_speed Current speed, in kilobits per second, of the DLPI link. Valid
only for DL_NOTE_SPEED.

uint_t dni_size Current maximum message size, in bytes, that the DLPI link is
able to accept for transmission. Valid only for
DL_NOTE_SDU_SIZE.

uchar_t dni_physaddrlen Link-layer physical address length, in bytes. Valid only for
DL_NOTE_PHYS_ADDR.

uchar_t dni_physaddr[] Link-layer physical address of DLPI link. Valid only for
DL_NOTE_PHYS_ADDR.

The libdlpi library will allocate and free the dlpi_notifyinfo_t structure and the caller
must not allocate the structure or perform any operations that require its size to be known.

Name

Synopsis

Description

dlpi_enabnotify(3DLPI)

man pages section 3: Networking Library Functions • Last Revised 10 Mar 200956

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7dlpi-7p

The callback is not allowed to block. This precludes calling dlpi_enabnotify() from a
callback, but non-blocking libdlpi functions, including dlpi_disabnotify(), can be called.

Upon success, DLPI_SUCCESS is returned. If DL_SYSERR is returned, errno contains the specific
UNIX system error value. Otherwise, a DLPI error value defined in <sys/dlpi.h> or an error
value listed in the following section is returned.

DLPI_EINHANDLE A DLPI handle is invalid.

DLPI_EINVAL An argument is invalid.

DLPI_ENOTEIDINVAL The DLPI notification ID is invalid.

DLPI_ENOTENOTSUP The DLPI notification is not supported by the link.

DLPI_ETIMEDOUT The DLPI operation timed out.

DLPI_FAILURE The DLPI operation failed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

dlpi_disabnotify(3DLPI), dlpi_recv(3DLPI), libdlpi(3LIB), attributes(5), dlpi(7P)

Return Values

Errors

Attributes

See Also

dlpi_enabnotify(3DLPI)

Networking Library Functions 57

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7dlpi-7p

dlpi_fd – get DLPI file descriptor

cc [flag ...] file ... -ldlpi [library ...]

#include <libdlpi.h>

int dlpi_fd(dlpi_handle_t dh);

The dlpi_fd() function returns the integer file descriptor that can be used to directly operate
on the open DLPI stream associated with the DLPI handle dh. This file descriptor can be used
to perform non-DLPI operations that do not alter the state of the DLPI stream, such as waiting
for an event using poll(2), or pushing and configuring additional STREAMS modules, such as
pfmod(7M). If DLPI operations are directly performed on the file descriptor, or a STREAMS
module is pushed that alters the message-passing interface such that DLPI operations can no
longer be issued, future operations on dh might not behave as documented.

The returned file descriptor is managed by libdlpi(3LIB) and the descriptor must not be
closed.

The function returns the integer file descriptor associated with the DLPI handle dh. If dh is
invalid, -1 is returned.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

poll(2), libdlpi(3LIB), attributes(5), dlpi(7P), pfmod(7M)

Name

Synopsis

Description

Return Values

Attributes

See Also

dlpi_fd(3DLPI)

man pages section 3: Networking Library Functions • Last Revised 15 Jun 200758

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pfmod-7m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dlpi-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pfmod-7m

dlpi_get_physaddr – get physical address using DLPI

cc [flag...] file... -ldlpi [library...]

#include <libdlpi.h>

int dlpi_get_physaddr(dlpi_handle_t dh, uint_t type,
void *addrp,size_t *addrlenp);

The dlpi_get_physaddr() function gets a physical address from the DLPI link instance
associated with DLPI handle dh. The retrieved address depends upon type, which can be:

DL_FACT_PHYS_ADDR Factory physical address

DL_CURR_PHYS_ADDR Current physical address

The operation can be performed in any DLPI state of dh.

The caller must ensure that addrp is at least DLPI_PHYSADDR_MAX bytes in size and addrlenp
must contain the length of addrp. Upon success, addrp contains the specified physical address,
and addrlenp contains the physical address length. If a physical address is not available, addrp
is not filled in and addrlenp is set to zero.

Upon success, DLPI_SUCCESS is returned. If DL_SYSERR is returned, errno contains the specific
UNIX system error value. Otherwise, a DLPI error value defined in <sys/dlpi.h> or an error
value listed in the following section is returned.

DLPI_EBADMSG Bad DLPI message

DLPI_EINHANDLE Invalid DLPI handle

DLPI_EINVAL Invalid argument

DLPI_ETIMEDOUT DLPI operation timed out

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

dlpi_set_physaddr(3DLPI), libdlpi(3LIB), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

dlpi_get_physaddr(3DLPI)

Networking Library Functions 59

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_iftype – convert a DLPI MAC type to a BSD socket interface type

cc [flag...] file... -ldlpi [library...]

#include <libdlpi.h>

uint_t dlpi_iftype(uint_t dlpitype);

The dlpi_iftype() function converts a DLPI MAC type to a BSD socket interface type
defined in <net/if_types.h>.

Upon success, the corresponding BSD socket interface type is returned. Otherwise, zero is
returned.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libdlpi(3LIB), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

dlpi_iftype(3DLPI)

man pages section 3: Networking Library Functions • Last Revised 8 Feb 200860

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_info – get DLPI information

cc [flag ...] file ... -ldlpi [library ...]

#include <libdlpi.h>

int dlpi_info(dlpi_handle_t dh, dlpi_info_t *infop,
uint_t version);

The dlpi_info() function provides DLPI information about the open DLPI link instance
associated with DLPI handle dh. DLPI information can be retrieved in any state of dh, but
some of the information might not be available if dh is in the DL_UNBOUND DLPI state. The
DLPI information received is copied into infop, which must point to a dlpi_info_t allocated
by the caller. The version argument specifies the version of the dlpi_info_t structure
expected by the caller. Callers can use the macro DLPI_INFO_VERSION to specify the default
version, which is currently 0. Callers can request version 1 of the dlpi_info_t structure by
defining DLPI_INFO_VERSION to 1 before including <libdlpi.h> and passing the defined
DLPI_INFO_VERSION value of 1 as the version argument. See the description of di_linkname
below for the difference between version 0 and 1.

The dlpi_info_t is a structure defined in <libdlpi.h> as follows:

typedef struct {

uint_t di_opts;

uint_t di_max_sdu;

uint_t di_min_sdu;

uint_t di_state;

uchar_t di_mactype;

char di_linkname[DLPI_LINKNAME_MAX];

uchar_t di_physaddr[DLPI_PHYSADDR_MAX];

uchar_t di_physaddrlen;

uchar_t di_bcastaddr[DLPI_PHYSADDR_MAX];

uchar_t di_bcastaddrlen;

uint_t di_sap;

int di_timeout;

dl_qos_cl_sel1_t di_qos_sel;

dl_qos_cl_range1_t di_qos_range;

} dlpi_info_t;

di_opts
Reserved for future dlpi_info_t expansion.

di_max_sdu
Maximum message size, in bytes, that the DLPI link is able to accept for transmission. The
value is guaranteed to be greater than or equal to di_min_sdu.

di_min_sdu
Minimum message size, in bytes, that the DLPI link is able to accept for transmission. The
value is guaranteed to be greater than or equal to one.

Name

Synopsis

Description

dlpi_info(3DLPI)

Networking Library Functions 61

di_state
Current DLPI state of dh; either DL_UNBOUND or DL_IDLE.

di_mactype
MAC type supported by the DLPI link associated with dh. See <sys/dlpi.h> for the list of
possible MAC types.

di_linkname
Link name associated with DLPI handle dh. If the caller specifies the default version
argument value of 0, the size of this field is DLPI_LINKNAME_MAX. If the caller defines
DLPI_INFO_VERSION to value 1 before including <libdlpi.h>, the size of this field is
MAXLINKNAMESPECIFIER. See dlpi(7P) for information on link names and the
supported maximum length of DLPI link names.

di_physaddr
Link-layer physical address of bound dh. If dh is in the DL_UNBOUND DLPI state, the contents
of di_physaddr are unspecified.

di_physaddrlen
Physical address length, in bytes. If dh is in the DL_UNBOUND DLPI state, di_physaddrlen is
set to zero.

di_bcastaddr
Link-layer broadcast address. If the di_mactype of the DLPI link does not support
broadcast, the contents of di_bcastaddr are unspecified.

di_bcastaddrlen
Link-layer broadcast address length, in bytes. If the di_mactype of the DLPI link does not
support broadcast, di_bcastaddrlen is set to zero.

di_sap
SAP currently bound to handle. If dh is in the DL_UNBOUND DLPI state, di_sap is set to zero.

di_timeout
Current timeout value, in seconds, set on the dlpi handle.

di_qos_sel
Current QOS parameters supported by the DLPI link instance associated with dh.
Unsupported QOS parameters are set to DL_UNKNOWN.

di_qos_range
Available range of QOS parameters supported by a DLPI link instance associated with the
DLPI handle dh. Unsupported QOS range values are set to DL_UNKNOWN.

Upon success, DLPI_SUCCESS is returned. If DL_SYSERR is returned, errno contains the specific
UNIX system error value. Otherwise, a DLPI error value defined in <sys/dlpi.h> or an error
value listed in the following section is returned.

Return Values

dlpi_info(3DLPI)

man pages section 3: Networking Library Functions • Last Revised 15 Apr 201162

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7dlpi-7p

DLPI_EBADMSG Bad DLPI message

DLPI_EINHANDLE Invalid DLPI handle

DLPI_EINVAL Invalid argument

DLPI_EMODENOTSUP Unsupported DLPI connection mode

DLPI_ETIMEDOUT DLPI operation timed out

DLPI_EVERNOTSUP Unsupported DLPI Version

DLPI_FAILURE DLPI operation failed

EXAMPLE 1 Get link-layer broadcast address

The following example shows how dlpi_info() can be used.

#include <libdlpi.h>

uchar_t *

get_bcastaddr(const char *linkname, uchar_t *baddrlenp)

{

dlpi_handle_t dh;

dlpi_info_t dlinfo;

uchar_t *baddr;

if (dlpi_open(linkname, &dh, 0) != DLPI_SUCCESS)

return (NULL);

if (dlpi_info(dh, &dlinfo, 0) != DLPI_SUCCESS) {

dlpi_close(dh);

return (NULL);

}

dlpi_close(dh);

*baddrlenp = dlinfo.di_bcastaddrlen;

if ((baddr = malloc(*baddrlenp)) == NULL)

return (NULL);

return (memcpy(baddr, dlinfo.di_bcastaddr, *baddrlenp));

}

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Errors

Examples

Attributes

dlpi_info(3DLPI)

Networking Library Functions 63

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_bind(3DLPI), libdlpi(3LIB), attributes(5), dlpi(7P)See Also

dlpi_info(3DLPI)

man pages section 3: Networking Library Functions • Last Revised 15 Apr 201164

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7dlpi-7p

dlpi_linkname – get DLPI link name

cc [flag ...] file ... -ldlpi [library ...]

#include <libdlpi.h>

const char *dlpi_linkname(dlpi_handle_t dh);

The dlpi_linkname() function returns a pointer to the link name of the DLPI link instance
associated with the DLPI handle dh.

The returned string is managed by libdlpi and must not be modified or freed by the caller.

Upon success, the function returns a pointer to the link name associated with the DLPI
handle.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libdlpi(3LIB), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

dlpi_linkname(3DLPI)

Networking Library Functions 65

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_mactype – convert a DLPI MAC type to a string

cc [flag ...] file ... -ldlpi [library ...]

#include <libdlpi.h>

const char *dlpi_mactype(uint_t mactype);

The dlpi_mactype() function returns a pointer to a string that describes the specified
mactype. Possible MAC types are defined in <sys/dlpi.h>. The string is not dynamically
allocated and must not be freed by the caller.

Upon success, the function returns a pointer string that describes the MAC type. If mactype is
unknown, the string “Unknown MAC Type” is returned.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libdlpi(3LIB), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

dlpi_mactype(3DLPI)

man pages section 3: Networking Library Functions • Last Revised 15 Jun 200766

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_open – open DLPI link

cc [flag ...] file ... -ldlpi [library ...]

#include <libdlpi.h>

int dlpi_open(const char *linkname, dlpi_handle_t *dhp,
uint_t flags);

The dlpi_open() function creates an open instance of the DLPI Version 2 link named by
linkname and associates it with a dynamically-allocated dlpi_handle_t, which is returned to
the caller in dhp upon success. The DLPI handle is left in the DL_UNBOUND DLPI state after a
successful open of the DLPI link. The DLPI handles can only be used by one thread at a time,
but multiple handles can be used by multiple threads. This function can open both DL_STYLE1

and DL_STYLE2 DLPI links.

By default (if DLPI_DEVIPNET is not set in flags), the dlpi_open() function scans the /dev/net
and /dev directories for DLPI links, in order. Within each scanned directory, dlpi_open()
first looks for a matching DL_STYLE1 link, then for a matching DL_STYLE2 link. If provider is
considered the linkname with its trailing digits removed, a matching DL_STYLE1 link has a
filename of linkname, and a matching DL_STYLE2 link has a filename of provider. If a
DL_STYLE2 link is opened, dlpi_open() automatically performs the necessary DLPI
operations to place the DLPI link instance and the associated DLPI handle in the DL_UNBOUND
state. See dlpi(7P) for the definition of linkname and the maximum supported length of the
Solaris DLPI linkname.

If DLPI_DEVIPNET is set in flags, dlpi_open() opens the file linkname in /dev/ipnet as a
DL_STYLE1 DLPI device and does not look in any other directories.

The value of flags is constructed by a bitwise-inclusive-OR of the flags listed below, defined in
<libdlpi.h>.

DLPI_DEVIPNET Specify that the named DLPI device is an IP observability device (see
ipnet(7D)), and dl_open() will open the device from the /dev/ipnet/
directory.

DLPI_IPNETINFO This flag is applicable only when opening IP Observability devices (with
DLPI_DEVIPNET or by opening the /dev/lo0 device). This flag causes the
ipnet driver to prepend an ipnet header to each received IP packet. See
ipnet(7D) for the contents of this header.

DLPI_NATIVE Enable DLPI native mode (see DLIOCNATIVE in dlpi(7P)) on a DLPI link
instance. Native mode persists until the DLPI handle is closed by
dlpi_close(3DLPI).

DLPI_PASSIVE Enable DLPI passive mode (see DL_PASSIVE_REQ in dlpi(7P)) on a DLPI
link instance. Passive mode persists until the DLPI handle is closed by
dlpi_close(3DLPI).

Name

Synopsis

Description

dlpi_open(3DLPI)

Networking Library Functions 67

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dlpi-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ipnet-7d
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ipnet-7d
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dlpi-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dlpi-7p

DLPI_RAW Enable DLPI raw mode (see DLIOCRAW in dlpi(7P)) on a DLPI link
instance. Raw mode persists until the DLPI handle is closed by
dlpi_close(3DLPI).

Each DLPI handle has an associated timeout value that is used as a timeout interval for certain
libdlpi operations. The default timeout value ensures that DLPI_ETIMEDOUT is returned from
a libdlpi operation only in the event that the DLPI link becomes unresponsive. The timeout
value can be changed with dlpi_set_timeout(3DLPI), although this should seldom be
necessary.

Upon success, DLPI_SUCCESS is returned. If DL_SYSERR is returned, errno contains the specific
UNIX system error value. Otherwise, a DLPI error value defined in <sys/dlpi.h> or listed in
the following section is returned.

The dlpi_open() function will fail if:

DLPI_EBADLINK Bad DLPI link

DLPI_EIPNETINFONOTSUP The DLPI_IPNETINFO flag was set but the device opened does
not support the DLIOCIPNETINFO ioctl.

DLPI_ELINKNAMEINVAL Invalid DLPI linkname

DLPI_ENOLINK DLPI link does not exist

DLPI_ERAWNOTSUP DLPI raw mode not supported

DLPI_ETIMEDOUT DLPI operation timed out

DLPI_FAILURE DLPI operation failed

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

dlpi_close(3DLPI), dlpi_set_timeout(3DLPI), libdlpi(3LIB), attributes(5), dlpi(7P),
ipnet(7D)

Return Values

Errors

Attributes

See Also

dlpi_open(3DLPI)

man pages section 3: Networking Library Functions • Last Revised 7 Apr 201168

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dlpi-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dlpi-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ipnet-7d

dlpi_promiscon, dlpi_promiscoff – enable or disable DLPI promiscuous mode

cc [flag...] file... -ldlpi [library...]

#include <libdlpi.h>

int dlpi_promiscon(dlpi_handle_t dh, uint_t level);

int dlpi_promiscoff(dlpi_handle_t dh, uint_t level);

The dlpi_promiscon() function enables promiscuous mode on a DLPI link instance
associated with DLPI handle dh, at the specified level. After enabling promiscuous mode, the
caller will be able to receive all messages destined for the DLPI link instance at the specified
level. This operation can be performed in any DLPI state of a handle.

The dlpi_promiscoff() function disables promiscuous mode on a DLPI link instance
associated with DLPI handle dh, at the specified level. This operation can be performed in any
DLPI state of a handle in which promiscuous mode is enabled at the specified level.

The level modes are:

DL_PROMISC_PHYS Promiscuous mode at the physical level

DL_PROMISC_SAP Promiscuous mode at the SAP level

DL_PROMISC_MULTI Promiscuous mode for all multicast addresses

Upon success, DLPI_SUCCESS is returned. If DL_SYSERR is returned, errno contains the specific
UNIX system error value. Otherwise, a DLPI error value defined in <sys/dlpi.h> or an error
value listed in the following section is returned.

DLPI_EBADMSG Bad DLPI message

DLPI_EINHANDLE Invalid DLPI handle

DLPI_EINVAL Invalid argument

DLPI_ETIMEDOUT DLPI operation timed out

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libdlpi(3LIB), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

dlpi_promiscon(3DLPI)

Networking Library Functions 69

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_recv – receive a data message using DLPI

cc [flag ...] file ... -ldlpi [library ...]

#include <libdlpi.h>

int dlpi_recv(dlpi_handle_t dh, void *saddrp,
size_t * saddrlenp, void *msgbuf, size_t *msglenp,
int msec, dlpi_recvinfo_t *recvp);

The dlpi_recv() function attempts to receive data messages over the DLPI link instance
associated with the DLPI handle dh. If dh is not in the DL_IDLE DLPI state, the attempt fails.
The caller must ensure that msgbuf is at least msglenp bytes in size. Upon success, msgbuf
contains the data message received, msglenp contains the number of bytes placed in msgbuf.

The caller must ensure that saddrp is at least DLPI_PHYSADDR_MAX bytes in size and saddrlenp
must contain the length of saddrp. Upon success, saddrp contains the address of the source
sending the data message and saddrlenp contains the source address length. If the caller is not
interested in the source address, both saddrp and saddrlenp can be left as NULL. If the source
address is not available, saddrp is not filled in and saddrlenp is set to zero.

The dlpi_recvinfo_t is a structure defined in <libdlpi.h> as follows:

typedef struct {

uchar_t dri_destaddr[DLPI_PHYSADDR_MAX];

uchar_t dri_destaddrlen;

dlpi_addrtype_t dri_destaddrtype;

size_t dri_totmsglen;

} dlpi_recvinfo_t;

Upon success, if recvp is not set to NULL, dri_destaddr contains the destination address,
dri_destaddrlen contains the destination address length, and dri_totmsglen contains the total
length of the message received. If the destination address is unicast, dri_destaddrtype is set to
DLPI_ADDRTYPE_UNICAST. Otherwise, it is set to DLPI_ADDRTYPE_GROUP.

The values of msglenp and dri_totmsglen might vary when a message larger than the size of
msgbuf is received. In that case, the caller can use dri_totmsglen to determine the original total
length of the message.

If the handle is in raw mode, as described in dlpi_open(3DLPI), msgbuf starts with the
link-layer header. See dlpi(7P). The values of saddrp, saddrlenp, and all the members of
dlpi_recvinfo_t except dri_totmsglen are invalid because the address information is already
included in the link-layer header returned by msgbuf.

If no message is received within msec milliseconds, dlpi_recv() returns DLPI_ETIMEDOUT. If
msec is 0, dlpi_recv() does not block. If msec is -1, dlpi_recv() does block until a data
message is received.

Name

Synopsis

Description

dlpi_recv(3DLPI)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 200770

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dlpi-7p

Upon success, DLPI_SUCCESS is returned. If DL_SYSERR is returned, errno contains the specific
UNIX system error value. Otherwise, a DLPI error value defined in <sys/dlpi.h> or an error
value listed in the following section is returned.

DLPI_EBADMSG Bad DLPI message

DLPI_EINHANDLE Invalid DLPI handle

DLPI_EINVAL Invalid argument

DLPI_ETIMEDOUT DLPI operation timed out

DLPI_EUNAVAILSAP Unavailable DLPI SAP

DLPI_FAILURE DLPI operation failed

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

dlpi_bind(3DLPI), dlpi_open(3DLPI), libdlpi(3LIB), attributes(5), dlpi(7P)

Return Values

Errors

Attributes

See Also

dlpi_recv(3DLPI)

Networking Library Functions 71

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dlpi-7p

dlpi_send – send a data message using DLPI

cc [flag...] file... -ldlpi [library...]

#include <libdlpi.h>

int dlpi_send(dlpi_handle_t dh, const void *daddrp,
size_t daddrlen, const void *msgbuf, size_t msglen,
const dlpi_sendinfo_t *sendp);

The dlpi_send() function attempts to send the contents of msgbuf over the DLPI link
instance associated with the DLPI handle dh to the destination address specified by daddrp.
The size of msgbuf and daddrp are provided by the msglen and daddrlen arguments,
respectively. The attempt will fail if dh is not in the DL_IDLE DLPI state, the address named by
daddrp is invalid, daddrlen is larger than DLPI_PHYSADDR_MAX, or msglen is outside the range
reported by dlpi_info(3DLPI).

If the sendp argument is NULL, data is sent using the bound SAP associated with dh (see
dlpi_bind(3DLPI)) and with default priority. Otherwise, sendp must point to a
dlpi_sendinfo_t structure defined in <libdlpi.h> as follows:

typedef struct {

uint_t dsi_sap;

dl_priority_t dsi_prio;

} dlpi_sendinfo_t;

The dsi_sap value indicates the SAP to use for the message and the dsi_prio argument
indicates the priority. The priority range spans from 0 to 100, with 0 being the highest priority.
If one wishes to only alter the SAP or priority (but not both), the current SAP can be retrieved
using dlpi_info(3DLPI), and the default priority can be specified by using the
DL_QOS_DONT_CARE constant.

If the handle is in raw mode (see DLPI_RAW in dlpi_open(3DLPI)), msgbuf must start with the
link-layer header (see dlpi(7P)). In raw mode, the contents of daddrp and sendp are ignored,
as they are already specified by the link-layer header in msgbuf.

If msgbuf is accepted for delivery, no error is returned. However, because only
unacknowledged connectionless service (DL_CLDLS) is currently supported, a successful
return does not guarantee that the data will be successfully delivered to daddrp.

Upon success, DLPI_SUCCESS is returned. If DL_SYSERR is returned, errno contains the specific
UNIX system error value. Otherwise, a DLPI error value defined in <sys/dlpi.h> or an error
value listed in the following section is returned.

DLPI_EINHANDLE Invalid DLPI handle

DLPI_EINVAL Invalid argument

Name

Synopsis

Description

Return Values

Errors

dlpi_send(3DLPI)

man pages section 3: Networking Library Functions • Last Revised 15 Jul 200872

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dlpi-7p

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

dlpi_bind(3DLPI), dlpi_info(3DLPI), dlpi_open(3DLPI), libdlpi(3LIB), attributes(5),
dlpi(7P)

Attributes

See Also

dlpi_send(3DLPI)

Networking Library Functions 73

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dlpi-7p

dlpi_set_physaddr – set physical address using DLPI

cc [flag...] file... -ldlpi [library...]

#include <libdlpi.h>

int dlpi_set_physaddr(dlpi_handle_t dh, uint_t type,
const void *addrp, size_t *addrlen);

The dlpi_set_physaddr() function sets the physical address via DLPI handle dh associated
with the DLPI link instance. Upon success, the physical address is set to addrp with a length of
addrlen bytes.

In this release, type must be set to DL_CURR_PHYS_ADDR, which sets the current physical
address.

Upon success, DLPI_SUCCESS is returned. If DL_SYSERR is returned, errno contains the specific
UNIX system error value. Otherwise, a DLPI error value defined in <sys/dlpi.h> or an error
value listed in the following section is returned.

DLPI_EBADMSG Bad DLPI message

DLPI_EINHANDLE Invalid DLPI handle

DLPI_EINVAL Invalid argument

DLPI_ETIMEDOUT DLPI operation timed out

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

dlpi_get_physaddr(3DLPI), libdlpi(3LIB), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

dlpi_set_physaddr(3DLPI)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 200774

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_set_timeout – set DLPI handle timeout interval

cc [flag ...] file ... -ldlpi [library ...]

#include <libdlpi.h>

int dlpi_set_timeout(dlpi_handle_t dh, int sec);

The dlpi_set_timeout() function sets the timeout interval to sec seconds on DLPI handle
dh. This timeout is used by libdlpi(3LIB) functions that require explicit acknowledgment
from the associated DLPI link, and bounds the number of seconds that a function will wait for
an acknowledgment before returning DLPI_ETIMEDOUT. Except for dlpi_recv(3DLPI), which
has a timeout argument, any function that is documented to return DLPI_ETIMEDOUT can take
up to the timeout interval to complete.

Callers that do not require an upper bound on timeouts are strongly encouraged to never call
dlpi_set_timeout(), and allow libdlpi to use its default timeout value. The default timeout
value is intended to ensure that DLPI_ETIMEDOUT will only be returned if the DLPI link has
truly become unresponsive. The default timeout value is intended to ensure that
DLPI_ETIMEDOUT will be returned only if the DLPI link has truly become unresponsive.

Callers that do require an explicit upper bound can specify that value at any time by calling
dlpi_set_timeout(). However, note that values less than 5 seconds may trigger spurious
failures on certain DLPI links and systems under high load, and thus are discouraged.
Attempts to set the timeout value to less than 1 second will fail.

If sec is set to DLPI_DEF_TIMEOUT, the default timeout value is restored.

Upon success, DLPI_SUCCESS is returned. Otherwise, a DLPI error value is returned.

DLPI_EINHANDLE Invalid DLPI handle

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libdlpi(3LIB), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

dlpi_set_timeout(3DLPI)

Networking Library Functions 75

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_strerror – get DLPI error message

cc [flag...] file... -ldlpi [library...]

#include <libdlpi.h>

const char *dlpi_strerror(int err);

The dlpi_strerror() function maps the error code in err into an error message string and
returns a pointer to that string.

If err is DL_SYSERR, a string that describes the current value of errno is returned. Otherwise, if
err corresponds to an error code listed in <libdlpi.h> or <sys/dlpi.h>, a string which
describes that error is returned.

The string is not dynamically allocated and must not be freed by the caller.

Upon success, the function returns a pointer to the error message string. If the error code is
unknown, the string “Unknown DLPI error” is returned.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libdlpi(3LIB), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

dlpi_strerror(3DLPI)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 200776

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_unbind – unbind DLPI handle

cc [flag ...] file ... -ldlpi [library ...]

#include <libdlpi.h>

int dlpi_unbind(dlpi_handle_t dh);

The dlpi_unbind() function unbinds to bind the DLPI handle dh from the bound SAP. The
handle must be in the DL_IDLE DLPI state and upon success, the handle transitions to the
DL_UNBOUND state.

Upon success, the caller will no longer be able to send or receive data using the DLPI link
associated with dh.

Upon success, DLPI_SUCCESS is returned. If DL_SYSERR is returned, errno contains the specific
UNIX system error value. Otherwise, a DLPI error value defined in <sys/dlpi.h> or an error
value DLPI_ETIMEDOUT will be returned.

DLPI_EBADMSG Bad DLPI message

DLPI_EINHANDLE Invalid DLPI handle

DLPI_ETIMEDOUT DLPI operation timed out

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

dlpi_bind(3DLPI), libdlpi(3LIB), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

dlpi_unbind(3DLPI)

Networking Library Functions 77

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

dlpi_walk – traverse DLPI links

cc [flag...] file... -ldlpi [library...]

#include <libdlpi.h>

void dlpi_walk(dlpi_walkfunc_t *fn, void *arg, uint_t flags);

typedef boolean_t dlpi_walkfunc_t(const char *name, void *arg);

fn Function to invoke for each link. Arguments are:

name The name of the DLPI interface.

arg The arg parameter passed in to dlpi_walk().

arg An opaque argument that is passed transparently to the user-supplied fn()
function.

flags This parameter is reserved for future use. The caller should pass in 0.

The dlpi_walk() function visits all DLPI links in the current zone. The walk does not visit
DLPI links in the non-global zones when called from the global zone. For each link visited, the
user-supplied fn() function is invoked. The walk terminates either when all links have been
visited or when fn() returns B_TRUE.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libdlpi(3LIB), attributes(5)

Name

Synopsis

Parameters

Description

Attributes

See Also

dlpi_walk(3DLPI)

man pages section 3: Networking Library Functions • Last Revised 7 Apr 201178

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7libdlpi-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

DNSServiceBrowse – browse service instances with DNS

cc [flag ...] file ... -ldns_sd [library ...]

#include <dns_sd.h>

DNSServiceErrorType DNSServiceBrowse(DNSServiceRef *sdRef,
DNSServiceFlags flags, uint32_t interfaceIndex,
const char *regtype, const char *domain,
DNSServiceServiceBrowseReply callBack, void *context);

typedef void(*DNSServiceBrowseReply)(DNSServiceRef sdRef,
DNSServiceFlags flags, uint32_t interfaceIndex,
DNSServiceErrorType errorCode, const char *serviceName,
const char *regtype, const char *replyDomain,
void *context);

The DNSServiceBrowse() function is used to browse for service instances of a particular
service and protocol type. The sdRef argument points to an uninitialized DNSServiceRef. If the
call to DNSServiceBrowse succeeds sdRef is initialized. The flags argument to
DNSServiceBrowse() is currently unused and reserved for future use. A nonzero value to
interfaceIndex indicates DNSServiceBrowse() should do a browse on all interfaces. Most
applications will use an interfaceIndex value of 0 to perform a browse on all interfaces. See the
section “Constants for specifying an interface index” in <dns_sd.h> for more details.

The callback function is invoked for every service instance found matching the service type
and protocol. The callback argument points to a function of type DNSServiceBrowseReply
listed above. The DNSServiceBrowse() call returns browse results asynchronously. The
service browse call can be terminated by applications with a call to
DNSServiceRefDeallocate().

The regtype parameter is used to specify the service type and protocol (e.g. _ftp._tcp). The
protocol type must be TCP or UDP. The domain argument to DNSServiceBrowse() specifies the
domain on which to browse for services. Most applications will not specify a domain and will
perform a browse on the default domain(s). The context argument can be NULL and points to a
value passed to the callback function.

The sdRef argument passed to the callback function is initialized by DNSServiceBrowse() call.
The possible values passed to flags in the callback function are:
kDNSServiceFlagsMoreComing and kDNSServiceFlagsAdd. The
kDNSServiceFlagsMoreComing value indicates to a callback that at least one more result is
immediately available. The kDNSServiceFlagsAdd value indicates that a service instance was
found. The errorCode argument will be kDNSServiceErr_NoError on success. Otherwise,
failure is indicated. The discovered service name is returned to the callback via the
serviceName argument. The regtype argument in the callback holds the service type of the
found service instance. The discovered service type can be different from the requested service
type in the browse request when the discovered service type has subtypes. The domain
argument to the callback holds the domain name of the discovered service instance. The

Name

Synopsis

Description

DNSServiceBrowse(3DNS_SD)

Networking Library Functions 79

service type and the domain name must be stored and passed along with the service name to
resolve a service instance using DNSServiceResolve().

The DNSServiceBrowse function returns kDNSServiceErr_NoError on success. Otherwise, an
error code defined in <dns_sd.h> is returned to indicate an error has occurred. When an error
is returned by DNSServiceBrowse, the callback function is not invoked and the DNSServiceRef
argument is not initialized.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

DNSServiceRefDeallocate(3DNS_SD), DNSServiceResolve(3DNS_SD), attributes(5)

Return Values

Attributes

See Also

DNSServiceBrowse(3DNS_SD)

man pages section 3: Networking Library Functions • Last Revised 20 Aug 200780

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

DNSServiceConstructFullName – construct full name

cc [flag ...] file ... -ldns_sd [library ...]

#include <dns_sd.h>

int DNSServiceConstructFullName (char *fullname,
const char *service, const char *regtype, const char *domain);

The DNSServiceConstructFullName() concatenates a three-part domain name that consists
of a service name, service type, and domain name into a fully escaped full domain name.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

attributes(5)

Name

Synopsis

Description

Attributes

See Also

DNSServiceConstructFullName(3DNS_SD)

Networking Library Functions 81

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

DNSServiceCreateConnection, DNSServiceRegisterRecord, DNSServiceAddRecord,
DNSServiceUpdateRecord, DNSServiceRemoveRecord – registering multiple records

cc [flag ...] file ... -ldns_sd [library ...]

#include <dns_sd.h>

DNSServiceErrorType DNSServiceCreateConnection(DNSServiceRef *sdRef);

DNSServiceErrorType DNSServiceRegisterRecord(DNSServiceRef sdRef,
DNSRecordRef *RecordRef, DNSServiceFlags flags,
uint32_t interfaceIndex, const char *fullname,
uint16_t rrtype, uint16_t rrclass, uint16_t rdlen,
const void *rdata, uint32_t ttl,
DNSServiceServiceRegisterRecordReply callBack,
void *context);

typedef void(*DNSServiceRegisterRecordReply)(DNSServiceRef sdRef,
DNSServiceRecordRef RecordRef, DNSServiceFlags flags,
DNSServiceErrorType errorCode, void *context);

DNSServiceErrorType DNSServiceAddRecord(DNSServiceRef sdRef,
DNSRecordRef *RecordRef, DNSServiceFlags flags,
uint16_t rrtype, uint16_t rdlen, const void *rdata,
uint32_t ttl);

DNSServiceErrorType DNSServiceUpdateRecord(DNSServiceRef sdRef,
DNSRecordRef RecordRef, DNSServiceFlags flags,
uint16_t rdlen, const void *rdata,
uint32_t ttl);

DNSServiceErrorType DNSServiceRemoveRecord(DNSServiceRef sdRef,
DNSRecordRef RecordRef, DNSServiceFlags flags);

The DNSServiceCreateConnection() function allows the creation of a connection to the
mDNS daemon in order to register multiple individual records.

The DNSServiceRegisterRecord() function uses the connection created by
DNSServiceCreateConnection() to register a record. Name conflicts that occur from this
function should be handled by the client in the callback.

The DNSServiceAddRecord() call adds a DNS record to a registered service. The name of the
record is the same as registered service name. The RecordRef argument to
DNSServiceAddRecord() points to an uninitialized DNSRecordRef. After successful
completion of DNSServiceAddRecord(), the DNS record can be updated or deregistered by
passing the DNSRecordRef initialized by DNSServiceAddRecord() to
DNSServiceUpdateRecord() or to DNSServiceRemoveRecord().

The DNSServiceUpdateRecords() call updates the DNS record of the registered service. The
DNS record must be the primary resource record registered using DNSServiceRegister() or a
record added to a registered service using DNSServiceAddRecord() or an individual record
added via DNSServiceRegisterRecord().

Name

Synopsis

Description

DNSServiceCreateConnection(3DNS_SD)

man pages section 3: Networking Library Functions • Last Revised 20 Aug 200782

The DNSServiceRemoveRecord() call removes a record that was added using
DNSServiceAddRecord() or DNSServiceRegisterRecord().

The sdRef argument points to DNSServiceRef initialized from a call to
DNSServiceRegister(). If the sdRef argument is passed to DNSServiceRefDeallocate() and
the service is deregistered DNS records added via DNSServiceAddRecord() are invalidated and
cannot be further used. The flags argument is currently ignored and reserved for future use.
The rrtype parameter value indicates the type of the DNS record. Suitable values for the rrtype
parameter are defined in <dns_sd.h>: kDNSServiceType_TXT, for example. The rdata
argument points to the raw rdata to be contained in the resource record. The ttl value indicates
the time to live of the resource record in seconds. A ttl value of 0 should be passed to use a
default value.

The DNSServiceCreateConnection function returns kDNSServiceErr_NoError on success.
Otherwise, an error code defined in <dns_sd.h> is returned to indicate the specific failure that
occurred.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

DNSServiceRefDeallocate(3DNS_SD), DNSServiceRegister(3DNS_SD), attributes(5)

Return Values

Attributes

See Also

DNSServiceCreateConnection(3DNS_SD)

Networking Library Functions 83

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

DNSServiceEnumerateDomains – enumerate recommended domains

cc [flag ...] file ... -ldns_sd [library ...]

#include <dns_sd.h>

DNSServiceErrorType DNSServiceEnumerateDomains(DNSServiceRef *sdRef,
DNSServiceFlags flags, uint32_t interfaceIndex,
DNSServiceDomainEnumReply callBack, void *context);

typedef void(*DNSServiceDomainEnumReply)(DNSServiceRef sdRef,
DNSServiceFlags flags, uint31_t interfaceIndex,
DNSServiceErrorType errorCode, const char *replyDomain,
void *context);

The DNSServiceEnumerateDomains() function allows applications to determine
recommended browsing and registration domains for performing service discovery DNS
queries. The callback argument points to a function to be called to return results or if the
asynchronous call to DNSServiceEnumerateDomains() fails. The callback function should
point to a function of type DNSServiceDomainEnumReply listed above.

A pointer to an uninitialized DNSServiceRef, sdRef must be passed to
DNSServiceEnumerateDomains(). If the call succeeds, sdRef is initialized and
kDNSServiceErr_NoError is returned. The enumeration call runs indefinitely until the client
terminates the call. The enumeration call must be terminated by passing the DNSServiceRef
initialized by the enumeration call to DNSServiceRefDeallocate() when no more domains
are to be found.

The value of flags is constructed by a bitwise-inclusive-OR of the flags used in DNSService

functions and defined in <dns_sd.h>. Possible values for flags to the
DNSServiceEnumerateDomains() call are: kDNSServiceFlagsBrowseDomains and
kDNSServiceFlagsRegistrationDomains. The kDNSServiceFlagsBrowseDomains value is
passed to enumerate domains recommended for browsing. The
kDNSServiceFlagsRegistrationDomains value is passed to enumerate domains
recommended for registration. Possible values of flags returned in the callback function are:
kDNSServiceFlagsMoreComing, kDNSServiceFlagsAdd, and kDNSServiceFlagsDefault.

The interfaceIndex parameter to the enumeration call specifies the interface index searched for
domains. Most applications pass 0 to enumerate domains on all interfaces. See the section
“Constants for specifying an interface index” in <dns_sd.h> for more details. The context
parameter can be NULL and is passed to the enumeration callback function. The interfaceIndex
value passed to the callback specifies the interface on which the domain exists.

The DNSServiceEnumerateDomains() function returns kDNSServiceErr_NoError on
success. Otherwise, the function returns an error code defined in <dns_sd.h>. The callback is
not invoked on error and the DNSServiceRef that is passed is not initialized. Upon a successful
call to DNSServiceEnumerateDomains(), subsequent asynchronous errors are delivered to the
callback.

Name

Synopsis

Description

Return Values

DNSServiceEnumerateDomains(3DNS_SD)

man pages section 3: Networking Library Functions • Last Revised 20 Aug 200784

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

DNSServiceRefDeallocate(3DNS_SD), attributes(5)

Attributes

See Also

DNSServiceEnumerateDomains(3DNS_SD)

Networking Library Functions 85

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

DNSServiceProcessResult – process results and invoke callback

cc [flag ...] file ... -ldns_sd [library ...]

#include <dns_sd.h>

DNSServiceErrorType DNSServiceProcessResult (DNSServiceRef sdRef);

The DNSServiceProcessResult() call reads the returned results from the mDNS daemon and
invokes the specified application callback. The sdRef points to a DNSServiceRef initialized by
any of the DNSService calls that take a callback parameter. The DNSServiceProcessResult()
call blocks until data is received from the mDNS daemon. The application is responsible for
ensuring that DNSServiceProcessResult() is called whenever there is a reply from the
daemon. The daemon may terminate its connection with a client that does not process the
daemon's responses.

The DNSServiceProcessResult() call returns kDNSServiceErr_NoError on success.
Otherwise, an error code defined in <dns_sd.h> is returned to indicate the specific failure that
has occurred.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

DNSServiceBrowse(3DNS_SD), DNSServiceRegister(3DNS_SD), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

DNSServiceProcessResult(3DNS_SD)

man pages section 3: Networking Library Functions • Last Revised 20 Aug 200786

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

DNSServiceQueryRecord – query records from DNS

cc [flag ...] file ... -ldns_sd [library ...]

#include <dns_sd.h>

DNSServiceErrorType DNSServiceQueryRecord(DNSServiceRef *sdRef,
DNSServiceFlags flags, uint32_t interfaceIndex, const char *fullname,
uint16_t rrtype, uint16_t rrclass,
DNSServiceServiceQueryRecordReply callBack, void *context);

typedef void(*DNSServiceQueryRecordReply)(DNSServiceRef DNSServiceRef,
DNSServiceFlags flags, uint32_t interfaceIndex,
DNSServiceErrorType errorCode, const char *fullname,
uint16_t rrtype, uint16_t rrclass, uint16_t rdlen,
const void *rdata, uint32_t ttl, void *context);

The DNSServiceQueryRecord() function is used to query the daemon for any DNS resource
record type. The callback argument to DNSServiceQueryRecord() points to a function of type
DNSServiceQueryRecordReply() listed above. The sdRef parameter in
DNSServiceQueryRecord() points to an uninitialized DNSServiceRef. The
DNSServiceQueryRecord() function returns kDNSServiceErr_NoError and initializes sdRef
on success. The query runs indefinitely until the client terminates by passing the initialized
sdRef from the query call to DNSServiceRefDeallocate().

The flag kDNSServiceFlagsLongLivedQuery should be passed in the flags argument of
DNSServiceQueryRecord() to create a “long-lived” unicast query in a non-local domain. This
flag has no effect on link local multicast queries. Without this flag, unicast queries will be
one-shot and only the results that are available at the time of the query will be returned. With
long-lived queries, add or remove events that are available after the first call generate
callbacks. The interfaceIndex argument specifies the interface on which to issue the query.
Most applications will pass a 0 as the interfaceIndex to make the query on all interfaces. See the
section “Constants for specifying an interface index” in <dns_sd.h>. The fullname argument
indicates the full domain name of the resource record to be queried. The rrtype argument
indicates the resource record type: kDNSServiceType_PTR, for example. The rrclass argument
holds the class of the resource record to be queried (kDNSServiceClass_IN). The context
argument can be NULL and points to a value passed to the callback function.

The sdRef argument passed to the callback function is initialized by the call to
DNSServiceQueryRecord(). Possible values for the flags parameter to the callback function
are kDNSServiceFlagsMoreComing and kDNSServiceFlagsAdd. The
kDNSServiceFlagsMoreComing value is set to indicate that additional results are immediately
available. The kDNSServiceFlagsAdd value indicates that the results returned to the callback
function are for a valid DNS record. If kDNSServiceFlagsAdd is not set, the results returned are
for a delete event. The errorCode passed to the callback is kDNSServiceErr_NoError on
success. Otherwise, failure is indicated and other parameter values are undefined. The
fullname parameter indicates the full domain name of the resource record . The rrtype
indicates the resource record type. The rrclass indicates the class of the DNS resource record.

Name

Synopsis

Description

DNSServiceQueryRecord(3DNS_SD)

Networking Library Functions 87

The rdlen parameter indicates the length of the resource record rdata in bytes. The rdata
parameter points to raw rdata of the resource record. The ttl parameter indicates the time to
live of the resource record in seconds. The context parameter points to the value passed by the
application in the context argument to the DNSServiceQueryRecord() call.

The DNSServiceQueryRecord function returns kDNSServiceErr_NoError on success.
Otherwise, an error code defined in <dns_sd.h> is returned to indicate the specific failure that
occurred.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

DNSServiceBrowse(3DNS_SD), DNSServiceRegister(3DNS_SD),
DNSServiceResolve(3DNS_SD), attributes(5)

Return Values

Attributes

See Also

DNSServiceQueryRecord(3DNS_SD)

man pages section 3: Networking Library Functions • Last Revised 20 Aug 200788

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

DNSServiceReconfirmRecord – verify DNS record

cc [flag ...] file ... -ldns_sd [library ...]

#include <dns_sd.h>

void DNSServiceRefSockFD (DNSServiceFlags flags, uint32_t interfaceIndex,
const char *fullname, uint16_t rrtype, uint16_t rrclass,
uint16_t rrlen const void *rdata);

The DNSServiceReconfirmRecord() function allows callers to verify whether a DNS record is
valid. If an invalid record is found in the cache, the daemon flushes the record from the cache
and from the cache of other daemons on the network.

The DNSServiceReconfirmRecord() function returns kDNSServiceErr_NoError on success.
Otherwise, an error code defined in <dns_sd.h> is returned to indicate the specific failure that
occurred.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

DNSServiceBrowse(3DNS_SD), DNSServiceQueryRecord(3DNS_SD),
DNSServiceRegister(3DNS_SD), DNSServiceResolve(3DNS_SD), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

DNSServiceReconfirmRecord(3DNS_SD)

Networking Library Functions 89

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

DNSServiceRefDeallocate – close connection

cc [flag ...] file ... -ldns_sd [library ...]

#include <dns_sd.h>

void DNSServiceRefDeallocate (DNSServiceRef sdRef);

The DNSServiceRefDeallocate() call terminates connection to the mDNS daemon. Any
services and resource records registered with the DNSServiceRef are de-registered. Any
browse or resolve queries initiated using the DNSServiceRef are also terminated.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

DNSServiceBrowse(3DNS_SD), DNSServiceRegister(3DNS_SD), attributes(5)

Name

Synopsis

Description

Attributes

See Also

DNSServiceRefDeallocate(3DNS_SD)

man pages section 3: Networking Library Functions • Last Revised 20 Aug 200790

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

DNSServiceRefSockFD – access underlying UNIX domain socket descriptor

cc [flag ...] file ... -ldns_sd [library ...]

#include <dns_sd.h>

DNSServiceRefSockFD(DNSServiceRef *sdRef);

Access the underlying UNIX domain socket from the initialized DNSServiceRef returned
from DNS Service calls. Applications should only access the underlying UNIX domain socket
to poll for results from the mDNS daemon. Applications should not directly read or write to the
socket. When results are available, applications should call DNSServiceProcessResult().
The application is responsible for processing the data on the socket in a timely fashion. The
daemon can terminate its connection with a client that does not clear its socket buffer.

The underlying UNIX domain socket descriptor of the DNSServiceRef or -1 is returned in
case of error.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

DNSServiceBrowse(3DNS_SD), DNSServiceRegister(3DNS_SD), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

DNSServiceRefSockFD(3DNS_SD)

Networking Library Functions 91

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

DNSServiceRegister – register service with DNS

cc [flag ...] file ... -ldns_sd [library ...]

#include <dns_sd.h>

DNSServiceErrorType DNSServiceRegister(DNSServiceRef *sdRef,
DNSServiceFlags flags, uint32_t interfaceIndex,
const char *name, const char *regtype,
const char *domain, const char *host,
uint16_t port, uint16_t *txtLen, const void *txtRecord
DNSServiceServiceRegisterReply callBack
void *context);

typedef void(*DNSServiceRegisterReply)(DNSServiceRef sdRef,
DNSServiceFlags flags, DNSServiceErrorType errorCode,
const char *name, const char *regtype,
const char *domain, void *context);

The DNSServiceRegister function is used by clients to advertise a service that uses DNS. The
service is registered with multicast DNS if the domain name is .local or the interface
requested is local only. Otherwise, the service registration is attempted with the unicast DNS
server. The callback argument should point to a function of type DNSServiceRegisterReply
listed above.

The sdRef parameter points to an uninitialized DNSServiceRef instance. If the
DNSServiceRegister() call succeeds, sdRef is initialized and kDNSServiceErr_NoError is
returned. The service registration remains active until the client terminates the registration by
passing the initialized sdRef to DNSServiceRefDeallocate(). The interfaceIndex when
non-zero specifies the interface on which the service should be registered. Most applications
pass 0 to register the service on all interfaces. See the section “Constants for specifying an
interface index” in <dns_sd.h> for more details. The flags parameter determines the renaming
behavior on a service name conflict. Most applications pass 0 to allow auto-rename of the
service name in case of a name conflict. Applications can pass the flag
kDNSServiceFlagsNoAutoRename defined in <dns_sd.h> to disable auto-rename.

The regtype indicates the service type followed by the protocol, separated by a dot, for example
“_ftp._tcp.”. The service type must be an underscore that is followed by 1 to 14 characters
that can be letters, digits, or hyphens. The transport protocol must be _tcp or _udp. New
service types should be registered at http://www.dns-sd.org/ServiceTypes.html. The
domain parameter specifies the domain on which a service is advertised. Most applications
leave the domain parameter NULL to register the service in default domains. The host
parameter specifies the SRV target host name. Most applications do not specify the host
parameter value. Instead, the default host name of the machine is used. The port value on
which the service accepts connections must be passed in network byte order. A value of 0 for a
port is passed to register placeholder services. Placeholder services are not found when
browsing, but other clients cannot register with the same name as the placeholder service.

Name

Synopsis

Description

DNSServiceRegister(3DNS_SD)

man pages section 3: Networking Library Functions • Last Revised 20 Aug 200792

http://www.dns-sd.org/ServiceTypes.html

The txtLen parameter specifies the length of the passed txtRecord in bytes. The value must be
zero if the txtRecord passed is NULL. The txtRecord points to the TXT record rdata. A non-NULL
txtRecord must be a properly formatted DNSTXT record. For more details see the
DNSServiceRegister call defined in <dns_sd.h>. The callback argument points to a function
to be called when registration completes or when the call asynchronously fails. The client can
pass NULL for the callback and not be notified of the registration results or asynchronous
errors. The client may not pass the NoAutoRename flag if the callback is NULL. The client can
unregister the service at any time via DNSServiceRefDeallocate().

The callback function argument sdRef is initialized by DNSServiceRegister(). The flags
argument in the callback function is currently unused and reserved for future use. The error
code returned to the callback is kDNSServiceErr_NoError on success. Otherwise, an error
code defined in <dns_sd.h> is returned to indicate an error condition such as a name conflict
in kDNSServiceFlagsNoAutoRename mode. The name argument holds the registered service
name and the regtype argument is the registered service type passed to
DNSServiceRegister(). The domain argument returned in the callback indicates the domain
on which the service was registered.

The DNSServiceRegister function returns kDNSServiceErr_NoError on success. Otherwise,
an error code defined in <dns_sd.h> is returned. Upon registration, any subsequent
asynchronous errors are delivered to the callback.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

DNSServiceRefDeallocate(3DNS_SD), attributes(5)

Return Values

Attributes

See Also

DNSServiceRegister(3DNS_SD)

Networking Library Functions 93

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

DNSServiceResolve – resolve service instances with DNS

cc [flag ...] file ... -ldns_sd [library ...]

#include <dns_sd.h>

DNSServiceErrorType DNSServiceResolve(DNSServiceRef *sdRef,
DNSServiceFlags flags, uint32_t interfaceIndex, const char *name,
const char *regtype, const char *domain,
DNSServiceServiceResolveReply callBack, void *context);

typedef void(*DNSServiceResolveReply)(DNSServiceRef sdRef,
DNSServiceFlags flags, uint32_t interfaceIndex,
DNSServiceErrorType errorCode, const char *fullname,
const char *hosttarget, uint16_t port, uint16_t txtLen,
const char *txtRecord, void *context);

The DNSServiceResolve() function is used to resolve a service name returned by
DNSServiceBrowse() to host IP address, port number, and TXT record. The
DNSServiceResolve() function returns results asynchronously. A DNSServiceResolve() call
to resolve service name can be ended by calling DNSServiceRefDeallocate(). The callback
argument points to a function of type DNSServiceResolveReply as listed above. The callback
function is invoked on finding a result or when the asynch resolve call fails. The sdRef
argument to DNSServiceResolve() points to an uninitialized DNSServiceRef. If the call to
DNSServiceResolve() succeeds, sdRef is initialized and kDNSServiceErr_NoError is
returned.

The flags argument to DNSServiceResolve() is currently unused and reserved for future use.
The interfaceIndex argument indicates the interface on which to resolve the service. If the
DNSServiceResolve() call is the result of an earlier DNSServiceBrowse() operation, pass the
interfaceIndex to perform a resolve on all interfaces. See the section “Constants for specifying
an interface index” in <dns_sd.h> for more details. The name parameter is the service
instance name to be resolved, as returned from a DNSServiceBrowse() call. The regtype holds
the service type and the domain parameter indicates the domain in which the service instance
was found. The context parameter points to a value that is passed to the callback function.

The sdRef argument passed to the callback function is initialized by DNSServiceResolve()
call. The flags parameter in the callback function is currently unused and reserved for future
use. The errorCode parameter is kDNSServiceErr_NoError on success. Otherwise, it will hold
the error defined in <dns_sd.h> and other parameters are undefined when errorCode is
nonzero. The fullname parameter in the callback holds the full service domain name in the
format <servicename>.<protocol>.<domain>. The full service domain name is escaped to
follow standard DNS rules. The hosttarget parameter holds the target hostname of the machine
providing the service. The port parameter indicates the port in network byte order on which
the service accepts connections. The txtLen and txtRecord parameters hold the length and the
TXT record of the service's primary TXT record. The context parameter points to the value that
was passed as context to the DNSServiceResolve() call.

Name

Synopsis

Description

DNSServiceResolve(3DNS_SD)

man pages section 3: Networking Library Functions • Last Revised 20 Aug 200794

The DNSServiceResolve function returns kDNSServiceErr_NoError on success. Otherwise,
an error code defined in <dns_sd.h> is returned to indicate an error has occurred. When an
error is returned by DNSServiceResolve, the callback function is not invoked and the
DNSServiceRef argument is not initialized.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

DNSServiceBrowse(3DNS_SD), DNSServiceRefDeallocate(3DNS_SD), attributes(5)

Return Values

Attributes

See Also

DNSServiceResolve(3DNS_SD)

Networking Library Functions 95

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

endhostent, gethostbyaddr, gethostbyname, gethostent, sethostent – network host database
functions

cc [flag ...] file ... -lxnet [library ...]

#include <netdb.h>

extern int h_errno;

void endhostent(void)

struct hostent *gethostbyaddr(const void *addr, socklen_t len, int type);

struct hostent *gethostbyname(const char *name);

struct hostent *gethostent(void)

void sethostent(int stayopen);

The gethostent(), gethostbyaddr(), and gethostbyname() functions each return a pointer
to a hostent structure, the members of which contain the fields of an entry in the network
host database.

The gethostent() function reads the next entry of the database, opening a connection to the
database if necessary.

The gethostbyaddr() function searches the database and finds an entry which matches the
address family specified by the type argument and which matches the address pointed to by
the addr argument, opening a connection to the database if necessary. The addr argument is a
pointer to the binary-format (that is, not null-terminated) address in network byte order,
whose length is specified by the len argument. The datatype of the address depends on the
address family. For an address of type AF_INET, this is an in_addr structure, defined in
<netinet/in.h>. For an address of type AF_INET6, there is an in6_addr structure defined in
<netinet/in.h>.

The gethostbyname() function searches the database and finds an entry which matches the
host name specified by the name argument, opening a connection to the database if necessary.
If name is an alias for a valid host name, the function returns information about the host name
to which the alias refers, and name is included in the list of aliases returned.

The sethostent() function opens a connection to the network host database, and sets the
position of the next entry to the first entry. If the stayopen argument is non-zero, the
connection to the host database will not be closed after each call to gethostent() (either
directly, or indirectly through one of the other gethost*() functions).

The endhostent() function closes the connection to the database.

The gethostent(), gethostbyaddr(), and gethostbyname() functions may return pointers
to static data, which may be overwritten by subsequent calls to any of these functions.

These functions are generally used with the Internet address family.

Name

Synopsis

Description

Usage

endhostent(3XNET)

man pages section 3: Networking Library Functions • Last Revised 1 Nov 200396

On successful completion, gethostbyaddr(), gethostbyname() and gethostent() return a
pointer to a hostent structure if the requested entry was found, and a null pointer if the end of
the database was reached or the requested entry was not found. Otherwise, a null pointer is
returned.

On unsuccessful completion, gethostbyaddr() and gethostbyname() functions set h_errno
to indicate the error.

No errors are defined for endhostent(), gethostent() and sethostent().

The gethostbyaddr() and gethostbyname() functions will fail in the following cases, setting
h_errno to the value shown in the list below. Any changes to errno are unspecified.

HOST_NOT_FOUND No such host is known.

NO_DATA The server recognised the request and the name but no address is
available. Another type of request to the name server for the domain
might return an answer.

NO_RECOVERY An unexpected server failure occurred which can not be recovered.

TRY_AGAIN A temporary and possibly transient error occurred, such as a failure of a
server to respond.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

endservent(3XNET), htonl(3XNET), inet_addr(3XNET), attributes(5), standards(5)

Return Values

Errors

Attributes

See Also

endhostent(3XNET)

Networking Library Functions 97

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

endnetent, getnetbyaddr, getnetbyname, getnetent, setnetent – network database functions

cc [flag ...] file ... -lxnet [library ...]

#include <netdb.h>

void endnetent(void);struct netent *getnetbyaddr(in_addr_t net, int type);

struct netent *getnetbyname(const char *name);

struct netent *getnetent(void)

void setnetent(int stayopen);

The getnetbyaddr(), getnetbyname() and getnetent(), functions each return a pointer to a
netent structure, the members of which contain the fields of an entry in the network database.

The getnetent() function reads the next entry of the database, opening a connection to the
database if necessary.

The getnetbyaddr() function searches the database from the beginning, and finds the first
entry for which the address family specified by type matches the n_addrtype member and the
network number net matches the n_net member, opening a connection to the database if
necessary. The net argument is the network number in host byte order.

The getnetbyname() function searches the database from the beginning and finds the first
entry for which the network name specified by name matches the n_name member, opening a
connection to the database if necessary.

The setnetent() function opens and rewinds the database. If the stayopen argument is
non-zero, the connection to the net database will not be closed after each call to getnetent()

(either directly, or indirectly through one of the other getnet*() functions).

The endnetent() function closes the database.

The getnetbyaddr(), getnetbyname() and getnetent(), functions may return pointers to
static data, which may be overwritten by subsequent calls to any of these functions.

These functions are generally used with the Internet address family.

On successful completion, getnetbyaddr(), getnetbyname() and getnetent(), return a
pointer to a netent structure if the requested entry was found, and a null pointer if the end of
the database was reached or the requested entry was not found. Otherwise, a null pointer is
returned.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

Name

Synopsis

Description

Usage

Return Values

Errors

Attributes

endnetent(3XNET)

man pages section 3: Networking Library Functions • Last Revised 10 Jun 200298

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

attributes(5), standards(5)See Also

endnetent(3XNET)

Networking Library Functions 99

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

endprotoent, getprotobynumber, getprotobyname, getprotoent, setprotoent – network
protocol database functions

cc [flag ...] file ... -lxnet [library ...]

#include <netdb.h>

void endprotoent(void)

struct protoent *getprotobyname(const char *name);

struct protoent *getprotobynumber(int proto);

struct protoent *getprotoent(void)

void setprotoent(int stayopen);

The getprotobyname(), getprotobynumber() and getprotoent(), functions each return a
pointer to a protoent structure, the members of which contain the fields of an entry in the
network protocol database.

The getprotoent() function reads the next entry of the database, opening a connection to the
database if necessary.

The getprotobyname() function searches the database from the beginning and finds the first
entry for which the protocol name specified by name matches the p_name member, opening a
connection to the database if necessary.

The getprotobynumber() function searches the database from the beginning and finds the
first entry for which the protocol number specified by number matches the p_proto member,
opening a connection to the database if necessary.

The setprotoent() function opens a connection to the database, and sets the next entry to
the first entry. If the stayopen argument is non-zero, the connection to the network protocol
database will not be closed after each call to getprotoent() (either directly, or indirectly
through one of the other getproto*() functions).

The endprotoent() function closes the connection to the database.

The getprotobyname(), getprotobynumber() and getprotoent() functions may return
pointers to static data, which may be overwritten by subsequent calls to any of these functions.

These functions are generally used with the Internet address family.

On successful completion, getprotobyname(), getprotobynumber() and getprotoent()

functions return a pointer to a protoent structure if the requested entry was found, and a null
pointer if the end of the database was reached or the requested entry was not found.
Otherwise, a null pointer is returned.

Name

Synopsis

Description

Usage

Return Values

endprotoent(3XNET)

man pages section 3: Networking Library Functions • Last Revised 10 Jun 2002100

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

attributes(5), standards(5)

Errors

Attributes

See Also

endprotoent(3XNET)

Networking Library Functions 101

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

endservent, getservbyport, getservbyname, getservent, setservent – network services database
functions

cc [flag ...] file ... -lxnet [library ...]

#include <netdb.h>

void endservent(void)

struct servent *getservbyname(const char *name, const char *proto);

struct servent *getservbyport(int port, const char *proto);

struct servent *getservent(void)

void setservent(int stayopen);

The getservbyname(), getservbyport() and getservent() functions each return a pointer
to a servent structure, the members of which contain the fields of an entry in the network
services database.

The getservent() function reads the next entry of the database, opening a connection to the
database if necessary.

The getservbyname() function searches the database from the beginning and finds the first
entry for which the service name specified by name matches the s_name member and the
protocol name specified by proto matches the s_proto member, opening a connection to the
database if necessary. If proto is a null pointer, any value of the s_proto member will be
matched.

The getservbyport() function searches the database from the beginning and finds the first
entry for which the port specified by port matches the s_port member and the protocol name
specified by proto matches the s_proto member, opening a connection to the database if
necessary. If proto is a null pointer, any value of the s_proto member will be matched. The
port argument must be in network byte order.

The setservent() function opens a connection to the database, and sets the next entry to the
first entry. If the stayopen argument is non-zero, the net database will not be closed after each
call to the getservent() function, either directly, or indirectly through one of the other
getserv*() functions.

The endservent() function closes the database.

The port argument of getservbyport() need not be compatible with the port values of all
address families.

The getservent(), getservbyname() and getservbyport() functions may return pointers
to static data, which may be overwritten by subsequent calls to any of these functions.

These functions are generally used with the Internet address family.

Name

Synopsis

Description

Usage

endservent(3XNET)

man pages section 3: Networking Library Functions • Last Revised 14 Jun 2002102

On successful completion, getservbyname(), getservbyport() and getservent() return a
pointer to a servent structure if the requested entry was found, and a null pointer if the end of
the database was reached or the requested entry was not found. Otherwise, a null pointer is
returned.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

endhostent(3XNET), endprotoent(3XNET), htonl(3XNET), inet_addr(3XNET),
attributes(5), standards(5)

Return Values

Errors

Attributes

See Also

endservent(3XNET)

Networking Library Functions 103

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

ethers, ether_ntoa, ether_aton, ether_ntohost, ether_hostton, ether_line – Ethernet address
mapping operations

cc [flag ...] file ... -lsocket -lnsl [library ...]

#include <sys/types.h>

#include <sys/ethernet.h>

char *ether_ntoa(const struct ether_addr *e);

struct ether_addr *ether_aton(const char *s);

int ether_ntohost(char *hostname, const struct ether_addr *e);

int ether_hostton(const char *hostname, struct ether_addr *e);

int ether_line(const char *l, struct ether_addr *e, char *hostname);

These routines are useful for mapping 48 bit Ethernet numbers to their ASCII representations
or their corresponding host names, and vice versa.

The function ether_ntoa() converts a 48 bit Ethernet number pointed to by e to its standard
ASCII representation; it returns a pointer to the ASCII string. The representation is of the
form x : x : x : x : x : x where x is a hexadecimal number between 0 and ff. The function
ether_aton() converts an ASCII string in the standard representation back to a 48 bit
Ethernet number; the function returns NULL if the string cannot be scanned successfully.

The function ether_ntohost() maps an Ethernet number (pointed to by e) to its associated
hostname. The string pointed to by hostname must be long enough to hold the hostname and
a NULL character. The function returns zero upon success and non-zero upon failure.
Inversely, the function ether_hostton() maps a hostname string to its corresponding
Ethernet number; the function modifies the Ethernet number pointed to by e. The function
also returns zero upon success and non-zero upon failure. In order to do the mapping, both
these functions may lookup one or more of the following sources: the ethers file, and the NIS
maps ethers.byname and ethers.byaddr. The sources and their lookup order are specified in
the /etc/nsswitch.conf file. See nsswitch.conf(4) for details.

The function ether_line() scans a line, pointed to by l, and sets the hostname and the
Ethernet number, pointed to by e. The string pointed to by hostname must be long enough to
hold the hostname and a NULL character. The function returns zero upon success and
non-zero upon failure. The format of the scanned line is described by ethers(4).

/etc/ethers Ethernet address to hostname database or domain

/etc/nsswitch.conf configuration file for the name service switch

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Name

Synopsis

Description

Files

Attributes

ethers(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 10 Dec 2009104

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ethers-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ethers(4), nsswitch.conf(4), attributes(5)See Also

ethers(3SOCKET)

Networking Library Functions 105

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ethers-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

freeaddrinfo, getaddrinfo – get address information

cc [flag ...] file ... -lxnet [library ...]

#include <sys/socket.h>

#include <netdb.h>

void freeaddrinfo(struct addrinfo *ai);

int getaddrinfo(const char *restrict nodename,
const char *restrict servname, const struct addrinfo *restrict hints,
struct addrinfo **restrict res);

The freeaddrinfo() function frees one or more addrinfo structures returned by
getaddrinfo(), along with any additional storage associated with those structures. If the
ai_next member of the structure is not null, the entire list of structures is freed. The
freeaddrinfo() function supports the freeing of arbitrary sublists of an addrinfo list
originally returned by getaddrinfo().

The getaddrinfo() function translates the name of a service location (for example, a host
name) and/or a service name and returns a set of socket addresses and associated information
to be used in creating a socket with which to address the specified service.

The nodename and servname arguments are either null pointers or pointers to
null-terminated strings. One or both of these two arguments are supplied by the application as
a non-null pointer.

The format of a valid name depends on the address family or families. If a specific family is not
given and the name could be interpreted as valid within multiple supported families, the
implementation attempts to resolve the name in all supported families and, in absence of
errors, one or more results are returned.

If the nodename argument is not null, it can be a descriptive name or can be an address string.
If the specified address family is AF_INET, AF_INET6, or AF_UNSPEC, valid descriptive names
include host names. If the specified address family is AF_INET or AF_UNSPEC, address strings
using Internet standard dot notation as specified in inet_addr(3XNET) are valid.

If the specified address family is AF_INET6 or AF_UNSPEC, standard IPv6 text forms described
in inet_ntop(3XNET) are valid.

If nodename is not null, the requested service location is named by nodename; otherwise, the
requested service location is local to the caller.

If servname is null, the call returns network-level addresses for the specified nodename. If
servname is not null, it is a null-terminated character string identifying the requested service.
This string can be either a descriptive name or a numeric representation suitable for use with
the address family or families. If the specified address family is AF_INET, AF_INET6, or
AF_UNSPEC, the service can be specified as a string specifying a decimal port number.

Name

Synopsis

Description

freeaddrinfo(3XNET)

man pages section 3: Networking Library Functions • Last Revised 10 Dec 2009106

If the hints argument is not null, it refers to a structure containing input values that can direct
the operation by providing options and by limiting the returned information to a specific
socket type, address family and/or protocol. In this hints structure every member other than
ai_flags, ai_family , ai_socktype, and ai_protocol is set to 0 or a null pointer. A value of
AF_UNSPEC for ai_family means that the caller accepts any address family. A value of 0 for
ai_socktype means that the caller accepts any socket type. A value of 0 for ai_protocol
means that the caller accepts any protocol. If hints is a null pointer, the behavior is as if it
referred to a structure containing the value 0 for the ai_flags, ai_socktype, and
ai_protocol members, and AF_UNSPEC for the ai_family member.

The ai_flags member to which the hints parameter points is set to 0 or be the
bitwise-inclusive OR of one or more of the values AI_PASSIVE, AI_CANONNAME,
AI_NUMERICHOST, and AI_NUMERICSERV.

If the AI_PASSIVE flag is specified, the returned address information is suitable for use in
binding a socket for accepting incoming connections for the specified service. In this case, if
the nodename argument is null, then the IP address portion of the socket address structure is
set to INADDR_ANY for an IPv4 address or IN6ADDR_ANY_INIT for an IPv6 address. If the
AI_PASSIVE flag is not specified, the returned address information is suitable for a call to
connect(3XNET) (for a connection-mode protocol) or for a call to connect(),
sendto(3XNET), or sendmsg(3XNET) (for a connectionless protocol). In this case, if the
nodename argument is null, then the IP address portion of the socket address structure is set
to the loopback address.

If the AI_CANONNAME flag is specified and the nodename argument is not null, the function
attempts to determine the canonical name corresponding to nodename (for example, if
nodename is an alias or shorthand notation for a complete name).

If the AI_NUMERICHOST flag is specified, then a non-null nodename string supplied is a numeric
host address string. Otherwise, an EAI_NONAME error is returned. This flag prevents any type of
name resolution service (for example, the DNS) from being invoked.

If the AI_NUMERICSERV flag is specified, then a non-null servname string supplied is a numeric
port string. Otherwise, an EAI_NONAME error is returned. This flag prevents any type of name
resolution service (for example, NIS) from being invoked.

If the AI_V4MAPPED flag is specified along with an ai_family of AF_INET6, then
getaddrinfo() returns IPv4-mapped IPv6 addresses on finding no matching IPv6 addresses
(ai_addrlen is 16). The AI_V4MAPPED flag is ignored unless ai_family equals AF_INET6. If the
AI_ALL flag is used with the AI_V4MAPPED flag, then getaddrinfo() returns all matching IPv6
and IPv4 addresses. The AI_ALL flag without the AI_V4MAPPED flag is ignored.

The ai_socktype member to which argument hints points specifies the socket type for the
service, as defined in socket(3XNET). If a specific socket type is not given (for example, a
value of 0) and the service name could be interpreted as valid with multiple supported socket
types, the implementation attempts to resolve the service name for all supported socket types

freeaddrinfo(3XNET)

Networking Library Functions 107

and, in the absence of errors, all possible results are returned. A non-zero socket type value
limits the returned information to values with the specified socket type.

If the ai_family member to which hints points has the value AF_UNSPEC, addresses are
returned for use with any address family that can be used with the specified nodename and/or
servname. Otherwise, addresses are returned for use only with the specified address family. If
ai_family is not AF_UNSPEC and ai_protocol is not 0, then addresses are returned for use
only with the specified address family and protocol; the value of ai_protocol is interpreted as
in a call to the socket() function with the corresponding values of ai_family and
ai_protocol.

A 0 return value for getaddrinfo() indicates successful completion; a non-zero return value
indicates failure. The possible values for the failures are listed in the ERRORS section.

Upon successful return of getaddrinfo(), the location to which res points refers to a linked
list of addrinfo structures, each of which specifies a socket address and information for use in
creating a socket with which to use that socket address. The list includes at least one addrinfo
structure. The ai_next member of each structure contains a pointer to the next structure on
the list, or a null pointer if it is the last structure on the list. Each structure on the list includes
values for use with a call to the socket function, and a socket address for use with the connect
function or, if the AI_PASSIVE flag was specified, for use with the bind(3XNET) function. The
ai_family , ai_socktype, and ai_protocol members are usable as the arguments to the
socket() function to create a socket suitable for use with the returned address. The ai_addr
and ai_addrlen members are usable as the arguments to the connect() or bind() functions
with such a socket, according to the AI_PASSIVE flag.

If nodename is not null, and if requested by the AI_CANONNAME flag, the ai_canonname member
of the first returned addrinfo structure points to a null-terminated string containing the
canonical name corresponding to the input nodename. If the canonical name is not available,
then ai_canonname refers to the nodename argument or a string with the same contents. The
contents of the ai_flags member of the returned structures are undefined.

All members in socket address structures returned by getaddrinfo() that are not filled in
through an explicit argument (for example, sin6_flowinfo) are set to 0, making it easier to
compare socket address structures.

The getaddrinfo() function will fail if:

EAI_AGAIN The name could not be resolved at this time. Future attempts might
succeed.

EAI_BADFLAGS The ai_flags member of the addrinfo structure had an invalid value.

EAI_FAIL A non-recoverable error occurred when attempting to resolve the name.

EAI_FAMILY The address family was not recognized.

EAI_MEMORY There was a memory allocation failure when trying to allocate storage for
the return value.

Return Values

Errors

freeaddrinfo(3XNET)

man pages section 3: Networking Library Functions • Last Revised 10 Dec 2009108

EAI_NONAME he name does not resolve for the supplied parameters. Neither nodename
nor servname were supplied. At least one of these must be supplied.

EAI_SERVICE The service passed was not recognized for the specified socket type.

EAI_SOCKTYPE The intended socket type was not recognized.

EAI_SYSTEM A system error occurred. The error code can be found in errno.

EAI_OVERFLOW An argument buffer overflowed.

If the caller handles only TCP and not UDP, for example, then the ai_protocol member of
the hints structure should be set to IPPROTO_TCP when getaddrinfo() is called.

If the caller handles only IPv4 and not IPv6, then the ai_family member of the hints structure
should be set to AF_INET when getaddrinfo() is called.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

connect(3XNET), gai_strerror(3XNET), gethostbyname(3XNET), getnameinfo(3XNET),
getservbyname(3XNET), inet_addr(3XNET), inet_ntop(3XNET), socket(3XNET),
attributes(5), standards(5)

Usage

Attributes

See Also

freeaddrinfo(3XNET)

Networking Library Functions 109

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

gai_strerror – address and name information error description

cc [flag ...] file ... -lxnet [library ...]

#include <netdb.h>

const char *gai_strerror(int ecode);

The gai_strerror() function returns a text string describing an error value for the
getaddrinfo(3XNET) and getnameinfo(3XNET) functions listed in the <netdb.h> header.

When the ecode argument is one of the following values listed in the <netdb.h> header:

EAI_AGAIN

EAI_BADFLAGS

EAI_FAIL

EAI_FAMILY

EAI_MEMORY

EAI_NONAME

EAI_SERVICE

EAI_SOCKTYPE

EAI_SYSTEM

the function return value points to a string describing the error. If the argument is not one of
those values, the function returns a pointer to a string whose contents indicate an unknown
error.

Upon successful completion, gai_strerror() returns a pointer to a string describing the
error value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

getaddrinfo(3XNET), getnameinfo(3XNET), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

gai_strerror(3XNET)

man pages section 3: Networking Library Functions • Last Revised 1 Dec 2003110

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getaddrinfo, getnameinfo, freeaddrinfo, gai_strerror – translate between node name and
address

cc [flag...] file ... -lsocket -lnsl [library ...]

#include <sys/socket.h>

#include <netdb.h>

int getaddrinfo(const char *nodename, const char *servname,
const struct addrinfo *hints, struct addrinfo **res);

int getnameinfo(const struct sockaddr *sa, socklen_t salen,
char *host, socklen_t hostlen, char *serv, socklen_t servlen,
int flags);

void freeaddrinfo(struct addrinfo *ai);

const char *gai_strerror(int errcode);

These functions perform translations from node name to address and from address to node
name in a protocol-independent manner.

The getaddrinfo() function performs the node name to address translation. The nodename
and servname arguments are pointers to null-terminated strings or NULL. One or both of these
arguments must be a non-null pointer. In the normal client scenario, both the nodename and
servname are specified. In the normal server scenario, only the servname is specified.

A non-null nodename string can be a node name or a numeric host address string. The
nodename can also be an IPv6 zone-id in the form:

<address>%<zone-id>

The address is the literal IPv6 link-local address or host name of the destination. The zone-id
is the interface ID of the IPv6 link used to send the packet. The zone-id can either be a numeric
value, indicating a literal zone value, or an interface name such as hme0.

A non-null servname string can be either a service name or a decimal port number.

The caller can optionally pass an addrinfo structure, pointed to by the hints argument, to
provide hints concerning the type of socket that the caller supports.

The addrinfo structure is defined as:

struct addrinfo {

int ai_flags; /* AI_PASSIVE, AI_CANONNAME,

AI_NUMERICHOST, AI_NUMERICSERV

AI_V4MAPPED, AI_ALL,

AI_ADDRCONFIG */

int ai_family; /* PF_xxx */

int ai_socktype; /* SOCK_xxx */

int ai_protocol; /* 0 or IPPROTO_xxx for IPv4 & IPv6 */

socklen_t ai_addrlen; /* length of ai_addr */

Name

Synopsis

Description

getaddrinfo(3SOCKET)

Networking Library Functions 111

char *ai_canonname; /* canonical name for nodename */

struct sockaddr *ai_addr; /* binary address */

struct addrinfo *ai_next; /* next structure in linked list */

};

In this hints structure, all members other than ai_flags, ai_family, ai_socktype, and
ai_protocol must be 0 or a null pointer. A value of PF_UNSPEC for ai_family indicates that
the caller will accept any protocol family. A value of 0 for ai_socktype indicates that the caller
will accept any socket type. A value of 0 for ai_protocol indicates that the caller will accept
any protocol. For example, if the caller handles only TCP and not UDP, then the ai_socktype
member of the hints structure should be set to SOCK_STREAM when getaddrinfo() is called. If
the caller handles only IPv4 and not IPv6, then the ai_family member of the hints structure
should be set to PF_INET when getaddrinfo() is called. If the third argument to
getaddrinfo() is a null pointer, it is as if the caller had filled in an addrinfo structure
initialized to 0 with ai_family set to PF_UNSPEC.

Upon success, a pointer to a linked list of one or more addrinfo structures is returned
through the final argument. The caller can process each addrinfo structure in this list by
following the ai_next pointer, until a null pointer is encountered. In each returned addrinfo

structure the three members ai_family, ai_socktype, and ai_protocol are the
corresponding arguments for a call to the socket(3SOCKET) function. In each addrinfo

structure the ai_addr member points to a filled-in socket address structure whose length is
specified by the ai_addrlen member.

If the AI_PASSIVE bit is set in the ai_flags member of the hints structure, the caller plans to
use the returned socket address structure in a call to bind(3SOCKET). In this case, if the
nodename argument is a null pointer, the IP address portion of the socket address structure
will be set to INADDR_ANY for an IPv4 address or IN6ADDR_ANY_INIT for an IPv6 address.

If the AI_PASSIVE bit is not set in the ai_flags member of the hints structure, then the
returned socket address structure will be ready for a call to connect(3SOCKET) (for a
connection-oriented protocol) or either connect(3SOCKET), sendto(3SOCKET), or
sendmsg(3SOCKET) (for a connectionless protocol). If the nodename argument is a null
pointer, the IP address portion of the socket address structure will be set to the loopback
address.

If the AI_CANONNAME bit is set in the ai_flags member of the hints structure, then upon
successful return the ai_canonname member of the first addrinfo structure in the linked list
will point to a null-terminated string containing the canonical name of the specified
nodename. A numeric host address string is not a name, and thus does not have a canonical
name form; no address to host name translation is performed.

If the AI_NUMERICHOST bit is set in the ai_flags member of the hints structure, then a
non-null nodename string must be a numeric host address string. Otherwise an error of
EAI_NONAME is returned. This flag prevents any type of name resolution service (such as DNS)
from being called.

getaddrinfo(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 24 Mar 2011112

If the AI_NUMERICSERV flag is specified, then a non-null servname string supplied will be a
numeric port string. Otherwise, an [EAI_NONAME] error is returned. This flag prevents any type
of name resolution service (for example, NIS) from being invoked.

If the AI_V4MAPPED flag is specified along with an ai_family of AF_INET6, then
getaddrinfo() returns IPv4-mapped IPv6 addresses on finding no matching IPv6 addresses
(ai_addrlen shall be 16). For example, if no AAAA records are found when using DNS, a
query is made for A records. Any found records are returned as IPv4-mapped IPv6 addresses.

The AI_V4MAPPED flag is ignored unless ai_family equals AF_INET6.

If the AI_ALL flag is used with the AI_V4MAPPED flag, then getaddrinfo() returns all
matching IPv6 and IPv4 addresses. For example, when using the DNS, queries are made for
both AAAA records and A records, and getaddrinfo() returns the combined results of both
queries. Any IPv4 addresses found are returned as IPv4-mapped IPv6 addresses.

The AI_ALL flag without the AI_V4MAPPED flag is ignored.

When ai_family is not specified (AF_UNSPEC), AI_V4MAPPED and AI_ALL flags are used only if
AF_INET6 is supported.

If the AI_ADDRCONFIG flag is specified, IPv4 addresses are returned only if an IPv4 address is
configured on the local system, and IPv6 addresses are returned only if an IPv6 address is
configured on the local system. For this case, the loopback address is not considered to be as
valid as a configured address. For example, when using the DNS, a query for AAAA records
should occur only if the node has at least one IPv6 address configured (other than IPv6
loopback) and a query for A records should occur only if the node has at least one IPv4
address configured (other than the IPv4 loopback).

All of the information returned by getaddrinfo() is dynamically allocated: the addrinfo
structures as well as the socket address structures and canonical node name strings pointed to
by the addrinfo structures. The freeaddrinfo() function is called to return this information
to the system. For freeaddrinfo(), the addrinfo structure pointed to by the ai argument is
freed, along with any dynamic storage pointed to by the structure. This operation is repeated
until a null ai_next pointer is encountered.

To aid applications in printing error messages based on the EAI_* codes returned by
getaddrinfo(), the gai_strerror() is defined. The argument is one of the EAI_* values
defined below and the return value points to a string describing the error. If the argument is
not one of the EAI_* values, the function still returns a pointer to a string whose contents
indicate an unknown error.

The getnameinfo() function looks up an IP address and port number provided by the caller
in the name service database and system-specific database, and returns text strings for both in
buffers provided by the caller. The function indicates successful completion by a 0 return
value; a non-zero return value indicates failure.

getaddrinfo(3SOCKET)

Networking Library Functions 113

The first argument, sa, points to either a sockaddr_in structure (for IPv4) or a sockaddr_in6
structure (for IPv6) that holds the IP address and port number. The salen argument gives the
length of the sockaddr_in or sockaddr_in6 structure.

The function returns the node name associated with the IP address in the buffer pointed to by
the host argument.

The function can also return the IPv6 zone-id in the form:

<address>%<zone-id>

The caller provides the size of this buffer with the hostlen argument. The service name
associated with the port number is returned in the buffer pointed to by serv, and the servlen
argument gives the length of this buffer. The caller specifies not to return either string by
providing a 0 value for the hostlen or servlen arguments. Otherwise, the caller must provide
buffers large enough to hold the node name and the service name, including the terminating
null characters.

To aid the application in allocating buffers for these two returned strings, the following
constants are defined in <netdb.h>:

#define NI_MAXHOST 1025

#define NI_MAXSERV 32

The final argument is a flag that changes the default actions of this function. By default, the
fully-qualified domain name (FQDN) for the host is looked up in the name service database and
returned. If the flag bit NI_NOFQDN is set, only the node name portion of the FQDN is returned
for local hosts.

If the flag bit NI_NUMERICHOST is set, or if the host's name cannot be located in the name
service, the numeric form of the host's address is returned instead of its name, for example, by
calling inet_ntop() (see inet(3SOCKET)) instead of getipnodebyname(3SOCKET). If the
flag bit NI_NAMEREQD is set, an error is returned if the host's name cannot be located in the
name service database.

If the flag bit NI_NUMERICSERV is set, the numeric form of the service address is returned (for
example, its port number) instead of its name. The two NI_NUMERIC* flags are required to
support the -n flag that many commands provide.

A fifth flag bit, NI_DGRAM, specifies that the service is a datagram service, and causes
getservbyport(3SOCKET) to be called with a second argument of udp instead of the default
tcp. This is required for the few ports (for example, 512-514) that have different services for
UDP and TCP.

These NI_* flags are defined in <netdb.h> along with the AI_* flags already defined for
getaddrinfo().

getaddrinfo(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 24 Mar 2011114

For getaddrinfo(), if the query is successful, a pointer to a linked list of one or more
addrinfo structures is returned by the fourth argument and the function returns 0. The order
of the addresses returned i nthe fourth argument is discussed in the ADDRESS ORDERING
section. If the query fails, a non-zero error code will be returned. For getnameinfo(), if
successful, the strings hostname and service are copied into host and serv, respectively. If
unsuccessful, zero values for either hostlen or servlen will suppress the associated lookup; in
this case no data is copied into the applicable buffer. If gai_strerror() is successful, a pointer
to a string containing an error message appropriate for the EAI_* errors is returned. If errcode
is not one of the EAI_* values, a pointer to a string indicating an unknown error is returned.

AF_INET6 addresses returned by the fourth argument of getaddrinfo() are ordered
according to the algorithm described in RFC 3484, Default Address Selection for Internet
Protocol version 6 (IPv6). The addresses are ordered using a list of pair-wise comparison rules
which are applied in order. If a rule determines that one address is better than another, the
remaining rules are irrelevant to the comparison of those two addresses. If two addresses are
equivalent according to one rule, the remaining rules act as a tie-breaker. The address
ordering list of pair-wise comparison rules follow below:

Avoid unusable destinations. Prefer a destination that is reachable through the IP
routing table.

Prefer matching scope. Prefer a destination whose scope is equal to the scope
of its source address. See inet6(7P) for the definition
of scope used by this rule.

Avoid link-local source. Avoid selecting a link-local source address when the
destination address is not a link-local address.

Avoid deprecated addresses. Prefer a destination that is not deprecated
(IFF_DEPRECATED).

Prefer matching label. This rule uses labels that are
obtained through the IPv6 default address selection
policy table. See ipaddrsel(1M) for a description of
the default contents of the table and how the table is
configured.

Prefer a destination whose label is equal to the label
of its source address.

Prefer higher precedence. This rule uses precedence
values that are obtained through the IPv6 default
address selection policy table. See ipaddrsel(1M)
for a description of the default contents of the table
and how the table is configured.

Prefer the destination whose precedence is higher
than the other destination.

Prefer native transport. Prefer a destination if the interface that is used for
sending packets to that destination is not an IP over
IP tunnel.

Prefer smaller scope. See inet6(7P) for the definition
of this rule.

Prefer the destination whose scope is smaller than the
other destination.

Return Values

Address Ordering

getaddrinfo(3SOCKET)

Networking Library Functions 115

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1inet6-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ipaddrsel-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ipaddrsel-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1inet6-7p

Use longest matching prefix. When the two destinations belong to the same
address family, prefer the destination that has the
longer matching prefix with its source address.

The following names are the error values returned by getaddrinfo() and are defined in
<netdb.h>:

EAI_ADDRFAMILY Address family for nodename is not supported.

EAI_AGAIN Temporary failure in name resolution has occurred .

EAI_BADFLAGS Invalid value specified for ai_flags.

EAI_FAIL Non-recoverable failure in name resolution has occurred.

EAI_FAMILY The ai_family is not supported.

EAI_MEMORY Memory allocation failure has occurred.

EAI_NODATA No address is associated with nodename.

EAI_NONAME Neither nodename nor servname is provided or known.

EAI_SERVICE The servname is not supported for ai_socktype.

EAI_SOCKTYPE The ai_socktype is not supported.

EAI_OVERFLOW Argument buffer has overflowed.

EAI_SYSTEM System error was returned in errno.

/etc/inet/hosts local database that associates names of nodes with IP addresses

/etc/netconfig network configuration database

/etc/nsswitch.conf configuration file for the name service switch

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

ipaddrsel(1M), gethostbyname(3NSL), getipnodebyname(3SOCKET), htonl(3SOCKET),
inet(3SOCKET), netdb.h(3HEAD), socket(3SOCKET), hosts(4), nsswitch.conf(4),
attributes(5), standards(5), inet6(7P)

Draves, R. RFC 3484, Default Address Selection for Internet Protocol version 6 (IPv6). Network
Working Group. February 2003.

Errors

Files

Attributes

See Also

getaddrinfo(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 24 Mar 2011116

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ipaddrsel-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netdb.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1hosts-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1inet6-7p

IPv4-mapped addresses are not recommended.Notes

getaddrinfo(3SOCKET)

Networking Library Functions 117

gethostbyname, gethostbyname_r, gethostbyaddr, gethostbyaddr_r, gethostent, gethostent_r,
sethostent, endhostent – get network host entry

cc [flag...] file... -lnsl [library...]

#include <netdb.h>

struct hostent *gethostbyname(const char *name);

struct hostent *gethostbyname_r(const char *name,
struct hostent *result, char *buffer, int buflen,
int *h_errnop);

struct hostent *gethostbyaddr(const char *addr, int len,
int type);

struct hostent *gethostbyaddr_r(const char *addr, int length,
int type, struct hostent *result, char *buffer,
int buflen, int *h_errnop);

struct hostent *gethostent(void);

struct hostent *gethostent_r(struct hostent *result,
char *buffer, int buflen, int *h_errnop);

int sethostent(int stayopen);

int endhostent(void);

These functions are used to obtain entries describing hosts. An entry can come from any of the
sources for hosts specified in the /etc/nsswitch.conf file. See nsswitch.conf(4). These
functions have been superseded by getipnodebyname(3SOCKET),
getipnodebyaddr(3SOCKET), and getaddrinfo(3SOCKET), which provide greater
portability to applications when multithreading is performed or technologies such as IPv6 are
used. For example, the functions described in the following cannot be used with applications
targeted to work with IPv6.

The gethostbyname() function searches for information for a host with the hostname
specified by the character-string parameter name.

The gethostbyaddr() function searches for information for a host with a given host address.
The parameter type specifies the family of the address. This should be one of the address
families defined in <sys/socket.h>. See the NOTES section for more information. Also see the
EXAMPLES section for information on how to convert an Internet IP address notation that is
separated by periods (.) into an addr parameter. The parameter len specifies the length of the
buffer indicated by addr.

All addresses are returned in network order. In order to interpret the addresses,
byteorder(3SOCKET) must be used for byte order conversion.

The sethostent(), gethostent(), and endhostent() functions are used to enumerate host
entries from the database.

Name

Synopsis

Description

gethostbyname(3NSL)

man pages section 3: Networking Library Functions • Last Revised 14 Mar 2011118

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

The sethostent() function sets or resets the enumeration to the beginning of the set of host
entries. This function should be called before the first call to gethostent(). Calls to
gethostbyname() and gethostbyaddr() leave the enumeration position in an indeterminate
state. If the stayopen flag is non-zero, the system can keep allocated resources such as open file
descriptors until a subsequent call to endhostent().

Successive calls to the gethostent() function return either successive entries or NULL,
indicating the end of the enumeration.

The endhostent() function can be called to indicate that the caller expects to do no further
host entry retrieval operations; the system can then deallocate resources it was using. It is still
allowed, but possibly less efficient, for the process to call more host retrieval functions after
calling endhostent().

The gethostbyname(), gethostbyaddr(), and gethostent() functions use static storage that
is reused in each call, making these functions unsafe for use in multithreaded applications.

The gethostbyname_r(), gethostbyaddr_r(), and gethostent_r() functions provide
reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant counterpart,
named by removing the _r suffix. The reentrant interfaces, however, use buffers supplied by
the caller to store returned results and the interfaces are safe for use in both single-threaded
and multithreaded applications.

Each reentrant interface takes the same parameters as its non-reentrant counterpart, as well as
the following additional parameters. The parameter result must be a pointer to a struct
hostent structure allocated by the caller. On successful completion, the function returns the
host entry in this structure. The parameter buffer must be a pointer to a buffer supplied by the
caller. This buffer is used as storage space for the host data. All of the pointers within the
returned struct hostent result point to data stored within this buffer. See the RETURN VALUES
section for more information. The buffer must be large enough to hold all of the data
associated with the host entry. The parameter buflen should give the size in bytes of the buffer
indicated by buffer. The parameter h_errnop should be a pointer to an integer. An integer
error status value is stored there on certain error conditions. See the ERRORS section for more
information.

For enumeration in multithreaded applications, the position within the enumeration is a
process-wide property shared by all threads. The sethostent() function can be used in a
multithreaded application but resets the enumeration position for all threads. If multiple
threads interleave calls to gethostent_r(), the threads will enumerate disjoint subsets of the
host database.

Like their non-reentrant counterparts, gethostbyname_r() and gethostbyaddr_r() leave
the enumeration position in an indeterminate state.

Reentrant Interfaces

gethostbyname(3NSL)

Networking Library Functions 119

Host entries are represented by the struct hostent structure defined in <netdb.h>:

struct hostent {

char *h_name; /* canonical name of host */

char **h_aliases; /* alias list */

int h_addrtype; /* host address type */

int h_length; /* length of address */

char **h_addr_list; /* list of addresses */

};

See the EXAMPLES section for information about how to retrieve a ‘‘.'' separated Internet IP
address string from the h_addr_list field of struct hostent.

The gethostbyname(), gethostbyname_r(), gethostbyaddr(), and gethostbyaddr_r()

functions each return a pointer to a struct hostent if they successfully locate the requested
entry; otherwise they return NULL.

The gethostent() and gethostent_r() functions each return a pointer to a struct hostent
if they successfully enumerate an entry; otherwise they return NULL, indicating the end of the
enumeration.

The gethostbyname(), gethostbyaddr(), and gethostent() functions use static storage, so
returned data must be copied before a subsequent call to any of these functions if the data is to
be saved.

When the pointer returned by the reentrant functions gethostbyname_r(),
gethostbyaddr_r(), and gethostent_r() is not NULL, it is always equal to the result pointer
that was supplied by the caller.

The sethostent() and endhostent() functions return 0 on success.

The reentrant functions gethostbyname_r(), gethostbyaddr_r(), and gethostent_r() will
return NULL and set errno to ERANGE if the length of the buffer supplied by caller is not large
enough to store the result. See Intro(2) for the proper usage and interpretation of errno in
multithreaded applications.

The reentrant functions gethostbyname_r() and gethostbyaddr_r() set the integer pointed
to by h_errnop to one of these values in case of error.

On failures, the non-reentrant functions gethostbyname() and gethostbyaddr() set a global
integer h_errno to indicate one of these error codes (defined in <netdb.h>): HOST_NOT_FOUND,
TRY_AGAIN, NO_RECOVERY, NO_DATA, and NO_ADDRESS.

If a resolver is provided with a malformed address, or if any other error occurs before
gethostbyname() is resolved, then gethostbyname() returns an internal error with a value of
−1.

The gethostbyname() function will set h_errno to NETDB_INTERNAL when it returns a NULL
value.

Return Values

Errors

gethostbyname(3NSL)

man pages section 3: Networking Library Functions • Last Revised 14 Mar 2011120

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2

EXAMPLE 1 Usinggethostbyaddr()

Here is a sample program that gets the canonical name, aliases, and ‘‘.'' separated Internet IP
addresses for a given ‘‘.'' separated IP address:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <netdb.h>

int main(int argc, const char **argv)

{

in_addr_t addr;

struct hostent *hp;

char **p;

if (argc != 2) {

(void) printf("usage: %s IP-address\n", argv[0]);

exit (1);

}

if ((int)(addr = inet_addr(argv[1])) == -1) {

(void) printf("IP-address must be of the form a.b.c.d\n");
exit (2);

}

hp = gethostbyaddr((char *)&addr, 4, AF_INET);

if (hp == NULL) {

(void) printf("host information for %s not found\n", argv[1]);

exit (3);

}

for (p = hp->h_addr_list; *p != 0; p++) {

struct in_addr in;

char **q;

(void) memcpy(&in.s_addr, *p, sizeof (in.s_addr));

(void) printf("%s %s", inet_ntoa(in), hp−>h_name);
for (q = hp->h_aliases; *q != 0; q++)

(void) printf(" %s", *q);

(void) putchar(’\n’);

}

exit (0);

}

Note that the preceding sample program is unsafe for use in multithreaded applications.

/etc/hosts hosts file that associates the names of hosts with their Internet
Protocol (IP) addresses

/etc/netconfig network configuration database

/etc/nsswitch.conf configuration file for the name service switch

Examples

Files

gethostbyname(3NSL)

Networking Library Functions 121

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See Reentrant Interfaces in the DESCRIPTION
section.

Intro(2), Intro(3), byteorder(3SOCKET), inet(3SOCKET), netdb.h(3HEAD),
netdir(3NSL), hosts(4), netconfig(4), nss(4), nsswitch.conf(4), attributes(5)

The reentrant interfaces gethostbyname_r(), gethostbyaddr_r(), and gethostent_r() are
included in this release on an uncommitted basis only and are subject to change or removal in
future minor releases.

To ensure that they all return consistent results, gethostbyname(), gethostbyname_r(), and
netdir_getbyname() are implemented in terms of the same internal library function. This
function obtains the system-wide source lookup policy based on the inet family entries in
netconfig(4) and the hosts: entry in nsswitch.conf(4). Similarly, gethostbyaddr(),
gethostbyaddr_r(), and netdir_getbyaddr() are implemented in terms of the same
internal library function. If the inet family entries in netconfig(4) have a ‘‘-'' in the last
column for nametoaddr libraries, then the entry for hosts in nsswitch.conf will be used;
nametoaddr libraries in that column will be used, and nsswitch.conf will not be consulted.

There is no analogue of gethostent() and gethostent_r() in the netdir functions, so these
enumeration functions go straight to the hosts entry in nsswitch.conf. Thus enumeration
can return results from a different source than that used by gethostbyname(),
gethostbyname_r(), gethostbyaddr(), and gethostbyaddr_r().

All the functions that return a struct hostent must always return the canonical name in the
h_name field. This name, by definition, is the well-known and official hostname shared
between all aliases and all addresses. The underlying source that satisfies the request
determines the mapping of the input name or address into the set of names and addresses in
hostent. Different sources might do that in different ways. If there is more than one alias and
more than one address in hostent, no pairing is implied between them.

The system attempts to put those addresses that are on the same subnet as the caller before
addresses that are on different subnets. However, if address sorting is disabled by setting
SORT_ADDRS to FALSE in the /etc/default/nss file, the system does not put the local subnet
addresses first. See nss(4) for more information.

When compiling multithreaded applications, see Intro(3), MULTITHREADED APPLICATIONS,
for information about the use of the _REENTRANT flag.

Use of the enumeration interfaces gethostent() and gethostent_r() is discouraged;
enumeration might not be supported for all database sources. The semantics of enumeration
are discussed further in nsswitch.conf(4).

Attributes

See Also

Warnings

Notes

gethostbyname(3NSL)

man pages section 3: Networking Library Functions • Last Revised 14 Mar 2011122

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netdb.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1hosts-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netconfig-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nss-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netconfig-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netconfig-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nss-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

The current implementations of these functions only return or accept addresses for the
Internet address family (type AF_INET).

The form for an address of type AF_INET is a struct in_addr defined in <netinet/in.h>.
The functions described in inet(3SOCKET), and illustrated in the EXAMPLES section, are
helpful in constructing and manipulating addresses in this form.

When the caller provides the IP address (the addr argument of gethostbyaddr() and
gethostbyaddr_r()), the addr argument should be aligned on a word boundary or the code
must be changed to memcpy(3C) the argument to an aligned area; otherwise an error such as a
SIGBUS may result.

gethostbyname(3NSL)

Networking Library Functions 123

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7memcpy-3c

gethostname – get name of current host

cc [flag ...] file ... -lxnet [library ...]

#include <unistd.h>

int gethostname(char *name, size_t namelen);

The gethostname() function returns the standard host name for the current machine. The
namelen argument specifies the size of the array pointed to by the name argument. The
returned name is null-terminated, except that if namelen is an insufficient length to hold the
host name, then the returned name is truncated and it is unspecified whether the returned
name is null-terminated.

Host names are limited to 255 bytes.

On successful completion, 0 is returned. Otherwise, –1 is returned.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

uname(1), gethostid(3C), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

gethostname(3XNET)

man pages section 3: Networking Library Functions • Last Revised 10 Jun 2002124

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1uname-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gethostid-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getifaddrs, freeifaddrs – get interface addresses

cc [flag...] file ... -lsocket -lnsl [library ...]

#include <sys/types.h>

#include <sys/socket.h>

#include <ifaddrs.h>

int getifaddrs(struct ifaddrs **ifap);

void freeifaddrs(struct ifaddrs *ifp);

The getifaddrs() function stores a reference to a linked list of network interface addresses
on the local machine in the memory referenced by ifap. The list consists of ifaddrs structures,
as defined in the include file <ifaddrs.h>. Each element of the list describes one network
interface address. The caller can process each ifaddrs structure in this list by following the
ifa_next pointer, until a null pointer is encountered.

struct ifaddrs {

struct ifaddrs *ifa_next; /* next structure in linked list*/

char *ifa_name; /* Interface name */

uint64_t ifa_flags; /* Interface flags (if_tcp(7P)) */

struct sockaddr *ifa_addr; /* Interface address */

struct sockaddr *ifa_netmask; /* Interface netmask */

union {

/* Interface broadcast address */

struct sockaddr *ifa_dstaddr;

/* P2P interface destination */

struct sockaddr *ifa_broadaddr;

} ifa_ifu;

void *ifa_data; /* Address specific data (unused) */

};

#ifndef ifa_broadaddr

#define ifa_broadaddr ifa_ifu.ifu_broadaddr

#endif

#ifndef ifa_dstaddr

#define ifa_dstaddr ifa_ifu.ifu_dstaddr

#endif

The ifa_name member contains the interface name.

The ifa_flags member contains the interface flags.

The ifa_addr member references the address of the interface. (The sa_family member of the
ifa_addr member should be consulted to determine the format of the ifa_addr address.)

The ifa_netmask member references the netmask associated with ifa_addr, if one is set,
otherwise it is NULL.

The ifa_broadaddr member, which should only be referenced for non-P2P interfaces,
references the broadcast address associated with ifa_addr, if one exists, otherwise it is NULL.

Name

Synopsis

Description

getifaddrs(3SOCKET)

Networking Library Functions 125

The ifa_dstaddr member references the destination address on a P2P inter face, if one exists,
otherwise it is NULL.

The ifa_data member is currently unused.

The data returned by getifaddrs() is dynamically allocated and should be freed using
freeifaddrs() when no longer needed.

The getifaddrs() function returns the value 0 if successful; otherwise -1 is returned and
errno is set to indicate the error.

The getifaddrs() function may fail and set errno for any of the errors specified for ioctl(2),
socket(3SOCKET), and malloc(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

ipadm(1M), ifconfig(1M), ioctl(2), malloc(3C), socket(3SOCKET), if_tcp(7P),
attributes(5)

Return Values

Errors

Attributes

See Also

getifaddrs(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 10 May 2010126

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7socket-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ipadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7ifconfig-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7socket-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7if-tcp-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getipnodebyname, getipnodebyaddr, freehostent – get IP node entry

cc [flag...] file... -lsocket -lnsl [library...]

#include <sys/socket.h>

#include <netdb.h>

struct hostent *getipnodebyname(const char *name, int af,
int flags, int *error_num);

struct hostent *getipnodebyaddr(const void *src, size_t len,
int af, int *error_num);

void freehostent(struct hostent *ptr);

af Address family

flags Various flags

name Name of host

error_num Error storage

src Address for lookup

len Length of address

ptr Pointer to hostent structure

The getipnodebyname() function searches the ipnodes database from the beginning. The
function finds the first h_name member that matches the hostname specified by name. The
function takes an af argument that specifies the address family. The address family can be
AF_INET for IPv4 addresses or AF_INET6 for IPv6 addresses. The flags argument determines
what results are returned based on the value of flags. If the flags argument is set to 0 (zero), the
default operation of the function is specified as follows:

■ If the af argument is AF_INET, a query is made for an IPv4 address. If successful, IPv4
addresses are returned and the h_length member of the hostent structure is 4. Otherwise,
the function returns a NULL pointer.

■ If the af argument is AF_INET6, a query is made for an IPv6 address. If successful, IPv6
addresses are returned and the h_length member of the hostent structure is 16.
Otherwise, the function returns a NULL pointer.

The flags argument changes the default actions of the function. Set the flags argument with a
logical OR operation on any of combination of the following values:

AI_V4MAPPED

AI_ALL

AI_ADDRCONFIG

The special flags value, AI_DEFAULT, should handle most applications. Porting simple
applications to use IPv6 replaces the call

Name

Synopsis

Parameters

Description

getipnodebyname(3SOCKET)

Networking Library Functions 127

hptr = gethostbyname(name);

with

hptr = getipnodebyname(name, AF_INET6, AI_DEFAULT, &error_num);

The flags value 0 (zero) implies a strict interpretation of the af argument:

■ If flags is 0 and af is AF_INET, the caller wants only IPv4 addresses. A query is made for A
records. If successful, IPv4 addresses are returned and the h_length member of the
hostent structure is 4. Otherwise, the function returns a NULL pointer.

■ If flags is 0 and af is AF_INET6, the caller wants only IPv6 addresses. A query is made for
AAAA records. If successful, IPv6 addresses are returned and the h_length member of the
hostent structure is 16. Otherwise, the function returns a NULL pointer.

Logically OR other constants into the flags argument to modify the behavior of the
getipnodebyname() function.

■ If the AI_V4MAPPED flag is specified with af set to AF_INET6, the caller can accept
IPv4-mapped IPv6 addresses. If no AAAA records are found, a query is made for A records.
Any A records found are returned as IPv4-mapped IPv6 addresses and the h_length is 16.
The AI_V4MAPPED flag is ignored unless af equals AF_INET6.

■ The AI_ALL flag is used in conjunction with the AI_V4MAPPED flag, exclusively with the
IPv6 address family. When AI_ALL is logically ORed with AI_V4MAPPED flag, the caller wants
all addresses: IPv6 and IPv4-mapped IPv6 addresses. A query is first made for AAAA records
and, if successful, IPv6 addresses are returned. Another query is then made for A records.
Any A records found are returned as IPv4-mapped IPv6 addresses and the h_length is 16.
Only when both queries fail does the function return a NULL pointer. The AI_ALL flag is
ignored unless af is set to AF_INET6.

■ The AI_ADDRCONFIG flag specifies that a query for AAAA records should occur only when the
node is configured with at least one IPv6 source address. A query for A records should
occur only when the node is configured with at least one IPv4 source address. For example,
if a node is configured with no IPv6 source addresses, af equals AF_INET6, and the node
name queried has both AAAA and A records, then:
■ A NULL pointer is returned when only the AI_ADDRCONFIG value is specified.
■ The A records are returned as IPv4-mapped IPv6 addresses when the AI_ADDRCONFIG

and AI_V4MAPPED values are specified.

The special flags value, AI_DEFAULT, is defined as

#define AI_DEFAULT (AI_V4MAPPED | AI_ADDRCONFIG)

The getipnodebyname() function allows the name argument to be a node name or a literal
address string: a dotted-decimal IPv4 address or an IPv6 hex address. Applications do not
have to call inet_pton(3SOCKET) to handle literal address strings.

getipnodebyname(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2007128

Four scenarios arise based on the type of literal address string and the value of the af
argument. The two simple cases occur when name is a dotted-decimal IPv4 address and af
equals AF_INET and when name is an IPv6 hex address and af equals AF_INET6. The members
of the returned hostent structure are:

h_name Pointer to a copy of the name argument

h_aliases NULL pointer.

h_addrtype Copy of the af argument.

h_length 4 for AF_INET or 16 for AF_INET6.

h_addr_list Array of pointers to 4-byte or 16-byte binary addresses. The array is
terminated by a NULL pointer.

Upon successful completion, getipnodebyname() and getipnodebyaddr() return a hostent
structure. Otherwise they return NULL.

The hostent structure does not change from the existing definition when used with
gethostbyname(3NSL). For example, host entries are represented by the struct hostent
structure defined in <netdb.h>:

struct hostent {

char *h_name; /* canonical name of host */

char **h_aliases; /* alias list */

int h_addrtype; /* host address type */

int h_length; /* length of address */

char **h_addr_list; /* list of addresses */

};

An error occurs when name is an IPv6 hex address and af equals AF_INET. The return value of
the function is a NULL pointer and error_num equals HOST_NOT_FOUND.

The getipnodebyaddr() function has the same arguments as the existing
gethostbyaddr(3NSL) function, but adds an error number. As with getipnodebyname(),
getipnodebyaddr() is thread-safe. The error_num value is returned to the caller with the
appropriate error code to support thread-safe error code returns. The following error
conditions can be returned for error_num:

HOST_NOT_FOUND Host is unknown.

NO_DATA No address is available for the name specified in the server request. This
error is not a soft error. Another type of name server request might be
successful.

NO_RECOVERY An unexpected server failure occurred, which is a non-recoverable error.

TRY_AGAIN This error is a soft error that indicates that the local server did not
receive a response from an authoritative server. A retry at some later

Return Values

getipnodebyname(3SOCKET)

Networking Library Functions 129

time might be successful.

One possible source of confusion is the handling of IPv4-mapped IPv6 addresses and
IPv4-compatible IPv6 addresses, but the following logic should apply:

1. If af is AF_INET6, and if len equals 16, and if the IPv6 address is an IPv4-mapped IPv6
address or an IPv4-compatible IPv6 address, then skip over the first 12 bytes of the IPv6
address, set af to AF_INET, and set len to 4.

2. If af is AF_INET, lookup the name for the given IPv4 address.
3. If af is AF_INET6, lookup the name for the given IPv6 address.
4. If the function is returning success, then the single address that is returned in the hostent

structure is a copy of the first argument to the function with the same address family that
was passed as an argument to this function.

All four steps listed are performed in order.

This structure, and the information pointed to by this structure, are dynamically allocated by
getipnodebyname() and getipnodebyaddr(). The freehostent() function frees this
memory.

EXAMPLE 1 Getting the Canonical Name, Aliases, and Internet IP Addresses for a Given Hostname

The following is a sample program that retrieves the canonical name, aliases, and all Internet
IP addresses, both version 6 and version 4, for a given hostname.

#include <stdio.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <netdb.h>

main(int argc, const char **argv)

{

char abuf[INET6_ADDRSTRLEN];

int error_num;

struct hostent *hp;

char **p;

if (argc != 2) {

(void) printf("usage: %s hostname\

", argv[0]);

exit (1);

}

/* argv[1] can be a pointer to a hostname or literal IP address */

Examples

getipnodebyname(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2007130

EXAMPLE 1 Getting the Canonical Name, Aliases, and Internet IP Addresses for a Given Hostname
(Continued)

hp = getipnodebyname(argv[1], AF_INET6, AI_ALL | AI_ADDRCONFIG |

AI_V4MAPPED, &error_num);

if (hp == NULL) {

if (error_num == TRY_AGAIN) {

printf("%s: unknown host or invalid literal address "
"(try again later)\

", argv[1]);

} else {

printf("%s: unknown host or invalid literal address\

",
argv[1]);

}

exit (1);

}

for (p = hp->h_addr_list; *p != 0; p++) {

struct in6_addr in6;

char **q;

bcopy(*p, (caddr_t)&in6, hp->h_length);

(void) printf("%s\\t%s", inet_ntop(AF_INET6, (void *)&in6,

abuf, sizeof(abuf)), hp->h_name);

for (q = hp->h_aliases; *q != 0; q++)

(void) printf(" %s", *q);

(void) putchar(’\

’);

}

freehostent(hp);

exit (0);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

getaddrinfo(3SOCKET), gethostbyname(3NSL), htonl(3SOCKET), inet(3SOCKET),
netdb.h(3HEAD), hosts(4), nsswitch.conf(4), attributes(5)

No enumeration functions are provided for IPv6. Existing enumeration functions such as
sethostent(3NSL) do not work in combination with the getipnodebyname() and
getipnodebyaddr() functions.

Attributes

See Also

Notes

getipnodebyname(3SOCKET)

Networking Library Functions 131

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netdb.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1hosts-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

All the functions that return a struct hostent must always return the canonical in the
h_name field. This name, by definition, is the well-known and official hostname shared
between all aliases and all addresses. The underlying source that satisfies the request
determines the mapping of the input name or address into the set of names and addresses in
hostent. Different sources might make such as determination in different ways. If more than
one alias and more than one address in hostent exist, no pairing is implied between the alias
and address.

The current implementations of these functions return or accept only addresses for the
Internet address family (type AF_INET) or the Internet address family Version 6 (type
AF_INET6).

IPv4-mapped addresses are not recommended. The getaddrinfo(3SOCKET) function is
preferred over getipnodebyaddr() because it allows applications to lookup IPv4 and IPv6
addresses without relying on IPv4-mapped addresses.

The form for an address of type AF_INET is a struct in_addr defined in <netinet/in.h>.
The form for an address of type AF_INET6 is a struct in6_addr, also defined in
<netinet/in.h>. The functions described in inet_ntop(3SOCKET) and
inet_pton(3SOCKET) that are illustrated in the EXAMPLES section are helpful in
constructing and manipulating addresses in either of these forms.

getipnodebyname(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2007132

getipsecalgbyname, getipsecalgbynum, freeipsecalgent – query algorithm mapping entries

cc [flag...] file... -lnsl [library...]

#include <netdb.h>

struct ipsecalgent *getipsecalgbyname

(const char *alg_name, int protocol_num, int *errnop);

struct ipsecalgent *getipsecalgbynum(int alg_num,

int protocol_num, int *errnop);

void freeipsecalgent(struct ipsecalgent *ptr);

Use the getipsecalgbyname(), getipsecalgbynum(), freeipsecalgent() functions to
obtain the IPsec algorithm mappings that are defined by ipsecalgs(1M). The IPsec
algorithms and associated protocol name spaces are defined by RFC 2407.

getipsecalgbyname() and getipsecalgbynum() return a structure that describes the
algorithm entry found. This structure is described in the RETURN VALUES section below.

freeipsecalgent() must be used by the caller to free the structures returned by
getipsecalgbyname() and getipsecalgbynum() when they are no longer needed.

Both getipsecalgbyname() and getipsecalgbynum() take as parameter the protocol
identifier in which the algorithm is defined. See getipsecprotobyname(3NSL) and
getipsecprotobyname(3NSL).

The following protocol numbers are pre-defined:

IPSEC_PROTO_ESP Defines the encryption algorithms (transforms) that can be used by
IPsec to provide data confidentiality.

IPSEC_PROTO_AH Defines the authentication algorithms (transforms) that can be used by
IPsec to provide authentication.

getipsecalgbyname() looks up the algorithm by its name, while getipsecalgbynum() looks
up the algorithm by its assigned number.

errnop A pointer to an integer used to return an error status value on certain error
conditions. See ERRORS.

The getipsecalgbyname() and getipsecalgbynum() functions return a pointer to the
structure ipsecalgent_t, defined in <netdb.h>. If the requested algorithm cannot be found,
these functions return NULL.

The structure ipsecalgent_t is defined as follows:

typedef struct ipsecalgent {

char **a_names; /* algorithm names */

int a_proto_num; /* protocol number */

int a_alg_num; /* algorithm number */

Name

Synopsis

Description

Parameters

Return Values

getipsecalgbyname(3NSL)

Networking Library Functions 133

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ipsecalgs-1m

char *a_mech_name; /* mechanism name */

int *a_block_sizes; /* supported block sizes */

int *a_key_sizes; /* supported key sizes */

int a_key_increment; /* key size increment */

int *a_mech_params; /* mechanism specific parameters */

int a_alg_flags; /* algorithm flags */

} ipsecalgent_t;

If a_key_increment is non-zero, a_key_sizes[0] contains the default key size for the
algorithm. a_key_sizes[1] and a_key_sizes[2] specify the smallest and biggest key sizes
support by the algorithm, and a_key_increment specifies the valid key size increments in that
range.

If a_key_increment is zero, the array a_key_sizes contains the set of key sizes, in bits,
supported by the algorithm. The last key length in the array is followed by an element of value
0. The first element of this array is used as the default key size for the algorithm.

a_name is an array of algorithm names, terminated by an element containing a NULL pointer.
a_name[0] is the primary name for the algorithm.

a_proto_num is the protocol identifer of this algorithm. a_alg_num is the algorithm number.
a_mech_name contains the mechanism name associated with the algorithm.

a_block_sizes is an array containing the supported block lengths or MAC lengths, in bytes,
supported by the algorithm. The last valid value in the array is followed by an element
containing the value 0.

a_block_sizes is an array containing the supported block lengths or MAC lengths, in bytes,
supported by the algorithm. The last valid value in the array is followed by an element
containing the value 0.

When the specified algorithm cannot be returned to the caller, getipsecalgbyname() and
getipsecalgbynum() return a value of NULL and set the integer pointed to by the errnop
parameter to one of the following values:

ENOMEM Not enough memory

ENOENT Specified algorithm not found

EINVAL Specified protocol number not found

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library (32 bit)

Errors

Attributes

getipsecalgbyname(3NSL)

man pages section 3: Networking Library Functions • Last Revised 11 May 2011134

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

SUNWcslx (64 bit)

MT-Level MT-Safe

Interface Stability Committed

cryptoadm(1M), ipsecalgs(1M), getipsecprotobyname(3NSL),
getipsecprotobyname(3NSL), attributes(5)

Piper, D. RFC 2407, The Internet IP Security Domain of Interpretation for ISAKMP. Network
Working Group. November, 1998.

See Also

getipsecalgbyname(3NSL)

Networking Library Functions 135

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1cryptoadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ipsecalgs-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getipsecprotobyname, getipsecprotobynum – query IPsec protocols entries

cc -flag ... file ...-lnsl [-library ...]

#include <netdb.h>

int getipsecprotobyname(const char *proto_name

char *getipsecprotobynum(int proto_nump

Use the getipsecprotobyname() and getipsecprotobynum() functions to obtain the IPsec
algorithm mappings that are defined by ipsecalgs(1M). You can also use the
getipsecprotobyname() and getipsecprotobynum() functions in conjunction with
getipsecalgbyname(3NSL) and getipsecalgbynum(3NSL) to obtain information about the
supported IPsec algorithms. The IPsec algorithms and associated protocol name spaces are
defined by RFC 2407.

getipsecprotobyname() takes as an argument the name of an IPsec protocol and returns its
assigned protocol number. The character string returned by the getipsecprotobyname()
function must be freed by the called when it is no longer needed.

getipsecprotobynum() takes as an argument a protocol number and returns the
corresponding protocol name.

The following protocol numbers are pre-defined:

IPSEC_PROTO_ESP Defines the encryption algorithms (transforms) that can be used by
IPsec to provide data confidentiality.

IPSEC_PROTO_AH Defines the authentication algorithms (transforms) that can be used by
IPsec to provide authentication.

proto_name A pointer to the name of an IPsec protocol.

proto_num A pointer to a protocol number. conditions.

The getipsecprotobyname() function returns a protocol number upon success, or –1 if the
protocol specified does not exist.

The getipsecprotobynum() function returns a protocol name upon success, or the NULL
value if the protocol number specified does not exist.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library (32 bit)

SUNWcslx (64 bit)

Name

Synopsis

Description

Parameters

Return Values

Attributes

getipsecprotobyname(3NSL)

man pages section 3: Networking Library Functions • Last Revised 13 Aug 2003136

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ipsecalgs-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level MT Safe

Interface Stability Committed

ipsecalgs(1M), getipsecalgbyname(3NSL), getipsecalgbyname(3NSL), attributes(5)

Piper, D. RFC 2407, The Internet IP Security Domain of Interpretation for ISAKMP. Network
Working Group. November, 1998.

See Also

getipsecprotobyname(3NSL)

Networking Library Functions 137

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ipsecalgs-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getnameinfo – get name information

cc [flag ...] file ... -lxnet [library ...]

#include <sys/socket.h>

#include <netdb.h>

int getnameinfo(const struct sockaddr *restrict sa, socklen_t salen,
char *restrict node, socklen_t nodelen, char *restrict service,
socklen_t servicelen, unsigned flags);

The getnameinfo() function translates a socket address to a node name and service location,
all of which are defined as in getaddrinfo(3XNET).

The sa argument points to a socket address structure to be translated. If the socket address
structure contains an IPv4-mapped IPv6 address or an IPv4-compatible IPv6 address, the
implementation extracts the embedded IPv4 address and lookup the node name for that IPv4
address.

If the node argument is non-NULL and the nodelen argument is non-zero, then the node
argument points to a buffer able to contain up to nodelen characters that receives the node
name as a null-terminated string. If the node argument is NULL or the nodelen argument is
zero, the node name is not returned. If the node's name cannot be located, the numeric form of
the node's address is returned instead of its name.

If the service argument is non-NULL and the servicelen argument is non-zero, then the service
argument points to a buffer able to contain up to servicelen bytes that receives the service name
as a null-terminated string. If the service argument is NULL or the servicelen argument is zero,
the service name is not returned. If the service's name cannot be located, the numeric form of
the service address (for example, its port number) is returned instead of its name.

The flags argument is a flag that changes the default actions of the function. By default the
fully-qualified domain name (FQDN) for the host is returned, but:

■ If the flag bit NI_NOFQDN is set, only the node name portion of the FQDN is returned for
local hosts.

■ If the flag bit NI_NUMERICHOST is set, the numeric form of the host's address is returned
instead of its name, under all circumstances.

■ If the flag bit NI_NAMEREQD is set, an error is returned if the host's name cannot be located.
■ If the flag bit NI_NUMERICSERV is set, the numeric form of the service address is returned

(for example, its port number) instead of its name, under all circumstances.
■ If the flag bit NI_DGRAM is set, this indicates that the service is a datagram service

(SOCK_DGRAM). The default behavior assumes that the service is a stream service
(SOCK_STREAM).

Name

Synopsis

Description

getnameinfo(3XNET)

man pages section 3: Networking Library Functions • Last Revised 1 Nov 2003138

A 0 return value for getnameinfo() indicates successful completion; a non-zero return value
indicates failure. The possible values for the failures are listed in the ERRORS section.

Upon successful completion, getnameinfo() returns the node and service names, if
requested, in the buffers provided. The returned names are always null-terminated strings.

The getnameinfo() function will fail if:

EAI_AGAIN The name could not be resolved at this time. Future attempts might
succeed.

EAI_BADFLAGS The flags argument had an invalid value.

EAI_FAIL A non-recoverable error occurred.

EAI_FAMILY The address family was not recognized or the address length was invalid
for the specified family.

EAI_MEMORY There was a memory allocation failure.

EAI_NONAME The name does not resolve for the supplied parameters. NI_NAMEREQD is set
and the host's name cannot be located, or both nodename and servname
were NULL.

EAI_SYSTEM A system error occurred. The error code can be found in errno.

If the returned values are to be used as part of any further name resolution (for example,
passed to getaddrinfo()), applications should provide buffers large enough to store any
result possible on the system.

Given the IPv4-mapped IPv6 address “::ffff:1.2.3.4”, the implementation performs a lookup as
if the socket address structure contains the IPv4 address “1.2.3.4”.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

gai_strerror(3XNET), getaddrinfo(3XNET), getservbyname(3XNET), socket(3XNET),
attributes(5), standards(5)

The IPv6 unspecified address (“::”) and the IPv6 loopback address (“::1”) are not
IPv4-compatible addresses. If the address is the IPv6 unspecified address (“::”), a lookup is not
performed, and the EAI_NONAME error is returned.

Return Values

Errors

Usage

Attributes

See Also

Notes

getnameinfo(3XNET)

Networking Library Functions 139

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

The two NI_NUMERICxxx flags are required to support the -n flag that many commands
provide.

The NI_DGRAM flag is required for the few AF_INET and AF_INET6 port numbers (for example,
[512,514]) that represent different services for UDP and TCP.

getnameinfo(3XNET)

man pages section 3: Networking Library Functions • Last Revised 1 Nov 2003140

getnetbyname, getnetbyname_r, getnetbyaddr, getnetbyaddr_r, getnetent, getnetent_r,
setnetent, endnetent – get network entry

cc [flag ...] file ... -lsocket -lnsl [library ...]

#include <netdb.h>

struct netent *getnetbyname(const char *name);

struct netent *getnetbyname_r(const char *name, struct netent *result,
char *buffer, int buflen);

struct netent *getnetbyaddr(long net, int type);

struct netent *getnetbyaddr_r(long net, int type, struct netent *result,
char *buffer, int buflen);

struct netent *getnetent(void);

struct netent *getnetent_r(struct netent *result, char *buffer,
int buflen);

int setnetent(int stayopen);

int endnetent(void);

These functions are used to obtain entries for networks. An entry may come from any of the
sources for networks specified in the /etc/nsswitch.conf file. See nsswitch.conf(4).

getnetbyname() searches for a network entry with the network name specified by the
character string parameter name.

getnetbyaddr() searches for a network entry with the network address specified by net. The
parameter type specifies the family of the address. This should be one of the address families
defined in <sys/socket.h>. See the NOTES section below for more information.

Network numbers and local address parts are returned as machine format integer values, that
is, in host byte order. See also inet(3SOCKET).

The netent.n_net member in the netent structure pointed to by the return value of the
above functions is calculated by inet_network(). The inet_network() function returns a
value in host byte order that is aligned based upon the input string. For example:

Text Value

“10” 0x0000000a

“10.0” 0x00000a00

“10.0.1” 0a000a0001

“10.0.1.28” 0x0a000180

Name

Synopsis

Description

getnetbyname(3SOCKET)

Networking Library Functions 141

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

Commonly, the alignment of the returned value is used as a crude approximate of pre-CIDR
(Classless Inter-Domain Routing) subnet mask. For example:

in_addr_t addr, mask;

addr = inet_network(net_name);

mask= ~(in_addr_t)0;

if ((addr & IN_CLASSA_NET) == 0)

addr <<= 8, mask <<= 8;

if ((addr & IN_CLASSA_NET) == 0)

addr <<= 8, mask <<= 8;

if ((addr & IN_CLASSA_NET) == 0)

addr <<= 8, mask <<= 8;

This usage is deprecated by the CIDR requirements. See Fuller, V., Li, T., Yu, J., and Varadhan,
K. RFC 1519, Classless Inter-Domain Routing (CIDR): an Address Assignment and Aggregation
Strategy. Network Working Group. September 1993.

The functions setnetent(), getnetent(), and endnetent() are used to enumerate network
entries from the database.

setnetent() sets (or resets) the enumeration to the beginning of the set of network entries.
This function should be called before the first call to getnetent(). Calls to getnetbyname()

and getnetbyaddr() leave the enumeration position in an indeterminate state. If the stayopen
flag is non-zero, the system may keep allocated resources such as open file descriptors until a
subsequent call to endnetent().

Successive calls to getnetent() return either successive entries or NULL, indicating the end of
the enumeration.

endnetent() may be called to indicate that the caller expects to do no further network entry
retrieval operations; the system may then deallocate resources it was using. It is still allowed,
but possibly less efficient, for the process to call more network entry retrieval functions after
calling endnetent().

The functions getnetbyname(), getnetbyaddr(), and getnetent() use static storage that is
reused in each call, making these routines unsafe for use in multi-threaded applications.

The functions getnetbyname_r(), getnetbyaddr_r(), and getnetent_r() provide reentrant
interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant counterpart,
named by removing the ‘‘_r'' suffix. The reentrant interfaces, however, use buffers supplied by
the caller to store returned results, and are safe for use in both single-threaded and
multi-threaded applications.

Each reentrant interface takes the same parameters as its non-reentrant counterpart, as well as
the following additional parameters. The parameter result must be a pointer to a struct
netent structure allocated by the caller. On successful completion, the function returns the

Reentrant Interfaces

getnetbyname(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 4 Nov 2004142

network entry in this structure. The parameter buffer must be a pointer to a buffer supplied by
the caller. This buffer is used as storage space for the network entry data. All of the pointers
within the returned struct netent result point to data stored within this buffer. See RETURN
VALUES. The buffer must be large enough to hold all of the data associated with the network
entry. The parameter buflen should give the size in bytes of the buffer indicated by buffer.

For enumeration in multi-threaded applications, the position within the enumeration is a
process-wide property shared by all threads. setnetent() may be used in a multi-threaded
application but resets the enumeration position for all threads. If multiple threads interleave
calls to getnetent_r(), the threads will enumerate disjointed subsets of the network database.

Like their non-reentrant counterparts, getnetbyname_r() and getnetbyaddr_r() leave the
enumeration position in an indeterminate state.

Network entries are represented by the struct netent structure defined in <netdb.h>.

The functions getnetbyname(), getnetbyname_r, getnetbyaddr, and getnetbyaddr_r()

each return a pointer to a struct netent if they successfully locate the requested entry;
otherwise they return NULL.

The functions getnetent() and getnetent_r() each return a pointer to a struct netent if
they successfully enumerate an entry; otherwise they return NULL, indicating the end of the
enumeration.

The functions getnetbyname(), getnetbyaddr(), and getnetent() use static storage, so
returned data must be copied before a subsequent call to any of these functions if the data is to
be saved.

When the pointer returned by the reentrant functions getnetbyname_r(),
getnetbyaddr_r(), and getnetent_r() is non-NULL, it is always equal to the result pointer
that was supplied by the caller.

The functions setnetent() and endnetent() return 0 on success.

The reentrant functions getnetbyname_r(), getnetbyaddr_r and getnetent_r() will return
NULL and set errno to ERANGE if the length of the buffer supplied by caller is not large enough
to store the result. See Intro(2) for the proper usage and interpretation of errno in
multi-threaded applications.

/etc/networks network name database

/etc/nsswitch.conf configuration file for the name service switch

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Return Values

Errors

Files

Attributes

getnetbyname(3SOCKET)

Networking Library Functions 143

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Intro(2), Intro(3), byteorder(3SOCKET), inet(3SOCKET), netdb.h(3HEAD),
networks(4), nsswitch.conf(4), attributes(5)

Fuller, V., Li, T., Yu, J., and Varadhan, K. RFC 1519, Classless Inter-Domain Routing (CIDR):
an Address Assignment and Aggregation Strategy. Network Working Group. September 1993.

The reentrant interfaces getnetbyname_r(), getnetbyaddr_r(), and getnetent_r() are
included in this release on an uncommitted basis only, and are subject to change or removal in
future minor releases.

The current implementation of these functions only return or accept network numbers for the
Internet address family (type AF_INET). The functions described in inet(3SOCKET) may be
helpful in constructing and manipulating addresses and network numbers in this form.

When compiling multi-threaded applications, see Intro(3), Notes On Multithread
Applications, for information about the use of the _REENTRANT flag.

Use of the enumeration interfaces getnetent() and getnetent_r() is discouraged;
enumeration may not be supported for all database sources. The semantics of enumeration are
discussed further in nsswitch.conf(4).

See Also

Warnings

Notes

getnetbyname(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 4 Nov 2004144

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netdb.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1networks-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

getnetconfig, setnetconfig, endnetconfig, getnetconfigent, freenetconfigent, nc_perror,
nc_sperror – get network configuration database entry

#include <netconfig.h>

struct netconfig *getnetconfig(void *handlep);

void *setnetconfig(void);

int endnetconfig(void *handlep);

struct netconfig *getnetconfigent(const char *netid);

void freenetconfigent(struct netconfig *netconfigp);

void nc_perror(const char *msg);

char *nc_sperror(void);

The library routines described on this page are part of the Network Selection component.
They provide the application access to the system network configuration database,
/etc/netconfig. In addition to the routines for accessing the netconfig database, Network
Selection includes the environment variable NETPATH (see environ(5)) and the NETPATH access
routines described in getnetpath(3NSL).

getnetconfig() returns a pointer to the current entry in the netconfig database, formatted
as a struct netconfig. Successive calls will return successive netconfig entries in the
netconfig database. getnetconfig() can be used to search the entire netconfig file.
getnetconfig() returns NULL at the end of the file. handlep is the handle obtained through
setnetconfig().

A call to setnetconfig() has the effect of ‘‘binding'' to or ‘‘rewinding'' the netconfig
database. setnetconfig() must be called before the first call to getnetconfig() and may be
called at any other time. setnetconfig() need not be called before a call to
getnetconfigent(). setnetconfig() returns a unique handle to be used by
getnetconfig().

endnetconfig() should be called when processing is complete to release resources for reuse.
handlep is the handle obtained through setnetconfig(). Programmers should be aware,
however, that the last call to endnetconfig() frees all memory allocated by getnetconfig()
for the struct netconfig data structure. endnetconfig() may not be called before
setnetconfig().

getnetconfigent() returns a pointer to the struct netconfig structure corresponding to
netid. It returns NULL if netid is invalid (that is, does not name an entry in the netconfig
database).

Name

Synopsis

Description

getnetconfig(3NSL)

Networking Library Functions 145

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5

freenetconfigent() frees the netconfig structure pointed to by netconfigp (previously
returned by getnetconfigent()).

nc_perror() prints a message to the standard error indicating why any of the above routines
failed. The message is prepended with the string msg and a colon. A NEWLINE is appended at
the end of the message.

nc_sperror() is similar to nc_perror() but instead of sending the message to the standard
error, will return a pointer to a string that contains the error message.

nc_perror() and nc_sperror() can also be used with the NETPATH access routines defined in
getnetpath(3NSL).

setnetconfig() returns a unique handle to be used by getnetconfig(). In the case of an
error, setnetconfig() returns NULL and nc_perror() or nc_sperror() can be used to print
the reason for failure.

getnetconfig() returns a pointer to the current entry in the netconfig() database,
formatted as a struct netconfig. getnetconfig() returns NULL at the end of the file, or
upon failure.

endnetconfig() returns 0 on success and −1 on failure (for example, if setnetconfig() was
not called previously).

On success, getnetconfigent() returns a pointer to the struct netconfig structure
corresponding to netid; otherwise it returns NULL.

nc_sperror() returns a pointer to a buffer which contains the error message string. This
buffer is overwritten on each call. In multithreaded applications, this buffer is implemented as
thread-specific data.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getnetpath(3NSL), netconfig(4), attributes(5), environ(5)

Return Values

Attributes

See Also

getnetconfig(3NSL)

man pages section 3: Networking Library Functions • Last Revised 30 Dec 1996146

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netconfig-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5

getnetpath, setnetpath, endnetpath – get /etc/netconfig entry corresponding to NETPATH
component

#include <netconfig.h>

struct netconfig *getnetpath(void *handlep);

void *setnetpath(void);

int endnetpath(void *handlep);

The routines described on this page are part of the Network Selection component. They
provide the application access to the system network configuration database,
/etc/netconfig, as it is "filtered" by the NETPATH environment variable. See environ(5). See
getnetconfig(3NSL) for other routines that also access the network configuration database
directly. The NETPATH variable is a list of colon-separated network identifiers.

getnetpath() returns a pointer to the netconfig database entry corresponding to the first
valid NETPATH component. The netconfig entry is formatted as a struct netconfig. On each
subsequent call, getnetpath() returns a pointer to the netconfig entry that corresponds to
the next valid NETPATH component. getnetpath() can thus be used to search the netconfig
database for all networks included in the NETPATH variable. When NETPATH has been
exhausted, getnetpath() returns NULL.

A call to setnetpath() "binds" to or "rewinds" NETPATH. setnetpath() must be called before
the first call to getnetpath() and may be called at any other time. It returns a handle that is
used by getnetpath().

getnetpath() silently ignores invalid NETPATH components. A NETPATH component is invalid
if there is no corresponding entry in the netconfig database.

If the NETPATH variable is unset, getnetpath() behaves as if NETPATH were set to the sequence
of "default" or "visible" networks in the netconfig database, in the order in which they are
listed.

endnetpath() may be called to "unbind" from NETPATH when processing is complete,
releasing resources for reuse. Programmers should be aware, however, that endnetpath()
frees all memory allocated by getnetpath() for the struct netconfig data structure.
endnetpath() returns 0 on success and -1 on failure (for example, if setnetpath() was not
called previously).

setnetpath() returns a handle that is used by getnetpath(). In case of an error,
setnetpath() returns NULL. nc_perror() or nc_sperror() can be used to print out the
reason for failure. See getnetconfig(3NSL).

When first called, getnetpath() returns a pointer to the netconfig database entry
corresponding to the first valid NETPATH component. When NETPATH has been exhausted,
getnetpath() returns NULL.

Name

Synopsis

Description

Return Values

getnetpath(3NSL)

Networking Library Functions 147

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5

endnetpath() returns 0 on success and -1 on failure (for example, if setnetpath() was not
called previously).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getnetconfig(3NSL), netconfig(4), attributes(5), environ(5)

Attributes

See Also

getnetpath(3NSL)

man pages section 3: Networking Library Functions • Last Revised 30 Dec 1996148

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netconfig-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5

getpeername – get name of connected peer

cc [flag ...] file ... -lsocket -lnsl [library ...]

#include <sys/socket.h>

int getpeername(int s, struct sockaddr *name, socklen_t *namelen);

getpeername() returns the name of the peer connected to socket s. The int pointed to by the
namelen parameter should be initialized to indicate the amount of space pointed to by name.
On return it contains the actual size of the name returned (in bytes), prior to any truncation.
The name is truncated if the buffer provided is too small.

If successful, getpeername() returns 0; otherwise it returns −1 and sets errno to indicate the
error.

The call succeeds unless:

EBADF The argument s is not a valid descriptor.

ENOMEM There was insufficient user memory for the operation to complete.

ENOSR There were insufficient STREAMS resources available for the operation to
complete.

ENOTCONN The socket is not connected.

ENOTSOCK The argument s is not a socket.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

accept(3SOCKET), bind(3SOCKET), getsockname(3SOCKET), socket(3SOCKET),
attributes(5), socket.h(3HEAD)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

getpeername(3SOCKET)

Networking Library Functions 149

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1socket.h-3head

getpeername – get the name of the peer socket

cc [flag ...] file ... -lxnet [library ...]

#include <sys/socket.h>

int getpeername(int socket, struct sockaddr *restrict address,
socklen_t *restrict address_len);

The getpeername() function retrieves the peer address of the specified socket, stores this
address in the sockaddr structure pointed to by the address argument, and stores the length of
this address in the object pointed to by the address_len argument.

If the actual length of the address is greater than the length of the supplied sockaddr structure,
the stored address will be truncated.

If the protocol permits connections by unbound clients, and the peer is not bound, then the
value stored in the object pointed to by address is unspecified.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The getpeername() function will fail if:

EBADF The socket argument is not a valid file descriptor.

EFAULT The address or address_len parameter can not be accessed or written.

EINVAL The socket has been shut down.

ENOTCONN The socket is not connected or otherwise has not had the peer prespecified.

ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The operation is not supported for the socket protocol.

The getpeername() function may fail if:

ENOBUFS Insufficient resources were available in the system to complete the call.

ENOSR There were insufficient STREAMS resources available for the operation to
complete.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Name

Synopsis

Description

Return Values

Errors

Attributes

getpeername(3XNET)

man pages section 3: Networking Library Functions • Last Revised 10 Jun 2002150

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

accept(3XNET), bind(3XNET), getsockname(3XNET), socket(3XNET), attributes(5),
standards(5)

See Also

getpeername(3XNET)

Networking Library Functions 151

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getprotobyname, getprotobyname_r, getprotobynumber, getprotobynumber_r, getprotoent,
getprotoent_r, setprotoent, endprotoent – get protocol entry

cc [flag ...] file ... -lsocket -lnsl [library ...]

#include <netdb.h>

struct protoent *getprotobyname(const char *name);

struct protoent *getprotobyname_r(const char *name,
struct protoent *result, char *buffer,
int buflen);

struct protoent *getprotobynumber(int proto);

struct protoent *getprotobynumber_r(int proto, struct protoent *result,
char *buffer, int buflen);

struct protoent *getprotoent(void);

struct protoent *getprotoent_r(struct protoent *result, char *buffer,
int buflen);

int setprotoent(int stayopen);

int endprotoent(void);

These functions return a protocol entry. Two types of interfaces are supported: reentrant
(getprotobyname_r(), getprotobynumber_r(), and getprotoent_r()) and non-reentrant
(getprotobyname(), getprotobynumber(), and getprotoent()). The reentrant functions
can be used in single-threaded applications and are safe for multithreaded applications,
making them the preferred interfaces.

The reentrant routines require additional parameters which are used to return results data.
result is a pointer to a struct protoent structure and will be where the returned results will
be stored. buffer is used as storage space for elements of the returned results. buflen is the size
of buffer and should be large enough to contain all returned data. buflen must be at least 1024
bytes.

getprotobyname_r(), getprotobynumber_r(), and getprotoent_r() each return a protocol
entry.

The entry may come from one of the following sources: the protocols file (see protocols(4)),
and the NIS maps ‘‘protocols.byname'' and ‘‘protocols.bynumber''. The sources and their
lookup order are specified in the /etc/nsswitch.conf file (see nsswitch.conf(4) for details).
Some name services such as NIS will return only one name for a host, whereas others such as
DNS will return all aliases.

The getprotobyname_r() and getprotobynumber_r() functions sequentially search from the
beginning of the file until a matching protocol name or protocol number is found, or until an
EOF is encountered.

Name

Synopsis

Description

getprotobyname(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 10 Dec 2009152

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1protocols-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

getprotobyname() and getprotobynumber() have the same functionality as
getprotobyname_r() and getprotobynumber_r() except that a static buffer is used to store
returned results. These functions are Unsafe in a multithreaded application.

getprotoent_r() enumerates protocol entries: successive calls to getprotoent_r() will
return either successive protocol entries or NULL. Enumeration might not be supported by
some sources. If multiple threads call getprotoent_r(), each will retrieve a subset of the
protocol database.

getprotent() has the same functionality as getprotent_r() except that a static buffer is used
to store returned results. This routine is unsafe in a multithreaded application.

setprotoent() “rewinds” to the beginning of the enumeration of protocol entries. If the
stayopen flag is non-zero, resources such as open file descriptors are not deallocated after each
call to getprotobynumber_r() and getprotobyname_r(). Calls to getprotobyname_r() ,

The getprotobyname(), getprotobynumber_r(), and getprotobynumber() functions might
leave the enumeration in an indeterminate state, so setprotoent() should be called before
the first call to getprotoent_r() or getprotoent(). The setprotoent() function has
process-wide scope, and ‘‘rewinds'' the protocol entries for all threads calling
getprotoent_r() as well as main-thread calls to getprotoent().

The endprotoent() function can be called to indicate that protocol processing is complete;
the system may then close any open protocols file, deallocate storage, and so forth. It is
legitimate, but possibly less efficient, to call more protocol functions after endprotoent().

The internal representation of a protocol entry is a protoent structure defined in <netdb.h>
with the following members:

char *p_name;

char **p_aliases;

int p_proto;

The getprotobyname_r(), getprotobyname(), getprotobynumber_r(), and
getprotobynumber() functions return a pointer to a struct protoent if they successfully
locate the requested entry; otherwise they return NULL.

The getprotoent_r() and getprotoent() functions return a pointer to a struct protoent
if they successfully enumerate an entry; otherwise they return NULL, indicating the end of the
enumeration.

The getprotobyname_r(), getprotobynumber_r(), and getprotoent_r() functions will fail
if:

ERANGE The length of the buffer supplied by the caller is not large enough to store the
result.

Return Values

Errors

getprotobyname(3SOCKET)

Networking Library Functions 153

/etc/protocols

/etc/nsswitch.conf

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below.

Intro(3), nsswitch.conf(4), protocols(4), attributes(5), netdb.h(3HEAD)

Although getprotobyname_r(), getprotobynumber_r(), and getprotoent_r() are not
mentioned by POSIX 1003.1:2001, they were added to complete the functionality provided by
similar thread-safe functions.

When compiling multithreaded applications, see Intro(3), Notes On Multithread
Applications, for information about the use of the _REENTRANT flag.

The getprotobyname_r(), getprotobynumber_r(), and getprotoent_r() functions are
reentrant and multithread safe. The reentrant interfaces can be used in single-threaded as well
as multithreaded applications and are therefore the preferred interfaces.

The getprotobyname(), getprotobyaddr(), and getprotoent() functions use static storage,
so returned data must be copied if it is to be saved. Because of their use of static storage for
returned data, these functions are not safe for multithreaded applications.

The setprotoent() and endprotoent() functions have process-wide scope, and are therefore
not safe in multi-threaded applications.

Use of getprotoent_r() and getprotoent() is discouraged; enumeration is well-defined for
the protocols file and is supported (albeit inefficiently) for NIS, but in general may not be
well-defined. The semantics of enumeration are discussed in nsswitch.conf(4).

Only the Internet protocols are currently understood.

Files

Attributes

See Also

Notes

Bugs

getprotobyname(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 10 Dec 2009154

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1protocols-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netdb.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

getpublickey, getsecretkey, publickey – retrieve public or secret key

#include <rpc/rpc.h>

#include <rpc/key_prot.h>

int getpublickey(const char netname[MAXNETNAMELEN],
char publickey[HEXKEYBYTES+1]);

int getsecretkey(const char netname[MAXNETNAMELEN],
char secretkey[HEXKEYBYTES+1],const char *passwd);

The getpublickey() and getsecretkey() functions get public and secret keys for netname.
The key may come from one of the following sources:

■ /etc/publickey file. See publickey(4).
■ NIS map ‘‘publickey.byname''. The sources and their lookup order are specified in the

/etc/nsswitch.conf file. See nsswitch.conf(4).

getsecretkey() has an extra argument, passwd, which is used to decrypt the encrypted secret
key stored in the database.

Both routines return 1 if they are successful in finding the key. Otherwise, the routines return
0. The keys are returned as null-terminated, hexadecimal strings. If the password supplied to
getsecretkey() fails to decrypt the secret key, the routine will return 1 but the secretkey [0]
will be set to NULL.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

secure_rpc(3NSL), nsswitch.conf(4), publickey(4), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

getpublickey(3NSL)

Networking Library Functions 155

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1publickey-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1publickey-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getrpcbyname, getrpcbyname_r, getrpcbynumber, getrpcbynumber_r, getrpcent,
getrpcent_r, setrpcent, endrpcent – get RPC entry

cc [flag ...] file ... -lnsl [library ...]

#include <rpc/rpcent.h>

struct rpcent *getrpcbyname(const char *name);

struct rpcent *getrpcbyname_r(const char *name, struct rpcent *result,
char *buffer, int buflen);

struct rpcent *getrpcbynumber(const int number);

struct rpcent *getrpcbynumber_r(const int number, struct rpcent *result,
char *buffer, int buflen);

struct rpcent *getrpcent(void);

struct rpcent *getrpcent_r(struct rpcent *result, char *buffer,
int buflen);

void setrpcent(const int stayopen);

void endrpcent(void);

These functions are used to obtain entries for RPC (Remote Procedure Call) services. An entry
may come from any of the sources for rpc specified in the /etc/nsswitch.conf file (see
nsswitch.conf(4)).

getrpcbyname() searches for an entry with the RPC service name specified by the parameter
name.

getrpcbynumber() searches for an entry with the RPC program number number.

The functions setrpcent(), getrpcent(), and endrpcent() are used to enumerate RPC
entries from the database.

setrpcent() sets (or resets) the enumeration to the beginning of the set of RPC entries. This
function should be called before the first call to getrpcent(). Calls to getrpcbyname() and
getrpcbynumber() leave the enumeration position in an indeterminate state. If the stayopen
flag is non-zero, the system may keep allocated resources such as open file descriptors until a
subsequent call to endrpcent().

Successive calls to getrpcent() return either successive entries or NULL, indicating the end
of the enumeration.

endrpcent() may be called to indicate that the caller expects to do no further RPC entry
retrieval operations; the system may then deallocate resources it was using. It is still allowed,
but possibly less efficient, for the process to call more RPC entry retrieval functions after
calling endrpcent().

Name

Synopsis

Description

getrpcbyname(3NSL)

man pages section 3: Networking Library Functions • Last Revised 20 Feb 1998156

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

The functions getrpcbyname(), getrpcbynumber(), and getrpcent() use static storage that
is re-used in each call, making these routines unsafe for use in multithreaded applications.

The functions getrpcbyname_r(), getrpcbynumber_r(), and getrpcent_r() provide
reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant counterpart,
named by removing the ‘‘_r'' suffix. The reentrant interfaces, however, use buffers supplied by
the caller to store returned results, and are safe for use in both single-threaded and
multithreaded applications.

Each reentrant interface takes the same parameters as its non-reentrant counterpart, as well as
the following additional parameters. The parameter result must be a pointer to a struct
rpcent structure allocated by the caller. On successful completion, the function returns the
RPC entry in this structure. The parameter buffer must be a pointer to a buffer supplied by the
caller. This buffer is used as storage space for the RPC entry data. All of the pointers within the
returned struct rpcent result point to data stored within this buffer (see RETURN VALUES).
The buffer must be large enough to hold all of the data associated with the RPC entry. The
parameter buflen should give the size in bytes of the buffer indicated by buffer.

For enumeration in multithreaded applications, the position within the enumeration is a
process-wide property shared by all threads. setrpcent() may be used in a multithreaded
application but resets the enumeration position for all threads. If multiple threads interleave
calls to getrpcent_r(), the threads will enumerate disjoint subsets of the RPC entry database.

Like their non-reentrant counterparts, getrpcbyname_r() and getrpcbynumber_r() leave
the enumeration position in an indeterminate state.

RPC entries are represented by the struct rpcent structure defined in <rpc/rpcent.h>:

struct rpcent {

char *r_name; /* name of this rpc service

char **r_aliases; /* zero-terminated list of alternate names */

int r_number; /* rpc program number */

};

The functions getrpcbyname(), getrpcbyname_r(), getrpcbynumber(), and
getrpcbynumber_r() each return a pointer to a struct rpcent if they successfully locate the
requested entry; otherwise they return NULL.

The functions getrpcent() and getrpcent_r() each return a pointer to a struct rpcent if
they successfully enumerate an entry; otherwise they return NULL, indicating the end of the
enumeration.

The functions getrpcbyname(), getrpcbynumber(), and getrpcent() use static storage, so
returned data must be copied before a subsequent call to any of these functions if the data is to
be saved.

Reentrant Interfaces

Return Values

getrpcbyname(3NSL)

Networking Library Functions 157

When the pointer returned by the reentrant functions getrpcbyname_r(),
getrpcbynumber_r(), and getrpcent_r() is non-NULL, it is always equal to the result
pointer that was supplied by the caller.

The reentrant functions getrpcyname_r(), getrpcbynumber_r() and getrpcent_r() will
return NULL and set errno to ERANGE if the length of the buffer supplied by caller is not large
enough to store the result. See Intro(2) for the proper usage and interpretation of errno in
multithreaded applications.

/etc/rpc

/etc/nsswitch.conf

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See “Reentrant Interfaces” in DESCRIPTION.

rpcinfo(1M), rpc(3NSL), nsswitch.conf(4), rpc(4), attributes(5)

The reentrant interfaces getrpcbyname_r(), getrpcbynumber_r(), and getrpcent_r() are
included in this release on an uncommitted basis only, and are subject to change or removal in
future minor releases.

When compiling multithreaded applications, see Intro(3), Notes On Multithreaded
Applications, for information about the use of the _REENTRANT flag.

Use of the enumeration interfaces getrpcent() and getrpcent_r() is discouraged;
enumeration may not be supported for all database sources. The semantics of enumeration are
discussed further in nsswitch.conf(4).

Errors

Files

Attributes

See Also

Warnings

Notes

getrpcbyname(3NSL)

man pages section 3: Networking Library Functions • Last Revised 20 Feb 1998158

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpcinfo-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpc-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

getservbyname, getservbyname_r, getservbyport, getservbyport_r, getservent, getservent_r,
setservent, endservent – get service entry

cc [flag ...] file ... -lsocket -lnsl [library ...]

#include <netdb.h>

struct servent *getservbyname(const char *name, const char *proto);

struct servent *getservbyname_r(const char *name, const char *proto,
struct servent *result, char *buffer, int buflen);

struct servent *getservbyport(int port, const char *proto);

struct servent *getservbyport_r(int port, const char *proto,
struct servent *result, char *buffer, int buflen);

struct servent *getservent(void);

struct servent *getservent_r(struct servent *result, char *buffer,
int buflen);

int setservent(int stayopen);

int endservent(void);

These functions are used to obtain entries for Internet services. An entry may come from any
of the sources for services specified in the /etc/nsswitch.conf file. See nsswitch.conf(4).

The getservbyname() and getservbyport() functions sequentially search from the
beginning of the file until a matching protocol name or port number is found, or until
end-of-file is encountered. If a protocol name is also supplied (non-null), searches must also
match the protocol.

The getservbyname() function searches for an entry with the Internet service name specified
by the name parameter.

The getservbyport() function searches for an entry with the Internet port number port.

All addresses are returned in network order. In order to interpret the addresses,
byteorder(3SOCKET) must be used for byte order conversion. The string proto is used by
both getservbyname() and getservbyport() to restrict the search to entries with the
specified protocol. If proto is NULL, entries with any protocol can be returned.

The functions setservent(), getservent(), and endservent() are used to enumerate
entries from the services database.

The setservent() function sets (or resets) the enumeration to the beginning of the set of
service entries. This function should be called before the first call to getservent(). Calls to
the functions getservbyname() and getservbyport() leave the enumeration position in an
indeterminate state. If the stayopen flag is non-zero, the system may keep allocated resources
such as open file descriptors until a subsequent call to endservent().

Name

Synopsis

Description

getservbyname(3SOCKET)

Networking Library Functions 159

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

The getservent() function reads the next line of the file, opening the file if necessary.
getservent() opens and rewinds the file. If the stayopen flag is non-zero, the net data base
will not be closed after each call to getservent() (either directly, or indirectly through one of
the other “getserv”calls).

Successive calls to getservent() return either successive entries or NULL, indicating the end of
the enumeration.

The endservent() function closes the file. The endservent() function can be called to
indicate that the caller expects to do no further service entry retrieval operations; the system
can then deallocate resources it was using. It is still allowed, but possibly less efficient, for the
process to call more service entry retrieval functions after calling endservent().

The functions getservbyname(), getservbyport(), and getservent() use static storage that
is re-used in each call, making these functions unsafe for use in multithreaded applications.

The functions getservbyname_r(), getservbyport_r(), and getservent_r() provide
reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant counterpart,
named by removing the “_r” suffix. The reentrant interfaces, however, use buffers supplied by
the caller to store returned results, and are safe for use in both single-threaded and
multithreaded applications.

Each reentrant interface takes the same parameters as its non-reentrant counterpart, as well as
the following additional parameters. The parameter result must be a pointer to a struct
servent structure allocated by the caller. On successful completion, the function returns the
service entry in this structure. The parameter buffer must be a pointer to a buffer supplied by
the caller. This buffer is used as storage space for the service entry data. All of the pointers
within the returned struct servent result point to data stored within this buffer. See the
RETURN VALUES section of this manual page. The buffer must be large enough to hold all of
the data associated with the service entry. The parameter buflen should give the size in bytes of
the buffer indicated by buffer.

For enumeration in multithreaded applications, the position within the enumeration is a
process-wide property shared by all threads. The setservent() function can be used in a
multithreaded application but resets the enumeration position for all threads. If multiple
threads interleave calls to getservent_r(), the threads will enumerate disjoint subsets of the
service database.

Like their non-reentrant counterparts, getservbyname_r() and getservbyport_r() leave
the enumeration position in an indeterminate state.

Service entries are represented by the struct servent structure defined in <netdb.h>:

struct servent {

char *s_name; /* official name of service */

char **s_aliases; /* alias list */

Reentrant Interfaces

Return Values

getservbyname(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 31 Jan 2007160

int s_port; /* port service resides at */

char *s_proto; /* protocol to use */

};

The members of this structure are:

s_name The official name of the service.

s_aliases A zero terminated list of alternate names for the service.

s_port The port number at which the service resides. Port numbers are returned in
network byte order.

s_proto The name of the protocol to use when contacting the service

The functions getservbyname(), getservbyname_r(), getservbyport(), and
getservbyport_r() each return a pointer to a struct servent if they successfully locate the
requested entry; otherwise they return NULL.

The functions getservent() and getservent_r() each return a pointer to a struct servent
if they successfully enumerate an entry; otherwise they return NULL, indicating the end of the
enumeration.

The functions getservbyname(), getservbyport(), and getservent() use static storage, so
returned data must be copied before a subsequent call to any of these functions if the data is to
be saved.

When the pointer returned by the reentrant functions getservbyname_r(),
getservbyport_r(), and getservent_r() is non-null, it is always equal to the result pointer
that was supplied by the caller.

The reentrant functions getservbyname_r(), getservbyport_r(), and getservent_r()

return NULL and set errno to ERANGE if the length of the buffer supplied by caller is not large
enough to store the result. See Intro(2) for the proper usage and interpretation of errno in
multithreaded applications.

/etc/services Internet network services

/etc/netconfig network configuration file

/etc/nsswitch.conf configuration file for the name-service switch

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See “Reentrant Interfaces” in DESCRIPTION.

Errors

Files

Attributes

getservbyname(3SOCKET)

Networking Library Functions 161

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Intro(2), Intro(3), byteorder(3SOCKET), netdir(3NSL), netconfig(4),
nsswitch.conf(4), services(4), attributes(5), netdb.h(3HEAD)

The reentrant interfaces getservbyname_r(), getservbyport_r(), and getservent_r() are
included in this release on an uncommitted basis only, and are subject to change or removal in
future minor releases.

The functions that return struct servent return the least significant 16-bits of the s_port
field in network byte order. getservbyport() and getservbyport_r() also expect the input
parameter port in the network byte order. See htons(3SOCKET) for more details on
converting between host and network byte orders.

To ensure that they all return consistent results, getservbyname(), getservbyname_r(), and
netdir_getbyname() are implemented in terms of the same internal library function. This
function obtains the system-wide source lookup policy based on the inet family entries in
netconfig(4) and the services: entry in nsswitch.conf(4). Similarly, getservbyport(),
getservbyport_r(), and netdir_getbyaddr() are implemented in terms of the same
internal library function. If the inet family entries in netconfig(4) have a ‘‘-'' in the last
column for nametoaddr libraries, then the entry for services in nsswitch.conf will be used;
otherwise the nametoaddr libraries in that column will be used, and nsswitch.conf will not
be consulted.

There is no analogue of getservent() and getservent_r() in the netdir functions, so these
enumeration functions go straight to the services entry in nsswitch.conf. Thus
enumeration may return results from a different source than that used by getservbyname(),
getservbyname_r(), getservbyport(), and getservbyport_r().

When compiling multithreaded applications, see Intro(3), Notes On Multithread
Applications, for information about the use of the _REENTRANT flag.

Use of the enumeration interfaces getservent() and getservent_r() is discouraged;
enumeration may not be supported for all database sources. The semantics of enumeration are
discussed further in nsswitch.conf(4).

See Also

Warnings

Notes

getservbyname(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 31 Jan 2007162

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netconfig-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1services-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netdb.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netconfig-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netconfig-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-3
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nsswitch.conf-4

getsockname – get socket name

cc [flag ...] file ... -lsocket -lnsl [library ...]

#include <sys/socket.h>

int getsockname(int s, struct sockaddr *name, socklen_t *namelen);

getsockname() returns the current name for socket s. The namelen parameter should be
initialized to indicate the amount of space pointed to by name. On return it contains the actual
size in bytes of the name returned.

If successful, getsockname() returns 0; otherwise it returns −1 and sets errno to indicate the
error.

The call succeeds unless:

EBADF The argument s is not a valid file descriptor.

ENOMEM There was insufficient memory available for the operation to complete.

ENOSR There were insufficient STREAMS resources available for the operation to
complete.

ENOTSOCK The argument s is not a socket.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

bind(3SOCKET), getpeername(3SOCKET), socket(3SOCKET), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

getsockname(3SOCKET)

Networking Library Functions 163

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

getsockname – get the socket name

cc [flag ...] file ... -lxnet [library ...]

#include <sys/socket.h>

int getsockname(int socket, struct sockaddr *restrict address,
socklen_t *restrict address_len);

The getsockname() function retrieves the locally-bound name of the specified socket, stores
this address in the sockaddr structure pointed to by the address argument, and stores the
length of this address in the object pointed to by the address_len argument.

If the actual length of the address is greater than the length of the supplied sockaddr structure,
the stored address will be truncated.

If the socket has not been bound to a local name, the value stored in the object pointed to by
address is unspecified.

Upon successful completion, 0 is returned, the address argument points to the address of the
socket, and the address_len argument points to the length of the address. Otherwise, −1 is
returned and errno is set to indicate the error.

The getsockname() function will fail:

EBADF The socket argument is not a valid file descriptor.

EFAULT The address or address_len parameter can not be accessed or written.

ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The operation is not supported for this socket's protocol.

The getsockname() function may fail if:

EINVAL The socket has been shut down.

ENOBUFS Insufficient resources were available in the system to complete the call.

ENOSR There were insufficient STREAMS resources available for the operation to
complete.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Name

Synopsis

Description

Return Values

Errors

Attributes

getsockname(3XNET)

man pages section 3: Networking Library Functions • Last Revised 10 Jun 2002164

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

accept(3XNET), bind(3XNET), getpeername(3XNET), socket(3XNET) attributes(5),
standards(5)

See Also

getsockname(3XNET)

Networking Library Functions 165

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getsockopt, setsockopt – get and set options on sockets

cc [flag ...] file ... -lsocket -lnsl [library ...]

#include <sys/socket.h>

int getsockopt(int s, int level, int optname, void *optval,
socklen_t *optlen);

int setsockopt(int s, int level, int optname, const void *optval,
socklen_t optlen);

The getsockopt() and setsockopt() functions manipulate options associated with a socket.
Options may exist at multiple protocol levels; they are always present at the uppermost
“socket” level.

The level argument specifies the protocol level at which the option resides. To manipulate
options at the socket level, specify the level argument as SOL_SOCKET. To manipulate options at
the protocol level, supply the appropriate protocol number for the protocol controlling the
option. For example, to indicate that an option will be interpreted by the TCP, set level to the
protocol number of TCP, as defined in the <netinet/in.h> header, or as determined by using
getprotobyname(3SOCKET). Some socket protocol families may also define additional levels,
such as SOL_ROUTE. Only socket-level options are described here.

The parameters optval and optlen are used to access option values for setsockopt(). For
getsockopt(), they identify a buffer in which the value(s) for the requested option(s) are to be
returned. For getsockopt(), optlen is a value-result parameter, initially containing the size of
the buffer pointed to by optval, and modified on return to indicate the actual size of the value
returned. Use a 0 optval if no option value is to be supplied or returned.

The optname and any specified options are passed uninterpreted to the appropriate protocol
module for interpretation. The include file <sys/socket.h> contains definitions for the
socket-level options described below. Options at other protocol levels vary in format and
name.

Most socket-level options take an int for optval. For setsockopt(), the optval parameter
should be non-zero to enable a boolean option, or zero if the option is to be disabled.
SO_LINGER uses a struct linger parameter that specifies the desired state of the option and
the linger interval. struct linger is defined in <sys/socket.h>. struct linger contains the
following members:

l_onoff on = 1/off = 0

l_linger linger time, in seconds

The following options are recognized at the socket level. Except as noted, each may be
examined with getsockopt() and set with setsockopt().

SO_DEBUG enable/disable recording of debugging information

SO_REUSEADDR enable/disable local address reuse

Name

Synopsis

Description

getsockopt(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 7 Jul 2011166

SO_REUSEPORT enable/disable local port reuse for PF_INET/PF_INET6 socket

SO_KEEPALIVE enable/disable keep connections alive

SO_DONTROUTE enable/disable routing bypass for outgoing messages

SO_LINGER linger on close if data is present

SO_BROADCAST enable/disable permission to transmit broadcast messages

SO_OOBINLINE enable/disable reception of out-of-band data in band

SO_SNDBUF set buffer size for output

SO_RCVBUF set buffer size for input

SO_DGRAM_ERRIND application wants delayed error

SO_TIMESTAMP enable/disable reception of timestamp with datagrams

SO_EXCLBIND enable/disable exclusive binding of the socket

SO_TYPE get the type of the socket (get only)

SO_ERROR get and clear error on the socket (get only)

SO_MAC_EXEMPT get or set mandatory access control on the socket. This option is
available only when the system is configured with Trusted
Extensions.

SO_ALLZONES bypass zone boundaries (privileged).

SO_DOMAIN get the domain used in the socket (get only)

SO_PROTOTYPE for socket in domains PF_INET and PF_INET6, get the underlying
protocol number used in the socket. For socket in domain
PF_ROUTE, get the address family used in the socket.

SO_PASSIVE_CONNECT modify connect(3SOCKET) to wait for connection request from a
peer instead of initiating a connection request to it. It is applicable
to TCP/SCTP PF_INET/PF_INET6 socket.

The SO_DEBUG option enables debugging in the underlying protocol modules. The
SO_REUSEADDR/SO_REUSEPORT options indicate that the rules used in validating addresses and
ports supplied in a bind(3SOCKET) call should allow reuse of local addresses or ports. The
SO_KEEPALIVE option enables the periodic transmission of messages on a connected socket. If
the connected party fails to respond to these messages, the connection is considered broken
and threads using the socket are notified using a SIGPIPE signal. The SO_DONTROUTE option
indicates that outgoing messages should bypass the standard routing facilities. Instead,
messages are directed to the appropriate network interface according to the network portion
of the destination address.

getsockopt(3SOCKET)

Networking Library Functions 167

The SO_LINGER option controls the action taken when unsent messages are queued on a socket
and a close(2) is performed. If the socket promises reliable delivery of data and SO_LINGER is
set, the system will block the thread on the close() attempt until it is able to transmit the data
or until it decides it is unable to deliver the information (a timeout period, termed the linger
interval, is specified in the setsockopt() call when SO_LINGER is requested). If SO_LINGER is
disabled and a close() is issued, the system will process the close() in a manner that allows
the thread to continue as quickly as possible.

The option SO_BROADCAST requests permission to send broadcast datagrams on the socket.
With protocols that support out-of-band data, the SO_OOBINLINE option requests that
out-of-band data be placed in the normal data input queue as received; it will then be
accessible with recv() or read() calls without the MSG_OOB flag.

The SO_SNDBUF and SO_RCVBUF options adjust the normal buffer sizes allocated for output and
input buffers, respectively. The buffer size may be increased for high-volume connections or
may be decreased to limit the possible backlog of incoming data. The maximum buffer size for
UDP/TCP is determined by the value of the ipadm variable max_buf for that particular
protocol. Use the ipadm(1M) utility to determine the current default values. See the Solaris
Tunable Parameters Reference Manual for information on setting the values of max_buf for
either TCP, UDP or both. At present, lowering SO_RCVBUF on a TCP connection after it has
been established has no effect.

By default, delayed errors (such as ICMP port unreachable packets) are returned only for
connected datagram sockets. The SO_DGRAM_ERRIND option makes it possible to receive errors
for datagram sockets that are not connected. When this option is set, certain delayed errors
received after completion of a sendto() or sendmsg() operation will cause a subsequent
sendto() or sendmsg() operation using the same destination address (to parameter) to fail
with the appropriate error. See send(3SOCKET).

If the SO_TIMESTAMP option is enabled on a SO_DGRAM or a SO_RAW socket, the
recvmsg(3XNET) call will return a timestamp in the native data format, corresponding to
when the datagram was received.

The SO_EXCLBIND option is used to enable or disable the exclusive binding of a socket. It
overrides the use of the SO_REUSEADDR option to reuse an address on bind(3SOCKET). The
actual semantics of the SO_EXCLBIND option depend on the underlying protocol. See tcp(7P)
or udp(7P) for more information.

The SO_TYPE and SO_ERROR options are used only with getsockopt(). The SO_TYPE option
returns the type of the socket, for example, SOCK_STREAM. It is useful for servers that inherit
sockets on startup. The SO_ERROR option returns any pending error on the socket and clears
the error status. It may be used to check for asynchronous errors on connected datagram
sockets or for other asynchronous errors.

getsockopt(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 7 Jul 2011168

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ipadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1tcp-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1udp-7p

The SO_MAC_EXEMPT option is used to toggle socket behavior with unlabeled peers. A socket
that has this option enabled can communicate with an unlabeled peer if it is in the global zone
or has a label that dominates the default label of the peer. Otherwise, the socket must have a
label that is equal to the default label of the unlabeled peer. Calling setsockopt() with this
option returns an EACCES error if the process lacks the NET_MAC_AWARE privilege or if the
socket is bound. The SO_MAC_EXEMPT option is available only when the system is configured
with Trusted Extensions.

The SO_ALLZONES option can be used to bypass zone boundaries between shared-IP zones.
Normally, the system prevents a socket from being bound to an address that is not assigned to
the current zone. It also prevents a socket that is bound to a wildcard address from receiving
traffic for other zones. However, some daemons which run in the global zone might need to
send and receive traffic using addresses that belong to other shared-IP zones. If set before a
socket is bound, SO_ALLZONES causes the socket to ignore zone boundaries between shared-IP
zones and permits the socket to be bound to any address assigned to the shared-IP zones. If the
socket is bound to a wildcard address, it receives traffic intended for all shared-IP zones and
behaves as if an equivalent socket were bound in each active shared-IP zone. Applications that
use the SO_ALLZONES option to initiate connections or send datagram traffic should specify the
source address for outbound traffic by binding to a specific address. There is no effect from
setting this option in an exclusive-IP zone. Setting this option requires the sys_net_config
privilege. See zones(5).

The SO_PASSIVE_CONNECT option can be used to modify connect() semantics for TCP and
SCTP socket. After this option is set, calling connect() on the socket will not initiate a
connection setup sequence. Instead, the transport end point is in listen state waiting for a
connection request from the remote peer specified in connect(). After the expected
connection is established, connect() returns.

If successful, getsockopt() and setsockopt() return 0. Otherwise, the functions return −1
and set errno to indicate the error.

The getsockopt() and setsockopt() calls succeed unless:

EBADF The argument s is not a valid file descriptor.

EACCES Permission denied.

EADDRINUSE Address already joined for IP_ADD_MEMBERSHIP.

EADDRNOTAVAIL Bad interface address for IP_ADD_MEMBERSHIP and IP_DROP_MEMBERSHIP.

EHOSTUNREACH Invalid address for IP_MULTICAST_IF.

EINVAL Invalid length for IP_OPTIONS.

Not a multicast address for IP_ADD_MEMBERSHIP and
IP_DROP_MEMBERSHIP.

Return Values

Errors

getsockopt(3SOCKET)

Networking Library Functions 169

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1zones-5

The specified option is invalid at the specified socket level, or the socket
has been shut down.

ENOBUFS SO_SNDBUF or SO_RCVBUF exceeds a system limit.

ENOENT Address not joined for IP_DROP_MEMBERSHIP.

ENOMEM There was insufficient memory available for the operation to complete.

ENOPROTOOPT The option is unknown at the level indicated.

ENOSR There were insufficient STREAMS resources available for the operation
to complete.

ENOTSOCK The argument s is not a socket.

EPERM No permissions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

ipadm(1M), close(2), ioctl(2), read(2), bind(3SOCKET), connect(3SOCKET),
getprotobyname(3SOCKET), recv(3SOCKET), recvmsg(3XNET), send(3SOCKET),
socket(3SOCKET), socket.h(3HEAD), attributes(5), zones(5), tcp(7P), udp(7P)

Solaris Tunable Parameters Reference Manual

Attributes

See Also

getsockopt(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 7 Jul 2011170

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ipadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1socket.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1zones-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1tcp-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1udp-7p

getsockopt – get the socket options

cc [flag...] file... -lxnet [library...]

#include <sys/socket.h>

int getsockopt(int socket, int level, int option_name,
void *restrict option_value, socklen_t *restrict option_len);

The getsockopt() function retrieves the value for the option specified by the option_name
argument for the socket specified by the socket argument. If the size of the option value is
greater than option_len, the value stored in the object pointed to by the option_value
argument will be silently truncated. Otherwise, the object pointed to by the option_len
argument will be modified to indicate the actual length of the value.

The level argument specifies the protocol level at which the option resides. To retrieve options
at the socket level, specify the level argument as SOL_SOCKET. To retrieve options at other
levels, supply the appropriate protocol number for the protocol controlling the option. For
example, to indicate that an option will be interpreted by the TCP (Transport Control
Protocol), set level to the protocol number of TCP, as defined in the <netinet/in.h> header,
or as determined by using getprotobyname(3XNET) function.

The socket in use might require the process to have appropriate privileges to use the
getsockopt() function.

The option_name argument specifies a single option to be retrieved. It can be one of the
following values defined in <sys/socket.h>:

SO_DEBUG Reports whether debugging information is being recorded. This option
stores an int value. This is a boolean option.

SO_ACCEPTCONN Reports whether socket listening is enabled. This option stores an int

value.

SO_BROADCAST Reports whether transmission of broadcast messages is supported, if this
is supported by the protocol. This option stores an int value. This is a
boolean option.

SO_REUSEADDR Reports whether the rules used in validating addresses supplied to
bind(3XNET) should allow reuse of local addresses, if this is supported by
the protocol. This option stores an int value. This is a boolean option.

SO_KEEPALIVE Reports whether connections are kept active with periodic transmission
of messages, if this is supported by the protocol.

If the connected socket fails to respond to these messages, the connection
is broken and threads writing to that socket are notified with a SIGPIPE
signal. This option stores an int value.

This is a boolean option.

Name

Synopsis

Description

getsockopt(3XNET)

Networking Library Functions 171

SO_LINGER Reports whether the socket lingers on close(2) if data is present. If
SO_LINGER is set, the system blocks the process during close(2) until it
can transmit the data or until the end of the interval indicated by the
l_linger member, whichever comes first. If SO_LINGER is not specified,
and close(2) is issued, the system handles the call in a way that allows the
process to continue as quickly as possible. This option stores a linger
structure.

SO_OOBINLINE Reports whether the socket leaves received out-of-band data (data
marked urgent) in line. This option stores an int value. This is a boolean
option.

SO_SNDBUF Reports send buffer size information. This option stores an int value.

SO_RCVBUF Reports receive buffer size information. This option stores an int value.

SO_ERROR Reports information about error status and clears it. This option stores an
int value.

SO_TYPE Reports the socket type. This option stores an int value.

SO_DONTROUTE Reports whether outgoing messages bypass the standard routing facilities.
The destination must be on a directly-connected network, and messages
are directed to the appropriate network interface according to the
destination address. The effect, if any, of this option depends on what
protocol is in use. This option stores an int value. This is a boolean
option.

SO_MAC_EXEMPT Gets the mandatory access control status of the socket. A socket that has
this option enabled can communicate with an unlabeled peer if the socket
is in the global zone or has a label that dominates the default label of the
peer. Otherwise, the socket must have a label that is equal to the default
label of the unlabeled peer. SO_MAC_EXEMPT is a boolean option that is
available only when the system is configured with Trusted Extensions.

SO_ALLZONES Bypasses zone boundaries (privileged). This option stores an int value.
This is a boolean option.

The SO_ALLZONES option can be used to bypass zone boundaries between
shared-IP zones. Normally, the system prevents a socket from being
bound to an address that is not assigned to the current zone. It also
prevents a socket that is bound to a wildcard address from receiving
traffic for other zones. However, some daemons which run in the global
zone might need to send and receive traffic using addresses that belong to
other shared-IP zones. If set before a socket is bound, SO_ALLZONES causes
the socket to ignore zone boundaries between shared-IP zones and
permits the socket to be bound to any address assigned to the shared-IP
zones. If the socket is bound to a wildcard address, it receives traffic

getsockopt(3XNET)

man pages section 3: Networking Library Functions • Last Revised 21 Jan 2007172

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2

intended for all shared-IP zones and behaves as if an equivalent socket
were bound in each active shared-IP zone. Applications that use the
SO_ALLZONES option to initiate connections or send datagram traffic
should specify the source address for outbound traffic by binding to a
specific address. There is no effect from setting this option in an
exclusive-IP zone. Setting this option requires the sys_net_config
privilege. See zones(5).

SO_DOMAIN get the domain used in the socket (get only)

SO_PROTOTYPE for socket in domains AF_INET and AF_INET6, get the underlying protocol
number used in the socket. For socket in domain AF_ROUTE, get the
address family used in the socket.

For boolean options, a zero value indicates that the option is disabled and a non-zero value
indicates that the option is enabled.

Options at other protocol levels vary in format and name.

The socket in use may require the process to have appropriate privileges to use the
getsockopt() function.

Upon successful completion, getsockopt() returns 0. Otherwise, −1 is returned and errno is
set to indicate the error.

The getsockopt() function will fail if:

EBADF The socket argument is not a valid file descriptor.

EFAULT The option_value or option_len parameter can not be accessed or written.

EINVAL The specified option is invalid at the specified socket level.

ENOPROTOOPT The option is not supported by the protocol.

ENOTSOCK The socket argument does not refer to a socket.

The getsockopt() function may fail if:

EACCES The calling process does not have the appropriate privileges.

EINVAL The socket has been shut down.

ENOBUFS Insufficient resources are available in the system to complete the call.

ENOSR There were insufficient STREAMS resources available for the operation to
complete.

See attributes(5) for descriptions of the following attributes:

Return Values

Errors

Attributes

getsockopt(3XNET)

Networking Library Functions 173

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1zones-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

close(2), bind(3XNET), endprotoent(3XNET), setsockopt(3XNET), socket(3XNET),
attributes, standards(5)

See Also

getsockopt(3XNET)

man pages section 3: Networking Library Functions • Last Revised 21 Jan 2007174

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getsourcefilter, setsourcefilter, getipv4sourcefilter, setipv4sourcefilter – retrieve and set a
socket's multicast filter

cc [flag...] file... -lsocket [library...]

#include <netinet/in.h>

int getsourcefilter(int s, uint32_t interface,
struct sockaddr *group, socklen_t grouplen, uint32_t *fmode,
uint_t *numsrc, struct sockaddr_storage *slist);

int setsourcefilter(int s, uint32_t interface,
struct sockaddr *group, socklen_t grouplen, uint32_t fmode,
uint_t numsrc, struct sockaddr_storage *slist);

int getipv4sourcefilter(int s, struct in_addr interface,
struct in_addr group, uint32_t *fmode, uint32_t *numsrc,
struct in_addr *slist);

int setipv4sourcefilter(int s, struct in_addr interface,
struct in_addr group,uint32_t fmode, uint32_t numsrc,
struct in_addr *slist);

These functions allow applications to retrieve and modify the multicast filtering state for a
tuple consisting of socket, interface, and multicast group values.

A multicast filter is described by a filter mode, which is MODE_INCLUDE or MODE_EXCLUDE, and a
list of source addresses which are filtered. If a group is simply joined with no source address
restrictions, the filter mode is MODE_EXCLUDE and the source list is empty.

The getsourcefilter() and setsourcefilter() functions are protocol-independent. They
can be used on either PF_INET or PF_INET6 sockets. The getipv4sourcefilter() and
setipv4sourcefilter() functions are IPv4-specific. They must be used only on PF_INET

sockets.

For the protocol-independent functions, the first four arguments identify the socket, interface,
multicast group tuple values. The argument s is an open socket of type SOCK_DGRAM or
SOCK_RAW. The interface argument is the interface index. The interface name can be mapped to
the index using if_nametoindex(3SOCKET). The group points to either a sockaddr_in
containing an IPv4 multicast address if the socket is PF_INET or a sockaddr_in6 containing an
IPv6 multicast address if the socket is PF_INET6. The grouplen is the size of the structure
pointed to by group.

For the IPv4-specific functions, the first three arguments identify the same socket, interface,
multicast group tuple values. The argument s is an open socket of type SOCK_DGRAM or
SOCK_RAW and protocol family PF_INET. The interface argument is the IPv4 address assigned to
the local interface. The group argument is the IPv4 multicast address.

The getsourcefilter() and getipv4sourcefilter() functions retrieve the current filter for
the given tuple consisting of socket, interface, and multicast group values. On successful
return, fmode contains either MODE_INCLUDE or MODE_EXCLUDE, indicating the filter mode. On

Name

Synopsis

Description

getsourcefilter(3SOCKET)

Networking Library Functions 175

input, the numsrc argument holds the number of addresses that can fit in the slist array. On
return, slist contains as many addresses as fit, while numsrc contains the total number of
source addresses in the filter. It is possible that numsrc can contain a number larger than the
number of addresses in the slist array. An application might determine the required buffer size
by calling getsourcefilter() with numsrc containing 0 and slist a NULL pointer. On return,
numsrc contains the number of elements that the slist buffer must be able to hold.
Alternatively, the maximum number of source addresses allowed by this implementation is
defined in <netinet/in.h>:

#define MAX_SRC_FILTER_SIZE 64

The setsourcefilter() and setipv4sourcefilter functions replace the current filter with
the filter specified in the arguments fmode, numsrc, and slist. The fmode argument must be set
to either MODE_INCLUDE or MODE_EXCLUDE. The numsrc argument is the number of addresses in
the slist array. The slist argument points to the array of source addresses to be included or
excluded, depending on the fmode value.

If successful, all four functions return 0. Otherwise, they return −1 and set errno to indicate
the error.

These functions will fail if:

EBADF The s argument is not a valid descriptor.

EAFNOSUPPORT The address family of the passed-in sockaddr is not AF_INET or AF_INET6.

ENOPROTOOPT The socket s is not of type SOCK_DGRAM or SOCK_RAW.

ENOPROTOOPT The address family of the group parameter does not match the protocol
family of the socket.

ENOSR Insufficient STREAMS resources available for the operation to complete.

ENXIO The interface argument, either an index or an IPv4 address, does not
identify a valid interface.

The getsourcefilter() and getipv4sourcefilter() functions will fail if:

EADDRNOTAVAIL The tuple consisting of socket, interface, and multicast group values does
not exist; group is not being listened to on interface by socket.

The functions setsourcefilter()and setipv4sourcefilter() can fail in the following
additional case:

ENOBUFS The source filter list is larger than that allowed by the implementation.

See attributes(5) for descriptions of the following attributes:

Return Values

Errors

Attributes

getsourcefilter(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 20 Aug 2007176

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

if_nametoindex(3SOCKET), socket(3SOCKET), attributes(5)

RFC 3678

See Also

getsourcefilter(3SOCKET)

Networking Library Functions 177

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

gss_accept_sec_context – accept a security context initiated by a peer application

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_accept_sec_context(OM_uint32 *minor_status,
gss_ctx_id_t *context_handle,
const gss_cred_id_t acceptor_cred_handle,
const gss_buffer_t input_token,
const gss_channel_bindings_t input_chan_bindings,
const gss_name_t * src_name, gss_OID * mech_type,
gss_buffer_t output_token, OM_uint32 *ret_flags,
OM_uint32 * time_rec, gss_cred_id_t *delegated_cred_handle);

The parameter descriptions for gss_accept_sec_context() follow:

minor_status
The status code returned by the underlying mechanism.

context_handle
The context handle to return to the initiator. This should be set to GSS_C_NO_CONTEXT

before the loop begins.

acceptor_cred_handle
The handle for the credentials acquired by the acceptor, typically through
gss_acquire_cred(). It may be initialized to GSS_C_NO_CREDENTIAL to indicate a default
credential to use. If no default credential is defined, the function returns GSS_C_NO_CRED.

input_token_buffer
Token received from the context initiative.

input_chan_bindings
Optional application-specified bindings. Allows application to securely bind channel
identification information to the security context. Set to GSS_C_NO_CHANNEL_BINDINGS if
you do not want to use channel bindings.

src_name
The authenticated name of the context initiator. After use, this name should be deallocated
by passing it to gss_release_name(). See gss_release_name(3GSS). If not required,
specify NULL.

mech_type
The security mechanism used. Set to NULL if it does not matter which mechanism is used.

output_token
The token to send to the acceptor. Initialize it to GSS_C_NO_BUFFER before the function is
called (or its length field set to zero). If the length is zero, no token need be sent.

ret_flags
Contains various independent flags, each of which indicates that the context supports a
specific service option. If not needed, specify NULL. Test the returned bit-mask ret_flags

Name

Synopsis

Parameters

gss_accept_sec_context(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 May 2006178

value against its symbolic name to determine if the given option is supported by the
context. ret_flags may contain one of the following values:

GSS_C_DELEG_FLAG

If true, delegated credentials are available by means of the delegated_cred_handle
parameter. If false, no credentials were delegated.

GSS_C_MUTUAL_FLAG

If true, a remote peer asked for mutual authentication. If false, no remote peer asked for
mutual authentication.

GSS_C_REPLAY_FLAG

If true, replay of protected messages will be detected. If false, replayed messages will not
be detected.

GSS_C_SEQUENCE_FLAG

If true, out of sequence protected messages will be detected. If false, they will not be
detected.

GSS_C_CONF_FLAG

If true, confidentiality service may be invoked by calling the gss_wrap() routine. If false,
no confidentiality service is available by means of gss_wrap(). gss_wrap() will provide
message encapsulation, data-origin authentication and integrity services only.

GSS_C_INTEG_FLAG

If true, integrity service may be invoked by calling either the gss_get_mic(3GSS) or the
gss_wrap(3GSS) routine. If false, per-message integrity service is not available.

GSS_C_ANON_FLAG

If true, the initiator does not wish to be authenticated. The src_name parameter, if
requested, contains an anonymous internal name. If false, the initiator has been
authenticated normally.

GSS_C_PROT_READY_FLAG

If true, the protection services specified by the states of GSS_C_CONF_FLAG and
GSS_C_INTEG_FLAG are available if the accompanying major status return value is either
GSS_S_COMPLETE or GSS_S_CONTINUE_NEEDED. If false, the protection services are
available only if the accompanying major status return value is GSS_S_COMPLETE.

GSS_C_TRANS_FLAG

If true, the resultant security context may be transferred to other processes by means of a
call to gss_export_sec_context(3GSS). If false, the security context cannot be
transferred.

time_rec
The number of sections for which the context will remain value Specify NULL if not
required.

gss_accept_sec_context(3GSS)

Networking Library Functions 179

delegated_cred_handle
The credential value for credentials received from the context's initiator. It is valid only if
the initiator has requested that the acceptor act as a proxy: that is, if the ret_flag argument
resolves to GSS_C_DELEG_FLAG.

The gss_accept_sec_context() function allows a remotely initiated security context
between the application and a remote peer to be established. The routine may return an
output_token, which should be transferred to the peer application, where the peer application
will present it to gss_init_sec_context(). See gss_init_sec_context(3GSS). If no token
need be sent, gss_accept_sec_context() will indicate this by setting the length field of the
output_token argument to zero. To complete the context establishment, one or more reply
tokens may be required from the peer application; if so, gss_accept_sec_context() will
return a status flag of GSS_S_CONTINUE_NEEDED, in which case it should be called again when
the reply token is received from the peer application, passing the token to
gss_accept_sec_context() by means of the input_token parameters.

Portable applications should be constructed to use the token length and return status to
determine whether to send or to wait for a token.

Whenever gss_accept_sec_context() returns a major status that includes the value
GSS_S_CONTINUE_NEEDED, the context is not fully established, and the following restrictions
apply to the output parameters:

■ The value returned by means of the time_rec parameter is undefined.
■ Unless the accompanying ret_flags parameter contains the bit GSS_C_PROT_READY_FLAG,

which indicates that per-message services may be applied in advance of a successful
completion status, the value returned by the mech_type parameter may be undefined until
gss_accept_sec_context() returns a major status value of GSS_S_COMPLETE.

The values of the GSS_C_DELEG_FLAG, GSS_C_MUTUAL_FLAG, GSS_C_REPLAY_FLAG,
GSS_C_SEQUENCE_FLAG, GSS_C_CONF_FLAG, GSS_C_INTEG_FLAG and GSS_C_ANON_FLAG bits
returned by means of the ret_flags parameter are values that would be valid if context
establishment were to succeed.

The values of the GSS_C_PROT_READY_FLAG and GSS_C_TRANS_FLAG bits within ret_flags
indicate the actual state at the time gss_accept_sec_context() returns, whether or not the
context is fully established. However, applications should not rely on this behavior, as
GSS_C_PROT_READY_FLAG was not defined in Version 1 of the GSS-API. Instead, applications
should be prepared to use per-message services after a successful context establishment, based
upon the GSS_C_INTEG_FLAG and GSS_C_CONF_FLAG values.

All other bits within the ret_flags argument are set to zero.

While gss_accept_sec_context() returns GSS_S_CONTINUE_NEEDED, the values returned by
means of the the ret_flags argument indicate the services available from the established
context. If the initial call of gss_accept_sec_context() fails, no context object is created, and

Description

gss_accept_sec_context(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 May 2006180

the value of the context_handle parameter is set to GSS_C_NO_CONTEXT. In the event of a failure
on a subsequent call, the security context and the context_handle parameter are left untouched
for the application to delete using gss_delete_sec_context(3GSS). During context
establishment, the informational status bits GSS_S_OLD_TOKEN and GSS_S_DUPLICATE_TOKEN

indicate fatal errors; GSS-API mechanisms always return them in association with a routine
error of GSS_S_FAILURE. This pairing requirement did not exist in version 1 of the GSS-API
specification, so applications that wish to run over version 1 implementations must
special-case these codes.

gss_accept_sec_context() may return the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_CONTINUE_NEEDED A token from the peer application is required to complete
the context, and that gss_accept_sec_context() must
be called again with that token.

GSS_S_DEFECTIVE_TOKEN Consistency checks performed on the input_token failed.

GSS_S_DEFECTIVE_CREDENTIAL Consistency checks performed on the credential failed.

GSS_S_NO_CRED The supplied credentials were not valid for context
acceptance, or the credential handle did not reference any
credentials.

GSS_S_CREDENTIALS_EXPIRED The referenced credentials have expired.

GSS_S_BAD_BINDINGS The input_token contains different channel bindings than
those specified by means of the input_chan_bindings
parameter.

GSS_S_NO_CONTEXT The supplied context handle did not refer to a valid
context.

GSS_S_BAD_SIG The input_token contains an invalid MIC.

GSS_S_OLD_TOKEN The input_token was too old. This is a fatal error while
establishing context.

GSS_S_DUPLICATE_TOKEN The input_token is valid, but it is duplicate of a token
already processed. This is a fatal error while establishing
context.

GSS_S_BAD_MECH The token received specified a mechanism that is not
supported by the implementation or the provided
credential.

GSS_S_FAILURE The underlying mechanism detected an error for which
no specific GSS status code is defined. The
mechanism-specific status code reported by means of the
minor_status parameter details the error condition.

Errors

gss_accept_sec_context(3GSS)

Networking Library Functions 181

EXAMPLE 1 Invoking gss_accept_sec_context()Within a Loop

A typical portable caller should always invoke gss_accept_sec_context() within a loop:

gss_ctx_id_t context_hdl = GSS_C_NO_CONTEXT;

do {

receive_token_from_peer(input_token);

maj_stat = gss_accept_sec_context(&min_stat,

&context_hdl,

cred_hdl,

input_token,

input_bindings,

&client_name,

&mech_type,

output_token,

&ret_flags,

&time_rec,

&deleg_cred);

if (GSS_ERROR(maj_stat)) {

report_error(maj_stat, min_stat);

};

if (output_token->length != 0) {

send_token_to_peer(output_token);

gss_release_buffer(&min_stat, output_token);

};

if (GSS_ERROR(maj_stat)) {

if (context_hdl != GSS_C_NO_CONTEXT)

gss_delete_sec_context(&min_stat,

&context_hdl,

GSS_C_NO_BUFFER);

break;

};

} while (maj_stat & GSS_S_CONTINUE_NEEDED);

/* Check client_name authorization */

...

(void) gss_release_name(&min_stat, &client_name);

/* Use and/or store delegated credential */

...

(void) gss_release_cred(&min_stat, &deleg_cred);

See attributes(5) for descriptions of the following attributes:

Examples

Attributes

gss_accept_sec_context(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 May 2006182

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gss_delete_sec_context(3GSS), gss_export_sec_context(3GSS), gss_get_mic(3GSS),
gss_init_sec_context(3GSS), gss_release_cred(3GSS), gss_release_name(3GSS),
gss_store_cred(3GSS), gss_wrap(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

See Also

gss_accept_sec_context(3GSS)

Networking Library Functions 183

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_acquire_cred – acquire a handle for a pre-existing credential by name

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_acquire_cred(OM_uint32 *minor_status,
const gss_name_t desired_name, OM_uint32 time_req,
const gss_OID_set desired_mech, gss_cred_usage_t cred_usage,
gss_cred_id_t *output_cred_handle, gss_OID_set *actual_mechs,
OM_uint32 *time_rec);

The gss_acquire_cred() function allows an application to acquire a handle for a pre-existing
credential by name. This routine is not intended as a function to login to the network; a
function for login to the network would involve creating new credentials rather than merely
acquiring a handle to existing credentials.

If desired_name is GSS_C_NO_NAME, the call is interpreted as a request for a credential handle
that will invoke default behavior when passed to gss_init_sec_context(3GSS) (if
cred_usage is GSS_C_INITIATE or GSS_C_BOTH) or gss_accept_sec_context(3GSS) (if
cred_usage is GSS_C_ACCEPT or GSS_C_BOTH).

Normally gss_acquire_cred() returns a credential that is valid only for the mechanisms
requested by the desired_mechs argument. However, if multiple mechanisms can share a
single credential element, the function returns all the mechanisms for which the credential is
valid in the actual_mechs argument.

gss_acquire_cred() is intended to be used primarily by context acceptors, since the
GSS-API routines obtain initiator credentials through the system login process. Accordingly,
you may not acquire GSS_C_INITIATE or GSS_C_BOTH credentials by means of
gss_acquire_cred() for any name other than GSS_C_NO_NAME. Alternatively, you may
acquire GSS_C_INITIATE or GSS_C_BOTH credentials for a name produced when
gss_inquire_cred(3GSS) is applied to a valid credential, or when
gss_inquire_context(3GSS) is applied to an active context.

If credential acquisition is time-consuming for a mechanism, the mechanism may choose to
delay the actual acquisition until the credential is required, for example, by
gss_init_sec_context(3GSS) or by gss_accept_sec_context(3GSS). Such
mechanism-specific implementations are, however, invisible to the calling application; thus a
call of gss_inquire_cred(3GSS) immediately following the call of gss_acquire_cred() will
return valid credential data and incur the overhead of a deferred credential acquisition.

The parameter descriptions for gss_acquire_cred() follow:

desired_name The name of the principal for which a credential should be acquired.

time_req The number of seconds that credentials remain valid. Specify
GSS_C_INDEFINITE to request that the credentials have the maximum
permitted lifetime

Name

Synopsis

Description

Parameters

gss_acquire_cred(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011184

desired_mechs The set of underlying security mechanisms that may be used.
GSS_C_NO_OID_SET may be used to obtain a default.

cred_usage A flag that indicates how this credential should be used. If the flag is
GSS_C_ACCEPT, then credentials will be used only to accept security
credentials. GSS_C_INITIATE indicates that credentials will be used
only to initiate security credentials. If the flag is GSS_C_BOTH, then
credentials may be used either to initiate or accept security contexts.

output_cred_handle The returned credential handle. Resources associated with this
credential handle must be released by the application after use with a
call to gss_release_cred(3GSS)

actual_mechs The set of mechanisms for which the credential is valid. Storage
associated with the returned OID-set must be released by the
application after use with a call to gss_release_oid_set(3GSS).
Specify NULL if not required.

time_rec Actual number of seconds for which the returned credentials will
remain valid. Specify NULL if not required.

minor_status Mechanism specific status code.

gss_acquire_cred() may return the following status code:

GSS_S_COMPLETE Successful completion.

GSS_S_BAD_MECH An unavailable mechanism has been requested.

GSS_S_BAD_NAMETYPE The type contained within the desired_name parameter is
not supported.

GSS_S_BAD_NAME The value supplied for desired_name parameter is ill
formed.

GSS_S_CREDENTIALS_EXPIRED The credentials could not be acquired because they have
expired.

GSS_S_NO_CRED No credentials were found for the specified name.

GSS_S_FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The
mechanism-specific status code reported by means of the
minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

Errors

Attributes

gss_acquire_cred(3GSS)

Networking Library Functions 185

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gss_accept_sec_context(3GSS), gss_init_sec_context(3GSS),
gss_inquire_context(3GSS), gss_inquire_cred(3GSS), gss_release_cred(3GSS),
gss_release_oid_set(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

See Also

gss_acquire_cred(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011186

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_add_cred – add a credential-element to a credential

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_add_cred(OM_uint32 *minor_status,
const gss_cred_id_t input_cred_handle,
const gss_name_t desired_name,
const gss_OID desired_mech,
gss_cred_usage_t cred_usage,
OM_uint32 initiator_time_req,
OM_uint32 acceptor_time_req,
gss_cred_id_t *output_cred_handle,
gss_OID_set *actual_mechs,
OM_uint32 *initiator_time_rec,
OM_uint32 *acceptor_time_rec);

The parameter descriptions for gss_add_cred() follow:

minor_status Mechanism specific status code.

input_cred_handle Credential to which the credential-element is added. If
GSS_C_NO_CREDENTIAL is specified, the function composes the new
credential based on default behavior. While the credential-handle is
not modified by gss_add_cred(), the underlying credential is
modified if output_credential_handle is NULL.

desired_name Name of the principal for which a credential should be acquired.

desired_mech Underlying security mechanism with which the credential can be used.
GSS_C_NULL_OID can be used to obtain a default.

cred_usage Flag that indicates how a credential is used to initiate or accept security
credentials. If the flag is GSS_C_ACCEPT, the credentials are used only to
accept security credentials. If the flag is GSS_C_INITIATE, the
credentials are used only to initiate security credentials. If the flag is
GSS_C_BOTH, the credentials can be used to either initiate or accept
security contexts.

initiator_time_req Number of seconds that the credential may remain valid for initiating
security contexts. This argument is ignored if the composed credentials
are of the GSS_C_ACCEPT type. Specify GSS_C_INDEFINITE to request
that the credentials have the maximum permitted initiator lifetime.

acceptor_time_req Number of seconds that the credential may remain valid for accepting
security contexts. This argument is ignored if the composed credentials
are of the GSS_C_INITIATE type. Specify GSS_C_INDEFINITE to request
that the credentials have the maximum permitted initiator lifetime.

Name

Synopsis

Parameters

gss_add_cred(3GSS)

Networking Library Functions 187

output_cred_handle Returned credential handle that contains the new credential-element
and all the credential-elements from input_cred_handle. If a valid
pointer to a gss_cred_id_t is supplied for this parameter,
gss_add_cred() creates a new credential handle that contains all
credential-elements from input_cred_handle and the newly acquired
credential-element. If NULL is specified for this parameter, the newly
acquired credential-element is added to the credential identified by
input_cred_handle.

The resources associated with any credential handle returned by means
of this parameter must be released by the application after use by a call
to gss_release_cred(3GSS).

actual_mechs Complete set of mechanisms for which the new credential is valid.
Storage for the returned OID-set must be freed by the application after
use by a call to gss_release_oid_set(3GSS). Specify NULL if this
parameter is not required.

initiator_time_rec Actual number of seconds for which the returned credentials remain
valid for initiating contexts using the specified mechanism. If a
mechanism does not support expiration of credentials, the value
GSS_C_INDEFINITE is returned. Specify NULL if this parameter is not
required.

acceptor_time_rec Actual number of seconds for which the returned credentials remain
valid for accepting security contexts using the specified mechanism. If
a mechanism does not support expiration of credentials, the value
GSS_C_INDEFINITE is returned. Specify NULL if this parameter is not
required.

The gss_add_cred() function adds a credential-element to a credential. The
credential-element is identified by the name of the principal to which it refers. This function is
not intended as a function to login to the network. A function for login to the network would
involve creating new mechanism-specific authentication data, rather than acquiring a handle
to existing data.

If the value of desired_name is GSS_C_NO_NAME, the call is interpreted as a request to add a
credential-element to invoke default behavior when passed to gss_init_sec_context(3GSS)
if the value of cred_usage is GSS_C_INITIATE or GSS_C_BOTH. The call is also interpreted as a
request to add a credential-element to the invoke default behavior when passed to
gss_accept_sec_context(3GSS) if the value of cred_usage is GSS_C_ACCEPT or GSS_C_BOTH.

The gss_add_cred() function is expected to be used primarily by context acceptors. The
GSS-API provides mechanism-specific ways to obtain GSS-API initiator credentials through

Description

gss_add_cred(3GSS)

man pages section 3: Networking Library Functions • Last Revised 30 Jun 2005188

the system login process. Consequently, the GSS-API does not support acquiring
GSS_C_INITIATE or GSS_C_BOTH credentials by means of gss_acquire_cred(3GSS) for any
name other than the following:

■ GSS_C_NO_NAME

■ Name produced by gss_inquire_cred(3GSS) applied to a valid credential
■ Name produced by gss_inquire_context(3GSS) applied to an active context

If credential acquisition is time consuming for a mechanism, the mechanism can choose to
delay the actual acquisition until the credential is required by gss_init_sec_context(3GSS),
for example, or by gss_accept_sec_context(3GSS). Such mechanism-specific
implementation decisions are invisible to the calling application. A call to
gss_inquire_cred(3GSS) immediately following the call gss_add_cred() returns valid
credential data as well as incurring the overhead of deferred credential acquisition.

The gss_add_cred() function can be used either to compose a new credential that contains all
credential-elements of the original in addition to the newly-acquired credential-element. The
function can also be used to add the new credential-element to an existing credential. If the
value of the output_cred_handle parameter is NULL, the new credential-element is added to the
credential identified by input_cred_handle. If a valid pointer is specified for the
output_cred_handle parameter, a new credential handle is created.

If the value of input_cred_handle is GSS_C_NO_CREDENTIAL, the gss_add_cred() function
composes a credential and sets the output_cred_handle parameter based on the default
behavior. The call has the same effect as a call first made by the application to
gss_acquire_cred(3GSS) to specify the same usage and to pass GSS_C_NO_NAME as the
desired_name parameter. Such an application call obtains an explicit credential handle that
incorporates the default behaviors, then passes the credential handle to gss_add_cred(), and
finally calls gss_release_cred(3GSS) on the first credential handle.

If the value of the input_cred_handle parameter is GSS_C_NO_CREDENTIAL, a non-NULL value
must be supplied for the output_cred_handle parameter.

The gss_add_cred() function can return the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_BAD_MECH An unavailable mechanism has been requested.

GSS_S_BAD_NAMETYPE The type contained within the desired_name parameter is
not supported.

GSS_S_BAD_NAME The value supplied for desired_name parameter is ill
formed.

GSS_S_DUPLICATE_ELEMENT The credential already contains an element for the
requested mechanism that has overlapping usage and
validity period.

Return Values

gss_add_cred(3GSS)

Networking Library Functions 189

GSS_S_CREDENTIALS_EXPIRED The credentials could not be added because they have
expired.

GSS_S_NO_CRED No credentials were found for the specified name.

GSS_S_FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The
mechanism-specific status code reported by means of the
minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gss_accept_sec_context(3GSS), gss_acquire_cred(3GSS),
gss_init_sec_context(3GSS), gss_inquire_context(3GSS), gss_inquire_cred(3GSS),
gss_release_cred(3GSS), gss_release_oid_set(3GSS), libgss(3LIB), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Attributes

See Also

gss_add_cred(3GSS)

man pages section 3: Networking Library Functions • Last Revised 30 Jun 2005190

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libgss-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_add_oid_set_member – add an object identifier to an object identifier set

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_add_oid_set_member(OM_uint32 *minor_status,
const gss_OID member_oid, gss_OID_set *oid_set);

The parameter descriptions for gss_add_oid_set_member() follow:

minor_status A mechanism specific status code.

member_oid Object identifier to be copied into the set.

oid_set Set in which the object identifier should be inserted.

The gss_add_oid_set_member() function adds an object identifier to an object identifier set.
You should use this function in conjunction with gss_create_empty_oid_set(3GSS) when
constructing a set of mechanism OIDs for input to gss_acquire_cred(3GSS). The oid_set
parameter must refer to an OID-set created by GSS-API, that is, a set returned by
gss_create_empty_oid_set(3GSS).

The GSS-API creates a copy of the member_oid and inserts this copy into the set, expanding
the storage allocated to the OID-set elements array, if necessary. New members are always
added to the end of the OID set's elements. If the member_oid is already present, the oid_set
should remain unchanged.

The gss_add_oid_set_member() function can return the following status codes:

GSS_S_COMPLETE

Successful completion.

GSS_S_FAILURE

The underlying mechanism detected an error for which no specific GSS status code is
defined. The mechanism-specific status code reported by means of the minor_status
parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gss_acquire_cred(3GSS), gss_create_empty_oid_set(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Name

Synopsis

Parameters

Description

Errors

Attributes

See Also

gss_add_oid_set_member(3GSS)

Networking Library Functions 191

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_canonicalize_name – convert an internal name to a mechanism name

cc [flag ...] file... -lgss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_canonicalize_name(OM_uint32 *minor_status,
const gss_name_t input_name,const gss_OID mech_type,
gss_name_t *output_name);

The gss_canonicalize_name() function generates a canonical mechanism name from an
arbitrary internal name. The mechanism name is the name that would be returned to a
context acceptor on successful authentication of a context where the initiator used the
input_name in a successful call to gss_acquire_cred(3GSS), specifying an OID set
containing mech_type as its only member, followed by a call to
gss_init_sec_context(3GSS), specifying mech_type as the authentication mechanism.

The parameter descriptions for gss_canonicalize_name() follow:

minor_status Mechanism-specific status code.

input_name The name for which a canonical form is desired.

mech_type The authentication mechanism for which the canonical form of the name is
desired. The desired mechanism must be specified explicitly; no default is
provided.

output_name The resultant canonical name. Storage associated with this name must be
freed by the application after use with a call to gss_release_name(3GSS).

The gss_canonicalize_name() function may return the status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_BAD_MECH The identified mechanism is not supported.

GSS_S_BAD_NAMETYPE The provided internal name contains no elements that could be
processed by the specified mechanism.

GSS_S_BAD_NAME The provided internal name was ill-formed.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific
GSS status code is defined. The mechanism-specific status code
reported by means of the minor_status parameter details the error
condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

Name

Synopsis

Description

Parameters

Errors

Attributes

gss_canonicalize_name(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011192

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

gss_acquire_cred(3GSS), gss_init_sec_context(3GSS), gss_release_name(3GSS),
attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

See Also

gss_canonicalize_name(3GSS)

Networking Library Functions 193

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_compare_name – compare two internal-form names

cc [flag ...] file... -lgss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_compare_name(OM_uint32 *minor_status,
const gss_name_t name1,const gss_name_t name2,
int *name_equal);

The gss_compare_name() function allows an application to compare two internal-form
names to determine whether they refer to the same entity.

If either name presented to gss_compare_name() denotes an anonymous principal, the
routines indicate that the two names do not refer to the same identity.

The parameter descriptions for gss_compare_name() follow:

minor_status Mechanism-specific status code.

name1 Internal-form name.

name2 Internal-form name.

name_equal If non-zero, the names refer to same entity. If 0, the names refer to different
entities. Strictly, the names are not known to refer to the same identity.

The gss_compare_name() function may return the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_BAD_NAMETYPE The two names were of incomparable types.

GSS_S_BAD_NAME One or both of name1 or name2 was ill-formed.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific
GSS status code is defined. The mechanism-specific status code
reported by means of the minor_status parameter details the error
condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Name

Synopsis

Description

Parameters

Errors

Attributes

See Also

gss_compare_name(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011194

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_context_time – determine how long a context will remain valid

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_context_time(OM_uint32 *minor_status,
gss_ctx_id_t *context_handle,OM_uint32 *time_rec);

The gss_context_time() function determines the number of seconds for which the specified
context will remain valid.

The parameter descriptions for gss_context_time() are as follows:

minor_status A mechanism-specific status code.

context_handle A read-only value. Identifies the context to be interrogated.

time_rec Modifies the number of seconds that the context remains valid. If the
context has already expired, returns zero.

The gss_context_time() function returns one of the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_CONTEXT_EXPIRED The context has already expired.

GSS_S_NO_CONTEXT The context_handle parameter did not identify a valid context.

GSS_S_FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

gss_init_sec_context(3GSS), gss_accept_sec_context(3GSS),
gss_delete_sec_context(3GSS), gss_process_context_token(3GSS),
gss_inquire_context(3GSS), gss_wrap_size_limit(3GSS),
gss_export_sec_context(3GSS), gss_import_sec_context(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Name

Synopsis

Description

Parameters

Errors

Attributes

See Also

gss_context_time(3GSS)

Networking Library Functions 195

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_create_empty_oid_set – create an object-identifier set containing no object identifiers

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_create_empty_oid_set(OM_uint32 *minor_status,
gss_OID_set *oid_set);

The gss_create_empty_oid_set() function creates an object-identifier set containing no
object identifiers to which members may be subsequently added using the
gss_add_oid_set_member(3GSS) function. These functions can be used to construct sets of
mechanism object identifiers for input to gss_acquire_cred(3GSS).

The parameter descriptions for gss_create_empty_oid_set() follow:

minor_status Mechanism-specific status code

oid_set Empty object identifier set. The function will allocate the
gss_OID_set_desc object, which the application must free after use with a
call to gss_release_oid_set(3GSS).

The gss_create_empty_oid_set() function may return the following status codes:

GSS_S_COMPLETE Successful completion

GSS_S_FAILURE The underlying mechanism detected an error for which no specific GSS
status code is defined. The mechanism-specific status code reported by
means of the minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gss_acquire_cred(3GSS), gss_add_oid_set_member(3GSS), gss_release_oid_set(3GSS),
attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Name

Synopsis

Description

Parameters

Errors

Attributes

See Also

gss_create_empty_oid_set(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011196

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_delete_sec_context – delete a GSS-API security context

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_delete_sec_context(OM_uint32 *minor_status,
gss_ctx_id_t *context_handle,gss_buffer_t output_token);

Use the gss_delete_sec_context() function to delete a security context. The
gss_delete_sec_context() function will delete the local data structures associated with the
specified security context. You may not obtain further security services that use the context
specified by context_handle.

In addition to deleting established security contexts, gss_delete_sec_context() will delete
any half-built security contexts that result from incomplete sequences of calls to
gss_init_sec_context(3GSS) and gss_accept_sec_context(3GSS).

The Solaris implementation of the GSS-API retains the output_token parameter for
compatibility with version 1 of the GSS-API. Both peer applications should invoke
gss_delete_sec_context(), passing the value GSS_C_NO_BUFFER to the output_token
parameter; this indicates that no token is required. If the application passes a valid buffer to
gss_delete_sec_context(), it will return a zero-length token, indicating that no token
should be transferred by the application.

The parameter descriptions for gss_delete_sec_context() follow:

minor_status A mechanism specific status code.

context_handle Context handle identifying specific context to delete. After deleting the
context, the GSS-API will set context_handle to GSS_C_NO_CONTEXT.

output_token A token to be sent to remote applications that instructs them to delete the
context.

gss_delete_sec_context() may return the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_NO_CONTEXT No valid context was supplied.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific
GSS status code is defined. The mechanism-specific status code
reported by means of the minor_status parameter details the error
condition.

See attributes(5) for descriptions of the following attributes:

Name

Synopsis

Description

Parameters

Errors

Attributes

gss_delete_sec_context(3GSS)

Networking Library Functions 197

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gss_accept_sec_context(3GSS), gss_init_sec_context(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

See Also

gss_delete_sec_context(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011198

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_display_name – convert internal-form name to text

cc [flag ...] file... -lgss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_display_name(OM_uint32 *minor_status,
const gss_name_t input_name, gss_buffer_t output_name_buffer,
gss_OID *output_name_type);

The gss_display_name() function allows an application to obtain a textual representation of
an opaque internal-form name for display purposes.

If input_name denotes an anonymous principal, the GSS-API returns the gss_OID value
GSS_C_NT_ANONYMOUS as the output_name_type, and a textual name that is syntactically
distinct from all valid supported printable names in output_name_buffer.

If input_name was created by a call to gss_import_name(3GSS), specifying GSS_C_NO_OID as
the name-type, the GSS-API returns GSS_C_NO_OID by means of the output_name_type
parameter.

The parameter descriptions for gss_display_name() follow:

minor_status Mechanism-specific status code.

input_name Name in internal form.

output_name_buffer Buffer to receive textual name string. The application must free
storage associated with this name after use with a call to
gss_release_buffer(3GSS).

output_name_type The type of the returned name. The returned gss_OID will be a
pointer into static storage and should be treated as read-only by the
caller. In particular, the application should not attempt to free it.
Specify NULL if this parameter is not required.

The gss_display_name() function may return the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_BAD_NAME The input_name was ill-formed.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific GSS
status code is defined. The mechanism-specific status code reported by
means of the minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

Name

Synopsis

Description

Parameters

Errors

Attributes

gss_display_name(3GSS)

Networking Library Functions 199

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

gss_import_name(3GSS), gss_release_buffer(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

See Also

gss_display_name(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011200

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_display_status – convert a GSS-API status code to text

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_display_status(OM_uint32 *minor_status,
OM_uint32 status value,int status type,
const gss_OID mech_type, OM_uint32 *message_context,
gss_buffer_t status string);

The gss_display_status() function enables an application to obtain a textual
representation of a GSS-API status code for display to the user or for logging purposes.
Because some status values may indicate multiple conditions, applications may need to call
gss_display_status() multiple times, with each call generating a single text string.

The message_context parameter is used by gss_acquire_cred() to store state information on
error messages that are extracted from a given status_value. The message_context parameter
must be initialized to 0 by the application prior to the first call, and gss_display_status()

will return a non-zero value in this parameter if there are further messages to extract.

The message_context parameter contains all state information required by
gss_display_status() to extract further messages from the status_value. If a non-zero value
is returned in this parameter, the application is not required to call gss_display_status()
again unless subsequent messages are desired.

The parameter descriptions for gss_display_status() follow:

minor_status Status code returned by the underlying mechanism.

status_value Status value to be converted.

status_type If the value is GSS_C_GSS_CODE, status_value is a GSS-API status code. If
the value is GSS_C_MECH_CODE, then status_value is a mechanism status
code.

mech_type Underlying mechanism that is used to interpret a minor status value.
Supply GSS_C_NO_OID to obtain the system default.

message_context Should be initialized to zero prior to the first call. On return from
gss_display_status(), a non-zero status_value parameter indicates
that additional messages may be extracted from the status code by means
of subsequent calls to gss_display_status(), passing the same
status_value, status_type, mech_type, and message_contextparameters.

status_string Textual representation of the status_value. Storage associated with this
parameter must be freed by the application after use with a call to
gss_release_buffer(3GSS).

Name

Synopsis

Description

Parameters

gss_display_status(3GSS)

Networking Library Functions 201

The gss_display_status() function may return the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_BAD_MECH Indicates that translation in accordance with an unsupported
mechanism type was requested.

GSS_S_BAD_STATUS The status value was not recognized, or the status type was neither
GSS_C_GSS_CODE nor GSS_C_MECH_CODE.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific
GSS status code is defined. The mechanism-specific status code
reported by means of the minor_status parameter details the error
condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gss_acquire_cred(3GSS), gss_release_buffer(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Errors

Attributes

See Also

gss_display_status(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011202

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_duplicate_name – create a copy of an internal name

cc [flag ...] file... -lgss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_duplicate_name(OM_uint32 *minor_status,
const gss_name_t src_name,gss_name_t *dest_name);

The gss_duplicate_name() function creates an exact duplicate of the existing internal name
src_name. The new dest_name will be independent of the src_name. The src_name and
dest_name must both be released, and the release of one does not affect the validity of the
other.

The parameter descriptions for gss_duplicate_name() follow:

minor_status A mechanism-specific status code.

src_name Internal name to be duplicated.

dest_name The resultant copy of src_name. Storage associated with this name must be
freed by the application after use with a call to gss_release_name(3GSS).

The gss_duplicate_name() function may return the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_BAD_NAME The src_name parameter was ill-formed.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific GSS
status code is defined. The mechanism-specific status code reported by
means of the minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gss_release_name(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Name

Synopsis

Description

Parameters

Errors

Attributes

See Also

gss_duplicate_name(3GSS)

Networking Library Functions 203

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_export_name – convert a mechanism name to export form

cc [flag ...] file... -lgss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_export_name(OM_uint32 *minor_status,
const gss_name_t input_name,gss_buffer_t exported_name);

The gss_export_name() function allows a GSS-API internal name to be converted into a
mechanism-specific name. The function produces a canonical contiguous string
representation of a mechanism name, suitable for direct comparison, with memory(3C), or for
use in authorization functions, matching entries in an access-control list. The input_name
parameter must specify a valid mechanism name, that is, an internal name generated by
gss_accept_sec_context(3GSS) or by gss_canonicalize_name(3GSS).

The parameter descriptions for gss_export_name() follow:

minor_status A mechanism-specific status code.

input_name The mechanism name to be exported.

exported_name The canonical contiguous string form of input_name. Storage associated
with this string must freed by the application after use with
gss_release_buffer(3GSS).

The gss_export_name() function may return the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_NAME_NOT_MN The provided internal name was not a mechanism name.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific
GSS status code is defined. The mechanism-specific status code
reported by means of the minor_status parameter details the error
condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gss_accept_sec_context(3GSS), gss_canonicalize_name(3GSS),
gss_release_buffer(3GSS)memory(3C), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Name

Synopsis

Description

Parameters

Errors

Attributes

See Also

gss_export_name(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011204

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1memory-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1memory-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_export_sec_context – transfer a security context to another process

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_export_sec_context(OM_uint32 *minor_status,
gss_ctx_id_t *context_handle,gss_buffer_t interprocess_token);

The gss_export_sec_context() function generates an interprocess token for transfer to
another process within an end system. gss_export_sec_context() and
gss_import_sec_context() allow a security context to be transferred between processes on a
single machine.

The gss_export_sec_context() function supports the sharing of work between multiple
processes. This routine is typically used by the context-acceptor, in an application where a
single process receives incoming connection requests and accepts security contexts over them,
then passes the established context to one or more other processes for message exchange.
gss_export_sec_context() deactivates the security context for the calling process and
creates an interprocess token which, when passed to gss_import_sec_context() in another
process, reactivates the context in the second process. Only a single instantiation of a given
context can be active at any one time; a subsequent attempt by a context exporter to access the
exported security context will fail.

The interprocess token may contain security-sensitive information, for example
cryptographic keys. While mechanisms are encouraged to either avoid placing such sensitive
information within interprocess tokens or to encrypt the token before returning it to the
application, in a typical object-library GSS-API implementation, this might not be possible.
Thus, the application must take care to protect the interprocess token and ensure that any
process to which the token is transferred is trustworthy. If creation of the interprocess token is
successful, the GSS-API deallocates all process-wide resources associated with the security
context and sets the context_handle to GSS_C_NO_CONTEXT. In the event of an error that makes
it impossible to complete the export of the security context, the function does not return an
interprocess token and leaves the security context referenced by the context_handle parameter
untouched.

Sun's implementation of gss_export_sec_context() does not encrypt the interprocess
token. The interprocess token is serialized before it is transferred to another process.

The parameter descriptions for gss_export_sec_context() are as follows:

minor_status A mechanism-specific status code.

context_handle Context handle identifying the context to transfer.

interprocess_token Token to be transferred to target process. Storage associated with this
token must be freed by the application after use with a call to
gss_release_buffer(3GSS).

Name

Synopsis

Description

Parameters

gss_export_sec_context(3GSS)

Networking Library Functions 205

gss_export_sec_context() returns one of the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_CONTEXT_EXPIRED The context has expired.

GSS_S_NO_CONTEXT The context was invalid.

GSS_S_UNAVAILABLE The operation is not supported.

GSS_S_FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

gss_accept_sec_context(3GSS), gss_import_sec_context(3GSS),
gss_init_sec_context(3GSS), gss_release_buffer(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Errors

Attributes

See Also

gss_export_sec_context(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011206

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_get_mic – calculate a cryptographic message

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_get_mic(OM_uint32 *minor_status,
const gss_ctx_id_t context_handle, gss_qop_t qop_req,
const gss_buffer_t message_buffer, gss_buffer_t msg_token);

The gss_get_mic() function generates a cryptographic MIC for the supplied message, and
places the MIC in a token for transfer to the peer application. The qop_req parameter allows a
choice between several cryptographic algorithms, if supported by the chosen mechanism.

Since some application-level protocols may wish to use tokens emitted by gss_wrap(3GSS) to
provide secure framing, the GSS-API allows MICs to be derived from zero-length messages.

The parameter descriptions for gss_get_mic() follow:

minor_status The status code returned by the underlying mechanism.

context_handle Identifies the context on which the message will be sent.

qop_req Specifies the requested quality of protection. Callers are encouraged, on
portability grounds, to accept the default quality of protection offered by
the chosen mechanism, which may be requested by specifying
GSS_C_QOP_DEFAULT for this parameter. If an unsupported protection
strength is requested, gss_get_mic() will return a major_status of
GSS_S_BAD_QOP.

message_buffer The message to be protected.

msg_token The buffer to receive the token. Storage associated with this message must
be freed by the application after use with a call to
gss_release_buffer(3GSS).

gss_get_mic() may return the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_CONTEXT_EXPIRED The context has already expired.

GSS_S_NO_CONTEXT The context_handle parameter did not identify a valid context.

GSS_S_BAD_QOP The specified QOP is not supported by the mechanism.

GSS_S_FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

Name

Synopsis

Description

Parameters

Errors

gss_get_mic(3GSS)

Networking Library Functions 207

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gss_release_buffer(3GSS), gss_wrap(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Attributes

See Also

gss_get_mic(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011208

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_import_name – convert a contiguous string name to GSS_API internal format

cc [flag ...] file... -lgss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_import_name(OM_uint32 * minor_status,
const gss_buffer_t input_name_buffer, const gss_OID input_name_type,
gss_name_t *output_name);

The gss_import_name() function converts a contiguous string name to internal form. In
general, the internal name returned by means of the output_name parameter will not be a
mechanism name; the exception to this is if the input_name_type indicates that the
contiguous string provided by means of the input_name_buffer parameter is of type
GSS_C_NT_EXPORT_NAME, in which case, the returned internal name will be a mechanism name
for the mechanism that exported the name.

The parameter descriptions for gss_import_name() follow:

minor_status Status code returned by the underlying mechanism.

input_name_buffer The gss_buffer_desc structure containing the name to be imported.

input_name_type A gss_OID that specifies the format that the input_name_buffer is in.

output_name The gss_name_t structure to receive the returned name in internal
form. Storage associated with this name must be freed by the
application after use with a call to gss_release_name().

The gss_import_name() function may return the following status codes:

GSS_S_COMPLETE The gss_import_name() function completed successfully.

GSS_S_BAD_NAMETYPE The input_name_type was unrecognized.

GSS_S_BAD_NAME The input_name parameter could not be interpreted as a name of
the specified type.

GSS_S_BAD_MECH The input_name_type was GSS_C_NT_EXPORT_NAME, but the
mechanism contained within the input_name is not supported.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific
GSS status code is defined. The mechanism-specific status code
reported by means of the minor_status parameter details the error
condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

Name

Synopsis

Description

Parameters

Errors

Attributes

gss_import_name(3GSS)

Networking Library Functions 209

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

gss_release_buffer(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

See Also

gss_import_name(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011210

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_import_sec_context – import security context established by another process

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_import_sec_context(OM_uint32 *minor_status,
const gss_buffer_t interprocess_token,gss_ctx_id_t *context_handle);

The gss_import_sec_context() function allows a process to import a security context
established by another process. A given interprocess token can be imported only once. See
gss_export_sec_context(3GSS).

The parameter descriptions for gss_import_sec_context() are as follows:

minor_status A mechanism-specific status code.

interprocess_token Token received from exporting process.

context_handle Context handle of newly reactivated context. Resources associated
with this context handle must be released by the application after use
with a call to gss_delete_sec_context(3GSS).

gss_import_sec_context() returns one of the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_NO_CONTEXT The token did not contain a valid context reference.

GSS_S_DEFECTIVE_TOKEN The token was invalid.

GSS_S_UNAVAILABLE The operation is unavailable.

GSS_S_UNAUTHORIZED Local policy prevents the import of this context by the current
process.

GSS_S_FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

gss_accept_sec_context(3GSS), gss_context_time(3GSS),
gss_delete_sec_context(3GSS), gss_export_sec_context(3GSS),
gss_init_sec_context(3GSS), gss_inquire_context(3GSS),
gss_process_context_token(3GSS), gss_wrap_size_limit(3GSS), attributes(5)

Name

Synopsis

Description

Parameters

Errors

Attributes

See Also

gss_import_sec_context(3GSS)

Networking Library Functions 211

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Developer’s Guide to Oracle Solaris 11 Security

gss_import_sec_context(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011212

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_indicate_mechs – determine available security mechanisms

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_indicate_mechs(OM_uint32 *minor_status,
gss_OID_set *mech_set);

The gss_indicate_mechs() function enables an application to determine available
underlying security mechanisms.

The parameter descriptions for gss_indicate_mechs() follow:

minor_status A mechanism-specific status code.

mech_set Set of supported mechanisms. The returned gss_OID_set value will be a
dynamically-allocated OID set that should be released by the caller after use
with a call to gss_release_oid_set(3GSS).

The gss_indicate_mechs() function may return the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific GSS
status code is defined. The mechanism-specific status code reported by
means of the minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gss_release_oid_set(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Name

Synopsis

Description

Parameters

Errors

Attributes

See Also

gss_indicate_mechs(3GSS)

Networking Library Functions 213

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_init_sec_context – initiate a GSS-API security context with a peer application

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_init_sec_context(OM_uint32 *minor_status,
const gss_cred_id_t initiator_cred_handle,
gss_ctx_id_t *context_handle, const gss_name_t *target_name,
const gss_OID mech_type, OM_uint32 req_flags,
OM_uint32 time_req, const gss_channel_bindings_t input_chan_bindings,
const gss_buffer_t input_token, gss_OID *actual_mech_type,
gss_buffer_t output_token, OM_uint32 *ret_flags,
OM_uint32 *time_rec);

The parameter descriptions for gss_init_sec_context() follow:

minor_status
A mechanism specific status code.

initiator_cred_handle
The handle for the credentials claimed. Supply GSS_C_NO_CREDENTIAL to act as a default
initiator principal. If no default initiator is defined, the function returns GSS_S_NO_CRED.

context_handle
The context handle for a new context. Supply the value GSS_C_NO_CONTEXT for the first call,
and use the value returned in any continuation calls. The resources associated with
context_handle must be released by the application after use by a call to
gss_delete_sec_context(3GSS).

target_name
The name of the context acceptor.

mech_type
The object ID of the desired mechanism. To obtain a specific default, supply the value
GSS_C_NO_OID.

req_flags
Contains independent flags, each of which will request that the context support a specific
service option. A symbolic name is provided for each flag. Logically-OR the symbolic name
to the corresponding required flag to form the bit-mask value. req_flags may contain one of
the following values:

GSS_C_DELEG_FLAG

If true, delegate credentials to a remote peer. Do not delegate the credentials if the value
is false.

GSS_C_MUTUAL_FLAG

If true, request that the peer authenticate itself. If false, authenticate to the remote peer
only.

Name

Synopsis

Parameters

gss_init_sec_context(3GSS)

man pages section 3: Networking Library Functions • Last Revised 6 Nov 2009214

GSS_C_REPLAY_FLAG

If true, enable replay detection for messages protected with gss_wrap(3GSS) or
gss_get_mic(3GSS). Do not attempt to detect replayed messages if false.

GSS_C_SEQUENCE_FLAG

If true, enable detection of out-of-sequence protected messages. Do not attempt to
detect out-of-sequence messages if false.

GSS_C_CONF_FLAG

If true, request that confidential service be made available by means of gss_wrap(3GSS).
If false, no per-message confidential service is required.

GSS_C_INTEG_FLAG

If true, request that integrity service be made available by means of gss_wrap(3GSS) or
gss_get_mic(3GSS). If false, no per-message integrity service is required.

GSS_C_ANON_FLAG

If true, do not reveal the initiator's identify to the acceptor. If false, authenticate
normally.

time_req
The number of seconds for which the context will remain valid. Supply a zero value to
time_req to request a default validity period.

input_chan_bindings
Optional application-specified bindings. Allows application to securely bind channel
identification information to the security context. Set to GSS_C_NO_CHANNEL_BINDINGS if
you do not want to use channel bindings.

input_token
Token received from the peer application. On the initial call, supply GSS_C_NO_BUFFER or a
pointer to a buffer containing the value GSS_C_EMPTY_BUFFER.

actual_mech_type
The actual mechanism used. The OID returned by means of this parameter will be pointer
to static storage that should be treated as read-only. The application should not attempt to
free it. To obtain a specific default, supply the value GSS_C_NO_OID. Specify NULL if the
parameter is not required.

output_token
The token to send to the peer application. If the length field of the returned buffer is zero,
no token need be sent to the peer application. After use storage associated with this buffer
must be freed by the application by a call to gss_release_buffer(3GSS).

ret_flags
Contains various independent flags, each of which indicates that the context supports a
specific service option. If not needed, specify NULL. Test the returned bit-mask ret_flags
value against its symbolic name to determine if the given option is supported by the
context. ret_flags may contain one of the following values:

gss_init_sec_context(3GSS)

Networking Library Functions 215

GSS_C_DELEG_FLAG

If true, credentials were delegated to the remote peer. If false, no credentials were
delegated.

GSS_C_MUTUAL_FLAG

If true, the remote peer authenticated itself. If false, the remote peer did not authenticate
itself.

GSS_C_REPLAY_FLAG

If true, replay of protected messages will be detected. If false, replayed messages will not
be detected.

GSS_C_SEQUENCE_FLAG

If true, out of sequence protected messages will be detected. If false, they will not be
detected.

GSS_C_CONF_FLAG

If true, confidential service may be invoked by calling the gss_wrap() routine. If false,
no confidentiality service is available by means of gss_wrap(3GSS). gss_wrap() will
provide message encapsulation, data-origin authentication and integrity services only.

GSS_C_INTEG_FLAG

If true, integrity service may be invoked by calling either the gss_wrap(3GSS) or
gss_get_mic(3GSS) routine. If false, per-message integrity service is not available.

GSS_C_ANON_FLAG

If true, the initiator's identity has not been revealed; it will not be revealed if any emitted
token is passed to the acceptor. If false, the initiator has been or will be authenticated
normally.

GSS_C_PROT_READY_FLAG

If true, the protection services specified by the states of GSS_C_CONF_FLAG and
GSS_C_INTEG_FLAG are available if the accompanying major status return value is either
GSS_S_COMPLETE or GSS_S_CONTINUE_NEEDED. If false, the protection services are
available only if the accompanying major status return value is GSS_S_COMPLETE.

GSS_C_TRANS_FLAG

If true, the resultant security context may be transferred to other processes by means of a
call to gss_export_sec_context(3GSS). If false, the security context cannot be
transferred.

time_rec
The number of seconds for which the context will remain valid. Specify NULL if the
parameter is not required.

The gss_init_sec_context() function initiates the establishment of a security context
between the application and a remote peer. Initially, the input_token parameter should be
specified either as GSS_C_NO_BUFFER, or as a pointer to a gss_buffer_desc object with a
length field that contains a zero value. The routine may return a output_token, which should

Description

gss_init_sec_context(3GSS)

man pages section 3: Networking Library Functions • Last Revised 6 Nov 2009216

be transferred to the peer application, which will present it to
gss_accept_sec_context(3GSS). If no token need be sent, gss_init_sec_context() will
indicate this by setting the length field of the output_token argument to zero. To complete
context establishment, one or more reply tokens may be required from the peer application; if
so, gss_init_sec_context() will return a status code that contains the supplementary
information bit GSS_S_CONTINUE_NEEDED. In this case, make another call to
gss_init_sec_context() when the reply token is received from the peer application and pass
the reply token to gss_init_sec_context() by means of the input_token parameter.

Construct portable applications to use the token length and return status to determine
whether to send or wait for a token.

Whenever the routine returns a major status that includes the value GSS_S_CONTINUE_NEEDED,
the context is not fully established, and the following restrictions apply to the output
parameters:
■ The value returned by means of the time_rec parameter is undefined. Unless the

accompanying ret_flags parameter contains the bit GSS_C_PROT_READY_FLAG, which
indicates that per-message services may be applied in advance of a successful completion
status, the value returned by means of the actual_mech_type parameter is undefined until
the routine returns a major status value of GSS_S_COMPLETE.

■ The values of the GSS_C_DELEG_FLAG, GSS_C_MUTUAL_FLAG, GSS_C_REPLAY_FLAG,
GSS_C_SEQUENCE_FLAG, GSS_C_CONF_FLAG, GSS_C_INTEG_FLAG and GSS_C_ANON_FLAG bits
returned by the ret_flags parameter contain values that will be valid if context
establishment succeeds. For example, if the application requests a service such as
delegation or anonymous authentication by means of the req_flags argument, and the
service is unavailable from the underlying mechanism, gss_init_sec_context()
generates a token that will not provide the service, and it indicate by means of the ret_flags
argument that the service will not be supported. The application may choose to abort
context establishment by calling gss_delete_sec_context(3GSS) if it cannot continue
without the service, or if the service was merely desired but not mandatory, it may transmit
the token and continue context establishment.

■ The values of the GSS_C_PROT_READY_FLAG and GSS_C_TRANS_FLAG bits within ret_flags
indicate the actual state at the time gss_init_sec_context() returns, whether or not the
context is fully established.

■ The GSS-API sets the GSS_C_PROT_READY_FLAG in the final ret_flags returned to a caller,
for example, when accompanied by a GSS_S_COMPLETE status code. However, applications
should not rely on this behavior, as the flag was not defined in Version 1 of the GSS-API.
Instead, applications should determine what per-message services are available after a
successful context establishment according to the GSS_C_INTEG_FLAG and
GSS_C_CONF_FLAG values.

■ All other bits within the ret_flags argument are set to zero.

If the initial call of gss_init_sec_context() fails, the GSS-API does not create a context
object; it leaves the value of the context_handle parameter set to GSS_C_NO_CONTEXT to indicate

gss_init_sec_context(3GSS)

Networking Library Functions 217

this. In the event of failure on a subsequent call, the GSS-API leaves the security context
untouched for the application to delete using gss_delete_sec_context(3GSS).

During context establishment, the informational status bits GSS_S_OLD_TOKEN and
GSS_S_DUPLICATE_TOKEN indicate fatal errors, and GSS-API mechanisms should always
return them in association with a status code of GSS_S_FAILURE. This pairing requirement was
not part of Version 1 of the GSS-API specification, so applications that wish to run on Version
1 implementations must special-case these codes.

gss_init_sec_context() may return the following status codes:

GSS_S_COMPLETE

Successful completion.

GSS_S_CONTINUE_NEEDED

A token from the peer application is required to complete the context, and
gss_init_sec_context() must be called again with that token.

GSS_S_DEFECTIVE_TOKEN

Consistency checks performed on the input_token failed.

GSS_S_DEFECTIVE_CREDENTIAL

Consistency checks performed on the credential failed.

GSS_S_NO_CRED

The supplied credentials are not valid for context acceptance, or the credential handle does
not reference any credentials.

GSS_S_CREDENTIALS_EXPIRED

The referenced credentials have expired.

GSS_S_BAD_BINDINGS

The input_token contains different channel bindings than those specified by means of the
input_chan_bindings parameter.

GSS_S_BAD_SIG

The input_token contains an invalid MIC or a MIC that cannot be verified.

GSS_S_OLD_TOKEN

The input_token is too old. This is a fatal error while establishing context.

GSS_S_DUPLICATE_TOKEN

The input_token is valid, but it is a duplicate of a token already processed. This is a fatal
error while establishing context.

GSS_S_NO_CONTEXT

The supplied context handle does not refer to a valid context.

GSS_S_BAD_NAMETYPE

The provided target_name parameter contains an invalid or unsupported name type.

Errors

gss_init_sec_context(3GSS)

man pages section 3: Networking Library Functions • Last Revised 6 Nov 2009218

GSS_S_BAD_NAME

The supplied target_name parameter is ill-formed.

GSS_S_BAD_MECH

The token received specifies a mechanism that is not supported by the implementation or
the provided credential.

GSS_S_FAILURE

The underlying mechanism detected an error for which no specific GSS status code is
defined. The mechanism-specific status code reported by means of the minor_status
parameter details the error condition.

EXAMPLE 1 Invoking gss_init_sec_context()Within a Loop

A typical portable caller should always invoke gss_init_sec_context() within a loop:

int context_established = 0;

gss_ctx_id_t context_hdl = GSS_C_NO_CONTEXT;

...

input_token->length = 0;

while (!context_established) {

maj_stat = gss_init_sec_context(&min_stat,

cred_hdl,

&context_hdl,

target_name,

desired_mech,

desired_services,

desired_time,

input_bindings,

input_token,

&actual_mech,

output_token,

&actual_services,

&actual_time);

if (GSS_ERROR(maj_stat)) {

report_error(maj_stat, min_stat);

};

if (output_token->length != 0) {

send_token_to_peer(output_token);

gss_release_buffer(&min_stat, output_token)

};

if (GSS_ERROR(maj_stat)) {

if (context_hdl != GSS_C_NO_CONTEXT)

gss_delete_sec_context(&min_stat,

&context_hdl,

GSS_C_NO_BUFFER);

Examples

gss_init_sec_context(3GSS)

Networking Library Functions 219

EXAMPLE 1 Invoking gss_init_sec_context()Within a Loop (Continued)

break;

};

if (maj_stat & GSS_S_CONTINUE_NEEDED) {

receive_token_from_peer(input_token);

} else {

context_established = 1;

};

};

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gss_delete_sec_context(3GSS), gss_export_sec_context(3GSS), gss_get_mic(3GSS),
gss_wrap(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Attributes

See Also

gss_init_sec_context(3GSS)

man pages section 3: Networking Library Functions • Last Revised 6 Nov 2009220

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_inquire_context – obtain information about a security context

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_inquire_context(OM_uint32 *minor_status,
const gss_ctx_id_t context_handle,gss_name_t *src_name,
gss_name_t *targ_name, OM_uint32 *lifetime_rec,
gss_OID *mech_type, OM_uint32 *ctx_flags,
int *locally_initiated, int *open);

The gss_inquire_context() function obtains information about a security context. The
caller must already have obtained a handle that refers to the context, although the context
need not be fully established.

The parameter descriptions for gss_inquire_context() are as follows:

minor_status A mechanism-specific status code.

context_handle A handle that refers to the security context.

src_name The name of the context initiator. If the context was established using
anonymous authentication, and if the application invoking
gss_inquire_context() is the context acceptor, an anonymous name is
returned. Storage associated with this name must be freed by the
application after use with a call to gss_release_name(). Specify NULL if
the parameter is not required.

targ_name The name of the context acceptor. Storage associated with this name
must be freed by the application after use with a call to
gss_release_name(). If the context acceptor did not authenticate itself,
and if the initiator did not specify a target name in its call to
gss_init_sec_context(), the value GSS_C_NO_NAME is returned. Specify
NULL if the parameter is not required.

lifetime_rec The number of seconds for which the context will remain valid. If the
context has expired, this parameter will be set to zero. Specify NULL if the
parameter is not required.

mech_type The security mechanism providing the context. The returned OID is a
pointer to static storage that should be treated as read-only by the
application; in particular, the application should not attempt to free it.
Specify NULL if the parameter is not required.

ctx_flags Contains various independent flags, each of which indicates that the
context supports (or is expected to support, if ctx_open is false) a specific
service option. If not needed, specify NULL. Symbolic names are provided
for each flag, and the symbolic names corresponding to the required flags

Name

Synopsis

Description

Parameters

gss_inquire_context(3GSS)

Networking Library Functions 221

should be logically ANDed with the ret_flags value to test whether a
given option is supported by the context. The flags are:

GSS_C_DELEG_FLAG If true, credentials were delegated from the
initiator to the acceptor. If false, no
credentials were delegated.

GSS_C_MUTUAL_FLAG If true, the acceptor was authenticated to
the initiator. If false, the acceptor did not
authenticate itself.

GSS_C_REPLAY_FLAG If true, the replay of protected messages
will be detected. If false, replayed messages
will not be detected.

GSS_C_SEQUENCE_FLAG If true, out-of-sequence protected
messages will be detected. If false,
out-of-sequence messages will not be
detected.

GSS_C_CONF_FLAG If true, confidential service may be invoked
by calling the gss_wrap(3GSS) routine. If
false, no confidential service is available
through gss_wrap(). gss_wrap() provides
message encapsulation, data-origin
authentication, and integrity services only.

GSS_C_INTEG_FLAG If true, integrity service can be invoked by
calling either the gss_get_mic() or the
gss_wrap() routine. If false, per-message
integrity service is unavailable.

GSS_C_ANON_FLAG If true, the initiator's identity is not
revealed to the acceptor. The src_name
parameter, if requested, contains an
anonymous internal name. If false, the
initiator has been authenticated normally.

GSS_C_PROT_READY_FLAG If true, the protection services, as specified
by the states of the GSS_C_CONF_FLAG and
GSS_C_INTEG_FLAG, are available for use. If
false, they are available only if the context
is fully established, that is, if the open
parameter is non-zero.

GSS_C_TRANS_FLAG If true, resultant security context can be
transferred to other processes through a
call to gss_export_sec_context(). If

gss_inquire_context(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011222

false, the security context is not
transferable.

locally_initiated Non-zero if the invoking application is the context initiator. Specify NULL
if the parameter is not required.

open Non-zero if the context is fully established; zero if a
context-establishment token is expected from the peer application.
Specify NULL if the parameter is not required.

gss_inquire_context() returns one of the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_NO_CONTEXT The referenced context could not be accessed.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific
GSS status code is defined. The mechanism-specific status code
reported by means of the minor_status parameter details the error
condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gss_accept_sec_context(3GSS), gss_context_time(3GSS),
gss_delete_sec_context(3GSS), gss_export_sec_context(3GSS),
gss_import_sec_context(3GSS), gss_init_sec_context(3GSS),
gss_process_context_token(3GSS), gss_wrap(3GSS), gss_wrap_size_limit(3GSS),
attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Errors

Attributes

See Also

gss_inquire_context(3GSS)

Networking Library Functions 223

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_inquire_cred – obtain information about a credential

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_inquire_cred(OM_uint32 *minor_status,
const gss_cred_id_t cred_handle,gss_name_t *name,
OM_uint32 *lifetime, gss_cred_usage_t *cred_usage,
gss_OID_set *mechanisms);

The parameter descriptions for gss_inquire_cred() follow:

minor_status Mechanism specific status code.

cred_handle Handle that refers to the target credential. Specify GSS_C_NO_CREDENTIAL to
inquire about the default initiator principal.

name Name of the identity asserted by the credential. Any storage associated with
this name should be freed by the application after use by a call to
gss_release_name(3GSS).

lifetime Number of seconds for which the credential remains valid. If the credential
has expired, this parameter will be set to zero. Specify NULL if the parameter
is not required.

cred_usage Flag that indicates how a credential is used. The cred_usage parameter may
contain one of the following values: GSS_C_INITIATE, GSS_C_ACCEPT, or
GSS_C_BOTH. Specify NULL if this parameter is not required.

mechanisms Set of mechanisms supported by the credential. Storage for the returned
OID-set must be freed by the application after use by a call to
gss_release_oid_set(3GSS). Specify NULL if this parameter is not
required.

Use the gss_inquire_cred() function to obtain information about a credential.

The gss_inquire_cred() function can return the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_NO_CRED The referenced credentials could not be accessed.

GSS_S_DEFECTIVE_CREDENTIAL The referenced credentials were invalid.

GSS_S_CREDENTIALS_EXPIRED The referenced credentials have expired. If the lifetime
parameter was not passed as NULL, it will be set to 0.

GSS_S_FAILURE The underlying mechanism detected an error for which
no specific GSS status code is defined. The
mechanism-specific status code reported by means of the
minor_status parameter details the error condition.

Name

Synopsis

Parameters

Description

Return Values

gss_inquire_cred(3GSS)

man pages section 3: Networking Library Functions • Last Revised 30 Jan 2004224

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gss_release_name(3GSS), gss_release_oid_set(3GSS), libgss(3LIB), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Attributes

See Also

gss_inquire_cred(3GSS)

Networking Library Functions 225

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libgss-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_inquire_cred_by_mech – obtain per-mechanism information about a credential

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_inquire_cred_by_mech(OM_uint32 *minor_status,
const gss_cred_id_t cred_handle,const gss_OID mech_type,
gss_name_t *name, OM_uint32 *initiator_lifetime,
OM_uint32 *acceptor_lifetime, gss_cred_usage_t *cred_usage);

acceptor_lifetime The number of seconds that the credential is capable of accepting
security contexts under the specified mechanism. If the credential can
no longer be used to accept contexts, or if the credential usage for this
mechanism is GSS_C_INITIATE, this parameter will be set to 0. Specify
NULL if this parameter is not required.

cred_handle A handle that refers to the target credential. Specify
GSS_C_NO_CREDENTIAL to inquire about the default initiator principal.

cred_usage How the credential may be used with the specified mechanism. The
cred_usage parameter may contain one of the following values:
GSS_C_INITIATE, GSS_C_ACCEPT, or GSS_C_BOTH. Specify NULL if this
parameter is not required.

initiator_lifetime The number of seconds that the credential is capable of initiating
security contexts under the specified mechanism. If the credential can
no longer be used to initiate contexts, or if the credential usage for this
mechanism is GSS_C_ACCEPT, this parameter will be set to 0. Specify
NULL if this parameter is not required.

mech_type The mechanism for which the information should be returned.

minor_status A mechanism specific status code.

name The name whose identity the credential asserts. Any storage associated
with this name must be freed by the application after use by a call to
gss_release_name(3GSS).

The gss_inquire_cred_by_mech() function obtains per-mechanism information about a
credential.

The gss_inquire_cred_by_mech() function can return the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_CREDENTIALS_EXPIRED The credentials cannot be added because they have
expired.

GSS_S_DEFECTIVE_CREDENTIAL The referenced credentials are invalid.

Name

Synopsis

Parameters

Description

Errors

gss_inquire_cred_by_mech(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011226

GSS_S_FAILURE The underlying mechanism detected an error for which
no specific GSS status code is defined. The
mechanism-specific status code reported by means of the
minor_status parameter details the error condition.

GSS_S_NO_CRED The referenced credentials cannot be accessed.

GSS_S_UNAVAILABLE The gss_inquire_cred_by_mech() function is not
available for the specified mechanism type.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gss_release_name(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Attributes

See Also

gss_inquire_cred_by_mech(3GSS)

Networking Library Functions 227

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_inquire_mechs_for_name – list mechanisms that support the specified name-type

cc [flag ...] file... -lgss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_inquire_mechs_for_name(OM_uint32 *minor_status,
const gss_name_t input_name,gss_OID_set *mech_types);

The gss_inquire_mechs_for_name() function returns the set of mechanisms supported by
the GSS-API that may be able to process the specified name. Each mechanism returned will
recognize at least one element within the internal name.

Some implementations of the GSS-API may perform this test by checking nametype
information contained within the passed name and registration information provided by
individual mechanisms. This means that the mech_types set returned by the function may
indicate that a particular mechanism will understand the name, when in fact the mechanism
would refuse to accept the name as input to gss_canonicalize_name(3GSS),
gss_init_sec_context(3GSS), gss_acquire_cred(3GSS), or gss_add_cred(3GSS), due to
some property of the name itself rather than the name-type. Therefore, this function should be
used only as a pre-filter for a call to a subsequent mechanism-specific function.

The parameter descriptions for gss_inquire_mechs_for_name() follow in alphabetical
order:

minor_status Mechanism-specific status code.

input_name The name to which the inquiry relates.

mech_types Set of mechanisms that may support the specified name. The returned OID
set must be freed by the caller after use with a call to
gss_release_oid_set(3GSS).

The gss_inquire_mechs_for_name() function may return the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_BAD_NAME The input_name parameter was ill-formed.

GSS_S_BAD_NAMETYPE The input_name parameter contained an invalid or unsupported
type of name.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific
GSS status code is defined. The mechanism-specific status code
reported by means of the minor_status parameter details the error
condition.

See attributes(5) for descriptions of the following attributes:

Name

Synopsis

Description

Parameters

Errors

Attributes

gss_inquire_mechs_for_name(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011228

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gss_acquire_cred(3GSS), gss_add_cred(3GSS), gss_canonicalize_name(3GSS),
gss_init_sec_context(3GSS), gss_release_oid_set(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

See Also

gss_inquire_mechs_for_name(3GSS)

Networking Library Functions 229

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_inquire_names_for_mech – list the name-types supported by the specified mechanism

cc [flag ...] file... -lgss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_inquire_names_for_mech(OM_uint32 *minor_status,
const gss_OID mechanism,gss_OID_set *name_types);

The gss_inquire_names_for_mech() function returns the set of name-types supported by
the specified mechanism.

The parameter descriptions for gss_inquire_names_for_mech() follow:

minor_status A mechanism-specific status code.

mechanism The mechanism to be interrogated.

name_types Set of name-types supported by the specified mechanism. The returned OID
set must be freed by the application after use with a call to
gss_release_oid_set(3GSS).

The gss_inquire_names_for_mech() function may return the following values:

GSS_S_COMPLETE Successful completion.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific GSS
status code is defined. The mechanism-specific status code reported by
means of the minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gss_release_oid_set(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Name

Synopsis

Description

Parameters

Errors

Attributes

See Also

gss_inquire_names_for_mech(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011230

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_oid_to_str – convert an OID to a string

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

gss_oid_to_str(OM_uint32 *minor_status, const gss_OID oid,
gss_buffer_toid_str);

minor_status Status code returned by underlying mechanism.

oid GSS-API OID structure to convert.

oid_str String to receive converted OID.

The gss_oid_to_str() function converts a GSS-API OID structure to a string. You can use
the function to convert the name of a mechanism from an OID to a simple string. This
function is a convenience function, as is its complementary function, gss_str_to_oid(3GSS).

If an OID must be created, use gss_create_empty_oid_set(3GSS) and
gss_add_oid_set_member(3GSS) to create it. OIDs created in this way must be released with
gss_release_oid_set(3GSS). However, it is strongly suggested that applications use the
default GSS-API mechanism instead of creating an OID for a specific mechanism.

The gss_oid_to_str() function returns one of the following status codes:

GSS_S_CALL_INACCESSIBLE_READ

A required input parameter could not be read.

GSS_S_CALL_INACCESSIBLE_WRITE

A required output parameter could not be written.

GSS_S_COMPLETE

Successful completion.

GSS_S_FAILURE

The underlying mechanism detected an error for which no specific GSS status code is
defined. The mechanism-specific status code reported by means of the minor_status
parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gss_add_oid_set_member(3GSS), gss_create_empty_oid_set(3GSS),
gss_release_oid_set(3GSS), gss_str_to_oid(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Name

Synopsis

Parameters

Description

Errors

Attributes

See Also

gss_oid_to_str(3GSS)

Networking Library Functions 231

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

This function is included for compatibility only with programs using earlier versions of the
GSS-API and should not be used for new programs. Other implementations of the GSS-API
might not support this function, so portable programs should not rely on it. Sun might not
continue to support this function.

Warnings

gss_oid_to_str(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011232

gss_process_context_token – pass asynchronous token to security service

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_process_context_token(OM_uint32 *minor_status,
const gss_ctx_id_t context_handle,const gss_buffer_t token_buffer);

The gss_process_context_token() function provides a way to pass an asynchronous token
to the security service. Most context-level tokens are emitted and processed synchronously by
gss_init_sec_context() and gss_accept_sec_context(), and the application is informed
as to whether further tokens are expected by the GSS_C_CONTINUE_NEEDED major status bit.
Occasionally, a mechanism might need to emit a context-level token at a point when the peer
entity is not expecting a token. For example, the initiator's final call to
gss_init_sec_context() may emit a token and return a status of GSS_S_COMPLETE, but the
acceptor's call to gss_accept_sec_context() might fail. The acceptor's mechanism might
want to send a token containing an error indication to the initiator, but the initiator is not
expecting a token at this point, believing that the context is fully established.
gss_process_context_token() provides a way to pass such a token to the mechanism at any
time.

This function is provided for compatibility with the GSS-API version 1. Because
gss_delete_sec_context() no longer returns a valid output_token to be sent to
gss_process_context_token(), applications using a newer version of the GSS-API do not
need to rely on this function.

The parameter descriptions for gss_process_context_token() are as follows:

minor_status A mechanism-specific status code.

context_handle Context handle of context on which token is to be processed.

token_buffer Token to process.

gss_process_context_token() returns one of the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_DEFECTIVE_TOKEN Indicates that consistency checks performed on the token failed.

GSS_S_NO_CONTEXT The context_handle did not refer to a valid context.

GSS_S_FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

Name

Synopsis

Description

Parameters

Errors

gss_process_context_token(3GSS)

Networking Library Functions 233

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

gss_accept_sec_context(3GSS), gss_delete_sec_context(3GSS),
gss_init_sec_context(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Attributes

See Also

gss_process_context_token(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011234

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_release_buffer – free buffer storage allocated by a GSS-API function

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_release_buffer(OM_uint32 *minor_status, gss_buffer_tbuffer);

The gss_release_buffer() function frees buffer storage allocated by a GSS-API function.
The gss_release_buffer() function also zeros the length field in the descriptor to which the
buffer parameter refers, while the GSS-API function sets the pointer field in the descriptor to
NULL. Any buffer object returned by a GSS-API function may be passed to
gss_release_buffer(), even if no storage is associated with the buffer.

The parameter descriptions for gss_release_buffer() follow:

minor_status Mechanism-specific status code.

buffer The storage associated with the buffer will be deleted. The
gss_buffer_desc() object will not be freed; however, its length field will be
zeroed.

The gss_release_buffer() function may return the following status codes:

GSS_S_COMPLETE Successful completion

GSS_S_FAILURE The underlying mechanism detected an error for which no specific GSS
status code is defined. The mechanism-specific status code reported by
means of the minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Name

Synopsis

Description

Parameters

Errors

Attributes

See Also

gss_release_buffer(3GSS)

Networking Library Functions 235

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_release_cred – discard a credential handle

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_release_cred(OM_uint32 *minor_status,
gss_cred_id_t *cred_handle);

The gss_release_cred() function informs the GSS-API that the specified credential handle
is no longer required by the application and frees the associated resources. The cred_handle
parameter is set to GSS_C_NO_CREDENTIAL when this call completes successfully.

The parameter descriptions for gss_release_cred() follow:

minor_status A mechanism specific status code.

cred_handle An opaque handle that identifies the credential to be released. If
GSS_C_NO_CREDENTIAL is specified, the gss_release_cred() function will
complete successfully, but it will do nothing.

gss_release_cred() may return the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_NO_CRED The referenced credentials cannot be accessed.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific GSS
status code is defined. The mechanism-specific status code reported by
means of the minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Name

Synopsis

Description

Parameters

Errors

Attributes

See Also

gss_release_cred(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011236

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_release_name – discard an internal-form name

cc [flag ...] file... -lgss [library ...]
#include <gssapi/gssapi.h

OM_uint32 gss_release_name(OM_uint32 *minor_status, gss_name_t *name);

The gss_release_name() function frees GSS-API-allocated storage associated with an
internal-form name. The name is set to GSS_C_NO_NAME on successful completion of this call.

The parameter descriptions for gss_release_name() follow:

minor_status A mechanism-specific status code.

name The name to be deleted.

The gss_release_name() function may return the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_BAD_NAME The name parameter did not contain a valid name.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific GSS
status code is defined. The mechanism-specific status code reported by
means of the minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Name

Synopsis

Description

Parameters

Errors

Attributes

See Also

gss_release_name(3GSS)

Networking Library Functions 237

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_release_oid – release an object identifier

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

gss_release_oid(OM_uint32 *minor_status, const gss_OID *oid);

The gss_release_oid() function deletes an OID. Such an OID might have been created with
gss_str_to_oid().

Since creating and deleting individual OIDs is discouraged, it is preferable to use
gss_release_oid_set() if it is necessary to deallocate a set of OIDs.

The parameter descriptions for gss_release_oid() are as follows:

minor_status A mechanism-specific status code.

oid The object identifier of the mechanism to be deleted.

gss_release_oid() returns one of the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_FAILURE The underlying mechanism detected an error for which no specific GSS
status code is defined. The mechanism-specific status code reported by
means of the minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

gss_release_oid_set(3GSS), gss_str_to_oid(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

This function is included for compatibility only with programs using earlier versions of the
GSS-API and should not be used for new programs. Other implementations of the GSS-API
might not support this function, so portable programs should not rely on it. Sun might not
continue to support this function.

Name

Synopsis

Description

Parameters

Errors

Attributes

See Also

Warnings

gss_release_oid(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011238

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_release_oid_set – free storage associated with a GSS-API-generated gss_OID_set object

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_release_oid_set(OM_uint32 *minor_status, gss_OID_set *set);

The gss_release_oid_set() function frees storage associated with a GSS-API-generated
gss_OID_set object. The set parameter must refer to an OID-set that was returned from a
GSS-API function. The gss_release_oid_set() function will free the storage associated with
each individual member OID, the OID set's elements array, and gss_OID_set_desc.

gss_OID_set is set to GSS_C_NO_OID_SET on successful completion of this function.

The parameter descriptions for gss_release_oid_set() follow:

minor_status A mechanism-specific status code

set Storage associated with the gss_OID_set will be deleted

The gss_release_oid_set() function may return the following status codes:

GSS_S_COMPLETE Successful completion

GSS_S_FAILURE The underlying mechanism detected an error for which no specific GSS
status code is defined. The mechanism-specific status code reported by
means of the minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Name

Synopsis

Description

Parameters

Errors

Attributes

See Also

gss_release_oid_set(3GSS)

Networking Library Functions 239

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_store_cred – store a credential in the current credential store

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_store_cred(OM_uint32 *minor_status,
const gss_cred_id_t input_cred, const gss_cred_usage_t cred_usage,
const gss_OID desired_mech, OM_uint32 overwrite_cred,
OM_uint32 default_cred, gss_OID_set *elements_stored,
gss_cred_usage_t *cred_usage_stored);

The parameter descriptions for gss_store_cred() follow:

input_cred The credential to be stored.

cred_usage This parameter specifies whether to store an initiator, an acceptor, or
both usage components of a credential.

desired_mech The mechanism-specific component of a credential to be stored. If
GSS_C_NULL_OID is specified, the gss_store_cred() function attempts
to store all the elements of the given input_cred_handle.

The gss_store_cred() function is not atomic when storing multiple
elements of a credential. All delegated credentials, however, contain a
single element.

overwrite_cred A boolean that indicates whether to overwrite existing credentials in
the current store for the same principal as that of the
input_cred_handle. A non-zero value indicates that credentials are
overwritten. A zero value indicates that credentials are not overwritten.

default_cred A boolean that indicates whether to set the principal name of the
input_cred_handle parameter as the default of the current credential
store. A non-zero value indicates that the principal name is set as the
default. A zero value indicates that the principal name is not set as the
default. The default principal of a credential store matches
GSS_C_NO_NAME as the desired_name input parameter for
gss_store_cred(3GSS).

elements_stored The set of mechanism OIDs for which input_cred_handle elements have
been stored.

cred_usage_stored The stored input_cred_handle usage elements: initiator, acceptor, or
both.

minor_status Minor status code that is specific to one of the following: the
mechanism identified by the desired_mech_element parameter, or the
element of a single mechanism in the input_cred_handle. In all other
cases, minor_status has an undefined value on return.

Name

Synopsis

Parameters

gss_store_cred(3GSS)

man pages section 3: Networking Library Functions • Last Revised 30 Jun 2005240

The gss_store_cred() function stores a credential in the the current GSS-API credential
store for the calling process. Input credentials can be re-acquired through
gss_add_cred(3GSS) and gss_acquire_cred(3GSS).

The gss_store_cred() function is specifically intended to make delegated credentials
available to a user's login session.

The gss_accept_sec_context() function can return a delegated GSS-API credential to its
caller. The function does not store delegated credentials to be acquired through
gss_add_cred(3GSS). Delegated credentials can be used only by a receiving process unless
they are made available for acquisition by calling the gss_store_cred() function.

The Solaris Operating System supports a single GSS-API credential store per user. The current
GSS-API credential store of a process is determined by its effective UID.

In general, acceptor applications should switch the current credential store by changing the
effective UID before storing a delegated credential.

The gss_store_cred() can return the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_CREDENTIALS_EXPIRED The credentials could not be stored because they have
expired.

GSS_S_CALL_INACCESSIBLE_READ No input credentials were given.

GSS_S_UNAVAILABLE The credential store is unavailable.

GSS_S_DUPLICATE_ELEMENT The credentials could not be stored because the
overwrite_cred input parameter was set to false (0) and
the input_cred parameter conflicts with a credential in
the current credential store.

GSS_S_FAILURE The underlying mechanism detected an error for which
no specific GSS status code is defined. The
mechanism-specific status code reported by means of
the minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Uncommitted

MT-Level Safe

Description

Return Values

Attributes

gss_store_cred(3GSS)

Networking Library Functions 241

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

gss_accept_sec_context(3GSS), gss_acquire_cred(3GSS), gss_add_cred(3GSS),
gss_init_sec_context(3GSS), gss_inquire_cred(3GSS), gss_release_cred(3GSS),
gss_release_oid_set(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

See Also

gss_store_cred(3GSS)

man pages section 3: Networking Library Functions • Last Revised 30 Jun 2005242

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_str_to_oid – convert a string to an OID

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_str_to_oid(OM_uint32 *minor_status,
const gss_buffer_t oid_str,gss_OID *oid);

The gss_str_to_oid() function converts a string to a GSS-API OID structure. You can use
the function to convert a simple string to an OID to . This function is a convenience function,
as is its complementary function, gss_oid_to_str(3GSS).

OIDs created with gss_str_to_oid() must be deallocated through gss_release_oid(3GSS),
if available. If an OID must be created, use gss_create_empty_oid_set(3GSS) and
gss_add_oid_set_member(3GSS) to create it. OIDs created in this way must be released with
gss_release_oid_set(3GSS). However, it is strongly suggested that applications use the
default GSS-API mechanism instead of creating an OID for a specific mechanism.

The parameter descriptions for gss_str_to_oid() are as follows:

minor_status Status code returned by underlying mechanism.

oid GSS-API OID structure to receive converted string.

oid_str String to convert.

gss_str_to_oid() returns one of the following status codes:

GSS_S_CALL_INACCESSIBLE_READ A required input parameter could not be read.

GSS_S_CALL_INACCESSIBLE_WRITE A required output parameter could not be written.

GSS_S_COMPLETE Successful completion.

GSS_S_FAILURE The underlying mechanism detected an error for
which no specific GSS status code is defined. The
mechanism-specific status code reported by means of
the minor_status parameter details the error
condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

gss_add_oid_set_member(3GSS), gss_create_empty_oid_set(3GSS),
gss_oid_to_str(3GSS), gss_release_oid_set(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Name

Synopsis

Description

Parameters

Errors

Attributes

See Also

gss_str_to_oid(3GSS)

Networking Library Functions 243

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

This function is included for compatibility only with programs using earlier versions of the
GSS-API and should not be used for new programs. Other implementations of the GSS-API
might not support this function, so portable programs should not rely on it. Sun might not
continue to support this function.

Warnings

gss_str_to_oid(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011244

gss_test_oid_set_member – interrogate an object identifier set

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_test_oid_set_member(OM_uint32 *minor_status,
const gss_OID member,const gss_OID_set set,
int *present);

The gss_test_oid_set_member() function interrogates an object identifier set to determine
if a specified object identifier is a member. This function should be used with OID sets
returned by gss_indicate_mechs(3GSS), gss_acquire_cred(3GSS), and
gss_inquire_cred(3GSS), but it will also work with user-generated sets.

The parameter descriptions for gss_test_oid_set_member() follow:

minor_status A mechanism-specific status code

member An object identifier whose presence is to be tested

set An object identifier set.

present The value of present is non-zero if the specified OID is a member of the set; if
not, the value of present is zero.

The gss_test_oid_set_member() function may return the following status codes:

GSS_S_COMPLETE Successful completion

GSS_S_FAILURE The underlying mechanism detected an error for which no specific GSS
status code is defined. The mechanism-specific status code reported by
means of the minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gss_acquire_cred(3GSS), gss_indicate_mechs(3GSS), gss_inquire_cred(3GSS),
attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Name

Synopsis

Description

Parameters

Errors

Attributes

See Also

gss_test_oid_set_member(3GSS)

Networking Library Functions 245

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_unwrap – verify a message with attached cryptographic message

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_unwrap(OM_uint32 *minor_status,
const gss_ctx_id_t context_handle,
const gss_buffer_t input_message_buffer,
gss_buffer_t output_message_buffer, int *conf_state,
gss_qop_t *qop_state);

The gss_unwrap() function converts a message previously protected by gss_wrap(3GSS)
back to a usable form, verifying the embedded MIC. The conf_state parameter indicates
whether the message was encrypted; the qop_state parameter indicates the strength of
protection that was used to provide the confidentiality and integrity services.

Since some application-level protocols may wish to use tokens emitted by gss_wrap(3GSS) to
provide secure framing, the GSS-API supports the wrapping and unwrapping of zero-length
messages.

The parameter descriptions for gss_unwrap() follow:

minor_status The status code returned by the underlying mechanism.

context_handle Identifies the context on which the message arrived.

input_message_buffer The message to be protected.

output_message_buffer The buffer to receive the unwrapped message. Storage associated
with this buffer must be freed by the application after use with a
call to gss_release_buffer(3GSS).

conf_state If the value of conf_state is non-zero, then confidentiality and
integrity protection were used. If the value is zero, only integrity
service was used. Specify NULL if this parameter is not required.

qop_state Specifies the quality of protection provided. Specify NULL if this
parameter is not required.

gss_unwrap() may return the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_DEFECTIVE_TOKEN The token failed consistency checks.

GSS_S_BAD_SIG The MIC was incorrect.

GSS_S_DUPLICATE_TOKEN The token was valid, and contained a correct MIC for the
message, but it had already been processed.

GSS_S_OLD_TOKEN The token was valid, and contained a correct MIC for the
message, but it is too old to check for duplication.

Name

Synopsis

Description

Parameters

Errors

gss_unwrap(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011246

GSS_S_UNSEQ_TOKEN The token was valid, and contained a correct MIC for the
message, but has been verified out of sequence; a later token has
already been received.

GSS_S_GAP_TOKEN The token was valid, and contained a correct MIC for the
message, but has been verified out of sequence; an earlier
expected token has not yet been received.

GSS_S_CONTEXT_EXPIRED The context has already expired.

GSS_S_NO_CONTEXT The context_handle parameter did not identify a valid context.

GSS_S_FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gss_release_buffer(3GSS), gss_wrap(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Attributes

See Also

gss_unwrap(3GSS)

Networking Library Functions 247

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_verify_mic – verify integrity of a received message

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_verify_mic(OM_uint32 *minor_status,
const gss_ctx_id_t context_handle, const gss_buffer_t message_buffer,
const gss_buffer_t token_buffer, gss_qop_t *qop_state);

The gss_verify_mic() function verifies that a cryptographic MIC, contained in the token
parameter, fits the supplied message. The qop_state parameter allows a message recipient to
determine the strength of protection that was applied to the message.

Since some application-level protocols may wish to use tokens emitted by gss_wrap(3GSS) to
provide secure framing, the GSS-API supports the calculation and verification of MICs over
zero-length messages.

The parameter descriptions for gss_verify_mic() follow:

minor_status The status code returned by the underlying mechanism.

context_handle Identifies the context on which the message arrived.

message_buffer The message to be verified.

token_buffer The token associated with the message.

qop_state Specifies the quality of protection gained from the MIC. Specify NULL if
this parameter is not required.

gss_verify_mic() may return the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_DEFECTIVE_TOKEN The token failed consistency checks.

GSS_S_BAD_SIG The MIC was incorrect.

GSS_S_DUPLICATE_TOKEN The token was valid and contained a correct MIC for the
message, but it had already been processed.

GSS_S_OLD_TOKEN The token was valid and contained a correct MIC for the
message, but it is too old to check for duplication.

GSS_S_UNSEQ_TOKEN The token was valid and contained a correct MIC for the
message, but it has been verified out of sequence; a later token
has already been received.

GSS_S_GAP_TOKEN The token was valid and contained a correct MIC for the
message, but it has been verified out of sequence; an earlier
expected token has not yet been received.

GSS_S_CONTEXT_EXPIRED The context has already expired.

Name

Synopsis

Description

Parameters

Errors

gss_verify_mic(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011248

GSS_S_NO_CONTEXT The context_handle parameter did not identify a valid context.

GSS_S_FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gss_wrap(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Attributes

See Also

gss_verify_mic(3GSS)

Networking Library Functions 249

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_wrap – attach a cryptographic message

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_wrap(OM_uint32 *minor_status,
const gss_ctx_id_t context_handle, int conf_req_flag,
gss_qop_t qop_req, const gss_buffer_t input_message_buffer,
int *conf_state, gss_buffer_t output_message_buffer);

The gss_wrap() function attaches a cryptographic MIC and optionally encrypts the specified
input_message. The output_message contains both the MIC and the message. The qop_req
parameter allows a choice between several cryptographic algorithms, if supported by the
chosen mechanism.

Since some application-level protocols may wish to use tokens emitted by gss_wrap() to
provide secure framing, the GSS-API supports the wrapping of zero-length messages.

The parameter descriptions for gss_wrap() follow:

minor_status The status code returned by the underlying mechanism.

context_handle Identifies the context on which the message will be sent.

conf_req_flag If the value of conf_req_flag is non-zero, both confidentiality and
integrity services are requested. If the value is zero, then only
integrity service is requested.

qop_req Specifies the required quality of protection. A mechanism-specific
default may be requested by setting qop_req to
GSS_C_QOP_DEFAULT. If an unsupported protection strength is
requested, gss_wrap() will return a major_status of
GSS_S_BAD_QOP.

input_message_buffer The message to be protected.

conf_state If the value of conf_state is non-zero, confidentiality, data origin
authentication, and integrity services have been applied. If the
value is zero, then integrity services have been applied. Specify
NULL if this parameter is not required.

output_message_buffer The buffer to receive the protected message. Storage associated
with this message must be freed by the application after use with a
call to gss_release_buffer(3GSS).

gss_wrap() may return the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_CONTEXT_EXPIRED The context has already expired.

Name

Synopsis

Description

Parameters

Errors

gss_wrap(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011250

GSS_S_NO_CONTEXT The context_handle parameter did not identify a valid context.

GSS_S_BAD_QOP The specified QOP is not supported by the mechanism.

GSS_S_FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gss_release_buffer(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Attributes

See Also

gss_wrap(3GSS)

Networking Library Functions 251

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

gss_wrap_size_limit – allow application to determine maximum message size with resulting
output token of a specified maximum size

cc [flag...] file... -lgss [library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_process_context_token(OM_uint32 *minor_status,
const gss_ctx_id_t context_handle, int conf_req_flag,
gss_qop_t qop_req, OM_uint32 req_output_size,
OM_uint32 *max_input_size);

The gss_wrap_size_limit() function allows an application to determine the maximum
message size that, if presented to gss_wrap() with the same conf_req_flag and qop_req
parameters, results in an output token containing no more than req_output_size bytes. This
call is intended for use by applications that communicate over protocols that impose a
maximum message size. It enables the application to fragment messages prior to applying
protection. The GSS-API detects invalid QOP values when gss_wrap_size_limit() is called.
This routine guarantees only a maximum message size, not the availability of specific QOP
values for message protection.

Successful completion of gss_wrap_size_limit() does not guarantee that gss_wrap() will
be able to protect a message of length max_input_size bytes, since this ability might depend on
the availability of system resources at the time that gss_wrap() is called.

The parameter descriptions for gss_wrap_size_limit() are as follows:

minor_status A mechanism-specific status code.

context_handle A handle that refers to the security over which the messages will be sent.

conf_req_flag Indicates whether gss_wrap() will be asked to apply confidential
protection in addition to integrity protection. See gss_wrap(3GSS) for
more details.

qop_req Indicates the level of protection that gss_wrap() will be asked to provide.
See gss_wrap(3GSS) for more details.

req_output_size The desired maximum size for tokens emitted by gss_wrap().

max_input_size The maximum input message size that can be presented to gss_wrap() to
guarantee that the emitted token will be no larger than req_output_size
bytes.

gss_wrap_size_limit() returns one of the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_NO_CONTEXT The referenced context could not be accessed.

GSS_S_CONTEXT_EXPIRED The context has expired.

Name

Synopsis

Description

Parameters

Errors

gss_wrap_size_limit(3GSS)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011252

GSS_S_BAD_QOP The specified QOP is not supported by the mechanism.

GSS_S_FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

gss_wrap(3GSS), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security

Attributes

See Also

gss_wrap_size_limit(3GSS)

Networking Library Functions 253

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=GSSAPIPG

htonl, htons, ntohl, ntohs – convert values between host and network byte order

cc [flag ...] file ... -lxnet [library ...]

#include <arpa/inet.h>

uint32_t htonl(uint32_t hostlong);

uint16_t htons(uint16_t hostshort);

uint32_t ntohl(uint32_t netlong);

uint16_t ntohs(uint16_t netshort);

These functions convert 16-bit and 32-bit quantities between network byte order and host
byte order.

The uint32_t and uint16_t types are made available by inclusion of <inttypes.h>.

These functions are most often used in conjunction with Internet addresses and ports as
returned by gethostent(3XNET) and getservent(3XNET).

On some architectures these functions are defined as macros that expand to the value of their
argument.

The htonl() and htons() functions return the argument value converted from host to
network byte order.

The ntohl() and ntohs() functions return the argument value converted from network to
host byte order.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

endhostent(3XNET), endservent(3XNET), attributes(5), standards(5)

Name

Synopsis

Description

Usage

Return Values

Errors

Attributes

See Also

htonl(3XNET)

man pages section 3: Networking Library Functions • Last Revised 10 Jun 2002254

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

icmp6_filter – Variable allocation datatype

void ICMP6_FILTER_SETPASSALL (struct icmp6_filter *);

void ICMP6_FILTER_SETBLOCKALL (struct icmp6_filter *);

void ICMP6_FILTER_SETPASS (int, struct icmp6_filter *);

void ICMP6_FILTER_SETBLOCK (int, struct icmp6_filter *);

int ICMP6_FILTER_WILLPASS (int, const struct icmp6_filter *);

int ICMP6_FILTER_WILLBLOCK (int, const struct icmp6_filter *);

The icmp6_filter structure is similar to the fd_set datatype used with the select()
function in the sockets API. The icmp6_filter structure is an opaque datatype and the
application should not care how it is implemented. The application allocates a variable of this
type, then passes a pointer to it. Next it passes a pointer to a variable of this type to
getsockopt() and setsockopt() and operates on a variable of this type using the six macros
defined below.

The SETPASSALL and SETBLOCKALL functions enable you to specify that all ICMPv6 messages
are passed to the application or that all ICMPv6 messages are blocked from being passed.

The SETPASS and SETBLOCKALL functions enable you to specify that messages of a given
ICMPv6 type should be passed to the application or not passed to the application (blocked).

The WILLPASS and WILLBLOCK return true or false depending whether the specified message
type is passed to the application or blocked from being passed to the application by the filter
pointed to by the second argument.

The pointer argument to all six icmp6_filter macros is a pointer to a filter that is modified by
the first four macros and is examined by ICMP6_FILTER_SETBLOCK and
ICMP6_FILTER_WILLBLOCK. The first argument, (an integer), to the ICMP6_FILTER_BLOCKALL,
ICMP6_FILTER_SETPASS, ICMP6_FILTER_SETBLOCK, and ICMP6_FILTER_WILLBLOCK macros is
an ICMPv6 message type, between 0 and 255.

The current filter is fetched and stored using getsockopt() and setsockopt() with a level of
IPPROTO_ICMPV6 and an option name of ICMP6_FILTER.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

Interface Stability Committed

Standard See standards(5).

Name

Synopsis

Description

Attributes

icmp6_filter(3SOCKET)

Networking Library Functions 255

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

if_nametoindex, if_indextoname, if_nameindex, if_freenameindex – routines to map Internet
Protocol network interface names and interface indexes

cc [flag...] file... -lsocket [library...]

#include <net/if.h>

unsigned int if_nametoindex(const char *ifname);

char *if_indextoname(unsigned int ifindex, char *ifname);

struct if_nameindex *if_nameindex(void)

void if_freenameindex(struct if_nameindex *ptr);

ifname interface name

ifindex interface index

ptr pointer returned by if_nameindex()

This API defines two functions that map between an Internet Protocol network interface
name and index, a third function that returns all the interface names and indexes, and a fourth
function to return the dynamic memory allocated by the previous function.

Network interfaces are normally known by names such as eri0, sl1, ppp2, and the like. The
ifname argument must point to a buffer of at least IF_NAMESIZE bytes into which the interface
name corresponding to the specified index is returned. IF_NAMESIZE is defined in <net/if.h>
and its value includes a terminating null byte at the end of the interface name.

if_nametoindex() The if_nametoindex() function returns the interface index
corresponding to the interface name pointed to by the ifname
pointer. If the specified interface name does not exist, the return
value is 0, and errno is set to ENXIO. If there was a system error,
such as running out of memory, the return value is 0 and errno is
set to the proper value, for example, ENOMEM.

if_indextoname() The if_indextoname() function maps an interface index into its
corresponding name. This pointer is also the return value of the
function. If there is no interface corresponding to the specified
index, NULL is returned, and errno is set to ENXIO, if there was a
system error, such as running out of memory, if_indextoname()
returns NULL and errno would be set to the proper value, for
example, ENOMEM.

if_nameindex() The if_nameindex() function returns an array of if_nameindex
structures, one structure per interface. The if_nameindex structure
holds the information about a single interface and is defined when
the <net/if.h> header is included:

Name

Synopsis

Parameters

Description

if_nametoindex(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011256

struct if_nameindex

unsigned int if_index; /* 1, 2, ... */

char *if_name; /* "net0", ... */

};

While any IPMP IP interfaces are returned by if_nameindex(), the
underlying IP interfaces that comprise each IPMP group are not
returned.

The end of the array of structures is indicated by a structure with an
if_index of 0 and an if_name of NULL. The function returns a null
pointer upon an error and sets errno to the appropriate value. The
memory used for this array of structures along with the interface
names pointed to by the if_name members is obtained
dynamically. This memory is freed by the if_freenameindex()
function.

if_freenameindex() The if_freenameindex() function frees the dynamic memory that
was allocated by if_nameindex(). The argument to this function
must be a pointer that was returned by if_nameindex().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ifconfig(1M), if_nametoindex(3XNET), attributes(5), if(7P)

Attributes

See Also

if_nametoindex(3SOCKET)

Networking Library Functions 257

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ifconfig-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1if-7p

if_nametoindex, if_indextoname, if_nameindex, if_freenameindex – functions to map
Internet Protocol network interface names and interface indexes

cc [flag...] file... -lxnet [library...]

#include <net/if.h>

unsigned int if_nametoindex(const char *ifname);

char *if_indextoname(unsigned int ifindex, char *ifname);

struct if_nameindex *if_nameindex(void)

void if_freenameindex(struct if_nameindex *ptr);

These functions support the following parameters:

ifname interface name

ifindex interface index

ptr pointer returned by if_nameindex()

This API defines two functions that map between an Internet Protocol network interface
name and index, a third function that returns all the interface names and indexes, and a fourth
function to return the dynamic memory allocated by the previous function.

Network interfaces are normally known by names such as eri0, sl1, ppp2, and the like. The
ifname argument must point to a buffer of at least IF_NAMESIZE bytes into which the interface
name corresponding to the specified index is returned. IF_NAMESIZE is defined in <net/if.h>
and its value includes a terminating null byte at the end of the interface name.

if_nametoindex() The if_nametoindex() function returns the interface index
corresponding to the interface name pointed to by the ifname
pointer. If the specified interface name does not exist, the return
value is 0, and errno is set to ENXIO. If there was a system error,
such as running out of memory, the return value is 0 and errno is
set to the proper value, for example, ENOMEM.

if_indextoname() The if_indextoname() function maps an interface index into its
corresponding name. This pointer is also the return value of the
function. If there is no interface corresponding to the specified
index, NULL is returned, and errno is set to ENXIO, if there was a
system error, such as running out of memory, if_indextoname()
returns NULL and errno would be set to the proper value, for
example, ENOMEM.

*if_nameindex() The if_nameindex() function returns an array of if_nameindex
structures, one structure per interface. The if_nameindex structure
holds the information about a single interface and is defined when
the <net/if.h> header is included:

Name

Synopsis

Parameters

Description

if_nametoindex(3XNET)

man pages section 3: Networking Library Functions • Last Revised 14 Dec 2003258

struct if_nameindex {

unsigned int if_index; /* 1, 2, ... */

char *if_name; /* null terminated name: "eri0", ... */

};

The end of the array of structures is indicated by a structure with an
if_index of 0 and an if_name of NULL. The function returns a null
pointer upon an error and sets errno to the appropriate value. The
memory used for this array of structures along with the interface
names pointed to by the if_name members is obtained
dynamically. This memory is freed by the if_freenameindex()
function.

if_freenameindex() The if_freenameindex() function frees the dynamic memory that
was allocated by if_nameindex(). The argument to this function
must be a pointer that was returned by if_nameindex().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library (32-bit)

SUNWcslx (64-bit)

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

ifconfig(1M), if_nametoindex(3SOCKET), attributes(5), standards(5), if(7P)

Attributes

See Also

if_nametoindex(3XNET)

Networking Library Functions 259

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ifconfig-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1if-7p

inet, inet6, inet_ntop, inet_pton, inet_aton, inet_addr, inet_network, inet_makeaddr,
inet_lnaof, inet_netof, inet_ntoa – Internet address manipulation

cc [flag...] file... -lsocket -lnsl [library...]

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

const char *inet_ntop(int af, const void *addr, char *cp,
socklen_t size);

int inet_pton(int af, const char *cp, void *addr);

int inet_aton(const char *cp, struct in_addr *addr);

in_addr_t inet_addr(const char *cp);

in_addr_t inet_network(const char *cp);

struct in_addr inet_makeaddr(const int net, in_addr_t lna);

in_addr_t inet_lnaof(struct in_addr in);

in_addr_t inet_netof(struct in_addr in);

char *inet_ntoa(struct in_addr in);

The inet_ntop() and inet_pton() functions can manipulate both IPv4 and IPv6 addresses.
The inet_aton(), inet_addr(), inet_network(), inet_makeaddr(), inet_lnaof(),
inet_netof(), and inet_ntoa() functions can only manipulate IPv4 addresses.

The inet_ntop() function converts a numeric address into a string suitable for presentation.
The af argument specifies the family of the address which can be AF_INET or AF_INET6. The
addr argument points to a buffer that holds an IPv4 address if the af argument is AF_INET. The
addr argument points to a buffer that holds an IPv6 address if the af argument is AF_INET6.
The address must be in network byte order. The cp argument points to a buffer where the
function stores the resulting string. The application must specify a non-NULL cp argument.
The size argument specifies the size of this buffer. For IPv6 addresses, the buffer must be at
least 46-octets. For IPv4 addresses, the buffer must be at least 16-octets. To allow applications
to easily declare buffers of the proper size to store IPv4 and IPv6 addresses in string form, the
following two constants are defined in <netinet/in.h>:

#define INET_ADDRSTRLEN 16

#define INET6_ADDRSTRLEN 46

The inet_pton() function converts the standard text presentation form of a function to the
numeric binary form. The af argument specifies the family of the address. Currently, the
AF_INET and AF_INET6 address families are supported. The cp argument points to the string
being passed in. The addr argument points to a buffer where the function stores the numeric
address. The calling application must ensure that the buffer referred to by addr is large enough
to hold the numeric address, at least 4 bytes for AF_INET or 16 bytes for AF_INET6.

Name

Synopsis

Description

inet(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 24 Mar 2011260

The inet_aton(), inet_addr(), and inet_network() functions interpret character strings
that represent numbers expressed in the IPv4 standard '.' notation, returning numbers
suitable for use as IPv4 addresses and IPv4 network numbers, respectively. The
inet_makeaddr() function uses an IPv4 network number and a local network address to
construct an IPv4 address. The inet_netof() and inet_lnaof() functions break apart IPv4
host addresses, then return the network number and local network address, respectively.

The inet_ntoa() function returns a pointer to a string in the base 256 notation d.d.d.d. See
the following section on IPv4 addresses.

Internet addresses are returned in network order, bytes ordered from left to right. Network
numbers and local address parts are returned as machine format integer values.

There are three conventional forms for representing IPv6 addresses as strings:

1. The preferred form is x:x:x:x:x:x:x:x, where the 'x's are the hexadecimal values of the
eight 16-bit pieces of the address. For example:

1080:0:0:0:8:800:200C:417A

It is not necessary to write the leading zeros in an individual field. There must be at least
one numeral in every field, except when the special syntax described in the following is
used.

2. It is common for addresses to contain long strings of zero bits in some methods used to
allocate certain IPv6 address styles. A special syntax is available to compress the zeros. The
use of “::” indicates multiple groups of 16 bits of zeros. The :: may only appear once in an
address. The :: can also be used to compress the leading and trailing zeros in an address.
For example:

1080::8:800:200C:417A

3. The alternative form x:x:x:x:x:x:d.d.d.d is sometimes more convenient when dealing
with a mixed environment of IPv4 and IPv6 nodes. The x's in this form represent the
hexadecimal values of the six high-order 16-bit pieces of the address. The d's represent the
decimal values of the four low-order 8-bit pieces of the standard IPv4 address. For
example:

::FFFF:129.144.52.38

::129.144.52.38

The ::FFFF:d.d.d.d and ::d.d.d.d pieces are the general forms of an IPv4–mapped
IPv6 address and an IPv4–compatible IPv6 address.

The IPv4 portion must be in the d.d.d.d form. The following forms are invalid:

::FFFF:d.d.d

::FFFF:d.d

::d.d.d

::d.d

IPv6 Addresses

inet(3SOCKET)

Networking Library Functions 261

The ::FFFF:d form is a valid but unconventional representation of the IPv4–compatible
IPv6 address ::255.255.0.d.

The ::d form corresponds to the general IPv6 address 0:0:0:0:0:0:0:d.

Values specified using ‘.' notation take one of the following forms:

d.d.d.d

d.d.d

d.d

d

When four parts are specified, each part is interpreted as a byte of data and assigned from left
to right to the four bytes of an IPv4 address.

When a three-part address is specified, the last part is interpreted as a 16-bit quantity and
placed in the right most two bytes of the network address. The three part address format is
convenient for specifying Class B network addresses such as 128.net.host.

When a two-part address is supplied, the last part is interpreted as a 24-bit quantity and placed
in the right most three bytes of the network address. The two part address format is
convenient for specifying Class A network addresses such as net.host.

When only one part is given, the value is stored directly in the network address without any
byte rearrangement.

With the exception of inet_pton(), numbers supplied as parts in '.' notation may be decimal,
octal, or hexadecimal, as specified in C language. For example, a leading 0x or 0X implies
hexadecimal. A leading 0 implies octal. Otherwise, the number is interpreted as decimal.

For IPv4 addresses, inet_pton() accepts only a string in standard IPv4 dot notation:

d.d.d.d

Each number has one to three digits with a decimal value between 0 and 255.

The inet_addr() function has been obsoleted by inet_aton().

The inet_aton() function returns nonzero if the address is valid, 0 if the address is invalid.

The inet_ntop() function returns a pointer to the buffer that contains a string if the
conversion succeeds. Otherwise, NULL is returned. Upon failure, errno is set to EAFNOSUPPORT

if the af argument is invalid or ENOSPC if the size of the result buffer is inadequate.

The inet_pton() function returns 1 if the conversion succeeds, 0 if the input is not a valid
IPv4 dotted-decimal string or a valid IPv6 address string. The function returns –1 with errno

set to EAFNOSUPPORT if the af argument is unknown.

The value INADDR_NONE, which is equivalent to (in_addr_t)(-1), is returned by inet_addr()
and inet_network() for malformed requests.

IPv4 Addresses

Return Values

inet(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 24 Mar 2011262

The functions inet_netof() and inet_lnaof() break apart IPv4 host addresses, returning
the network number and local network address part, respectively.

The function inet_ntoa() returns a pointer to a string in the base 256 notation d.d.d.d,
described in the section on IPv4 addresses.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability See below.

MT-Level Safe

The inet_ntop(), inet_pton(), inet_aton(), inet_addr(), and inet_network() functions
are Committed. The inet_lnaof(), inet_makeaddr(), inet_netof(), and inet_network()

functions are Committed (Obsolete).

gethostbyname(3NSL), getipnodebyname(3SOCKET), getnetbyname(3SOCKET),
inet.h(3HEAD), hosts(4), networks(4), attributes(5)

The return value from inet_ntoa() points to a buffer which is overwritten on each call. This
buffer is implemented as thread-specific data in multithreaded applications.

IPv4-mapped addresses are not recommended.

The problem of host byte ordering versus network byte ordering is confusing. A simple way to
specify Class C network addresses in a manner similar to that for Class B and Class A is
needed.

Attributes

See Also

Notes

Bugs

inet(3SOCKET)

Networking Library Functions 263

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1inet.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1hosts-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1networks-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

inet6_opt, inet6_opt_init, inet6_opt_append, inet6_opt_finish, inet6_opt_set_val,
inet6_opt_next, inet6_opt_find, inet6_opt_get_val – Option manipulation mechanism

cc [flag ...] file ... -lsocket [library...]
#include <netinet/in.h>

int inet6_opt_init(void *extbuf, socklen_t extlen);

int inet6_opt_append(void *extbuf, socklen_t extlen,
int offset, uint8_t type, socklen_t len, uint_t align,
void **databufp);

int inet6_opt_finish(void *extbuf, socklen_t extlen,
int offset);

int inet6_opt_set_val(void *databuf, int offset,
void *val, socklen_t vallen);

int inet6_opt_next(void *extbuf, socklen_t extlen,
int offset, uint8_t *typep, socklen_t *lenp,
void **databufp);

int inet6_opt_find(void *extbuf, socklen_t extlen, int offset,
uint8_t type, socklen_t *lenp, void **databufp);

intinet6_opt_get_val(void *databuf, int offset,
void *val, socklen_t *vallen);

The inet6_opt functions enable users to manipulate options without having to know the
structure of the option header.

The inet6_opt_init() function returns the number of bytes needed for the empty extension
header, that is, without any options. If extbuf is not NULL, it also initializes the extension header
to the correct length field. If the extlen value is not a positive non-zero multiple of 8, the
function fails and returns –1.

The inet6_opt_append() function returns the updated total length while adding an option
with length len and alignment align. If extbuf is not NULL, then, in addition to returning the
length, the function inserts any needed Pad option, initializes the option setting the type and
length fields, and returns a pointer to the location for the option content in databufp. If the
option does not fit in the extension header buffer, the function returns –1. The type is the 8–bit
option type. The len is the length of the option data, excluding the option type and option
length fields. Once inet6_opt_append() is called, the application can use the databuf directly,
or inet6_opt_set_val() can be used to specify the content of the option. The option type
must have a value from 2 to 255, inclusive. The values 0 and 1 are reserved for the Pad1 and
PadN options, respectively. The option data length must have a value between 0 and 255,
inclusive, and it is the length of the option data that follows. The align parameter must have a
value of 1, 2, 4, or 8. The align value cannot exceed the value of len.

The inet6_opt_finish() function returns the updated total length the takes into account the
final padding of the extension header to make it a multiple of 8 bytes. If extbuf is not NULL, the

Name

Synopsis

Description

inet6_opt(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 15 Feb 2007264

function also initializes the option by inserting a Pad1 or PadN option of the proper length. If
the necessary pad does not fit in the extension header buffer, the function returns –1.

The inet6_opt_set_val() function inserts data items of various sizes in the data portion of
the option. The val parameter should point to the data to be inserted. The offset specifies the
data portion of the option in which the value should be inserted. The first byte after the option
type and length is accessed by specifying an offset of zero.

The inet6_opt_next() function parses the received option extension headers which return
the next option. The extbuf and extlen parameters specify the extension header. The offset
should be zero for the first option or the length returned by a previous call to either
inet6_opt_next() or inet6_opt_find(). The offset specifies where to continue scanning the
extension buffer. The subsequent option is returned by updating typep, lenp, and databufp.
The typep argument stores the option type. The lenp argument stores the length of the option
data, excluding the option type and option length fields. The databufp argument points to the
data field of the option.

The inet6_opt_find() function is similar to the inet6_opt_next() function. Unlike
inet6_opt_next(), the inet6_opt_find() function enables the caller to specify the option
type to be searched for, rather than returning the next option in the extension header.

The inet6_opt_get_val() function extracts data items of various sizes in the portion of the
option. The val argument should point to the destination for the extracted data. The offset
specifies at which point in the option's data portion the value should be extracted. The first
byte following the option type and length is accessed by specifying an offset of zero.

The inet6_opt_init() function returns the number of bytes needed for the empty extension
header. If the extlen value is not a positive non-zero multiple of 8, the function fails and
returns –1.

The inet6_opt_append() function returns the updated total length.

The inet6_opt_finish() function returns the updated total length.

The inet6_opt_set_val() function returns the offset for the subsequent field.

The inet6_opt_next() function returns the updated “previous” length computed by
advancing past the option that was returned. When there are no additional options or if the
option extension header is malformed, the return value is –1.

The inet6_opt_find() function returns the updated “previous” total length. If an option of
the specified type is not located, the return value is –1. If the option extension header is
malformed, the return value is –1.

The inet6_opt_get_val() function returns the offset for the next field (that is, offset + vallen)
which can be used when extracting option content with multiple fields.

Return Values

inet6_opt(3SOCKET)

Networking Library Functions 265

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard See standards(5).

RFC 3542 – Advanced Sockets Application Programming Interface (API) for IPv6, The Internet
Society. May 2003

Attributes

See Also

inet6_opt(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 15 Feb 2007266

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

inet6_rth, inet6_rth_space, inet6_rth_init, inet6_rth_add, inet6_rth_reverse,
inet6_rth_segments, inet6_rth_getaddr – Routing header manipulation

cc [flag ...] file ... -lsocket [library]
#include <netinet/in.h>

socklen_t inet6_rth_space(int type, int segments);

void *inet6_rth_init(void *bp, socklen_t bp_len, int type, int segments);

int inet6_rth_add(void *bp, const struct, in6_addr *addr);

int inet6_rth_reverse(const void *in, void *out);

int inet6_rth_segments(const void *bp);

struct in6_addr *inet6_rth_getaddr(const void *bp, int index);

The inet6_rth functions enable users to manipulate routing headers without having
knowledge of their structure.

The iet6_rth_init() function initializes the buffer pointed to by bp to contain a routing
header of the specified type and sets ip6r_len based on the segments parameter. The bp_len
argument is used only to verify that the buffer is large enough. The ip6r_segleft field is set to
zero and inet6_rth_add() increments it. The caller allocates the buffer and its size can be
determined by calling inet6_rth_space().

The inet6_rth_add() function adds the IPv6 address pointed to by addr to the end of the
routing header that is being constructed.

The inet6_rth_reverse() function takes a routing header extension header pointed to by
the first argument and writes a new routing header that sends datagrams along the reverse of
the route. The function reverses the order of the addresses and sets the segleft member in the
new routing header to the number of segments. Both arguments can point to the same buffer
(that is, the reversal can occur in place).

The inet6_rth_segments() function returns the number of segments (addresses) contained
in the routing header described by bp.

The inet6_rth_getaddr() function returns a pointer to the IPv6 address specified by index,
which must have a value between 0 and one less than the value returned by
inet6_rth_segments() in the routing header described by bp. Applications should first call
inet6_rth_segments() to obtain the number of segments in the routing header.

The inet6_rth_space() function returns the size, but the function does not allocate the space
required for the ancillary data routing header.

To receive a routing header, the application must enable the IPV6_RECVRTHDR socket option:

int on = 1;

setsockopt (fd, IPPROTO_IPV6, IPV6_RECVRTHDR, &on, sizeof(on));

Name

Synopsis

Description

Routing Headers

inet6_rth(3SOCKET)

Networking Library Functions 267

Each received routing header is returned as one ancillary data object described by a cmsghdr
structure with cmsg_type set to IPV6_RTHDR.

To send a routing header, the application specifies it either as ancillary data in a call to
sendmsg() or by using setsockopt(). For the sending side, this API assumes the number of
occurrences of the routing header as described in RFC-2460. Applications can specify no more
than one outgoing routing header.

The application can remove any sticky routing header by calling setsockopt() for
IPV6_RTHDR with a zero option length.

When using ancillary data, a routing header is passed between the application and the kernel
as follows: The cmsg_level member has a value of IPPROTO_IPV6 and the cmsg_type member
has a value of IPV6_RTHDR. The contents of the cmsg_data member is
implementation-dependent and should not be accessed directly by the application, but should
be accessed using the inet6_rth functions.

The following constant is defined as a result of including the <netinet/in.h>:

#define IPV6_RTHDR_TYPE_0 0 /* IPv6 Routing header type 0 */

Source routing in IPv6 is accomplished by specifying a routing header as an extension header.
There are a number of different routing headers, but IPv6 currently defines only the Type 0
header. See RFC-2460. The Type 0 header supports up to 127 intermediate nodes, limited by
the length field in the extension header. With this maximum number of intermediate nodes, a
source, and a destination, there are 128 hops.

The inet6_rth_init() function returns a pointer to the buffer (bp) upon success.

For the inet6_rth_add() function, the segleft member of the routing header is updated to
account for the new address in the routing header. The function returns 0 upon success and –1

upon failure.

The inet6_rth_reverse() function returns 0 upon success or –1 upon an error.

The inet6_rth_segments() function returns 0 or greater upon success and –1 upon an error.

The inet6_rth_getaddr() function returns NULL upon an error.

The inet6_rth_space() function returns the size of the buffer needed for the routing header.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

ROUTING HEADER
OPTION

Return Values

Attributes

inet6_rth(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 15 Feb 2007268

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Standard See standards(5).

RFC 3542– Advanced Sockets Application Programming Interface (API) for IPv6, The Internet
Society. May 2003

See Also

inet6_rth(3SOCKET)

Networking Library Functions 269

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

inet_addr, inet_network, inet_makeaddr, inet_lnaof, inet_netof, inet_ntoa – Internet address
manipulation

cc [flag ...] file ... -lxnet [library ...]

#include <arpa/inet.h>

in_addr_t inet_addr(const char *cp);

in_addr_t inet_lnaof(struct in_addr in);

struct in_addr inet_makeaddr(in_addr_t net, in_addr_t lna);

in_addr_t inet_netof(struct in_addr in);

in_addr_t inet_network(const char *cp);

char *inet_ntoa(struct in_addr in);

The inet_addr() function converts the string pointed to by cp, in the Internet standard dot
notation, to an integer value suitable for use as an Internet address.

The inet_lnaof() function takes an Internet host address specified by in and extracts the
local network address part, in host byte order.

The inet_makeaddr() function takes the Internet network number specified by net and the
local network address specified by lna, both in host byte order, and constructs an Internet
address from them.

The inet_netof() function takes an Internet host address specified by in and extracts the
network number part, in host byte order.

The inet_network() function converts the string pointed to by cp, in the Internet standard
dot notation, to an integer value suitable for use as an Internet network number.

The inet_ntoa() function converts the Internet host address specified by in to a string in the
Internet standard dot notation.

All Internet addresses are returned in network order (bytes ordered from left to right).

Values specified using dot notation take one of the following forms:

a.b.c.d When four parts are specified, each is interpreted as a byte of data and assigned,
from left to right, to the four bytes of an Internet address.

a.b.c When a three-part address is specified, the last part is interpreted as a 16-bit
quantity and placed in the rightmost two bytes of the network address. This
makes the three-part address format convenient for specifying Class B network
addresses as 128.net.host.

Name

Synopsis

Description

inet_addr(3XNET)

man pages section 3: Networking Library Functions • Last Revised 10 Jun 2002270

a.b When a two-part address is supplied, the last part is interpreted as a 24-bit
quantity and placed in the rightmost three bytes of the network address. This
makes the two-part address format convenient for specifying Class A network
addresses as net.host.

a When only one part is given, the value is stored directly in the network address
without any byte rearrangement.

All numbers supplied as parts in dot notation may be decimal, octal, or hexadecimal, that is, a
leading 0x or 0X implies hexadecimal, as specified in the ISO C standard; otherwise, a leading
0 implies octal; otherwise, the number is interpreted as decimal.

The return value of inet_ntoa() may point to static data that may be overwritten by
subsequent calls to inet_ntoa().

Upon successful completion, inet_addr() returns the Internet address. Otherwise, it returns
(in_addr_t)(−1).

Upon successful completion, inet_network() returns the converted Internet network
number. Otherwise, it returns (in_addr_t)(−1).

The inet_makeaddr() function returns the constructed Internet address.

The inet_lnaof() function returns the local network address part.

The inet_netof() function returns the network number.

The inet_ntoa() function returns a pointer to the network address in Internet-standard dot
notation.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

endhostent(3XNET), endnetent(3XNET), attributes(5), standards(5)

Usage

Return Values

Errors

Attributes

See Also

inet_addr(3XNET)

Networking Library Functions 271

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

inet_cidr_ntop, inet_cidr_pton – network translation routines

cc [flag...] file... -lresolv -lsocket -lnsl [library...]
#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

char *inet_cidr_ntop(int af, const void *src, int bits, char *dst,
size_t size);

int inet_cidr_pton(int af, const char *src, void *dst, int *bits);

These routines are used for converting addresses to and from network and presentation forms
with CIDR (Classless Inter-Domain Routing) representation, embedded net mask.

The inet_cidr_ntop() function converts an address from network to presentation format.

The af parameter describes the type of address that is being passed in src. Currently only
AF_INET is supported.

The src parameter is an address in network byte order, its length is determined from af.

The bits parameter specifies the number of bits in the netmask unless it is -1 in which case the
CIDR representation is omitted.

The dst parameter is a caller supplied buffer of at least size bytes.

The inet_cidr_ntop() function returns dst on success or NULL. Check errno for reason.

The inet_cidr_pton() function converts and address from presentation format, with
optional CIDR representation, to network format. The resulting address is zero filled if there
were insufficient bits in src.

The af parameter describes the type of address that is being passed in via src and determines
the size of dst.

The src parameter is an address in presentation format.

The bits parameter returns the number of bits in the netmask or -1 if a CIDR representation
was not supplied.

The inet_cidr_pton() function returns 0 on success or -1 on error. Check errno for reason.
ENOENT indicates an invalid netmask.

See attributes(5) for descriptions of the following attributes:

Name

Synopsis

Description

Attributes

inet_cidr_ntop(3RESOLV)

man pages section 3: Networking Library Functions • Last Revised 11 Nov 2009272

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Intro(2), attributes(5)See Also

inet_cidr_ntop(3RESOLV)

Networking Library Functions 273

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

inet_ntop, inet_pton – convert IPv4 and IPv6 addresses between binary and text form

cc [flag ...] file ... -lxnet [library ...]

#include <arpa/inet.h>

const char *inet_ntop(int af, const void *restrict src,
char *restrict dst, socklen_t size);

int inet_pton(int af, const char *restrict src, dst);

The inet_ntop() function converts a numeric address into a text string suitable for
presentation. The af argument specifies the family of the address. This can be AF_INET or
AF_INET6. The src argument points to a buffer holding an IPv4 address if the af argument is
AF_INET, or an IPv6 address if the af argument is AF_INET6. The dst argument points to a
buffer where the function stores the resulting text string; it cannot be NULL. The size argument
specifies the size of this buffer, which must be large enough to hold the text string
(INET_ADDRSTRLEN characters for IPv4, INET6_ADDRSTRLEN characters for IPv6).

The inet_pton() function converts an address in its standard text presentation form into its
numeric binary form. The af argument specifies the family of the address. The AF_INET and
AF_INET6 address families are supported. The src argument points to the string being passed
in. The dst argument points to a buffer into which the function stores the numeric address;
this must be large enough to hold the numeric address (32 bits for AF_INET, 128 bits for
AF_INET6).

If the af argument of inet_pton() is AF_INET, the src string is in the standard IPv4
dotted-decimal form:

ddd.ddd.ddd.ddd

where “ddd”is a one to three digit decimal number between 0 and 255 (see
inet_addr(3XNET)). The inet_pton() function does not accept other formats (such as the
octal numbers, hexadecimal numbers, and fewer than four numbers that inet_addr()
accepts).

If the af argument of inet_pton() is AF_INET6, the src string is in one of the following
standard IPv6 text forms:

1. The preferred form is “x:x:x:x:x:x:x:x”, where the 'x's are the hexadecimal values of the
eight 16-bit pieces of the address. Leading zeros in individual fields can be omitted, but
there must be at least one numeral in every field.

2. A string of contiguous zero fields in the preferred form can be shown as “::”. The “::” can
only appear once in an address. Unspecified addresses (“0:0:0:0:0:0:0:0”) can be
represented simply as “::”.

3. A third form that is sometimes more convenient when dealing with a mixed environment
of IPv4 and IPv6 nodes is “x:x:x:x:x:x:d.d.d.d”, where the 'x's are the hexadecimal
values of the six high-order 16-bit pieces of the address, and the 'd's are the decimal values
of the four low-order 8-bit pieces of the address (standard IPv4 representation).

Name

Synopsis

Description

inet_ntop(3XNET)

man pages section 3: Networking Library Functions • Last Revised 1 Nov 2003274

A more extensive description of the standard representations of IPv6 addresses can be found
in RFC 2373.

The inet_ntop() function returns a pointer to the buffer containing the text string if the
conversion succeeds. Otherwise it returns NULL and sets errno to indicate the error.

The inet_pton() function returns 1 if the conversion succeeds, with the address pointed to by
dst in network byte order. It returns 0 if the input is not a valid IPv4 dotted-decimal string or a
valid IPv6 address string. It returns −1 and sets errno to EAFNOSUPPORT if the af argument is
unknown.

The inet_ntop() and inet_pton() functions will fail if:

EAFNOSUPPORT The af argument is invalid.

ENOSPC The size of the inet_ntop() result buffer is inadequate.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

inet_addr(3XNET), attributes(5)

Return Values

Errors

Attributes

See Also

inet_ntop(3XNET)

Networking Library Functions 275

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap – Lightweight Directory Access Protocol package

cc[flag...] file... -lldap[library...]

#include <lber.h>

#include <ldap.h>

The Lightweight Directory Access Protocol (“LDAP”) package (SUNWlldap) includes various
command line LDAP clients and a LDAP client library to provide programmatic access to the
LDAP protocol. This man page gives an overview of the LDAP client library functions.

An application might use the LDAP client library functions as follows. The application would
initialize a LDAP session with a LDAP server by calling ldap_init(3LDAP). Next, it
authenticates to the LDAP server by calling ldap_sasl_bind(3LDAP) and friends. It may
perform some LDAP operations and obtain results by calling ldap_search(3LDAP) and
friends. To parse the results returned from these functions, it calls
ldap_parse_result(3LDAP),ldap_next_entry(3LDAP), and ldap_first_entry(3LDAP)
and others. It closes the LDAP session by calling ldap_unbind(3LDAP).

LDAP operations can be either synchronous or asynchronous. By convention, the names of
the sychronous functions end with “_s.” For example, a synchronous binding to the LDAP
server can be performed by calling ldap_sasl_bind_s(3LDAP). Complete an asynchronous
binding with ldap_sasl_bind(3LDAP). All synchronous functions return the actual outcome
of the operation, either LDAP_SUCCESS or an error code. Asynchronous routines provide an
invocation identifier which can be used to obtain the result of a specific operation by passing it
to theldap_result(3LDAP) function.

Initializing a LDAP session involves calling the ldap_init(3LDAP) function. However, the
call does not actually open a connection to the LDAP server. It merely initializes a LDAP
structure that represents the session. The connection is opened when the first operation is
attempted. Unlike ldap_init(), ldap_open(3LDAP) attempts to open a connection with the
LDAP server. However, the use of ldap_open() is deprecated.

The ldap_sasl_bind(3LDAP) and ldap_sasl_bind_s(3LDAP) functions provide general
and extensible authenticaton for an LDAP client to a LDAP server. Both use the Simple
Authentication Security Layer (SASL). Simplified routines ldap_simple_bind(3LDAP) and
ldap_simple_bind_s(3LDAP) use cleartext passwords to bind to the LDAP server. Use of
ldap_bind(3LDAP) and ldap_bind_s(3LDAP)(3LDAP) is deprecated.

Search for an entry in a LDAP directory by calling the ldap_search_ext(3LDAP) or the
ldap_search_ext_s(3LDAP) functions. These functions support LDAPv3 server controls,
client controls and variable size and time limits as arguments for each search operation.
ldap_search(3LDAP) and ldap_search_s(3LDAP) are identical functions but do not
support the controls and limits as arguments to the call.

Name

Synopsis

Description

Initializing a LDAP
session

Authenticating to a
LDAP server

Searching a LDAP
directory

ldap(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011276

Use ldap_add_ext(3LDAP) and ldap_delete_ext(3LDAP) to add or delete entries in a
LDAP directory server. The synchronous counterparts to these functions are
ldap_add_ext_s(3LDAP) and ldap_delete_ext_s(3LDAP). The ldap_add(3LDAP),
ldap_add_s(3LDAP), ldap_delete(3LDAP), and ldap_delete_s(3LDAP) provide identical
functionality to add and to delete entries, but they do not support LDAP v3 server and client
controls.

Use ldap_modify_ext(3LDAP) and ldap_modify_ext_s(3LDAP) to modify an existing entry
in a LDAP server that supports for LDAPv3 server and client controls. Similarly, use
ldap_rename(3LDAP) and ldap_rename_s(3LDAP) to change the name of an LDAP entry.
The ldap_modrdn(3LDAP), ldap_modrdn_s(3LDAP), ldap_modrdn2(3LDAP) and
ldap_modrdn2_s(3LDAP) interfaces are deprecated.

Use ldap_result(3LDAP) to obtain the results of a previous asynchronous operation. For all
LDAP operations other than search, only one message is returned. For the search operation, a
list of result messages can be returned.

Use the ldap_parse_result(3LDAP), ldap_parse_sasl_bind_result(3LDAP), and the
ldap_parse_extended_result(3LDAP) functions to extract required information from
results and and to handle the returned errors. To covert a numeric error code into a
null-terminated character string message describing the error, use
ldap_err2string(3LDAP). The ldap_result2error(3LDAP) and ldap_perror(3LDAP)
functions are deprecated. To step through the list of messages in a result returned by
ldap_result(), use ldap_first_message(3LDAP) and ldap_next_message(3LDAP).
ldap_count_messages(3LDAP) returns the number of messages contained in the list.

You can use ldap_first_entry(3LDAP) and ldap_next_entry(3LDAP) to step through and
obtain a list of entries from a list of messages returned by a search result.
ldap_count_entries(3LDAP) returns the number of entries contained in a list of messages.
Call either ldap_first_attribute(3LDAP) and ldap_next_attribute(3LDAP) to step
through a list of attributes associated with an entry. Retrieve the values of a given attribute by
calling ldap_get_values(3LDAP) and ldap_get_values_len(3LDAP). Count the number of
values returned by using ldap_count_values(3LDAP) and
ldap_count_values_len(3LDAP).

Use the ldap_get_lang_values(3LDAP) and ldap_get_lang_values_len(3LDAP) to
return an attribute's values that matches a specified language subtype. The
ldap_get_lang_values() function returns an array of an attribute's string values that
matches a specified language subtype. To retrieve the binary data from an attribute, call the
ldap_get_lang_values_len() function instead.

You can use the ldap_url(3LDAP)functions to test a URL to verify that it is an LDAP URL, to
parse LDAP URLs into their component pieces, to initiate searches directly using an LDAP
URL, and to retrieve the URL associated with a DNS domain name or a distinguished name.

Adding or Deleting an
entry

Modifying Entries

Obtaining Results

Handling Errors and
Parsing Results

Uniform Resource
Locators (URLS)

ldap(3LDAP)

Networking Library Functions 277

The ldap_ufn(3LDAP) functions implement a user friendly naming scheme by means of
LDAP. This scheme allows you to look up entries using fuzzy, untyped names like “mark
smith, umich, us”.

The ldap_memcache(3LDAP) functions provide an in-memory client side cache to store
search requests. Caching improves performance and reduces network bandwidth when a
client makes repeated requests.

There are also various utility functions. You can use the ldap_sort(3LDAP) functions are
used to sort the entries and values returned by means of the ldap search functions. The
ldap_friendly(3LDAP) functions will map from short two letter country codes or other
strings to longer “friendlier” names. Use the ldap_charset(3LDAP) functions to translate to
and from the T.61 character set that is used for many character strings in the LDAP protocol.

Make calls to ldap_init_getfilter(3LDAP) and ldap_search(3LDAP) to generate filters to
be used in ldap_search(3LDAP) and ldap_search_s(3LDAP). ldap_init_getfilter()
reads ldapfilter.conf(4), the LDAP configuration file, while ldap_init_getfilter_buf()
reads the configuration information from buf of length buflen.
ldap_getfilter_free(3LDAP) frees memory that has been allocated by means of
ldap_init_getfilter().

The LDAP package includes a set of lightweight Basic Encoding Rules (“BER)” functions. The
LDAP library functions use the BER functions to encode and decode LDAP protocol elements
through the slightly simplified BER defined by LDAP. They are not normally used directly by
an LDAP application program will not normally use the BER functions directly. Instead, these
functions provide a printf() and scanf()-like interface, as well as lower-level access.

ldap_open(3LDAP) Deprecated. Use ldap_init(3LDAP).

ldap_init(3LDAP) Initialize a session with a LDAP server without
opening a connection to a server.

ldap_result(3LDAP) Obtain the result from a previous
asynchronous operation.

ldap_abandon(3LDAP) Abandon or abort an asynchronous operation.

ldap_add(3LDAP) Asynchronously add an entry

ldap_add_s(3LDAP) Synchronously add an entry.

ldap_add_ext(3LDAP) Asynchronously add an entry with support for
LDAPv3 controls.

ldap_add_ext_s(3LDAP) Synchronously add an entry with support for
LDAPv3 controls.

ldap_bind(3LDAP) Deprecated. Use ldap_sasl_bind(3LDAP) or
ldap_simple_bind(3LDAP).

User Friendly Naming

Caching

Utility Functions

Generating Filters

BER Library

List Of Interfaces

ldap(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011278

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldapfilter.conf-4

ldap_sasl_bind(3LDAP) Asynchronously bind to the directory using
SASL authentication

ldap_sasl_bind_s(3LDAP) Synchronously bind to the directory using
SASL authentication

ldap_bind_s(3LDAP) Deprecated. Use ldap_sasl_bind_s(3LDAP)
or ldap_simple_bind_s(3LDAP).

ldap_simple_bind(3LDAP) Asynchronously bind to the directory using
simple authentication.

ldap_simple_bind_s(3LDAP) Synchronously bind to the directory using
simple authentication.

ldap_unbind(3LDAP) Synchronously unbind from the LDAP server,
close the connection, and dispose the session
handle.

ldap_unbind_ext(3LDAP) Synchronously unbind from the LDAP server
and close the connection. ldap_unbind_ext()
allows you to explicitly include both server and
client controls in the unbind request.

ldap_set_rebind_proc(3LDAP) Set callback function for obtaining credentials
from a referral.

ldap_memcache_init(3LDAP) Create the in-memory client side cache.

ldap_memcache_set(3LDAP) Associate an in-memory cache that has been
already created by calling the
ldap_memcache_init(3LDAP) function with
an LDAP connection handle.

ldap_memcache_get(3LDAP) Get the cache associated with the specified
LDAP structure.

ldap_memcache_flush(3LDAP) Flushes search requests from the cache.

ldap_memcache_destroy(3LDAP) Frees the specified LDAPMemCache structure
pointed to by cache from memory.

ldap_memcache_update(3LDAP) Checks the cache for items that have expired
and removes them.

ldap_compare(3LDAP) Asynchronous compare with a directory entry.

ldap_compare_s(3LDAP) Synchronous compare with a directory entry.

ldap_compare_ext(3LDAP) Asynchronous compare with a directory entry,
with support for LDAPv3 controls.

ldap(3LDAP)

Networking Library Functions 279

ldap_compare_ext_s(3LDAP) Synchronous compare with a directory entry,
with support for LDAPv3 controls.

ldap_control_free(3LDAP) Dispose of an LDAP control.

ldap_controls_free(3LDAP) Dispose of an array of LDAP controls.

ldap_delete(3LDAP) Asynchronously delete an entry.

ldap_delete_s(3LDAP) Synchronously delete an entry.

ldap_delete_ext(3LDAP) Asynchronously delete an entry, with support
for LDAPv3 controls.

ldap_delete_ext_s(3LDAP) Synchronously delete an entry, with support
for LDAPv3 controls.

ldap_init_templates(3LDAP) Read a sequence of templates from a LDAP
template configuration file.

ldap_init_templates_buf(3LDAP) Read a sequence of templates from a buffer.

ldap_free_templates(3LDAP) Dispose of the templates allocated.

ldap_first_reference(3LDAP) Step through a list of continuation references
from a search result.

ldap_next_reference(3LDAP) Step through a list of continuation references
from a search result.

ldap_count_references(3LDAP) Count the number of messages in a search
result.

ldap_first_message(3LDAP) Step through a list of messages in a search
result.

ldap_count_messages(3LDAP) Count the messages in a list of messages in a
search result.

ldap_next_message(3LDAP) Step through a list of messages in a search
result.

ldap_msgtype(3LDAP) Return the type of LDAP message.

ldap_first_disptmpl(3LDAP) Get first display template in a list.

ldap_next_disptmpl(3LDAP) Get next display template in a list.

ldap_oc2template(3LDAP) Return template appropriate for the
objectclass.

ldap_name2template(3LDAP) Return named template

ldap_tmplattrs(3LDAP) Return attributes needed by the template.

ldap(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011280

ldap_first_tmplrow(3LDAP) Return first row of displayable items in a
template.

ldap_next_tmplrow(3LDAP) Return next row of displayable items in a
template.

ldap_first_tmplcol(3LDAP) Return first column of displayable items in a
template.

ldap_next_tmplcol(3LDAP) Return next column of displayable items in a
template.

ldap_entry2text(3LDAP) Display an entry as text by using a display
template.

ldap_entry2text_search(3LDAP) Search for and display an entry as text by using
a display template.

ldap_vals2text(3LDAP) Display values as text.

ldap_entry2html(3LDAP) Display an entry as HTML (HyperText Markup
Language) by using a display template.

ldap_entry2html_search(3LDAP) Search for and display an entry as HTML by
using a display template.

ldap_vals2html(3LDAP) Display values as HTML.

ldap_perror(3LDAP) Deprecated. Use
ldap_parse_result(3LDAP).

ldap_result2error(3LDAP) Deprecated. Use
ldap_parse_result(3LDAP).

ldap_err2string(3LDAP) Convert LDAP error indication to a string.

ldap_first_attribute(3LDAP) Return first attribute name in an entry.

ldap_next_attribute(3LDAP) Return next attribute name in an entry.

ldap_first_entry(3LDAP) Return first entry in a chain of search results.

ldap_next_entry(3LDAP) Return next entry in a chain of search results.

ldap_count_entries(3LDAP) Return number of entries in a search result.

ldap_friendly_name(3LDAP) Map from unfriendly to friendly names.

ldap_free_friendlymap(3LDAP) Free resources used by
ldap_friendly(3LDAP).

ldap_get_dn(3LDAP) Extract the DN from an entry.

ldap_explode_dn(3LDAP) Convert a DN into its component parts.

ldap(3LDAP)

Networking Library Functions 281

ldap_explode_dns(3LDAP) Convert a DNS-style DN into its component
parts (experimental).

ldap_is_dns_dn(3LDAP) Check to see if a DN is a DNS-style DN
(experimental).

ldap_dns_to_dn(3LDAP) Convert a DNS domain name into an X.500
distinguished name.

ldap_dn2ufn(3LDAP) Convert a DN into user friendly form.

ldap_get_values(3LDAP) Return an attribute's values.

ldap_get_values_len(3LDAP) Return an attribute's values with lengths.

ldap_value_free(3LDAP) Free memory allocated by
ldap_get_values(3LDAP).

ldap_value_free_len(3LDAP) Free memory allocated by
ldap_get_values_len(3LDAP).

ldap_count_values(3LDAP) Return number of values.

ldap_count_values_len(3LDAP) Return number of values.

ldap_init_getfilter(3LDAP) Initialize getfilter functions from a file.

ldap_init_getfilter_buf(3LDAP) Initialize getfilter functions from a buffer.

ldap_getfilter_free(3LDAP) Free resources allocated by
ldap_init_getfilter(3LDAP).

ldap_getfirstfilter(3LDAP) Return first search filter.

ldap_getnextfilter(3LDAP) Return next search filter.

ldap_build_filter(3LDAP) Construct an LDAP search filter from a
pattern.

ldap_setfilteraffixes(3LDAP) Set prefix and suffix for search filters.

ldap_modify(3LDAP) Asynchronously modify an entry.

ldap_modify_s(3LDAP) Synchronously modify an entry.

ldap_modify_ext(3LDAP) Asynchronously modify an entry, return value,
and place message.

ldap_modify_ext_s(3LDAP) Synchronously modify an entry, return value,
and place message.

ldap_mods_free(3LDAP) Free array of pointers to mod structures used
by ldap_modify(3LDAP).

ldap(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011282

ldap_modrdn2(3LDAP) Deprecated. Use ldap_rename(3LDAP)
instead.

ldap_modrdn2_s(3LDAP) Deprecated. Use ldap_rename_s(3LDAP)
instead.

ldap_modrdn(3LDAP) Deprecated. Use ldap_rename(3LDAP)
instead.

ldap_modrdn_s(3LDAP) Depreciated. Use ldap_rename_s(3LDAP)
instead.

ldap_rename(3LDAP) Asynchronously modify the name of an LDAP
entry.

ldap_rename_s(3LDAP) Synchronously modify the name of an LDAP
entry.

ldap_msgfree(3LDAP) Free result messages.

ldap_parse_result(3LDAP) Search for a message to parse.

ldap_parse_extended_result(3LDAP) Search for a message to parse.

ldap_parse_sasl_bind_result(3LDAP) Search for a message to parse.

ldap_search(3LDAP) Asynchronously search the directory.

ldap_search_s(3LDAP) Synchronously search the directory.

ldap_search_ext(3LDAP) Asynchronously search the directory with
support for LDAPv3 controls.

ldap_search_ext_s(3LDAP) Synchronously search the directory with
support for LDAPv3 controls.

ldap_search_st(3LDAP) Synchronously search the directory with
support for a local timeout value.

ldap_ufn_search_s(3LDAP) User friendly search the directory.

ldap_ufn_search_c(3LDAP) User friendly search the directory with cancel.

ldap_ufn_search_ct(3LDAP) User friendly search the directory with cancel
and timeout.

ldap_ufn_setfilter(3LDAP) Set filter file used by ldap_ufn(3LDAP)
functions.

ldap_ufn_setprefix(3LDAP) Set prefix used by ldap_ufn(3LDAP)
functions.

ldap(3LDAP)

Networking Library Functions 283

ldap_ufn_timeout(3LDAP) Set timeout used by ldap_ufn(3LDAP)
functions.

ldap_is_ldap_url(3LDAP) Check a URL string to see if it is an LDAP URL.

ldap_url_parse(3LDAP) Break up an LDAP URL string into its
components.

ldap_free_urldesc(3LDAP) Free an LDAP URL structure.

ldap_url_search(3LDAP) Asynchronously search by using an LDAP
URL.

ldap_url_search_s(3LDAP) Synchronously search by using an LDAP URL.

ldap_url_search_st(3LDAP) Asynchronously search by using an LDAP
URL, with support for a local timeout value.

ldap_dns_to_url(3LDAP) Locate the LDAP URL associated with a DNS
domain name.

ldap_dn_to_url(3LDAP) Locate the LDAP URL associated with a
distinguished name.

ldap_init_searchprefs(3LDAP) Initialize searchprefs functions from a file.

ldap_init_searchprefs_buf(3LDAP) Initialize searchprefs functions from a buffer.

ldap_free_searchprefs(3LDAP) Free memory allocated by searchprefs
functions.

ldap_first_searchobj(3LDAP) Return first searchpref object.

ldap_next_searchobj(3LDAP) Return next searchpref object.

ldap_sort_entries(3LDAP) Sort a list of search results.

ldap_sort_values(3LDAP) Sort a list of attribute values.

ldap_sort_strcasecmp(3LDAP) Case insensitive string comparison.

ldap_set_string_translators(3LDAP) Set character set translation functions used by
LDAP library.

ldap_translate_from_t61(3LDAP) Translate from the T.61 character set to
another character set.

ldap_translate_to_t61(3LDAP) Translate to the T.61 character set from
another character set.

ldap_enable_translation(3LDAP) Enable or disable character translation for an
LDAP entry result.

ldap(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011284

ldap_version(3LDAP) Get version information about the LDAP SDK
for C.

ldap_get_lang_values(3LDAP) Return an attribute's value that matches a
specified language subtype.

ldap_get_lang_values_len(3LDAP) Return an attribute's value that matches a
specified language subtype along with lengths.

ldap_get_entry_controls(3LDAP) Get the LDAP controls included with a
directory entry in a set of search results.

ldap_get_option(3LDAP) Get session preferences in an LDAP structure.

ldap_set_option(3LDAP) Set session preferences in an LDAP structure.

ldap_memfree(3LDAP) Free memory allocated by LDAP API
functions.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

attributes(5)

Attributes

See Also

ldap(3LDAP)

Networking Library Functions 285

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_abandon – abandon an LDAP operation in progress

cc[flag...] file... -lldap[library...]

#include <lber.h>

#include <ldap.h>

int ldap_abandon(LDAP *ld, int msgid);

The ldap_abandon() function is used to abandon or cancel an LDAP operation in progress.
The msgid passed should be the message id of an outstanding LDAP operation, as returned by
ldap_search(3LDAP), ldap_modify(3LDAP), etc.

ldap_abandon() checks to see if the result of the operation has already come in. If it has, it
deletes it from the queue of pending messages. If not, it sends an LDAP abandon operation to
the the LDAP server.

The caller can expect that the result of an abandoned operation will not be returned from a
future call to ldap_result(3LDAP).

ldap_abandon() returns 0 if successful or −1otherwise and setting ld_errno appropriately. See
ldap_error(3LDAP) for details.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap(3LDAP), ldap_result(3LDAP), ldap_error(3LDAP), attributes(5)

Name

Synopsis

Description

Errors

Attributes

See Also

ldap_abandon(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011286

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_add, ldap_add_s, ldap_add_ext, ldap_add_ext_s – perform an LDAP add operation

cc [flag...] file... -lldap [library...]

#include <lber.h>

#include <ldap.h>

int ldap_add(LDAP *ld, char *dn, LDAPMod *attrs[]);

int ldap_add_s(LDAP *ld, char *dn, LDAPMod *attrs[]);

int ldap_add_ext(LDAP *ld, char *dn, LDAPMod **attrs,
LDAPControl **serverctrls, int * msgidp);

int ldap_add_ext_s(LDAP *ld, char *dn, LDAPMod **attrs,
LDAPControl **serverctrls, LDAPControl **clientctrls);

The ldap_add_s() function is used to perform an LDAP add operation. It takes dn, the DN of
the entry to add, and attrs, a null-terminated array of the entry's attributes. The LDAPMod
structure is used to represent attributes, with the mod_type and mod_values fields being used
as described under ldap_modify(3LDAP), and the ldap_op field being used only if you need to
specify the LDAP_MOD_BVALUES option. Otherwise, it should be set to zero.

Note that all entries except that specified by the last component in the given DN must already
exist. ldap_add_s() returns an LDAP error code indicating success or failure of the operation.
See ldap_error(3LDAP) for more details.

The ldap_add() function works just like ldap_add_s(), but it is asynchronous. It returns the
message id of the request it initiated. The result of this operation can be obtained by calling
ldap_result(3LDAP).

The ldap_add_ext() function initiates an asynchronous add operation and returns
LDAP_SUCCESS if the request was successfully sent to the server, or else it returns a LDAP error
code if not (see ldap_error(3LDAP)). If successful, ldap_add_ext() places the message id
of *msgidp. A subsequent call to ldap_result(), can be used to obtain the result of the add
request.

The ldap_add_ext_s() function initiates a synchronous add operation and returns the result
of the operation itself.

ldap_add() returns −1 in case of error initiating the request, and will set the ld_errno field in
the ld parameter to indicate the error. ldap_add_s() will return an LDAP error code directly.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

Name

Synopsis

Description

Errors

Attributes

ldap_add(3LDAP)

Networking Library Functions 287

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap(3LDAP), ldap_error(3LDAP), ldap_modify(3LDAP), attributes(5)See Also

ldap_add(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011288

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_ber_free – free a BerElement structure from memory

cc flag... file... -lldap [library ...]
#include <ldap.h>

void ldap_ber_free(BerElement *ber, int freebuf);

You can make a call to the ldap_ber_free() function to free BerElement structures allocated
by ldap_first_attribute() and by ldap_next_attribute() function calls. When freeing
structures allocated by these functions, specify 0 for the freebuf argument. The
ldap_first_attribute() and by ldap_next_attribute() functions do not allocate the
extra buffer in the BerElement structure.

For example, to retrieve attributes from a search result entry, you need to call the
ldap_first_attribute() function. A call to this function allocates a BerElement structure,
which is used to help track the current attribute. When you are done working with the
attributes, this structure should be freed from memory, if it still exists.

This function is deprecated . Use the ber_free() function instead.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ber_free(3LDAP), ldap_first_attribute(3LDAP), ldap_next_attribute(3LDAP),
attributes(5)

Name

Synopsis

Description

Attributes

See Also

ldap_ber_free(3LDAP)

Networking Library Functions 289

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_bind, ldap_bind_s, ldap_sasl_bind, ldap_sasl_bind_s, ldap_simple_bind,
ldap_simple_bind_s, ldap_unbind, ldap_unbind_s, ldap_unbind_ext, ldap_set_rebind_proc,
ldap_sasl_interactive_bind_s – LDAP bind functions

cc [flag...] file... -lldap [library...]

#include <lber.h>

#include <ldap.h>

int ldap_bind(LDAP *ld, char *who, char *cred, int method);

int ldap_bind_s(LDAP *ld, char *who, char *cred, int method);

int ldap_simple_bind(LDAP *ld, char *who, char *passwd);

int ldap_simple_bind_s(LDAP *ld, char *who, char *passwd);

int ldap_unbind(LDAP *ld);

int ldap_unbind_s(LDAP *ld);

int ldap_unbind_ext(LDAP *ld, LDAPControl **serverctrls,
LDAPControl **clientctrls);

void ldap_set_rebind_proc(LDAP *ld, int (*rebindproc));

int ldap_sasl_bind(LDAP *ld, char *dn, char *mechanism,

struct berval **serverctrls, LDAPControl **clientctrls,
int *msgidp);

int ldap_sasl_bind_s(LDAP *ld, char *dn, char *mechanism,

struct berval *cred, LDAPControl **serverctrls,
LDAPControl **clientctrls);

int ldap_sasl_interactive_bind_s(LDAP *ld, char *dn,
char *saslMechanism, LDAPControl **sctrl,
LDAPControl **cctrl, unsigned flags,
LDAP_SASL_INTERACT_PROC *callback, void *defaults);

These functions provide various interfaces to the LDAP bind operation. After a connection is
made to an LDAP server, the ldap_bind() function returns the message ID of the request
initiated. The ldap_bind_s() function returns an LDAP error code.

The simplest form of the bind call is ldap_simple_bind_s(). The function takes the DN
(Distinguished Name) of the dn parameter and the userPassword associated with the entry in
passwd to return an LDAP error code. See ldap_error(3LDAP).

The ldap_simple_bind() call is asynchronous. The function takes the same parameters as
ldap_simple_bind_s() but initiates the bind operation and returns the message ID of the
request sent. The result of the operation can be obtained by a subsequent call to
ldap_result(3LDAP).

Name

Synopsis

Description

Simple Authentication

ldap_bind(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 1 Nov 2010290

The ldap_bind() and ldap_bind_s() functions are used to select the authentication method
at runtime. Both functions take an extra method parameter to set the authentication method.
For simple authentication, the method parameter is set to LDAP_AUTH_SIMPLE. The
ldap_bind() function returns the message id of the request initiated. The ldap_bind_s()
function returns an LDAP error code.

The ldap_sasl_bind() and ldap_sasl_bind_s() functions are used for general and
extensible authentication over LDAP through the use of the Simple Authentication Security
Layer. The routines both take the DN to bind as the authentication method. A dotted-string
representation of an OID identifies the method, and the berval structure holds the
credentials. The special constant value LDAP_SASL_SIMPLE (“ ”) can be passed to request
simple authentication. Otherwise, the ldap_simple_bind() function or the
ldap_simple_bind_s() function can be used.

The ldap_sasl_interactive_bind_s() helper function takes its data and performs the
necessary ldap_sasl_bind() and associated SASL library authentication sequencing with the
LDAP server that uses the provided connection (ld).

Upon a successful bind, the ldap_sasl_bind() function will, if negotiated by the SASL
interface, install the necessary internal libldap plumbing to enable SASL integrity and
privacy (over the wire encryption) with the LDAP server.

The LDAP_SASL_INTERACTIVE option flag is passed to the libldap API through the flags
argument of the API. The flag tells the API to use the SASL interactive mode and to have the
API request SASL authentication data through the LDAP_SASL_INTERACTIVE_PROC callback as
needed. The callback provided is in the form:

typedef int (LDAP_SASL_INTERACT_PROC)

(LDAP *ld, unsigned flags, void* defaults, void *interact);

The user-provided SASL callback is passed to the current LDAP connection pointer, the
current flags field, an optional pointer to user-defined data, and the list of sasl_interact_t
authentication values requested by libsasl(3LIB) to complete authentication.

The user-defined callback collects and returns the authentication information in the
sasl_interact_t array according to libsasl rules. The authentication information can
include user IDs, passwords, realms, or other information defined by SASL. The SASL library
uses this date during sequencing to complete authentication.

The ldap_unbind() call is used to unbind from a directory, to terminate the current
association, and to free the resources contained in the ld structure. Once the function is called,
the connection to the LDAP server is closed and the ld structure is invalid. The
ldap_unbind_s() and ldap_unbind() calls are identical and synchronous in nature.

The ldap_unbind_ext() function is used to unbind from a directory, to terminate the current
association, and to free the resources contained in the LDAP structure. Unlike ldap_unbind()
and ldap_unbind_s(), both server and client controls can be explicitly included with

General Authentication

SASL Authentication

Unbinding

ldap_bind(3LDAP)

Networking Library Functions 291

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsasl-3lib

ldap_unbind_ext() requests. No server response is made to an unbind request and responses
should not be expected from server controls included with unbind requests.

The ldap_set_rebind_proc() call is used to set a function called back to obtain bind
credentials. The credentials are used when a new server is contacted after an LDAP referral. If
ldap_set_rebind_proc() is never called, or if it is called with a NULL rebindproc parameter,
an unauthenticated simple LDAP bind is always done when chasing referrals.

The rebindproc() function is declared as shown below:

int rebindproc(LDAP *ld, char **whop, char **credp,

int *methodp, int freeit);

The LDAP library first calls the rebindproc() to obtain the referral bind credentials. The
freeit parameter is zero. The whop, credp, and methodp parameters should be set as
appropriate. If rebindproc() returns LDAP_SUCCESS, referral processing continues. The
rebindproc() is called a second time with a non-zero freeit value to give the application a
chance to free any memory allocated in the previous call.

If anything but LDAP_SUCCESS is returned by the first call to rebindproc(), referral processing
is stopped and the error code is returned for the original LDAP operation.

Make a call to ldap_result(3LDAP) to obtain the result of a bind operation.

Asynchronous functions will return −1 in case of error. See ldap_error(3LDAP) for more
information on error codes returned. If no credentials are returned, the result parameter is set
to NULL.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

ldap(3LDAP), ldap_error(3LDAP), ldap_open(3LDAP), ldap_result(3LDAP),
libsasl(3LIB), attributes(5)

Rebinding While
Following Referral

Return Values

Errors

Attributes

See Also

ldap_bind(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 1 Nov 2010292

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsasl-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_charset, ldap_set_string_translators, ldap_t61_to_8859, ldap_8859_to_t61,
ldap_translate_from_t61, ldap_translate_to_t61, ldap_enable_translation – LDAP character
set translation functions

cc[flag...] file... -lldap[library...]

#include <lber.h>

#include <ldap.h>

void ldap_set_string_translators(LDAP *ld,
BERTranslateProc encode_proc, BERTranslateProc decodeproc);

typedef int(*BERTranslateProc)(char **bufp, unsigned long *buflenp,
int free_input);

int ldap_t61_to_8859(char **bufp, unsigned long *buflenp,
int free_input);

int ldap_8859_to_t61(char **bufp, unsigned long *buflenp,
int free_input);

int ldap_translate_from_t61(LDAP *ld, char **bufp,
unsigned long *lenp, int free_input);

int ldap_translate_to_t61(LDAP *ld, char **bufp, unsigned long *lenp,
int free_input);

void ldap_enable_translation(LDAP *ld, LDAPMessage *entry, int enable);

These functions are used to used to enable translation of character strings used in the LDAP
library to and from the T.61 character set used in the LDAP protocol. These functions are only
available if the LDAP and LBER libraries are compiled with STR_TRANSLATION defined. It is
also possible to turn on character translation by default so that all LDAP library callers will
experience translation; see the LDAP Make-common source file for details.

ldap_set_string_translators() sets the translation functions that will be used by the
LDAP library. They are not actually used until the ld_lberoptions field of the LDAP structure is
set to include the LBER_TRANSLATE_STRINGS option.

ldap_t61_to_8859() and ldap_8859_to_t61() are translation functions for converting
between T.61 characters and ISO-8859 characters. The specific 8859 character set used is
determined at compile time.

ldap_translate_from_t61() is used to translate a string of characters from the T.61
character set to a different character set. The actual translation is done using the decode_proc
that was passed to a previous call to ldap_set_string_translators(). On entry, *bufp
should point to the start of the T.61 characters to be translated and *lenp should contain the
number of bytes to translate. If free_input is non-zero, the input buffer will be freed if
translation is a success. If the translation is a success, LDAP_SUCCESS will be returned, *bufp
will point to a newly malloc'd buffer that contains the translated characters, and *lenp will
contain the length of the result. If translation fails, an LDAP error code will be returned.

Name

Synopsis

Description

ldap_charset(3LDAP)

Networking Library Functions 293

ldap_translate_to_t61() is used to translate a string of characters to the T.61 character set
from a different character set. The actual translation is done using the encode_proc that was
passed to a previous call to ldap_set_string_translators(). This function is called just like
ldap_translate_from_t61().

ldap_enable_translation() is used to turn on or off string translation for the LDAP entry
entry (typically obtained by calling ldap_first_entry() or ldap_next_entry() after a
successful LDAP search operation). If enable is zero, translation is disabled; if non-zero,
translation is enabled. This function is useful if you need to ensure that a particular attribute is
not translated when it is extracted using ldap_get_values() or ldap_get_values_len(). For
example, you would not want to translate a binary attributes such as jpegPhoto.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap(3LDAP), attributes(5)

Attributes

See Also

ldap_charset(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011294

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_compare, ldap_compare_s, ldap_compare_ext, ldap_compare_ext_s – LDAP compare
operation

cc[flag...] file... -lldap[library...]

#include <lber.h>

#include <ldap.h>

int ldap_compare(LDAP *ld, char *dn, char *attr, char *value);

int ldap_compare_s(LDAP *ld, char *dn, char *attr, char *value);

int ldap_compare_ext(LDAP *ld, char *dn, char *attr,
struct berval *bvalue, LDAPControl **serverctrls,
LDAPControl **clientctrls,int *msgidp);

int ldap_compare_ext_s(LDAP *ld, char *dn, char *attr,
struct berval *bvalue, LDAPControl **serverctrls,
LDAPControl **clientctrls);

The ldap_compare_s() function is used to perform an LDAP compare operation
synchronously. It takes dn, the DN of the entry upon which to perform the compare, and attr
and value, the attribute type and value to compare to those found in the entry. It returns an
LDAP error code, which will be LDAP_COMPARE_TRUE if the entry contains the attribute value
and LDAP_COMPARE_FALSE if it does not. Otherwise, some error code is returned.

The ldap_compare() function is used to perform an LDAP compare operation
asynchronously. It takes the same parameters as ldap_compare_s(), but returns the message
id of the request it initiated. The result of the compare can be obtained by a subsequent call to
ldap_result(3LDAP).

The ldap_compare_ext() function initiates an asynchronous compare operation and returns
LDAP_SUCCESS if the request was successfully sent to the server, or else it returns a LDAP error
code if not (see ldap_error(3LDAP). If successful, ldap_compare_ext() places the message
id of the request in *msgidp. A subsequent call to ldap_result(), can be used to obtain the
result of the add request.

The ldap_compare_ext_s() function initiates a synchronous compare operation and as such
returns the result of the operation itself.

ldap_compare_s() returns an LDAP error code which can be interpreted by calling one of
ldap_perror(3LDAP) and friends. ldap_compare() returns −1 if something went wrong
initiating the request. It returns the non-negative message id of the request if it was successful.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Name

Synopsis

Description

Errors

Attributes

ldap_compare(3LDAP)

Networking Library Functions 295

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

ldap(3LDAP), ldap_error(3LDAP), attributes(5)

There is no way to compare binary values using ldap_compare().

See Also

Bugs

ldap_compare(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011296

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_control_free, ldap_controls_free – LDAP control disposal

cc[flag...] file... -lldap[library...]

#include <lber.h>

#include <ldap.h>

void ldap_control_free(LDAPControl *ctrl);

void ldap_controls_free(LDAPControl *ctrls);

ldap_controls_free() and ldap_control_free() are routines which can be used to dispose
of a single control or an array of controls allocated by other LDAP APIs.

None.

No errors are defined for these functions.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap_error(3LDAP), ldap_result(3LDAP), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

ldap_control_free(3LDAP)

Networking Library Functions 297

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_delete, ldap_delete_s, ldap_delete_ext, ldap_delete_ext_s – LDAP delete operation

cc[flag...] file... -lldap[library...]

#include <lber.h>

#include <ldap.h>

int ldap_delete(LDAP *ld, char *dn);

int ldap_delete_s(LDAP *ld, char *dn);

int ldap_delete_ext(LDAP *ld, char *dn, LDAPControl **serverctrls,
LDAPControl **clientctrls, int *msgidp);

int ldap_delete_ext_s(LDAP *ld, char *dn, LDAPControl **serverctrls,
LDAPControl **clientctrls);

The ldap_delete_s() function is used to perform an LDAP delete operation synchronously.
It takes dn, the DN of the entry to be deleted. It returns an LDAP error code, indicating the
success or failure of the operation.

The ldap_delete() function is used to perform an LDAP delete operation asynchronously. It
takes the same parameters as ldap_delete_s(), but returns the message id of the request it
initiated. The result of the delete can be obtained by a subsequent call to
ldap_result(3LDAP).

The ldap_delete_ext() function initiates an asynchronous delete operation and returns
LDAP_SUCCESS if the request was successfully sent to the server, or else it returns a LDAP error
code if not (see ldap_error(3LDAP)). If successful, ldap_delete_ext() places the message
id of the request in *msgidp. A subsequent call to ldap_result(), can be used to obtain the
result of the add request.

The ldap_delete_ext_s() function initiates a synchronous delete operation and as such
returns the result of the operation itself.

ldap_delete_s() returns an LDAP error code which can be interpreted by calling one of
ldap_perror(3LDAP) functions. ldap_delete() returns −1 if something went wrong
initiating the request. It returns the non-negative message id of the request if things were
successful.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

Name

Synopsis

Description

Errors

Attributes

ldap_delete(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011298

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap(3LDAP), ldap_error(3LDAP), attributes(5)See Also

ldap_delete(3LDAP)

Networking Library Functions 299

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_disptmpl, ldap_init_templates, ldap_init_templates_buf, ldap_free_templates,
ldap_first_disptmpl, ldap_next_disptmpl, ldap_oc2template, ldap_name2template,
ldap_tmplattrs, ldap_first_tmplrow, ldap_next_tmplrow, ldap_first_tmplcol,
ldap_next_tmplcol – LDAP display template functions

cc [flag...] file... -lldap [library...]

#include <lber.h>

#include <ldap.h>

int ldap_init_templates(char *file, struct ldap_disptmpl **tmpllistp);

int ldap_init_templates_buf(char *buf, unsigned long len,
struct ldap_disptmpl **tmpllistp);

void ldap_free_templates(struct ldap_disptmpl *tmpllist);

struct ldap_disptmpl *ldap_first_disptmpl

(struct ldap_disptmpl *tmpllist);

struct ldap_disptmpl *ldap_next_disptmpl

(struct ldap_disptmpl *tmpllist,struct ldap_disptmpl *tmpl);

struct ldap_disptmpl *ldap_oc2template (char **oclist,
struct ldap_disptmpl *tmpllist);

struct ldap_disptmpl *ldap_name2template (char *name,
struct ldap_disptmpl *tmpllist);

char **ldap_tmplattrs(struct ldap_disptmpl *tmpl, char **includeattrs,
int exclude, unsigned long syntaxmask);

struct ldap_tmplitem *ldap_first_tmplrow(struct ldap_disptmpl *tmpl);

struct ldap_tmplitem *ldap_next_tmplrow(struct ldap_disptmpl *tmpl,
struct ldap_tmplitem *row);

struct ldap_tmplitem *ldap_first_tmplcol(struct ldap_disptmpl *tmpl,
struct ldap_tmplitem *row, struct ldap_tmplitem *col);

struct ldap_tmplitem *ldap_next_tmplcol(struct ldap_disptmpl *tmpl,
struct ldap_tmplitem *row, struct ldap_tmplitem *col);

These functions provide a standard way to access LDAP entry display templates. Entry display
templates provide a standard way for LDAP applications to display directory entries. The
general idea is that it is possible to map the list of object class values present in an entry to an
appropriate display template. Display templates are defined in a configuration file. See
ldaptemplates.conf(4). Each display template contains a pre-determined list of items, where
each item generally corresponds to an attribute to be displayed. The items contain
information and flags that the caller can use to display the attribute and values in a reasonable
fashion. Each item has a syntaxid, which are described in the SYNTAX IDS section below. The
ldap_entry2text(3LDAP) functions use the display template functions and produce text
output.

Name

Synopsis

Description

ldap_disptmpl(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011300

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldaptemplates.conf-4

ldap_init_templates() reads a sequence of templates from a valid LDAP template
configuration file (see ldaptemplates.conf(4)). Upon success, 0 is returned, and tmpllistp is
set to point to a list of templates. Each member of the list is an ldap_disptmpl structure
(defined below in the DISPTMPL Structure Elements section).

ldap_init_templates_buf() reads a sequence of templates from buf (whose size is buflen).
buf should point to the data in the format defined for an LDAP template configuration file (see
ldaptemplates.conf(4)). Upon success, 0 is returned, and tmpllistp is set to point to a list of
templates.

The LDAP_SET_DISPTMPL_APPDATA() macro is used to set the value of the dt_appdata field in
an ldap_disptmpl structure. This field is reserved for the calling application to use; it is not
used internally.

The LDAP_GET_DISPTMPL_APPDATA() macro is used to retrieve the value in the dt_appdata
field.

The LDAP_IS_DISPTMPL_OPTION_SET() macro is used to test a ldap_disptmpl structure for
the existence of a template option. The options currently defined are:
LDAP_DTMPL_OPT_ADDABLE (it is appropriate to allow entries of this type to be added),
LDAP_DTMPL_OPT_ALLOWMODRDN (it is appropriate to offer the “modify rdn”operation),
LDAP_DTMPL_OPT_ALTVIEW (this template is merely an alternate view of another template,
typically used for templates pointed to be an LDAP_SYN_LINKACTION item).

ldap_free_templates() disposes of the templates allocated by ldap_init_templates().

ldap_first_disptmpl() returns the first template in the list tmpllist. The tmpllist is typically
obtained by calling ldap_init_templates() .

ldap_next_disptmpl() returns the template after tmpl in the template list tmpllist. A NULL

pointer is returned if tmpl is the last template in the list.

ldap_oc2template() searches tmpllist for the best template to use to display an entry that has
a specific set of objectClass values. oclist should be a null-terminated array of strings that
contains the values of the objectClass attribute of the entry. A pointer to the first template
where all of the object classes listed in one of the template's dt_oclist elements are contained
in oclist is returned. A NULL pointer is returned if no appropriate template is found.

ldap_tmplattrs() returns a null-terminated array that contains the names of attributes that
need to be retrieved if the template tmpl is to be used to display an entry. The attribute list
should be freed using ldap_value_free(). The includeattrs parameter contains a
null-terminated array of attributes that should always be included (it may be NULL if no extra
attributes are required). If syntaxmask is non-zero, it is used to restrict the attribute set
returned. If exclude is zero, only attributes where the logical AND of the template item syntax id
and the syntaxmask is non-zero are included. If exclude is non-zero, attributes where the
logical AND of the template item syntax id and the syntaxmask is non-zero are excluded.

ldap_first_tmplrow() returns a pointer to the first row of items in template tmpl.

ldap_disptmpl(3LDAP)

Networking Library Functions 301

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldaptemplates.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldaptemplates.conf-4

ldap_next_tmplrow() returns a pointer to the row that follows row in template tmpl.

ldap_first_tmplcol() returns a pointer to the first item (in the first column) of row row
within template tmpl. A pointer to an ldap_tmplitem structure (defined below in the
TMPLITEM Structure Elements section) is returned.

The LDAP_SET_TMPLITEM_APPDATA() macro is used to set the value of the ti_appdata field in
a ldap_tmplitem structure. This field is reserved for the calling application to use; it is not
used internally.

The LDAP_GET_TMPLITEM_APPDATA() macro is used to retrieve the value of the ti_appdata
field.

The LDAP_IS_TMPLITEM_OPTION_SET() macro is used to test a ldap_tmplitem structure for
the existence of an item option. The options currently defined are:
LDAP_DITEM_OPT_READONLY (this attribute should not be modified),
LDAP_DITEM_OPT_SORTVALUES (it makes sense to sort the values),
LDAP_DITEM_OPT_SINGLEVALUED (this attribute can only hold a single value),
LDAP_DITEM_OPT_VALUEREQUIRED (this attribute must contain at least one value),
LDAP_DITEM_OPT_HIDEIFEMPTY (do not show this item if there are no values), and
LDAP_DITEM_OPT_HIDEIFFALSE (for boolean attributes only: hide this item if the value is
FALSE).

ldap_next_tmplcol() returns a pointer to the item (column) that follows column col within
row row of template tmpl.

The ldap_disptmpl structure is defined as:

struct ldap_disptmpl {

char *dt_name;

char *dt_pluralname;

char *dt_iconname;

unsigned long dt_options;

char *dt_authattrname;

char *dt_defrdnattrname;

char *dt_defaddlocation;

struct ldap_oclist *dt_oclist;

struct ldap_adddeflist *dt_adddeflist;

struct ldap_tmplitem *dt_items;

void *dt_appdata;

struct ldap_disptmpl *dt_next;

};

The dt_name member is the singular name of the template. The dt_pluralname is the plural
name. The dt_iconname member will contain the name of an icon or other graphical element
that can be used to depict entries that correspond to this display template. The dt_options
contains options which may be tested using the LDAP_IS_TMPLITEM_OPTION_SET() macro.

DISPTMPL Structure
Elements

ldap_disptmpl(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011302

The dt_authattrname contains the name of the DN-syntax attribute whose value(s) should be
used to authenticate to make changes to an entry. If dt_authattrname is NULL, then
authenticating as the entry itself is appropriate. The dt_defrdnattrname is the name of the
attribute that is normally used to name entries of this type, for example, “cn”for person
entries. The dt_defaddlocation is the distinguished name of an entry below which new
entries of this type are typically created (its value is site-dependent).

dt_oclist is a pointer to a linked list of object class arrays, defined as:

struct ldap_oclist {

char **oc_objclasses;

struct ldap_oclist *oc_next;

};

These are used by the ldap_oc2template() function.

dt_adddeflist is a pointer to a linked list of rules for defaulting the values of attributes when
new entries are created. The ldap_adddeflist structure is defined as:

struct ldap_adddeflist {

int ad_source;

char *ad_attrname;

char *ad_value;

struct ldap_adddeflist *ad_next;

};

The ad_attrname member contains the name of the attribute whose value this rule sets. If
ad_source is LDAP_ADSRC_CONSTANTVALUE then the ad_value member contains the
(constant) value to use. If ad_source is LDAP_ADSRC_ADDERSDN then ad_value is ignored and
the distinguished name of the person who is adding the new entry is used as the default value
for ad_attrname.

The ldap_tmplitem structure is defined as:

struct ldap_tmplitem {

unsigned long ti_syntaxid;

unsigned long ti_options;

char *ti_attrname;

char *ti_label;

char **ti_args;

struct ldap_tmplitem *ti_next_in_row;

struct ldap_tmplitem *ti_next_in_col;

void *ti_appdata;

};

Syntax ids are found in the ldap_tmplitem structure element ti_syntaxid, and they can be
used to determine how to display the values for the attribute associated with an item. The
LDAP_GET_SYN_TYPE() macro can be used to return a general type from a syntax id. The five
general types currently defined are: LDAP_SYN_TYPE_TEXT (for attributes that are most

TMPLITEM Structure
Elements

Syntax IDs

ldap_disptmpl(3LDAP)

Networking Library Functions 303

appropriately shown as text), LDAP_SYN_TYPE_IMAGE (for JPEG or FAX format images),
LDAP_SYN_TYPE_BOOLEAN (for boolean attributes), LDAP_SYN_TYPE_BUTTON (for attributes
whose values are to be retrieved and display only upon request, for example, in response to the
press of a button, a JPEG image is retrieved, decoded, and displayed), and
LDAP_SYN_TYPE_ACTION (for special purpose actions such as “search for the entries where this
entry is listed in the seeAlso attribute”).

The LDAP_GET_SYN_OPTIONS macro can be used to retrieve an unsigned long bitmap that
defines options. The only currently defined option is LDAP_SYN_OPT_DEFER, which (if set)
implies that the values for the attribute should not be retrieved until requested.

There are sixteen distinct syntax ids currently defined. These generally correspond to one or
more X.500 syntaxes.

LDAP_SYN_CASEIGNORESTR is used for text attributes which are simple strings whose case is
ignored for comparison purposes.

LDAP_SYN_MULTILINESTR is used for text attributes which consist of multiple lines, for
example, postalAddress, homePostalAddress, multilineDescription, or any attributes of
syntax caseIgnoreList.

LDAP_SYN_RFC822ADDR is used for case ignore string attributes that are RFC-822 conformant
mail addresses, for example, mail.

LDAP_SYN_DN is used for attributes with a Distinguished Name syntax, for example, seeAlso.

LDAP_SYN_BOOLEAN is used for attributes with a boolean syntax.

LDAP_SYN_JPEGIMAGE is used for attributes with a jpeg syntax, for example, jpegPhoto.

LDAP_SYN_JPEGBUTTON is used to provide a button (or equivalent interface element) that can
be used to retrieve, decode, and display an attribute of jpeg syntax.

LDAP_SYN_FAXIMAGE is used for attributes with a photo syntax, for example, Photo. These are
actually Group 3 Fax (T.4) format images.

LDAP_SYN_FAXBUTTON is used to provide a button (or equivalent interface element) that can be
used to retrieve, decode, and display an attribute of photo syntax.

LDAP_SYN_AUDIOBUTTON is used to provide a button (or equivalent interface element) that can
be used to retrieve and play an attribute of audio syntax. Audio values are in the “mu law”
format, also known as “au” format.

LDAP_SYN_TIME is used for attributes with the UTCTime syntax, for example,
lastModifiedTime. The value(s) should be displayed in complete date and time fashion.

LDAP_SYN_DATE is used for attributes with the UTCTime syntax, for example,
lastModifiedTime. Only the date portion of the value(s) should be displayed.

ldap_disptmpl(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011304

LDAP_SYN_LABELEDURL is used for labeledURL attributes.

LDAP_SYN_SEARCHACTION is used to define a search that is used to retrieve related information.
If ti_attrname is not NULL, it is assumed to be a boolean attribute which will cause no search
to be performed if its value is FALSE. The ti_args structure member will have four strings in
it: ti_args[0] should be the name of an attribute whose values are used to help construct a
search filter or “-dn” is the distinguished name of the entry being displayed should be used,
ti_args[1] should be a filter pattern where any occurrences of “%v” are replaced with the
value derived from ti_args[0], ti_args[2] should be the name of an additional attribute
to retrieve when performing the search, and ti_args[3] should be a human-consumable
name for that attribute. The ti_args[2] attribute is typically displayed along with a list of
distinguished names when multiple entries are returned by the search.

LDAP_SYN_LINKACTION is used to define a link to another template by name. ti_args[0] will
contain the name of the display template to use. The ldap_name2template() function can be
used to obtain a pointer to the correct ldap_disptmpl structure.

LDAP_SYN_ADDDNACTION and LDAP_SYN_VERIFYDNACTION are reserved as actions but currently
undefined.

The init template functions return LDAP_TMPL_ERR_VERSION if buf points to data that is newer
than can be handled, LDAP_TMPL_ERR_MEM if there is a memory allocation problem,
LDAP_TMPL_ERR_SYNTAX if there is a problem with the format of the templates buffer or file.
LDAP_TMPL_ERR_FILE is returned by ldap_init_templates if the file cannot be read. Other
functions generally return NULL upon error.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap(3LDAP), ldap_entry2text(3LDAP), ldaptemplates.conf(4), attributes(5)

Errors

Attributes

See Also

ldap_disptmpl(3LDAP)

Networking Library Functions 305

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldaptemplates.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_entry2text, ldap_entry2text_search, ldap_entry2html, ldap_entry2html_search,
ldap_vals2html, ldap_vals2text – LDAP entry display functions

cc[flag...] file... -lldap[library...]

#include <lber.h>

#include <ldap.h>

int ldap_entry2text(LDAP *ld, char *buf, LDAPMessage *entry,
struct ldap_disptmpl *tmpl, char **defattrs, char ***defvals,
int (*writeproc)(), void *writeparm, char *eol, int rdncount,
unsigned long opts);

int ldap_entry2text_search(LDAP *ld, char *dn, char *base,
LDAPMessage *entry, struct ldap_disptmpl *tmpllist,
char **defattrs, char ***defvals, int (*writeproc)(),
void *writeparm, char *eol,int rdncount,
unsigned long opts);

int ldap_vals2text(LDAP *ld, char *buf, char **vals, char *label,
int labelwidth, unsigned longsyntaxid, int (*writeproc)(),
void *writeparm, char *eol, int rdncount);

int ldap_entry2html(LDAP *ld, char *buf, LDAPMessage *entry,
struct ldap_disptmpl *tmpl, char **defattrs, char ***defvals,
int (*writeproc)(),void *writeparm, char *eol, int rdncount,
unsigned long opts, char *urlprefix, char *base);

int ldap_entry2html_search(LDAP *ld, char *dn, LDAPMessage *entry,
struct ldap_disptmpl *tmpllist, char **defattrs, char ***defvals,
int (*writeproc)(), void *writeparm, char *eol, int rdncount,
unsigned long opts, char *urlprefix);

int ldap_vals2html(LDAP *ld, char *buf, char **vals,
char *label, int labelwidth, unsigned long syntaxid,
int (*writeproc)(), void *writeparm, char *eol, int rdncount,
char *urlprefix);

#define LDAP_DISP_OPT_AUTOLABELWIDTH 0x00000001

#define LDAP_DISP_OPT_HTMLBODYONLY 0x00000002

#define LDAP_DTMPL_BUFSIZ 2048

These functions use the LDAP display template functions (see ldap_disptmpl(3LDAP) and
ldap_templates.conf(4)) to produce a plain text or an HyperText Markup Language
(HTML) display of an entry or a set of values. Typical plain text output produced for an entry
might look like:

"Barbara J Jensen, Information Technology Division"
Also Known As:

Babs Jensen

Barbara Jensen

Barbara J Jensen

Name

Synopsis

Description

ldap_entry2text(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011306

E-Mail Address:

bjensen@terminator.rs.itd.umich.edu

Work Address:

535 W. William

Ann Arbor, MI 48103

Title:

Mythical Manager, Research Systems

...

The exact output produced will depend on the display template configuration. HTML output
is similar to the plain text output, but more richly formatted.

ldap_entry2text() produces a text representation of entry and writes the text by calling the
writeproc function. All of the attributes values to be displayed must be present in entry; no
interaction with the LDAP server will be performed within ldap_entry2text. ld is the LDAP
pointer obtained by a previous call to ldap_open. writeproc should be declared as:

int writeproc(writeparm, p, len)

void *writeparm;

char *p;

int len;

where p is a pointer to text to be written and len is the length of the text. p is guaranteed to be
zero-terminated. Lines of text are terminated with the string eol. buf is a pointer to a buffer of
size LDAP_DTMPL_BUFSIZ or larger. If buf is NULL then a buffer is allocated and freed internally.
tmpl is a pointer to the display template to be used (usually obtained by calling
ldap_oc2template). If tmpl is NULL, no template is used and a generic display is produced.
defattrs is a NULL-terminated array of LDAP attribute names which you wish to provide
default values for (only used if entry contains no values for the attribute). An array of
NULL-terminated arrays of default values corresponding to the attributes should be passed in
defvals. The rdncount parameter is used to limit the number of Distinguished Name (DN)
components that are actually displayed for DN attributes. If rdncount is zero, all components
are shown. opts is used to specify output options. The only values currently allowed are zero
(default output), LDAP_DISP_OPT_AUTOLABELWIDTH which causes the width for labels to be
determined based on the longest label in tmpl, and LDAP_DISP_OPT_HTMLBODYONLY. The
LDAP_DISP_OPT_HTMLBODYONLY option instructs the library not to include <HTML>,
<HEAD>, <TITLE>, and <BODY> tags. In other words, an HTML fragment is generated, and
the caller is responsible for prepending and appending the appropriate HTML tags to
construct a correct HTML document.

ldap_entry2text_search() is similar to ldap_entry2text, and all of the like-named
parameters have the same meaning except as noted below. If base is not NULL, it is the search
base to use when executing search actions. If it is NULL, search action template items are
ignored. If entry is not NULL, it should contain the objectClass attribute values for the entry to
be displayed. If entry is NULL, dn must not be NULL, and ldap_entry2text_search will retrieve
the objectClass values itself by calling ldap_search_s. ldap_entry2text_search will
determine the appropriate display template to use by calling ldap_oc2template, and will call

ldap_entry2text(3LDAP)

Networking Library Functions 307

ldap_search_s to retrieve any attribute values to be displayed. The tmpllist parameter is a
pointer to the entire list of templates available (usually obtained by calling
ldap_init_templates or ldap_init_templates_buf). If tmpllist is NULL,
ldap_entry2text_search will attempt to read a load templates from the default template
configuration file ETCDIR/ldaptemplates.conf

ldap_vals2text produces a text representation of a single set of LDAP attribute values. The
ld, buf, writeproc, writeparm, eol, and rdncount parameters are the same as the like-named
parameters for ldap_entry2text. vals is a NULL-terminated list of values, usually obtained
by a call to ldap_get_values. label is a string shown next to the values (usually a friendly form
of an LDAP attribute name). labelwidth specifies the label margin, which is the number of
blank spaces displayed to the left of the values. If zero is passed, a default label width is used.
syntaxid is a display template attribute syntax identifier (see ldap_disptmpl(3LDAP) for a list
of the pre-defined LDAP_SYN_... values).

ldap_entry2html produces an HTML representation of entry. It behaves exactly like
ldap_entry2text(3LDAP), except for the formatted output and the addition of two
parameters. urlprefix is the starting text to use when constructing an LDAP URL. The default
is the string ldap:/// The second additional parameter, base, the search base to use when
executing search actions. If it is NULL, search action template items are ignored.

ldap_entry2html_search behaves exactly like ldap_entry2text_search(3LDAP), except
HTML output is produced and one additional parameter is required. urlprefix is the starting
text to use when constructing an LDAP URL. The default is the string ldap:///

ldap_vals2html behaves exactly like ldap_vals2text,exceptHTMLoutputis and one
additional parameter is required. urlprefix is the starting text to use when constructing an
LDAP URL. The default is the string ldap:///

These functions all return an LDAP error code. LDAP_SUCCESS is returned if no error occurs.
See ldap_error(3LDAP) for details. The ld_errno field of the ld parameter is also set to
indicate the error.

ETCDIR/ldaptemplates.conf

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap(3LDAP), ldap_disptmpl(3LDAP), ldaptemplates.conf(4) , attributes(5)

Errors

Files

Attributes

See Also

ldap_entry2text(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011308

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldaptemplates.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_error, ldap_err2string, ldap_perror, ldap_result2error – LDAP protocol error handling
functions

cc[flag...] file... -lldap[library...]

#include <lber.h>

#include <ldap.h>

char *ldap_err2string(int err);

void ldap_perror(LDAP *ld, const char *s);

int ldap_result2error(LDAP *ld, LDAPMessage *res, int freeit);

These functions interpret the error codes that are returned by the LDAP API routines. The
ldap_perror() and ldap_result2error() functions are deprecated for all new development.
Use ldap_err2string() instead.

You can also use ldap_parse_sasl_bind_result(3LDAP),
ldap_parse_extended_result(3LDAP), and ldap_parse_result(3LDAP) to provide error
handling and interpret error codes returned by LDAP API functions.

The ldap_err2string() function takes err, a numeric LDAP error code, returned either by
ldap_parse_result(3LDAP) or another LDAP API call. It returns an informative,
null-terminated, character string that describes the error.

The ldap_result2error() function takes res, a result produced by ldap_result(3LDAP) or
other synchronous LDAP calls, and returns the corresponding error code. If the freeit
parameter is non-zero, it indicates that the res parameter should be freed by a call to
ldap_result(3LDAP) after the error code has been extracted.

Similar to the way perror(3C) works, the ldap_perror() function can be called to print an
indication of the error to standard error.

The possible values for an LDAP error code are:

LDAP_SUCCESS The request was successful.

LDAP_OPERATIONS_ERROR An operations error occurred.

LDAP_PROTOCOL_ERROR A protocol violation was detected.

LDAP_TIMELIMIT_EXCEEDED An LDAP time limit was exceeded.

LDAP_SIZELIMIT_EXCEEDED An LDAP size limit was exceeded.

LDAP_COMPARE_FALSE A compare operation returned false.

LDAP_COMPARE_TRUE A compare operation returned true.

LDAP_STRONG_AUTH_NOT_SUPPORTED The LDAP server does not support strong
authentication.

LDAP_STRONG_AUTH_REQUIRED Strong authentication is required for the operation.

Name

Synopsis

Description

Errors

ldap_error(3LDAP)

Networking Library Functions 309

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1perror-3c

LDAP_PARTIAL_RESULTS Only partial results are returned.

LDAP_NO_SUCH_ATTRIBUTE The attribute type specified does not exist in the
entry.

LDAP_UNDEFINED_TYPE The attribute type specified is invalid.

LDAP_INAPPROPRIATE_MATCHING The filter type is not supported for the specified
attribute.

LDAP_CONSTRAINT_VIOLATION An attribute value specified violates some constraint.
For example, a postalAddress has too many lines,
or a line that is too long.

LDAP_TYPE_OR_VALUE_EXISTS An attribute type or attribute value specified already
exists in the entry.

LDAP_INVALID_SYNTAX An invalid attribute value was specified.

LDAP_NO_SUCH_OBJECT The specified object does not exist in the directory.

LDAP_ALIAS_PROBLEM An alias in the directory points to a nonexistent
entry.

LDAP_INVALID_DN_SYNTAX A syntactically invalid DN was specified.

LDAP_IS_LEAF The object specified is a leaf.

LDAP_ALIAS_DEREF_PROBLEM A problem was encountered when dereferencing an
alias.

LDAP_INAPPROPRIATE_AUTH Inappropriate authentication was specified. For
example, LDAP_AUTH_SIMPLE was specified and the
entry does not have a userPassword attribute.

LDAP_INVALID_CREDENTIALS Invalid credentials were presented, for example, the
wrong password.

LDAP_INSUFFICIENT_ACCESS The user has insufficient access to perform the
operation.

LDAP_BUSY The DSA is busy.

LDAP_UNAVAILABLE The DSA is unavailable.

LDAP_UNWILLING_TO_PERFORM The DSA is unwilling to perform the operation.

LDAP_LOOP_DETECT A loop was detected.

LDAP_NAMING_VIOLATION A naming violation occurred.

LDAP_OBJECT_CLASS_VIOLATION An object class violation occurred. For example, a
must attribute was missing from the entry.

ldap_error(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011310

LDAP_NOT_ALLOWED_ON_NONLEAF The operation is not allowed on a nonleaf object.

LDAP_NOT_ALLOWED_ON_RDN The operation is not allowed on an RDN.

LDAP_ALREADY_EXISTS The entry already exists.

LDAP_NO_OBJECT_CLASS_MODS Object class modifications are not allowed.

LDAP_OTHER An unknown error occurred.

LDAP_SERVER_DOWN The LDAP library cannot contact the LDAP server.

LDAP_LOCAL_ERROR Some local error occurred. This is usually the result
of a failed malloc(3C) call or a failure to fflush(3C)
the stdio stream to files, even when the LDAP
requests were processed successfully by the remote
server.

LDAP_ENCODING_ERROR An error was encountered encoding parameters to
send to the LDAP server.

LDAP_DECODING_ERROR An error was encountered decoding a result from the
LDAP server.

LDAP_TIMEOUT A time limit was exceeded while waiting for a result.

LDAP_AUTH_UNKNOWN The authentication method specified to
ldap_bind(3LDAP) is not known.

LDAP_FILTER_ERROR An invalid filter was supplied to
ldap_search(3LDAP), for example, unbalanced
parentheses.

LDAP_PARAM_ERROR An LDAP function was called with a bad parameter,
for example, a NULL ld pointer, and the like.

LDAP_NO_MEMORY A memory allocation call failed in an LDAP library
function, for example, malloc(3C).

LDAP_CONNECT_ERROR The LDAP client has either lost its connetion to an
LDAP server or it cannot establish a connection.

LDAP_NOT_SUPPORTED The requested functionality is not supported., for
example, when an LDAPv2 client requests some
LDAPv3 functionality.

LDAP_CONTROL_NOT_FOUND An LDAP client requested a control not found in the
list of supported controls sent by the server.

LDAP_NO_RESULTS_RETURNED The LDAP server sent no results.

LDAP_MORE_RESULTS_TO_RETURN More results are chained in the message chain.

ldap_error(3LDAP)

Networking Library Functions 311

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7fflush-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1malloc-3c

LDAP_CLIENT_LOOP A loop has been detected, for example, when
following referrals.

LDAP_REFERRAL_LIMIT_EXCEEDED The referral exceeds the hop limit. The hop limit
determines the number of servers that the client can
hop through to retrieve data.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

fflush(3C), ldap(3LDAP), ldap_bind(3LDAP), ldap_result(3LDAP),
ldap_parse_extended_result(3LDAP), ldap_parse_result(3LDAP),
ldap_parse_sasl_bind_result(3LDAP), ldap_search(3LDAP), malloc(3C), perror(3C) ,
attributes(5)

Attributes

See Also

ldap_error(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011312

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7fflush-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1perror-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_first_attribute, ldap_next_attribute – step through LDAP entry attributes

cc [flag...] file... -lldap[library...]
#include <lber.h>

#include <ldap.h>

char *ldap_first_attribute(LDAP *ld, LDAPMessage *entry,
BerElement **berptr);

char *ldap_next_attribute(LDAP *ld, LDAPMessage *entry,
BerElement *ber);

The ldap_first_attribute() function gets the value of the first attribute in an entry.

The ldap_first_attribute() function returns the name of the first attribute in the entry. To
get the value of the first attribute, pass the attribute name to the ldap_get_values() function
or to the ldap_get_values_len() function.

The ldap_next_attribute() function gets the value of the next attribute in an entry.

After stepping through the attributes, the application should call ber_free() to free the
BerElement structure allocated by the ldap_first_attribute() function if the structure is
other than NULL.

If an error occurs, NULL is returned and the ld_errno field in the ld parameter is set to indicate
the error. See ldap_error(3LDAP) for a description of possible error codes.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap(3LDAP), ldap_first_entry(3LDAP), ldap_get_values(3LDAP),
ldap_error(3LDAP), attributes(5)

The ldap_first_attribute() function alllocates memory that might need to be freed by the
caller by means of ber_free(3LDAP).

Name

Synopsis

Description

Errors

Attributes

See Also

Notes

ldap_first_attribute(3LDAP)

Networking Library Functions 313

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_first_entry, ldap_next_entry, ldap_count_entries, ldap_count_references,
ldap_first_reference, ldap_next_reference – LDAP entry parsing and counting functions

cc [flag...] file... -lldap [library...]

#include <lber.h>

#include <ldap.h>

LDAPMessage *ldap_first_entry(LDAP*ld, LDAPMessage *result);

LDAPMessage *ldap_next_entry(LDAP *ld, LDAPMessage *entry);

int ldap_count_entries(LDAP *ld, LDAPMessage *result);

LDAPMessage *ldap_first_reference(LDAP *ld, LDAPMessage *res);

LDAPMessage *ldap_next_reference(LDAP *ld, LDAPMessage *res);

int ldap_count_references(LDAP *ld, LDAPMessage *res);

These functions are used to parse results received from ldap_result(3LDAP) or the
synchronous LDAP search operation functions ldap_search_s(3LDAP) and
ldap_search_st(3LDAP).

The ldap_first_entry() function is used to retrieve the first entry in a chain of search
results. It takes the result as returned by a call to ldap_result(3LDAP) or
ldap_search_s(3LDAP) or ldap_search_st(3LDAP) and returns a pointer to the first entry
in the result.

This pointer should be supplied on a subsequent call to ldap_next_entry() to get the next
entry, the result of which should be supplied to the next call to ldap_next_entry(), etc.
ldap_next_entry() will return NULL when there are no more entries. The entries returned
from these calls are used in calls to the functions described in ldap_get_dn(3LDAP),
ldap_first_attribute(3LDAP), ldap_get_values(3LDAP), etc.

A count of the number of entries in the search result can be obtained by calling
ldap_count_entries().

ldap_first_reference() and ldap_next_reference() are used to step through and retrieve
the list of continuation references from a search result chain.

The ldap_count_references() function is used to count the number of references that are
contained in and remain in a search result chain.

If an error occurs in ldap_first_entry() or ldap_next_entry(), NULL is returned and the
ld_errno field in the ld parameter is set to indicate the error. If an error occurs in
ldap_count_entries(), −1 is returned, and ld_errno is set appropriately. See
ldap_error(3LDAP) for a description of possible error codes.

Name

Synopsis

Description

Errors

ldap_first_entry(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011314

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap(3LDAP), ldap_result(3LDAP), ldap_search(3LDAP),
ldap_first_attribute(3LDAP), ldap_get_values(3LDAP), ldap_get_dn(3LDAP),
attributes(5)

Attributes

See Also

ldap_first_entry(3LDAP)

Networking Library Functions 315

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_first_message, ldap_count_messages, ldap_next_message, ldap_msgtype – LDAP
message processing functions

cc[flag...] file... -lldap[library...]

#include <lber.h>

#include <ldap.h>

int ldap_count_messages(LDAP *ld, LDAPMessage *res);

LDAPMessage *ldap_first_message(LDAP *ld, LDAPMessage *res);

LDAPMessage *ldap_next_message(LDAP *ld, LDAPMessage *msg);

int ldap_msgtype(LDAPMessage *res);

ldap_count_messages() is used to count the number of messages that remain in a chain of
results if called with a message, entry, or reference returned by ldap_first_message(),
ldap_next_message(), ldap_first_entry(), ldap_next_entry(),
ldap_first_reference(), and ldap_next_reference()

ldap_first_message() and ldap_next_message() functions are used to step through the list
of messages in a result chain returned by ldap_result().

ldap_msgtype() function returns the type of an LDAP message.

ldap_first_message() and ldap_next_message() return LDAPMessage which can include
referral messages, entry messages and result messages.

ldap_count_messages() returns the number of messages contained in a chain of results.

ldap_first_message() and ldap_next_message() return NULL when no more messages
exist. NULL is also returned if an error occurs while stepping through the entries, in which case
the error parameters in the session handle ld will be set to indicate the error.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap_error(3LDAP), ldap_result(3LDAP), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

ldap_first_message(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011316

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_friendly, ldap_friendly_name, ldap_free_friendlymap – LDAP attribute remapping
functions

cc[flag...] file... -lldap[library...]

#include <lber.h>

#include <ldap.h>

char *ldap_friendly_name(char *filename, char *name,
FriendlyMap **map);

void ldap_free_friendlymap(FriendlyMap **map);

This function is used to map one set of strings to another. Typically, this is done for country
names, to map from the two-letter country codes to longer more readable names. The
mechanism is general enough to be used with other things, though.

filename is the name of a file containing the unfriendly to friendly mapping, name is the
unfriendly name to map to a friendly name, and map is a result-parameter that should be set
to NULL on the first call. It is then used to hold the mapping in core so that the file need not be
read on subsequent calls.

For example:

FriendlyMap *map = NULL;

printf("unfriendly %s => friendly %s\n", name,

ldap_friendly_name("ETCDIR/ldapfriendly", name, &map));

The mapping file should contain lines like this: unfriendlyname\tfriendlyname. Lines that
begin with a '#' character are comments and are ignored.

The ldap_free_friendlymap() call is used to free structures allocated by
ldap_friendly_name() when no more calls to ldap_friendly_name() are to be made.

NULL is returned by ldap_friendly_name() if there is an error opening filename, or if the file
has a bad format, or if the map parameter is NULL.

ETCDIR/ldapfriendly.conf

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap(3LDAP), attributes(5)

Name

Synopsis

Description

Errors

Files

Attributes

See Also

ldap_friendly(3LDAP)

Networking Library Functions 317

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_get_dn, ldap_explode_dn, ldap_dn2ufn, ldap_is_dns_dn, ldap_explode_dns,
ldap_dns_to_dn – LDAP DN handling functions

cc[flag...] file... -lldap[library...]

#include <lber.h>

#include <ldap.h>

char *ldap_get_dn(LDAP *ld, LDAPMessage *entry);

char **ldap_explode_dn(char *dn, int notypes);

char *ldap_dn2ufn(char *dn);

int ldap_is_dns_dn(char *dn);

char **ldap_explode_dns(char *dn);

char *ldap_dns_to_dn(char *dns_name, int *nameparts);

These functions allow LDAP entry names (Distinguished Names, or DNs) to be obtained,
parsed, converted to a user-friendly form, and tested. A DN has the form described in RFC
1779 A String Representation of Distinguished Names, unless it is an experimental DNS-style
DN which takes the form of an RFC 822 mail address.

The ldap_get_dn() function takes an entry as returned by ldap_first_entry(3LDAP) or
ldap_next_entry(3LDAP) and returns a copy of the entry's DN. Space for the DN will have
been obtained by means of malloc(3C), and should be freed by the caller by a call to free(3C).

The ldap_explode_dn() function takes a DN as returned by ldap_get_dn() and breaks it up
into its component parts. Each part is known as a Relative Distinguished Name, or RDN.
ldap_explode_dn() returns a null-terminated array, each component of which contains an
RDN from the DN. The notypes parameter is used to request that only the RDN values be
returned, not their types. For example, the DN "cn=Bob, c=US" would return as either {
"cn=Bob", "c=US", NULL } or { "Bob", "US", NULL }, depending on whether notypes was 0 or
1, respectively. The result can be freed by calling ldap_value_free(3LDAP).

ldap_dn2ufn() is used to turn a DN as returned by ldap_get_dn() into a more user-friendly
form, stripping off type names. See RFC 1781 "Using the Directory to Achieve User Friendly
Naming" for more details on the UFN format. The space for the UFN returned is obtained by a
call to malloc(3C), and the user is responsible for freeing it by means of a call to free(3C).

ldap_is_dns_dn() returns non-zero if the dn string is an experimental DNS-style DN
(generally in the form of an RFC 822 e-mail address). It returns zero if the dn appears to be an
RFC 1779 format DN.

ldap_explode_dns() takes a DNS-style DN and breaks it up into its component parts.
ldap_explode_dns() returns a null-terminated array. For example, the DN "mcs.umich.edu"
will return { "mcs", "umich", "edu", NULL }. The result can be freed by calling
ldap_value_free(3LDAP).

Name

Synopsis

Description

ldap_get_dn(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011318

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1free-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1free-3c

ldap_dns_to_dn() converts a DNS domain name into an X.500 distinguished name. A string
distinguished name and the number of nameparts is returned.

If an error occurs in ldap_get_dn(), NULL is returned and the ld_errno field in the ld
parameter is set to indicate the error. See ldap_error(3LDAP) for a description of possible
error codes. ldap_explode_dn(), ldap_explode_dns() and ldap_dn2ufn() will return NULL

with errno(3C) set appropriately in case of trouble.

If an error in ldap_dns_to_dn() is encountered zero is returned. The caller should free the
returned string if it is non-zero.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap(3LDAP), ldap_first_entry(3LDAP), ldap_error(3LDAP),
ldap_value_free(3LDAP)

These functions allocate memory that the caller must free.

Errors

Attributes

See Also

Notes

ldap_get_dn(3LDAP)

Networking Library Functions 319

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1errno-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_get_entry_controls – get the LDAP controls included with a directory entry in a set of
search results

cc [flag ...] file... -lldap [library ...]
#include <ldap.h>

int ldap_get_entry_controls(LDAP *ld, LDAPMessage *entry,
LDAPControl ***serverctrlsp);

The ldap_get_entry_controls() function retrieves the LDAP v3 controls included in a
directory entry in a chain of search results. The LDAP controls are specified in an array of
LDAPControl structures. Each LDAPControl structure represents an LDAP control. The
function takes entry as a parameter, which points to an LDAPMessage structure that represents
an entry in a chain of search results.

The entry notification controls that are used with persistent search controls are the only
controls that are returned with individual entries. Other controls are returned with results
sent from the server. You can call ldap_parse_result() to retrieve those controls.

ldap_get_entry_controls() returns the following error codes.

LDAP_SUCCESS LDAP controls were successfully retrieved.

LDAP_DECODING_ERROR An error occurred when decoding the BER-encoded message.

LDAP_PARAM_ERROR An invalid parameter was passed to the function.

LDAP_NO_MEMORY Memory cannot be allocated.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap_error(3LDAP), ldap_parse_result(3LDAP), attributes(5)

Name

Synopsis

Description

Errors

Attributes

See Also

ldap_get_entry_controls(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011320

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_getfilter, ldap_init_getfilter, ldap_init_getfilter_buf, ldap_getfilter_free,
ldap_getfirstfilter, ldap_getnextfilter, ldap_setfilteraffixes, ldap_build_filter – LDAP filter
generating functions

cc [flag...] file... -lldap [library...]

#include <lber.h>

#include <ldap.h>

#define LDAP_FILT_MAXSIZ 1024

LDAPFiltDesc *ldap_init_getfilter(char *file);

LDAPFiltDesc *ldap_init_getfilter_buf(char *buf, long buflen);

void ldap_getfilter_free(LDAPFiltDesc *lfdp);

LDAPFiltInfo *ldap_getfirstfilter(LDAPFiltDesc *lfdp, char *tagpat,
char *value);

LDAPFiltInfo *ldap_getnextfilter(LDAPFiltDesc *lfdp);

void ldap_setfilteraffixes(LDAPFiltDesc *lfdp, char *prefix,
char *suffix);

void ldap_build_filter(char *buf, unsigned long buflen, char *pattern,
char *prefix, char *suffix, char *attr, char *value,
char **valwords);

These functions are used to generate filters to be used in ldap_search(3LDAP) or
ldap_search_s(3LDAP). Either ldap_init_getfilter or ldap_init_getfilter_buf must
be called prior to calling any of the other functions except ldap_build_filter.

ldap_init_getfilter() takes a file name as its only argument. The contents of the file must
be a valid LDAP filter configuration file (see ldapfilter.conf(4)). If the file is successfully
read, a pointer to an LDAPFiltDesc is returned. This is an opaque object that is passed in
subsequent get filter calls.

ldap_init_getfilter_buf() reads from buf, whose length is buflen, the LDAP filter
configuration information. buf must point to the contents of a valid LDAP filter configuration
file. See ldapfilter.conf(4). If the filter configuration information is successfully read, a
pointer to an LDAPFiltDesc is returned. This is an opaque object that is passed in subsequent
get filter calls.

ldap_getfilter_free() deallocates the memory consumed by ldap_init_getfilter. Once
it is called, the LDAPFiltDesc is no longer valid and cannot be used again.

ldap_getfirstfilter() retrieves the first filter that is appropriate for value. Only filter sets
that have tags that match the regular expession tagpat are considered. ldap_getfirstfilter
returns a pointer to an LDAPFiltInfo structure, which contains a filter with value inserted as
appropriate in lfi_filter, a text match description in lfi_desc, lfi_scope set to indicate
the search scope, and lfi_isexact set to indicate the type of filter. NULL is returned if no
matching filters are found. lfi_scope will be one of LDAP_SCOPE_BASE,

Name

Synopsis

Description

ldap_getfilter(3LDAP)

Networking Library Functions 321

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldapfilter.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldapfilter.conf-4

LDAP_SCOPE_ONELEVEL, or LDAP_SCOPE_SUBTREE. lfi_isexact will be zero if the filter has
any '~' or '*' characters in it and non-zero otherwise.

ldap_getnextfilter() retrieves the next appropriate filter in the filter set that was
determined when ldap_getfirstfilter was called. It returns NULL when the list has been
exhausted.

ldap_setfilteraffixes() sets a prefix to be prepended and a suffix to be appended to all
filters returned in the future.

ldap_build_filter() constructs an LDAP search filter in buf. buflen is the size, in bytes, of
the largest filter buf can hold. A pattern for the desired filter is passed in pattern. Where the
string %a appears in the pattern it is replaced with attr. prefix is pre-pended to the resulting
filter, and suffix is appended. Either can be NULL , in which case they are not used. value and
valwords are used when the string %v appears in pattern. See ldapfilter.conf(4) for a
description of how %v is handled.

NULL is returned by ldap_init_getfilter if there is an error reading file. NULL is returned
by ldap_getfirstfilter and ldap_getnextfilter when there are no more appropriate
filters to return.

ETCDIR/ldapfilter.conf LDAP filtering routine configuration file.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap(3LDAP), ldapfilter.conf(4), attributes(5)

The return values for all of these functions are declared in the <ldap.h> header file. Some
functions may allocate memory which must be freed by the calling application.

Errors

Files

Attributes

See Also

Notes

ldap_getfilter(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011322

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldapfilter.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldapfilter.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_get_lang_values, ldap_get_lang_values_len – return an attribute's values that matches a
specified language subtype

cc [flag ...] file... -lldap [library ...]

#include <ldap.h>

char **ldap_get_lang_values(LDAP *ld, LDAPMessage *entry,
const char *target, char **type);

struct berval **ldap_get_lang_values_len(LDAP *ld, LDAPMessage *entry,
const char *target, char **type);

The ldap_get_lang_values() function returns an array of an attribute's string values that
matches a specified language subtype. To retrieve the binary data from an attribute, call the
ldap_get_lang_values_len() function instead.

ldap_get_lang_values() should be called to retrieve a null-terminated array of an attribute's
string values that match a specified language subtype. The entry parameter is the entry
retrieved from the directory. The target parameter should contain the attribute type the values
that are required, including the optional language subtype. The type parameter points to a
buffer that returns the attribute type retrieved by this function. Unlike the
ldap_get_values() function, if a language subtype is specified, this function first attempts to
find and return values that match that subtype, for example, cn;lang-en.

ldap_get_lang_values_len() returns a null–terminated array of pointers to berval

structures, each containing the length and pointer to a binary value of an attribute for a given
entry. The entry parameter is the result returned by ldap_result() or ldap_search_s()
functions. The target parameter is the attribute returned by the call to
ldap_first_attribute() or ldap_next_attribute(), or the attribute as a literal string, such
as jpegPhoto or audio.

These functions are deprecated. Use ldap_get_values() or ldap_get_values_len()
instead.

If successful, ldap_get_lang_values() returns a null-terminated array of the attribute's
values. If the call is unsuccessful, or if no such attribute exists in the entry, it returns a NULL and
sets the appropriate error code in the LDAP structure.

The ldap_get_lang_values_len() function returns a null-terminated array of pointers to
berval structures, which in turn, if successful, contain pointers to the attribute's binary
values. If the call is unsuccessful, or if no such attribute exists in the entry, it returns a NULL and
sets the appropriate error code in the LDAP structure.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Name

Synopsis

Description

Return Values

Attributes

ldap_get_lang_values(3LDAP)

Networking Library Functions 323

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Obsolete

ldap_first_attribute(3LDAP), ldap_first_attribute(3LDAP),
ldap_get_values(3LDAP), ldap_result(3LDAP), ldap_search(3LDAP), attributes(5)

See Also

ldap_get_lang_values(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011324

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_get_option, ldap_set_option – get or set session preferences in the ldap structure.

cc [flag...] file... -lldap [library...]

#include <lber.h>

#include <ldap.h>

LDAP ldap_set_option(LDAP *ld, int option, void *optdata[]);

LDAP ldap_get_option(LDAP *ld, int option, void optdata[]);

These functions provide an LDAP structure with access to session preferences. The
ldap_get_option() function gets session preferences from the LDAP structure. The
ldap_set_option() function sets session preferences in the LDAP structure.

The ld parameter specifies the connection handle, a pointer to an LDAP structure that contains
information about the LDAP server connection. The option parameter specifies the name of
the option to be read or modified. The optdata parameter serves as a pointer to the value of the
option that you set or get.

The following values can be specified for the option parameter:

LDAP_OPT_API_INFO Retrieves basic information about the LDAP API
implementation at execution time. The data type for
the optdata parameter is (LDAPAPIInfo *). This
option is READ-ONLY and cannot be set.

LDAP_OPT_DEREF Determines how aliases are handled during a search.
The data type for the optdata parameter is (int *).
The following values can be specified for the optdata
parameter:

LDAP_DEREF_NEVER Specifies that aliases are
never dereferenced.

LDAP_DEREF_SEARCHING Specifies that aliases are
dereferenced when
searching under the base
object, but not when
finding the base object.

LDAP_DEREF_FINDING Specifies that aliases are
dereferenced when
finding the base object,
but not when searching
under the base object.

LDAP_DEREF_ALWAYS Specifies that aliases are
always dereferenced when
finding the base object

Name

Synopsis

Description

Parameters

ldap_get_option(3LDAP)

Networking Library Functions 325

and searching under the
base object.

LDAP_OPT_SIZELIMIT Specifies the maximum number of entries returned by
the server in search results. The data type for the
optdata parameter is (int *). Setting the optdata
parameter to LDAP_NO_LIMIT removes any size limit
enforced by the client.

LDAP_OPT_TIMELIMIT Specifies the maximum number of seconds spent by the
server when answering a search request. The data type
for the optdata parameter is (int *). Setting the
optdata parameter to LDAP_NO_LIMIT removes any
time limit enforced by the client.

LDAP_OPT_REFERRALS Determines whether the client should follow referrals.
The data type for the optdata parameter is (int *).
The following values can be specified for the optdata
parameter:

LDAP_OPT_ON Specifies that the client should
follow referrals.

LDAP_OPT_OFF Specifies that the client should not
follow referrals.

By default, the client follows referrals.

LDAP_OPT_RESTART Determines whether LDAP I/O operations are
automatically restarted if aborted prematurely. It can
be set to one of the constants LDAP_OPT_ON or
LDAP_OPT_OFF.

LDAP_OPT_PROTOCOL_VERSION Specifies the version of the protocol supported by the
client. The data type for the optdata parameter is (int
*). The version LDAP_VERSION2 or LDAP_VERSION3 can
be specified. If no version is set, the default version
LDAP_VERSION2 is set. To use LDAP v3 features, set the
protocol version to LDAP_VERSION3.

LDAP_OPT_SERVER_CONTROLS Specifies a pointer to an array of LDAPControl
structures that represent the LDAP v3 server controls
sent by default with every request. The data type for the
optdata parameter for ldap_set_option() is
(LDAPControl **). For ldap_get_option(), the data
type is (LDAPControl ***).

ldap_get_option(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 15 Jan 2004326

LDAP_OPT_CLIENT_CONTROLS Specifies a pointer to an array of LDAPControl
structures that represent the LDAP v3 client controls
sent by default with every request. The data type for the
optdata parameter for ldap_set_option() is
(LDAPControl **). For ldap_get_option(), the data
type is (LDAPControl ***).

LDAP_OPT_API_FEATURE_INFO Retrieves version information at execution time about
extended features of the LDAP API. The data type for
the optdata parameter is (LDAPAPIFeatureInfo *).
This option is READ-ONLY and cannot be set.

LDAP_OPT_HOST_NAME Sets the host name or a list of hosts for the primary
LDAP server. The data type for the optdata parameter
for ldap_set_option() is (char *). For
ldap_get_option(), the data type is (char **).

LDAP_OPT_ERROR_NUMBER Specifies the code of the most recent LDAP error that
occurred for this session. The data type for the optdata
parameter is (int *).

LDAP_OPT_ERROR_STRING Specifies the message returned with the most recent
LDAP error that occurred for this session. The data
type for the optdata parameter for ldap_set_option()
is (char *) and for ldap_get_option() is (char **).

LDAP_OPT_MATCHED_DN Specifies the matched DN value returned with the most
recent LDAP error that occurred for this session. The
data type for the optdata parameter for
ldap_set_option() is (char *) and for
ldap_get_option() is (char **).

LDAP_OPT_REBIND_ARG Sets the last argument passed to the routine specified by
LDAP_OPT_REBIND_FN. This option can also be set by
calling the ldap_set_rebind_proc() function. The
data type for the optdata parameter is (void *).

LDAP_OPT_REBIND_FN Sets the routine to be called to authenticate a
connection with another LDAP server. For example,
the option is used to set the routine called during the
course of a referral. This option can also be by calling
the ldap_set_rebind_proc() function. The data type
for the optdata parameter is
(LDAP_REBINDPROC_CALLBACK *).

ldap_get_option(3LDAP)

Networking Library Functions 327

LDAP_OPT_X_SASL_MECH Sets the default SASL mechanism to call
ldap_interactive_bind_s(). The data type for the
optdata parameter is (char *).

LDAP_OPT_X_SASL_REALM Sets the default SASL_REALM. The default SASL_REALM
should be used during a SASL challenge in response to
a SASL_CB_GETREALM request when using the
ldap_interactive_bind_s() function. The data type
for the optdata parameter is (char *).

LDAP_OPT_X_SASL_AUTHCID Sets the default SASL_AUTHNAME used during a SASL
challenge in response to a SASL_CB_AUTHNAME request
when using the ldap_interactive_bind_s()
function. The data type for the optdata parameter is
(char *).

LDAP_OPT_X_SASL_AUTHZID Sets the default SASL_USER that should be used during a
SASL challenge in response to a SASL_CB_USER request
when using the ldap_interactive_bind_s function.
The data type for the optdata parameter is (char *).

LDAP_OPT_X_SASL_SSF A read-only option used exclusively with the
ldap_get_option() function. The
ldap_get_option() function performs a
sasl_getprop() operation that gets the SASL_SSF
value for the current connection. The data type for the
optdata parameter is (sasl_ssf_t *).

LDAP_OPT_X_SASL_SSF_EXTERNAL A write-only option used exclusively with the
ldap_set_option() function. The
ldap_set_option() function performs a
sasl_setprop() operation to set the
SASL_SSF_EXTERNAL value for the current connection.
The data type for the optdata parameter is
(sasl_ssf_t *).

LDAP_OPT_X_SASL_SECPROPS A write-only option used exclusively with the
ldap_set_option(). This function performs a
sasl_setprop(3SASL) operation for the
SASL_SEC_PROPS value for the current connection
during an ldap_interactive_bind_s() operation.
The data type for the optdata parameter is (char *), a
comma delimited string containing text values for any
of the SASL_SEC_PROPS that should be set. The text
values are:

ldap_get_option(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 15 Jan 2004328

noanonymous Sets the SASL_SEC_NOANONYMOUS
flag

nodict Sets the SASL_SEC_NODICTIONARY
flag

noplain Sets the SASL_SEC_NOPLAINTEXT
flag

forwardsec Sets the
SASL_SEC_FORWARD_SECRECY flag

passcred Sets the
SASL_SEC_PASS_CREDENTIALS flag

minssf=N Sets minssf to the integer value N

maxssf=N Sets maxssf to the integer value N

maxbufsize=N Sets maxbufsize to the integer value
N

LDAP_OPT_X_SASL_SSF_MIN Sets the default SSF_MIN value used during a
ldap_interactive_bind_s() operation. The data type
for the optdata parameter is (char *) numeric string.

LDAP_OPT_X_SASL_SSF_MAX Sets the default SSF_MAX value used during a
ldap_interactive_bind_s() operation. The data type
for the optdata parameter is (char *) numeric string.

LDAP_OPT_X_SASL_MAXBUFSIZE Sets the default SSF_MAXBUFSIZE value used during a
ldap_interactive_bind_s() operation. The data type
for the optdata parameter is (char *) numeric string.

The ldap_set_option() and ldap_get_option() functions return:

LDAP_SUCCESS If successful

-1 If unsuccessful

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

ldap_init(3LDAP), sasl_setprop(3SASL), attributes(5)

Return Values

Attributes

See Also

ldap_get_option(3LDAP)

Networking Library Functions 329

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

There are other elements in the LDAP structure that should not be changed. No assumptions
should be made about the order of elements in the LDAP structure.

Notes

ldap_get_option(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 15 Jan 2004330

ldap_get_values, ldap_get_values_len, ldap_count_values, ldap_count_values_len,
ldap_value_free, ldap_value_free_len – LDAP attribute value handling functions

cc [flag...] file... -lldap [library...]

#include <lber.h>

#include <ldap.h>

char **ldap_get_values(LDAP *ld, LDAPMessage *entry, char *attr);

struct berval **ldap_get_values_len(LDAP * ld, LDAPMessage *entry,
char *attr);

int ldap_count_values(char **vals);

int ldap_count_values_len(struct berval **vals);

void ldap_value_free(char **vals);

void ldap_value_free_len(struct berval vals);

These functions are used to retrieve and manipulate attribute values from an LDAP entry as
returned by ldap_first_entry(3LDAP) or ldap_next_entry(3LDAP). ldap_get_values()
takes the entry and the attribute attr whose values are desired and returns a null-terminated
array of the attribute's values. attr may be an attribute type as returned from
ldap_first_attribute(3LDAP) or ldap_next_attribute(3LDAP), or if the attribute type is
known it can simply be given.

The number of values in the array can be counted by calling ldap_count_values(). The array
of values returned can be freed by calling ldap_value_free().

If the attribute values are binary in nature, and thus not suitable to be returned as an array of
char *'s, the ldap_get_values_len() function can be used instead. It takes the same
parameters as ldap_get_values(), but returns a null-terminated array of pointers to berval
structures, each containing the length of and a pointer to a value.

The number of values in the array can be counted by calling ldap_count_values_len(). The
array of values returned can be freed by calling ldap_value_free_len().

If an error occurs in ldap_get_values() or ldap_get_values_len(), NULL returned and the
ld_errno field in the ld parameter is set to indicate the error. See ldap_error(3LDAP) for a
description of possible error codes.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

Name

Synopsis

Description

Errors

Attributes

ldap_get_values(3LDAP)

Networking Library Functions 331

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap(3LDAP), ldap_first_entry(3LDAP), ldap_first_attribute(3LDAP),
ldap_error(3LDAP), attributes(5)

These functions allocates memory that the caller must free.

See Also

Notes

ldap_get_values(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011332

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_memcache, ldap_memcache_init, ldap_memcache_set, ldap_memcache_get,
ldap_memcache_flush, ldap_memcache_destroy, ldap_memcache_update – LDAP client
caching functions

cc [flag ...] file... -lldap [library ...]

#include <ldap.h>

int ldap_memcache_init(unsigned long ttl, unsigned long size,
char **baseDNs,struct ldap_thread_fns *thread_fns,
LDAPMemCache **cachep);

int ldap_memcache_set(LDAP *ld, LDAPMemCache **cache);

int ldap_memcache_get(LDAP *ld, LDAPMemCache **cachep);

void ldap_memcache_flush(LDAPMemCache *cache, char *dn, int scope

void ldap_memcache_destroy(LDAPMemCache *cache);

void ldap_memcache_update(LDAPMemCache *cache);

Use the ldap_memcache functions to maintain an in-memory client side cache to store search
requests. Caching improves performance and reduces network bandwidth when a client
makes repeated requests. The cache uses search criteria as the key to the cached items. When
you send a search request, the cache checks the search criteria to determine if that request has
been previously stored . If the request was stored, the search results are read from the cache.

Make a call to ldap_memcache_init() to create the in-memory client side cache. The function
passes back a pointer to an LDAPMemCache structure, which represents the cache. Make a call to
the ldap_memcache_set() function to associate this cache with an LDAP connection handle,
an LDAP structure. ttl is the the maximum amount of time (in seconds) that an item can be
cached. If a ttl value of 0 is passed, there is no limit to the amount of time that an item can be
cached. size is the maximum amount of memory (in bytes) that the cache will consume. A zero
value of size means the cache has no size limit. baseDNS is an array of the base DN strings
representing the base DNs of the search requests you want cached. If baseDNS is not NULL,
only the search requests with the specified base DNs will be cached. If baseDNS is NULL, all
search requests are cached. The thread_fns parameter takes an ldap_thread_fns structure

specifying the functions that you want used to ensure that the cache is thread-safe. You should
specify this if you have multiple threads that are using the same connection handle and cache.
If you are not using multiple threads, pass NULL for this parameter.

ldap_memcache_set() associates an in-memory cache that you have already created by calling
the ldap_memcache_init() function with an LDAP connection handle. The ld parameter
should be the result of a successful call to ldap_open(3LDAP). The cache parameter should be
the result of a cache created by the ldap_memcache_init() call. After you call this function,
search requests made over the specified LDAP connection will use this cache. To disassociate
the cache from the LDAP connection handle, make a call to the ldap_bind(3LDAP) or
ldap_bind(3LDAP) function. Make a call to ldap_memcache_set() if you want to associate a

Name

Synopsis

Description

ldap_memcache(3LDAP)

Networking Library Functions 333

cache with multiple LDAP connection handles. For example, call the ldap_memcache_get()
function to get the cache associated with one connection, then you can call this function and
associate the cache with another connection.

The ldap_memcache_get() function gets the cache associated with the specified connection
handle (LDAP structure). This cache is used by all search requests made through that
connection. When you call this function, the function sets the cachep parameter as a pointer to
the LDAPMemCache structure that is associated with the connection handle.

ldap_memcache_flush() flushes search requests from the cache. If the base DN of a search
request is within the scope specified by the dn and scope arguments, the search request is
flushed from the cache. If no DN is specified, the entire cache is flushed. The scope parameter,
along with the dn parameter, identifies the search requests that you want flushed from the
cache. This argument can have one of the following values:

LDAP_SCOPE_BASE

LDAP_SCOPE_ONELEVEL

LDAP_SCOPE_SUBTREE

ldap_memcache_destroy() frees the specified LDAPMemCache structure pointed to by cache
from memory. Call this function after you are done working with a cache.

ldap_memcache_update() checks the cache for items that have expired and removes them.
This check is typically done as part of the way the cache normally works. You do not need to
call this function unless you want to update the cache at this point in time. This function is
only useful in a multithreaded application, since it will not return until the cache is destroyed.

ttl The maximum amount of time (in seconds) that an item can be cached

size The maximum amount of memory (in bytes) that the cache will consume.

baseDNs An array of the base DN strings representing the base DNs of the search
requests you want cached

thread_fns A pointer to the ldap_thread_fns structure structure.

cachep A pointer to the LDAPMemCache structure

cache The result of a cache created by the ldap_memcache_init() call

ld The result of a successful call to ldap_open(3LDAP)

dn The search requests that you want flushed from the cache

scope The search requests that you want flushed from the cache

The functions that have int return values return LDAP_SUCCESS if the operation was
successful. Otherwise, they return another LDAP error code. See ldap_error(3LDAP) for a
list of the LDAP error codes.

Parameters

Errors

ldap_memcache(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011334

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap_error(3LDAP), ldap_open(3LDAP), ldap_search(3LDAP), attributes(5)

Attributes

See Also

ldap_memcache(3LDAP)

Networking Library Functions 335

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_memfree – free memory allocated by LDAP API functions

cc [flag ...] file... -lldap [library ...]
#include < lber.h>

#include < ldap.h>

void ldap_memfree(void *p);

The ldap_memfree() function frees the memory allocated by certain LDAP API functions
that do not have corresponding functions to free memory. These functions include
ldap_get_dn(3LDAP), ldap_first_attribute(3LDAP), and
ldap_next_attribute(3LDAP).

The ldap_memfree() function takes one parameter, p, which is a pointer to the memory to be
freed.

p A pointer to the memory to be freed.

There are no return values for the ldap_memfree() function.

No errors are defined for the ldap_memfree() function.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap(3LDAP), ldap_first_attribute(3LDAP), ldap_get_dn(3LDAP),
ldap_next_attribute(3LDAP), attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

ldap_memfree(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011336

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_modify, ldap_modify_s, ldap_mods_free, ldap_modify_ext, ldap_modify_ext_s – LDAP
entry modification functions

cc[flag...] file... -lldap[library...]

#include <lber.h>

#include <ldap.h>

int ldap_modify(LDAP *ld, char *dn, LDAPMod *mods[]);

int ldap_modify_s(LDAP *ld, char *dn, LDAPMod *mods[]);

void ldap_mods_free(LDAPMod **mods, int freemods);

int ldap_modify_ext(LDAP *ld, char *dn, LDAPMod **mods,
LDAPControl **serverctrls, LDAPControl **clientctrls, int *msgidp);

int ldap_modify_ext_s(LDAP *ld, char *dn, LDAPMod **mods,
LDAPControl **serverctrls, LDAPControl **clientctrls);

The function ldap_modify_s() is used to perform an LDAP modify operation. dn is the DN
of the entry to modify, and mods is a null-terminated array of modifications to make to the
entry. Each element of the mods array is a pointer to an LDAPMod structure, which is defined
below.

typedef struct ldapmod {

int mod_op;

char *mod_type;

union {

char **modv_strvals;

struct berval **modv_bvals;

} mod_vals;

} LDAPMod;

#define mod_values mod_vals.modv_strvals

#define mod_bvalues mod_vals.modv_bvals

The mod_op field is used to specify the type of modification to perform and should be one of
LDAP_MOD_ADD, LDAP_MOD_DELETE, or LDAP_MOD_REPLACE. The mod_type and mod_values
fields specify the attribute type to modify and a null-terminated array of values to add, delete,
or replace respectively.

If you need to specify a non-string value (for example, to add a photo or audio attribute value),
you should set mod_op to the logical OR of the operation as above (for example,
LDAP_MOD_REPLACE) and the constant LDAP_MOD_BVALUES. In this case, mod_bvalues should be
used instead of mod_values, and it should point to a null-terminated array of struct bervals, as
defined in <lber.h>.

For LDAP_MOD_ADD modifications, the given values are added to the entry, creating the
attribute if necessary. For LDAP_MOD_DELETE modifications, the given values are deleted from
the entry, removing the attribute if no values remain. If the entire attribute is to be deleted, the
mod_values field should be set to NULL. For LDAP_MOD_REPLACE modifications, the attribute

Name

Synopsis

Description

ldap_modify(3LDAP)

Networking Library Functions 337

will have the listed values after the modification, having been created if necessary. All
modifications are performed in the order in which they are listed.

ldap_modify_s() returns the LDAP error code resulting from the modify operation.

The ldap_modify() operation works the same way as ldap_modify_s(), except that it is
asynchronous, returning the message id of the request it initiates, or −1 on error. The result of
the operation can be obtained by calling ldap_result(3LDAP).

ldap_mods_free() can be used to free each element of a null-terminated array of mod
structures. If freemods is non-zero, the mods pointer itself is freed as well.

The ldap_modify_ext() function initiates an asynchronous modify operation and returns
LDAP_SUCCESS if the request was successfully sent to the server, or else it returns a LDAP error
code if not. See ldap_error(3LDAP). If successful, ldap_modify_ext() places the message id
of the request in *msgidp. A subsequent call to ldap_result(3LDAP), can be used to obtain
the result of the add request.

The ldap_modify_ext_s() function initiates a synchronous modify operation and returns
the result of the operation itself.

ldap_modify_s() returns an LDAP error code, either LDAP_SUCCESS or an error. See
ldap_error(3LDAP).

ldap_modify() returns −1 in case of trouble, setting the error field of ld.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap(3LDAP), ldap_add(3LDAP), ldap_error(3LDAP), ldap_get_option(3LDAP),
attributes(5)

Errors

Attributes

See Also

ldap_modify(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011338

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_modrdn, ldap_modrdn_s, ldap_modrdn2, ldap_modrdn2_s, ldap_rename,
ldap_rename_s – modify LDAP entry RDN

cc[flag...] file...-l ldap [library...]

#include <lber.h>

#include <ldap.h>

int ldap_modrdn(LDAP *ld, const char *dn, const char *newrdn);

int ldap_modrdn_s(LDAP *ld, const char *dn, const char *newrdn,
int deleteoldrdn);

int ldap_modrdn2(LDAP *ld, const char *dn, const char *newrdn,
int deleteoldrdn);

int ldap_modrdn2_s(LDAP *ld, const char *dn,
const char *newrdn, int deleteoldrdn);

int ldap_rename(LDAP *ld, const char *dn, const char *newrdn,
const char *newparent, int deleteoldrdn,
LDAPControl **serverctrls, LDAPControl **clientctrls,
int *msgidp);

int ldap_rename_s(LDAP *ld, const char *dn, const char *newrdn,
const char *newparent, const int deleteoldrdn,
LDAPControl **serverctrls,LDAPControl **clientctrls);

The ldap_modrdn() and ldap_modrdn_s() functions perform an LDAP modify RDN
(Relative Distinguished Name) operation. They both take dn, the DN (Distinguished Name)
of the entry whose RDN is to be changed, and newrdn, the new RDN, to give the entry. The old
RDN of the entry is never kept as an attribute of the entry. ldap_modrdn() is asynchronous. It
return the message id of the operation it initiates. ldap_modrdn_s() is synchronous. It returns
the LDAP error code that indicates the success or failure of the operation.

The ldap_modrdn2() and ldap_modrdn2_s() functions also perform an LDAP modify RDN
operation. They take the same parameters as above. In addition, they both take the
deleteoldrdn parameter ,which is used as a boolean value to indicate whether or not the old
RDN values should be deleted from the entry.

The ldap_rename(), ldap_rename_s() routines are used to change the name, that is, the
RDN of an entry. These routines deprecate the ldap_modrdn() and ldap_modrdn_s()

routines, as well as ldap_modrdn2() and ldap_modrdn2_s().

The ldap_rename() and ldap_rename_s() functions both support LDAPv3 server controls
and client controls.

The synchronous (_s) versions of these functions return an LDAP error code, either
LDAP_SUCCESS or an error. See ldap_error(3LDAP).

The asynchronous versions return −1 in the event of an error, setting the ld_errno field of ld.
See ldap_error(3LDAP) for more details. Use ldap_result(3LDAP) to determine a

Name

Synopsis

Description

Errors

ldap_modrdn(3LDAP)

Networking Library Functions 339

particular unsuccessful result.

See attributes(5) for a description of the following attributes of the ldap_modrdn(),
ldap_modrdn_s(), ldap_modrdn2() and ldap_modrdn2_s() functions:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Obsolete

The ldap_rename() and ldap_rename_s() functions have the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap(3LDAP), ldap_error(3LDAP) , attributes(5)

Attributes

See Also

ldap_modrdn(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011340

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_open, ldap_init – initialize an LDAP session

cc [flag...] file... -lldap [library...]

#include <lber.h>

#include <ldap.h>

LDAP *ldap_open(const char *host, int port);

LDAP *ldap_init(const char *host, int port);

The ldap_open() function initializes an LDAP session and also opens a connection to an
LDAP server before it returns to the caller. Unlike ldap_open(), ldap_init() does not open a
connection to the LDAP server until an operation, such as a search request, is performed.

The ldap_open() function is deprecated and should no longer be used. Call ldap_init()
instead.

A list of LDAP hostnames or an IPv4 or IPv6 address can be specified with the ldap_open()
and ldap_init() functions. The hostname can include a port number, separated from the
hostname by a colon (:). A port number included as part of the hostname takes precedence
over the port parameter. The ldap_open() and ldap_init() functions attempt connections
with LDAP hosts in the order listed and return the first successful connection.

These functions support the following parameters.

host The hostname, IPv4 or IPv6 address of the host that runs the LDAP server. A
space-separated list of hostnames can also be used for this parameter.

port TCP port number of a connection. Supply the constant LDAP_PORT to obtain the
default LDAP port of 389. If a host includes a port number, the default parameter is
ignored.

The ldap_open() and ldap_init() functions return a handle to an LDAP session that
contains a pointer to an opaque structure. The structure must be passed to subsequent calls for
the session. If a session cannot be initialized, the functions return NULL and errno should be
set appropriately.

Various aspects of this opaque structure can be read or written to control the session-wide
parameters. Use the ldap_get_option(3LDAP) to access the current option values and the
ldap_set_option(3LDAP) to set values for these options.

EXAMPLE 1 Specifying IPv4 and IPv6 Addresses

LDAP sessions can be initialized with hostnames, IPv4 or IPv6 addresses, such as those shown
in the following examples.

ldap_init("hosta:636 hostb", 389)

ldap_init("192.168.82.110:389", 389)

ldap_init("[fec0::114:a00:20ff:ab3d:83ed]", 389)

Name

Synopsis

Description

Parameters

Return Values

Examples

ldap_open(3LDAP)

Networking Library Functions 341

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

errno(3C), ldap(3LDAP), ldap_bind(3LDAP), ldap_get_option(3LDAP),
ldap_set_option(3LDAP), attributes(5)

Attributes

See Also

ldap_open(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 15 Jan 2004342

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1errno-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_parse_result, ldap_parse_extended_result, ldap_parse_sasl_bind_result – LDAP
message result parser

cc [flag...] file... -lldap [library...]

#include <lber.h>

#include <ldap.h>

int ldap_parse_result(LDAP *ld, LDAPMessage *res, int *errcodep,
char **matcheddnp,char **errmsgp, char ***referralsp,
LDAPControl ***serverctrlsp, int freeit);

int ldap_parse_sasl_bind_result(LDAP *ld, LDAPMessage *res,
struct berval **servercredp,int freeit);

int ldap_parse_extended_result(LDAP *ld, LDAPMessage *res,
char **resultoidp, struct berval **resultdata, int freeit);

The ldap_parse_extended_result(), ldap_parse_result() and
ldap_parse_sasl_bind_result() routines search for a message to parse. These functions
skip messages of type LDAP_RES_SEARCH_ENTRY and LDAP_RES_SEARCH_REFERENCE.

They return LDAP_SUCCESS if the result was successfully parsed or an LDAP error code if not
(see ldap_error(3LDAP)).

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap_error(3LDAP), ldap_result(3LDAP), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

ldap_parse_result(3LDAP)

Networking Library Functions 343

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_result, ldap_msgfree – wait for and return LDAP operation result

cc[flag...] file... -lldap[library...]

#include <lber.h>

#include <ldap.h>

int ldap_result(LDAP *ld, int msgid, int all,
struct timeval *timeout, LDAPMessage **result);

int ldap_msgfree(LDAPMessage *msg);

The ldap_result() function is used to wait for and return the result of an operation
previously initiated by one of the LDAP asynchronous operation functions , for example,
ldap_search(3LDAP), and ldap_modify(3LDAP). Those functions all return −1 in case of
error, and an invocation identifier upon successful initiation of the operation. The invocation
identifier is picked by the library and is guaranteed to be unique across the LDAP session. It
can be used to request the result of a specific operation from ldap_result() through the
msgid parameter.

The ldap_result() function will block or not, depending upon the setting of the timeout
parameter. If timeout is not a null pointer, it specifies a maximum interval to wait for the
selection to complete. If timeout is a null pointer, the select blocks indefinitely. To effect a poll,
the timeout argument should be a non-null pointer, pointing to a zero-valued timeval

structure. See select(3C) for further details.

If the result of a specific operation is required, msgid should be set to the invocation identifier
returned when the operation was initiated, otherwise LDAP_RES_ANY should be supplied. The
all parameter only has meaning for search responses and is used to select whether a single
entry of the search response should be returned, or all results of the search should be returned.

A search response is made up of zero or more search entries followed by a search result. If all is
set to 0, search entries will be returned one at a time as they come in, by means of separate calls
to ldap_result(). If it is set to a non-zero value, the search response will only be returned in
its entirety, that is, after all entries and the final search result have been received.

Upon success, the type of the result received is returned and the result parameter will contain
the result of the operation. This result should be passed to the LDAP parsing functions, (see
ldap_first_entry(3LDAP)) for interpretation.

The possible result types returned are:

#define LDAP_RES_BIND 0x61L

#define LDAP_RES_SEARCH_ENTRY 0x64L

#define LDAP_RES_SEARCH_RESULT 0x65L

#define LDAP_RES_MODIFY 0x67L

#define LDAP_RES_ADD 0x69L

#define LDAP_RES_DELETE 0x6bL

#define LDAP_RES_MODRDN 0x6dL

#define LDAP_RES_COMPARE 0x6fL

Name

Synopsis

Description

ldap_result(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011344

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c

The ldap_msgfree() function is used to free the memory allocated for a result by
ldap_result() or ldap_search_s(3LDAP) functions. It takes a pointer to the result to be
freed and returns the type of the message it freed.

The ldap_result() function returns −1 on error and 0 if the specified timeout was exceeded.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

select(1), ldap(3LDAP), ldap_search(3LDAP) , attributes(5)

The ldap_result() function allocates memory for results that it receives. The memory can be
freed by calling ldap_msgfree(3LDAP).

Errors

Attributes

See Also

Notes

ldap_result(3LDAP)

Networking Library Functions 345

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_search, ldap_search_s, ldap_search_ext, ldap_search_ext_s, ldap_search_st – LDAP
search operations

cc [flag...] file... -lldap[library...]
#include <sys/time.h> /* for struct timeval definition */

#include <lber.h>

#include <ldap.h>

int ldap_search(LDAP *ld, char *base, int scope, char *filter,
char *attrs[], int attrsonly);

int ldap_search_s(LDAP *ld, char *base, int scope, char *filter,
char *attrs[],int attrsonly, LDAPMessage **res);

int ldap_search_st(LDAP *ld, char *base, int scope, char *filter,
char *attrs[], int attrsonly, struct timeval *timeout,
LDAPMessage **res);

int ldap_search_ext(LDAP *ld, char *base, int scope, char

*filter, char **attrs, int attrsonly, LDAPControl **serverctrls,
LDAPControl **clientctrls, struct timeval *timeoutp,
int sizelimit, int *msgidp);

int ldap_search_ext_s(LDAP *ld,char *base, int scope, char *filter,
char **attrs, int attrsonly, LDAPControl **serverctrls,
LDAPControl **clientctrls, struct timeval *timeoutp,
int sizelimit, LDAPMessage **res);

These functions are used to perform LDAP search operations. The ldap_search_s() function
does the search synchronously (that is, not returning until the operation completes). The
ldap_search_st() function does the same, but allows a timeout to be specified. The
ldap_search() function is the asynchronous version, initiating the search and returning the
message ID of the operation it initiated.

The base is the DN of the entry at which to start the search. The scope is the scope of the search
and should be one of LDAP_SCOPE_BASE, to search the object itself, LDAP_SCOPE_ONELEVEL, to
search the object's immediate children, or LDAP_SCOPE_SUBTREE, to search the object and all
its descendents.

The filter is a string representation of the filter to apply in the search. Simple filters can be
specified as attributetype=attributevalue. More complex filters are specified using a prefix
notation according to the following BNF:

<filter> ::= ’(’ <filtercomp> ’)’

<filtercomp> ::= <and> | <or> | <not> | <simple>

<and> ::= ’&’ <filterlist>

<or> ::= ’|’ <filterlist>

<not> ::= ’!’ <filter>

<filterlist> ::= <filter> | <filter> <filterlist>

<simple> ::= <attributetype> <filtertype> <attributevalue>

<filtertype> ::= ’=’ | ’~=’ | ’<=’ | ’>=’

Name

Synopsis

Description

ldap_search(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 05 Dec 2003346

The '~=' construct is used to specify approximate matching. The representation for
<attributetype> and <attributevalue> are as described in RFC 1778. In addition,
<attributevalue> can be a single * to achieve an attribute existence test, or can contain text and
*'s interspersed to achieve substring matching.

For example, the filter mail=* finds entries that have a mail attribute. The filter
mail=*@terminator.rs.itd.umich.edu finds entries that have a mail attribute ending in the
specified string. Use a backslash (\\) to escape parentheses characters in a filter. See RFC 1588
for a more complete description of the filters that are allowed. See ldap_getfilter(3LDAP)
for functions to help construct search filters automatically.

The attrs is a null-terminated array of attribute types to return from entries that match filter. If
NULL is specified, all attributes are returned. The attrsonly is set to 1 when attribute types only
are wanted. The attrsonly is set to 0 when both attributes types and attribute values are wanted.

The sizelimit argument returns the number of matched entries specified for a search
operation. When sizelimit is set to 50, for example, no more than 50 entries are returned.
When sizelimit is set to 0, all matched entries are returned. The LDAP server can be
configured to send a maximum number of entries, different from the size limit specified. If
5000 entries are matched in the database of a server configured to send a maximum number of
500 entries, no more than 500 entries are returned even when sizelimit is set to 0.

The ldap_search_ext() function initiates an asynchronous search operation and returns
LDAP_SUCCESS when the request is successfully sent to the server. Otherwise,
ldap_search_ext() returns an LDAP error code. See ldap_error(3LDAP). If successful,
ldap_search_ext() places the message ID of the request in *msgidp. A subsequent call to
ldap_result(3LDAP) can be used to obtain the result of the add request.

The ldap_search_ext_s() function initiates a synchronous search operation and returns the
result of the operation itself.

The ldap_search_s() and ldap_search_st() functions return the LDAP error code that
results from a search operation. See ldap_error(3LDAP) for details.

The ldap_search() function returns −1 when the operation terminates unsuccessfully.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

ldap(3LDAP), ldap_result(3LDAP), ldap_getfilter(3LDAP), ldap_error(3LDAP) ,
attributes(5)

Howes, T., Kille, S., Yeong, W., Robbins, C., Wenn, J. RFC 1778, The String Representation of
Standard Attribute Syntaxes. Network Working Group. March 1995.

Errors

Attributes

See Also

ldap_search(3LDAP)

Networking Library Functions 347

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

Postel, J., Anderson, C. RFC 1588, White Pages Meeting Report. Network Working Group.
February 1994.

The read and list functionality are subsumed by ldap_search() functions, when a filter such
as objectclass=* is used with the scope LDAP_SCOPE_BASE to emulate read or the scope
LDAP_SCOPE_ONELEVEL to emulate list.

The ldap_search() functions may allocate memory which must be freed by the calling
application. Return values are contained in <ldap.h>.

Notes

ldap_search(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 05 Dec 2003348

ldap_searchprefs, ldap_init_searchprefs, ldap_init_searchprefs_buf, ldap_free_searchprefs,
ldap_first_searchobj, ldap_next_searchobj – LDAP search preference configuration routines

cc [flag...] file... -lldap [library...]

#include <lber.h>

#include <ldap.h>

int ldap_init_searchprefs(char **file,
struct ldap_searchobj ***solistp);

int ldap_init_searchprefs_buf(char **buf, unsigned longlen,
struct ldap_searchobj **solistp);

struct ldap_searchobj **ldap_free_searchprefs

(struct ldap_searchobj **solist);

struct ldap_searchobj **ldap_first_searchobj

(struct ldap_seachobj **solist);

struct ldap_searchobj **ldap_next_searchobj

(struct ldap_seachobj **solist, struct ldap_seachobj **so);

These functions provide a standard way to access LDAP search preference configuration data.
LDAP search preference configurations are typically used by LDAP client programs to specify
which attributes a user may search by, labels for the attributes, and LDAP filters and scopes
associated with those searches. Client software presents these choices to a user, who can then
specify the type of search to be performed.

ldap_init_searchprefs() reads a sequence of search preference configurations from a valid
LDAP searchpref configuration file. See ldapsearchprefs.conf(4). Upon success, 0 is
returned and solistp is set to point to a list of search preference data structures.

ldap_init_searchprefs_buf() reads a sequence of search preference configurations from
buf, whose size is buflen. buf should point to the data in the format defined for an LDAP search
preference configuration file. See ldapsearchprefs.conf(4). Upon success, 0 is returned and
solistp is set to point to a list of search preference data structures.

ldap_free_searchprefs() disposes of the data structures allocated by
ldap_init_searchprefs().

ldap_first_searchpref() returns the first search preference data structure in the list solist.
The solist is typically obtained by calling ldap_init_searchprefs().

ldap_next_searchpref() returns the search preference after so in the template list solist. A
NULL pointer is returned if so is the last entry in the list.

ldap_init_search_prefs() and ldap_init_search_prefs_bufs() return:

LDAP_SEARCHPREF_ERR_VERSION **buf points to data that is newer than can be handled.

LDAP_SEARCHPREF_ERR_MEM Memory allocation problem.

Name

Synopsis

Description

Errors

ldap_searchprefs(3LDAP)

Networking Library Functions 349

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldapsearchprefs.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldapsearchprefs.conf-4

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap(3LDAP), ldapsearchprefs.conf(4), attributes(5)

Yeong, W., Howes, T., and Hardcastle-Kille, S., “Lightweight Directory Access Protocol”,
OSI-DS-26, April 1992.

Howes, T., Hardcastle-Kille, S., Yeong, W., and Robbins, C., “Lightweight Directory Access
Protocol”, OSI-DS-26, April 1992.

Hardcastle-Kille, S., “A String Representation of Distinguished Names”, OSI-DS-23, April
1992.

Information Processing - Open Systems Interconnection - The Directory, International
Organization for Standardization. International Standard 9594, (1988).

Attributes

See Also

ldap_searchprefs(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011350

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldapsearchprefs.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_sort, ldap_sort_entries, ldap_sort_values, ldap_sort_strcasecmp – LDAP entry sorting
functions

cc [flag...] file... -lldap [library...]

#include <lber.h>

#include <ldap.h>

int ldap_sort_entries(LDAP *ld, LDAPMessage **chain, char *attr,
int (*cmp)());

int ldap_sort_values(LDAP *ld, char **vals, int (*cmp)());

int ldap_sort_strcasecmp(char *a, char *b);

These functions are used to sort lists of entries and values retrieved from an LDAP server.
ldap_sort_entries() is used to sort a chain of entries retrieved from an LDAP search call
either by DN or by some arbitrary attribute in the entries. It takes ld, the LDAP structure,
which is only used for error reporting, chain, the list of entries as returned by
ldap_search_s(3LDAP) or ldap_result(3LDAP). attr is the attribute to use as a key in the
sort or NULL to sort by DN, and cmp is the comparison function to use when comparing
values (or individual DN components if sorting by DN). In this case, cmp should be a function
taking two single values of the attr to sort by, and returning a value less than zero, equal to
zero, or greater than zero, depending on whether the first argument is less than, equal to, or
greater than the second argument. The convention is the same as used by qsort(3C), which is
called to do the actual sorting.

ldap_sort_values() is used to sort an array of values from an entry, as returned by
ldap_get_values(3LDAP). It takes the LDAP connection structure ld, the array of values to
sort vals, and cmp, the comparison function to use during the sort. Note that cmp will be
passed a pointer to each element in the vals array, so if you pass the normal char ** for this
parameter, cmp should take two char **'s as arguments (that is, you cannot pass strcasecmp
or its friends for cmp). You can, however, pass the function ldap_sort_strcasecmp() for this
purpose.

For example:

LDAP *ld;

LDAPMessage *res;

/* ... call to ldap_search_s(), fill in res, retrieve sn attr ... */

/* now sort the entries on surname attribute */

if (ldap_sort_entries(ld, &res, "sn", ldap_sort_strcasecmp) != 0)

ldap_perror(ld, "ldap_sort_entries");

See attributes(5) for a description of the following attributes:

Name

Synopsis

Description

Attributes

ldap_sort(3LDAP)

Networking Library Functions 351

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1qsort-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

ldap(3LDAP), ldap_search(3LDAP), ldap_result(3LDAP), qsort(3C), attributes(5)

The ldap_sort_entries() function applies the comparison function to each value of the
attribute in the array as returned by a call to ldap_get_values(3LDAP), until a mismatch is
found. This works fine for single-valued attributes, but may produce unexpected results for
multi-valued attributes. When sorting by DN, the comparison function is applied to an
exploded version of the DN, without types. The return values for all of these functions are
declared in the <ldap.h> header file. Some functions may allocate memory which must be
freed by the calling application.

See Also

Notes

ldap_sort(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011352

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1qsort-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_ufn, ldap_ufn_search_s, ldap_ufn_search_c, ldap_ufn_search_ct, ldap_ufn_setfilter,
ldap_ufn_setprefix, ldap_ufn_timeout – LDAP user friendly search functions

cc[flag...] file... -lldap[library...]

#include <lber.h>

#include <ldap.h>

int ldap_ufn_search_c(LDAP *ld, char *ufn, char **attrs,
int attrsonly, LDAPMessage **res, int (*cancelproc)(),
void *cancelparm);

int ldap_ufn_search_ct(LDAP *ld, char *ufn, char **attrs,
int attrsonly, LDAPMessage **res,int (*cancelproc)(),
void *cancelparm,char *tag1, char *tag2,
char *tag3);

int ldap_ufn_search_s(LDAP *ld, char *ufn, char **attrs,
int attrsonly, LDAPMessage **res);

LDAPFiltDesc *ldap_ufn_setfilter(LDAP *ld, char *fname);

void ldap_ufn_setprefix(LDAP *ld, char *prefix);

int ldap_ufn_timeout(void *tvparam);

These functions are used to perform LDAP user friendly search operations.
ldap_ufn_search_s() is the simplest form. It does the search synchronously. It takes ld to
identify the the LDAP connection. The ufn parameter is the user friendly name for which to
search. The attrs, attrsonly and res parameters are the same as for ldap_search(3LDAP).

The ldap_ufn_search_c() function functions the same as ldap_ufn_search_s(), except that
it takes cancelproc, a function to call periodicly during the search. It should be a function
taking a single void * argument, given by calcelparm. If cancelproc returns a non-zero result,
the search will be abandoned and no results returned. The purpose of this function is to
provide a way for the search to be cancelled, for example, by a user or because some other
condition occurs.

The ldap_ufn_search_ct() function is like ldap_ufn_search_c(), except that it takes three
extra parameters. tag1 is passed to the ldap_init_getfilter(3LDAP) function when
resolving the first component of the UFN. tag2 is used when resolving intermediate
components. tag3 is used when resolving the last component. By default, the tags used by the
other UFN search functions during these three phases of the search are “ufn first”, “ufn
intermediate”, and “ufn last”.

The ldap_ufn_setfilter() function is used to set the ldapfilter.conf(4) file for use with
the ldap_init_getfilter(3LDAP) function to fname.

The ldap_ufn_setprefix() function is used to set the default prefix (actually, it's a suffix)
appended to UFNs before searhing. UFNs with fewer than three components have the prefix
appended first, before searching. If that fails, the UFN is tried with progressively shorter

Name

Synopsis

Description

ldap_ufn(3LDAP)

Networking Library Functions 353

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldapfilter.conf-4

versions of the prefix, stripping off components. If the UFN has three or more components, it
is tried by itself first. If that fails, a similar process is applied with the prefix appended.

The ldap_ufn_timeout() function is used to set the timeout associated with
ldap_ufn_search_s() searches. The timeout parameter should actually be a pointer to a
struct timeval. This is so ldap_ufn_timeout() can be used as a cancelproc in the above
functions.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

gettimeofday(3C), ldap(3LDAP), ldap_search(3LDAP), ldap_getfilter(3LDAP),
ldapfilter.conf(4), ldap_error(3LDAP), attributes(5)

These functions may allocates memory. Return values are contained in <ldap.h>.

Attributes

See Also

Notes

ldap_ufn(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011354

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gettimeofday-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ldapfilter.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_url, ldap_is_ldap_url, ldap_url_parse, ldap_url_parse_nodn, ldap_free_urldesc,
ldap_url_search, ldap_url_search_s, ldap_url_search_st, ldap_dns_to_url, ldap_dn_to_url –
LDAP Uniform Resource Locator functions

cc [flag...] file... -lldap [library...]

#include <lber.h>

#include <ldap.h>

int ldap_is_ldap_url(char *url);

int ldap_url_parse(char *url, LDAPURLDesc **ludpp);

int ldap_url_parse_nodn(char *url, LDAPURLDesc **ludpp);

void ldap_free_urldesc(LDAPURLDesc *ludp);

int ldap_url_search(LDAP *ld, char *url, int attrsonly);

int ldap_url_search_s(LDAP *ld, char *url,
int attrsonly, LDAPMessage **res);

int ldap_url_search_st(LDAP *ld, char *url, int attrsonly,
struct timeval *timeout, LDAPMessage **res);

char *ldap_dns_to_url(LDAP *ld, char *dns_name, char *attrs,
char *scope, char *filter);

char *ldap_dn_to_url(LDAP *ld, char *dn, int nameparts);

These functions support the use of LDAP URLs (Uniform Resource Locators). The following
shows the formatting used for LDAP URLs.

ldap://hostport/dn[?attributes[?scope[?filter]]]

where:

hostport Host name with an optional :portnumber.

dn Base DN to be used for an LDAP search operation.

attributes Comma separated list of attributes to be retrieved.

scope One of these three strings: base one sub (default=base).

filter LDAP search filter as used in a call to ldap_search(3LDAP).

The following is an example of an LDAP URL:

ldap://ldap.itd.umich.edu/c=US?o,description?one?o=umich

URLs preceded URL: or wrapped in angle-brackets are tolerated. URLs can also be preceded by
URL: and wrapped in angle-brackets.

Name

Synopsis

Description

ldap_url(3LDAP)

Networking Library Functions 355

ldap_is_ldap_url() returns a non-zero value if url looks like an LDAP URL (as opposed to
some other kind of URL). It can be used as a quick check for an LDAP URL; the
ldap_url_parse() function should be used if a more thorough check is needed.

ldap_url_parse() breaks down an LDAP URL passed in url into its component pieces. If
successful, zero is returned, an LDAP URL description is allocated, filled in, and ludpp is set to
point to it. See RETURN VALUES for values returned upon error.

ldap_url_parse_nodn() acts just like ldap_url_parse() but does not require dn in the
LDAP URL.

ldap_free_urldesc() should be called to free an LDAP URL description that was obtained
from a call to ldap_url_parse().

ldap_url_search() initiates an asynchronous LDAP search based on the contents of the url
string. This function acts just like ldap_search(3LDAP) except that many search parameters
are pulled out of the URL.

ldap_url_search_s() performs a synchronous LDAP search based on the contents of the url
string. This function acts just like ldap_search_s(3LDAP) except that many search
parameters are pulled out of the URL.

ldap_url_search_st() performs a synchronous LDAP URL search with a specified timeout.
This function acts just like ldap_search_st(3LDAP) except that many search parameters are
pulled out of the URL.

ldap_dns_to_url() locates the LDAP URL associated with a DNS domain name. The
supplied DNS domain name is converted into a distinguished name. The directory entry
specified by that distinguished name is searched for a labeled URI attribute. If successful then
the corresponding LDAP URL is returned. If unsuccessful then that entry's parent is searched
and so on until the target distinguished name is reduced to only two nameparts. If dns_name
is NULL then the environment variable LOCALDOMAIN is used. If attrs is not NULL then it is
appended to the URL's attribute list. If scope is not NULL then it overrides the URL's scope. If
filter is not NULL then it is merged with the URL's filter. If an error is encountered then zero is
returned, otherwise a string URL is returned. The caller should free the returned string if it is
non-zero.

ldap_dn_to_url() locates the LDAP URL associated with a distinguished name. The number
of nameparts in the supplied distinguished name must be provided. The specified directory
entry is searched for a labeledURI attribute. If successful then the LDAP URL is returned. If
unsuccessful then that entry's parent is searched and so on until the target distinguished name
is reduced to only two nameparts. If an error is encountered then zero is returned, otherwise a
string URL is returned. The caller should free the returned string if it is non-zero.

ldap_url(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 1 Nov 2010356

Upon error, one of these values is returned for ldap_url_parse():

LDAP_URL_ERR_BADSCOPE URL scope string is invalid.

LDAP_URL_ERR_HOSTPORT URL hostport is invalid.

LDAP_URL_ERR_MEM Can't allocate memory space.

LDAP_URL_ERR_NODN URL has no DN (required).

LDAP_URL_ERR_NOTLDAP URL doesn't begin with ldap://.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

ldap(3LDAP), ldap_search(3LDAP), attributes(5)

An LDAP URL Format, Tim Howes and Mark Smith, December 1995. Internet Draft (work in
progress). Currently available at this URL.

ftp://ds.internic.net/internet-drafts/draft-ietf-asid-ldap-format-03.txt

Return Values

Attributes

See Also

ldap_url(3LDAP)

Networking Library Functions 357

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ldap_version – get version information about the LDAP SDK for C

cc [flag ...] file... -lldap [library ...]

#include <ldap.h>

int ldap_version(LDAPVERSION *ver);

A call to this function returns the version information for the LDAP SDK for C. This is a
deprecated function. Use ldap_get_option(3LDAP) instead. The version information is
returned in the LDAPVersion structure pointed to by ver. If NULL is passed for ver, then only the
SDK version will be returned.

The ldap_version() function returns the version number of the LDAP SDK for C, multiplied
by 100. For example, for version 1.0 of the LDAP SDK for C, the function returns 100.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Obsolete

ldap_get_option(3LDAP), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

ldap_version(3LDAP)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011358

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

listen – listen for connections on a socket

cc [flag ...] file ... -lsocket -lnsl [library ...]

#include <sys/types.h>

#include <sys/socket.h>

int listen(int s, int backlog);

To accept connections, a socket is first created with socket(3SOCKET), a backlog for
incoming connections is specified with listen() and then the connections are accepted with
accept(3SOCKET). The listen() call applies only to sockets of type SOCK_STREAM or
SOCK_SEQPACKET.

The backlog parameter defines the maximum length the queue of pending connections may
grow to.

If a connection request arrives with the queue full, the client will receive an error with an
indication of ECONNREFUSED for AF_UNIX sockets. If the underlying protocol supports
retransmission, the connection request may be ignored so that retries may succeed. For
AF_INET and AF_INET6sockets, the TCP will retry the connection. If the backlog is not cleared
by the time the tcp times out, the connect will fail with ETIMEDOUT.

A 0 return value indicates success; −1 indicates an error.

The call fails if:

EBADF The argument s is not a valid file descriptor.

ENOTSOCK The argument s is not a socket.

EOPNOTSUPP The socket is not of a type that supports the operation listen().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

accept(3SOCKET), connect(3SOCKET), socket(3SOCKET), attributes(5),
socket.h(3HEAD)

There is currently no backlog limit.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

listen(3SOCKET)

Networking Library Functions 359

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1socket.h-3head

listen – listen for socket connections and limit the queue of incoming connections

cc [flag ...] file ... -lxnet [library ...]

#include <sys/socket.h>

int listen(int socket, int backlog);

The listen() function marks a connection-mode socket, specified by the socket argument, as
accepting connections, and limits the number of outstanding connections in the socket's listen
queue to the value specified by the backlog argument.

If listen() is called with a backlog argument value that is less than 0, the function sets the
length of the socket's listen queue to 0.

The implementation may include incomplete connections in the queue subject to the queue
limit. The implementation may also increase the specified queue limit internally if it includes
such incomplete connections in the queue subject to this limit.

Implementations may limit the length of the socket's listen queue. If backlog exceeds the
implementation-dependent maximum queue length, the length of the socket's listen queue
will be set to the maximum supported value.

The socket in use may require the process to have appropriate privileges to use the listen()
function.

Upon successful completions, listen() returns 0. Otherwise, −1 is returned and errno is set
to indicate the error.

The listen() function will fail if:

EBADF The socket argument is not a valid file descriptor.

EDESTADDRREQ The socket is not bound to a local address, and the protocol does not
support listening on an unbound socket.

EINVAL The socket is already connected.

ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The socket protocol does not support listen().

The listen() function may fail if:

EACCES The calling process does not have the appropriate privileges.

EINVAL The socket has been shut down.

ENOBUFS Insufficient resources are available in the system to complete the call.

Name

Synopsis

Description

Return Values

Errors

listen(3XNET)

man pages section 3: Networking Library Functions • Last Revised 10 Jun 2002360

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

accept(3XNET), connect(3XNET), socket(3XNET), attributes(5), standards(5)

Attributes

See Also

listen(3XNET)

Networking Library Functions 361

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

netdir, netdir_getbyname, netdir_getbyaddr, netdir_free, netdir_options, taddr2uaddr,
uaddr2taddr, netdir_perror, netdir_sperror, netdir_mergeaddr – generic transport
name-to-address translation

cc [flag...] file... -lnsl [library...]
#include <netdir.h>

int netdir_getbyname(struct netconfig *config,
struct nd_hostserv *service, struct nd_addrlist **addrs);

int netdir_getbyaddr(struct netconfig *config,
struct nd_hostservlist **service, struct netbuf *netaddr);

void netdir_free(void *ptr, int struct_type);

int netdir_options(struct netconfig *config, int option, int fildes,
char *point_to_args);

char *taddr2uaddr(struct netconfig *config, struct netbuf *addr);

struct netbuf *uaddr2taddr(struct netconfig *config, char *uaddr);

void netdir_perror(char *s);

char *netdir_sperror(void);

The netdir functions provide a generic interface for name-to-address mapping that will work
with all transport protocols. This interface provides a generic way for programs to convert
transport specific addresses into common structures and back again. The netconfig
structure, described on the netconfig(4) manual page, identifies the transport.

The netdir_getbyname() function maps the machine name and service name in the
nd_hostserv structure to a collection of addresses of the type understood by the transport
identified in the netconfig structure. This function returns all addresses that are valid for that
transport in the nd_addrlist structure. The nd_hostserv structure contains the following
members:

char *h_host; /* host name */

char *h_serv; /* service name */

The nd_addrlist structure contains the following members:

int n_cnt; /* number of addresses */

struct netbuf *n_addrs;

The netdir_getbyname() function accepts some special-case host names. The host names are
defined in <netdir.h>. The currently defined host names are:

HOST_SELF Represents the address to which local programs will bind their
endpoints. HOST_SELF differs from the host name provided by
gethostname(3C), which represents the address to which remote
programs will bind their endpoints.

Name

Synopsis

Description

netdir(3NSL)

man pages section 3: Networking Library Functions • Last Revised 11 Nov 2010362

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netconfig-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gethostname-3c

HOST_ANY Represents any host accessible by this transport provider. HOST_ANY
allows applications to specify a required service without specifying a
particular host name.

HOST_SELF_CONNECT Represents the host address that can be used to connect to the local
host.

HOST_BROADCAST Represents the address for all hosts accessible by this transport
provider. Network requests to this address are received by all
machines.

All fields of the nd_hostserv structure must be initialized.

To find the address of a given host and service on all available transports, call the
netdir_getbyname() function with each struct netconfig structure returned by
getnetconfig(3NSL).

The netdir_getbyaddr() function maps addresses specified in the netbuf structure pointed
to by netaddr to service names. The function returns service, a list of host and service pairs that
yield these addresses. If more than one tuple of host and service name is returned, the first
tuple contains the preferred host and service names:

struct nd_hostservlist {

int *h_cnt; /* number of hostservs found */

struct hostserv *h_hostservs;

}

The netdir_free() structure is used to free the structures allocated by the name to address
translation functions. The ptr parameter points to the structure that has to be freed. The
parameter struct_type identifies the structure:

struct netbuf ND_ADDR

struct nd_addrlist ND_ADDRLIST

struct hostserv ND_HOSTSERV

struct nd_hostservlist ND_HOSTSERVLIST

The free() function is used to free the universal address returned by the taddr2uaddr()
function.

The netdir_options() function is used to do all transport-specific setups and option
management. fildes is the associated file descriptor. option, fildes, and pointer_to_args are
passed to the netdir_options() function for the transport specified in config. Currently four
values are defined for option:

ND_SET_BROADCAST

ND_SET_RESERVEDPORT

ND_CHECK_RESERVEDPORT

netdir(3NSL)

Networking Library Functions 363

ND_MERGEADDR

The taddr2uaddr() and uaddr2taddr() functions support translation between universal
addresses and TLI type netbufs. The taddr2uaddr() function takes a struct netbuf data
structure and returns a pointer to a string that contains the universal address. It returns NULL if
the conversion is not possible. This is not a fatal condition as some transports do not support a
universal address form.

The uaddr2taddr() function is the reverse of the taddr2uaddr() function. It returns the
struct netbuf data structure for the given universal address.

If a transport provider does not support an option, netdir_options returns -1 and the error
message can be printed through netdir_perror() or netdir_sperror().

The specific actions of each option follow.

ND_SET_BROADCAST Sets the transport provider up to allow broadcast if the
transport supports broadcast. fildes is a file descriptor into the
transport, that is, the result of a t_open of /dev/udp.
pointer_to_args is not used. If this completes, broadcast
operations can be performed on file descriptor fildes.

ND_SET_RESERVEDPORT Allows the application to bind to a reserved port if that concept
exists for the transport provider. fildes is an unbound file
descriptor into the transport. If pointer_to_args is NULL, fildes is
bound to a reserved port. If pointer_to_args is a pointer to a
netbuf structure, an attempt is made to bind to any reserved
port on the specified address.

ND_CHECK_RESERVEDPORT Used to verify that the address corresponds to a reserved port if
that concept exists for the transport provider. fildes is not used.
pointer_to_args is a pointer to a netbuf structure that contains
the address. This option returns 0 only if the address specified in
pointer_to_args is reserved.

ND_MERGEADDR Used to take a ‘‘local address'' such as a 0.0.0.0 TCP address
and return a ‘‘real address'' to which client machines can
connect. fildes is not used. pointer_to_args is a pointer to a
struct nd_mergearg which has the following members:

char s_uaddr; /* server’s universal address */

char c_uaddr; /* client’s universal address */

char m_uaddr; /* the result */

If s_uaddr is an address such as 0.0.0.0.1.12, and the call is
successful m_uaddr is set to an address such as
192.11.109.89.1.12. For most transports, m_uaddr is identical
to s_uaddr.

netdir(3NSL)

man pages section 3: Networking Library Functions • Last Revised 11 Nov 2010364

The netdir_perror() function prints an error message in standard output that states the
cause of a name-to-address mapping failure. The error message is preceded by the string given
as an argument.

The netdir_sperror() function returns a string with an error message that states the cause of
a name-to-address mapping failure.

The netdir_sperror() function returns a pointer to a buffer which contains the error
message string. The buffer is overwritten on each call. In multithreaded applications, thise
buffer is implemented as thread-specific data.

The netdir_getbyaddr() function returns 0 on success and a non-zero value on failure.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gethostname(3C), getnetconfig(3NSL), getnetpath(3NSL), netconfig(4), attributes(5)

Return Values

Attributes

See Also

netdir(3NSL)

Networking Library Functions 365

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gethostname-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netconfig-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ns_sign, ns_sign_tcp, ns_sign_tcp_init, ns_verify, ns_verify_tcp, ns_verify_tcp_init,
ns_find_tsig – TSIG system

cc [flag...] file... -lresolv -lsocket -lnsl [library...]
#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

int ns_sign(u_char *msg, int *msglen, int msgsize, int error, void *k,
const u_char *querysig, int querysiglen, u_char *sig, int *siglen,
time_t in_timesigned);

int ns_sign_tcp(u_char *msg, int *msglen, int msgsize, int error,
ns_tcp_tsig_state *state, int done);

int ns_sign_tcp_init(void *k, const u_char *querysig, int querysiglen,
ns_tcp_tsig_state *state);

int ns_verify(u_char *msg, int *msglen, void *k, const u_char *querysig,
int querysiglen, u_char *sig, int *siglen, time_t in_timesigned,
int nostrip);

int ns_verify_tcp(u_char *msg, int *msglen, ns_tcp_tsig_state *state,
int required);

int ns_verify_tcp_init(void *k, const u_char *querysig, int querysiglen,
ns_tcp_tsig_state *state);

u_char *ns_find_tsig(u_char *msg, u_char *eom);

msg the incoming DNS message, which will be modified

msglen the length of the DNS message, on input and output

msgsize the size of the buffer containing the DNS message on input

error the value to be placed in the TSIG error field

k the (DST_KEY *) to sign the data

querysig for a response, the signature contained in the query

querysiglen the length of the query signature

sig a buffer to be filled with the generated signature

siglen the length of the signature buffer on input, the signature length on output

msg the incoming DNS message, which will be modified

msglen the length of the DNS message, on input and output

msgsize the size of the buffer containing the DNS message on input

Name

Synopsis

Parameters

ns_sign()

ns_sign_tcp()

ns_sign(3RESOLV)

man pages section 3: Networking Library Functions • Last Revised 11 Nov 2009366

error the value to be placed in the TSIG error field

state the state of the operation

done non-zero value signifies that this is the last packet

k the (DST_KEY *) to sign the data

querysig for a response, the signature contained in the query

querysiglen the length of the query signature

state the state of the operation, which this initializes

msg the incoming DNS message, which will be modified

msglen the length of the DNS message, on input and output

k the (DST_KEY *) to sign the data

querysig for a response, the signature contained in the query

querysiglen the length of the query signature

sig a buffer to be filled with the signature contained

siglen the length of the signature buffer on input, the signature length on output

nostrip non-zero value means that the TSIG is left intact

msg the incoming DNS message, which will be modified

msglen the length of the DNS message, on input and output

state the state of the operation

required non-zero value signifies that a TSIG record must be present at this step

k the (DST_KEY *) to verify the dat

querysig for a response, the signature contained in the quer

querysiglen the length of the query signature

state the state of the operation, which this initializes

msg the incoming DNS messag

eom the length of the DNS message

The TSIG functions are used to implement transaction/request security of DNS messages.

The ns_sign() and ns_verify() functions are the basic routines. The ns_sign_tcp() and
ns_verify_tcp() functions are used to sign/verify TCP messages that may be split into
multiple packets, such as zone transfers. The ns_sign_tcp_init() and

ns_sign_tcp_init()

ns_verify()

ns_verify_tcp()

ns_verify_tcp_init()

ns_find_tsig()

Description

ns_sign(3RESOLV)

Networking Library Functions 367

ns_verify_tcp_init() functions initialize the state structure necessary for TCP operations.
The ns_find_tsig() function locates the TSIG record in a message if one is present.

The ns_find_tsig() function returns a pointer to the TSIG record if one is found, and NULL

otherwise.

All other functions return 0 on success, modifying arguments when necessary.

The ns_sign() and ns_sign_tcp() functions return the following values:

-1 bad input data

-ns_r_badkey The key was invalid or the signing failed.

NS_TSIG_ERROR_NO_SPACE The message buffer is too small.

The ns_verify() and ns_verify_tcp() functions return the following values:

-1 bad input data

NS_TSIG_ERROR_FORMERR The message is malformed.

NS_TSIG_ERROR_NO_TSIG The message does not contain a TSIG record.

NS_TSIG_ERROR_ID_MISMATCH The TSIG original ID field does not match the message ID.

-ns_r_badkey Verification failed due to an invalid key.

-ns_r_badsig Verification failed due to an invalid signature.

-ns_r_badtime Verification failed due to an invalid timestamp.

ns_r_badkey Verification succeeded but the message had an error of
BADKEY.

ns_r_badsig Verification succeeded but the message had an error of
BADSIG.

ns_r_badtime Verification succeeded but the message had an error of
BADTIME.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

resolver(3RESOLV), attributes(5)

Return Values

Attributes

See Also

ns_sign(3RESOLV)

man pages section 3: Networking Library Functions • Last Revised 11 Nov 2009368

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

rcmd, rcmd_af, rresvport, rresvport_af, ruserok – routines for returning a stream to a remote
command

cc [flag ...] file... -lsocket -lnsl [library...]

#include <netdb.h>

#include <unistd.h>

int rcmd(char **ahost, unsigned short inport, const char *luser,
const char *ruser, const char *cmd, int *fd2p);

int rcmd_af(char **ahost, unsigned short inport, const char *luser,
const char *ruser, const char *cmd, int *fd2p, int af);

int rresvport(int *port);

int rresvport_af(int *port, int af);

int ruserok(const char *rhost, int suser, const char *ruser,
const char *luser);

The rcmd() function is used by the superuser to execute a command on a remote machine
with an authentication scheme based on reserved port numbers. An AF_INET socket is
returned with rcmd(). The rcmd_af() function supports AF_INET, AF_INET6 or AF_UNSPEC for
the address family. An application can choose which type of socket is returned by passing
AF_INET or AF_INET6 as the address family. The use of AF_UNSPEC means that the caller will
accept any address family. Choosing AF_UNSPEC provides a socket that best suits the
connectivity to the remote host.

The rresvport() function returns a descriptor to a socket with an address in the privileged
port space. The rresvport_af() function is the equivalent to rresvport(), except that you
can choose AF_INET or AF_INET6 as the socket address family to be returned by
rresvport_af(). AF_UNSPEC does not apply to the rresvport() function.

The ruserok() function is a routine used by servers to authenticate clients that request as
service with rcmd.

All of these functions are present in the same file and are used by the in.rshd(1M) server
among others.

The rcmd() and rcmd_af() functions look up the host *ahost using getaddrinfo(3SOCKET)
and return −1 if the host does not exist. Otherwise, *ahost is set to the standard name of the
host and a connection is established to a server residing at the Internet port inport.

If the connection succeeds, a socket in the Internet domain of type SOCK_STREAM is returned to
the caller. The socket is given to the remote command as standard input (file descriptor 0) and
standard output (file descriptor 1). If fd2p is non-zero, an auxiliary channel to a control
process is set up and a descriptor for it is placed in *fd2p. The control process returns
diagnostic output file (descriptor 2) from the command on the auxiliary channel. The control
process also accepts bytes on this channel as signal numbers to be forwarded to the process

Name

Synopsis

Description

rcmd(3SOCKET)

Networking Library Functions 369

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1in.rshd-1m

group of the command. If fd2p is 0, the standard error (file descriptor 2) of the remote
command is made the same as its standard output. No provision is made for sending arbitrary
signals to the remote process, other than possibly sending out-of-band data.

The protocol is described in detail in in.rshd(1M).

The rresvport() and rresvport_af() functions are used to obtain a socket bound to a
privileged port number. The socket is suitable for use by rcmd() and rresvport_af() and
several other routines. Privileged Internet ports are those in the range 1 to 1023. Only the
superuser is allowed to bind a socket to a privileged port number. The application must pass in
port, which must be in the range 512 to 1023. The system first tries to bind to that port
number. If it fails, the system then tries to bind to another unused privileged port, if one is
available.

The ruserok() function takes a remote host name returned by the gethostbyaddr() function
with two user names and a flag to indicate whether the local user's name is that of the
superuser. See gethostbyname(3NSL). The ruserok() function then checks the files
/etc/hosts.equiv and possibly .rhosts in the local user's home directory to see if the
request for service is allowed. A 0 value is returned if the machine name is listed in the
/etc/hosts.equiv file, or if the host and remote user name are found in the .rhosts file.
Otherwise, the ruserok() function returns −1. If the superuser flag is 1, the
/etc/hosts.equiv is not checked.

The error code EAGAIN is overloaded to mean “All network ports in use.”

The rcmd() and rcmd_af() functions return a valid socket descriptor upon success. The
functions returns −1 upon error and print a diagnostic message to standard error.

The rresvport() and rresvport_af() functions return a valid, bound socket descriptor
upon success. The functions return −1 upon error with the global value errno set according to
the reason for failure.

/etc/hosts.equiv system trusted hosts and users

~/.rhosts user's trusted hosts and users

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

This interface is Unsafe in multithreaded applications. Unsafe interfaces should be called only
from the main thread.

Return Values

Files

Attributes

rcmd(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 10 Feb 2004370

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1in.rshd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

rlogin(1), rsh(1), in.rexecd(1M), in.rshd(1M), Intro(2), getaddrinfo(3SOCKET),
gethostbyname(3NSL), rexec(3SOCKET), attributes(5)

See Also

rcmd(3SOCKET)

Networking Library Functions 371

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rlogin-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rsh-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1in.rexecd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1in.rshd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

recv, recvfrom, recvmsg – receive a message from a socket

cc [flag...] file... -lsocket -lnsl [library...]

#include <sys/socket.h>

ssize_t recv(int s, void *buf, size_t len, int flags);

ssize_t recvfrom(int s, void *buf, size_t len, int flags,
struct sockaddr *from, socklen_t *fromlen);

ssize_t recvmsg(int s, struct msghdr *msg, int flags);

The recv(), recvfrom(), and recvmsg() functions are used to receive messages from another
socket. The s socket is created with socket(3SOCKET).

If from is a non-NULL pointer, the source address of the message is filled in. The value-result
parameter fromlen is initialized to the size of the buffer associated with from and modified on
return to indicate the actual size of the address stored in the buffer. The length of the message
is returned. If a message is too long to fit in the supplied buffer, excess bytes may be discarded
depending on the type of socket from which the message is received. See socket(3SOCKET).

If no messages are available at the socket, the receive call waits for a message to arrive. If the
socket is non-blocking, -1 is returned with the external variable errno set to EWOULDBLOCK. See
fcntl(2).

For processes on the same host, recvmsg() can be used to receive a file descriptor from
another process, but it cannot receive ancillary data. See libxnet(3LIB).

If a zero-length buffer is specified for a message, an EOF condition results that is
indistinguishable from the successful transfer of a file descriptor. For that reason, one or more
bytes of data should be provided when recvmsg() passes a file descriptor.

The select(3C) call can be used to determine when more data arrives.

The flags parameter is formed by an OR operation on one or more of the following:

MSG_OOB Read any out-of-band data present on the socket rather than the regular
in-band data.

MSG_PEEK Peek at the data present on the socket. The data is returned, but not
consumed to allow a subsequent receive operation to see the same data.

MSG_WAITALL Messages are blocked until the full amount of data requested is returned.
The recv() function can return a smaller amount of data if a signal is
caught, the connection is terminated, MSG_PEEK is specified, or if an error is
pending for the socket.

MSG_DONTWAIT Pending messages received on the connection are returned. If data is
unavailable, the function does not block. This behavior is the equivalent to
specifying O_NONBLOCK on the file descriptor of a socket, except that write

Name

Synopsis

Description

recv(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 24 Mar 2011372

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libxnet-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c

requests are unaffected.

The recvmsg() function call uses a msghdr structure defined in <sys/socket.h> to minimize
the number of directly supplied parameters.

Upon successful completion, these functions return the number of bytes received. Otherwise,
they return -1 and set errno to indicate the error.

The recv(), recvfrom(), and recvmsg() functions return errors under the following
conditions:

EBADF The s file descriptor is invalid.

EINVAL The MSG_OOB flag is set and no out-of-band data is available.

EINTR The operation is interrupted by the delivery of a signal before any data is
available to be received.

EIO An I/O error occurs while reading from or writing to the file system.

ENOMEM Insufficient user memory is available to complete operation.

ENOSR Insufficient STREAMS resources are available for the operation to
complete.

ENOTSOCK s is not a socket.

ESTALE A stale NFS file handle exists.

EWOULDBLOCK The socket is marked non-blocking and the requested operation would
block.

ECONNREFUSED The requested connection was refused by the peer. For connected IPv4 and
IPv6 datagram sockets, this indicates that the system received an ICMP

Destination Port Unreachable message from the peer.

The recv() and recvfrom() functions fail under the following conditions:

EINVAL The len argument overflows a ssize_t.

The recvmsg() function returns errors under the following conditions:

EINVAL The msg_iovlen member of the msghdr structure pointed to by msg is less than or
equal to 0, or greater than [IOV_MAX}. See Intro(2) for a definition of [IOV_MAX}.

EINVAL One of the iov_len values in the msg_iov array member of the msghdr structure
pointed to by msg is negative, or the sum of the iov_len values in the msg_iov array
overflows a ssize_t.

See attributes(5) for descriptions of the following attributes:

Return Values

Errors

Attributes

recv(3SOCKET)

Networking Library Functions 373

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

fcntl(2), ioctl(2), read(2), connect(3SOCKET), getsockopt(3SOCKET), libxnet(3LIB),
select(3C), send(3SOCKET), socket(3SOCKET), socket.h(3HEAD), attributes(5)

See Also

recv(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 24 Mar 2011374

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libxnet-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1socket.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

recv – receive a message from a connected socket

cc [flag ...] file ... -lxnet [library ...]

#include <sys/socket.h>

ssize_t recv(int socket, void *buffer, size_t length, int flags);

The recv() function receives a message from a connection-mode or connectionless-mode
socket. It is normally used with connected sockets because it does not permit the application
to retrieve the source address of received data. The function takes the following arguments:

socket Specifies the socket file descriptor.

buffer Points to a buffer where the message should be stored.

length Specifies the length in bytes of the buffer pointed to by the buffer argument.

flags Specifies the type of message reception. Values of this argument are formed by
logically OR'ing zero or more of the following values:

MSG_PEEK Peeks at an incoming message. The data is treated as unread
and the next recv() or similar function will still return this
data.

MSG_OOB Requests out-of-band data. The significance and semantics of
out-of-band data are protocol-specific.

MSG_WAITALL Requests that the function block until the full amount of data
requested can be returned. The function may return a smaller
amount of data if a signal is caught, if the connection is
terminated, if MSG_PEEK was specified, or if an error is
pending for the socket.

The recv() function returns the length of the message written to the buffer pointed to by the
buffer argument. For message-based sockets such as SOCK_DGRAM and SOCK_SEQPACKET, the
entire message must be read in a single operation. If a message is too long to fit in the supplied
buffer, and MSG_PEEK is not set in the flags argument, the excess bytes are discarded. For
stream-based sockets such as SOCK_STREAM, message boundaries are ignored. In this case, data
is returned to the user as soon as it becomes available, and no data is discarded.

If the MSG_WAITALL flag is not set, data will be returned only up to the end of the first message.

If no messages are available at the socket and O_NONBLOCK is not set on the socket's file
descriptor, recv() blocks until a message arrives. If no messages are available at the socket and
O_NONBLOCK is set on the socket's file descriptor, recv() fails and sets errno to EAGAIN or
EWOULDBLOCK.

Name

Synopsis

Description

recv(3XNET)

Networking Library Functions 375

The recv() function is identical to recvfrom(3XNET) with a zero address_len argument, and
to read() if no flags are used.

The select(3C) and poll(2) functions can be used to determine when data is available to be
received.

Upon successful completion, recv() returns the length of the message in bytes. If no messages
are available to be received and the peer has performed an orderly shutdown, recv() returns
0. Otherwise, –1 is returned and errno is set to indicate the error.

The recv() function will fail if:

EAGAIN

EWOULDBLOCK The socket's file descriptor is marked O_NONBLOCK and no data is waiting to
be received; or MSG_OOB is set and no out-of-band data is available and either
the socket's file descriptor is marked O_NONBLOCK or the socket does not
support blocking to await out-of-band data.

EBADF The socket argument is not a valid file descriptor.

ECONNRESET A connection was forcibly closed by a peer.

EFAULT The buffer parameter can not be accessed or written.

EINTR The recv() function was interrupted by a signal that was caught, before any
data was available.

EINVAL The MSG_OOB flag is set and no out-of-band data is available.

ENOTCONN A receive is attempted on a connection-mode socket that is not connected.

ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The specified flags are not supported for this socket type or protocol.

ETIMEDOUT The connection timed out during connection establishment, or due to a
transmission timeout on active connection.

The recv() function may fail if:

EIO An I/O error occurred while reading from or writing to the file system.

ENOBUFS Insufficient resources were available in the system to perform the operation.

ENOMEM Insufficient memory was available to fulfill the request.

ENOSR There were insufficient STREAMS resources available for the operation to
complete.

See attributes(5) for descriptions of the following attributes:

Usage

Return Values

Errors

Attributes

recv(3XNET)

man pages section 3: Networking Library Functions • Last Revised 10 Jun 2002376

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

poll(2), recvmsg(3XNET), recvfrom(3XNET), select(3C), send(3XNET),
sendmsg(3XNET), sendto(3XNET), shutdown(3XNET), socket(3XNET), attributes(5),
standards(5)

See Also

recv(3XNET)

Networking Library Functions 377

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

recvfrom – receive a message from a socket

cc [flag ...] file ... -lxnet [library ...]

#include <sys/socket.h>

ssize_t recvfrom(int socket, void *restrict buffer, size_t length,
int flags, struct sockaddr *restrict address,
socklen_t *restrict address_len);

The recvfrom() function receives a message from a connection-mode or
connectionless-mode socket. It is normally used with connectionless-mode sockets because it
permits the application to retrieve the source address of received data.

The function takes the following arguments:

socket Specifies the socket file descriptor.

buffer Points to the buffer where the message should be stored.

length Specifies the length in bytes of the buffer pointed to by the buffer argument.

flags Specifies the type of message reception. Values of this argument are formed
by logically OR'ing zero or more of the following values:

MSG_PEEK Peeks at an incoming message. The data is treated as
unread and the next recvfrom() or similar function
will still return this data.

MSG_OOB Requests out-of-band data. The significance and
semantics of out-of-band data are protocol-specific.

MSG_WAITALL Requests that the function block until the full amount
of data requested can be returned. The function may
return a smaller amount of data if a signal is caught, if
the connection is terminated, if MSG_PEEK was
specified, or if an error is pending for the socket.

address A null pointer, or points to a sockaddr structure in which the sending address
is to be stored. The length and format of the address depend on the address
family of the socket.

address_len Specifies the length of the sockaddr structure pointed to by the address
argument.

The recvfrom() function returns the length of the message written to the buffer pointed to by
the buffer argument. For message-based sockets such as SOCK_DGRAM and SOCK_SEQPACKET, the
entire message must be read in a single operation. If a message is too long to fit in the supplied
buffer, and MSG_PEEK is not set in the flags argument, the excess bytes are discarded. For
stream-based sockets such as SOCK_STREAM, message boundaries are ignored. In this case, data
is returned to the user as soon as it becomes available, and no data is discarded.

Name

Synopsis

Description

recvfrom(3XNET)

man pages section 3: Networking Library Functions • Last Revised 10 Jun 2002378

If the MSG_WAITALL flag is not set, data will be returned only up to the end of the first message.

Not all protocols provide the source address for messages. If the address argument is not a null
pointer and the protocol provides the source address of messages, the source address of the
received message is stored in the sockaddr structure pointed to by the address argument, and
the length of this address is stored in the object pointed to by the address_len argument.

If the actual length of the address is greater than the length of the supplied sockaddr structure,
the stored address will be truncated.

If the address argument is not a null pointer and the protocol does not provide the source
address of messages, the the value stored in the object pointed to by address is unspecified.

If no messages are available at the socket and O_NONBLOCK is not set on the socket's file
descriptor, recvfrom() blocks until a message arrives. If no messages are available at the
socket and O_NONBLOCK is set on the socket's file descriptor, recvfrom() fails and sets errno to
EAGAIN or EWOULDBLOCK.

The select(3C) and poll(2) functions can be used to determine when data is available to be
received.

Upon successful completion, recvfrom() returns the length of the message in bytes. If no
messages are available to be received and the peer has performed an orderly shutdown,
recvfrom() returns 0. Otherwise the function returns −1 and sets errno to indicate the error.

The recvfrom() function will fail if:

EAGAIN

EWOULDBLOCK The socket's file descriptor is marked O_NONBLOCK and no data is waiting to
be received, or MSG_OOB is set and no out-of-band data is available and either
the socket's file descriptor is marked O_NONBLOCK or the socket does not
support blocking to await out-of-band data.

EBADF The socket argument is not a valid file descriptor.

ECONNRESET A connection was forcibly closed by a peer.

EFAULT The buffer, address or address_len parameter can not be accessed or written.

EINTR A signal interrupted recvfrom() before any data was available.

EINVAL The MSG_OOB flag is set and no out-of-band data is available.

ENOTCONN A receive is attempted on a connection-mode socket that is not connected.

ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The specified flags are not supported for this socket type.

Usage

Return Values

Errors

recvfrom(3XNET)

Networking Library Functions 379

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2

ETIMEDOUT The connection timed out during connection establishment, or due to a
transmission timeout on active connection.

The recvfrom() function may fail if:

EIO An I/O error occurred while reading from or writing to the file system.

ENOBUFS Insufficient resources were available in the system to perform the operation.

ENOMEM Insufficient memory was available to fulfill the request.

ENOSR There were insufficient STREAMS resources available for the operation to
complete.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

poll(2), recv(3XNET), recvmsg(3XNET), select(3C) send(3XNET), sendmsg(3XNET),
sendto(3XNET), shutdown(3XNET), socket(3XNET), attributes(5), standards(5)

Attributes

See Also

recvfrom(3XNET)

man pages section 3: Networking Library Functions • Last Revised 10 Jun 2002380

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

recvmsg – receive a message from a socket

cc [flag ...] file ... -lxnet [library ...]

#include <sys/socket.h>

ssize_t recvmsg(int socket, struct msghdr *message, int flags);

The recvmsg() function receives a message from a connection-mode or connectionless-mode
socket. It is normally used with connectionless-mode sockets because it permits the
application to retrieve the source address of received data.

The recvmsg() function receives messages from unconnected or connected sockets and
returns the length of the message.

The recvmsg() function returns the total length of the message. For message-based sockets
such as SOCK_DGRAM and SOCK_SEQPACKET, the entire message must be read in a single
operation. If a message is too long to fit in the supplied buffers, and MSG_PEEK is not set in the
flags argument, the excess bytes are discarded, and MSG_TRUNC is set in the msg_flags member
of the msghdr structure. For stream-based sockets such as SOCK_STREAM, message boundaries
are ignored. In this case, data is returned to the user as soon as it becomes available, and no
data is discarded.

If the MSG_WAITALL flag is not set, data will be returned only up to the end of the first message.

If no messages are available at the socket, and O_NONBLOCK is not set on the socket's file
descriptor, recvmsg() blocks until a message arrives. If no messages are available at the socket
and O_NONBLOCK is set on the socket's file descriptor, the recvmsg() function fails and sets
errno to EAGAIN or EWOULDBLOCK.

In the msghdr structure, defined in socket.h(3HEAD), the msg_name and msg_namelen

members specify the source address if the socket is unconnected. If the socket is connected,
the msg_name and msg_namelen members are ignored. The msg_name member may be a null
pointer if no names are desired or required.

The msg_control and msg_controllen members specify a buffer to receive ancillary data sent
along with a message. Ancillary data consists of a sequence of pairs. Each pair is composed of a
cmsghdr structure followed by a data array. The cmsghdr structure, defined in
socket.h(3HEAD), contains descriptive information which allows an application to correctly
parse data. The data array contains the ancillary data message.

If ancillary data is not transferred, msg_control is set to NULL and msg_controllen is set to 0.

The msg_iov and msg_iovlen fields of the msghdr structure are used to specify where the
received data will be stored. msg_iov points to an array of iovec structures. The msg_iovlen
must be set to the dimension of this array. In each iovec structure, the iov_base field specifies
a storage area and the iov_len field gives its size in bytes. Each storage area indicated by
msg_iov is filled with received data in turn until all of the received data is stored or all of the
areas have been filled.

Name

Synopsis

Description

recvmsg(3XNET)

Networking Library Functions 381

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1socket.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1socket.h-3head

If the SO_TIMESTAMP option has been enabled through setsockopt(), then a struct timeval is
returned following the cmsghdr, and the cmsg_len field of the cmsghdr indicates the size of the
struct timeval.

On successful completion, the msg_flags member of the message header is the
bitwise-inclusive OR of all of the following flags that indicate conditions detected for the
received message:

MSG_EOR End of record was received (if supported by the protocol).

MSG_OOB Out-of-band data was received.

MSG_TRUNC Normal data was truncated.

MSG_CTRUNC Control data was truncated.

The function takes the following arguments:

socket Specifies the socket file descriptor.

message Points to a msghdr structure, containing both the buffer to store the source
address and the buffers for the incoming message. The length and format of the
address depend on the address family of the socket. The msg_flags member is
ignored on input, but may contain meaningful values on output.

flags Specifies the type of message reception. Values of this argument are formed by
logically OR'ing zero or more of the following values:

MSG_OOB Requests out-of-band data. The significance and semantics of
out-of-band data are protocol-specific.

MSG_PEEK Peeks at the incoming message.

MSG_WAITALL Requests that the function block until the full amount of data
requested can be returned. The function may return a smaller
amount of data if a signal is caught, if the connection is
terminated, if MSG_PEEK was specified, or if an error is pending
for the socket.

The select(3C) and poll(2) functions can be used to determine when data is available to be
received.

Upon successful completion, recvmsg() returns the length of the message in bytes. If no
messages are available to be received and the peer has performed an orderly shutdown,
recvmsg() returns 0. Otherwise, −1 is returned and errno is set to indicate the error.

The recvmsg() function will fail if:

Parameters

Usage

Return Values

Errors

recvmsg(3XNET)

man pages section 3: Networking Library Functions • Last Revised 27 Feb 2006382

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2

EAGAIN

EWOULDBLOCK The socket's file descriptor is marked O_NONBLOCK and no data is waiting to
be received; or MSG_OOB is set and no out-of-band data is available and either
the socket's file descriptor is marked O_NONBLOCK or the socket does not
support blocking to await out-of-band data.

EBADF The socket argument is not a valid open file descriptor.

ECONNRESET A connection was forcibly closed by a peer.

EFAULT The message parameter, or storage pointed to by the msg_name,
msg_control or msg_iov fields of the message parameter, or storage pointed
to by the iovec structures pointed to by the msg_iov field can not be
accessed or written.

EINTR This function was interrupted by a signal before any data was available.

EINVAL The sum of the iov_len values overflows an ssize_t. or the MSG_OOB flag
is set and no out-of-band data is available.

EMSGSIZE The msg_iovlen member of the msghdr structure pointed to by message is
less than or equal to 0, or is greater than IOV_MAX.

ENOTCONN A receive is attempted on a connection-mode socket that is not connected.

ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The specified flags are not supported for this socket type.

ETIMEDOUT The connection timed out during connection establishment, or due to a
transmission timeout on active connection.

The recvmsg() function may fail if:

EIO An IO error occurred while reading from or writing to the file system.

ENOBUFS Insufficient resources were available in the system to perform the operation.

ENOMEM Insufficient memory was available to fulfill the request.

ENOSR There were insufficient STREAMS resources available for the operation to
complete.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Attributes

recvmsg(3XNET)

Networking Library Functions 383

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Standard See standards(5).

poll(2), recv(3XNET), recvfrom(3XNET), select(3C), send(3XNET), sendmsg(3XNET),
sendto(3XNET), setsockopt(3XNET), shutdown(3XNET), socket(3XNET),
socket.h(3HEAD), attributes(5), standards(5)

See Also

recvmsg(3XNET)

man pages section 3: Networking Library Functions • Last Revised 27 Feb 2006384

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1socket.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

resolver, res_ninit, fp_resstat, res_hostalias, res_nquery, res_nsearch, res_nquerydomain,
res_nmkquery, res_nsend, res_nclose, res_nsendsigned, dn_comp, dn_expand, hstrerror,
res_init, res_query, res_search, res_mkquery, res_send, herror, res_getservers, res_setservers,
res_ndestroy – resolver routines

BIND 8.2.2 Interfaces

cc [flag ...] file ... -lresolv -lsocket -lnsl [library ...]

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

#include <netdb.h>

int res_ninit(res_state statp);

void res_ndestroy(res_state statp);

void fp_resstat(const res_state statp, FILE *fp);

const char *res_hostalias(const res_state statp, const char *name,
char * name, char *buf, size_tbuflen);

int res_nquery(res_state statp, const char *dname, int class, int type,
u_char *answer, int datalen, int anslen);

int res_nsearch(res_state statp, const char *dname, int class, int type,
u_char *answer, int anslen);

int res_nquerydomain(res_state statp, const char *name,
const char *domain, int class, int type,
u_char *answer, int anslen);

int res_nmkquery(res_state statp, int op, const char *dname, int class,
int type, u_char *answer, int datalen,
int anslen);

int res_nsend(res_state statp, const u_char *msg, int msglen,
u_char *answer, int anslen);

void res_nclose(res_state statp);

int res_snendsigned(res_state statp, const u_char *msg,
int msglen, ns_tsig_key *key, u_char *answer, int anslen);

int dn_comp(const char *exp_dn, u_char *comp_dn, int length,
u_char **dnptrs, **lastdnptr);

int dn_expand(const u_char *msg, *eomorig, *comp_dn, char *exp_dn,
int length);

const char *hstrerror(int err);

void res_setservers(res_state statp, const union res_sockaddr_union *set,
int cnt);

Name

Synopsis

resolver(3RESOLV)

Networking Library Functions 385

int res_getservers(res_state statp, union res_sockaddr_union *set,
int cnt);

Deprecated Interfaces

cc [flag ...] file ... -lresolv -lsocket -lnsl [library ...]

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

#include <netdb.h>

int res_init(void)

int res_query(const char *dname, int class,
int type, u_char *answer,
int anslen);

int res_search(const char *dname, int class,
int type, u_char *answer, int anslen);

int res_mkquery(int op, const char *dname, int class,
int type, const char *data,int datalen,
struct rrec *newrr, u_char *buf, int buflen);

int res_send(const u_char *msg, int msglen, u_char *answer,
int anslen);

void herror(const char *s);

These routines are used for making, sending, and interpreting query and reply messages with
Internet domain name servers.

State information is kept in statp and is used to control the behavior of these functions. Set
statp to all zeros prior to making the first call to any of these functions.

The res_ndestroy() function should be called to free memory allocated by res_ninit()
after the last use of statp.

The functions res_init(), res_query(), res_search(), res_mkquery(), res_send(), and
herror() are deprecated. They are supplied for backwards compatibility. They use global
configuration and state information that is kept in the structure _res rather than state
information referenced through statp.

Most of the values in statp and _res are initialized to reasonable defaults on the first call to
res_ninit() or res_init() and can be ignored. Options stored in statp->options or
_res.options are defined in <resolv.h>. They are stored as a simple bit mask containing the
bitwise OR of the options enabled.

RES_INIT True if the initial name server address and default domain name are
initialized, that is, res_init() or res_ninit() has been called.

RES_DEBUG Print debugging messages.

Description

resolver(3RESOLV)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011386

RES_AAONLY Accept authoritative answers only. With this option, res_send() will
continue until it finds an authoritative answer or finds an error. Currently
this option is not implemented.

RES_USEVC Use TCP connections for queries instead of UDP datagrams.

RES_STAYOPEN Use with RES_USEVC to keep the TCP connection open between queries.
This is a useful option for programs that regularly do many queries. The
normal mode used should be UDP.

RES_IGNTC Ignore truncation errors; that is, do not retry with TCP.

RES_RECURSE Set the recursion-desired bit in queries. This is the default. res_send()
and res_nsend() do not do iterative queries and expect the name server
to handle recursion.

RES_DEFNAMES If set, res_search() and res_nsearch() append the default domain
name to single-component names, that is, names that do not contain a
dot. This option is enabled by default.

RES_DNSRCH If this option is set, res_search() and res_nsearch() search for host
names in the current domain and in parent domains. See hostname(1).
This option is used by the standard host lookup routine
gethostbyname(3NSL). This option is enabled by default.

RES_NOALIASES This option turns off the user level aliasing feature controlled by the
HOSTALIASES environment variable. Network daemons should set this
option.

RES_BLAST If the RES_BLAST option is defined, resolver() queries will be sent to all
servers. If the RES_BLAST option is not defined, but RES_ROTATE is , the list
of nameservers are rotated according to a round-robin scheme.
RES_BLAST overrides RES_ROTATE.

RES_ROTATE This option causes res_nsend() and res_send() to rotate the list of
nameservers in statp->nsaddr_list or _res.nsaddr_list.

RES_KEEPTSIG This option causes res_nsendsigned() to leave the message unchanged
after TSIG verification. Otherwise the TSIG record would be removed
and the header would be updated.

The res_ninit() and res_init() routines read the configuration file, if any is present, to get
the default domain name, search list and the Internet address of the local name server(s). See
resolv.conf(4). If no server is configured, res_init() or res_ninit() will try to obtain
name resolution services from the host on which it is running. The current domain name is
defined by domainname(1M), or by the hostname if it is not specified in the configuration file.
Use the environment variable LOCALDOMAIN to override the domain name. This environment
variable may contain several blank-separated tokens if you wish to override the search list on a
per-process basis. This is similar to the search command in the configuration file. You can set

res_ninit(),
res_init()

resolver(3RESOLV)

Networking Library Functions 387

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1hostname-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1resolv.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1domainname-1m

the RES_OPTIONS environment variable to override certain internal resolver options. You can
otherwise set them by changing fields in the statp /_res structure. Alternatively, they are
inherited from the configuration file's options command. See resolv.conf(4) for
information regarding the syntax of the RES_OPTIONS environment variable. Initialization
normally occurs on the first call to one of the other resolver routines.

The res_nquery() and res_query() functions provide interfaces to the server query
mechanism. They construct a query, send it to the local server, await a response, and make
preliminary checks on the reply. The query requests information of the specified type and class
for the specified fully-qualified domain name dname. The reply message is left in the answer
buffer with length anslen supplied by the caller. res_nquery() and res_query() return the
length of the answer, or -1 upon error.

The res_nquery() and res_query() routines return a length that may be bigger than anslen.
In that case, retry the query with a larger buf. The answer to the second query may be larger
still], so it is recommended that you supply a buf larger than the answer returned by the
previous query. answer must be large enough to receive a maximum UDP response from the
server or parts of the answer will be silently discarded. The default maximum UDP response
size is 512 bytes.

The res_nsearch() and res_search() routines make a query and await a response, just like
like res_nquery() and res_query(). In addition, they implement the default and search rules
controlled by the RES_DEFNAMES and RES_DNSRCH options. They return the length of the first
successful reply which is stored in answer. On error, they reurn –1.

The res_nsearch() and res_search() routines return a length that may be bigger than
anslen. In that case, retry the query with a larger buf. The answer to the second query may be
larger still], so it is recommended that you supply a buf larger than the answer returned by the
previous query. answer must be large enough to receive a maximum UDP response from the
server or parts of the answer will be silently discarded. The default maximum UDP response
size is 512 bytes.

The res_nquerydomain() function calls res_query() on the concatenation of name and
domain, removing a trailing dot from name if domain is NULL.

These routines are used by res_nquery() and res_query(). The res_nmkquery() and
res_mkquery() functions construct a standard query message and place it in buf. The routine
returns the size of the query, or -1 if the query is larger than buflen. The query type op is usually
QUERY, but can be any of the query types defined in <arpa/nameser.h>. The domain name for
the query is given by dname. newrr is currently unused but is intended for making update
messages.

The res_nsend(), res_send(), and res_nsendsigned() routines send a pre-formatted query
that returns an answer. The routine calls res_ninit() or res_init(). If RES_INIT is not set,
the routine sends the query to the local name server and handles timeouts and retries.

res_nquery(),
res_query()

res_nsearch(),
res_search()

res_nquerydomain()

res_nmkquery(),
res_mkquery()

res_nsend(),
res_send(),

res_nsendsigned()

resolver(3RESOLV)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011388

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1resolv.conf-4

Additionally, the res_nsendsigned() uses TSIG signatures to add authentication to the query
and verify the response. In this case, only one name server will be contacted. The routines
return the length of the reply message, or -1 if there are errors.

The res_nsend() and res_send() routines return a length that may be bigger than anslen. In
that case, retry the query with a larger buf. The answer to the second query may be larger still],
so it is recommended that you supply a buf larger than the answer returned by the previous
query. answer must be large enough to receive a maximum UDP response from the server or
parts of the answer will be silently discarded. The default maximum UDP response size is 512
bytes.

The function fp_resstat() prints out the active flag bits in statp->options preceded by the
text “;; res options:” on file.

The function res_hostalias() looks up name in the file referred to by the HOSTALIASES
environment variable and returns the fully qualified host name. If name is not found or an
error occurs, NULL is returned. res_hostalias() stores the result in buf.

The res_nclose() function closes any open files referenced through statp.

The res_ndestroy() function calls res_nclose(), then frees any memory allocated by
res_ninit() referenced through statp.

The dn_comp() function compresses the domain name exp_dn and stores it in comp_dn. The
dn_comp() function returns the size of the compressed name, or −1 if there were errors. length
is the size of the array pointed to by comp_dn.

The dnptrs parameter is a pointer to the head of the list of pointers to previously compressed
names in the current message. The first pointer must point to the beginning of the message.
The list ends with NULL. The limit to the array is specified by lastdnptr.

A side effect of calling dn_comp() is to update the list of pointers for labels inserted into the
message by dn_comp() as the name is compressed. If dnptrs is NULL, names are not
compressed. If lastdnptr is NULL, dn_comp() does not update the list of labels.

The dn_expand() function expands the compressed domain name comp_dn to a full domain
name. The compressed name is contained in a query or reply message. msg is a pointer to the
beginning of that message. The uncompressed name is placed in the buffer indicated by
exp_dn, which is of size length. The dn_expand() function returns the size of the compressed
name, or −1 if there was an error.

The variables statp->res_h_errno and _res.res_h_errno and external variable h_errno are set
whenever an error occurs during a resolver operation. The following definitions are given in
<netdb.h>:

#define NETDB_INTERNAL -1 /* see errno */

#define NETDB_SUCCESS 0 /* no problem */

fp_resstat()

res_hostalias()

res_nclose()

res_ndestroy()

dn_comp()

dn_expand()

hstrerror(),
herror()

resolver(3RESOLV)

Networking Library Functions 389

#define HOST_NOT_FOUND 1 /* Authoritative Answer Host not found */

#define TRY_AGAIN 2 /* Non-Authoritative not found, or SERVFAIL */

#define NO_RECOVERY 3 /* Non-Recoverable: FORMERR, REFUSED, NOTIMP*/

#define NO_DATA 4 /* Valid name, no data for requested type */

The herror() function writes a message to the diagnostic output consisting of the string
parameters, the constant string “:”, and a message corresponding to the value of h_errno.

The hstrerror() function returns a string, which is the message text that corresponds to the
value of the err parameter.

The functions res_getservers() and res_setservers() are used to get and set the list of
servers to be queried.

/etc/resolv.conf resolver configuration file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library

Interface Stability Committed

MT-Level Unsafe for deprecated interfaces; MT-Safe for all
others.

domainname(1M), gethostbyname(3NSL), libresolv(3LIB), resolv.conf(4), attributes(5)

Lottor, M. RFC 1033, Domain Administrators Operations Guide. Network Working Group.
November 1987.

Mockapetris, Paul. RFC 1034, Domain Names - Concepts and Facilities. Network Working
Group. November 1987.

Mockapetris, Paul. RFC 1035, Domain Names - Implementation and Specification. Network
Working Group. November 1987.

Partridge, Craig. RFC 974, Mail Routing and the Domain System. Network Working Group.
January 1986.

Stahl, M. RFC 1032, Domain Administrators Guide. Network Working Group. November
1987.

Vixie, Paul, Dunlap, Kevin J., Karels, Michael J. Name Server Operations Guide for BIND.
Internet Software Consortium, 1996.

res_setservers(),
res_getservers()

Files

Attributes

See Also

resolver(3RESOLV)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011390

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1domainname-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libresolv-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1resolv.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

When the caller supplies a work buffer, for example the answer buffer argument to
res_nsend() or res_send(), the buffer should be aligned on an eight byte boundary.
Otherwise, an error such as a SIGBUS may result.

Notes

resolver(3RESOLV)

Networking Library Functions 391

rexec, rexec_af – return stream to a remote command

cc [flag ...] file... -lsocket -lnsl [library...]

#include <netdb.h>

#include <unistd.h>

int rexec(char **ahost, unsigned short inport, const char *user,
const char *passwd, const char *cmd, int *fd2p);

int rexec_af(char **ahost, unsigned short inport, const char *user,
const char *passwd, const char *cmd, int *fd2p, int af);

The rexec() and rexec_af() functions look up the host ahost using
getaddrinfo(3SOCKET) and return −1 if the host does not exist. Otherwise ahost is set to the
standard name of the host. The username and password are used in remote host
authentication. When a username and password are not specified, the .netrc file in the user's
home directory is searched for the appropriate information. If the search fails, the user is
prompted for the information.

The rexec() function always returns a socket of the AF_INET address family. The rexec_af()
function supports AF_INET, AF_INET6, or AF_UNSPEC for the address family. An application
can choose which type of socket is returned by passing AF_INET or AF_INET6 as the address
family. The use of AF_UNSPEC means that the caller will accept any address family. Choosing
AF_UNSPEC provides a socket that best suits the connectivity to the remote host.

The port inport specifies which DARPA Internet port to use for the connection. The port
number used must be in network byte order, as supplied by a call to htons(3XNET). The
protocol for connection is described in detail in in.rexecd(1M).

If the call succeeds, a socket of type SOCK_STREAM is returned to the caller, and given to the
remote command as its standard input and standard output. If fd2p is non-zero, an auxiliary
channel to a control process is set up and a file descriptor for it is placed in *fd2p. The control
process returns diagnostic output (file descriptor 2), from the command on the auxiliary
channel. The control process also accepts bytes on this channel as signal numbers to be
forwarded to the process group of the command. If fd2p is 0, the standard error (file descriptor
2) of the remote command is made the same as its standard output. No provision is made for
sending arbitrary signals to the remote process, other than possibly sending out-of-band data.

There is no way to specify options to the socket() call made by the rexec() or
rexec_af()functions.

If rexec() succeeds, a file descriptor number is returned of the socket type SOCK_STREAM and
the address family AF_INET. The parameter *ahost is set to the standard name of the host. If the
value of fd2p is other than NULL, a file descriptor number is placed in *fd2p which represents
the standard error stream of the command.

If rexec_af() succeeds, the routine returns a file descriptor number of the socket type
SOCK_STREAM in the address family AF_INET or AF_INET6, as determined by the value of the af
parameter.

Name

Synopsis

Description

Return Values

rexec(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 10 Feb 2004392

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1in.rexecd-1m

If either rexec() or rexec_af() fails, −1 is returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

This interface is Unsafe in multithreaded applications. Unsafe interfaces should be called only
from the main thread.

in.rexecd(1M), getaddrinfo(3SOCKET), gethostbyname(3NSL),
getservbyname(3SOCKET), htonl(3XNET), socket(3SOCKET), attributes(5)

Attributes

See Also

rexec(3SOCKET)

Networking Library Functions 393

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1in.rexecd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

rpc – library routines for remote procedure calls

cc [flag ...] file ... -lnsl [library ...]

#include <rpc/rpc.h>

#include <netconfig.h>

These routines allow C language programs to make procedure calls on other machines across
a network. First, the client sends a request to the server. On receipt of the request, the server
calls a dispatch routine to perform the requested service, and then sends back a reply.

All RPC routines require the header <rpc/rpc.h>. Routines that take a netconfig structure
also require that <netconfig.h> be included. Applications using RPC and XDR routines
should be linked with the libnsl library.

In the case of multithreaded applications, the -mt option must be specified on the command
line at compilation time to enable a thread-specific version of rpc_createerr(). See
rpc_clnt_create(3NSL) and threads(5).

When used in multithreaded applications, client-side routines are MT-Safe. CLIENT handles
can be shared between threads; however, in this implementation, requests by different threads
are serialized (that is, the first request will receive its results before the second request is sent).
See rpc_clnt_create(3NSL).

When used in multithreaded applications, server-side routines are usually Unsafe. In this
implementation the service transport handle, SVCXPRT contains a single data area for decoding
arguments and encoding results. See rpc_svc_create(3NSL). Therefore, this structure
cannot be freely shared between threads that call functions that do this. Routines that are
affected by this restriction are marked as unsafe for MT applications. See
rpc_svc_calls(3NSL).

Some of the high-level RPC interface routines take a nettype string as one of the parameters
(for example, clnt_create(), svc_create(), rpc_reg(), rpc_call()). This string defines a
class of transports which can be used for a particular application.

nettype can be one of the following:

netpath Choose from the transports which have been indicated by their token names
in the NETPATH environment variable. If NETPATH is unset or NULL, it defaults
to visible. netpath is the default nettype.

visible Choose the transports which have the visible flag (v) set in the
/etc/netconfig file.

circuit_v This is same as visible except that it chooses only the connection oriented
transports (semantics tpi_cots or tpi_cots_ord) from the entries in the
/etc/netconfig file.

datagram_v This is same as visible except that it chooses only the connectionless
datagram transports (semantics tpi_clts) from the entries in the
/etc/netconfig file.

Name

Synopsis

Description

Multithread
Considerations

Nettyp

rpc(3NSL)

man pages section 3: Networking Library Functions • Last Revised 5 Jun 2001394

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1threads-5

circuit_n This is same as netpath except that it chooses only the connection oriented
datagram transports (semantics tpi_cots or tpi_cots_ord).

datagram_n This is same as netpath except that it chooses only the connectionless
datagram transports (semantics tpi_clts).

udp This refers to Internet UDP.

tcp This refers to Internet TCP.

If nettype is NULL, it defaults to netpath. The transports are tried in left to right order in the
NETPATH variable or in top to down order in the /etc/netconfig file.

In a 64-bit environment, the derived types are defined as follows:

typedef uint32_t rpcprog_t;

typedef uint32_t rpcvers_t;

typedef uint32_t rpcproc_t;

typedef uint32_t rpcprot_t;

typedef uint32_t rpcport_t;

typedef int32_t rpc_inline_t;

In a 32-bit environment, the derived types are defined as follows:

typedef unsigned long rpcprog_t;

typedef unsigned long rpcvers_t;

typedef unsigned long rpcproc_t;

typedef unsigned long rpcprot_t;

typedef unsigned long rpcport_t;

typedef long rpc_inline_t;

Some of the data structures used by the RPC package are shown below.

union des_block {

struct {

u_int32 high;

u_int32 low;

} key;

char c[8];

};

typedef union des_block des_block;

Derived Types

Data Structures

The AUTH Structure

rpc(3NSL)

Networking Library Functions 395

extern bool_t xdr_des_block();

/*

* Authentication info. Opaque to client.

*/

struct opaque_auth {

enum_t oa_flavor; /* flavor of auth */

caddr_t oa_base; /* address of more auth stuff */

uint_t oa_length; /* not to exceed MAX_AUTH_BYTES */

};

/*

* Auth handle, interface to client side authenticators.

*/

typedef struct {

struct opaque_auth ah_cred;

struct opaque_auth ah_verf;

union des_block ah_key;

struct auth_ops {

void(*ah_nextverf)();

int(*ah_marshal)(); /* nextverf & serialize */

int(*ah_validate)(); /* validate verifier */

int(*ah_refresh)(); /* refresh credentials */

void(*ah_destroy)(); /* destroy this structure */

} *ah_ops;

caddr_t ah_private;

} AUTH;

/*

* Client rpc handle.

* Created by individual implementations.

* Client is responsible for initializing auth.

*/

typedef struct {

AUTH *cl_auth; /* authenticator */

struct clnt_ops {

enum clnt_stat (*cl_call)(); /* call remote procedure */

void (*cl_abort)(); /* abort a call */

void (*cl_geterr)(); /* get specific error code */

bool_t (*cl_freeres)(); /* frees results */

void (*cl_destroy)(); /* destroy this structure */

bool_t (*cl_control)(); /* the ioctl() of rpc */

int (*cl_settimers)(); /* set rpc level timers */

} *cl_ops;

caddr_t cl_private; /* private stuff */

char *cl_netid; /* network identifier */

char *cl_tp; /* device name */

} CLIENT;

The CLIENT Structure

rpc(3NSL)

man pages section 3: Networking Library Functions • Last Revised 5 Jun 2001396

enum xprt_stat {

XPRT_DIED,

XPRT_MOREREQS,

XPRT_IDLE

};

/*

* Server side transport handle

*/

typedef struct {

int xp_fd; /* file descriptor for the

ushort_t xp_port; /* obsolete */

struct xp_ops {

bool_t (*xp_recv)(); /* receive incoming requests */

enum xprt_stat (*xp_stat)(); /* get transport status */

bool_t (*xp_getargs)(); /* get arguments */

bool_t (*xp_reply)(); /* send reply */

bool_t (*xp_freeargs)(); /* free mem allocated

for args */

void (*xp_destroy)(); /* destroy this struct */

} *xp_ops;

int xp_addrlen; /* length of remote addr.

Obsolete */

char *xp_tp; /* transport provider device

name */

char *xp_netid; /* network identifier */

struct netbuf xp_ltaddr; /* local transport address */

struct netbuf xp_rtaddr; /* remote transport address */

char xp_raddr[16]; /* remote address. Obsolete */

struct opaque_auth xp_verf; /* raw response verifier */

caddr_t xp_p1; /* private: for use

by svc ops */

caddr_t xp_p2; /* private: for use

by svc ops */

caddr_t xp_p3; /* private: for use

by svc lib */

int xp_type /* transport type */

} SVCXPRT;

struct svc_req {

rpcprog_t rq_prog; /* service program number */

rpcvers_t rq_vers; /* service protocol version */

rpcproc_t rq_proc; /* the desired procedure */

struct opaque_auth rq_cred; /* raw creds from the wire */

caddr_t rq_clntcred; /* read only cooked cred */

SVCXPRT *rq_xprt; /* associated transport */

};

The SVCXPRT Structure

The svc_reg Structure

rpc(3NSL)

Networking Library Functions 397

/*

* XDR operations.

* XDR_ENCODE causes the type to be encoded into the stream.

* XDR_DECODE causes the type to be extracted from the stream.

* XDR_FREE can be used to release the space allocated by an XDR_DECODE

* request.

*/

enum xdr_op {

XDR_ENCODE=0,

XDR_DECODE=1,

XDR_FREE=2

};

/*

* This is the number of bytes per unit of external data.

*/

#define BYTES_PER_XDR_UNIT (4)

#define RNDUP(x) ((((x) + BYTES_PER_XDR_UNIT - 1) /

BYTES_PER_XDR_UNIT) \ * BYTES_PER_XDR_UNIT)

/*

* A xdrproc_t exists for each data type which is to be encoded or

* decoded. The second argument to the xdrproc_t is a pointer to

* an opaque pointer. The opaque pointer generally points to a

* structure of the data type to be decoded. If this points to 0,

* then the type routines should allocate dynamic storage of the

* appropriate size and return it.

* bool_t (*xdrproc_t)(XDR *, caddr_t *);

*/

typedef bool_t (*xdrproc_t)();

/*

* The XDR handle.

* Contains operation which is being applied to the stream,

* an operations vector for the particular implementation

*/

typedef struct {

enum xdr_op x_op; /* operation; fast additional param */

struct xdr_ops {

bool_t (*x_getlong)(); /* get long from underlying stream */

bool_t (*x_putlong)(); /* put long to underlying stream */

bool_t (*x_getbytes)(); /* get bytes from underlying stream */

bool_t (*x_putbytes)(); /* put bytes to underlying stream */

uint_t (*x_getpostn)(); /* returns bytes off from beginning */

bool_t (*x_setpostn)(); /* reposition the stream */

rpc_inline_t *(*x_inline)(); /* buf quick ptr to buffered data */

void (*x_destroy)(); /* free privates of this xdr_stream */

bool_t (*x_control)(); /* changed/retrieve client object info*/

bool_t (*x_getint32)(); /* get int from underlying stream */

The XDR Structure

rpc(3NSL)

man pages section 3: Networking Library Functions • Last Revised 5 Jun 2001398

bool_t (*x_putint32)(); /* put int to underlying stream */

} *x_ops;

caddr_t x_public; /* users’ data */

caddr_t x_priv /* pointer to private data */

caddr_t x_base; /* private used for position info */

int x_handy; /* extra private word */

XDR;

The following table lists RPC routines and the manual reference pages on which they are
described:

RPC Routine Manual Reference Page

auth_destroy rpc_clnt_auth(3NSL)

authdes_create rpc_soc(3NSL)

authdes_getucred secure_rpc(3NSL)

authdes_seccreate secure_rpc(3NSL)

authnone_create rpc_clnt_auth(3NSL)

authsys_create rpc_clnt_auth(3NSL)

authsys_create_default rpc_clnt_auth(3NSL)

authunix_create rpc_soc(3NSL)

authunix_create_default rpc_soc(3NSL)

callrpc rpc_soc(3NSL)

clnt_broadcast rpc_soc(3NSL)

clnt_call rpc_clnt_calls(3NSL)

clnt_control rpc_clnt_create(3NSL)

clnt_create rpc_clnt_create(3NSL)

clnt_destroy rpc_clnt_create(3NSL)

clnt_dg_create rpc_clnt_create(3NSL)

clnt_freeres rpc_clnt_calls(3NSL)

clnt_geterr rpc_clnt_calls(3NSL)

clnt_pcreateerror rpc_clnt_create(3NSL)

clnt_perrno rpc_clnt_calls(3NSL)

clnt_perror rpc_clnt_calls(3NSL)

Index to Routines

rpc(3NSL)

Networking Library Functions 399

clnt_raw_create rpc_clnt_create(3NSL)

clnt_spcreateerror rpc_clnt_create(3NSL)

clnt_sperrno rpc_clnt_calls(3NSL)

clnt_sperror rpc_clnt_calls(3NSL)

clnt_tli_create rpc_clnt_create(3NSL)

clnt_tp_create rpc_clnt_create(3NSL)

clnt_udpcreate rpc_soc(3NSL)

clnt_vc_create rpc_clnt_create(3NSL)

clntraw_create rpc_soc(3NSL)

clnttcp_create rpc_soc(3NSL)

clntudp_bufcreate rpc_soc(3NSL)

get_myaddress rpc_soc(3NSL)

getnetname secure_rpc(3NSL)

host2netname secure_rpc(3NSL)

key_decryptsession secure_rpc(3NSL)

key_encryptsession secure_rpc(3NSL)

key_gendes secure_rpc(3NSL)

key_setsecret secure_rpc(3NSL)

netname2host secure_rpc(3NSL)

netname2user secure_rpc(3NSL)

pmap_getmaps rpc_soc(3NSL)

pmap_getport rpc_soc(3NSL)

pmap_rmtcall rpc_soc(3NSL)

pmap_set rpc_soc(3NSL)

pmap_unset rpc_soc(3NSL)

registerrpc rpc_soc(3NSL)

rpc_broadcast rpc_clnt_calls(3NSL)

rpc_broadcast_exp rpc_clnt_calls(3NSL)

rpc_call rpc_clnt_calls(3NSL)

rpc(3NSL)

man pages section 3: Networking Library Functions • Last Revised 5 Jun 2001400

rpc_reg rpc_svc_calls(3NSL)

svc_create rpc_svc_create(3NSL)

svc_destroy rpc_svc_create(3NSL)

svc_dg_create rpc_svc_create(3NSL)

svc_dg_enablecache rpc_svc_calls(3NSL)

svc_fd_create rpc_svc_create(3NSL)

svc_fds rpc_soc(3NSL)

svc_freeargs rpc_svc_reg(3NSL)

svc_getargs rpc_svc_reg(3NSL)

svc_getcaller rpc_soc(3NSL)

svc_getreq rpc_soc(3NSL)

svc_getreqset rpc_svc_calls(3NSL)

svc_getrpccaller rpc_svc_calls(3NSL)

svc_raw_create rpc_svc_create(3NSL)

svc_reg rpc_svc_calls(3NSL)

svc_register rpc_soc(3NSL)

svc_run rpc_svc_reg(3NSL)

svc_sendreply rpc_svc_reg(3NSL)

svc_tli_create rpc_svc_create(3NSL)

svc_tp_create rpc_svc_create(3NSL)

svc_unreg rpc_svc_calls(3NSL)

svc_unregister rpc_soc(3NSL)

svc_vc_create rpc_svc_create(3NSL)

svcerr_auth rpc_svc_err(3NSL)

svcerr_decode rpc_svc_err(3NSL)

svcerr_noproc rpc_svc_err(3NSL)

svcerr_noprog rpc_svc_err(3NSL)

svcerr_progvers rpc_svc_err(3NSL)

svcerr_systemerr rpc_svc_err(3NSL)

rpc(3NSL)

Networking Library Functions 401

svcerr_weakauth rpc_svc_err(3NSL)

svcfd_create rpc_soc(3NSL)

svcraw_create rpc_soc(3NSL)

svctcp_create rpc_soc(3NSL)

svcudp_bufcreate rpc_soc(3NSL)

svcudp_create rpc_soc(3NSL)

user2netname secure_rpc(3NSL)

xdr_accepted_reply rpc_xdr(3NSL)

xdr_authsys_parms rpc_xdr(3NSL)

xdr_authunix_parms rpc_soc(3NSL)

xdr_callhdr rpc_xdr(3NSL)

xdr_callmsg rpc_xdr(3NSL)

xdr_opaque_auth rpc_xdr(3NSL)

xdr_rejected_reply rpc_xdr(3NSL)

xdr_replymsg rpc_xdr(3NSL)

xprt_register rpc_svc_calls(3NSL)

xprt_unregister rpc_svc_calls(3NSL)

/etc/netconfig

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

getnetconfig(3NSL), getnetpath(3NSL), rpc_clnt_auth(3NSL), rpc_clnt_calls(3NSL),
rpc_clnt_create(3NSL), rpc_svc_calls(3NSL), rpc_svc_create(3NSL),
rpc_svc_err(3NSL), rpc_svc_reg(3NSL), rpc_xdr(3NSL), rpcbind(3NSL),
secure_rpc(3NSL), threads(5), xdr(3NSL), netconfig(4), rpc(4), attributes(5),
environ(5)

Files

Attributes

See Also

rpc(3NSL)

man pages section 3: Networking Library Functions • Last Revised 5 Jun 2001402

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1threads-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netconfig-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpc-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5

rpcbind, rpcb_getmaps, rpcb_getaddr, rpcb_gettime, rpcb_rmtcall, rpcb_set, rpcb_unset –
library routines for RPC bind service

#include <rpc/rpc.h>

struct rpcblist *rpcb_getmaps(const struct netconfig *nnetconf,
const char *host);

bool_t rpcb_getaddr(const rpcprog_t prognum, const rpcvers_t versnum,

const struct netconfig *netconf, struct netbuf *ssvcaddr,
const char *host);

bool_t rpcb_gettime(const char *host, time_t *timep);

enum clnt_stat rpcb_rmtcall(const struct netconfig *netconf,
const char *host, const rpcprog_t prognum,

const rpcvers_t versnum, const rpcproc_t procnum,

const xdrproc_t inproc, const caddr_t in,
const xdrproc_t outproc caddr_t out,,
const struct timeval tout, struct netbuf *svcaddr);

bool_t rpcb_set(const rpcprog_t prognum, const rpcvers_t versnum,

const struct netconfig *netconf, const struct netbuf *svcaddr);

bool_t rpcb_unset(const rpcprog_t prognum, const rpcvers_t versnum,

const struct netconfig *netconf);

These routines allow client C programs to make procedure calls to the RPC binder service.
rpcbind maintains a list of mappings between programs and their universal addresses. See
rpcbind(1M).

rpcb_getmaps() An interface to the rpcbind service, which returns a list of the current
RPC program-to-address mappings on host. It uses the transport
specified through netconf to contact the remote rpcbind service on host.
This routine will return NULL, if the remote rpcbind could not be
contacted.

rpcb_getaddr() An interface to the rpcbind service, which finds the address of the
service on host that is registered with program number prognum,
version versnum, and speaks the transport protocol associated with
netconf. The address found is returned in svcaddr. svcaddr should be
preallocated. This routine returns TRUE if it succeeds. A return value of
FALSE means that the mapping does not exist or that the RPC system
failed to contact the remote rpcbind service. In the latter case, the global
variable rpc_createerr contains the RPC status. See
rpc_clnt_create(3NSL).

rpcb_gettime() This routine returns the time on host in timep. If host is NULL,
rpcb_gettime() returns the time on its own machine. This routine

Name

Synopsis

Description

Routines

rpcbind(3NSL)

Networking Library Functions 403

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpcbind-1m

returns TRUE if it succeeds, FALSE if it fails. rpcb_gettime() can be used
to synchronize the time between the client and the remote server. This
routine is particularly useful for secure RPC.

rpcb_rmtcall() An interface to the rpcbind service, which instructs rpcbind on host to
make an RPC call on your behalf to a procedure on that host. The
netconfig structure should correspond to a connectionless transport.
The parameter *svcaddr will be modified to the server's address if the
procedure succeeds. See rpc_call() and clnt_call() in
rpc_clnt_calls(3NSL) for the definitions of other parameters.

This procedure should normally be used for a “ping” and nothing else.
This routine allows programs to do lookup and call, all in one step.

Note: Even if the server is not running rpcbind does not return any error
messages to the caller. In such a case, the caller times out.

Note: rpcb_rmtcall() is only available for connectionless transports.

rpcb_set() An interface to the rpcbind service, which establishes a mapping
between the triple [prognum, versnum, netconf->nc_netid] and svcaddr
on the machine's rpcbind service. The value of nc_netid must
correspond to a network identifier that is defined by the netconfig
database. This routine returns TRUE if it succeeds, FALSE otherwise. See
also svc_reg() in rpc_svc_calls(3NSL). If there already exists such an
entry with rpcbind, rpcb_set() will fail.

rpcb_unset() An interface to the rpcbind service, which destroys the mapping
between the triple [prognum, versnum, netconf->nc_netid] and the
address on the machine's rpcbind service. If netconf is NULL,
rpcb_unset() destroys all mapping between the triple [prognum,
versnum, all-transports] and the addresses on the machine's rpcbind
service. This routine returns TRUE if it succeeds, FALSE otherwise. Only
the owner of the service or the super-user can destroy the mapping. See
also svc_unreg() in rpc_svc_calls(3NSL).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

rpcbind(1M), rpcinfo(1M), rpc_clnt_calls(3NSL), rpc_clnt_create(3NSL),
rpc_svc_calls(3NSL), attributes(5)

Attributes

See Also

rpcbind(3NSL)

man pages section 3: Networking Library Functions • Last Revised 20 Feb 1998404

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpcbind-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpcinfo-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

rpc_clnt_auth, auth_destroy, authnone_create, authsys_create, authsys_create_default –
library routines for client side remote procedure call authentication

void auth_destroy(AUTH *auth);

AUTH *authnone_create (void)

AUTH *authsys_create(const cha r*host, const uid_t uid, const gid_t gid,
const int len, const gid_t *aup_gids);

AUTH *authsys_create_default(void)

These routines are part of the RPC library that allows C language programs to make procedure
calls on other machines across the network, with desired authentication.

These routines are normally called after creating the CLIENT handle. The cl_auth field of the
CLIENT structure should be initialized by the AUTH structure returned by some of the following
routines. The client's authentication information is passed to the server when the RPC call is
made.

Only the NULL and the SYS style of authentication is discussed here. For the DES style
authentication, please refer to secure_rpc(3NSL).

The NULL and SYS style of authentication are safe in multithreaded applications. For the
MT-level of the DES style, see its pages.

The following routines require that the header <rpc/rpc.h> be included (see rpc(3NSL) for
the definition of the AUTH data structure).

#include <rpc/rpc.h>

auth_destroy() A function macro that destroys the authentication information
associated with auth. Destruction usually involves deallocation of
private data structures. The use of auth is undefined after calling
auth_destroy().

authnone_create() Create and return an RPC authentication handle that passes
nonusable authentication information with each remote
procedure call. This is the default authentication used by RPC.

authsys_create() Create and return an RPC authentication handle that contains
AUTH_SYS authentication information. The parameter host is the
name of the machine on which the information was created; uid is
the user's user ID; gid is the user's current group ID; len and
aup_gids refer to a counted array of groups to which the user
belongs.

authsys_create_default Call authsys_create() with the appropriate parameters.

Name

Synopsis

Description

Routines

rpc_clnt_auth(3NSL)

Networking Library Functions 405

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

rpc(3NSL), rpc_clnt_calls(3NSL), rpc_clnt_create(3NSL), secure_rpc(3NSL),
attributes(5)

Attributes

See Also

rpc_clnt_auth(3NSL)

man pages section 3: Networking Library Functions • Last Revised 14 Jan 2002406

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

rpc_clnt_calls, clnt_call, clnt_send, clnt_freeres, clnt_geterr, clnt_perrno, clnt_perror,
clnt_sperrno, clnt_sperror, rpc_broadcast, rpc_broadcast_exp, rpc_call – library routines for
client side calls

#include <rpc/rpc.h>

enum clnt_stat clnt_call(CLIENT *clnt, const rpcproc_t procnum,

const xdrproc_t inproc, const caddr_t in, const xdrproc_t outproc,
caddr_t out, const struct timeval tout);

enum clnt_stat clnt_send (CLIENT *clnt, const u_long

procnum, const xdrproc_t proc, const caddr_t in);

bool_t clnt_freeres(CLIENT *clnt, const xdrproc_t outproc,
caddr_t out);

void clnt_geterr(const CLIENT *clnt, struct rpc_err *errp);

void clnt_perrno(const enum clnt_stat stat);

void clnt_perror(const CLIENT *clnt, const char *s);

char *clnt_sperrno(const enum clnt_stat stat);

char *clnt_sperror(const CLIENT *clnt, const char *s);

enum clnt_stat rpc_broadcast(const rpcprog_t prognum,

const rpcvers_t versnum, const rpcproc_t procnum,

const xdrproc_tinproc, const caddr_t in,
const xdrproc_t outproc, caddr_t out,
const resultproc_t eachresult, const char *nettype);

enum clnt_stat rpc_broadcast_exp(const rpcprog_t prognum,

const rpcvers_t versnum,const rpcproc_t procnum,

const xdrproc_txargs, caddr_t argsp, const xdrproc_txresults,
caddr_t resultsp, const resultproc_t eachresult, const int inittime,
const int waittime, const char *nettype);

enum clnt_stat rpc_call(const char *host, const rpcprog_t prognum,

const rpcvers_t versnum, const rpcproc_t procnum, const xdrproc_t inproc,
const char *in, const xdrproc_t outproc, char *out, const char *nettype);

RPC library routines allow C language programs to make procedure calls on other machines
across the network. First, the client calls a procedure to send a request to the server. Upon
receipt of the request, the server calls a dispatch routine to perform the requested service and
then sends back a reply.

The clnt_call(), rpc_call(), and rpc_broadcast() routines handle the client side of the
procedure call. The remaining routines deal with error handling.

Some of the routines take a CLIENT handle as one of the parameters. A CLIENT handle can be
created by an RPC creation routine such as clnt_create(). See rpc_clnt_create(3NSL).

Name

Synopsis

Description

rpc_clnt_calls(3NSL)

Networking Library Functions 407

These routines are safe for use in multithreaded applications. CLIENT handles can be shared
between threads; however, in this implementation requests by different threads are serialized.
In other words, the first request will receive its results before the second request is sent.

See rpc(3NSL) for the definition of the CLIENT data structure.

clnt_call() A function macro that calls the remote procedure procnum
associated with the client handle, clnt, which is obtained with an
RPC client creation routine such as clnt_create(). See
rpc_clnt_create(3NSL). The parameter inproc is the XDR
function used to encode the procedure's parameters, and outproc
is the XDR function used to decode the procedure's results. in is
the address of the procedure's argument(s), and out is the address
of where to place the result(s). tout is the time allowed for results
to be returned, which is overridden by a time-out set explicitly
through clnt_control(). See rpc_clnt_create(3NSL).

If the remote call succeeds, the status returned is RPC_SUCCESS.
Otherwise, an appropriate status is returned.

clnt_send() Use the clnt_send() function to call a remote asynchronous
function.

The clnt_send() function calls the remote function procnum()

associated with the client handle, clnt, which is obtained with an
RPC client creation routine such as clnt_create(). See
rpc_clnt_create(3NSL). The parameter proc is the XDR
function used to encode the procedure's parameters. The
parameter in is the address of the procedure's argument(s).

By default, the blocking I/O mode is used. See the
clnt_control(3NSL) man page for more information on I/O
modes.

The clnt_send() function does not check if the program version
number supplied to clnt_create() is registered with the rpcbind
service. Use clnt_create_vers() instead of clnt_create() to
check on incorrect version number registration.
clnt_create_vers() will return a valid handle to the client only if
a version within the range supplied to clnt_create_vers() is
supported by the server.

RPC_SUCCESS is returned when a request is successfully delivered
to the transport layer. This does not mean that the request was
received. If an error is returned, use the clnt_getterr() routine

Routines

rpc_clnt_calls(3NSL)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011408

to find the failure status or the clnt_perrno() routine to translate
the failure status into error messages.

clnt_freeres() A function macro that frees any data allocated by the RPC/XDR
system when it decoded the results of an RPC call. The parameter
out is the address of the results, and outproc is the XDR routine
describing the results. This routine returns 1 if the results were
successfully freed; otherwise it returns 0.

clnt_geterr() A function macro that copies the error structure out of the client
handle to the structure at address errp.

clnt_perrno() Prints a message to standard error corresponding to the condition
indicated by stat. A newline is appended. It is normally used after a
procedure call fails for a routine for which a client handle is not
needed, for instance rpc_call()

clnt_perror() Prints a message to the standard error indicating why an RPC call
failed; clnt is the handle used to do the call. The message is
prepended with string s and a colon. A newline is appended. This
routine is normally used after a remote procedure call fails for a
routine that requires a client handle, for instance clnt_call().

clnt_sperrno() Takes the same arguments as clnt_perrno(), but instead of
sending a message to the standard error indicating why an RPC
call failed, returns a pointer to a string that contains the message.

clnt_sperrno() is normally used instead of clnt_perrno() when
the program does not have a standard error, as a program running
as a server quite likely does not. clnt_sperrno() is also used if the
programmer does not want the message to be output with
printf(), or if a message format different than that supported by
clnt_perrno() is to be used. See printf(3C). Unlike
clnt_sperror() and clnt_spcreaterror(), clnt_sperrno()
does not return a pointer to static data. Therefore, the result is not
overwritten on each call. See rpc_clnt_create(3NSL).

clnt_sperror() Similar to clnt_perror(), except that like clnt_sperrno(), it
returns a string instead of printing to standard error. However,
clnt_sperror() does not append a newline at the end of the
message.

clnt_sperror() returns a pointer to a buffer that is overwritten
on each call. In multithreaded applications, this buffer is
implemented as thread-specific data.

rpc_clnt_calls(3NSL)

Networking Library Functions 409

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1printf-3c

rpc_broadcast() Similar to rpc_call(), except that the call message is broadcast to
all the connectionless transports specified by nettype. If nettype is
NULL, it defaults to netpath. Each time it receives a response, this
routine calls eachresult(), whose form is:

bool_t eachresult(caddr_t out, const struct netbuf *addr,

const struct netconfig *netconf);

where out is the same as out passed to rpc_broadcast(), except
that the remote procedure's output is decoded there. addr points
to the address of the machine that sent the results, and netconf is
the netconfig structure of the transport on which the remote
server responded. If eachresult() returns 0, rpc_broadcast()
waits for more replies; otherwise, it returns with appropriate
status.

The broadcast file descriptors are limited in size to the maximum
transfer size of that transport. For Ethernet, this value is 1500
bytes. rpc_broadcast() uses AUTH_SYS credentials by default. See
rpc_clnt_auth(3NSL).

rpc_broadcast_exp() Similar to rpc_broadcast(), except that the initial timeout,
inittime and the maximum timeout, waittime, are specified in
milliseconds.

inittime is the initial time that rpc_broadcast_exp() waits before
resending the request. After the first resend, the retransmission
interval increases exponentially until it exceeds waittime.

rpc_call() Calls the remote procedure associated with prognum, versnum,
and procnum on the machine, host. The parameter inproc is used
to encode the procedure's parameters, and outproc is used to
decode the procedure's results. in is the address of the procedure's
argument(s), and out is the address of where to place the result(s).
nettype can be any of the values listed on rpc(3NSL). This routine
returns RPC_SUCCESS if it succeeds, or it returns an appropriate
status. Use the clnt_perrno() routine to translate failure status
into error messages.

The rpc_call() function uses the first available transport
belonging to the class nettype on which it can create a connection.
You do not have control of timeouts or authentication using this
routine.

See attributes(5) for descriptions of the following attributes:Attributes

rpc_clnt_calls(3NSL)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011410

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture All

Availability system/library

Interface Stability Committed

MT-Level MT-Safe

printf(3C), rpc(3NSL), rpc_clnt_auth(3NSL), rpc_clnt_create(3NSL), attributes(5)See Also

rpc_clnt_calls(3NSL)

Networking Library Functions 411

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1printf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

rpc_clnt_create, clnt_control, clnt_create, clnt_create_timed, clnt_create_vers,
clnt_create_vers_timed, clnt_destroy, clnt_dg_create, clnt_pcreateerror, clnt_raw_create,
clnt_spcreateerror, clnt_tli_create, clnt_tp_create, clnt_tp_create_timed, clnt_vc_create,
rpc_createerr, clnt_door_create – library routines for dealing with creation and manipulation
of CLIENT handles

#include <rpc/rpc.h>

bool_t clnt_control(CLIENT *clnt, const uint_t req, char *info);

CLIENT *clnt_create(const char *host, const rpcprog_t prognum,

const rpcvers_t versnum, const char *nettype);

CLIENT *clnt_create_timed(const char *host, const rpcprog_t prognum,

const rpcvers_t versnum, const nettype,
const struct timeval *timetout);

CLIENT *clnt_create_vers (const char *host,
const rpcprog_t prognum, rpcvers_t *vers_outp,
const rpcvers_t vers_low, const rpcvers_t vers_high,
const char *nettype);

CLIENT *clnt_create_vers_timed(const char *host,
const rpcprog_t prognum, rpcvers_t *vers_outp,
const rpcvers_t vers_low, const rpcvers_t vers_high,
char *nettype, const struct timeval *timeout);

void clnt_destroy(CLIENT *clnt);

CLIENT *clnt_dg_create(const int fildes,
const struct netbuf *svcaddr, const rpcprog_t prognum,

const rpcvers_t versnum, const uint_t sendsz,
const uint_t recsz);

void clnt_pcreateerror(const char *s);

CLIENT *clnt_raw_create(const rpcprog_t prognum,

const rpcvers_t versnum);

char *clnt_spcreateerror(const char *s);

CLIENT *clnt_tli_create(const int fildes,
const struct netconfig *netconf, const struct netbuf *svcaddr,
const rpcprog_t prognum, const rpcvers_t versnum,

const uint_t sendsz, const uint_t recsz);

CLIENT *clnt_tp_create(const char *host,
const rpcprog_t prognum, const rpcvers_t versnum,

const struct netconfig *netconf);

CLIENT *clnt_tp_create_timed(const char *host,
const rpcprog_t prognum, const rpcvers_t versnum,

const struct netconfig *netconf, const struct timeval *timeout);

Name

Synopsis

rpc_clnt_create(3NSL)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011412

CLIENT *clnt_vc_create(const int fildes,
const struct netbuf *svcaddr, const rpcprog_t prognum,

const rpcvers_t versnum, const uint_t sendsz,
const uint_t recsz);

struct rpc_createerr rpc_createerr

CLIENT *clnt_door_create(const rpcprog_t prognum,

const rpcvers_t versnum, const uint_t sendsz);

RPC library routines allow C language programs to make procedure calls on other machines
across the network. First a CLIENT handle is created and then the client calls a procedure to
send a request to the server. On receipt of the request, the server calls a dispatch routine to
perform the requested service, and then sends a reply.

These routines are MT-Safe. In the case of multithreaded applications, the -mt option must be
specified on the command line at compilation time. When the -mt option is specified,
rpc_createerr() becomes a macro that enables each thread to have its own
rpc_createerr(). See threads(5).

See rpc(3NSL) for the definition of the CLIENT data structure.

clnt_control()

A function macro to change or retrieve various information about a client object. req
indicates the type of operation, and info is a pointer to the information. For both
connectionless and connection-oriented transports, the supported values of req and their
argument types and what they do are:

CLSET_TIMEOUT struct timeval * set total timeout

CLGET_TIMEOUT struct timeval * get total timeout

If the timeout is set using clnt_control(), the timeout argument passed by clnt_call()
is ignored in all subsequent calls. If the timeout value is set to 0, clnt_control()
immediately returns RPC_TIMEDOUT. Set the timeout parameter to 0 for batching calls.

CLGET_SERVER_ADDR struct netbuf * get server’s address

CLGET_SVC_ADDR struct netbuf * get server’s address

CLGET_FD int * get associated file descriptor

CLSET_FD_CLOSE void close the file descriptor when

destroying the client handle

(see clnt_destroy())

CLSET_FD_NCLOSE void do not close the file

descriptor when destroying the client handle

CLGET_VERS rpcvers_t get the RPC program’s version

number associated with the

client handle

CLSET_VERS rpcvers_t set the RPC program’s version

number associated with the

client handle. This assumes

that the RPC server for this

Description

Routines

rpc_clnt_create(3NSL)

Networking Library Functions 413

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1threads-5

new version is still listening

at the address of the previous

version.

CLGET_XID uint32_t get the XID of the previous

remote procedure call

CLSET_XID uint32_t set the XID of the next

remote procedure call

CLGET_PROG rpcprog_t get program number

CLSET_PROG rpcprog_t set program number

The following operations are valid for connection-oriented transports only:

CLSET_IO_MODE rpciomode_t* set the IO mode used

to send one-way requests. The argument for this operation

can be either:

- RPC_CL_BLOCKING all sending operations block

until the underlying transport protocol has

accepted requests. If you specify this argument

you cannot use flush and getting and setting buffer

size is meaningless.

- RPC_CL_NONBLOCKING sending operations do not

block and return as soon as requests enter the buffer.

You can now use non-blocking I/O. The requests in the

buffer are pending. The requests are sent to

the server as soon as a two-way request is sent

or a flush is done. You are responsible for flushing

the buffer. When you choose RPC_CL_NONBLOCKING argument

you have a choice of flush modes as specified by

CLSET_FLUSH_MODE.

CLGET_IO_MODE rpciomode_t* get the current IO mode

CLSET_FLUSH_MODE rpcflushmode_t* set the flush mode.

The flush mode can only be used in non-blocking I/O mode.

The argument can be either of the following:

- RPC_CL_BESTEFFORT_FLUSH: All flushes send requests

in the buffer until the transport end-point blocks.

If the transport connection is congested, the call

returns directly.

- RPC_CL_BLOCKING_FLUSH: Flush blocks until the

underlying transport protocol accepts all pending

requests into the queue.

CLGET_FLUSH_MODE rpcflushmode_t* get the current flush mode.

CLFLUSH rpcflushmode_t flush the pending requests.

This command can only be used in non-blocking I/O mode.

The flush policy depends on which of the following

parameters is specified:

- RPC_CL_DEFAULT_FLUSH, or NULL: The flush is done

according to the current flush mode policy

(see CLSET_FLUSH_MODE option).

- RPC_CL_BESTEFFORT_FLUSH: The flush tries

rpc_clnt_create(3NSL)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011414

to send pending requests without blocking; the call

returns directly. If the transport connection is

congested, this call could return without the request

being sent.

- RPC_CL_BLOCKING_FLUSH: The flush sends all pending

requests. This call will block until all the requests

have been accepted by the transport layer.

CLSET_CONNMAXREC_SIZE int* set the buffer size.

It is not possible to dynamically

resize the buffer if it contains data.

The default size of the buffer is 16 kilobytes.

CLGET_CONNMAXREC_SIZE int* get the current size of the

buffer

CLGET_CURRENT_REC_SIZE int* get the size of

the pending requests stored in the buffer. Use of this

command is only recommended when you are in non-blocking

I/O mode. The current size of the buffer is always zero

when the handle is in blocking mode as the buffer is not

used in this mode.

The following operations are valid for connectionless transports only:

CLSET_RETRY_TIMEOUT struct timeval * set the retry timeout

CLGET_RETRY_TIMEOUT struct timeval * get the retry timeout

The retry timeout is the time that RPC waits for the server to reply before retransmitting
the request.

clnt_control() returns TRUE on success and FALSE on failure.

clnt_create()

Generic client creation routine for program prognum and version versnum. host identifies
the name of the remote host where the server is located. nettype indicates the class of
transport protocol to use. The transports are tried in left to right order in NETPATH variable
or in top to bottom order in the netconfig database.

clnt_create() tries all the transports of the nettype class available from the NETPATH
environment variable and the netconfig database, and chooses the first successful one. A
default timeout is set and can be modified using clnt_control(). This routine returns
NULL if it fails. The clnt_pcreateerror() routine can be used to print the reason for
failure.

Note that clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service. This
mismatch will be discovered by a clnt_call later (see rpc_clnt_calls(3NSL)).

rpc_clnt_create(3NSL)

Networking Library Functions 415

clnt_create_timed()

Generic client creation routine which is similar to clnt_create() but which also has the
additional parameter timeout that specifies the maximum amount of time allowed for each
transport class tried. In all other respects, the clnt_create_timed() call behaves exactly
like the clnt_create() call.

clnt_create_vers()

Generic client creation routine which is similar to clnt_create() but which also checks
for the version availability. host identifies the name of the remote host where the server is
located. nettype indicates the class transport protocols to be used. If the routine is successful
it returns a client handle created for the highest version between vers_low and vers_high
that is supported by the server. vers_outp is set to this value. That is, after a successful
return vers_low <= *vers_outp <= vers_high. If no version between vers_low and vers_high
is supported by the server then the routine fails and returns NULL. A default timeout is set
and can be modified using clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version number
supplied to clnt_create() is not registered with the rpcbind service. This mismatch will
be discovered by a clnt_call later (see rpc_clnt_calls(3NSL)). However,
clnt_create_vers() does this for you and returns a valid handle only if a version within
the range supplied is supported by the server.

clnt_create_vers_timed()

Generic client creation routine similar to clnt_create_vers() but with the additional
parameter timeout, which specifies the maximum amount of time allowed for each
transport class tried. In all other respects, the clnt_create_vers_timed() call behaves
exactly like the clnt_create_vers() call.

clnt_destroy()

A function macro that destroys the client's RPC handle. Destruction usually involves
deallocation of private data structures, including clnt itself. Use of clnt is undefined after
calling clnt_destroy(). If the RPC library opened the associated file descriptor, or
CLSET_FD_CLOSE was set using clnt_control(), the file descriptor will be closed.

The caller should call auth_destroy(clnt->cl_auth) (before calling clnt_destroy()) to
destroy the associated AUTH structure (see rpc_clnt_auth(3NSL)).

clnt_dg_create()

This routine creates an RPC client for the remote program prognum and version versnum;
the client uses a connectionless transport. The remote program is located at address
svcaddr. The parameter fildes is an open and bound file descriptor. This routine will resend
the call message in intervals of 15 seconds until a response is received or until the call times
out. The total time for the call to time out is specified by clnt_call() (see clnt_call() in
rpc_clnt_calls(3NSL)). The retry time out and the total time out periods can be changed

rpc_clnt_create(3NSL)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011416

using clnt_control(). The user may set the size of the send and receive buffers with the
parameters sendsz and recvsz; values of 0 choose suitable defaults. This routine returns
NULL if it fails.

clnt_pcreateerror()

Print a message to standard error indicating why a client RPC handle could not be created.
The message is prepended with the string s and a colon, and appended with a newline.

clnt_raw_create()

This routine creates an RPC client handle for the remote program prognum and version
versnum. The transport used to pass messages to the service is a buffer within the process's
address space, so the corresponding RPC server should live in the same address space; (see
svc_raw_create() in rpc_svc_create(3NSL)). This allows simulation of RPC and
measurement of RPC overheads, such as round trip times, without any kernel or
networking interference. This routine returns NULL if it fails. clnt_raw_create() should
be called after svc_raw_create().

clnt_spcreateerror()

Like clnt_pcreateerror(), except that it returns a string instead of printing to the
standard error. A newline is not appended to the message in this case.

Warning: returns a pointer to a buffer that is overwritten on each call. In multithread
applications, this buffer is implemented as thread-specific data.

clnt_tli_create()

This routine creates an RPC client handle for the remote program prognum and version
versnum. The remote program is located at address svcaddr. If svcaddr is NULL and it is
connection-oriented, it is assumed that the file descriptor is connected. For connectionless
transports, if svcaddr is NULL, RPC_UNKNOWNADDR error is set. fildes is a file descriptor which
may be open, bound and connected. If it is RPC_ANYFD, it opens a file descriptor on the
transport specified by netconf. If fildes is RPC_ANYFD and netconf is NULL, a
RPC_UNKNOWNPROTO error is set. If fildes is unbound, then it will attempt to bind the
descriptor. The user may specify the size of the buffers with the parameters sendsz and
recvsz; values of 0 choose suitable defaults. Depending upon the type of the transport
(connection-oriented or connectionless), clnt_tli_create() calls appropriate client
creation routines. This routine returns NULL if it fails. The clnt_pcreateerror() routine
can be used to print the reason for failure. The remote rpcbind service (see rpcbind(1M))
is not consulted for the address of the remote service.

clnt_tp_create()

Like clnt_create() except clnt_tp_create() tries only one transport specified through
netconf.

clnt_tp_create() creates a client handle for the program prognum, the version versnum,
and for the transport specified by netconf. Default options are set, which can be changed
using clnt_control() calls. The remote rpcbind service on the host host is consulted for
the address of the remote service. This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

rpc_clnt_create(3NSL)

Networking Library Functions 417

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpcbind-1m

clnt_tp_create_timed()

Like clnt_tp_create() except clnt_tp_create_timed() has the extra parameter timeout
which specifies the maximum time allowed for the creation attempt to succeed. In all other
respects, the clnt_tp_create_timed() call behaves exactly like the clnt_tp_create()
call.

clnt_vc_create()

This routine creates an RPC client for the remote program prognum and version versnum;
the client uses a connection-oriented transport. The remote program is located at address
svcaddr. The parameter fildes is an open and bound file descriptor. The user may specify
the size of the send and receive buffers with the parameters sendsz and recvsz; values of 0
choose suitable defaults. This routine returns NULL if it fails.

The address svcaddr should not be NULL and should point to the actual address of the
remote program. clnt_vc_create() does not consult the remote rpcbind service for this
information.

rpc_createerr()

A global variable whose value is set by any RPC client handle creation routine that fails. It is
used by the routine clnt_pcreateerror() to print the reason for the failure.

In multithreaded applications, rpc_createerr becomes a macro which enables each
thread to have its own rpc_createerr.

clnt_door_create()

This routine creates an RPC client handle over doors for the given program prognum and
version versnum. Doors is a transport mechanism that facilitates fast data transfer between
processes on the same machine. The user may set the size of the send buffer with the
parameter sendsz. If sendsz is 0, the corresponding default buffer size is 16 Kbyte. The
clnt_door_create() routine returns NULL if it fails and sets a value for rpc_createerr.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture All

Availability system/library

Interface Stability Committed

MT-Level MT-Safe

rpcbind(1M), rpc(3NSL), rpc_clnt_auth(3NSL), rpc_clnt_calls(3NSL),
rpc_svc_create(3NSL), svc_raw_create(3NSL), threads(5), attributes(5)

Attributes

See Also

rpc_clnt_create(3NSL)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011418

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpcbind-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1threads-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

rpc_control – library routine for manipulating global RPC attributes for client and server
applications

bool_t rpc_control(int op, void *info);

This RPC library routine allows applications to set and modify global RPC attributes that
apply to clients as well as servers. At present, it supports only server side operations. This
function allows applications to set and modify global attributes that apply to client as well as
server functions. op indicates the type of operation, and info is a pointer to the operation
specific information. The supported values of op and their argument types, and what they do
are:

RPC_SVC_MTMODE_SET int * set multithread mode

RPC_SVC_MTMODE_GET int * get multithread mode

RPC_SVC_THRMAX_SET int * set maximum number of threads

RPC_SVC_THRMAX_GET int * get maximum number of threads

RPC_SVC_THRTOTAL_GET int * get number of active threads

RPC_SVC_THRCREATES_GET int * get number of threads created

RPC_SVC_THRERRORS_GET int * get number of thread create errors

RPC_SVC_USE_POLLFD int * set number of file descriptors to unlimited

RPC_SVC_CONNMAXREC_SET int * set non-blocking max rec size

RPC_SVC_CONNMAXREC_GET int * get non-blocking max rec size

There are three multithread (MT) modes. These are:

RPC_SVC_MT_NONE Single threaded mode (default)

RPC_SVC_MT_AUTO Automatic MT mode

RPC_SVC_MT_USER User MT mode

Unless the application sets the Automatic or User MT modes, it will stay in the default (single
threaded) mode. See the Network Interfaces Programmer's Guide for the meanings of these
modes and programming examples. Once a mode is set, it cannot be changed.

By default, the maximum number of threads that the server will create at any time is 16. This
allows the service developer to put a bound on thread resources consumed by a server. If a
server needs to process more than 16 client requests concurrently, the maximum number of
threads must be set to the desired number. This parameter may be set at any time by the
server.

Set and get operations will succeed even in modes where the operations don't apply. For
example, you can set the maximum number of threads in any mode, even though it makes
sense only for the Automatic MT mode. All of the get operations except RPC_SVC_MTMODE_GET
apply only to the Automatic MT mode, so values returned in other modes may be undefined.

By default, RPC servers are limited to a maximum of 1024 file descriptors or connections due
to limitations in the historical interfaces svc_fdset(3NSL) and svc_getreqset(3NSL).
Applications written to use the preferred interfaces of svc_pollfd(3NSL) and
svc_getreq_poll(3NSL) can use an unlimited number of file descriptors. Setting info to
point to a non-zero integer and op to RPC_SVC_USE_POLLFD removes the limitation.

Name

Synopsis

Description

rpc_control(3NSL)

Networking Library Functions 419

Connection oriented RPC transports read RPC requests in blocking mode by default. Thus,
they may be adversely affected by network delays and broken clients.
RPC_SVC_CONNMAXREC_SET enables non-blocking mode and establishes the maximum record
size (in bytes) for RPC requests; RPC responses are not affected. Buffer space is allocated as
needed up to the specified maximum, starting at the maximum or RPC_MAXDATASIZE,
whichever is smaller.

The value established by RPC_SVC_CONNMAXREC_SET is used when a connection is created, and
it remains in effect for that connection until it is closed. To change the value for existing
connections on a per-connection basis, see svc_control(3NSL).

RPC_SVC_CONNMAXREC_GET retrieves the current maximum record size. A zero value means
that no maximum is in effect, and that the connections are in blocking mode.

info is a pointer to an argument of type int. Non-connection RPC transports ignore
RPC_SVC_CONNMAXREC_SET and RPC_SVC_CONNMAXREC_GET.

This routine returns TRUE if the operation was successful and returnsFALSE otherwise.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

rpcbind(1M), rpc(3NSL), rpc_svc_calls(3NSL), attributes(5)

Network Interfaces Programmer's Guide

Return Values

Attributes

See Also

rpc_control(3NSL)

man pages section 3: Networking Library Functions • Last Revised 24 Feb 1999420

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpcbind-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

rpc_gss_getcred – get credentials of client

#include <rpc/rpcsec_gss.h>

bool_t rpc_gss_getcred(struct svc_req *req, rpc_gss_rawcred_ t **rcred,
rpc_gss_ucred **ucred, void **cookie);

rpc_gss_getcred() is used by a server to fetch the credentials of a client. These credentials
may either be network credentials (in the form of a rpc_gss_rawcred_t structure) or UNIX
credentials.

For more information on RPCSEC_GSS data types, see the rpcsec_gss(3NSL) man page.

Essentially, rpc_gss_getcred() passes a pointer to a request (svc_req) as well as pointers to
two credential structures and a user-defined cookie; if rpc_gss_getcred() is successful, at
least one credential structure is "filled out" with values, as is, optionally, the cookie.

req Pointer to the received service request. svc_req is an RPC structure containing
information on the context of an RPC invocation, such as program, version, and
transport information.

rcred A pointer to an rpc_gss_rawcred_t structure pointer. This structure contains the
version number of the RPCSEC_GSS protocol being used; the security mechanism
and QOPs for this session (as strings); principal names for the client (as a
rpc_gss_principal_t structure) and server (as a string); and the security service
(integrity, privacy, etc., as an enum). If an application is not interested in these
values, it may pass NULL for this parameter.

ucred The caller's UNIX credentials, in the form of a pointer to a pointer to a
rpc_gss_ucred_t structure, which includes the client's uid and gids. If an
application is not interested in these values, it may pass NULL for this parameter.

cookie A four-byte quantity that an application may use in any manner it wants to; RPC
does not interpret it. (For example, a cookie may be a pointer or index to a
structure that represents a context initiator.) See also
rpc_gss_set_callback(3NSL).

rpc_gss_getcred() returns TRUE if it is successful; otherwise, use rpc_gss_get_error() to
get the error associated with the failure.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/rpcsec

MT-Level MT-Safe

Name

Synopsis

Description

Parameters

Return Values

Attributes

rpc_gss_getcred(3NSL)

Networking Library Functions 421

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

rpc(3NSL), rpc_gss_set_callback(3NSL), rpc_gss_set_svc_name(3NSL),
rpcsec_gss(3NSL), attributes(5)

ONC+ Developer’s Guide

Linn, J. RFC 2078, Generic Security Service Application Program Interface, Version 2. Network
Working Group. January 1997.

See Also

rpc_gss_getcred(3NSL)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011422

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=ONCDG

rpc_gss_get_error – get error codes on failure

#include <rpc/rpcsec_gss.h>

bool_t rpc_gss_get_error(rpc_gss_error_t*error);

rpc_gss_get_error() fetches an error code when an RPCSEC_GSS routine fails.

rpc_gss_get_error() uses a rpc_gss_error_t structure of the following form:

typedef struct {

int rpc_gss_error; RPCSEC_GSS error
int system_error; system error
} rpc_gss_error_t;

Currently the only error codes defined for this function are

#define RPC_GSS_ER_SUCCESS 0 /* no error */

#define RPC_GSS_ER_SYSTEMERROR 1 /* system error */

Information on RPCSEC_GSS data types for parameters may be found on the
rpcsec_gss(3NSL) man page.

error A rpc_gss_error_t structure. If the rpc_gss_error field is equal to
RPC_GSS_ER_SYSTEMERROR, the system_error field will be set to the value of
errno.

Unless there is a failure indication from an invoked RPCSEC_GSS function,
rpc_gss_get_error() does not set error to a meaningful value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/rpcsec

MT-Level MT-Safe

perror(3C), rpc(3NSL), rpcsec_gss(3NSL), attributes(5)

ONC+ Developer’s Guide

Linn, J. RFC 2078, Generic Security Service Application Program Interface, Version 2. Network
Working Group. January 1997.

Only system errors are currently returned.

Name

Synopsis

Description

Parameters

Return Values

Attributes

See Also

Notes

rpc_gss_get_error(3NSL)

Networking Library Functions 423

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1perror-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=ONCDG

rpc_gss_get_mechanisms, rpc_gss_get_mech_info, rpc_gss_get_versions,
rpc_gss_is_installed – get information on mechanisms and RPC version

#include <rpc/rpcsec_gss.h>

char **rpc_gss_get_mechanisms();

char **rpc_gss_get_mech_info(char *mech, rpc_gss_service_t *service);

bool_t rpc_gss_get_versions(u_int *vers_hi, u_int *vers_lo);

bool_t rpc_gss_is installed(char *mech);

These "convenience functions" return information on available security mechanisms and
versions of RPCSEC_GSS .

rpc_gss_get_mechanisms() Returns a list of supported security mechanisms as a
null-terminated list of character strings.

rpc_gss_get_mech_info() Takes two arguments: an ASCII string representing a
mechanism type, for example, kerberosv5, and a pointer to
a rpc_gss_service_t enum. rpc_gss_get_mech_info()
will return NULL upon error or if no /etc/gss/qop file is
present. Otherwise, it returns a null-terminated list of
character strings of supported Quality of Protections
(QOPs) for this mechanism. NULL or empty list implies only
that the default QOP is available and can be specified to
routines that need to take a QOP string parameter as NULL
or as an empty string.

rpc_gss_get_versions() Returns the highest and lowest versions of RPCSEC_GSS
supported.

rpc_gss_is_installed() Takes an ASCII string representing a mechanism, and
returns TRUE if the mechanism is installed.

Information on RPCSEC_GSS data types for parameters may be found on the
rpcsec_gss(3NSL) man page.

mech An ASCII string representing the security mechanism in use. Valid strings may
also be found in the /etc/gss/mech file.

service A pointer to a rpc_gss_service_t enum, representing the current security service
(privacy, integrity, or none).

vers_hi
vers_lo The highest and lowest versions of RPCSEC_GSS supported.

/etc/gss/mech File containing valid security mechanisms

/etc/gss/qop File containing valid QOP values

Name

Synopsis

Description

Parameters

Files

rpc_gss_get_mechanisms(3NSL)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011424

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/rpcsec

MT-Level MT-Safe

rpc(3NSL),rpcsec_gss(3NSL), mech(4), qop(4), attributes(5)

ONC+ Developer’s Guide

Linn, J. RFC 2743, Generic Security Service Application Program Interface Version 2, Update 1.
Network Working Group. January 2000.

This function will change in a future release.

Attributes

See Also

Notes

rpc_gss_get_mechanisms(3NSL)

Networking Library Functions 425

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mech-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1qop-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=ONCDG

rpc_gss_get_principal_name – Get principal names at server

#include <rpc/rpcsec_gss.h>

bool_t rpc_gss_get_principal_name(rpc_gss_principal_ *principal,
char *mech, char *name, char *node, char *domain);

Servers need to be able to operate on a client's principal name. Such a name is stored by the
server as a rpc_gss_principal_t structure, an opaque byte string which can be used either
directly in access control lists or as database indices which can be used to look up a UNIX
credential. A server may, for example, need to compare a principal name it has received with
the principal name of a known entity, and to do that, it must be able to generate
rpc_gss_principal_t structures from known entities.

rpc_gss_get_principal_name() takes as input a security mechanism, a pointer to a
rpc_gss_principal_t structure, and several parameters which uniquely identify an entity on
a network: a user or service name, a node name, and a domain name. From these parameters it
constructs a unique, mechanism-dependent principal name of the rpc_gss_principal_t
structure type.

How many of the identifying parameters (name , node, and domain) are necessary to specify
depends on the mechanism being used. For example, Kerberos V5 requires only a user name
but can accept a node and domain name. An application can choose to set unneeded
parameters to NULL.

Information on RPCSEC_GSS data types for parameters may be found on the
rpcsec_gss(3NSL) man page.

principal An opaque, mechanism-dependent structure representing the client's principal
name.

mech An ASCII string representing the security mechanism in use. Valid strings may
be found in the /etc/gss/mech file, or by using rpc_gss_get_mechanisms().

name A UNIX login name (for example, 'gwashington') or service name, such as 'nfs'.

node A node in a domain; typically, this would be a machine name (for example,
'valleyforge').

domain A security domain; for example, a DNS or NIS domain name
('eng.company.com').

rpc_gss_get_principal_name() returns TRUE if it is successful; otherwise, use
rpc_gss_get_error() to get the error associated with the failure.

/etc/gss/mech File containing valid security mechanisms

Name

Synopsis

Description

Parameters

Return Values

Files

rpc_gss_get_principal_name(3NSL)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011426

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/rpcsec

MT-Level MT-Safe

free(3C), rpc(3NSL), rpc_gss_get_mechanisms(3NSL), rpc_gss_set_svc_name(3NSL),
rpcsec_gss(3NSL), mech(4), attributes(5)

ONC+ Developer’s Guide

Linn, J. RFC 2078, Generic Security Service Application Program Interface, Version 2. Network
Working Group. January 1997.

Principal names may be freed up by a call to free(3C). A principal name need only be freed in
those instances where it was constructed by the application. (Values returned by other
routines point to structures already existing in a context, and need not be freed.)

Attributes

See Also

Notes

rpc_gss_get_principal_name(3NSL)

Networking Library Functions 427

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1free-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mech-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=ONCDG
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1free-3c

rpc_gss_max_data_length, rpc_gss_svc_max_data_length – get maximum data length for
transmission

#include <rpc/rpcsec_gss.h>

int rpc_gss_max_data_length(AUTH *handle, int max_tp_unit_len);

int rpc_gss_svc_max_data_length(struct svc_req *req, int max_tp_unit_len);

Performing a security transformation on a piece of data generally produces data with a
different (usually greater) length. For some transports, such as UDP, there is a maximum
length of data which can be sent out in one data unit. Applications need to know the
maximum size a piece of data can be before it's transformed, so that the resulting data will still
"fit" on the transport. These two functions return that maximum size.

rpc_gss_max_data_length() is the client-side version; rpc_gss_svc_max_data_length() is
the server-side version.

handle An RPC context handle of type AUTH, returned when a context is
created (for example, by rpc_gss_seccreate(). Security service and
QOP are bound to this handle, eliminating any need to specify them.

max_tp_unit_len The maximum size of a piece of data allowed by the transport.

req A pointer to an RPC svc_req structure, containing information on the
context (for example, program number and credentials).

Both functions return the maximum size of untransformed data allowed, as an int.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/rpcsec

MT-Level MT-Safe

rpc(3NSL), rpcsec_gss(3NSL), attributes(5)

ONC+ Developer’s Guide

Linn, J. RFC 2078, Generic Security Service Application Program Interface, Version 2. Network
Working Group. January 1997.

Name

Synopsis

Description

Parameters

Return Values

Attributes

See Also

rpc_gss_max_data_length(3NSL)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011428

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=ONCDG

rpc_gss_mech_to_oid, rpc_gss_qop_to_num – map mechanism, QOP strings to non-string
values

#include <rpc/rpcsec_gss.h>

bool_t rpc_gss_mech_to_oid(charc*mech, rpc_gss_OIDc*oid);

bool_t rpc_gss_qop_to_num(char *qop, char *mech, u_int *num);

Because in-kernel RPC routines use non-string values for mechanism and Quality of
Protection (QOP), these routines exist to map strings for these attributes to their non-string
counterparts. (The non-string values for QOP and mechanism are also found in the
/etc/gss/qop and /etc/gss/mech files, respectively.) rpc_gss_mech_to_oid() takes a string
representing a mechanism, as well as a pointer to a rpc_gss_OID object identifier structure. It
then gives this structure values corresponding to the indicated mechanism, so that the
application can now use the OID directly with RPC routines. rpc_gss_qop_to_num() does
much the same thing, taking strings for QOP and mechanism and returning a number.

Information on RPCSEC_GSS data types for parameters may be found on the
rpcsec_gss(3NSL) man page.

mech An ASCII string representing the security mechanism in use. Valid strings may be
found in the /etc/gss/mech file.

oid An object identifier of type rpc_gss_OID, whose elements are usable by kernel-level
RPC routines.

qop This is an ASCII string which sets the quality of protection (QOP) for the session.
Appropriate values for this string may be found in the file /etc/gss/qop.

num The non-string value for the QOP.

Both functions return TRUE if they are successful, FALSE otherwise.

/etc/gss/mech File containing valid security mechanisms

/etc/gss/qop File containing valid QOP values

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/rpcsec

MT-Level MT-Safe

rpc(3NSL), rpc_gss_get_error(3NSL), rpc_gss_get_mechanisms(3NSL),
rpcsec_gss(3NSL), mech(4), qop(4), attributes(5)

ONC+ Developer’s Guide

Name

Synopsis

Description

Parameters

Return Values

Files

Attributes

See Also

rpc_gss_mech_to_oid(3NSL)

Networking Library Functions 429

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mech-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1qop-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=ONCDG

Linn, J. RFC 2078, Generic Security Service Application Program Interface, Version 2. Network
Working Group. January 1997.

rpc_gss_mech_to_oid(3NSL)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011430

rpc_gss_seccreate – create a security context using the RPCSEC_GSS protocol

#include <rpc/rpcsec_gss.h>

AUTH *rpc_gss_seccreate(CLIENT *clnt, char *principal, char *mechanism,

rpc_gss_service_t service_type, char *qop,
rpc_gss_options_req_t *options_req,
rpc_gss_options_ret_t *options_ret);

rpc_gss_seccreate() is used by an appliction to create a security context using the
RPCSEC_GSS protocol, making use of the underlying GSS-API network layer.
rpc_gss_seccreate() allows an application to specify the type of security mechanism (for
example, Kerberos v5), the type of service (for example, integrity checking), and the Quality of
Protection (QOP) desired for transferring data.

Information on RPCSEC_GSS data types for parameters may be found on the
rpcsec_gss(3NSL) man page.

clnt This is the RPC client handle. clnt may be obtained, for example, from
clnt_create().

principal This is the identity of the server principal, specified in the form service@host,
where service is the name of the service the client wishes to access and host is
the fully qualified name of the host where the service resides — for example,
nfs@mymachine.eng.company.com.

mechanism This is an ASCII string which indicates which security mechanism to use with
this data. Appropriate mechanisms may be found in the file /etc/gss/mech;
additionally, rpc_gss_get_mechanisms() returns a list of supported security
mechanisms (as null-terminated strings).

service_type This sets the initial type of service for the session — privacy, integrity,
authentication, or none.

qop This is an ASCII string which sets the quality of protection (QOP) for the
session. Appropriate values for this string may be found in the file
/etc/gss/qop. Additionally, supported QOPs are returned (as
null-terminated strings) by rpc_gss_get_mech_info().

options_req This structure contains options which are passed directly to the underlying
GSS_API layer. If the caller specifies NULL for this parameter, defaults are used.
(See NOTES, below.)

options_ret These GSS-API options are returned to the caller. If the caller does not need to
see these options, then it may specify NULL for this parameter. (See NOTES,
below.)

Name

Synopsis

Description

Parameters

rpc_gss_seccreate(3NSL)

Networking Library Functions 431

rpc_gss_seccreate() returns a security context handle (an RPC authentication handle) of
type AUTH. If rpc_gss_seccreate() cannot return successfully, the application can get an
error number by calling rpc_gss_get_error().

/etc/gss/mech File containing valid security mechanisms

/etc/gss/qop File containing valid QOP values.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/rpcsec

MT-Level MT-Safe

auth_destroy(3NSL), rpc(3NSL), rpc_gss_get_error(3NSL),
rpc_gss_get_mechanisms(3NSL), rpcsec_gss(3NSL), mech(4), qop(4), attributes(5)

ONC+ Developer’s Guide

Linn, J. RFC 2743, Generic Security Service Application Program Interface Version 2, Update 1.
Network Working Group. January 2000.

Contexts may be destroyed normally, with auth_destroy(). See auth_destroy(3NSL)

Return Values

Files

Attributes

See Also

Notes

rpc_gss_seccreate(3NSL)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011432

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mech-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1qop-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=ONCDG

rpc_gss_set_callback – specify callback for context

#include <rpc/rpcsec_gss.h>

bool_t rpc_gss_set_callback(struct rpc_gss_callback_t *cb);

A server may want to specify a callback routine so that it knows when a context gets first used.
This user-defined callback may be specified through the rpc_gss_set_callback() routine.
The callback routine is invoked the first time a context is used for data exchanges, after the
context is established for the specified program and version.

The user-defined callback routine should take the following form:

bool_t callback(struct svc_req *req, gss_cred_id_t deleg,
gss_ctx_id_t gss_context, rpc_gss_lock_t *lock, void **cookie);

rpc_gss_set_callback() takes one argument: a pointer to a rpc_gss_callback_t structure.
This structure contains the RPC program and version number as well as a pointer to a
user-defined callback() routine. (For a description of rpc_gss_callback_t and other
RPCSEC_GSS data types, see the rpcsec_gss(3NSL) man page.)

The user-defined callback() routine itself takes the following arguments:

req Pointer to the received service request. svc_req is an RPC structure
containing information on the context of an RPC invocation, such as
program, version, and transport information.

deleg Delegated credentials, if any. (See NOTES, below.)

gss_context GSS context (allows server to do GSS operations on the context to test for
acceptance criteria). See NOTES, below.

lock This parameter is used to enforce a particular QOP and service for a session.
This parameter points to a RPCSEC_GSS rpc_gss_lock_t structure. When the
callback is invoked, the rpc_gss_lock_t.locked field is set to TRUE, thus
locking the context. A locked context will reject all requests having different
values for QOP or service than those specified by the raw_cred field of the
rpc_gss_lock_t structure.

cookie A four-byte quantity that an application may use in any manner it wants to —
RPC does not interpret it. (For example, the cookie could be a pointer or
index to a structure that represents a context initiator.) The cookie is
returned, along with the caller's credentials, with each invocation of
rpc_gss_getcred().

rpc_gss_set_callback() returns TRUE if the use of the context is accepted; false otherwise.

Name

Synopsis

Description

Parameters

Return Values

rpc_gss_set_callback(3NSL)

Networking Library Functions 433

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/rpcsec

MT-Level MT-Safe

rpc(3NSL), rpc_gss_getcred(3NSL), rpcsec_gss(3NSL), attributes(5)

ONC+ Developer’s Guide

Linn, J. RFC 2078, Generic Security Service Application Program Interface, Version 2. Network
Working Group. January 1997.

If a server does not specify a callback, all incoming contexts will be accepted.

Because the GSS-API is not currently exposed, the deleg and gss_context arguments are
mentioned for informational purposes only, and the user-defined callback function may
choose to do nothing with them.

Attributes

See Also

Notes

rpc_gss_set_callback(3NSL)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011434

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=ONCDG

rpc_gss_set_defaults – change service, QOP for a session

#include <rpc/rpcsec_gss.h>

bool_t rpc_gss_set_defaults(AUTH *auth, rpc_gss_service_t service, char *qop);

rpc_gss_set_defaults() allows an application to change the service (privacy, integrity,
authentication, or none) and Quality of Protection (QOP) for a transfer session. New values
apply to the rest of the session (unless changed again).

Information on RPCSEC_GSS data types for parameters may be found on the
rpcsec_gss(3NSL) man page.

auth An RPC authentication handle returned by rpc_gss_seccreate()).

service An enum of type rpc_gss_service_t, representing one of the following types of
security service: authentication, privacy, integrity, or none.

qop A string representing Quality of Protection. Valid strings may be found in the file
/etc/gss/qop or by using rpc_gss_get_mech_info().

rpc_gss_set_svc_name() returns TRUE if it is successful; otherwise, use
rpc_gss_get_error() to get the error associated with the failure.

/etc/gss/qop File containing valid QOPs

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/rpcsec

MT-Level MT-Safe

rpc(3NSL), rpc_gss_get_mech_info(3NSL), rpcsec_gss(3NSL), qop(4), attributes(5)

ONC+ Developer’s Guide

Linn, J. RFC 2078, Generic Security Service Application Program Interface, Version 2. Network
Working Group. January 1997.

Name

Synopsis

Description

Parameters

Return Values

Files

Attributes

See Also

rpc_gss_set_defaults(3NSL)

Networking Library Functions 435

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1qop-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=ONCDG

rpc_gss_set_svc_name – send a principal name to a server

#include <rpc/rpcsec_gss.h>

bool_t rpc_gss_set_svc_name(char *principal, char *mechanism,

u_int req_time,u_int program, u_int version);

rpc_gss_set_svc_name() sets the name of a principal the server is to represent. If a server is
going to act as more than one principal, this procedure can be invoked for every such
principal.

Information on RPCSEC_GSS data types for parameters may be found on the
rpcsec_gss(3NSL) man page.

principal An ASCII string representing the server's principal name, given in the form of
service@host.

mech An ASCII string representing the security mechanism in use. Valid strings may
be found in the /etc/gss/mech file, or by using rpc_gss_get_mechanisms().

req_time The time, in seconds, for which a credential should be valid. Note that the
req_time is a hint to the underlying mechanism. The actual time that the
credential will remain valid is mechanism dependent. In the case of kerberos the
actual time will be GSS_C_INDEFINITE.

program The RPC program number for this service.

version The RPC version number for this service.

rpc_gss_set_svc_name() returns TRUE if it is successful; otherwise, use
rpc_gss_get_error() to get the error associated with the failure.

/etc/gss/mech File containing valid security mechanisms

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/rpcsec

MT-Level MT-Safe

rpc(3NSL), rpc_gss_get_mechanisms(3NSL), rpc_gss_get_principal_name(3NSL),
rpcsec_gss(3NSL), mech(4), attributes(5)

ONC+ Developer’s Guide

Linn, J. RFC 2078, Generic Security Service Application Program Interface, Version 2. Network
Working Group. January 1997.

Name

Synopsis

Description

Parameters

Return Values

Files

Attributes

See Also

rpc_gss_set_svc_name(3NSL)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011436

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1mech-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=ONCDG

rpcsec_gss – security flavor incorporating GSS-API protections

cc [flag...] file... -lnsl [library...]

#include <rpc/rpcsec_gss.h>

RPCSEC_GSS is a security flavor which sits "on top" of the GSS-API (Generic Security Service
API) for network transmissions. Applications using RPCSEC_GSS can take advantage of
GSS-API security features; moreover, they can use any security mechanism (such as RSA
public key or Kerberos) that works with the GSS-API.

The GSS-API offers two security services beyond the traditional authentication services
(AUTH_DH, AUTH_SYS, and AUTH_KERB): integrity and privacy. With integrity, the
system uses cryptographic checksumming to ensure the authenticity of a message
(authenticity of originator, recipient, and data); privacy provides additional security by
encrypting data. Applications using RPCSEC_GSS specify which service they wish to use. Type
of security service is mechanism-independent.

Before exchanging data with a peer, an application must establish a context for the exchange.
RPCSEC_GSS provides a single function for this purpose, rpc_gss_seccreate(), which allows
the application to specify the security mechanism, Quality of Protection (QOP), and type of
service at context creation. (The QOP parameter sets the cryptographic algorithms to be used
with integrity or privacy, and is mechanism-dependent.) Once a context is established,
applications can reset the QOP and type of service for each data unit exchanged, if desired.

Valid mechanisms and QOPs may be obtained from configuration files or from the name
service. Each mechanism has a default QOP.

Contexts are destroyed with the usual RPC auth_destroy() call.

Some of the data structures used by the RPCSEC_GSS package are shown below.

rpc_gss_service_t

This enum defines the types of security services the context may have. rpc_gss_seccreate()
takes this as one argument when setting the service type for a session.

typedef enum {

rpc_gss_svc_default = 0,

rpc_gss_svc_none = 1,

rpc_gss_svc_integrity = 2,

rpc_gss_svc_privacy = 3

} rpc_gss_service_t ;

rpc_gss_options_req_t

Structure containing options passed directly through to the GSS-API. rpc_gss_seccreate()
takes this as an argument when creating a context.

typedef struct {

int req_flags; /*GSS request bits */

int time_req; /*requested credential lifetime */

Name

Synopsis

Description

Data Structures

rpcsec_gss(3NSL)

Networking Library Functions 437

gss_cred_id_t my_cred; /*GSS credential struct*/

gss_channel_bindings_t;

input_channel_bindings;

} rpc_gss_options_req_t ;

rpc_gss_OID

This data type is used by in-kernel RPC routines, and thus is mentioned here for
informational purposes only.

typedef struct {

u_int length;

void *elements

} *rpc_gss_OID;

rpc_gss_options_ret_t

Structure containing GSS-API options returned to the calling function,
rpc_gss_seccreate(). MAX_GSS_MECH is defined as 128.

typedef struct {

int major_status;

int minor_status;

u_int rpcsec_version /*vers. of RPCSEC_GSS */

int ret_flags

int time_req

gss_ctx_id_t gss_context;

char actual_mechanism[MAX_GSS_MECH]; /*mechanism used*/

} rpc_gss_options_ret_t;

rpc_gss_principal_t

The (mechanism-dependent, opaque) client principal type. Used as an argument to the
rpc_gss_get_principal_name() function, and in the gsscred table. Also referenced by the
rpc_gss_rawcred_t structure for raw credentials (see below).

typedef struct {

int len;

char name[1];

} *rpc_gss_principal_t;

rpc_gss_rawcred_t

Structure for raw credentials. Used by rpc_gss_getcred() and rpc_gss_set_callback().

typedef struct {

u_int version; /*RPC version # */

char *mechanism; /*security mechanism*/

char *qop; /*Quality of Protection*/

rpc_gss_principal_t client_principal; /*client name*/

char *svc_principal; /*server name*/

rpc_gss_service_t service; /*service (integrity, etc.)*/

} rpc_gss_rawcred_t;

rpcsec_gss(3NSL)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011438

rpc_gss_ucred_t

Structure for UNIX credentials. Used by rpc_gss_getcred() as an alternative to
rpc_gss_rawcred_t.

typedef struct {

uid_t uid; /*user ID*/

gid_t gid; /*group ID*/

short gidlen;

git_t *gidlist; /*list of groups*/

} rpc_gss_ucred_t;

rpc_gss_callback_t

Callback structure used by rpc_gss_set_callback().

typedef struct {

u_int program; /*RPC program #*/

u_int version; /*RPC version #*/

bool_t (*callback)(); /*user-defined callback routine*/

} rpc_gss_callback_t;

rpc_gss_lock_t

Structure used by a callback routine to enforce a particular QOP and service for a session. The
locked field is normally set to FALSE; the server sets it to TRUE in order to lock the session. (A
locked context will reject all requests having different QOP and service values than those
found in the raw_cred structure.) For more information, see the
rpc_gss_set_callback(3NSL) man page.

typedef struct {

bool_t locked;

rpc_gss_rawcred_t *raw_cred;

} rpc_gss_lock_t;

rpc_gss_error_t

Structure used by rpc_gss_get_error() to fetch an error code when a RPCSEC_GSS routine
fails.

typedef struct {

int rpc_gss_error;

int system_error; /*same as errno*/

} rpc_gss_error_t;

The following lists RPCSEC_GSS routines and the manual reference pages on which they are
described. An (S) indicates it is a server-side function:

Routine (Manual Page) Description

rpc_gss_seccreate(3NSL) Create a secure RPCSEC_GSS context

rpc_gss_set_defaults(3NSL) Switch service, QOP for a session

Index to Routines

rpcsec_gss(3NSL)

Networking Library Functions 439

rpc_gss_max_data_length(3NSL) Get maximum data length allowed by transport

rpc_gss_set_svc_name(3NSL) Set server's principal name (S)

rpc_gss_getcred(3NSL) Get credentials of caller (S)

rpc_gss_set_callback(3NSL) Specify callback to see context use (S)

rpc_gss_get_principal_name(3NSL) Get client principal name (S)

rpc_gss_svc_max_data_length(3NSL) Get maximum data length allowed by transport
(S)

rpc_gss_get_error(3NSL) Get error number

rpc_gss_get_mechanisms(3NSL) Get valid mechanism strings

rpc_gss_get_mech_info(3NSL) Get valid QOP strings, current service

rpc_gss_get_versions(3NSL) Get supported RPCSEC_GSS versions

rpc_gss_is_installed(3NSL) Checks if a mechanism is installed

rpc_gss_mech_to_oid(3NSL) Maps ASCII mechanism to OID representation

rpc_gss_qop_to_num(3NSL) Maps ASCII QOP, mechansim to u_int number

The gsscred utility manages the gsscred table, which contains mappings of principal names
between network and local credentials. See gsscred(1M).

/etc/gss/mech List of installed mechanisms

/etc/gss/qop List of valid QOPs

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/rpcsec

MT-Level MT-Safe

gsscred(1M), rpc(3NSL), rpc_clnt_auth(3NSL), xdr(3NSL), attributes(5), environ(5)

ONC+ Developer’s Guide

Linn, J. RFC 2743, Generic Security Service Application Program Interface Version 2, Update 1.
Network Working Group. January 2000.

Utilities

Files

Attributes

See Also

rpcsec_gss(3NSL)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011440

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gsscred-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gsscred-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1environ-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=ONCDG

rpc_soc, authdes_create, authunix_create, authunix_create_default, callrpc, clnt_broadcast,
clntraw_create, clnttcp_create, clntudp_bufcreate, clntudp_create, get_myaddress,
getrpcport, pmap_getmaps, pmap_getport, pmap_rmtcall, pmap_set, pmap_unset,
registerrpc, svc_fds, svc_getcaller, svc_getreq, svc_register, svc_unregister, svcfd_create,
svcraw_create, svctcp_create, svcudp_bufcreate, svcudp_create, xdr_authunix_parms –
obsolete library routines for RPC

#define PORTMAP

#include <rpc/rpc.h>

AUTH *authdes_create(char *name, uint_t window,

struct sockaddr_in *syncaddr, des_block *ckey);

AUTH *authunix_create(char *host, uid_t uid, gid_t gid,
int grouplen, gid_t *gidlistp);

AUTH *authunix_create_default(void)

callrpc(char *host, rpcprog_t prognum, rpcvers_t versnum,

rpcproc_t procnum, xdrproc_t inproc, char *in,
xdrproc_t outproc, char *out);

enum clnt_stat_clnt_broadcast(rpcprog_t prognum, rpcvers_t versnum,

rpcproc_t procnum, xdrproc_t inproc, char *in,
xdrproc_t outproc, char *out, resultproc_teachresult);

CLIENT *clntraw_create(rpcproc_t procnum, rpcvers_t versnum);

CLIENT *clnttcp_create(struct sockaddr_in *addr,
rpcprog_t prognum, rpcvers_t versnum, int *fdp,
uint_t sendz, uint_t recvsz);

CLIENT *clntudp_bufcreate(struct sockaddr_in *addr, rpcprog_t prognum,

rpcvers_t versnum, struct timeval wait,
int *fdp, uint_t sendz, uint_t recvsz);

CLIENT *clntudp_create(struct sockaddr_in *addr,
rpcprog_t prognum, struct timeval wait, int *fdp);

void get_myaddress(struct sockaddr_in *addr);

ushort getrpcport(char *host, rpcprog_t prognum,

rpcvers_t versnum, rpcprot_t proto);

struct pmaplist *pmap_getmaps(struct sockaddr_in *addr);

ushort pmap_getport(struct sockaddr_in *addr,
rpcprog_t prognum, rpcvers_t versnum,

rpcprot_t protocol);

enum clnt_stat pmap_rmtcall(struct sockaddr_in *addr,
rpcprog_t prognum, rpcvers_t versnum,

rpcproc_t progcnum, caddr_t in, xdrproct_t inproc,
caddr_t out, cdrproct_t outproc,
struct timeval tout, rpcport_t *portp);

Name

Synopsis

rpc_soc(3NSL)

Networking Library Functions 441

bool_t pmap_set(rpcprog_t prognum, rpcvers_t versnum,

rpcprot_t protocol, u_short port);

bool_t pmap_unset(rpcprog_t prognum, rpcvers_t versnum);

int svc_fds;

struct sockaddr_in *svc_getcaller(SVCXPRT *xprt);

void svc_getreq(int rdfds);

SVCXPRT *svcfd_create(int fd, uint_t sendsz,
uint_t recvsz);

SVCXPRT *svcraw_create(void)

SVCXPRT *svctcp_create(int fd, uint_t sendsz,
uint_t recvsz);

SVCXPRT *svcudp_bufcreate(int fd, uint_t sendsz,
uint_t recvsz);

SVCXPRT *svcudp_create(int fd);

registerrpc(rpcprog_t prognum, rpcvers_t versnum, rpcproc_t procnum,

char *(*procname)(), xdrproc_t inproc, xdrproc_t outproc);

bool_tsvc_register(SVCXPRT *xprt, rpcprog_t prognum, rpcvers_t versnum,

void (*dispatch(), int protocol);

void svc_unregister(rpcprog_t prognum, rpcvers_t versnum);

bool_t xdr_authunix_parms(XDR *xdrs, struct authunix_parms *supp);

RPC routines allow C programs to make procedure calls on other machines across the
network. First, the client calls a procedure to send a request to the server. Upon receipt of the
request, the server calls a dispatch routine to perform the requested service, and then sends
back a reply. Finally, the procedure call returns to the client.

The routines described in this manual page have been superseded by other routines. The
preferred routine is given after the description of the routine. New programs should use the
preferred routines, as support for the older interfaces may be dropped in future releases.

Transport independent RPC uses TLI as its transport interface instead of sockets.

Some of the routines described in this section (such as clnttcp_create()) take a pointer to a
file descriptor as one of the parameters. If the user wants the file descriptor to be a socket, then
the application will have to be linked with both librpcsoc and libnsl. If the user passed
RPC_ANYSOCK as the file descriptor, and the application is linked with libnsl only, then the
routine will return a TLI file descriptor and not a socket.

Description

File Descriptors

rpc_soc(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 Jun 2001442

The following routines require that the header <rpc/rpc.h> be included. The symbol PORTMAP
should be defined so that the appropriate function declarations for the old interfaces are
included through the header files.

authdes_create() authdes_create() is the first of two routines which
interface to the RPC secure authentication system, known
as DES authentication. The second is
authdes_getucred(), below. Note: the keyserver
daemon keyserv(1M) must be running for the DES
authentication system to work.

authdes_create(), used on the client side, returns an
authentication handle that will enable the use of the
secure authentication system. The first parameter name is
the network name, or netname, of the owner of the server
process. This field usually represents a hostname derived
from the utility routine host2netname(), but could also
represent a user name using user2netname(). See
secure_rpc(3NSL). The second field is window on the
validity of the client credential, given in seconds. A small
window is more secure than a large one, but choosing too
small of a window will increase the frequency of
resynchronizations because of clock drift. The third
parameter syncaddr is optional. If it is NULL, then the
authentication system will assume that the local clock is
always in sync with the server's clock, and will not attempt
resynchronizations. If an address is supplied, however,
then the system will use the address for consulting the
remote time service whenever resynchronization is
required. This parameter is usually the address of the RPC
server itself. The final parameter ckey is also optional. If it
is NULL, then the authentication system will generate a
random DES key to be used for the encryption of
credentials. If it is supplied, however, then it will be used
instead.

This routine exists for backward compatibility only, and it
is made obsolete by authdes_seccreate(). See
secure_rpc(3NSL).

authunix_create() Create and return an RPC authentication handle that
contains .UX authentication information. The parameter
host is the name of the machine on which the information
was created; uid is the user's user ID; gid is the user's

Routines

rpc_soc(3NSL)

Networking Library Functions 443

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1keyserv-1m

current group ID; grouplen and gidlistp refer to a counted
array of groups to which the user belongs.

It is not very difficult to impersonate a user.

This routine exists for backward compatibility only, and it
is made obsolete by authsys_create(). See
rpc_clnt_auth(3NSL).

authunix_create_default() Call authunix_create() with the appropriate
parameters.

This routine exists for backward compatibility only, and it
is made obsolete by authsys_create_default(). See
rpc_clnt_auth(3NSL).

callrpc() Call the remote procedure associated with prognum,
versnum, and procnum on the machine, host. The
parameter inproc is used to encode the procedure's
parameters, and outproc is used to decode the procedure's
results; in is the address of the procedure's argument, and
out is the address of where to place the result(s). This
routine returns 0 if it succeeds, or the value of enum
clnt_stat cast to an integer if it fails. The routine
clnt_perrno() is handy for translating failure statuses
into messages. See rpc_clnt_calls(3NSL).

You do not have control of timeouts or authentication
using this routine. This routine exists for backward
compatibility only, and is made obsolete by rpc_call().
See rpc_clnt_calls(3NSL).

clnt_stat_clnt_broadcast() Like callrpc(), except the call message is broadcast to all
locally connected broadcast nets. Each time the caller
receives a response, this routine calls eachresult(),
whose form is:

eachresult(char *out, struct sockaddr_in *addr);

where out is the same as out passed to clnt_broadcast(),
except that the remote procedure's output is decoded
there; addr points to the address of the machine that sent
the results. If eachresult() returns 0. clnt_broadcast()
waits for more replies; otherwise it returns with
appropriate status. If eachresult() is NULL,
clnt_broadcast() returns without waiting for any
replies.

rpc_soc(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 Jun 2001444

Broadcast packets are limited in size to the maximum
transfer unit of the transports involved. For Ethernet, the
callers argument size is approximately 1500 bytes. Since
the call message is sent to all connected networks, it may
potentially lead to broadcast storms. clnt_broadcast()
uses SB AUTH_SYS credentials by default. See
rpc_clnt_auth(3NSL). This routine exists for backward
compatibility only, and is made obsolete by
rpc_broadcast(). See rpc_clnt_calls(3NSL).

clntraw_create() This routine creates an internal, memory-based RPC
client for the remote program prognum, version versnum.
The transport used to pass messages to the service is
actually a buffer within the process's address space, so the
corresponding RPC server should live in the same address
space. See svcraw_create(). This allows simulation of
RPC and acquisition of RPC overheads, such as round
trip times, without any kernel interference. This routine
returns NULL if it fails.

This routine exists for backward compatibility only. It has
the same functionality as clnt_raw_create(). See
rpc_clnt_create(3NSL), which obsoletes it.

clnttcp_create() This routine creates an RPC client for the remote
program prognum, version versnum; the client uses
TCP/IP as a transport. The remote program is located at
Internet address addr. If addr->sin_port is 0, then it is set
to the actual port that the remote program is listening on.
The remote rpcbind service is consulted for this
information. The parameter *fdp is a file descriptor,
which may be open and bound; if it is RPC_ANYSOCK, then
this routine opens a new one and sets *fdp. Refer to the
File Descriptor section for more information. Since
TCP-based RPC uses buffered I/O, the user may specify
the size of the send and receive buffers with the
parameters sendsz and recvsz. Values of 0 choose suitable
defaults. This routine returns NULL if it fails.

This routine exists for backward compatibility only.
clnt_create(), clnt_tli_create(), or
clnt_vc_create() should be used instead. See
rpc_clnt_create(3NSL).

rpc_soc(3NSL)

Networking Library Functions 445

clntudp_bufcreate() Create a client handle for the remote program prognum,
on versnum; the client uses UDP/IP as the transport. The
remote program is located at the Internet address addr. If
addr->sin_port is 0, it is set to port on which the remote
program is listening on (the remote rpcbind service is
consulted for this information). The parameter *fdp is a
file descriptor, which may be open and bound. If it is
RPC_ANYSOCK, then this routine opens a new one and sets
*fdp. Refer to the File Descriptor section for more
information. The UDP transport resends the call message
in intervals of wait time until a response is received or
until the call times out. The total time for the call to time
out is specified by clnt_call(). See
rpc_clnt_calls(3NSL). If successful it returns a client
handle, otherwise it returns NULL. The error can be
printed using the clnt_pcreateerror() routine. See
rpc_clnt_create(3NSL).

The user can specify the maximum packet size for
sending and receiving by using sendsz and recvsz
arguments for UDP-based RPC messages.

If addr->sin_port is 0 and the requested version number
versnum is not registered with the remote portmap
service, it returns a handle if at least a version number for
the given program number is registered. The version
mismatch is discovered by a clnt_call() later (see
rpc_clnt_calls(3NSL)).

This routine exists for backward compatibility only.
clnt_tli_create() or clnt_dg_create() should be
used instead. See rpc_clnt_create(3NSL).

clntudp_create() This routine creates an RPC client handle for the remote
program prognum, version versnum; the client uses
UDP/IP as a transport. The remote program is located at
Internet address addr. If addr->sin_port is 0, then it is set
to actual port that the remote program is listening on. The
remote rpcbind service is consulted for this information.
The parameter *fdp is a file descriptor, which may be open
and bound; if it is RPC_ANYSOCK, then this routine opens a
new one and sets *fdp. Refer to the File Descriptor
section for more information. The UDP transport resends
the call message in intervals of wait time until a response
is received or until the call times out. The total time for

rpc_soc(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 Jun 2001446

the call to time out is specified by clnt_call(). See
rpc_clnt_calls(3NSL). clntudp_create() returns a
client handle on success, otherwise it returns NULL. The
error can be printed using the clnt_pcreateerror()
routine. See rpc_clnt_create(3NSL).

Since UDP-based RPC messages can only hold up to 8
Kbytes of encoded data, this transport cannot be used for
procedures that take large arguments or return huge
results.

This routine exists for backward compatibility only.
clnt_create(), clnt_tli_create(), or
clnt_dg_create() should be used instead. See
rpc_clnt_create(3NSL).

get_myaddress() Places the local system's IP address into *addr, without
consulting the library routines that deal with /etc/hosts.
The port number is always set to htons(PMAPPORT).

This routine is only intended for use with the RPC library.
It returns the local system's address in a form compatible
with the RPC library, and should not be taken as the
system's actual IP address. In fact, the *addr buffer's host
address part is actually zeroed. This address may have
only local significance and should not be assumed to be
an address that can be used to connect to the local system
by remote systems or processes.

This routine remains for backward compatibility only.
The routine netdir_getbyname() should be used with
the name HOST_SELF to retrieve the local system's network
address as a netbuf structure. See netdir(3NSL).

getrpcport() getrpcport() returns the port number for the version
versnum of the RPC program prognum running on host
and using protocol proto. getrpcport() returns 0 if the
RPC system failed to contact the remote portmap service,
the program associated with prognum is not registered, or
there is no mapping between the program and a port.

This routine exists for backward compatibility only.
Enhanced functionality is provided by rpcb_getaddr().
See rpcbind(3NSL).

rpc_soc(3NSL)

Networking Library Functions 447

pmaplist() A user interface to the portmap service, which returns a
list of the current RPC program-to-port mappings on the
host located at IP address addr. This routine can return
NULL . The command ‘rpcinfo-p' uses this routine.

This routine exists for backward compatibility only,
enhanced functionality is provided by rpcb_getmaps().
See rpcbind(3NSL).

pmap_getport() A user interface to the portmap service, which returns the
port number on which waits a service that supports
program prognum, version versnum, and speaks the
transport protocol associated with protocol. The value of
protocol is most likely IPPROTO_UDP or IPPROTO_TCP. A
return value of 0 means that the mapping does not exist or
that the RPC system failured to contact the remote
portmap service. In the latter case, the global variable
rpc_createerr contains the RPC status.

This routine exists for backward compatibility only,
enhanced functionality is provided by rpcb_getaddr().
See rpcbind(3NSL).

pmap_rmtcall() Request that the portmap on the host at IP address *addr
make an RPC on the behalf of the caller to a procedure on
that host. *portp is modified to the program's port
number if the procedure succeeds. The definitions of
other parameters are discussed in callrpc() and
clnt_call(). See rpc_clnt_calls(3NSL).

This procedure is only available for the UDP transport.

If the requested remote procedure is not registered with
the remote portmap then no error response is returned
and the call times out. Also, no authentication is done.

This routine exists for backward compatibility only,
enhanced functionality is provided by rpcb_rmtcall().
See rpcbind(3NSL).

pmap_set() A user interface to the portmap service, that establishes a
mapping between the triple [prognum, versnum, protocol]
and port on the machine's portmap service. The value of
protocol may be IPPROTO_UDP or IPPROTO_TCP. Formerly,
the routine failed if the requested port was found to be in
use. Now, the routine only fails if it finds that port is still

rpc_soc(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 Jun 2001448

bound. If port is not bound, the routine completes the
requested registration. This routine returns 1 if it
succeeds, 0 otherwise. Automatically done by
svc_register().

This routine exists for backward compatibility only,
enhanced functionality is provided by rpcb_set(). See
rpcbind(3NSL).

pmap_unset() A user interface to the portmap service, which destroys all
mapping between the triple [prognum, versnum,
all-protocols] and port on the machine's portmap service.
This routine returns one if it succeeds, 0 otherwise.

This routine exists for backward compatibility only,
enhanced functionality is provided by rpcb_unset(). See
rpcbind(3NSL).

svc_fds() A global variable reflecting the RPC service side's read file
descriptor bit mask; it is suitable as a parameter to the
select() call. This is only of interest if a service
implementor does not call svc_run(), but rather does his
own asynchronous event processing. This variable is
read-only , yet it may change after calls to svc_getreq()

or any creation routines. Do not pass its address to
select()! Similar to svc_fdset, but limited to 32
descriptors.

This interface is made obsolete by svc_fdset. See
rpc_svc_calls(3NSL).

svc_getcaller() This routine returns the network address, represented as
a struct sockaddr_in, of the caller of a procedure
associated with the RPC service transport handle, xprt.

This routine exists for backward compatibility only, and
is obsolete. The preferred interface is
svc_getrpccaller(). See rpc_svc_reg(3NSL), which
returns the address as a struct netbuf.

svc_getreq() This routine is only of interest if a service implementor
does not call svc_run(), but instead implements custom
asynchronous event processing. It is called when the
select() call has determined that an RPC request has
arrived on some RPC file descriptors; rdfds is the resultant
read file descriptor bit mask. The routine returns when all

rpc_soc(3NSL)

Networking Library Functions 449

file descriptors associated with the value of rdfds have
been serviced. This routine is similar to svc_getreqset()

but is limited to 32 descriptors.

This interface is made obsolete by svc_getreqset()

svcfd_create() Create a service on top of any open and bound descriptor.
Typically, this descriptor is a connected file descriptor for
a stream protocol. Refer to the File Descriptor section
for more information. sendsz and recvsz indicate sizes for
the send and receive buffers. If they are 0, a reasonable
default is chosen.

This interface is made obsolete by svc_fd_create() (see
rpc_svc_create(3NSL)).

svcraw_create() This routine creates an internal, memory-based RPC
service transport, to which it returns a pointer. The
transport is really a buffer within the process's address
space, so the corresponding RPC client should live in the
same address space; see clntraw_create(). This routine
allows simulation of RPC and acquisition of RPC
overheads (such as round trip times), without any kernel
interference. This routine returns NULL if it fails.

This routine exists for backward compatibility only, and
has the same functionality of svc_raw_create(). See
rpc_svc_create(3NSL), which obsoletes it.

svctcp_create() This routine creates a TCP/IP-based RPC service
transport, to which it returns a pointer. The transport is
associated with the file descriptor fd, which may be
RPC_ANYSOCK, in which case a new file descriptor is
created. If the file descriptor is not bound to a local TCP
port, then this routine binds it to an arbitrary port. Refer
to the File Descriptor section for more information.
Upon completion, xprt->xp_fd is the transport's file
descriptor, and xprt->xp_port is the transport's port
number. This routine returns NULL if it fails. Since
TCP-based RPC uses buffered I/O, users may specify the
size of buffers; values of 0 choose suitable defaults.

This routine exists for backward compatibility only.
svc_create(), svc_tli_create(), or svc_vc_create()
should be used instead. See rpc_svc_create(3NSL).

rpc_soc(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 Jun 2001450

svcudp_bufcreate() This routine creates a UDP/IP-based RPC service
transport, to which it returns a pointer. The transport is
associated with the file descriptor fd. If fd is RPC_ANYSOCK
then a new file descriptor is created. If the file descriptor is
not bound to a local UDP port, then this routine binds it
to an arbitrary port. Upon completion, xprtxp_fd is the
transport's file descriptor, and xprt->xp_port is the
transport's port number. Refer to the File Descriptor
section for more information. This routine returns NULL
if it fails.

The user specifies the maximum packet size for sending
and receiving UDP-based RPC messages by using the
sendsz and recvsz parameters.

This routine exists for backward compatibility only.
svc_tli_create(), or svc_dg_create() should be used
instead. See rpc_svc_create(3NSL).

svcudp_create() This routine creates a UDP/IP-based RPC service
transport, to which it returns a pointer. The transport is
associated with the file descriptor fd, which may be
RPC_ANYSOCK, in which case a new file descriptor is
created. If the file descriptor is not bound to a local UDP
port, then this routine binds it to an arbitrary port. Upon
completion, xprt->xp_fd is the transport's file descriptor,
and xprt->xp_port is the transport's port number. This
routine returns NULL if it fails.

Since UDP-based RPC messages can only hold up to 8
Kbytes of encoded data, this transport cannot be used for
procedures that take large arguments or return huge
results.

This routine exists for backward compatibility only.
svc_create(), svc_tli_create(), or svc_dg_create()
should be used instead. See rpc_svc_create(3NSL).

registerrpc() Register program prognum, procedure procname, and
version versnum with the RPC service package. If a
request arrives for program prognum, version versnum,
and procedure procnum, procname is called with a pointer
to its parameter(s). procname should return a pointer to
its static result(s). inproc is used to decode the parameters

rpc_soc(3NSL)

Networking Library Functions 451

while outproc is used to encode the results. This routine
returns 0 if the registration succeeded, −1 otherwise.

svc_run() must be called after all the services are
registered.

This routine exists for backward compatibility only, and it
is made obsolete by rpc_reg().

svc_register() Associates prognum and versnum with the service
dispatch procedure, dispatch. If protocol is 0, the service is
not registered with the portmap service. If protocol is
non-zero, then a mapping of the triple [prognum,
versnum, protocol] to xprt->xp_port is established with
the local portmap service (generally protocol is 0,
IPPROTO_UDP or IPPROTO_TCP). The procedure dispatch
has the following form:

dispatch(struct svc_req *request, SVCXPRT *xprt);

The svc_register() routine returns one if it succeeds,
and 0 otherwise.

This routine exists for backward compatibility only.
Enhanced functionality is provided by svc_reg().

svc_unregister() Remove all mapping of the double [prognum, versnum] to
dispatch routines, and of the triple [prognum, versnum,
all-protocols] to port number from portmap.

This routine exists for backward compatibility. Enhanced
functionality is provided by svc_unreg().

xdr_authunix_parms() Used for describing UNIX credentials. This routine is
useful for users who wish to generate these credentials
without using the RPC authentication package.

This routine exists for backward compatibility only, and
is made obsolete by xdr_authsys_parms(). See
rpc_xdr(3NSL).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

Attributes

rpc_soc(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 Jun 2001452

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

keyserv(1M), rpcbind(1M), rpcinfo(1M), netdir(3NSL), netdir_getbyname(3NSL),
rpc(3NSL), rpc_clnt_auth(3NSL), rpc_clnt_calls(3NSL), rpc_clnt_create(3NSL),
rpc_svc_calls(3NSL), rpc_svc_create(3NSL), rpc_svc_err(3NSL), rpc_svc_reg(3NSL),
rpc_xdr(3NSL), rpcbind(3NSL), secure_rpc(3NSL), select(3C),
xdr_authsys_parms(3NSL), libnsl(3LIB), attributes(5)

These interfaces are unsafe in multithreaded applications. Unsafe interfaces should be called
only from the main thread.

See Also

Notes

rpc_soc(3NSL)

Networking Library Functions 453

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1keyserv-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpcbind-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpcinfo-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libnsl-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

rpc_svc_calls, svc_dg_enablecache, svc_done, svc_exit, svc_fdset, svc_freeargs, svc_getargs,
svc_getreq_common, svc_getreq_poll, svc_getreqset, svc_getrpccaller, svc_max_pollfd,
svc_pollfd, svc_run, svc_sendreply, svc_getcallerucred, svc_fd_negotiate_ucred – library
routines for RPC servers

cc [flag...] file... -lnsl [library...]
#include <rpc/rpc.h>

int svc_dg_enablecache(SVCXPRT *xprt, const uint_t cache_size);

int svc_done(SVCXPRT *xprt);

void svc_exit(void);

void svc_fd_negotiate_ucred(int fd);

bool_t svc_freeargs(const SVCXPRT *xprt, const txdrproc_t inproc,
caddr_t in);

bool_t svc_getargs(const SVCXPRT *xprt, const xdrproc_t inproc,
caddr_t in);

int svc_getcallerucred(const SVCXPRT *xprt, ucred_t **ucred);

void svc_getreq_common(const int fd);

void svc_getreqset(fd_set *rdfds);

void svc_getreq_poll(struct pollfd *pfdp, const int pollretval);

struct netbuf *svc_getrpccaller(const SVCXPRT *xprt);

void svc_run(void);

bool_t svc_sendreply(const SVCXPRT *xprt, const xdrproc_t outproc,
caddr_t outint svc_max_pollfd;

fd_set svc_fdset;

pollfd_t *svc_pollfd;

These routines are part of the RPC library which allows C language programs to make
procedure calls on other machines across the network.

These routines are associated with the server side of the RPC mechanism. Some of them are
called by the server side dispatch function. Others, such as svc_run(), are called when the
server is initiated.

Because the service transport handle SVCXPRT contains a single data area for decoding
arguments and encoding results, the structure cannot freely be shared between threads that
call functions to decode arguments and encode results. When a server is operating in the
Automatic or User MT modes, however, a copy of this structure is passed to the service
dispatch procedure in order to enable concurrent request processing. Under these
circumstances, some routines which would otherwise be Unsafe, become Safe. These are

Name

Synopsis

Description

rpc_svc_calls(3NSL)

man pages section 3: Networking Library Functions • Last Revised 26 Jan 2004454

marked as such. Also marked are routines that are Unsafe for multithreaded applications, and
are not to be used by such applications. See rpc(3NSL) for the definition of the SVCXPRT data
structure.

The svc_dg_enablecache() function allocates a duplicate request cache for the service
endpoint xprt, large enough to hold cache_size entries. Once enabled, there is no way to
disable caching. The function returns 1 if space necessary for a cache of the given size was
successfully allocated, and 0 otherwise. This function is Safe in multithreaded applications.

The svc_done() function frees resources allocated to service a client request directed to the
service endpoint xprt. This call pertains only to servers executing in the User MT mode. In the
User MT mode, service procedures must invoke this call before returning, either after a client
request has been serviced, or after an error or abnormal condition that prevents a reply from
being sent. After svc_done() is invoked, the service endpoint xprt should not be referenced by
the service procedure. Server multithreading modes and parameters can be set using the
rpc_control() call. This function is Safe in multithreaded applications. It will have no effect if
invoked in modes other than the User MT mode.

The svc_exit() function when called by any of the RPC server procedures or otherwise,
destroys all services registered by the server and causes svc_run() to return. If RPC server
activity is to be resumed, services must be reregistered with the RPC library either through one
of the rpc_svc_create(3NSL) functions, or using xprt_register(3NSL). The svc_exit()
function has global scope and ends all RPC server activity.

The svc_freeargs() function macro frees any data allocated by the RPC/XDR system when it
decoded the arguments to a service procedure using svc_getargs(). This routine returns
TRUE if the results were successfully freed, and FALSE otherwise. This function macro is Safe in
multithreaded applications utilizing the Automatic or User MT modes.

The svc_getargs() function macro decodes the arguments of an RPC request associated with
the RPC service transport handle xprt. The parameter in is the address where the arguments
will be placed; inproc is the XDR routine used to decode the arguments. This routine returns
TRUE if decoding succeeds, and FALSE otherwise. This function macro is Safe in multithreaded
applications utilizing the Automatic or User MT modes.

The svc_getreq_common() function is called to handle a request on a file descriptor.

The svc_getreq_poll() function is only of interest if a service implementor does not call
svc_run(), but instead implements custom asynchronous event processing. It is called when
poll(2) has determined that an RPC request has arrived on some RPC file descriptors;
pollretval is the return value from poll(2) and pfdp is the array of pollfd structures on which
the poll(2) was done. It is assumed to be an array large enough to contain the maximal
number of descriptors allowed. The svc_getreq_poll() function macro is Unsafe in
multithreaded applications.

The svc_getreqset() function is only of interest if a service implementor does not call
svc_run(), but instead implements custom asynchronous event processing. It is called when

rpc_svc_calls(3NSL)

Networking Library Functions 455

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2

select(3C) has determined that an RPC request has arrived on some RPC file descriptors;
rdfds is the resultant read file descriptor bit mask. The routine returns when all file descriptors
associated with the value of rdfds have been serviced. This function macro is Unsafe in
multithreaded applications.

The svc_getrpccaller() function is the approved way of getting the network address of the
caller of a procedure associated with the RPC service transport handle xprt. This function
macro is Safe in multithreaded applications.

The svc_run() function never returns. In single-threaded mode, the function waits for RPC
requests to arrive. When an RPC request arrives, the svc_run() function calls the appropriate
service procedure. This procedure is usually waiting for the poll(2) library call to return.

Applications that execute in the Automatic or the User MT mode should invoke the
svc_run() function exactly once. In the Automatic MT mode, the svc_run() function creates
threads to service client requests. In the User MT mode, the function provides a framework
for service developers to create and manage their own threads for servicing client requests.

The svc_fdset global variable reflects the RPC server's read file descriptor bit mask. This is
only of interest if service implementors do not call svc_run(), but rather do their own
asynchronous event processing. This variable is read-only may change after calls to
svc_getreqset() or after any creation routine. Do not pass its address to select(3C).
Instead, pass the address of a copy. multithreaded applications executing in either the
Automatic MT mode or the user MT mode should never read this variable. They should use
auxiliary threads to do asynchronous event processing. The svc_fdset variable is limited to
1024 file descriptors and is considered obsolete. Use of svc_pollfd is recommended instead.

The svc_pollfd global variable points to an array of pollfd_t structures that reflect the RPC
server's read file descriptor array. This is only of interest if service service implementors do not
call svc_run() but rather do their own asynchronous event processing. This variable is
read-only, and it may change after calls to svc_getreg_poll() or any creation routines. Do
no pass its address to poll(2). Instead, pass the address of a copy. By default, svc_pollfd is
limited to 1024 entries. Use rpc_control(3NSL) to remove this limitation. multithreaded
applications executing in either the Automatic MT mode or the user MT mode should never
be read this variable. They should use auxiliary threads to do asynchronous event processing.

The svc_max_pollfd global variable contains the maximum length of the svc_pollfd array.
This variable is read-only, and it may change after calls to svc_getreg_poll() or any creation
routines.

The svc_sendreply() function is called by an RPC service dispatch routine to send the results
of a remote procedure call. The xprt parameter is the transport handle of the request. The
outproc parameter is the XDR routine used to encode the results. The out parameter is the
address of the results. This routine returns TRUE if it succeeds, FALSE otherwise. The
svc_sendreply() function macro is Safe in multithreaded applications that use the
Automatic or the User MT mode.

rpc_svc_calls(3NSL)

man pages section 3: Networking Library Functions • Last Revised 26 Jan 2004456

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2

The svc_fd_negotiate_ucred() function is called by an RPC server to inform the underlying
transport that the function wishes to receive ucreds for local calls, including those over IP
transports.

The svc_getcallerucred() function attempts to retrieve the ucred_t associated with the
caller. The function returns 0 when successful and -1 when not.

When successful, the svc_getcallerucred() function stores the pointer to a freshly allocated
ucred_t in the memory location pointed to by the ucred argument if that memory location
contains the null pointer. If the memory location is non-null, the function reuses the existing
ucred_t. When ucred is no longer needed, a credential allocated by svc_getcallerucred()
should be freed with ucred_free(3C).

See attributes(5) for descriptions of attribute types and values.

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See below.

The svc_fd_negotiate_ucred(), svc_dg_enablecache(), svc_getrpccaller(), and
svc_getcallerucred() functions are Safe in multithreaded applications. The
svc_freeargs(), svc_getargs(), and svc_sendreply() functions are Safe in multithreaded
applications that use the Automatic or the User MT mode. The svc_getreq_common(),
svc_getreqset(), and svc_getreq_poll() functions are Unsafe in multithreaded
applications and should be called only from the main thread.

rpcgen(1), poll(2), getpeerucred(3C), rpc(3NSL), rpc_control(3NSL),
rpc_svc_create(3NSL), rpc_svc_err(3NSL), rpc_svc_reg(3NSL), select(3C),
ucred_free(3C), xprt_register(3NSL), attributes(5)

Attributes

See Also

rpc_svc_calls(3NSL)

Networking Library Functions 457

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ucred-free-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpcgen-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1getpeerucred-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ucred-free-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

rpc_svc_create, svc_control, svc_create, svc_destroy, svc_dg_create, svc_fd_create,
svc_raw_create, svc_tli_create, svc_tp_create, svc_vc_create, svc_door_create – server handle
creation routines

#include <rpc/rpc.h>

bool_t svc_control(SVCXPRT *svc, const uint_t req, void *info);

int svc_create(const void (*dispatch)const struct svc_req *,

const SVCXPRT *, const rpcprog_t prognum, const rpcvers_t versnum,

const char *nettype);

void svc_destroy(SVCXPRT *xprt);

SVCXPRT *svc_dg_create(const int fildes, const uint_t sendsz,
const uint_t recvsz);

SVCXPRT *svc_fd_create(const int fildes, const uint_t sendsz,
const uint_t recvsz);

SVCXPRT *svc_raw_create(void)

SVCXPRT *svc_tli_create(const int fildes, const struct netconfig *netconf,
const struct t_bind *bind_addr, const uint_t sendsz,
const uint_t recvsz);

SVCXPRT *svc_tp_create(const void (*dispatch)
const struct svc_req *, const SVCXPRT *), const rpcprog_t prognum,

const rpcvers_t versnum, const struct netconfig *netconf);

SVCXPRT *svc_vc_create(const int fildes, const uint_t sendsz,
const uint_t recvsz);

SVCXPRT *svc_door_create(void (*dispatch)(struct svc_req *, SVCXPRT *),

const rpcprog_t prognum, const rpcvers_t versnum,

const uint_t sendsz);

These routines are part of the RPC library which allows C language programs to make
procedure calls on servers across the network. These routines deal with the creation of service
handles. Once the handle is created, the server can be invoked by calling svc_run().

See rpc(3NSL) for the definition of the SVCXPRT data structure.

svc_control() A function to change or retrieve information about a service object.
req indicates the type of operation and info is a pointer to the
information. The supported values of req, their argument types, and
what they do are:

SVCGET_VERSQUIET If a request is received for a program
number served by this server but the
version number is outside the range
registered with the server, an
RPC_PROGVERSMISMATCH error will

Name

Synopsis

Description

Routines

rpc_svc_create(3NSL)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011458

normally be returned. info should be a
pointer to an integer. Upon successful
completion of the SVCGET_VERSQUIET
request, *info contains an integer
which describes the server's current
behavior: 0 indicates normal server
behavior, that is, an
RPC_PROGVERSMISMATCH error will be
returned. 1 indicates that the out of
range request will be silently ignored.

SVCSET_VERSQUIET If a request is received for a program
number served by this server but the
version number is outside the range
registered with the server, an
RPC_PROGVERSMISMATCH error will
normally be returned. It is sometimes
desirable to change this behavior. info
should be a pointer to an integer
which is either 0, indicating normal
server behavior and an
RPC_PROGVERSMISMATCH error will be
returned, or 1, indicating that the out
of range request should be silently
ignored.

SVCGET_XID Returns the transaction ID of
connection−oriented and
connectionless transport service calls.
The transaction ID assists in uniquely
identifying client requests for a given
RPC version, program number,
procedure, and client. The transaction
ID is extracted from the service
transport handle svc. info must be a
pointer to an unsigned long. Upon
successful completion of the
SVCGET_XID request, *info contains the
transaction ID. Note that rendezvous
and raw service handles do not define
a transaction ID. Thus, if the service
handle is of rendezvous or raw type,
and the request is of type SVCGET_XID,
svc_control() will return FALSE.

rpc_svc_create(3NSL)

Networking Library Functions 459

Note also that the transaction ID read
by the server can be set by the client
through the suboption CLSET_XID in
clnt_control(). See
clnt_create(3NSL)

SVCSET_RECVERRHANDLER Attaches or detaches a disconnection
handler to the service handle, svc, that
will be called when a transport error
arrives during the reception of a
request or when the server is waiting
for a request and the connection shuts
down. This handler is only useful for a
connection oriented service handle.

*info contains the address of the error
handler to attach, or NULL to detach a
previously defined one. The error
handler has two arguments. It has a
pointer to the erroneous service
handle. It also has an integer that
indicates if the full service is closed
(when equal to zero), or that only one
connection on this service is closed
(when not equal to zero).

void handler (const SVCXPRT *svc, const bool_t isAConnection);

With the service handle address, svc,
the error handler is able to detect
which connection has failed and to
begin an error recovery process. The
error handler can be called by multiple
threads and should be implemented in
an MT-safe way.

SVCGET_RECVERRHANDLER Upon successful completion of the
SVCGET_RECVERRHANDLER request,
*info contains the address of the
handler for receiving errors. Upon
failure, *info contains NULL.

SVCSET_CONNMAXREC Set the maximum record size (in
bytes) and enable non-blocking mode
for this service handle. Value can be
set and read for both connection and

rpc_svc_create(3NSL)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011460

non-connection oriented transports,
but is silently ignored for the
non-connection oriented case. The
info argument should be a pointer to
an int.

SVCGET_CONNMAXREC Get the maximum record size for this
service handle. Zero means no
maximum in effect and the connection
is in blocking mode. The result is not
significant for non-connection
oriented transports. The info
argument should be a pointer to an
int.

This routine returns TRUE if the operation was successful.
Otherwise, it returns false.

svc_create() svc_create() creates server handles for all the transports belonging
to the class nettype.

nettype defines a class of transports which can be used for a
particular application. The transports are tried in left to right order
in NETPATH variable or in top to bottom order in the netconfig
database. If nettype is NULL, it defaults to netpath.

svc_create() registers itself with the rpcbind service (see
rpcbind(1M)). dispatch is called when there is a remote procedure
call for the given prognum and versnum; this requires calling
svc_run() (see svc_run() in rpc_svc_reg(3NSL)). If
svc_create() succeeds, it returns the number of server handles it
created, otherwise it returns 0 and an error message is logged.

svc_destroy() A function macro that destroys the RPC service handle xprt.
Destruction usually involves deallocation of private data structures,
including xprt itself. Use of xprt is undefined after calling this
routine.

svc_dg_create() This routine creates a connectionless RPC service handle, and
returns a pointer to it. This routine returns NULL if it fails, and an
error message is logged. sendsz and recvsz are parameters used to
specify the size of the buffers. If they are 0, suitable defaults are
chosen. The file descriptor fildes should be open and bound. The
server is not registered with rpcbind(1M).

rpc_svc_create(3NSL)

Networking Library Functions 461

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpcbind-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpcbind-1m

Warning: since connectionless-based RPC messages can only hold
limited amount of encoded data, this transport cannot be used for
procedures that take large arguments or return huge results.

svc_fd_create() This routine creates a service on top of an open and bound file
descriptor, and returns the handle to it. Typically, this descriptor is a
connected file descriptor for a connection-oriented transport. sendsz
and recvsz indicate sizes for the send and receive buffers. If they are 0,
reasonable defaults are chosen. This routine returns NULL if it fails,
and an error message is logged.

svc_raw_create() This routine creates an RPC service handle and returns a pointer to
it. The transport is really a buffer within the process's address space,
so the corresponding RPC client should live in the same address
space; (see clnt_raw_create() in rpc_clnt_create(3NSL)). This
routine allows simulation of RPC and acquisition of RPC overheads
(such as round trip times), without any kernel and networking
interference. This routine returns NULL if it fails, and an error
message is logged.

Note: svc_run() should not be called when the raw interface is being
used.

svc_tli_create() This routine creates an RPC server handle, and returns a pointer to
it. fildes is the file descriptor on which the service is listening. If fildes
is RPC_ANYFD, it opens a file descriptor on the transport specified by
netconf. If the file descriptor is unbound and bindaddr is non-null
fildes is bound to the address specified by bindaddr, otherwise fildes
is bound to a default address chosen by the transport. In the case
where the default address is chosen, the number of outstanding
connect requests is set to 8 for connection-oriented transports. The
user may specify the size of the send and receive buffers with the
parameters sendsz and recvsz ; values of 0 choose suitable defaults.
This routine returns NULL if it fails, and an error message is logged.
The server is not registered with the rpcbind(1M) service.

svc_tp_create() svc_tp_create() creates a server handle for the network specified
by netconf, and registers itself with the rpcbind service. dispatch is
called when there is a remote procedure call for the given prognum
and versnum; this requires calling svc_run(). svc_tp_create()
returns the service handle if it succeeds, otherwise a NULL is returned
and an error message is logged.

svc_vc_create() This routine creates a connection-oriented RPC service and returns
a pointer to it. This routine returns NULL if it fails, and an error
message is logged. The users may specify the size of the send and

rpc_svc_create(3NSL)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011462

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpcbind-1m

receive buffers with the parameters sendsz and recvsz; values of 0
choose suitable defaults. The file descriptor fildes should be open and
bound. The server is not registered with the rpcbind(1M) service.

svc_door_create() This routine creates an RPC server handle over doors and returns a
pointer to it. Doors is a transport mechanism that facilitates fast data
transfer between processes on the same machine. for the given
program The user may set the size of the send buffer with the
parameter sendsz. If sendsz is 0, the corresponding default buffer size
is 16 Kbyte. If successful, the svc_door_create() routine returns the
service handle. Otherwise it returns NULL and sets a value for
rpc_createerr. The server is not registered with rpcbind(1M). The
SVCSET_CONNMAXREC and SVCGET_CONNMAXREC svc_control()

requests can be used to set and change the maximum allowed request
size for the doors transport.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture All

Availability system/library

Interface Stability Committed

MT-Level MT-Safe

rpcbind(1M), rpc(3NSL), rpc_clnt_create(3NSL), rpc_svc_calls(3NSL),
rpc_svc_err(3NSL), rpc_svc_reg(3NSL), attributes(5)

Attributes

See Also

rpc_svc_create(3NSL)

Networking Library Functions 463

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpcbind-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpcbind-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpcbind-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

rpc_svc_err, svcerr_auth, svcerr_decode, svcerr_noproc, svcerr_noprog, svcerr_progvers,
svcerr_systemerr, svcerr_weakauth – library routines for server side remote procedure call
errors

These routines are part of the RPC library which allows C language programs to make
procedure calls on other machines across the network.

These routines can be called by the server side dispatch function if there is any error in the
transaction with the client.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

void svcerr_auth(const SVCXPRT *xprt, const enum auth_stat why);
Called by a service dispatch routine that refuses to perform a remote procedure call due to
an authentication error.

void svcerr_decode(const SVCXPRT *xprt);
Called by a service dispatch routine that cannot successfully decode the remote parameters
(see svc_getargs() in rpc_svc_reg(3NSL)).

void svcerr_noproc(const SVCXPRT *xprt);
Called by a service dispatch routine that does not implement the procedure number that
the caller requests.

void svcerr_noprog(const SVCXPRT *xprt);
Called when the desired program is not registered with the RPC package. Service
implementors usually do not need this routine.

void svcerr_progvers(const SVCXPRT *xprt, const rpcvers_t low_vers, const rpcvers_t
high_vers);

Called when the desired version of a program is not registered with the RPC package.
low_vers is the lowest version number, and high_vers is the highest version number. Service
implementors usually do not need this routine.

void svcerr_systemerr(const SVCXPRT *xprt);
Called by a service dispatch routine when it detects a system error not covered by any
particular protocol. For example, if a service can no longer allocate storage, it may call this
routine.

void svcerr_weakauth(const SVCXPRT *xprt);
Called by a service dispatch routine that refuses to perform a remote procedure call due to
insufficient (but correct) authentication parameters. The routine calls svcerr_auth(xprt,
AUTH_TOOWEAK).

See attributes(5) for descriptions of the following attributes:

Name

Description

Routines

Attributes

rpc_svc_err(3NSL)

man pages section 3: Networking Library Functions • Last Revised 20 Feb 1998464

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

rpc(3NSL), rpc_svc_calls(3NSL), rpc_svc_create(3NSL), rpc_svc_reg(3NSL),
attributes(5)

See Also

rpc_svc_err(3NSL)

Networking Library Functions 465

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

rpc_svc_input, svc_add_input, svc_remove_input – declare or remove a callback on a file
descriptor

#include <rpc/rpc.h>

typedef void (*svc_callback_t)(svc_input_id_t id, int fd,
unsigned int events, void *cookie);

svc_input_id_t svc_add_input(int fd, unsigned int revents,
svc_callback_t callback, void *cookie);

int svc_remove_input(svc_input_t id);

The following RPC routines are used to declare or remove a callback on a file descriptor.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

svc_add_input() This function is used to register a callback function on a file
descriptor, fd. The file descriptor, fd, is the first parameter to be
passed to svc_add_input(). This callback function will be
automatically called if any of the events specified in the events
parameter occur on this descriptor. The events parameter is used to
specify when the callback is invoked. This parameter is a mask of
poll events to which the user wants to listen. See poll(2) for further
details of the events that can be specified.

The callback to be invoked is specified using the callback parameter.
The cookie parameter can be used to pass any data to the callback
function. This parameter is a user-defined value which is passed as
an argument to the callback function, and it is not used by the Sun
RPC library itself.

Several callbacks can be registered on the same file descriptor as
long as each callback registration specifies a separate set of event
flags.

The callback function is called with the registration id, the fd file
descriptor, an revents value, which is a bitmask of all events
concerning the file descriptor, and the cookie user-defined value.

Upon successful completion, the function returns a unique
identifier for this registration, that can be used later to remove this
callback. Upon failure, -1 is returned and errno is set to indicate
the error.

The svc_add_input() function will fail if:

EINVAL The fd or events parameters are invalid.

Name

Synopsis

Description

Routines

rpc_svc_input(3NSL)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2011466

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2

EEXIST A callback is already registered to the file descriptor
with one of the specified events.

ENOMEM Memory is exhausted.

svc_remove_input() This function is used to unregister a callback function on a file
descriptor, fd. The id parameter specifies the registration to be
removed.

Upon successful completion, the function returns zero. Upon
failure, -1 is returned and errno is set to indicate the error.

The svc_remove_input() function will fail if:

EINVAL The id parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture All

Availability system/library

Interface Stability Committed

MT-Level MT-Safe

poll(2), rpc(3NSL), attributes(5)

Attributes

See Also

rpc_svc_input(3NSL)

Networking Library Functions 467

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

rpc_svc_reg, rpc_reg, svc_reg, svc_unreg, svc_auth_reg, xprt_register, xprt_unregister –
library routines for registering servers

These routines are a part of the RPC library which allows the RPC servers to register
themselves with rpcbind() (see rpcbind(1M)), and associate the given program and version
number with the dispatch function. When the RPC server receives a RPC request, the library
invokes the dispatch routine with the appropriate arguments.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

bool_t rpc_reg(const rpcprog_t prognum, const rpcvers_t versnum, const rpcproc_t procnum,
char * (*procname)(), const xdrproc_t inproc, const xdrproc_t outproc, const char *nettype);

Register program prognum, procedure procname, and version versnum with the RPC
service package. If a request arrives for program prognum, version versnum, and procedure
procnum, procname is called with a pointer to its parameter(s); procname should return a
pointer to its static result(s). The arg parameter to procname is a pointer to the (decoded)
procedure argument. inproc is the XDR function used to decode the parameters while
outproc is the XDR function used to encode the results. Procedures are registered on all
available transports of the class nettype. See rpc(3NSL). This routine returns 0 if the
registration succeeded, −1 otherwise.

int svc_reg(const SVCXPRT *xprt, const rpcprog_t prognum, const rpcvers_t versnum, const
void (*dispatch)(), const struct netconfig *netconf);

Associates prognum and versnum with the service dispatch procedure, dispatch. If netconf
is NULL, the service is not registered with the rpcbind service. For example, if a service has
already been registered using some other means, such as inetd (see inetd(1M)), it will not
need to be registered again. If netconf is non-zero, then a mapping of the triple [prognum,
versnum, netconf->] to xprt-> xp_ltaddr is established with the local rpcbind service.

The svc_reg() routine returns 1 if it succeeds, and 0 otherwise.

void svc_unreg(const rpcprog_t prognum, const rpcvers_t versnum);
Remove from the rpcbind service, all mappings of the triple [prognum, versnum,
all-transports] to network address and all mappings within the RPC service package of the
double [prognum, versnum] to dispatch routines.

int svc_auth_reg(const int cred_flavor, const enum auth_stat (*handler)());
Registers the service authentication routine handler with the dispatch mechanism so that it
can be invoked to authenticate RPC requests received with authentication type cred_flavor.
This interface allows developers to add new authentication types to their RPC applications
without needing to modify the libraries. Service implementors usually do not need this
routine.

Typical service application would call svc_auth_reg() after registering the service and
prior to calling svc_run(). When needed to process an RPC credential of type cred_flavor,
the handler procedure will be called with two parameters (struct svc_req *rqst, struct

Name

Description

Routines

rpc_svc_reg(3NSL)

man pages section 3: Networking Library Functions • Last Revised 20 Feb 1998468

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpcbind-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1inetd-1m

rpc_msg *msg) and is expected to return a valid enum auth_stat value. There is no
provision to change or delete an authentication handler once registered.

The svc_auth_reg() routine returns 0 if the registration is successful, 1 if cred_flavor
already has an authentication handler registered for it, and −1 otherwise.

void xprt_register(const SVCXPRT *xprt);
After RPC service transport handle xprt is created, it is registered with the RPC service
package. This routine modifies the global variable svc_fdset (see rpc_svc_calls(3NSL)).
Service implementors usually do not need this routine.

void xprt_unregister(const SVCXPRT *xprt);
Before an RPC service transport handle xprt is destroyed, it unregisters itself with the RPC
service package. This routine modifies the global variable svc_fdset (see
rpc_svc_calls(3NSL)). Service implementors usually do not need this routine.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

inetd(1M), rpcbind(1M), rpc(3NSL), rpc_svc_calls(3NSL), rpc_svc_create(3NSL),
rpc_svc_err(3NSL), rpcbind(3NSL), select(3C), attributes(5)

Attributes

See Also

rpc_svc_reg(3NSL)

Networking Library Functions 469

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1inetd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpcbind-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

rpc_xdr, xdr_accepted_reply, xdr_authsys_parms, xdr_callhdr, xdr_callmsg,
xdr_opaque_auth, xdr_rejected_reply, xdr_replymsg – XDR library routines for remote
procedure calls

bool_t xdr_accepted_reply(XDR *xdrs, const struct accepted_reply *ar);

bool_t xdr_authsys_parms(XDR *xdrs, struct authsys_parms *aupp);

void xdr_callhdr(XDR *xdrs, struct rpc_msg *chdr);

bool_t xdr_callmsg(XDR *xdrs, struct rpc_msg *cmsg);

bool_t xdr_opaque_auth(XDR *xdrs, struct opaque_auth *ap);

bool_t xdr_rejected_reply(XDR *xdrs, const struct rejected_reply *rr);

bool_t xdr_replymsg(XDR *xdrs, const struct rpc_msg *rmsg);

These routines are used for describing the RPC messages in XDR language. They should
normally be used by those who do not want to use the RPC package directly. These routines
return TRUE if they succeed, FALSE otherwise.

See rpc(3NSL) for the definition of the XDR data structure.

#include <rpc/rpc.h>

xdr_accepted_reply() Used to translate between RPC reply messages and their external
representation. It includes the status of the RPC call in the XDR
language format. In the case of success, it also includes the call
results.

xdr_authsys_parms() Used for describing UNIX operating system credentials. It
includes machine-name, uid, gid list, etc.

xdr_callhdr() Used for describing RPC call header messages. It encodes the
static part of the call message header in the XDR language
format. It includes information such as transaction ID, RPC
version number, program and version number.

xdr_callmsg() Used for describing RPC call messages. This includes all the RPC
call information such as transaction ID, RPC version number,
program number, version number, authentication information,
etc. This is normally used by servers to determine information
about the client RPC call.

xdr_opaque_auth() Used for describing RPC opaque authentication information
messages.

xdr_rejected_reply() Used for describing RPC reply messages. It encodes the rejected
RPC message in the XDR language format. The message could be
rejected either because of version number mis-match or because
of authentication errors.

Name

Synopsis

Description

Routines

rpc_xdr(3NSL)

man pages section 3: Networking Library Functions • Last Revised 30 Dec 1996470

xdr_replymsg() Used for describing RPC reply messages. It translates between
the RPC reply message and its external representation. This reply
could be either an acceptance, rejection or NULL.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

rpc(3NSL), xdr(3NSL), attributes(5)

Attributes

See Also

rpc_xdr(3NSL)

Networking Library Functions 471

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

rstat, havedisk – get performance data from remote kernel

cc [flag ...] file ... -lrpcsvc [library ...]

#include <rpc/rpc.h>

#include <rpcsvc/rstat.h>

enum clnt_stat rstat(char *host, struct statstime *statp);

int havedisk(char *host);

/usr/include/rpcsvc/rstat.x

These routines require that the rpc.rstatd(1M) daemon be configured and available on the
remote system indicated by host. The rstat() protocol is used to gather statistics from remote
kernel. Statistics will be available on items such as paging, swapping, and cpu utilization.

rstat() fills in the statstime structure statp for host. statp must point to an allocated
statstime structure. rstat() returns RPC_SUCCESS if it was successful; otherwise a enum
clnt_stat is returned which can be displayed using clnt_perrno(3NSL).

havedisk() returns 1 if host has disk, 0 if it does not, and −1 if this cannot be determined.

The following XDR routines are available in librpcsvc:

xdr_statstime

xdr_statsvar

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

rup(1), rpc.rstatd(1M), rpc_clnt_calls(3NSL), attributes(5)

Name

Synopsis

Protocol

Description

Attributes

See Also

rstat(3RPC)

man pages section 3: Networking Library Functions • Last Revised 30 Dec 1996472

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpc.rstatd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rup-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpc.rstatd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

rusers, rnusers – return information about users on remote machines

cc [flag ...] file ... -lrpcsvc [library ...]

#include <rpc/rpc.h>

#include <rpcsvc/rusers.h>

enum clnt_stat rusers(char *host, struct utmpidlearr *up);

int rnusers(char *host);

/usr/include/rpcsvc/rusers.x

These routines require that the rpc.rusersd(1M) daemon be configured and available on the
remote system indicated by host. The rusers() protocol is used to retrieve information about
users logged in on the remote system.

rusers() fills the utmpidlearr structure with data about host, and returns 0 if successful. up
must point to an allocated utmpidlearr structure. If rusers() returns successful it will have
allocated data structures within the up structure, which should be freed with xdr_free(3NSL)
when you no longer need them:

xdr_free(xdr_utimpidlearr, up);

On error, the returned value can be interpreted as an enum clnt_stat and can be displayed
with clnt_perror(3NSL) or clnt_sperrno(3NSL).

See the header <rpcsvc/rusers.h> for a definition of struct utmpidlearr.

rnusers() returns the number of users logged on to host (−1 if it cannot determine that
number).

The following XDR routines are available in librpcsvc:

xdr_utmpidlearr

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

rusers(1), rpc.rusersd(1M), rpc_clnt_calls(3NSL), xdr_free(3NSL), attributes(5)

Name

Synopsis

Protocol

Description

Attributes

See Also

rusers(3RPC)

Networking Library Functions 473

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpc.rusersd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rusers-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpc.rusersd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

rwall – write to specified remote machines

cc [flag ...] file ... -lrpcsvc [library ...]

#include <rpc/rpc.h>

#include <rpcsvc/rwall.h>

enum clnt_stat rwall(char *host, char *msg);

/usr/include/rpcsvc/rwall.x

These routines require that the rpc.rwalld(1M) daemon be configured and available on the
remote system indicated by host.

rwall() executes wall(1M) on host. The rpc.rwalld process on host prints msg to all users
logged on to that system. rwall() returns RPC_SUCCESS if it was successful; otherwise a enum
clnt_stat is returned which can be displayed using clnt_perrno(3NSL).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

rpc.rwalld(1M), wall(1M), rpc_clnt_calls(3NSL), attributes(5)

Name

Synopsis

Protocol

Description

Attributes

See Also

rwall(3RPC)

man pages section 3: Networking Library Functions • Last Revised 30 Dec 1996474

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpc.rwalld-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1wall-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpc.rwalld-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1wall-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_authorize_t – the SASL authorization callback

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_authorize_t(sasl_conn_t *conn, const char *requested_user,
unsigned alen, const char* auth_identity, unsigned rlen,
const char *def_realm, unsigned urlen, struct propctx *propctx);

sasl_authorize_t() is a typedef function prototype that defines the interface associated with
the SASL_CB_PROXY_POLICY callback.

Use the sasl_authorize_t() interface to check whether the authorized user auth_identity
can act as the user requested_user. For example, the user root may want to authenticate with
root's credentials but as the user tmartin, with all of tmartin's rights, not root's. A server
application should be very careful when it determines which users may proxy as other users.

conn The SASL connection context.

requested_user The identity or username to authorize. requested_user is null-terminated.

rlen The length of requested_user.

auth_identity The identity associated with the secret. auth_identity is null-terminated.

alen The length of auth_identity.

default_realm The default user realm as passed to sasl_server_new(3SASL).

ulren The length of the default realm

propctx Auxiliary properties

Like other SASL callback functions, sasl_authorize_t() returns an integer that corresponds
to a SASL error code. See <sasl.h> for a complete list of SASL error codes.

SASL_OK The call to sasl_authorize_t() was successful.

See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

sasl_authorize_t(3SASL)

Networking Library Functions 475

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_errors(3SASL), sasl_server_new(3SASL), attributes(5)See Also

sasl_authorize_t(3SASL)

man pages section 3: Networking Library Functions • Last Revised 27 Oct 2003476

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_auxprop, prop_new, prop_dup, prop_request, prop_get, prop_getnames, prop_clear,
prop_erase, prop_dispose, prop_format, prop_set, prop_setvals – SASL auxilliary properties

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/prop.h>

struct propctx *prop_new(unsigned estimate);

int prop_dup(struct propctx *src_ctx, struct propctx *dst_ctx

int prop_request(struct propctx *ctx, const char **names

const struct propval *prop_get(struct propctx *ctx

int prop_getnames(struct propctx *ctx, const char **names,
struct propval *vals

void prop_clear(struct propctx *ctx, int requests

void prop_erase(struct propctx *ctx, const char *name

void prop_dispose(struct propctx *ctx

int prop_format(struct propctx *ctx, const char *sep, int seplen,
char *outbuf, unsigned outmax, unsigned *outlen

int prop_set(struct propctx *ctx, const char *name, const char *value,
int vallen

int prop_setvals(struct propctx *ctx, const char *name,
const char **values

The SASL auxilliary properties are used to obtain properties from external sources during the
authentication process. For example, a mechanizm might need to query an LDAP server to
obtain the authentication secret. The application probably needs other information from the
LDAP server as well, such as the home directory of the UID. The auxilliary property interface
allows the two to cooperate and results in only a single query against the property sources.

Property lookups take place directly after user canonicalization occurs. Therefore, all request
should be registered with the context before user canonicalization occurs. Requests can calso
be registered by using the sasl_auxprop_request(3SASL) function. Most of the auxilliary
property functions require a property context that can be obtained by calling
sasl_auxprop_getctx(3SASL).

The prop_new() function creates a new property context. It is unlikely that application
developers will use this call.

The prop_dup() function duplicates a given property context.

The prop_request() function adds properties to the request list of a given context.

Name

Synopsis

Description

prop_new()

prop_dup()

prop_request()

sasl_auxprop(3SASL)

Networking Library Functions 477

The prop_get() function returns a null-terminated array of struct propval from the given
context.

The prop_getnames() function fills in an array of struct propval based on a list of property
names. The vals array is at least as long as the names array. The values that are filled in by this
call persist until the next call on the context to prop_request(), prop_clear(), or
prop_dispose(). If a name specified was never requested, then its associated values entry will
be set to NULL.

The prop_getnames() function returns the number of matching properties that were found
or a SASL error code.

The prop_clear() function clears values and requests from a property context. If the value of
requests is 1, then requests is cleared. Otherwise, the value of requests is 0.

The prop_erase() function securely erases the value of a property. name is the name of the
property to erase.

The prop_dispose() function disposes of a property context and nullifies the pointer.

The prop_format() function formats the requested property names into a string. The
prop_format() function is not intended to be used by the application. The function is used
only by auxprop plug-ins.

The prop_set() functions adds a property value to the context. The prop_set() function is
used only by auxprop plug-ins.

The prop_setvals() function adds multiple values to a single property. The prop_setvals()
function is used only by auxprop plug-ins.

conn The sasl_conn_t for which the request is being made

ctx The property context.

estimate The estimate of the total storage needed for requests and responses. The library
default is implied by a value of 0.

names The null-terminated array of property names. names must persist until the
requests are cleared or the context is disposed of with a call to prop_dispose().

name The name of the property.

For prop_set(), name is the named of the property to receive the new value, or
NULL. The value will be added to the same property as the last call to either
prop_set() or prop_setvals().

outbuf The caller-allocated buffer of length outmax that the resulting string, including
the NULL terminator, will be placed in.

outlen If non-NULL, contains the length of the resulting sting, excluding the NULL
terminator.

prop_get()

prop_getnames()

prop_clear()

prop_erase()

prop_dispose()

prop_format()

prop_set()

prop_setvals()

Parameters

sasl_auxprop(3SASL)

man pages section 3: Networking Library Functions • Last Revised 14 Oct 2003478

outmax The maximum length of the output buffer, including the NULL terminator.

requests The request list for a given context.

sep The separator to use for the string.

seplen The length of the separator. The the values is less than 0, then strlen will be used
as sep.

vallen The length of the property.

vals The value string.

value A value for the property of length vallen.

values A null-terminated array of values to be added to the property.

The sasl_auxprop() functions that return an int will return a SASL error code. See
sasl_errors(3SASL). Those sasl_auxprop() functions that return a pointer will return a
valid pointer upon success and return NULL upon failure.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT-Safe

sasl_auxprop_getctx(3SASL), sasl_auxprop_request(3SASL), sasl_errors(3SASL),
attributes(5)

Errors

Attributes

See Also

sasl_auxprop(3SASL)

Networking Library Functions 479

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_auxprop_add_plugin – add a SASL auxiliary property plug-in

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/saslplug.h>

int sasl_auxprop_add_plugin(const char *plugname,
sasl_auxprop_plug_init_t *cplugfunc);

Use the sasl_auxprop_add_plugin() interface to add a auxiliary property plug-in to the
current list of auxiliary property plug-ins in the SASL library.

plugname The name of the auxiliary property plug-in.

cplugfunc The value of cplugfunc is filled in by the sasl_auxprop_plug_init_t structure.

sasl_auxprop_add_plugin() returns an integer that corresponds to a SASL error code.

SASL_OK The call to sasl_client_add_plugin() was successful.

SASL_BADVERS Version mismatch with plug-in.

SASL_NOMEM Memory shortage failure.

See sasl_errors(3SASL) for information on other SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

sasl_errors(3SASL), attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

sasl_auxprop_add_plugin(3SASL)

man pages section 3: Networking Library Functions • Last Revised 16 Sep 2003480

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_auxprop_getctx – acquire an auxiliary property context

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

struct propctx *sasl_auxprop_getctx(sasl_conn_t *conn);

The sasl_auxprop_getctx() interface returns an auxiliary property context for the given
sasl_conn_t on which the sasl auxiliary property functions can operate. See
sasl_auxprop(3SASL).

conn The sasl_conn_t for which the request is being made

sasl_auxprop_getctx() returns a pointer to the context, upon success.
sasl_auxprop_getctx() returns NULL upon failure.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level Safe

attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Attributes

See Also

sasl_auxprop_getctx(3SASL)

Networking Library Functions 481

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_auxprop_request – request auxialliary properties from SASL

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_auxprop_request(sasl_conn_t *conn, const char **propnames);

The sasl_auxprop_request() interface requests that the SASL library obtain properties form
any auxialiary property plugins that might be installed, for example, the user's home directory
from an LDAP server. The lookup occurs just after username canonicalization is complete.
Therefore, the request should be made before the call to sasl_server_start(3SASL), but
after the call to sasl_server_new(3SASL).

conn The sasl_conn_t for which the request is being made

propnames A null-terminated array of property names to request. This array must persist
until a call to sasl_dispose(3SASL) on the sasl_conn_t.

sasl_auxprop_request() returns SASL_OK upon success. See sasl_errors(3SASL) for a
discussion of other SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level Safe

sasl_dispose(3SASL), sasl_errors(3SASL), sasl_server_new(3SASL),
sasl_server_start(3SASL), attributes(5)

Name

Synopsis

Description

Parameters

Errors

Attributes

See Also

sasl_auxprop_request(3SASL)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2003482

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_canonuser_add_plugin – add a SASL user canonicalization plug-in

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/saslplug.h>

int sasl_canonuser_add_plugin(const char *plugname,
sasl_canonuser_plug_init_t *cplugfunc);

Use the sasl_canonuser_add_plugin() interface to add a user canonicalization plug-in to
the current list of user canonicalization plug-ins in the SASL library.

plugname The name of the user canonicalization plug-in.

cplugfunc The value of cplugfunc is filled in by the sasl_canonuser_plug_init_t
structure.

sasl_server_add_plugin() returns an integer that corresponds to a SASL error code.

SASL_OK The call to sasl_client_add_plugin() was successful.

SASL_BADVERS Version mismatch with plug-in.

SASL_NOMEM Memory shortage failure.

See sasl_errors(3SASL) for information on other SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

sasl_errors(3SASL), attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

sasl_canonuser_add_plugin(3SASL)

Networking Library Functions 483

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_canon_user_t – the canon user callback

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_canon_user_t(sasl_conn_t *conn, void *context, const char *user,
unsigned ulen, unsigned flags, const char *user_realm, char *out_user,
unsigned *out_umax, unsigned *out_ulen);

The sasl_canon_user_t() interface is the callback function for an application-supplied user
canonical function. This function is subject to the requirements of all canonical functions. It
must copy the result into the output buffers, but the output buffers and the input buffers can
be the same.

conn The SASL connection context.

context The context from the callback record.

user User name. The form of user is not canonical.

ulen Length of user. The form of ulen is not canonical.

flags One of the following values, or a bitwise OR of both:

SASL_CU_AUTHID Indicates the authentication ID is canonical

SASL_CU_AUTHZID Indicates the authorization ID is canonical

user_realm Realm of authentication.

out_user The output buffer for the user name.

out_max The maximum length for the user name.

out_len The actual length for the user name.

Like other SASL callback functions, sasl_canon_user_t() returns an integer that
corresponds to a SASL error code. See <sasl.h> for a complete list of SASL error codes.

SASL_OK The call to sasl_canon_user_t() was successful.

See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

sasl_canon_user_t(3SASL)

man pages section 3: Networking Library Functions • Last Revised 27 Oct 2003484

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_errors(3SASL), sasl_server_new(3SASL), attributes(5)See Also

sasl_canon_user_t(3SASL)

Networking Library Functions 485

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_chalprompt_t – prompt for input in response to a challenge

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_chalprompt_t(void *context, int id, const char *challenge,
const char *prompt, const char *defresult, const char **result,
unsigned *len);

Use the sasl_chalprompt_t() callback interface to prompt for input in response to a server
challenge.

context The context from the callback record.

id The callback id. id can have a value of SASL_CB_ECHOPROMPT or
SASL_CB_NOECHOPROMPT

challenge The server's challenge.

prompt A prompt for the user.

defresult The default result. The value of defresult can be NULL

result The user's response. result is a null-terminated string.

len The length of the user's response.

Like other SASL callback functions, sasl_chalprompt_t() returns an integer that
corresponds to a SASL error code. See <sasl.h> for a complete list of SASL error codes.

SASL_OK The call to sasl_chalprompt_t() was successful.

See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

sasl_errors(3SASL), sasl_server_new(3SASL), attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

sasl_chalprompt_t(3SASL)

man pages section 3: Networking Library Functions • Last Revised 14 Oct 2003486

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_checkapop – check an APOP challenge or response

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_checkapop(sasl_conn_t *conn, const char *challenge,
unsigned challen, const char *response, unsigned resplen);

The sasl_checkapop() interface checks an APOP challenge or response. APOP is an option
POP3 authentication command that uses a shared secret password. See RFC 1939.

If sasl_checkapop() is called with a NULL challenge, sasl_checkapop() will check to see if
the APOP mechanism is enabled.

conn The sasl_conn_t for which the request is being made

challenge The challenge sent to the client

challen The length of challenge

response The client response

resplens The length of response

sasl_checkapop() returns an integer that corresponds to a SASL error code.

SASL_OK Indicates that the authentication is complete

All other error codes indicate an error situation that must be handled, or the authentication
session should be quit. See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Obsolete

MT-Level Safe

sasl_errors(3SASL), attributes(5)

Meyers, J. and Rose, M. RFC 1939, Post Office Protocol – Version 3. Network Working Group.
May 1996.

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

sasl_checkapop(3SASL)

Networking Library Functions 487

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_checkpass – check a plaintext password

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_checkpass(sasl_conn_t *conn, const char *user, unsigned userlen,
const char *pass, unsigned passlen);

The sasl_checkpass() interface checks a plaintext password. The sasl_checkpass()
interface is used for protocols that had a login method before SASL, for example, the LOGIN
command in IMAP. The password is checked with the pwcheck_method.

The sasl_checkpass() interface is a server interface. You cannot use it to check passwords
from a client.

The sasl_checkpass() interface checks the posible repositories until it succeeds or there are
no more repositories. If sasl_server_userdb_checkpass_t is registered, sasl_checkpass()
tries it first.

Use the pwcheck_method SASL option to specify which pwcheck methods to use.

The sasl_checkpass() interface supports the transition of passwords if the SASL option
auto_transition is on.

If user is NULL, check is plaintext passwords are enabled.

conn The sasl_conn_t for which the request is being made

pass Plaintext password to check

passlen The length of pass

user User to query in current user_domain

userlen The length of username.

sasl_checkpass() returns an integer that corresponds to a SASL error code.

SASL_OK Indicates that the authentication is complete

All other error codes indicate an error situation that must be handled, or the authentication
session should be quit. See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

sasl_checkpass(3SASL)

man pages section 3: Networking Library Functions • Last Revised 14 Oct 2003488

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

sasl_errors(3SASL), attributes(5)See Also

sasl_checkpass(3SASL)

Networking Library Functions 489

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_client_add_plugin – add a SASL client plug-in

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/saslplug.h>

int sasl_client_add_plugin(const char *plugname,
sasl_client_plug_init_t *cplugfunc);

Use the sasl_client_add_plugin() interface to add a client plug-in to the current list of
client plug-ins in the SASL library.

plugname The name of the client plug-in.

cplugfunc The value of cplugfunc is filled in by the sasl_client_plug_init_t structure.

sasl_client_add_plugin() returns an integer that corresponds to a SASL error code.

SASL_OK The call to sasl_client_add_plugin() was successful.

SASL_BADVERS Version mismatch with plug-in.

SASL_NOMEM Memory shortage failure.

See sasl_errors(3SASL) for information on other SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

sasl_errors(3SASL), attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

sasl_client_add_plugin(3SASL)

man pages section 3: Networking Library Functions • Last Revised 12 Sep 2003490

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_client_init – initialize SASL client authentication

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_client_init(const sasl_callback_t *callbacks);

Use the sasl_client_init() interface to initialize SASL. The sasl_client_init() interface
must be called before any calls to sasl_client_start(3SASL). The call to
sasl_client_init() initiallizes all SASL client drivers, for example, authentication
mechanisms. SASL client drivers are usually found in the /usr/lib/sasl directory.

callbacks Specifies the base callbacks for all client connections.

sasl_client_init() returns an integer that corresponds to a SASL error code.

SASL_OK The call to sasl_client_init() was successful.

SASL_BADVERS There is a mismatch in the mechanism version.

SASL_BADPARAM There is an error in the configuration file.

SASL_NOMEM There is not enough memory to complete the operation.

All other error codes indicate an error situation that must be handled, or the authentication
session should be quit. See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level Unsafe

sasl_errors(3SASL), attributes(5)

While most of libsasl is MT-Safe, no other libsasl function should be called until this
function completes.

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

Notes

sasl_client_init(3SASL)

Networking Library Functions 491

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_client_new – create a new client authentication object

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_client_new(const char *service, const char *serverFQDN,

const char *iplocalport, const char *ipremoteport,
const sasl_callback_t *prompt_supp, unsigned flags,
sasl_conn_t **pconn);

Use the sasl_client_new() interface to create a new SASL context. This SASL context will be
used for all SASL calls for one connection. The context handles both authentication and the
integrity and encryption layers after authentication.

service The registered name of the service that uses SASL, usually the protocol
name, for example, IMAP.

serverFQDN The fully qualified domain name of the server, for example,
serverhost.cmu.edu.

iplocalport

The IP and port of the local side of the connection, or NULL. If iplocalport is
NULL, mechanisms that require IP address information are disabled. The
iplocalport string must be in one of the following formats:
■ a.b.c.d:port (IPv6)
■ [e:f:g:h:i:j:k:l]:port (IPv6)
■ [e:f:g:h:i:j:a.b.c.d]:port (IPv6)
■ a.b.c.d;port (IPv4)
■ e:f:g:h:i:j:k:l;port (IPv6)
■ e:f:g:h:i:j:a.b.c.d;port (IPv6)

ipremoteport The IP and port of the remote side of the connection, or NULL.

prompt_supp A list of the client interactions supported that are unique to this connection.
If this parameter is NULL, the global callbacks specified in
sasl_client_init(3SASL) are used.

flags Usage flags. For clients, the flag SASL_NEED_PROXY is available.

pconn The connection context allocated by the library. The pconn structure is used
for all future SASL calls for this connection.

sasl_client_new() returns an integer that corresponds to a SASL error code.

SASL_OK The call to sasl_client_new() was successful.

SASL_NOMECH No mechanishm meets the requested properties.

SASL_BADPARAM There is an error in the configuration file or passed parameters.

Name

Synopsis

Description

Parameters

Return Values

Errors

sasl_client_new(3SASL)

man pages section 3: Networking Library Functions • Last Revised 27 Aug 2003492

SASL_NOMEM There is not enough memory to complete the operation.

All other error codes indicate an error situation that must be handled, or the authentication
session should be quit. See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level Safe

sasl_client_init(3SASL), sasl_errors(3SASL), attributes(5)

Attributes

See Also

sasl_client_new(3SASL)

Networking Library Functions 493

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_client_plug_init_t – client plug-in entry point

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/saslplug.h>

int sasl_client_plug_init_t(const sasl_utils_t *utils, int max_version,
int *out_version, sasl_client_plug_t **pluglist, int *plugcount);

The sasl_client_plug_init_t() callback function is the client plug-in entry point.

utils The utility callback functions.

max_version The highest client plug-in version supported.

out_version The client plug-in version of the result..

pluglist The list of client mechanism plug-ins.

plugcount The number of client mechanism plug-ins.

Like other SASL callback functions, sasl_client_plug_init_t() returns an integer that
corresponds to a SASL error code. See <sasl.h> for a complete list of SASL error codes.

SASL_OK The call to sasl_client_plug_init_t() was successful.

See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

sasl_errors(3SASL), attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

sasl_client_plug_init_t(3SASL)

man pages section 3: Networking Library Functions • Last Revised 27 Oct 2003494

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_client_start – perform a step in the authentication negotiation

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_client_start(sasl_conn_t *conn, const char *mechlist,
sasl_interact_t **prompt_need, const char **clientout,
unsigned *clientoutlen, const char **mech);

Use the sasl_client_start() interface to select a mechanism for authentication and start
the authentication session. The mechlist parameter holds the list of mechanisms that the client
might like to use. The mechanisms in the list are not necessarily supported by the client, nor
are the mechanisms necessarily valid. SASL determines which of the mechanisms to use based
upon the security preferences specified earlier. The list of mechanisms is typically a list of
mechanisms that the server supports, acquired from a capability request.

If SASL_INTERACT is returned, the library needs some values to be filled in before it can
proceed. The prompt_need structure is filled in with requests. The application fullfills these
requests and calls sasl_client_start() again with identical parameters. The prompt_need
parameter is the same pointer as before, but it is filled in by the application.

conn The SASL connection context.

mechlist A list of mechanism that the server has available. Punctuation is ignored.

prompt_need A list of prompts that are needed to continue, if necessary.

clientout
clientoutlen clientout and clientoutlen are created. They contain the initial client response

to send to the server. It is the job of the client to send them over the network to
the server. Any protocol specific encodingthat is necessary, for example
base64 encoding, must be done by the client.

If the protocol lacks client-send-first capability, then set clientout to NULL. If
there is no initial client-send, then *clientout will be set to NULL on return.

mech Contains the name of the chosen SASL mechanism, upon success.

sasl_client_start() returns an integer that corresponds to a SASL error code.

SASL_CONTINUE The call to sasl_client_start() was successful, and more steps are
needed in the authentication.

All other error codes indicate an error situation that must be handled, or the authentication
session should be quit. See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

sasl_client_start(3SASL)

Networking Library Functions 495

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level Safe

sasl_errors(3SASL), attributes(5)See Also

sasl_client_start(3SASL)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2011496

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_client_step – acquire an auxiliary property context

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_client_step(sasl_conn_t *conn, const char *serverin,
sasl_interact_t **unsigned serverinlen, prompt_need,
const char **clientout, sasl_interact_t **unsigned *clientoutlen);

Use the sasl_client_step() interface performs a step in the authentication negotiation.
sasl_client_step() returns SASL_OK if the complete negotiation is successful. If the
negotiation on step is completed successfuly, but at least one more step is required,
sasl_client_step() returns SASL_CONTINUE. A client should not assume an authentication
negotiaion is successful because the server signaled success through the protocol. For
example, if the server signaled OK Authentication succeeded in IMAP,
sasl_client_step() should be called one more time with a serverinlen of zero.

If a call to sasl_client_step() returns SASL_INTERACT, the library requires some values
before sasl_client_step() can proceed. The prompt_need structure will be filled with the
requests. The application should fulfull these requests and call sasl_client_step() again
with identical parameters. The prompt_need parameter will be the same pointer as before, but
it will have been filled in by the application.

conn The SASL connection context.

serverin The data given by the server. The data is decoded if the protocol encodes
requests sent over the wire.

serverinlen The length of the serverin.

clientout
clientoutlen clientout and clientoutlen are created. They contain the initial client response

to send to the server. It is the job of the client to send them over the network to
the server. Any protocol specific encodingthat is necessary, for example
base64 encoding, must be done by the client.

prompt_need A list of prompts that are needed to continue, if necessary.

sasl_client_step() returns an integer that corresponds to a SASL error code.

SASL_OK The call to sasl_client_start() was successful. Authentication is
complete.

SASL_CONTINUE The call to sasl_client_start() was successful, but at least one more
step is required for authentication.

SASL_INTERACT The library requires some values before sasl_client_step() can
proceed.

Name

Synopsis

Description

Parameters

Return Values

Errors

sasl_client_step(3SASL)

Networking Library Functions 497

All other error codes indicate an error situation that must be handled, or the authentication
session should be quit. See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level Safe

sasl_errors(3SASL), attributes(5)

Attributes

See Also

sasl_client_step(3SASL)

man pages section 3: Networking Library Functions • Last Revised 28 Aug 2003498

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_decode – decode data received

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_decode(sasl_conn_t *conn, const char *input, unsigned inputlen,
const char **output, unsigned *outputlen);

Use the sasl_decode() interface to decode data received. After authentication, call this
function on all data received. The data is decoded from encrypted or signed form to plain data.
If no security lay is negotiated, the output is identical to the input.

Do not give sasl_decode() more data than the negotiated maxbufsize. See
sasl_getprop(3SASL).

sasl_decode() can complete successfully although the value of outputlen is zero. If this is the
case, wait for more data and call sasl_decode() again.

conn The SASL connection context.

input Data received.

inputlen The length of input

output The decoded data. output must be allocated or freed by the library.

outputlen The length of output.

sasl_decode() returns an integer that corresponds to a SASL error code.

SASL_OK The call to sasl_decode() was successful.

See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level Safe

sasl_errors(3SASL), sasl_getprop(3SASL), attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

sasl_decode(3SASL)

Networking Library Functions 499

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_decode64 – decode base64 string

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/saslutil.h>

int sasl_decode64(const char *in, unsigned inlen, char *out,
unsigned outmax,unsigned *outlen);

Use the sasl_decode64() interface to decode a base64 encoded buffer.

in Input data.

inlen The length of the input data.

out The output data. The value of out can be the same as in. However, there must be
enough space.

outlen The length of the actual output.

outmax The maximum size of the output buffer.

sasl_decode64() returns an integer that corresponds to a SASL error code.

SASL_OK The call to sasl_decode64() was successful.

See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

sasl_errors(3SASL), attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

sasl_decode64(3SASL)

man pages section 3: Networking Library Functions • Last Revised 16 Sep 2003500

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_dispose – dispose of a SASL connection object

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

void sasl_dispose(sasl_conn_t **pconn);

Use the sasl_dispose() interface when a SASL connection object is no longer needed.
Generally, the SASL connection object is no longer needed when the protocol session is
completed, not when authentication is completed, as a security layer may have been
negotiated.

pconn The SASL connection context

sasl_dispose() has no return values.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level Safe

attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Attributes

See Also

sasl_dispose(3SASL)

Networking Library Functions 501

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_done – dispose of all SASL plug-ins

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

void sasl_encode(void)

Make a call to the sasl_done() interface when the application is completely done with the
SASL library. You must call sasl_dispose(3SASL) before you make a call to sasl_done().

sasl_done() has no return values.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level Safe

sasl_dispose(3SASL), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

sasl_done(3SASL)

man pages section 3: Networking Library Functions • Last Revised 1 Oct 2003502

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_encode, sasl_encodev – encode data for transport to an authenticated host

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_encode(sasl_conn_t *conn, const char *input, unsigned inputlen,
const char **output, unsigned *outputlen);

int sasl_encodev(sasl_conn_t *conn, const struct iovec *invec,
unsigned numiov, const char *outputlen);

The sasl_encode() interface encodes data to be sent to a remote host for which there has
been a successful authentication session. If there is a negotiated security, the data is signed or
encrypted, and the output is sent without modification to the remote host. If there is no
security layer, the output is identical to the input.

The sasl_encodev() interface functions the same as the sasl_encode() interface, but
operates on a struct iovec instead of a character buffer.

conn The SASL connection context.

input Data.

inputlen input length.

output The encoded data. output must be allocated or freed by the library.

outputlen The length of output.

invec A pointer to set of iovec structures.

numiov The number of iovec structures in the invec set.

sasl_encode() returns an integer that corresponds to a SASL error code.

SASL_OK The call to sasl_encode() or sasl_encodev()was successful.

See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level Safe

attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

sasl_encode(3SASL)

Networking Library Functions 503

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_encode64 – encode base64 string

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/saslutil.h>

int sasl_encode64(const char *in, unsigned inlen, char *out,
unsigned outmax, unsigned *outlen);

Use the sasl_encode64() interface to convert an octet string into a base64 string. This
routine is useful for SASL profiles that use base64, such as the IMAP (IMAP4) and POP
(POP_AUTH) profiles. The output is null-terminated. If outlen is non-NULL, the length is
placed in the outlen.

in Input data.

inlen The length of the input data.

out The output data. The value of out can be the same as in. However, there must be
enough space.

outlen The length of the actual output.

outmax The maximum size of the output buffer.

sasl_encode64() returns an integer that corresponds to a SASL error code.

SASL_OK The call to sasl_encode64() was successful.

SASL_BUFOVER The output buffer was too small.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

sasl_errors(3SASL), attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

sasl_encode64(3SASL)

man pages section 3: Networking Library Functions • Last Revised 16 Sep 2003504

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_erasebuffer – erase buffer

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/saslutil.h>

void sasl_erasebuffer(char *pass, unsigned len);

Use the sasl_erasebuffer() interface to erase a security sensitive buffer or password. The
implementation may use recovery-resistant erase logic.

pass A password

len The length of the password

The sasl_erasebuffer() interface returns no return values.

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

sasl_erasebuffer(3SASL)

Networking Library Functions 505

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_errdetail – retrieve detailed information about an error

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

const char * sasl_errdetail(sasl_conn_t *conn);

The sasl_errdetail() interface returns an internationalized string that is a message that
describes the error that occurred on a SASL connection. The sasl_errdetail() interface
provides a more user friendly error message than the SASL error code returned when SASL
indicates that an error has occurred on a connection. See sasl_errors(3SASL).

conn The SASL connection context for which the inquiry is made.

sasl_errdetail() returns the string that describes the error that occurred, or NULL, if there
was an error retrieving it.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level Safe

sasl_errors(3SASL), sasl_seterror(3SASL), attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Attributes

See Also

sasl_errdetail(3SASL)

man pages section 3: Networking Library Functions • Last Revised 14 Oct 2003506

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_errors – SASL error codes

#include <sasl/sasl.h>

This man page describes the general error codes that can be returned by calls into the SASL
library. The meaning of the error code can vary slightly based upon the context of the call from
which it is returned.

SASL_OK The call was successful.

SASL_CONTINUE Another step is required for authentication.

SASL_FAILURE Generic failure.

SASL_NOMEM Memory shortage failure.

SASL_BUFOVER Overflowed buffer.

SASL_NOMECH The mechanism was not supported, or no mechanisms matched the
requirements.

SASL_BADPROT The protocol was bad, invalid or cancelled.

SASL_NOT DONE Cannot request information. Not applicable until later in the exchange.

SASL_BADPARAM An invalid parameter was supplied.

SASL_TRYAGAIN Transient failure, for example, a weak key.

SASL_BADMAC Integrity check failed.

SASL_NOTINIT SASL library not initialized.

SASL_INTERACT Needs user interaction.

SASL_BADSERV Server failed mutual authentication step.

SASL_WRONGMECH Mechanism does not support the requested feature.

SASL_BADAUTH Authentication failure.

SASL_NOAUTHZ Authorization failure.

SASL_TOOWEAK The mechanism is too weak for this user.

SASL_ENCRYPT Encryption is needed to use this mechanism.

SASL_TRANS One time use of a plaintext password will enable requested mechanism
for user.

SASL_EXPIRED The passphrase expired and must be reset.

SASL_DISABLED Account disabled.

Name

Synopsis

Description

Errors

Common Result Codes

Client Only Result
Codes

Server Only Result
Codes

sasl_errors(3SASL)

Networking Library Functions 507

SASL_NOUSER User not found.

SASL_BADVERS Version mismatch with plug-in.

SASL_NOVERIFY The user exists, but there is no verifier for the user.

SASL_PWLOCK Passphrase locked.

SASL_NOCHANGE The requested change was not needed.

SASL_WEAKPASS The passphrase is too weak for security policy.

SASL_NOUSERPASS User supplied passwords are not permitted.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level Safe

attributes(5)

Password Setting
Result Codes

Attributes

See Also

sasl_errors(3SASL)

man pages section 3: Networking Library Functions • Last Revised 14 Oct 2003508

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_errstring – translate a SASL return code to a human-readable form

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

const char * sasl_errstring(int saslerr, const char *langlist,
const char **outlang);

The sasl_errstring() interface is called to convert a SASL return code from an integer into
a human readable string.

You should not used the sasl_errstring() interface to extract error code information from
SASL. Applications should use sasl_errdetail(3SASL) instead, which contains this error
information and more.

The sasl_errstring() interface supports only i-default and i-local at this time.

saslerr The error number to be translated.

langlist A comma-separated list of languages. See RFC 1766. If thelanglist parameter has
aNULL value, the default language,i-default, is used.

outlang The language actually used. The outlang parameter can be NULL. The returned
error string is in UTF-8.

sasl_errstring() returns the string that describes the error that occurred, or NULL, if there
was an error retrieving it.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level Safe

sasl_errors(3SASL), sasl_seterror(3SASL), attributes(5)

Alvestrand, H. RFC 1766, Tags for the Identification of Languages. Network Working Group.
November 1995.

Name

Synopsis

Description

Parameters

Return Values

Attributes

See Also

sasl_errstring(3SASL)

Networking Library Functions 509

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_getcallback_t – callback function to lookup a sasl_callback_t for a connection

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/saslplug.h>

int sasl_getcallback_t(sasl_conn_t *conn, unsigned long callbacknum,

int (**proc)(), void **pcontext);

The sasl_getcallback_t() function is a callback to lookup a sasl_callback_t for a
connection.

conn The connection to lookup a callback for.

callbacknum The number of the callback.

proc Pointer to the callback function. The value of proc is set to NULL upon failure.

pcontext Pointer to the callback context. The value of pcontext is set to NULL upon
failure.

Like other SASL callback functions, sasl_getcallback_t() returns an integer that
corresponds to a SASL error code. See <sasl.h> for a complete list of SASL error codes.

SASL_OK The call to sasl_getcallback_t() was successful.

SASL_FAIL Unable to find a callback of the requested type.

SASL_INTERACT The caller must use interaction to get data.

See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

sasl_errors(3SASL), attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

sasl_getcallback_t(3SASL)

man pages section 3: Networking Library Functions • Last Revised 27 Oct 2003510

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_getopt_t – the SASL get option callback function

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_getopt_t(void *context, const char *plugin_name,
const char *option, const char **result, unsigned *len);

The sasl_getopt_t() function allows a SASL configuration to be encapsulated in the caller's
configuration system. Some implementations may use default configuration file(s) if this
function is omitted. Configuration items are arbitrary strings and are plug-in specific.

context The option context from the callback record.

plugin_name The name of the plug-in. If the value of plugin_name is NULL, the the plug-in
is a general SASL option.

option The name of the option.

result The value of result is set and persists until the next call to sasl_getopt_t()

in the same thread. The value of result is unchanged if option is not found.

len The length of result. The value of result can be NULL.

Like other SASL callback functions, sasl_getopt_t() returns an integer that corresponds to a
SASL error code. See <sasl.h> for a complete list of SASL error codes.

SASL_OK The call to sasl_getopt_t() was successful.

See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

sasl_errors(3SASL), attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

sasl_getopt_t(3SASL)

Networking Library Functions 511

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_getpath_t – the SASL callback function to indicate location of the security mechanism
drivers

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_getpath_t(void *context, char **path);

Use the sasl_getpath_t() function to enable the application to use a different location for
the SASL security mechanism drivers, which are shared library files. If the sasl_getpath_t()
callback is not used, SASL uses /usr/lib/sasl by default.

context The getpath context from the callback record

path The path(s) for the location of the SASL security mechanism drivers. The values
for path are colon-separated.

Like other SASL callback functions, sasl_getpath_t() returns an integer that corresponds to
a SASL error code. See <sasl.h> for a complete list of SASL error codes.

SASL_OK The call to sasl_getpath_t() was successful.

See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

sasl_errors(3SASL), attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

sasl_getpath_t(3SASL)

man pages section 3: Networking Library Functions • Last Revised 27 Oct 2003512

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_getprop – get a SASL property

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_getprop(sasl_conn_t *conn, int propnum, const void **pvalue);

Use the sasl_getprop() interface to get the value of a SASL property. For example, after
successful authentication, a server may want to know the authorization name. Similarly, a
client application may want to know the strength of the security level that was negotiated.

conn The SASL connection context.

propnum The identifier for the property requested.

pvalue The value of the SASL property. This value is filled in upon a successful call.
Possible SASL values include:

SASL_USERNAME A pointer to a null-terminated user name.

SASL_SSF The security layer security strength factor. If the value
of SASL_SSF is 0, a call to sasl_encode() or
sasl_decode() is unnecessary.

SASL_MAXOUTBUF The maximum size of output buffer returned by the
selected security mechanism

SASL_DEFUSERREALM Server authentication realm used.

SASL_GETOPTCTX The context for getopt() callback.

SASL_IPLOCALPORT Local address string.

SASL_IPREMOTEPORT Remote address string.

SASL_SERVICE Service passed on to sasl_*_new().

SASL_SERVERFQDN Server FQDN passed on to sasl_*_new().

SASL_AUTHSOURCE Name of authentication source last used. Useful for
failed authentication tracking.

SASL_MECHNAME Active mechanism name, if any.

SASL_PLUGERR Similar to sasl_errdetail().

SASL_OK The call to sasl_getprop() was successful.

See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

Name

Synopsis

Description

Parameters

Errors

Attributes

sasl_getprop(3SASL)

Networking Library Functions 513

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

sasl_errors(3SASL), attributes(5)See Also

sasl_getprop(3SASL)

man pages section 3: Networking Library Functions • Last Revised 14 Oct 2003514

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_getrealm_t – the realm acquisition callback function

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_getrealm_t(void *context, int id, const char **availrealms,
const char **result);

Use the sasl_getrealm_t() functionwhen there is an interaction with SASL_CB_GETREALM as
the type.

If a mechanism would use this callback, but it is not present, then the first realm listed is
automatically selected. A mechanism can still force the existence of a getrealm callback by
SASL_CB_GETREALM to its required_prompts list.

context The context from the callback record

id The callback ID (SASL_CB_GETREALM)

availrealms A string list of the vailable realms. availrealms is a null-terminated sting that
can be empty.

result The chosen realm. result is a null-terminated string.

Like other SASL callback functions, sasl_getrealm_t() returns an integer that corresponds
to a SASL error code. See <sasl.h> for a complete list of SASL error codes.

SASL_OK The call to sasl_getrealm_t() was successful.

See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

sasl_errors(3SASL), attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

sasl_getrealm_t(3SASL)

Networking Library Functions 515

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_getsecret_t – the SASL callback function for secrets (passwords)

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_getsecret_t(sasl_conn_t *conn, void *context,
int id, sasl_secret_t **psecret);

Use the sasl_getsecret_t() function to retrieve the secret from the application. Allocate a
sasl_secret_t to length sizeof(sasl_secret_t)+<length of secret>. sasl_secret_t
has two fields of len which contain the length of secret in bytes and the data contained in secret.
The secret string does not need to be null-terminated.

conn The connection context

context The context from the callback structure

id The callback ID

psecret To cancel, set the value of psecret to NULL. Otherwise, set the value to the password
structure. The structure must persist until the next call to sasl_getsecret_t() in
the same connection. Middleware erases password data when it is done with it.

Like other SASL callback functions, sasl_getsecret_t() returns an integer that corresponds
to a SASL error code. See <sasl.h> for a complete list of SASL error codes.

SASL_OK The call to sasl_getsecret_t() was successful.

See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

sasl_errors(3SASL), attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

sasl_getsecret_t(3SASL)

man pages section 3: Networking Library Functions • Last Revised 27 Oct 2003516

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_getsimple_t – the SASL callback function for username, authname and realm

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_getsimple_t(void *context, int id, const char **result,
unsigned *len);

Use the sasl_getsimple_t() callback function to retrieve simple data from the application
such as the authentication name, the authorization name, and the realm. The id parameter
indicates which value is requested.

context The context from the callback structure.

id The callback ID. Possible values for id include:

SASL_CB_USER Client user identity for login.

SASL_CB_AUTHNAME Client authentication name.

SASL_CB_LANGUAGE Comma-separated list of languages pursuant to RFC 1766.

SASL_CB_CNONCE The client-nonce. This value is used primarily for testing.

result To cancel user, set the value of result with a null-terminated string. If the value of
result is NULL, then the user is cancelled.

len The length of result.

Like other SASL callback functions, sasl_getsimple_t() returns an integer that corresponds
to a SASL error code. See <sasl.h> for a complete list of SASL error codes.

SASL_OK The call to sasl_getsimple_t() was successful.

See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

sasl_errors(3SASL), attributes(5)

Alvestrand, H. RFC 1766, Tags for the Identification of Languages. Network Working Group.
November 1995.

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

sasl_getsimple_t(3SASL)

Networking Library Functions 517

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_global_listmech – retrieve a list of the supported SASL mechanisms

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

const char ** sasl_global_listmech();

The sasl_global_listmech() interface to returns a null-terminated array of strings that lists
all of the mechanisms that are loaded by either the client or server side of the library.

A successful call to sasl_global_listmech() returns a pointer the array. On failure, NULL is
returned. The SASL library is uninitialized.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Obsolete

MT-Level MT–Safe

attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

sasl_global_listmech(3SASL)

man pages section 3: Networking Library Functions • Last Revised 1 Oct 2003518

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_idle – perform precalculations during an idle period

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_idle(sasl_conn_t *conn);

Use the sasl_idle() interface during an idle period to allow the SASL library or any
mechanisms to perform any necessary precalculation.

conn The SASL connection context. The value of conn can be NULL in order to complete a
precalculation before the connection takes place.

sasl_idle() returns the following values:

1 Indicates action was taken

0 Indicates no action was taken

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Attributes

See Also

sasl_idle(3SASL)

Networking Library Functions 519

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_listmech – retrieve a list of the supported SASL mechanisms

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_listmech(sasl_conn_t *conn, const char *user, const char *prefix,
const char *sep, const char *suffix, const char **result,
unsigned *plen,int *pcount);

The sasl_listmech() interface returns a string listing the SASL names of all the mechanisms
available to the specified user. This call is typically given to the client through a capability
command or initial server response. Client applications need this list so that they know what
mechanisms the server supports.

conn The SASL context for this connection user restricts the mechanism list to those
mechanisms available to the user. This parameter is optional.

user Restricts security mechanisms to those available to that user. The value of user may
be NULL, and it is not used if called by the client application.

prefix Appended to the beginning of result.

sep Appended between mechanisms.

suffix Appended to the end of result.

result A null-terminated result string. result must be allocated or freed by the library.

plen The length of the result filled in by the library. The value of plen may be NULL.

pcount The number of mechanisms available. The value of pcount is filled in by the library.
The value of pcount may be NULL

sasl_listmech() returns an integer that corresponds to a SASL error code.

SASL_OK The call to sasl_listmech() was successful.

See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

sasl_listmech(3SASL)

man pages section 3: Networking Library Functions • Last Revised 14 Oct 2003520

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_errors(3SASL), attributes(5)See Also

sasl_listmech(3SASL)

Networking Library Functions 521

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_log_t – the SASL logging callback function

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_log_t(void *context, int level, const char *message);

Use the sasl_log_t() function to log warning and error messages from the SASL library.
syslog(3C) is used, unless another logging function is specified.

context The logging context from the callback record.

level The logging level. Possible values for level include:

SASL_LOG_NONE Do not log anything.

SASL_LOG_ERR Log unusual errors. This is the default log level.

SASL_LOG_FAIL Log all authentication failures.

SASL_LOG_WARN Log non-fatal warnings.

SASL_LOG_NOTE Log non-fatal warnings (more verbose than
SASL_LOG_WARN).

SASL_LOG_DEBUG Log non-fatal warnings (more verbose than
SASL_LOG_NOTE).

SASL_LOG_TRACE Log traces of internal protocols.

SASL_LOG_PASS Log traces of internal protocols, including passwords.

message The message to log

Like other SASL callback functions, sasl_log_t() returns an integer that corresponds to a
SASL error code. See <sasl.h> for a complete list of SASL error codes.

SASL_OK The call to sasl_log_t() was successful.

See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

sasl_log_t(3SASL)

man pages section 3: Networking Library Functions • Last Revised 27 Oct 2003522

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1syslog-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_errors(3SASL), syslog(3C), attributes(5)See Also

sasl_log_t(3SASL)

Networking Library Functions 523

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1syslog-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_server_add_plugin – add a SASL server plug-in

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/saslplug.h>

int sasl_server_add_plugin(const char *plugname,
sasl_server_plug_init_t *cplugfunc);

Use the sasl_server_add_plugin() interface to add a server plug-in to the current list of
client plug-ins in the SASL library.

plugname The name of the server plug-in.

cplugfunc The value of cplugfunc is filled in by the sasl_server_plug_init_t structure.

sasl_server_add_plugin() returns an integer that corresponds to a SASL error code.

SASL_OK The call to sasl_client_add_plugin() was successful.

SASL_BADVERS Version mismatch with plug-in.

SASL_NOMEM Memory shortage failure.

See sasl_errors(3SASL) for information on other SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

sasl_errors(3SASL), attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

sasl_server_add_plugin(3SASL)

man pages section 3: Networking Library Functions • Last Revised 1 Oct 2003524

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_server_init – SASL server authentication initialization

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_server_init(const sasl_callback *callbacks, const char *appname);

Use the sasl_server_init() interface to initialize SASL. You must call sasl_server_init()
before you make a call to sasl_server_start(). sasl_server_init() may be called only
once per process. A call to sasl_server_init() initializes all SASL mechanism drivers, that
is, the authentication mechanisms. The SASL mechanism drivers are usually found in the
/usr/lib/sasl directory.

callbacks Specifies the base callbacks for all client connections.

appname The name of the application for lower level logging. For example, the sendmail
server calls appname this way:

sasl_server_init(srvcallbacks, "Sendmail")

sasl_server_init() returns an integer that corresponds to a SASL error code.

SASL_OK The call to sasl_server_init() was successful.

All other error codes indicate an error situation that must be handled, or the authentication
session should be quit. See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level Unsafe

sasl_errors(3SASL), attributes(5)

While most of libsasl is MT-Safe, no other libsasl function should be called until this
function completes.

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

Notes

sasl_server_init(3SASL)

Networking Library Functions 525

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_server_new – create a new server authentication object

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_server_new(const char *service, const char *serverFQDN,

const char *user_realm, const char *iplocalport,
const char *ipremoteport, const sasl_callback_t *callbacks,
unsigned flags, sasl_conn_t **pconn);

Use the sasl_server_new() interface to create a new SASL context. This context will be used
for all SASL calls for one connection. The new SASL context handles both authentication and
integrity or encryption layers after authentication.

service The registered name of the service that uses SASL. The registered name is
usually the protocol name, for example, IMAP.

serverFQDN The fully-qualified server domain name. If the value of serverFQDN is NULL,
use gethostname(3C). The serverFQDN parameter is useful for
multi-homed servers.

user_realm The domain of the user agent. The user_realm is usually not necessary. The
default value of user_realm is NULL.

iplocalport

The IP address and port of the local side of the connection. The value of
iplocalport may be NULL. If iplocalport is NULL, mechanisms that require IP
address information are disabled. The iplocalport string must be in one of
the following formats:
■ a.b.c.d:port (IPv4)
■ [e:f:g:h:i:j:k:l]:port (IPv6)
■ [e:f:g:h:i:j:a.b.c.d]:port (IPv6)

The following older formats are also supported:
■ a.b.c.d;port (IPv4)
■ e:f:g:h:i:j:k:l;port (IPv6)
■ e:f:g:h:i:j:a.b.c.d;port (IPv6)

ipremoteport The IP address and port of the remote side of the connection. The value of
ipremoteport may be NULL. See iplocalport.

callbacks Callbacks, for example: authorization, lang, and new getopt context.

flags Usage flags. For servers, the flags SASL_NEED_PROXY and
SASL_SUCCESS_DATA are available.

pconn A pointer to the connection context allocated by the library. This structure
will be used for all future SASL calls for this connection.

Name

Synopsis

Description

Parameters

sasl_server_new(3SASL)

man pages section 3: Networking Library Functions • Last Revised 14 Oct 2003526

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gethostname-3c

sasl_server_new() returns an integer that corresponds to a SASL error code.

SASL_OK The call to sasl_server_new() was successful.

All other error codes indicate an error situation that must be handled, or the authentication
session should be quit. See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

gethostname(3C), sasl_errors(3SASL), attributes(5)

Return Values

Errors

Attributes

See Also

sasl_server_new(3SASL)

Networking Library Functions 527

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gethostname-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_server_plug_init_t – server plug-in entry point

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/saslplug.h>

int sasl_server_plug_init_t(const sasl_utils_t *utils, int max_version,
int *out_version, sasl_client_plug_t **pluglist, int *plugcount);

The sasl_server_plug_init_t() callback function is the server plug-in entry point.

utils The utility callback functions.

max_version The highest server plug-in version supported.

out_version The server plug-in version of the result.

pluglist The list of server mechanism plug-ins.

plugcount The number of server mechanism plug-ins.

Like other SASL callback functions, sasl_server_plug_init_t() returns an integer that
corresponds to a SASL error code. See <sasl.h> for a complete list of SASL error codes.

SASL_OK The call to sasl_server_plug_init_t() was successful.

See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

sasl_errors(3SASL), attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

sasl_server_plug_init_t(3SASL)

man pages section 3: Networking Library Functions • Last Revised 27 Oct 2003528

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_server_start – create a new server authentication object

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_server_start(sasl_conn_t *conn, const char *mech,
const char *clientin, unsigned *clientinlen,
const char **serverout, unsigned *serveroutlen);

The sasl_server_start() interface begins the authentication with the mechanism specified
by the mech parameter. sasl_server_start() fails if the mechanism is not supported.

conn The SASL context for this connection.

mech The mechanism name that the client requested.

clientin The initial response from the client. The value of clientin is NULL if the
protocol lacks support for the client-send-first or if the other end did not have
an initial send. No initial client send is distinct from an initial send of a null
string. The protocol must account for this difference.

clientinlen The length of the initial response.

serverout Created by the plugin library. The value of serverout is the initial server
response to send to the client. serverout is allocated or freed by the library. It is
the job of the client to send it over the network to the server. Protocol specific
encoding, for example base64 encoding, must be done by the server.

serveroutlen The length of the initial server challenge.

sasl_server_start() returns an integer that corresponds to a SASL error code.

SASL_OK Authentication completed successfully.

SASL_CONTINUE The call to sasl_server_start() was successful, and more steps are
needed in the authentication.

All other error codes indicate an error situation that must be handled, or the authentication
session should be quit. See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

sasl_server_start(3SASL)

Networking Library Functions 529

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

gethostname(3C), sasl_errors(3SASL), attributes(5)See Also

sasl_server_start(3SASL)

man pages section 3: Networking Library Functions • Last Revised 1 Oct 2003530

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1gethostname-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_server_step – perform a step in the server authentication negotiation

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_server_step(sasl_conn_t *conn, const char *clientin,
unsigned clientinlen, const char **serverout,
unsigned *serveroutlen);

The sasl_server_step() performs a step in the authentication negotiation.

conn The SASL context for this connection.

clientin The data given by the client. The data is decoded if the protocol encodes
requests that are sent over the wire.

clientinlen The length of clientin.

serverout
serveroutlen Set by the library and sent to the client.

sasl_server_step() returns an integer that corresponds to a SASL error code.

SASL_OK The whole authentication completed successfully.

SASL_CONTINUE The call to sasl_server_step() was successful, and at least one more
step is needed for the authentication.

All other error codes indicate an error situation that you must handle, or you should quit the
authentication session. See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

sasl_errors(3SASL), attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

sasl_server_step(3SASL)

Networking Library Functions 531

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_server_userdb_checkpass_t – plaintext password verification callback function

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_sasl_server_userdb_checkpass_t(sasl_conn_t *conn, void *context,
const char *user, const char *pass, unsigned passlen, struct propctx *propctx);

Use the sasl_sasl_server_userdb_checkpass_t() callback function to verify a plaintext
password against the callback supplier's user database. Verification allows additional ways to
encode the userPassword property.

conn The SASL connection context.

context The context from the callback record.

user A null-terminated user name with user@realm syntax.

pass The password to check. This string cannot be null-terminated.

passlen The length of pass.

propctx The property context to fill in with userPassword.

Like other SASL callback functions, sasl_server_userdb_checkpass_t() returns an integer
that corresponds to a SASL error code. See <sasl.h> for a complete list of SASL error codes.

SASL_OK The call to sasl_server_userdb_checkpass_t() was successful.

See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

sasl_errors(3SASL), attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

sasl_server_userdb_checkpass_t(3SASL)

man pages section 3: Networking Library Functions • Last Revised 27 Oct 2003532

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_server_userdb_setpass_t – user database plaintext password setting callback function

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_server_userdb_setpass_t(sasl_conn_t *conn, void *context,
const char *user, const char *pass, unsigned passlen, struct propctx *propctx,
unsigned flags);

Use the sasl_server_userdb_setpass_t() callback function to store or change a a plaintext
password in the callback supplier's user database.

conn The SASL connection context.

context The context from the callback record.

user A null-terminated user name with user@realm syntax.

pass The password to check. This string cannot be null-terminated.

passlen The length of pass.

propctx Auxiliary properties. The value of propctx is not stored.

flags See sasl_setpass(3SASL). sasl_server_userdb_setpass_t() uses the same
flags that are passed to sasl_setpass().

Like other SASL callback functions, sasl_server_userdb_setpass_t() returns an integer
that corresponds to a SASL error code. See <sasl.h> for a complete list of SASL error codes.

SASL_OK The call to sasl_server_userdb_setpass_t() was successful.

See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

sasl_errors(3SASL), sasl_setpass(3SASL), attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

sasl_server_userdb_setpass_t(3SASL)

Networking Library Functions 533

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_set_alloc – set the memory allocation functions used by the SASL library

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

void sasl_set_alloc(sasl_malloc_t *m, sasl_calloc_t *c, sasl_realloc_t *r,
sasl_free_t *f);

Use the sasl_set_alloc() interface to set the memory allocation routines that the SASL
library and plug-ins will use.

c A pointer to a calloc() function

f A pointer to a free() function

m A pointer to amalloc() function

r A pointer to a realloc() function

sasl_set_alloc() has no return values.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Obsolete

MT-Level Unsafe

attributes(5)

While most of libsasl is MT-Safe, sasl_set_* modifies the global state and should be
considered Unsafe.

Name

Synopsis

Description

Parameters

Return Values

Attributes

See Also

Notes

sasl_set_alloc(3SASL)

man pages section 3: Networking Library Functions • Last Revised 22 Oct 2003534

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_seterror – set the error string

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

void sasl_seterror(sasl_conn_t *conn, unsigned flags,
const char *fmt, ...);

The sasl_seterror() interface sets the error string that will be returned by
sasl_errdetail(3SASL). Use syslog(3C) style formatting, that is, use printf()—style with
%m as the most recent errno error.

The sasl_seterror() interface is primarily used by server callback functions and internal
plug-ins, for example, with the sasl_authorize_t callback. The sasl_seterror() interface
triggers a call to the SASL logging callback, if any, with a level of SASL_LOG_FAIL, unless the
SASL_NOLOG flag is set.

Make the message string sensitive to the current language setting. If there is no
SASL_CB_LANGUAGE callback, message strings must be i-default. Otherwise, UTF-8 is used.
Use of RFC 2482 for mixed-language text is encouraged.

If the value of conn is NULL, the sasl_seterror() interface fails.

conn The sasl_conn_t for which the call to sasl_seterror() applies.

flags If set to SASL_NOLOG, the call to sasl_seterror() is not logged.

fmt A syslog(3C) style format string.

sasl_seterror() has no return values.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

sasl_errdetail(3SASL), syslog(3C), attributes(5)

Whistler, K. and Adams, G. RFC 2482, Language Tagging in Unicode Plain Text. Network
Working Group. January 1999.

Name

Synopsis

Description

Parameters

Return Values

Attributes

See Also

sasl_seterror(3SASL)

Networking Library Functions 535

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1syslog-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1syslog-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1syslog-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_set_mutex – set the mutex lock functions used by the SASL library

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

void sasl_set_mutex(sasl_mutex_alloc_t *a, sasl_mutex_lock_t *l,
sasl_mutex_unlock_t *u, sasl_mutex_free_t *f);

Use the sasl_set_mutex() interface to set the mutex lock routines that the SASL library and
plug-ins will use.

a A pointer to the mutex lock allocation function

f A pointer to the mutex free or destroy function

l A pointer to the mutex lock function

u A pointer to the mutex unlock function

sasl_set_mutex() has no return values.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Obsolete

MT-Level Unsafe

attributes(5)

While most of libsasl is MT-Safe, sasl_set_* modifies the global state and should be
considered Unsafe.

Name

Synopsis

Description

Parameters

Return Values

Attributes

See Also

Notes

sasl_set_mutex(3SASL)

man pages section 3: Networking Library Functions • Last Revised 22 Oct 2003536

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_setpass – set the password for a user

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_setpass(sasl_conn_t *conn, const char *user, const char *pass,
unsigned passlen, const char *oldpass, unsigned oldpasslen,
unsigned flags);

Use the sasl_setpass() interface to set passwords. sasl_setpass() uses the
SASL_CB_SERVER_USERDB_SETPASS callback, if one is supplied. Additionally, if any server
mechanism plugins supply a setpass callback, the setpass callback would be called. None of the
server mechanism plugins currently supply a setpass callback.

conn The SASL connection context

user The username for which the password is set

pass The password to set

passlen The length of pass

oldpass The old password, which is optional

oldpasslen The length of oldpass, which is optional

flags Refers to flags, including, SASL_SET_CREATE and SASL_SET_DISABLE. Use these
flags to create and disable accounts.

sasl_setpass() returns an integer that corresponds to a SASL error code.

SASL_OK The call to sasl_setpass() was successful.

See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

sasl_errors(3SASL), sasl_getprop(3SASL), attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

sasl_setpass(3SASL)

Networking Library Functions 537

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_setprop – set a SASL property

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

int sasl_setprop(sasl_conn_t *conn, int propnum, const void *pvalue);

Use the sasl_setprop() interface to set the value of a SASL property. For example, an
application can use sasl_setprop() to tell the SASL liabrary about any external negotiated
security layer like TLS.

sasl_setprop() uses the following flags.

SASL_AUTH_EXTERNAL External authentication ID that is a pointer of type const char

SASL_SSF_EXTERNAL External SSF active of type sasl_ssf_t

SASL_DEFUSERREALM User realm that is a pointer of type const char

SASL_SEC_PROPS sasl_security_properties_t, that can be freed after the call

SASL_IPLOCALPORT A string that describes the local ip and port in the form a.b.c.d:p

or [e:f:g:h:i:j:k:l]:port or one of the older forms, a.b.c.d;p
or e:f:g:j:i:j:k:l;port

SASL_IPREMOTEPORT A string that describes the remote ip and port in the form
a.b.c.d:p or [e:f:g:h:i:j:k:l]:port or one of the older forms,
a.b.c.d;p or e:f:g:j:i:j:k:l;port

conn The SASL connection context

propnum The identifier for the property requested

pvalue Contains a pointer to the data. The application must ensure that the data type is
correct, or the application can crash.

sasl_setprop() returns an integer that corresponds to a SASL error code.

SASL_OK The call to sasl_setprop() was successful.

See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

sasl_setprop(3SASL)

man pages section 3: Networking Library Functions • Last Revised 14 Oct 2003538

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_errors(3SASL), attributes(5)See Also

sasl_setprop(3SASL)

Networking Library Functions 539

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_utf8verify – encode base64 string

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/saslutil.h>

int sasl_utf8verify(const char *str, unsigned len);

Use the sasl_utf8verify() interface to verify that a string is valid UTF-8 and does not
contain NULL, a carriage return, or a linefeed. If len ==0, strlen(str) will be used.

str A string

len The length of the string

sasl_utf8verify() returns an integer that corresponds to a SASL error code.

SASL_OK The call to sasl_utf8verify() was successful.

SASL_BADPROT There was invalid UTF-8, or an error was found.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

sasl_utf8verify(3SASL)

man pages section 3: Networking Library Functions • Last Revised 1 Oct 2003540

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_verifyfile_t – the SASL file verification callback function

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

typedef enum {

SASL_VRFY_PLUGIN, /* a DLL/shared library plugin */

SASL_VRFY_CONF, /* a configuration file */

SASL_VRFY_PASSWD, /* a password storage file */

SASL_VRFY_OTHER /* some other file type */

} sasl_verify_tyep_t

int sasl_verifyfile_t(void *context, const char *file,
sasl_verifyfile_t type);

Use the sasl_verifyfile_t() callback function check whether a given file can be used by the
SASL library. Applications use sasl_verifyfile_t() to check the environment to ensure
that plugins or configuration files cannot be written to.

context The context from the callback record

file The full path of the file to verify

type The type of the file

Like other SASL callback functions, sasl_verifyfile_t() returns an integer that
corresponds to a SASL error code. See <sasl.h> for a complete list of SASL error codes.

SASL_OK The call to sasl_verifyfile_t() was successful.

See sasl_errors(3SASL) for information on SASL error codes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

sasl_errors(3SASL), attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

See Also

sasl_verifyfile_t(3SASL)

Networking Library Functions 541

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sasl_version – get SASL library version information

cc [flag ...] file ... -lsasl [library ...]

#include <sasl/sasl.h>

void sasl_version(const char **implementation, int *version);

Use the sasl_version() interface to obtain the version of the SASL library.

implementation A vendor-defined string that describes the implementation. The value of
implementationreturned is Sun SASL.

version A vendor-defined represetation of the version number.

The sasl_version() interface has no return values.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability system/library/security/libsasl

Interface Stability Committed

MT-Level MT–Safe

attributes(5)

Name

Synopsis

Description

Parameters

Return Values

Attributes

See Also

sasl_version(3SASL)

man pages section 3: Networking Library Functions • Last Revised 14 Oct 2003542

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sctp_bindx – add or remove IP addresses to or from an SCTP socket

cc [flag...] file... -lsocket -lnsl -lsctp [library...]

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/sctp.h>

int sctp_bindx(int sock, void *addrs, int addrcnt, int flags);

The sctp_bindx() function adds or removes addresses to or from an SCTP socket. If sock is
an Internet Protocol Version 4 (IPv4) socket, addrs should be an array of sockaddr_in
structures containing IPv4 addresses. If sock is an Internet Protocol Version 6 (IPv6) socket,
addrs should be an array of sockaddr_in6 structures containing IPv6 or IPv4-mapped IPv6
addresses. The addrcnt is the number of array elements in addrs. The family of the address
type is used with addrcnt to determine the size of the array.

The flags parameter is a bitmask that indicates whether addresses are to be added or removed
from a socket. The flags parameter is formed by bitwise OR of zero or more of the following
flags:

SCTP_BINDX_ADD_ADDR Indicates that addresses from addrs should be added to the SCTP
socket.

SCTP_BINDX_REM_ADDR Indicates that addresses from addrs should be removed from the
SCTP socket.

These two flags are mutually exclusive. If flags is formed by a bitwise OR of both
SCTP_BINDX_ADD_ADDR and SCTP_BINDX_REM_ADDR, the sctp_bindx() function will fail.

Prior to calling sctp_bindx() on an SCTP endpoint, the endpoint should be bound using
bind(3SOCKET). On a listening socket, a special INADDR_ANY value for IP or an unspecified
address of all zeros for IPv6 can be used in addrs to add all IPv4 or IPv6 addresses on the
system to the socket. The sctp_bindx() function can also be used to add or remove addresses
to or from an established association. In such a case, messages are exchanged between the
SCTP endpoints to update the address lists for that association if both endpoints support
dynamic address reconfiguration.

Upon successful completion, the sctp_bindx() function returns 0. Otherwise, the function
returns -1 and sets errno to indicate the error.

The sctp_bindx() call fails under the following conditions.

EBADF The sock argument is an invalid file descriptor.

ENOTSOCK The sock argument is not a socket.

EINVAL One or more of the IPv4 or IPv6 addresses is invalid.

EINVAL The endpoint is not bound.

Name

Synopsis

Description

Return Values

Errors

sctp_bindx(3SOCKET)

Networking Library Functions 543

EINVAL The last address is requested to be removed from an established association.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

bind(3SOCKET), in.h(3HEAD), libsctp(3LIB), listen(3SOCKET),
sctp_freeladdrs(3SOCKET), sctp_freepaddrs(3SOCKET), sctp_getladdrs(3SOCKET),
sctp_getpaddrs(3SOCKET), socket(3SOCKET), inet(7P), inet6(7P), ip(7P), ip6(7P),
sctp(7P)

IPv4-mapped addresses are not recommended.

Attributes

See Also

Notes

sctp_bindx(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2007544

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1in.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsctp-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1inet-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1inet6-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ip-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ip6-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sctp-7p

sctp_connectx – connect an SCTP oscket

cc [flag...] file... -lsocket -lnsl -lsctp [library...]

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/sctp.h>

int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
sctp_assoc_t *aid);

sd The socket descriptor.

addrs If sd is an IPv4 socket, addrs should be an array of sockaddr_in structures
containing IPv4 addresses. If sd is an IPv6 socket, addrs should be an array of
sockaddr_in6 structures containing IPv6 or IPv4-mapped IPv6 addresses.

addrcnt The number of addresses in the array addrs.

aid If the function returns successfully, the association identifier for the newly created
association is returned in aid. This parameter is applicable only to one-to-many
style SCTP sockets.

The sctp_connectx() function requests an SCTP association to be made on a socket. This is
similar to connect(3SOCKET) except that an array of peer addresses can be given.

Much like sctp_bindx(3SOCKET), this function allows a caller to specify multiple addresses
at which a peer can be reached. The SCTP stack tries each addresses in the array in a round
robin fashion to set up the association. Note that the list of addresses passed in is only used for
setting up the association. It does not necessarily equal the set of addresses the peer uses for the
resulting association. If the caller wants to find out the set of peer addresses, it must use
sctp_getpaddrs(3SOCKET) to retrieve them after the association has been set up.

Upon successful completion, 0 is returned. Otherwise, -1 is returned and errno is set to
indicate the error.

The sctp_connectx() function will fail if:

EADDRINUSE The address is already in use.

EADDRNOTAVAIL No local address is available for this operation.

EAFNOSUPPORT Addresses in the specified address family cannot be used with this socket.

EALREADY The socket is non-blocking and a previous connection attempt has not yet
been completed.

EBADF The sd parameter is not a valid file descriptor.

Name

Synopsis

Parameters

Description

Return Values

Errors

sctp_connectx(3SOCKET)

Networking Library Functions 545

ECONNREFUSED The attempt to connect was forcefully rejected. The calling program
should use connect(3SOCKET) to close the socket descriptor, and issue
another socket(3SOCKET) call to obtain a new descriptor before making
another attempt.

EFAULT A parameter can not be accessed.

EINTR The connect attempt was interrupted before it is completed. The attempt
will be established asynchronously.

EINVAL A parameter provided is invalid for this operation.

EISCONN The socket is already connected.

ENETUNREACH The network is not reachable from this host.

ENOBUFS Insufficient memory is available to complete the operation.

EOPNOTSUPP The operation is not supported in this type of socket.

ETIMEDOUT The attempt timed out.

EWOULDBLOCK The socket is marked as non-blocking and the requested operation would
block.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

connect(3SOCKET), libsctp(3LIB), sctp_bindx(3SOCKET), sctp_getpaddrs(3SOCKET),
socket(3SOCKET), attributes(5), sctp(7P)

Attributes

See Also

sctp_connectx(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 5 May 2011546

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7libsctp-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7sctp-7p

sctp_getladdrs, sctp_freeladdrs – returns all locally bound addresses on an SCTP socket

cc [flag...] file... -lsocket -lnsl -lsctp [library...]

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/sctp.h>

int sctp_getladdrs(int sock, sctp_assoc_t id, void **addrs);

void sctp_freeladdrs(void *addrs);

The sctp_getladdrs() function queries addresses to which an SCTP socket is bound. The
sctp_freeladdrs() function releases resources that are allocated to hold the addresses.

The sctp_getladdrs() function returns all the locally bound addresses on the SCTP socket
sock. On completion addrs points to a dynamically allocated array of sockaddr_in structures
for an Internet Protocol (IPv4) socket or an array of sockaddr_in6 structures for an Internet
Protocol Version 6 (IPv6) socket. The addrs parameter must not be NULL. For an IPv4 SCTP
socket, the addresses returned in the sockaddr_in structures are IPv4 addresses. For an IPv6
SCTP socket, the addresses in the sockaddr_in6 structures can be IPv6 addresses or
IPv4-mapped IPv6 addresses.

If sock is a one-to-many style SCTP socket, id specifies the association of interest. A value of 0
to id returns locally-bound addresses regardless of a particular association. If sock is a
one-to-one style SCTP socket, id is ignored.

The sctp_freeladdrs() function frees the resources allocated by sctp_getladdrs(). The
addrs parameter is the array of addresses allocated by sctp_getladdrs().

Upon successful completion, the sctp_getladdrs() function returns the number of
addresses in the addrs array. Otherwise, the function returns -1 and sets errno to indicate the
error.

The sctp_getladdrs() call fails under the following conditions.

EBADF The sock argument is an invalid file descriptor.

ENOTSOCK The sock argument is not a socket.

EINVAL The addrs argument is NULL.

EINVAL The id argument is an invalid socket.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Name

Synopsis

Description

Return Values

Errors

Attributes

sctp_getladdrs(3SOCKET)

Networking Library Functions 547

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

bind(3SOCKET), in.h(3HEAD), libsctp(3LIB), sctp_freepaddrs(3SOCKET),
sctp_getpaddrs(3SOCKET), socket(3SOCKET), attributes(5), inet(7P), inet6(7P),
ip(7P), ip6(7P), sctp(7P)

See Also

sctp_getladdrs(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 23 Jan 2008548

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1in.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsctp-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1inet-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1inet6-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ip-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ip6-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sctp-7p

sctp_getpaddrs, sctp_freepaddrs – returns all peer addresses on an SCTP association

cc [flag...] file... -lsocket -lnsl -lsctp [library...]

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/sctp.h>

int sctp_getpaddrs(int sock, sctp_assoc_t id, void **addrs);

void sctp_freepaddrs(void *addrs);

The sctp_getpaddrs() queries the peer addresses in an SCTP association. The
sctp_freepaddrs() function releases resources that are allocated to hold the addresses.

The sctp_getpaddrs() function returns all the peer addresses in the SCTP association
identified by sock. On completion addrs points to a dynamically allocated array of
sockaddr_in structures for an Internet Protocol (IPv4) socket or an array of sockaddr_in6
structures for an Internet Protocol Version 6 (IPv6) socket. The addrs parameter must not be
NULL. For an IPv4 SCTP socket, the addresses returned in the sockaddr_in structures are IPv4
addresses. For an IPv6 SCTP socket, the addresses in the sockaddr_in6 structures can be IPv6
addresses or IPv4-mapped IPv6 addresses.

If sock is a one-to-many style SCTP socket, id specifies the association of interest. If sock is a
one-to-one style SCTP socket, id is ignored.

The sctp_freepaddrs() function frees the resources allocated by sctp_getpaddrs(). The
addrs parameter is the array of addresses allocated by sctp_getpaddrs().

Upon successful completion, the sctp_getpaddrs() function returns the number of
addresses in the addrs array. Otherwise, the function returns -1 and sets errno to indicate the
error.

The sctp_getpaddrs() succeeds unless one of the following conditions exist.

EBADF The sock argument is an invalid file descriptor.

ENOTSOCK The sock argument is not a socket.

EINVAL The addrs argument is NULL.

EINVAL The id argument is an invalid association identifier for a one-to-many style STP
socket.

ENOTCONN The specified socket is not connected.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Name

Synopsis

Description

Return Values

Errors

Attributes

sctp_getpaddrs(3SOCKET)

Networking Library Functions 549

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

bind(3SOCKET), in.h(3HEAD), libsctp(3LIB), sctp_freeladdrs(3SOCKET),
sctp_getladdrs(3SOCKET), socket(3SOCKET), attributes(5), inet(7P), inet6(7P),
ip(7P), ip6(7P), sctp(7P)

See Also

sctp_getpaddrs(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 23 Jan 2008550

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1in.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsctp-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1inet-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1inet6-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ip-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ip6-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sctp-7p

sctp_opt_info – examine SCTP level options for an SCTP endpoint

cc [flag...] file... -lsocket -lnsl -lsctp [library...]

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/sctp.h>

int sctp_opt_info(int sock, sctp_assoc_t id, int opt, void *arg,
socklen_t *len);

The sctp_opt_info() returns SCTP level options associated with the SCTP socket sock. If
sock is a one-to-many style socket, id refers to the association of interest. If sock is a one-to-one
socket or if sock is a branched-off one-to-many style socket, id is ignored. The opt parameter
specifies the SCTP option to get. The arg structure is an option-specific structure buffer
allocated by the caller. The len parameter is the length of the option specified.

Following are the currently supported values for the opt parameter. When one of the options
below specifies an association id, the id is relevant for only one-to-many style SCTP sockets.
The associatation id can be ignored for one-to-one style or branched-off one-to-many style
SCTP sockets.

SCTP_RTOINFO

Returns the protocol parameters used to initialize and bind retransmission timeout (RTO)
tunable. The following structure is used to access these parameters:

struct sctp_rtoinfo {

sctp_assoc_t srto_assoc_id;

uint32_t srto_initial;

uint32_t srto_max;

uint32_t srto_min;

};

where:

srto_assoc_id Association ID specified by the caller

srto_initial Initial RTO value

srto_max Maximum value for the RTO

srto_min Minimum value for the RTO

SSCTP_ASSOCINFO

Returns association-specific parameters. The following structure is used to access the
parameters:

struct sctp_assocparams {

sctp_assoc_t sasoc_assoc_id;

uint16_t sasoc_asocmaxrxt;

uint16_t sasoc_number_peer_destinations;

uint32_t sasoc_peer_rwnd;

uint32_t sasoc_local_rwnd;

uint32_t sasoc_cookie_life;

};

where:

Name

Synopsis

Description

sctp_opt_info(3SOCKET)

Networking Library Functions 551

srto_assoc_id Association ID specified by the caller

sasoc_asocmaxrxt Maximum retransmission count for

the association

sasoc_number_peer_destinations

Number of addresses the peer has

sasoc_peer_rwnd Current value of the peer’s

receive window

sasoc_local_rwnd Last reported receive window sent

to the peer

sasoc_cookie_life Association cookie lifetime used

when issuing cookies

All parameters with time values are in milliseconds.

SCTP_DEFAULT_SEND_PARAM

Returns the default set of parameters used by the sendto() function on this association.
The following structure is used to access the parameters:

struct sctp_sndrcvinfo {

uint16_t sinfo_stream;

uint16_t sinfo_ssn;

uint16_t sinfo_flags;

uint32_t sinfo_ppid;

uint32_t sinfo_context;

uint32_t sinfo_timetolive;

uint32_t sinfo_tsn;

uint32_t sinfo_cumtsn;

sctp_assoc_t sinfo_assoc_id;

};

where:

sinfo_stream Default stream for sendmsg()

sinfo_ssn Always returned as 0

sinfo_flags Default flags for sendmsg()

that include the following:

MSG_UNORDERED

MSG_ADDR_OVER

MSG_ABORT

MSG_EOF

MSG_PR_SCTP

sinfo_ppid Default payload protocol identifier

for sendmsg()

sinfo_context Default context for sendmsg()

sinfo_timetolive Time to live in milliseconds for a

message on the sending side.

The message expires if the sending

side does not start the first

transmission for the message within

the specified time period. If the

sending side starts the first

sctp_opt_info(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 2 Jun 2011552

transmission before the time period

expires, the message is sent as a

normal reliable message. A value of

0 indicates that the message does not

expire. When MSG_PR_SCTP is set in

sinfo_flags, the message expires if

it is not acknowledged within the

time period.

sinfo_tsn Always returned as 0

sinfo_cumtsn Always returned as 0

sinfo_assoc_id Association ID specified by the caller

SCTP_PEER_ADDR_PARAMS

Returns the parameters for a specified peer address of the association. The following
structure is used to access the parameters:

struct sctp_paddrparams {

sctp_assoc_t spp_assoc_id;

struct sockaddr_storage spp_address;

uint32_t spp_hbinterval;

uint16_t spp_pathmaxrxt;

uint32_t spp_pathmtu;

uint32_t spp_flags;

uint32_t spp_ipv6_flowlabel;

uint8_t spp_ipv4_tos;

};

where:

spp_assoc_id
Association ID specified by the caller.

spp_address
Peer's address.

spp_hbinterval
Heartbeat interval in milliseconds.

spp_pathmaxrxt
Maximum number of retransmissions to an address before it is considered unreachable.

spp_pathmtu
The current path MTU of the peer address. It is the number of bytes available in an
SCTP packet for chunks. Providing a value of 0 does not change the current setting. If a
positive value is provided and SPP_PMTUD_DISABLE is set in spp_flags, the given value is
used as the path MTU. If SPP_PMTUD_ENABLE is set in spp_flags, the spp_pathmtu field is
ignored.

spp_ipv6_flowlabel
This field is used in conjunction with the SPP_IPV6_FLOWLABEL flag. This setting has
precedence over any IPv6 layer setting.

sctp_opt_info(3SOCKET)

Networking Library Functions 553

spp_ipv4_tos
This field is used in conjunction with the SPP_IPV4_TOS flag. This setting has
precedence over any IPv4 layer setting.

spp_flags
These flags are used to control various features on an association. The flag field is a bit
mask which may contain zero or more of the following options:

SPP_HB_ENABLE

Enable heartbeats on the specified address.

SPP_HB_DISABLE

Disable heartbeats on the specified address. Note that SPP_HB_ENABLE and
SPP_HB_DISABLE are mutually exclusive, only one of these two should be specified.
Enabling both fields will have undetermined results.

SPP_HB_DEMAND

Request a user initiated heartbeat to be made immediately. This must not be used in
conjunction with a wildcard address.

SPP_HB_TIME_IS_ZERO

Specifies that the time for heartbeat delay is to be set to the value of 0 milliseconds.

SPP_PMTUD_ENABLE

This field will enable PMTU discovery upon the specified address.

SPP_PMTUD_DISABLE

This field will disable PMTU discovery upon the specified address. Note that if the
address field is empty then all addresses on the association are affected. Note also that
SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually exclusive. Enabling both
will have undetermined results.

SPP_IPV6_FLOWLABEL

Setting this flag enables the setting of the IPV6 flowlabel value. The value is obtained
in the spp_ipv6_flowlabel field.

Upon retrieval, this flag will be set to indicate that the spp_ipv6_flowlabel field has a
valid value returned. If a specific destination address is set (in the spp_address field),
the value returned is that of the address. If just an association is specified (and no
address), then the association's default flowlabel is returned. If neither an association
nor a destination is specified, then the socket's default flowlabel is returned. For non
IPv6 sockets, this flag will be left cleared.

SPP_IPV4_TOS

Setting this flag enables the setting of the IPV4 TOS value associated with either the
association or a specific address. The value is obtained in the spp_ipv4_tos field.

Upon retrieval, this flag will be set to indicate that the spp_ipv4_tos field has a valid
value returned. If a specific destination address is set when called (in the spp_address
field) then that specific destination address' TOS value is returned. If just an

sctp_opt_info(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 2 Jun 2011554

association is specified then the association default TOS is returned. If neither an
association nor a destination is specified, then the sockets default TOS is returned.

SCTP_STATUS

Returns the current status information about the association. The following structure is
used to access the parameters:

struct sctp_status {

sctp_assoc_t sstat_assoc_id;

int32_t sstat_state;

uint32_t sstat_rwnd;

uint16_t sstat_unackdata;

uint16_t sstat_penddata;

uint16_t sstat_instrms;

uint16_t sstat_outstrms;

uint16_t sstat_fragmentation_point;

struct sctp_paddrinfo sstat_primary;

};

where:

sstat_assoc_id Association ID specifed by the caller

sstat_state Current state of the association

which might be one of the following:

SCTP_CLOSED

SCTP_BOUND

SCTP_LISTEN

SCTP_COOKIE_WAIT

SCTP_COOKIE_ECHOED

SCTP_ESTABLISHED

SCTP_SHUTDOWN_PENDING

SCTP_SHUTDOWN_SENT

SCTP_SHUTDOWN_RECEIVED

SCTP_SHUTDOWN_ACK_SENT

sstat_rwnd Current receive window of the

association peer

sstat_unackdata Number of unacked DATA chunks

sstat_penddata Number of DATA chunks pending

receipt

sstat_instrms Number of inbound streams

sstat_outstrms Number of outbound streams

sstat_fragmentation_point

Size at which SCTP fragmentation occurs

sstat_primary Information about the primary

peer address

sstat_primary has the following structure

struct sctp_paddrinfo {

sctp_assoc_t spinfo_assoc_id;

sctp_opt_info(3SOCKET)

Networking Library Functions 555

struct sockaddr_storage spinfo_address;

int32_t spinfo_state;

uint32_t spinfo cwnd;

uint32_t spinfo_srtt;

uint32_t spinfo_rto;

uint32_t spinfo_mtu;

};

where:

spinfo_assoc_id Association ID

specified by

the caller

spinfo_address Primary peer

address

spinfo_state State of the peer

address:

SCTP_ACTIVE or

SCTP_INACTIVE

spinfo_cwnd Congestion window

of the peer

address

spinfo_srtt Smoothed round-trip

time calculation of

the peer address

spinfo_rto Current retransmission

timeout value of the

peer address in

milliseconds

spinfo_mtu P-MTU of the address

Upon successful completion, the sctp_opt_info() function returns 0. Otherwise, the
function returns -1 and sets errno to indicate the error.

The sctp_opt_info() call fails under the following conditions.

EBADF The sock argument is an invalid file descriptor.

ENOTSOCK The sock argument is not a socket.

EINVAL The association id is invalid for a one-to-many style SCTP socket.

EINVAL The input buffer length is insufficient for the option specified.

EINVAL The peer address is invalid or does not belong to the association.

EAFNOSUPPORT The address family for the peer's address is other than AF_INET or
AF_INET6.

See attributes(5) for descriptions of the following attributes:

Return Values

Errors

Attributes

sctp_opt_info(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 2 Jun 2011556

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

in.h(3HEAD), libsctp(3LIB), getsockopt(3SOCKET), setsockopt(3SOCKET),
socket(3SOCKET), inet(7P), inet6(7P), ip(7P), ip6(7P), sctp(7P)

See Also

sctp_opt_info(3SOCKET)

Networking Library Functions 557

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1in.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsctp-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1inet-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1inet6-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ip-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ip6-7p
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sctp-7p

sctp_peeloff – branch off existing association from a one-to-many SCTP socket to create a
one-to-one STP socket

cc [flag...] file... -lsocket -lnsl -lsctp [library...]

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/sctp.h>

int sctp_peeloff(int sock, sctp_assoc_t id);

The sctp_peeloff() function branches off an existing association from a one-to-many style
SCTP socket into a separate socket file descriptor. The resulting branched-off socket is a
one-to-one style SCTP socket and is confined to operations allowed on a one-to-one style
SCTP socket.

The sock argument is a one-to-many socket. The association specified by the id argument is
branched off sock.

Upon successful completion, the sctp_peeloff() function returns the file descriptor that
references the branched-off socket. The function returns -1 if an error occurs.

The sctp_peeloff() function fails under the following conditions.

EOPTNOTSUPP The sock argument is not a one-to-many style SCTP socket.

EINVAL The id is 0 or greater than the maximum number of associations for sock.

EMFILE Failure to create a new user file descriptor or file structure.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

in.h(3HEAD), libsctp(3LIB), socket(3SOCKET), sctp(7P)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

sctp_peeloff(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 05 Mar 2004558

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1in.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsctp-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sctp-7p

sctp_recvmsg – receive message from an SCTP socket

cc [flag...] file... -lsocket -lnsl -lsctp [library...]

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/sctp.h>

ssize_t sctp_recvmsg(int s, void *msg, size_t len, struct sockaddr *from,

socklen_t *fromlen, struct sctp_sndrcvinfo *sinfo, int *msg_flags);

The sctp_recvmsg() function receives a message from the SCTP endpoint s.

In addition to specifying the message buffer msg and the length len of the buffer, the following
parameters can be set:

from Pointer to an address, filled in with the sender's address

fromlen Size of the buffer associated with the from parameter

sinfo Pointer to an sctp_sndrcvinfo structure, filled in upon the receipt of the
message

msg_flags Message flags such as MSG_CTRUNC, MSG_NOTIFICATION, MSG_EOR

The sinfo parameter is filled in only when the caller has enabled sctp_data_io_events by
calling setsockopt() with the socket option SCTP_EVENTS.

Upon successful completion, the sctp_recvmsg() function returns the number of bytes
received. The function returns -1 if an error occurs.

The sctp_recvmsg() function fails under the following conditions.

EBADF The s argument is an invalid file descriptor.

ENOTSOCK The s argument is not a socket.

EOPNOTSUPP MSG_OOB is set as a flag.

ENOTCONN There is no established association.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

accept(3SOCKET), bind(3SOCKET), connect(3SOCKET), in.h(3HEAD), libsctp(3LIB),
listen(3SOCKET), recvmsg(3SOCKET), sctp_opt_info(3SOCKET),
setsockopt(3SOCKET), socket(3SOCKET), socket.h(3HEAD), sctp(7P)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

sctp_recvmsg(3SOCKET)

Networking Library Functions 559

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1in.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsctp-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1socket.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sctp-7p

sctp_recvv – receive a message from an SCTP socket

cc [flag...] file... -lsocket -lnsl -lsctp [library...]

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/sctp.h>

ssize_t sctp_recvv(int sd, const struct iovec *iov, int iovlen,
struct sockaddr *from, socklen_t *fromlen, void *info,
socklen_t *infolen, unsigned int *infotype, int *flags);

sd The socket descriptor.

iov The scatter buffer containing the received message.

iovlen The number of elements in iov.

from A pointer to a buffer to be filled with the sender address of the received message.

fromlen The size of the from buffer. Upon return, it is set to the actual size of the sender's
address.

info A pointer to the buffer to hold the attributes of the received message. The
structure type of info is determined by the infotype parameter.

infolen The size of the info buffer. Upon return, it is set to the actual size of returned info
buffer.

infotype The type of the info buffer. The defined values are:

SCTP_RECVV_NOINFO

If both SCTP_RECVRCVINFO and SCTP_RECVNXTINFO options are not enabled,
no attribute will be returned. If only the SCTP_RECVNXTINFO option is enabled
but there is no next message in the buffer, there will also no attribute be
returned. In these cases, infotype will be set to SCTP_RECVV_NOINFO.

SCTP_RECVV_RCVINFO

The type of info is struct sctp_rcvinfo and the attribute is about the
received message.

SCTP_RECVV_NXTINFO

The type of info is struct sctp_nxtinfo and the attribute is about the next
message in receive buffer. This is the case when only the SCTP_RECVNXTINFO
option is enabled and there is a next message in the buffer.

SCTP_RECVV_RN

The type of info is struct sctp_recvv_rn. The recvv_rcvinfo field is the
attribute of the received message and the recvv_nxtinfo field is the attribute of
the next message in buffer. This is the case when both SCTP_RECVRCVINFO and
SCTP_RECVNXTINFO options are enabled and there is a next message in the
receive buffer.

Name

Synopsis

Parameters

sctp_recvv(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 5 May 2011560

flags Flag for receive as in recvmsg(3SOCKET). On return, its value will be different
from what was set in to the call. It has the same value as rcv_flags.

The sctp_recvv() function provides an extensible way for the SCTP stack to pass up different
SCTP attributes associated with a received message to an application.

There are two types of attributes which can be returned by this call: the attribute of the
received message and the attribute of the next message in receive buffer. The caller enables the
SCTP_RECVRCVINFO and SCTP_RECVNXTINFO socket option to receive these attributes
respectively. Attributes of the received message are returned in struct sctp_rcvinfo and
attributes of the next message are returned in struct sctp_nxtinfo. If both options are
enabled, both attributes are returned using the following structure.

struct sctp_recvv_rn {

struct sctp_rcvinfo recvv_rcvinfo;

struct sctp_nxtinfo recvv_nxtinfo;

};

The sctp_rcvinfo structure is defined as:

struct sctp_rcvinfo {

uint16_t rcv_sid;

uint16_t rcv_ssn;

uint16_t rcv_flags;

uint32_t rcv_ppid;

uint32_t rcv_tsn;

uint32_t rcv_cumtsn;

uint32_t rcv_context;

sctp_assoc_t rcv_assoc_id;

};

rcv_sid The stream number of the received message.

rcv_ssn The stream sequence number that the peer endpoint assigned to the DATA
chunk of this message. For fragmented messages, this is the same number for
all deliveries of the message (if more than one sctp_recvv()) is needed to
read the message).

rcv_flags This field may be set to following values:

SCTP_UNORDERED This flag is set when the message was sent unordered.

rcv_ppid This value is the same information that is passed by the peer socket to its
SCTP stack. The SCTP stack performs no byte order modification of this
field.

rcv_tsn The transmission sequence number that the peer endpoint assigned to the
received message.

Description

sctp_recvv(3SOCKET)

Networking Library Functions 561

rcv_cumtsn The current cumulative transmission sequence number of the association
known to the SCTP stack.

rcv_assoc_id The association identifier of the association of the received message. This
field applies only to a one-to-many style socket.

rcv_context This value is an opaque 32 bit context datum that was set by the caller with
the SCTP_CONTEXT socket option. This value is passed back to the upper layer
if an error occurs on the transmission of a message and is retrieved with each
undelivered message.

The sctp_nxtinfo structure is defined as follows:

struct sctp_nxtinfo {

uint16_t nxt_sid;

uint16_t nxt_flags;

uint32_t nxt_ppid;

size_t nxt_length;

sctp_assoc_t nxt_assoc_id;

};

nxt_sid The stream number of the next message.

nxt_flags This field can contain any of the following flags and is composed of a bitwise
OR of the following values:

SCTP_UNORDERED

The next message was sent unordered.

SCTP_COMPLETE

The entire message has been received and is in the socket buffer. This flag
has special implications with respect to the nxt_length field.

SCTP_NOTIFICATION

The next message is not a user message but instead is a notification.

nxt_ppid This value is the same information that was passed by the peer socket to its
SCTP stack when sending the next message. The SCTP stack performs no
byte order modification of this field.

nxt_length The length of the message currently received in the socket buffer. This might
not be the entire length of the next message since a partial delivery may be in
progress. Only if the flag SCTP_COMPLETE is set in the nxt_flags field does this
field represent the entire next message size.

nxt_assoc_id The association identifier of the association of the next message. This field
applies only to a one-to-many style socket.

New structures can be defined to hold new types of attributes. The new structures do not need
to be based on struct sctp_recvv_rn or struct sctp_rcvinfo.

sctp_recvv(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 5 May 2011562

Upon successful completion, the sctp_recvv() function returns the number of bytes
received. The function returns -1 if an error occurs and errno is set to indicate the error.

The sctp_recvv() function will fail if:

EBADF The sd parameter is not a valid file descriptor.

EFAULT A parameter can not be accessed.

EINTR The operation was interrupted by delivery of a signal before any data could
be buffered to be sent.

The operation was interrupted by delivery of a signal before any data is
available to be received.

EINVAL A parameter provided is invalid for this operation.

ENOBUFS Insufficient memory is available to complete the operation.

EWOULDBLOCK The socket is marked as non-blocking, and the requested operation would
block.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libsctp(3LIB), recvmsg(3SOCKET), setsockopt(3SOCKET), socket(3SOCKET),
attributes(5), sctp(7P)

Return Values

Errors

Attributes

See Also

sctp_recvv(3SOCKET)

Networking Library Functions 563

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7libsctp-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7sctp-7p

sctp_send – send message from an SCTP socket

cc [flag...] file... -lsocket -lnsl -lsctp [library...]

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/sctp.h>

ssize_t sctp_send(int s, const void *msg, size_t *len,
const struct sctp_sndrcvinfo *sinfo, int flags);

The sctp_send() function sends messages from one-to-one and one-to-many style SCTP
endpoints. The following parameters can be set:

s Socket created by socket(3SOCKET)

msg Message to be sent

len Size of the message to be sent in bytes

The caller completes the sinfo parameter with values used to send a message. Such values
might include the stream number, payload protocol identifier, time to live, and the SCTP
message flag and context. For a one-to-many socket, the association ID can be specified in the
sinfo parameter to send a message to the association represented in the ID.

Flags supported for sctp_send() are reserved for future use.

Upon successful completion, the sctp_send() function returns the number of bytes sent. The
function returns -1 if an error occurs.

The sctp_send() function fails under the following conditions.

EBADF The s argument is an invalid file descriptor.

ENOTSOCK The s argument is not a socket.

EOPNOTSUPP MSG_ABORT or MSG_EOF is set in the sinfo_flags field of sinfo for a
one-to-one style SCTP socket.

EPIPE The socket is shutting down and no more writes are allowed.

EAGAIN The socket is non-blocking and the transmit queue is full.

ENOTCONN There is no established association.

EINVAL Control message length is incorrect.

EINVAL Specified destination address does not belong to the association.

EINVAL The stream_no is outside the number of outbound streams supported by
the association.

EAFNOSUPPORT Address family of the specified destination address is other than AF_INET

or AF_INET6.

Name

Synopsis

Description

Return Values

Errors

sctp_send(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 19 Mar 2004564

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

accept(3SOCKET), bind(3SOCKET), connect(3SOCKET), in.h(3HEAD), libsctp(3LIB),
listen(3SOCKET), sctp_sendmsg(3SOCKET), sendmsg(3SOCKET), socket(3SOCKET),
socket.h(3HEAD), sctp(7P)

Attributes

See Also

sctp_send(3SOCKET)

Networking Library Functions 565

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1in.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsctp-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1socket.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sctp-7p

sctp_sendmsg – send message from an SCTP socket

cc [flag...] file... -lsocket -lnsl -lsctp [library...]

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/sctp.h>

ssize_t sctp_sendmsg(int s, const void *msg, size_t len,
const struct sockaddr *to, socklen_t tolen, uint32_t ppid,
uint32_t flags, uint16_t stream_no, uint32_t timetolive,
uint32_t context);

The sctp_sendmsg() function sends a message from the SCTP endpoint s.

In addition to specifying msg as the message buffer and len as the length of the buffer, the
following parameters can be set:

to Destination address

tolen Length of the destination address

ppid Application-specified payload protocol identifier

stream_no Target stream for the message

timetolive Time period in milliseconds after which the message expires if transmission for
the message has not been started. A value of 0 indicates that the message does
not expire. When the MSG_PR_SCTP flag is set the message expires, even if
transmission has started, unless the entire message is transmitted within the
timetolive period.

context Value returned when an error occurs in sending a message

The flags parameter is formed from the bitwise OR of zero or more of the following flags:

MSG_UNORDERED This flag requests un-ordered delivery of the message. If this flag is
clear the message is considered an ordered send.

MSG_ABORT When set, this flag causes the specified association to abort by
sending an ABORT to the peer. The flag is used only for
one-to-many style SCTP socket associations.

MSG_EOF When set, this flag invokes a graceful shutdown on a specified
association. The flag is used only for one-to-many style SCTP
socket associations.

MSG_PR_SCTP This flag indicates that the message is treated as partially reliable.
The message expires unless the entire message is successfully
transmitted within the time period specified in the timetolive
parameter.

Name

Synopsis

Description

sctp_sendmsg(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 22 Aug 2007566

MSG_PR_SCTP implements timed reliability service for SCTP
messages. As yet, no common standard has been defined for the
service and the interface is considered unstable.

The initial call to sctp_sendmsg() can be used to create an association, but it cannot be used
subsequently on an existing association. Since sctp_sendmsg() always uses 0 internally as the
association ID, it is not suitable for use on one-to-many sockets.

Upon successful completion, the sctp_sendmsg() function returns the number of bytes sent.
The function returns -1 if an error occurs.

The sctp_sendmsg() function will fail if:

EBADF The s argument is an invalid file descriptor.

ENOTSOCK The s argument is not a socket.

EOPNOTSUPP MSG_OOB is set as a flag.

EOPNOTSUPP MSG_ABORT or MSG_EOF is set on a one-to-one style SCTP socket.

EPIPE The socket is shutting down and no more writes are allowed.

EAGAIN The socket is non-blocking and the transmit queue is full.

ENOTCONN There is no established association.

EINVAL Control message length is incorrect.

EINVAL Specified destination address does not belong to the association.

EAFNOSUPPORT Address family of the specified destination address is other than AF_INET

or AF_INET6.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

accept(3SOCKET), bind(3SOCKET), connect(3SOCKET), in.h(3HEAD), libsctp(3LIB),
listen(3SOCKET), sendmsg(3SOCKET), socket(3SOCKET), socket.h(3HEAD),
attributes(5), sctp(7P)

Return Values

Errors

Attributes

See Also

sctp_sendmsg(3SOCKET)

Networking Library Functions 567

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1in.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsctp-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1socket.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sctp-7p

sctp_sendv – send a message to an SCTP socket

cc [flag...] file... -lsocket -lnsl -lsctp [library...]

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/sctp.h>

ssize_t sctp_sendv(int sd, const struct iovec *iov, int iovcnt,

struct sockaddr *addrs, int addrcnt, void *info, socklen_t infolen,

unsigned int infotype, int flags);

sd The socket descriptor.

iov The message to be sent. The data in the buffer are treated as one single user
message.

iovcnt The number of elements in iov.

addrs An array of addresses to be used to set up an association or one single address to
be used to send the message. Pass in NULL if the caller does not want to set up an
association nor want to send the message to a specific address.

addrcnt The number of addresses in the addrs array.

info A pointer to the buffer containing the attribute associated with the message to be
sent. The type is indicated by info_type parameter.

infolen The length in bytes of info.

infotype Identifies the type of the information provided in info. The defined values are:

SCTP_SENDV_SNDINFO

The type of info is struct sctp_sndinfo.

SCTP_SENDV_PRINFO

The type of info is struct sctp_prinfo.

SCTP_SENDV_AUTHINFO

The type of info is struct sctp_authinfo (not supported).

SCTP_SENDV_SPA

The type of info is struct sctp_sendv_spa.

flags The same flags as used by sendmsg(3SOCKET) (for example, MSG_DONTROUTE).

The sctp_sendv() function provides an extensible way for an application to communicate
different send attributes to the SCTP stack when sending a message. This function can also be
used to set up an association. The addrs array is similar to the addrs array used by
sctp_connectx(3SOCKET).

There are three types of attributes which can be used to describe a message to be sent. They are
represented by struct sctp_sndinfo, struct sctp_prinfo, and struct sctp_authinfo

Name

Synopsis

Parameters

Description

sctp_sendv(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 19 May 2011568

(currently not supported). The following structure sctp_sendv_spa is defined to be used
when more than one of the above attributes are needed to describe a message to be sent.

struct sctp_sendv_spa {

uint32_t sendv_flags;

struct sctp_sndinfo sendv_sndinfo;

struct sctp_prinfo sendv_prinfo;

struct sctp_authinfo sendv_authinfo;

};

The sendv_flags field holds a bitwise OR of SCTP_SEND_SNDINFO_VALID,
SCTP_SEND_PRINFO_VALID, and SCTP_SEND_AUTHINFO_VALID, indicating whether the
sendv_sndinfo, sendv_prinfo, and sendv_authinfo fields contain valid information.

The sctp_sndinfo structure is defined as:

struct sctp_sndinfo {

uint16_t snd_sid;

uint16_t snd_flags;

uint32_t snd_ppid;

uint32_t snd_context;

sctp_assoc_t snd_assoc_id;

};

snd_sid This value holds the stream number to send the message to. If a sender
specifies an invalid stream number, an error value is returned and the call
fails.

snd_flags This field is a bit wise OR of the following flags:

SCTP_UNORDERED

This flag requests the unordered delivery of the message.

SCTP_ADDR_OVER

This flag requests the SCTP stack to override the primary destination
address and send the message to the given address in addrs. Only one
address can be given is this case. If this flag is not specified and addrs is
not NULL, this call is treated as a connect request. This flag is applicable to
one-to-many style sockets only.

SCTP_ABORT

Setting this flag causes the specified association to be aborted by sending
an ABORT message to the peer. The ABORT message will contain an
error cause 'User Initiated Abort' with cause code 12. The specific
information the cause of this error is provided in msg_iov.

SCTP_EOF

Setting this flag invokes the SCTP graceful shutdown procedures on the
specified association. Graceful shutdown assures that all data queued by
both endpoints is successfully transmitted before closing the association.

sctp_sendv(3SOCKET)

Networking Library Functions 569

SCTP_SENDALL

This flag requests that the message is sent to all associations that are
currently established on the socket. This flag is applicable to one-to-many
style sockets only.

snd_ppid An unsigned integer that is passed to the remote end in each user message
(SCTP DATA chunk). The SCTP stack performs no byte order modification
of this field. For example, if the DATA chunk has to contain a given value in
network byte order, the SCTP user has to perform the htonl(3SOCKET)
computation.

snd_context This value is an opaque 32 bit context datum. It is passed back to the caller if
an error occurs on the transmission of the message and is retrieved with
each undelivered message.

snd_assoc_id When sending a message, this holds the identifier for the association which
the message is sent to. When this call is used to set up an association, the
association identifier of the newly created association is returned in this
field. This field is applicable to one-to-many style sockets only.

The sctp_prinfo structure is defined as:

struct sctp_prinfo {

uint16_t pr_policy;

uint32_t pr_value;

};

pr_policy This field specifies which partial reliability (PR-SCTP) policy is used to send the
message. If it is SCTP_PR_SCTP_NONE, the message is sent reliably (the default is
normal send). If it is SCTP_PR_SCTP_TTL, “timed reliability” as defined in RFC
3758 is used. In this case, the lifetime is provided in pr_value.

pr_value The meaning of this field depends on the PR-SCTP policy specified by the
pr_policy field. It is ignored when SCTP_PR_SCTP_NONE is specified. In case of
SCTP_PR_SCTP_TTL, this field specifies the lifetime in milliseconds of the
message.

When new send attributes are needed, new structures can be defined. Those new structures do
not need to be based on any of the above defined structures.

The struct sctp_sndinfo attribute for one-to-many style sockets must always be used in
order to specify the association the message is to be sent to. The only case where it is not
needed is when this call is used to set up a new association.

The caller provides a list of addresses in the addrs parameter to set up an association. This
function will behave like calling sctp_connectx(), first using the list of addresses, and then
calling sendmsg() with the given message and attributes. For an one-to-many style socket, if a
struct sctp_sndinfo attribute is provided, the snd_assoc_id field must be 0. When this

sctp_sendv(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 19 May 2011570

function returns, the snd_assoc_id field will contain the association identifier of the newly
established association. The struct sctp_sndinfo attribute is not required to set up an
association for one-to-many style sockets. If this attribute is not provided, the caller can enable
the SCTP_ASSOC_CHANGE notification and use the SCTP_COMM_UP message to find out the
association identifier.

If the caller wants to send the message to a specific peer address (overriding the primary
address), it can provide the specific address in the addrs parameter and provide a struct
sctp_sndinfo attribute with the snd_flags field set to SCTP_ADDR_OVER.

This function can also be used to terminate an association. The caller provides an
sctp_sndinfo attribute with the snd_flags set to SCTP_EOF. In this case, the length of the
message would be zero.

Sending a message using sctp_sendv() is atomic unless explicit EOR marking is enabled on
the socket specified by sd.

Upon successful completion, the number of bytes sent is returned. Otherwise, -1 is returned
and errno is set to indicate the error.

The sctp_sendv() function will fail if:

EADDRINUSE The address is already in use.

EADDRNOTAVAIL No local address is available for this operation.

EAFNOSUPPORT Addresses in the specified address family cannot be used with this socket.

EBADF The sd parameter is not a valid file descriptor.

ECONNREFUSED The attempt to connect was forcefully rejected. The calling program
should close the socket descriptor using close(2) and issue another
socket(3SOCKET) call to obtain a new descriptor before making another
attempt.

EFAULT A parameter can not be accessed.

EINTR The operation was interrupted by delivery of a signal before any data
could be buffered to be sent.

EINVAL A parameter provided is invalid for this operation.

EMSGSIZE The message is too large to be sent all at once.

ENETUNREACH The network is not reachable from this host.

ENOBUFS Insufficient memory is available to complete the operation.

EOPNOTSUPP Operation not supported in this type of socket.

EPIPE The peer end point has shutdown the association.

Return Values

Errors

sctp_sendv(3SOCKET)

Networking Library Functions 571

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7close-2

ETIMEDOUT Attempt timed out.

EWOULDBLOCK The socket is marked as non-blocking, and the requested operation
would block.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

htonl(3SOCKET), libsctp(3LIB), sctp_connectx(3SOCKET), sendmsg(3SOCKET),
socket(3SOCKET), attributes(5), sctp(7P)

Attributes

See Also

sctp_sendv(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 19 May 2011572

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7libsctp-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7sctp-7p

sdp_add_origin, sdp_add_name, sdp_add_information, sdp_add_uri, sdp_add_email,
sdp_add_phone, sdp_add_connection, sdp_add_bandwidth, sdp_add_repeat, sdp_add_time,
sdp_add_zone, sdp_add_key, sdp_add_attribute, sdp_add_media – add specific SDP fields to
the SDP session structure

cc [flag...] file... -lcommputil [library...]
#include <sdp.h>

int sdp_add_origin(sdp_session_t *session, const char *name,
uint64_t id, uint64_t ver, const char *nettype,
const char *addrtype, const char *address);

int sdp_add_name(sdp_session_t *session, const char *name);

int sdp_add_information(char **information, const char *value);

int sdp_add_uri(sdp_session_t *session, const char *uri);

int sdp_add_email(sdp_session_t *session, const char *email);

int sdp_add_phone(sdp_session_t *session, const char *phone);

int sdp_add_connection(sdp_conn_t **conn, const char *nettype,
const char *addrtype, const char *address, uint8_t ttl,
int addrcount);

int sdp_add_bandwidth(sdp_bandwidth_t **bw, const char *type,
uint64_t value);

int sdp_add_repeat(sdp_time_t *time, uint64_t interval,
uint64_t duration, const char *offset);

int sdp_add_time(sdp_session_t *session, uint64_t starttime,
uint64_t stoptime, sdp_time_t **time);

int sdp_add_zone(sdp_session_t *session, uint64_t time,
const char *offset);

int sdp_add_key(sdp_key_t **key, const char *method,
const char *enckey);

int sdp_add_attribute(sdp_attr_t **attr, const char *name,
const char *value);

int sdp_add_media(sdp_session_t *session, const char *name,
uint_t port, int portcount, const char *protocol,
const char *format, sdp_media_t **media);

The caller has to first call sdp_new_session(3COMMPUTIL) and get pointer to a session
structure. Then that pointer is used as argument in the following functions and the session
structure is constructed. Once the structure is built the caller converts it to a string
representation using sdp_session_to_str(3COMMPUTIL).

Name

Synopsis

Description

sdp_add_origin(3COMMPUTIL)

Networking Library Functions 573

The sdp_add_origin() function adds ORIGIN (o=) SDP field to the session structure
(sdp_session_t) using name, id, ver, nettype, addrtype, and address.

The sdp_add_name() function adds NAME (s=) SDP field to the session structure
(sdp_session_t) using name.

The sdp_add_information() function adds INFO (i=) SDP field to the session structure
(sdp_session_t) or media structure (sdp_media_t) using value. Since this field can be either in
the media section or the session section of an SDP description the caller has to pass
&session→s_info or &media→m_info as the first argument.

The sdp_add_uri() function adds URI (u=) SDP field to the session structure
(sdp_session_t) using uri.

The sdp_add_email() function adds EMAIL (e=) SDP field to the session structure
(sdp_session_t) using email.

The sdp_add_phone() function adds PHONE (p=) SDP field to the session structure
(sdp_session_t) using phone.

The sdp_add_connection() function adds CONNECTION (c=) SDP field to the session
structure (sdp_session_t) or the media structure (sdp_media_t) using nettype, addrtype,
address, ttl, and addrcount. While adding an IP4 or IP6 unicast address the ttl and addrcount
should be set to 0. For multicast address the ttl should be set a reasonable value (0 - 255) and
addrcount cannot be 0. Also since this field can be either in the media section or the session
section of an SDP description, the caller has to pass &session→s_conn or &media→m_conn as
the first argument.

The sdp_add_bandwidth() function adds BANDWIDTH (b=) SDP field to the session
structure (sdp_session_t) or the media structure (sdp_media_t) using type and value. Since
this field can be either in the media section or the session section of an SDP description, the
caller has to pass &session→s_bw or &media→m_bw as the first argument.

The sdp_add_time() function adds the TIME (t=) SDP field to the session structure using
startime and stoptime. The pointer to the newly created time structure is returned in time. This
pointer is then used in sdp_add_repeat() function.

The sdp_add_repeat() function adds the REPEAT (r=) SDP field to the session structure
using interval, duration and offset. Here, offset is a string holding one or more offset values, for
example “60” or “60 1d 3h”.

The sdp_add_zone() function adds the ZONE (z=) SDP field to the session structure using
time and offset. To add multiple time and offset values in a single zone field, call this function
once for each pair. See the example below.

The sdp_add_key() function adds the KEY (k=) SDP field to the session structure
(sdp_session_t) or media structure (sdp_media_t) using method and enckey. Since this field
can be either in the media section or the session section of an SDP description, the caller has to
pass &session→s_key or &media→m_key as the first argument.

sdp_add_origin(3COMMPUTIL)

man pages section 3: Networking Library Functions • Last Revised 12 Oct 2007574

The sdp_add_attribute() function adds the ATTRIBUTE (a=) SDP field to the session
structure (sdp_session_t) or media structure (sdp_media_t) using name and value. Since
this field can be either in the media section or the session section of an SDP description, the
caller has to pass &session→s_attr or &media→m_attr as the first argument.

The sdp_add_media() function adds the MEDIA (m=) SDP field to the session structure
(sdp_session_t) using name, port, portcount, protocol, and format. Here, format is a string
holding possibly more than one value, for example, “0 31 32 97”. The pointer to the newly
created media structure is returned in media. This pointer is then used to add SDP fields
specific to that media section.

These functions return 0 on success and the appropriate error value on failure. The value of
errno is not changed by these calls in the event of an error.

These functions will fail if:

EINVAL Mandatory parameters are not provided (they are null).

ENOMEM The allocation of memory failed.

EXAMPLE 1 Build an SDP session structure

In the following example we see how to build an SDP session structure using the functions
described on this manual page. We first get a pointer to sdp_session_t structure by calling
sdp_new_session(). Then to this newly created structure we add various SDP fields. Once the
structure is built we obtain a string representation of the structure using
sdp_session_to_str() function. Since its caller responsibility to free the session we call
sdp_free_session() towards the end.

/* SDP Message we will be building

"v=0\r\n\
o=Alice 2890844526 2890842807 IN IP4 10.47.16.5\r\n\

s=-\r\n\

i=A Seminar on the session description protocol\r\n\

u=http://www.example.com/seminars/sdp.pdf\r\n\

e=alice@example.com (Alice Smith)\r\n\

p=+1 911-345-1160\r\n\

c=IN IP4 10.47.16.5\r\n\

b=CT:1024\r\n\

t=2854678930 2854679000\r\n\

r=604800 3600 0 90000\r\n\

z=2882844526 -1h 2898848070 0h\r\n\

a=recvonly\r\n\

m=audio 49170 RTP/AVP 0\r\n\

i=audio media\r\n\

b=CT:1000\r\n\

k=prompt\r\n\

m=video 51372 RTP/AVP 99 90\r\n\

i=video media\r\n\

Return Values

Errors

Examples

sdp_add_origin(3COMMPUTIL)

Networking Library Functions 575

EXAMPLE 1 Build an SDP session structure (Continued)

a=rtpmap:99 h232-199/90000\r\n\

a=rtpmap:90 h263-1998/90000\r\n"
*/

#include stdio.h>

#include string.h>

#include errno.h>

#include sdp.h>

int main ()

{

sdp_session_t *my_sess;

sdp_media_t *my_media;

sdp_time_t *my_time;

char *b_sdp;

my_sess = sdp_new_session();

if (my_sess == NULL) {

return (ENOMEM);

}

my_sess->version = 0;

if (sdp_add_name(my_sess, "-") != 0)

goto err_ret;

if (sdp_add_origin(my_sess, "Alice", 2890844526ULL, 2890842807ULL,

"IN", "IP4", "10.47.16.5") != 0)

goto err_ret;

if (sdp_add_information(&my_sess->s_info, "A Seminar on the session"
"description protocol") != 0)

goto err_ret;

if (sdp_add_uri (my_sess, "http://www.example.com/seminars/sdp.pdf")
!= 0)

goto err_ret;

if (sdp_add_email(my_sess, "alice@example.com (Alice smith)") != 0)

goto err_ret;

if (sdp_add_phone(my_sess, "+1 911-345-1160") != 0)

goto err_ret;

if (sdp_add_connection(&my_sess->s_conn, "IN", "IP4", "10.47.16.5",
0, 0) != 0)

goto err_ret;

if (sdp_add_bandwidth(&my_sess->s_bw, "CT", 1024) != 0)

goto err_ret;

if (sdp_add_time(my_sess, 2854678930ULL, 2854679000ULL, &my_time)

!= 0)

goto err_ret;

if (sdp_add_repeat(my_time, 604800ULL, 3600ULL, "0 90000") != 0)

sdp_add_origin(3COMMPUTIL)

man pages section 3: Networking Library Functions • Last Revised 12 Oct 2007576

EXAMPLE 1 Build an SDP session structure (Continued)

goto err_ret;

if (sdp_add_zone(my_sess, 2882844526ULL, "-1h") != 0)

goto err_ret;

if (sdp_add_zone(my_sess, 2898848070ULL, "0h") != 0)

goto err_ret;

if (sdp_add_attribute(&my_sess->s_attr, "sendrecv", NULL) != 0)

goto err_ret;

if (sdp_add_media(my_sess, "audio", 49170, 1, "RTP/AVP",
"0", &my_media) != 0)

goto err_ret;

if (sdp_add_information(&my_media->m_info, "audio media") != 0)

goto err_ret;

if (sdp_add_bandwidth(&my_media->m_bw, "CT", 1000) != 0)

goto err_ret;

if (sdp_add_key(&my_media->m_key, "prompt", NULL) != 0)

goto err_ret;

if (sdp_add_media(my_sess, "video", 51732, 1, "RTP/AVP",
"99 90", &my_media) != 0)

goto err_ret;

if (sdp_add_information(&my_media->m_info, "video media") != 0)

goto err_ret;

if (sdp_add_attribute(&my_media->m_attr, "rtpmap",
"99 h232-199/90000") != 0)

goto err_ret;

if (sdp_add_attribute(&my_media->m_attr, "rtpmap",
"90 h263-1998/90000") != 0)

goto err_ret;

b_sdp = sdp_session_to_str(my_sess, &error);

/*

* b_sdp is the string representation of my_sess structure

*/

free(b_sdp);

sdp_free_session(my_sess);

return (0);

err_ret:

free(b_sdp);

sdp_free_session(my_sess);

return (1);

}

See attributes(5) for descriptions of the following attributes:Attributes

sdp_add_origin(3COMMPUTIL)

Networking Library Functions 577

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libcommputil(3LIB), sdp_new_session(3COMMPUTIL), sdp_parse(3COMMPUTIL),
sdp_session_to_str(3COMMPUTIL), attributes(5)

See Also

sdp_add_origin(3COMMPUTIL)

man pages section 3: Networking Library Functions • Last Revised 12 Oct 2007578

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libcommputil-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sdp_clone_session – clone an SDP session structure

cc [flag...] file... -lcommputil [library...]
#include <sdp.h>

sdp_session_t *sdp_clone_session(const sdp_session_t *session);

The sdp_clone_session() function clones the input SDP session structure and returns the
cloned structure. The resulting cloned structure has all the SDP fields from the input
structure. The caller is responsible for freeing the returned cloned structure using
sdp_free_session(), described on the sdp_new_session(3COMMPUTIL) manual page.

The sdp_clone_session() function returns the cloned structure on success and NULL on
failure.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libcommputil(3LIB), sdp_new_session(3COMMPUTIL), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

sdp_clone_session(3COMMPUTIL)

Networking Library Functions 579

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libcommputil-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sdp_delete_all_field, sdp_delete_all_media_field – delete all SDP fields

cc [flag...] file... -lcommputil [library...]
#include <sdp.h>

int sdp_delete_all_field(sdp_session_t *session,
const char field);

int sdp_delete_all_media_field(sdp_media_t *media,
const char field);

The sdp_delete_all_field() function deletes all the occurrences of the specified SDP field
from the session structure. For example, if the session structure has 3 bandwidth (b=) fields,
then when this function is called with SDP_BANDWIDTH_FIELD, all the three bandwidth fields
are deleted from the session structure.

The sdp_delete_all_media_field() function deletes all the occurrences of the specified
SDP field from the specified media structure. For example, if the caller wants to delete all the
attribute fields in a media structure, calling this function with SDP_ATTRIBUTE_FIELD

argument would delete all the attribute fields in the media structure.

Upon successful completion, these functions return 0. Otherwise, the appropriate error value
is returned. The value of errno is not changed by these calls in the event of an error.

These functions will fail if:

EINVAL The session or media argument is NULL or the field type is unknown.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libcommputil(3LIB), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

sdp_delete_all_field(3COMMPUTIL)

man pages section 3: Networking Library Functions • Last Revised 12 Oct 2007580

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libcommputil-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sdp_delete_media, sdp_delete_attribute – delete the specified media or attribute from the
appropriate list

cc [flag...] file... -lcommputil [library...]
#include <sdp.h>

int sdp_delete_media(sdp_media_t **l_media, sdp_media_t *media);

int sdp_delete_attribute(sdp_attr_t **l_attr, sdp_attr_t *attr);

The sdp_delete_media() function deletes the specified media from the media list. It is similar
to deleting a node in a linked list. The function first finds the media that needs to be deleted
using sdp_find_media(3COMMPUTIL). The found media is then passed to
sdp_delete_media() to delete it. The function frees the memory allocated to media structure
after deleting it.

The sdp_delete_attribute() function deletes the specified attribute from the attribute list.
It is similar to deleting a node in a linked list. The function first finds the attribute that needs to
be deleted using sdp_find_media_rtpmap(3COMMPUTIL) or
sdp_find_attribute(3COMMPUTIL). The found attribute is then passed to
sdp_delete_attribute() to delete it. The function frees the memory allocated to attribute
structure after deleting it.

Upon successful completion, these functions return 0. Otherwise, the appropriate error value
is returned. The value of errno is not changed by these calls in the event of an error.

These functions will fail if:

EINVAL The mandatory input parameters are not provided or are NULL.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libcommputil(3LIB), sdp_find_attribute(3COMMPUTIL),
sdp_find_media(3COMMPUTIL), sdp_find_media_rtpmap(3COMMPUTIL),
attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

sdp_delete_media(3COMMPUTIL)

Networking Library Functions 581

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libcommputil-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sdp_find_attribute – find the attribute from the attribute list

cc [flag...] file... -lcommputil [library...]
#include <sdp.h>

sdp_attr_t *sdp_find_attribute(sdp_attr_t *attr, const char *name);

The sdp_find_attribute() function searches the attribute list attr for the specified attribute
name. If the attribute is found it returns the pointer to that attribute. Otherwise it returns
NULL.

The sdp_find_attribute() function returns the attribute (sdp_attr_t *) on success and
NULL when the search fails or when mandatory input parameters are NULL.

EXAMPLE 1 An (incomplete) SDP description that contains one media section: audio.

m=audio 49170 RTP/AVP 0 8

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

a=sendonly

a=ptime:10000

a=maxptime:20000

/*

* Assuming that above description is parsed using sdp_parse and that

* the parsed structure is in "session" sdp_session_t structure.

*/

sdp_attr_t *ptime;

sdp_attr_t *max_ptime;

sdp_media_t *media = session->s_media;

if ((ptime = sdp_find_attribute(media->m_attr, "ptime")) == NULL)

/* ptime attribute not present */

else if((max_ptime = sdp_find_attribute(media->m_attr,

"maxptime")) == NULL)

/* max_ptime attribute not present */

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Name

Synopsis

Description

Return Values

Examples

Attributes

sdp_find_attribute(3COMMPUTIL)

man pages section 3: Networking Library Functions • Last Revised 12 Oct 2007582

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

libcommputil(3LIB), sdp_parse(3COMMPUTIL), attributes(5)See Also

sdp_find_attribute(3COMMPUTIL)

Networking Library Functions 583

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libcommputil-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sdp_find_media – find the specified media from the media list

cc [flag...] file... -lcommputil [library...]
#include <sdp.h>

sdp_media_t *sdp_find_media(sdp_media_t *media, const char *name);

The sdp_find_media() function searches the media list for the media specified by name. If
the media is found it returns the pointer to the media. Otherwise it returns NULL.

The sdp_find_media() function returns the media (sdp_media_t *) on success and NULL

when the search fails or the mandatory input parameters are NULL.

EXAMPLE 1 An (incomplete) SDP description that contains two media sections: audio and video.

m=audio 49170 RTP/AVP 0 8

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

m=video 51372 RTP/AVP 31 32

a=rtpmap:31 H261/90000

a=rtpmap:32 MPV/90000

/*

* Assuming that above description is parsed using sdp_parse() and that

* the parsed structure is in "session" sdp_session_t structure.

*/

sdp_media_t *my_media;

my_media = sdp_find_media(session->s_media, "video");

/*

* my_media now points to the structure containg video media section

* information

*/

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libcommputil(3LIB), sdp_parse(3COMMPUTIL), attributes(5)

Name

Synopsis

Description

Return Values

Examples

Attributes

See Also

sdp_find_media(3COMMPUTIL)

man pages section 3: Networking Library Functions • Last Revised 12 Oct 2007584

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libcommputil-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sdp_find_media_rtpmap – find the rtpmap attribute in the specified media

cc [flag...] file... -lcommputil [library...]
#include <sdp.h>

sdp_attr_t *sdp_find_media_rtpmap(sdp_media_t *media,
const char *format);

The sdp_find_media_rtpmap() function searches the attribute list of the specified media
structure, media, for the specified format. If the search is successful a pointer to that rtpmap
attribute is returned. Otherwise it returns NULL.

The sdp_find_media_rtpmap() function returns the attribute (sdp_attr_t *) on success and
NULL when the search fails or the mandatory input parameters are NULL.

EXAMPLE 1 An (incomplete) SDP description that contains two media sections: audio and video.

m=audio 49170 RTP/AVP 0 8

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

m=video 51372 RTP/AVP 31 32

a=rtpmap:31 H261/90000

a=rtpmap:32 MPV/90000

/*

* Assuming that above description is parsed using sdp_parse() and that

* the parsed structure is in "session" sdp_session_t structure.

*/

sdp_media_t *video;

sdp_attr_t *mpv;

video = sdp_find_media(session->s_media, "video);
mpv = sdp_find_media_rtpmap(video, "32");

/*

* Now the attribute structure sdp_attr_t, mpv will be having

* values from the attribute field "a=rtpmap:32 MPV/90000"
*/

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Name

Synopsis

Description

Return Values

Examples

Attributes

sdp_find_media_rtpmap(3COMMPUTIL)

Networking Library Functions 585

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

libcommputil(3LIB), sdp_parse(3COMMPUTIL), attributes(5)See Also

sdp_find_media_rtpmap(3COMMPUTIL)

man pages section 3: Networking Library Functions • Last Revised 12 Oct 2007586

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libcommputil-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sdp_new_session, sdp_free_session – allocate a new SDP session structure

cc [flag...] file... -lcommputil [library...]
#include <sdp.h>

sdp_session_t *sdp_new_session();

void sdp_free_session(sdp_session_t *session);

The sdp_new_session() function allocates memory for an SDP session structure specified by
session, assigns a version number to the session structure, and returns a new session structure.
It is the responsibility of the user to free the memory allocated to the session structure using
the sdp_free_session() function.

The sdp_free_session() function destroys the SDP session structure and frees the resources
associated with it.

The sdp_new_session() function returns the newly allocated SDP session structure on
success and NULL on failure.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libcommputil(3LIB), attributes(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

sdp_new_session(3COMMPUTIL)

Networking Library Functions 587

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libcommputil-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sdp_parse – parse the SDP description

cc [flag...] file... -lcommputil [library...]
#include <sdp.h>

int sdp_parse(const char *sdp_info, int len, int flags,
sdp_session_t **session, uint_t *p_error);

The sdp_parse() function parses the SDP description present in sdp_info and populates the
sdp_session_t structure. The len argument specifies the length of the character buffer
sdp_info. The flags argument is not used, but must be set to 0, otherwise the call fails with the
error value of EINVAL and *session set to NULL. The function allocates the memory required for
the sdp_session_t structure and hence the caller is responsible for freeing the parsed session
structure (sdp_session_t) using sdp_free_session(), described on the
sdp_new_session(3COMMPUTIL) manual page.

The p_error argument identifies any field that had a parsing error. It cannot be NULL and can
take any of the following values:

SDP_VERSION_ERROR 0x00000001

SDP_ORIGIN_ERROR 0x00000002

SDP_NAME_ERROR 0x00000004

SDP_INFO_ERROR 0x00000008

SDP_URI_ERROR 0x00000010

SDP_EMAIL_ERROR 0x00000020

SDP_PHONE_ERROR 0x00000040

SDP_CONNECTION_ERROR 0x00000080

SDP_BANDWIDTH_ERROR 0x00000100

SDP_TIME_ERROR 0x00000200

SDP_REPEAT_TIME_ERROR 0x00000400

SDP_ZONE_ERROR 0x00000800

SDP_KEY_ERROR 0x00001000

SDP_ATTRIBUTE_ERROR 0x00002000

SDP_MEDIA_ERROR 0x00004000

SDP_FIELDS_ORDER_ERROR 0x00008000

SDP_MISSING_FIELDS 0x00010000

Name

Synopsis

Description

sdp_parse(3COMMPUTIL)

man pages section 3: Networking Library Functions • Last Revised 12 Oct 2007588

RFC 4566 states that the fields in the SDP description need to be in a strict order. If the fields
are not in the order specified in the RFC, SDP_FIELDS_ORDER_ERROR will be set.

RFC 4566 mandates certain fields to be present in SDP description. If those fields are missing
then SDP_MISSING_FIELDS will be set.

Applications can check for presence of parsing error using the bit-wise operators.

If there was an error on a particular field, that field information will not be in the
sdp_session_t structure. Also, parsing continues even if there was a field with a parsing
error.

The sdp_session_t structure is defined in the header file <sdp.h> and contains the following
members:

typedef struct sdp_session {

int sdp_session_version; /* SDP session verstion */

int s_version; /* SDP version field */

sdp_origin_t *s_origin; /* SDP origin field */

char *s_name; /* SDP name field */

char *s_info; /* SDP info field */

char *s_uri; /* SDP uri field */

sdp_list_t *s_email; /* SDP email field */

sdp_list_t *s_phone; /* SDP phone field */

sdp_conn_t *s_conn; /* SDP connection field */

sdp_bandwidth_t *s_bw; /* SDP bandwidth field */

sdp_time_t *s_time; /* SDP time field */

sdp_zone_t *s_zone; /* SDP zone field */

sdp_key_t *s_key; /* SDP key field */

sdp_attr_t *s_attr; /* SDP attribute field */

sdp_media_t *s_media; /* SDP media field */

} sdp_session_t;

The sdp_session_version member is used to track the version of the structure. Initially it is
set to SDP_SESSION_VERSION_1 (= 1).

The sdp_origin_t structure contains the following members:

typedef struct sdp_origin {

char *o_username; /* username of the originating host */

uint64_t o_id; /* session id */

uint64_t o_version; /* version number of this session */

/* description */

char *o_nettype; /* type of network */

char *o_addrtype; /* type of the address */

char *o_address; /* address of the machine from which */

/* session was created */

} sdp_origin_t;

The sdp_conn_t structure contains the following members:

sdp_parse(3COMMPUTIL)

Networking Library Functions 589

typedef struct sdp_conn {

char *c_nettype; /* type of network */

char *c_addrtype; /* type of the address */

char *c_address; /* unicast-address or multicast */

/* address */

int c_addrcount; /* number of addresses (case of */

/* multicast address with layered */

/* encodings */

struct sdp_conn *c_next; /* pointer to next connection */

/* structure; there could be several */

/* connection fields in SDP description */

uint8_t c_ttl; /* TTL value for IPV4 multicast address */

} sdp_conn_t;

The sdp_bandwidth_t structure contains the following members:

typedef struct sdp_bandwidth {

char *b_type; /* info needed to interpret b_value */

uint64_t b_value; /* bandwidth value */

struct sdp_bandwidth *b_next; /* pointer to next bandwidth structure*/

/* (there could be several bandwidth */

/* fields in SDP description */

} sdp_bandwidth_t;

The sdp_list_t structure is a linked list of void pointers. This structure holds SDP fields like
email and phone, in which case the void pointers point to character buffers. It to hold
information in cases where the number of elements is not predefined (for example, offset (in
repeat field) where void pointer holds integer values or format (in media field) where void
pointers point to character buffers). The sdp_list_t structure is defined as:

typedef struct sdp_list {

void *value; /* string values in case of email, phone and */

/* format (in media field) or integer values */

/* in case of offset (in repeat field) */

struct sdp_list *next; /* pointer to the next node in the list */

} sdp_list_t;

The sdp_repeat_t structure contains the following members:

typedef struct sdp_repeat {

uint64_t r_interval; /* repeat interval, e.g. 86400 seconds */

/* (1 day) */

uint64_t r_duration; /* duration of session, e.g. 3600 */

/* seconds (1 hour) */

sdp_list_t *r_offset; /* linked list of offset values; each */

/* represents offset from start-time */

/* in SDP time field */

struct sdp_repeat *r_next; /* pointer to next repeat structure; */

/* there could be several repeat */

/* fields in SDP description */

sdp_parse(3COMMPUTIL)

man pages section 3: Networking Library Functions • Last Revised 12 Oct 2007590

The sdp_repeat_t structure will always be part of the time structure sdp_time_t, since the
repeat field does not appear alone in SDP description and is always associated with the time
field.

The sdp_time_t structure contains the following members:

typedef struct sdp_time {

uint64_t t_start; /* start-time for a session */

uint64_t t_stop; /* end-time for a session */

sdp_repeat_t *t_repeat; /* points to the SDP repeat field */

struct sdp_time *t_next; /* pointer to next time field; there */

/* could there could be several time */

/* fields in SDP description */

} sdp_time_t;

The sdp_zone_t structure contains the following members:

typedef struct sdp_zone {

uint64_t z_time; /* base time */

char *z_offset; /* offset added to z_time to determine */

/* session time; mainly used for daylight */

/* saving time conversions */

struct sdp_zone *z_next; /* pointer to next zone field; there */

/* could be several <adjustment-time> */

/* <offset> pairs within a zone field */

} sdp_zone_t;

The sdp_key_t structure contains the following members:

typedef struct sdp_key {

char *k_method; /* key type */

char *k_enckey; /* encryption key */

} sdp_key_t;

The sdp_attr_t structure contains the following members:

typedef struct sdp_attr {

char *a_name; /* name of the attribute */

char *a_value; /* value of the attribute */

struct sdp_attr *a_next; /* pointer to the next attribute */

/* structure; there could be several */

/* attribute fields within SDP description */

} sdp_attr_t;

The sdp_media_t structure contains the following members:

typedef struct sdp_media {

char *m_name; /* name of the media such as "audio", */

/* "video", "message" */

uint_t m_port; /* transport layer port information */

int m_portcount; /* number of ports in case of */

sdp_parse(3COMMPUTIL)

Networking Library Functions 591

/* hierarchically encoded streams */

char *m_proto; /* transport protocol */

sdp_list_t *m_format; /* media format description */

char *m_info; /* media info field */

sdp_conn_t *m_conn; /* media connection field */

sdp_bandwidth_t *m_bw; /* media bandwidth field */

sdp_key_t *m_key; /* media key field */

sdp_attr_t *m_attr; /* media attribute field */

struct sdp_media *m_next; /* pointer to next media structure; */

/* there could be several media */

/* sections in SDP description */

sdp_session_t *m_session; /* pointer to the session structure */

} sdp_media_t;

The sdp_parse() function returns 0 on success and the appropriate error value on failure.
The value of errno is not changed by these calls in the event of an error.

The sdp_parse() function will fail if:

EINVAL Arguments to the function were invalid.

ENOMEM Memory allocation failed while parsing sdp_info.

EXAMPLE 1 sdp_parse() example

If the SDP description was

v=0\r\n

o=jdoe 23423423 234234234 IN IP4 192.168.1.1\r\n

s=SDP seminar\r\n

i=A seminar on the session description protocol\r\n

e=test@host.com

c=IN IP4 156.78.90.1\r\n

t=2873397496 2873404696\r\n

then after call to sdp_parse() function the sdp_session_t structure would be

session {

sdp_session_version = 1

s_version = 0

s_origin {

o_username = "jdoe"
o_id = 23423423ULL

o_version = 234234234ULL

o_nettype = "IN"
o_addrtype = "IP4"
o_address = "192.168.1.1"

}

s_name = "SDP seminar"
s_info = "A seminar on the session description protocol"

Return Values

Errors

Examples

sdp_parse(3COMMPUTIL)

man pages section 3: Networking Library Functions • Last Revised 12 Oct 2007592

EXAMPLE 1 sdp_parse() example (Continued)

s_uri = (nil)

s_email {

value = "test@host.com"
next = (nil)

}

s_phone = (nil)

s_conn {

c_nettype = "IN"
c_addrtype = "IP4"
c_address = "156.78.90.1"
c_addrcount = 0

c_ttl = 0

c_next = (nil)

}

s_bw = (nil)

s_time {

t_start = 2873397496ULL

t_stop = 2873404696ULL

t_repeat = (nil)

t_next = (nil)

}

s_zone = (nil)

s_key = (nil)

s_attr = (nil)

s_media = (nil)

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libcommputil(3LIB), sdp_new_session(3COMMPUTIL), attributes(5)

Attributes

See Also

sdp_parse(3COMMPUTIL)

Networking Library Functions 593

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libcommputil-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sdp_session_to_str – return a string representation of a session structure

cc [flag...] file... -lcommputil [library...]
#include <sdp.h>

char *sdp_session_to_str(const sdp_session_t *session,
int *error);

The sdp_session_to_str() function returns the string representation of the SDP session
structure session. The caller is responsible for freeing the returned string.

The function adds a CRLF at the end of each SDP field before appending that field to the
string.

The sdp_session_to_str() function returns the relevant string on success and NULL

otherwise.

If error is non-null, the location pointed by error is set to 0 on success or the error value on
failure. The value of errno is not changed by these calls in the event of an error.

The sdp_session_to_str() function will fail if:

EINVAL The input is null.

ENOMEM A memory allocation failure occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

libcommputil(3LIB), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

sdp_session_to_str(3COMMPUTIL)

man pages section 3: Networking Library Functions • Last Revised 12 Oct 2007594

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libcommputil-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

secure_rpc, authdes_getucred, authdes_seccreate, getnetname, host2netname,
key_decryptsession, key_encryptsession, key_gendes, key_setsecret, key_secretkey_is_set,
netname2host, netname2user, user2netname – library routines for secure remote procedure
calls

cc [flag...] file... -lnsl [library...]
#include <rpc/rpc.h>

#include <sys/types.h>

int authdes_getucred(const struct authdes_cred *adc, uid_t *uidp,
gid_t *gidp, short *gidlenp, gid_t *gidlist);

AUTH *authdes_seccreate(const char *name, const uint_t window,

const char *timehost, ckey);

int getnetname(char name [MAXNETNAMELEN+1]);

int host2netname(char name [MAXNETNAMELEN+1], const char *host,
const char *domain);

int key_decryptsession(const char *remotename, des_block *deskey);

int key_encryptsession(const char *remotename, des_block *deskey);

int key_gendes(des_block *deskey);

int key_setsecret(const char *key);

int key_secretkey_is_set(void)

int netname2host(const char *name, char *host, const int hostlen);

int netname2user(const char *name, uid_t *uidp, gid_t *gidp, int *gidlenp,
gid_t *gidlist [NGRPS]);

int user2netname(char name [MAXNETNAMELEN+1], const uid_t uid,
const char *domain);

The RPC library functions allow C programs to make procedure calls on other machines
across the network.

RPC supports various authentication flavors. Among them are:

AUTH_NONE No authentication (none).

AUTH_SYS Traditional UNIX-style authentication.

AUTH_DES DES encryption-based authentication.

The authdes_getucred() and authdes_seccreate() functions implement the AUTH_DES
authentication style. The keyserver daemon keyserv(1M) must be running for the AUTH_DES
authentication system to work and keylogin(1) must have been run. The AUTH_DES style of

Name

Synopsis

Description

secure_rpc(3NSL)

Networking Library Functions 595

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1keyserv-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1keylogin-1

authentication is discussed here. For information about the AUTH_NONE and AUTH_SYS flavors
of authentication, refer to rpc_clnt_auth(3NSL). See rpc(3NSL) for the definition of the
AUTH data structure.

The following functions documented on this page are MT-Safe. For the MT-levels of other
authentication styles, see relevant man pages.

authdes_getucred() This is the first of two functions that interface to the RPC
secure authentication system AUTH_DES. The second is the
authdes_seccreate() function. The authdes_getucred()
function is used on the server side to convert an AUTH_DES

credential, which is operating system independent, to an
AUTH_SYS credential. The authdes_getucred() function
returns 1 if it succeeds, 0 if it fails.

The *uidp parameter is set to the user's numerical ID
associated with adc. The *gidp parameter is set to the
numerical ID of the user's group. The *gidlist parameter
contains the numerical IDs of the other groups to which the
user belongs. The *gidlenp parameter is set to the number of
valid group ID entries specified by the *gidlist parameter.

The authdes_getucred() function fails if the authdes_cred
structure was created with the netname of a host. In such a
case, netname2host() should be used to get the host name
from the host netname in the authdes_cred structure.

authdes_seccreate() The second of two AUTH_DES authentication functions, the
authdes_seccreate() function is used on the client side to
return an authentication handle that enables the use of the
secure authentication system. The first field, name, specifies
the network name netname of the owner of the server process.
The field usually represents a hostname derived from the
host2netname() utility, but the field might also represent a
user name converted with the user2netname() utility.

The second field, window, specifies the validity of the client
credential in seconds. If the difference in time between the
client's clock and the server's clock exceeds window, the server
rejects the client's credentials and the clock will have to be
resynchronized. A small window is more secure than a large
one, but choosing too small a window increases the frequency
of resynchronization due to clock drift.

The third parameter, timehost, is the host's name and is
optional. If timehost is NULL, the authentication system

secure_rpc(3NSL)

man pages section 3: Networking Library Functions • Last Revised 19 Feb 2004596

assumes that the local clock is always in sync with the timehost
clock and does not attempt resynchronization. If a timehost is
supplied, the system consults the remote time service
whenever resynchronization is required. The timehost
parameter is usually the name of the host on which the server
is running.

The final parameter, ckey, is also optional. If ckey is NULL, the
authentication system generates a random DES key to be used
for the encryption of credentials. If ckey is supplied, it is used
for encryption.

If authdes_seccreate() fails, it returns NULL.

getnetname() This function returns the unique, operating system
independent netname of the caller in the fixed-length array
name. The function returns 1 if it succeeds and 0 if it fails.

host2netname() This function converts a domain-specific hostname host to an
operating system independent netname. The function returns
1 if it succeeds and 0 if it fails. The host2netname() function is
the inverse of the netname2host() function. If the domain is
NULL, host2netname() uses the default domain name of the
machine. If host is NULL, it defaults to that machine itself. If
domain is NULL and host is an NIS name such as
myhost.sun.example.com, the host2netname() function uses
the domain sun.example.com rather than the default domain
name of the machine.

key_decryptsession() This function is an interface to the keyserver daemon, which is
associated with RPC's secure authentication system (AUTH_DES
authentication). User programs rarely need to call
key_decryptsession() or the associated functions
key_encryptsession(), key_gendes(), and
key_setsecret().

The key_decryptsession() function takes a server netname
remotename and a DES key deskey, and decrypts the key by
using the the public key of the server and the secret key
associated with the effective UID of the calling process. The
key_decryptsession() function is the inverse of
key_encryptsession() function.

key_encryptsession() This function is a keyserver interface that takes a server
netname remotename and a DES key deskey, and encrypts the
key using the public key of the the server and the secret key

secure_rpc(3NSL)

Networking Library Functions 597

associated with the effective UID of the calling process. If the
keyserver does not have a key registered for the UID, it falls
back to using the secret key for the netname nobody unless this
feature has been disabled. See keyserv(1M). The
key_encryptsession() function is the inverse of
key_decryptsession() function. The
key_encryptsession() function returns 0 if it succeeds, −1 if
it fails.

key_gendes() This is a keyserver interface function used to ask the keyserver
for a secure conversation key. Selecting a conversion key at
random is generally not secure because the common ways of
choosing random numbers are too easy to guess. The
key_gendes() function returns 0 if it succeeds, −1 if it fails.

key_setsecret() This is a keyserver interface function used to set the key for the
effective UID of the calling process. This function returns 0 if it
succeeds, −1 if it fails.

key_secretkey_is_set() This is a keyserver interface function used to determine if a key
has been set for the effective UID of the calling process. If the
keyserver has a key stored for the effective UID of the calling
process, the key_secretkey_is_set() function returns 1.
Otherwise it returns 0.

netname2host() This function converts an operating system independent
netname name to a domain-specific hostname host. The
hostlen parameter is the maximum size of host. The
netname2host() function returns 1 if it succeeds and 0 if it
fails. The function is the inverse of the host2netname()
function.

netname2user() This function converts an operating system independent
netname to a domain-specific user ID. The netname2user()
function returns 1 if it succeeds and 0 if it fails.The function is
the inverse of the user2netname() function.

The *uidp parameter is set to the user's numerical ID
associated with name. The *gidp parameter is set to the
numerical ID of the user's group. The gidlist parameter
contains the numerical IDs of the other groups to which the
user belongs. The *gidlenp parameter is set to the number of
valid group ID entries specified by the gidlist parameter.

user2netname() This function converts a domain-specific username to an
operating system independent netname. The user2netname()
function returns 1 if it succeeds and 0 if it fails. The function is

secure_rpc(3NSL)

man pages section 3: Networking Library Functions • Last Revised 19 Feb 2004598

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1keyserv-1m

the inverse of netname2user() function.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

chkey(1), keylogin(1), keyserv(1M), newkey(1M), rpc(3NSL), rpc_clnt_auth(3NSL),
attributes(5)

Attributes

See Also

secure_rpc(3NSL)

Networking Library Functions 599

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1chkey-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1keylogin-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1keyserv-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1newkey-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

send, sendto, sendmsg – send a message from a socket

cc [flag...] file... -lsocket -lnsl [library...]

#include <sys/socket.h>

ssize_t send(int s, const void *msg, size_t len, int flags);

ssize_t sendto(int s, const void *msg, size_t len, int flags,
const struct sockaddr *to, socklen_t tolen);

ssize_t sendmsg(int s, const struct msghdr *msg, int flags);

The send(), sendto(), and sendmsg() functions are used to transmit a message to another
transport end-point. The send() function can be used only when the socket is in a connected
state. See connect(3SOCKET). The sendto() and sendmsg() functions can be used at any
time. The s socket is created with socket(3SOCKET).

The address of the target is supplied by to with a tolen parameter used to specify the size. The
length of the message is supplied by the len parameter. For socket types such as SOCK_DGRAM
and SOCK_RAW that require atomic messages, the error EMSGSIZE is returned and the message is
not transmitted when it is too long to pass atomically through the underlying protocol. The
same restrictions do not apply to SOCK_STREAM sockets.

A return value −1 indicates locally detected errors. It does not imply a delivery failure.

If the socket does not have enough buffer space available to hold a message, the send()
function blocks the message, unless the socket has been placed in non-blocking I/O mode (see
fcntl(2)). The select(3C) or poll(2) call can be used to determine when it is possible to send
more data.

The flags parameter is formed from the bitwise OR of zero or more of the following:

MSG_OOB Send out-of-band data on sockets that support this notion. The
underlying protocol must also support out-of-band data. Only
SOCK_STREAM sockets created in the AF_INET or the AF_INET6 address
family support out-of-band data.

MSG_DONTROUTE The SO_DONTROUTE option is turned on for the duration of the operation.
It is used only by diagnostic or routing programs.

See recv(3SOCKET) for a description of the msghdr structure.

Upon successful completion, these functions return the number of bytes sent. Otherwise, they
return -1 and set errno to indicate the error.

The send(), sendto(), and sendmsg() functions return errors under the following
conditions:

EBADF s is not a valid file descriptor.

Name

Synopsis

Description

Return Values

Errors

send(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 24 Mar 2011600

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2

EINTR The operation was interrupted by delivery of a signal before any data could
be buffered to be sent.

EMSGSIZE The message is too large to be sent all at once (as the socket requires), or the
msg_iovlen member of the msghdr structure pointed to by message is less
than or equal to 0 or is greater than {IOV_MAX}.

ENOMEM Insufficient memory is available to complete the operation.

ENOSR Insufficient STREAMS resources are available for the operation to
complete.

ENOTSOCK s is not a socket.

EWOULDBLOCK The socket is marked non-blocking and the requested operation would
block. EWOULDBLOCK is also returned when sufficient memory is not
immediately available to allocate a suitable buffer. In such a case, the
operation can be retried later.

ECONNREFUSED The requested connection was refused by the peer. For conected IPv4 and
IPv6 datagram sockets, this indicates that the system received an ICMP

Destination Port Unreachable message from the peer in response to
some prior transmission.

The send() and sendto() functions return errors under the following conditions:

EINVAL The len argument overflows a ssize_t.

Inconsistent port attributes for system call.

The sendto() function returns errors under the following conditions:

EINVAL The value specified for the tolen parameter is not the size of a valid address for the
specified address family.

EISCON A destination address was specified and the socket is already connected.

The sendmsg() function returns errors under the following conditions:

EINVAL The msg_iovlen member of the msghdr structure pointed to by msg is less than or
equal to 0, or the sum of the iov_len values in the msg_iov array overflows a
ssize_t.

One of the iov_len values in the msg_iov array member of the msghdr structure
pointed to by msg is negative, or the sum of the iov_len values in the msg_iov array
overflows a ssize_t.

msg_iov contents are inconsistent with port attributes.

The send() function returns errors under the following conditions:

send(3SOCKET)

Networking Library Functions 601

EPIPE The socket is shut down for writing, or the socket is connection–mode and is no
longer connected. In the latter case, if the socket is of type SOCK_STREAM, the
SIGPIPE signal is generated to the calling thread.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

fcntl(2), poll(2), write(2), connect(3SOCKET), getsockopt(3SOCKET),
recv(3SOCKET), select(3C), socket(3SOCKET), socket.h(3HEAD), attributes(5)

Attributes

See Also

send(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 24 Mar 2011602

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1socket.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

send – send a message on a socket

cc [flag ...] file ... -lxnet [library ...]

#include <sys/socket.h>

ssize_t send(int socket, const void *buffer, size_t length, int flags);

socket Specifies the socket file descriptor.

buffer Points to the buffer containing the message to send.

length Specifies the length of the message in bytes.

flags Specifies the type of message transmission. Values of this argument are formed by
logically OR'ing zero or more of the following flags:

MSG_EOR Terminates a record (if supported by the protocol)

MSG_OOB Sends out-of-band data on sockets that support out-of-band
communications. The significance and semantics of out-of-band data
are protocol-specific.

The send() function initiates transmission of a message from the specified socket to its peer.
The send() function sends a message only when the socket is connected (including when the
peer of a connectionless socket has been set via connect(3XNET)).

The length of the message to be sent is specified by the length argument. If the message is too
long to pass through the underlying protocol, send() fails and no data is transmitted.

Successful completion of a call to send() does not guarantee delivery of the message. A return
value of −1 indicates only locally-detected errors.

If space is not available at the sending socket to hold the message to be transmitted and the
socket file descriptor does not have O_NONBLOCK set, send() blocks until space is available. If
space is not available at the sending socket to hold the message to be transmitted and the
socket file descriptor does have O_NONBLOCK set, send() will fail. The select(3C) and poll(2)
functions can be used to determine when it is possible to send more data.

The socket in use may require the process to have appropriate privileges to use the send()
function.

The send() function is identical to sendto(3XNET) with a null pointer dest_len argument,
and to write() if no flags are used.

Upon successful completion, send() returns the number of bytes sent. Otherwise, −1 is
returned and errno is set to indicate the error.

The send() function will fail if:

Name

Synopsis

Parameters

Description

Usage

Return Values

Errors

send(3XNET)

Networking Library Functions 603

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2

EAGAIN

EWOULDBLOCK The socket's file descriptor is marked O_NONBLOCK and the requested
operation would block.

EBADF The socket argument is not a valid file descriptor.

ECONNRESET A connection was forcibly closed by a peer.

EDESTADDRREQ The socket is not connection-mode and no peer address is set.

EFAULT The buffer parameter can not be accessed.

EINTR A signal interrupted send() before any data was transmitted.

EMSGSIZE The message is too large be sent all at once, as the socket requires.

ENOTCONN The socket is not connected or otherwise has not had the peer prespecified.

ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The socket argument is associated with a socket that does not support one
or more of the values set in flags.

EPIPE The socket is shut down for writing, or the socket is connection-mode and
is no longer connected. In the latter case, and if the socket is of type
SOCK_STREAM, the SIGPIPE signal is generated to the calling thread.

The send() function may fail if:

EACCES The calling process does not have the appropriate privileges.

EIO An I/O error occurred while reading from or writing to the file system.

ENETDOWN The local interface used to reach the destination is down.

ENETUNREACH No route to the network is present.

ENOBUFS Insufficient resources were available in the system to perform the operation.

ENOSR There were insufficient STREAMS resources available for the operation to
complete.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Attributes

send(3XNET)

man pages section 3: Networking Library Functions • Last Revised 1 Nov 2003604

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

connect(3XNET), getsockopt(3XNET), poll(2), recv(3XNET), recvfrom(3XNET),
recvmsg(3XNET), select(3C), sendmsg(3XNET), sendto(3XNET), setsockopt(3XNET),
shutdown(3XNET), socket(3XNET), attributes(5), standards(5)

See Also

send(3XNET)

Networking Library Functions 605

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

sendmsg – send a message on a socket using a message structure

cc [flag ...] file ... -lxnet [library ...]

#include <sys/socket.h>

ssize_t sendmsg(int socket, const struct msghdr *message, int flags);

The function takes the following arguments:

socket Specifies the socket file descriptor.

message Points to a msghdr structure, containing both the destination address and the
buffers for the outgoing message. The length and format of the address depend on
the address family of the socket. The msg_flags member is ignored.

flags Specifies the type of message transmission. The application may specify 0 or the
following flag:

MSG_EOR Terminates a record (if supported by the protocol)

MSG_OOB Sends out-of-band data on sockets that support out-of-bound
data. The significance and semantics of out-of-band data are
protocol-specific.

The sendmsg() function sends a message through a connection-mode or
connectionless-mode socket. If the socket is connectionless-mode, the message will be sent to
the address specified by msghdr. If the socket is connection-mode, the destination address in
msghdr is ignored.

The msg_iov and msg_iovlen fields of message specify zero or more buffers containing the data
to be sent. msg_iov points to an array of iovec structures; msg_iovlen must be set to the
dimension of this array. In each iovec structure, the iov_base field specifies a storage area and
the iov_len field gives its size in bytes. Some of these sizes can be zero. The data from each
storage area indicated by msg_iov is sent in turn.

Successful completion of a call to sendmsg() does not guarantee delivery of the message. A
return value of −1 indicates only locally-detected errors.

If space is not available at the sending socket to hold the message to be transmitted and the
socket file descriptor does not have O_NONBLOCK set, sendmsg() function blocks until space is
available. If space is not available at the sending socket to hold the message to be transmitted
and the socket file descriptor does have O_NONBLOCK set, sendmsg() function will fail.

If the socket protocol supports broadcast and the specified address is a broadcast address for
the socket protocol, sendmsg() will fail if the SO_BROADCAST option is not set for the socket.

The socket in use may require the process to have appropriate privileges to use the sendmsg()
function.

Name

Synopsis

Parameters

Description

sendmsg(3XNET)

man pages section 3: Networking Library Functions • Last Revised 1 Nov 2003606

The select(3C) and poll(2) functions can be used to determine when it is possible to send
more data.

Upon successful completion, sendmsg() function returns the number of bytes sent.
Otherwise, −1 is returned and errno is set to indicate the error.

The sendmsg() function will fail if:

EAGAIN

EWOULDBLOCK The socket's file descriptor is marked O_NONBLOCK and the requested
operation would block.

EAFNOSUPPORT Addresses in the specified address family cannot be used with this socket.

EBADF The socket argument is not a valid file descriptor.

ECONNRESET A connection was forcibly closed by a peer.

EFAULT The message parameter, or storage pointed to by the msg_name,
msg_control or msg_iov fields of the message parameter, or storage pointed
to by the iovec structures pointed to by the msg_iov field can not be
accessed.

EINTR A signal interrupted sendmsg() before any data was transmitted.

EINVAL The sum of the iov_len values overflows an ssize_t.

EMSGSIZE The message is to large to be sent all at once (as the socket requires), or the
msg_iovlen member of the msghdr structure pointed to by message is less
than or equal to 0 or is greater than IOV_MAX.

ENOTCONN The socket is connection-mode but is not connected.

ENOTSOCK The socket argument does not refer a socket.

EOPNOTSUPP The socket argument is associated with a socket that does not support one
or more of the values set in flags.

EPIPE The socket is shut down for writing, or the socket is connection-mode and
is no longer connected. In the latter case, and if the socket is of type
SOCK_STREAM, the SIGPIPE signal is generated to the calling thread.

If the address family of the socket is AF_UNIX, then sendmsg() will fail if:

EIO An I/O error occurred while reading from or writing to the file system.

ELOOP Too many symbolic links were encountered in translating the pathname in
the socket address.

ENAMETOOLONG A component of a pathname exceeded NAME_MAX characters, or an entire
pathname exceeded PATH_MAX characters.

Usage

Return Values

Errors

sendmsg(3XNET)

Networking Library Functions 607

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2

ENOENT A component of the pathname does not name an existing file or the
pathname is an empty string.

ENOTDIR A component of the path prefix of the pathname in the socket address is
not a directory.

The sendmsg() function may fail if:

EACCES Search permission is denied for a component of the path prefix; or write
access to the named socket is denied.

EDESTADDRREQ The socket is not connection-mode and does not have its peer address set,
and no destination address was specified.

EHOSTUNREACH The destination host cannot be reached (probably because the host is down
or a remote router cannot reach it).

EIO An I/O error occurred while reading from or writing to the file system.

EISCONN A destination address was specified and the socket is already connected.

ENETDOWN The local interface used to reach the destination is down.

ENETUNREACH No route to the network is present.

ENOBUFS Insufficient resources were available in the system to perform the
operation.

ENOMEM Insufficient memory was available to fulfill the request.

ENOSR There were insufficient STREAMS resources available for the operation to
complete.

If the address family of the socket is AF_UNIX, then sendmsg() may fail if:

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds PATH_MAX.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

poll(2) getsockopt(3XNET), recv(3XNET), recvfrom(3XNET), recvmsg(3XNET),
select(3C), send(3XNET), sendto(3XNET), setsockopt(3XNET), shutdown(3XNET),
socket(3XNET), attributes(5), standards(5)

Attributes

See Also

sendmsg(3XNET)

man pages section 3: Networking Library Functions • Last Revised 1 Nov 2003608

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

sendto – send a message on a socket

cc [flag...] file... -lxnet [library ...]

#include <sys/socket.h>

ssize_t sendto(int socket, const void *message, size_t length, int flags,
const struct sockaddr *dest_addr, socklen_t dest_len);

The sendto() function sends a message through a connection-mode or connectionless-mode
socket. If the socket is connectionless-mode, the message will be sent to the address specified
by dest_addr. If the socket is connection-mode, dest_addr is ignored.

If the socket protocol supports broadcast and the specified address is a broadcast address for
the socket protocol, sendto() will fail if the SO_BROADCAST option is not set for the socket.

The dest_addr argument specifies the address of the target. The length argument specifies the
length of the message.

Successful completion of a call to sendto() does not guarantee delivery of the message. A
return value of −1 indicates only locally-detected errors.

If space is not available at the sending socket to hold the message to be transmitted and the
socket file descriptor does not have O_NONBLOCK set, sendto() blocks until space is available. If
space is not available at the sending socket to hold the message to be transmitted and the
socket file descriptor does have O_NONBLOCK set, sendto() will fail.

The socket in use may require the process to have appropriate privileges to use the sendto()
function.

The function takes the following arguments:

socket Specifies the socket file descriptor.

message Points to a buffer containing the message to be sent.

length Specifies the size of the message in bytes.

flags Specifies the type of message transmission. Values of this argument are formed
by logically OR'ing zero or more of the following flags:

MSG_EOR Terminates a record (if supported by the protocol)

MSG_OOB Sends out-of-band data on sockets that support out-of-band
data. The significance and semantics of out-of-band data are
protocol-specific.

dest_addr Points to a sockaddr structure containing the destination address. The length
and format of the address depend on the address family of the socket.

dest_len Specifies the length of the sockaddr structure pointed to by the dest_addr
argument.

Name

Synopsis

Description

Parameters

sendto(3XNET)

Networking Library Functions 609

The select(3C) and poll(2) functions can be used to determine when it is possible to send
more data.

Upon successful completion, sendto() returns the number of bytes sent. Otherwise, –1 is
returned and errno is set to indicate the error.

The sendto() function will fail if:

EAFNOSUPPORT Addresses in the specified address family cannot be used with this socket.

EAGAIN

EWOULDBLOCK The socket's file descriptor is marked O_NONBLOCK and the requested
operation would block.

EBADF The socket argument is not a valid file descriptor.

ECONNRESET A connection was forcibly closed by a peer.

EFAULT The message or destaddr parameter cannot be accessed.

EINTR A signal interrupted sendto() before any data was transmitted.

EMSGSIZE The message is too large to be sent all at once, as the socket requires.

ENOTCONN The socket is connection-mode but is not connected.

ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The socket argument is associated with a socket that does not support one
or more of the values set in flags.

EPIPE The socket is shut down for writing, or the socket is connection-mode and
is no longer connected. In the latter case, and if the socket is of type
SOCK_STREAM, the SIGPIPE signal is generated to the calling thread.

If the address family of the socket is AF_UNIX, then sendto() will fail if:

EIO An I/O error occurred while reading from or writing to the file system.

ELOOP Too many symbolic links were encountered in translating the pathname in
the socket address.

ENAMETOOLONG A component of a pathname exceeded NAME_MAX characters, or an entire
pathname exceeded PATH_MAX characters.

ENOENT A component of the pathname does not name an existing file or the
pathname is an empty string.

ENOTDIR A component of the path prefix of the pathname in the socket address is
not a directory.

The sendto() function may fail if:

Usage

Return Values

Errors

sendto(3XNET)

man pages section 3: Networking Library Functions • Last Revised 1 Nov 2003610

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2

EACCES Search permission is denied for a component of the path prefix; or write
access to the named socket is denied.

EDESTADDRREQ The socket is not connection-mode and does not have its peer address set,
and no destination address was specified.

EHOSTUNREACH The destination host cannot be reached (probably because the host is down
or a remote router cannot reach it).

EINVAL The dest_len argument is not a valid length for the address family.

EIO An I/O error occurred while reading from or writing to the file system.

EISCONN A destination address was specified and the socket is already connected.

ENETDOWN The local interface used to reach the destination is down.

ENETUNREACH No route to the network is present.

ENOBUFS Insufficient resources were available in the system to perform the
operation.

ENOMEM Insufficient memory was available to fulfill the request.

ENOSR There were insufficient STREAMS resources available for the operation to
complete.

If the address family of the socket is AF_UNIX, then sendto() may fail if:

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate result
whose length exceeds PATH_MAX.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

poll(2), getsockopt(3XNET), recv(3XNET), recvfrom(3XNET), recvmsg(3XNET),
select(3C), send(3XNET), sendmsg(3XNET), setsockopt(3XNET), shutdown(3XNET),
socket(3XNET), attributes(5), standards(5)

Attributes

See Also

sendto(3XNET)

Networking Library Functions 611

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

setsockopt – set the socket options

cc [flag...] file... -lxnet [library...]

#include <sys/socket.h>

int setsockopt(int socket, int level, int option_name,
const void*option_value, socklen_t option_len);

The setsockopt() function sets the option specified by the option_name argument, at the
protocol level specified by the level argument, to the value pointed to by the option_value
argument for the socket associated with the file descriptor specified by the socket argument.

The level argument specifies the protocol level at which the option resides. To set options at
the socket level, specify the level argument as SOL_SOCKET. To set options at other levels,
supply the appropriate protocol number for the protocol controlling the option. For example,
to indicate that an option will be interpreted by the TCP (Transport Control Protocol), set
level to the protocol number of TCP, as defined in the<netinet/in.h> header, or as
determined by using getprotobyname(3XNET).

The option_name argument specifies a single option to set. The option_name argument and
any specified options are passed uninterpreted to the appropriate protocol module for
interpretations. The <sys/socket.h> header defines the socket level options. The options are
as follow

SO_DEBUG Turns on recording of debugging information. This option enables or
disables debugging in the underlying protocol modules. This option takes
an int value. This is a boolean option.

SO_BROADCAST Permits sending of broadcast messages, if this is supported by the
protocol. This option takes an int value. This is a boolean option.

SO_REUSEADDR Specifies that the rules used in validating addresses supplied to
bind(3XNET) should allow reuse of local addresses, if this is supported by
the protocol. This option takes an int value. This is a boolean option.

SO_KEEPALIVE Keeps connections active by enabling the periodic transmission of
messages, if this is supported by the protocol. This option takes an int

value.

If the connected socket fails to respond to these messages, the connection
is broken and threads writing to that socket are notified with a SIGPIPE
signal.

This is a boolean option.

SO_LINGER Lingers on a close(2) if data is present. This option controls the action
taken when unsent messages queue on a socket and close(2) is
performed. If SO_LINGER is set, the system blocks the process during
close(2) until it can transmit the data or until the time expires. If

Name

Synopsis

Description

setsockopt(3XNET)

man pages section 3: Networking Library Functions • Last Revised 21 Jan 2007612

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2

SO_LINGER is not specified, and close(2) is issued, the system handles the
call in a way that allows the process to continue as quickly as possible.
This option takes a linger structure, as defined in the <sys/socket.h>
header, to specify the state of the option and linger interval.

SO_OOBINLINE Leaves received out-of-band data (data marked urgent) in line. This
option takes an int value. This is a boolean option.

SO_SNDBUF Sets send buffer size. This option takes an int value.

SO_RCVBUF Sets receive buffer size. This option takes an int value.

SO_DONTROUTE Requests that outgoing messages bypass the standard routing facilities.
The destination must be on a directly-connected network, and messages
are directed to the appropriate network interface according to the
destination address. The effect, if any, of this option depends on what
protocol is in use. This option takes an int value. This is a boolean option.

SO_MAC_EXEMPT Sets the mandatory access control on the socket. A socket that has this
option enabled can communicate with an unlabeled peer if the socket is in
the global zone or has a label that dominates the default label of the peer.
Otherwise, the socket must have a label that is equal to the default label of
the unlabeled peer. SO_MAC_EXEMPT is a boolean option that is available
only when the system is configured with Trusted Extensions.

SO_ALLZONES Bypasses zone boundaries (privileged). This option stores an int value.
This is a boolean option.

The SO_ALLZONES option can be used to bypass zone boundaries between
shared-IP zones. Normally, the system prevents a socket from being
bound to an address that is not assigned to the current zone. It also
prevents a socket that is bound to a wildcard address from receiving
traffic for other zones. However, some daemons which run in the global
zone might need to send and receive traffic using addresses that belong to
other shared-IP zones. If set before a socket is bound, SO_ALLZONES causes
the socket to ignore zone boundaries between shared-IP zones and
permits the socket to be bound to any address assigned to the shared-IP
zones. If the socket is bound to a wildcard address, it receives traffic
intended for all shared-IP zones and behaves as if an equivalent socket
were bound in each active shared-IP zone. Applications that use the
SO_ALLZONES option to initiate connections or send datagram traffic
should specify the source address for outbound traffic by binding to a
specific address. There is no effect from setting this option in an
exclusive-IP zone. Setting this option requires the sys_net_config
privilege. See zones(5).

setsockopt(3XNET)

Networking Library Functions 613

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1zones-5

For boolean options, 0 indicates that the option is disabled and 1 indicates that the option is
enabled.

Options at other protocol levels vary in format and name.

The setsockopt() function provides an application program with the means to control
socket behavior. An application program can use setsockopt() to allocate buffer space,
control timeouts, or permit socket data broadcasts. The <sys/socket.h> header defines the
socket-level options available to setsockopt().

Options may exist at multiple protocol levels. The SO_ options are always present at the
uppermost socket level.

Upon successful completion, setsockopt() returns 0. Otherwise, –1 is returned and errno is
set to indicate the error.

The setsockopt() function will fail if:

EBADF The socket argument is not a valid file descriptor.

EDOM The send and receive timeout values are too big to fit into the timeout fields
in the socket structure.

EFAULT The option_value parameter can not be accessed or written.

EINVAL The specified option is invalid at the specified socket level or the socket has
been shut down.

EISCONN The socket is already connected, and a specified option can not be set while
the socket is connected.

ENOPROTOOPT The option is not supported by the protocol.

ENOTSOCK The socket argument does not refer to a socket.

The setsockopt() function may fail if:

ENOMEM There was insufficient memory available for the operation to complete.

ENOBUFS Insufficient resources are available in the system to complete the call.

ENOSR There were insufficient STREAMS resources available for the operation to
complete.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Usage

Return Values

Errors

Attributes

setsockopt(3XNET)

man pages section 3: Networking Library Functions • Last Revised 21 Jan 2007614

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Standard See standards(5).

bind(3XNET), endprotoent(3XNET), getsockopt(3XNET), socket(3XNET),
attributes(5), standards(5)

See Also

setsockopt(3XNET)

Networking Library Functions 615

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

shutdown – shut down part of a full-duplex connection

cc [flag...] file... -lsocket -lnsl [library...]

#include <sys/socket.h>

int shutdown(int s, int how);

The shutdown() call shuts down all or part of a full-duplex connection on the socket
associated with s. If how is SHUT_RD, further receives are disallowed. If how is SHUT_WR, further
sends are disallowed. If how is SHUT_RDWR, further sends and receives are disallowed.

The how values should be defined constants.

0 is returned if the call succeeds.

−1 is returned if the call fails.

The call succeeds unless one of the following conditions exists:

EBADF The s value is not a valid file descriptor.

ENOMEM Insufficient user memory is available for the operation to complete.

ENOSR Insufficient STREAMS resources are available for the operation to complete.

ENOTCONN The specified socket is not connected.

ENOTSOCK The s value is not a socket.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

connect(3SOCKET), socket(3SOCKET), socket.h(3HEAD), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

shutdown(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 31 Jan 2005616

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1socket.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

shutdown – shut down socket send and receive operations

cc [flag ...] file ... -lxnet [library ...]

#include <sys/socket.h>

int shutdown(int socket, int how);

The shutdown() function disables subsequent send() and receive() operations on a socket,
depending on the value of the how argument.

how Specifies the type of shutdown. The values are as follows:

SHUT_RD Disables further receive operations.

SHUT_WR Disables further send operations.

SHUT_RDWR Disables further send and receive operations.

socket Specifies the file descriptor of the socket.

Upon successful completion, shutdown() returns 0. Otherwise, −1 is returned and errno is set
to indicate the error.

The shutdown() function will fail if:

EBADF The socket argument is not a valid file descriptor.

EINVAL The how argument is invalid.

ENOTCONN The socket is not connected.

ENOTSOCK The socket argument does not refer to a socket.

The shutdown() function may fail if:

ENOBUFS Insufficient resources were available in the system to perform the operation.

ENOSR There were insufficient STREAMS resources available for the operation to
complete.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

Name

Synopsis

Description

Parameters

Return Values

Errors

Attributes

shutdown(3XNET)

Networking Library Functions 617

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

getsockopt(3XNET), recv(3XNET), recvfrom(3XNET), recvmsg(3XNET), select(3C),
send(3XNET), sendto(3XNET), setsockopt(3XNET), socket(3XNET), attributes(5),
standards(5)

See Also

shutdown(3XNET)

man pages section 3: Networking Library Functions • Last Revised 10 Jun 2002618

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

sip_add_branchid_to_via – add a branch parameter to the topmost VIA header in the SIP
message

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

int sip_add_branchid_to_via(sip_msg_t sip_msg, char *branchid);

The sip_add_branchid_to_via() function adds a branch param to the topmost VIA header
in the SIP message sip_msg. Note that a new header is created as a result of adding the branch
parameter and the old header is marked deleted. Applications with multiple threads working
on the same VIA header need to take note of this.

These functions return 0 on success and the appropriate error value on failure.

On failure, functions that return an error value may return one of the following:

EINVAL Mandatory parameters are not provided or are NULL.

For sip_add_branchid_to_via(), the topmost VIA header already has a branch
param or the SIP message does not have a VIA header.

EPERM The message cannot be modified.

ENOMEM There is an error allocating memory for creating headers/parameters.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

sip_add_branchid_to_via(3SIP)

Networking Library Functions 619

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_add_from, sip_add_to, sip_add_contact, sip_add_via, sip_add_maxforward,
sip_add_callid, sip_add_cseq, sip_add_content_type, sip_add_content, sip_add_accept,
sip_add_accept_enc, sip_add_accept_lang, sip_add_alert_info, sip_add_allow,
sip_add_call_info, sip_add_content_disp, sip_add_content_enc, sip_add_content_lang,
sip_add_date, sip_add_error_info, sip_add_expires, sip_add_in_reply_to,
sip_add_mime_version, sip_add_min_expires, sip_add_org, sip_add_priority,
sip_add_reply_to, sip_add_passertedid, sip_add_ppreferredid, sip_add_require,
sip_add_retry_after, sip_add_route, sip_add_record_route, sip_add_server, sip_add_subject,
sip_add_supported, sip_add_tstamp, sip_add_unsupported, sip_add_user_agent,
sip_add_warning, sip_add_rseq, sip_add_privacy, sip_add_rack, sip_add_author,
sip_add_authen_info, sip_add_proxy_authen, sip_add_proxy_author,
sip_add_proxy_require, sip_add_www_authen, sip_add_allow_events, sip_add_event,
sip_add_substate – add specific SIP headers to the SIP message

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

int sip_add_from(sip_msg_t sip_msg, char *display_name, char *from_uri,
char *from_tag, boolean_t add_aquot, char *from_params);

int sip_add_to(sip_msg_t sip_msg, char *display_name, char *to_uri,
char *to_tag, boolean_t add_aquot, char *to_params);

int sip_add_contact(sip_msg_t sip_msg, char *display_name,
char *contact_uri, boolean_t add_aquot, char *contact_params);

int sip_add_via(sip_msg_t sip_msg, char *sent_protocol_transport,
char *sent_by_host, int sent_by_port, char *via_params);

int sip_add_maxforward(sip_msg_t sip_msg, uint_t maxforward);

int sip_add_callid(sip_msg_t sip_msg, char *callid);

int sip_add_cseq(sip_msg_t sip_msg, sip_method_t method, uint32_t cseq);

int sip_add_content_type(sip_msg_t sip_msg, char * type, char *subtype);

int sip_add_content(sip_msg_t sip_msg, char * content);

int sip_add_accept(sip_msg_t sip_msg, char *type, char *subtype,
char *media_param, char *accept_param);

int sip_add_accept_enc(sip_msg_t sip_msg, char *code,
char *param);

int sip_add_accept_lang(sip_msg_t sip_msg, char *lang,
char *param);

int sip_add_alert_info(sip_msg_t sip_msg, char *alert,
char *param);

int sip_add_allow(sip_msg_t sip_msg, sip_method_t method_name);

Name

Synopsis

sip_add_from(3SIP)

man pages section 3: Networking Library Functions • Last Revised 09 Feb 2007620

int sip_add_call_info(sip_msg_t sip_msg, char *uri,
char *param);

int sip_add_content_disp(sip_msg_t sip_msg, char *dis_type, char *param);

int sip_add_content_enc(sip_msg_t sip_msg, char *code);

int sip_add_content_lang(sip_msg_t sip_msg, char *lang);

int sip_add_date(sip_msg_t sip_msg, char *date);

int sip_add_error_info(sip_msg_t sip_msg, char *uri, char *param);

int sip_add_expires(sip_msg_t sip_msg, int secs);

int sip_add_in_reply_to(sip_msg_t sip_msg, char *reply_id);

int sip_add_mime_version(sip_msg_t sip_msg, char *version);

int sip_add_min_expires(sip_msg_t sip_msg, int secs);

int sip_add_org(sip_msg_t sip_msg, char *org);

int sip_add_priority(sip_msg_t sip_msg, char *prio);

int sip_add_reply_to(sip_msg_t sip_msg, char *display_name,
char *addr, char *param, boolean_t add_aquot);

int sip_add_passertedid(sip_msg_t sip_msg, char *display_name,
char *addr, boolean_t add_aqout);

int sip_add_ppreferredid(sip_msg_t sip_msg, char *display_name,
char *addr, boolean_t add_aquot);

int sip_add_require(sip_msg_t sip_msg, char *req);

int sip_add_retry_after(sip_msg_t sip_msg, int secs, char *cmt,
char *param);

int sip_add_route(sip_msg_t sip_msg, char *display_name, char *uri,
char *route_params);

int sip_add_record_route(sip_msg_t sip_msg, char *display_name,
char *uri, char *route_params);

int sip_add_server(sip_msg_t sip_msg, char *svr);

int sip_add_subject(sip_msg_t sip_msg, char *subject);

int sip_add_supported(sip_msg_t sip_msg, char *support);

int sip_add_tstamp(sip_msg_t sip_msg, char *time, char *delay);

int sip_add_unsupported(sip_msg_t sip_msg, char *unsupport);

int sip_add_user_agent(sip_msg_t sip_msg, char *usr);

int sip_add_warning(sip_msg_t sip_msg, int code, char *addr, char *msg);

int sip_add_privacy(sip_msg_t sip_msg, char *priv_val);

sip_add_from(3SIP)

Networking Library Functions 621

int sip_add_rseq(sip_msg_t sip_msg, int resp_num);

int sip_add_rack(sip_msg_t sip_msg, int resp_num, int cseq,
sip_method_t method);

int sip_add_author(sip_msg_t sip_msg, char *scheme, char *param);

int sip_add_authen_info(sip_msg_t sip_msg, char *ainfo);

int sip_add_proxy_authen(sip_msg_t sip_msg, char *pascheme,
char *param);

int sip_add_proxy_author(sip_msg_t sip_msg, char *pascheme,
char *param);

int sip_add_proxy_require(sip_msg_t sip_msg, char *opt);

int sip_add_www_authen(sip_msg_t sip_msg, char *wascheme,
char *param);

int sip_add_allow_events(sip_msg_t sip_msg, char *events);

int sip_add_event(sip_msg_t sip_msg, char *event, char *param);

int sip_add_substate(sip_msg_t sip_msg, char *sub, char *param);

For each of the following functions that add a header to a SIP message, the function adds a
CRLF before appending the header to the SIP message.

The sip_add_from() and sip_add_to() functions appends a FROM and TO header respectively
to the SIP message sip_msg. The header is created using the display_name, if non-null, and the
uri values. The add_aquot parameter is used to specify whether the uri should be enclosed
within '<>'. If a display_name is provided then add_aquot cannot be B_FALSE. The
display_name parameter, if provided, is enclosed within quotes before creating to the SIP
header. Tag value for the FROM/TO header can be specified which will be added to the SIP
header by prefixing it with “TAG=”. Any generic parameters can be specified as the last
argument, which will be added, as is, to the SIP header.

Either the tag or the generic parameter can be specified not both, if both are specified, the
resulting header contains only the tag parameter.

The sip_add_contact() function appends a CONTACT header to the SIP message sip_msg
using the display_name and contact_uri. The add_aquot parameter has the same semantics as
in sip_add_from()/sip_add_to(). Any contact parameters specified in contact_param is
added to the CONTACT header before appending the header to the message.

The sip_add_via() function appends a VIA header to the SIP message sip_msg. The VIA
header is constructed using sent_protocol_transport, sent_by_host and sent_by_port. A
value of 0 for sent_by_port means that the port information is not present in the resulting VIA
header. The VIA header that is created has the protocol set to “SIP” and version set to “2.0”.
Any parameters specific in via_params is added to the VIA header before appending the
header to the SIP message.

Description

sip_add_from(3SIP)

man pages section 3: Networking Library Functions • Last Revised 09 Feb 2007622

The sip_add_maxforward() function appends a MAX-FORWARDS header to the SIP message
sip_msg using the value in maxforward. The maxforward value is a positive integer.

The sip_add_callid() function appends a CALL-ID header to the SIP message sip_msg using
the value in callid, if non-null. If callid is null, this function creates a CALL-ID header using a
randomly generated value.

The sip_add_cseq() function appends a CSEQ header to the SIP message using the values in
method and cseq. Permissible values for method include:

INVITE
ACK
OPTIONS
BYE
CANCEL
REGISTER
REFER
SUBSCRIBE
NOTIFY
PRACK
INFO

The cseq value is a positive integer.

The sip_add_content_type() function appends a CONTENT-TYPE to the SIP message sip_msg.
The CONTENT-TYPE is created using the type and subtype, both should be non-null.

The sip_add_content() function adds a message body to the SIP message sip_msg. The
message body is given by the null terminated string contents. Once the function returns, the
caller may reuse or delete contents as sip_add_content() creates a new buffer and copies
over contents for its use.

The sip_add_accept() function appends an ACCEPT header to the SIP message sip_msg. The
ACCEPT header is created using type and subtype. If both type and subtype are null, then an
empty ACCEPT header is added to the SIP message. If type is non-null, but subtype is null, then
the ACCEPT header has the specified type and sets the subtype in the header to '*'. Any
accept_param or media_param, if provided, are added to the ACCEPT header before appending
the header to the SIP message.

The sip_add_accept_enc() function appends an ACCEPT-ENCODING header to the SIP
message sip_msg. The ACCEPT-ENCODING is created using code. Any parameter specified in
param is added to the ACCEPT-ENCODING header before appending the header to the SIP
message.

sip_add_from(3SIP)

Networking Library Functions 623

The sip_add_accept_lang() function appends an ACCEPT-LANGUAGE header to the SIP
message sip_msg. The ACCEPT-LANGUAGE header is created using lang. Any parameter specified
in param is added to the ACCEPT-LANGUAGE header before appending the header to the SIP
message.

The sip_add_alert_info() function appends an ALERT-INFO header to the SIP message
sip_msg. The ALERT-INFO header is created using alert. Any parameter specified in param is
added to the ALERT-INFO header before appending the header to the SIP message.

The sip_add_allow() function appends an ALLOW header to the SIP message sip_msg. The
ALLOW header is created using alert and method. Permissible values for method include:

INVITE
ACK
OPTIONS
BYE
CANCEL
REGISTER
REFER
INFO
SUBSCRIBE
NOTIFY
PRACK

The sip_add_call_info() function appends a CALL-INFO header to the SIP message sip_msg.
The CALL-INFO header is created using uri. Any parameter specified in param is added to the
CALL-INFO before appending the header to the SIP message.

The sip_add_content_disp() function appends a CONTENT-DISPOSITION header to the SIP
message sip_msg. The CONTENT-DISPOSITION header is created using disp_type. Any
parameter specified in param is added to the CONTENT-DISPOSITION header before appending
the header to the SIP message.

The sip_add_content_enc() function appends a CONTENT-ENCODING header to the SIP
message sip_msg. The CONTENT-ENCODING header is created using code.

The sip_add_content_lang() function appends a CONTENT-LANGUAGE header to the SIP
message sip_msg. The CONTENT-LANGUAGE header is created using lang.

The sip_add_date() appends a DATE header to the SIP message sip_msg. The DATE header is
created using the date information specified in date. The semantics for the date string is given
is RFC 3261, section 25.1.

The sip_add_error_info() function appends an ERROR-INFO header to the SIP message
sip_msg. The ERROR-INFO header is created using uri. An parameters specified in param is
added to the ERROR-INFO header before adding the header to the SIP message.

sip_add_from(3SIP)

man pages section 3: Networking Library Functions • Last Revised 09 Feb 2007624

The sip_add_expires() function appends an EXPIRES header to the SIP message sip_msg.
The EXPIRES header is created using the seconds specified in secs.

The sip_add_in_reply_to() function appends a IN-REPLY-TO header to the SIP message
sip_msg. The IN-REPLY-TO header is created using the call-id value specified in reply_id.

The sip_add_mime_version() function appends a MIME-VERSION header to the SIP message
sip_msg. The MIME-VERSION header is created using version.

The sip_add_min_expires() function appends a MIN-EXPIRES header to the SIP message
sip_msg. The MIN-EXPIRES is created using the time in seconds specified in secs.

The sip_add_org() function appends a ORGANIZATION header to the SIP message sip_msg.
The ORGANIZATION header is created using the information specified in org.

The sip_add_priority() function appends a PRIORITY header to the SIP message sip_msg.
The PRIORITY header is created using the value specified in prio.

The sip_add_reply_to() function appends a REPLY-TO header to the SIP message sip_msg.
The REPLY-TO header is created using the display_name, if provided, and addr. The add_aquot
parameter has the same semantics as in sip_add_from()/sip_add_to(). Any parameters
specified in param is added to the REPLY-TO header before appending the header to the SIP
message.

The sip_add_passertedid() function appends a P-ASSERTED-IDENTITY header to the SIP
message sip_msg. The P-ASSERTED-IDENTITY header is created using the display_name, if
provided, and the addr. The add_aquot parameter has the same semantics as in
sip_add_from()/sip_add_to().

The sip_add_ppreferredid() function appends a P-PREFERRED-IDENTITY header to the SIP
message sip_msg. The P-PREFERRED-IDENTITY header is created using the display_name, if
provided, and the addr. The add_aquot parameter has the same semantics as in
sip_add_from()/sip_add_to().

The sip_add_require() function appends a REQUIRE header to the SIP message sip_msg. The
REQUIRE header is created using the information in req.

The sip_add_retry_after() function appends a RETRY-AFTER header to the SIP message
sip_msg. The RETRY-AFTER is created using the time in seconds specified in secs comments, if
any, in cmt. Any parameters specified in param, if provided, is added to the RETRY-AFTER
header before appending the header to the SIP message.

The sip_add_route() function appends a ROUTE header to the SIP message sip_msg. The
ROUTE header is created using the display_name, if any, and the uri. The uri is enclosed in '<>'
before adding to the header. Parameters specified in route_params are added to the ROUTE
header before appending the header to the SIP message.

sip_add_from(3SIP)

Networking Library Functions 625

The sip_add_record_route() function appends a RECORD-ROUTE header to the SIP message
sip_msg. The RECORD-ROUTE header is created using the display_name, if any, and the uri. The
uri parameter is enclosed in '<>' before adding to the header. Any parameters specified in
route_params is added to the ROUTE header before appending the header to the SIP message.

The sip_add_server() function appends a SERVER header to the SIP message sip_msg. The
SERVER header is created using the information in srv.

The sip_add_subject() function appends a SUBJECT header to the SIP message sip_msg. The
SUBJECT header is created using the information in subject.

The sip_add_supported() function appends a SUPPORTED header to the SIP message sip_msg.
The SUPPORTED header is created using the information in support.

The sip_add_tstamp() function appends a TIMESTAMP header to the SIP message sip_msg.
The TIMESTAMP header is created using the time value in time and the delay value, if provided,
in delay.

The sip_add_unsupported() function appends an UNSUPPORTED header to the SIP message
sip_msg. The UNSUPPORTED header is created using the option-tag value in unsupport.

The sip_add_user_agent() function appends an USER-AGENT header to the SIP message
sip_msg. The USER-AGENT header is created using the server-val specified in usr.

The sip_add_warning() function appends a WARNING header to the SIP message sip_msg. The
WARNING header is created using the warn-code in code, warn-agent in addr and warn-test in
msg.

The sip_add_privacy() function appends a PRIVACY header to the SIP message sip_msg. The
PRIVACY header is created using the privacy value specified in priv_val.

The sip_add_rseq() function appends a RSEQ header to the SIP message sip_msg. The RSEQ
header is created using the sequence number specified in resp_num.

The sip_add_rack() function appends a RACK header to the SIP message sip_msg. The RACK
header is created using the sequence number in resp_num, the SIP method in method and the
CSEQ number in cseq. Permissible values for method include: INVITE, ACK, OPTIONS, BYE,
CANCEL, REGISTER, REFER, INFO, SUBSCRIBE, NOTIFY, PRACK.

The sip_add_author() function appends an AUTHORIZATION header to the SIP message
sip_msg. The AUTHORIZATION header is created using scheme. Any parameter specified in
param is added to the AUTHORIZATION header before the header is appended to the SIP
message.

The sip_add_authen_info() function appends an AUTHENTICATION-INFO() header to the
SIP message sip_msg. The AUTHENTICATION-INFO header is created using the authentication
information in ainfo.

sip_add_from(3SIP)

man pages section 3: Networking Library Functions • Last Revised 09 Feb 2007626

The sip_add_proxy_authen() function appends a PROXY-AUTHENTICATE header to the SIP
message sip_msg. The PROXY-AUTHENTICATE is created using the value specified in psacheme.
Any parameter in param is added to the PROXY-AUTHENTICATE header before adding the
header to the SIP message.

The sip_add_proxy_author() function appends a PROXY-AUTHORIZATION header to the SIP
message sip_msg. The PROXY-AUTHORIZATION header is created using the value specified in
pascheme. Any parameter in param is added to the PROXY-AUTHORIZATION header before
adding the header to the SIP message.

The sip_add_proxy_require() function appends a PROXY-REQUIRE header to the SIP
message sip_msg. The PROXY-REQUIRE header is created using the option-tag in opt.

The sip_add_www_authen() function appends a WWW-AUTHENTICATE header to the SIP
message sip_msg. The WWW-AUTHENTICATE header is created using the challenge in wascheme.
Any parameter in param is added to the WWW-AUTHENTICATE header before adding the header
to the SIP message.

The sip_add_allow_events() function appends an ALLOW-EVENTS header to the SIP message
The ALLOW-EVENTS header is created using the event specified in events.

The sip_add_event() function appends an EVENT header to the SIP message. The EVENT
header is created using the value specified in event. Any parameter in param is added to the
EVENT header before appending the header to the SIP message.

The sip_add_substate() function appends a SUBSCRIPTION-STATE header to the SIP
message. The SUBSCRIPTION-STATE header is created using the state specified in sub. Any
parameter in param is added to the SUBSCRIPTION-STATE header before appending the header
to the SIP message.

These functions return 0 on success and the appropriate error value on failure.

On failure, functions that return an error value can return one of the following:

EINVAL Mandatory parameters are not provided, i.e. null.

For sip_add_from(), sip_add_to(), sip_add_contact(), sip_add_reply_to(),
sip_add_passertedid(), sip_add_ppreferredid() if display_name is non-null
and add_aquot is B_FALSE.

For sip_add_branchid_to_via() the topmost VIA header already has a branch
param or the SIP message does not have a VIA header.

EPERM The message cannot be modified.

ENOMEM There is an error allocating memory for creating headers/parameters.

Return Values

Errors

sip_add_from(3SIP)

Networking Library Functions 627

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Attributes

See Also

sip_add_from(3SIP)

man pages section 3: Networking Library Functions • Last Revised 09 Feb 2007628

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_add_header – add a SIP header to the SIP message

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

int sip_add_header(sip_msg_t sip_msg, char *header_string);

The sip_add_header() function takes the SIP header header_string, adds a CRLF (carriage
return/line feed) and appends it to the SIP message sip_msg. The sip_add_header() function
is typically used when adding a SIP header with multiple values.

The sip_add_header() function returns 0 on success and the appropriate error value on
failure.

On failure, the sip_add_header() function can return one of the following error values:

EINVAL Mandatory parameters are not provided, i.e. null.

EPERM The message cannot be modified.

ENOMEM Error allocating memory for creating headers/parameters.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

sip_add_header(3SIP)

Networking Library Functions 629

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_add_param – add a parameter to the SIP header

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

sip_header_t sip_add_param(sip_header_t sip_header, char *param,

int *error);

The sip_add_param() function adds the parameter provided in param to the SIP header
sip_header. The function returns the header with the parameter added. A new header is
created as a result of adding the parameter and the old header is marked deleted. Applications
with multiple threads working on the same SIP header need to take note of this. If error is
non-null, it (the location pointer by the variable) is set to 0 on success and the appropriate
error value on error.

The sip_add_param() function returns the new header on success and null on failure.
Further, if error is non-null, then on success the value in the location pointed by error is 0 and
the appropriate error value on failure.

On failure, functions that return an error value may return one of the following:

EINVAL Mandatory parameters are not provided, i.e. null.

For sip_add_param(), the header to be modified is marked deleted.

EPERM The message cannot be modified.

ENOMEM There is an error allocating memory for creating headers/parameters.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

sip_add_param(3SIP)

man pages section 3: Networking Library Functions • Last Revised 25 Jan 2007630

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_add_request_line, sip_add_response_line – add a request/response line to a SIP message

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

int sip_add_request_line(sip_msg_t sip_request,
sip_method_t method, char *request_uri);

int sip_add_response_line(sip_msg_t sip_response,
int response_code, char *response_phase);

The sip_add_request_line() function adds a request line to the SIP message sip_request.
The request line is created using the SIP method specified in method and the URI in
request_uri. The SIP method can be one of the following:

INVITE

ACK

OPTIONS

BYE

CANCEL

REGISTER

REFER

SUBSCRIBE

NOTIFY

PRACK

INFO

The resulting request line has the SIP-Version of “2.0”.

The sip_add_response_line() function adds a response line to the SIP message
sip_response. The response line is created using the response code response_code and the
phrase in response_phrase. If the response_code is one that is listed in RFC 3261,
sip_get_resp_desc() can be used to get the response phase for the response_code. The
resulting response line has the SIP-Version of “2.0”.

The sip_add_response_line() and sip_add_request_line() functions return 0 on success
and the appropriate error value in case of failure.

The value of errno is not changed by these calls in the event of an error.

On failure, the sip_add_response_line() and sip_add_request_line() functions could
return one of the following errors:

EINVAL If mandatory input is not provided or if the input is invalid.

ENOTSUP If the input SIP message cannot be modified.

ENOMEM If memory allocation fails when creating the request/response line or when
creating headers in the ACK request.

Name

Synopsis

Description

Return Values

Errors

sip_add_request_line(3SIP)

Networking Library Functions 631

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Attributes

See Also

sip_add_request_line(3SIP)

man pages section 3: Networking Library Functions • Last Revised 25 Jan 2007632

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_branchid – generate a RFC 3261 complaint branch ID

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

char *sip_branchid(sip_msg_t sip_msg);

The sip_branchid() function can be used to generate a value for the branch parameter for a
VIA header. The returned string is prefixed with z9hG4bK to conform to RFC 3261. If sip_msg
is null or sip_msg does not have a VIA header, a random value is generated. Otherwise, the
value is generated using the MD5 hash of the VIA, FROM, CALL-ID, CSEQ headers and the URI
from the request line. The caller is responsible for freeing the returned string.

The sip_branchid() function returns a string on success and NULL on failure.

The value of errno is not changed by these calls in the event of an error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Name

Synopsis

Description

Return Values

Attributes

See Also

sip_branchid(3SIP)

Networking Library Functions 633

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_clone_msg – clone a SIP message

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

sip_msg_t sip_clone_msg(sip_msg_t sip_msg);

The sip_clone_msg() function clones the input SIP message and returns the cloned message.
The resulting cloned message has all the SIP headers and message body, if present, from the
input message.

The sip_clone_msg() function returns the cloned message on success and NULL on failure.

The value of errno is not changed by these calls in the event of an error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Name

Synopsis

Description

Return Values

Attributes

See Also

sip_clone_msg(3SIP)

man pages section 3: Networking Library Functions • Last Revised 25 Jan 2007634

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_copy_start_line, sip_copy_header, sip_copy_header_by_name, sip_copy_all_headers –
copy headers from a SIP message

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

int sip_copy_start_line(sip_msg_t from_msg, sip_msg_t to_msg);

int sip_copy_header(sip_msg_t sip_msg, sip_header_t sip_header,
char *param);

int sip_copy_header_by_name(sip_msg_t from_msg, sip_msg_t to_msg,
char *header_name, char *param);

int sip_copy_all_headers(sip_msg_t from_msg, sip_msg_t to_msg);

The sip_copy_start_line() function copies the start line, a request or a response line, from
from_msg to to_msg.

The sip_copy_header() function copies the SIP header specified by sip_header to the SIP
message sip_msg. A new SIP header is created from sip_header and param, and is appended to
sip_msg. The param can be non-null.

The sip_copy_header_by_name() function copies the header specified by header_name (long
or short form) from from_msg to to_msg. The new header is created using the header value
from from_msg and param, if non-null, and appended to to_msg.

The sip_copy_all_headers() copies all the headers from from_msg to to_msg.

These functions return 0 on success and the appropriate error on failure.

The value of errno is not changed by these calls in the event of an error.

These functions can return one of the following errors in case of failure:

EINVAL If the required input parameters are NULL or if the header being copied does not
exist or is deleted in source SIP message.

ENOMEM Error while allocating memory for creating the new header.

EPERM If the input SIP message cannot be modified.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Name

Synopsis

Description

Return Values

Errors

Attributes

sip_copy_start_line(3SIP)

Networking Library Functions 635

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

libsip(3LIB)See Also

sip_copy_start_line(3SIP)

man pages section 3: Networking Library Functions • Last Revised 25 Jan 2007636

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_create_dialog_req, sip_create_dialog_req_nocontact – create an in-dialog request

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

sip_msg_t sip_create_dialog_req(sip_method_t method,
sip_dialog_t dialog, char *transport, char *sent_by,
int sent_by_port, char *via_param, uint32_t smaxforward,
int cseq);

sip_msg_t sip_create_dialog_req_nocontact(sip_method_t method,
sip_dialog_t dialog, char *transport, char *sent_by,
int sent_by_port, char *via_param, uint32_t smaxforward,
int cseq);

The sip_create_dialog_req() function creates and returns a SIP request with the state
information contained in dialog. The method in the resulting request is from method. The
method can be one of the following:

INVITE

ACK

OPTIONS

BYE

CANCEL

REGISTER

REFER

INFO

SUBSCRIBE

NOTIFY

PRACK

The resulting request line in the SIP message has the SIP-Version of “2.0”. The URI in the
request line is from the remote target in the dialog or from the route set in the dialog, if
present. See RFC 3261 (section 12.2) for details. The FROM, TO, and CALL-ID headers are added
from the dialog. The MAX-FORWARDS header is added using the value in maxforward. The CSEQ
header is added using the SIP method in method and the sequence number value in cseq. If
cseq is -1, the sequence number is obtained from the local sequence number in the dialog. The
local sequence number in the dialog is incremented and is used in the CSEQ header. The VIA
header added is created using the transport, sent_by, sent_by_port (if non-zero), and
via_param (if any). If dialog has a non-empty route set, the resulting SIP request has the route
set from the dialog.

The sip_create_dialog_req_nocontact() function is similar to
sip_create_dialog_req(), except that it does not add the contact header.

Name

Synopsis

Description

sip_create_dialog_req(3SIP)

Networking Library Functions 637

The sip_create_dialog_req() and sip_create_dialog_req_nocontact() functions
return the resulting SIP message on success and NULL on failure.

The value of errno is not changed by these calls in the event of an error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB), attributes(5)

Return Values

Attributes

See Also

sip_create_dialog_req(3SIP)

man pages section 3: Networking Library Functions • Last Revised 6 Aug 2007638

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sip_create_OKack – create an ACK request for a final response

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

int sip_create_OKack(sip_msg_t response,
sip_msg_t ack_msg, char *transport,
char *sent_by, int sent_by_port,
char *via_params);

The sip_create_OKack() function constructs an ACK request in ack_msg for the final 2XX SIP
response. The request line is created using the URI in the CONTACT header from the response.
The SIP-Version in the request line is “2.0”. The VIA header for the ACK request is created using
transport, sent_by, sent_by_port (if non-zero), and via_params (if non-null). The following
headers are copied to ack_msg from response:

FROM

TO

CALL-ID

MAX_FORWARDS

The CSEQ header is created using the method as ACK and the sequence number from the CSEQ
header in response.

The sip_create_OKack() function returns 0 on success and the appropriate error value in
case of failure.

The value of errno is not changed by these calls in the event of an error.

On failure, the sip_create_OKack() function could return one of the following errors:

EINVAL If mandatory input is not provided or if the input is invalid.

The sip_create_OKack() function can return this error if it does not find a
CONTACT header or if it is unable to obtain the URI from the CONTACT header for
the request line.

ENOTSUP If the input SIP message cannot be modified.

ENOMEM If memory allocation fails when creating the request/response line or when
creating headers in the ACK request.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Name

Synopsis

Description

Return Values

Errors

Attributes

sip_create_OKack(3SIP)

Networking Library Functions 639

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

libsip(3LIB)See Also

sip_create_OKack(3SIP)

man pages section 3: Networking Library Functions • Last Revised 25 Jan 2007640

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_create_response – create a response for a SIP request

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

sip_msg_t sip_create_response(sip_msg_t sip_request,
int response_code, char *response_phase,
char *totag, char *contact_uri);

The sip_create_response() function creates and returns a SIP message in response to the
SIP request sip_request. The response line in the resulting SIP message is created using the
response code in response_code and the phrase in response_phrase. The response line has the
SIP-Version of “2.0”. If a non-null totag is specified, the resulting SIP response has a TO header
with a tag value from totag. If totag is null and the response_code is anything other than 100

(TRYING), sip_create_response() adds a TO header with a randomly generated tag value. If
the response_code is 100 and totag is null, the SIP response has a TO header without a tag
parameter. If contact_uri is non-null, a CONTACT header is added to the SIP response with the
URI specified in contact_uri. The SIP response has the following headers copied from
sip_request:

All VIA headers
FROM header
TO header (with tag added, if required, as stated above)
CALL-ID header
CSEQ header
All RECORD-ROUTE headers

The sip_create_response() function returns the resulting SIP message on success and NULL

on failure.

The value of errno is not changed by these calls in the event of an error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Name

Synopsis

Description

Return Values

Attributes

See Also

sip_create_response(3SIP)

Networking Library Functions 641

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_delete_dialog – delete a dialog

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

void sip_delete_dialog(sip_dialog_t dialog);

For functions that return a pointer of type sip_str_t, sip_str_t is supplied by:

typedef struct sip_str {

char *sip_str_ptr;

int sip_str_len;

}sip_str_t;

The sip_str_ptr parameter points to a specified value at the start of an input string. The
sip_str_len supplies the length of the returned value starting from sip_str_ptr.

The sip_delete_dialog() function is used to delete the dialog specified in dialog. The dialog
is not freed if it has outstanding references on it. When the last reference is released the dialog
is freed.

The value of errno is not changed by these calls in the event of an error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Name

Synopsis

Description

Return Values

Attributes

See Also

sip_delete_dialog(3SIP)

man pages section 3: Networking Library Functions • Last Revised 25 Jan 2007642

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_delete_start_line, sip_delete_header, sip_delete_header_by_name, sip_delete_value –
delete a SIP header or a header value

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

int sip_delete_start_line(sip_msg_t sip_msg);

int sip_delete_header(sip_msg_t sip_header);

int sip_delete_header_by_name(sip_msg_t msg,
char *header_name);

int sip_delete_value(sip_header_t sip_header,
sip_header_value_t sip_header_value);

The sip_delete_start_line() function deletes the start line, a request or a response line,
from the SIP message sip_msg.

The sip_delete_header() function deletes the SIP header specified by sip_header from the
associated SIP message sip_msg.

The sip_delete_header_by_name() function deletes the SIP header name specified by
header_name (long or compact form) from the SIP message sip_msg.

The sip_delete_value() deletes the SIP header value specified by sip_header_value from the
SIP header sip_header.

When a SIP header or value is deleted, the corresponding header or value is marked as deleted.
Lookups ignore headers or values that are marked as deleted.

These functions return 0 on success and the appropriate error on failure.

The value of errno is not changed by these calls in the event of an error.

On failure, the returned error could be one of the following:

EINVAL If any of the required input is NULL.

If the header or value to be deleted does not exist.

If the header or value to be deleted has already been deleted.

EPERM If the SIP message cannot be modified.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Name

Synopsis

Description

Return Values

Errors

Attributes

sip_delete_start_line(3SIP)

Networking Library Functions 643

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

libsip(3LIB)See Also

sip_delete_start_line(3SIP)

man pages section 3: Networking Library Functions • Last Revised 20 Jan 2007644

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_enable_counters, sip_disable_counters, sip_get_counter_value – counter operations

cc [flag...] file... -lsip [library...]

#include <sip.h>

int sip_enable_counters(int counter_group);

int sip_disable_counters(int counter_group);

int sip_get_counter_value(int group, int counter, void *counterval,
size_t counterlen);

The sip_enable_counters() function enables the measurement and counting of the selected
counter group. The only allowed value for the counter_group is SIP_TRAFFIC_COUNTERS,
which is defined in <sip.h>. Once enabled, the SIP stack starts measuring end-to-end SIP
traffic. The SIP stack keeps track of:

■ the number of SIP requests sent and received (broken down by methods),
■ the number of SIP responses sent and received (broken down by response codes), and
■ the number of bytes sent and received.

The following counters are defined in <sip.h> for the SIP_TRAFFIC_COUNTERS group. These
counter values are retrieved using the sip_get_counter_value() function.

SIP_TOTAL_BYTES_RCVD

SIP_TOTAL_BYTES_SENT

SIP_TOTAL_REQ_RCVD

SIP_TOTAL_REQ_SENT

SIP_TOTAL_RESP_RCVD

SIP_TOTAL_RESP_SENT

SIP_ACK_REQ_RCVD

SIP_ACK_REQ_SENT

SIP_BYE_REQ_RCVD

SIP_BYE_REQ_SENT

SIP_CANCEL_REQ_RCVD

SIP_CANCEL_REQ_SENT

SIP_INFO_REQ_RCVD

SIP_INFO_REQ_SENT

SIP_INVITE_REQ_RCVD

SIP_INVITE_REQ_SENT

SIP_NOTIFY_REQ_RCVD

SIP_NOTIFY_REQ_SENT

SIP_OPTIONS_REQ_RCVD

SIP_OPTIONS_REQ_SENT

SIP_PRACK_REQ_RCVD

SIP_PRACK_REQ_SENT

SIP_REFER_REQ_RCVD

SIP_REFER_REQ_SENT

SIP_REGISTER_REQ_RCVD

Name

Synopsis

Description

sip_enable_counters(3SIP)

Networking Library Functions 645

SIP_REGISTER_REQ_SENT

SIP_SUBSCRIBE_REQ_RCVD

SIP_SUBSCRIBE_REQ_SENT

SIP_UPDATE_REQ_RCVD

SIP_UPDATE_REQ_SENT

SIP_1XX_RESP_RCVD

SIP_1XX_RESP_SENT

SIP_2XX_RESP_RCVD

SIP_2XX_RESP_SENT

SIP_3XX_RESP_RCVD

SIP_3XX_RESP_SENT

SIP_4XX_RESP_RCVD

SIP_4XX_RESP_SENT

SIP_5XX_RESP_RCVD

SIP_5XX_RESP_SENT

SIP_6XX_RESP_RCVD

SIP_6xx_RESP_SENT

SIP_COUNTER_START_TIME /* records time when counting was enabled */

SIP_COUNTER_STOP_TIME /* records time when counting was disabled */

All of the above counters are defined to be uint64_t, except for SIP_COUNTER_START_TIME
and SIP_COUNTER_STOP_TIME, which are defined to be time_t.

The sip_disable_counters() function disables measurement and counting for the specified
counter_group. When disabled, the counter values are not reset and are retained until the
measurement is enabled again. Calling sip_enable_counters() again would reset all counter
values to zero and counting would start afresh.

The sip_get_counter_value() function retrieves the value of the specified counter within
the specified counter group. The value is copied to the user provided buffer, counterval, of
length counterlen. For example, after the following call, invite_rcvd would have the correct
value.

uint64_t invite_rcvd;

sip_get_counter_value(SIP_TRAFFIC_COUNTERS, SIP_INVITE_REQ_RCVD,

&invite_rcvd, sizeof (uint64_t));

Upon successful completion, sip_enable_counters() and sip_disable_counters() return
0. They will return EINVAL if an incorrect group is specified.

Upon successful completion, sip_get_counter_value() returns 0. It returns EINVAL if an
incorrect counter name or counter size is specified, or if counterval is NULL.

See attributes(5) for descriptions of the following attributes:

Return Values

Attributes

sip_enable_counters(3SIP)

man pages section 3: Networking Library Functions • Last Revised 11 Jan 2008646

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

attributes(5)See Also

sip_enable_counters(3SIP)

Networking Library Functions 647

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sip_enable_trans_logging, sip_enable_dialog_logging, sip_disable_dialog_logging,
sip_disable_trans_logging – transaction and dialog logging operations

cc [flag...] file... -lsip [library...]

#include <sip.h>

int sip_enable_trans_logging(FILE *logfile, int flags);

int sip_enable_dialog_logging(FILE *logfile, int flags);

void sip_disable_dialog_logging();

void sip_disable_trans_logging();

The sip_enable_trans_logging() and sip_enable_dialog_logging() functions enable
transaction and dialog logging respectively. The logfile argument points to a file to which the
SIP messages are logged. The flags argument controls the amount of logging. The only flag
defined in <sip.h> is SIP_DETAIL_LOGGING. Either transaction or dialog logging, or both, can
be enabled at any time. For dialog logging to work, the SIP stack must be enabled to manage
dialogs (using SIP_STACK_DIALOGS, see sip_stack_init(3SIP)) when the stack is initialized.

All the messages exchanged within a transaction/dialog is captured and later dumped to a log
file when the transaction or dialog is deleted or terminated. Upon termination, each dialog
writes to the file the messages that were processed in its context. Similarly, upon termination
each transaction writes to the file the messages that were processed in its context.

The sip_disable_trans_logging() and sip_disable_dialog_logging() functions disable
the transaction or dialog logging. These functions do not close the files. It is the responsibility
of the application to close them.

The log contains the state of the transaction or dialog at the time the message was processed.

Upon successful completion, sip_enable_trans_logging() and
sip_enable_dialog_logging() return 0. They return EINVAL if logfile is NULL or flags is
unrecognized.

EXAMPLE 1 Dialog logging

The following is an example of dialog logging.

FILE *logfile;

logfile = fopen("/tmp/ApplicationA", "a+");
sip_enable_dialog_logging(logfile, SIP_DETAIL_LOGGING);

/* Application sends INVITE, recieves 180 and 200 response and dialog is

created. */

/* Application sends ACK request */

/* Application sends BYE and recieves 200 response */

Name

Synopsis

Description

Return Values

Examples

sip_enable_trans_logging(3SIP)

man pages section 3: Networking Library Functions • Last Revised 11 Jan 2008648

EXAMPLE 1 Dialog logging (Continued)

/* Application disables logging */

sip_disable_dialog_logging();

The log file will be of the following format.

************* Begin Dialog *************

Digest : 43854 43825 26120 9475 5415 21595 25658 18538

Dialog State : SIP_DLG_NEW

Tue Nov 27 15:53:34 2007| Message - 1

INVITE sip:user@example.com SIP/2.0

From: "Me" < sip:me@mydomain.com > ; TAG=tag-from-01

To: "You" < sip:you@yourdomain.com >

Contact: < sip:myhome.host.com >

MAX-FORWARDS: 70

Call-ID: 1261K6A6492KF33549XM

CSeq: 111 INVITE

CONTENT-TYPE: application/sdp

Via: SIP/2.0/UDP 192.0.0.1 : 5060 ;branch=z9hG4bK-via-EVERYTHINGIDO-05

Record-Route: <sip:server1.com;lr>

Record-Route: <sip:server2.com;lr>

CONTENT-LENGTH : 0

Tue Nov 27 15:53:34 2007| Message - 2

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP 192.0.0.1 : 5060 ;branch=z9hG4bK-via-EVERYTHINGIDO-05

From: "Me" < sip:me@mydomain.com > ; TAG=tag-from-01

To: "You" < sip:you@yourdomain.com >;tag=1

Call-ID: 1261K6A6492KF33549XM

CSeq: 111 INVITE

Contact: <sip:whitestar2-0.East.Sun.COM:5060;transport=UDP>

Record-Route: <sip:server1.com;lr>

Record-Route: <sip:server2.com;lr>

Content-Length: 0

Dialog State : SIP_DLG_EARLY

/* Entire 200 OK SIP Response */

Dialog State : SIP_DLG_CONFIRMED

sip_enable_trans_logging(3SIP)

Networking Library Functions 649

EXAMPLE 1 Dialog logging (Continued)

/* Entire ACK Request */

/* Entire BYE Request */

/* Entire 200 OK Response */

************* End Dialog *************

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

sip_stack_init(3SIP), attributes(5)

Attributes

See Also

sip_enable_trans_logging(3SIP)

man pages section 3: Networking Library Functions • Last Revised 11 Jan 2008650

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

sip_get_contact_display_name, sip_get_from_display_name, sip_get_to_display_name,
sip_get_from_tag, sip_get_to_tag, sip_get_callid, sip_get_callseq_num,
sip_get_callseq_method, sip_get_via_sent_by_host, sip_get_via_sent_by_port,
sip_get_via_sent_protocol_version, sip_get_via_sent_protocol_name,
sip_get_via_sent_transport, sip_get_maxforward, sip_get_content_length,
sip_get_content_type, sip_get_content_sub_type, sip_get_content, sip_get_accept_type,
sip_get_accept_sub_type, sip_get_accept_enc, sip_get_accept_lang, sip_get_alert_info_uri,
sip_get_allow_method, sip_get_min_expires, sip_get_mime_version, sip_get_org,
sip_get_priority, sip_get_replyto_display_name, sip_get_replyto_uri_str, sip_get_date_time,
sip_get_date_day, sip_get_date_month, sip_get_date_wkday, sip_get_date_year,
sip_get_date_timezone, sip_get_content_disp, sip_get_content_enc, sip_get_error_info_uri,
sip_get_expires, sip_get_require, sip_get_subject, sip_get_supported, sip_get_tstamp_delay,
sip_get_unsupported, sip_get_server, sip_get_user_agent, sip_get_warning_code,
sip_get_warning_agent, sip_get_warning_text, sip_get_call_info_uri, sip_get_in_reply_to,
sip_get_retry_after_time, sip_get_retry_after_cmts, sip_get_rack_resp_num,
sip_get_rack_cseq_num, sip_get_rack_method, sip_get_rseq_resp_num, sip_get_priv_value,
sip_get_passertedid_display_name, sip_get_passertedid_uri_str,
sip_get_ppreferredid_display_name, sip_get_ppreferredid_uri_str, sip_get_author_scheme,
sip_get_author_param, sip_get_authen_info, sip_get_proxy_authen_scheme,
sip_get_proxy_authen_param, sip_get_proxy_author_scheme,
sip_get_proxy_author_param, sip_get_proxy_require, sip_get_www_authen_scheme,
sip_get_www_authen_param, sip_get_allow_events, sip_get_event, sip_get_substate,
sip_get_content_lang, sip_get_tstamp_value, sip_get_route_uri_str,
sip_get_route_display_name, sip_get_contact_uri_str, sip_get_from_uri_str,
sip_get_to_uri_str – obtain header specific attributes

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

const sip_str_t *sip_get_contact_display_name(sip_header_value_t value,
int *error);

const sip_str_t *sip_get_from_display_name(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_to_display_name(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_contact_uri_str(sip_header_value_t value,
int *error);

const sip_str_t *sip_get_from_uri_str(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_to_uri_str(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_from_tag(sip_msg_t sip_msg,
int *error);

Name

Synopsis

sip_get_contact_display_name(3SIP)

Networking Library Functions 651

const sip_str_t *sip_get_to_tag(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_callid(sip_msg_t sip_msg,
int *error);

int sip_get_callseq_num(sip_msg_t sip_msg,
int *error);

sip_method_t sip_get_callseq_method(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_via_sent_by_host(sip_header_value_t value,
int *error);

int sip_get_via_sent_by_port (sip_header_value_t value,
int *error);

const sip_str_t *sip_get_via_sent_protocol_version
(sip_header_value_t value, int *error);

const sip_str_t *sip_get_via_sent_transport(sip_header_value_t value,
int *error);

int sip_get_maxforward(sip_msg_t sip_msg,
int *error);

int sip_get_content_length(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_content_type(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_content_sub_type(sip_msg_t sip_msg,
int *error);

char *sip_get_content(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_accept_type(sip_header_value_t value,
int *error);

const sip_str_t *sip_get_accept_sub_type(sip_header_value_t value,
int *error);

const sip_str_t *sip_get_accept_enc(sip_header_value_t value,
int *error);

const sip_str_t *sip_get_accept_lang(sip_header_value_t value,
int *error);

const sip_str_t *sip_get_alert_info_uri(sip_header_value_t value,
int *error);

sip_method_t sip_get_allow_method(sip_header_value_t value,
int *error);

sip_get_contact_display_name(3SIP)

man pages section 3: Networking Library Functions • Last Revised 10 Feb 2007652

int sip_get_min_expire(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_mime_version(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_org(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_priority(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_replyto_display_name(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_replyto_uri_str(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_date_time(sip_msg_t sip_msg,
int *error);

int sip_get_date_day(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_date_month(sip_msg_t sip_msg,
int *error);

int sip_get_date_year(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_date_wkday(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_date_timezone(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_content_disp(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_content_enc(sip_header_value_t value,
int *error);

const sip_str_t *sip_get_error_info_uri(sip_header_value_t value,
int *error);

int sip_get_expires(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_require(sip_header_value_t value,
int *error);

const sip_str_t *sip_get_subject(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_supported(sip_header_value_t value,
int *error);

sip_get_contact_display_name(3SIP)

Networking Library Functions 653

const sip_str_t *sip_get_tstamp_delay(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_unsupported(sip_header_value_t value,
int *error);

const sip_str_t *sip_get_server(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_user_agent(sip_msg_t sip_msg,
int *error);

int sip_get_warning_code(sip_header_value_t value,
int *error);

const sip_str_t *sip_get_warning_agent(sip_header_value_t value,
int *error);

const sip_str_t *sip_get_warning_text(sip_header_value_t value,
int *error);

const sip_str_t *sip_get_call_info_uri(sip_header_value_t value,
int *error);

const sip_str_t *sip_get_in_reply_to(sip_header_value_t value,
int *error);

int sip_get_retry_after_time(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_retry_after_cmts(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_passertedid_display_name
(sip_header_value_t value, int *error);

const sip_str_t *sip_get_passertedid_uri_str
(sip_header_value_t value, int *error);

int sip_get_rack_resp_num(sip_msg_t sip_msg,
int *error);

int sip_get_rack_cseq_num(sip_msg_t sip_msg, int *error);

sip_method_t sip_get_rack_method(sip_msg_t sip_msg, int *error);

int sip_get_rseq_resp_num(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_priv_value(sip_header_value_t value,
int *error);

const sip_str_t *sip_get_author_scheme(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_author_param(sip_msg_t sip_msg,
char *name, int *error);

sip_get_contact_display_name(3SIP)

man pages section 3: Networking Library Functions • Last Revised 10 Feb 2007654

const sip_str_t *sip_get_authen_info(sip_header_value_t value,
int *error);

const sip_str_t *sip_get_proxy_authen_scheme(sip_msg_t msg,
int *error);

const sip_str_t *sip_get_proxy_authen_param(sip_msg_t sip_msg,
char *name, int *error);

const sip_str_t *sip_get_proxy_author_scheme(sip_msg_t msg,
int *error);

const sip_str_t *sip_get_proxy_author_param(sip_msg_t sip_msg,
char *name, int *error);

const sip_str_t *sip_get_proxy_require(sip_header_value_t value,
int *error);

const sip_str_t *sip_get_www_authen_scheme(sip_msg_t msg,
int *error);

const sip_str_t *sip_get_www_authen_param(sip_msg_t sip_msg,
char *name, int *error);

const sip_str_t *sip_get_allow_events(sip_header_value_t value, int *error);

const sip_str_t *sip_get_event(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_substate(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_content_lang(sip_header_value_t value,
int *error);

const sip_str_t *sip_get_tstamp_value(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_route_uri_str(sip_header_value_t value,
int *error);

const sip_str_t *sip_get_route_display_name(sip_header_value_t value,
int *error);

For functions that return a pointer of type sip_str_t, sip_str_t is supplied by:

typedef struct sip_str {

char *sip_str_ptr;

int sip_str_len;

}sip_str_t;

The sip_str_ptr parameter points to the start of the returned value and sip_str_len supplies the
length of the returned value.

For example, given the following request line in a SIP message sip_msg that is input to
sip_get_request_uri_str():

Description

sip_get_contact_display_name(3SIP)

Networking Library Functions 655

FROM : <Alice sip:alice@atlanta.com>;tag=1928301774

the return is a pointer to sip_str_t with the sip_str_ptr member pointing to “A” of Alice and
sip_str_len being set to 5, the length of Alice.

Access functions for headers that can have multiple values take the value as the input, while
those that can have only one value take the SIP message sip_msg as the input.

The sip_get_contact_display_name(), sip_get_from_display_name(), and
sip_get_to_display_name() functions will return the display name, if present, from the
CONTACT header value, FROM and TO header respectively.

The sip_get_contact_uri_str(), sip_get_from_uri_str(), and sip_get_to_uri_str()

functions will return the URI string from the CONTACT value, FROM and TO header respectively.

The sip_get_from_tag() and sip_get_to_tag() functions will return the TAG parameter
value, if present, from the FROM and TO header, respectively, in the provided SIP message
sip_msg.

The sip_get_callid() function will return the value from the CALL-ID header in the
provided SIP message sip_msg.

The sip_get_callseq_num() function will return the call sequence number from the CSEQ
header in the provided SIP message sip_msg.

The sip_get_callseq_method() function will return the method from the CSEQ header in the
provided SIP message sip_msg. The method can be one of the following:

INVITE

ACK

OPTIONS

BYE

CANCEL

REGISTER

REFER

INFO

SUBSCRIBE

NOTIFY

PRACK

UNKNOWN

The sip_get_via_sent_by_host(), sip_get_via_sent_by_port(),
sip_get_via_sent_protocol_version(), sip_get_via_sent_protocol_name(), and
sip_get_via_sent_transport() functions will return the sent-by host, port (if present),
protocol version, protocol name and transport information from the provided VIA header

sip_get_contact_display_name(3SIP)

man pages section 3: Networking Library Functions • Last Revised 10 Feb 2007656

value. Example, if the VIA value is given by SIP/2.0/UDP bobspc.biloxi.com:5060, then the
sent-by host is “bobspc.biloxi.com”, protocol name is “SIP”, protocol version is “2.0”, port
is 5060 and transport is UDP.

The sip_get_maxforward() function will return the value of the MAX-FORWARDS header in the
provided SIP message sip_msg.

INVITE

ACK

OPTIONS

BYE

CANCEL

REGISTER

REFER

INFO

SUBSCRIBE

NOTIFY

PRACK

UNKNOWN

The sip_get_content_length() function will return the value of the CONTENT-LENGTH
header in the provided SIP message sip_msg. The method can return one of the following:

The sip_get_content_type() and sip_get_content_sub_type() functions will return the
value of the Type and Sub-Type field, respectively, from the CONTENT-TYPE header in the
provided SIP message sip_msg.

The sip_get_content() function will return the message body from the provided SIP
message sip_msg. The returned string is a copy of the message body and the caller is
responsible for freeing the string after use.

The sip_get_accept_type() and sip_get_accept_sub_type() functions will return the
value of the Type and Sub-Type field, respectively, from the provided ACCEPT header value.

The sip_get_accept_enc() function will return the content-coding from the provided
ACCEPT-ENCODING header value.

The sip_get_accept_lang() function will return the language from the provided
ACCEPT-LANGUAGE header value.

The sip_get_alert_info_uri() function will return the URI string from the provided
ALERT-INFO header value.

The sip_get_allow_method() function will return the SIP method from the provided ALLOW

header value. The method can return one of the following:

INVITE

sip_get_contact_display_name(3SIP)

Networking Library Functions 657

ACK

OPTIONS

BYE

CANCEL

REGISTER

REFER

INFO

SUBSCRIBE

NOTIFY

PRACK

UNKNOWN

The sip_get_min_expire() function will return the time in seconds from the MIN-EXPIRES
header in the provided SIP message sip_msg.

The sip_get_mime_version() function will return the MIME version string from the
MIME-VERSION header in the provided SIP message sip_msg.

The sip_get_org() function will return the organization string value from the ORGANIZATION
header in the provided SIP message sip_msg.

The sip_get_priority() function will return the priority string value from the PRIORITY
header in the provided SIP message sip_msg.

The sip_get_replyto_display_name() and sip_get_replyto_uri_str() functions will
return the display name (if present) and the URI string, respectively, from the REPLY-TO
header in the provided SIP message sip_msg.

The sip_get_date_time(), sip_get_date_day(), sip_get_date_month(),
sip_get_date_wkday(), sip_get_date_year() and sip_get_date_timezone() functions
will return the time, day, month, week day, year and timezone value from the DATE header in
the provided SIP message sip_msg. Example, if the DATE header has the following value:

Sat, 13 Nov 2010 23:29:00 GMT

the time is “23:29:00 ”, week day is “Sat”, day is “13”, month is “Nov”, year is “2010”,
timezone is “GMT”.

The sip_get_content_disp() function will return the content-disposition type from the
CONTENT-DISPOSITION header in the provided SIP message sip_msg.

The sip_get_content_enc() function will return the content-coding value from the
CONTENT-ENCODING header value.

The sip_get_error_info_uri() function will return the URI string from the provided
ERROR-INFO header value.

The sip_get_expires() function will return the time in seconds from the EXPIRES header in
the provided SIP message sip_msg.

sip_get_contact_display_name(3SIP)

man pages section 3: Networking Library Functions • Last Revised 10 Feb 2007658

The sip_get_require() function will return the option-tag value from the provided REQUIRE

header value.

The sip_get_subject() function will return the value of the SUBJECT header in the provided
SIP message sip_msg.

The sip_get_supported() function will return the extension value from the provided
SUPPORTED header value.

The sip_get_tstamp_delay() function will return the value from the TIMESTAMP header in
the provided SIP message sip_msg.

The sip_get_unsupported() function will return the extension value from the provided
UNSUPPORTED header value.

The sip_get_server() function will return the value from the SERVER header in the provided
SIP message sip_msg.

The sip_get_user_agent() function will return the value from the USER-AGENT header in the
provided SIP message sip_msg.

The sip_get_warning_code(), sip_get_warning_agent(), and sip_get_warning_text()

functions will return the value of the warn-code, warn-agent and warn-text, respectively, in
the provided WARNING header value.

The sip_get_call_info_uri() function will return the URI string in the provided
CALL-INFO header value.

The sip_get_in_reply_to() function will return the Call-Id value in the provided
IN-REPLY-TO header value.

The sip_get_retry_after_time(), and sip_get_retry_after_cmts() functions return the
time and comments (if any), respectively, from the RETRY-AFTER header in the provided SIP
message sip_msg.

The sip_get_passertedid_display_name() and sip_get_passertedid_uri_str()

functions will return the display name (if any) and the URI string, respectively, in the
provided P-ASSERTED-IDENTITY header value.

The sip_get_ppreferredid_display_name() and sip_get_ppreferredid_uri_str()

functions will return the display name (if any) and the URI string, respectively, in the
provided P-PREFERRED-IDENTITY header value.

The sip_get_rack_resp_num(), sip_get_rack_cseq_num(), and sip_get_rack_method()

functions will return the response-number, the CSEQ number and the SIP method from the
RACK header in the provided SIP message sip_msg. The method can return one of the
following:

INVITE

sip_get_contact_display_name(3SIP)

Networking Library Functions 659

ACK

OPTIONS

BYE

CANCEL

REGISTER

REFER

INFO

SUBSCRIBE

NOTIFY

PRACK

UNKNOWN

The sip_get_rseq_resp_num() function will return the response-number, the RSEQ header in
the provided SIP message sip_msg.

The sip_get_priv_value() function will return the priv-value in the provided PRIVACY

header value.

The sip_get_route_uri_str() and sip_get_route_display_name() functions will return
the URI string, and display name (if present) from the provided ROUTE or RECORD-ROUTE
header value.

The sip_get_author_scheme() function will return the scheme from the AUTHORIZATION
header in the provided SIP message sip_msg.

The sip_get_author_param() function will return the value of the parameter specified in
name from the AUTHORIZATION header in the SIP message sip_msg.

The sip_get_authen_info() function will return the authentication information from the
provided AUTHORIZATION-INFO header value.

The sip_get_proxy_authen_scheme() function will return the scheme from the
PROXY-AUTHENTICATE header in the SIP message sip_msg.

The sip_get_proxy_authen_param() function will return the value of the parameter in name
from the PROXY-AUTHENTICATE header in the SIP message sip_msg.

The sip_get_proxy_author_scheme() function will return the value of the scheme from the
PROXY-AUTHORIZATION header in the SIP message sip_msg.

The sip_get_proxy_author_param() function will return the value of the parameter
specified in name from the PROXY-AUTHORIZATION header in the SIP message sip_msg.

The sip_get_proxy_require() function will return the option-tag from the provided
PROXY-REQUIRE header value.

The sip_get_www_authen_scheme() function will return the challenge from the
WWW-AUTHENTICATE header in the SIP message sip_msg.

sip_get_contact_display_name(3SIP)

man pages section 3: Networking Library Functions • Last Revised 10 Feb 2007660

The sip_get_www_authen_param() function will return the value of the parameter specified
in name from the WWW-AUTHENTICATE header in the SIP message sip_msg.

The sip_get_allow_events() function returns the value of the allowed event from the
provided ALLOW-EVENTS header value.

The sip_get_event() function returns the event in the EVENT header in the SIP message
sip_msg.

The sip_get_substate() function the subscription state from the SUBSCRIPTION-STATE
header in the provided SIP message sip_msg.

The sip_get_content_lang() function will return the language from the provided
CONTENT-LANGUAGE value.

The sip_get_tstamp_value() function will return the timestamp value from the TIMESTAMP
header in the SIP message sip_msg.

For functions that return a pointer to sip_str_t, the return value is the specified value on
success or NULL in case of error. For functions that return an integer, the return value is the
specified value on success and -1 on error.

The value of errno is not changed by these calls in the event of an error.

These functions take a pointer to an integer error as an argument. If the error is non-null, one
of the following values is set:

EINVAL The input SIP message sip_msg or the header value is null; or the specified
header/header value is deleted.

EPROTO The header value is not present or invalid. The parser could not parse it correctly.

ENOMEM There is an error allocating memory for the return value.

On success, the value of the location pointed to by error is set to 0.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Return Values

Errors

Attributes

See Also

sip_get_contact_display_name(3SIP)

Networking Library Functions 661

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_get_cseq, sip_get_rseq – get initial sequence number

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

uint32_t sip_get_cseq();

uint32_t sip_get_rseq();

The sip_get_cseq() and sip_get_rseq() functions can be used to generate an initial
sequence number for the CSEQ and RSEQ headers.

The value of errno is not changed by these calls in the event of an error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Name

Synopsis

Description

Return Values

Attributes

See Also

sip_get_cseq(3SIP)

man pages section 3: Networking Library Functions • Last Revised 25 Jan 2007662

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_get_dialog_state, sip_get_dialog_callid, sip_get_dialog_local_tag,
sip_get_dialog_remote_tag, sip_get_dialog_local_uri, sip_get_dialog_remote_uri,
sip_get_dialog_local_contact_uri, sip_get_dialog_remote_target_uri,
sip_get_dialog_route_set, sip_get_dialog_local_cseq, sip_get_dialog_remote_cseq,
sip_get_dialog_type, sip_get_dialog_method, sip_is_dialog_secure, sip_get_dialog_msgcnt –
get dialog attributes

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

int sip_get_dialog_state(sip_dialog_t dialog, int *error);

const sip_str_t *sip_get_dialog_callid(sip_dialog_t dialog,
int *error);

const sip_str_t *sip_get_dialog_local_tag(sip_dialog_t dialog,
int *error);

const sip_str_t *sip_get_dialog_remote_tag(sip_dialog_t dialog,
int *error);

const struct sip_uri *sip_get_dialog_local_uri(sip_dialog_t dialog,
int *error);

const struct sip_uri *sip_get_dialog_remote_uri(sip_dialog_t dialog,
int *error);

const struct sip_uri *sip_get_dialog_local_contact_uri(

sip_dialog_t dialog, int *error);

const struct sip_uri *sip_get_dialog_remote_target_uri(

sip_dialog_t dialog, int *error);

const sip_str_t *sip_get_dialog_route_set(sip_dialog_t dialog,
int *error);

boolean_t sip_is_dialog_secure(sip_dialog_t dialog,
int *error);

uint32_t sip_get_dialog_local_cseq(sip_dialog_t dialog,
int *error);

uint32_t sip_get_dialog_remote_cseq(sip_dialog_t dialog,
int *error);

int sip_get_dialog_type(sip_dialog_t dialog,int *error);

int sip_get_dialog_method(sip_dialog_t dialog,int *error);

int sip_get_dialog_msgcnt(sip_dialog_t dialog,int *error);

For functions that return a pointer of type sip_str_t, sip_str_t is supplied by:

typedef struct sip_str {

char *sip_str_ptr;

Name

Synopsis

Description

sip_get_dialog_state(3SIP)

Networking Library Functions 663

int sip_str_len;

}sip_str_t;

The sip_str_ptr parameter points to the start of the returned value and sip_str_len supplies the
length of the returned value.

The sip_get_dialog_state() returns the state of the dialog. A dialog can be in one of the
following states:

SIP_DLG_NEW

SIP_DLG_EARLY

SIP_DLG_CONFIRMED

SIP_DLG_DESTROYED

The sip_get_dialog_callid() function returns the call ID value maintained in the dialog.

The sip_get_dialog_local_tag() and sip_get_dialog_remote_tag() functions return
the local and remote tag values, maintained in the dialog.

The sip_get_dialog_local_uri(), sip_get_dialog_remote_uri(),
sip_get_dialog_local_contact_uri(), and sip_get_dialog_remote_target_uri()

functions return the local, remote, local contract, and the remote target URIs, maintained in
the dialog.

The sip_get_dialog_route_set() function returns the route set, if any, maintained in the
dialog.

The sip_get_dialog_local_cseq() and sip_get_dialog_remote_cseq() functions return
the local and remote CSEQ numbers maintained in the dialog.

The sip_get_dialog_type() function returns one of the following dialog types, depending
on whether it is created by the client or the server.

SIP_UAC_DIALOG created by client

SIP_UAS_DIALOG created by server

The sip_get_dialog_method() function returns the SIP method, INVITE or SUBSCRIBE, of
the request that created the dialog.

The sip_is_dialog_secure() function returns B_TRUE if the dialog is secure and B_FALSE

otherwise.

The sip_get_dialog_msgcnt() function returns the number of SIP messages (requests and
responses) that were sent and received within the context of the given dialog.

sip_get_dialog_state(3SIP)

man pages section 3: Networking Library Functions • Last Revised 11 Jan 2008664

The sip_get_dialog_state(), sip_get_dialog_local_cseq(),
sip_get_dialog_remote_cseq(), sip_get_dialog_type(), sip_get_dialog_method(),
and sip_get_dialog_msgcnt() functions return the required value on success and -1 on
failure.

The sip_get_dialog_callid(), sip_get_dialog_local_tag(),
sip_get_dialog_remote_tag(), sip_get_dialog_local_uri(),
sip_get_dialog_remote_uri(), sip_get_dialog_local_contact_uri(),
sip_get_dialog_remote_target_uri(), and sip_get_dialog_route_set() functions
return the required value on success and NULL on failure.

The value of errno is not changed by these calls in the event of an error.

These functions take an error argument.

If the error is non-null, one of the following values is set:

EINVAL

The dialog is NULL or the stack is not configured to manage dialogs.

ENOTSUP

The input SIP message cannot be modified.

ENOMEM

The memory allocation fails when the request/response line or the headers in the ACK
request are created.

On success, the value of the location pointed to by error is set to 0.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Return Values

Errors

Attributes

See Also

sip_get_dialog_state(3SIP)

Networking Library Functions 665

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_get_header – get a SIP header from a message

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

const struct sip_header *sip_get_header(sip_msg_t sip_msg,
char *header_name, sip_header_t old_header, int *error);

The sip_get_header() function returns the header specified by header_name (long or
compact form) from the SIP message sip_msg. If header_name is NULL, the first header in the
SIP message is returned. The old_header, if non-null, specifies the starting position in
sip_msg from which the search is started. Otherwise, the search begins at the start of the SIP
message. For example, to get the first VIA header from the SIP message sip_msg:

via_hdr = sip_get_header(sip_msg, "VIA", NULL, &error);

To get the next VIA header from sip_msg:

via_hdr = sip_get_header(sip_msg, "VIA", via_hdr, &error);

The sip_get_header() function ignores any header that is marked as deleted.

On success, the sip_get_header() function returns the queried header. On failure, it returns
NULL.

The value of errno is not changed by these calls in the event of an error.

The following value may be returned:

EINVAL The header_name specified in the SIP message is not present or has been deleted;
or, the header_name is not specified and there are no “un-deleted” headers in the
SIP message.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

sip_get_header(3SIP)

man pages section 3: Networking Library Functions • Last Revised 09 Feb 2007666

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_get_header_value, sip_get_next_value – get a SIP header value

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

const struct sip_value *sip_get_header_value
(const struct sip_header *sip_header, int *error);

const struct sip_value *sip_get_next_value
(sip_header_value_t old_value, int *error);

The sip_get_header_value() function returns the first valid value from SIP header
sip_header.

The sip_get_next_value() function returns the next valid value following the SIP value
old_value.

These functions return the queried value on success and NULL on failure.

The value of errno is not changed by these calls in the event of an error.

If the error is non-null, one of the following values is set:

EINVAL If any of the required input is NULL or if the specified SIP header value is marked
deleted.

EPROTO If the returned SIP header value is invalid (i.e. the parser encountered errors when
parsing the value).

On success, the value of the location pointed to by error is set to 0.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

sip_get_header_value(3SIP)

Networking Library Functions 667

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_get_msg_len – returns the length of the SIP message

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

int sip_get_msg_len(sip_msg_t sip_msg,
int *error);

The sip_get_msg_len() function will return the length of the SIP message sip_msg.

For functions that return an integer, the return value is the specified value on success and -1

on error.

The value of errno is not changed by these calls in the event of an error.

This function takes a pointer to an integer error as an argument. If the error is non-null, one of
the following values is set:

EINVAL The input SIP message sip_msg or the header value is null; or the specified
header/header value is deleted.

EPROTO The header value is not present or invalid. The parser could not parse it correctly.

ENOMEM There is an error allocating memory for the return value.

On success, the value of the location pointed to by error is set to 0.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

sip_get_msg_len(3SIP)

man pages section 3: Networking Library Functions • Last Revised 09 Feb 2007668

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_get_num_via, sip_get_branchid – get VIA header specific attributes

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

int sip_get_num_via(sip_msg_t sip_msg,
int *error);

char *sip_get_branchid(sip_msg_t sip_msg,
int *error);

The sip_get_num_via() function returns the number of VIA headers in the SIP message
sip_msg.

The sip_get_branchid() function returns the branch ID value from the topmost VIA header.
The caller is responsible for freeing the returned string.

The sip_get_num_via() function returns the number of VIA headers on success.

The sip_get_branchid() function returns the branch ID on success and NULL on failure.

The value of errno is not changed by these calls in the event of an error.

If the error is non-null, one of the following values is set:

EINVAL The sip_msg is NULL.

ENOENT For the sip_get_branchid function, there is no VIA header or the VIA header has no
branch parameter.

EPROTO For the sip_sip_get_trans.3sipget_branchid function, the VIA value is invalid. The
parser encountered an error or errors while parsing the VIA header.

ENOMEM For the sip_get_branchid function, there is an error in allocating memory for the
branch ID.

On success, the value of the location pointed to by error is set to 0.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

sip_get_num_via(3SIP)

Networking Library Functions 669

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_get_param_value, sip_get_params, sip_is_param_present – get parameter information
for a SIP header value

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

const sip_str_t *sip_get_param_value
(sip_header_value_t header_value, char *param_name, int *error);

const sip_param_t *sip_get_params
(sip_header_value_t header_value, int *error);;

boolean_t sip_is_param_present
(const sip_param_t *param_list, char *param_name, int param_len);

The sip_get_param_value() function returns the value for the parameter name specified by
param_name from the SIP header value header_value.

For functions that return a pointer of type sip_str_t, sip_str_t is supplied by:

typedef struct sip_str {

char *sip_str_ptr;

int sip_str_len;

}sip_str_t;

The sip_str_ptr parameter points to the start of the returned value and sip_str_len supplies the
length of the returned value.

The sip_get_params() function returns the parameter list, if any, for the SIP header value
header_value.

The sip_is_param_present() function returns B_TRUE if the parameter specified by
param_name of length supplied in param_len is present in the parameter list, param_list.
Otherwise, it returns B_FALSE.

With the exception of sip_is_param_present(), these functions return the queried value on
success and NULL on failure.

The value of errno is not changed by these calls in the event of an error.

If the error is non-null, one of the following values is set:

EINVAL If any of the required input is NULL or if the specified SIP header value is marked
deleted.

EPROTO If the returned SIP header value is invalid (i.e. the parser encountered errors when
parsing the value).

On success, the value of the location pointed to by error is set to 0.

Name

Synopsis

Description

Return Values

Errors

sip_get_param_value(3SIP)

man pages section 3: Networking Library Functions • Last Revised 25 Jan 2007670

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Attributes

See Also

sip_get_param_value(3SIP)

Networking Library Functions 671

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_get_request_method, sip_get_response_code, sip_get_response_phrase,
sip_get_sip_version – obtain attributes from the start line in a SIP message

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

sip_method_t sip_get_request_method(const sip_msg_t sip_msg,
int *error);

int sip_get_response_code(sip_msg_t sip_msg,
int *error);

const sip_str_t *sip_get_response_phrase(sip_msg_t sip_msg,
int *error);

const sip_str_t*sip_get_sip_version(sip_msg_t sip_msg,
int *error);

For functions that return a pointer of type sip_str_t, sip_str_t is supplied by:

typedef struct sip_str {

char *sip_str_ptr;

int sip_str_len;

}sip_str_t;

The sip_str_ptr parameter points to the start of the returned value and sip_str_len supplies the
length of the returned value.

For example, given the following request line in a SIP message sip_msg that is input to
sip_get_request_uri_str():

FROM : <Alice sip:alice@atlanta.com>;tag=1928301774

the return is a pointer to sip_str_t with the sip_str_ptr member pointing to “A” of Alice and
sip_str_len being set to 5, the length of Alice.

Access functions for headers that can have multiple values take the value as the input, while
those that can have only one value take the SIP message sip_msg as the input.

The sip_get_request_method() function will return the SIP method from the request line in
the SIP message sip_msg. The method can be one of the following:

INVITE
ACK
OPTIONS
BYE
CANCEL
REGISTER
REFER
INFO

Name

Synopsis

Description

sip_get_request_method(3SIP)

man pages section 3: Networking Library Functions • Last Revised 25 Jan 2007672

SUBSCRIBE
NOTIFY
PRACK
UNKNOWN

The sip_get_response_code() function will return the response code response from the
request line in the SIP message sip_msg.

The sip_get_respose_phrase() function will return the response phrase response from the
request line in the SIP message sip_msg.

The sip_get_sip_version() function will return the version of the SIP protocol from the
request or the response line in the SIP message sip_msg.

For functions that return a pointer to sip_str_t, the return value is the specified value on
success or NULL in case of error. For functions that return an integer, the return value is the
specified value on success and -1 on error.

The value of errno is not changed by these calls in the event of an error.

These functions take a pointer to an integer error as an argument. If the error is non-null, one
of the following values is set:

EINVAL The input SIP message sip_msg or the header value is null; or the specified
header/header value is deleted.

EPROTO The header value is not present or invalid. The parser could not parse it correctly.

ENOMEM There is an error allocating memory for the return value.

On success, the value of the location pointed to by error is set to 0.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Return Values

Errors

Attributes

See Also

sip_get_request_method(3SIP)

Networking Library Functions 673

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_get_request_uri_str – return request URI

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

const sip_str_t *sip_get_request_uri_str(sip_msg_t sip_msg,
int *error);

For functions that return a pointer of type sip_str_t, sip_str_t is supplied by:

typedef struct sip_str {

char *sip_str_ptr;

int sip_str_len;

}sip_str_t;

The sip_str_ptr parameter points to the start of the returned value and sip_str_len supplies the
length of the returned value.

For example, given the following request line in a SIP message input to
sip_get_request_uri_str():

INVITE sip:marconi@radio.org SIP/2.0

the return is a pointer to sip_str_t with the sip_str_ptr member pointing to “s” of
sip:marconi@radio.org and sip_str_len being set to 21, the length of
sip:marconi@radio.org.

The sip_get_request_uri_str() function returns the URI string from the request line in the
SIP message sip_msg.

The sip_get_request_uri_str() function returns the URI string. The function returns NULL
on failure.

The value of errno is not changed by these calls in the event of an error.

If the error is non-null, one of the following values is set:

EINVAL For the sip_get_request_uri_str() function, there is no request line is in the
SIP message.

EPROTO For sip_get_request_uri_str, the request URI is invalid.

On success, the value of the location pointed to by error is set to 0.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Name

Synopsis

Description

Return Values

Errors

Attributes

sip_get_request_uri_str(3SIP)

man pages section 3: Networking Library Functions • Last Revised 25 Jan 2007674

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

libsip(3LIB)See Also

sip_get_request_uri_str(3SIP)

Networking Library Functions 675

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_get_resp_desc – return the response phrase

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

char *sip_get_resp_desc(int *resp_code);

The sip_get_resp_desc() function returns the response phrase for the given response code
in resp_code. The response code is not one that is listed in RFC 3261 (Section 21). The
returned string is “UNKNOWN”.

The value of errno is not changed by these calls in the event of an error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Name

Synopsis

Description

Return Values

Attributes

See Also

sip_get_resp_desc(3SIP)

man pages section 3: Networking Library Functions • Last Revised 25 Jan 2007676

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_get_trans – lookup a transaction

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

const struct sip_xaction *sip_get_trans(sip_msg_t sip_msg, int which,
int *error);

The sip_get_trans() transaction for the SIP message sip_msg. A transaction is not freed if
there are any references on it.

The transaction type should be specified as one of the following:

SIP_CLIENT_TRANSACTON - lookup a client transaction
SIP_SERVER_TRANSACTON - lookup a server transaction

The sip_get_trans() function matches a transaction to a message as specified in RFC 3261,
sections 17.1.3 and 17.2.3. The sip_get_trans() function holds a reference to the returned
transaction. The caller must release this reference after use.

The sip_get_trans() function returns the required value on success or NULL on failure.

The value of errno is not changed by these calls in the event of an error.

On success, the value of the location pointed to by error is set to 0.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

sip_get_trans(3SIP)

Networking Library Functions 677

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_get_trans_method, sip_get_trans_state, sip_get_trans_orig_msg,
sip_get_trans_conn_obj, sip_get_trans_resp_msg, sip_get_trans_branchid – get transaction
attributes

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

sip_method_t sip_get_trans_method(sip_transaction_t sip_trans,
int *error);

int sip_get_trans_state(sip_transaction_t trans, int *error);

const struct sip_message *sip_get_trans_orig_msg
(sip_transaction_t sip_trans, int *error);

const struct sip_message *sip_get_trans_resp_msg
(sip_transaction_t sip_trans, int *error);

const struct sip_conn_object *sip_get_trans_conn_obj
(sip_transaction_t sip_trans, int *error);

char *sip_get_trans_branchid(sip_transaction_t trans, int *error);

The sip_get_trans_method() function returns the method the SIP message that created the
transaction sip_trans.

The sip_get_trans_state() function returns the state of the transaction sip_trans.

A newly created transaction is in the state:

SIP_NEW_TRANSACTION

A client transaction could be in one of the following states:

SIP_CLNT_CALLING

SIP_CLNT_INV_PROCEEDING

SIP_CLNT_INV_TERMINATED

SIP_CLNT_INV_COMPLETED

SIP_CLNT_TRYING

SIP_CLNT_NONINV_PROCEEDING

SIP_CLNT_NONINV_TERMINATED

SIP_CLNT_NONINV_COMPLETED

A server transaction could be in one of the following states:

SIP_SRV_INV_PROCEEDING

SIP_SRV_INV_COMPLETED

SIP_SRV_CONFIRMED

Name

Synopsis

Description

sip_get_trans_method(3SIP)

man pages section 3: Networking Library Functions • Last Revised 10 Feb 2007678

SIP_SRV_INV_TERMINATED

SIP_SRV_TRYING

SIP_SRV_NONINV_PROCEEDING

SIP_SRV_NONINV_COMPLETED

SIP_SRV_NONINV_TERMINATED

The sip_get_trans_orig_msg() function returns the message that created the transaction
sip_trans. This could be a request on the client or a response on the server.

The sip_get_trans_resp_msg() function returns the last response that was sent on the
transaction sip_trans. Typically, this response is used by the transaction layer for
retransmissions for unreliable transports or for responding to retransmitted requests. A
response that terminates a transaction is not returned.

The sip_get_trans_conn_obj() function returns the cached connection object, if any, in the
transactionsip_trans.

The sip_get_trans_branchid() function returns the branch ID for the message that created
the transactionsip_trans. The caller is responsible for freeing the returned string.

The sip_get_trans_orig_msg(), sip_get_trans_resp_msg(),
sip_get_trans_conn_obj(), and sip_get_trans_branchid() functions return the required
value on success or NULL on failure.

The sip_get_trans_state() and sip_get_trans_method() functions return the required
value on success and -1 on failure.

The value of errno is not changed by these calls in the event of an error.

If the error is non-null, one of the following values is set:

EINVAL The input transaction sip_trans is NULL.

ENOMEM For sip_get_trans_branchid() there is an error allocating memory for the
branch ID string.

On success, the value of the location pointed to by error is set to 0.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Return Values

Errors

Attributes

sip_get_trans_method(3SIP)

Networking Library Functions 679

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

libsip(3LIB)See Also

sip_get_trans_method(3SIP)

man pages section 3: Networking Library Functions • Last Revised 10 Feb 2007680

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_get_uri_parsed – return the parsed URI

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

const struct sip_uri *sip_get_uri_parsed(sip_header_value_t value,
int *error);

The sip_get_uri_parsed() function returns the parsed URI sip_uri from the SIP header
value specified in value.

The sip_get_uri_parsed() function returns the parsed URI sip_uri on success. The function
returns NULL on failure.

The value of errno is not changed by these calls in the event of an error.

If the error is non-null, following value is set:

EINVAL The SIP header value of the SIP message is NULL or there is no URI.

The input URI is null or the requested URI component is invalid. The error flag is
set for the requested component.

The URI parameters or headers are requested from a non-SIP[S] URI; or the
'opaque', 'query', 'path', 'reg-name' components are requested from a SIP[S] URI.

On success, the value of the location pointed to by error is set to 0.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

sip_get_uri_parsed(3SIP)

Networking Library Functions 681

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_guid – generate a random string

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

char *sip_guid();

The sip_guid() function can be used to generate a random string. The caller is responsible
for freeing the returned string.

The sip_guid() function returns a string on success and NULL on failure.

The value of errno is not changed by these calls in the event of an error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Name

Synopsis

Description

Return Values

Attributes

See Also

sip_guid(3SIP)

man pages section 3: Networking Library Functions • Last Revised 25 Jan 2007682

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_hold_dialog, sip_release_dialog – hold/release reference on a dialog

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

void sip_hold_dialog(sip_dialog_t dialog);

void sip_release_dialog(sip_dialog_t dialog);

For functions that return a pointer of type sip_str_t, sip_str_t is supplied by:

typedef struct sip_str {

char *sip_str_ptr;

int sip_str_len;

}sip_str_t;

The sip_str_ptr parameter points to the start of the returned value and sip_str_len supplies the
length of the returned value.

The sip_hold_dialog() function is used to hold a reference on the dialog. A dialog is not
freed if there are any references on it.

The sip_release_dialog() function is used to release a reference in the dialog. If the
reference in a dialog drops to 0 and it is in SIP_DLG_DESTROYED state, it is freed.

The value of errno is not changed by these calls in the event of an error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Name

Synopsis

Description

Return Values

Attributes

See Also

sip_hold_dialog(3SIP)

Networking Library Functions 683

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_hold_msg, sip_free_msg – adds and removes a reference from a SIP message

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

void sip_hold_msg(sip_msg_t sip_msg);

void sip_free_msg(sip_msg_t sip_msg);

The sip_hold_msg() function adds a reference to the SIP message passed as the argument.
The reference is used to prevent the SIP message from being freed when in use.

The sip_free_msg() function is used to remove an added reference on the SIP message
passed as the argument. If this is the last reference on the SIP message (i.e. the number of
references on the SIP message is 0), the SIP message is destroyed and associated resources
freed. Freeing a SIP message does not set the sip_msg pointer to NULL. Applications should not
expect the pointer to a freed SIP message to be NULL.

The value of errno is not changed by these calls in the event of an error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Name

Synopsis

Description

Return Values

Attributes

See Also

sip_hold_msg(3SIP)

man pages section 3: Networking Library Functions • Last Revised 25 Jan 2007684

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_hold_trans, sip_release_trans – hold or release reference on a transaction

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

void sip_hold_trans(sip_transaction_t sip_trans);

void sip_release_trans(sip_transaction_t sip_trans);

The sip_hold_trans() function is used to hold a reference on the transaction sip_trans. A
transaction is not freed if there are any references on it.

The sip_release_trans() function is used to release a reference on the transaction sip_trans.
If the reference falls to 0 and the transaction is in a terminated state, the transaction is freed.

The value of errno is not changed by these calls in the event of an error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Name

Synopsis

Description

Return Values

Attributes

See Also

sip_hold_trans(3SIP)

Networking Library Functions 685

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_init_conn_object, sip_clear_stale_data, sip_conn_destroyed – connection object related
functions

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

int sip_init_conn_object(sip_conn_object_t obj);

void sip_clear_stale_data(sip_conn_object_t obj);

void sip_conn_destroyed(sip_conn_object_t obj);

The sip_init_conn_object() function initializes the connection object obj for use by the
stack. The first member of the connection object (a void *) is used by the stack to store
connection object specific stack-private data.

The sip_clear_stale_data() function is used to clear any stack-private data in the
connection object obj.

The sip_conn_destroyed() function is used to intimate the stack of the pending destruction
of the connection object obj. The stack clean up any stack-private data in obj and also removes
obj from any caches the stack maintains.

The sip_init_conn_object() function returns 0 on success and the appropriate error value
on failure.

The value of errno is not changed by these calls in the event of an error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Name

Synopsis

Description

Return Values

Attributes

See Also

sip_init_conn_object(3SIP)

man pages section 3: Networking Library Functions • Last Revised 25 Jan 2007686

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_is_sip_uri, sip_get_uri_scheme, sip_get_uri_host, sip_get_uri_user,
sip_get_uri_password, sip_get_uri_port, sip_get_uri_params, sip_get_uri_headers,
sip_get_uri_opaque, sip_get_uri_query, sip_get_uri_path, sip_get_uri_regname,
sip_is_uri_teluser, sip_get_uri_errflags, sip_uri_errflags_to_str – get URI related attributes

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

boolean_t sip_is_sip_uri(const struct sip_uri *sip_uri);

const sip_str_t *sip_get_uri_scheme(const struct sip_uri *sip_uri,
int *error);

const sip_str_t *sip_get_uri_user(const struct sip_uri *sip_uri,
int *error);

const sip_str_t *sip_get_uri_password(const struct sip_uri *sip_uri,
int *error);

const sip_str_t *sip_get_uri_host(const struct sip_uri *sip_uri,
int *error);

int sip_get_uri_port(const struct sip_uri *sip_uri,
int *error);

const sip_param_t *sip_get_uri_params(const struct sip_uri *sip_uri,
int *error);

const sip_str_t *sip_get_uri_headers(const struct sip_uri *sip_uri,
int *error);

const sip_str_t *sip_get_uri_opaque(const struct sip_uri *sip_uri,
int *error);

const sip_str_t *sip_get_uri_query(const struct sip_uri *sip_uri,
int *error);

const sip_str_t *sip_get_uri_path(const struct sip_uri *sip_uri,
int *error);

const sip_str_t *sip_get_uri_regname(const struct sip_uri *sip_uri,
int *error);

boolean_t sip_is_uri_teluser(const struct sip_uri *sip_uri);

int sip_get_uri_errflags(const struct sip_uri *sip_uri,
int *error);

char *sip_uri_errflags_to_str(int uri_errflags);

For functions that return a pointer of type sip_str_t, sip_str_t is supplied by:

typedef struct sip_str {

char *sip_str_ptr;

int sip_str_len;

}sip_str_t;

Name

Synopsis

Description

sip_is_sip_uri(3SIP)

Networking Library Functions 687

The sip_str_ptr parameter points to the start of the returned value and sip_str_len supplies the
length of the returned value.

For example, given the following request line in a SIP message input to
sip_get_request_uri_str():

INVITE sip:marconi@radio.org SIP/2.0

the return is a pointer to sip_str_t with the sip_str_ptr member pointing to “s” of
sip:marconi@radio.org and sip_str_len being set to 21, the length of
sip:marconi@radio.org.

The sip_is_sip_uri() function takes a parsed URI sip_uri and returns B_TRUE if it is a SIP[S]
URI and B_FALSE if it is not. A URI is a SIP[S] URI if the scheme in the URI is either “sip” or
“sips”.

The sip_get_uri_user() function takes a parsed URI sip_uri and returns the value of the
“user” component, if present.

The sip_get_uri_password() function takes a parsed URI sip_uri and returns the value of
the “password” component, if present.

The sip_get_uri_host() function takes a parsed URI sip_uri and returns the value of the
“host” component, if present.

The sip_get_uri_port() function takes a parsed URI sip_uri and returns the value of the
“port” component, if present.

The sip_get_uri_params() function takes a parsed URI sip_uri and returns the list of URI
parameters, if present, from a SIP[S] URI.

The sip_get_uri_headers() function takes a parsed URI sip_uri and returns 'headers' from
a SIP[S] URI.

The sip_get_uri_query() function takes a parsed URI sip_uri and returns the value of the
'query' component, if present.

The sip_get_uri_path() function takes a parsed URI sip_uri and returns the value of the
'path' component, if present.

The sip_get_uri_regname() function takes a parsed URI sip_uri and returns the value of the
'regname' component, if present.

The sip_is_uri_teluser() function returns B_TRUE if the user component is a
telephone-subscriber. Otherwise, B_FALSE is returned.

The sip_get_uri_errflags() function returns the error flags from a parsed URI sip_uri. The
returned value is a bitmask with the appropriate bit set when the parser, sip_parse_uri(),
encounters an error. The following are the possible error values that could be set:

sip_is_sip_uri(3SIP)

man pages section 3: Networking Library Functions • Last Revised 10 Feb 2007688

Bit value Error Comments

0x00000001 SIP_URIERR_SCHEME invalid scheme

0x00000002 SIP_URIERR_USER invalid user name

0x00000004 SIP_URIERR_PASS invalid password

0x00000008 SIP_URIERR_HOST invalid host

0x00000010 SIP_URIERR_PORT invalid port number

0x00000020 SIP_URIERR_PARAM invalid URI parameters

0x00000040 SIP_URIERR_HEADER invalid URI headers

0x00000080 SIP_URIERR_OPAQUE invalid opaque

0x00000100 SIP_URIERR_QUERY invalid query

0x00000200 SIP_URIERR_PATH invalid path

0x00000400 SIP_URIERR_REGNAME invalid reg-name

The sip_uri_errflags_to_str() function takes the error flags from a parsed URI sip_uri
and forms a string with all the error bits that are set. For example, if SIP_URIERR_PASS and
SIP_URIERR_PORT are set in a parsed URI sip_uri, the sip_uri_errflags_to_str() function
returns a string such as:

"Error(s) in PASSWORD, PORT part(s)"

The caller is responsible for freeing the returned string.

The sip_get_uri_scheme(), sip_get_uri_user(), sip_get_uri_password(),
sip_get_uri_host(), sip_get_uri_params(), sip_get_uri_headers(),
sip_get_uri_opaque(), sip_get_uri_query(), sip_get_uri_path(),
sip_get_uri_regname(), and sip_uri_errflags_to_str() functions return the requested
value on success and NULL on failure.

The sip_get_uri_port() function returns port from the URI or 0 if the port is not present.
The returned port is in host byte order.

The value of errno is not changed by these calls in the event of an error.

If the error is non-null, the following value is set:

EINVAL The SIP header value of the SIP message is NULL or there is no URI.

The input URI is null or the requested URI component is invalid. The error flag is
set for the requested component.

The URI parameters or headers are requested from a non-SIP[S] URI; or the
'opaque', 'query', 'path', 'reg-name' components are requested from a SIP[S] URI.

On success, the value of the location pointed to by error is set to 0.

Return Values

Errors

sip_is_sip_uri(3SIP)

Networking Library Functions 689

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Attributes

See Also

sip_is_sip_uri(3SIP)

man pages section 3: Networking Library Functions • Last Revised 10 Feb 2007690

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_msg_is_request, sip_message_is_response – determine if the SIP message is a request or a
response

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

boolean_t sip_msg_is_request(const sip_msg_t sip_msg,
int *error);

boolean_t sip_msg_is_response(const sip_msg_t sip_msg,
int *error);

The sip_msg_is_request() function returns B_TRUE if sip_msg is a request and B_FALSE

otherwise.

The sip_msg_is_response() function returns B_TRUE if sip_msg is a response and B_FALSE

otherwise.

For functions that return an integer, the return value is the specified value on success and -1

on error.

The value of errno is not changed by these calls in the event of an error.

These functions take a pointer to an integer error as an argument. If the error is non-null, one
of the following values is set:

EINVAL The input SIP message sip_msg or the header value is null; or the specified
header/header value is deleted.

EPROTO The header value is not present or invalid. The parser could not parse it correctly.

ENOMEM There is an error allocating memory for the return value.

On success, the value of the location pointed to by error is set to 0.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

sip_msg_is_request(3SIP)

Networking Library Functions 691

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_msg_to_str, sip_hdr_to_str, sip_reqline_to_str, sip_respline_to_str, sip_sent_by_to_str –
return string representations

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

char *sip_msg_to_str(sip_msg_t sip_msg,
int *error);

char *sip_hdr_to_str(sip_header_t sip_header,
int *error);

char *sip_reqline_to_str(sip_msg_t sip_msg,
int *error);

char *sip_respline_to_str(sip_msg_t sip_msg,
int *error);

char *sip_sent_by_to_str(int *error);

The sip_msg_to_str() function returns the string representation of the SIP message sip_msg.
Deleted headers are not included in the returned string. The caller is responsible for freeing
the returned string.

The sip_hdr_to_str() function returns the string representation of the SIP header
sip_header. The caller is responsible for freeing the returned string.

The sip_reqline_to_str() function returns the string representation of the request line
from the SIP message sip_msg. The caller is responsible for freeing the returned string.

The sip_respline_to_str() function returns the string representation of the response line
from the SIP message sip_msg. The caller is responsible for freeing the returned string.

The sip_sent_by_to_str() function can be used to retrieve the list of sent-by values
registered with the stack. The returned string is a comma separated list of sent-by values. The
caller is responsible for freeing the returned string.

The sip_msg_to_str(), sip_hdr_to_str(), sip_reqline_to_str(),
sip_respline_to_str(), and sip_sent_by_to_str() functions return the relevant string on
success and NULL on failure.

The value of errno is not changed by these calls in the event of an error.

For the sip_msg_to_str(), sip_hdr_to_str(), sip_reqline_to_str(), and
sip_respline_to_str(), one of the following values is set if the error is non-null:

EINVAL Input is null.

ENOMEM Memory allocation failure.

On success, the value of the location pointed to by error is set to 0.

Name

Synopsis

Description

Return Values

Errors

sip_msg_to_str(3SIP)

man pages section 3: Networking Library Functions • Last Revised 25 Jan 2007692

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Attributes

See Also

sip_msg_to_str(3SIP)

Networking Library Functions 693

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_new_msg – allocates a new SIP message

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

sip_msg_t sip_new_msg();

The sip_new_msg() function allocates and returns a new SIP message.

The sip_new_msg() function returns the newly allocated SIP message on success and NULL on
failure.

The value of errno is not changed by these calls in the event of an error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Name

Synopsis

Description

Return Values

Attributes

See Also

sip_new_msg(3SIP)

man pages section 3: Networking Library Functions • Last Revised 25 Jan 2007694

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_parse_uri, sip_free_parsed_uri – parse a URI and free a parsed URI

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

sip_uri_t sip_parse_uri(sip_str_t *uri_str,
int *error);

void sip_free_parsed_uri(sip_uri_t sip_uri);

For functions that return a pointer of type sip_str_t, sip_str_t is supplied by:

typedef struct sip_str {

char *sip_str_ptr;

int sip_str_len;

}sip_str_t;

The sip_str_ptr parameter points to the start of the returned value and sip_str_len supplies the
length of the returned value.

For example, given the following request line in a SIP message input to
sip_get_request_uri_str():

INVITE sip:marconi@radio.org SIP/2.0

the return is a pointer to sip_str_t with the sip_str_ptr member pointing to “s” of
sip:marconi@radio.org and sip_str_len being set to 21, the length of
sip:marconi@radio.org.

The sip_parse_uri() function takes a URI string in the form sip_str_t and returns a parsed
URI sip_uri. The syntax of the URI is as specified in RFC 3261, section 25.1. If the parser
encounters an error when parsing a component, it sets the appropriate error bit in the error
flags and proceeds to the next component, if present.

The sip_free_parsed_uri() function takes a parsed URI sip_uri, obtained from
sip_parse_uri(), and frees any associated memory.

The sip_parse_uri() function returns the parsed URI sip_uri on success. It returns a NULL if
memory cannot be allocated for the parsed URI.

The value of errno is not changed by these calls in the event of an error.

If the error is non-null, the following values is set:

EINVAL The SIP header value of the SIP message is NULL or there is no URI.

The input URI is null or the requested URI component is invalid. The error flag is
set for the requested component.

The URI parameters or headers are requested from a non-SIP[S] URI; or the
'opaque', 'query', 'path', 'reg-name' components are requested from a SIP[S] URI.

Name

Synopsis

Description

Return Values

Errors

sip_parse_uri(3SIP)

Networking Library Functions 695

On success, the value of the location pointed to by error is set to 0.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Attributes

See Also

sip_parse_uri(3SIP)

man pages section 3: Networking Library Functions • Last Revised 25 Jan 2007696

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_process_new_packet – send an inbound message to the SIP stack for processing

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

void sip_process_new_packet(sip_conn_object_t conn_object,
void *msgstr, size_t msgstr);

The sip_process_new_packet() function receives incoming message, creates a SIP message,
processes it and passes it on to the application. For a byte-stream protocol like TCP
sip_process_new_packet() also takes care of breaking the byte stream into message
boundaries using the CONTENT-LENGTH header in the SIP message. If the SIP message arriving
on TCP does not contain a CONTENT-LENGTH header, the behavior is unspecified.
sip_process_new_packet() deletes the SIP message on return from the application's receive
function, thus if the application wishes to retain the SIP message for future use, it must use
sip_hod_msg() so that the message is not freed by sip_process_new_packet().

The value of errno is not changed by these calls in the event of an error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Name

Synopsis

Description

Return Values

Attributes

See Also

sip_process_new_packet(3SIP)

Networking Library Functions 697

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_register_sent_by, sip_unregister_sent_by, sip_unregister_all_sent_by – allows registering
and un-registering sent-by values

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

int sip_register_sent_by(char *val);

void sip_unregister_sent_by(char *val);

void sip_unregister_all_sent_by(int *error);

The sip_register_sent_by() function can be used to register a list of hostnames or IP
addresses that the application may add to the VIA headers. The val is a comma separated list of
such sent-by values. If any value is registered using sip_register_sent_by(), the SIP stack
validates incoming responses to check if the sent-by parameter in the topmost VIA header is
part of the registered list. If the check fails, the response is dropped. If there are no sent-by
values registered, there is no check done on incoming responses.

The sip_unregister_sent_by() and sip_unregister_all_sent_by() functions are used to
un-register sent-by values. The val for sip_unregister_sent_by() is a comma separated list
of sent-by values that need to be un-registered. sip_unregister_all_sent_by() un-registers
all the values that have been registered.

The sip_register_sent_by() function returns 0 on success and the appropriate error value
on failure.

The value of errno is not changed by these calls in the event of an error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Name

Synopsis

Description

Return Values

Attributes

See Also

sip_register_sent_by(3SIP)

man pages section 3: Networking Library Functions • Last Revised 25 Jan 2007698

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_sendmsg – send an outbound SIP message to the SIP stack for processing

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

int sip_sendmsg(sip_conn_object_t obj, sip_msg_t sip_msg,
sip_dialog_t dialog, uint32_t flags);

The sip_sendmsg() function is used to send an outbound SIP message sip_msg to the SIP
stack on its way to the peer. The connection object for the SIP message is passed as obj. The
caller also provides the dialog associated with the message, if one exists. The value of flags is
the result of ORing the following, as required:

SIP_SEND_STATEFUL Send the request or response statefully. This results in the
stack creating and maintaining a transaction for this
request/response. If this flag is not set transactions are not
created for the request/response.

SIP_DIALOG_ON_FORK When this flag is set, the stack may create multiple dialogs for a
dialog completing response. This may result due to forking of
the dialog creating request. If this flag is not set, the first
response to a dialog creating request creates a dialog, but
subsequent ones do not. It is only meaningful if the stack is
configured to maintain dialogs.

The sip_sendmsg() function returns 0 on success and the appropriate error on failure.

The value of errno is not changed by these calls in the event of an error.

The sip_sendmsg() function can return one of the following errors on failure:

EINVAL If a message is being statefully sent and the branchid in the VIA header does not
conform to RFC 3261 or when accessing CSEQ header while creating a transaction.

ENOENT If a message is being statefully sent, error getting the CSEQ header while creating a
transaction.

EPROTO If a message is being statefully sent, error getting the CSEQ value while creating a
transaction.

ENOMEM If the message is being statefully sent, error allocating memory for creating or
adding a transaction or during transaction related processing.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Name

Synopsis

Description

Return Values

Errors

Attributes

sip_sendmsg(3SIP)

Networking Library Functions 699

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

libsip(3LIB)See Also

sip_sendmsg(3SIP)

man pages section 3: Networking Library Functions • Last Revised 25 Jan 2007700

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

sip_stack_init – initializes SIP stack

cc [flag ...] file ... -lsip [library ...]

#include <sip.h>

int sip_stack_init(sip_stack_init_t * stack_val);

The sip_stack_init() function is used to initialize the SIP stack. The stack can be initialized
by a process only once. Any shared library that is linked with a main program or another
library that has already initialized the stack will encounter a failure when trying to initialize
the stack.

The initialization structure is given by:

typedef struct sip_stack_init_s {

int sip_version;

uint32_t sip_stack_flags;

sip_io_pointers_t *sip_io_pointers;

sip_ulp_pointers_t *sip_ulp_pointers;

sip_header_function_t *sip_function_table;

};

sip_version This must be set to SIP_STACK_VERSION.

sip_stack_flags If the application wants the SIP stack to maintain dialogs, this flag must be
set to SIP_STACK_DIALOGS. Otherwise, it must be set to 0. If
SIP_STACK_DIALOGS is not set, the stack does not deal with dialogs at all.

These include callbacks that are invoked to deliver incoming messages or error notification.

The callback functions should not create a thread and invoke a function that could recursively
invoke the callback. For example, the callback function for a transition state change
notification should not create a thread to send a SIP message that results in a change in the
state of the transaction, which would again invoke the callback function.

The registration structure is supplied by:

typedef struct sip_ulp_pointers_s {

void (*sip_ulp_recv)(const sip_conn_object_t,

sip_msg_t, const sip_dialog_t);

uint_t (*sip_ulp_timeout)(void *,

void (*func)(void *),

struct timeval *);

boolean_t (*sip_ulp_untimeout)(uint_t);

int (*sip_ulp_trans_error)

(sip_transaction_t, int, void *);

void (*sip_ulp_dlg_del)(sip_dialog_t,

sip_msg_t, void *);

void (*sip_ulp_trans_state_cb)

(sip_transaction_t, sip_msg_t,

Name

Synopsis

Description

Upper Layer
Registrations

sip_stack_init(3SIP)

Networking Library Functions 701

int, int);

void (*sip_ulp_dlg_state_cb)(sip_dialog_t,

sip_msg_t, int, int);

}sip_io_pointers_t;

sip_ulp_recv This is a mandatory routine that the application registers for the
stack to deliver an inbound SIP message. The SIP stack invokes
the function with the connection object on which the message
arrived, the SIP message, and any associated dialog.

The SIP message is freed once the function returns. If the
application wishes to use the message beyond that, it has to hold a
reference on the message using sip_hold_msg(). Similarly, if the
application wishes to cache the dialog, it must hold a reference on
the dialog using sip_hold_msg().

sip_ulp_timeout
sip_ulp_untimeout An application can register these two routines to implement its

own routines for the stack timers. Typically, an application should
allow the stack to use its own built-in timer routines. The built-in
timer routines are used only by the stack and are not available to
applications. If the application registers one routine, it must also
register the other.

These functions must be registered for single-threaded
application. Otherwise, the timer thread provided by the stack
could result in invoking a registered callback function.

sip_ulp_trans_error The application can register this routine to be notified of a
transaction error. An error can occur when the transaction layer
tries to send a message using a cached connection object which
results in a failure. If this routine is not registered the transaction
is terminated on such a failure. The final argument is for future
use. It is always set to NULL.

sip_ulp_dlg_del An application can register this routine to be notified when a
dialog is deleted. The dialog to be deleted is passed along with the
SIP message which caused the dialog to be deleted. The final
argument is for future use. It is always set to NULL.

sip_ulp_trans_state_cb
sip_ulp_dlg_state_cb If these callback routines are registered, the stack invokes

sip_ulp_trans_state_cb when a transaction changes states and
sip_ulp_dlg_state_cb when a dialog changes states.

sip_stack_init(3SIP)

man pages section 3: Networking Library Functions • Last Revised 23 Jan 2007702

The connection manager interfaces must be registered by the application to provide I/O
related functionality to the stack. These interfaces act on a connection object that is defined by
the application. The application registers the interfaces for the stack to work with the
connection object. The connection object is application defined, but the stack requires that the
first member of the connection object is a void *, used by the stack to store connection object
specific information which is private to the stack.

The connection manager structure is supplied by:

typedef struct sip_io_pointers_s {

int (*sip_conn_send)(const sip_conn_object_t, char *, int);

void (*sip_hold_conn_object)(sip_conn_object_t);

void (*sip_rel_conn_object)(sip_conn_object_t);

boolean_t (*sip_conn_is_stream)(sip_conn_object_t);

boolean_t (*sip_conn_is_reliable)(sip_conn_object_t);

int (*sip_conn_remote_address)(sip_conn_object_t, struct sockaddr *,

socklen_t *);

int (*sip_conn_local_address)(sip_conn_object_t, struct sockaddr *,

socklen_t *);

int (*sip_conn_transport)(sip_conn_object_t);

int (*sip_conn_timer1)(sip_conn_object_t);

int (*sip_conn_timer2)(sip_conn_object_t);

int (*sip_conn_timer4)(sip_conn_object_t);

int (*sip_conn_timerd)(sip_conn_object_t);

}sip_io_pointers_t;

sip_conn_send This function is invoked by the stack after processing an
outbound SIP message. This function is responsible for
sending the SIP message to the peer. A return of 0 indicates
success. The SIP message is passed to the function as a string,
along with the length information and the associated
connection object.

sip_hold_conn_object
sip_rel_conn_object The application provides a mechanism for the stack to indicate

that a connection object is in use by the stack and must not be
freed. The stack uses sip_hold_conn_object to indicate that
the connection object is in use and sip_rel_conn_object to
indicate that it has been released. The connection object is
passed as the argument to these functions. The stack expects
that the application will not free the connection object if it is in
use by the stack.

sip_conn_is_stream The stack uses this to determine whether the connection
object, passed as the argument, is byte-stream oriented.
Byte-stream protocols include TCP while message-based
protocols include SCTP and UDP.

Connection Manager
Interface

sip_stack_init(3SIP)

Networking Library Functions 703

sip_conn_is_reliable The stack uses this to determine whether the connection
object, passed as the argument, is reliable. Reliable protocols
include TCP and SCTP. Unreliable protocols include UDP.

sip_conn_local_address
sip_conn_remote_address These two interfaces are used by the stack to obtain endpoint

information for a connection object. The
sip_conn_local_address provides the local address/port
information. The sip_conn_remote_address provides the
address/port information of the peer. The caller allocates the
buffer and passes its associated length along with it. On return,
the length is updated to reflect the actual length.

sip_conn_transport The stack uses this to determine the transport used by the
connection object, passed as the argument. The transport
could be TCP, UDP, SCTP.

sip_conn_timer1
sip_conn_timer2
sip_conn_timer4
sip_conn_timerd These four interfaces may be registered by an application to

provide connection object specific timer information. If these
are not registered the stack uses default values.

The interfaces provide the timer values for Timer 1 (RTT
estimate - default 500 msec), Timer 2 (maximum retransmit
interval for non-INVITE request and INVITE response - default
4 secs), Timer 4 (maximum duration a message will remain in
the network - default 5 secs) and Timer D (wait time for
response retransmit interval - default 32 secs).

In addition to the SIP headers supported by the stack, an application can optionally provide a
table of custom headers and associated parsing functions. The table is an array with an entry
for each header. If the table includes headers supported by the stack, parsing functions or
other application-specific table entries take precedence over libsip supported headers. The
header table structure is supplied by:

typedef struct header_function_table {

char *header_name;

char *header_short_name;

int (*header_parse_func)

(struct sip_header *,

struct sip_parsed_header **);

boolean_t (*header_check_compliance)

(struct sip_parsed_header *);

boolean_t (*header_is_equal)

(struct sip_parsed_header *,

Custom SIP headers

sip_stack_init(3SIP)

man pages section 3: Networking Library Functions • Last Revised 23 Jan 2007704

struct sip_parsed_header *);

void (*header_free)

(struct sip_parsed_header *);

}

header_name The full name of the header. The application must ensure that
he name does not conflict with existing headers. If it does, the
one registered by the application takes precedence.

header_short_name Compact name, if any, for the header.

header_parse_func The parsing function for the header. The parser will set the
second argument to the resulting parsed structure. A return
value of 0 indicates success.

header_free The function that frees the parsed header

header_check_compliance An application can optionally provide this function that will
check if the header is compliant or not. The compliance for a
custom header will be defined by the application.

header_is_equal An application can optionally provide this function to
determine whether two input headers are equivalent. The
equivalence criteria is defined by the application.

On success sip_stack_init() returns 0. Otherwise, the function returns the error value.

The value of errno is not changed by these calls in the event of an error.

On failure, the sip_stack_init() function returns the following error value:

EINVAL If the stack version is incorrect, or if any of the mandatory functions is missing.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

libsip(3LIB)

Return Values

Errors

Attributes

See Also

sip_stack_init(3SIP)

Networking Library Functions 705

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1libsip-3lib

slp_api – Service Location Protocol Application Programming Interface

cc [flag ...] file ... -lslp [library ...]

#include <slp.h>

The slp_api is a C language binding that maps directly into the Service Location Protocol
(“SLP”) defined by RFC 2614. This implementation requires minimal overhead. With the
exception of the SLPDereg() and SLPDelAttrs() functions, which map into different uses of
the SLP deregister request, there is one C language function per protocol request. Parameters
are for the most part character buffers. Memory management is kept simple because the client
allocates most memory and client callback functions are required to copy incoming
parameters into memory allocated by the client code. Any memory returned directly from the
API functions is deallocated using the SLPFree() function.

To conform with standard C practice, all character strings passed to and returned through the
API are null-terminated, even though the SLP protocol does not use null-terminated strings.
Strings passed as parameters are UTF-8 but they may still be passed as a C string (a
null-terminated sequence of bytes.) Escaped characters must be encoded by the API client as
UTF-8. In the common case of US-ASCII, the usual one byte per character C strings work.
API functions assist in escaping and unescaping strings.

Unless otherwise noted, parameters to API functions and callbacks are non-NULL. Some
parameters may have other restrictions. If any parameter fails to satisfy the restrictions on its
value, the operation returns a PARAMETER_BAD error.

Query strings, attribute registration lists, attribute deregistration lists, scope lists, and attribute
selection lists follow the syntax described in RFC 2608. The API reflects the strings passed
from clients directly into protocol requests, and reflects out strings returned from protocol
replies directly to clients. As a consequence, clients are responsible for formatting request
strings, including escaping and converting opaque values to escaped byte-encoded strings.
Similarly, on output, clients are required to unescape strings and convert escaped
string-encoded opaques to binary. The SLPEscape() and SLPUnescape() functions can be
used for escaping SLP reserved characters, but they perform no opaque processing.

Opaque values consist of a character buffer that contains a UTF-8-encoded string, the first
characters of which are the non UTF-8 encoding “\ff”. Subsequent characters are the escaped
values for the original bytes in the opaque. The escape convention is relatively simple. An
escape consists of a backslash followed by the two hexadecimal digits encoding the byte. An
example is “\2c” for the byte 0x2c. Clients handle opaque processing themselves, since the
algorithm is relatively simple and uniform.

The system properties established in slp.conf(4), the configuration file, are accessible
through the SLPGetProperty() and SLPSetProperty() functions. The SLPSetProperty()
function modifies properties only in the running process, not in the configuration file. Errors
are checked when the property is used and, as with parsing the configuration file, are logged at
the LOG_INFO priority. Program execution continues without interruption by substituting the
default for the erroneous parameter. In general, individual agents should rarely be required to

Name

Synopsis

Description

Syntax for String
Parameters

System Properties

slp_api(3SLP)

man pages section 3: Networking Library Functions • Last Revised 16 Jan 2003706

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slp.conf-4

override these properties, since they reflect properties of the SLP network that are not of
concern to individual agents. If changes are required, system administrators should modify
the configuration file.

Properties are global to the process, affecting all threads and all handles created with
SLPOpen().

The only API functions that return memory specifically requiring deallocation on the part of
the client are SLPParseSrvURL(), SLPFindScope(), SLPEscape(), and SLPUnescape(). Free
this memory with SLPFree() when it is no longer needed. Do not free character strings
returned by means of the SLPGetProperty() function.

Any memory passed to callbacks belongs to the library, and it must not be retained by the
client code. Otherwise, crashes are possible. Clients must copy data out of the callback
parameters. No other use of the memory in callback parameters is allowed.

If a handle parameter to an API function is opened asynchronously, the API function calls on
the handle to check the other parameters, opens the appropriate operation, and returns
immediately. If an error occurs in the process of starting the operation, the error code is
returned. If the handle parameter is opened synchronously, the function call is blocked until
all results are available, and it returns only after the results are reported through the callback
function. The return code indicates whether any errors occurred during the operation.

The callback function is called whenever the API library has results to report. The callback
code is required to check the error code parameter before looking at the other parameters. If
the error code is not SLP_OK, the other parameters may be NULL or otherwise invalid. The API
library can terminate any outstanding operation on which an error occurs. The callback code
can similarly indicate that the operation should be terminated by passing back SLP_FALSE to
indicate that it is not interested in receiving more results. Callback functions are not permitted
to recursively call into the API on the same SLPHandle. If an attempt is made to call into the
API, the API function returns SLP_HANDLE_IN_USE. Prohibiting recursive callbacks on the
same handle simplifies implementation of thread safe code, since locks held on the handle will
not be in place during a second outcall on the handle.

The total number of results received can be controlled by setting the net.slp.maxResults
parameter.

On the last call to a callback, whether asynchronous or synchronous, the status code passed to
the callback has value SLP_LAST_CALL. There are four reasons why the call can terminate:

DA reply received A reply from a DA has been received and therefore nothing more is
expected.

Multicast terminated The multicast convergence time has elapsed and the API library
multicast code is giving up.

Multicast null results Nothing new has been received during multicast for awhile and the
API library multicast code is giving up on that (as an optimization).

Memory Management

Asynchronous and
Incremental Return

Semantics

slp_api(3SLP)

Networking Library Functions 707

Maximum results The user has set the net.slp.maxResults property and that number
of replies has been collected and returned.

The API library reads slp.conf(4), the default configuration file, to obtain the operating
parameters. You can specify the location of this file with the SLP_CONF_FILE environment
variable. If you do not set this variable, or the file it refers to is invalid, the API will use the
default configuration file at /etc/inet/slp.conf instead.

The data structures used by the SLP API are as follows:

The URL Lifetime Type

typedef enum {

SLP_LIFETIME_DEFAULT = 10800,

SLP_LIFETIME_MAXIMUM = 65535

} SLPURLLifetime;

The enumeration SLPURLLifetime contains URL lifetime values, in seconds, that are
frequently used. SLP_LIFETIME_DEFAULT is 3 hours, while SLP_LIFETIME_MAXIMUM is 18 hours,
which corresponds to the maximum size of the lifetime field in SLP messages. Note that on
registration SLP_LIFETIME_MAXIMUM causes the advertisement to be continually reregistered
until the process exits.

The SLPBoolean Type

typedef enum {

SLP_FALSE = 0,

SLP_TRUE = 1

} SLPBoolean;

The enumeration SLPBoolean is used as a Boolean flag.

The Service URL Structure

typedef struct srvurl {

char *s_pcSrvType;

char *s_pcHost;

int s_iPort;

char *s_pcNetFamily;

char *s_pcSrvPart;

} SLPSrvURL;

The SLPSrvURL structure is filled in by the SLPParseSrvURL() function with information
parsed from a character buffer containing a service URL. The fields correspond to different
parts of the URL, as follows:

s_pcSrvType A pointer to a character string containing the service type name,
including naming authority.

Configuration Files

Data Structures

slp_api(3SLP)

man pages section 3: Networking Library Functions • Last Revised 16 Jan 2003708

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slp.conf-4

s_pcHost A pointer to a character string containing the host identification
information.

s_iPort The port number, or zero, if none. The port is only available if the
transport is IP.

s_pcNetFamily A pointer to a character string containing the network address family
identifier. Possible values are “ipx” for the IPX family, “at” for the
Appletalk family, and "", the empty string, for the IP address family.

s_pcSrvPart The remainder of the URL, after the host identification.

The host and port should be sufficient to open a socket to the machine
hosting the service; the remainder of the URL should allow further
differentiation of the service.

The SLPHandle

typedef void* SLPHandle;

The SLPHandle type is returned by SLPOpen() and is a parameter to all SLP functions. It serves
as a handle for all resources allocated on behalf of the process by the SLP library. The type is
opaque.

Include a function pointer to a callback function specific to a particular API operation in the
parameter list when the API function is invoked. The callback function is called with the
results of the operation in both the synchronous and asynchronous cases. When the callback
function is invoked, the memory included in the callback parameters is owned by the API
library, and the client code in the callback must copy out the contents if it wants to maintain
the information longer than the duration of the current callback call.

Each callback parameter list contains parameters for reporting the results of the operation, as
well as an error code parameter and a cookie parameter. The error code parameter reports the
error status of the ongoing (for asynchronous) or completed (for synchronous) operation.
The cookie parameter allows the client code that starts the operation by invoking the API
function to pass information down to the callback without using global variables. The callback
returns an SLPBoolean to indicate whether the API library should continue processing the
operation. If the value returned from the callback is SLP_TRUE, asynchronous operations are
terminated. Synchronous operations ignore the return since the operation is already
complete.

SLPRegReport()

typedef void SLPRegReport(SLPHandle hSLP,

SLPError errCode,

void *pvCookie);

SLPRegReport() is the callback function to the SLPReg(), SLPDereg(), and SLPDelAttrs()

functions. The SLPRegReport() callback has the following parameters:

Callbacks

slp_api(3SLP)

Networking Library Functions 709

hSLP TheSLPHandle() used to initiate the operation.

errCode An error code indicating if an error occurred during the operation.

pvCookie Memory passed down from the client code that called the original API function,
starting the operation. It may be NULL.

SLPSrvTypeCallback()

typedef SLPBoolean SLPSrvTypeCallback(SLPHandle hSLP,

const char* pcSrvTypes,

SLPError errCode,

void *pvCookie);

The SLPSrvTypeCallback() type is the type of the callback function parameter to the
SLPFindSrvTypes() function. The results are collated when the hSLP handle is opened either
synchronously or asynchronously. The SLPSrvTypeCallback() callback has the following
parameters:

hSLP The SLPHandle used to initiate the operation.

pcSrvTypes A character buffer containing a comma-separated, null-terminated list of
service types.

errCode An error code indicating if an error occurred during the operation. The
callback should check this error code before processing the parameters. If the
error code is other than SLP_OK, then the API library may choose to terminate
the outstanding operation.

pvCookie emory passed down from the client code that called the original API function,
starting the operation. It can be NULL.

SLPSrvURLCallback

typedef SLPBoolean SLPSrvURLCallback(SLPHandle hSLP,

const char* pcSrvURL,

unsigned short usLifetime,

SLPError errCode,

void *pvCookie);

The SLPSrvURLCallback() type is the type of the callback function parameter to the
SLPFindSrvs() function. The results are collated, regardless of whether the hSLP was opened
collated or uncollated. The SLPSrvURLCallback() callback has the following parameters:

hSLP The SLPHandle used to initiate the operation.

pcSrvURL A character buffer containing the returned service URL.

usLifetime An unsigned short giving the life time of the service advertisement. The value
must be an unsigned integer less than or equal to SLP_LIFETIME_MAXIMUM.

slp_api(3SLP)

man pages section 3: Networking Library Functions • Last Revised 16 Jan 2003710

errCode An error code indicating if an error occurred during the operation. The
callback should check this error code before processing the parameters. If the
error code is other than SLP_OK, then the API library may choose to terminate
the outstanding operation.

pvCookie Memory passed down from the client code that called the original API
function, starting the operation. It can be NULL.

SLPAttrCallback

typedef SLPBoolean SLPAttrCallback(SLPHandle hSLP,

const char* pcAttrList,

SLPError errCode,

void *pvCookie);

The SLPAttrCallback() type is the type of the callback function parameter to the
SLPFindAttrs() function.

The behavior of the callback differs depending upon whether the attribute request was by URL
or by service type. If the SLPFindAttrs() operation was originally called with a URL, the
callback is called once, in addition to the last call, regardless of whether the handle was opened
asynchronously or synchronously. The pcAttrList parameter contains the requested attributes
as a comma-separated list. It is empty if no attributes match the original tag list.

If the SLPFindAttrs() operation was originally called with a service type, the value of
pcAttrList and the calling behavior depend upon whether the handle was opened
asynchronously or synchronously. If the handle was opened asynchronously, the callback is
called every time the API library has results from a remote agent. The pcAttrList parameter is
collated between calls, and contains a comma-separated list of the results from the agent that
immediately returned. If the handle was opened synchronously, the results are collated from
all returning agents, the callback is called once, and the pcAttrList parameter is set to the
collated result.

SLPAttrCallback() callback has the following parameters:

hSLP The SLPHandle used to initiate the operation.

pcAttrList A character buffer containing a comma-separated and null-terminated list of
attribute id/value assignments, in SLP wire format.

errCode An error code indicating if an error occurred during the operation. The callback
should check this error code before processing the parameters. If the error code
is other than SLP_OK, then the API library may choose to terminate the
outstanding operation.

pvCookie Memory passed down from the client code that called the original API function,
starting the operation. It can be NULL.

slp_api(3SLP)

Networking Library Functions 711

An interface that is part of the SLP API may return one of the following values.

SLP_LAST_CALL The SLP_LAST_CALL code is passed to callback functions
when the API library has no more data for them and
therefore no further calls will be made to the callback on
the currently outstanding operation. The callback uses
this to signal the main body of the client code that no
more data will be forthcoming on the operation, so that
the main body of the client code can break out of data
collection loops. On the last call of a callback during both
a synchronous and asynchronous call, the error code
parameter has value SLP_LAST_CALL, and the other
parameters are all NULL. If no results are returned by an
API operation, then only one call is made, with the error
parameter set to SLP_LAST_CALL.

SLP_OK The SLP_OK code indicates that the no error occurred
during the operation.

SLP_LANGUAGE_NOT_SUPPORTED No DA or SA has service advertisement information in
the language requested, but at least one DA or SA might
have information for that service in another language.

SLP_PARSE_ERROR The SLP message was rejected by a remote SLP agent. The
API returns this error only when no information was
retrieved, and at least one SA or DA indicated a protocol
error. The data supplied through the API may be
malformed or damaged in transit.

SLP_INVALID_REGISTRATION The API may return this error if an attempt to register a
service was rejected by all DAs because of a malformed
URL or attributes.SLP does not return the error if at least
one DA accepts the registration.

SLP_SCOPE_NOT_SUPPORTED The API returns this error if the UA or SA has been
configured with the net.slp.useScopes list of scopes
and the SA request did not specify one or more of these
allowable scopes, and no others. It may also be returned
by a DA if the scope included in a request is not supported
by a DA.

SLP_AUTHENTICATION_ABSENT This error arises when the UA or SA failed to send an
authenticator for requests or registrations when security
is enabled and thus required.

SLP_AUTHENTICATION_FAILED This error arises when a authentication on an SLP
message received from a remote SLP agent failed.

Errors

slp_api(3SLP)

man pages section 3: Networking Library Functions • Last Revised 16 Jan 2003712

SLP_INVALID_UPDATE An update for a nonexisting registration was issued, or
the update includes a service type or scope different than
that in the initial registration.

SLP_REFRESH_REJECTED The SA attempted to refresh a registration more
frequently than the minimum refresh interval. The SA
should call the appropriate API function to obtain the
minimum refresh interval to use.

SLP_NOT_IMPLEMENTED An outgoing request overflowed the maximum network
MTU size. The request should be reduced in size or
broken into pieces and tried again.

SLP_BUFFER_OVERFLOW An outgoing request overflowed the maximum network
MTU size. The request should be reduced in size or
broken into pieces and tried again.

SLP_NETWORK_TIMED_OUT When no reply can be obtained in the time specified by
the configured timeout interval, this error is returned.

SLP_NETWORK_INIT_FAILED If the network cannot initialize properly, this error is
returned.

SLP_MEMORY_ALLOC_FAILED If the API fails to allocate memory, the operationis
aborted and returns this.

SLP_PARAMETER_BAD If a parameter passed into an interface is bad, this error is
returned.

SLP_NETWORK_ERROR The failure of networking during normal operations
causes this error to be returned.

SLP_INTERNAL_SYSTEM_ERROR A basic failure of the API causes this error to be returned.
This occurs when a system call or library fails. The
operation could not recover.

SLP_HANDLE_IN_USE In the C API, callback functions are not permitted to
recursively call into the API on the same SLPHandle,
either directly or indirectly. If an attempt is made to do so,
this error is returned from the called API function

SLPOpen() open an SLP handle

SLPClose() close an open SLP handle

SLPReg() register a service advertisement

SLPDereg() deregister a service advertisement

SLPDelAttrs() delete attributes

List Of Routines

slp_api(3SLP)

Networking Library Functions 713

SLPFindSrvTypes() return service types

SLPFindSrvs() return service URLs

SLPFindAttrs() return service attributes

SLPGetRefreshInterval() return the maximum allowed refresh interval for SAs

SLPFindScopes() return list of configured and discovered scopes

SLPParseSrvURL() parse service URL

SLPEscape() escape special characters

SLPUnescape() translate escaped characters into UTF-8

SLPGetProperty() return SLP configuration property

SLPSetProperty() set an SLP configuration property

slp_strerror() map SLP error code to message

SLPFree() free memory

When SLP_CONF_FILE is set, use this file for configuration.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability service/network/slp

CSI CSI-enabled

MT-Level Safe

slpd(1M), slp.conf(4), slpd.reg(4), attributes(5)

Oracle Solaris Administration: Network Services

Guttman, E., Perkins, C., Veizades, J., and Day, M. RFC 2608, Service Location Protocol,
Version 2. The Internet Society. June 1999.

Kempf, J. and Guttman, E. RFC 2614, An API for Service Location. The Internet Society. June
1999.

Environment
Variables

Attributes

See Also

slp_api(3SLP)

man pages section 3: Networking Library Functions • Last Revised 16 Jan 2003714

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slp.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd.reg-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=SYSADV4

SLPClose – close an open SLP handle

cc [flag...] file... -lslp [library...]

#include <slp.h>

void SLPClose(SLPHandle phSLP);

The SLPClose() function frees all resources associated with the handle. If the handle is
invalid, the function returns silently. Any outstanding synchronous or asynchronous
operations are cancelled, so that their callback functions will not be called any further

phSLP An SLPHandle handle returned from a call to SPLOpen().

This function or its callback may return any SLP error code. See the ERRORS section in
slp_api(3SLP).

EXAMPLE 1 UsingSLPClose()

The following example will free all resources associated the handle:

SLPHandle hslp

SLPCLose(hslp);

SLP_CONF_FILE When set, use this file for configuration.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability service/network/slp

slpd(1M), slp_api(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

Oracle Solaris Administration: Network Services

Kempf, J. and Guttman, E. RFC 2614, An API for Service Location. The Internet Society. June
1999.

Name

Synopsis

Description

Parameters

Errors

Examples

Environment
Variables

Attributes

See Also

SLPClose(3SLP)

Networking Library Functions 715

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slp.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd.reg-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=SYSADV4

SLPDelAttrs – delete attributes

cc [flag...] file... -lslp [library...]

#include <slp.h>

SLPError SLPDelAttrs(SLPHandle hSLP, const char *pcURL,
const char *pcAttrs, SLPRegReport *callback, void *pvCookie);

The SLPDelAttrs() function deletes the selected attributes in the locale of the SLPHandle. If
no error occurs, the return value is 0. Otherwise, one of the SLPError codes is returned.

hSLP The language specific SLPHandle to use to delete attributes. It cannot be NULL.

pcURL The URL of the advertisement from which the attributes should be deleted. It
cannot be NULL.

pcAttrs A comma-separated list of attribute ids for the attributes to deregister.

callback A callback to report the operation's completion status. It cannot be NULL.

pvCookie Memory passed to the callback code from the client. It cannot be NULL.

This function or its callback may return any SLP error code. See the ERRORS section in
slp_api(3SLP).

EXAMPLE 1 Deleting Attributes

Use the following example to delete the location and dpi attributes for the URL
service:printer:lpr://serv/queve1

SLPHandle hSLP;

SLPError err;

SLPRegReport report;

err = SLPDelAttrs(hSLP, "service:printer:lpr://serv/queue1",
"location,dpi", report, NULL);

SLP_CONF_FILE When set, use this file for configuration.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability service/network/slp

slpd(1M), slp_api(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

Oracle Solaris Administration: Network Services

Kempf, J. and Guttman, E. RFC 2614, An API for Service Location. The Internet Society. June
1999.

Name

Synopsis

Description

Parameters

Errors

Examples

Environment
Variables

Attributes

See Also

SLPDelAttrs(3SLP)

man pages section 3: Networking Library Functions • Last Revised 16 Jan 2003716

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slp.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd.reg-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=SYSADV4

SLPDereg – deregister the SLP advertisement

cc [flag...] file... -lslp [library...]

#include <slp.h>

SLPError SLPDereg(SLPHandle hSLP, const char *pcURL,
SLPRegReport callback, void *pvCookie);

The SLPDereg() function deregisters the advertisement for URL pcURL in all scopes where
the service is registered and in all language locales, not just the locale of the SLPHandle. If no
error occurs, the return value is 0. Otherwise, one of the SLPError codes is returned.

hSLP The language specific SLPHandle to use for deregistering. hSLP cannot be NULL.

pcURL The URLto deregister. The value of pcURL cannot be NULL.

callback A callback to report the operation completion status. callback cannot be NULL.

pvCookie Memory passed to the callback code from the client. pvCookie can be NULL.

This function or its callback may return any SLP error code. See the ERRORS section in
slp_api(3SLP).

EXAMPLE 1 UsingSLPDereg()

Use the following example to deregister the advertisement for the URL
“service:ftp://csserver”:

SLPerror err;

SLPHandle hSLP;

SLPRegReport regreport;

err = SLPDereg(hSLP, "service:ftp://csserver", regreport, NULL);

SLP_CONF_FILE When set, use this file for configuration.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability service/network/slp

slpd(1M), slp_api(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

Oracle Solaris Administration: Network Services

Guttman, E., Perkins, C., Veizades, J., and Day, M. RFC 2608, Service Location Protocol,
Version 2. The Internet Society. June 1999.

Kempf, J. and Guttman, E., RFC 2614, An API for Service Location, The Internet Society, June
1999.

Name

Synopsis

Description

Parameters

Errors

Examples

Environment
Variables

Attributes

See Also

SLPDereg(3SLP)

Networking Library Functions 717

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slp.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd.reg-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=SYSADV4

SLPEscape – escapes SLP reserved characters

cc [flag...] file... -lslp [library...]

#include <slp.h>

SLPError SLPEscape(const char *pcInBuf, char** ppcOutBuf,
SLPBoolean isTag);

The SLPEscape() function processes the input string in pcInbuf and escapes any SLP reserved
characters. If the isTag parameter is SLPTrue, it then looks for bad tag characters and signals
an error if any are found by returning the SLP_PARSE_ERROR code. The results are put into a
buffer allocated by the API library and returned in the ppcOutBuf parameter. This buffer
should be deallocated using SLPFree(3SLP) when the memory is no longer needed.

pcInBuf Pointer to the input buffer to process for escape characters.

ppcOutBuf Pointer to a pointer for the output buffer with the SLP reserved characters
escaped. It must be freed using SLPFree() when the memory is no longer
needed.

isTag When true, checks the input buffer for bad tag characters.

This function or its callback may return any SLP error code. See the ERRORS section in
slp_api(3SLP).

EXAMPLE 1 Converting Attribute Tags

The following example shows how to convert the attribute tag ,tag-example, to on the wire
format:

SLPError err;

char* escaped Chars;

err = SLPEscape(",tag-example,", &escapedChars, SLP_TRUE);

SLP_CONF_FILE When set, use this file for configuration.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability service/network/slp

slpd(1M), slp_api(3SLP), SLPFree(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

Oracle Solaris Administration: Network Services

Guttman, E., Perkins, C., Veizades, J., and Day, M. RFC 2608, Service Location Protocol,
Version 2. The Internet Society. June 1999.

Name

Synopsis

Description

Parameters

Errors

Examples

Environment
Variables

Attributes

See Also

SLPEscape(3SLP)

man pages section 3: Networking Library Functions • Last Revised 16 Jan 2003718

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slp.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd.reg-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=SYSADV4

Kempf, J. and Guttman, E. RFC 2614, An API for Service Location. The Internet Society. June
1999.

SLPEscape(3SLP)

Networking Library Functions 719

SLPFindAttrs – return service attributes

cc [flag...] file... -lslp [library...]

#include <slp.h>

SLPError SLPFindAttrs(SLPHandle hSLP, const char *pcURL,
const char *pcScopeList, const char *pcAttrIds,
SLPAttrCallback *callback, void *pvCookie);

The SLPFindAttrs() function returns service attributes matching the attribute tags for the
indicated full or partial URL.If pcURL is a complete URL, the attribute information returned is
for that particular service in the language locale of the SLPHandle. If pcURL is a service type,
then all attributes for the service type are returned, regardless of the language of registration.
Results are returned through the callback parameter.

The result is filtered with an SLP attribute request filter string parameter, the syntax of which
is described in RFC 2608. If the filter string is the empty string, "", all attributes are returned.

If an error occurs in starting the operation, one of the SLPError codes is returned.

hSLP The language-specific SLPHandle on which to search for attributes. It cannot
be NULL.

pcURL The full or partial URL. See RFC 2608 for partial URL syntax. It cannot be
NULL.

pcScopeList A pointer to a char containing a comma-separated list of scope names. It
cannot be NULL or an empty string, "".

pcAttrIds The filter string indicating which attribute values to return. Use empty string
"" to indicate all values. Wildcards matching all attribute ids having a
particular prefix or suffix are also possible. It cannot be NULL.

callback A callback function through which the results of the operation are reported. It
cannot be NULL.

pvCookie Memory passed to the callback code from the client. It may be NULL.

This function or its callback may return any SLP error code. See the ERRORS section in
slp_api(3SLP).

EXAMPLE 1 Returning Service Attributes for a Specific URL

Use the following example to return the attributes “location” and “dpi” for the URL
“service:printer:lpr://serv/queue1” through the callback attrReturn:

SLPHandle hSLP;

SLPAttrCallback attrReturn;

SLPError err;

err = SLPFindAttrs(hSLP "service:printer:lpr://serv/queue1",

Name

Synopsis

Description

Parameters

Errors

Examples

SLPFindAttrs(3SLP)

man pages section 3: Networking Library Functions • Last Revised 16 Jan 2003720

EXAMPLE 1 Returning Service Attributes for a Specific URL (Continued)

"default", "location,dpi", attrReturn, err);

EXAMPLE 2 Returning Service Attributes for All URLs of a Specific Type

Use the following example to return the attributes “location” and “dpi” for all service URLs
having type “service:printer:lpr”:

err = SLPFindAttrs(hSLP, "service:printer:lpr",
"default", "location, pi",
attrReturn, NULL);

SLP_CONF_FILE When set, use this file for configuration.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability service/network/slp

slpd(1M), slp_api(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

Oracle Solaris Administration: Network Services

Kempf, J. and Guttman, E. RFC 2614, An API for Service Location. The Internet Society. June
1999.

Environment
Variables

Attributes

See Also

SLPFindAttrs(3SLP)

Networking Library Functions 721

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slp.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd.reg-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=SYSADV4

SLPFindScopes – return list of configured and discovered scopes

cc [flag...] file... -lslp [library...]

#include <slp.h>

SLPError SLPFindScopes(SLPHandle hSLP, char** ppcScopes);

The SLPFindScopes() function sets the ppcScopes parameter to a pointer to a
comma-separated list including all available scope names. The list of scopes comes from a
variety of sources: the configuration file, the net.slp.useScopes property and the
net.slp.DAAddresses property, DHCP, or through the DA discovery process. If there is any
order to the scopes, preferred scopes are listed before less desirable scopes. There is always at
least one string in the array, the default scope, DEFAULT.

If no error occurs, SLPFindScopes() returns SLP_OK, otherwise, it returns the appropriate
error code.

hSLP The SLPHandle on which to search for scopes. hSLP cannot be NULL.

ppcScopes A pointer to a char pointer into which the buffer pointer is placed upon return.
The buffer is null-terminated. The memory should be freed by calling
SLPFree(). See SLPFree(3SLP)

This function or its callback may return any SLP error code. See the ERRORS section in
slp_api(3SLP).

EXAMPLE 1 Finding Configured or Discovered Scopes

Use the following example to find configured or discovered scopes:

SLPHandle hSLP;

char *ppcScopes;

SLPError err;

error = SLPFindScopes(hSLP, & ppcScopes);

SLP_CONF_FILE When set, use this file for configuration.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability service/network/slp

slpd(1M), slp_api(3SLP), SLPFree(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

Oracle Solaris Administration: Network Services

Guttman, E., Perkins, C., Veizades, J., and Day, M. RFC 2608, Service Location Protocol,
Version 2. The Internet Society. June 1999.

Name

Synopsis

Description

Parameters

Errors

Examples

Environment
Variables

Attributes

See Also

SLPFindScopes(3SLP)

man pages section 3: Networking Library Functions • Last Revised 16 Jan 2003722

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slp.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd.reg-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=SYSADV4

Kempf, J. and Guttman, E. RFC 2614, An API for Service Location. The Internet Society. June
1999.

SLPFindScopes(3SLP)

Networking Library Functions 723

SLPFindSrvs – return service URLs

cc [flag...] file... -lslp [library...]

#include <slp.h>

SLPError SLPFindSrvs(SLPHandle hSLP, const char *pcServiceType,
const char *pcScopeList, const char *pcSearchFilter,
SLPSrvURLCallback *callback, void *pvCookie);

The SLPFindSrvs() function issues a request for SLP services. The query is for services on a
language-specific SLPHandle. It returns the results through the callback. The parameters will
determine the results.

If an error occurs in starting the operation, one of the SLPError codes is returned.

hSLP The language-specific SLPHandle on which to search for services. It cannot
be NULL.

pcServiceType The service type string for the request. The pcServiceType can be discovered
by a call to SLPSrvTypes(). Examples of service type strings include

"service:printer:lpr"

or

"service:nfs"

pcServiceType cannot be NULL.

pcScopeList A pointer to a char containing a comma-separated list of scope names. It
cannot be NULL or an empty string, "".

pcSearchFilter A query formulated of attribute pattern matching expressions in the form
of a LDAPv3 search filter. See RFC 2254. If this filter is empty, "", all services
of the requested type in the specified scopes are returned. It cannot be NULL.

callback A callback through which the results of the operation are reported. It
cannot be NULL.

pvCookie Memory passed to the callback code from the client. It can be NULL.

This function or its callback may return any SLP error code. See the ERRORS section in
slp_api(3SLP).

EXAMPLE 1 UsingSLPFindSrvs()

The following example finds all advertisements for printers supporting the LPR protocol with
the dpi attribute 300 in the default scope:

SLPError err;

SLPHandle hSLP;

SLPSrvURLCallback srvngst;

Name

Synopsis

Description

Parameters

Errors

Examples

SLPFindSrvs(3SLP)

man pages section 3: Networking Library Functions • Last Revised 16 Jan 2003724

EXAMPLE 1 Using SLPFindSrvs() (Continued)

err = SLPFindSrvs(hSLP,

"service:printer:lpr",
"default",
"(dpi=300)",
srvngst,

NULL);

SLP_CONF_FILE When set, use this file for configuration.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability service/network/slp

slpd(1M), slp_api(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

Oracle Solaris Administration: Network Services

Howes, T. RFC 2254, The String Representation of LDAP Search Filters. The Internet Society.
1997.

Guttman, E., Perkins, C., Veizades, J., and Day, M. RFC 2608, Service Location Protocol,
Version 2. The Internet Society. June 1999.

Kempf, J. and Guttman, E. RFC 2614, An API for Service Location. The Internet Society. June
1999.

Environment
Variables

Attributes

See Also

SLPFindSrvs(3SLP)

Networking Library Functions 725

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slp.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd.reg-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=SYSADV4

SLPFindSrvTypes – find service types

cc [flag...] file... -lslp [library...]

#include <slp.h>

SLPError SLPFindSrvTypes(SLPHandle hSLP, const char *pcNamingAuthority,
const char *pcScopeList, SLPSrvTypeCallback *callback, void *pvCookie);

The SLPFindSrvTypes() function issues an SLP service type request for service types in the
scopes indicated by the pcScopeList. The results are returned through the callback
parameter. The service types are independent of language locale, but only for services
registered in one of the scopes and for the indicated naming authority.

If the naming authority is “*”, then results are returned for all naming authorities. If the
naming authority is the empty string, "", then the default naming authority, IANA, is used.
IANA is not a valid naming authority name. The SLP_PARAMETER_BAD error code will be
returned if you include it explicitly.

The service type names are returned with the naming authority included in the following
format:

service-type "." naming-authority

unless the naming authority is the default, in which case, just the service type name is
returned.

If an error occurs in starting the operation, one of the SLPError codes is returned.

hSLP The SLPHandle on which to search for types. It cannot be NULL.

pcNamingAuthority The naming authority to search. Use “*”to search all naming
authorties; use the empty string "" to search the default naming
authority. It cannot be NULL.

pcScopeList A pointer to a char containing a comma-separated list of scope
names to search for service types. It cannot be NULL or an empty
string, "".

callback A callback through which the results of the operation are reported. It
cannot be NULL.

pvCookie Memory passed to the callback code from the client. It can be NULL.

This function or its callback may return any SLP error code. See the ERRORS section in
slp_api(3SLP).

EXAMPLE 1 UsingSLPFindSrvTypes()

The following example finds all service type names in the default scope and default naming
authority:

Name

Synopsis

Description

Parameters

Errors

Examples

SLPFindSrvTypes(3SLP)

man pages section 3: Networking Library Functions • Last Revised 16 Jan 2003726

EXAMPLE 1 Using SLPFindSrvTypes() (Continued)

SLPError err;

SLPHandle hSLP;

SLPSrvTypeCallback findsrvtypes;

err = SLPFindSrvTypes(hSLP, "", "default", findsrvtypes, NULL);

SLP_CONF_FILE When set, use this file for configuration.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability service/network/slp

slpd(1M), slp_api(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

Oracle Solaris Administration: Network Services

Guttman, E., Perkins, C., Veizades, J., and Day, M. RFC 2608, Service Location Protocol,
Version 2. The Internet Society. June 1999.

Howes, T. RFC 2254, The String Representation of LDAP Search Filters. The Internet Society.
1997.

Kempf, J. and Guttman, E. RFC 2614, An API for Service Location. The Internet Society. June
1999.

Environment
Variables

Attributes

See Also

SLPFindSrvTypes(3SLP)

Networking Library Functions 727

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slp.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd.reg-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=SYSADV4

SLPFree – frees memory

cc [flag...] file... -lslp [library...]

#include <slp.h>

SLPError SLPFree(void *pvMem);

The SLPFree() function frees memory returned from SLPParseSrvURL(), SLPFindScopes(),
SLPEscape(), and SLPUnescape().

pvMem A pointer to the storage allocated by the SLPParseSrvURL(), SLPFindScopes(),
SLPEscape(), and SLPUnescape() functions. pvMem is ignored if its value is NULL.

This function or its callback may return any SLP error code. See the ERRORS section in
slp_api(3SLP).

EXAMPLE 1 UsingSLPFree()

The following example illustrates how to call SLPFree(). It assumes that SrvURL contains
previously allocated memory.

SLPerror err;

err = SLPFree((void*) SrvURL);

SLP_CONF_FILE When set, use this file for configuration.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability service/network/slp

slpd(1M), SLPEscape(3SLP), SLPFindScopes(3SLP), SLPParseSrvURL(3SLP),
SLPUnescape(3SLP), slp_api(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

Oracle Solaris Administration: Network Services

Guttman, E., Perkins, C., Veizades, J., and Day, M. RFC 2608, Service Location Protocol,
Version 2. The Internet Society. June 1999.

Kempf, J. and Guttman, E. RFC 2614, An API for Service Location. The Internet Society. June
1999.

Name

Synopsis

Description

Parameters

Errors

Examples

Environment
Variables

Attributes

See Also

SLPFree(3SLP)

man pages section 3: Networking Library Functions • Last Revised 16 Jan 2003728

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slp.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd.reg-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=SYSADV4

SLPGetProperty – return SLP configuration property

cc [flag...] file... -lslp [library...]

#include <slp.h>

const char* SLPGetProperty(const char* pcName);

The SLPGetProperty() function returns the value of the corresponding SLP property name,
or NULL, if none. If there is no error, SLPGetProperty() returns a pointer to the property
value. If the property was not set, it returns the empty string, "". If an error occurs,
SLPGetProperty() returns NULL. The returned string should not be freed.

pcName A null-terminated string with the property name. pcName cannot be NULL.

This function or its callback may return any SLP error code. See the ERRORS section in
slp_api(3SLP).

EXAMPLE 1 UsingSLPGetProperty()

Use the following example to return a list of configured scopes:

const char* useScopes

useScopes = SLPGetProperty("net.slp.useScopes");

SLP_CONF_FILE When set, use this file for configuration.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability service/network/slp

slpd(1M), slp_api(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

Oracle Solaris Administration: Network Services

Kempf, J. and Guttman, E. RFC 2614, An API for Service Location. The Internet Society. June
1999.

Name

Synopsis

Description

Parameters

Errors

Examples

Environment
Variables

Attributes

See Also

SLPGetProperty(3SLP)

Networking Library Functions 729

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slp.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd.reg-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=SYSADV4

SLPGetRefreshInterval – return the maximum allowed refresh interval

cc [flag...] file... -lslp [library...]#include <slp.h>

int SLPGetRefreshInterval(void)

The SLPGetRefreshInterval() function returns the maximum across all DAs of the
min-refresh-interval attribute. This value satisfies the advertised refresh interval bounds
for all DAs. If this value is used by the SA, it assures that no refresh registration will be rejected.
If no DA advertises a min-refresh-interval attribute, a value of 0 is returned. If an error
occurs, an SLP error code is returned.

This function or its callback may return any SLP error code. See the ERRORS section in
slp_api(3SLP).

EXAMPLE 1 UsingSLPGetRefreshInterval()

Use the following example to return the maximum valid refresh interval for SA:

int minrefresh

minrefresh = SLPGetRefreshInterval();

SLP_CONF_FILE When set, use this file for configuration.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability service/network/slp

slpd(1M), slp_api(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

Oracle Solaris Administration: Network Services

Kempf, J. and Guttman, E. RFC 2614, An API for Service Location. The Internet Society. June
1999.

Name

Synopsis

Description

Errors

Examples

Environment
Variables

Attributes

See Also

SLPGetRefreshInterval(3SLP)

man pages section 3: Networking Library Functions • Last Revised 16 Jan 2003730

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slp.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd.reg-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=SYSADV4

SLPOpen – open an SLP handle

cc [flag...] file... -lslp [library...]

#include <slp.h>

SLPError SLPOpen(const char *pcLang, SLPBoolean isAsync, SLPHandle *phSLP);

The SLPOpen() function returns a SLPHandle handle in the phSLP parameter for the language
locale passed in as the pcLang parameter. The client indicates if operations on the handle are
to be synchronous or asynchronous through the isAsync parameter. The handle encapsulates
the language locale for SLP requests issued through the handle, and any other resources
required by the implementation. SLP properties are not encapsulated by the handle, they are
global. The return value of the function is an SLPError code indicating the status of the
operation. Upon failure, the phSLP parameter is NULL.

An SLPHandle can only be used for one SLP API operation at a time. If the original operation
was started asynchronously, any attempt to start an additional operation on the handle while
the original operation is pending results in the return of an SLP_HANDLE_IN_USE error from
the API function. The SLPClose() function terminates any outstanding calls on the handle.

pcLang A pointer to an array of characters containing the language tag set forth in RFC
1766 for the natural language locale of requests issued on the handle. This
parameter cannot be NULL.

isAsync An SLPBoolean indicating whether or not the SLPHandle should be opened for an
asynchronous operation.

phSLP A pointer to an SLPHandle in which the open SLPHandle is returned. If an error
occurs, the value upon return is NULL.

This function or its callback may return any SLP error code. See the ERRORS section in
slp_api(3SLP).

EXAMPLE 1 UsingSLPOpen()

Use the following example to open a synchronous handle for the German (“de”) locale:

SLPHandle HSLP; SLPError err; err = SLPOpen("de", SLP_FALSE, &hSLP)

SLP_CONF_FILE When set, use this file for configuration.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability service/network/slp

Name

Synopsis

Description

Parameters

Errors

Examples

Environment
Variables

Attributes

SLPOpen(3SLP)

Networking Library Functions 731

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

slpd(1M), slp_api(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

Oracle Solaris Administration: Network Services

Alvestrand, H. RFC 1766, Tags for the Identification of Languages. Network Working Group.
March 1995.

Kempf, J. and Guttman, E. RFC 2614, An API for Service Location. The Internet Society. June
1999.

See Also

SLPOpen(3SLP)

man pages section 3: Networking Library Functions • Last Revised 16 Jan 2003732

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slp.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd.reg-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=SYSADV4

SLPParseSrvURL – parse service URL

cc [flag...] file... -lslp [library...]

#include <slp.h>

SLPError SLPParseSrvURL(const char *pcSrvURL, SLPSrvURL** ppSrvURL);

The SLPParseSrvURL() routine parses the URL passed in as the argument into a service URL
structure and returns it in the ppSrvURL pointer. If a parser error occurs, returns
SLP_PARSE_ERROR. The structure returned in ppSrvURL should be freed with SLPFree(). If the
URL has no service part, the s_pcSrvPart string is the empty string, "", that is, it is not NULL. If
pcSrvURL is not a service: URL, then the s_pcSrvType field in the returned data structure is
the URL's scheme, which might not be the same as the service type under which the URL was
registered. If the transport is IP, the s_pcNetFamily field is the empty string.

If no error occurs, the return value is the SLP_OK. Otherwise, if an error occurs, one of the
SLPError codes is returned.

pcSrvURL A pointer to a character buffer containing the null terminated URL string to
parse. It is destructively modified to produce the output structure. It may not be
NULL.

ppSrvURL A pointer to a ponter for the SLPSrvURL structure to receive the parsed URL. It
may not be NULL.

This function or its callback may return any SLP error code. See the ERRORS section in
slp_api(3SLP).

EXAMPLE 1 UsingSLPParseSrvURL()

The following example uses the SLPParseSrvURL() function to parse the service URL
service:printer:lpr://serv/queue1:

SLPSrvURL* surl;

SLPError err;

err = SLPParseSrvURL("service:printer:lpr://serv/queue1", &surl);

SLP_CONF_FILE When set, use this file for configuration.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability service/network/slp

slpd(1M), slp_api(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

Oracle Solaris Administration: Network Services

Name

Synopsis

Description

Parameters

Errors

Examples

Environment
Variables

Attributes

See Also

SLPParseSrvURL(3SLP)

Networking Library Functions 733

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slp.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd.reg-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=SYSADV4

Guttman, E., Perkins, C., Veizades, J., and Day, M. RFC 2608, Service Location Protocol,
Version 2. The Internet Society. June 1999.

Kempf, J. and Guttman, E. RFC 2614, An API for Service Location. The Internet Society. June
1999.

SLPParseSrvURL(3SLP)

man pages section 3: Networking Library Functions • Last Revised 16 Jan 2003734

SLPReg – register an SLP advertisement

cc [flag...] file... -lslp [library...]

#include <slp.h>

SLPError SLPReg(SLPHandle hSLP, const char *pcSrvURL,
const unsigned short usLifetime, const char *pcSrvType,
const char *pcAttrs, SLPBoolean fresh,
SLPRegReport callback, void *pvCookie);

The SLPReg() function registers the URL in pcSrvURL having the lifetime usLifetime with the
attribute list in pcAttrs. The pcAttrs list is a comma-separated list of attribute assignments in
on-the-wire format (including escaping of reserved characters). The sLifetime parameter must
be nonzero and less than or equal to SLP_LIFETIME_MAXIMUM. If the fresh flag is SLP_TRUE,
then the registration is new, the SLP protocol fresh flag is set, and the registration replaces any
existing registrations.

The pcSrvType parameter is a service type name and can be included for service URLs that are
not in the service: scheme. If the URL is in the service: scheme, the pcSrvType parameter is
ignored. If the fresh flag is SLP_FALSE, then an existing registration is updated. Rules for new
and updated registrations, and the format for pcAttrs and pcScopeList, can be found in RFC
2608. Registrations and updates take place in the language locale of the hSLP handle.

The API library is required to perform the operation in all scopes obtained through
configuration.

hSLP The language specific SLPHandle on which to register the advertisement. hSLP
cannot be NULL.

pcSrvURL The URL to register. The value of pcSrvURL cannot be NULL or the empty
string.

usLifetime An unsigned short giving the life time of the service advertisement, in
seconds. The value must be an unsigned integer less than or equal to
SLP_LIFETIME_MAXIMUM.

pcSrvType The service type. If pURL is a service: URL, then this parameter is ignored.
pcSrvType cannot be NULL.

pcAttrs A comma-separated list of attribute assignment expressions for the attributes
of the advertisement. pcAttrs cannot be NULL. Use the empty string, "", to
indicate no attributes.

fresh An SLPBoolean that is SLP_TRUE if the registration is new or SLP_FALSE if it is a
reregistration.

callback A callback to report the operation completion status. callback cannot be NULL.

pvCookie Memory passed to the callback code from the client. pvCookie can be NULL.

Name

Synopsis

Description

Parameters

SLPReg(3SLP)

Networking Library Functions 735

This function or its callback may return any SLP error code. See the ERRORS section in
slp_api(3SLP).

EXAMPLE 1 An Initial Registration

The following example shows an initial registration for the “service:video://bldg15”
camera service for three hours:

SLPError err;

SLPHandle hSLP;

SLPRegReport regreport;

err = SLPReg(hSLP, "service:video://bldg15",
10800, "", "(location=B15-corridor),
(scan-rate=100)", SLP_TRUE,

regRpt, NULL);

SLP_CONF_FILE When set, use this file for configuration.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability service/network/slp

slpd(1M), slp_api(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

Oracle Solaris Administration: Network Services

Guttman, E., Perkins, C., Veizades, J., and Day, M.,RFC 2608, Service Location Protocol,
Version 2. The Internet Society. June 1999.

Kempf, J. and Guttman, E. RFC 2614, An API for Service Location. The Internet Society. June
1999.

Errors

Examples

Environment
Variables

Attributes

See Also

SLPReg(3SLP)

man pages section 3: Networking Library Functions • Last Revised 16 Jan 2003736

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slp.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd.reg-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=SYSADV4

SLPSetProperty – set an SLP configuration property

cc [flag...] file... -lslp [library...]

#include <slp.h>

void SLPSetProperty(const char *pcName, const char *pcValue);

The SLPSetProperty() function sets the value of the SLP property to the new value. The
pcValue parameter contains the property value as a string.

pcName A null-terminated string with the property name. pcName cannot be NULL.

pcValue A null-terminated string with the property value. pcValue cannot be NULL

This function or its callback may return any SLP error code. See the ERRORS section in
slp_api(3SLP).

EXAMPLE 1 Setting a Configuration Property

The following example shows to set the property net.slp.typeHint to service:ftp:

SLPSetProperty ("net.slp.typeHint" "service:ftp");

SLP_CONF_FILE When set, use this file for configuration.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability service/network/slp

slpd(1M), slp_api(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

Oracle Solaris Administration: Network Services

Kempf, J. and Guttman, E. RFC 2614, An API for Service Location. The Internet Society. June
1999.

Name

Synopsis

Description

Parameters

Errors

Examples

Environment
Variables

Attributes

See Also

SLPSetProperty(3SLP)

Networking Library Functions 737

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slp.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd.reg-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=SYSADV4

slp_strerror – map SLP error codes to messages

#include <slp.h>

const char* slp_strerror(SLPError err_code);

The slp_strerror() function maps err_code to a string explanation of the error. The
returned string is owned by the library and must not be freed.

err_code An SLP error code.

This function or its callback may return any SLP error code. See the ERRORS section in
slp_api(3SLP).

EXAMPLE 1 Usingslp_sterror()

The following example returns the message that corresponds to the error code:

SLPError error;

const char* msg;

msg = slp_streerror(err);

SLP_CONF_FILE When set, use this file for configuration.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability service/network/slp

slpd(1M), slp_api(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

Oracle Solaris Administration: Network Services

Kempf, J. and Guttman, E. RFC 2614, An API for Service Location. The Internet Society. June
1999.

Name

Synopsis

Description

Parameters

Errors

Examples

Environment
Variables

Attributes

See Also

slp_strerror(3SLP)

man pages section 3: Networking Library Functions • Last Revised 16 Jan 2003738

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slp.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd.reg-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=SYSADV4

SLPUnescape – translate escaped characters into UTF-8

cc [flag...] file... -lslp [library...]

#include <slp.h>

SLPError SLPUnescape(const char *pcInBuf, char** ppcOutBuf,
SLPBoolean isTag);

The SLPUnescape() function processes the input string in pcInbuf and unescapes any SLP
reserved characters. If the isTag parameter is SLPTrue, then look for bad tag characters and
signal an error if any are found with the SLP_PARSE_ERROR code. No transformation is
performed if the input string is an opaque. The results are put into a buffer allocated by the
API library and returned in the ppcOutBuf parameter. This buffer should be deallocated using
SLPFree(3SLP) when the memory is no longer needed.

pcInBuf Pointer to the input buffer to process for escape characters.

ppcOutBuf Pointer to a pointer for the output buffer with the SLP reserved characters
escaped. Must be freed using SLPFree(3SLP) when the memory is no longer
needed.

isTag When true, the input buffer is checked for bad tag characters.

This function or its callback may return any SLP error code. See the ERRORS section in
slp_api(3SLP).

EXAMPLE 1 UsingSLPUnescape()

The following example decodes the representation for “,tag,”:

char* pcOutBuf;

SLPError err;

err = SLPUnescape("\\2c tag\\2c", &pcOutbuf, SLP_TRUE);

SLP_CONF_FILE When set, use this file for configuration.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability service/network/slp

slpd(1M),SLPFree(3SLP), slp_api(3SLP), slp.conf(4), slpd.reg(4), attributes(5)

Oracle Solaris Administration: Network Services

Guttman, E., Perkins, C., Veizades, J., and Day, M.RFC 2608, Service Location Protocol,
Version 2. The Internet Society. June 1999.

Name

Synopsis

Description

Parameters

Errors

Examples

Environment
Variables

Attributes

See Also

SLPUnescape(3SLP)

Networking Library Functions 739

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slp.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1slpd.reg-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=SYSADV4

Kempf, J. and Guttman, E. RFC 2614, An API for Service Location. The Internet Society. June
1999.

SLPUnescape(3SLP)

man pages section 3: Networking Library Functions • Last Revised 16 Jan 2003740

sockatmark – determine whether a socket is at the out-of-band mark

cc [flag ...] file ... -lxnet [library ...]

#include <sys/socket.h>

int sockatmark(int s);

The sockatmark() function determines whether the socket specified by the descriptor s is at
the out-of-band data mark. If the protocol for the socket supports out-of-band data by
marking the stream with an out-of-band data mark, the sockatmark() function returns 1
when all data preceding the mark has been read and the out-of-band data mark is the first
element in the receive queue. The sockatmark() function does not remove the mark from the
stream.

Upon successful completion, the sockatmark() function returns a value indicating whether
the socket is at an out-of-band data mark. If the protocol has marked the data stream and all
data preceding the mark has been read, the return value is 1. If there is no mark, or if data
precedes the mark in the receive queue, the sockatmark() function returns 0. Otherwise, it
returns −1 and sets errno to indicate the error.

The sockatmark() function will fail if:

EBADF The s argument is not a valid file descriptor.

ENOTTY The s argument does not specify a descriptor for a socket.

The use of this function between receive operations allows an application to determine which
received data precedes the out-of-band data and which follows the out-of-band data.

There is an inherent race condition in the use of this function. On an empty receive queue, the
current read of the location might well be at the "mark", but the system has no way of knowing
that the next data segment that will arrive from the network will carry the mark, and
sockatmark() will return false, and the next read operation will silently consume the mark.

Hence, this function can only be used reliably when the application already knows that the
out-of-band data has been seen by the system or that it is known that there is data waiting to be
read at the socket, either by SIGURG or select(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard See standards(5).

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

sockatmark(3XNET)

Networking Library Functions 741

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

recv(3XNET), recvmsg(3XNET), select(3C), attributes(5), standards(5)See Also

sockatmark(3XNET)

man pages section 3: Networking Library Functions • Last Revised 1 Oct 2003742

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

socket – create an endpoint for communication

cc [flag ...] file ... -lsocket -lnsl [library ...]

#include <sys/types.h>

#include <sys/socket.h>

int socket(int domain, int type, int protocol);

The socket() function creates an endpoint for communication and returns a descriptor.

The domain argument specifies the protocol family within which communication takes place.
The protocol family is generally the same as the address family for the addresses supplied in
later operations on the socket. These families are defined in <sys/socket.h>.

The currently supported protocol families are:

PF_UNIX UNIX system internal protocols

PF_INET Internet Protocol Version 4 (IPv4)

PF_INET6 Internet Protocol Version 6 (IPv6)

PF_NCA Network Cache and Accelerator (NCA) protocols

The socket has the indicated type, which specifies the communication semantics. Currently
defined types are:

SOCK_STREAM

SOCK_DGRAM

SOCK_RAW

SOCK_SEQPACKET

SOCK_RDM

There must be an entry in the netconfig(4) file for at least each protocol family and type
required. If a non-zero protocol has been specified but no exact match for the protocol family,
type, and protocol is found, then the first entry containing the specified family and type with a
protocol value of zero will be used.

A SOCK_STREAM type provides sequenced, reliable, two-way connection-based byte streams.
An out-of-band data transmission mechanism may be supported. A SOCK_DGRAM socket
supports datagrams (connectionless, unreliable messages of a fixed (typically small)
maximum length). A SOCK_SEQPACKET socket may provide a sequenced, reliable, two-way
connection-based data transmission path for datagrams of fixed maximum length; a
consumer may be required to read an entire packet with each read system call. This facility is
protocol specific, and presently not implemented for any protocol family. SOCK_RAW sockets
provide access to internal network interfaces. The types SOCK_RAW, which is available only to a
user with the net_rawaccess privilege, and SOCK_RDM, for which no implementation currently
exists, are not described here.

Name

Synopsis

Description

socket(3SOCKET)

Networking Library Functions 743

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1netconfig-4

The protocol parameter is a protocol-family-specific value which specifies a particular
protocol to be used with the socket. Normally this value is zero, as commonly only a single
protocol exists to support a particular socket type within a given protocol family. However,
multiple protocols may exist, in which case a particular protocol may be specified in this
manner.

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream socket
must be in a connected state before any data may be sent or received on it. A connection to
another socket is created with a connect(3SOCKET) call. Once connected, data may be
transferred using read(2) and write(2) calls or some variant of the send(3SOCKET) and
recv(3SOCKET) calls. When a session has been completed, a close(2) may be performed.
Out-of-band data may also be transmitted as described on the send(3SOCKET) manual page
and received as described on the recv(3SOCKET) manual page.

The communications protocols used to implement a SOCK_STREAM insure that data is not lost
or duplicated. If a piece of data for which the peer protocol has buffer space cannot be
successfully transmitted within a reasonable length of time, then the connection is considered
broken and calls will indicate an error with −1 returns and with ETIMEDOUT as the specific code
in the global variable errno. The protocols optionally keep sockets “warm” by forcing
transmissions roughly every minute in the absence of other activity. An error is then indicated
if no response can be elicited on an otherwise idle connection for a extended period (for
instance 5 minutes). A SIGPIPE signal is raised if a thread sends on a broken stream; this
causes naive processes, which do not handle the signal, to exit.

SOCK_SEQPACKET sockets employ the same system calls as SOCK_STREAM sockets. The only
difference is that read(2) calls will return only the amount of data requested, and any
remaining in the arriving packet will be discarded.

SOCK_DGRAM and SOCK_RAW sockets allow datagrams to be sent to correspondents named in
sendto(3SOCKET) calls. Datagrams are generally received with recvfrom(3SOCKET), which
returns the next datagram with its return address.

An fcntl(2) call can be used to specify a process group to receive a SIGURG signal when the
out-of-band data arrives. It can also enable non-blocking I/O.

The operation of sockets is controlled by socket level options. These options are defined in the
file <sys/socket.h>. setsockopt(3SOCKET) and getsockopt(3SOCKET) are used to set
and get options, respectively.

Upon successful completion, a descriptor referencing the socket is returned. Otherwise, -1 is
returned and errno is set to indicate the error.

The socket() function will fail if:

EACCES Permission to create a socket of the specified type or protocol is denied.

Return Values

Errors

socket(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 11 Feb 2011744

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2

EAGAIN There were insufficient resources available to complete the operation.

EAFNOSUPPORT The specified address family is not supported by the protocol family.

EMFILE The per-process descriptor table is full.

ENOMEM Insufficient user memory is available.

ENOSR There were insufficient STREAMS resources available to complete the
operation.

EPFNOSUPPORT The specified protocol family is not supported.

EPROTONOSUPPORT The protocol type is not supported by the address family.

EPROTOTYPE The socket type is not supported by the protocol.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

close(2), fcntl(2), ioctl(2), read(2), write(2), accept(3SOCKET), bind(3SOCKET),
connect(3SOCKET), getsockname(3SOCKET), getsockopt(3SOCKET),
in.h(3HEAD),listen(3SOCKET), recv(3SOCKET), setsockopt(3SOCKET),
send(3SOCKET), shutdown(3SOCKET), socket.h(3HEAD), socketpair(3SOCKET),
attributes(5), nca(7d)

Historically, AF_* was commonly used in places where PF_* was meant. New code should be
careful to use PF_* as necessary.

Attributes

See Also

Notes

socket(3SOCKET)

Networking Library Functions 745

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1in.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1socket.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7nca-7d

socket – create an endpoint for communication

cc [flag ...] file ... -lxnet [library ...]

#include <sys/socket.h>

int socket(int domain, int type, int protocol);

The socket() function creates an unbound socket in a communications domain, and returns
a file descriptor that can be used in later function calls that operate on sockets.

The <sys/socket.h> header defines at least the following values for the domain argument:

AF_UNIX File system pathnames.

AF_INET Internet Protocol version 4 (IPv4) address.

AF_INET6 Internet Protocol version 6 (IPv6) address.

The type argument specifies the socket type, which determines the semantics of
communication over the socket. The socket types supported by the system are
implementation-dependent. Possible socket types include:

SOCK_STREAM Provides sequenced, reliable, bidirectional, connection-mode byte
streams, and may provide a transmission mechanism for out-of-band
data.

SOCK_DGRAM Provides datagrams, which are connectionless-mode, unreliable
messages of fixed maximum length.

SOCK_SEQPACKET Provides sequenced, reliable, bidirectional, connection-mode
transmission path for records. A record can be sent using one or more
output operations and received using one or more input operations, but
a single operation never transfers part of more than one record. Record
boundaries are visible to the receiver via the MSG_EOR flag.

If the protocol argument is non-zero, it must specify a protocol that is supported by the address
family. The protocols supported by the system are implementation-dependent.

The process may need to have appropriate privileges to use the socket() function or to create
some sockets.

The function takes the following arguments:

domain Specifies the communications domain in which a socket is to be created.

type Specifies the type of socket to be created.

protocol Specifies a particular protocol to be used with the socket. Specifying a protocol of
0 causes socket() to use an unspecified default protocol appropriate for the
requested socket type.

Name

Synopsis

Description

Parameters

socket(3XNET)

man pages section 3: Networking Library Functions • Last Revised 10 Jun 2002746

The domain argument specifies the address family used in the communications domain. The
address families supported by the system are implementation-dependent.

The documentation for specific address families specify which protocols each address family
supports. The documentation for specific protocols specify which socket types each protocol
supports.

The application can determine if an address family is supported by trying to create a socket
with domain set to the protocol in question.

Upon successful completion, socket() returns a nonnegative integer, the socket file
descriptor. Otherwise a value of -1 is returned and errno is set to indicate the error.

The socket() function will fail if:

EAFNOSUPPORT The implementation does not support the specified address family.

EMFILE No more file descriptors are available for this process.

ENFILE No more file descriptors are available for the system.

EPROTONOSUPPORT The protocol is not supported by the address family, or the protocol is
not supported by the implementation.

EPROTOTYPE The socket type is not supported by the protocol.

The socket() function may fail if:

EACCES The process does not have appropriate privileges.

ENOBUFS Insufficient resources were available in the system to perform the operation.

ENOMEM Insufficient memory was available to fulfill the request.

ENOSR There were insufficient STREAMS resources available for the operation to
complete.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

accept(3XNET), bind(3XNET), connect(3XNET), getsockname(3XNET),
getsockopt(3XNET), listen(3XNET), recv(3XNET), recvfrom(3XNET),
recvmsg(3XNET), send(3XNET), sendmsg(3XNET), setsockopt(3XNET),
shutdown(3XNET), socketpair(3XNET), attributes(5), standards(5)

Usage

Return Values

Errors

Attributes

See Also

socket(3XNET)

Networking Library Functions 747

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

socketpair – create a pair of connected sockets

cc [flag ...] file ... -lsocket -lnsl [library ...]

#include <sys/types.h>

#include <sys/socket.h>

int socketpair(int domain, int type, int protocol, int sv[2]);

The socketpair() library call creates an unnamed pair of connected sockets in the specified
address family domain, of the specified type, that uses the optionally specified protocol. The
descriptors that are used in referencing the new sockets are returned in sv[0] and sv[1]. The
two sockets are indistinguishable.

socketpair() returns −1 on failure and 0 on success.

The call succeeds unless:

EAFNOSUPPORT The specified address family is not supported on this machine.

EMFILE Too many descriptors are in use by this process.

ENOMEM There was insufficient user memory for the operation to complete.

ENOSR There were insufficient STREAMS resources for the operation to
complete.

EOPNOTSUPP The specified protocol does not support creation of socket pairs.

EPROTONOSUPPORT The specified protocol is not supported on this machine.

EACCES The process does not have appropriate privileges.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

pipe(2), read(2), write(2), socket.h(3HEAD), attributes(5)

This call is currently implemented only for the AF_UNIX address family.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

socketpair(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 10 Jan 2001748

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1pipe-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1socket.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

socketpair – create a pair of connected sockets

cc [flag ...] file ... -lxnet [library ...]

#include <sys/socket.h>

int socketpair(int domain, int type, int protocol, int socket_vector[2]);

The socketpair() function creates an unbound pair of connected sockets in a specified
domain, of a specified type, under the protocol optionally specified by the protocol argument.
The two sockets are identical. The file descriptors used in referencing the created sockets are
returned in socket_vector0 and socket_vector1.

The type argument specifies the socket type, which determines the semantics of
communications over the socket. The socket types supported by the system are
implementation-dependent. Possible socket types include:

SOCK_STREAM Provides sequenced, reliable, bidirectional, connection-mode byte
streams, and may provide a transmission mechanism for out-of-band
data.

SOCK_DGRAM Provides datagrams, which are connectionless-mode, unreliable
messages of fixed maximum length.

SOCK_SEQPACKET Provides sequenced, reliable, bidirectional, connection-mode
transmission path for records. A record can be sent using one or more
output operations and received using one or more input operations, but
a single operation never transfers part of more than one record. Record
boundaries are visible to the receiver via the MSG_EOR flag.

If the protocol argument is non-zero, it must specify a protocol that is supported by the address
family. The protocols supported by the system are implementation-dependent.

The process may need to have appropriate privileges to use the socketpair() function or to
create some sockets.

domain Specifies the communications domain in which the sockets are to be created.

type Specifies the type of sockets to be created.

protocol Specifies a particular protocol to be used with the sockets. Specifying a
protocol of 0 causes socketpair() to use an unspecified default protocol
appropriate for the requested socket type.

socket_vector Specifies a 2-integer array to hold the file descriptors of the created socket
pair.

The documentation for specific address families specifies which protocols each address family
supports. The documentation for specific protocols specifies which socket types each protocol
supports.

Name

Synopsis

Description

Parameters

Usage

socketpair(3XNET)

Networking Library Functions 749

The socketpair() function is used primarily with UNIX domain sockets and need not be
supported for other domains.

Upon successful completion, this function returns 0. Otherwise, −1 is returned and errno is
set to indicate the error.

The socketpair() function will fail if:

EAFNOSUPPORT The implementation does not support the specified address family.

EMFILE No more file descriptors are available for this process.

ENFILE No more file descriptors are available for the system.

EOPNOTSUPP The specified protocol does not permit creation of socket pairs.

EPROTONOSUPPORT The protocol is not supported by the address family, or the protocol is
not supported by the implementation.

EPROTOTYPE The socket type is not supported by the protocol.

The socketpair() function may fail if:

EACCES The process does not have appropriate privileges.

ENOBUFS Insufficient resources were available in the system to perform the operation.

ENOMEM Insufficient memory was available to fulfill the request.

ENOSR There were insufficient STREAMS resources available for the operation to
complete.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level MT-Safe

Standard See standards(5).

socket(3XNET), attributes(5), standards(5)

Return Values

Errors

Attributes

See Also

socketpair(3XNET)

man pages section 3: Networking Library Functions • Last Revised 10 Jun 2002750

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

spray – scatter data in order to test the network

cc [flag ...] file ... -lsocket -lnsl [library ...]

#include <rpcsvc/spray.h>

bool_t xdr_sprayarr(XDR *xdrs, sprayarr *objp);

bool_t xdr_spraycumul(XDR *xdrs, spraycumul *objp);

The spray program sends packets to a given machine to test communications with that
machine.

The spray program is not a C function interface, per se, but it can be accessed using the generic
remote procedure calling interface clnt_call(). See rpc_clnt_calls(3NSL). The program
sends a packet to the called host. The host acknowledges receipt of the packet. The program
counts the number of acknowledgments and can return that count.

The spray program currently supports the following procedures, which should be called in the
order given:

SPRAYPROC_CLEAR This procedure clears the counter.

SPRAYPROC_SPRAY This procedure sends the packet.

SPRAYPROC_GET This procedure returns the count and the amount of time since the last
SPRAYPROC_CLEAR.

EXAMPLE 1 Usingspray()

The following code fragment demonstrates how the spray program is used:

#include <rpc/rpc.h>

#include <rpcsvc/spray.h>

. . .

spraycumul spray_result;

sprayarr spray_data;

char buf[100]; /* arbitrary data */

int loop = 1000;

CLIENT *clnt;

struct timeval timeout0 = {0, 0};

struct timeval timeout25 = {25, 0};

spray_data.sprayarr_len = (uint_t)100;

spray_data.sprayarr_val = buf;

clnt = clnt_create("somehost", SPRAYPROG, SPRAYVERS, "netpath");
if (clnt == (CLIENT *)NULL) {

/* handle this error */

}

if (clnt_call(clnt, SPRAYPROC_CLEAR,

xdr_void, NULL, xdr_void, NULL, timeout25)) {

/* handle this error */

}

Name

Synopsis

Description

Examples

spray(3SOCKET)

Networking Library Functions 751

EXAMPLE 1 Using spray() (Continued)

while (loop− > 0) {

if (clnt_call(clnt, SPRAYPROC_SPRAY,

xdr_sprayarr, &spray_data, xdr_void, NULL, timeout0)) {

/* handle this error */

}

}

if (clnt_call(clnt, SPRAYPROC_GET,

xdr_void, NULL, xdr_spraycumul, &spray_result, timeout25)) {

/* handle this error */

}

printf("Acknowledged %ld of 1000 packets in %d secs %d usecs\n",
spray_result.counter,

spray_result.clock.sec,

spray_result.clock.usec);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

spray(1M), rpc_clnt_calls(3NSL), attributes(5)

This interface is unsafe in multithreaded applications. Unsafe interfaces should be called only
from the main thread.

A spray program is not useful as a networking benchmark as it uses unreliable connectionless
transports, for example, udp. It can report a large number of packets dropped, when the drops
were caused by the program sending packets faster than they can be buffered locally, that is,
before the packets get to the network medium.

Attributes

See Also

Notes

spray(3SOCKET)

man pages section 3: Networking Library Functions • Last Revised 30 Dec 1996752

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1spray-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_accept – accept a connection request

#include <xti.h>

int t_accept(int fd, int resfd, const struct t_call *call);

This routine is part of the XTI interfaces that evolved from the TLI interfaces. XTI represents
the future evolution of these interfaces. However, TLI interfaces are supported for
compatibility. When using a TLI routine that has the same name as an XTI routine, a different
header file, tiuser.h, must be used. Refer to the TLI COMPATIBILITY section for a description
of differences between the two interfaces.

This function is issued by a transport user to accept a connection request. The parameter fd
identifies the local transport endpoint where the connection indication arrived; resfd specifies
the local transport endpoint where the connection is to be established, and call contains
information required by the transport provider to complete the connection. The parameter
call points to a t_call structure which contains the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

In call, addr is the protocol address of the calling transport user, opt indicates any options
associated with the connection, udata points to any user data to be returned to the caller, and
sequence is the value returned by t_listen(3NSL) that uniquely associates the response with a
previously received connection indication. The address of the caller, addr may be null (length
zero). Where addr is not null then it may optionally be checked by XTI.

A transport user may accept a connection on either the same, or on a different, local transport
endpoint than the one on which the connection indication arrived. Before the connection can
be accepted on the same endpoint (resfd==fd), the user must have responded to any previous
connection indications received on that transport endpoint by means of t_accept() or
t_snddis(3NSL). Otherwise, t_accept() will fail and set t_errno to TINDOUT.

If a different transport endpoint is specified (resfd!=fd), then the user may or may not choose
to bind the endpoint before the t_accept() is issued. If the endpoint is not bound prior to the
t_accept(), the endpoint must be in the T_UNBND state before the t_accept() is issued, and
the transport provider will automatically bind it to an address that is appropriate for the
protocol concerned. If the transport user chooses to bind the endpoint it must be bound to a
protocol address with a qlen of zero and must be in the T_IDLE state before the t_accept() is
issued.

Responding endpoints should be supplied to t_accept() in the state T_UNBND.

Name

Synopsis

Description

t_accept(3NSL)

Networking Library Functions 753

The call to t_accept() may fail with t_errno set to TLOOK if there are indications (for example
connect or disconnect) waiting to be received on endpoint fd. Applications should be
prepared for such a failure.

The udata argument enables the called transport user to send user data to the caller and the
amount of user data must not exceed the limits supported by the transport provider as
returned in the connect field of the info argument of t_open(3NSL) or t_getinfo(3NSL). If
the len field of udata is zero, no data will be sent to the caller. All the maxlen fields are
meaningless.

When the user does not indicate any option (call→opt.len = 0) the connection shall be
accepted with the option values currently set for the responding endpoint resfd.

Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned and
t_errno is set to indicate an error.

fd: T_INCON

resfd (fd!=resfd): T_IDLE, T_UNBND

On failure, t_errno is set to one of the following:

TACCES The user does not have permission to accept a connection on the
responding transport endpoint or to use the specified options.

TBADADDR The specified protocol address was in an incorrect format or contained
illegal information.

TBADDATA The amount of user data specified was not within the bounds allowed by
the transport provider.

TBADF The file descriptor fd or resfd does not refer to a transport endpoint.

TBADOPT The specified options were in an incorrect format or contained illegal
information.

TBADSEQ Either an invalid sequence number was specified, or a valid sequence
number was specified but the connection request was aborted by the peer.
In the latter case, its T_DISCONNECT event will be received on the listening
endpoint.

TINDOUT The function was called with fd==resfd but there are outstanding
connection indications on the endpoint. Those other connection
indications must be handled either by rejecting them by means of
t_snddis(3NSL) or accepting them on a different endpoint by means of
t_accept.

TLOOK An asynchronous event has occurred on the transport endpoint
referenced by fd and requires immediate attention.

TNOTSUPPORT This function is not supported by the underlying transport provider.

Return Values

Valid States

Errors

t_accept(3NSL)

man pages section 3: Networking Library Functions • Last Revised 1 May 1998754

TOUTSTATE The communications endpoint referenced by fd or resfd is not in one of
the states in which a call to this function is valid.

TPROTO This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno).

TPROVMISMATCH The file descriptors fd and resfd do not refer to the same transport
provider.

TRESADDR This transport provider requires both fd and resfd to be bound to the same
address. This error results if they are not.

TRESQLEN The endpoint referenced by resfd (where resfd != fd) was bound to a
protocol address with a qlen that is greater than zero.

TSYSERR A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files.
This, and other semantic differences between the two interfaces are described in the
subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They
should use the header:

#include <tiuser.h>

The t_errno values that can be set by the XTI interface and cannot be set by the TLI interface
are:

TPROTO

TINDOUT

TPROVMISMATCH

TRESADDR

TRESQLEN

The format of the options in an opt buffer is dictated by the transport provider. Unlike the
XTI interface, the TLI interface does not specify the buffer format.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

Tli Compatibility

Interface Header

Error Description
Values

Option Buffer

Attributes

t_accept(3NSL)

Networking Library Functions 755

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_connect(3NSL), t_getinfo(3NSL), t_getstate(3NSL), t_listen(3NSL), t_open(3NSL),
t_optmgmt(3NSL), t_rcvconnect(3NSL), t_snddis(3NSL), attributes(5)

There may be transport provider-specific restrictions on address binding.

Some transport providers do not differentiate between a connection indication and the
connection itself. If the connection has already been established after a successful return of
t_listen(3NSL), t_accept() will assign the existing connection to the transport endpoint
specified by resfd.

See Also

Warnings

t_accept(3NSL)

man pages section 3: Networking Library Functions • Last Revised 1 May 1998756

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_alloc – allocate a library structure

#include <xti.h>

void *t_alloc(int fd, int struct_type, int fields);

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are supported for
compatibility. When using a TLI routine that has the same name as an XTI routine, a different
header file, tiuser.h, must be used. Refer to the section, TLI COMPATIBILITY, for a description
of differences between the two interfaces.

The t_alloc() function dynamically allocates memory for the various transport function
argument structures as specified below. This function will allocate memory for the specified
structure, and will also allocate memory for buffers referenced by the structure.

The structure to allocate is specified by struct_type and must be one of the following:

T_BIND struct t_bind

T_CALL struct t_call

T_OPTMGMT struct t_optmgmt

T_DIS struct t_discon

T_UNITDATA struct t_unitdata

T_UDERROR struct t_uderr

T_INFO struct t_info

where each of these structures may subsequently be used as an argument to one or more
transport functions.

Each of the above structures, except T_INFO, contains at least one field of type struct netbuf.
For each field of this type, the user may specify that the buffer for that field should be allocated
as well. The length of the buffer allocated will be equal to or greater than the appropriate size as
returned in the info argument of t_open(3NSL) or t_getinfo(3NSL). The relevant fields of
the info argument are described in the following list. The fields argument specifies which
buffers to allocate, where the argument is the bitwise-or of any of the following:

T_ADDR The addr field of the t_bind, t_call, t_unitdata or t_uderr structures.

T_OPT The opt field of the t_optmgmt, t_call, t_unitdata or t_uderr structures.

T_UDATA The udata field of the t_call, t_discon or t_unitdata structures.

T_ALL All relevant fields of the given structure. Fields which are not supported by the
transport provider specified by fd will not be allocated.

For each relevant field specified in fields, t_alloc() will allocate memory for the buffer
associated with the field, and initialize the len field to zero and the buf pointer and maxlen field

Name

Synopsis

Description

t_alloc(3NSL)

Networking Library Functions 757

accordingly. Irrelevant or unknown values passed in fields are ignored. Since the length of the
buffer allocated will be based on the same size information that is returned to the user on a call
to t_open(3NSL) and t_getinfo(3NSL), fd must refer to the transport endpoint through
which the newly allocated structure will be passed. In the case where a T_INFO structure is to be
allocated, fd may be set to any value. In this way the appropriate size information can be
accessed. If the size value associated with any specified field is T_INVALID, t_alloc() will be
unable to determine the size of the buffer to allocate and will fail, setting t_errno to TSYSERR

and errno to EINVAL. See t_open(3NSL) or t_getinfo(3NSL). If the size value associated with
any specified field is T_INFINITE, then the behavior of t_alloc() is implementation-defined.
For any field not specified in fields, buf will be set to the null pointer and len and maxlen will be
set to zero. See t_open(3NSL) or t_getinfo(3NSL).

The pointer returned if the allocation succeeds is suitably aligned so that it can be assigned to a
pointer to any type of object and then used to access such an object or array of such objects in
the space allocated.

Use of t_alloc() to allocate structures will help ensure the compatibility of user programs
with future releases of the transport interface functions.

On successful completion, t_alloc() returns a pointer to the newly allocated structure. On
failure, a null pointer is returned.

ALL - apart from T_UNINIT

On failure, t_errno is set to one of the following:

TBADF struct_type is other than T_INFO and the specified file descriptor does not
refer to a transport endpoint.

TNOSTRUCTYPE Unsupported struct_type requested. This can include a request for a
structure type which is inconsistent with the transport provider type
specified, that is, connection-mode or connectionless-mode.

TPROTO This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files.
This, and other semantic differences between the two interfaces are described in the
subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They
should use the header:

Return Values

Valid States

Errors

Tli Compatibility

Interface Header

t_alloc(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998758

#include <tiuser.h>

The t_errno values that can be set by the XTI interface and cannot be set by the TLI interface
are:

TPROTO

TNOSTRUCTYPE

Assume that the value associated with any field of struct t_info (argument returned by
t_open() or t_getinfo()) that describes buffer limits is –1. Then the underlying service
provider can support a buffer of unlimited size. If this is the case, t_alloc() will allocate a
buffer with the default size 1024 bytes, which may be handled as described in the next
paragraph.

If the underlying service provider supports a buffer of unlimited size in the netbuf structure
(see t_connect(3NSL)), t_alloc() will return a buffer of size 1024 bytes. If a larger size buffer
is required, it will need to be allocated separately using a memory allocation routine such as
malloc(3C). The buf and maxlen fields of the netbuf data structure can then be updated with
the address of the new buffer and the 1024 byte buffer originally allocated by t_alloc() can be
freed using free(3C).

Assume that the value associated with any field of struct t_info (argument returned by
t_open() or t_getinfo()) that describes nbuffer limits is –2. Then t_alloc() will set the
buffer pointer to NULL and the buffer maximum size to 0, and then will return success (see
t_open(3NSL) or t_getinfo(3NSL)).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

free(3C), malloc(3C), t_connect(3NSL), t_free(3NSL), t_getinfo(3NSL), t_open(3NSL),
attributes(5)

Error Description
Values

Special Buffer Sizes

Attributes

See Also

t_alloc(3NSL)

Networking Library Functions 759

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1free-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1free-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_bind – bind an address to a transport endpoint

#include <xti.h>

int t_bind(int fd, const struct t_bind *req, struct t_bind *ret);

This routine is part of the XTI interfaces that evolved from the TLI interfaces. XTI represents
the future evolution of these interfaces. However, TLI interfaces are supported for
compatibility. When using a TLI routine that has the same name as an XTI routine, the
tiuser.hheader file must be used. Refer to the TLI COMPATIBILITY section for a description of
differences between the two interfaces.

This function associates a protocol address with the transport endpoint specified by fd and
activates that transport endpoint. In connection mode, the transport provider may begin
enqueuing incoming connect indications, or servicing a connection request on the transport
endpoint. In connectionless-mode, the transport user may send or receive data units through
the transport endpoint.

The req and ret arguments point to a t_bind structure containing the following members:

struct netbuf addr;

unsigned qlen;

The addr field of the t_bind structure specifies a protocol address, and the qlen field is used to
indicate the maximum number of outstanding connection indications.

The parameter req is used to request that an address, represented by the netbuf structure, be
bound to the given transport endpoint. The parameter len specifies the number of bytes in the
address, and buf points to the address buffer. The parameter maxlen has no meaning for the
req argument. On return, ret contains an encoding for the address that the transport provider
actually bound to the transport endpoint; if an address was specified in req, this will be an
encoding of the same address. In ret, the user specifies maxlen, which is the maximum size of
the address buffer, and buf which points to the buffer where the address is to be placed. On
return, len specifies the number of bytes in the bound address, and buf points to the bound
address. If maxlen equals zero, no address is returned. If maxlen is greater than zero and less
than the length of the address, t_bind() fails with t_errno set to TBUFOVFLW.

If the requested address is not available, t_bind() will return –1 with t_errno set as
appropriate. If no address is specified in req (the len field of addr in req is zero or req is NULL),
the transport provider will assign an appropriate address to be bound, and will return that
address in the addr field of ret. If the transport provider could not allocate an address,
t_bind() will fail with t_errno set to TNOADDR.

The parameter req may be a null pointer if the user does not wish to specify an address to be
bound. Here, the value of qlen is assumed to be zero, and the transport provider will assign an
address to the transport endpoint. Similarly, ret may be a null pointer if the user does not care

Name

Synopsis

Description

t_bind(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998760

what address was bound by the provider and is not interested in the negotiated value of qlen. It
is valid to set req and ret to the null pointer for the same call, in which case the provider
chooses the address to bind to the transport endpoint and does not return that information to
the user.

The qlen field has meaning only when initializing a connection-mode service. It specifies the
number of outstanding connection indications that the transport provider should support for
the given transport endpoint. An outstanding connection indication is one that has been
passed to the transport user by the transport provider but which has not been accepted or
rejected. A value of qlen greater than zero is only meaningful when issued by a passive
transport user that expects other users to call it. The value of qlen will be negotiated by the
transport provider and may be changed if the transport provider cannot support the specified
number of outstanding connection indications. However, this value of qlen will never be
negotiated from a requested value greater than zero to zero. This is a requirement on transport
providers; see WARNINGS below. On return, the qlen field in ret will contain the negotiated
value.

If fd refers to a connection-mode service, this function allows more than one transport
endpoint to be bound to the same protocol address. but it is not possible to bind more than
one protocol address to the same transport endpoint. However, the transport provider must
also support this capability. If a user binds more than one transport endpoint to the same
protocol address, only one endpoint can be used to listen for connection indications
associated with that protocol address. In other words, only one t_bind() for a given protocol
address may specify a value of qlen greater than zero. In this way, the transport provider can
identify which transport endpoint should be notified of an incoming connection indication. If
a user attempts to bind a protocol address to a second transport endpoint with a value of qlen
greater than zero, t_bind() will return –1 and set t_errno to TADDRBUSY. When a user accepts
a connection on the transport endpoint that is being used as the listening endpoint, the bound
protocol address will be found to be busy for the duration of the connection, until a
t_unbind(3NSL) or t_close(3NSL) call has been issued. No other transport endpoints may
be bound for listening on that same protocol address while that initial listening endpoint is
active (in the data transfer phase or in the T_IDLE state). This will prevent more than one
transport endpoint bound to the same protocol address from accepting connection
indications.

If fd refers to connectionless mode service, this function allows for more than one transport
endpoint to be associated with a protocol address, where the underlying transport provider
supports this capability (often in conjunction with value of a protocol-specific option). If a
user attempts to bind a second transport endpoint to an already bound protocol address when
such capability is not supported for a transport provider, t_bind() will return –1 and set
t_errno to TADDRBUSY.

Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned and
t_errno is set to indicate an error.

Return Values

t_bind(3NSL)

Networking Library Functions 761

T_UNBND

On failure, t_errno is set to one of the following:

TACCES The user does not have permission to use the specified address.

TADDRBUSY The requested address is in use.

TBADADDR The specified protocol address was in an incorrect format or contained illegal
information.

TBADF The specified file descriptor does not refer to a transport endpoint.

TBUFOVFLW The number of bytes allowed for an incoming argument (maxlen) is greater
than 0 but not sufficient to store the value of that argument. The provider's
state will change to T_IDLE and the information to be returned in ret will be
discarded.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in
which a call to this function is valid.

TNOADDR The transport provider could not allocate an address.

TPROTO This error indicates that a communication problem has been detected between
XTI and the transport provider for which there is no other suitable XTI error
(t_errno).

TSYSERR A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files.
This, and other semantic differences between the two interfaces are described in the
subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They
should use the header:

#include <tiuser.h>

The user can compare the addresses in req and ret to determine whether the transport
provider bound the transport endpoint to a different address than that requested.

The t_errno values TPROTO and TADDRBUSY can be set by the XTI interface but cannot be set by
the TLI interface.

A t_errno value that this routine can return under different circumstances than its XTI
counterpart is TBUFOVFLW. It can be returned even when the maxlen field of the corresponding
buffer has been set to zero.

Valid States

Errors

Tli Compatibility

Interface Header

Address Bound

Error Description
Values

t_bind(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998762

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

t_accept(3NSL), t_alloc(3NSL), t_close(3NSL), t_connect(3NSL), t_unbind(3NSL),
attributes(5)

The requirement that the value of qlen never be negotiated from a requested value greater than
zero to zero implies that transport providers, rather than the XTI implementation itself,
accept this restriction.

An implementation need not allow an application explicitly to bind more than one
communications endpoint to a single protocol address, while permitting more than one
connection to be accepted to the same protocol address. That means that although an attempt
to bind a communications endpoint to some address with qlen=0 might be rejected with
TADDRBUSY, the user may nevertheless use this (unbound) endpoint as a responding endpoint
in a call to t_accept(3NSL). To become independent of such implementation differences, the
user should supply unbound responding endpoints to t_accept(3NSL).

The local address bound to an endpoint may change as result of a t_accept(3NSL) or
t_connect(3NSL) call. Such changes are not necessarily reversed when the connection is
released.

Attributes

See Also

Warnings

t_bind(3NSL)

Networking Library Functions 763

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_close – close a transport endpoint

#include <xti.h>

int t_close(int fd);

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are supported for
compatibility. When using a TLI routine that has the same name as an XTI routine, the
tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description
of differences between the two interfaces.

The t_close() function informs the transport provider that the user is finished with the
transport endpoint specified by fd, and frees any local library resources associated with the
endpoint. In addition, t_close() closes the file associated with the transport endpoint.

The function t_close() should be called from the T_UNBND state. See t_getstate(3NSL).
However, this function does not check state information, so it may be called from any state to
close a transport endpoint. If this occurs, the local library resources associated with the
endpoint will be freed automatically. In addition, close(2) will be issued for that file
descriptor; if there are no other descriptors in this process or in another process which
references the communication endpoint, any connection that may be associated with that
endpoint is broken. The connection may be terminated in an orderly or abortive manner.

A t_close() issued on a connection endpoint may cause data previously sent, or data not yet
received, to be lost. It is the responsibility of the transport user to ensure that data is received
by the remote peer.

Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned

and t_errno is set to indicate an error.

T_UNBND

On failure, t_errno is set to the following:

TBADF The specified file descriptor does not refer to a transport endpoint.

TPROTO This error indicates that a communication problem has been detected between
XTI and the transport provider for which there is no other suitable XTI error
(t_errno).

TSYSERR A system error has occurred during execution of this function.

Name

Synopsis

Description

Return Values

Valid States

Errors

t_close(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998764

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2

The XTI and TLI interface definitions have common names but use different header files.
This, and other semantic differences between the two interfaces are described in the
subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They
should use the header:

#include <tiuser.h>

The t_errno value that can be set by the XTI interface and cannot be set by the TLI interface
is:

TPROTO

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

close(2), t_getstate(3NSL), t_open(3NSL), t_unbind(3NSL), attributes(5)

Tli Compatibility

Interface Header

Error Description
Values

Attributes

See Also

t_close(3NSL)

Networking Library Functions 765

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_connect – establish a connection with another transport user

#include <xti.h>

int t_connect(int fd, const struct t_call *sndcall,
struct t_call *rcvcall);

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are supported for
compatibility. When using a TLI routine that has the same name as an XTI routine, the
tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description
of differences between the two interfaces. This function enables a transport user to request a
connection to the specified destination transport user.

This function can only be issued in the T_IDLE state. The parameter fd identifies the local
transport endpoint where communication will be established, while sndcall and rcvcall point
to a t_call structure which contains the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

The parameter sndcall specifies information needed by the transport provider to establish a
connection and rcvcall specifies information that is associated with the newly established
connection.

In sndcall, addr specifies the protocol address of the destination transport user, opt presents
any protocol-specific information that might be needed by the transport provider, udata
points to optional user data that may be passed to the destination transport user during
connection establishment, and sequence has no meaning for this function.

On return, in rcvcall, addr contains the protocol address associated with the responding
transport endpoint, opt represents any protocol-specific information associated with the
connection, udata points to optional user data that may be returned by the destination
transport user during connection establishment, and sequence has no meaning for this
function.

The opt argument permits users to define the options that may be passed to the transport
provider. The user may choose not to negotiate protocol options by setting the len field of opt
to zero. In this case, the provider uses the option values currently set for the communications
endpoint.

If used, sndcall→opt.buf must point to a buffer with the corresponding options, and
sndcall→opt.len must specify its length. The maxlen and buf fields of the netbuf structure
pointed by rcvcall→addr and rcvcall→opt must be set before the call.

Name

Synopsis

Description

t_connect(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998766

The udata argument enables the caller to pass user data to the destination transport user and
receive user data from the destination user during connection establishment. However, the
amount of user data must not exceed the limits supported by the transport provider as
returned in the connect field of the info argument of t_open(3NSL) or t_getinfo(3NSL). If
the len of udata is zero in sndcall, no data will be sent to the destination transport user.

On return, the addr, opt and udata fields of rcvcall will be updated to reflect values associated
with the connection. Thus, the maxlen field of each argument must be set before issuing this
function to indicate the maximum size of the buffer for each. However, maxlen can be set to
zero, in which case no information to this specific argument is given to the user on the return
from t_connect(). If maxlen is greater than zero and less than the length of the value,
t_connect() fails with t_errno set to TBUFOVFLW. If rcvcall is set to NULL, no information at all
is returned.

By default, t_connect() executes in synchronous mode, and will wait for the destination
user's response before returning control to the local user. A successful return (that is, return
value of zero) indicates that the requested connection has been established. However, if
O_NONBLOCK is set by means of t_open(3NSL) or fcntl(2), t_connect() executes in
asynchronous mode. In this case, the call will not wait for the remote user's response, but will
return control immediately to the local user and return –1 with t_errno set to TNODATA to
indicate that the connection has not yet been established. In this way, the function simply
initiates the connection establishment procedure by sending a connection request to the
destination transport user. The t_rcvconnect(3NSL) function is used in conjunction with
t_connect() to determine the status of the requested connection.

When a synchronous t_connect() call is interrupted by the arrival of a signal, the state of the
corresponding transport endpoint is T_OUTCON, allowing a further call to either
t_rcvconnect(3NSL), t_rcvdis(3NSL) or t_snddis(3NSL). When an asynchronous
t_connect() call is interrupted by the arrival of a signal, the state of the corresponding
transport endpoint is T_IDLE.

Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned and
t_errno is set to indicate an error.

T_IDLE

On failure, t_errno is set to one of the following:

TACCES The user does not have permission to use the specified address or options.

TADDRBUSY This transport provider does not support multiple connections with the
same local and remote addresses. This error indicates that a connection
already exists.

TBADADDR The specified protocol address was in an incorrect format or contained
illegal information.

Return Values

Valid States

Errors

t_connect(3NSL)

Networking Library Functions 767

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2

TBADDATA The amount of user data specified was not within the bounds allowed by the
transport provider.

TBADF The specified file descriptor does not refer to a transport endpoint.

TBADOPT The specified protocol options were in an incorrect format or contained
illegal information.

TBUFOVFLW The number of bytes allocated for an incoming argument (maxlen) is
greater than 0 but not sufficient to store the value of that argument. If
executed in synchronous mode, the provider's state, as seen by the user,
changes to T_DATAXFER, and the information to be returned in rcvcall is
discarded.

TLOOK An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

TNODATA O_NONBLOCK was set, so the function successfully initiated the connection
establishment procedure, but did not wait for a response from the remote
user.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in
which a call to this function is valid.

TPROTO This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files.
This, and other semantic differences between the two interfaces are described in the
subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They
should use the header:

#include <tiuser.h>

The TPROTO and TADDRBUSY t_errno values can be set by the XTI interface but not by the TLI
interface.

A t_errno value that this routine can return under different circumstances than its XTI
counterpart is TBUFOVFLW. It can be returned even when the maxlen field of the corresponding
buffer has been set to zero.

Tli Compatibility

Interface Header

Error Description
Values

t_connect(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998768

The format of the options in an opt buffer is dictated by the transport provider. Unlike the
XTI interface, the TLI interface does not fix the buffer format.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

fcntl(2), t_accept(3NSL), t_alloc(3NSL), t_getinfo(3NSL), t_listen(3NSL),
t_open(3NSL), t_optmgmt(3NSL), t_rcvconnect(3NSL), t_rcvdis(3NSL), t_snddis(3NSL),
attributes

Option Buffers

Attributes

See Also

t_connect(3NSL)

Networking Library Functions 769

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2

t_errno – XTI error return value

#include <xti.h>

This error return value is part of the XTI interfaces that evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are supported for
compatibility. When using a TLI interface that has the same name as an XTI interfaces, a
different headerfile, <tiuser.h>, must be used. Refer the the TLI COMPATIBILITY section
for a description of differences between the two interfaces.

t_errno is used by XTI functions to return error values.

XTI functions provide an error number in t_errno which has type int and is defined in
<xti.h>. The value of t_errno will be defined only after a call to a XTI function for which it is
explicitly stated to be set and until it is changed by the next XTI function call. The value of
t_errno should only be examined when it is indicated to be valid by a function's return value.
Programs should obtain the definition of t_errno by the inclusion of <xti.h>. The practice of
defining t_errno in program as extern int t_errno is obsolescent. No XTI function sets
t_errno to 0 to indicate an error.

It is unspecified whether t_errno is a macro or an identifier with external linkage. It
represents a modifiable lvalue of type int. If a macro definition is suppressed in order to
access an actual object or a program defines an identifier with name t_errno, the behavior is
undefined.

The symbolic values stored in t_errno by an XTI function are defined in the ERRORS sections
in all relevant XTI function definition pages.

t_errno is also used by TLI functions to return error values.

The XTI and TLI interface definitions have common names but use different header files.
This, and other semantic differences between the two interfaces are described in the
subsections below.

The XTI interfaces use the header file, <xti.h>. TLI interfaces should not use this header.
They should use the header:

#include <tiuser.h>

The t_errno values that can be set by the XTI interface but cannot be set by the TLI interface
are:

TNOSTRUCTYPE

TBADNAME

TBADQLEN

TADDRBUSY

Name

Synopsis

Description

Tli Compatibility

Interface Header

Error Description
Values

t_errno(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998770

TINDOUT

TPROVMISMATCH

TRESADDR

TQFULL

TPROTO

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5)

Attributes

See Also

t_errno(3NSL)

Networking Library Functions 771

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_error – produce error message

#include <xti.h>

int t_error(const char *errmsg);

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are supported for
compatibility. When using a TLI routine that has the same name as an XTI routine, the
tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description
of differences between the two interfaces.

The t_error() function produces a message on the standard error output which describes the
last error encountered during a call to a transport function. The argument string errmsg is a
user-supplied error message that gives context to the error.

The error message is written as follows: first (if errmsg is not a null pointer and the character
pointed to be errmsg is not the null character) the string pointed to by errmsg followed by a
colon and a space; then a standard error message string for the current error defined in
t_errno. If t_errno has a value different from TSYSERR, the standard error message string is
followed by a newline character. If, however, t_errno is equal to TSYSERR, the t_errno string
is followed by the standard error message string for the current error defined in errno

followed by a newline.

The language for error message strings written by t_error() is that of the current locale. If it
is English, the error message string describing the value in t_errno may be derived from the
comments following the t_errno codes defined in xti.h. The contents of the error message
strings describing the value in errno are the same as those returned by the strerror(3C)
function with an argument of errno.

The error number, t_errno, is only set when an error occurs and it is not cleared on successful
calls.

If a t_connect(3NSL) function fails on transport endpoint fd2 because a bad address was
given, the following call might follow the failure:

t_error("t_connect failed on fd2");

The diagnostic message to be printed would look like:

t_connect failed on fd2: incorrect addr format

where incorrect addr format identifies the specific error that occurred, and t_connect failed on
fd2 tells the user which function failed on which transport endpoint.

Name

Synopsis

Description

Examples

t_error(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998772

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1strerror-3c

Upon completion, a value of 0 is returned.

All - apart from T_UNINIT

No errors are defined for the t_error() function.

The XTI and TLI interface definitions have common names but use different header files.
This, and other semantic differences between the two interfaces are described in the
subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They
should use the header:

#include <tiuser.h>

The t_errno value that can be set by the XTI interface and cannot be set by the TLI interface
is:

TPROTO

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

t_errno(3NSL)strerror(3C), attributes(5)

Return Values

Valid States

Errors

Tli Compatibility

Interface Header

Error Description
Values

Attributes

See Also

t_error(3NSL)

Networking Library Functions 773

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1strerror-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_free – free a library structure

#include <xti.h>

int t_free(void *ptr, int struct_type);

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are supported for
compatibility. When using a TLI routine that has the same name as an XTI routine, the
tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description
of differences between the two interfaces.

The t_free() function frees memory previously allocated by t_alloc(3NSL). This function
will free memory for the specified structure, and will also free memory for buffers referenced
by the structure.

The argument ptr points to one of the seven structure types described for t_alloc(3NSL), and
struct_type identifies the type of that structure which must be one of the following:

T_BIND struct t_bind

T_CALL struct t_call

T_OPTMGMT struct t_optmgmt

T_DIS struct t_discon

T_UNITDATA struct t_unitdata

T_UDERROR struct t_uderr

T_INFO struct t_info

where each of these structures is used as an argument to one or more transport functions.

The function t_free() will check the addr, opt and udata fields of the given structure, as
appropriate, and free the buffers pointed to by the buf field of the netbuf structure. If buf is a
null pointer, t_free() will not attempt to free memory. After all buffers are freed, t_free()
will free the memory associated with the structure pointed to by ptr.

Undefined results will occur if ptr or any of the buf pointers points to a block of memory that
was not previously allocated by t_alloc(3NSL).

Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned and
t_errno is set to indicate an error.

ALL - apart from T_UNINIT.

On failure, t_errno is set to the following:

TNOSTRUCTYPE Unsupported struct_type requested.

Name

Synopsis

Description

Return Values

Valid States

Errors

t_free(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998774

TPROTO This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other
suitable XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files.
This, and other semantic differences between the two interfaces are described in the
subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They
should use the header:

#include <tiuser.h>

The t_errno value that can be set by the XTI interface and cannot be set by the TLI interface
is:

TPROTO

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

t_alloc(3NSL), attributes(5)

Tli Compatibility

Interface Header

Error Description
Values

Attributes

See Also

t_free(3NSL)

Networking Library Functions 775

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_getinfo – get protocol-specific service information

#include <xti.h>

int t_getinfo(int fd, struct t_info *info);

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are supported for
compatibility. When using a TLI routine that has the same name as an XTI routine, the
tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description
of differences between the two interfaces.

This function returns the current characteristics of the underlying transport protocol and/or
transport connection associated with file descriptor fd. The info pointer is used to return the
same information returned by t_open(3NSL), although not necessarily precisely the same
values. This function enables a transport user to access this information during any phase of
communication.

This argument points to a t_info structure which contains the following members:

t_scalar_t addr; /*max size in octets of the transport protocol address*/

t_scalar_t options; /*max number of bytes of protocol-specific options */

t_scalar_t tsdu; /*max size in octets of a transport service data unit */

t_scalar_t etsdu; /*max size in octets of an expedited transport service*/

/*data unit (ETSDU) */

t_scalar_t connect; /*max number of octets allowed on connection */

/*establishment functions */

t_scalar_t discon; /*max number of octets of data allowed on t_snddis() */

/*and t_rcvdis() functions */

t_scalar_t servtype; /*service type supported by the transport provider */

t_scalar_t flags; /*other info about the transport provider */

The values of the fields have the following meanings:

addr A value greater than zero indicates the maximum size of a transport protocol
address and a value of T_INVALID (-2) specifies that the transport provider does
not provide user access to transport protocol addresses.

options A value greater than zero indicates the maximum number of bytes of
protocol-specific options supported by the provider, and a value of T_INVALID
(–2) specifies that the transport provider does not support user-settable options.

tsdu A value greater than zero specifies the maximum size in octets of a transport
service data unit (TSDU); a value of T_NULL (zero) specifies that the transport
provider does not support the concept of TSDU, although it does support the
sending of a datastream with no logical boundaries preserved across a
connection; a value of T_INFINITE (–1) specifies that there is no limit on the size

Name

Synopsis

Description

t_getinfo(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998776

in octets of a TSDU; and a value of T_INVALID (–2) specifies that the transfer of
normal data is not supported by the transport provider.

etsdu A value greater than zero specifies the maximum size in octets of an expedited
transport service data unit (ETSDU); a value of T_NULL (zero) specifies that the
transport provider does not support the concept of ETSDU, although it does
support the sending of an expedited data stream with no logical boundaries
preserved across a connection; a value of T_INFINITE (–1) specifies that there is
no limit on the size (in octets) of an ETSDU; and a value of T_INVALID (–2)
specifies that the transfer of expedited data is not supported by the transport
provider. Note that the semantics of expedited data may be quite different for
different transport providers.

connect A value greater than zero specifies the maximum number of octets that may be
associated with connection establishment functions and a value of T_INVALID
(–2) specifies that the transport provider does not allow data to be sent with
connection establishment functions.

discon If the T_ORDRELDATA bit in flags is clear, a value greater than zero specifies the
maximum number of octets that may be associated with the t_snddis(3NSL) and
t_rcvdis(3NSL) functions, and a value of T_INVALID (–2) specifies that the
transport provider does not allow data to be sent with the abortive release
functions. If the T_ORDRELDATA bit is set in flags, a value greater than zero specifies
the maximum number of octets that may be associated with the t_sndreldata(),
t_rcvreldata(), t_snddis(3NSL) and t_rcvdis(3NSL) functions.

servtype This field specifies the service type supported by the transport provider, as
described below.

flags This is a bit field used to specify other information about the communications
provider. If the T_ORDRELDATA bit is set, the communications provider supports
sending user data with an orderly release. If the T_SENDZERO bit is set in flags, this
indicates that the underlying transport provider supports the sending of
zero-length TSDUs.

If a transport user is concerned with protocol independence, the above sizes may be accessed
to determine how large the buffers must be to hold each piece of information. Alternatively,
the t_alloc(3NSL) function may be used to allocate these buffers. An error will result if a
transport user exceeds the allowed data size on any function. The value of each field may
change as a result of protocol option negotiation during connection establishment (the
t_optmgmt(3NSL) call has no effect on the values returned by t_getinfo()). These values will
only change from the values presented to t_open(3NSL) after the endpoint enters the
T_DATAXFER state.

The servtype field of info specifies one of the following values on return:

t_getinfo(3NSL)

Networking Library Functions 777

T_COTS The transport provider supports a connection-mode service but does not
support the optional orderly release facility.

T_COTS_ORD The transport provider supports a connection-mode service with the
optional orderly release facility.

T_CLTS The transport provider supports a connectionless-mode service. For this
service type, t_open(3NSL) will return T_INVALID (–1) for etsdu, connect and
discon.

Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned and
t_errno is set to indicate an error.

ALL - apart from T_UNINIT.

On failure, t_errno is set to one of the following:

TBADF The specified file descriptor does not refer to a transport endpoint.

TPROTO This error indicates that a communication problem has been detected between
XTI and the transport provider for which there is no other suitable XTI error
(t_errno).

TSYSERR A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files.
This, and other semantic differences between the two interfaces are described in the
subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They
should use the header:

#include <tiuser.h>

The t_errno value TPROTO can be set by the XTI interface but not by the TLI interface.

For TLI , the t_info structure referenced by info lacks the following structure member:

t_scalar_t flags; /* other info about the transport provider */

This member was added to struct t_info in the XTI interfaces.

When a value of –1 is observed as the return value in various t_info structure members, it
signifies that the transport provider can handle an infinite length buffer for a corresponding
attribute, such as address data, option data, TSDU (octet size), ETSDU (octet size), connection
data, and disconnection data. The corresponding structure members are addr, options, tsdu,
estdu, connect, and discon, respectively.

Return Values

Valid States

Errors

Tli Compatibility

Interface Header

Error Description
Values

The t_info Structure

t_getinfo(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998778

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

t_alloc(3NSL), t_open(3NSL), t_optmgmt(3NSL), t_rcvdis(3NSL), t_snddis(3NSL),
attributes(5)

Attributes

See Also

t_getinfo(3NSL)

Networking Library Functions 779

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_getprotaddr – get the protocol addresses

#include <xti.h>

int t_getprotaddr(int fd, struct t_bind *boundaddr,
struct t_bind *peeraddr);

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are supported for
compatibility. When using a TLI routine that has the same name as an XTI routine, the
tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description
of differences between the two interfaces.

The t_getprotaddr() function returns local and remote protocol addresses currently
associated with the transport endpoint specified by fd. In boundaddr and peeraddr the user
specifies maxlen, which is the maximum size (in bytes) of the address buffer, and buf which
points to the buffer where the address is to be placed. On return, the buf field of boundaddr
points to the address, if any, currently bound to fd, and the len field specifies the length of the
address. If the transport endpoint is in the T_UNBND state, zero is returned in the len field of
boundaddr. The buf field of peeraddr points to the address, if any, currently connected to fd,
and the len field specifies the length of the address. If the transport endpoint is not in the
T_DATAXFER, T_INREL, T_OUTCON or T_OUTREL states, zero is returned in the len field of
peeraddr. If the maxlen field of boundaddr or peeraddr is set to zero, no address is returned.

Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned and
t_errno is set to indicate the error.

ALL - apart from T_UNINIT.

On failure, t_errno is set to one of the following:

TBADF The specified file descriptor does not refer to a transport endpoint.

TBUFOVFLW The number of bytes allocated for an incoming argument (maxlen) is greater
than 0 but not sufficient to store the value of that argument.

TPROTO This error indicates that a communication problem has been detected between
XTI and the transport provider for which there is no other suitable XTI error
(t_errno).

TSYSERR A system error has occurred during execution of this function.

In the TLI interface definition, no counterpart of this routine was defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

Name

Synopsis

Description

Return Values

Valid States

Errors

Tli Compatibility

Attributes

t_getprotaddr(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998780

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_bind(3NSL), attributes(5)See Also

t_getprotaddr(3NSL)

Networking Library Functions 781

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_getstate – get the current state

#include <xti.h>

int t_getstate(int fd);

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are supported for
compatibility. When using a TLI routine that has the same name as an XTI routine, the
tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description
of differences between the two interfaces.

The t_getstate() function returns the current state of the provider associated with the
transport endpoint specified by fd.

State is returned upon successful completion. Otherwise, a value of –1 is returned and
t_errno is set to indicate an error. The current state is one of the following:

T_UNBND Unbound.

T_IDLE Idle.

T_OUTCON Outgoing connection pending.

T_INCON Incoming connection pending.

T_DATAXFER Data transfer.

T_OUTREL Outgoing direction orderly release sent.

T_INREL Incoming direction orderly release received.

If the provider is undergoing a state transition when t_getstate() is called, the function will
fail.

On failure, t_errno is set to one of the following:

TBADF The specified file descriptor does not refer to a transport endpoint.

TPROTO This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI error (t_errno).

TSTATECHNG The transport provider is undergoing a transient state change.

TSYSERR A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files.
This, and other semantic differences between the two interfaces are described in the
subsections below.

Name

Synopsis

Description

Return Values

Errors

Tli Compatibility

t_getstate(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998782

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They
should use the header:

#include <tiuser.h>

The t_errno value that can be set by the XTI interface and cannot be set by the TLI interface
is:

TPROTO

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

t_open(3NSL), attributes(5)

Interface Header

Error Description
Values

Attributes

See Also

t_getstate(3NSL)

Networking Library Functions 783

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_listen – listen for a connection indication

#include <xti.h>

int t_listen(int fd, struct t_call *call);

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are supported for
compatibility. When using a TLI routine that has the same name as an XTI routine, the
tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description
of differences between the two interfaces.

This function listens for a connection indication from a calling transport user. The argument
fd identifies the local transport endpoint where connection indications arrive, and on return,
call contains information describing the connection indication. The parameter call points to a
t_call structure which contains the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

In call, addr returns the protocol address of the calling transport user. This address is in a
format usable in future calls to t_connect(3NSL). Note, however that t_connect(3NSL) may
fail for other reasons, for example TADDRBUSY. opt returns options associated with the
connection indication, udata returns any user data sent by the caller on the connection
request, and sequence is a number that uniquely identifies the returned connection indication.
The value of sequence enables the user to listen for multiple connection indications before
responding to any of them.

Since this function returns values for the addr, opt and udata fields of call, the maxlen field of
each must be set before issuing the t_listen() to indicate the maximum size of the buffer for
each. If the maxlen field of call→addr, call→opt or call→udata is set to zero, no information is
returned for this parameter.

By default, t_listen() executes in synchronous mode and waits for a connection indication
to arrive before returning to the user. However, if O_NONBLOCK is set via t_open(3NSL) or
fcntl(2), t_listen() executes asynchronously, reducing to a poll for existing connection
indications. If none are available, it returns –1 and sets t_errno to TNODATA.

Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
t_errno is set to indicate an error.

T_IDLE, T_INCON

Name

Synopsis

Description

Return Values

Valid States

t_listen(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998784

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2

On failure, t_errno is set to one of the following:

TBADF The specified file descriptor does not refer to a transport endpoint.

TBADQLEN The argument qlen of the endpoint referenced by fd is zero.

TBUFOVFLW The number of bytes allocated for an incoming argument (maxlen) is
greater than 0 but not sufficient to store the value of that argument. The
provider's state, as seen by the user, changes to T_INCON, and the connection
indication information to be returned in call is discarded. The value of
sequence returned can be used to do a t_snddis(3NSL).

TLOOK An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

TNODATA O_NONBLOCK was set, but no connection indications had been queued.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in
which a call to this function is valid.

TPROTO This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI error (t_errno).

TQFULL The maximum number of outstanding connection indications has been
reached for the endpoint referenced by fd. Note that a subsequent call to
t_listen() may block until another incoming connection indication is
available. This can only occur if at least one of the outstanding connection
indications becomes no longer outstanding, for example through a call to
t_accept(3NSL).

TSYSERR A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files.
This, and other semantic differences between the two interfaces are described in the
subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They
should use the header:

#include <tiuser.h>

The t_errno values TPROT0, TBADQLEN, and TQFULL can be set by the XTI interface but not by
the TLI interface.

A t_errno value that this routine can return under different circumstances than its XTI
counterpart is TBUFOVFLW. It can be returned even when the maxlen field of the corresponding
buffer has been set to zero.

Errors

Tli Compatibility

Interface Header

Error Description
Values

t_listen(3NSL)

Networking Library Functions 785

The format of the options in an opt buffer is dictated by the transport provider. Unlike the
XTI interface, the TLI interface does not fix the buffer format.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

fcntl(2), t_accept(3NSL), t_alloc(3NSL), t_bind(3NSL), t_connect(3NSL),
t_open(3NSL), t_optmgmt(3NSL), t_rcvconnect(3NSL), t_snddis(3NSL), attributes(5)

Some transport providers do not differentiate between a connection indication and the
connection itself. If this is the case, a successful return of t_listen() indicates an existing
connection.

Option Buffers

Attributes

See Also

Warnings

t_listen(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998786

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_look – look at the current event on a transport endpoint

#include <xti.h>

int t_look(int fd);

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are supported for
compatibility. When using a TLI routine that has the same name as an XTI routine, the
tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description
of differences between the two interfaces.

This function returns the current event on the transport endpoint specified by fd. This
function enables a transport provider to notify a transport user of an asynchronous event
when the user is calling functions in synchronous mode. Certain events require immediate
notification of the user and are indicated by a specific error, TLOOK, on the current or next
function to be executed.

This function also enables a transport user to poll a transport endpoint periodically for
asynchronous events.

Upon success, t_look() returns a value that indicates which of the allowable events has
occurred, or returns zero if no event exists. One of the following events is returned:

T_LISTEN Connection indication received.

T_CONNECT Connect confirmation received.

T_DATA Normal data received.

T_EXDATA Expedited data received.

T_DISCONNECT Disconnection received.

T_UDERR Datagram error indication.

T_ORDREL Orderly release indication.

T_GODATA Flow control restrictions on normal data flow that led to a TFLOW error
have been lifted. Normal data may be sent again.

T_GOEXDATA Flow control restrictions on expedited data flow that led to a TFLOW error
have been lifted. Expedited data may be sent again.

On failure, –1 is returned and t_errno is set to indicate the error.

ALL - apart from T_UNINIT.

Name

Synopsis

Description

Return Values

Valid States

t_look(3NSL)

Networking Library Functions 787

On failure, t_errno is set to one of the following:

TBADF The specified file descriptor does not refer to a transport endpoint.

TPROTO This error indicates that a communication problem has been detected between
XTI and the transport provider for which there is no other suitable XTI error
(t_errno).

TSYSERR A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files.
This, and other semantic differences between the two interfaces are described in the
subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They
should use the header:

#include <tiuser.h>

The return values that are defined by the XTI interface and cannot be returned by the TLI
interface are:

T_GODATA

T_GOEXDATA

The t_errno value that can be set by the XTI interface and cannot be set by the TLI interface
is:

TPROTO

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

t_open(3NSL), t_snd(3NSL), t_sndudata(3NSL), attributes(5)

Errors

Tli Compatibility

Interface Header

Return Values

Error Description
Values

Attributes

See Also

t_look(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998788

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_open – establish a transport endpoint

#include <xti.h>

#include <fcntl.h>

int t_open(const char *name, int oflag, struct t_info *info);

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are supported for
compatibility. When using a TLI routine that has the same name as an XTI routine, the
tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description
of differences between the two interfaces.

The t_open() function must be called as the first step in the initialization of a transport
endpoint. This function establishes a transport endpoint by supplying a transport provider
identifier that indicates a particular transport provider, that is, transport protocol, and
returning a file descriptor that identifies that endpoint.

The argument name points to a transport provider identifier and oflag identifies any open
flags, as in open(2). The argument oflag is constructed from O_RDWR optionally bitwise
inclusive-OR'ed with O_NONBLOCK. These flags are defined by the header <fcntl.h>. The file
descriptor returned by t_open() will be used by all subsequent functions to identify the
particular local transport endpoint.

This function also returns various default characteristics of the underlying transport protocol
by setting fields in the t_info structure. This argument points to a t_info which contains the
following members:

t_scalar_t addr; /* max size of the transport protocol address */

t_scalar_t options; /* max number of bytes of */

/* protocol-specific options */

t_scalar_t tsdu; /* max size of a transport service data */

/* unit (TSDU) */

t_scalar_t etsdu; /* max size of an expedited transport */

/* service data unit (ETSDU) */

t_scalar_t connect; /* max amount of data allowed on */

/* connection establishment functions */

t_scalar_t discon; /* max amount of data allowed on */

/* t_snddis() and t_rcvdis() functions */

t_scalar_t servtype; /* service type supported by the */

/* transport provider */

t_scalar_t flags; /* other info about the transport provider */

The values of the fields have the following meanings:

Name

Synopsis

Description

t_open(3NSL)

Networking Library Functions 789

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2

addr A value greater than zero (T_NULL) indicates the maximum size of a transport
protocol address and a value of –2 (T_INVALID) specifies that the transport
provider does not provide user access to transport protocol addresses.

options A value greater than zero (T_NULL) indicates the maximum number of bytes of
protocol-specific options supported by the provider, and a value of –2
(T_INVALID) specifies that the transport provider does not support user-settable
options.

tsdu A value greater than zero (T_NULL specifies the maximum size of a transport
service data unit (TSDU); a value of zero (T_NULL) specifies that the transport
provider does not support the concept of TSDU, although it does support the
sending of a data stream with no logical boundaries preserved across a
connection; a value of –1 (T_INFINITE) specifies that there is no limit to the size
of a TSDU; and a value of –2 (T_INVALID) specifies that the transfer of normal
data is not supported by the transport provider.

etsdu A value greater than zero (T_NULL) specifies the maximum size of an expedited
transport service data unit (ETSDU); a value of zero (T_NULL) specifies that the
transport provider does not support the concept of ETSDU, although it does
support the sending of an expedited data stream with no logical boundaries
preserved across a connection; a value of –1 (T_INFINITE) specifies that there is
no limit on the size of an ETSDU; and a value of –2 (T_INVALID) specifies that the
transfer of expedited data is not supported by the transport provider. Note that
the semantics of expedited data may be quite different for different transport
providers.

connect A value greater than zero (T_NULL) specifies the maximum amount of data that
may be associated with connection establishment functions, and a value of –2
(T_INVALID) specifies that the transport provider does not allow data to be sent
with connection establishment functions.

discon If the T_ORDRELDATA bit in flags is clear, a value greater than zero (T_NULL)
specifies the maximum amount of data that may be associated with the
t_snddis(3NSL) and t_rcvdis(3NSL) functions, and a value of –2 (T_INVALID)
specifies that the transport provider does not allow data to be sent with the
abortive release functions. If the T_ORDRELDATA bit is set in flags, a value greater
than zero (T_NULL) specifies the maximum number of octets that may be
associated with the t_sndreldata(), t_rcvreldata(), t_snddis(3NSL) and
t_rcvdis(3NSL) functions.

servtype This field specifies the service type supported by the transport provider, as
described below.

flags This is a bit field used to specify other information about the communications
provider. If the T_ORDRELDATA bit is set, the communications provider supports
user data to be sent with an orderly release. If the T_SENDZERO bit is set in flags,

t_open(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998790

this indicates the underlying transport provider supports the sending of
zero-length TSDUs.

If a transport user is concerned with protocol independence, the above sizes may be accessed
to determine how large the buffers must be to hold each piece of information. Alternatively,
the t_alloc(3NSL) function may be used to allocate these buffers. An error will result if a
transport user exceeds the allowed data size on any function.

The servtype field of info specifies one of the following values on return:

T_COTS The transport provider supports a connection-mode service but does not
support the optional orderly release facility.

T_COTS_ORD The transport provider supports a connection-mode service with the
optional orderly release facility.

T_CLTS The transport provider supports a connectionless-mode service. For this
service type, t_open() will return –2 (T_INVALID) for etsdu, connect and
discon.

A single transport endpoint may support only one of the above services at one time.

If info is set to a null pointer by the transport user, no protocol information is returned by
t_open().

A valid file descriptor is returned upon successful completion. Otherwise, a value of –1 is
returned and t_errno is set to indicate an error.

T_UNINIT.

On failure, t_errno is set to the following:

TBADFLAG An invalid flag is specified.

TBADNAME Invalid transport provider name.

TPROTO This error indicates that a communication problem has been detected between
XTI and the transport provider for which there is no other suitable XTI error
(t_errno).

TSYSERR A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files. This
and other semantic differences between the two interfaces are described in the subsections
below.

The XTI interfaces use the xti.h TLI interfaces should not use this header. They should use
the header:

Return Values

Valid States

Errors

Tli Compatibility

Interface Header

t_open(3NSL)

Networking Library Functions 791

#include <tiuser.h>

The t_errno values TPROTO and TBADNAME can be set by the XTI interface but cannot be set by
the TLI interface.

For TLI , the t_info structure referenced by info lacks the following structure member:

t_scalar_t flags; /* other info about the transport provider */

This member was added to struct t_info in the XTI interfaces.

When a value of –1 is observed as the return value in various t_info structure members, it
signifies that the transport provider can handle an infinite length buffer for a corresponding
attribute, such as address data, option data, TSDU (octet size), ETSDU (octet size), connection
data, and disconnection data. The corresponding structure members are addr, options, tsdu,
estdu, connect, and discon, respectively.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

open(2), attributes(5)

Error Description
Values

Notes

Attributes

See Also

t_open(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998792

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_optmgmt – manage options for a transport endpoint

#include <xti.h>

int t_optmgmt(int fd, const struct t_optmgmt *req, struct t_optmgmt *ret);

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are supported for
compatibility. When using a TLI routine that has the same name as an XTI routine, the
tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description
of differences between the two interfaces.

The t_optmgmt() function enables a transport user to retrieve, verify or negotiate protocol
options with the transport provider. The argument fd identifies a transport endpoint.

The req and ret arguments point to a t_optmgmt structure containing the following members:

struct netbuf opt;

t_scalar_t flags;

The opt field identifies protocol options and the flags field is used to specify the action to take
with those options.

The options are represented by a netbuf structure in a manner similar to the address in
t_bind(3NSL). The argument req is used to request a specific action of the provider and to
send options to the provider. The argument len specifies the number of bytes in the options,
buf points to the options buffer, and maxlen has no meaning for the req argument. The
transport provider may return options and flag values to the user through ret. For ret, maxlen
specifies the maximum size of the options buffer and buf points to the buffer where the options
are to be placed. If maxlen in ret is set to zero, no options values are returned. On return, len
specifies the number of bytes of options returned. The value in maxlen has no meaning for the
req argument, but must be set in the ret argument to specify the maximum number of bytes
the options buffer can hold.

Each option in the options buffer is of the form struct t_opthdr possibly followed by an
option value.

The level field of struct t_opthdr identifies the XTI level or a protocol of the transport
provider. The name field identifies the option within the level, and len contains its total length;
that is, the length of the option header t_opthdr plus the length of the option value. If
t_optmgmt() is called with the action T_NEGOTIATE set, the status field of the returned options
contains information about the success or failure of a negotiation.

Several options can be concatenated. The option user has, however to ensure that each options
header and value part starts at a boundary appropriate for the architecture-specific alignment
rules. The macros T_OPT_FIRSTHDR(nbp), T_OPT_NEXTHDR (nbp,tohp), T_OPT_DATA(tohp) are
provided for that purpose.

Name

Synopsis

Description

t_optmgmt(3NSL)

Networking Library Functions 793

T_OPT_DATA(nhp) If argument is a pointer to a t_opthdr structure, this macro
returns an unsigned character pointer to the data associated
with the t_opthdr.

T_OPT_NEXTHDR(nbp, tohp) If the first argument is a pointer to a netbuf structure
associated with an option buffer and second argument is a
pointer to a t_opthdr structure within that option buffer,
this macro returns a pointer to the next t_opthdr structure
or a null pointer if this t_opthdr is the last t_opthdr in the
option buffer.

T_OPT_FIRSTHDR(tohp) If the argument is a pointer to a netbuf structure associated
with an option buffer, this macro returns the pointer to the
first t_opthdr structure in the associated option buffer, or a
null pointer if there is no option buffer associated with this
netbuf or if it is not possible or the associated option buffer
is too small to accommodate even the first aligned option
header.

T_OPT_FIRSTHDR is useful for finding an appropriately
aligned start of the option buffer. T_OPT_NEXTHDR is useful
for moving to the start of the next appropriately aligned
option in the option buffer. Note that OPT_NEXTHDR is also
available for backward compatibility requirements.
T_OPT_DATA is useful for finding the start of the data part in
the option buffer where the contents of its values start on an
appropriately aligned boundary.

If the transport user specifies several options on input, all
options must address the same level.

If any option in the options buffer does not indicate the same
level as the first option, or the level specified is unsupported,
then the t_optmgmt() request will fail with TBADOPT. If the
error is detected, some options have possibly been
successfully negotiated. The transport user can check the
current status by calling t_optmgmt() with the T_CURRENT
flag set.

The flags field of req must specify one of the following
actions:

T_NEGOTIATE This action enables the transport user to negotiate option
values.

t_optmgmt(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998794

The user specifies the options of interest and their values in
the buffer specified by req→opt.buf and req→opt.len. The
negotiated option values are returned in the buffer pointed to
by ret->opt.buf. The status field of each returned option is set
to indicate the result of the negotiation. The value is
T_SUCCESS if the proposed value was negotiated,
T_PARTSUCCESS if a degraded value was negotiated,
T_FAILURE if the negotiation failed (according to the
negotiation rules), T_NOTSUPPORT if the transport provider
does not support this option or illegally requests negotiation
of a privileged option, and T_READONLY if modification of a
read-only option was requested. If the status is T_SUCCESS,
T_FAILURE, T_NOTSUPPORT or T_READONLY, the returned
option value is the same as the one requested on input.

The overall result of the negotiation is returned in ret→flags.

This field contains the worst single result, whereby the rating
is done according to the order T_NOTSUPPORT, T_READONLY,
T_FAILURE, T_PARTSUCCESS, T_SUCCESS. The value
T_NOTSUPPORT is the worst result and T_SUCCESS is the best.

For each level, the option T_ALLOPT can be requested on
input. No value is given with this option; only the t_opthdr
part is specified. This input requests to negotiate all
supported options of this level to their default values. The
result is returned option by option in ret→opt.buf. Note that
depending on the state of the transport endpoint, not all
requests to negotiate the default value may be successful.

T_CHECK This action enables the user to verify whether the options
specified in req are supported by the transport provider.If an
option is specified with no option value (it consists only of a
t_opthdr structure), the option is returned with its status
field set to T_SUCCESS if it is supported, T_NOTSUPPORT if it is
not or needs additional user privileges, and T_READONLY if it
is read-only (in the current XTI state). No option value is
returned.

If an option is specified with an option value, the status field
of the returned option has the same value, as if the user had
tried to negotiate this value with T_NEGOTIATE. If the status
is T_SUCCESS, T_FAILURE, T_NOTSUPPORT or T_READONLY, the
returned option value is the same as the one requested on
input.

t_optmgmt(3NSL)

Networking Library Functions 795

The overall result of the option checks is returned in
ret→flags. This field contains the worst single result of the
option checks, whereby the rating is the same as for
T_NEGOTIATE .

Note that no negotiation takes place. All currently effective
option values remain unchanged.

T_DEFAULT This action enables the transport user to retrieve the default
option values. The user specifies the options of interest in
req→opt.buf. The option values are irrelevant and will be
ignored; it is sufficient to specify the t_opthdr part of an
option only. The default values are then returned in
ret→opt.buf.

The status field returned is T_NOTSUPPORT if the protocol
level does not support this option or the transport user
illegally requested a privileged option, T_READONLY if the
option is read-only, and set to T_SUCCESS in all other cases.
The overall result of the request is returned in ret→flags. This
field contains the worst single result, whereby the rating is
the same as for T_NEGOTIATE.

For each level, the option T_ALLOPT can be requested on
input. All supported options of this level with their default
values are then returned. In this case, ret→opt.maxlen must
be given at least the value info→options before the call. See
t_getinfo(3NSL) and t_open(3NSL).

T_CURRENT This action enables the transport user to retrieve the
currently effective option values. The user specifies the
options of interest in req→opt.buf. The option values are
irrelevant and will be ignored; it is sufficient to specifiy the
t_opthdr part of an option only. The currently effective
values are then returned in req→opt.buf.

The status field returned is T_NOTSUPPORT if the protocol
level does not support this option or the transport user
illegally requested a privileged option, T_READONLY if the
option is read-only, and set to T_SUCCESS in all other cases.
The overall result of the request is returned in ret→flags. This
field contains the worst single result, whereby the rating is
the same as for T_NEGOTIATE.

t_optmgmt(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998796

For each level, the option T_ALLOPT can be requested on
input. All supported options of this level with their currently
effective values are then returned.

The option T_ALLOPT can only be used with t_optmgmt()

and the actions T_NEGOTIATE, T_DEFAULT and T_CURRENT. It
can be used with any supported level and addresses all
supported options of this level. The option has no value; it
consists of a t_opthdr only. Since in a t_optmgmt() call only
options of one level may be addressed, this option should not
be requested together with other options. The function
returns as soon as this option has been processed.

Options are independently processed in the order they
appear in the input option buffer. If an option is multiply
input, it depends on the implementation whether it is
multiply output or whether it is returned only once.

Transport providers may not be able to provide an interface
capable of supporting T_NEGOTIATE and/or T_CHECK
functionalities. When this is the case, the error TNOTSUPPORT
is returned.

The function t_optmgmt() may block under various
circumstances and depending on the implementation. The
function will block, for instance, if the protocol addressed by
the call resides on a separate controller. It may also block due
to flow control constraints; that is, if data sent previously
across this transport endpoint has not yet been fully
processed. If the function is interrupted by a signal, the
option negotiations that have been done so far may remain
valid. The behavior of the function is not changed if
O_NONBLOCK is set.

Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
t_errno is set to indicate an error.

ALL - apart from T_UNINIT.

On failure, t_errno is set to one of the following:

TBADF The specified file descriptor does not refer to a transport endpoint.

TBADFLAG An invalid flag was specified.

TBADOPT The specified options were in an incorrect format or contained illegal
information.

Return Values

Valid States

Errors

t_optmgmt(3NSL)

Networking Library Functions 797

TBUFOVFLW The number of bytes allowed for an incoming argument (maxlen) is greater
than 0 but not sufficient to store the value of that argument. The
information to be returned in ret will be discarded.

TNOTSUPPORT This action is not supported by the transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in
which a call to this function is valid.

TPROTO This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files.
This, and other semantic differences between the two interfaces are described in the
subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They
should use the header:

#include <tiuser.h>

The t_errno value TPROTO can be set by the XTI interface but not by the TLI interface.

The t_errno values that this routine can return under different circumstances than its XTI
counterpart are TACCES and TBUFOVFLW.

TACCES can be returned to indicate that the user does not have permission to negotiate
the specified options.

TBUFOVFLW can be returned even when the maxlen field of the corresponding buffer has
been set to zero.

The format of the options in an opt buffer is dictated by the transport provider. Unlike the
XTI interface, the TLI interface does not fix the buffer format. The macros T_OPT_DATA,
T_OPT_NEXTHDR, and T_OPT_FIRSTHDR described for XTI are not available for use by TLI
interfaces.

The semantic meaning of various action values for the flags field of req differs between the
TLI and XTI interfaces. TLI interface users should heed the following descriptions of the
actions:

T_NEGOTIATE This action enables the user to negotiate the values of the options specified
in req with the transport provider. The provider will evaluate the requested
options and negotiate the values, returning the negotiated values through
ret.

Tli Compatibility

Interface Header

Error Description
Values

Option Buffers

Actions

t_optmgmt(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998798

T_CHECK This action enables the user to verify whether the options specified in req are
supported by the transport provider. On return, the flags field of ret will
have either T_SUCCESS or T_FAILURE set to indicate to the user whether the
options are supported. These flags are only meaningful for the T_CHECK
request.

T_DEFAULT This action enables a user to retrieve the default options supported by the
transport provider into the opt field of ret. In req, the len field of opt must
be zero and the buf field may be NULL.

If issued as part of the connectionless mode service, t_optmgmt() may block due to flow
control constraints. The function will not complete until the transport provider has processed
all previously sent data units.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

close(2), poll(2), select(3C), t_accept(3NSL), t_alloc(3NSL), t_bind(3NSL),
t_close(3NSL), t_connect(3NSL), t_getinfo(3NSL), t_listen(3NSL), t_open(3NSL),
t_rcv(3NSL), t_rcvconnect(3NSL), t_rcvudata(3NSL), t_snddis(3NSL), attributes(5)

Connectionless Mode

Attributes

See Also

t_optmgmt(3NSL)

Networking Library Functions 799

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1select-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_rcv – receive data or expedited data sent over a connection

#include <xti.h>

int t_rcv(int fd, void *buf, unsigned int nbytes, int *flags);

This function is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are supported for
compatibility. When using a TLI function that has the same name as an XTI function, the
tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description
of differences between the two interfaces.

This function receives either normal or expedited data. The argument fd identifies the local
transport endpoint through which data will arrive, buf points to a receive buffer where user
data will be placed, and nbytes specifies the size of the receive buffer. The argument flags may
be set on return from t_rcv() and specifies optional flags as described below.

By default, t_rcv() operates in synchronous mode and will wait for data to arrive if none is
currently available. However, if O_NONBLOCK is set by means of t_open(3NSL) or fcntl(2),
t_rcv() will execute in asynchronous mode and will fail if no data is available. See TNODATA
below.

On return from the call, if T_MORE is set in flags, this indicates that there is more data, and the
current transport service data unit (TSDU) or expedited transport service data unit (ETSDU)
must be received in multiple t_rcv() calls. In the asynchronous mode, or under unusual
conditions (for example, the arrival of a signal or T_EXDATA event), the T_MORE flag may be set
on return from the t_rcv() call even when the number of bytes received is less than the size of
the receive buffer specified. Each t_rcv() with the T_MORE flag set indicates that another
t_rcv() must follow to get more data for the current TSDU. The end of the TSDU is identified
by the return of a t_rcv() call with the T_MORE flag not set. If the transport provider does not
support the concept of a TSDU as indicated in the info argument on return from
t_open(3NSL) or t_getinfo(3NSL), the T_MORE flag is not meaningful and should be ignored.
If nbytes is greater than zero on the call to t_rcv(), t_rcv() will return 0 only if the end of a
TSDU is being returned to the user.

On return, the data is expedited if T_EXPEDITED is set in flags. If T_MORE is also set, it indicates
that the number of expedited bytes exceeded nbytes, a signal has interrupted the call, or that
an entire ETSDU was not available (only for transport protocols that support fragmentation of
ETSDUs). The rest of the ETSDU will be returned by subsequent calls to t_rcv() which will
return with T_EXPEDITED set in flags. The end of the ETSDU is identified by the return of a
t_rcv() call with T_EXPEDITED set and T_MORE cleared. If the entire ETSDU is not available it
is possible for normal data fragments to be returned between the initial and final fragments of
an ETSDU.

If a signal arrives, t_rcv() returns, giving the user any data currently available. If no data is
available, t_rcv() returns –1, sets t_errno to TSYSERR and errno to EINTR. If some data is
available, t_rcv() returns the number of bytes received and T_MORE is set in flags.

Name

Synopsis

Description

t_rcv(3NSL)

man pages section 3: Networking Library Functions • Last Revised 24 Aug 2007800

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2

In synchronous mode, the only way for the user to be notified of the arrival of normal or
expedited data is to issue this function or check for the T_DATA or T_EXDATA events using the
t_look(3NSL) function. Additionally, the process can arrange to be notified by means of the
EM interface.

On successful completion, t_rcv() returns the number of bytes received. Otherwise, it
returns −1 on failure and t_errno is set to indicate the error.

T_DATAXFER, T_OUTREL.

On failure, t_errno is set to one of the following:

TBADF The specified file descriptor does not refer to a transport endpoint.

TLOOK An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

TNODATA O_NONBLOCK was set, but no data is currently available from the transport
provider.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in
which a call to this function is valid.

TPROTO This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files.
This, and other semantic differences between the two interfaces are described in the
subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They
should use the header:

#include <tiuser.h>

The t_errno value that can be set by the XTI interface and cannot be set by the TLI interface
is:

TPROTO

Return Values

Valid States

Errors

Tli Compatibility

Interface Header

Error Description
Values

t_rcv(3NSL)

Networking Library Functions 801

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Standard See standards(5).

fcntl(2), t_getinfo(3NSL), t_look(3NSL), t_open(3NSL), t_snd(3NSL), attributes(5),
standards(5)

Attributes

See Also

t_rcv(3NSL)

man pages section 3: Networking Library Functions • Last Revised 24 Aug 2007802

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1standards-5

t_rcvconnect – receive the confirmation from a connection request

#include <xti.h>

int t_rcvconnect(int fd, struct t_call *call);

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are supported for
compatibility. When using a TLI routine that has the same name as an XTI routine, the
tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description
of differences between the two interfaces.

This function enables a calling transport user to determine the status of a previously sent
connection request and is used in conjunction with t_connect(3NSL) to establish a
connection in asynchronous mode, and to complete a synchronous t_connect(3NSL) call
that was interrupted by a signal. The connection will be established on successful completion
of this function.

The argument fd identifies the local transport endpoint where communication will be
established, and call contains information associated with the newly established connection.
The argument call points to a t_call structure which contains the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

In call, addr returns the protocol address associated with the responding transport endpoint,
opt presents any options associated with the connection, udata points to optional user data
that may be returned by the destination transport user during connection establishment, and
sequence has no meaning for this function.

The maxlen field of each argument must be set before issuing this function to indicate the
maximum size of the buffer for each. However, maxlen can be set to zero, in which case no
information to this specific argument is given to the user on the return from t_rcvconnect().
If call is set to NULL, no information at all is returned. By default, t_rcvconnect() executes in
synchronous mode and waits for the connection to be established before returning. On return,
the addr, opt and udata fields reflect values associated with the connection.

If O_NONBLOCK is set by means of t_open(3NSL) or fcntl(2), t_rcvconnect() executes in
asynchronous mode, and reduces to a poll for existing connection confirmations. If none are
available, t_rcvconnect() fails and returns immediately without waiting for the connection
to be established. See TNODATA below. In this case, t_rcvconnect() must be called again to
complete the connection establishment phase and retrieve the information returned in call.

Name

Synopsis

Description

t_rcvconnect(3NSL)

Networking Library Functions 803

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2

Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned and
t_errno is set to indicate an error.

T_OUTCON.

On failure, t_errno is set to one of the following:

TBADF The specified file descriptor does not refer to a transport endpoint.

TBUFOVFLW The number of bytes allocated for an incoming argument (maxlen) is
greater than 0 but not sufficient to store the value of that argument, and the
connection information to be returned in call will be discarded. The
provider's state, as seen by the user, will be changed to T_DATAXFER.

TLOOK An asynchronous event has occurred on this transport connection and
requires immediate attention.

TNODATA O_NONBLOCK was set, but a connection confirmation has not yet arrived.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in
which a call to this function is valid.

TPROTO This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files.
This, and other semantic differences between the two interfaces are described in the
subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They
should use the header:

#include<tiuser.h>

The t_errno value TPROTO can be set by the XTI interface but not by the TLI interface.

A t_errno value that this routine can return under different circumstances than its XTI
counterpart is TBUFOVFLW. It can be returned even when the maxlen field of the corresponding
buffer has been set to zero.

See attributes(5) for descriptions of the following attributes:

Return Values

Valid States

Errors

Tli Compatibility

Interface Header

Error Description
Values

Attributes

t_rcvconnect(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998804

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

fcntl(2), t_accept(3NSL), t_alloc(3NSL), t_bind(3NSL), t_connect(3NSL),
t_listen(3NSL), t_open(3NSL), t_optmgmt(3NSL), attributes(5)

See Also

t_rcvconnect(3NSL)

Networking Library Functions 805

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_rcvdis – retrieve information from disconnection

#include <xti.h>

int t_rcvdis(int fd, struct t_discon *discon);

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are supported for
compatibility. When using a TLI routine that has the same name as an XTI routine, the
tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description
of differences between the two interfaces.

This function is used to identify the cause of a disconnection and to retrieve any user data sent
with the disconnection. The argument fd identifies the local transport endpoint where the
connection existed, and discon points to a t_discon structure containing the following
members:

struct netbuf udata;

int reason;

int sequence;

The field reason specifies the reason for the disconnection through a protocol-dependent
reason code, udata identifies any user data that was sent with the disconnection, and sequence
may identify an outstanding connection indication with which the disconnection is
associated. The field sequence is only meaningful when t_rcvdis() is issued by a passive
transport user who has executed one or more t_listen(3NSL) functions and is processing the
resulting connection indications. If a disconnection indication occurs, sequence can be used to
identify which of the outstanding connection indications is associated with the disconnection.

The maxlen field of udata may be set to zero, if the user does not care about incoming data. If,
in addition, the user does not need to know the value of reason or sequence, discon may be set
to NULL and any user data associated with the disconnection indication shall be discarded.
However, if a user has retrieved more than one outstanding connection indication by means
of t_listen(3NSL), and discon is a null pointer, the user will be unable to identify with which
connection indication the disconnection is associated.

Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned and
t_errno is set to indicate an error.

T_DATAXFER, T_OUTCON, T_OUTREL, T_INREL, T_INCON(ocnt > 0).

On failure, t_errno is set to one of the following:

TBADF The specified file descriptor does not refer to a transport endpoint.

TBUFOVFLW The number of bytes allocated for incoming data (maxlen) is greater than 0

but not sufficient to store the data. If fd is a passive endpoint with ocnt > 1, it
remains in state T_INCON; otherwise, the endpoint state is set to T_IDLE.

Name

Synopsis

Description

Return Values

Valid States

Errors

t_rcvdis(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998806

TNODIS No disconnection indication currently exists on the specified transport
endpoint.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in
which a call to this function is valid.

TPROTO This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files.
This, and other semantic differences between the two interfaces are described in the
subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They
should use the header:

#include <tiuser.h>

The t_errno values TPROTO and TOUTSTATE can be set by the XTI interface but not by the TLI
interface.

A failure return, and a t_errno value that this routine can set under different circumstances
than its XTI counterpart is TBUFOVFLW. It can be returned even when the maxlen field of the
corresponding buffer has been set to zero.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

t_alloc(3NSL), t_connect(3NSL), t_listen(3NSL), t_open(3NSL), t_snddis(3NSL),
attributes(5)

Tli Compatibility

Interface Header

Error Description
Values

Attributes

See Also

t_rcvdis(3NSL)

Networking Library Functions 807

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_rcvrel – acknowledge receipt of an orderly release indication

#include <xti.h>

int t_rcvrel(int fd);

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are supported for
compatibility. When using a TLI routine that has the same name as an XTI routine, the
tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description
of differences between the two interfaces.

This function is used to receive an orderly release indication for the incoming direction of data
transfer. The argument fd identifies the local transport endpoint where the connection exists.
After receipt of this indication, the user may not attempt to receive more data by means of
t_rcv(3NSL) or t_rcvv(). Such an attempt will fail with t_error set to TOUTSTATE. However,
the user may continue to send data over the connection if t_sndrel(3NSL) has not been called
by the user. This function is an optional service of the transport provider, and is only
supported if the transport provider returned service type T_COTS_ORD on t_open(3NSL) or
t_getinfo(3NSL). Any user data that may be associated with the orderly release indication is
discarded when t_rcvrel() is called.

Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned and
t_errno is set to indicate an error.

T_DATAXFER, T_OUTREL.

On failure, t_errno is set to one of the following:

TBADF The specified file descriptor does not refer to a transport endpoint.

TLOOK An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

TNOREL No orderly release indication currently exists on the specified transport
endpoint.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in
which a call to this function is valid.

TPROTO This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

Name

Synopsis

Description

Return Values

Valid States

Errors

t_rcvrel(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998808

The XTI and TLI interface definitions have common names but use different header files.
This, and other semantic differences between the two interfaces are described in the
subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They
should use the header:

#include <tiuser.h>

The t_errno values that can be set by the XTI interface and cannot be set by the TLI interface
are:

TPROTO

TOUTSTATE

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

t_getinfo(3NSL), t_open(3NSL), t_sndrel(3NSL), attributes(5)

Tli Compatibility

Interface Header

Error Description
Values

Attributes

See Also

t_rcvrel(3NSL)

Networking Library Functions 809

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_rcvreldata – receive an orderly release indication or confirmation containing user data

#include <xti.h>

int t_rcvreldata(int fd, struct t_discon *discon);

This function is used to receive an orderly release indication for the incoming direction of data
transfer and to retrieve any user data sent with the release. The argument fd identifies the local
transport endpoint where the connection exists, and discon points to a t_discon structure
containing the following members:

struct netbuf udata;

int reason;

int sequence;

After receipt of this indication, the user may not attempt to receive more data by means of
t_rcv(3NSL) or t_rcvv(3NSL) Such an attempt will fail with t_error set to TOUTSTATE.
However, the user may continue to send data over the connection if t_sndrel(3NSL) or
t_sndreldata (3N) has not been called by the user.

The field reason specifies the reason for the disconnection through a protocol-dependent
reason code, and udata identifies any user data that was sent with the disconnection; the field
sequence is not used.

If a user does not care if there is incoming data and does not need to know the value of reason,
discon may be a null pointer, and any user data associated with the disconnection will be
discarded.

If discon→udata.maxlen is greater than zero and less than the length of the value,
t_rcvreldata() fails with t_errno set to TBUFOVFLW.

This function is an optional service of the transport provider, only supported by providers of
service type T_COTS_ORD. The flag T_ORDRELDATA in the info→flag field returned by
t_open(3NSL) or t_getinfo(3NSL) indicates that the provider supports orderly release user
data; when the flag is not set, this function behaves like t_rcvrel(3NSL) and no user data is
returned.

This function may not be available on all systems.

Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned and
t_errno is set to indicate an error.

T_DATAXFER, T_OUTREL.

Name

Synopsis

Description

Return Values

Valid States

t_rcvreldata(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998810

On failure, t_errno is set to one of the following:

TBADF The specified file descriptor does not refer to a transport endpoint.

TBUFOVFLW The number of bytes allocated for incoming data (maxlen) is greater than 0

but not sufficient to store the data, and the disconnection information to be
returned in discon will be discarded. The provider state, as seen by the user,
will be changed as if the data was successfully retrieved.

TLOOK An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

TNOREL No orderly release indication currently exists on the specified transport
endpoint.

TNOTSUPPORT Orderly release is not supported by the underlying transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in
which a call to this function is valid.

TPROTO This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

In the TLI interface definition, no counterpart of this routine was defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

t_getinfo(3NSL), t_open(3NSL), t_sndreldata(3NSL), t_rcvrel(3NSL), t_sndrel(3NSL),
attributes(5)

The interfaces t_sndreldata(3NSL) and t_rcvreldata() are only for use with a specific
transport called “minimal OSI,” which is not available on the Solaris platform. These interfaces
are not available for use in conjunction with Internet Transports (TCP or UDP).

Errors

Tli Compatibility

Attributes

See Also

Notes

t_rcvreldata(3NSL)

Networking Library Functions 811

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_rcvudata – receive a data unit

#include <xti.h>

int t_rcvudata(int fd, struct t_unitdata *unitdata, int *flags);

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are supported for
compatibility. When using a TLI routine that has the same name as an XTI routine, the
tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description
of differences between the two interfaces.

This function is used in connectionless-mode to receive a data unit from another transport
user. The argument fd identifies the local transport endpoint through which data will be
received, unitdata holds information associated with the received data unit, and flags is set on
return to indicate that the complete data unit was not received. The argument unitdata points
to a t_unitdata structure containing the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

The maxlen field of addr, opt and udata must be set before calling this function to indicate the
maximum size of the buffer for each. If the maxlen field of addr or opt is set to zero, no
information is returned in the buf field of this parameter.

On return from this call, addr specifies the protocol address of the sending user, opt identifies
options that were associated with this data unit, and udata specifies the user data that was
received.

By default, t_rcvudata() operates in synchronous mode and will wait for a data unit to arrive
if none is currently available. However, if O_NONBLOCK is set by means of t_open(3NSL) or
fcntl(2), t_rcvudata() will execute in asynchronous mode and will fail if no data units are
available.

If the buffer defined in the udata field of unitdata is not large enough to hold the current data
unit, the buffer will be filled and T_MORE will be set in flags on return to indicate that another
t_rcvudata() should be called to retrieve the rest of the data unit. Subsequent calls to
t_rcvudata() will return zero for the length of the address and options until the full data unit
has been received.

If the call is interrupted, t_rcvudata() will return EINTR and no datagrams will have been
removed from the endpoint.

Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
t_errno is set to indicate an error.

Name

Synopsis

Description

Return Values

t_rcvudata(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998812

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2

T_IDLE.

On failure, t_errno is set to one of the following:

TBADF The specified file descriptor does not refer to a transport endpoint.

TBUFOVFLW The number of bytes allocated for the incoming protocol address or options
(maxlen) is greater than 0 but not sufficient to store the information. The
unit data information to be returned in unitdata will be discarded.

TLOOK An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

TNODATA O_NONBLOCK was set, but no data units are currently available from the
transport provider.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in
which a call to this function is valid.

TPROTO This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files.
This, and other semantic differences between the two interfaces are described in the
subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They
should use the header:

#include<tiuser.h>

The t_errno values that can be set by the XTI interface and cannot be set by the TLI interface
are:

TPROTO

TOUTSTATE

A t_errno value that this routine can return under different circumstances than its XTI
counterpart is TBUFOVFLW. It can be returned even when the maxlen field of the corresponding
buffer has been set to zero.

Valid States

Errors

Tli Compatibility

Interface Header

Error Description
Values

t_rcvudata(3NSL)

Networking Library Functions 813

The format of the options in an opt buffer is dictated by the transport provider. Unlike the
XTI interface, the TLI interface does not fix the buffer format.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

fcntl(2), t_alloc(3NSL), t_open(3NSL), t_rcvuderr(3NSL), t_sndudata(3NSL),
attributes(5)

Option Buffers

Attributes

See Also

t_rcvudata(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998814

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_rcvuderr – receive a unit data error indication

#include <xti.h>

int t_rcvuderr(int fd, struct t_uderr *uderr);

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are supported for
compatibility. When using a TLI routine that has the same name as an XTI routine, the
tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description
of differences between the two interfaces.

This function is used in connectionless-mode to receive information concerning an error on a
previously sent data unit, and should only be issued following a unit data error indication. It
informs the transport user that a data unit with a specific destination address and protocol
options produced an error. The argument fd identifies the local transport endpoint through
which the error report will be received, and uderr points to a t_uderr structure containing the
following members:

struct netbuf addr;

struct netbuf opt;

t_scalar_t error;

The maxlen field of addr and opt must be set before calling this function to indicate the
maximum size of the buffer for each. If this field is set to zero for addr or opt, no information is
returned in the buf field of this parameter.

On return from this call, the addr structure specifies the destination protocol address of the
erroneous data unit, the opt structure identifies options that were associated with the data
unit, and error specifies a protocol-dependent error code.

If the user does not care to identify the data unit that produced an error, uderr may be set to a
null pointer, and t_rcvuderr() will simply clear the error indication without reporting any
information to the user.

Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned and
t_errno is set to indicate an error.

T_IDLE.

On failure, t_errno is set to one of the following:

TBADF The specified file descriptor does not refer to a transport endpoint.

TBUFOVFLW The number of bytes allocated for the incoming protocol address or options
(maxlen) is greater than 0 but not sufficient to store the information. The
unit data error information to be returned in uderr will be discarded.

Name

Synopsis

Description

Return Values

Valid States

Errors

t_rcvuderr(3NSL)

Networking Library Functions 815

TNOTSUPPORT This function is not supported by the underlying transport provider.

TNOUDERR No unit data error indication currently exists on the specified transport
endpoint.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in
which a call to this function is valid.

TPROTO This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files.
This, and other semantic differences between the two interfaces are described in the
subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They
should use the header:

#include <tiuser.h>

The t_errno values TPROTO and TOUTSTATE can be set by the XTI interface but not by the TLI
interface.

A t_errno value that this routine can return under different circumstances than its XTI
counterpart is TBUFOVFLW. It can be returned even when the maxlen field of the corresponding
buffer has been set to zero.

The format of the options in an opt buffer is dictated by the transport provider. Unlike the
XTI interface, the TLI interface does not fix the buffer format.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

t_rcvudata(3NSL), t_sndudata(3NSL), attributes(5)

Tli Compatibility

Interface Header

Error Description
Values

Option Buffers

Attributes

See Also

t_rcvuderr(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998816

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_rcvv – receive data or expedited data sent over a connection and put the data into one or
more non-contiguous buffers

#include <xti.h>

int t_rcvv(int fd, struct t_iovec *iov, unsigned int iovcount, int *flags);

This function receives either normal or expedited data. The argument fd identifies the local
transport endpoint through which data will arrive, iov points to an array of buffer
address/buffer size pairs (iov_base, iov_len). The t_rcvv() function receives data into the
buffers specified by iov0.iov_base, iov1.iov_base, through iov [iovcount-1].iov_base, always
filling one buffer before proceeding to the next.

Note that the limit on the total number of bytes available in all buffers passed:

iov(0).iov_len + . . + iov(iovcount-1).iov_len)

may be constrained by implementation limits. If no other constraint applies, it will be limited
by INT_MAX. In practice, the availability of memory to an application is likely to impose a lower
limit on the amount of data that can be sent or received using scatter/gather functions.

The argument iovcount contains the number of buffers which is limited to T_IOV_MAX, which
is an implementation-defined value of at least 16. If the limit is exceeded, the function will fail
with TBADDATA.

The argument flags may be set on return from t_rcvv() and specifies optional flags as
described below.

By default, t_rcvv() operates in synchronous mode and will wait for data to arrive if none is
currently available. However, if O_NONBLOCK is set by means of t_open(3NSL) or fcntl(2),
t_rcvv() will execute in asynchronous mode and will fail if no data is available. See TNODATA
below.

On return from the call, if T_MORE is set in flags, this indicates that there is more data, and the
current transport service data unit (TSDU) or expedited transport service data unit (ETSDU)
must be received in multiple t_rcvv() or t_rcv(3NSL) calls. In the asynchronous mode, or
under unusual conditions (for example, the arrival of a signal or T_EXDATA event), the T_MORE
flag may be set on return from the t_rcvv() call even when the number of bytes received is
less than the total size of all the receive buffers. Each t_rcvv() with the T_MORE flag set
indicates that another t_rcvv() must follow to get more data for the current TSDU. The end
of the TSDU is identified by the return of a t_rcvv() call with the T_MORE flag not set. If the
transport provider does not support the concept of a TSDU as indicated in the info argument
on return from t_open(3NSL) or t_getinfo(3NSL), the T_MORE flag is not meaningful and
should be ignored. If the amount of buffer space passed in iov is greater than zero on the call to
t_rcvv(), then t_rcvv() will return 0 only if the end of a TSDU is being returned to the user.

Name

Synopsis

Description

t_rcvv(3NSL)

Networking Library Functions 817

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2

On return, the data is expedited if T_EXPEDITED is set in flags. If T_MORE is also set, it indicates
that the number of expedited bytes exceeded nbytes, a signal has interrupted the call, or that
an entire ETSDU was not available (only for transport protocols that support fragmentation of
ETSDUs). The rest of the ETSDU will be returned by subsequent calls to t_rcvv() which will
return with T_EXPEDITED set in flags. The end of the ETSDU is identified by the return of a
t_rcvv() call with T_EXPEDITED set and T_MORE cleared. If the entire ETSDU is not available it
is possible for normal data fragments to be returned between the initial and final fragments of
an ETSDU.

If a signal arrives, t_rcvv() returns, giving the user any data currently available. If no data is
available, t_rcvv() returns –1, sets t_errno to TSYSERR and errno to EINTR. If some data is
available, t_rcvv() returns the number of bytes received and T_MORE is set in flags.

In synchronous mode, the only way for the user to be notified of the arrival of normal or
expedited data is to issue this function or check for the T_DATA or T_EXDATA events using the
t_look(3NSL) function. Additionally, the process can arrange to be notified via the EM
interface.

On successful completion, t_rcvv() returns the number of bytes received. Otherwise, it
returns –1 on failure and t_errno is set to indicate the error.

T_DATAXFER, T_OUTREL.

On failure, t_errno is set to one of the following:

TBADDATA iovcount is greater than T_IOV_MAX.

TBADF The specified file descriptor does not refer to a transport endpoint.

TLOOK An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

TNODATA O_NONBLOCK was set, but no data is currently available from the transport
provider.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in
which a call to this function is valid.

TPROTO This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

In the TLI interface definition, no counterpart of this routine was defined.

Return Values

Valid States

Errors

Tli Compatibility

t_rcvv(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998818

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

fcntl(2), t_getinfo(3NSL), t_look(3NSL), t_open(3NSL), t_rcv(3NSL), t_snd(3NSL),
t_sndv(3NSL), attributes(5)

Attributes

See Also

t_rcvv(3NSL)

Networking Library Functions 819

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_rcvvudata – receive a data unit into one or more noncontiguous buffers

#include <xti.h>

int t_rcvvudata(int fd, struct t_unitdata *unitdata, struct t_iovec *iov,
unsigned int iovcount, int *flags);

This function is used in connectionless mode to receive a data unit from another transport
user. The argument fd identifies the local transport endpoint through which data will be
received, unitdata holds information associated with the received data unit, iovcount contains
the number of non-contiguous udata buffers which is limited to T_IOV_MAX, which is an
implementation-defined value of at least 16, and flags is set on return to indicate that the
complete data unit was not received. If the limit on iovcount is exceeded, the function fails
with TBADDATA. The argument unitdata points to a t_unitdata structure containing the
following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

The maxlen field of addr and opt must be set before calling this function to indicate the
maximum size of the buffer for each. The udata field of t_unitdata is not used. The iov_len
and iov_base fields of "iov0" through iov [iovcount-1] must be set before calling
t_rcvvudata() to define the buffer where the userdata will be placed. If the maxlen field of
addr or opt is set to zero then no information is returned in the buf field for this parameter.

On return from this call, addr specifies the protocol address of the sending user, opt identifies
options that were associated with this data unit, and iov[0].iov_base through iov
[iovcount-1].iov_base contains the user data that was received. The return value of
t_rcvvudata() is the number of bytes of user data given to the user.

Note that the limit on the total number of bytes available in all buffers passed:

iov(0).iov_len + . . + iov(iovcount-1).iov_len)

may be constrained by implementation limits. If no other constraint applies, it will be limited
by INT_MAX. In practice, the availability of memory to an application is likely to impose a lower
limit on the amount of data that can be sent or received using scatter/gather functions.

By default, t_rcvvudata() operates in synchronous mode and waits for a data unit to arrive if
none is currently available. However, if O_NONBLOCK is set by means of t_open(3NSL) or
fcntl(2), t_rcvvudata() executes in asynchronous mode and fails if no data units are
available.

If the buffers defined in the iov[] array are not large enough to hold the current data unit, the
buffers will be filled and T_MORE will be set in flags on return to indicate that another

Name

Synopsis

Description

t_rcvvudata(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998820

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2

t_rcvvudata() should be called to retrieve the rest of the data unit. Subsequent calls to
t_rcvvudata() will return zero for the length of the address and options, until the full data
unit has been received.

On successful completion, t_rcvvudata() returns the number of bytes received. Otherwise, it
returns –1 on failure and t_errno is set to indicate the error.

T_IDLE.

On failure, t_errno is set to one of the following:

TBADDATA iovcount is greater than T_IOV_MAX.

TBADF The specified file descriptor does not refer to a transport endpoint.

TBUFOVFLW The number of bytes allocated for the incoming protocol address or options
(maxlen) is greater than 0 but not sufficient to store the information. The
unit data information to be returned in unitdata will be discarded.

TLOOK An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

TNODATA O_NONBLOCK was set, but no data units are currently available from the
transport provider.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in
which a call to this function is valid.

TPROTO This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

In the TLI interface definition, no counterpart of this routine was defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

fcntl(2), t_alloc(3NSL), t_open(3NSL), t_rcvudata(3NSL), t_rcvuderr(3NSL),
t_sndudata(3NSL), t_sndvudata(3NSL), attributes(5)

Return Values

Valid States

Errors

Tli Compatibility

Attributes

See Also

t_rcvvudata(3NSL)

Networking Library Functions 821

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_snd – send data or expedited data over a connection

#include <xti.h>

int t_snd(int fd, void *buf, unsigned int nbytes, int flags);

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are supported for
compatibility. When using a TLI routine that has the same name as an XTI routine, the
tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description
of differences between the two interfaces.

This function is used to send either normal or expedited data. The argument fd identifies the
local transport endpoint over which data should be sent, buf points to the user data, nbytes
specifies the number of bytes of user data to be sent, and flags specifies any optional flags
described below:

T_EXPEDITED If set in flags, the data will be sent as expedited data and will be subject to the
interpretations of the transport provider.

T_MORE If set in flags, this indicates to the transport provider that the transport
service data unit (TSDU) (or expedited transport service data unit -
ETSDU) is being sent through multiple t_snd() calls. Each t_snd() with
the T_MORE flag set indicates that another t_snd() will follow with more
data for the current TSDU (or ETSDU).

The end of the TSDU (or ETSDU) is identified by a t_snd() call with the
T_MORE flag not set. Use of T_MORE enables a user to break up large logical
data units without losing the boundaries of those units at the other end of
the connection. The flag implies nothing about how the data is packaged for
transfer below the transport interface. If the transport provider does not
support the concept of a TSDU as indicated in the info argument on return
from t_open(3NSL) or t_getinfo(3NSL), the T_MORE flag is not
meaningful and will be ignored if set.

The sending of a zero-length fragment of a TSDU or ETSDU is only
permitted where this is used to indicate the end of a TSDU or ETSDU; that
is, when the T_MORE flag is not set. Some transport providers also forbid
zero-length TSDUs and ETSDUs.

T_PUSH If set in flags, requests that the provider transmit all data that it has
accumulated but not sent. The request is a local action on the provider and
does not affect any similarly named protocol flag (for example, the TCP
PUSH flag). This effect of setting this flag is protocol-dependent, and it may
be ignored entirely by transport providers which do not support the use of

Name

Synopsis

Description

t_snd(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998822

this feature.

Note that the communications provider is free to collect data in a send buffer until it
accumulates a sufficient amount for transmission.

By default, t_snd() operates in synchronous mode and may wait if flow control restrictions
prevent the data from being accepted by the local transport provider at the time the call is
made. However, if O_NONBLOCK is set by means of t_open(3NSL) or fcntl(2), t_snd() will
execute in asynchronous mode, and will fail immediately if there are flow control restrictions.
The process can arrange to be informed when the flow control restrictions are cleared by
means of either t_look(3NSL) or the EM interface.

On successful completion, t_snd() returns the number of bytes (octets) accepted by the
communications provider. Normally this will equal the number of octets specified in nbytes.
However, if O_NONBLOCK is set or the function is interrupted by a signal, it is possible that only
part of the data has actually been accepted by the communications provider. In this case,
t_snd() returns a value that is less than the value of nbytes. If t_snd() is interrupted by a
signal before it could transfer data to the communications provider, it returns –1 with
t_errno set to TSYSERR and errno set to EINTR.

If nbytes is zero and sending of zero bytes is not supported by the underlying communications
service, t_snd() returns −1 with t_errno set to TBADDATA.

The size of each TSDU or ETSDU must not exceed the limits of the transport provider as
specified by the current values in the TSDU or ETSDU fields in the info argument returned by
t_getinfo(3NSL).

The error TLOOK is returned for asynchronous events. It is required only for an incoming
disconnect event but may be returned for other events.

On successful completion, t_snd() returns the number of bytes accepted by the transport
provider. Otherwise, –1 is returned on failure and t_errno is set to indicate the error.

Note that if the number of bytes accepted by the communications provider is less than the
number of bytes requested, this may either indicate that O_NONBLOCK is set and the
communications provider is blocked due to flow control, or that O_NONBLOCK is clear and the
function was interrupted by a signal.

On failure, t_errno is set to one of the following:

TBADDATA Illegal amount of data:
■ A single send was attempted specifying a TSDU (ETSDU) or fragment

TSDU (ETSDU) greater than that specified by the current values of the
TSDU or ETSDU fields in the info argument.

■ A send of a zero byte TSDU (ETSDU) or zero byte fragment of a TSDU
(ETSDU) is not supported by the provider.

Return Values

Errors

t_snd(3NSL)

Networking Library Functions 823

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2

■ Multiple sends were attempted resulting in a TSDU (ETSDU) larger
than that specified by the current value of the TSDU or ETSDU fields in
the info argument – the ability of an XTI implementation to detect such
an error case is implementation-dependent. See WARNINGS, below.

TBADF The specified file descriptor does not refer to a transport endpoint.

TBADFLAG An invalid flag was specified.

TFLOW O_NONBLOCK was set, but the flow control mechanism prevented the
transport provider from accepting any data at this time.

TLOOK An asynchronous event has occurred on this transport endpoint.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in
which a call to this function is valid.

TPROTO This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files.
This, and other semantic differences between the two interfaces are described in the
subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They
should use the header:

#include <tiuser.h>

The t_errno values that can be set by the XTI interface and cannot be set by the TLI interface
are:

TPROTO

TLOOK

TBADFLAG

TOUTSTATE

The t_errno values that this routine can return under different circumstances than its XTI
counterpart are:

TBADDATA

Tli Compatibility

Interface Header

Error Description
Values

t_snd(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998824

In the TBADDATA error cases described above, TBADDATA is returned, only for illegal zero byte
TSDU (ETSDU) send attempts.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

fcntl(2), t_getinfo(3NSL), t_look(3NSL), t_open(3NSL), t_rcv(3NSL), attributes(5)

It is important to remember that the transport provider treats all users of a transport endpoint
as a single user. Therefore if several processes issue concurrent t_snd() calls then the different
data may be intermixed.

Multiple sends which exceed the maximum TSDU or ETSDU size may not be discovered by
XTI. In this case an implementation-dependent error will result, generated by the transport
provider, perhaps on a subsequent XTI call. This error may take the form of a connection
abort, a TSYSERR, a TBADDATA or a TPROTO error.

If multiple sends which exceed the maximum TSDU or ETSDU size are detected by XTI,
t_snd() fails with TBADDATA.

Attributes

See Also

Warnings

t_snd(3NSL)

Networking Library Functions 825

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_snddis – send user-initiated disconnection request

#include <xti.h>

int t_snddis(int fd, const struct t_call *call);

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are supported for
compatibility. When using a TLI routine that has the same name as an XTI routine, the
tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a
description of differences between the two interfaces.

This function is used to initiate an abortive release on an already established connection, or to
reject a connection request. The argument fd identifies the local transport endpoint of the
connection, and call specifies information associated with the abortive release. The argument
call points to a t_call structure which contains the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

int sequence;

The values in call have different semantics, depending on the context of the call to
t_snddis(). When rejecting a connection request, call must be non-null and contain a valid
value of sequence to uniquely identify the rejected connection indication to the transport
provider. The sequence field is only meaningful if the transport connection is in the T_INCON
state. The addr and opt fields of call are ignored. In all other cases, call need only be used when
data is being sent with the disconnection request. The addr, opt and sequence fields of the
t_call structure are ignored. If the user does not wish to send data to the remote user, the
value of call may be a null pointer.

The udata structure specifies the user data to be sent to the remote user. The amount of user
data must not exceed the limits supported by the transport provider, as returned in the discon
field, of the info argument of t_open(3NSL) or t_getinfo(3NSL). If the len field of udata is
zero, no data will be sent to the remote user.

Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned and
t_errno is set to indicate an error.

T_DATAXFER, T_OUTCON, T_OUTREL, T_INREL, T_INCON(ocnt > 0).

On failure, t_errno is set to one of the following:

TBADF The specified file descriptor does not refer to a transport endpoint.

TBADDATA The amount of user data specified was not within the bounds allowed by the
transport provider.

Name

Synopsis

Description

Return Values

Valid States

Errors

t_snddis(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998826

TBADSEQ An invalid sequence number was specified, or a null call pointer was
specified, when rejecting a connection request.

TLOOK An asynchronous event, which requires attention, has occurred.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in
which a call to this function is valid.

TPROTO This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files.
This, and other semantic differences between the two interfaces are described in the
subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They
should use the header:

#include <tiuser.h>

The t_errno value TPROTO can be set by the XTI interface but not by the TLI interface.

The format of the options in an opt buffer is dictated by the transport provider. Unlike the
XTI interface, the TLI interface does not fix the buffer format.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

t_connect(3NSL), t_getinfo(3NSL), t_listen(3NSL), t_open(3NSL), t_snd(3NSL),
attributes(5)

t_snddis() is an abortive disconnection. Therefore a t_snddis() issued on a connection
endpoint may cause data previously sent by means of t_snd(3NSL), or data not yet received,
to be lost, even if an error is returned.

Tli Compatibility

Interface Header

Error Description
Values

Option Buffers

Attributes

See Also

Warnings

t_snddis(3NSL)

Networking Library Functions 827

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_sndrel – initiate an orderly release

#include <xti.h>

int t_sndrel(int fd);

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are supported for
compatibility. When using a TLI routine that has the same name as an XTI routine, the
tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description
of differences between the two interfaces.

For transport providers of type T_COTS_ORD, this function is used to initiate an orderly release
of the outgoing direction of data transfer and indicates to the transport provider that the
transport user has no more data to send. The argument fd identifies the local transport
endpoint where the connection exists. After calling t_sndrel(), the user may not send any
more data over the connection. However, a user may continue to receive data if an orderly
release indication has not been received. For transport providers of types other than
T_COTS_ORD, this function fails with error TNOTSUPPORT.

Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned and
t_errno is set to indicate an error.

T_DATAXFER, T_INREL.

On failure, t_errno is set to one of the following:

TBADF The specified file descriptor does not refer to a transport endpoint.

TFLOW O_NONBLOCK was set, but the flow control mechanism prevented the
transport provider from accepting the function at this time.

TLOOK An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in
which a call to this function is valid.

TPROTO This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

Name

Synopsis

Description

Return Values

Valid States

Errors

t_sndrel(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998828

The XTI and TLI interface definitions have common names but use different header files.
This, and other semantic differences between the two interfaces are described in the
subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They
should use the header:

#include <tiuser.h>

The t_errno values that can be set by the XTI interface and cannot be set by the TLI interface
are:

TPROTO

TLOOK

TOUTSTATE

Whenever this function fails with t_error set to TFLOW, O_NONBLOCK must have been set.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

t_error(3NSL), t_getinfo(3NSL), t_open(3NSL), t_rcvrel(3NSL), attributes(5)

Tli Compatibility

Interface Header

Error Description
Values

Notes

Attributes

See Also

t_sndrel(3NSL)

Networking Library Functions 829

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_sndreldata – initiate or respond to an orderly release with user data

#include <xti.h>

int t_sndreldata(int fd, struct t_discon *discon);

This function is used to initiate an orderly release of the outgoing direction of data transfer
and to send user data with the release. The argument fd identifies the local transport endpoint
where the connection exists, and discon points to a t_discon structure containing the
following members:

struct netbuf udata;

int reason;

int sequence;

After calling t_sndreldata(), the user may not send any more data over the connection.
However, a user may continue to receive data if an orderly release indication has not been
received.

The field reason specifies the reason for the disconnection through a protocol-dependent
reason code, and udata identifies any user data that is sent with the disconnection; the field
sequence is not used.

The udata structure specifies the user data to be sent to the remote user. The amount of user
data must not exceed the limits supported by the transport provider, as returned in the discon
field of the info argument of t_open(3NSL) or t_getinfo(3NSL). If the len field of udata is
zero or if the provider did not return T_ORDRELDATA in the t_open(3NSL) flags, no data will be
sent to the remote user.

If a user does not wish to send data and reason code to the remote user, the value of discon may
be a null pointer.

This function is an optional service of the transport provider, only supported by providers of
service type T_COTS_ORD. The flag T_ORDRELDATA in the info→flag field returned by
t_open(3NSL) or t_getinfo(3NSL) indicates that the provider supports orderly release user
data.

This function may not be available on all systems.

Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned and
t_errno is set to indicate an error.

T_DATAXFER, T_INREL.

Name

Synopsis

Description

Return Values

Valid States

t_sndreldata(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998830

On failure, t_errno is set to one of the following:

TBADDATA The amount of user data specified was not within the bounds allowed by the
transport provider, or user data was supplied and the provider did not
return T_ORDRELDATA in the t_open(3NSL) flags.

TBADF The specified file descriptor does not refer to a transport endpoint.

TFLOW O_NONBLOCK was set, but the flow control mechanism prevented the
transport provider from accepting the function at this time.

TLOOK An asynchronous event has occurred on this transport endpoint and
requires immediate attention.

TNOTSUPPORT Orderly release is not supported by the underlying transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in
which a call to this function is valid.

TPROTO This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

In the TLI interface definition, no counterpart of this routine was defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

t_getinfo(3NSL), t_open(3NSL), t_rcvrel(3NSL), t_rcvreldata(3NSL), t_sndrel(3NSL),
attributes(5)

The interfaces t_sndreldata() and t_rcvreldata(3NSL) are only for use with a specific
transport called “minimal OSI,” which is not available on the Solaris platform. These interfaces
are not available for use in conjunction with Internet Transports (TCP or UDP).

Errors

Tli Compatibility

Attributes

See Also

Notes

t_sndreldata(3NSL)

Networking Library Functions 831

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_sndudata – send a data unit

#include <xti.h>

int t_sndudata(int fd, const struct t_unitdata *unitdata);

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are supported for
compatibility. When using a TLI routine that has the same name as an XTI routine, the
tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description
of differences between the two interfaces.

This function is used in connectionless-mode to send a data unit to another transport user.
The argument fd identifies the local transport endpoint through which data will be sent, and
unitdata points to a t_unitdata structure containing the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

In unitdata, addr specifies the protocol address of the destination user, opt identifies options
that the user wants associated with this request, and udata specifies the user data to be sent.
The user may choose not to specify what protocol options are associated with the transfer by
setting the len field of opt to zero. In this case, the provider uses the option values currently set
for the communications endpoint.

If the len field of udata is zero, and sending of zero octets is not supported by the underlying
transport service, the t_sndudata() will return –1 with t_errno set to TBADDATA.

By default, t_sndudata() operates in synchronous mode and may wait if flow control
restrictions prevent the data from being accepted by the local transport provider at the time
the call is made. However, if O_NONBLOCK is set by means of t_open(3NSL) or fcntl(2),
t_sndudata() will execute in asynchronous mode and will fail under such conditions. The
process can arrange to be notified of the clearance of a flow control restriction by means of
either t_look(3NSL) or the EM interface.

If the amount of data specified in udata exceeds the TSDU size as returned in the tsdu field of
the info argument of t_open(3NSL) or t_getinfo(3NSL), a TBADDATA error will be generated.
If t_sndudata() is called before the destination user has activated its transport endpoint (see
t_bind(3NSL)), the data unit may be discarded.

If it is not possible for the transport provider to immediately detect the conditions that cause
the errors TBADDADDR and TBADOPT, these errors will alternatively be returned by t_rcvuderr.
Therefore, an application must be prepared to receive these errors in both of these ways.

If the call is interrupted, t_sndudata() will return EINTR and the datagram will not be sent.

Name

Synopsis

Description

t_sndudata(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998832

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2

Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned and
t_errno is set to indicate an error.

T_IDLE.

On failure, t_errno is set to one of the following:

TBADADDR The specified protocol address was in an incorrect format or contained
illegal information.

TBADDATA Illegal amount of data. A single send was attempted specifying a TSDU
greater than that specified in the info argument, or a send of a zero byte
TSDU is not supported by the provider.

TBADF The specified file descriptor does not refer to a transport endpoint.

TBADOPT The specified options were in an incorrect format or contained illegal
information.

TFLOW O_NONBLOCK was set, but the flow control mechanism prevented the
transport provider from accepting any data at this time.

TLOOK An asynchronous event has occurred on this transport endpoint.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in
which a call to this function is valid.

TPROTO This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files.
This, and other semantic differences between the two interfaces are described in the
subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They
should use the header:

#include <tiuser.h>

The t_errno values that can be set by the XTI interface and cannot be set by the TLI interface
are:

TPROTO

TBADADDR

Return Values

Valid States

Errors

Tli Compatibility

Interface Header

Error Description
Values

t_sndudata(3NSL)

Networking Library Functions 833

TBADOPT

TLOOK

TOUTSTATE

Whenever this function fails with t_error set to TFLOW, O_NONBLOCK must have been set.

The format of the options in an opt buffer is dictated by the transport provider. Unlike the
XTI interface, the TLI interface does not fix the buffer format.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

fcntl(2), t_alloc(3NSL), t_bind(3NSL), t_error(3NSL), t_getinfo(3NSL),
t_look(3NSL), t_open(3NSL), t_rcvudata(3NSL), t_rcvuderr(3NSL), attributes(5)

Notes

Option Buffers

Attributes

See Also

t_sndudata(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998834

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_sndv – send data or expedited data, from one or more non-contiguous buffers, on a
connection

#include <xti.h>

int t_sndv(int fd, const struct t_iovec *iov, unsigned int iovcount, int flags);

This function is used to send either normal or expedited data. The argument fd identifies the
local transport endpoint over which data should be sent, iov points to an array of buffer
address/buffer length pairs. t_sndv() sends data contained in buffers iov0 , iov1 , through iov
[iovcount-1]. iovcount contains the number of non-contiguous data buffers which is limited
to T_IOV_MAX, an implementation-defined value of at least 16. If the limit is exceeded, the
function fails with TBADDATA.

iov(0).iov_len + . . + iov(iovcount-1).iov_len)

Note that the limit on the total number of bytes available in all buffers passed:

may be constrained by implementation limits. If no other constraint applies, it will be limited
by INT_MAX. In practice, the availability of memory to an application is likely to impose a lower
limit on the amount of data that can be sent or received using scatter/gather functions.

The argument flags specifies any optional flags described below:

T_EXPEDITED If set in flags, the data will be sent as expedited data and will be subject to the
interpretations of the transport provider.

T_MORE If set in flags, this indicates to the transport provider that the transport
service data unit (TSDU) (or expedited transport service data unit –
ETSDU) is being sent through multiple t_sndv() calls. Each t_sndv() with
the T_MORE flag set indicates that another t_sndv() or t_snd(3NSL) will
follow with more data for the current TSDU (or ETSDU).

The end of the TSDU (or ETSDU) is identified by a t_sndv() call with the T_MORE flag not set.
Use of T_MORE enables a user to break up large logical data units without losing the boundaries
of those units at the other end of the connection. The flag implies nothing about how the data
is packaged for transfer below the transport interface. If the transport provider does not
support the concept of a TSDU as indicated in the info argument on return from
t_open(3NSL) or t_getinfo(3NSL), the T_MORE flag is not meaningful and will be ignored if
set.

The sending of a zero-length fragment of a TSDU or ETSDU is only permitted where this is
used to indicate the end of a TSDU or ETSDU, that is, when the T_MORE flag is not set. Some
transport providers also forbid zero-length TSDUs and ETSDUs.

Name

Synopsis

Description

t_sndv(3NSL)

Networking Library Functions 835

If set in flags, requests that the provider transmit all data that it has accumulated but not sent.
The request is a local action on the provider and does not affect any similarly named protocol
flag (for example, the TCP PUSH flag). This effect of setting this flag is protocol-dependent,
and it may be ignored entirely by transport providers which do not support the use of this
feature.

The communications provider is free to collect data in a send buffer until it accumulates a
sufficient amount for transmission.

By default, t_sndv() operates in synchronous mode and may wait if flow control restrictions
prevent the data from being accepted by the local transport provider at the time the call is
made. However, if O_NONBLOCK is set by means of t_open(3NSL) or fcntl(2), t_sndv()
executes in asynchronous mode, and will fail immediately if there are flow control restrictions.
The process can arrange to be informed when the flow control restrictions are cleared via
either t_look(3NSL) or the EM interface.

On successful completion, t_sndv() returns the number of bytes accepted by the transport
provider. Normally this will equal the total number of bytes to be sent, that is,

(iov0.iov_len + .. + iov[iovcount-1].iov_len)

However, the interface is constrained to send at most INT_MAX bytes in a single send. When
t_sndv() has submitted INT_MAX (or lower constrained value, see the note above) bytes to the
provider for a single call, this value is returned to the user. However, if O_NONBLOCK is set or the
function is interrupted by a signal, it is possible that only part of the data has actually been
accepted by the communications provider. In this case, t_sndv() returns a value that is less
than the value of nbytes. If t_sndv() is interrupted by a signal before it could transfer data to
the communications provider, it returns –1 with t_errno set to TSYSERR and errno set to
EINTR.

If the number of bytes of data in the iov array is zero and sending of zero octets is not
supported by the underlying transport service, t_sndv() returns –1 with t_errno set to
TBADDATA.

The size of each TSDU or ETSDU must not exceed the limits of the transport provider as
specified by the current values in the TSDU or ETSDU fields in the info argument returned by
t_getinfo(3NSL).

The error TLOOK is returned for asynchronous events. It is required only for an incoming
disconnect event but may be returned for other events.

On successful completion, t_sndv() returns the number of bytes accepted by the transport
provider. Otherwise, –1 is returned on failure and t_errno is set to indicate the error.

Note that in synchronous mode, if more than INT_MAX bytes of data are passed in the iov array,
only the first INT_MAX bytes will be passed to the provider.

Return Values

t_sndv(3NSL)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2001836

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2

If the number of bytes accepted by the communications provider is less than the number of
bytes requested, this may either indicate that O_NONBLOCK is set and the communications
provider is blocked due to flow control, or that O_NONBLOCK is clear and the function was
interrupted by a signal.

T_DATAXFER, T_INREL.

On failure, t_errno is set to one of the following:

TBADDATA Illegal amount of data:

TBADF The specified file descriptor does not refer to a transport endpoint.
■ A single send was attempted specifying a TSDU (ETSDU) or fragment

TSDU (ETSDU) greater than that specified by the current values of the
TSDU or ETSDU fields in the info argument.

■ A send of a zero byte TSDU (ETSDU) or zero byte fragment of a TSDU
(ETSDU) is not supported by the provider.

■ Multiple sends were attempted resulting in a TSDU (ETSDU) larger
than that specified by the current value of the TSDU or ETSDU fields in
the info argument – the ability of an XTI implementation to detect such
an error case is implementation-dependent. See WARNINGS, below.

■ iovcount is greater than T_IOV_MAX.

TBADFLAG An invalid flag was specified.

TFLOW O_NONBLOCK was set, but the flow control mechanism prevented the
transport provider from accepting any data at this time.

TLOOK An asynchronous event has occurred on this transport endpoint.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in
which a call to this function is valid.

TPROTO This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

In the TLI interface definition, no counterpart of this routine was defined.

See attributes(5) for descriptions of the following attributes:

Valid States

Errors

Tli Compatibility

Attributes

t_sndv(3NSL)

Networking Library Functions 837

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

t_getinfo(3NSL), t_open(3NSL), t_rcvv(3NSL) t_rcv(3NSL), t_snd(3NSL),
attributes(5)

It is important to remember that the transport provider treats all users of a transport endpoint
as a single user. Therefore if several processes issue concurrent t_sndv() or t_snd(3NSL)
calls, then the different data may be intermixed.

Multiple sends which exceed the maximum TSDU or ETSDU size may not be discovered by
XTI. In this case an implementation-dependent error will result (generated by the transport
provider), perhaps on a subsequent XTI call. This error may take the form of a connection
abort, a TSYSERR, a TBADDATA or a TPROTO error.

If multiple sends which exceed the maximum TSDU or ETSDU size are detected by XTI,
t_sndv() fails with TBADDATA.

See Also

Warnings

t_sndv(3NSL)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2001838

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_sndvudata – send a data unit from one or more noncontiguous buffers

#include <xti.h>

int t_sndvudata(int fd, struct t_unitdata *unitdata, struct t_iovec *iov,
unsigned int iovcount);

This function is used in connectionless mode to send a data unit to another transport user.
The argument fd identifies the local transport endpoint through which data will be sent,
iovcount contains the number of non-contiguous udata buffers and is limited to an
implementation-defined value given by T_IOV_MAX which is at least 16, and unitdata points to
a t_unitdata structure containing the following members:

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;

If the limit on iovcount is exceeded, the function fails with TBADDATA.

In unitdata, addr specifies the protocol address of the destination user, and opt identifies
options that the user wants associated with this request. The udata field is not used. The user
may choose not to specify what protocol options are associated with the transfer by setting the
len field of opt to zero. In this case, the provider may use default options.

The data to be sent is identified by iov[0] through iov [iovcount-1].

Note that the limit on the total number of bytes available in all buffers passed:

iov(0).iov_len + . . + iov(iovcount-1).iov_len

may be constrained by implementation limits. If no other constraint applies, it will be limited
by INT_MAX. In practice, the availability of memory to an application is likely to impose a lower
limit on the amount of data that can be sent or received using scatter/gather functions.

By default, t_sndvudata() operates in synchronous mode and may wait if flow control
restrictions prevent the data from being accepted by the local transport provider at the time
the call is made. However, if O_NONBLOCK is set by means of t_open(3NSL) or fcntl(2),
t_sndvudata() executes in asynchronous mode and will fail under such conditions. The
process can arrange to be notified of the clearance of a flow control restriction by means of
either t_look(3NSL) or the EM interface.

If the amount of data specified in iov0 through iov [iovcount-1] exceeds the TSDU size as
returned in the tsdu field of the info argument of t_open(3NSL) or t_getinfo(3NSL), or is
zero and sending of zero octets is not supported by the underlying transport service, a
TBADDATA error is generated. If t_sndvudata() is called before the destination user has
activated its transport endpoint (see t_bind(3NSL)), the data unit may be discarded.

Name

Synopsis

Description

t_sndvudata(3NSL)

Networking Library Functions 839

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2

If it is not possible for the transport provider to immediately detect the conditions that cause
the errors TBADDADDR and TBADOPT, these errors will alternatively be returned by
t_rcvuderr(3NSL). An application must therefore be prepared to receive these errors in both
of these ways.

Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned and
t_errno is set to indicate an error.

T_IDLE.

On failure, t_errno is set to one of the following:

TBADADDR The specified protocol address was in an incorrect format or contained
illegal information.

TBADDATA Illegal amount of data.
■ A single send was attempted specifying a TSDU greater than that

specified in the info argument, or a send of a zero byte TSDU is not
supported by the provider.

■ iovcount is greater than T_IOV_MAX.

TBADF The specified file descriptor does not refer to a transport endpoint.

TBADOPT The specified options were in an incorrect format or contained illegal
information.

TFLOW O_NONBLOCK i was set, but the flow control mechanism prevented the
transport provider from accepting any data at this time.

TLOOK An asynchronous event has occurred on this transport endpoint.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in
which a call to this function is valid.

TPROTO This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

In the TLI interface definition, no counterpart of this routine was defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

Return Values

Valid States

Errors

Tli Compatibility

Attributes

t_sndvudata(3NSL)

man pages section 3: Networking Library Functions • Last Revised 23 Aug 2001840

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

fcntl(2), t_alloc(3NSL), t_open(3NSL), t_rcvudata(3NSL), t_rcvvudata(3NSL)
t_rcvuderr(3NSL), t_sndudata(3NSL), attributes(5)

See Also

t_sndvudata(3NSL)

Networking Library Functions 841

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_strerror – produce an error message string

#include <xti.h>

const char *t_strerror(int errnum);

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are supported for
compatibility. When using a TLI routine that has the same name as an XTI routine, the
tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description
of differences between the two interfaces.

The t_strerror() function maps the error number in errnum that corresponds to an XTI
error to a language-dependent error message string and returns a pointer to the string. The
string pointed to will not be modified by the program, but may be overwritten by a subsequent
call to the t_strerror function. The string is not terminated by a newline character. The
language for error message strings written by t_strerror() is that of the current locale. If it is
English, the error message string describing the value in t_errno may be derived from the
comments following the t_errno codes defined in <xti.h>. If an error code is unknown, and
the language is English, t_strerror() returns the string:

"<error>: error unknown"

where <error> is the error number supplied as input. In other languages, an equivalent text is
provided.

ALL - apart from T_UNINIT.

The function t_strerror() returns a pointer to the generated message string.

The XTI and TLI interface definitions have common names but use different header files.
This, and other semantic differences between the two interfaces are described in the
subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They
should use the header:

#include <tiuser.h>

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

Name

Synopsis

Description

Valid States

Return Values

Tli Compatibility

Interface Header

Attributes

t_strerror(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998842

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_errno(3NSL),t_error(3NSL), attributes(5)See Also

t_strerror(3NSL)

Networking Library Functions 843

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_sync – synchronize transport library

#include <xti.h>

int t_sync(int fd);

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are supported for
compatibility. When using a TLI routine that has the same name as an XTI routine, the
tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description
of differences between the two interfaces.

For the transport endpoint specified by fd, t_sync() synchronizes the data structures
managed by the transport library with information from the underlying transport provider. In
doing so, it can convert an uninitialized file descriptor (obtained by means of a open(2), dup(2)
or as a result of a fork(2) and exec(2)) to an initialized transport endpoint, assuming that the
file descriptor referenced a transport endpoint, by updating and allocating the necessary
library data structures. This function also allows two cooperating processes to synchronize
their interaction with a transport provider.

For example, if a process forks a new process and issues an exec(2), the new process must
issue a t_sync() to build the private library data structure associated with a transport
endpoint and to synchronize the data structure with the relevant provider information.

It is important to remember that the transport provider treats all users of a transport endpoint
as a single user. If multiple processes are using the same endpoint, they should coordinate
their activities so as not to violate the state of the transport endpoint. The function t_sync()

returns the current state of the transport endpoint to the user, thereby enabling the user to
verify the state before taking further action. This coordination is only valid among
cooperating processes; it is possible that a process or an incoming event could change the
endpoint's state after a t_sync() is issued.

If the transport endpoint is undergoing a state transition when t_sync() is called, the
function will fail.

On successful completion, the state of the transport endpoint is returned. Otherwise, a value
of –1 is returned and t_errno is set to indicate an error. The state returned is one of the
following:

T_UNBND Unbound.

T_IDLE Idle.

T_OUTCON Outgoing connection pending.

T_INCON Incoming connection pending.

T_DATAXFER Data transfer.

Name

Synopsis

Description

Return Values

t_sync(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998844

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dup-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2

T_OUTREL Outgoing orderly release (waiting for an orderly release indication).

T_INREL Incoming orderly release (waiting for an orderly release request).

On failure, t_errno is set to one of the following:

TBADF The specified file descriptor does not refer to a transport endpoint. This error
may be returned when the fd has been previously closed or an erroneous
number may have been passed to the call.

TPROTO This error indicates that a communication problem has been detected
between XTI and the transport provider for which there is no other suitable
XTI error (t_errno).

TSTATECHNG The transport endpoint is undergoing a state change.

TSYSERR A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files.
This, and other semantic differences between the two interfaces are described in the
subsections below.

The XTI interfaces use the header file, xti.h. TLI interfaces should not use this header. They
should use the header:

#include <tiuser.h>

The t_errno value that can be set by the XTI interface and cannot be set by the TLI interface
is:

TPROTO

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

dup(2), exec(2), fork(2), open(2), attributes(5)

Errors

Tli Compatibility

Interface Header

Error Description
Values

Attributes

See Also

t_sync(3NSL)

Networking Library Functions 845

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1dup-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_sysconf – get configurable XTI variables

#include <xti.h>

int t_sysconf(intname);

The t_sysconf() function provides a method for the application to determine the current
value of configurable and implementation-dependent XTI limits or options.

The name argument represents the XTI system variable to be queried. The following table lists
the minimal set of XTI system variables from <xti.h> that can be returned by t_sysconf(),
and the symbolic constants, defined in <xti.h> that are the corresponding values used for
name.

Variable Value of Name

T_IOV_MAX _SC_T_IOV_MAX

If name is valid, t_sysconf() returns the value of the requested limit/option, which might be
–1, and leaves t_errno unchanged. Otherwise, a value of –1 is returned and t_errno is set to
indicate an error.

All.

On failure, t_errno is set to the following:

TBADFLAG name has an invalid value.

In the TLI interface definition, no counterpart of this routine was defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

sysconf(3C), t_rcvv(3NSL), t_rcvvudata(3NSL), t_sndv(3NSL), t_sndvudata(3NSL),
attributes(5)

Name

Synopsis

Description

Return Values

Valid States

Errors

Tli Compatibility

Attributes

See Also

t_sysconf(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998846

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sysconf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

t_unbind – disable a transport endpoint

#include <xti.h>

int t_unbind(int fd);

The This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are supported for
compatibility. When using a TLI routine that has the same name as an XTI routine, the
tiuser.h header file must be used. Refer to the TLI COMPATIBILITY section for a description
of differences between the two interfaces.

t_unbind() function disables the transport endpoint specified by fd which was previously
bound by t_bind(3NSL). On completion of this call, no further data or events destined for this
transport endpoint will be accepted by the transport provider. An endpoint which is disabled
by using t_unbind() can be enabled by a subsequent call to t_bind(3NSL).

Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned and
t_errno is set to indicate an error.

T_IDLE.

On failure, t_errno is set to one of the following:

TBADF The specified file descriptor does not refer to a transport endpoint.

TLOOK An asynchronous event has occurred on this transport endpoint.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in
which a call to this function is valid.

TPROTO This error indicates that a communication problem has been detected between
XTI and the transport provider for which there is no other suitable XTI error
(t_errno).

TSYSERR A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header files.
This, and other semantic differences between the two interfaces are described in the
subsections below.

The XTI interfaces use the header file, xti.h . TLI interfaces should not use this header. They
should use the header:

#include <tiuser.h>

Name

Synopsis

Description

Return Values

Valid States

Errors

Tli Compatibility

Interface Header

t_unbind(3NSL)

Networking Library Functions 847

The t_errno value that can be set by the XTI interface and cannot be set by the TLI interface
is:

TPROTO

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

t_bind(3NSL), attributes(5)

Error Description
Values

Attributes

See Also

t_unbind(3NSL)

man pages section 3: Networking Library Functions • Last Revised 7 May 1998848

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

TXTRecordCreate, TXTRecordDeallocate, TXTRecordSetValue, TXTRecordRemoveValue,
TXTRecordGetLength, TXTRecordGetBytesPtr, TXTRecordContainsKey,
TXTRecordGetValuePtr, TXTRecordGetCount, TXTRecordGetItemAtIndex – DNS TXT
record manipulation functions

cc [flag ...] file ... -ldns_sd [library ...]

#include <dns_sd.h>

void TXTRecordCreate(TXTRecordRef *txtRecord, uint16_t bufferLen,
void *buffer);

void TXTRecordDeallocate(TXTRecordRef*txtRecord);

DNSServiceErrorType txtRecord(TXTRecordRef *txtRecord,
const char *key, uint8_t valueSize, const void *value);

DNSServiceErrorType TXTRecordRemoveValue(TXTRecordRef *txtRecord,
const char *key);

uint16_t TXTRecordGetLength(const TXTRecordRef *txtRecord);

const void *TXTRecordGetBytesPtr(const TXTRecordRef *txtRecord);

int *TXTRecordContainsKey(uint16_t *txtLen,
const void *txtRecord, const char *key);

const void *TXTRecordGetValuePtr(uint16_t *txtLen,
const void *txtRecord, const char *key,
uint8_t *valueLen);

uint16_t *TXTRecordGetCount(uint16_t *txtLen,
const void *txtRecord);

DNSServiceErrorType TXTRecordGetItemAtIndex(uint16_t *txtLen,
const void *txtRecord, uint16_t *index,
uint16_t *keyBufLen, char *key,
uint8_t *valueLen, const void **value);

These functions in the libdns_sd library allow applications to create and to manipulate TXT
resource records. TXT resource records enable applications to include service specific
information, other than a host name and port number, as part of the service registration.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Safe

Name

Synopsis

Description

Attributes

TXTRecordCreate(3DNS_SD)

Networking Library Functions 849

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

attributes(5)See Also

TXTRecordCreate(3DNS_SD)

man pages section 3: Networking Library Functions • Last Revised 20 Aug 2007850

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

xdr – library routines for external data representation

XDR routines allow C programmers to describe arbitrary data structures in a
machine-independent fashion. Data for remote procedure calls (RPC) are transmitted using
these routines.

The following table lists XDR routines and the manual reference pages on which they are
described:

XDR Routine Manual Reference Page

xdr_array xdr_complex(3NSL)

xdr_bool xdr_simple(3NSL)

xdr_bytes xdr_complex(3NSL)

xdr_char xdr_simple(3NSL)

xdr_control xdr_admin(3NSL)

xdr_destroy xdr_create(3NSL)

xdr_double xdr_simple(3NSL)

xdr_enum xdr_simple(3NSL)

xdr_float xdr_simple(3NSL)

xdr_free xdr_simple(3NSL)

xdr_getpos xdr_admin(3NSL)

xdr_hyper xdr_simple(3NSL)

xdr_inline xdr_admin(3NSL)

xdr_int xdr_simple(3NSL)

xdr_long xdr_simple(3NSL)

xdr_longlong_t xdr_simple(3NSL)

xdr_opaque xdr_complex(3NSL)

xdr_pointer xdr_complex(3NSL)

xdr_quadruple xdr_simple(3NSL)

xdr_reference xdr_complex(3NSL)

xdr_setpos xdr_admin(3NSL)

xdr_short xdr_simple(3NSL)

xdr_sizeof xdr_admin(3NSL)

Name

Description

Index to Routines

xdr(3NSL)

Networking Library Functions 851

xdr_string xdr_complex(3NSL)

xdr_u_char xdr_simple(3NSL)

xdr_u_hyper xdr_simple(3NSL)

xdr_u_int xdr_simple(3NSL)

xdr_u_long xdr_simple(3NSL)

xdr_u_longlong_t xdr_simple(3NSL)

xdr_u_short xdr_simple(3NSL)

xdr_union xdr_complex(3NSL)

xdr_vector xdr_complex(3NSL)

xdr_void xdr_simple(3NSL)

xdr_wrapstring xdr_complex(3NSL)

xdrmem_create xdr_create(3NSL)

xdrrec_create xdr_create(3NSL)

xdrrec_endofrecord xdr_admin(3NSL)

xdrrec_eof xdr_admin(3NSL)

xdrrec_readbytes xdr_admin(3NSL)

xdrrec_skiprecord xdr_admin(3NSL)

xdrstdio_create xdr_create(3NSL)

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

rpc(3NSL), xdr_admin(3NSL), xdr_complex(3NSL), xdr_create(3NSL), xdr_simple(3NSL),
attributes(5)

Attributes

See Also

xdr(3NSL)

man pages section 3: Networking Library Functions • Last Revised 30 Dec 1996852

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

xdr_admin, xdr_control, xdr_getpos, xdr_inline, xdrrec_endofrecord, xdrrec_eof,
xdrrec_readbytes, xdrrec_skiprecord, xdr_setpos, xdr_sizeof – library routines for external
data representation

XDR library routines allow C programmers to describe arbitrary data structures in a
machine-independent fashion. Protocols such as remote procedure calls (RPC) use these
routines to describe the format of the data.

These routines deal specifically with the management of the XDR stream.

See rpc(3NSL) for the definition of the XDR data structure. Note that any buffers passed to the
XDR routines must be properly aligned. It is suggested either that malloc(3C) be used to
allocate these buffers, or that the programmer insure that the buffer address is divisible evenly
by four.

#include <rpc/xdr.h>

bool_t xdr_control(XDR *xdrs, int req, void *info);
A function macro to change or retrieve various information about an XDR stream. req
indicates the type of operation and info is a pointer to the information. The supported
values of req is XDR_GET_BYTES_AVAIL and its argument type is xdr_bytesrec *. They
return the number of bytes left unconsumed in the stream and a flag indicating whether or
not this is the last fragment.

uint_t xdr_getpos(const XDR *xdrs);
A macro that invokes the get-position routine associated with the XDR stream, xdrs. The
routine returns an unsigned integer, which indicates the position of the XDR byte stream.
A desirable feature of XDR streams is that simple arithmetic works with this number,
although the XDR stream instances need not guarantee this. Therefore, applications
written for portability should not depend on this feature.

long *xdr_inline(XDR *xdrs, const int len);
A macro that invokes the in-line routine associated with the XDR stream, xdrs. The routine
returns a pointer to a contiguous piece of the stream's buffer; len is the byte length of the
desired buffer. Note: pointer is cast to long *.

Warning: xdr_inline() may return NULL (0) if it cannot allocate a contiguous piece of a
buffer. Therefore the behavior may vary among stream instances; it exists for the sake of
efficiency, and applications written for portability should not depend on this feature.

bool_t xdrrec_endofrecord(XDR *xdrs, int sendnow);

This routine can be invoked only on streams created by xdrrec_create(). See
xdr_create(3NSL). The data in the output buffer is marked as a completed record, and the
output buffer is optionally written out if sendnow is non-zero. This routine returns TRUE if
it succeeds, FALSE otherwise.

Name

Description

Routines

xdr_admin(3NSL)

Networking Library Functions 853

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1malloc-3c

bool_t xdrrec_eof(XDR *xdrs);
This routine can be invoked only on streams created by xdrrec_create(). After
consuming the rest of the current record in the stream, this routine returns TRUE if there is
no more data in the stream's input buffer. It returns FALSE if there is additional data in the
stream's input buffer.

int xdrrec_readbytes(XDR *xdrs, caddr_t addr, uint_t nbytes);
This routine can be invoked only on streams created by xdrrec_create(). It attempts to
read nbytes bytes from the XDR stream into the buffer pointed to by addr. Upon success
this routine returns the number of bytes read. Upon failure, it returns −1. A return value of
0 indicates an end of record.

bool_t xdrrec_skiprecord(XDR *xdrs);
This routine can be invoked only on streams created by xdrrec_create(). See
xdr_create(3NSL). It tells the XDR implementation that the rest of the current record in
the stream's input buffer should be discarded. This routine returns TRUE if it succeeds,
FALSE otherwise.

bool_t xdr_setpos(XDR *xdrs, const uint_t pos);
A macro that invokes the set position routine associated with the XDR stream xdrs. The
parameter pos is a position value obtained from xdr_getpos(). This routine returns TRUE if
the XDR stream was repositioned, and FALSE otherwise.

Warning: it is difficult to reposition some types of XDR streams, so this routine may fail
with one type of stream and succeed with another. Therefore, applications written for
portability should not depend on this feature.

unsigned long xdr_sizeof(xdrproc_t func, void *data);
This routine returns the number of bytes required to encode data using the XDR filter
function func, excluding potential overhead such as RPC headers or record markers. 0 is
returned on error. This information might be used to select between transport protocols, or
to determine the buffer size for various lower levels of RPC client and server creation
routines, or to allocate storage when XDR is used outside of the RPC subsystem.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

malloc(3C), rpc(3NSL), xdr_complex(3NSL), xdr_create(3NSL), xdr_simple(3NSL),
attributes(5)

Attributes

See Also

xdr_admin(3NSL)

man pages section 3: Networking Library Functions • Last Revised 30 Dec 1996854

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

xdr_complex, xdr_array, xdr_bytes, xdr_opaque, xdr_pointer, xdr_reference, xdr_string,
xdr_union, xdr_vector, xdr_wrapstring – library routines for external data representation

XDR library routines allow C programmers to describe complex data structures in a
machine-independent fashion. Protocols such as remote procedure calls (RPC) use these
routines to describe the format of the data. These routines are the XDR library routines for
complex data structures. They require the creation of XDR streams. See xdr_create(3NSL).

See rpc(3NSL) for the definition of the XDR data structure. Note that any buffers passed to the
XDR routines must be properly aligned. It is suggested either that malloc() be used to allocate
these buffers, or that the programmer insure that the buffer address is divisible evenly by four.

#include <rpc/xdr.h>

bool_t xdr_array(XDR *xdrs, caddr_t *arrp, uint_t *sizep, const uint_t maxsize, const uint_t
elsize, const xdrproc_t elproc);

xdr_array() translates between variable-length arrays and their corresponding external
representations. The parameter arrp is the address of the pointer to the array, while sizep is
the address of the element count of the array; this element count cannot exceed maxsize.
The parameter elsize is the size of each of the array's elements, and elproc is an XDR routine
that translates between the array elements' C form and their external representation. If
*aarp is NULL when decoding, xdr_array() allocates memory and *aarp points to it. This
routine returns TRUE if it succeeds, FALSE otherwise.

bool_t xdr_bytes(XDR *xdrs, char **sp, uint_t *sizep, const uint_t maxsize);
xdr_bytes() translates between counted byte strings and their external representations.
The parameter sp is the address of the string pointer. The length of the string is located at
address sizep; strings cannot be longer than maxsize. If *sp is NULL when decoding,
xdr_bytes() allocates memory and *sp points to it. This routine returns TRUE if it
succeeds, FALSE otherwise.

bool_t xdr_opaque(XDR *xdrs, caddr_t cp, const uint_t cnt);
xdr_opaque() translates between fixed size opaque data and its external representation.
The parameter cp is the address of the opaque object, and cnt is its size in bytes. This
routine returns TRUE if it succeeds, FALSE otherwise.

bool_t xdr_pointer(XDR *xdrs, char **objpp, uint_t objsize, const xdrproc_t xdrobj);
Like xdr_reference() except that it serializes null pointers, whereas xdr_reference()
does not. Thus, xdr_pointer() can represent recursive data structures, such as binary
trees or linked lists. If *objpp is NULL when decoding, xdr_pointer() allocates memory and
*objpp points to it.

bool_t xdr_reference(XDR *xdrs, caddr_t *pp, uint_t size, const xdrproc_t proc);
xdr_reference() provides pointer chasing within structures. The parameter pp is the
address of the pointer; size is the sizeof the structure that *pp points to; and proc is an
XDR procedure that translates the structure between its C form and its external
representation. If *pp is NULL when decoding, xdr_reference() allocates memory and *pp
points to it. This routine returns 1 if it succeeds, 0 otherwise.

Name

Description

Routines

xdr_complex(3NSL)

Networking Library Functions 855

Warning: this routine does not understand null pointers. Use xdr_pointer() instead.

bool_t xdr_string(XDR *xdrs, char **sp, const uint_t maxsize);
xdr_string() translates between C strings and their corresponding external
representations. Strings cannot be longer than maxsize. Note: sp is the address of the
string's pointer. If *sp is NULL when decoding, xdr_string() allocates memory and *sp
points to it. This routine returns TRUE if it succeeds, FALSE otherwise. Note: xdr_string()
can be used to send an empty string (" "), but not a null string.

bool_t xdr_union(XDR *xdrs, enum_t *dscmp, char *unp, const struct xdr_discrim *choices,
const xdrproc_t (*defaultarm));

xdr_union() translates between a discriminated C union and its corresponding external
representation. It first translates the discriminant of the union located at dscmp. This
discriminant is always an enum_t. Next the union located at unp is translated. The
parameter choices is a pointer to an array of xdr_discrim structures. Each structure
contains an ordered pair of [value, proc]. If the union's discriminant is equal to the
associated value, then the proc is called to translate the union. The end of the xdr_discrim
structure array is denoted by a routine of value NULL. If the discriminant is not found in the
choices array, then the defaultarm procedure is called (if it is not NULL). It returns TRUE if it
succeeds, FALSE otherwise.

bool_t xdr_vector(XDR *xdrs, char *arrp, const uint_t size, const uint_t elsize, const
xdrproc_t elproc);

xdr_vector() translates between fixed-length arrays and their corresponding external
representations. The parameter arrp is the address of the pointer to the array, while size is
the element count of the array. The parameter elsize is the sizeof each of the array's
elements, and elproc is an XDR routine that translates between the array elements' C form
and their external representation. This routine returns TRUE if it succeeds, FALSE otherwise.

bool_t xdr_wrapstring(XDR *xdrs, char **sp);
A routine that calls xdr_string(xdrs, sp, maxuint); where maxuint is the maximum
value of an unsigned integer.

Many routines, such as xdr_array(), xdr_pointer(), and xdr_vector() take a function
pointer of type xdrproc_t(), which takes two arguments. xdr_string(), one of the most
frequently used routines, requires three arguments, while xdr_wrapstring() only requires
two. For these routines, xdr_wrapstring() is desirable. This routine returns TRUE if it
succeeds, FALSE otherwise.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

Attributes

xdr_complex(3NSL)

man pages section 3: Networking Library Functions • Last Revised 30 Dec 1996856

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

malloc(3C), rpc(3NSL), xdr_admin(3NSL), xdr_create(3NSL), xdr_simple(3NSL),
attributes(5)

See Also

xdr_complex(3NSL)

Networking Library Functions 857

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

xdr_create, xdr_destroy, xdrmem_create, xdrrec_create, xdrstdio_create – library routines for
external data representation stream creation

#include <rpc/xdr.h>

void xdr_destroy(XDR *xdrs);

void xdrmem_create(XDR *xdrs, const caddr_t addr, const uint_t size,
const enum xdr_op op);

void xdrrec_create(XDR *xdrs, const uint_t sendsz, const uint_t recvsz,
const caddr_t handle, const int (*readit)const void *read_handle,
char *buf, const int len, const int (*writeit)
const void *write_handle, const char *buf, const int len);

void xdrstdio_create(XDR *xdrs, FILE *

file, const enum xdr_op op);

The XDR library routines allow C programmers to describe arbitrary data structures in a
machine-independent fashion. Protocols such as remote procedure calls (RPC) use these
routines to describe the format of the data.

These routines deal with the creation of XDR streams, which must be created before any data
can be translated into XDR format.

See rpc(3NSL) for the definition of the XDR CLIENT and SVCXPRT data structures. Any buffers
passed to the XDR routines must be properly aligned. Use malloc(3C) to allocate these buffers
or be sure that the buffer address is divisible evenly by four.

xdr_destroy() A macro that invokes the destroy routine associated with the XDR
stream, xdrs. Private data structures associated with the stream are
freed. Using xdrs after xdr_destroy() is invoked is undefined.

xdrmem_create() This routine initializes the XDR stream object pointed to by xdrs.
The stream's data is written to or read from a chunk of memory at
location addr whose length is no less than size bytes long. The op
determines the direction of the XDR stream. The value of op can be
either XDR_ENCODE, XDR_DECODE, or XDR_FREE.

xdrrec_create() This routine initializes the read-oriented XDR stream object pointed
to by xdrs. The stream's data is written to a buffer of size sendsz. A
value of 0 indicates the system should use a suitable default. The
stream's data is read from a buffer of size recvsz. It too can be set to a
suitable default by passing a 0 value. When a stream's output buffer is
full, writeit is called. Similarly, when a stream's input buffer is empty,
xdrrec_create() calls readit. The behavior of these two routines is
similar to the system calls read() and write(), except that an
appropriate handle, read_handle or write_handle, is passed to the

Name

Synopsis

Description

Routines

xdr_create(3NSL)

man pages section 3: Networking Library Functions • Last Revised 26 Sep 2000858

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1malloc-3c

former routines as the first parameter instead of a file descriptor. See
read(2) and write(2), respectively. The XDR stream's op field must
be set by the caller.

This XDR stream implements an intermediate record stream.
Therefore, additional bytes in the stream are provided for record
boundary information.

xdrstdio_create() This routine initializes the XDR stream object pointed to by xdrs.
The XDR stream data is written to or read from the standard I/O
stream file. The parameter op determines the direction of the XDR
stream. The value of op can be either XDR_ENCODE, XDR_DECODE, or
XDR_FREE.

The destroy routine associated with XDR streams calls fflush() on
the file stream, but never fclose(). See fclose(3C).

A failure of any of these functions can be detected by first initializing the x_ops field in the
XDR structure (xdrs-> x_ops) to NULL before calling the xdr*_create() function. If the x_ops
field is still NULL, after the return from the xdr*_create() function, the call has failed. If the
x_ops field contains some other value, assume that the call has succeeded.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

read(2), write(2), fclose(3C), malloc(3C), rpc(3NSL), xdr_admin(3NSL),
xdr_complex(3NSL), xdr_simple(3NSL), attributes(5)

Attributes

See Also

xdr_create(3NSL)

Networking Library Functions 859

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fclose-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1fclose-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

xdr_simple, xdr_bool, xdr_char, xdr_double, xdr_enum, xdr_float, xdr_free, xdr_hyper,
xdr_int, xdr_long, xdr_longlong_t, xdr_quadruple, xdr_short, xdr_u_char, xdr_u_hyper,
xdr_u_int, xdr_u_long, xdr_u_longlong_t, xdr_u_short, xdr_void – library routines for
external data representation

#include<rpc/xdr.h>

bool_t xdr_bool(XDR *xdrs, bool_t *bp);

bool_t xdr_char(XDR *xdrs, char *cp);

bool_t xdr_double(XDR *xdrs, double *dp);

bool_t xdr_enum(XDR *xdrs, enum_t *ep);

bool_t xdr_float(XDR *xdrs, float *fp);

void xdr_free(xdrproc_t proc, char *objp);

bool_t xdr_hyper(XDR *xdrs, longlong_t *llp);

bool_t xdr_int(XDR *xdrs, int *ip);

bool_t xdr_long(XDR *xdrs, longt *lp);

bool_t xdr_longlong_t(XDR *xdrs, longlong_t *llp);

bool_t xdr_quadruple(XDR *xdrs, long double *pq);

bool_t xdr_short(XDR *xdrs, short *sp);

bool_t xdr_u_char(XDR *xdrs, unsigned char *ucp);

bool_t xdr_u_hyper(XDR *xdrs, u_longlong_t *ullp);

bool_t xdr_u_int(XDR *xdrs, unsigned *up);

bool_t xdr_u_long(XDR *xdrs, unsigned long *ulp);

bool_t xdr_u_longlong_t(XDR *xdrs, u_longlong_t *ullp);

bool_t xdr_u_short(XDR xdrs, unsigned short *usp);

bool_t xdr_void(void)

The XDR library routines allow C programmers to describe simple data structures in a
machine-independent fashion. Protocols such as remote procedure calls (RPC) use these
routines to describe the format of the data.

These routines require the creation of XDR streams (see xdr_create(3NSL)).

See rpc(3NSL) for the definition of the XDR data structure. Note that any buffers passed to the
XDR routines must be properly aligned. It is suggested that malloc(3C) be used to allocate
these buffers or that the programmer insure that the buffer address is divisible evenly by four.

Name

Synopsis

Description

Routines

xdr_simple(3NSL)

man pages section 3: Networking Library Functions • Last Revised 27 Aug 2001860

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1malloc-3c

xdr_bool() xdr_bool() translates between booleans (C integers) and their
external representations. When encoding data, this filter produces
values of either 1 or 0. This routine returns TRUE if it succeeds,
FALSE otherwise.

xdr_char() xdr_char() translates between C characters and their external
representations. This routine returns TRUE if it succeeds, FALSE
otherwise. Note: encoded characters are not packed, and occupy 4
bytes each. For arrays of characters, it is worthwhile to consider
xdr_bytes(), xdr_opaque(), or xdr_string() (see
xdr_complex(3NSL)).

xdr_double() xdr_double() translates between C double precision numbers and
their external representations. This routine returns TRUE if it
succeeds, FALSE otherwise.

xdr_enum() xdr_enum() translates between C enums (actually integers) and their
external representations. This routine returns TRUE if it succeeds,
FALSE otherwise.

xdr_float() xdr_float() translates between C floats and their external
representations. This routine returns TRUE if it succeeds, FALSE
otherwise.

xdr_free() Generic freeing routine. The first argument is the XDR routine for
the object being freed. The second argument is a pointer to the
object itself. Note: the pointer passed to this routine is not freed, but
what it points to is freed (recursively, depending on the XDR
routine).

xdr_hyper() xdr_hyper() translates between ANSI C long long integers and
their external representations. This routine returns TRUE if it
succeeds, FALSE otherwise.

xdr_int() xdr_int() translates between C integers and their external
representations. This routine returns TRUE if it succeeds, FALSE
otherwise.

xdr_long() xdr_long() translates between C long integers and their external
representations. This routine returns TRUE if it succeeds, FALSE
otherwise.

In a 64-bit environment, this routine returns an error if the value of
lp is outside the range [INT32_MIN, INT32_MAX]. The xdr_int()
routine is recommended in place of this routine.

xdr_simple(3NSL)

Networking Library Functions 861

xdr_longlong_t() xdr_longlong_t() translates between ANSI C long long integers
and their external representations. This routine returns TRUE if it
succeeds, FALSE otherwise. This routine is identical to
xdr_hyper().

xdr_quadruple() xdr_quadruple() translates between IEEE quadruple precision
floating point numbers and their external representations. This
routine returns TRUE if it succeeds, FALSE otherwise.

xdr_short() xdr_short() translates between C short integers and their
external representations. This routine returns TRUE if it succeeds,
FALSE otherwise.

xdr_u_char() xdr_u_char() translates between unsigned C characters and their
external representations. This routine returns TRUE if it succeeds,
FALSE otherwise.

xdr_u_hyper() xdr_u_hyper() translates between unsigned ANSI C long long

integers and their external representations. This routine returns
TRUE if it succeeds, FALSE otherwise.

xdr_u_int() A filter primitive that translates between a C unsigned integer and
its external representation. This routine returns TRUE if it
succeeds, FALSE otherwise.

xdr_u_long() xdr_u_long() translates between C unsigned long integers and
their external representations. This routine returns TRUE if it
succeeds, FALSE otherwise.

In a 64-bit environment, this routine returns an error if the value of
ulp is outside the range [0, UINT32_MAX]. The xdr_u_int()
routine is recommended in place of this routine.

xdr_u_longlong_t() xdr_u_longlong_t() translates between unsigned ANSI C long

long integers and their external representations. This routine
returns TRUE if it succeeds, FALSE otherwise. This routine is
identical to xdr_u_hyper().

xdr_u_short() xdr_u_short() translates between C unsigned short integers and
their external representations. This routine returns TRUE if it
succeeds, FALSE otherwise.

xdr_void() This routine always returns TRUE. It may be passed to RPC routines
that require a function parameter, where nothing is to be done.

See attributes(5) for descriptions of the following attributes:Attributes

xdr_simple(3NSL)

man pages section 3: Networking Library Functions • Last Revised 27 Aug 2001862

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

malloc(3C), rpc(3NSL), xdr_admin(3NSL), xdr_complex(3NSL), xdr_create(3NSL),
attributes(5)

See Also

xdr_simple(3NSL)

Networking Library Functions 863

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

ypclnt, yp_get_default_domain, yp_bind, yp_unbind, yp_match, yp_first, yp_next, yp_all,
yp_order, yp_master, yperr_string, ypprot_err – NIS Version 2 client interface

cc [-flag...] file... -lnsl [library...]
#include <rpcsvc/ypclnt.h>

#include <rpcsvc/yp_prot.h>

int yp_bind(char *indomain);

void yp_unbind (char *indomain);

int yp_get_default_domain(char **outdomain);

int yp_match(char *indomain, char *inmap, char *inkey, int inkeylen,
char *char **outval, int *outvallen);

int yp_first(char *indomain, char *inmap, char **outkey, int *outkeylen,
char **outval, int *outvallen);

int yp_next(char *indomain, char *inmap, char *inkey, int *inkeylen,
char **outkey, int *outkeylen, char **outval,
int *outvallen);

int yp_all(char *indomain, char *inmap, struct ypall_callback *incallback);

int yp_order(char *indomain, char *inmap, unsigned long *outorder);

int yp_master(char *indomain, char *inmap, char **outname);

char *yperr_string(int incode);

int ypprot_err(char *domain);

This package of functions provides an interface to NIS, Network Information Service Version
2, formerly referred to as YP. In this version of SunOS, NIS version 2 is supported only for
compatibility with previous versions. The current SunOS supports the client interface to NIS
version 2. This client interface will be served by an existing ypserv process running on
another machine on the network. For commands used to access NIS from a client machine,
see ypbind(1M), ypwhich(1), ypmatch(1), and ypcat(1). The package can be loaded from the
standard library, /usr/lib/libnsl.so.1.

All input parameter names begin with in. Output parameters begin with out. Output
parameters of type char ** should be addresses of uninitialized character pointers. Memory is
allocated by the NIS client package using malloc(3C) and can be freed by the user code if it has
no continuing need for it. For each outkey and outval, two extra bytes of memory are allocated
at the end that contain NEWLINE and null, respectively, but these two bytes are not reflected
in outkeylen or outvallen. The indomain and inmap strings must be non-null and
null-terminated. String parameters that are accompanied by a count parameter may not be
null, but they may point to null strings, with the count parameter indicating this. Counted
strings need not be null-terminated.

Name

Synopsis

Description

ypclnt(3NSL)

man pages section 3: Networking Library Functions • Last Revised 10 Dec 2009864

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ypbind-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ypwhich-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ypmatch-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ypcat-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1malloc-3c

All functions in this package of type int return 0 if they succeed. Otherwise, they return a
failure code (YPERR_xxxx). Failure codes are described in the ERRORS section.

yp_bind() To use the NIS name services, the client process must be
“bound” to an NIS server that serves the appropriate domain
using yp_bind(). Binding need not be done explicitly by user
code. Binding is done automatically whenever an NIS lookup
function is called. The yp_bind() function can be called
directly for processes that make use of a backup strategy , for
example, a local file in cases when NIS services are not
available. A process should call yp_unbind() when it is
finished using NIS in order to free up resources.

yp_unbind() Each binding allocates or uses up one client process socket
descriptor. Each bound domain costs one socket descriptor.
However, multiple requests to the same domain use that
same descriptor. The yp_unbind() function is available at the
client interface for processes that explicitly manage their
socket descriptors while accessing multiple domains. The call
to yp_unbind() makes the domain unbound, and frees all
per-process and per-node resources used to bind it.

If an RPC failure results upon use of a binding, that domain
will be unbound automatically. At that point, the ypclnt()
layer will retry a few more times or until the operation
succeeds, provided that rpcbind(1M) and ypbind(1M) are
running, and either:
■ The client process cannot bind a server for the proper

domain; or
■ RPC requests to the server fail.

Under the following circumstances, the ypclnt layer will
return control to the user code, with either an error or success
code and the results:
■ If an error is not RPC-related.
■ If rpcbind is not running.
■ If ypbind is not running.
■ If a bound ypserv process returns any answer (success or

failure).

yp_get_default_domain() NIS lookup calls require a map name and a domain name, at
minimum. The client process should know the name of the
map of interest. Client processes fetch the node's default
domain by calling yp_get_default_domain() and use the
returned outdomain as the indomain parameter to successive

Routines

ypclnt(3NSL)

Networking Library Functions 865

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpcbind-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ypbind-1m

NIS name service calls. The domain returned is the same as
that returned using the SI_SRPC_DOMAIN command to the
sysinfo(2) system call. The value returned in outdomain
should not be freed.

yp_match() The yp_match() function returns the value associated with a
passed key. This key must be exact because no pattern
matching is available. yp_match() requires a full YP map
name, such as hosts.byname, instead of the nickname hosts.

yp_first() The yp_first() function returns the first key-value pair
from the named map in the named domain.

yp_next() The yp_next() function returns the next key-value pair in a
named map. The inkey parameter must be the outkey
returned from an initial call to yp_first() (to get the second
key-value pair) or the one returned from the nth call to
yp_next() (to get the nth + second key-value pair). Similarly,
the inkeylen parameter must be the outkeylen returned from
the earlier yp_first() or yp_next() call.

The concept of first and next is particular to the structure of
the NIS map being processed. Retrieval order is not related to
either the lexical order within any original (non-NIS name
service) data base, or to any obvious numerical sorting order
on the keys, values, or key-value pairs. The only ordering
guarantee is that if the yp_first() function is called on a
particular map, and then the yp_next() function is
repeatedly called on the same map at the same server until the
call fails with a reason of YPERR_NOMORE, every entry in the
data base is seen exactly once. Further, if the same sequence
of operations is performed on the same map at the same
server, the entries are seen in the same order.

Under conditions of heavy server load or server failure, the
domain can become unbound, then bound once again
(perhaps to a different server) while a client is running. This
binding can cause a break in one of the enumeration rules.
Specific entries may be seen twice by the client, or not at all.
This approach protects the client from error messages that
would otherwise be returned in the midst of the enumeration.
For a better solution to enumerating all entries in a map, see
yp_all().

yp_all() The yp_all() function provides a way to transfer an entire
map from server to client in a single request using TCP

ypclnt(3NSL)

man pages section 3: Networking Library Functions • Last Revised 10 Dec 2009866

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sysinfo-2

(rather than UDP as with other functions in this package).
The entire transaction takes place as a single RPC request and
response. The yp_all() function can be used just like any
other NIS name service procedure to identify the map in the
normal manner and to supply the name of a function that will
be called to process each key-value pair within the map. The
call to yp_all() returns only when the transaction is
completed (successfully or unsuccessfully), or the foreach()
function decides that it does not want to see any more
key-value pairs.

The third parameter to yp_all() is:

struct ypall_callback *incallback {

int (*foreach)();

char *data;

};

The function foreach() is called:

foreach(int instatus, char *inkey,
int inkeylen, char *inval,
int invallen, char *indata);

The instatus parameter holds one of the return status values
defined in <rpcsvc/yp_prot.h>, either YP_TRUE or an error
code. See ypprot_err(), for a function that converts an NIS
name service protocol error code to a ypclnt layer error
code.

The key and value parameters are somewhat different than
defined in the synopsis section above. First, the memory
pointed to by the inkey and inval parameters is private to the
yp_all() function, and is overwritten with the arrival of each
new key-value pair. The foreach() function must do
something useful with the contents of that memory, but it
does not own the memory itself. Key and value objects
presented to the foreach() function look exactly as they do
in the server's map. If they were not NEWLINE-terminated
or null-terminated in the map, they would not be here either.

The indata parameter is the contents of the incallback->data
element passed to yp_all(). The data element of the
callback structure can be used to share state information
between the foreach() function and the mainline code. Its
use is optional, and no part of the NIS client package inspects
its contents; cast it to something useful, or ignore it. The

ypclnt(3NSL)

Networking Library Functions 867

foreach() function is Boolean. It should return 0 to indicate
that it wants to be called again for further received key-value
pairs, or non-zero to stop the flow of key-value pairs. If
foreach() returns a non-zero value, it is not called again.
The functional value of yp_all() is then 0.

yp_order() The yp_order() function returns the order number for a
map.

yp_master() The yp_master() function returns the machine name of the
master NIS server for a map.

yperr_string() The yperr_string() function returns a pointer to an error
message string that is null-terminated but contains no period
or NEWLINE.

ypprot_err() The ypprot_err() function takes an NIS name service
protocol error code as input, and returns a ypclnt() layer
error code, which can be used as an input to
yperr_string().

All integer functions return 0 if the requested operation is successful, or one of the following
errors if the operation fails:

YPERR_ACCESS Access violation.

YPERR_BADARGS The arguments to the function are bad.

YPERR_BADDB The YP database is bad.

YPERR_BUSY The database is busy.

YPERR_DOMAIN Cannot bind to server on this domain.

YPERR_KEY No such key in map.

YPERR_MAP No such map in server's domain.

YPERR_NODOM Local domain name not set.

YPERR_NOMORE No more records in map database.

YPERR_PMAP Cannot communicate with rpcbind.

YPERR_RESRC Resource allocation failure.

YPERR_RPC RPC failure; domain has been unbound.

YPERR_YPBIND Cannot communicate with ypbind.

YPERR_YPERR Internal YP server or client error.

YPERR_YPSERV Cannot communicate with ypserv.

Return Values

ypclnt(3NSL)

man pages section 3: Networking Library Functions • Last Revised 10 Dec 2009868

YPERR_VERS YP version mismatch.

/usr/lib/libnsl.so.1

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

ypcat(1), ypmatch(1), ypwhich(1), rpcbind(1M), ypbind(1M), ypserv(1M), sysinfo(2),
malloc(3C), ypfiles(4), attributes(5)

Files

Attributes

See Also

ypclnt(3NSL)

Networking Library Functions 869

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ypcat-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ypmatch-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ypwhich-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rpcbind-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ypbind-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ypserv-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sysinfo-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1malloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ypfiles-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

yp_update – change NIS information

#include <rpcsvc/ypclnt.h>

int yp_update(char *domain, char *map, unsigned ypop, char *key,
char *int keylen, char *data, int datalen);

yp_update() is used to make changes to the NIS database. The syntax is the same as that of
yp_match() except for the extra parameter ypop which may take on one of four values. If it is
POP_CHANGE then the data associated with the key will be changed to the new value. If the key is
not found in the database, then yp_update() will return YPERR_KEY. If ypop has the value
YPOP_INSERT then the key-value pair will be inserted into the database. The error YPERR_KEY is
returned if the key already exists in the database. To store an item into the database without
concern for whether it exists already or not, pass ypop as YPOP_STORE and no error will be
returned if the key already or does not exist. To delete an entry, the value of ypop should be
YPOP_DELETE.

This routine depends upon secure RPC, and will not work unless the network is running
secure RPC.

If the value of ypop is POP_CHANGE, yp_update() returns the error YPERR_KEY if the key is not
found in the database.

If the value of ypop is POP_INSERT, yp_update() returns the error YPERR_KEY if the key
already exists in the database.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

secure_rpc(3NSL), ypclnt(3NSL), attributes(5)

This interface is unsafe in multithreaded applications. Unsafe interfaces should be called only
from the main thread.

Name

Synopsis

Description

Return Values

Attributes

See Also

Notes

yp_update(3NSL)

man pages section 3: Networking Library Functions • Last Revised 30 Dec 1996870

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1attributes-5

	man pages section 3: Networking Library Functions
	Preface
	Overview

	Networking Library Functions
	accept(3SOCKET)
	accept(3XNET)
	ber_decode(3LDAP)
	ber_encode(3LDAP)
	bind(3SOCKET)
	bind(3XNET)
	byteorder(3SOCKET)
	cldap_close(3LDAP)
	cldap_open(3LDAP)
	cldap_search_s(3LDAP)
	cldap_setretryinfo(3LDAP)
	connect(3SOCKET)
	connect(3XNET)
	dial(3NSL)
	dlpi_arptype(3DLPI)
	dlpi_bind(3DLPI)
	dlpi_close(3DLPI)
	dlpi_disabnotify(3DLPI)
	dlpi_enabmulti(3DLPI)
	dlpi_enabnotify(3DLPI)
	dlpi_fd(3DLPI)
	dlpi_get_physaddr(3DLPI)
	dlpi_iftype(3DLPI)
	dlpi_info(3DLPI)
	dlpi_linkname(3DLPI)
	dlpi_mactype(3DLPI)
	dlpi_open(3DLPI)
	dlpi_promiscon(3DLPI)
	dlpi_recv(3DLPI)
	dlpi_send(3DLPI)
	dlpi_set_physaddr(3DLPI)
	dlpi_set_timeout(3DLPI)
	dlpi_strerror(3DLPI)
	dlpi_unbind(3DLPI)
	dlpi_walk(3DLPI)
	DNSServiceBrowse(3DNS_SD)
	DNSServiceConstructFullName(3DNS_SD)
	DNSServiceCreateConnection(3DNS_SD)
	DNSServiceEnumerateDomains(3DNS_SD)
	DNSServiceProcessResult(3DNS_SD)
	DNSServiceQueryRecord(3DNS_SD)
	DNSServiceReconfirmRecord(3DNS_SD)
	DNSServiceRefDeallocate(3DNS_SD)
	DNSServiceRefSockFD(3DNS_SD)
	DNSServiceRegister(3DNS_SD)
	DNSServiceResolve(3DNS_SD)
	endhostent(3XNET)
	endnetent(3XNET)
	endprotoent(3XNET)
	endservent(3XNET)
	ethers(3SOCKET)
	freeaddrinfo(3XNET)
	gai_strerror(3XNET)
	getaddrinfo(3SOCKET)
	gethostbyname(3NSL)
	gethostname(3XNET)
	getifaddrs(3SOCKET)
	getipnodebyname(3SOCKET)
	getipsecalgbyname(3NSL)
	getipsecprotobyname(3NSL)
	getnameinfo(3XNET)
	getnetbyname(3SOCKET)
	getnetconfig(3NSL)
	getnetpath(3NSL)
	getpeername(3SOCKET)
	getpeername(3XNET)
	getprotobyname(3SOCKET)
	getpublickey(3NSL)
	getrpcbyname(3NSL)
	getservbyname(3SOCKET)
	getsockname(3SOCKET)
	getsockname(3XNET)
	getsockopt(3SOCKET)
	getsockopt(3XNET)
	getsourcefilter(3SOCKET)
	gss_accept_sec_context(3GSS)
	gss_acquire_cred(3GSS)
	gss_add_cred(3GSS)
	gss_add_oid_set_member(3GSS)
	gss_canonicalize_name(3GSS)
	gss_compare_name(3GSS)
	gss_context_time(3GSS)
	gss_create_empty_oid_set(3GSS)
	gss_delete_sec_context(3GSS)
	gss_display_name(3GSS)
	gss_display_status(3GSS)
	gss_duplicate_name(3GSS)
	gss_export_name(3GSS)
	gss_export_sec_context(3GSS)
	gss_get_mic(3GSS)
	gss_import_name(3GSS)
	gss_import_sec_context(3GSS)
	gss_indicate_mechs(3GSS)
	gss_init_sec_context(3GSS)
	gss_inquire_context(3GSS)
	gss_inquire_cred(3GSS)
	gss_inquire_cred_by_mech(3GSS)
	gss_inquire_mechs_for_name(3GSS)
	gss_inquire_names_for_mech(3GSS)
	gss_oid_to_str(3GSS)
	gss_process_context_token(3GSS)
	gss_release_buffer(3GSS)
	gss_release_cred(3GSS)
	gss_release_name(3GSS)
	gss_release_oid(3GSS)
	gss_release_oid_set(3GSS)
	gss_store_cred(3GSS)
	gss_str_to_oid(3GSS)
	gss_test_oid_set_member(3GSS)
	gss_unwrap(3GSS)
	gss_verify_mic(3GSS)
	gss_wrap(3GSS)
	gss_wrap_size_limit(3GSS)
	htonl(3XNET)
	icmp6_filter(3SOCKET)
	if_nametoindex(3SOCKET)
	if_nametoindex(3XNET)
	inet(3SOCKET)
	inet6_opt(3SOCKET)
	inet6_rth(3SOCKET)
	inet_addr(3XNET)
	inet_cidr_ntop(3RESOLV)
	inet_ntop(3XNET)
	ldap(3LDAP)
	ldap_abandon(3LDAP)
	ldap_add(3LDAP)
	ldap_ber_free(3LDAP)
	ldap_bind(3LDAP)
	ldap_charset(3LDAP)
	ldap_compare(3LDAP)
	ldap_control_free(3LDAP)
	ldap_delete(3LDAP)
	ldap_disptmpl(3LDAP)
	ldap_entry2text(3LDAP)
	ldap_error(3LDAP)
	ldap_first_attribute(3LDAP)
	ldap_first_entry(3LDAP)
	ldap_first_message(3LDAP)
	ldap_friendly(3LDAP)
	ldap_get_dn(3LDAP)
	ldap_get_entry_controls(3LDAP)
	ldap_getfilter(3LDAP)
	ldap_get_lang_values(3LDAP)
	ldap_get_option(3LDAP)
	ldap_get_values(3LDAP)
	ldap_memcache(3LDAP)
	ldap_memfree(3LDAP)
	ldap_modify(3LDAP)
	ldap_modrdn(3LDAP)
	ldap_open(3LDAP)
	ldap_parse_result(3LDAP)
	ldap_result(3LDAP)
	ldap_search(3LDAP)
	ldap_searchprefs(3LDAP)
	ldap_sort(3LDAP)
	ldap_ufn(3LDAP)
	ldap_url(3LDAP)
	ldap_version(3LDAP)
	listen(3SOCKET)
	listen(3XNET)
	netdir(3NSL)
	ns_sign(3RESOLV)
	rcmd(3SOCKET)
	recv(3SOCKET)
	recv(3XNET)
	recvfrom(3XNET)
	recvmsg(3XNET)
	resolver(3RESOLV)
	rexec(3SOCKET)
	rpc(3NSL)
	rpcbind(3NSL)
	rpc_clnt_auth(3NSL)
	rpc_clnt_calls(3NSL)
	rpc_clnt_create(3NSL)
	rpc_control(3NSL)
	rpc_gss_getcred(3NSL)
	rpc_gss_get_error(3NSL)
	rpc_gss_get_mechanisms(3NSL)
	rpc_gss_get_principal_name(3NSL)
	rpc_gss_max_data_length(3NSL)
	rpc_gss_mech_to_oid(3NSL)
	rpc_gss_seccreate(3NSL)
	rpc_gss_set_callback(3NSL)
	rpc_gss_set_defaults(3NSL)
	rpc_gss_set_svc_name(3NSL)
	rpcsec_gss(3NSL)
	rpc_soc(3NSL)
	rpc_svc_calls(3NSL)
	rpc_svc_create(3NSL)
	rpc_svc_err(3NSL)
	rpc_svc_input(3NSL)
	rpc_svc_reg(3NSL)
	rpc_xdr(3NSL)
	rstat(3RPC)
	rusers(3RPC)
	rwall(3RPC)
	sasl_authorize_t(3SASL)
	sasl_auxprop(3SASL)
	sasl_auxprop_add_plugin(3SASL)
	sasl_auxprop_getctx(3SASL)
	sasl_auxprop_request(3SASL)
	sasl_canonuser_add_plugin(3SASL)
	sasl_canon_user_t(3SASL)
	sasl_chalprompt_t(3SASL)
	sasl_checkapop(3SASL)
	sasl_checkpass(3SASL)
	sasl_client_add_plugin(3SASL)
	sasl_client_init(3SASL)
	sasl_client_new(3SASL)
	sasl_client_plug_init_t(3SASL)
	sasl_client_start(3SASL)
	sasl_client_step(3SASL)
	sasl_decode(3SASL)
	sasl_decode64(3SASL)
	sasl_dispose(3SASL)
	sasl_done(3SASL)
	sasl_encode(3SASL)
	sasl_encode64(3SASL)
	sasl_erasebuffer(3SASL)
	sasl_errdetail(3SASL)
	sasl_errors(3SASL)
	sasl_errstring(3SASL)
	sasl_getcallback_t(3SASL)
	sasl_getopt_t(3SASL)
	sasl_getpath_t(3SASL)
	sasl_getprop(3SASL)
	sasl_getrealm_t(3SASL)
	sasl_getsecret_t(3SASL)
	sasl_getsimple_t(3SASL)
	sasl_global_listmech(3SASL)
	sasl_idle(3SASL)
	sasl_listmech(3SASL)
	sasl_log_t(3SASL)
	sasl_server_add_plugin(3SASL)
	sasl_server_init(3SASL)
	sasl_server_new(3SASL)
	sasl_server_plug_init_t(3SASL)
	sasl_server_start(3SASL)
	sasl_server_step(3SASL)
	sasl_server_userdb_checkpass_t(3SASL)
	sasl_server_userdb_setpass_t(3SASL)
	sasl_set_alloc(3SASL)
	sasl_seterror(3SASL)
	sasl_set_mutex(3SASL)
	sasl_setpass(3SASL)
	sasl_setprop(3SASL)
	sasl_utf8verify(3SASL)
	sasl_verifyfile_t(3SASL)
	sasl_version(3SASL)
	sctp_bindx(3SOCKET)
	sctp_connectx(3SOCKET)
	sctp_getladdrs(3SOCKET)
	sctp_getpaddrs(3SOCKET)
	sctp_opt_info(3SOCKET)
	sctp_peeloff(3SOCKET)
	sctp_recvmsg(3SOCKET)
	sctp_recvv(3SOCKET)
	sctp_send(3SOCKET)
	sctp_sendmsg(3SOCKET)
	sctp_sendv(3SOCKET)
	sdp_add_origin(3COMMPUTIL)
	sdp_clone_session(3COMMPUTIL)
	sdp_delete_all_field(3COMMPUTIL)
	sdp_delete_media(3COMMPUTIL)
	sdp_find_attribute(3COMMPUTIL)
	sdp_find_media(3COMMPUTIL)
	sdp_find_media_rtpmap(3COMMPUTIL)
	sdp_new_session(3COMMPUTIL)
	sdp_parse(3COMMPUTIL)
	sdp_session_to_str(3COMMPUTIL)
	secure_rpc(3NSL)
	send(3SOCKET)
	send(3XNET)
	sendmsg(3XNET)
	sendto(3XNET)
	setsockopt(3XNET)
	shutdown(3SOCKET)
	shutdown(3XNET)
	sip_add_branchid_to_via(3SIP)
	sip_add_from(3SIP)
	sip_add_header(3SIP)
	sip_add_param(3SIP)
	sip_add_request_line(3SIP)
	sip_branchid(3SIP)
	sip_clone_msg(3SIP)
	sip_copy_start_line(3SIP)
	sip_create_dialog_req(3SIP)
	sip_create_OKack(3SIP)
	sip_create_response(3SIP)
	sip_delete_dialog(3SIP)
	sip_delete_start_line(3SIP)
	sip_enable_counters(3SIP)
	sip_enable_trans_logging(3SIP)
	sip_get_contact_display_name(3SIP)
	sip_get_cseq(3SIP)
	sip_get_dialog_state(3SIP)
	sip_get_header(3SIP)
	sip_get_header_value(3SIP)
	sip_get_msg_len(3SIP)
	sip_get_num_via(3SIP)
	sip_get_param_value(3SIP)
	sip_get_request_method(3SIP)
	sip_get_request_uri_str(3SIP)
	sip_get_resp_desc(3SIP)
	sip_get_trans(3SIP)
	sip_get_trans_method(3SIP)
	sip_get_uri_parsed(3SIP)
	sip_guid(3SIP)
	sip_hold_dialog(3SIP)
	sip_hold_msg(3SIP)
	sip_hold_trans(3SIP)
	sip_init_conn_object(3SIP)
	sip_is_sip_uri(3SIP)
	sip_msg_is_request(3SIP)
	sip_msg_to_str(3SIP)
	sip_new_msg(3SIP)
	sip_parse_uri(3SIP)
	sip_process_new_packet(3SIP)
	sip_register_sent_by(3SIP)
	sip_sendmsg(3SIP)
	sip_stack_init(3SIP)
	slp_api(3SLP)
	SLPClose(3SLP)
	SLPDelAttrs(3SLP)
	SLPDereg(3SLP)
	SLPEscape(3SLP)
	SLPFindAttrs(3SLP)
	SLPFindScopes(3SLP)
	SLPFindSrvs(3SLP)
	SLPFindSrvTypes(3SLP)
	SLPFree(3SLP)
	SLPGetProperty(3SLP)
	SLPGetRefreshInterval(3SLP)
	SLPOpen(3SLP)
	SLPParseSrvURL(3SLP)
	SLPReg(3SLP)
	SLPSetProperty(3SLP)
	slp_strerror(3SLP)
	SLPUnescape(3SLP)
	sockatmark(3XNET)
	socket(3SOCKET)
	socket(3XNET)
	socketpair(3SOCKET)
	socketpair(3XNET)
	spray(3SOCKET)
	t_accept(3NSL)
	t_alloc(3NSL)
	t_bind(3NSL)
	t_close(3NSL)
	t_connect(3NSL)
	t_errno(3NSL)
	t_error(3NSL)
	t_free(3NSL)
	t_getinfo(3NSL)
	t_getprotaddr(3NSL)
	t_getstate(3NSL)
	t_listen(3NSL)
	t_look(3NSL)
	t_open(3NSL)
	t_optmgmt(3NSL)
	t_rcv(3NSL)
	t_rcvconnect(3NSL)
	t_rcvdis(3NSL)
	t_rcvrel(3NSL)
	t_rcvreldata(3NSL)
	t_rcvudata(3NSL)
	t_rcvuderr(3NSL)
	t_rcvv(3NSL)
	t_rcvvudata(3NSL)
	t_snd(3NSL)
	t_snddis(3NSL)
	t_sndrel(3NSL)
	t_sndreldata(3NSL)
	t_sndudata(3NSL)
	t_sndv(3NSL)
	t_sndvudata(3NSL)
	t_strerror(3NSL)
	t_sync(3NSL)
	t_sysconf(3NSL)
	t_unbind(3NSL)
	TXTRecordCreate(3DNS_SD)
	xdr(3NSL)
	xdr_admin(3NSL)
	xdr_complex(3NSL)
	xdr_create(3NSL)
	xdr_simple(3NSL)
	ypclnt(3NSL)
	yp_update(3NSL)

