
Writing Device Drivers

Part No: 819–3196–13
March 2012

Copyright © 1992, 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
"commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions
d’utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter,
transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est
interdit de procéder à toute ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que
prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes
d’erreurs et vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de ce logiciel
ou l’utilise pour le compte du Gouvernement des Etats-Unis, la notice suivante s’applique:

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
"commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est
destiné à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel
dans le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures
nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés
par l’utilisation de ce logiciel ou matériel pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à
d’autres propriétaires qu’Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des
marques déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro
Devices. UNIX est une marque déposée d’The Open Group.

Ce logiciel ou matériel et la documentation qui l’accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services
émanant de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En
aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l’accès à
des contenus, produits ou services tiers, ou à leur utilisation.

120305@25097

Contents

Preface ...31

Part I Designing Device Drivers for the Oracle Solaris Platform ..37

1 Overview of Oracle Solaris Device Drivers .. 39
Device Driver Basics ... 39

What Is a Device Driver? ... 39
What Is a Device Driver Entry Point? .. 40

Device Driver Entry Points ... 41
Entry Points Common to All Drivers .. 41
Entry Points for Block Device Drivers ... 44
Entry Points for Character Device Drivers ... 45
Entry Points for STREAMS Device Drivers .. 46
Entry Points for Memory Mapped Devices ... 47
Entry Points for Network Device Drivers ... 48
Entry Points for SCSI HBA Drivers ... 48
Entry Points for PC Card Drivers ... 49

Considerations in Device Driver Design .. 50
DDI/DKI Facilities ... 50
Driver Context ... 52
Returning Errors .. 53
Dynamic Memory Allocation ... 53
Hotplugging .. 54

2 Oracle Solaris Kernel and Device Tree .. 55
What Is the Kernel? ... 55

Multithreaded Execution Environment .. 57

3

Virtual Memory ... 57
Devices as Special Files .. 57
DDI/DKI Interfaces ... 58

Overview of the Device Tree .. 59
Device Tree Components ... 59
Displaying the Device Tree ... 60
Binding a Driver to a Device ... 62

3 Multithreading ...67
Locking Primitives .. 67

Storage Classes of Driver Data ... 67
Mutual-Exclusion Locks ... 68
Readers/Writer Locks .. 69
Semaphores ... 69

Thread Synchronization ... 70
Condition Variables in Thread Synchronization ... 70
cv_wait() and cv_timedwait() Functions ... 72
cv_wait_sig() Function .. 73
cv_timedwait_sig() Function ... 73

Choosing a Locking Scheme .. 74
Potential Locking Pitfalls .. 74
Threads Unable to Receive Signals .. 75

4 Properties ...77
Device Properties ... 77

Device Property Names ... 78
Creating and Updating Properties ... 78
Looking Up Properties .. 78
Changes to the driver.conf File ... 80
prop_op() Entry Point .. 81

5 Managing Events and Queueing Tasks .. 83
Managing Events ... 83

Introduction to Events ... 83

Contents

Writing Device Drivers • March 20124

Using ddi_log_sysevent() to Log Events .. 85
Defining Event Attributes ... 86

Queueing Tasks ... 89
Introduction to Task Queues .. 89
Task Queue Interfaces ... 90
Observing Task Queues .. 90

6 Driver Autoconfiguration ...93
Driver Loading and Unloading .. 93
Data Structures Required for Drivers ... 94

modlinkage Structure .. 95
modldrv Structure .. 95
dev_ops Structure .. 95
cb_ops Structure .. 96

Loadable Driver Interfaces ... 97
_init() Example ... 98
_fini() Example ... 99
_info() Example ... 100

Device Configuration Concepts .. 100
Device Instances and Instance Numbers ... 101
Minor Nodes and Minor Numbers .. 101
probe() Entry Point .. 101
attach() Entry Point .. 104
detach() Entry Point .. 109
getinfo() Entry Point .. 110

Using Device IDs ... 112
Registering Device IDs .. 112
Unregistering Device IDs .. 113

7 Device Access: Programmed I/O ..115
Device Memory ... 115

Managing Differences in Device and Host Endianness ... 116
Managing Data Ordering Requirements .. 116
ddi_device_acc_attr Structure ... 116
Mapping Device Memory ... 117

Contents

5

Mapping Setup Example ... 117
Device Access Functions ... 118

Alternate Device Access Interfaces .. 120

8 Interrupt Handlers ...121
Interrupt Handler Overview .. 121
Device Interrupts ... 122

High-Level Interrupts .. 122
Legacy Interrupts ... 123
Standard and Extended Message-Signaled Interrupts .. 123
Software Interrupts .. 124

DDI Interrupt Functions .. 125
Interrupt Capability Functions .. 125
Interrupt Initialization and Destruction Functions ... 125
Priority Management Functions .. 126
Soft Interrupt Functions .. 126
Interrupt Function Examples ... 127

Registering Interrupts ... 128
Registering Legacy Interrupts ... 128
Registering MSI Interrupts ... 131

Interrupt Resource Management .. 134
The Interrupt Resource Management Feature ... 134
Callback Interfaces ... 135
Interrupt Request Interfaces ... 137
Example Implementation of Interrupt Resource Management ... 139

Interrupt Handler Functionality .. 145
Handling High-Level Interrupts .. 147

High-Level Mutexes ... 147
High-Level Interrupt Handling Example .. 147

9 Direct Memory Access (DMA) ...153
DMA Model ... 153
Types of Device DMA ... 154

Bus-Master DMA ... 154
Third-Party DMA .. 154

Contents

Writing Device Drivers • March 20126

First-Party DMA .. 155
Types of Host Platform DMA .. 155
DMA Software Components: Handles, Windows, and Cookies ... 155
DMA Operations ... 156

Performing Bus-Master DMA Transfers .. 156
Performing First-Party DMA Transfers .. 157
Performing Third-Party DMA Transfers .. 157
DMA Attributes ... 157

Managing DMA Resources .. 161
Object Locking ... 161
Allocating a DMA Handle .. 161
Allocating DMA Resources .. 162
Determining Maximum Burst Sizes .. 164
Allocating Private DMA Buffers .. 165
Handling Resource Allocation Failures ... 167
Programming the DMA Engine ... 167
Freeing the DMA Resources ... 168
Freeing the DMA Handle .. 169
Canceling DMA Callbacks .. 169
Synchronizing Memory Objects .. 171

DMA Windows .. 173

10 Mapping Device and Kernel Memory ... 177
Memory Mapping Overview .. 177
Exporting the Mapping ... 177

The segmap(9E) Entry Point ... 177
The devmap(9E) Entry Point ... 179

Associating Device Memory With User Mappings ... 181
Associating Kernel Memory With User Mappings ... 182

Allocating Kernel Memory for User Access .. 183
Exporting Kernel Memory to Applications .. 185
Freeing Kernel Memory Exported for User Access .. 186

11 Device Context Management ..187
Introduction to Device Context ... 187

Contents

7

What Is a Device Context? .. 187
Context Management Model .. 187

Context Management Operation .. 189
devmap_callback_ctl Structure ... 189
Entry Points for Device Context Management .. 190
Associating User Mappings With Driver Notifications .. 197
Managing Mapping Accesses ... 198

12 Power Management ..201
Power Management Framework ... 201

Device Power Management .. 202
System Power Management .. 202

Device Power Management Model ... 203
Power Management Components ... 203
Power Management States .. 204
Power Levels ... 204
Power Management Dependencies ... 205
Automatic Power Management for Devices ... 206
Device Power Management Interfaces .. 206
power() Entry Point .. 208

System Power Management Model ... 210
Autoshutdown Threshold ... 211
Busy State .. 211
Hardware State ... 211
Automatic Power Management for Systems ... 211
Entry Points Used by System Power Management .. 211

Power Management Device Access Example ... 215
Power Management Flow of Control .. 216
Changes to Power Management Interfaces .. 218

13 Hardening Oracle Solaris Drivers ..221
Oracle Fault Management Architecture I/O Fault Services ... 221

What Is Predictive Self-Healing? .. 222
Oracle Solaris Fault Manager .. 222
Error Handling ... 225

Contents

Writing Device Drivers • March 20128

14 Layered Driver Interface (LDI) ...235
LDI Overview ... 235
Kernel Interfaces .. 236

Layered Identifiers – Kernel Device Consumers .. 236
Layered Driver Handles – Target Devices .. 237
LDI Kernel Interfaces Example .. 241

User Interfaces ... 251
Device Information Library Interfaces .. 251
Print System Configuration Command Interfaces .. 253
Device User Command Interfaces ... 256

Part II Designing Specific Kinds of Device Drivers .. 259

15 Drivers for Character Devices ..261
Overview of the Character Driver Structure .. 261
Character Device Autoconfiguration .. 263
Device Access (Character Drivers) .. 264

open() Entry Point (Character Drivers) ... 264
close() Entry Point (Character Drivers) ... 266

I/O Request Handling ... 266
User Addresses ... 266
Vectored I/O ... 267
Differences Between Synchronous and Asynchronous I/O ... 269
Data Transfer Methods ... 269

Mapping Device Memory ... 275
Multiplexing I/O on File Descriptors .. 276
Miscellaneous I/O Control ... 278

ioctl() Entry Point (Character Drivers) ... 278
I/O Control Support for 64-Bit Capable Device Drivers ... 280
Handling copyout() Overflow .. 282

32-bit and 64-bit Data Structure Macros .. 283
How Do the Structure Macros Work? ... 284
When to Use Structure Macros .. 284
Declaring and Initializing Structure Handles ... 284
Operations on Structure Handles .. 285

Contents

9

Other Operations ... 286

16 Drivers for Block Devices ..287
Block Driver Structure Overview .. 287
File I/O .. 288
Block Device Autoconfiguration ... 289
Controlling Device Access ... 291

open() Entry Point (Block Drivers) ... 291
close() Entry Point (Block Drivers) ... 292
strategy() Entry Point .. 293
buf Structure .. 293

Synchronous Data Transfers (Block Drivers) .. 295
Asynchronous Data Transfers (Block Drivers) ... 299

Checking for Invalid buf Requests ... 299
Enqueuing the Request .. 299
Starting the First Transfer ... 300
Handling the Interrupting Device .. 302

dump() and print() Entry Points ... 303
dump() Entry Point (Block Drivers) ... 303
print() Entry Point (Block Drivers) ... 303

Disk Device Drivers .. 304
Disk ioctls ... 304
Disk Performance .. 304

17 SCSI Target Drivers ..307
Introduction to Target Drivers .. 307
Sun Common SCSI Architecture Overview ... 308

General Flow of Control .. 309
SCSA Functions .. 310

Hardware Configuration File ... 311
Declarations and Data Structures .. 311

scsi_device Structure .. 312
scsi_pkt Structure (Target Drivers) ... 313

Autoconfiguration for SCSI Target Drivers ... 315
probe() Entry Point (SCSI Target Drivers) .. 315

Contents

Writing Device Drivers • March 201210

attach() Entry Point (SCSI Target Drivers) ... 317
detach() Entry Point (SCSI Target Drivers) ... 319
getinfo() Entry Point (SCSI Target Drivers) ... 320

Resource Allocation .. 320
scsi_init_pkt() Function .. 320
scsi_sync_pkt() Function .. 322
scsi_destroy_pkt() Function ... 322
scsi_alloc_consistent_buf() Function .. 322
scsi_free_consistent_buf() Function .. 322

Building and Transporting a Command .. 323
Building a Command .. 323
Setting Target Capabilities .. 324
Transporting a Command .. 324
Command Completion ... 325
Reuse of Packets ... 326
Auto-Request Sense Mode .. 327
Dump Handling ... 328

SCSI Options .. 329

18 SCSI Host Bus Adapter Drivers .. 331
Introduction to Host Bus Adapter Drivers ... 331
SCSI Interface .. 332
SCSA HBA Interfaces .. 334

SCSA HBA Entry Point Summary ... 334
SCSA HBA Data Structures .. 335
Per-Target Instance Data .. 341
Transport Structure Cloning .. 342
SCSA HBA Functions .. 343

HBA Driver Dependency and Configuration Issues ... 344
Declarations and Structures ... 344
Entry Points for Module Initialization .. 345
Autoconfiguration Entry Points ... 347

Entry Points for SCSA HBA Drivers ... 350
Target Driver Instance Initialization ... 351
Resource Allocation ... 353

Contents

11

Command Transport .. 362
Capability Management .. 368
Abort and Reset Management .. 373
Dynamic Reconfiguration .. 375

SCSI HBA Driver Specific Issues ... 376
Installing HBA Drivers .. 376
HBA Configuration Properties .. 376
x86 Target Driver Configuration Properties .. 377

Support for Queuing ... 379

19 Drivers for Network Devices ..381
GLDv3 Network Device Driver Framework .. 381

GLDv3 MAC Registration .. 382
GLDv3 Capabilities ... 386
GLDv3 Data Paths ... 393
GLDv3 State Change Notifications .. 397
GLDv3 Network Statistics ... 397
GLDv3 Properties .. 399
Summary of GLDv3 Interfaces ... 399

GLDv2 Network Device Driver Framework .. 403
GLDv2 Device Support ... 405
GLDv2 DLPI Providers ... 406
GLDv2 DLPI Primitives .. 407
GLDv2 I/O Control Functions ... 408
GLDv2 Driver Requirements ... 409
GLDv2 Network Statistics ... 410
GLDv2 Declarations and Data Structures .. 414
GLDv2 Function Arguments .. 418
GLDv2 Entry Points ... 419
GLDv2 Return Values ... 423
GLDv2 Service Routines ... 423

20 USB Drivers ...427
USB in the Oracle Solaris Environment ... 427

USBA 2.0 Framework .. 427

Contents

Writing Device Drivers • March 201212

USB Client Drivers ... 428
Binding Client Drivers .. 430

How USB Devices Appear to the System ... 430
USB Devices and the Oracle Solaris Device Tree ... 430
Compatible Device Names ... 430
Devices With Multiple Interfaces ... 432
Devices With Interface-Association Descriptors ... 433
Checking Device Driver Bindings .. 434

Basic Device Access ... 435
Before the Client Driver Is Attached .. 435
The Descriptor Tree ... 435
Registering Drivers to Gain Device Access ... 437

Device Communication ... 438
USB Endpoints ... 438
The Default Pipe ... 439
Pipe States ... 439
Opening Pipes .. 440
Closing Pipes .. 440
Data Transfer .. 440
Flushing Pipes .. 447

Device State Management .. 448
Hotplugging USB Devices ... 449
Power Management ... 451
Serialization .. 455

Utility Functions .. 456
Device Configuration Facilities .. 456
Other Utility Functions ... 458

Sample USB Device Drivers ... 459

21 SR-IOV Drivers ..461
Introduction to SR-IOV .. 461

Benefits of SR-IOV ... 463
Supported Platforms ... 463
Glossary .. 464
Overview of SR-IOV Device Driver .. 464

Contents

13

Physical Function (PF) Driver .. 464
Virtual Function (VF) Driver ... 465
Device Configuration Parameters .. 466

Boot Configuration Sequence .. 469
SR-IOV Interfaces Summary ... 470

Driver Ioctls .. 471
Interfaces for SR-IOV Drivers ... 471

pci_param_get() Interface .. 471
pci_param_get_ioctl() Interface ... 472
pci_plist_get() Interface .. 473
pci_plist_getvf() Interface .. 473
pciv_vf_config() Interface .. 474
pci_plist_lookup() Interface .. 476
pci_param_free() Interface .. 477
pciv_send() Interface .. 477

SR-IOV Driver Ioctls ... 479
Data Structures ... 479
IOV_GET_VER_INFO Ioctl .. 481
IOV_GET_PARAM_INFO Ioctl ... 481
IOV_VALIDATE_PARAM Ioctl ... 481
Driver Callbacks ... 482
Sample Code for Driver Ioctls .. 483

Part III Building a Device Driver ... 485

22 Compiling, Loading, Packaging, and Testing Drivers ... 487
Driver Development Summary ... 487
Driver Code Layout ... 488

Header Files .. 488
Source Files ... 489
Configuration Files .. 489

Preparing for Driver Installation ... 490
Compiling and Linking the Driver .. 491
Module Dependencies ... 492
Writing a Hardware Configuration File .. 492

Contents

Writing Device Drivers • March 201214

Installing, Updating, and Removing Drivers ... 492
Copying the Driver to a Module Directory ... 493
Installing Drivers with add_drv ... 494
Updating Driver Information .. 494
Removing the Driver ... 495

Loading and Unloading Drivers .. 495
Driver Packaging ... 495
Criteria for Testing Drivers .. 496

Configuration Testing ... 496
Functionality Testing ... 496
Error Handling ... 497
Testing Loading and Unloading .. 497
Stress, Performance, and Interoperability Testing ... 497
DDI/DKI Compliance Testing ... 498
Installation and Packaging Testing .. 498
Testing Specific Types of Drivers ... 498

23 Debugging, Testing, and Tuning Device Drivers .. 501
Testing Drivers .. 501

Enable the Deadman Feature to Avoid a Hard Hang ... 501
Testing With a Serial Connection .. 502
Setting Up Test Modules ... 504
Avoiding Data Loss on a Test System .. 507
Recovering the Device Directory ... 508

Debugging Tools ... 509
Postmortem Debugging .. 510
Using the kmdb Kernel Debugger ... 510
Using the mdb Modular Debugger .. 513
Useful Debugging Tasks With kmdb and mdb .. 514

Tuning Drivers .. 522
Kernel Statistics .. 522
DTrace for Dynamic Instrumentation .. 528

24 Recommended Coding Practices ..529
Debugging Preparation Techniques ... 529

Contents

15

Use a Unique Prefix to Avoid Kernel Symbol Collisions ... 529
Use cmn_err() to Log Driver Activity ... 530
Use ASSERT() to Catch Invalid Assumptions ... 530
Use mutex_owned() to Validate and Document Locking Requirements 531
Use Conditional Compilation to Toggle Costly Debugging Features 531

Declaring a Variable Volatile ... 532
Serviceability .. 534

Periodic Health Checks ... 534

Part IV Appendixes ...535

A Hardware Overview ..537
SPARC Processor Issues ... 537

SPARC Data Alignment .. 538
Member Alignment in SPARC Structures .. 538
SPARC Byte Ordering ... 538
SPARC Register Windows .. 539
SPARC Multiply and Divide Instructions ... 539

x86 Processor Issues .. 539
x86 Byte Ordering .. 539
x86 Architecture Manuals ... 540

Endianness ... 540
Store Buffers ... 541
System Memory Model ... 541

Total Store Ordering (TSO) .. 542
Partial Store Ordering (PSO) .. 542

Bus Architectures .. 542
Device Identification ... 542
Supported Interrupt Types ... 543

Bus Specifics ... 543
PCI Local Bus .. 543
PCI Address Domain ... 544
PCI Express ... 546
SBus ... 547

Device Issues .. 548

Contents

Writing Device Drivers • March 201216

Timing-Critical Sections ... 549
Delays .. 549
Internal Sequencing Logic .. 549
Interrupt Issues ... 549

PROM on SPARC Machines .. 550
Open Boot PROM 3 ... 550
Reading and Writing ... 553

B Summary of Oracle Solaris DDI/DKI Services .. 555
Module Functions ... 556
Device Information Tree Node (dev_info_t) Functions .. 556
Device (dev_t) Functions ... 556
Property Functions .. 557
Device Software State Functions .. 558
Memory Allocation and Deallocation Functions .. 558
Kernel Thread Control and Synchronization Functions .. 559
Task Queue Management Functions .. 560
Interrupt Functions ... 561
Programmed I/O Functions ... 563
Direct Memory Access (DMA) Functions .. 569
User Space Access Functions ... 571
User Process Event Functions .. 572
User Process Information Functions .. 572
User Application Kernel and Device Access Functions .. 573
Time-Related Functions ... 574
Power Management Functions .. 575
Fault Management Functions .. 575
Kernel Statistics Functions ... 576
Kernel Logging and Printing Functions ... 577
Buffered I/O Functions ... 577
Virtual Memory Functions ... 578
Device ID Functions .. 578
SCSI Functions ... 579
Resource Map Management Functions .. 581
System Global State ... 581

Contents

17

Utility Functions .. 581

C Making a Device Driver 64-Bit Ready ... 583
Introduction to 64-Bit Driver Design ... 583
General Conversion Steps .. 584

Use Fixed-Width Types for Hardware Registers .. 585
Use Fixed-Width Common Access Functions ... 585
Check and Extend Use of Derived Types .. 586
Check Changed Fields in DDI Data Structures .. 586
Check Changed Arguments of DDI Functions .. 587
Modify Routines That Handle Data Sharing .. 589
Check Structures with 64-bit Long Data Types on x86-Based Platforms 590

Well Known ioctl Interfaces .. 591
Device Sizes ... 592

D Console Frame Buffer Drivers ..593
Oracle Solaris Consoles and the Kernel Terminal Emulator ... 593

x86 Platform Console Communication .. 593
SPARC Platform Console Communication ... 594

Console Visual I/O Interfaces .. 595
I/O Control Interfaces ... 595
Polled I/O Interfaces .. 596
Video Mode Change Callback Interface ... 596

Implementing the Visual I/O Interfaces in Console Frame Buffer Drivers 597
VIS_DEVINIT ... 597
VIS_DEFINI ... 599
VIS_CONSDISPLAY .. 600
VIS_CONSCOPY ... 601
VIS_CONSCURSOR .. 601
VIS_PUTCMAP ... 602
VIS_GETCMAP ... 603

Implementing Polled I/O in Console Frame Buffer Drivers .. 603
Frame Buffer Specific Configuration Module .. 604
The X Window System Frame Buffer Specific DDX Module ... 604
Developing, Testing, and Debugging Console Frame Buffer Drivers ... 604

Contents

Writing Device Drivers • March 201218

Testing the I/O Control Interfaces ... 605
Testing the Polled I/O Interfaces .. 605
Testing the Video Mode Change Callback Function ... 606
Additional Suggestions for Testing Console Frame Buffer Drivers 606

E pci.conf File ..607
Description ... 607
System Configuration Section ... 607
Device Configuration Section .. 608
Syntax .. 608
References .. 608

Index ... 609

Contents

19

20

Figures

FIGURE 2–1 Oracle Solaris Kernel ... 56
FIGURE 2–2 Example Device Tree .. 60
FIGURE 2–3 Device Node Names .. 63
FIGURE 2–4 Specific Driver Node Binding .. 64
FIGURE 2–5 Generic Driver Node Binding .. 65
FIGURE 5–1 Event Plumbing ... 84
FIGURE 6–1 Module Loading and Autoconfiguration Entry Points ... 94
FIGURE 9–1 CPU and System I/O Caches .. 171
FIGURE 11–1 Device Context Management .. 188
FIGURE 11–2 Device Context Switched to User Process A .. 189
FIGURE 12–1 Power Management Conceptual State Diagram .. 217
FIGURE 15–1 Character Driver Roadmap .. 262
FIGURE 16–1 Block Driver Roadmap ... 288
FIGURE 17–1 SCSA Block Diagram .. 309
FIGURE 18–1 SCSA Interface ... 333
FIGURE 18–2 Transport Layer Flow .. 334
FIGURE 18–3 HBA Transport Structures ... 341
FIGURE 18–4 Cloning Transport Operation .. 343
FIGURE 18–5 scsi_pkt(9S) Structure Pointers ... 354
FIGURE 20–1 Oracle Solaris USB Architecture .. 428
FIGURE 20–2 Driver and Controller Interfaces ... 429
FIGURE 20–3 A Hierarchical USB Descriptor Tree ... 436
FIGURE 20–4 USB Device State Machine ... 448
FIGURE 20–5 USB Power Management .. 453
FIGURE 21–1 SR-IOV Technology .. 462
FIGURE 21–2 High-Level View of Sparc OVM Configuration .. 469
FIGURE A–1 Byte Ordering Required for Host Bus Dependency .. 540
FIGURE A–2 Data Ordering Host Bus Dependency .. 541

21

FIGURE A–3 Machine Block Diagram ... 544
FIGURE A–4 Base Address Registers for Memory and I/O ... 545

Figures

Writing Device Drivers • March 201222

Tables

TABLE 1–1 Entry Points for All Driver Types .. 42
TABLE 1–2 Additional Entry Points for Block Drivers ... 44
TABLE 1–3 Additional Entry Points for Character Drivers .. 45
TABLE 1–4 Entry Points for STREAMS Drivers .. 47
TABLE 1–5 Entry Points for Character Drivers That Use devmap for Memory Mapping 47
TABLE 1–6 Additional Entry Points for SCSI HBA Drivers ... 48
TABLE 1–7 Entry Points for PC Card Drivers Only .. 49
TABLE 4–1 Property Interface Uses ... 79
TABLE 5–1 Functions for Using Name-Value Pairs .. 88
TABLE 6–1 Possible Node Types .. 106
TABLE 8–1 Callback Support Interfaces ... 135
TABLE 8–2 Interrupt Vector Request Interfaces .. 137
TABLE 9–1 Resource Allocation Handling ... 167
TABLE 12–1 Power Management Interfaces .. 218
TABLE 17–1 Standard SCSA Functions .. 310
TABLE 18–1 SCSA HBA Entry Point Summary ... 334
TABLE 18–2 SCSA HBA Functions ... 343
TABLE 18–3 SCSA Entry Points ... 351
TABLE 19–1 GLDv3 Interfaces ... 400
TABLE 20–1 Request Initialization .. 442
TABLE 20–2 Request Transfer Setup ... 443
TABLE 21–1 Configuration Parameters Definition ... 466
TABLE 21–2 Interfaces for SR-IOV Drivers ... 470
TABLE 22–1 Compiler Options for SPARC and x86 64–bit Architectures 491
TABLE 23–1 kmdbMacros ... 512
TABLE 23–2 Ethernet MII/GMII Physical Layer Interface Kernel Statistics 525
TABLE A–1 Device Physical Space in the Ultra 2 .. 547
TABLE A–2 Ultra 2 SBus Address Bits ... 548

23

TABLE B–1 Deprecated Property Functions ... 557
TABLE B–2 Deprecated Memory Allocation and Deallocation Functions 559
TABLE B–3 Deprecated Interrupt Functions .. 562
TABLE B–4 Deprecated Programmed I/O Functions .. 566
TABLE B–5 Deprecated Direct Memory Access (DMA) Functions 570
TABLE B–6 Deprecated User Space Access Functions .. 572
TABLE B–7 Deprecated User Process Information Functions ... 573
TABLE B–8 Deprecated User Application Kernel and Device Access Functions 573
TABLE B–9 Deprecated Time-Related Functions .. 574
TABLE B–10 Deprecated Power Management Functions ... 575
TABLE B–11 Deprecated Virtual Memory Functions .. 578
TABLE B–12 Deprecated SCSI Functions .. 580
TABLE C–1 Comparison of ILP32 and LP64 Data Types .. 583

Tables

Writing Device Drivers • March 201224

Examples

EXAMPLE 3–1 Using Mutexes and Condition Variables .. 71
EXAMPLE 3–2 Using cv_timedwait() ... 72
EXAMPLE 3–3 Using cv_wait_sig() ... 73
EXAMPLE 4–1 Driver Check for Locally Configured Timeout Value .. 81
EXAMPLE 4–2 prop_op()Routine .. 82
EXAMPLE 5–1 Calling ddi_log_sysevent() .. 86
EXAMPLE 5–2 Creating and Populating a Name-Value Pair List .. 87
EXAMPLE 6–1 Loadable Interface Section ... 97
EXAMPLE 6–2 _init()Function .. 98
EXAMPLE 6–3 probe(9E) Routine .. 102
EXAMPLE 6–4 probe(9E) Routine Using ddi_poke8(9F) .. 103
EXAMPLE 6–5 Typical attach()Entry Point .. 107
EXAMPLE 6–6 Typical detach()Entry Point .. 110
EXAMPLE 6–7 Typical getinfo()Entry Point .. 111
EXAMPLE 7–1 Mapping Setup ... 118
EXAMPLE 7–2 Mapping Setup: Buffer .. 119
EXAMPLE 8–1 Changing Soft Interrupt Priority ... 127
EXAMPLE 8–2 Checking for Pending Interrupts ... 127
EXAMPLE 8–3 Setting Interrupt Masks .. 127
EXAMPLE 8–4 Clearing Interrupt Masks ... 128
EXAMPLE 8–5 Registering a Legacy Interrupt ... 129
EXAMPLE 8–6 Removing a Legacy Interrupt ... 130
EXAMPLE 8–7 Registering a Set of MSI Interrupts .. 131
EXAMPLE 8–8 Removing MSI Interrupts .. 133
EXAMPLE 8–9 Interrupt Example ... 146
EXAMPLE 8–10 Handling High-Level Interrupts With attach() .. 148
EXAMPLE 8–11 High-level Interrupt Routine ... 149
EXAMPLE 8–12 Low-Level Soft Interrupt Routine ... 150

25

EXAMPLE 9–1 DMA Callback Example ... 164
EXAMPLE 9–2 Determining Burst Size ... 165
EXAMPLE 9–3 Using ddi_dma_mem_alloc(9F) .. 166
EXAMPLE 9–4 ddi_dma_cookie(9S)Example ... 168
EXAMPLE 9–5 Freeing DMA Resources ... 168
EXAMPLE 9–6 Canceling DMA Callbacks ... 169
EXAMPLE 9–7 Setting Up DMA Windows .. 173
EXAMPLE 9–8 Interrupt Handler Using DMA Windows .. 174
EXAMPLE 10–1 segmap(9E)Routine .. 178
EXAMPLE 10–2 Using the segmap() Function to Change the Address Returned by the mmap()

Call .. 179
EXAMPLE 10–3 Using the devmap_devmem_setup()Routine ... 182
EXAMPLE 10–4 Using the ddi_umem_alloc()Routine ... 184
EXAMPLE 10–5 devmap_umem_setup(9F) Routine ... 186
EXAMPLE 11–1 Using the devmap()Routine .. 191
EXAMPLE 11–2 Using the devmap_access()Routine ... 192
EXAMPLE 11–3 Using the devmap_contextmgt()Routine ... 193
EXAMPLE 11–4 Using the devmap_dup()Routine .. 195
EXAMPLE 11–5 Using the devmap_unmap()Routine ... 196
EXAMPLE 11–6 devmap(9E) Entry Point With Context Management Support 198
EXAMPLE 12–1 Sample pm-componentEntry .. 204
EXAMPLE 12–2 attach(9E) Routine With pm-componentsProperty .. 204
EXAMPLE 12–3 Multiple Component pm-componentsEntry ... 205
EXAMPLE 12–4 Using the power()Routine for a Single-Component Device 208
EXAMPLE 12–5 power(9E) Routine for Multiple-Component Device ... 209
EXAMPLE 12–6 detach(9E) Routine Implementing DDI_SUSPEND .. 213
EXAMPLE 12–7 attach(9E) Routine Implementing DDI_RESUME ... 214
EXAMPLE 12–8 Device Access ... 215
EXAMPLE 12–9 Device Operation Completion .. 216
EXAMPLE 14–1 Configuration File ... 241
EXAMPLE 14–2 Driver Source File .. 242
EXAMPLE 14–3 Write a Short Message to the Layered Device .. 250
EXAMPLE 14–4 Write a Longer Message to the Layered Device ... 250
EXAMPLE 14–5 Change the Target Device .. 251
EXAMPLE 14–6 Device Usage Information ... 254
EXAMPLE 14–7 Ancestor Node Usage Information ... 254

Examples

Writing Device Drivers • March 201226

EXAMPLE 14–8 Child Node Usage Information ... 254
EXAMPLE 14–9 Layering and Device Minor Node Information – Keyboard 254
EXAMPLE 14–10 Layering and Device Minor Node Information – Network Device 255
EXAMPLE 14–11 Consumers of Underlying Device Nodes ... 256
EXAMPLE 14–12 Consumer of the Keyboard Device ... 257
EXAMPLE 15–1 Character Driver attach()Routine ... 263
EXAMPLE 15–2 Character Driver open(9E) Routine .. 265
EXAMPLE 15–3 Ramdisk read(9E) Routine Using uiomove(9F) .. 270
EXAMPLE 15–4 Programmed I/O write(9E) Routine Using uwritec(9F) 270
EXAMPLE 15–5 read(9E) and write(9E) Routines Using physio(9F) .. 271
EXAMPLE 15–6 aread(9E) and awrite(9E) Routines Using aphysio(9F) 272
EXAMPLE 15–7 minphys(9F) Routine .. 273
EXAMPLE 15–8 strategy(9E) Routine .. 274
EXAMPLE 15–9 Interrupt Routine .. 275
EXAMPLE 15–10 chpoll(9E) Routine .. 277
EXAMPLE 15–11 Interrupt Routine Supporting chpoll(9E) ... 278
EXAMPLE 15–12 ioctl(9E) Routine .. 279
EXAMPLE 15–13 Using ioctl(9E) .. 280
EXAMPLE 15–14 ioctl(9E) Routine to Support 32-bit Applications and 64-bit Applications ...281
EXAMPLE 15–15 Handling copyout(9F) Overflow ... 282
EXAMPLE 15–16 Using Data Structure Macros to Move Data .. 283
EXAMPLE 16–1 Block Driver attach()Routine ... 289
EXAMPLE 16–2 Block Driver open(9E) Routine ... 291
EXAMPLE 16–3 Block Device close(9E) Routine ... 292
EXAMPLE 16–4 Synchronous Interrupt Routine for Block Drivers .. 297
EXAMPLE 16–5 Enqueuing Data Transfer Requests for Block Drivers .. 300
EXAMPLE 16–6 Starting the First Data Request for a Block Driver ... 301
EXAMPLE 16–7 Block Driver Routine for Asynchronous Interrupts ... 302
EXAMPLE 17–1 SCSI Target Driver probe(9E) Routine .. 315
EXAMPLE 17–2 SCSI Target Driver attach(9E) Routine .. 317
EXAMPLE 17–3 SCSI Target Driver detach(9E) Routine .. 319
EXAMPLE 17–4 Alternative SCSI Target Driver getinfo()Code Fragment 320
EXAMPLE 17–5 Completion Routine for a SCSI Driver ... 325
EXAMPLE 17–6 Enabling Auto-Request Sense Mode ... 327
EXAMPLE 17–7 dump(9E) Routine ... 328
EXAMPLE 18–1 Module Initialization for SCSI HBA ... 346

Examples

27

EXAMPLE 18–2 HBA Driver Initialization of a SCSI Packet Structure ... 354
EXAMPLE 18–3 HBA Driver Allocation of DMA Resources ... 357
EXAMPLE 18–4 DMA Resource Reallocation for HBA Drivers .. 359
EXAMPLE 18–5 HBA Driver tran_destroy_pkt(9E) Entry Point ... 360
EXAMPLE 18–6 HBA Driver tran_sync_pkt(9E) Entry Point ... 361
EXAMPLE 18–7 HBA Driver tran_dmafree(9E) Entry Point .. 362
EXAMPLE 18–8 HBA Driver tran_start(9E) Entry Point .. 363
EXAMPLE 18–9 HBA Driver Interrupt Handler .. 365
EXAMPLE 18–10 HBA Driver tran_getcap(9E) Entry Point .. 368
EXAMPLE 18–11 HBA Driver tran_setcap(9E) Entry Point .. 371
EXAMPLE 18–12 HBA Driver tran_reset_notify(9E) Entry Point ... 374
EXAMPLE 19–1 The mac_init_ops() and mac_fini_ops() Functions 383
EXAMPLE 19–2 The mac_alloc(), mac_register(), and mac_free() Functions and

mac_register Structure ... 383
EXAMPLE 19–3 The mac_unregister() Function ... 384
EXAMPLE 19–4 The mac_callbacks Structure ... 385
EXAMPLE 19–5 The mc_getcapab()Entry Point ... 386
EXAMPLE 19–6 The mc_tx() and mri_tx()Entry Point ... 394
EXAMPLE 19–7 The mc_getstat()Entry Point .. 398
EXAMPLE 20–1 USB Mouse Compatible Device Names .. 431
EXAMPLE 20–2 Compatible Device Names Shown by the Print Configuration Command 431
EXAMPLE 20–3 USB Audio Compatible Device Names ... 432
EXAMPLE 20–4 USB Video Interface Association Compatible Names .. 433
EXAMPLE 21–1 Setting Device Configuration Parameters .. 468
EXAMPLE 21–2 SR-IOV pci_param_get(9F) Routine ... 472
EXAMPLE 23–1 Setting input-device and output-deviceWith Boot PROM Commands503
EXAMPLE 23–2 Setting input-device and output-deviceWith the eepromCommand 504
EXAMPLE 23–3 Using modinfo to Confirm a Loaded Driver .. 505
EXAMPLE 23–4 Recovering a Damaged Device Directory ... 508
EXAMPLE 23–5 Setting Standard Breakpoints in kmdb ... 511
EXAMPLE 23–6 Setting Deferred Breakpoints in kmdb ... 511
EXAMPLE 23–7 Invoking mdb on a Crash Dump ... 514
EXAMPLE 23–8 Invoking mdb on a Running Kernel ... 514
EXAMPLE 23–9 Reading All Registers on a SPARC Processor With kmdb 515
EXAMPLE 23–10 Reading and Writing Registers on an x86 Machine With kmdb 515
EXAMPLE 23–11 Inspecting the Registers of a Different Processor .. 516

Examples

Writing Device Drivers • March 201228

EXAMPLE 23–12 Retrieving the Value of an Individual Register From a Specified Processor 516
EXAMPLE 23–13 Displaying Kernel Data Structures With a Debugger ... 517
EXAMPLE 23–14 Displaying the Size of a Kernel Data Structure .. 517
EXAMPLE 23–15 Displaying the Offset to a Kernel Data Structure ... 518
EXAMPLE 23–16 Displaying the Relative Addresses of a Kernel Data Structure 518
EXAMPLE 23–17 Displaying the Absolute Addresses of a Kernel Data Structure 518
EXAMPLE 23–18 Using the ::prtconfDcmd ... 519
EXAMPLE 23–19 Displaying Device Information for an Individual Node 519
EXAMPLE 23–20 Using the ::prtconfDcmd in Verbose Mode .. 520
EXAMPLE 23–21 Using the ::devbindingsDcmd to Locate Driver Instances 520
EXAMPLE 23–22 Modifying a Kernel Variable With a Debugger ... 522

Examples

29

30

Preface

Writing Device Drivers provides information on developing drivers for character-oriented
devices, block-oriented devices, network devices, SCSI target and HBA devices, and USB
devices for the Oracle Solaris Operating System (Oracle Solaris OS). This book discusses how to
develop multithreaded reentrant device drivers for all architectures that conform to the Oracle
Solaris OS DDI/DKI (Device Driver Interface, Driver-Kernel Interface). A common driver
programming approach is described that enables drivers to be written without concern for
platform-specific issues such as endianness and data ordering.

Additional topics include hardening Oracle Solaris drivers; power management; driver
autoconfiguration; programmed I/O; Direct Memory Access (DMA); device context
management; compilation, installation, and testing drivers; debugging drivers; and porting
Oracle Solaris drivers to a 64-bit environment.

Note – This Oracle Solaris release supports systems that use the SPARC and x86 families of
processor architectures. The supported systems appear in the Oracle Solaris OS: Hardware
Compatibility Lists. This document cites any implementation differences between the platform
types.

In this document, these x86 related terms mean the following:

■ x86 refers to the larger family of 64-bit and 32-bit x86 compatible products.
■ x64 relates specifically to 64-bit x86 compatible CPUs.
■ "32-bit x86" points out specific 32-bit information about x86 based systems.

For supported systems, see the Oracle Solaris OS: Hardware Compatibility Lists.

Who Should Use This Book
This book is written for UNIX programmers who are familiar with UNIX device drivers.
Overview information is provided, but the book is not intended to serve as a general tutorial on
device drivers.

31

http://www.oracle.com/webfolder/technetwork/hcl/index.html

Note – The Oracle Solaris operating system (Oracle Solaris OS) runs on both SPARC and x86
architectures. The Oracle Solaris OS also runs on both 64-bit and 32-bit address spaces. The
information in this document applies to all platforms and address spaces unless specifically
noted.

How This Book Is Organized
This book is organized into the following chapters:

■ Chapter 1, “Overview of Oracle Solaris Device Drivers,” provides an introduction to device
drivers and associated entry points on the Oracle Solaris platform. The entry points for each
device driver type are presented in tables.

■ Chapter 2, “Oracle Solaris Kernel and Device Tree,” provides an overview of the Oracle
Solaris kernel with an explanation of how devices are represented as nodes in a device tree.

■ Chapter 3, “Multithreading,” describes the aspects of the Oracle Solaris multithreaded
kernel that are relevant for device driver developers.

■ Chapter 4, “Properties,” describes the set of interfaces for using device properties.
■ Chapter 5, “Managing Events and Queueing Tasks,” describes how device drivers log events

and how to use task queues to perform a task at a later time.
■ Chapter 6, “Driver Autoconfiguration,” explains the support that a driver must provide for

autoconfiguration.
■ Chapter 7, “Device Access: Programmed I/O,” describes the interfaces and methodologies

for drivers to read or write to device memory.
■ Chapter 8, “Interrupt Handlers,” describes the mechanisms for handling interrupts. These

mechanisms include allocating, registering, servicing, and removing interrupts.
■ Chapter 9, “Direct Memory Access (DMA),” describes direct memory access (DMA) and the

DMA interfaces.
■ Chapter 10, “Mapping Device and Kernel Memory,” describes interfaces for managing

device and kernel memory.
■ Chapter 11, “Device Context Management,” describes the set of interfaces that enable device

drivers to manage user access to devices.
■ Chapter 12, “Power Management,” explains the interfaces for Power Management, a

framework for managing power consumption.
■ Chapter 13, “Hardening Oracle Solaris Drivers,” describes how to integrate fault

management capabilities into I/O device drivers, how to incorporate defensive
programming practices, and how to use the driver hardening test harness.

■ Chapter 14, “Layered Driver Interface (LDI),” describes the LDI, which enables kernel
modules to access other devices in the system.

Preface

Writing Device Drivers • March 201232

■ Chapter 15, “Drivers for Character Devices,” describes drivers for character-oriented
devices.

■ Chapter 16, “Drivers for Block Devices,” describes drivers for a block-oriented devices.
■ Chapter 17, “SCSI Target Drivers,” outlines the Sun Common SCSI Architecture (SCSA)

and the requirements for SCSI target drivers.
■ Chapter 18, “SCSI Host Bus Adapter Drivers,” explains how to apply SCSA to SCSI Host Bus

Adapter (HBA) drivers.
■ Chapter 19, “Drivers for Network Devices,” describes the Generic LAN driver (GLD). The

GLDv3 framework is a function calls-based interface of MAC plugins and MAC driver
service routines and structures.

■ Chapter 20, “USB Drivers,” describes how to write a client USB device driver using the
USBA 2.0 framework.

■ Chapter 21, “SR-IOV Drivers,” describes the requirements to write a SR-IOV device driver.
■ Chapter 22, “Compiling, Loading, Packaging, and Testing Drivers,” provides information

on compiling, linking, and installing a driver.
■ Chapter 23, “Debugging, Testing, and Tuning Device Drivers,” describes techniques for

debugging, testing, and tuning drivers.
■ Chapter 24, “Recommended Coding Practices,” describes the recommended coding

practices for writing drivers.
■ Appendix A, “Hardware Overview,” discusses multi-platform hardware issues for device

drivers.
■ Appendix B, “Summary of Oracle Solaris DDI/DKI Services,” provides tables of kernel

functions for device drivers. Deprecated functions are indicated as well.
■ Appendix C, “Making a Device Driver 64-Bit Ready,” provides guidelines for updating a

device driver to run in a 64-bit environment.
■ Appendix D, “Console Frame Buffer Drivers,” describes how to add the necessary interfaces

to a frame buffer driver to enable the driver to interact with the Oracle Solaris kernel
terminal emulator.

Related Books and Papers
For detailed reference information about the device driver interfaces, see the section 9 man
pages. Section 9E, Intro(9E), describes DDI/DKI (Device Driver Interface, Driver-Kernel
Interface) driver entry points. Section 9F, Intro(9F), describes DDI/DKI kernel functions.
Sections 9P and 9S, Intro(9S), describe DDI/DKI properties and data structures.

For information on hardware and other driver-related issues, see the following books:
■ Device Driver Tutorial
■ Oracle Solaris Modular Debugger Guide

Preface

33

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eintro-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fintro-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sintro-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824_01&id=DRIVERTUT
http://www.oracle.com/pls/topic/lookup?ctx=E23824_01&id=MODDEBUG

■ Oracle Solaris Dynamic Tracing Guide
■ Multithreaded Programming Guide
■ STREAMS Programming Guide

Preface

Writing Device Drivers • March 201234

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=OSDTG
http://www.oracle.com/pls/topic/lookup?ctx=E23824_01&id=MTP
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=STREAMS

The following book might also be useful:

■ SPARC International; The SPARC Architecture Manual, Version 9; Prentice Hall; 1993;
ISBN 978-0130992277

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Description Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Preface

35

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Shell Prompts in Command Examples
The following table shows the default UNIX system prompt and superuser prompt for shells
that are included in the Oracle Solaris OS. Note that the default system prompt that is displayed
in command examples varies, depending on the Oracle Solaris release.

TABLE P–2 Shell Prompts

Shell Prompt

Bash shell, Korn shell, and Bourne shell $

Bash shell, Korn shell, and Bourne shell for superuser #

C shell machine_name%

C shell for superuser machine_name#

Preface

Writing Device Drivers • March 201236

Designing Device Drivers for the Oracle
Solaris Platform
The first part of this manual provides general information for developing device drivers on
the Oracle Solaris platform. This part includes the following chapters:

■ Chapter 1, “Overview of Oracle Solaris Device Drivers,” provides an introduction to
device drivers and associated entry points on the Oracle Solaris platform. The entry
points for each device driver type are presented in tables.

■ Chapter 2, “Oracle Solaris Kernel and Device Tree,” provides an overview of the Oracle
Solaris kernel with an explanation of how devices are represented as nodes in a device
tree.

■ Chapter 3, “Multithreading,” describes the aspects of the Oracle Solaris multithreaded
kernel that are relevant for device driver developers.

■ Chapter 4, “Properties,” describes the set of interfaces for using device properties.
■ Chapter 5, “Managing Events and Queueing Tasks,” describes how device drivers log

events and how to use task queues to perform a task at a later time.
■ Chapter 6, “Driver Autoconfiguration,” explains the support that a driver must provide

for autoconfiguration.
■ Chapter 7, “Device Access: Programmed I/O,” describes the interfaces and

methodologies for drivers to read or write to device memory.

P A R T I

37

■ Chapter 8, “Interrupt Handlers,” describes the mechanisms for handling interrupts. These
mechanisms include allocating, registering, servicing, and removing interrupts.

■ Chapter 9, “Direct Memory Access (DMA),” describes direct memory access (DMA) and the
DMA interfaces.

■ Chapter 10, “Mapping Device and Kernel Memory,” describes interfaces for managing
device and kernel memory.

■ Chapter 11, “Device Context Management,” describes the set of interfaces that enable device
drivers to manage user access to devices.

■ Chapter 12, “Power Management,” explains the interfaces for the Power Management
feature, a framework for managing power consumption.

■ Chapter 13, “Hardening Oracle Solaris Drivers,” describes how to integrate fault
management capabilities into I/O device drivers, how to incorporate defensive
programming practices, and how to use the driver hardening test harness.

■ Chapter 14, “Layered Driver Interface (LDI),” describes the LDI, which enables kernel
modules to access other devices in the system.

Designing Device Drivers for the Oracle Solaris Platform

Writing Device Drivers • March 201238

Overview of Oracle Solaris Device Drivers

This chapter gives an overview of Oracle Solaris device drivers. The chapter provides
information on the following subjects:

■ “Device Driver Basics” on page 39
■ “Device Driver Entry Points” on page 41
■ “Considerations in Device Driver Design” on page 50

Device Driver Basics
This section introduces you to device drivers and their entry points on the Oracle Solaris
platform.

What Is a Device Driver?
A device driver is a kernel module that is responsible for managing the low-level I/O operations
of a hardware device. Device drivers are written with standard interfaces that the kernel can call
to interface with a device. Device drivers can also be software-only, emulating a device that
exists only in software, such as RAM disks, buses, and pseudo-terminals.

A device driver contains all the device-specific code necessary to communicate with a device.
This code includes a standard set of interfaces to the rest of the system. This interface shields the
kernel from device specifics just as the system call interface protects application programs from
platform specifics. Application programs and the rest of the kernel need little, if any,
device-specific code to address the device. In this way, device drivers make the system more
portable and easier to maintain.

When the Oracle Solaris operating system (Oracle Solaris OS) is initialized, devices identify
themselves and are organized into the device tree, a hierarchy of devices. In effect, the device tree
is a hardware model for the kernel. An individual device driver is represented as a node in the
tree with no children. This type of node is referred to as a leaf driver. A driver that provides

1C H A P T E R 1

39

services to other drivers is called a bus nexus driver and is shown as a node with children. As part
of the boot process, physical devices are mapped to drivers in the tree so that the drivers can be
located when needed. For more information on how the Oracle Solaris OS accommodates
devices, see Chapter 2, “Oracle Solaris Kernel and Device Tree.”

Device drivers are classified by how they handle I/O. Device drivers fall into three broad
categories:

■ Block device drivers – For cases where handling I/O data as asynchronous chunks is
appropriate. Typically, block drivers are used to manage devices with physically addressable
storage media, such as disks.

■ Character device drivers – For devices that perform I/O on a continuous flow of bytes.

Note – A driver can be both block and character at the same time if you set up two different
interfaces to the file system. See “Devices as Special Files” on page 57.

Included in the character category are drivers that use the STREAMS model (see below),
programmed I/O, direct memory access, SCSI buses, USB, and other network I/O.

■ STREAMS device drivers – Subset of character drivers that uses the streamio(7I) set of
routines for character I/O within the kernel.

What Is a Device Driver Entry Point?
An entry point is a function within a device driver that can be called by an external entity to get
access to some driver functionality or to operate a device. Each device driver provides a
standard set of functions as entry points. For the complete list of entry points for all driver types,
see the Intro(9E) man page. The Oracle Solaris kernel uses entry points for these general task
areas:

■ Loading and unloading the driver
■ Autoconfiguring the device – Autoconfiguration is the process of loading a device driver's

code and static data into memory so that the driver is registered with the system.
■ Providing I/O services for the driver

Drivers for different types of devices have different sets of entry points according to the kinds of
operations the devices perform. A driver for a memory-mapped character-oriented device, for
example, supports a devmap(9E) entry point, while a block driver does not support this entry.

Use a prefix based on the name of your driver to give driver functions unique names. Typically,
this prefix is the name of the driver, such as xx_open() for the open(9E) routine of driver xx. See
“Use a Unique Prefix to Avoid Kernel Symbol Collisions” on page 529 for more information. In
subsequent examples in this book, xx is used as the driver prefix.

Device Driver Basics

Writing Device Drivers • March 201240

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7streamio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eintro-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e

Device Driver Entry Points
This section provides lists of entry points for the following categories:

■ “Entry Points Common to All Drivers” on page 41
■ “Entry Points for Block Device Drivers” on page 44
■ “Entry Points for Character Device Drivers” on page 45
■ “Entry Points for STREAMS Device Drivers” on page 46
■ “Entry Points for Memory Mapped Devices” on page 47
■ “Entry Points for Network Device Drivers” on page 48
■ “Entry Points for SCSI HBA Drivers” on page 48
■ “Entry Points for PC Card Drivers” on page 49

Entry Points Common to All Drivers
Some operations can be performed by any type of driver, such as the functions that are required
for module loading and for the required autoconfiguration entry points. This section discusses
types of entry points that are common to all drivers. The common entry points are listed in
“Summary of Common Entry Points” on page 42 with links to man pages and other relevant
discussions.

Device Access Entry Points
Drivers for character and block devices export the cb_ops(9S) structure, which defines the
driver entry points for block device access and character device access. Both types of drivers are
required to support the open(9E) and close(9E) entry points. Block drivers are required to
support strategy(9E), while character drivers can choose to implement whatever mix of
read(9E), write(9E), ioctl(9E), mmap(9E), or devmap(9E) entry points is appropriate for the
type of device. Character drivers can also support a polling interface through chpoll(9E).
Asynchronous I/O is supported through aread(9E) and awrite(9E) for block drivers and those
drivers that can use both block and character file systems.

Loadable Module Entry Points
All drivers are required to implement the loadable module entry points _init(9E), _fini(9E),
and _info(9E) to load, unload, and report information about the driver module.

Drivers should allocate and initialize any global resources in _init(9E). Drivers should release
their resources in _fini(9E).

Note – In the Oracle Solaris OS, only the loadable module routines must be visible outside the
driver object module. Other routines can have the storage class static.

Device Driver Entry Points

Chapter 1 • Overview of Oracle Solaris Device Drivers 41

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Scb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Echpoll-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Earead-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eawrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-info-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-fini-9e

Autoconfiguration Entry Points
Drivers are required to implement the attach(9E), detach(9E), and getinfo(9E) entry points
for device autoconfiguration. Drivers can also implement the optional entry point probe(9E) in
cases where devices do not identify themselves during boot-up, such as SCSI target devices. See
Chapter 6, “Driver Autoconfiguration,” for more information on these routines.

Kernel Statistics Entry Points
The Oracle Solaris platform provides a rich set of interfaces to maintain and export kernel-level
statistics, also known as kstats. Drivers are free to use these interfaces to export driver and
device statistics that can be used by user applications to observe the internal state of the driver.
Two entry points are provided for working with kernel statistics:

■ ks_snapshot(9E) captures kstats at a specific time.
■ ks_update(9E) can be used to update kstat data at will. ks_update() is useful in situations

where a device is set up to track kernel data but extracting that data is time-consuming.

For further information, see the kstat_create(9F) and kstat(9S) man pages. See also “Kernel
Statistics” on page 522.

Power Management Entry Point
Drivers for hardware devices that provide Power Management functionality can support the
optional power(9E) entry point. See Chapter 12, “Power Management,” for details about this
entry point.

System Quiesce Entry Point
A driver that manages devices must implement the quiesce(9E) entry point. Drivers that do
not manage devices can set the devo_quiesce field in the dev_ops structure to
ddi_quiesce_not_needed(). The quiesce() function can be called only when the system is
single-threaded at high PIL (priority interrupt level) with preemption disabled. Therefore, this
function must not be blocked. If a device has a defined reset state configuration, the driver
should return that device to that reset state as part of the quiesce operation. An example of this
case is Fast Reboot, where firmware is bypassed when booting to a new operating system image.

Summary of Common Entry Points
The following table lists entry points that can be used by all types of drivers.

TABLE 1–1 Entry Points for All Driver Types

Category / Entry Point Usage Description

cb_ops Entry Points

Device Driver Entry Points

Writing Device Drivers • March 201242

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Egetinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eks-snapshot-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eks-update-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fkstat-create-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Skstat-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Epower-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Equiesce-9e

TABLE 1–1 Entry Points for All Driver Types (Continued)
Category / Entry Point Usage Description

open(9E) Required Gets access to a device. Additional information:
■ “open() Entry Point (Character Drivers)” on page 264
■ “open() Entry Point (Block Drivers)” on page 291

close(9E) Required Gives up access to a device. The version of close() for STREAMS drivers has a
different signature than character and block drivers. Additional information:
■ “close() Entry Point (Character Drivers)” on page 266
■ “close() Entry Point (Block Drivers)” on page 292

Loadable Module Entry Points

_init(9E) Required Initializes a loadable module. Additional information: “Loadable Driver
Interfaces” on page 97

_fini(9E) Required Prepares a loadable module for unloading. Required for all driver types.
Additional information: “Loadable Driver Interfaces” on page 97

_info(9E) Required Returns information about a loadable module. Additional information:
“Loadable Driver Interfaces” on page 97

Autoconfiguration Entry Points

attach(9E) Required Adds a device to the system as part of initialization. Also used to resume a
system that has been suspended. Additional information: “attach() Entry
Point” on page 104

detach(9E) Required Detaches a device from the system. Also, used to suspend a device temporarily.
Additional information: “detach() Entry Point” on page 109

getinfo(9E) Required Gets device information that is specific to the driver, such as the mapping
between a device number and the corresponding instance. Additional
information:
■ “getinfo() Entry Point” on page 110
■ “getinfo() Entry Point (SCSI Target Drivers)” on page 320.

probe(9E) See
Description

Determines if a non-self-identifying device is present. Required for a device
that cannot identify itself. Additional information:
■ “probe() Entry Point” on page 101
■ “probe() Entry Point (SCSI Target Drivers)” on page 315

Kernel Statistics Entry Points

ks_snapshot(9E) Optional Takes a snapshot of kstat(9S) data. Additional information: “Kernel Statistics”
on page 522

ks_update(9E) Optional Updates kstat(9S) data dynamically. Additional information: “Kernel
Statistics” on page 522

Power Management Entry Point

Device Driver Entry Points

Chapter 1 • Overview of Oracle Solaris Device Drivers 43

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-info-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Egetinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eks-snapshot-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Skstat-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eks-update-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Skstat-9s

TABLE 1–1 Entry Points for All Driver Types (Continued)
Category / Entry Point Usage Description

power(9E) Required Sets the power level of a device. If not used, set to NULL. Additional
information: “power() Entry Point” on page 208

System Quiesce Entry Point

quiesce(9E) See
Description

Quiesces a device so that the device no longer generates interrupts or modifies
or accesses memory.

Miscellaneous Entry Points

prop_op(9E) See
Description

Reports driver property information. Required unless ddi_prop_op(9F) is
substituted. Additional information:
■ “Creating and Updating Properties” on page 78
■ “prop_op() Entry Point” on page 81

dump(9E) See
Description

Dumps memory to a device during system failure. Required for any device that
is to be used as the dump device during a panic. Additional information:
■ “dump() Entry Point (Block Drivers)” on page 303
■ “Dump Handling” on page 328

identify(9E) Obsolete Do not use this entry point. Assign nulldev(9F) to this entry point in the
dev_ops structure.

Entry Points for Block Device Drivers
Devices that support a file system are known as block devices. Drivers written for these devices
are known as block device drivers. Block device drivers take a file system request, in the form of
a buf(9S) structure, and issue the I/O operations to the disk to transfer the specified block. The
main interface to the file system is the strategy(9E) routine. See Chapter 16, “Drivers for Block
Devices,” for more information.

A block device driver can also provide a character driver interface to enable utility programs to
bypass the file system and to access the device directly. This device access is commonly referred
to as the raw interface to a block device.

The following table lists additional entry points that can be used by block device drivers. See
also “Entry Points Common to All Drivers” on page 41.

TABLE 1–2 Additional Entry Points for Block Drivers

Entry Point Usage Description

aread(9E) Optional Performs an asynchronous read. Drivers that do not support an aread() entry
point should use the nodev(9F) error return function. Additional information:
■ “Differences Between Synchronous and Asynchronous I/O” on page 269
■ “DMA Transfers (Asynchronous)” on page 272

Device Driver Entry Points

Writing Device Drivers • March 201244

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Epower-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Equiesce-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprop-op-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-op-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edump-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnulldev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Earead-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnodev-9f

TABLE 1–2 Additional Entry Points for Block Drivers (Continued)
Entry Point Usage Description

awrite(9E) Optional Performs an asynchronous write. Drivers that do not support an awrite()

entry point should use the nodev(9F) error return function. Additional
information:
■ “Differences Between Synchronous and Asynchronous I/O” on page 269
■ “DMA Transfers (Asynchronous)” on page 272

print(9E) Required Displays a driver message on the system console. Additional information:
“print() Entry Point (Block Drivers)” on page 303

strategy(9E) Required Perform block I/O. Additional information:
■ “Canceling DMA Callbacks” on page 169
■ “DMA Transfers (Synchronous)” on page 271
■ “strategy() Entry Point” on page 274
■ “DMA Transfers (Asynchronous)” on page 272
■ “General Flow of Control” on page 309
■ “x86 Target Driver Configuration Properties” on page 377

Entry Points for Character Device Drivers
Character device drivers normally perform I/O in a byte stream. Examples of devices that use
character drivers include tape drives and serial ports. Character device drivers can also provide
additional interfaces not present in block drivers, such as I/O control (ioctl) commands,
memory mapping, and device polling. See Chapter 15, “Drivers for Character Devices,” for
more information.

The main task of any device driver is to perform I/O, and many character device drivers do what
is called byte-stream or character I/O. The driver transfers data to and from the device without
using a specific device address. This type of transfer is in contrast to block device drivers, where
part of the file system request identifies a specific location on the device.

The read(9E) and write(9E) entry points handle byte-stream I/O for standard character
drivers. See “I/O Request Handling” on page 266 for more information.

The following table lists additional entry points that can be used by character device drivers. For
other entry points, see “Entry Points Common to All Drivers” on page 41.

TABLE 1–3 Additional Entry Points for Character Drivers

Entry Point Usage Description

chpoll(9E) Optional Polls events for a non-STREAMS character driver. Additional information:
“Multiplexing I/O on File Descriptors” on page 276

Device Driver Entry Points

Chapter 1 • Overview of Oracle Solaris Device Drivers 45

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eawrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprint-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Echpoll-9e

TABLE 1–3 Additional Entry Points for Character Drivers (Continued)
Entry Point Usage Description

ioctl(9E) Optional Performs a range of I/O commands for character drivers. ioctl() routines
must make sure that user data is copied into or out of the kernel address space
explicitly using copyin(9F), copyout(9F), ddi_copyin(9F), and
ddi_copyout(9F), as appropriate. Additional information:
■ “ioctl() Entry Point (Character Drivers)” on page 278
■ “Well Known ioctl Interfaces” on page 591

read(9E) Required Reads data from a device. Additional information:
■ “Vectored I/O” on page 267
■ “Differences Between Synchronous and Asynchronous I/O” on page 269
■ “Programmed I/O Transfers” on page 269
■ “DMA Transfers (Synchronous)” on page 271
■ “General Flow of Control” on page 309

segmap(9E) Optional Maps device memory into user space. Additional information:
■ “Exporting the Mapping” on page 177
■ “Allocating Kernel Memory for User Access” on page 183
■ “Associating User Mappings With Driver Notifications” on page 197

write(9E) Required Writes data to a device. Additional information:
■ “Device Access Functions” on page 118
■ “Vectored I/O” on page 267
■ “Differences Between Synchronous and Asynchronous I/O” on page 269
■ “Programmed I/O Transfers” on page 269
■ “DMA Transfers (Synchronous)” on page 271
■ “General Flow of Control” on page 309

Entry Points for STREAMS Device Drivers
STREAMS is a separate programming model for writing a character driver. Devices that receive
data asynchronously, such as terminal and network devices, are suited to a STREAMS
implementation. STREAMS device drivers must provide the loading and autoconfiguration
support described in Chapter 6, “Driver Autoconfiguration.” See the STREAMS Programming
Guide for additional information on how to write STREAMS drivers.

The following table lists additional entry points that can be used by STREAMS device drivers.
For other entry points, see “Entry Points Common to All Drivers” on page 41 and “Entry Points
for Character Device Drivers” on page 45.

Device Driver Entry Points

Writing Device Drivers • March 201246

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcopyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcopyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-copyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Esegmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=STREAMS
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=STREAMS

TABLE 1–4 Entry Points for STREAMS Drivers

Entry Point Usage Description

put(9E) See
Description

Coordinates the passing of messages from one queue to the next queue in a
stream. Required, except for the side of the driver that reads data. Additional
information: STREAMS Programming Guide

srv(9E) Required Manipulate messages in a queue. Additional information: STREAMS
Programming Guide

Entry Points for Memory Mapped Devices
For certain devices, such as frame buffers, providing application programs with direct access to
device memory is more efficient than byte-stream I/O. Applications can map device memory
into their address spaces using the mmap(2) system call. To support memory mapping, device
drivers implement segmap(9E) and devmap(9E) entry points. For information on devmap(9E),
see Chapter 10, “Mapping Device and Kernel Memory.” For information on segmap(9E), see
Chapter 15, “Drivers for Character Devices.”

Drivers that define the devmap(9E) entry point usually do not define read(9E) and write(9E)
entry points, because application programs perform I/O directly to the devices after calling
mmap(2).

The following table lists additional entry points that can be used by character device drivers that
use the devmap framework to perform memory mapping. For other entry points, see “Entry
Points Common to All Drivers” on page 41 and “Entry Points for Character Device Drivers” on
page 45.

TABLE 1–5 Entry Points for Character Drivers That Use devmap for Memory Mapping

Entry Point Usage Description

devmap(9E) Required Validates and translates virtual mapping for a memory-mapped device.
Additional information: “Exporting the Mapping” on page 177

devmap_access(9E) Optional Notifies drivers when an access is made to a mapping with validation or
protection problems. Additional information: “devmap_access() Entry Point”
on page 191

devmap_contextmgt(9E) Required Performs device context switching on a mapping. Additional information:
“devmap_contextmgt() Entry Point” on page 193

devmap_dup(9E) Optional Duplicates a device mapping. Additional information: “devmap_dup() Entry
Point” on page 194

devmap_map(9E) Optional Creates a device mapping. Additional information: “devmap_map() Entry
Point” on page 190

Device Driver Entry Points

Chapter 1 • Overview of Oracle Solaris Device Drivers 47

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eput-9e
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=STREAMS
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Esrv-9e
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=STREAMS
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=STREAMS
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Esegmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Esegmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-access-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-contextmgt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-dup-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-map-9e

TABLE 1–5 Entry Points for Character Drivers That Use devmap for Memory Mapping (Continued)
Entry Point Usage Description

devmap_unmap(9E) Optional Cancels a device mapping. Additional information: “devmap_unmap() Entry
Point” on page 195

Entry Points for Network Device Drivers
See Table 19–1 for a list of entry points for network device drivers that use the Generic LAN
Driver version 3 (GLDv3) framework. For more information, see “GLDv3 Network Device
Driver Framework” on page 381 and “GLDv3 MAC Registration Functions” on page 382 in
Chapter 19, “Drivers for Network Devices.”

Entry Points for SCSI HBA Drivers
The following table lists additional entry points that can be used by SCSI HBA device drivers.
For information on the SCSI HBA transport structure, see scsi_hba_tran(9S). For other entry
points, see “Entry Points Common to All Drivers” on page 41 and “Entry Points for Character
Device Drivers” on page 45.

TABLE 1–6 Additional Entry Points for SCSI HBA Drivers

Entry Point Usage Description

tran_abort(9E) Required Aborts a specified SCSI command that has been transported to a SCSI Host Bus
Adapter (HBA) driver. Additional information: “tran_abort() Entry Point” on
page 373

tran_bus_reset(9E) Optional Resets a SCSI bus. Additional information: “tran_bus_reset() Entry Point” on
page 374

tran_destroy_pkt(9E) Required Frees resources that are allocated for a SCSI packet. Additional information:
“tran_destroy_pkt() Entry Point” on page 360

tran_dmafree(9E) Required Frees DMA resources that have been allocated for a SCSI packet. Additional
information: “tran_dmafree() Entry Point” on page 361

tran_getcap(9E) Required Gets the current value of a specific capability that is provided by the HBA driver.
Additional information: “tran_getcap() Entry Point” on page 368

tran_init_pkt(9E) Required Allocate and initialize resources for a SCSI packet. Additional information:
“Resource Allocation” on page 353

tran_quiesce(9E) Optional Stop all activity on a SCSI bus, typically for dynamic reconfiguration.
Additional information: “Dynamic Reconfiguration” on page 375

tran_reset(9E) Required Resets a SCSI bus or target device. Additional information: “tran_reset()
Entry Point” on page 373

Device Driver Entry Points

Writing Device Drivers • March 201248

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-unmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-abort-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-bus-reset-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-destroy-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-dmafree-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-getcap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-quiesce-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-reset-9e

TABLE 1–6 Additional Entry Points for SCSI HBA Drivers (Continued)
Entry Point Usage Description

tran_reset_notify(9E) Optional Requests notification of a SCSI target device for a bus reset. Additional
information: “tran_reset_notify() Entry Point” on page 374

tran_setcap(9E) Required Sets the value of a specific capability that is provided by the SCSI HBA driver.
Additional information: “tran_setcap() Entry Point” on page 370

tran_start(9E) Required Requests the transport of a SCSI command. Additional information:
“tran_start() Entry Point” on page 362

tran_sync_pkt(9E) Required Synchronizes the view of data by an HBA driver or device. Additional
information: “tran_sync_pkt() Entry Point” on page 361

tran_tgt_free(9E) Optional Requests allocated SCSI HBA resources to be freed on behalf of a target device.
Additional information:
■ “tran_tgt_free() Entry Point” on page 353
■ “Transport Structure Cloning” on page 342

tran_tgt_init(9E) Optional Requests SCSI HBA resources to be initialized on behalf of a target device.
Additional information:
■ “tran_tgt_init() Entry Point” on page 352
■ “scsi_device Structure” on page 338

tran_tgt_probe(9E) Optional Probes a specified target on a SCSI bus. Additional information:
“tran_tgt_probe() Entry Point” on page 352

tran_unquiesce(9E) Optional Resumes I/O activity on a SCSI bus after tran_quiesce(9E) has been called,
typically for dynamic reconfiguration. Additional information: “Dynamic
Reconfiguration” on page 375

Entry Points for PC Card Drivers
The following table lists additional entry points that can be used by PC Card device drivers. For
other entry points, see “Entry Points Common to All Drivers” on page 41 and “Entry Points for
Character Device Drivers” on page 45.

TABLE 1–7 Entry Points for PC Card Drivers Only

Entry Point Usage Description

csx_event_handler(9E) Required Handles events for a PC Card driver. The driver must call the
csx_RegisterClient(9F) function explicitly to set the entry point instead of
using a structure field like cb_ops.

Device Driver Entry Points

Chapter 1 • Overview of Oracle Solaris Device Drivers 49

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-reset-notify-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-setcap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-start-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-sync-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-tgt-free-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-tgt-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-tgt-probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-unquiesce-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-quiesce-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Ecsx-event-handler-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcsx-registerclient-9f

Considerations in Device Driver Design
A device driver must be compatible with the Oracle Solaris OS, both as a consumer and
provider of services. This section discusses the following issues, which should be considered in
device driver design:

■ “DDI/DKI Facilities” on page 50
■ “Driver Context” on page 52
■ “Returning Errors” on page 53
■ “Dynamic Memory Allocation” on page 53
■ “Hotplugging” on page 54

DDI/DKI Facilities
The Oracle Solaris DDI/DKI interfaces are provided for driver portability. With DDI/DKI,
developers can write driver code in a standard fashion without having to worry about hardware
or platform differences. This section describes aspects of the DDI/DKI interfaces.

Device IDs
The DDI interfaces enable drivers to provide a persistent, unique identifier for a device. The
device ID can be used to identify or locate a device. The ID is independent of the device's name
or number (dev_t). Applications can use the functions defined in libdevid(3LIB) to read and
manipulate the device IDs registered by the drivers.

Device Properties
The attributes of a device or device driver are specified by properties. A property is a name-value
pair. The name is a string that identifies the property with an associated value. Properties can be
defined by the FCode of a self-identifying device, by a hardware configuration file (see the
driver.conf(4) man page), or by the driver itself using the ddi_prop_update(9F) family of
routines.

Interrupt Handling
The DDI/DKI addresses the following aspects of device interrupt handling:

■ Registering device interrupts with the system
■ Removing device interrupts
■ Dispatching interrupts to interrupt handlers

Device interrupt sources are contained in a property called interrupt, which is either provided
by the PROM of a self-identifying device, in a hardware configuration file, or by the booting
system on the x86 platform.

Considerations in Device Driver Design

Writing Device Drivers • March 201250

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN3Flibdevid-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4driver.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-update-9f

Callback Functions
Certain DDI mechanisms provide a callback mechanism. DDI functions provide a mechanism
for scheduling a callback when a condition is met. Callback functions can be used for the
following typical conditions:
■ A transfer has completed
■ A resource has become available
■ A time-out period has expired

Callback functions are somewhat similar to entry points, for example, interrupt handlers. DDI
functions that allow callbacks expect the callback function to perform certain tasks. In the case
of DMA routines, a callback function must return a value indicating whether the callback
function needs to be rescheduled in case of a failure.

Callback functions execute as a separate interrupt thread. Callbacks must handle all the usual
multithreading issues.

Note – A driver must cancel all scheduled callback functions before detaching a device.

Software State Management
To assist device driver writers in allocating state structures, the DDI/DKI provides a set of
memory management routines called the software state management routines, also known as
the soft-state routines. These routines dynamically allocate, retrieve, and destroy memory items
of a specified size, and hide the details of list management. An instance number is used to
identify the desired memory item. This number is typically the instance number assigned by the
system.

Routines are provided for the following tasks:
■ Initialize a driver's soft-state list
■ Allocate space for an instance of a driver's soft state
■ Retrieve a pointer to an instance of a driver's soft state
■ Free the memory for an instance of a driver's soft state
■ Finish using a driver's soft-state list

See “Loadable Driver Interfaces” on page 97 for an example of how to use these routines.

Programmed I/O Device Access
Programmed I/O device access is the act of reading and writing of device registers or device
memory by the host CPU. The Oracle Solaris DDI provides interfaces for mapping a device's
registers or memory by the kernel as well as interfaces for reading and writing to device memory
from the driver. These interfaces enable drivers to be developed that are platform and bus
independent, by automatically managing any difference in device and host endianness as well as
by enforcing any memory-store sequence requirements imposed by the device.

Considerations in Device Driver Design

Chapter 1 • Overview of Oracle Solaris Device Drivers 51

Direct Memory Access (DMA)
The Oracle Solaris platform defines a high-level, architecture-independent model for
supporting DMA-capable devices. The Oracle Solaris DDI shields drivers from
platform-specific details. This concept enables a common driver to run on multiple platforms
and architectures.

Layered Driver Interfaces
The DDI/DKI provides a group of interfaces referred to as layered device interfaces (LDI).
These interfaces enable a device to be accessed from within the Oracle Solaris kernel. This
capability enables developers to write applications that observe kernel device usage. For
example, both the prtconf(1M) and fuser(1M) commands use LDI to enable system
administrators to track aspects of device usage. The LDI is covered in more detail in Chapter 14,
“Layered Driver Interface (LDI).”

Driver Context
The driver context refers to the condition under which a driver is currently operating. The
context limits the operations that a driver can perform. The driver context depends on the
executing code that is invoked. Driver code executes in four contexts:

■ User context. A driver entry point has user context when invoked by a user thread in a
synchronous fashion. That is, the user thread waits for the system to return from the entry
point that was invoked. For example, the read(9E) entry point of the driver has user context
when invoked by a read(2) system call. In this case, the driver has access to the user area for
copying data into and out of the user thread.

■ Kernel context. A driver function has kernel context when invoked by some part of the
kernel. In a block device driver, the strategy(9E) entry point can be called by the pageout
daemon to write pages to the device. Because the page daemon has no relation to the current
user thread, strategy(9E) has kernel context in this case.

■ Interrupt context.Interrupt context is a more restrictive form of kernel context. Interrupt
context is invoked as a result of the servicing of an interrupt. Driver interrupt routines
operate in interrupt context with an associated interrupt level. Callback routines also
operate in an interrupt context. See Chapter 8, “Interrupt Handlers,” for more information.

■ High-level interrupt context.High-level interrupt context is a more restricted form of
interrupt context. If ddi_intr_hilevel(9F) indicates that an interrupt is high level, the
driver interrupt handler runs in high-level interrupt context. See Chapter 8, “Interrupt
Handlers,” for more information.

The manual pages in section 9F document the allowable contexts for each function. For
example, in kernel context the driver must not call copyin(9F).

Considerations in Device Driver Design

Writing Device Drivers • March 201252

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mprtconf-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mfuser-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-hilevel-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcopyin-9f

Returning Errors
Device drivers do not usually print messages, except for unexpected errors such as data
corruption. Instead, the driver entry points should return error codes so that the application
can determine how to handle the error. Use the cmn_err(9F) function to write messages to a
system log that can then be displayed on the console.

The format string specifier interpreted by cmn_err(9F) is similar to the printf(3C) format
string specifier, with the addition of the format %b, which prints bit fields. The first character of
the format string can have a special meaning. Calls to cmn_err(9F) also specify the message
level, which indicates the severity label to be printed. See the cmn_err(9F) man page for more
details.

The level CE_PANIC has the side effect of crashing the system. This level should be used only if
the system is in such an unstable state that to continue would cause more problems. The level
can also be used to get a system core dump when debugging. CE_PANIC should not be used in
production device drivers.

Dynamic Memory Allocation
Device drivers must be prepared to simultaneously handle all attached devices that the drivers
claim to drive. The number of devices that the driver handles should not be limited. All
per-device information must be dynamically allocated.

void *kmem_alloc(size_t size, int flag);

The standard kernel memory allocation routine is kmem_alloc(9F). kmem_alloc() is similar to
the C library routine malloc(3C), with the addition of the flag argument. The flag argument
can be either KM_SLEEP or KM_NOSLEEP, indicating whether the caller is willing to block if the
requested size is not available. If KM_NOSLEEP is set and memory is not available,
kmem_alloc(9F) returns NULL.

kmem_zalloc(9F) is similar to kmem_alloc(9F), but also clears the contents of the allocated
memory.

Note – Kernel memory is a limited resource, not pageable, and competes with user applications
and the rest of the kernel for physical memory. Drivers that allocate a large amount of kernel
memory can cause system performance to degrade.

void kmem_free(void *cp, size_t size);

Memory allocated by kmem_alloc(9F) or by kmem_zalloc(9F) is returned to the system with
kmem_free(9F). kmem_free() is similar to the C library routine free(3C), with the addition of
the size argument. Drivers must keep track of the size of each allocated object in order to call
kmem_free(9F) later.

Considerations in Device Driver Design

Chapter 1 • Overview of Oracle Solaris Device Drivers 53

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcmn-err-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcmn-err-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fkmem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN3Amalloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fkmem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fkmem-zalloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fkmem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fkmem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fkmem-zalloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fkmem-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN3Afree-3c
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fkmem-free-9f

Hotplugging
This manual does not highlight hotplugging information. If you follow the rules and
suggestions for writing device drivers given in this book, your driver should be able to handle
hotplugging. In particular, make sure that both autoconfiguration (see Chapter 6, “Driver
Autoconfiguration”) and detach(9E) work correctly in your driver. In addition, if you are
designing a driver that uses power management, you should follow the information given in
Chapter 12, “Power Management.” SCSI HBA drivers might need to add a cb_ops structure to
their dev_ops structure (see Chapter 18, “SCSI Host Bus Adapter Drivers”) to take advantage of
hotplugging capabilities.

Previous versions of the Oracle Solaris OS required hotpluggable drivers to include a
DT_HOTPLUG property, but this property is no longer required. Driver writers are free, however,
to include and use the DT_HOTPLUG property as they see fit.

Considerations in Device Driver Design

Writing Device Drivers • March 201254

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e

Oracle Solaris Kernel and Device Tree

A device driver needs to work transparently as an integral part of the operating system.
Understanding how the kernel works is a prerequisite for learning about device drivers. This
chapter provides an overview of the Oracle Solaris kernel and device tree. For an overview of
how device drivers work, see Chapter 1, “Overview of Oracle Solaris Device Drivers.”

This chapter provides information on the following subjects:

■ “What Is the Kernel?” on page 55
■ “Multithreaded Execution Environment” on page 57
■ “Virtual Memory” on page 57
■ “Devices as Special Files” on page 57
■ “DDI/DKI Interfaces” on page 58
■ “Device Tree Components” on page 59
■ “Displaying the Device Tree” on page 60
■ “Binding a Driver to a Device” on page 62

What Is the Kernel?
The Oracle Solaris kernel is a program that manages system resources. The kernel insulates
applications from the system hardware and provides them with essential system services such as
input/output (I/O) management, virtual memory, and scheduling. The kernel consists of object
modules that are dynamically loaded into memory when needed.

The Oracle Solaris kernel can be divided logically into two parts: the first part, referred to as the
kernel, manages file systems, scheduling, and virtual memory. The second part, referred to as
the I/O subsystem, manages the physical components.

The kernel provides a set of interfaces for applications to use that are accessible through system
calls. System calls are documented in section 2 of the Reference Manual Collection (see
Intro(2)). Some system calls are used to invoke device drivers to perform I/O. Device drivers are
loadable kernel modules that manage data transfers while insulating the rest of the kernel from

2C H A P T E R 2

55

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2intro-2

the device hardware. To be compatible with the operating system, device drivers need to be able
to accommodate such features as multithreading, virtual memory addressing, and both 32-bit
and 64-bit operation.

The following figure illustrates the kernel. The kernel modules handle system calls from
application programs. The I/O modules communicate with hardware.

The kernel provides access to device drivers through the following features:

■ Device-to-driver mapping. The kernel maintains the device tree. Each node in the tree
represents a virtual or a physical device. The kernel binds each node to a driver by matching
the device node name with the set of drivers installed in the system. The device is made
accessible to applications only if there is a driver binding.

FIGURE 2–1 Oracle Solaris Kernel

Process
management

Memory
management File systems Device

control Networking

Platform
dependent

code

Virtual
memory Block

drivers

File systems
Character

drivers

Network
subsystems

NIC
drivers

CPU RAM Disks
Network

interfaces

Serial ports,
special
boards

Application programs

User
level

Kernel
level

Hardware
level

What Is the Kernel?

Writing Device Drivers • March 201256

■ DDI/DKI interfaces. DDI/DKI (Device Driver Interface/Driver-Kernel Interface)
interfaces standardize interactions between the driver and the kernel, the device hardware,
and the boot/configuration software. These interfaces keep the driver independent from the
kernel and improve the driver's portability across successive releases of the operating system
on a particular machine.

■ LDI. The LDI (Layered Driver Interface) is an extension of the DDI/DKI. The LDI enables a
kernel module to access other devices in the system. The LDI also enables you to determine
which devices are currently being used by the kernel. See Chapter 14, “Layered Driver
Interface (LDI).”

Multithreaded Execution Environment
The Oracle Solaris kernel is multithreaded. On a multiprocessor machine, multiple kernel
threads can be running kernel code, and can do so concurrently. Kernel threads can also be
preempted by other kernel threads at any time.

The multithreading of the kernel imposes some additional restrictions on device drivers. For
more information on multithreading considerations, see Chapter 3, “Multithreading.” Device
drivers must be coded to run as needed at the request of many different threads. For each
thread, a driver must handle contention problems from overlapping I/O requests.

Virtual Memory
A complete overview of the Oracle Solaris virtual memory system is beyond the scope of this
book, but two virtual memory terms of special importance are used when discussing device
drivers: virtual address and address space.

■ Virtual address. A virtual address is an address that is mapped by the memory management
unit (MMU) to a physical hardware address. All addresses directly accessible by the driver
are kernel virtual addresses. Kernel virtual addresses refer to the kernel address space.

■ Address space. An address space is a set of virtual address segments. Each segment is a
contiguous range of virtual addresses. Each user process has an address space called the user
address space. The kernel has its own address space, called the kernel address space.

Devices as Special Files
Devices are represented in the file system by special files. In the Oracle Solaris OS, these files
reside in the /devices directory hierarchy.

Special files can be of type block or character. The type indicates which kind of device driver
operates the device. Drivers can be implemented to operate on both types. For example, disk
drivers export a character interface for use by the fsck(1) and mkfs(1) utilities, and a block
interface for use by the file system.

What Is the Kernel?

Chapter 2 • Oracle Solaris Kernel and Device Tree 57

Associated with each special file is a device number (dev_t). A device number consists of a
major number and a minor number. The major number identifies the device driver associated
with the special file. The minor number is created and used by the device driver to further
identify the special file. Usually, the minor number is an encoding that is used to identify which
device instance the driver should access and which type of access should be performed. For
example, the minor number can identify a tape device used for backup and can specify that the
tape needs to be rewound when the backup operation is complete.

DDI/DKI Interfaces
In System V Release 4 (SVR4), the interface between device drivers and the rest of the UNIX
kernel was standardized as the DDI/DKI. The DDI/DKI is documented in section 9 of the
Reference Manual Collection. Section 9E documents driver entry points, section 9F documents
driver-callable functions, and section 9S documents kernel data structures used by device
drivers. See Intro(9E), Intro(9F), and Intro(9S).

The DDI/DKI is intended to standardize and document all interfaces between device drivers
and the rest of the kernel. In addition, the DDI/DKI enables source and binary compatibility for
drivers on any machine that runs the Oracle Solaris OS, regardless of the processor architecture,
whether SPARC or x86. Drivers that use only kernel facilities that are part of the DDI/DKI are
known as DDI/DKI-compliant device drivers.

The DDI/DKI enables you to write platform-independent device drivers for any machine that
runs the Oracle Solaris OS. These binary-compatible drivers enable you to more easily integrate
third-party hardware and software into any machine that runs the Oracle Solaris OS. The
DDI/DKI is architecture independent, which enables the same driver to work across a diverse
set of machine architectures.

Platform independence is accomplished by the design of DDI in the following areas:

■ Dynamic loading and unloading of modules
■ Power management
■ Interrupt handling
■ Accessing the device space from the kernel or a user process, that is, register mapping and

memory mapping
■ Accessing kernel or user process space from the device using DMA services
■ Managing device properties

What Is the Kernel?

Writing Device Drivers • March 201258

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eintro-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fintro-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sintro-9s

Overview of the Device Tree
Devices in the Oracle Solaris OS are represented as a tree of interconnected device information
nodes. The device tree describes the configuration of loaded devices for a particular machine.

Device Tree Components
The system builds a tree structure that contains information about the devices connected to the
machine at boot time. The device tree can also be modified by dynamic reconfiguration
operations while the system is in normal operation. The tree begins at the root device node,
which represents the platform.

Below the root node are the branches of the device tree. A branch consists of one or more bus
nexus devices and a terminating leaf device.

A bus nexus device provides bus mapping and translation services to subordinate devices in the
device tree. PCI - PCI bridges, PCMCIA adapters, and SCSI HBAs are all examples of nexus
devices. The discussion of writing drivers for nexus devices is limited to the development of
SCSI HBA drivers (see Chapter 18, “SCSI Host Bus Adapter Drivers”).

Leaf devices are typically peripheral devices such as disks, tapes, network adapters, frame
buffers, and so forth. Leaf device drivers export the traditional character driver interfaces and
block driver interfaces. The interfaces enable user processes to read data from and write data to
either storage or communication devices.

The system goes through the following steps to build the tree:

1. The CPU is initialized and searches for firmware.
2. The main firmware (OpenBoot, Basic Input/Output System (BIOS), or Bootconf) initializes

and creates the device tree with known or self-identifying hardware.
3. When the main firmware finds compatible firmware on a device, the main firmware

initializes the device and retrieves the device's properties.
4. The firmware locates and boots the operating system.
5. The kernel starts at the root node of the tree, searches for a matching device driver, and

binds that driver to the device.
6. If the device is a nexus, the kernel looks for child devices that have not been detected by the

firmware. The kernel adds any child devices to the tree below the nexus node.
7. The kernel repeats the process from Step 5 until no further device nodes need to be created.

Each driver exports a device operations structure dev_ops(9S) to define the operations that the
device driver can perform. The device operations structure contains function pointers for
generic operations such as attach(9E), detach(9E), and getinfo(9E). The structure also
contains a pointer to a set of operations specific to bus nexus drivers and a pointer to a set of
operations specific to leaf drivers.

Overview of the Device Tree

Chapter 2 • Oracle Solaris Kernel and Device Tree 59

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sdev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Egetinfo-9e

The tree structure creates a parent-child relationship between nodes. This parent-child
relationship is the key to architectural independence. When a leaf or bus nexus driver requires a
service that is architecturally dependent in nature, that driver requests its parent to provide the
service. This approach enables drivers to function regardless of the architecture of the machine
or the processor. A typical device tree is shown in the following figure.

The nexus nodes can have one or more children. The leaf nodes represent individual devices.

Displaying the Device Tree
The device tree can be displayed in three ways:

■ The libdevinfo library provides interfaces to access the contents of the device tree
programmatically.

■ The prtconf(1M) command displays the complete contents of the device tree.
■ The /devices hierarchy is a representation of the device tree. Use the ls(1) command to

view the hierarchy.

Note – /devices displays only devices that have drivers configured into the system. The
prtconf(1M) command shows all device nodes regardless of whether a driver for the device
exists on the system.

FIGURE 2–2 Example Device Tree

root node

PCI bus
nexus node

SUNW, ffb
leaf node

PCI bus
nexus node

PCI bus
nexus node

dad
leaf node

sd
leaf node

fdthree
leaf node

se
leaf node

pseudo
nexus node

network
leaf node

ide
nexus node

ebus
nexus node

.

.

.

.

.

.

. . .

Overview of the Device Tree

Writing Device Drivers • March 201260

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mprtconf-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1ls-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mprtconf-1m

libdevinfo Library
The libdevinfo library provides interfaces for accessing all public device configuration data.
See the libdevinfo(3LIB) man page for a list of interfaces.

prtconf Command
The following excerpted prtconf(1M) command example displays all the devices in the system.

Memory size: 128 Megabytes

System Peripherals (Software Nodes):

SUNW,Ultra-5_10

packages (driver not attached)

terminal-emulator (driver not attached)

deblocker (driver not attached)

obp-tftp (driver not attached)

disk-label (driver not attached)

SUNW,builtin-drivers (driver not attached)

sun-keyboard (driver not attached)

ufs-file-system (driver not attached)

chosen (driver not attached)

openprom (driver not attached)

client-services (driver not attached)

options, instance #0

aliases (driver not attached)

memory (driver not attached)

virtual-memory (driver not attached)

pci, instance #0

pci, instance #0

ebus, instance #0

auxio (driver not attached)

power, instance #0

SUNW,pll (driver not attached)

se, instance #0

su, instance #0

su, instance #1

ecpp (driver not attached)

fdthree, instance #0

eeprom (driver not attached)

flashprom (driver not attached)

SUNW,CS4231 (driver not attached)

network, instance #0

SUNW,m64B (driver not attached)

ide, instance #0

disk (driver not attached)

cdrom (driver not attached)

dad, instance #0

sd, instance #15

pci, instance #1

pci, instance #0

pci108e,1000 (driver not attached)

SUNW,hme, instance #1

SUNW,isptwo, instance #0

sd (driver not attached)

st (driver not attached)

sd, instance #0 (driver not attached)

Overview of the Device Tree

Chapter 2 • Oracle Solaris Kernel and Device Tree 61

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mprtconf-1m

sd, instance #1 (driver not attached)

sd, instance #2 (driver not attached)

...

SUNW,UltraSPARC-IIi (driver not attached)

SUNW,ffb, instance #0

pseudo, instance #0

/devices Directory
The /devices hierarchy provides a namespace that represents the device tree. Following is an
abbreviated listing of the /devices namespace. The sample output corresponds to the example
device tree and prtconf(1M) output shown previously.

/devices

/devices/pseudo

/devices/pci@1f,0:devctl

/devices/SUNW,ffb@1e,0:ffb0

/devices/pci@1f,0

/devices/pci@1f,0/pci@1,1

/devices/pci@1f,0/pci@1,1/SUNW,m64B@2:m640

/devices/pci@1f,0/pci@1,1/ide@3:devctl

/devices/pci@1f,0/pci@1,1/ide@3:scsi

/devices/pci@1f,0/pci@1,1/ebus@1

/devices/pci@1f,0/pci@1,1/ebus@1/power@14,724000:power_button

/devices/pci@1f,0/pci@1,1/ebus@1/se@14,400000:a

/devices/pci@1f,0/pci@1,1/ebus@1/se@14,400000:b

/devices/pci@1f,0/pci@1,1/ebus@1/se@14,400000:0,hdlc

/devices/pci@1f,0/pci@1,1/ebus@1/se@14,400000:1,hdlc

/devices/pci@1f,0/pci@1,1/ebus@1/se@14,400000:a,cu

/devices/pci@1f,0/pci@1,1/ebus@1/se@14,400000:b,cu

/devices/pci@1f,0/pci@1,1/ebus@1/ecpp@14,3043bc:ecpp0

/devices/pci@1f,0/pci@1,1/ebus@1/fdthree@14,3023f0:a

/devices/pci@1f,0/pci@1,1/ebus@1/fdthree@14,3023f0:a,raw

/devices/pci@1f,0/pci@1,1/ebus@1/SUNW,CS4231@14,200000:sound,audio

/devices/pci@1f,0/pci@1,1/ebus@1/SUNW,CS4231@14,200000:sound,audioctl

/devices/pci@1f,0/pci@1,1/ide@3

/devices/pci@1f,0/pci@1,1/ide@3/sd@2,0:a

/devices/pci@1f,0/pci@1,1/ide@3/sd@2,0:a,raw

/devices/pci@1f,0/pci@1,1/ide@3/dad@0,0:a

/devices/pci@1f,0/pci@1,1/ide@3/dad@0,0:a,raw

/devices/pci@1f,0/pci@1

/devices/pci@1f,0/pci@1/pci@2

/devices/pci@1f,0/pci@1/pci@2/SUNW,isptwo@4:devctl

/devices/pci@1f,0/pci@1/pci@2/SUNW,isptwo@4:scsi

Binding a Driver to a Device
In addition to constructing the device tree, the kernel determines the drivers that are used to
manage the devices.

Binding a driver to a device refers to the process by which the system selects a driver to manage
a particular device. The binding name is the name that links a driver to a unique device node in
the device information tree. For each device in the device tree, the system attempts to choose a
driver from a list of installed drivers.

Overview of the Device Tree

Writing Device Drivers • March 201262

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mprtconf-1m

Each device node has an associated name property. This property can be assigned either from
an external agent, such as the PROM, during system boot or from a driver.conf configuration
file. In any case, the name property represents the node name assigned to a device in the device
tree. The node name is the name visible in /devices and listed in the prtconf(1M) output.

A device node can have an associated compatible property as well. The compatible property
contains an ordered list of one or more possible driver names or driver aliases for the device.

The system uses both the compatible and the name properties to select a driver for the device.
The system first attempts to match the contents of the compatible property, if the compatible
property exists, to a driver on the system. Beginning with the first driver name on the
compatible property list, the system attempts to match the driver name to a known driver on the
system. Each entry on the list is processed until the system either finds a match or reaches the
end of the list.

If the contents of either the name property or the compatible property match a driver on the
system, then that driver is bound to the device node. If no match is found, no driver is bound to
the device node.

Generic Device Names
Some devices specify a generic device name as the value for the name property. Generic device
names describe the function of a device without actually identifying a specific driver for the
device. For example, a SCSI host bus adapter might have a generic device name of scsi. An
Ethernet device might have a generic device name of ethernet.

FIGURE 2–3 Device Node Names

glm

st sd

SUNW, CS4231 hme
device node names

. . .

(name property)

Overview of the Device Tree

Chapter 2 • Oracle Solaris Kernel and Device Tree 63

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mprtconf-1m

The compatible property enables the system to determine alternate driver names for devices
with a generic device name, for example, glm for scsi HBA device drivers or hme for ethernet
device drivers.

Devices with generic device names are required to supply a compatible property.

Note – For a complete description of generic device names, see the IEEE 1275 Open Firmware
Boot Standard.

The following figure shows a device node with a specific device name. The driver binding name
SUNW,ffb is the same name as the device node name.

The following figure shows a device node with the generic device name display. The driver
binding name SUNW,ffb is the first name on the compatible property driver list that matches a
driver on the system driver list. In this case, display is a generic device name for frame buffers.

FIGURE 2–4 Specific Driver Node Binding

binding name =

Device Node A

name = SUNW,ffb

/devices/SUNW,ffb@le,0:ffb0

SUNW,ffb

Overview of the Device Tree

Writing Device Drivers • March 201264

FIGURE 2–5 Generic Driver Node Binding

compatible =

Device Node B

name = display

/devices/display@le,0:ffb0

fast_fb
SUNW,ffb
slow_fb

binding name = SUNW,ffb

Overview of the Device Tree

Chapter 2 • Oracle Solaris Kernel and Device Tree 65

66

Multithreading

This chapter describes the locking primitives and thread synchronization mechanisms of the
Oracle Solaris multithreaded kernel. You should design device drivers to take advantage of
multithreading. This chapter provides information on the following subjects:
■ “Locking Primitives” on page 67
■ “Thread Synchronization” on page 70
■ “Choosing a Locking Scheme” on page 74

Locking Primitives
In traditional UNIX systems, every section of kernel code terminates either through an explicit
call to sleep(1) to give up the processor or through a hardware interrupt. The Oracle Solaris OS
operates differently. A kernel thread can be preempted at any time to run another thread.
Because all kernel threads share kernel address space and often need to read and modify the
same data, the kernel provides a number of locking primitives to prevent threads from
corrupting shared data. These mechanisms include mutual exclusion locks, which are also
known as mutexes, readers/writer locks, and semaphores.

Storage Classes of Driver Data
The storage class of data is a guide to whether the driver might need to take explicit steps to
control access to the data. The three data storage classes are:

■ Automatic (stack) data. Every thread has a private stack, so drivers never need to lock
automatic variables.

■ Global static data. Global static data can be shared by any number of threads in the driver.
The driver might need to lock this type of data at times.

■ Kernel heap data. Any number of threads in the driver can share kernel heap data, such as
data allocated by kmem_alloc(9F). The driver needs to protect shared data at all times.

3C H A P T E R 3

67

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1sleep-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fkmem-alloc-9f

Mutual-Exclusion Locks
A mutual-exclusion lock, or mutex, is usually associated with a set of data and regulates access
to that data. Mutexes provide a way to allow only one thread at a time access to that data. The
mutex functions are:

mutex_destroy(9F) Releases any associated storage.

mutex_enter(9F) Acquires a mutex.

mutex_exit(9F) Releases a mutex.

mutex_init(9F) Initializes a mutex.

mutex_owned(9F) Tests to determine whether the mutex is held by the current thread.
To be used in ASSERT(9F) only.

mutex_tryenter(9F) Acquires a mutex if available, but does not block.

Setting Up Mutexes
Device drivers usually allocate a mutex for each driver data structure. The mutex is typically a
field in the structure of type kmutex_t. mutex_init(9F) is called to prepare the mutex for use.
This call is usually made at attach(9E) time for per-device mutexes and _init(9E) time for
global driver mutexes.

For example,

struct xxstate *xsp;

/* ... */

mutex_init(&xsp->mu, NULL, MUTEX_DRIVER, NULL);

/* ... */

For a more complete example of mutex initialization, see Chapter 6, “Driver
Autoconfiguration.”

The driver must destroy the mutex with mutex_destroy(9F) before being unloaded. Destroying
the mutex is usually done at detach(9E) time for per-device mutexes and _fini(9E) time for
global driver mutexes.

Using Mutexes
Every section of the driver code that needs to read or write the shared data structure must do the
following tasks:

■ Acquire the mutex
■ Access the data
■ Release the mutex

Locking Primitives

Writing Device Drivers • March 201268

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmutex-destroy-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmutex-enter-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmutex-exit-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmutex-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmutex-owned-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fassert-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmutex-tryenter-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmutex-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmutex-destroy-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-fini-9e

The scope of a mutex, that is, the data the mutex protects, is entirely up to the programmer. A
mutex protects a data structure only if every code path that accesses the data structure does so
while holding the mutex.

Readers/Writer Locks
A readers/writer lock regulates access to a set of data. The readers/writer lock is so called because
many threads can hold the lock simultaneously for reading, but only one thread can hold the
lock for writing.

Most device drivers do not use readers/writer locks. These locks are slower than mutexes. The
locks provide a performance gain only when they protect commonly read data that is not
frequently written. In this case, contention for a mutex could become a bottleneck, so using a
readers/writer lock might be more efficient. The readers/writer functions are summarized in the
following table. See the rwlock(9F) man page for detailed information. The readers/writer lock
functions are:

rw_destroy(9F) Destroys a readers/writer lock

rw_downgrade(9F) Downgrades a readers/writer lock holder from writer to reader

rw_enter(9F) Acquires a readers/writer lock

rw_exit(9F) Releases a readers/writer lock

rw_init(9F) Initializes a readers/writer lock

rw_read_locked(9F) Determines whether a readers/writer lock is held for read or write

rw_tryenter(9F) Attempts to acquire a readers/writer lock without waiting

rw_tryupgrade(9F) Attempts to upgrade readers/writer lock holder from reader to writer

Semaphores
Counting semaphores are available as an alternative primitive for managing threads within
device drivers. See the semaphore(9F) man page for more information. The semaphore
functions are:

sema_destroy(9F) Destroys a semaphore.

sema_init(9F) Initialize a semaphore.

sema_p(9F) Decrement semaphore and possibly block.

sema_p_sig(9F) Decrement semaphore but do not block if signal is pending. See
“Threads Unable to Receive Signals” on page 75.

Locking Primitives

Chapter 3 • Multithreading 69

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Frwlock-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Frw-destroy-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Frw-downgrade-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Frw-enter-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Frw-exit-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Frw-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Frw-read-locked-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Frw-tryenter-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Frw-tryupgrade-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fsemaphore-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fsema-destroy-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fsema-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fsema-p-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fsema-p-sig-9f

sema_tryp(9F) Attempt to decrement semaphore, but do not block.

sema_v(9F) Increment semaphore and possibly unblock waiter.

Thread Synchronization
In addition to protecting shared data, drivers often need to synchronize execution among
multiple threads.

Condition Variables in Thread Synchronization
Condition variables are a standard form of thread synchronization. They are designed to be
used with mutexes. The associated mutex is used to ensure that a condition can be checked
atomically, and that the thread can block on the associated condition variable without missing
either a change to the condition or a signal that the condition has changed.

The condvar(9F) functions are:

cv_broadcast(9F) Signals all threads waiting on the condition variable.

cv_destroy(9F) Destroys a condition variable.

cv_init(9F) Initializes a condition variable.

cv_signal(9F) Signals one thread waiting on the condition variable.

cv_timedwait(9F) Waits for condition, time-out, or signal. See “Threads Unable to
Receive Signals” on page 75.

cv_timedwait_sig(9F) Waits for condition or time-out.

cv_wait(9F) Waits for condition.

cv_wait_sig(9F) Waits for condition or return zero on receipt of a signal. See
“Threads Unable to Receive Signals” on page 75.

Initializing Condition Variables
Declare a condition variable of type kcondvar_t for each condition. Usually, the condition
variables are declared in the driver's soft-state structure. Use cv_init(9F) to initialize each
condition variable. Similar to mutexes, condition variables are usually initialized at attach(9E)
time. A typical example of initializing a condition variable is:

cv_init(&xsp->cv, NULL, CV_DRIVER, NULL);

Thread Synchronization

Writing Device Drivers • March 201270

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fsema-tryp-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fsema-v-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcondvar-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-broadcast-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-destroy-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-signal-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-timedwait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-timedwait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-wait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e

For a more complete example of condition variable initialization, see Chapter 6, “Driver
Autoconfiguration.”

Waiting for the Condition
To use condition variables, follow these steps in the code path waiting for the condition:

1. Acquire the mutex guarding the condition.
2. Test the condition.
3. If the test results do not allow the thread to continue, use cv_wait(9F) to block the current

thread on the condition. The cv_wait(9F) function releases the mutex before blocking the
thread and reacquires the mutex before returning. On return from cv_wait(9F), repeat the
test.

4. After the test allows the thread to continue, set the condition to its new value. For example,
set a device flag to busy.

5. Release the mutex.

Signaling the Condition
Follow these steps in the code path to signal the condition:

1. Acquire the mutex guarding the condition.
2. Set the condition.
3. Signal the blocked thread with cv_broadcast(9F).
4. Release the mutex.

The following example uses a busy flag along with mutex and condition variables to force the
read(9E) routine to wait until the device is no longer busy before starting a transfer.

EXAMPLE 3–1 Using Mutexes and Condition Variables

static int

xxread(dev_t dev, struct uio *uiop, cred_t *credp)

{

struct xxstate *xsp;

/* ... */

mutex_enter(&xsp->mu);

while (xsp->busy)

cv_wait(&xsp->cv, &xsp->mu);

xsp->busy = 1;

mutex_exit(&xsp->mu);

/* perform the data access */

}

static uint_t

xxintr(caddr_t arg)

{

struct xxstate *xsp = (struct xxstate *)arg;

mutex_enter(&xsp->mu);

Thread Synchronization

Chapter 3 • Multithreading 71

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-broadcast-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eread-9e

EXAMPLE 3–1 Using Mutexes and Condition Variables (Continued)

xsp->busy = 0;

cv_broadcast(&xsp->cv);

mutex_exit(&xsp->mu);

}

cv_wait() and cv_timedwait() Functions
If a thread is blocked on a condition with cv_wait(9F) and that condition does not occur, the
thread would wait forever. To avoid that situation, use cv_timedwait(9F), which depends upon
another thread to perform a wakeup. cv_timedwait() takes an absolute wait time as an
argument. cv_timedwait() returns -1 if the time is reached and the event has not occurred.
cv_timedwait() returns a positive value if the condition is met.

cv_timedwait(9F) requires an absolute wait time expressed in clock ticks since the system was
last rebooted. The wait time can be determined by retrieving the current value with
ddi_get_lbolt(9F). The driver usually has a maximum number of seconds or microseconds to
wait, so this value is converted to clock ticks with drv_usectohz(9F) and added to the value
from ddi_get_lbolt(9F).

The following example shows how to use cv_timedwait(9F) to wait up to five seconds to access
the device before returning EIO to the caller.

EXAMPLE 3–2 Using cv_timedwait()

clock_t cur_ticks, to;

mutex_enter(&xsp->mu);

while (xsp->busy) {

cur_ticks = ddi_get_lbolt();

to = cur_ticks + drv_usectohz(5000000); /* 5 seconds from now */

if (cv_timedwait(&xsp->cv, &xsp->mu, to) == -1) {

/*

* The timeout time ’to’ was reached without the

* condition being signaled.

*/

/* tidy up and exit */

mutex_exit(&xsp->mu);

return (EIO);

}

}

xsp->busy = 1;

mutex_exit(&xsp->mu);

Although device driver writers generally prefer to use cv_timedwait(9F) over cv_wait(9F),
sometimes cv_wait(9F) is a better choice. For example, cv_wait(9F) is better if a driver is
waiting on the following conditions:

Thread Synchronization

Writing Device Drivers • March 201272

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-timedwait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-timedwait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-get-lbolt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdrv-usectohz-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-get-lbolt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-timedwait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-timedwait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-wait-9f

■ Internal driver state changes, where such a state change might require some command to be
executed, or a set amount of time to pass

■ Something the driver needs to single-thread
■ Some situation that is already managing a possible timeout, as when “A” depends on “B,” and

“B” is using cv_timedwait(9F)

cv_wait_sig() Function
A driver might be waiting for a condition that cannot occur or will not happen for a long time.
In such cases, the user can send a signal to abort the thread. Depending on the driver design, the
signal might not cause the driver to wake up.

cv_wait_sig(9F) allows a signal to unblock the thread. This capability enables the user to break
out of potentially long waits by sending a signal to the thread with kill(1) or by typing the
interrupt character. cv_wait_sig(9F) returns zero if it is returning because of a signal, or
nonzero if the condition occurred. However, see “Threads Unable to Receive Signals” on
page 75 for cases in which signals might not be received.

The following example shows how to use cv_wait_sig(9F) to allow a signal to unblock the
thread.

EXAMPLE 3–3 Using cv_wait_sig()

mutex_enter(&xsp->mu);

while (xsp->busy) {

if (cv_wait_sig(&xsp->cv, &xsp->mu) == 0) {

/* Signaled while waiting for the condition */

/* tidy up and exit */

mutex_exit(&xsp->mu);

return (EINTR);

}

}

xsp->busy = 1;

mutex_exit(&xsp->mu);

cv_timedwait_sig() Function
cv_timedwait_sig(9F) is similar to cv_timedwait(9F) and cv_wait_sig(9F), except that
cv_timedwait_sig() returns -1 without the condition being signaled after a timeout has been
reached, or 0 if a signal (for example, kill(2)) is sent to the thread.

For both cv_timedwait(9F) and cv_timedwait_sig(9F), time is measured in absolute clock
ticks since the last system reboot.

Thread Synchronization

Chapter 3 • Multithreading 73

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-timedwait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-wait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1kill-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-wait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-wait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-timedwait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-timedwait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-wait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2kill-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-timedwait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-timedwait-sig-9f

Choosing a Locking Scheme
The locking scheme for most device drivers should be kept straightforward. Using additional
locks allows more concurrency but increases overhead. Using fewer locks is less time
consuming but allows less concurrency. Generally, use one mutex per data structure, a
condition variable for each event or condition the driver must wait for, and a mutex for each
major set of data global to the driver. Avoid holding mutexes for long periods of time. Use the
following guidelines when choosing a locking scheme:

■ Use the multithreading semantics of the entry point to your advantage.
■ Make all entry points re-entrant. You can reduce the amount of shared data by changing a

static variable to automatic.
■ If your driver acquires multiple mutexes, acquire and release the mutexes in the same order

in all code paths.
■ Hold and release locks within the same functional space.
■ Avoid holding driver mutexes when calling DDI interfaces that can block, for example,

kmem_alloc(9F) with KM_SLEEP.

To look at lock usage, use lockstat(1M). lockstat(1M) monitors all kernel lock events,
gathers frequency and timing data about the events, and displays the data.

See the Multithreaded Programming Guide for more details on multithreaded operations.

Potential Locking Pitfalls
Mutexes are not re-entrant by the same thread. If you already own the mutex, attempting to
claim this mutex a second time leads to the following panic:

panic: recursive mutex_enter. mutex %x caller %x

Releasing a mutex that the current thread does not hold causes this panic:

panic: mutex_adaptive_exit: mutex not held by thread

The following panic occurs only on uniprocessors:

panic: lock_set: lock held and only one CPU

The lock_set panic indicates that a spin mutex is held and will spin forever, because no other
CPU can release this mutex. This situation can happen if the driver forgets to release the mutex
on one code path or becomes blocked while holding the mutex.

Choosing a Locking Scheme

Writing Device Drivers • March 201274

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fkmem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mlockstat-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mlockstat-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824_01&id=MTP

A common cause of the lock_set panic occurs when a device with a high-level interrupt calls a
routine that blocks, such as cv_wait(9F). Another typical cause is a high-level handler grabbing
an adaptive mutex by calling mutex_enter(9F).

Threads Unable to Receive Signals
The sema_p_sig(), cv_wait_sig(), and cv_timedwait_sig() functions can be awakened
when the thread receives a signal. A problem can arise because some threads are unable to
receive signals. For example, when close(9E) is called as a result of the application calling
close(2), signals can be received. However, when close(9E) is called from within the exit(2)
processing that closes all open file descriptors, the thread cannot receive signals. When the
thread cannot receive signals, sema_p_sig() behaves as sema_p(), cv_wait_sig() behaves as
cv_wait(), and cv_timedwait_sig() behaves as cv_timedwait().

Use caution to avoid sleeping forever on events that might never occur. Events that never occur
create unkillable (defunct) threads and make the device unusable until the system is rebooted.
Signals cannot be received by defunct processes.

To detect whether the current thread is able to receive a signal, use the
ddi_can_receive_sig(9F) function. If the ddi_can_receive_sig()function returns B_TRUE,
then the above functions can wake up on a received signal. If the
ddi_can_receive_sig()function returns B_FALSE, then the above functions cannot wake up
on a received signal. If the ddi_can_receive_sig()function returns B_FALSE, then the driver
should use an alternate means, such as the timeout(9F) function, to reawaken.

One important case where this problem occurs is with serial ports. If the remote system asserts
flow control and the close(9E) function blocks while attempting to drain the output data, a
port can be stuck until the flow control condition is resolved or the system is rebooted. Such
drivers should detect this case and set up a timer to abort the drain operation when the flow
control condition persists for an excessive period of time.

This issue also affects the qwait_sig(9F) function, which is described in Chapter 7, “STREAMS
Framework – Kernel Level,” in STREAMS Programming Guide.

Choosing a Locking Scheme

Chapter 3 • Multithreading 75

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmutex-enter-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2close-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-can-receive-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Ftimeout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fqwait-sig-9f
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=STREAMSfrmkern7-17735
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=STREAMSfrmkern7-17735

76

Properties

Properties are user-defined, name-value pair structures that are managed using the DDI/DKI
interfaces. This chapter provides information on the following subjects:

■ “Device Property Names” on page 78
■ “Creating and Updating Properties” on page 78
■ “Looking Up Properties” on page 78
■ “prop_op() Entry Point” on page 81

Device Properties
Device attribute information can be represented by a name-value pair notation called a
property.

For example, device registers and onboard memory can be represented by the reg property. The
reg property is a software abstraction that describes device hardware registers. The value of the
reg property encodes the device register address location and size. Drivers use the reg property
to access device registers.

Another example is the interrupt property. An interrupt property represents the device
interrupt. The value of the interrupt property encodes the device-interrupt PIN.

Five types of values can be assigned to properties:

■ Byte array – Series of bytes of an arbitrary length
■ Integer property – An integer value
■ Integer array property – An array of integers
■ String property – A null-terminated string
■ String array property – A list of null-terminated strings

A property that has no value is considered to be a Boolean property. A Boolean property that
exists is true. A Boolean value that does not exist is false.

4C H A P T E R 4

77

Device Property Names
Strictly speaking, DDI/DKI software property names have no restrictions. Certain uses are
recommended, however. The IEEE 1275-1994 Standard for Boot Firmware defines properties
as follows:

A property is a human readable text string consisting of from 1 to 31 printable characters.
Property names cannot contain upper case characters or the characters “/”, “\”, “:”, “[“, “]” and
“@”. Property names beginning with the character “+” are reserved for use by future revisions of
IEEE 1275-1994.

By convention, underscores are not used in property names. Use a hyphen (-) instead. By
convention, property names ending with the question mark character (?) contain values that
are strings, typically TRUE or FALSE, for example auto-boot?.

For a discussion of adding properties in driver configuration files, see the driver.conf(4) man
page. The pm(9P) and pm-components(9P) man pages show how properties are used in power
management. Read the sd(7D) man page as an example of how properties should be
documented in device driver man pages.

Creating and Updating Properties
To create a property for a driver, or to update an existing property, use an interface from the
DDI driver update interfaces such as ddi_prop_update_int(9F) or
ddi_prop_update_string(9F) with the appropriate property type. See Table 4–1 for a list of
available property interfaces. These interfaces are typically called from the driver's attach(9E)
entry point. In the following example, ddi_prop_update_string()creates a string property
called pm-hardware-state with a value of needs-suspend-resume.

/* The following code is to tell cpr that this device

* needs to be suspended and resumed.

*/

(void) ddi_prop_update_string(device, dip,

"pm-hardware-state", "needs-suspend-resume");

In most cases, using a ddi_prop_update() routine is sufficient for updating a property.
Sometimes, however, the overhead of updating a property value that is subject to frequent
change can cause performance problems. See “prop_op() Entry Point” on page 81 for a
description of using a local instance of a property value to avoid using ddi_prop_update().

Looking Up Properties
A driver can request a property from its parent, which in turn can ask its parent. The driver can
control whether the request can go higher than its parent.

Device Properties

Writing Device Drivers • March 201278

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4driver.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Spm-9p
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Spm-components-9p
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7sd-7d
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-update-int-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-update-string-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e

For example, the esp driver in the following example maintains an integer property called
targetx-sync-speed for each target. The x in targetx-sync-speed represents the target
number. The prtconf(1M) command displays driver properties in verbose mode. The
following example shows a partial listing for the esp driver.

% prtconf -v

...

esp, instance #0

Driver software properties:

name <target2-sync-speed> length <4>

value <0x00000fa0>.

...

The following table provides a summary of the property interfaces.

TABLE 4–1 Property Interface Uses

Family Property Interfaces Description

ddi_prop_lookup ddi_prop_exists(9F) Looks up a property and returns successfully if
the property exists. Fails if the property does
not exist

ddi_prop_get_int(9F) Looks up and returns an integer property

ddi_prop_get_int64(9F) Looks up and returns a 64-bit integer property

ddi_prop_lookup_int_array(9F) Looks up and returns an integer array property

ddi_prop_lookup_int64_array(9F) Looks up and returns a 64-bit integer array
property

ddi_prop_lookup_string(9F) Looks up and returns a string property

ddi_prop_lookup_string_array(9F) Looks up and returns a string array property

ddi_prop_lookup_byte_array(9F) Looks up and returns a byte array property

ddi_prop_update ddi_prop_update_int(9F) Updates or creates an integer property

ddi_prop_update_int64(9F) Updates or creates a single 64-bit integer
property

ddi_prop_update_int_array(9F) Updates or creates an integer array property

ddi_prop_update_string(9F) Updates or creates a string property

ddi_prop_update_string_array(9F) Updates or creates a string array property

ddi_prop_update_int64_array(9F) Updates or creates a 64-bit integer array
property

ddi_prop_update_byte_array(9F) Updates or creates a byte array property

ddi_prop_remove ddi_prop_remove(9F) Removes a property

Device Properties

Chapter 4 • Properties 79

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mprtconf-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-exists-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-get-int-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-get-int64-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-lookup-int-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-lookup-int64-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-lookup-string-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-lookup-string-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-lookup-byte-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-update-int-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-update-int64-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-update-int-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-update-string-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-update-string-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-update-int64-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-update-byte-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-remove-9f

TABLE 4–1 Property Interface Uses (Continued)
Family Property Interfaces Description

ddi_prop_remove_all(9F) Removes all properties that are associated with
a device

Whenever possible, use 64-bit versions of int property interfaces such as
ddi_prop_update_int64(9F) instead of 32-bit versions such as ddi_prop_update_int(9F)).

Changes to the driver.conf File
When a system running the Oracle Solaris OS is upgraded, new versions of drivers may be
installed. During the upgrade process, the driver.conf file is also updated on the system. The
driver.conf file is customized by both the vendor and the system administrator. During a
system upgrade, the system's previous configuration should continue to work with the new
drivers, the vendor's driver.conf file and with the administrator's driver.conf file.

In the Oracle Solaris 11 release, driver writers have an option to provide a separate driver.conf
file that will contain the vendor provided driver data. The new driver.conf file is stored in the
/etc/driver/drv directory. This enables the system to retain any administrative changes made
to the file. If a driver is found in both the configuration files, the system will merge the files and
present a file with the combined properties. The format of the vendor's driver.conf file is the
same as the administrator's driver configuration file.

The vendor and administrative configuration data can now be made available to the driver
explicitly via new interfaces. This enables the driver writer to encode any merge logic directly in
the driver rather than in the class action scripts or the pre–install scripts and post–install scripts.
The customizations made to the administrative file are preserved and the driver can decide on
the relevance of the new values to the old values.

In order for a driver to ensure that the above model works well, the driver developer should
consider the following:
■ Design the driver such that a set of disciplined, configurable options are available.
■ Describe fully the driver's options and the model in the driver documentation and man

pages.
■ If the driver changes its configuration options such that the administrator settings are either

invalidated or superseded, the driver should ensure that previous administrative settings are
honored. To lookup the previous configuration, the driver can use the
ddi_prop_lookup(9F) interface with the property type set to either DDI_PROP_VENDOR or
DDI_PROP_ADMIN.
For example, if a driver supports a timeout configuration in units of seconds and a new
version of the driver now supports a finer timeout granularity in units of milliseconds. The
new property should be named such that it can be distinguished from the previous property.

Device Properties

Writing Device Drivers • March 201280

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-remove-all-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-update-int64-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-update-int-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-lookup-9f

The driver should then look up the earlier property on the administrative list and if the
property is found, the driver should continue to honor it. The following driver code
illustrates the timeout example.

EXAMPLE 4–1 Driver Check for Locally Configured Timeout Value

* Has the timeout been locally configured using the

+ * prior option of timeout in units of seconds?

+ */

+ if (ddi_prop_lookup_int(DDI_DEV_T_ANY, dip,

+ DDI_PROP_ADMIN, "timeout",&ivalues,&n) ==

+ DDI_PROP_SUCCESS) {

+ if (n != 1) {

+ ddi_prop_free(ivalues);

+ return (EINVAL);

+ }

+ /* yes - convert our working timeout accordingly */

+ dip->ms_timeout = 1000 * ivalues[0];

+ /* record the new parameter setting for confirmation */

+ (void) ddi_prop_update_int(DDI_DEV_T_NONE,

+ dip, "ms-timeout", dip->ms_timeout);

+ ddi_prop_free(ivalues);

+ }

The prtconf(1M) command displays the driver properties and the new -u option can be used
to display the original property value and the changed property value.

prop_op() Entry Point
The prop_op(9E) entry point is generally required for reporting device properties or driver
properties to the system. If the driver does not need to create or manage its own properties, then
the ddi_prop_op(9F) function can be used for this entry point.

ddi_prop_op(9F) can be used as the prop_op(9E) entry point for a device driver when
ddi_prop_op() is defined in the driver's cb_ops(9S) structure. ddi_prop_op() enables a leaf
device to search for and obtain property values from the device's property list.

If the driver has to maintain a property whose value changes frequently, you should define a
driver-specific prop_op() routine within the cb_ops structure instead of calling
ddi_prop_op(). This technique avoids the inefficiency of using ddi_prop_update()
repeatedly. The driver should then maintain a copy of the property value either within its
soft-state structure or in a driver variable.

The prop_op(9E) entry point reports the values of specific driver properties and device
properties to the system. In many cases, the ddi_prop_op(9F) routine can be used as the driver's
prop_op() entry point in the cb_ops(9S) structure. ddi_prop_op() performs all of the required
processing. ddi_prop_op() is sufficient for drivers that do not require special processing when
handling device property requests.

Device Properties

Chapter 4 • Properties 81

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mprtconf-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprop-op-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-op-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-op-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprop-op-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Scb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprop-op-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-op-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Scb-ops-9s

However, sometimes the driver must provide a prop_op() entry point. For example, if a driver
maintains a property whose value changes frequently, updating the property with
ddi_prop_update(9F) for each change is not efficient. Instead, the driver should maintain a
shadow copy of the property in the instance's soft state. The driver would then update the
shadow copy when the value changes without using any of the ddi_prop_update() routines.
The prop_op() entry point must intercept requests for this property and use one of the
ddi_prop_update() routines to update the value of the property before passing the request to
ddi_prop_op() to process the property request.

In the following example, prop_op() intercepts requests for the temperature property. The
driver updates a variable in the state structure whenever the property changes. However, the
property is updated only when a request is made. The driver then uses ddi_prop_op() to
process the property request. If the property request is not specific to a device, the driver does
not intercept the request. This situation is indicated when the value of the dev parameter is
equal to DDI_DEV_T_ANY, the wildcard device number.

EXAMPLE 4–2 prop_op() Routine

static int

xx_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,

int flags, char *name, caddr_t valuep, int *lengthp)

{

minor_t instance;

struct xxstate *xsp;

if (dev != DDI_DEV_T_ANY) {

return (ddi_prop_op(dev, dip, prop_op, flags, name,

valuep, lengthp));

}

instance = getminor(dev);

xsp = ddi_get_soft_state(statep, instance);

if (xsp == NULL)

return (DDI_PROP_NOTFOUND);

if (strcmp(name, "temperature") == 0) {

ddi_prop_update_int(dev, dip, name, temperature);

}

/* other cases */

}

Device Properties

Writing Device Drivers • March 201282

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-update-9f

Managing Events and Queueing Tasks

Drivers use events to respond to state changes. This chapter provides the following information
on events:

■ “Introduction to Events” on page 83
■ “Using ddi_log_sysevent() to Log Events” on page 85
■ “Defining Event Attributes” on page 86

Drivers use task queues to manage resource dependencies between tasks. This chapter provides
the following information about task queues:

■ “Introduction to Task Queues” on page 89
■ “Task Queue Interfaces” on page 90
■ “Observing Task Queues” on page 90

Managing Events
A system often needs to respond to a condition change such as a user action or system request.
For example, a device might issue a warning when a component begins to overheat, or might
start a movie player when a DVD is inserted into a drive. Device drivers can use a special
message called an event to inform the system that a change in state has taken place.

Introduction to Events
An event is a message that a device driver sends to interested entities to indicate that a change of
state has taken place. Events are implemented in the Oracle Solaris OS as user-defined,
name-value pair structures that are managed using the nvlist* functions. (See the
nvlist_alloc(9F) man page. Events are organized by vendor, class, and subclass. For example,
you could define a class for monitoring environmental conditions. An environmental class
could have subclasses to indicate changes in temperature, fan status, and power.

5C H A P T E R 5

83

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnvlist-alloc-9f

When a change in state occurs, the device notifies the driver. The driver then uses the
ddi_log_sysevent(9F) function to log this event in a queue called sysevent. The sysevent
queue passes events to the user level for handling by either the syseventd daemon or
syseventconfd daemon. These daemons send notifications to any applications that have
subscribed for notification of the specified event.

Two methods for designers of user-level applications deal with events:

■ An application can use the routines in libsysevent(3LIB) to subscribe with the syseventd
daemon for notification when a specific event occurs.

■ A developer can write a separate user-level application to respond to an event. This type of
application needs to be registered with syseventadm(1M). When syseventconfd

encounters the specified event, the application is run and deals with the event accordingly.

This process is illustrated in the following figure.

FIGURE 5–1 Event Plumbing

syseventadm(1M)

libsysevent

Driver

syseventd

Application

syseventconfd

sysevent.conf
Registry

Kernel level

User level

Sysevent
Queue

ddi_log_sysevent(9F)

Managing Events

Writing Device Drivers • March 201284

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-log-sysevent-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN3Flibsysevent-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Msyseventadm-1m

Using ddi_log_sysevent() to Log Events
Device drivers use the ddi_log_sysevent(9F) interface to generate and log events with the
system.

ddi_log_sysevent() Syntax
ddi_log_sysevent() uses the following syntax:

int ddi_log_sysevent(dev_info_t *dip, char *vendor, char *class,

char *subclass, nvlist_t *attr-list, sysevent_id_t *eidp, int sleep-flag);

where:

dip A pointer to the dev_info node for this driver.

vendor A pointer to a string that defines the driver's vendor. Third-party drivers should
use their company's stock symbol or a similarly enduring identifier.
Oracle-supplied drivers use DDI_VENDOR_SUNW.

class A pointer to a string defining the event's class. class is a driver-specific value. An
example of a class might be a string that represents a set of environmental
conditions that affect a device. This value must be understood by the event
consumer.

subclass A driver-specific string that represents a subset of the class argument. For
example, within a class that represents environmental conditions, an event
subclass might refer to the device's temperature. This value must be intelligible to
the event consumer.

attr-list A pointer to an nvlist_t structure that lists name-value attributes associated
with the event. Name-value attributes are driver-defined and can refer to a specific
attribute or condition of the device.

For example, consider a device that reads both CD-ROMs and DVDs. That device
could have an attribute with the name disc_type and the value equal to either
cd_rom or dvd.

As with class and subclass, an event consumer must be able to interpret the
name-value pairs.

For more information on name-value pairs and the nvlist_t structure, see
“Defining Event Attributes” on page 86, as well as the nvlist_alloc(9F) man
page.

If the event has no attributes, then this argument should be set to NULL.

Managing Events

Chapter 5 • Managing Events and Queueing Tasks 85

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-log-sysevent-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnvlist-alloc-9f

eidp The address of a sysevent_id_t structure. The sysevent_id_t structure is used
to provide a unique identification for the event. ddi_log_sysevent(9F) returns
this structure with a system-provided event sequence number and time stamp.
See the ddi_log_sysevent(9F) man page for more information on the
sysevent_id_t structure.

sleep-flag A flag that indicates how the caller wants to handle the possibility of resources not
being available. If sleep-flag is set to DDI_SLEEP, the driver blocks until the
resources become available. With DDI_NOSLEEP, an allocation will not sleep and
cannot be guaranteed to succeed. If DDI_ENOMEM is returned, the driver would
need to retry the operation at a later time.

Even with DDI_SLEEP, other error returns are possible with this interface, such as
system busy, the syseventd daemon not responding, or trying to log an event in
interrupt context.

Sample Code for Logging Events
A device driver performs the following tasks to log events:

■ Allocate memory for the attribute list using nvlist_alloc(9F)
■ Add name-value pairs to the attribute list
■ Use the ddi_log_sysevent(9F) function to log the event in the sysevent queue
■ Call nvlist_free(9F) when the attribute list is no longer needed

The following example demonstrates how to use ddi_log_sysevent().

EXAMPLE 5–1 Calling ddi_log_sysevent()

char *vendor_name = "DDI_VENDOR_JGJG"
char *my_class = "JGJG_event";
char *my_subclass = "JGJG_alert";
nvlist_t *nvl;

/* ... */

nvlist_alloc(&nvl, nvflag, kmflag);

/* ... */

(void) nvlist_add_byte_array(nvl, propname, (uchar_t *)propval, proplen + 1);

/* ... */

if (ddi_log_sysevent(dip, vendor_name, my_class,

my_subclass, nvl, NULL, DDI_SLEEP)!= DDI_SUCCESS)

cmn_err(CE_WARN, "error logging system event");
nvlist_free(nvl);

Defining Event Attributes
Event attributes are defined as a list of name-value pairs. The Oracle Solaris DDI provides
routines and structures for storing information in name-value pairs. Name-value pairs are
retained in an nvlist_t structure, which is opaque to the driver. The value for a name-value

Managing Events

Writing Device Drivers • March 201286

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-log-sysevent-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnvlist-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-log-sysevent-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnvlist-free-9f

pair can be a Boolean, an int, a byte, a string, an nvlist, or an array of these data types. An int

can be defined as 16 bits, 32 bits, or 64 bits and can be signed or unsigned.

The steps in creating a list of name-value pairs are as follows.

1. Create an nvlist_t structure with nvlist_alloc(9F).
The nvlist_alloc() interface takes three arguments:
■ nvlp – Pointer to a pointer to an nvlist_t structure
■ nvflag – Flag to indicate the uniqueness of the names of the pairs. If this flag is set to

NV_UNIQUE_NAME_TYPE, any existing pair that matches the name and type of a new pair is
removed from the list. If the flag is set to NV_UNIQUE_NAME, then any existing pair with a
duplicate name is removed, regardless of its type. Specifying NV_UNIQUE_NAME_TYPE
allows a list to contain two or more pairs with the same name as long as their types are
different, whereas with NV_UNIQUE_NAME only one instance of a pair name can be in the
list. If the flag is not set, then no uniqueness checking is done and the consumer of the list
is responsible for dealing with duplicates.

■ kmflag – Flag to indicate the allocation policy for kernel memory. If this argument is set
to KM_SLEEP, then the driver blocks until the requested memory is available for
allocation. KM_SLEEP allocations might sleep but are guaranteed to succeed. KM_NOSLEEP
allocations are guaranteed not to sleep but might return NULL if no memory is currently
available.

2. Populate the nvlist with name-value pairs. For example, to add a string, use
nvlist_add_string(9F). To add an array of 32-bit integers, use
nvlist_add_int32_array(9F). The nvlist_add_boolean(9F) man page contains a
complete list of interfaces for adding pairs.

To deallocate a list, use nvlist_free(9F).

The following code sample illustrates the creation of a name-value list.

EXAMPLE 5–2 Creating and Populating a Name-Value Pair List

nvlist_t*

create_nvlist()

{

int err;

char *str = "child";
int32_t ints[] = {0, 1, 2};

nvlist_t *nvl;

err = nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0); /* allocate list */

if (err)

return (NULL);

if ((nvlist_add_string(nvl, "name", str) != 0) ||

(nvlist_add_int32_array(nvl, "prop", ints, 3) != 0)) {

nvlist_free(nvl);

return (NULL);

}

Managing Events

Chapter 5 • Managing Events and Queueing Tasks 87

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnvlist-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnvlist-add-string-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnvlist-add-int32-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnvlist-add-boolean-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnvlist-free-9f

EXAMPLE 5–2 Creating and Populating a Name-Value Pair List (Continued)

return (nvl);

}

Drivers can retrieve the elements of an nvlist by using a lookup function for that type, such as
nvlist_lookup_int32_array(9F), which takes as an argument the name of the pair to be
searched for.

Note – These interfaces work only if either NV_UNIQUE_NAME or NV_UNIQUE_NAME_TYPE is
specified when nvlist_alloc(9F) is called. Otherwise, ENOTSUP is returned, because the list
cannot contain multiple pairs with the same name.

A list of name-value list pairs can be placed in contiguous memory. This approach is useful for
passing the list to an entity that has subscribed for notification. The first step is to get the size of
the memory block that is needed for the list with nvlist_size(9F). The next step is to pack the
list into the buffer with nvlist_pack(9F). The consumer receiving the buffer's content can
unpack the buffer with nvlist_unpack(9F).

The functions for manipulating name-value pairs are available to both user-level and
kernel-level developers. You can find identical man pages for these functions in both man pages
section 3: Library Interfaces and Headers and in man pages section 9: DDI and DKI Kernel
Functions. For a list of functions that operate on name-value pairs, see the following table.

TABLE 5–1 Functions for Using Name-Value Pairs

Man Page Purpose / Functions

nvlist_add_boolean(9F) Add name-value pairs to the list. Functions include:

nvlist_add_boolean(), nvlist_add_boolean_value(), nvlist_add_byte(),
nvlist_add_int8(), nvlist_add_uint8(), nvlist_add_int16(),
nvlist_add_uint16(), nvlist_add_int32(), nvlist_add_uint32(),
nvlist_add_int64(), nvlist_add_uint64(), nvlist_add_string(),
nvlist_add_nvlist(), nvlist_add_nvpair(), nvlist_add_boolean_array(),
nvlist_add_int8_array, nvlist_add_uint8_array(), nvlist_add_nvlist_array(),
nvlist_add_byte_array(), nvlist_add_int16_array(), nvlist_add_uint16_array(),
nvlist_add_int32_array(), nvlist_add_uint32_array(),
nvlist_add_int64_array(), nvlist_add_uint64_array(),
nvlist_add_string_array()

nvlist_alloc(9F) Manipulate the name-value list buffer. Functions include:

nvlist_alloc(), nvlist_free(), nvlist_size(), nvlist_pack(), nvlist_unpack(),
nvlist_dup(), nvlist_merge()

Managing Events

Writing Device Drivers • March 201288

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnvlist-lookup-int32-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnvlist-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnvlist-size-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnvlist-pack-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnvlist-unpack-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN3F
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN3F
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9F
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9F
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnvlist-add-boolean-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnvlist-alloc-9f

TABLE 5–1 Functions for Using Name-Value Pairs (Continued)
Man Page Purpose / Functions

nvlist_lookup_boolean(9F) Search for name-value pairs. Functions include:

nvlist_lookup_boolean(), nvlist_lookup_boolean_value(), nvlist_lookup_byte(),
nvlist_lookup_int8(), nvlist_lookup_int16(), nvlist_lookup_int32(),
nvlist_lookup_int64(), nvlist_lookup_uint8(), nvlist_lookup_uint16(),
nvlist_lookup_uint32(), nvlist_lookup_uint64(), nvlist_lookup_string(),
nvlist_lookup_nvlist(), nvlist_lookup_boolean_array,
nvlist_lookup_byte_array(), nvlist_lookup_int8_array(),
nvlist_lookup_int16_array(), nvlist_lookup_int32_array(),
nvlist_lookup_int64_array(), nvlist_lookup_uint8_array(),
nvlist_lookup_uint16_array(), nvlist_lookup_uint32_array(),
nvlist_lookup_uint64_array(), nvlist_lookup_string_array(),
nvlist_lookup_nvlist_array(), nvlist_lookup_pairs()

nvlist_next_nvpair(9F) Get name-value pair data. Functions include:

nvlist_next_nvpair(), nvpair_name(), nvpair_type()

nvlist_remove(9F) Remove name-value pairs. Functions include:

nv_remove(), nv_remove_all()

Queueing Tasks
This section discusses how to use task queues to postpone processing of some tasks and delegate
their execution to another kernel thread.

Introduction to Task Queues
A common operation in kernel programming is to schedule a task to be performed at a later
time, by a different thread. The following examples give some reasons that you might want a
different thread to perform a task at a later time:

■ Your current code path is time critical. The additional task you want to perform is not time
critical.

■ The additional task might require grabbing a lock that another thread is currently holding.
■ You cannot block in your current context. The additional task might need to block, for

example to wait for memory.
■ A condition is preventing your code path from completing, but your current code path

cannot sleep or fail. You need to queue the current task to execute after the condition
disappears.

■ You need to launch multiple tasks in parallel.

Queueing Tasks

Chapter 5 • Managing Events and Queueing Tasks 89

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnvlist-lookup-boolean-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnvlist-next-nvpair-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnvlist-remove-9f

In each of these cases, a task is executed in a different context. A different context is usually a
different kernel thread with a different set of locks held and possibly a different priority. Task
queues provide a generic kernel API for scheduling asynchronous tasks.

A task queue is a list of tasks with one or more threads to service the list. If a task queue has a
single service thread, all tasks are guaranteed to execute in the order in which they are added to
the list. If a task queue has more than one service thread, the order in which the tasks will
execute is not known.

Note – If the task queue has more than one service thread, make sure that the execution of one
task does not depend on the execution of any other task. Dependencies between tasks can cause
a deadlock to occur.

Task Queue Interfaces
The following DDI interfaces manage task queues. These interfaces are defined in the
sys/sunddi.h header file. See the taskq(9F) man page for more information about these
interfaces.

ddi_taskq_t Opaque handle

TASKQ_DEFAULTPRI System default priority

DDI_SLEEP Can block for memory

DDI_NOSLEEP Cannot block for memory

ddi_taskq_create() Create a task queue

ddi_taskq_destroy() Destroy a task queue

ddi_taskq_dispatch() Add a task to a task queue

ddi_taskq_wait() Wait for pending tasks to complete

ddi_taskq_suspend() Suspend a task queue

ddi_taskq_suspended() Check whether a task queue is suspended

ddi_taskq_resume() Resume a suspended task queue

Observing Task Queues
The typical usage in drivers is to create task queues at attach(9E). Most taskq_dispatch()
invocations are from interrupt context.

Queueing Tasks

Writing Device Drivers • March 201290

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Ftaskq-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e

This section describes two techniques that you can use to monitor the system resources that are
consumed by a task queue. Task queues export statistics on the use of system time by task queue
threads. Task queues also use DTrace SDT probes to determine when a task queue starts and
finishes execution of a task.

Task Queue Kernel Statistics Counters
Every task queue has an associated set of kstat counters. Examine the output of the following
kstat(1M) command:

$ kstat -c taskq

module: unix instance: 0

name: ata_nexus_enum_tq class: taskq

crtime 53.877907833

executed 0

maxtasks 0

nactive 1

nalloc 0

priority 60

snaptime 258059.249256749

tasks 0

threads 1

totaltime 0

module: unix instance: 0

name: callout_taskq class: taskq

crtime 0

executed 13956358

maxtasks 4

nactive 4

nalloc 0

priority 99

snaptime 258059.24981709

tasks 13956358

threads 2

totaltime 120247890619

The kstat output shown above includes the following information:
■ The name of the task queue and its instance number
■ The number of scheduled (tasks) and executed (executed) tasks
■ The number of kernel threads processing the task queue (threads) and their priority

(priority)
■ The total time (in nanoseconds) spent processing all the tasks (totaltime)

The following example shows how you can use the kstat command to observe how a counter
(number of scheduled tasks) increases over time:

$ kstat -p unix:0:callout_taskq:tasks 1 5

unix:0:callout_taskq:tasks 13994642

unix:0:callout_taskq:tasks 13994711

Queueing Tasks

Chapter 5 • Managing Events and Queueing Tasks 91

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mkstat-1m

unix:0:callout_taskq:tasks 13994784

unix:0:callout_taskq:tasks 13994855

unix:0:callout_taskq:tasks 13994926

Task Queue DTrace SDT Probes
Task queues provide several useful SDT probes. All the probes described in this section have the
following two arguments:

■ The task queue pointer returned by ddi_taskq_create()
■ The pointer to the taskq_ent_t structure. Use this pointer in your D script to extract the

function and the argument.

You can use these probes to collect precise timing information about individual task queues and
individual tasks being executed through them. For example, the following script prints the
functions that were scheduled through task queues for every 10 seconds:

!/usr/sbin/dtrace -qs

sdt:genunix::taskq-enqueue

{

this->tq = (taskq_t *)arg0;

this->tqe = (taskq_ent_t *) arg1;

@[this->tq->tq_name,

this->tq->tq_instance,

this->tqe->tqent_func] = count();

}

tick-10s

{

printa ("%s(%d): %a called %@d times\n", @);

trunc(@);

}

On a particular machine, the above D script produced the following output:

callout_taskq(1): genunix‘callout_execute called 51 times

callout_taskq(0): genunix‘callout_execute called 701 times

kmem_taskq(0): genunix‘kmem_update_timeout called 1 times

kmem_taskq(0): genunix‘kmem_hash_rescale called 4 times

callout_taskq(1): genunix‘callout_execute called 40 times

USB_hid_81_pipehndl_tq_1(14): usba‘hcdi_cb_thread called 256 times

callout_taskq(0): genunix‘callout_execute called 702 times

kmem_taskq(0): genunix‘kmem_update_timeout called 1 times

kmem_taskq(0): genunix‘kmem_hash_rescale called 4 times

callout_taskq(1): genunix‘callout_execute called 28 times

USB_hid_81_pipehndl_tq_1(14): usba‘hcdi_cb_thread called 228 times

callout_taskq(0): genunix‘callout_execute called 706 times

callout_taskq(1): genunix‘callout_execute called 24 times

USB_hid_81_pipehndl_tq_1(14): usba‘hcdi_cb_thread called 141 times

callout_taskq(0): genunix‘callout_execute called 708 times

Queueing Tasks

Writing Device Drivers • March 201292

Driver Autoconfiguration

Autoconfiguration means the driver loads code and static data into memory. This information
is then registered with the system. Autoconfiguration also involves attaching individual device
instances that are controlled by the driver.

This chapter provides information on the following subjects:

■ “Driver Loading and Unloading” on page 93
■ “Data Structures Required for Drivers” on page 94
■ “Loadable Driver Interfaces” on page 97
■ “Device Configuration Concepts” on page 100
■ “Using Device IDs” on page 112

Driver Loading and Unloading
The system loads driver binary modules from the drv subdirectory of the kernel module
directory for autoconfiguration. See “Copying the Driver to a Module Directory” on page 493.

After a module is read into memory with all symbols resolved, the system calls the _init(9E)
entry point for that module. The _init() function calls mod_install(9F), which actually loads
the module.

Note – During the call to mod_install(), other threads are able to call attach(9E) as soon as
mod_install() is called. From a programming standpoint, all _init() initialization must
occur before mod_install() is called. If mod_install() fails (that is a nonzero value is
returned), then the initialization must be backed out.

Upon successful completion of _init(), the driver is properly registered with the system. At
this point, the driver is not actively managing any device. Device management happens as part
of device configuration.

6C H A P T E R 6

93

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmod-install-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e

The system unloads driver binary modules either to conserve system memory or at the explicit
request of a user. Before deleting the driver code and data from memory, the _fini(9E) entry
point of the driver is invoked. The driver is unloaded, if and only if _fini() returns success.

The following figure provides a structural overview of a device driver. The shaded area
highlights the driver data structures and entry points. The upper half of the shaded area
contains data structures and entry points that support driver loading and unloading. The lower
half is concerned with driver configuration.

Data Structures Required for Drivers
To support autoconfiguration, drivers are required to statically initialize the following data
structures:

■ modlinkage(9S)
■ modldrv(9S)
■ dev_ops(9S)
■ cb_ops(9S)

The data structures in Figure 5-1 are relied on by the driver. These structures must be provided
and be initialized correctly. Without these data structures, the driver might not load properly.
As a result, the necessary routines might not be loaded. If an operation is not supported by the
driver, the address of the nodev(9F) routine can be used as a placeholder. In some instances, the
driver supports the entry point and only needs to return success or failure. In such cases, the
address of the routine nulldev(9F) can be used.

FIGURE 6–1 Module Loading and Autoconfiguration Entry Points

modldrv(9S)

dev_ops(9S)

cb_ops(9S)

_info()
_fini()
_init()

attach(9E)
detach(9E)
getinfo(9E)
probe(9E)
power(9E)

modlinkage(9S)

Data Structures Required for Drivers

Writing Device Drivers • March 201294

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Smodlinkage-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Smodldrv-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sdev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Scb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnulldev-9f

Note – These structures should be initialized at compile-time. The driver should not access or
change the structures at any other time.

modlinkage Structure
static struct modlinkage xxmodlinkage = {

MODREV_1, /* ml_rev */

&xxmodldrv, /* ml_linkage[] */

NULL /* NULL termination */

};

The first field is the version number of the module that loads the subsystem. This field should be
MODREV_1. The second field points to driver's modldrv structure defined next. The last element
of the structure should always be NULL.

modldrv Structure
static struct modldrv xxmodldrv = {

&mod_driverops, /* drv_modops */

"generic driver v1.1", /* drv_linkinfo */

&xx_dev_ops /* drv_dev_ops */

};

This structure describes the module in more detail. The first field provides information
regarding installation of the module. This field should be set to &mod_driverops for driver
modules. The second field is a string to be displayed by modinfo(1M). The second field should
contain sufficient information for identifying the version of source code that generated the
driver binary. The last field points to the driver's dev_ops structure defined in the following
section.

dev_ops Structure
static struct dev_ops xx_dev_ops = {

DEVO_REV, /* devo_rev */

0, /* devo_refcnt */

xxgetinfo, /* devo_getinfo: getinfo(9E) */

nulldev, /* devo_identify: identify(9E) */

xxprobe, /* devo_probe: probe(9E) */

xxattach, /* devo_attach: attach(9E) */

xxdetach, /* devo_detach: detach(9E) */

nodev, /* devo_reset: see devo_quiesce */

&xx_cb_ops, /* devo_cb_ops */

NULL, /* devo_bus_ops */

&xxpower, /* devo_power: power(9E) */

ddi_quiesce_not_needed, /* devo_quiesce: quiesce(9E) */

};

Data Structures Required for Drivers

Chapter 6 • Driver Autoconfiguration 95

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mmodinfo-1m

The dev_ops(9S) structure enables the kernel to find the autoconfiguration entry points of the
device driver. The devo_rev field identifies the revision number of the structure. This field must
be set to DEVO_REV. The devo_refcnt field must be initialized to zero. The function address
fields should be filled in with the address of the appropriate driver entry point, except in the
following cases:
■ Set the devo_identify field to nulldev(9F). The identify() entry point is obsolete.
■ Set the devo_probe field to nulldev(9F) if a probe(9E) routine is not needed.
■ Set the devo_reset field to nodev(9F). The nodev() function returns ENXIO. See

devo_quiesce.
■ Set the devo_power field to NULL if a power() routine is not needed. Drivers for devices that

provide Power Management functionality must have a power(9E) entry point. See
Chapter 12, “Power Management.”

■ Set the devo_quiesce field to ddi_quiesce_not_needed() if the driver does not need to
implement quiesce. Drivers that manage devices must provide a quiesce(9E) entry point.

The devo_cb_ops member should include the address of the cb_ops(9S) structure. The
devo_bus_ops field must be set to NULL.

cb_ops Structure
static struct cb_ops xx_cb_ops = {

xxopen, /* open(9E) */

xxclose, /* close(9E) */

xxstrategy, /* strategy(9E) */

xxprint, /* print(9E) */

xxdump, /* dump(9E) */

xxread, /* read(9E) */

xxwrite, /* write(9E) */

xxioctl, /* ioctl(9E) */

xxdevmap, /* devmap(9E) */

nodev, /* mmap(9E) */

xxsegmap, /* segmap(9E) */

xxchpoll, /* chpoll(9E) */

xxprop_op, /* prop_op(9E) */

NULL, /* streamtab(9S) */

D_MP | D_64BIT, /* cb_flag */

CB_REV, /* cb_rev */

xxaread, /* aread(9E) */

xxawrite /* awrite(9E) */

};

The cb_ops(9S) structure contains the entry points for the character operations and block
operations of the device driver. Any entry points that the driver does not support should be
initialized to nodev(9F). For example, character device drivers should set all the block-only
fields, such as cb_stategy, to nodev(9F). Note that the mmap(9E) entry point is maintained for
compatibility with previous releases. Drivers should use the devmap(9E) entry point for device
memory mapping. If devmap(9E) is supported, set mmap(9E) to nodev(9F).

Data Structures Required for Drivers

Writing Device Drivers • March 201296

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sdev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnulldev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnulldev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Epower-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Equiesce-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Scb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Scb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnodev-9f

The streamtab field indicates whether the driver is STREAMS-based. Only the network device
drivers that are discussed in Chapter 19, “Drivers for Network Devices,” are STREAMS-based.
All non-STREAMS-based drivers must set the streamtab field to NULL.

The cb_flag member contains the following flags:

■ The D_MP flag indicates that the driver is safe for multithreading. The Oracle Solaris OS
supports only thread-safe drivers so D_MP must be set.

■ The D_64BIT flag causes the driver to use the uio_loffset field of the uio(9S) structure. The
driver should set the D_64BIT flag in the cb_flag field to handle 64-bit offsets properly.

■ The D_DEVMAP flag supports the devmap(9E) entry point. For information on devmap(9E), see
Chapter 10, “Mapping Device and Kernel Memory.”

cb_rev is the cb_ops structure revision number. This field must be set to CB_REV.

Loadable Driver Interfaces
Device drivers must be dynamically loadable. Drivers should also be unloadable to help
conserve memory resources. Drivers that can be unloaded are also easier to test, debug, and
patch.

Each device driver is required to implement _init(9E), _fini(9E), and _info(9E) entry points
to support driver loading and unloading. The following example shows a typical
implementation of loadable driver interfaces.

EXAMPLE 6–1 Loadable Interface Section

static void *statep; /* for soft state routines */

static struct cb_ops xx_cb_ops; /* forward reference */

static struct dev_ops xx_ops = {

DEVO_REV,

0,

xxgetinfo,

nulldev,

xxprobe,

xxattach,

xxdetach,

xxreset,

nodev,

&xx_cb_ops,

NULL,

xxpower,

ddi_quiesce_not_needed,

};

static struct modldrv modldrv = {

&mod_driverops,

"xx driver v1.0",
&xx_ops

};

Loadable Driver Interfaces

Chapter 6 • Driver Autoconfiguration 97

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Suio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-info-9e

EXAMPLE 6–1 Loadable Interface Section (Continued)

static struct modlinkage modlinkage = {

MODREV_1,

&modldrv,

NULL

};

int

_init(void)

{

int error;

ddi_soft_state_init(&statep, sizeof (struct xxstate),

estimated_number_of_instances);
/* further per-module initialization if necessary */

error = mod_install(&modlinkage);

if (error != 0) {

/* undo any per-module initialization done earlier */

ddi_soft_state_fini(&statep);

}

return (error);

}

int

_fini(void)

{

int error;

error = mod_remove(&modlinkage);

if (error == 0) {

/* release per-module resources if any were allocated */

ddi_soft_state_fini(&statep);

}

return (error);

}

int

_info(struct modinfo *modinfop)

{

return (mod_info(&modlinkage, modinfop));

}

_init() Example
The following example shows a typical _init(9E) interface.

EXAMPLE 6–2 _init() Function

static void *xxstatep;

int

_init(void)

{

int error;

const int max_instance = 20; /* estimated max device instances */

Loadable Driver Interfaces

Writing Device Drivers • March 201298

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-init-9e

EXAMPLE 6–2 _init() Function (Continued)

ddi_soft_state_init(&xxstatep, sizeof (struct xxstate), max_instance);

error = mod_install(&xxmodlinkage);

if (error != 0) {

/*

* Cleanup after a failure

*/

ddi_soft_state_fini(&xxstatep);

}

return (error);

}

The driver should perform any one-time resource allocation or data initialization during driver
loading in _init(). For example, the driver should initialize any mutexes global to the driver in
this routine. The driver should not, however, use _init(9E) to allocate or initialize anything
that has to do with a particular instance of the device. Per-instance initialization must be done
in attach(9E). For example, if a driver for a printer can handle more than one printer at the
same time, that driver should allocate resources specific to each printer instance in attach().

Note – Once _init(9E) has called mod_install(9F), the driver should not change any of the
data structures attached to the modlinkage(9S) structure because the system might make
copies or change the data structures.

_fini() Example
The following example demonstrates the _fini() routine.

int

_fini(void)

{

int error;

error = mod_remove(&modlinkage);

if (error != 0) {

return (error);

}

/*

* Cleanup resources allocated in _init()

*/

ddi_soft_state_fini(&xxstatep);

return (0);

}

Similarly, in _fini(), the driver should release any resources that were allocated in _init().
The driver must remove itself from the system module list.

Loadable Driver Interfaces

Chapter 6 • Driver Autoconfiguration 99

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-init-9e

Note – _fini() might be called when the driver is attached to hardware instances. In this case,
mod_remove(9F) returns failure. Therefore, driver resources should not be released until
mod_remove() returns success.

_info() Example
The following example demonstrates the _info(9E) routine.

int

_info(struct modinfo *modinfop)

{

return (mod_info(&xxmodlinkage, modinfop));

}

The driver is called to return module information. The entry point should be implemented as
shown above.

Device Configuration Concepts
For each node in the kernel device tree, the system selects a driver for the node based on the
node name and the compatible property (see “Binding a Driver to a Device” on page 62). The
same driver might bind to multiple device nodes. The driver can differentiate different nodes by
instance numbers assigned by the system.

After a driver is selected for a device node, the driver's probe(9E) entry point is called to
determine the presence of the device on the system. If probe() is successful, the driver's
attach(9E) entry point is invoked to set up and manage the device. The device can be opened if
and only if attach() returns success (see “attach() Entry Point” on page 104).

A device might be unconfigured to conserve system memory resources or to enable the device
to be removed while the system is still running. To enable the device to be unconfigured, the
system first checks whether the device instance is referenced. This check involves calling the
driver's getinfo(9E) entry point to obtain information known only to the driver (see
“getinfo() Entry Point” on page 110). If the device instance is not referenced, the driver's
detach(9E) routine is invoked to unconfigure the device (see “detach() Entry Point” on
page 109).

To recap, each driver must define the following entry points that are used by the kernel for
device configuration:

■ probe(9E)
■ attach(9E)
■ detach(9E)

Device Configuration Concepts

Writing Device Drivers • March 2012100

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmod-remove-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-info-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Egetinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e

■ getinfo(9E)

Note that attach(), detach(), and getinfo() are required. probe() is only required for
devices that cannot identify themselves. For self-identifying devices, an explicit probe() routine
can be provided, or nulldev(9F) can be specified in the dev_ops structure for the probe() entry
point.

Device Instances and Instance Numbers
The system assigns an instance number to each device. The driver might not reliably predict the
value of the instance number assigned to a particular device. The driver should retrieve the
particular instance number that has been assigned by calling ddi_get_instance(9F).

Instance numbers represent the system's notion of devices. Each dev_info, that is, each node in
the device tree, for a particular driver is assigned an instance number by the kernel.
Furthermore, instance numbers provide a convenient mechanism for indexing data specific to a
particular physical device. The most common use of instance numbers is
ddi_get_soft_state(9F), which uses instance numbers to retrieve soft state data for specific
physical devices.

Caution – For pseudo devices, that is, the children of pseudo nexuses, the instance numbers are
defined in the driver.conf(4) file using the instance property. If the driver.conf file does
not contain the instance property, the behavior is undefined. For hardware device nodes, the
system assigns instance numbers when the device is first seen by the OS. The instance numbers
persist across system reboots and OS upgrades.

Minor Nodes and Minor Numbers
Drivers are responsible for managing their minor number namespace. For example, the sd
driver needs to export eight character minor nodes and eight block minor nodes to the file
system for each disk. Each minor node represents either a block interface or a character
interface to a portion of the disk. The getinfo(9E) entry point informs the system about the
mapping from minor number to device instance (see “getinfo() Entry Point” on page 110).

probe() Entry Point
For non-self-identifying devices, the probe(9E) entry point should determine whether the
hardware device is present on the system.

For probe() to determine whether the instance of the device is present, probe() needs to
perform many tasks that are also commonly done by attach(9E). In particular, probe() might
need to map the device registers.

Device Configuration Concepts

Chapter 6 • Driver Autoconfiguration 101

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Egetinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnulldev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-get-instance-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-get-soft-state-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4driver.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Egetinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e

Probing the device registers is device-specific. The driver often has to perform a series of tests of
the hardware to assure that the hardware is really present. The test criteria must be rigorous
enough to avoid misidentifying devices. For example, a device might appear to be present when
in fact that device is not available, because a different device seems to behave like the expected
device.

The test returns the following flags:

■ DDI_PROBE_SUCCESS if the probe was successful
■ DDI_PROBE_FAILURE if the probe failed
■ DDI_PROBE_DONTCARE if the probe was unsuccessful yet attach(9E) still needs to be called
■ DDI_PROBE_PARTIAL if the instance is not present now, but might be present in the future

For a given device instance, attach(9E) will not be called until probe(9E) has succeeded at least
once on that device.

probe(9E) must free all the resources that probe() has allocated, because probe() might be
called multiple times. However, attach(9E) is not necessarily called even if probe(9E) has
succeeded

ddi_dev_is_sid(9F) can be used in a driver's probe(9E) routine to determine whether the
device is self-identifying. ddi_dev_is_sid() is useful in drivers written for self-identifying and
non-self-identifying versions of the same device.

The following example is a sample probe() routine.

EXAMPLE 6–3 probe(9E) Routine

static int

xxprobe(dev_info_t *dip)

{

ddi_acc_handle_t dev_hdl;

ddi_device_acc_attr_t dev_attr;

Pio_csr *csrp;

uint8_t csrval;

/*

* if the device is self identifying, no need to probe

*/

if (ddi_dev_is_sid(dip) == DDI_SUCCESS)

return (DDI_PROBE_DONTCARE);

/*

* Initalize the device access attributes and map in

* the devices CSR register (register 0)

*/

dev_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;

dev_attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;

dev_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;

if (ddi_regs_map_setup(dip, 0, (caddr_t *)&csrp, 0, sizeof (Pio_csr),

Device Configuration Concepts

Writing Device Drivers • March 2012102

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dev-is-sid-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprobe-9e

EXAMPLE 6–3 probe(9E) Routine (Continued)

&dev_attr, &dev_hdl) != DDI_SUCCESS)

return (DDI_PROBE_FAILURE);

/*

* Reset the device

* Once the reset completes the CSR should read back

* (PIO_DEV_READY | PIO_IDLE_INTR)

*/

ddi_put8(dev_hdl, csrp, PIO_RESET);

csrval = ddi_get8(dev_hdl, csrp);

/*

* tear down the mappings and return probe success/failure

*/

ddi_regs_map_free(&dev_hdl);

if ((csrval & 0xff) == (PIO_DEV_READY | PIO_IDLE_INTR))

return (DDI_PROBE_SUCCESS);

else

return (DDI_PROBE_FAILURE);

}

When the driver's probe(9E) routine is called, the driver does not know whether the device
being probed exists on the bus. Therefore, the driver might attempt to access device registers for
a nonexistent device. A bus fault might be generated on some buses as a result.

The following example shows a probe(9E) routine that uses ddi_poke8(9F) to check for the
existence of the device. ddi_poke8() cautiously attempts to write a value to a specified virtual
address, using the parent nexus driver to assist in the process where necessary. If the address is
not valid or the value cannot be written without an error occurring, an error code is returned.
See also ddi_peek(9F).

In this example, ddi_regs_map_setup(9F) is used to map the device registers.

EXAMPLE 6–4 probe(9E) Routine Using ddi_poke8(9F)

static int

xxprobe(dev_info_t *dip)

{

ddi_acc_handle_t dev_hdl;

ddi_device_acc_attr_t dev_attr;

Pio_csr *csrp;

uint8_t csrval;

/*

* if the device is self-identifying, no need to probe

*/

if (ddi_dev_is_sid(dip) == DDI_SUCCESS)

return (DDI_PROBE_DONTCARE);

/*

* Initialize the device access attrributes and map in

* the device’s CSR register (register 0)

Device Configuration Concepts

Chapter 6 • Driver Autoconfiguration 103

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-poke8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-peek-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-regs-map-setup-9f

EXAMPLE 6–4 probe(9E) Routine Using ddi_poke8(9F) (Continued)

*/

dev_attr.devacc_attr_version - DDI_DEVICE_ATTR_V0;

dev_attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;

dev_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;

if (ddi_regs_map_setup(dip, 0, (caddr_t *)&csrp, 0, sizeof (Pio_csr),

&dev_attr, &dev_hdl) != DDI_SUCCESS)

return (DDI_PROBE_FAILURE);

/*

* The bus can generate a fault when probing for devices that

* do not exist. Use ddi_poke8(9f) to handle any faults that

* might occur.

*

* Reset the device. Once the reset completes the CSR should read

* back (PIO_DEV_READY | PIO_IDLE_INTR)

*/

if (ddi_poke8(dip, csrp, PIO_RESET) != DDI_SUCCESS) {

ddi_regs_map_free(&dev_hdl);

return (DDI_FAILURE);

csrval = ddi_get8(dev_hdl, csrp);

/*

* tear down the mappings and return probe success/failure

*/

ddi_regs_map_free(&dev_hdl);

if ((csrval & 0xff) == (PIO_DEV_READY | PIO_IDLE_INTR))

return (DDI_PROBE_SUCCESS);

else

return (DDI_PROBE_FAILURE);

}

attach() Entry Point
The kernel calls a driver's attach(9E) entry point to attach an instance of a device or to resume
operation for an instance of a device that has been suspended or has been shut down by the
power management framework. This section discusses only the operation of attaching device
instances. Power management is discussed in Chapter 12, “Power Management.”

A driver's attach(9E) entry point is called to attach each instance of a device that is bound to
the driver. The entry point is called with the instance of the device node to attach, with
DDI_ATTACH specified as the cmd argument to attach(9E). The attach entry point typically
includes the following types of processing:
■ Allocating a soft-state structure for the device instance
■ Initializing per-instance mutexes
■ Initializing condition variables
■ Registering the device's interrupts
■ Mapping the registers and memory of the device instance
■ Creating minor device nodes for the device instance

Device Configuration Concepts

Writing Device Drivers • March 2012104

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e

■ Reporting that the device instance has attached

Driver Soft-State Management
To assist device driver writers in allocating state structures, the Oracle Solaris DDI/DKI
provides a set of memory management routines called software state management routines,
which are also known as the soft-state routines. These routines dynamically allocate, retrieve,
and destroy memory items of a specified size, and hide the details of list management. An
instance number identifies the desired memory item. This number is typically the instance
number assigned by the system.

Drivers typically allocate a soft-state structure for each device instance that attaches to the
driver by calling ddi_soft_state_zalloc(9F), passing the instance number of the device.
Because no two device nodes can have the same instance number,
ddi_soft_state_zalloc(9F) fails if an allocation already exists for a given instance number.

A driver's character or block entry point (cb_ops(9S)) references a particular soft state structure
by first decoding the device's instance number from the dev_t argument that is passed to the
entry point function. The driver then calls ddi_get_soft_state(9F), passing the per-driver
soft-state list and the instance number that was derived. A NULL return value indicates that
effectively the device does not exist and the appropriate code should be returned by the driver.

See “Creating Minor Device Nodes” on page 105 for additional information on how instance
numbers and device numbers, or dev_t's, are related.

Lock Variable and Conditional Variable Initialization
Drivers should initialize any per-instance locks and condition variables during attach. The
initialization of any locks that are acquired by the driver's interrupt handler must be initialized
prior to adding any interrupt handlers. See Chapter 3, “Multithreading,” for a description of
lock initialization and usage. See Chapter 8, “Interrupt Handlers,” for a discussion of interrupt
handler and lock issues.

Creating Minor Device Nodes
An important part of the attach process is the creation of minor nodes for the device instance. A
minor node contains the information exported by the device and the DDI framework. The
system uses this information to create a special file for the minor node under /devices.

Minor nodes are created when the driver calls ddi_create_minor_node(9F). The driver
supplies a minor number, a minor name, a minor node type, and whether the minor node
represents a block or character device.

Drivers can create any number of minor nodes for a device. The Oracle Solaris DDI/DKI
expects certain classes of devices to have minor nodes created in a particular format. For
example, disk drivers are expected to create 16 minor nodes for each physical disk instance
attached. Eight minor nodes are created, representing the a - h block device interfaces, with an
additional eight minor nodes for the a,raw - h,raw character device interfaces.

Device Configuration Concepts

Chapter 6 • Driver Autoconfiguration 105

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-soft-state-zalloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-soft-state-zalloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Scb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-get-soft-state-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-create-minor-node-9f

The minor number passed to ddi_create_minor_node(9F) is defined wholly by the driver. The
minor number is usually an encoding of the instance number of the device with a minor node
identifier. In the preceding example, the driver creates minor numbers for each of the minor
nodes by shifting the instance number of the device left by three bits and using the OR of that
result with the minor node index. The values of the minor node index range from 0 to 7. Note
that minor nodes a and a,raw share the same minor number. These minor nodes are
distinguished by the spec_type argument passed to ddi_create_minor_node().

The minor node type passed to ddi_create_minor_node(9F) classifies the type of device, such
as disks, tapes, network interfaces, frame buffers, and so forth.

The following table lists the types of possible nodes that might be created.

TABLE 6–1 Possible Node Types

Constant Description

DDI_NT_SERIAL Serial port

DDI_NT_SERIAL_DO Dialout ports

DDI_NT_BLOCK Hard disks

DDI_NT_BLOCK_CHAN Hard disks with channel or target numbers

DDI_NT_CD ROM drives (CD-ROM)

DDI_NT_CD_CHAN ROM drives with channel or target numbers

DDI_NT_FD Floppy disks

DDI_NT_TAPE Tape drives

DDI_NT_NET Network devices

DDI_NT_DISPLAY Display devices

DDI_NT_MOUSE Mouse

DDI_NT_KEYBOARD Keyboard

DDI_NT_AUDIO Audio Device

DDI_PSEUDO General pseudo devices

The node types DDI_NT_BLOCK, DDI_NT_BLOCK_CHAN, DDI_NT_CD, and DDI_NT_CD_CHAN cause
devfsadm(1M) to identify the device instance as a disk and to create names in the /dev/dsk or
/dev/rdsk directory.

The node type DDI_NT_TAPE causes devfsadm(1M) to identify the device instance as a tape and
to create names in the /dev/rmt directory.

Device Configuration Concepts

Writing Device Drivers • March 2012106

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-create-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-create-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mdevfsadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mdevfsadm-1m

The node types DDI_NT_SERIAL and DDI_NT_SERIAL_DO cause devfsadm(1M) to perform these
actions:
■ Identify the device instance as a serial port
■ Create names in the /dev/term directory
■ Add entries to the /etc/inittab file

Vendor-supplied strings should include an identifying value such as a name or stock symbol to
make the strings unique. The string can be used in conjunction with devfsadm(1M) and the
devlinks.tab file (see the devlinks(1M) man page) to create logical names in /dev.

Deferred Attach
open(9E) might be called on a minor device before attach(9E) has succeeded on the
corresponding instance. open() must then return ENXIO, which causes the system to attempt to
attach the device. If the attach() succeeds, the open() is retried automatically.

EXAMPLE 6–5 Typical attach() Entry Point

/*

* Attach an instance of the driver. We take all the knowledge we

* have about our board and check it against what has been filled in

* for us from our FCode or from our driver.conf(4) file.

*/

static int

xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)

{

int instance;

Pio *pio_p;

ddi_device_acc_attr_t da_attr;

static int pio_validate_device(dev_info_t *);

switch (cmd) {

case DDI_ATTACH:

/*

* first validate the device conforms to a configuration this driver

* supports

*/

if (pio_validate_device(dip) == 0)

return (DDI_FAILURE);

/*

* Allocate a soft state structure for this device instance

* Store a pointer to the device node in our soft state structure

* and a reference to the soft state structure in the device

* node.

*/

instance = ddi_get_instance(dip);

if (ddi_soft_state_zalloc(pio_softstate, instance) != 0)

return (DDI_FAILURE);

pio_p = ddi_get_soft_state(pio_softstate, instance);

ddi_set_driver_private(dip, (caddr_t)pio_p);

pio_p->dip = dip;

/*

* Before adding the interrupt, get the interrupt block

* cookie associated with the interrupt specification to

Device Configuration Concepts

Chapter 6 • Driver Autoconfiguration 107

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mdevfsadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mdevfsadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mdevlinks-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e

EXAMPLE 6–5 Typical attach() Entry Point (Continued)

* initialize the mutex used by the interrupt handler.

*/

if (ddi_get_iblock_cookie(dip, 0, &pio_p->iblock_cookie) !=

DDI_SUCCESS) {

ddi_soft_state_free(pio_softstate, instance);

return (DDI_FAILURE);

}

mutex_init(&pio_p->mutex, NULL, MUTEX_DRIVER, pio_p->iblock_cookie);

/*

* Now that the mutex is initialized, add the interrupt itself.

*/

if (ddi_add_intr(dip, 0, NULL, NULL, pio_intr, (caddr_t)instance) !=

DDI_SUCCESS) {

mutex_destroy(&pio_p>mutex);

ddi_soft_state_free(pio_softstate, instance);

return (DDI_FAILURE);

}

/*

* Initialize the device access attributes for the register mapping

*/

dev_acc_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;

dev_acc_attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;

dev_acc_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;

/*

* Map in the csr register (register 0)

*/

if (ddi_regs_map_setup(dip, 0, (caddr_t *)&(pio_p->csr), 0,

sizeof (Pio_csr), &dev_acc_attr, &pio_p->csr_handle) !=

DDI_SUCCESS) {

ddi_remove_intr(pio_p->dip, 0, pio_p->iblock_cookie);

mutex_destroy(&pio_p->mutex);

ddi_soft_state_free(pio_softstate, instance);

return (DDI_FAILURE);

}

/*

* Map in the data register (register 1)

*/

if (ddi_regs_map_setup(dip, 1, (caddr_t *)&(pio_p->data), 0,

sizeof (uchar_t), &dev_acc_attr, &pio_p->data_handle) !=

DDI_SUCCESS) {

ddi_remove_intr(pio_p->dip, 0, pio_p->iblock_cookie);

ddi_regs_map_free(&pio_p->csr_handle);

mutex_destroy(&pio_p->mutex);

ddi_soft_state_free(pio_softstate, instance);

return (DDI_FAILURE);

}

/*

* Create an entry in /devices for user processes to open(2)

* This driver will create a minor node entry in /devices

* of the form: /devices/..../pio@X,Y:pio

*/

if (ddi_create_minor_node(dip, ddi_get_name(dip), S_IFCHR,

instance, DDI_PSEUDO, 0) == DDI_FAILURE) {

ddi_remove_intr(pio_p->dip, 0, pio_p->iblock_cookie);

ddi_regs_map_free(&pio_p->csr_handle);

Device Configuration Concepts

Writing Device Drivers • March 2012108

EXAMPLE 6–5 Typical attach() Entry Point (Continued)

ddi_regs_map_free(&pio_p->data_handle);

mutex_destroy(&pio_p->mutex);

ddi_soft_state_free(pio_softstate, instance);

return (DDI_FAILURE);

}

/*

* reset device (including disabling interrupts)

*/

ddi_put8(pio_p->csr_handle, pio_p->csr, PIO_RESET);

/*

* report the name of the device instance which has attached

*/

ddi_report_dev(dip);

return (DDI_SUCCESS);

case DDI_RESUME:

return (DDI_SUCCESS);

default:

return (DDI_FAILURE);

}

}

Note – The attach() routine must not make any assumptions about the order of invocations on
different device instances. The system might invoke attach() concurrently on different device
instances. The system might also invoke attach() and detach() concurrently on different
device instances.

detach() Entry Point
The kernel calls a driver's detach(9E) entry point to detach an instance of a device or to suspend
operation for an instance of a device by power management. This section discusses the
operation of detaching device instances. Refer to Chapter 12, “Power Management,” for a
discussion of power management issues.

A driver's detach() entry point is called to detach an instance of a device that is bound to the
driver. The entry point is called with the instance of the device node to be detached and with
DDI_DETACH, which is specified as the cmd argument to the entry point.

A driver is required to cancel or wait for any time outs or callbacks to complete, then release any
resources that are allocated to the device instance before returning. If for some reason a driver
cannot cancel outstanding callbacks for free resources, the driver is required to return the
device to its original state and return DDI_FAILURE from the entry point, leaving the device
instance in the attached state.

Device Configuration Concepts

Chapter 6 • Driver Autoconfiguration 109

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e

There are two types of callback routines: those callbacks that can be canceled and those that
cannot be canceled. timeout(9F) and bufcall(9F) callbacks can be atomically cancelled by the
driver during detach(9E). Other types of callbacks such as scsi_init_pkt(9F) and
ddi_dma_buf_bind_handle(9F) cannot be canceled. The driver must either block in detach()

until the callback completes or else fail the request to detach.

EXAMPLE 6–6 Typical detach() Entry Point

/*

* detach(9e)

* free the resources that were allocated in attach(9e)

*/

static int

xxdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)

{

Pio *pio_p;

int instance;

switch (cmd) {

case DDI_DETACH:

instance = ddi_get_instance(dip);

pio_p = ddi_get_soft_state(pio_softstate, instance);

/*

* turn off the device

* free any resources allocated in attach

*/

ddi_put8(pio_p->csr_handle, pio_p->csr, PIO_RESET);

ddi_remove_minor_node(dip, NULL);

ddi_regs_map_free(&pio_p->csr_handle);

ddi_regs_map_free(&pio_p->data_handle);

ddi_remove_intr(pio_p->dip, 0, pio_p->iblock_cookie);

mutex_destroy(&pio_p->mutex);

ddi_soft_state_free(pio_softstate, instance);

return (DDI_SUCCESS);

case DDI_SUSPEND:

default:

return (DDI_FAILURE);

}

}

getinfo() Entry Point
The system calls getinfo(9E) to obtain configuration information that only the driver knows.
The mapping of minor numbers to device instances is entirely under the control of the driver.
The system sometimes needs to ask the driver which device a particular dev_t represents.

The getinfo() function can take either DDI_INFO_DEVT2INSTANCE or DDI_INFO_DEVT2DEVINFO
as its infocmd argument. The DDI_INFO_DEVT2INSTANCE command requests the instance
number of a device. The DDI_INFO_DEVT2DEVINFO command requests a pointer to the dev_info
structure of a device.

Device Configuration Concepts

Writing Device Drivers • March 2012110

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Ftimeout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fbufcall-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Egetinfo-9e

In the DDI_INFO_DEVT2INSTANCE case, arg is a dev_t, and getinfo() must translate the minor
number in dev_t to an instance number. In the following example, the minor number is the
instance number, so getinfo() simply passes back the minor number. In this case, the driver
must not assume that a state structure is available, since getinfo() might be called before
attach(). The mapping defined by the driver between the minor device number and the
instance number does not necessarily follow the mapping shown in the example. In all cases,
however, the mapping must be static.

In the DDI_INFO_DEVT2DEVINFO case, arg is again a dev_t, so getinfo() first decodes the
instance number for the device. getinfo() then passes back the dev_info pointer saved in the
driver's soft state structure for the appropriate device, as shown in the following example.

EXAMPLE 6–7 Typical getinfo() Entry Point

/*

* getinfo(9e)

* Return the instance number or device node given a dev_t

*/

static int

xxgetinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)

{

int error;

Pio *pio_p;

int instance = getminor((dev_t)arg);

switch (infocmd) {

/*

* return the device node if the driver has attached the

* device instance identified by the dev_t value which was passed

*/

case DDI_INFO_DEVT2DEVINFO:

pio_p = ddi_get_soft_state(pio_softstate, instance);

if (pio_p == NULL) {

*result = NULL;

error = DDI_FAILURE;

} else {

mutex_enter(&pio_p->mutex);

*result = pio_p->dip;

mutex_exit(&pio_p->mutex);

error = DDI_SUCCESS;

}

break;

/*

* the driver can always return the instance number given a dev_t

* value, even if the instance is not attached.

*/

case DDI_INFO_DEVT2INSTANCE:

*result = (void *)instance;

error = DDI_SUCCESS;

break;

default:

*result = NULL;

error = DDI_FAILURE;

}

return (error);

Device Configuration Concepts

Chapter 6 • Driver Autoconfiguration 111

EXAMPLE 6–7 Typical getinfo() Entry Point (Continued)

}

Note – The getinfo() routine must be kept in sync with the minor nodes that the driver creates.
If the minor nodes get out of sync, any hotplug operations might fail and cause a system panic.

Using Device IDs
The Oracle Solaris DDI interfaces enable drivers to provide the device ID, a persistent unique
identifier for a device. The device ID can be used to identify or locate a device. The device ID is
independent of the /devices name or device number (dev_t). Applications can use the
functions defined in libdevid(3LIB) to read and manipulate the device IDs registered by the
drivers.

Before a driver can export a device ID, the driver needs to verify the device is capable of either
providing a unique ID or of storing a host-generated unique ID in a not normally accessible
area. WWN (world-wide number) is an example of a unique ID that is provided by the device.
Device NVRAM and reserved sectors are examples of non-accessible areas where
host-generated unique IDs can be safely stored.

Registering Device IDs
Drivers typically initialize and register device IDs in the driver's attach(9E) handler. As
mentioned above, the driver is responsible for registering a device ID that is persistent. As such,
the driver might be required to handle both devices that can provide a unique ID directly
(WWN) and devices where fabricated IDs are written to and read from stable storage.

Registering a Device-Supplied ID
If the device can supply the driver with an identifier that is unique, the driver can simply
initialize the device ID with this identifier and register the ID with the Oracle Solaris DDI.

/*

* The device provides a guaranteed unique identifier,

* in this case a SCSI3-WWN. The WWN for the device has been

* stored in the device’s soft state.

*/

if (ddi_devid_init(dip, DEVID_SCSI3_WWN, un->un_wwn_len, un->un_wwn,

&un->un_devid) != DDI_SUCCESS)

return (DDI_FAILURE);

(void) ddi_devid_register(dip, un->un_devid);

Using Device IDs

Writing Device Drivers • March 2012112

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN3Flibdevid-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e

Registering a Fabricated ID
A driver might also register device IDs for devices that do not directly supply a unique ID.
Registering these IDs requires the device to be capable of storing and retrieving a small amount
of data in a reserved area. The driver can then create a fabricated device ID and write it to the
reserved area.

/*

* the device doesn’t supply a unique ID, attempt to read

* a fabricated ID from the device’s reserved data.

*/

if (xxx_read_deviceid(un, &devid_buf) == XXX_OK) {

if (ddi_devid_valid(devid_buf) == DDI_SUCCESS) {

devid_sz = ddi_devi_sizeof(devid_buf);

un->un_devid = kmem_alloc(devid_sz, KM_SLEEP);

bcopy(devid_buf, un->un_devid, devid_sz);

ddi_devid_register(dip, un->un_devid);

return (XXX_OK);

}

}

/*

* we failed to read a valid device ID from the device

* fabricate an ID, store it on the device, and register

* it with the DDI

*/

if (ddi_devid_init(dip, DEVID_FAB, 0, NULL, &un->un_devid)

== DDI_FAILURE) {

return (XXX_FAILURE);

}

if (xxx_write_deviceid(un) != XXX_OK) {

ddi_devid_free(un->un_devid);

un->un_devid = NULL;

return (XXX_FAILURE);

}

ddi_devid_register(dip, un->un_devid);

return (XXX_OK);

Unregistering Device IDs
Drivers typically unregister and free any device IDs that are allocated as part of the detach(9E)
handling. The driver first calls ddi_devid_unregister(9F) to unregister the device ID for the
device instance. The driver must then free the device ID handle itself by calling
ddi_devid_free(9F), and then passing the handle that had been returned by
ddi_devid_init(9F). The driver is responsible for managing any space allocated for WWN or
Serial Number data.

Using Device IDs

Chapter 6 • Driver Autoconfiguration 113

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-devid-unregister-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-devid-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-devid-init-9f

114

Device Access: Programmed I/O

The Oracle Solaris OS provides driver developers with a comprehensive set of interfaces for
accessing device memory. These interfaces are designed to shield the driver from
platform-specific dependencies by handling mismatches between processor and device
endianness as well as enforcing any data order dependencies the device might have. By using
these interfaces, you can develop a single-source driver that runs on both the SPARC and x86
processor architectures as well as the various platforms from each respective processor family.

This chapter provides information on the following subjects:

■ “Managing Differences in Device and Host Endianness” on page 116
■ “Managing Data Ordering Requirements” on page 116
■ “ddi_device_acc_attr Structure” on page 116
■ “Mapping Device Memory” on page 117
■ “Mapping Setup Example” on page 117
■ “Alternate Device Access Interfaces” on page 120

Device Memory
Devices that support programmed I/O are assigned one or more regions of bus address space
that map to addressable regions of the device. These mappings are described as pairs of values in
the reg property associated with the device. Each value pair describes a segment of a bus
address.

Drivers identify a particular bus address mapping by specifying the register number, or
regspec, which is an index into the devices' reg property. The reg property identifies the
busaddr and size for the device. Drivers pass the register number when making calls to DDI
functions such as ddi_regs_map_setup(9F). Drivers can determine how many mappable
regions have been assigned to the device by calling ddi_dev_nregs(9F).

7C H A P T E R 7

115

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-regs-map-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dev-nregs-9f

Managing Differences in Device and Host Endianness
The data format of the host can have different endian characteristics than the data format of the
device. In such a case, data transferred between the host and device would need to be
byte-swapped to conform to the data format requirements of the destination location. Devices
with the same endian characteristics of the host require no byte-swapping of the data.

Drivers specify the endian characteristics of the device by setting the appropriate flag in the
ddi_device_acc_attr(9S) structure that is passed to ddi_regs_map_setup(9F). The DDI
framework then performs any required byte-swapping when the driver calls a ddi_getX
routine like ddi_get8(9F) or a ddi_putX routine like ddi_put16(9F) to read or write to device
memory.

Managing Data Ordering Requirements
Platforms can reorder loads and stores of data to optimize performance of the platform.
Because reordering might not be allowed by certain devices, the driver is required to specify the
device's ordering requirements when setting up mappings to the device.

ddi_device_acc_attr Structure
This structure describes the endian and data order requirements of the device. The driver is
required to initialize and pass this structure as an argument to ddi_regs_map_setup(9F).

typedef struct ddi_device_acc_attr {

ushort_t devacc_attr_version;

uchar_t devacc_attr_endian_flags;

uchar_t devacc_attr_dataorder;

} ddi_device_acc_attr_t;

devacc_attr_version Specifies DDI_DEVICE_ATTR_V0

devacc_attr_endian_flags Describes the endian characteristics of the device. Specified as
a bit value whose possible values are:
■ DDI_NEVERSWAP_ACC – Never swap data
■ DDI_STRUCTURE_BE_ACC – The device data format is

big-endian
■ DDI_STRUCTURE_LE_ACC – The device data format is

little-endian

devacc_attr_dataorder Describes the order in which the CPU must reference data as
required by the device. Specified as an enumerated value,
where data access restrictions are ordered from most strict to
least strict.

Device Memory

Writing Device Drivers • March 2012116

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sddi-device-acc-attr-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-regs-map-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-get8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-put16-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-regs-map-setup-9f

■ DDI_STRICTORDER_ACC – The host must issue the
references in order, as specified by the programmer. This
flag is the default behavior.

■ DDI_UNORDERED_OK_ACC – The host is allowed to reorder
loads and stores to device memory.

■ DDI_MERGING_OK_ACC – The host is allowed to merge
individual stores to consecutive locations. This setting
also implies reordering.

■ DDI_LOADCACHING_OK_ACC – The host is allowed to read
data from the device until a store occurs.

■ DDI_STORECACHING_OK_ACC – The host is allowed to cache
data written to the device. The host can then defer writing
the data to the device until a future time.

Note – The system can access data more strictly than the driver specifies in
devacc_attr_dataorder. The restriction to the host diminishes while moving from strict data
ordering to cache storing in terms of data accesses by the driver.

Mapping Device Memory
Drivers typically map all regions of a device during attach(9E). The driver maps a region of
device memory by calling ddi_regs_map_setup(9F), specifying the register number of the
region to map, the device access attributes for the region, an offset, and size. The DDI
framework sets up the mappings for the device region and returns an opaque handle to the
driver. This data access handle is passed as an argument to the ddi_get8(9F) or ddi_put8(9F)
family of routines when reading data from or writing data to that region of the device.

The driver verifies that the shape of the device mappings match what the driver is expecting by
checking the number of mappings exported by the device. The driver calls ddi_dev_nregs(9F)
and then verifies the size of each mapping by calling ddi_dev_regsize(9F).

Mapping Setup Example
The following simple example demonstrates the DDI data access interfaces. This driver is for a
fictional little endian device that accepts one character at a time and generates an interrupt
when ready for another character. This device implements two register sets: the first is an 8-bit
CSR register, and the second is an 8-bit data register.

Device Memory

Chapter 7 • Device Access: Programmed I/O 117

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-regs-map-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-get8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-put8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dev-nregs-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dev-regsize-9f

EXAMPLE 7–1 Mapping Setup

#define CSR_REG 0

#define DATA_REG 1

/*

* Initialize the device access attributes for the register

* mapping

*/

dev_acc_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;

dev_acc_attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;

dev_acc_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;

/*

* Map in the csr register (register 0)

*/

if (ddi_regs_map_setup(dip, CSR_REG, (caddr_t *)&(pio_p->csr), 0,

sizeof (Pio_csr), &dev_acc_attr, &pio_p->csr_handle) != DDI_SUCCESS) {

mutex_destroy(&pio_p->mutex);

ddi_soft_state_free(pio_softstate, instance);

return (DDI_FAILURE);

}

/*

* Map in the data register (register 1)

*/

if (ddi_regs_map_setup(dip, DATA_REG, (caddr_t *)&(pio_p->data), 0,

sizeof (uchar_t), &dev_acc_attr, &pio_p->data_handle) \

!= DDI_SUCCESS) {

mutex_destroy(&pio_p->mutex);

ddi_regs_map_free(&pio_p->csr_handle);

ddi_soft_state_free(pio_softstate, instance);

return (DDI_FAILURE);

}

Device Access Functions
Drivers use the ddi_get8(9F) and ddi_put8(9F) family of routines in conjunction with the
handle returned by ddi_regs_map_setup(9F) to transfer data to and from a device. The DDI
framework automatically handles any byte-swapping that is required to meet the endian format
for the host or device, and enforces any store-ordering constraints the device might have.

The DDI provides interfaces for transferring data in 8-bit, 16-bit, 32-bit, and 64-bit quantities,
as well as interfaces for transferring multiple values repeatedly. See the man pages for the
ddi_get8(9F), ddi_put8(9F), ddi_rep_get8(9F) and ddi_rep_put8(9F) families of routines
for a complete listing and description of these interfaces.

The following example builds on Example 7–1 where the driver mapped the device's CSR and
data registers. Here, the driver's write(9E) entry point, when called, writes a buffer of data to
the device one byte at a time.

Device Access Functions

Writing Device Drivers • March 2012118

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-get8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-put8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-regs-map-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-get8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-put8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-rep-get8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-rep-put8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Ewrite-9e

EXAMPLE 7–2 Mapping Setup: Buffer

static int

pio_write(dev_t dev, struct uio *uiop, cred_t *credp)

{

int retval;

int error = OK;

Pio *pio_p = ddi_get_soft_state(pio_softstate, getminor(dev));

if (pio_p == NULL)

return (ENXIO);

mutex_enter(&pio_p->mutex);

/*

* enable interrupts from the device by setting the Interrupt

* Enable bit in the devices CSR register

*/

ddi_put8(pio_p->csr_handle, pio_p->csr,

(ddi_get8(pio_p->csr_handle, pio_p->csr) | PIO_INTR_ENABLE));

while (uiop->uio_resid > 0) {

/*

* This device issues an IDLE interrupt when it is ready

* to accept a character; the interrupt can be cleared

* by setting PIO_INTR_CLEAR. The interrupt is reasserted

* after the next character is written or the next time

* PIO_INTR_ENABLE is toggled on.

*

* wait for interrupt (see pio_intr)

*/

cv_wait(&pio_p->cv, &pio_p->mutex);

/*

* get a character from the user’s write request

* fail the write request if any errors are encountered

*/

if ((retval = uwritec(uiop)) == -1) {

error = retval;

break;

}

/*

* pass the character to the device by writing it to

* the device’s data register

*/

ddi_put8(pio_p->data_handle, pio_p->data, (uchar_t)retval);

}

/*

* disable interrupts by clearing the Interrupt Enable bit

* in the CSR

*/

ddi_put8(pio_p->csr_handle, pio_p->csr,

(ddi_get8(pio_p->csr_handle, pio_p->csr) & ~PIO_INTR_ENABLE));

mutex_exit(&pio_p->mutex);

return (error);

}

Device Access Functions

Chapter 7 • Device Access: Programmed I/O 119

Alternate Device Access Interfaces
In addition to implementing all device accesses through the ddi_get8(9F) and ddi_put8(9F)
families of interfaces, the Oracle Solaris OS provides interfaces that are specific to particular bus
implementations. While these functions can be more efficient on some platforms, use of these
routines can limit the ability of the driver to remain portable across different bus versions of the
device.

Memory Space Access
With memory mapped access, device registers appear in memory address space. The ddi_getX
family of routines and the ddi_putX family are available for use by drivers as an alternative to
the standard device access interfaces.

I/O Space Access
With I/O space access, the device registers appear in I/O space, where each addressable element
is called an I/O port. The ddi_io_get8(9F) and ddi_io_put8(9F) routines are available for use
by drivers as an alternative to the standard device access interfaces.

PCI Configuration Space Access
To access PCI configuration space without using the normal device access interfaces, a driver is
required to map PCI configuration space by calling pci_config_setup(9F) in place of
ddi_regs_map_setup(9F). The driver can then call the pci_config_get8(9F) and
pci_config_put8(9F) families of interfaces to access PCI configuration space.

Device Access Functions

Writing Device Drivers • March 2012120

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-get8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-put8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-io-get8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-io-put8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpci-config-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-regs-map-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpci-config-get8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpci-config-put8-9f

Interrupt Handlers

This chapter describes mechanisms for handling interrupts, such as allocating, registering,
servicing, and removing interrupts. This chapter provides information on the following
subjects:

■ “Interrupt Handler Overview” on page 121
■ “Device Interrupts” on page 122
■ “Registering Interrupts” on page 128
■ “Interrupt Resource Management” on page 134
■ “Interrupt Handler Functionality” on page 145
■ “Handling High-Level Interrupts” on page 147

Interrupt Handler Overview
An interrupt is a hardware signal from a device to a CPU. An interrupt tells the CPU that the
device needs attention and that the CPU should stop any current activity and respond to the
device. If the CPU is not performing a task that has higher priority than the priority of the
interrupt, then the CPU suspends the current thread. The CPU then invokes the interrupt
handler for the device that sent the interrupt signal. The job of the interrupt handler is to service
the device and stop the device from interrupting. When the interrupt handler returns, the CPU
resumes the work it was doing before the interrupt occurred.

The Oracle Solaris DDI/DKI provides interfaces for performing the following tasks:

■ Determining interrupt type and registration requirements
■ Registering interrupts
■ Servicing interrupts
■ Masking interrupts
■ Getting interrupt pending information
■ Getting and setting priority information

8C H A P T E R 8

121

Device Interrupts
I/O buses implement interrupts in two common ways: vectored and polled. Both methods
commonly supply a bus-interrupt priority level. Vectored devices also supply an interrupt
vector. Polled devices do not supply interrupt vectors.

To stay current with changing bus technologies, the Oracle Solaris OS has been enhanced to
accommodate both newer types of interrupts and more traditional interrupts that have been in
use for many years. Specifically, the operating system now recognizes three types of interrupts:
■ Legacy interrupts – Legacy or fixed interrupts refer to interrupts that use older bus

technologies. With these technologies, interrupts are signaled by using one or more external
pins that are wired “out-of-band,” that is, separately from the main lines of the bus. Newer
bus technologies such as PCI Express maintain software compatibility by emulating legacy
interrupts through in-band mechanisms. These emulated interrupts are treated as legacy
interrupts by the host OS.

■ Message-signaled interrupts – Instead of using pins, message-signaled interrupts (MSI) are
in-band messages and can target addresses in the host bridge. (See “PCI Local Bus” on
page 543 for more information on host bridges.) MSIs can send data along with the interrupt
message. Each MSI is unshared so that an MSI that is assigned to a device is guaranteed to be
unique within the system. A PCI function can request up to 32 MSI messages.

■ Extended message-signaled interrupts – Extended message-signaled interrupts (MSI-X)
are an enhanced version of MSIs. MSI-X interrupts have the following added advantages:
■ Support 2048 messages rather than 32 messages
■ Support independent message address and message data for each message
■ Support per-message masking
■ Enable more flexibility when software allocates fewer vectors than hardware requests.

The software can reuse the same MSI-X address and data in multiple MSI-X slots.

Note – Some newer bus technologies such as PCI Express require MSIs but can accommodate
legacy interrupts by using INTx emulation. INTx emulation is used for compatibility purposes,
but is not considered to be good practice.

High-Level Interrupts
A bus prioritizes a device interrupt at a bus-interrupt level. The bus interrupt level is then
mapped to a processor-interrupt level. A bus interrupt level that maps to a CPU interrupt
priority above the scheduler priority level is called a high-level interrupt. High-level interrupt
handlers are restricted to calling the following DDI interfaces:
■ mutex_enter(9F) and mutex_exit(9F) on a mutex that is initialized with an interrupt

priority associated with the high-level interrupt

Device Interrupts

Writing Device Drivers • March 2012122

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmutex-enter-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmutex-exit-9f

■ ddi_intr_trigger_softint(9F)
■ The following DDI get and put routines: ddi_get8(9F), ddi_put8(9F), ddi_get16(9F),

ddi_put16(9F), ddi_get32(9F), ddi_put32(9F), ddi_get64(9F), and ddi_put64(9F).

A bus-interrupt level by itself does not determine whether a device interrupts at a high level. A
particular bus-interrupt level can map to a high-level interrupt on one platform, but map to an
ordinary interrupt on another platform.

A driver is not required to support devices that have high-level interrupts. However, the driver
is required to check the interrupt level. If the interrupt priority is greater than or equal to the
highest system priority, the interrupt handler runs in high-level interrupt context. In this case,
the driver can fail to attach, or the driver can use a two-level scheme to handle interrupts. For
more information, see “Handling High-Level Interrupts” on page 147.

Legacy Interrupts
The only information that the system has about a device interrupt is the priority level of the bus
interrupt and the interrupt request number. An example of the priority level for a bus interrupt
is the IPL on an SBus in a SPARC machine. An example of an interrupt request number is the
IRQ on an ISA bus in an x86 machine.

When an interrupt handler is registered, the system adds the handler to a list of potential
interrupt handlers for each IPL or IRQ. When the interrupt occurs, the system must determine
which device actually caused the interrupt, among all devices that are associated with a given
IPL or IRQ. The system calls all the interrupt handlers for the designated IPL or IRQ until one
handler claims the interrupt.

The following buses are capable of supporting polled interrupts:

■ SBus
■ ISA
■ PCI

Standard and Extended Message-Signaled Interrupts
Both standard (MSI) and extended (MSI-X) message-signaled interrupts are implemented as
in-band messages. A message-signaled interrupt is posted as a write with an address and value
that are specified by the software.

MSI Interrupts
Conventional PCI specifications include optional support for Message Signaled Interrupts
(MSI). An MSI is an in-band message that is implemented as a posted write. The address and
the data for the MSI are specified by software and are specific to the host bridge. Because the

Device Interrupts

Chapter 8 • Interrupt Handlers 123

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-trigger-softint-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-get8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-put8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-get16-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-put16-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-get32-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-put32-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-get64-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-put64-9f

messages are in-band, the receipt of the message can be used to “push” data that is associated
with the interrupt. By definition, MSI interrupts are unshared. Each MSI message that is
assigned to a device is guaranteed to be a unique message in the system. PCI functions can
request 1, 2, 4, 8, 16, or 32 MSI messages. Note that the system software can allocate fewer MSI
messages to a function than the function requested. The host bridge can be limited in the
number of unique MSI messages that are allocated for devices.

MSI-X Interrupts
MSI-X interrupts are enhanced versions of MSI interrupts that have the same features as MSI
interrupts with the following key differences:

■ A maximum of 2048 MSI-X interrupt vectors are supported per device.
■ Address and data entries are unique per interrupt vector.
■ MSI-X supports per function masking and per vector masking.

With MSI-X interrupts, an unallocated interrupt vector of a device can use a previously added
or initialized MSI-X interrupt vector to share the same vector address, vector data, interrupt
handler, and handler arguments. Use the ddi_intr_dup_handler(9F) function to alias the
resources provided by the Oracle Solaris OS to the unallocated interrupt vectors on an
associated device. For example, if 2 MSI-X interrupts are allocated to a driver and 32 interrupts
are supported on the device, then the driver can use ddi_intr_dup_handler() to alias the 2
interrupts it received to the 30 additional interrupts on the device.

The ddi_intr_dup_handler() function can duplicate interrupts that were added with
ddi_intr_add_handler(9F) or initialized with ddi_intr_enable(9F).

A duplicated interrupt is disabled initially. Use ddi_intr_enable() to enable the duplicated
interrupt. You cannot remove the original MSI-X interrupt handler until all duplicated
interrupt handlers that are associated with this original interrupt handler are removed. To
remove a duplicated interrupt handler, first call ddi_intr_disable(9F), and then call
ddi_intr_free(9F). When all duplicated interrupt handlers that are associated with this
original interrupt handler are removed, then you can use ddi_intr_remove_handler(9F) to
remove the original MSI-X interrupt handler. See the ddi_intr_dup_handler(9F) man page
for examples.

Software Interrupts
The Oracle Solaris DDI/DKI supports software interrupts, also known as soft interrupts. Soft
interrupts are initiated by software rather than by a hardware device. Handlers for these
interrupts must also be added to and removed from the system. Soft interrupt handlers run in
interrupt context and therefore can be used to do many of the tasks that belong to an interrupt
handler.

Device Interrupts

Writing Device Drivers • March 2012124

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-dup-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-add-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-enable-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-disable-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-remove-handler-9f

Hardware interrupt handlers must perform their tasks quickly, because the handlers might have
to suspend other system activity while doing these tasks. This requirement is particularly true
for high-level interrupt handlers, which operate at priority levels greater than the priority level
of the system scheduler. High-level interrupt handlers mask the operations of all lower-priority
interrupts, including the interrupt operations of the system clock. Consequently, the interrupt
handler must avoid involvement in activities that might cause it to sleep, such as acquiring a
mutex.

If the handler sleeps, then the system might hang because the clock is masked and incapable of
scheduling the sleeping thread. For this reason, high-level interrupt handlers normally perform
a minimum amount of work at high-priority levels and delegate other tasks to software
interrupts, which run below the priority level of the high-level interrupt handler. Because
software interrupt handlers run below the priority level of the system scheduler, software
interrupt handlers can do the work that the high-level interrupt handler was incapable of doing.

DDI Interrupt Functions
The Oracle Solaris OS provides a framework for registering and unregistering interrupts and
provides support for Message Signaled Interrupts (MSIs). Interrupt management interfaces
enable you to manipulate priorities, capabilities, and interrupt masking, and to obtain pending
information.

Interrupt Capability Functions
Use the following functions to obtain interrupt information:

ddi_intr_get_navail(9F) Returns the number of interrupts available for a
specified hardware device and interrupt type.

ddi_intr_get_nintrs(9F) Returns the number of interrupts that the device
supports for the specified interrupt type.

ddi_intr_get_supported_types(9F) Returns the hardware interrupt types that are
supported by both the device and the host.

ddi_intr_get_cap(9F) Returns interrupt capability flags for the specified
interrupt.

Interrupt Initialization and Destruction Functions
Use the following functions to create and remove interrupts:

ddi_intr_alloc(9F) Allocates system resources and interrupt vectors for the
specified type of interrupt.

DDI Interrupt Functions

Chapter 8 • Interrupt Handlers 125

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-navail-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-nintrs-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-supported-types-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-cap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-alloc-9f

ddi_intr_free(9F) Releases the system resources and interrupt vectors for a
specified interrupt handle.

ddi_intr_set_cap(9F) Sets the capability of the specified interrupt through the
use of the DDI_INTR_FLAG_LEVEL and
DDI_INTR_FLAG_EDGE flags.

ddi_intr_add_handler(9F) Adds an interrupt handler.

ddi_intr_dup_handler(9F) Use with MSI-X only. Copies an address and data pair for
an allocated interrupt vector to an unused interrupt vector
on the same device.

ddi_intr_remove_handler(9F) Removes the specified interrupt handler.

ddi_intr_enable(9F) Enables the specified interrupt.

ddi_intr_disable(9F) Disables the specified interrupt.

ddi_intr_block_enable(9F) Use with MSI only. Enables the specified range of
interrupts.

ddi_intr_block_disable(9F) Use with MSI only. Disables the specified range of
interrupts.

ddi_intr_set_mask(9F) Sets an interrupt mask if the specified interrupt is enabled.

ddi_intr_clr_mask(9F) Clears an interrupt mask if the specified interrupt is
enabled.

ddi_intr_get_pending(9F) Reads the interrupt pending bit if such a bit is supported
by either the host bridge or the device.

Priority Management Functions
Use the following functions to obtain and set priority information:

ddi_intr_get_pri(9F) Returns the current software priority setting for the
specified interrupt.

ddi_intr_set_pri(9F) Sets the interrupt priority level for the specified interrupt.

ddi_intr_get_hilevel_pri(9F) Returns the minimum priority level for a high-level
interrupt.

Soft Interrupt Functions
Use the following functions to manipulate soft interrupts and soft interrupt handlers:

DDI Interrupt Functions

Writing Device Drivers • March 2012126

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-set-cap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-add-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-dup-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-remove-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-enable-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-disable-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-block-enable-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-block-disable-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-set-mask-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-clr-mask-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-pending-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-set-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-hilevel-pri-9f

ddi_intr_add_softint(9F) Adds a soft interrupt handler.

ddi_intr_trigger_softint(9F) Triggers the specified soft interrupt.

ddi_intr_remove_softint(9F) Removes the specified soft interrupt handler.

ddi_intr_get_softint_pri(9F) Returns the soft interrupt priority for the specified
interrupt.

ddi_intr_set_softint_pri(9F) Changes the relative soft interrupt priority for the
specified soft interrupt.

Interrupt Function Examples
This section provides examples for performing the following tasks:

■ Changing soft interrupt priority
■ Checking for pending interrupts
■ Setting interrupt masks
■ Clearing interrupt masks

EXAMPLE 8–1 Changing Soft Interrupt Priority

Use the ddi_intr_set_softint_pri(9F) function to change the soft interrupt priority to 9.

if (ddi_intr_set_softint_pri(mydev->mydev_softint_hdl, 9) != DDI_SUCCESS)

cmn_err (CE_WARN, "ddi_intr_set_softint_pri failed");

EXAMPLE 8–2 Checking for Pending Interrupts

Use the ddi_intr_get_pending(9F) function to check whether an interrupt is pending.

if (ddi_intr_get_pending(mydevp->htable[0], &pending) != DDI_SUCCESS)

cmn_err(CE_WARN, "ddi_intr_get_pending() failed");
else if (pending)

cmn_err(CE_NOTE, "ddi_intr_get_pending(): Interrupt pending");

EXAMPLE 8–3 Setting Interrupt Masks

Use the ddi_intr_set_mask(9F) function to set interrupt masking to prevent the device from
receiving interrupts.

if ((ddi_intr_set_mask(mydevp->htable[0]) != DDI_SUCCESS))

cmn_err(CE_WARN, "ddi_intr_set_mask() failed");

DDI Interrupt Functions

Chapter 8 • Interrupt Handlers 127

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-add-softint-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-trigger-softint-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-remove-softint-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-softint-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-set-softint-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-set-softint-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-pending-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-set-mask-9f

EXAMPLE 8–4 Clearing Interrupt Masks

Use the ddi_intr_clr_mask(9F) function to clear interrupt masking. The
ddi_intr_clr_mask(9F) function fails if the specified interrupt is not enabled. If the
ddi_intr_clr_mask(9F) function succeeds, the device starts generating interrupts.

if (ddi_intr_clr_mask(mydevp->htable[0]) != DDI_SUCCESS)

cmn_err(CE_WARN, "ddi_intr_clr_mask() failed");

Registering Interrupts
Before a device driver can receive and service interrupts, the driver must call
ddi_intr_add_handler(9F) to register an interrupt handler with the system. Registering
interrupt handlers provides the system with a way to associate an interrupt handler with an
interrupt specification. The interrupt handler is called when the device might have been
responsible for the interrupt. The handler has the responsibility of determining whether it
should handle the interrupt and, if so, of claiming that interrupt.

Tip – Use the ::interrupts command in the mdb or kmdb debugger to retrieve the registered
interrupt information of a device on supported SPARC and x86 systems.

Registering Legacy Interrupts
To register a driver's interrupt handler, the driver typically performs the following steps in its
attach(9E) entry point:

1. Use ddi_intr_get_supported_types(9F) to determine which types of interrupts are
supported.

2. Use ddi_intr_get_nintrs(9F) to determine the number of supported interrupt types.
3. Use kmem_zalloc(9F) to allocate memory for DDI interrupt handles.
4. For each interrupt type that you allocate, take the following steps:

a. Use ddi_intr_get_pri(9F) to get the priority for the interrupt.
b. If you need to set a new priority for the interrupt, use ddi_intr_set_pri(9F).
c. Use mutex_init(9F) to initialize the lock.
d. Use ddi_intr_add_handler(9F) to register the handler for the interrupt.
e. Use ddi_intr_enable(9F) to enable the interrupt.

5. Take the following steps to free each interrupt:
a. Disable each interrupt using ddi_intr_disable(9F).
b. Remove the interrupt handler using ddi_intr_remove_handler(9F).

Registering Interrupts

Writing Device Drivers • March 2012128

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-clr-mask-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-add-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-supported-types-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-nintrs-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fkmem-zalloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-set-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmutex-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-add-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-enable-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-disable-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-remove-handler-9f

c. Remove the lock using mutex_destroy(9F).
d. Free the interrupt using ddi_intr_free(9F) and kmem_free(9F) to free memory that

was allocated for DDI interrupt handles.

EXAMPLE 8–5 Registering a Legacy Interrupt

The following example shows how to install an interrupt handler for a device called mydev. This
example assumes that mydev supports one interrupt only.

/* Determine which types of interrupts supported */

ret = ddi_intr_get_supported_types(mydevp->mydev_dip, &type);

if ((ret != DDI_SUCCESS) || (!(type & DDI_INTR_TYPE_FIXED))) {

cmn_err(CE_WARN, "Fixed type interrupt is not supported");
return (DDI_FAILURE);

}

/* Determine number of supported interrupts */

ret = ddi_intr_get_nintrs(mydevp->mydev_dip, DDI_INTR_TYPE_FIXED,

&count);

/*

* Fixed interrupts can only have one interrupt. Check to make

* sure that number of supported interrupts and number of

* available interrupts are both equal to 1.

*/

if ((ret != DDI_SUCCESS) || (count != 1)) {

cmn_err(CE_WARN, "No fixed interrupts");
return (DDI_FAILURE);

}

/* Allocate memory for DDI interrupt handles */

mydevp->mydev_htable = kmem_zalloc(sizeof (ddi_intr_handle_t),

KM_SLEEP);

ret = ddi_intr_alloc(mydevp->mydev_dip, mydevp->mydev_htable,

DDI_INTR_TYPE_FIXED, 0, count, &actual, 0);

if ((ret != DDI_SUCCESS) || (actual != 1)) {

cmn_err(CE_WARN, "ddi_intr_alloc() failed 0x%x", ret);

kmem_free(mydevp->mydev_htable, sizeof (ddi_intr_handle_t));

return (DDI_FAILURE);

}

/* Sanity check that count and available are the same. */

ASSERT(count == actual);

/* Get the priority of the interrupt */

if (ddi_intr_get_pri(mydevp->mydev_htable[0], &mydevp->mydev_intr_pri)) {

cmn_err(CE_WARN, "ddi_intr_alloc() failed 0x%x", ret);

(void) ddi_intr_free(mydevp->mydev_htable[0]);

kmem_free(mydevp->mydev_htable, sizeof (ddi_intr_handle_t));

return (DDI_FAILURE);

}

Registering Interrupts

Chapter 8 • Interrupt Handlers 129

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmutex-destroy-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fkmem-free-9f

EXAMPLE 8–5 Registering a Legacy Interrupt (Continued)

cmn_err(CE_NOTE, "Supported Interrupt pri = 0x%x", mydevp->mydev_intr_pri);

/* Test for high level mutex */

if (mydevp->mydev_intr_pri >= ddi_intr_get_hilevel_pri()) {

cmn_err(CE_WARN, "Hi level interrupt not supported");

(void) ddi_intr_free(mydevp->mydev_htable[0]);

kmem_free(mydevp->mydev_htable, sizeof (ddi_intr_handle_t));

return (DDI_FAILURE);

}

/* Initialize the mutex */

mutex_init(&mydevp->mydev_int_mutex, NULL, MUTEX_DRIVER,

DDI_INTR_PRI(mydevp->mydev_intr_pri));

/* Register the interrupt handler */

if (ddi_intr_add_handler(mydevp->mydev_htable[0], mydev_intr,

(caddr_t)mydevp, NULL) !=DDI_SUCCESS) {

cmn_err(CE_WARN, "ddi_intr_add_handler() failed");

mutex_destroy(&mydevp->mydev_int_mutex);

(void) ddi_intr_free(mydevp->mydev_htable[0]);

kmem_free(mydevp->mydev_htable, sizeof (ddi_intr_handle_t));

return (DDI_FAILURE);

}

/* Enable the interrupt */

if (ddi_intr_enable(mydevp->mydev_htable[0]) != DDI_SUCCESS) {

cmn_err(CE_WARN, "ddi_intr_enable() failed");

(void) ddi_intr_remove_handler(mydevp->mydev_htable[0]);

mutex_destroy(&mydevp->mydev_int_mutex);

(void) ddi_intr_free(mydevp->mydev_htable[0]);

kmem_free(mydevp->mydev_htable, sizeof (ddi_intr_handle_t));

return (DDI_FAILURE);

}

return (DDI_SUCCESS);

}

EXAMPLE 8–6 Removing a Legacy Interrupt

The following example shows how legacy interrupts are removed.

/* disable interrupt */

(void) ddi_intr_disable(mydevp->mydev_htable[0]);

/* Remove interrupt handler */

(void) ddi_intr_remove_handler(mydevp->mydev_htable[0]);

/* free interrupt handle */

Registering Interrupts

Writing Device Drivers • March 2012130

EXAMPLE 8–6 Removing a Legacy Interrupt (Continued)

(void) ddi_intr_free(mydevp->mydev_htable[0]);

/* free memory */

kmem_free(mydevp->mydev_htable, sizeof (ddi_intr_handle_t));

Registering MSI Interrupts
To register a driver's interrupt handler, the driver typically performs the following steps in its
attach(9E) entry point:

1. Use ddi_intr_get_supported_types(9F) to determine which types of interrupts are
supported.

2. Use ddi_intr_get_nintrs(9F) to determine the number of supported MSI interrupt types.
3. Use ddi_intr_alloc(9F) to allocate memory for the MSI interrupts.
4. For each interrupt type that you allocate, take the following steps:

a. Use ddi_intr_get_pri(9F) to get the priority for the interrupt.
b. If you need to set a new priority for the interrupt, use ddi_intr_set_pri(9F).
c. Use mutex_init(9F) to initialize the lock.
d. Use ddi_intr_add_handler(9F) to register the handler for the interrupt.

5. Use one of the following functions to enable all the interrupts:
■ Use ddi_intr_block_enable(9F) to enable all the interrupts in a block.
■ Use ddi_intr_enable(9F) in a loop to enable each interrupt individually.

EXAMPLE 8–7 Registering a Set of MSI Interrupts

The following example illustrates how to register an MSI interrupt for a device called mydev.

/* Get supported interrupt types */

if (ddi_intr_get_supported_types(devinfo, &intr_types) != DDI_SUCCESS) {

cmn_err(CE_WARN, "ddi_intr_get_supported_types failed");
goto attach_fail;

}

if (intr_types & DDI_INTR_TYPE_MSI)

mydev_add_msi_intrs(mydevp);

/* Check count, available and actual interrupts */

static int

mydev_add_msi_intrs(mydev_t *mydevp)

{

dev_info_t *devinfo = mydevp->devinfo;

int count, avail, actual;

int x, y, rc, inum = 0;

/* Get number of interrupts */

Registering Interrupts

Chapter 8 • Interrupt Handlers 131

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-supported-types-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-nintrs-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-set-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmutex-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-add-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-block-enable-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-enable-9f

EXAMPLE 8–7 Registering a Set of MSI Interrupts (Continued)

rc = ddi_intr_get_nintrs(devinfo, DDI_INTR_TYPE_MSI, &count);

if ((rc != DDI_SUCCESS) || (count == 0)) {

cmn_err(CE_WARN, "ddi_intr_get_nintrs() failure, rc: %d, "
"count: %d", rc, count);

return (DDI_FAILURE);

}

/* Get number of available interrupts */

rc = ddi_intr_get_navail(devinfo, DDI_INTR_TYPE_MSI, &avail);

if ((rc != DDI_SUCCESS) || (avail == 0)) {

cmn_err(CE_WARN, "ddi_intr_get_navail() failure, "
"rc: %d, avail: %d\n", rc, avail);

return (DDI_FAILURE);

}

if (avail < count) {

cmn_err(CE_NOTE, "nitrs() returned %d, navail returned %d",
count, avail);

}

/* Allocate memory for MSI interrupts */

mydevp->intr_size = count * sizeof (ddi_intr_handle_t);

mydevp->htable = kmem_alloc(mydevp->intr_size, KM_SLEEP);

rc = ddi_intr_alloc(devinfo, mydevp->htable, DDI_INTR_TYPE_MSI, inum,

count, &actual, DDI_INTR_ALLOC_NORMAL);

if ((rc != DDI_SUCCESS) || (actual == 0)) {

cmn_err(CE_WARN, "ddi_intr_alloc() failed: %d", rc);

kmem_free(mydevp->htable, mydevp->intr_size);

return (DDI_FAILURE);

}

if (actual < count) {

cmn_err(CE_NOTE, "Requested: %d, Received: %d", count, actual);

}

mydevp->intr_cnt = actual;

/*

* Get priority for first msi, assume remaining are all the same

*/

if (ddi_intr_get_pri(mydevp->htable[0], &mydev->intr_pri) !=

DDI_SUCCESS) {

cmn_err(CE_WARN, "ddi_intr_get_pri() failed");

/* Free already allocated intr */

for (y = 0; y < actual; y++) {

(void) ddi_intr_free(mydevp->htable[y]);

}

kmem_free(mydevp->htable, mydevp->intr_size);

return (DDI_FAILURE);

}

/* Call ddi_intr_add_handler() */

for (x = 0; x < actual; x++) {

Registering Interrupts

Writing Device Drivers • March 2012132

EXAMPLE 8–7 Registering a Set of MSI Interrupts (Continued)

if (ddi_intr_add_handler(mydevp->htable[x], mydev_intr,

(caddr_t)mydevp, NULL) != DDI_SUCCESS) {

cmn_err(CE_WARN, "ddi_intr_add_handler() failed");

/* Free already allocated intr */

for (y = 0; y < actual; y++) {

(void) ddi_intr_free(mydevp->htable[y]);

}

kmem_free(mydevp->htable, mydevp->intr_size);

return (DDI_FAILURE);

}

}

(void) ddi_intr_get_cap(mydevp->htable[0], &mydevp->intr_cap);

if (mydev->m_intr_cap & DDI_INTR_FLAG_BLOCK) {

/* Call ddi_intr_block_enable() for MSI */

(void) ddi_intr_block_enable(mydev->m_htable, mydev->m_intr_cnt);

} else {

/* Call ddi_intr_enable() for MSI non block enable */

for (x = 0; x < mydev->m_intr_cnt; x++) {

(void) ddi_intr_enable(mydev->m_htable[x]);

}

}

return (DDI_SUCCESS);

}

EXAMPLE 8–8 Removing MSI Interrupts

The following example shows how to remove MSI interrupts.

static void

mydev_rem_intrs(mydev_t *mydev)

{

int x;

/* Disable all interrupts */

if (mydev->m_intr_cap & DDI_INTR_FLAG_BLOCK) {

/* Call ddi_intr_block_disable() */

(void) ddi_intr_block_disable(mydev->m_htable, mydev->m_intr_cnt);

} else {

for (x = 0; x < mydev->m_intr_cnt; x++) {

(void) ddi_intr_disable(mydev->m_htable[x]);

}

}

/* Call ddi_intr_remove_handler() */

for (x = 0; x < mydev->m_intr_cnt; x++) {

(void) ddi_intr_remove_handler(mydev->m_htable[x]);

(void) ddi_intr_free(mydev->m_htable[x]);

}

kmem_free(mydev->m_htable, mydev->m_intr_size);

}

Registering Interrupts

Chapter 8 • Interrupt Handlers 133

Interrupt Resource Management
This section discusses how a driver for a device that can generate many different interruptible
conditions can utilize the Interrupt Resource Management feature to optimize its allocation of
interrupt vectors.

The Interrupt Resource Management Feature
The Interrupt Resource Management feature can enable a device driver to use more interrupt
resources by dynamically managing the driver's interrupt configuration. When the Interrupt
Resource Management feature is not used, configuration of interrupt handling usually only
occurs in a driver's attach(9E) routine. The Interrupt Resource Management feature monitors
the system for changes, recalculates the number of interrupt vectors to grant to each device in
response to those changes, and notifies each affected participating driver of the driver's new
allocation of interrupt vectors. A participating driver is a driver that has registered a callback
handler as described in “Callback Interfaces” on page 135. Changes that can cause interrupt
vector reallocation include adding or removing devices, or an explicit request as described in
“Modify Number of Interrupt Vectors Requested” on page 138.

The Interrupt Resource Management feature is not available on every Oracle Solaris platform.
The feature is only available to PCIe devices that utilize MSI-X interrupts.

Note – A driver that utilizes the Interrupt Resource Management feature must be able to adapt
correctly when the feature is not available.

When the Interrupt Resource Management feature is available, it can enable a driver to gain
access to more interrupt vectors than the driver might otherwise be allocated. A driver might
process interrupt conditions more efficiently when utilizing a larger number of interrupt
vectors.

The Interrupt Resource Management feature dynamically adjusts the number of interrupt
vectors granted to each participating driver depending upon the following constraints:

■ Total number available. A finite number of interrupt vectors exists in the system.
■ Total number requested. A driver might be granted fewer, but never more than the number

of interrupt vectors it requested.
■ Fairness to other drivers. The total number of interrupt vectors available is shared by many

drivers in a manner that is fair in relation to the total number requested by each driver.

Interrupt Resource Management

Writing Device Drivers • March 2012134

The number of interrupt vectors made available to a device at any given time can vary:

■ As other devices are dynamically added to or removed from the system
■ As drivers dynamically change the number of interrupt vectors they request in response to

load

A driver must provide the following support to use the Interrupt Resource Management
feature:

■ Callback support. Drivers must register a callback handler so they can be notified when their
number of available interrupts has been changed by the system. Drivers must be able to
increase or decrease their interrupt usage.

■ Interrupt requests. Drivers must specify how many interrupts they want to use.
■ Interrupt usage. Drivers must request the correct number of interrupts at any given time,

based on:
■ What interruptible conditions their hardware can generate
■ How many processors can be used to process those conditions in parallel

■ Interrupt flexibility. Drivers must be flexible enough to assign one or more interruptible
conditions to each interrupt vector in a manner that best fits their current number of
available interrupts. Drivers might need to reconfigure these assignments when their
number of available interrupts increases or decreases at arbitrary times.

Callback Interfaces
A driver must use the following interfaces to register its callback support.

TABLE 8–1 Callback Support Interfaces

Interface Data Structures Description

ddi_cb_register() ddi_cb_flags_t,
ddi_cb_handle_t

Register a callback handler function to
receive specific types of actions.

ddi_cb_unregister() ddi_cb_handle_t Unregister a callback handler function.

(*ddi_cb_func_t)() ddi_cb_action_t Receive callback actions and specific
arguments relevant to each action to be
processed.

Register a Callback Handler Function
Use the ddi_cb_register(9F) function to register a callback handler function for a driver.

int

ddi_cb_register (dev_info_t *dip, ddi_cb_flags_t cbflags,

Interrupt Resource Management

Chapter 8 • Interrupt Handlers 135

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-cb-register-9f

ddi_cb_func_t cbfunc, void *arg1, void *arg2,

ddi_cb_handle_t *ret_hdlp);

The driver can register only one callback function. This one callback function is used to handle
all individual callback actions. The cbflags parameter determines which types of actions
should be received by the driver when they occur. The cbfunc() routine is called whenever a
relevant action should be processed by the driver. The driver specifies two private arguments
(arg1 and arg2) to send to itself during each execution of its cbfunc() routine.

The cbflags() parameter is an enumerated type that specifies which actions the driver
supports.

typedef enum {

DDI_CB_FLAG_INTR

} ddi_cb_flags_t;

To register support for Interrupt Resource Management actions, a driver must register a
handler and include the DDI_CB_FLAG_INTR flag. When the callback handler is successfully
registered, an opaque handle is returned through the ret_hdlp parameter. When the driver is
finished with the callback handler, the driver can use the ret_hdlp parameter to unregister the
callback handler.

Register the callback handler in the driver's attach(9F) entry point. Save the opaque handle in
the driver's soft state. Unregister the callback handler in the driver's detach(9F) entry point.

Unregister a Callback Handler Function
Use the ddi_cb_unregister(9F) function to unregister a callback handler function for a driver.

int

ddi_cb_unregister (ddi_cb_handle_t hdl);

Make this call in the driver's detach(9F) entry point. After this call, the driver no longer receives
callback actions.

The driver also loses any additional support from the system that it gained from having a
registered callback handling function. For example, some interrupt vectors previously made
available to the driver are immediately taken back when the driver unregisters its callback
handling function. Before returning successfully, the ddi_cb_unregister() function notifies
the driver of any final actions that result from losing support from the system.

Callback Handler Function
Use the registered callback handling function to receive callback actions and receive arguments
that are specific to each action to be processed.

typedef int (*ddi_cb_func_t)(dev_info_t *dip, ddi_cb_action_t cbaction,

void *cbarg, void *arg1, void *arg2);

Interrupt Resource Management

Writing Device Drivers • March 2012136

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-cb-unregister-9f

The cbaction parameter specifies what action the driver is receiving a callback to process.

typedef enum {

DDI_CB_INTR_ADD,

DDI_CB_INTR_REMOVE

} ddi_cb_action_t;

A DDI_CB_INTR_ADD action means that the driver now has more interrupts available to use. A
DDI_CB_INTR_REMOVE action means that the driver now has fewer interrupts available to use.
Cast the cbarg parameter to an int to determine the number of interrupts added or removed.
The cbarg value represents the change in the number of interrupts that are available.

For example, get the change in the number of interrupts available:

count = (int)(uintptr_t)cbarg;

If the cbaction is DDI_CB_INTR_ADD, add cbarg number of interrupt vectors. If the cbaction is
DDI_CB_INTR_REMOVE, free cbarg number of interrupt vectors.

See ddi_cb_register(9F) for an explanation of arg1 and arg2.

The callback handling function must be able to perform correctly for the entire time that the
function is registered. The callback function cannot depend upon any data structures that
might be destroyed before the callback function is successfully unregistered.

The callback handling function must return one of the following values:

■ DDI_SUCCESS if it correctly handled the action
■ DDI_FAILURE if it encountered an internal error
■ DDI_ENOTSUP if it received an unrecognized action

Interrupt Request Interfaces
A driver must use the following interfaces to request interrupt vectors from the system.

TABLE 8–2 Interrupt Vector Request Interfaces

Interface Data Structures Description

ddi_intr_alloc() ddi_intr_handle_t Allocate interrupts.

ddi_intr_set_nreq() Change number of interrupt vectors
requested.

Allocate an Interrupt
Use the ddi_intr_alloc(9F) function to initially allocate interrupts.

Interrupt Resource Management

Chapter 8 • Interrupt Handlers 137

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-cb-register-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-alloc-9f

int

ddi_intr_alloc (dev_info_t *dip, ddi_intr_handle_t *h_array, int type,

int inum, int count, int *actualp, int behavior);

Before calling this function, the driver must allocate an empty handle array large enough to
contain the number of interrupts requested. The ddi_intr_alloc() function attempts to
allocate count number of interrupt handles, and initialize the array with the assigned interrupt
vectors beginning at the offset specified by the inum parameter. The actualp parameter returns
the actual number of interrupt vectors that were allocated.

A driver can use the ddi_intr_alloc() function in two ways:

■ The driver can call the ddi_intr_alloc() function multiple times to allocate interrupt
vectors to individual members of the interrupt handle array in separate steps.

■ The driver can call the ddi_intr_alloc() function one time to allocate all of the interrupt
vectors for the device at once.

If you are using the Interrupt Resource Management feature, call ddi_intr_alloc() one time
to allocate all interrupt vectors at once. The count parameter is the total number of interrupt
vectors requested by the driver. If the value in actualp is less than the value of count, then the
system is not able to fulfill the request completely. The Interrupt Resource Management feature
saves this request (count becomes nreq - see below) and might be able to allocate more
interrupt vectors to this driver at a later time.

Note – When you use the Interrupt Resource Management feature, additional calls to
ddi_intr_alloc() do not change the total number of interrupt vectors requested. Use the
ddi_intr_set_nreq(9F) function to change the number of interrupt vectors requested.

Modify Number of Interrupt Vectors Requested
Use the ddi_intr_set_nreq(9F) function to change the number of interrupt vectors requested.

int

ddi_intr_set_nreq (dev_info_t *dip, int nreq);

When the Interrupt Resource Management feature is available, a driver can use the
ddi_intr_set_nreq() function to dynamically adjust the total number of interrupt vectors
requested. The driver might do this in response to the actual load that exists once the driver is
attached.

A driver must first call ddi_intr_alloc(9F) to request an initial number of interrupt vectors.
Any time after the ddi_intr_alloc()call, the driver can call ddi_intr_set_nreq() to change
its request size. The specified nreq value is the driver's new total number of requested interrupt
vectors. The Interrupt Resource Management feature might rebalance the number of interrupts
allocated to each driver in the system in response to this new request. Whenever the Interrupt

Interrupt Resource Management

Writing Device Drivers • March 2012138

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-set-nreq-9f

Resource Management feature rebalances the number of interrupts allocated to drivers, each
affected driver receives a callback notification that more or fewer interrupt vectors are available
for the driver to use.

A driver might dynamically adjust its total number of requested interrupt vectors if, for
example, it uses interrupts in conjunction with specific transactions that it is processing. A
storage driver might associate a DMA engine with each ongoing transaction, thus requiring
interrupt vectors for that reason. A driver might make calls to ddi_intr_set_nreq() in its
open(9F) and close(9F) routines to scale its interrupt usage in response to actual use of the
driver.

Interrupt Usage and Flexibility
A driver for a device that supports many different interruptible conditions must be able to map
those conditions to an arbitrary number of interrupt vectors. The driver cannot assume that
interrupt vectors that are allocated will remain available. Some currently available interrupts
might later be taken back by the system to accommodate the needs of other drivers in the
system.

A driver must be able to:

■ Determine how many interrupts its hardware supports.
■ Determine how many interrupts are appropriate to use. For example, the total number of

processors in the system might affect this evaluation.
■ Compare the number of interrupts needed with the number of interrupts available at any

given time.

In summary, the driver must be able to select a mixture of interrupt handling functions and
program its hardware to generate interrupts according to need and interrupt availability. In
some cases multiple interrupts might be targeted to the same vector, and the interrupt handler
for that interrupt vector must determine which interrupts occurred. The performance of the
device can be affected by how well the driver maps interrupts to interrupt vectors.

Example Implementation of Interrupt Resource
Management
One type of device driver that is an excellent candidate for interrupt resource management is a
network device driver. The network device hardware supports multiple transmit and receive
channels.

The network device generates a unique interrupt condition whenever the device receives a
packet on one of its receive channels or transmits a packet on one of its transmit channels. The
hardware can send a specific MSI-X interrupt for each event that can occur. A table in the
hardware determines which MSI-X interrupt to generate for each event.

Interrupt Resource Management

Chapter 8 • Interrupt Handlers 139

To optimize performance, the driver requests enough interrupts from the system to give each
separate interrupt its own interrupt vector. The driver makes this request when it first calls
ddi_intr_alloc(9F) in its attach(9F) routine.

The driver then evaluates the actual number of interrupts it received from ddi_intr_alloc()

in actualp. It might receive all the interrupts it requested, or it might receive fewer interrupts.

A separate function inside the driver uses the total number of available interrupts to calculate
which MSI-X interrupts to generate for each event. This function programs the table in the
hardware accordingly.
■ If the driver receives all of its requested interrupt vectors, each entry in the hardware table

has its own unique MSI-X interrupt. A one-to-one mapping exists between interrupt
conditions and interrupt vectors. The hardware generates a unique MSI-X interrupt for
each type of event.

■ If the driver has fewer interrupt vectors available, some MSI-X interrupt numbers must
appear multiple times in the hardware table. The hardware generates the same MSI-X
interrupt for more than one type of event.

The driver should have two different interrupt handler functions.
■ One interrupt handler function performs a specific task in response to an interrupt. This

simple function handles interrupts that are generated by only one of the possible hardware
events.

■ A second interrupt handler function is more complicated. This function handles the case
where multiple interrupts are mapped to the same MSI-X interrupt vector.

In the example driver in this section, the function xx_setup_interrupts() uses the number of
available interrupt vectors to program the hardware and calls the appropriate interrupt handler
for each of those interrupt vectors. The xx_setup_interrupts() function is called in two
places: after ddi_intr_alloc() is called in xx_attach(), and after interrupt vector allocations
are adjusted in the xx_cbfunc() callback handler function.

int

xx_setup_interrupts(xx_state_t *statep, int navail, xx_intrs_t *xx_intrs_p);

The xx_setup_interrupts() function is called with an array of xx_intrs_t data structures.

typedef struct {

ddi_intr_handler_t inthandler;

void *arg1;

void *arg2;

} xx_intrs_t;

This xx_setup_interrupts() functionality must exist in the driver independent of whether
the Interrupt Resource Management feature is available. Drivers must be able to function with
fewer interrupt vectors than the number requested during attach. If the Interrupt Resource
Management feature is available, you can modify the driver to dynamically adjust to a new
number of available interrupt vectors.

Interrupt Resource Management

Writing Device Drivers • March 2012140

Other functionality that the driver must provide independent of whether the Interrupt
Resource Management feature is available includes the ability to quiesce the hardware and
resume the hardware. Quiesce and resume are needed for certain events related to power
management and hotplugging. Quiesce and resume also are required to handle interrupt
callback actions.

The quiesce function is called in xx_detach().

int

xx_quiesce(xx_state_t *statep);

The resume function is called in xx_attach().

int

xx_resume(xx_state_t *statep);

Make the following modifications to enhance this device driver to use the Interrupt Resource
Management feature:

■ Register a callback handler. The driver must register for the actions that indicate when fewer
or more interrupts are available.

■ Handle callbacks. The driver must quiesce its hardware, reprogram its interrupt handling,
and resume its hardware in response to each such callback action.

/*

* attach(9F) routine.

*

* Creates soft state, registers callback handler, initializes

* hardware, and sets up interrupt handling for the driver.

*/

xx_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)

{

xx_state_t *statep = NULL;

xx_intr_t *intrs = NULL;

ddi_intr_handle_t *hdls;

ddi_cb_handle_t cb_hdl;

int instance;

int type;

int types;

int nintrs;

int nactual;

int inum;

/* Get device instance */

instance = ddi_get_instance(dip);

switch (cmd) {

case DDI_ATTACH:

/* Get soft state */

if (ddi_soft_state_zalloc(state_list, instance) != 0)

return (DDI_FAILURE);

statep = ddi_get_soft_state(state_list, instance);

Interrupt Resource Management

Chapter 8 • Interrupt Handlers 141

ddi_set_driver_private(dip, (caddr_t)statep);

statep->dip = dip;

/* Initialize hardware */

xx_initialize(statep);

/* Register callback handler */

if (ddi_cb_register(dip, DDI_CB_FLAG_INTR, xx_cbfunc,

statep, NULL, &cb_hdl) != 0) {

ddi_soft_state_free(state_list, instance);

return (DDI_FAILURE);

}

statep->cb_hdl = cb_hdl;

/* Select interrupt type */

ddi_intr_get_supported_types(dip, &types);

if (types & DDI_INTR_TYPE_MSIX) {

type = DDI_INTR_TYPE_MSIX;

} else if (types & DDI_INTR_TYPE_MSI) {

type = DDI_INTR_TYPE_MSI;

} else {

type = DDI_INTR_TYPE_FIXED;

}

statep->type = type;

/* Get number of supported interrupts */

ddi_intr_get_nintrs(dip, type, &nintrs);

/* Allocate interrupt handle array */

statep->hdls_size = nintrs * sizeof (ddi_intr_handle_t);

statep->hdls = kmem_zalloc(statep->hdls_size, KMEM_SLEEP);

/* Allocate interrupt setup array */

statep->intrs_size = nintrs * sizeof (xx_intr_t);

statep->intrs = kmem_zalloc(statep->intrs_size, KMEM_SLEEP);

/* Allocate interrupt vectors */

ddi_intr_alloc(dip, hdls, type, 0, nintrs, &nactual, 0);

statep->nactual = nactual;

/* Configure interrupt handling */

xx_setup_interrupts(statep, statep->nactual, statep->intrs);

/* Install and enable interrupt handlers */

for (inum = 0; inum < nactual; inum++) {

ddi_intr_add_handler(&hdls[inum],

intrs[inum].inthandler,

intrs[inum].arg1, intrs[inum].arg2);

ddi_intr_enable(hdls[inum]);

}

break;

case DDI_RESUME:

/* Get soft state */

statep = ddi_get_soft_state(state_list, instance);

if (statep == NULL)

return (DDI_FAILURE);

Interrupt Resource Management

Writing Device Drivers • March 2012142

/* Resume hardware */

xx_resume(statep);

break;

}

return (DDI_SUCESS);

}

/*

* detach(9F) routine.

*

* Stops the hardware, disables interrupt handling, unregisters

* a callback handler, and destroys the soft state for the driver.

*/

xx_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)

{

xx_state_t *statep = NULL;

int instance;

int inum;

/* Get device instance */

instance = ddi_get_instance(dip);

switch (cmd) {

case DDI_DETACH:

/* Get soft state */

statep = ddi_get_soft_state(state_list, instance);

if (statep == NULL)

return (DDI_FAILURE);

/* Stop device */

xx_uninitialize(statep);

/* Disable and free interrupts */

for (inum = 0; inum < statep->nactual; inum++) {

ddi_intr_disable(statep->hdls[inum]);

ddi_intr_remove_handler(statep->hdls[inum]);

ddi_intr_free(statep->hdls[inum]);

}

/* Unregister callback handler */

ddi_cb_unregister(statep->cb_hdl);

/* Free interrupt handle array */

kmem_free(statep->hdls, statep->hdls_size);

/* Free interrupt setup array */

kmem_free(statep->intrs, statep->intrs_size);

/* Free soft state */

ddi_soft_state_free(state_list, instance);

break;

case DDI_SUSPEND:

Interrupt Resource Management

Chapter 8 • Interrupt Handlers 143

/* Get soft state */

statep = ddi_get_soft_state(state_list, instance);

if (statep == NULL)

return (DDI_FAILURE);

/* Suspend hardware */

xx_quiesce(statep);

break;

}

return (DDI_SUCCESS);

}

/*

* (*ddi_cbfunc)() routine.

*

* Adapt interrupt usage when availability changes.

*/

int

xx_cbfunc(dev_info_t *dip, ddi_cb_action_t cbaction, void *cbarg,

void *arg1, void *arg2)

{

xx_state_t *statep = (xx_state_t *)arg1;

int count;

int inum;

int nactual;

switch (cbaction) {

case DDI_CB_INTR_ADD:

case DDI_CB_INTR_REMOVE:

/* Get change in availability */

count = (int)(uintptr_t)cbarg;

/* Suspend hardware */

xx_quiesce(statep);

/* Tear down previous interrupt handling */

for (inum = 0; inum < statep->nactual; inum++) {

ddi_intr_disable(statep->hdls[inum]);

ddi_intr_remove_handler(statep->hdls[inum]);

}

/* Adjust interrupt vector allocations */

if (cbaction == DDI_CB_INTR_ADD) {

/* Allocate additional interrupt vectors */

ddi_intr_alloc(dip, statep->hdls, statep->type,

statep->nactual, count, &nactual, 0);

/* Update actual count of available interrupts */

statep->nactual += nactual;

} else {

/* Free removed interrupt vectors */

for (inum = statep->nactual - count;

inum < statep->nactual; inum++) {

Interrupt Resource Management

Writing Device Drivers • March 2012144

ddi_intr_free(statep->hdls[inum]);

}

/* Update actual count of available interrupts */

statep->nactual -= count;

}

/* Configure interrupt handling */

xx_setup_interrupts(statep, statep->nactual, statep->intrs);

/* Install and enable interrupt handlers */

for (inum = 0; inum < statep->nactual; inum++) {

ddi_intr_add_handler(&statep->hdls[inum],

statep->intrs[inum].inthandler,

statep->intrs[inum].arg1,

statep->intrs[inum].arg2);

ddi_intr_enable(statep->hdls[inum]);

}

/* Resume hardware */

xx_resume(statep);

break;

default:

return (DDI_ENOTSUP);

}

return (DDI_SUCCESS);

}

Interrupt Handler Functionality
The driver framework and the device each place demands on the interrupt handler. All
interrupt handlers are required to do the following tasks:

■ Determine whether the device is interrupting and possibly reject the interrupt.
The interrupt handler first examines the device to determine whether this device issued the
interrupt. If this device did not issue the interrupt, the handler must return
DDI_INTR_UNCLAIMED. This step enables the implementation of device polling. Any device at
the given interrupt priority level might have issued the interrupt. Device polling tells the
system whether this device issued the interrupt.

■ Inform the device that the device is being serviced.
Informing a device about servicing is a device-specific operation that is required for the
majority of devices. For example, SBus devices are required to interrupt until the driver tells
the SBus devices to stop. This approach guarantees that all SBus devices that interrupt at the
same priority level are serviced.

■ Perform any I/O request-related processing.

Interrupt Handler Functionality

Chapter 8 • Interrupt Handlers 145

Devices interrupt for different reasons, such as transfer done or transfer error. This step can
involve using data access functions to read the device's data buffer, examine the device's
error register, and set the status field in a data structure accordingly. Interrupt dispatching
and processing are relatively time consuming.

■ Do any additional processing that could prevent another interrupt.
For example, read the next item of data from the device.

■ Return DDI_INTR_CLAIMED.
■ MSI interrupts must always be claimed.

Claiming an interrupt is optional for MSI-X interrupts. In either case, the ownership of the
interrupt need not be checked, because MSI and MSI-X interrupts are not shared with other
devices.

■ Drivers that support hotplugging and multiple MSI or MSI-X interrupts should retain a
separate interrupt for hotplug events and register a separate ISR (interrupt service
routine) for that interrupt.

The following example shows an interrupt routine for a device called mydev.

EXAMPLE 8–9 Interrupt Example

static uint_t

mydev_intr(caddr_t arg1, caddr_t arg2)

{

struct mydevstate *xsp = (struct mydevstate *)arg1;

uint8_t status;

volatile uint8_t temp;

/*

* Claim or reject the interrupt.This example assumes

* that the device’s CSR includes this information.

*/

mutex_enter(&xsp->high_mu);

/* use data access routines to read status */

status = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);

if (!(status & INTERRUPTING)) {

mutex_exit(&xsp->high_mu);

return (DDI_INTR_UNCLAIMED); /* dev not interrupting */

}

/*

* Inform the device that it is being serviced, and re-enable

* interrupts. The example assumes that writing to the

* CSR accomplishes this. The driver must ensure that this data

* access operation makes it to the device before the interrupt

* service routine returns. For example, using the data access

* functions to read the CSR, if it does not result in unwanted

* effects, can ensure this.

*/

ddi_put8(xsp->data_access_handle, &xsp->regp->csr,

CLEAR_INTERRUPT | ENABLE_INTERRUPTS);

/* flush store buffers */

Interrupt Handler Functionality

Writing Device Drivers • March 2012146

EXAMPLE 8–9 Interrupt Example (Continued)

temp = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);

mutex_exit(&xsp->mu);

return (DDI_INTR_CLAIMED);

}

Most of the steps performed by the interrupt routine depend on the specifics of the device itself.
Consult the hardware manual for the device to determine the cause of the interrupt, detect error
conditions, and access the device data registers.

Handling High-Level Interrupts
High-level interrupts are those interrupts that interrupt at the level of the scheduler and above.
This level does not allow the scheduler to run. Therefore, high-level interrupt handlers cannot
be preempted by the scheduler. High-level interrupts cannot block because of the scheduler.
High-level interrupts can only use mutual exclusion locks for locking.

The driver must determine whether the device is using high-level interrupts. Do this test in the
driver's attach(9E) entry point when you register interrupts. See “High-Level Interrupt
Handling Example” on page 147.

■ If the interrupt priority returned from ddi_intr_get_pri(9F) is greater than or equal to the
priority returned from ddi_intr_get_hilevel_pri(9F), the driver can fail to attach, or the
driver can implement a high-level interrupt handler. The high-level interrupt handler uses a
lower-priority software interrupt to handle the device. To allow more concurrency, use a
separate mutex to protect data from the high-level handler.

■ If the interrupt priority returned from ddi_intr_get_pri(9F) is less than the priority
returned from ddi_intr_get_hilevel_pri(9F), the attach(9E) entry point falls through
to regular interrupt registration. In this case, a soft interrupt is not necessary.

High-Level Mutexes
A mutex initialized with an interrupt priority that represents a high-level interrupt is known as
a high-level mutex. While holding a high-level mutex, the driver is subject to the same
restrictions as a high-level interrupt handler.

High-Level Interrupt Handling Example
In the following example, the high-level mutex (xsp->high_mu) is used only to protect data
shared between the high-level interrupt handler and the soft interrupt handler. The protected

Handling High-Level Interrupts

Chapter 8 • Interrupt Handlers 147

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-hilevel-pri-9f

data includes a queue used by both the high-level interrupt handler and the low-level handler,
and a flag that indicates that the low-level handler is running. A separate low-level mutex
(xsp->low_mu) protects the rest of the driver from the soft interrupt handler.

EXAMPLE 8–10 Handling High-Level Interrupts With attach()

static int

mydevattach(dev_info_t *dip, ddi_attach_cmd_t cmd)

{

struct mydevstate *xsp;

/* ... */

ret = ddi_intr_get_supported_types(dip, &type);

if ((ret != DDI_SUCCESS) || (!(type & DDI_INTR_TYPE_FIXED))) {

cmn_err(CE_WARN, "ddi_intr_get_supported_types() failed");
return (DDI_FAILURE);

}

ret = ddi_intr_get_nintrs(dip, DDI_INTR_TYPE_FIXED, &count);

/*

* Fixed interrupts can only have one interrupt. Check to make

* sure that number of supported interrupts and number of

* available interrupts are both equal to 1.

*/

if ((ret != DDI_SUCCESS) || (count != 1)) {

cmn_err(CE_WARN, "No fixed interrupts found");
return (DDI_FAILURE);

}

xsp->xs_htable = kmem_zalloc(count * sizeof (ddi_intr_handle_t),

KM_SLEEP);

ret = ddi_intr_alloc(dip, xsp->xs_htable, DDI_INTR_TYPE_FIXED, 0,

count, &actual, 0);

if ((ret != DDI_SUCCESS) || (actual != 1)) {

cmn_err(CE_WARN, "ddi_intr_alloc failed 0x%x", ret");
kmem_free(xsp->xs_htable, sizeof (ddi_intr_handle_t));

return (DDI_FAILURE);

}

ret = ddi_intr_get_pri(xsp->xs_htable[0], &intr_pri);

if (ret != DDI_SUCCESS) {

cmn_err(CE_WARN, "ddi_intr_get_pri failed 0x%x", ret");
(void) ddi_intr_free(xsp->xs_htable[0]);

kmem_free(xsp->xs_htable, sizeof (ddi_intr_handle_t));

return (DDI_FAILURE);

}

if (intr_pri >= ddi_intr_get_hilevel_pri()) {

mutex_init(&xsp->high_mu, NULL, MUTEX_DRIVER,

DDI_INTR_PRI(intr_pri));

ret = ddi_intr_add_handler(xsp->xs_htable[0],

mydevhigh_intr, (caddr_t)xsp, NULL);

Handling High-Level Interrupts

Writing Device Drivers • March 2012148

EXAMPLE 8–10 Handling High-Level Interrupts With attach() (Continued)

if (ret != DDI_SUCCESS) {

cmn_err(CE_WARN, "ddi_intr_add_handler failed 0x%x", ret");
mutex_destroy(&xsp>xs_int_mutex);

(void) ddi_intr_free(xsp->xs_htable[0]);

kmem_free(xsp->xs_htable, sizeof (ddi_intr_handle_t));

return (DDI_FAILURE);

}

/* add soft interrupt */

if (ddi_intr_add_softint(xsp->xs_dip, &xsp->xs_softint_hdl,

DDI_INTR_SOFTPRI_MAX, xs_soft_intr, (caddr_t)xsp) !=

DDI_SUCCESS) {

cmn_err(CE_WARN, "add soft interrupt failed");
mutex_destroy(&xsp->high_mu);

(void) ddi_intr_remove_handler(xsp->xs_htable[0]);

(void) ddi_intr_free(xsp->xs_htable[0]);

kmem_free(xsp->xs_htable, sizeof (ddi_intr_handle_t));

return (DDI_FAILURE);

}

xsp->low_soft_pri = DDI_INTR_SOFTPRI_MAX;

mutex_init(&xsp->low_mu, NULL, MUTEX_DRIVER,

DDI_INTR_PRI(xsp->low_soft_pri));

} else {

/*

* regular interrupt registration continues from here

* do not use a soft interrupt

*/

}

return (DDI_SUCCESS);

}

The high-level interrupt routine services the device and queues the data. The high-level routine
triggers a software interrupt if the low-level routine is not running, as the following example
demonstrates.

EXAMPLE 8–11 High-level Interrupt Routine

static uint_t

mydevhigh_intr(caddr_t arg1, caddr_t arg2)

{

struct mydevstate *xsp = (struct mydevstate *)arg1;

uint8_t status;

volatile uint8_t temp;

int need_softint;

mutex_enter(&xsp->high_mu);

/* read status */

status = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);

if (!(status & INTERRUPTING)) {

mutex_exit(&xsp->high_mu);

Handling High-Level Interrupts

Chapter 8 • Interrupt Handlers 149

EXAMPLE 8–11 High-level Interrupt Routine (Continued)

return (DDI_INTR_UNCLAIMED); /* dev not interrupting */

}

ddi_put8(xsp->data_access_handle,&xsp->regp->csr,

CLEAR_INTERRUPT | ENABLE_INTERRUPTS);

/* flush store buffers */

temp = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);

/* read data from device, queue data for low-level interrupt handler */

if (xsp->softint_running)

need_softint = 0;

else {

xsp->softint_count++;

need_softint = 1;

}

mutex_exit(&xsp->high_mu);

/* read-only access to xsp->id, no mutex needed */

if (need_softint) {

ret = ddi_intr_trigger_softint(xsp->xs_softint_hdl, NULL);

if (ret == DDI_EPENDING) {

cmn_err(CE_WARN, "ddi_intr_trigger_softint() soft interrupt "
"already pending for this handler");

} else if (ret != DDI_SUCCESS) {

cmn_err(CE_WARN, "ddi_intr_trigger_softint() failed");
}

}

return (DDI_INTR_CLAIMED);

}

The low-level interrupt routine is started by the high-level interrupt routine, which triggers a
software interrupt. The low-level interrupt routine runs until there is nothing left to process, as
the following example shows.

EXAMPLE 8–12 Low-Level Soft Interrupt Routine

static uint_t

mydev_soft_intr(caddr_t arg1, caddr_t arg2)

{

struct mydevstate *mydevp = (struct mydevstate *)arg1;

/* ... */

mutex_enter(&mydevp->low_mu);

mutex_enter(&mydevp->high_mu);

if (mydevp->softint_count > 1) {

mydevp->softint_count--;

mutex_exit(&mydevp->high_mu);

mutex_exit(&mydevp->low_mu);

return (DDI_INTR_CLAIMED);

}

if (/* queue empty */) {

mutex_exit(&mydevp->high_mu);

mutex_exit(&mydevp->low_mu);

Handling High-Level Interrupts

Writing Device Drivers • March 2012150

EXAMPLE 8–12 Low-Level Soft Interrupt Routine (Continued)

return (DDI_INTR_UNCLAIMED);

}

mydevp->softint_running = 1;

while (EMBEDDED COMMENT:data on queue) {

ASSERT(mutex_owned(&mydevp->high_mu);

/* Dequeue data from high-level queue. */

mutex_exit(&mydevp->high_mu);

/* normal interrupt processing */

mutex_enter(&mydevp->high_mu);

}

mydevp->softint_running = 0;

mydevp->softint_count = 0;

mutex_exit(&mydevp->high_mu);

mutex_exit(&mydevp->low_mu);

return (DDI_INTR_CLAIMED);

}

Handling High-Level Interrupts

Chapter 8 • Interrupt Handlers 151

152

Direct Memory Access (DMA)

Many devices can temporarily take control of the bus. These devices can perform data transfers
that involve main memory and other devices. Because the device is doing the work without the
help of the CPU, this type of data transfer is known as direct memory access (DMA). The
following types of DMA transfers can be performed:
■ Between two devices
■ Between a device and memory
■ Between memory and memory

This chapter explains transfers between a device and memory only. The chapter provides
information on the following subjects:
■ “DMA Model” on page 153
■ “Types of Device DMA” on page 154
■ “Types of Host Platform DMA” on page 155
■ “DMA Software Components: Handles, Windows, and Cookies” on page 155
■ “DMA Operations” on page 156
■ “Managing DMA Resources” on page 161
■ “DMA Windows” on page 173

DMA Model
The Oracle Solaris Device Driver Interface/Driver-Kernel Interface (DDI/DKI) provides a
high-level, architecture-independent model for DMA. This model enables the framework, that
is, the DMA routines, to hide architecture-specific details such as the following:
■ Setting up DMA mappings
■ Building scatter-gather lists
■ Ensuring that I/O and CPU caches are consistent

Several abstractions are used in the DDI/DKI to describe aspects of a DMA transaction:
■ DMA object – Memory that is the source or destination of a DMA transfer.

9C H A P T E R 9

153

■ DMA handle – An opaque object returned from a successful ddi_dma_alloc_handle(9F)
call. The DMA handle can be used in subsequent DMA subroutine calls to refer to such
DMA objects.

■ DMA cookie – A ddi_dma_cookie(9S) structure (ddi_dma_cookie_t) describes a
contiguous portion of a DMA object that is entirely addressable by the device. The cookie
contains DMA addressing information that is required to program the DMA engine.

Rather than map an object directly into memory, device drivers allocate DMA resources for a
memory object. The DMA routines then perform any platform-specific operations that are
needed to set up the object for DMA access. The driver receives a DMA handle to identify the
DMA resources that are allocated for the object. This handle is opaque to the device driver. The
driver must save the handle and pass the handle in subsequent calls to DMA routines. The
driver should not interpret the handle in any way.

Operations that provide the following services are defined on a DMA handle:

■ Manipulating DMA resources
■ Synchronizing DMA objects
■ Retrieving attributes of the allocated resources

Types of Device DMA
Devices perform one of the following three types of DMA:

■ Bus-master DMA
■ Third-party DMA
■ First-party DMA

Bus-Master DMA
The driver should program the device's DMA registers directly in cases where the device acts
like a true bus master. For example, a device acts like a bus master when the DMA engine resides
on the device board. The transfer address and count are obtained from the DMA cookie to be
passed on to the device.

Third-Party DMA
Third-party DMA uses a system DMA engine resident on the main system board, which has
several DMA channels that are available for use by devices. The device relies on the system's
DMA engine to perform the data transfers between the device and memory. The driver uses
DMA engine routines (see the ddi_dmae(9F) function) to initialize and program the DMA
engine. For each DMA data transfer, the driver programs the DMA engine and then gives the
device a command to initiate the transfer in cooperation with that engine.

Types of Device DMA

Writing Device Drivers • March 2012154

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-alloc-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sddi-dma-cookie-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dmae-9f

First-Party DMA
Under first-party DMA, the device uses a channel from the system's DMA engine to drive that
device's DMA bus cycles. Use the ddi_dmae_1stparty(9F) function to configure this channel in
a cascade mode so that the DMA engine does not interfere with the transfer.

Types of Host Platform DMA
The platform on which the device operates provides either direct memory access (DMA) or
direct virtual memory access (DVMA).

On platforms that support DMA, the system provides the device with a physical address in
order to perform transfers. In this case, the transfer of a DMA object can actually consist of a
number of physically discontiguous transfers. An example is when an application transfers a
buffer that spans several contiguous virtual pages that map to physically discontiguous pages.
To deal with the discontiguous memory, devices for these platforms usually have some kind of
scatter-gather DMA capability. Typically, x86 systems provide physical addresses for direct
memory transfers.

On platforms that support DVMA, the system provides the device with a virtual address to
perform transfers. In this case, memory management units (MMU) provided by the underlying
platform translate device accesses to these virtual addresses into the proper physical addresses.
The device transfers to and from a contiguous virtual image that can be mapped to
discontiguous physical pages. Devices that operate in these platforms do not need
scatter-gather DMA capability. Typically, SPARC platforms provide virtual addresses for direct
memory transfers.

DMA Software Components: Handles, Windows, and Cookies
A DMA handle is an opaque pointer that represents an object, usually a memory buffer or
address. A DMA handle enables a device to perform DMA transfers. Several different calls to
DMA routines use the handle to identify the DMA resources that are allocated for the object.

An object represented by a DMA handle is completely covered by one or more DMA cookies. A
DMA cookie represents a contiguous piece of memory that is used in data transfers by the DMA
engine. The system divides objects into multiple cookies based on the following information:

■ The ddi_dma_attr(9S) attribute structure provided by the driver
■ Memory location of the target object
■ Alignment of the target object

If an object does not fit within the limitations of the DMA engine, that object must be broken
into multiple DMA windows. You can only activate and allocate resources for one window at a

DMA Software Components: Handles, Windows, and Cookies

Chapter 9 • Direct Memory Access (DMA) 155

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dmae-1stparty-9f

time. Use the ddi_dma_getwin(9F) function to position between windows within an object.
Each DMA window consists of one or more DMA cookies. For more information, see “DMA
Windows” on page 173.

Some DMA engines can accept more than one cookie. Such engines perform scatter-gather I/O
without the help of the system. If multiple cookies are returned from a bind, the driver should
call ddi_dma_nextcookie(9F) repeatedly to retrieve each cookie. These cookies must then be
programmed into the engine. The device can then be programmed to transfer the total number
of bytes covered by the aggregate of these DMA cookies.

DMA Operations
The steps in a DMA transfer are similar among the types of DMA. The following sections
present methods for performing DMA transfers.

Note – You do not need to ensure that the DMA object is locked in memory in block drivers for
buffers that come from the file system. The file system has already locked the data in memory.

Performing Bus-Master DMA Transfers
The driver should perform the following steps for bus-master DMA.

1. Describe the DMA attributes. This step enables the routines to ensure that the device is able
to access the buffer.

2. Allocate a DMA handle.

3. Ensure that the DMA object is locked in memory. See the physio(9F) or
ddi_umem_lock(9F) man page.

4. Allocate DMA resources for the object.

5. Program the DMA engine on the device.

6. Start the engine.

7. When the transfer is complete, continue the bus master operation.

8. Perform any required object synchronizations.

9. Release the DMA resources.

10. Free the DMA handle.

DMA Operations

Writing Device Drivers • March 2012156

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-getwin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-nextcookie-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-umem-lock-9f

Performing First-Party DMA Transfers
The driver should perform the following steps for first-party DMA.

1. Allocate a DMA channel.
2. Use ddi_dmae_1stparty(9F) to configure the channel.
3. Ensure that the DMA object is locked in memory. See the physio(9F) or

ddi_umem_lock(9F) man page.
4. Allocate DMA resources for the object.
5. Program the DMA engine on the device.
6. Start the engine.
7. When the transfer is complete, continue the bus-master operation.
8. Perform any required object synchronizations.
9. Release the DMA resources.
10. Deallocate the DMA channel.

Performing Third-Party DMA Transfers
The driver should perform these steps for third-party DMA.

1. Allocate a DMA channel.
2. Retrieve the system's DMA engine attributes with ddi_dmae_getattr(9F).
3. Lock the DMA object in memory. See the physio(9F) or ddi_umem_lock(9F) man page.
4. Allocate DMA resources for the object.
5. Use ddi_dmae_prog(9F) to program the system DMA engine to perform the transfer.
6. Perform any required object synchronizations.
7. Use ddi_dmae_stop(9F) to stop the DMA engine.
8. Release the DMA resources.
9. Deallocate the DMA channel.

Certain hardware platforms restrict DMA capabilities in a bus-specific way. Drivers should use
ddi_slaveonly(9F) to determine whether the device is in a slot in which DMA is possible.

DMA Attributes
DMA attributes describe the attributes and limits of a DMA engine, which include:

■ Limits on addresses that the device can access
■ Maximum transfer count
■ Address alignment restrictions

DMA Operations

Chapter 9 • Direct Memory Access (DMA) 157

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dmae-1stparty-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-umem-lock-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dmae-getattr-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-umem-lock-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dmae-prog-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dmae-stop-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-slaveonly-9f

A device driver must inform the system about any DMA engine limitations through the
ddi_dma_attr(9S) structure. This action ensures that DMA resources that are allocated by the
system can be accessed by the device's DMA engine. The system can impose additional
restrictions on the device attributes, but the system never removes any of the driver-supplied
restrictions.

ddi_dma_attr Structure
The DMA attribute structure has the following members:

typedef struct ddi_dma_attr {

uint_t dma_attr_version; /* version number */

uint64_t dma_attr_addr_lo; /* low DMA address range */

uint64_t dma_attr_addr_hi; /* high DMA address range */

uint64_t dma_attr_count_max; /* DMA counter register */

uint64_t dma_attr_align; /* DMA address alignment */

uint_t dma_attr_burstsizes; /* DMA burstsizes */

uint32_t dma_attr_minxfer; /* min effective DMA size */

uint64_t dma_attr_maxxfer; /* max DMA xfer size */

uint64_t dma_attr_seg; /* segment boundary */

int dma_attr_sgllen; /* s/g length */

uint32_t dma_attr_granular; /* granularity of device */

uint_t dma_attr_flags; /* Bus specific DMA flags */

} ddi_dma_attr_t;

where:

dma_attr_version Version number of the attribute structure. dma_attr_version
should be set to DMA_ATTR_V0.

dma_attr_addr_lo Lowest bus address that the DMA engine can access.

dma_attr_addr_hi Highest bus address that the DMA engine can access.

dma_attr_count_max Specifies the maximum transfer count that the DMA engine can
handle in one cookie. The limit is expressed as the maximum count
minus one. This count is used as a bit mask, so the count must also
be one less than a power of two.

dma_attr_align Specifies alignment requirements when allocating memory from
ddi_dma_mem_alloc(9F). An example of an alignment requirement
is alignment on a page boundary. The dma_attr_align field is used
only when allocating memory. This field is ignored during bind
operations. For bind operations, the driver must ensure that the
buffer is aligned appropriately.

dma_attr_burstsizes Specifies the burst sizes that the device supports. A burst size is the
amount of data the device can transfer before relinquishing the bus.
This member is a binary encoding of burst sizes, which are assumed
to be powers of two. For example, if the device is capable of doing

DMA Operations

Writing Device Drivers • March 2012158

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sddi-dma-attr-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-mem-alloc-9f

1-byte, 2-byte, 4-byte, and 16-byte bursts, this field should be set to
0x17. The system also uses this field to determine alignment
restrictions.

dma_attr_minxfer Minimum effective transfer size that the device can perform. This
size also influences restrictions on alignment and on padding.

dma_attr_maxxfer Describes the maximum number of bytes that the DMA engine can
accommodate in one I/O command. This limitation is only
significant if dma_attr_maxxfer is less than (dma_attr_count_max

+ 1) * dma_attr_sgllen.

dma_attr_seg Upper bound of the DMA engine's address register. dma_attr_seg
is often used where the upper 8 bits of an address register are a latch
that contains a segment number. The lower 24 bits are used to
address a segment. In this case, dma_attr_seg would be set to
0xFFFFFF, which prevents the system from crossing a 24-bit
segment boundary when allocating resources for the object.

dma_attr_sgllen Specifies the maximum number of entries in the scatter-gather list.
dma_attr_sgllen is the number of cookies that the DMA engine
can consume in one I/O request to the device. If the DMA engine
has no scatter-gather list, this field should be set to 1.

dma_attr_granular This field gives the granularity in bytes of the DMA transfer ability
of the device. An example of how this value is used is to specify the
sector size of a mass storage device. When a bind operation requires
a partial mapping, this field is used to ensure that the sum of the
sizes of the cookies in a DMA window is a whole multiple of
granularity. However, if the device does not have a scatter-gather
capability, it is impossible for the DDI to ensure the granularity. For
this case, the value of the dma_attr_granular field should be 1.

dma_attr_flags This field can be set to DDI_DMA_FORCE_PHYSICAL, which indicates
that the system should return physical rather than virtual I/O
addresses if the system supports both. If the system does not
support physical DMA, the return value from
ddi_dma_alloc_handle(9F) is DDI_DMA_BADATTR. In this case, the
driver has to clear DDI_DMA_FORCE_PHYSICAL and retry the
operation.

SBus Example
A DMA engine on an SBus in a SPARC machine has the following attributes:

■ Access to addresses ranging from 0xFF000000 to 0xFFFFFFFF only
■ 32-bit DMA counter register

DMA Operations

Chapter 9 • Direct Memory Access (DMA) 159

■ Ability to handle byte-aligned transfers
■ Support for 1-byte, 2-byte, and 4-byte burst sizes
■ Minimum effective transfer size of 1 byte
■ 32-bit address register
■ No scatter-gather list
■ Operation on sectors only, for example, a disk

A DMA engine on an SBus in a SPARC machine has the following attribute structure:

static ddi_dma_attr_t attributes = {

DMA_ATTR_V0, /* Version number */

0xFF000000, /* low address */

0xFFFFFFFF, /* high address */

0xFFFFFFFF, /* counter register max */

1, /* byte alignment */

0x7, /* burst sizes: 0x1 | 0x2 | 0x4 */

0x1, /* minimum transfer size */

0xFFFFFFFF, /* max transfer size */

0xFFFFFFFF, /* address register max */

1, /* no scatter-gather */

512, /* device operates on sectors */

0, /* attr flag: set to 0 */

};

ISA Bus Example
A DMA engine on an ISA bus in an x86 machine has the following attributes:

■ Access to the first 16 megabytes of memory only
■ Inability to cross a 1-megabyte boundary in a single DMA transfer
■ 16-bit counter register
■ Ability to handle byte-aligned transfers
■ Support for 1-byte, 2-byte, and 4-byte burst sizes
■ Minimum effective transfer size of 1 byte
■ Ability to hold up to 17 scatter-gather transfers
■ Operation on sectors only, for example, a disk

A DMA engine on an ISA bus in an x86 machine has the following attribute structure:

static ddi_dma_attr_t attributes = {

DMA_ATTR_V0, /* Version number */

0x00000000, /* low address */

0x00FFFFFF, /* high address */

0xFFFF, /* counter register max */

1, /* byte alignment */

0x7, /* burst sizes */

0x1, /* minimum transfer size */

0xFFFFFFFF, /* max transfer size */

0x000FFFFF, /* address register max */

17, /* scatter-gather */

512, /* device operates on sectors */

DMA Operations

Writing Device Drivers • March 2012160

0, /* attr flag: set to 0 */

};

Managing DMA Resources
This section describes how to manage DMA resources.

Object Locking
Before allocating the DMA resources for a memory object, the object must be prevented from
moving. Otherwise, the system can remove the object from memory while the device is trying to
write to that object. A missing object would cause the data transfer to fail and possibly corrupt
the system. The process of preventing memory objects from moving during a DMA transfer is
known as locking down the object.

The following object types do not require explicit locking:

■ Buffers coming from the file system through strategy(9E). These buffers are already locked
by the file system.

■ Kernel memory allocated within the device driver, such as that allocated by
ddi_dma_mem_alloc(9F).

For other objects such as buffers from user space, physio(9F) or ddi_umem_lock(9F) must be
used to lock down the objects. Locking down objects with these functions is usually performed
in the read(9E) or write(9E) routines of a character device driver. See “Data Transfer Methods”
on page 269 for an example.

Allocating a DMA Handle
A DMA handle is an opaque object that is used as a reference to subsequently allocated DMA
resources. The DMA handle is usually allocated in the driver's attach() entry point that uses
ddi_dma_alloc_handle(9F). The ddi_dma_alloc_handle() function takes the device
information that is referred to by dip and the device's DMA attributes described by a
ddi_dma_attr(9S) structure as parameters. The ddi_dma_alloc_handle() function has the
following syntax:

int ddi_dma_alloc_handle(dev_info_t *dip,

ddi_dma_attr_t *attr, int (*callback)(caddr_t),

caddr_t arg, ddi_dma_handle_t *handlep);

where:

dip Pointer to the device's dev_info structure.

Managing DMA Resources

Chapter 9 • Direct Memory Access (DMA) 161

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-mem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-umem-lock-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-alloc-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sddi-dma-attr-9s

attr Pointer to a ddi_dma_attr(9S) structure, as described in “DMA Attributes” on
page 157.

callback Address of the callback function for handling resource allocation failures.

arg Argument to be passed to the callback function.

handlep Pointer to a DMA handle to store the returned handle.

Allocating DMA Resources
Two interfaces allocate DMA resources:

■ ddi_dma_buf_bind_handle(9F) – Used with buf(9S) structures

■ ddi_dma_addr_bind_handle(9F) – Used with virtual addresses

DMA resources are usually allocated in the driver's xxstart() routine, if an xxstart() routine
exists. See “Asynchronous Data Transfers (Block Drivers)” on page 299 for a discussion of
xxstart(). These two interfaces have the following syntax:

int ddi_dma_addr_bind_handle(ddi_dma_handle_t handle,

struct as *as, caddr_t addr,

size_t len, uint_t flags, int (*callback)(caddr_t),

caddr_t arg, ddi_dma_cookie_t *cookiep, uint_t *ccountp);

int ddi_dma_buf_bind_handle(ddi_dma_handle_t handle,

struct buf *bp, uint_t flags,

int (*callback)(caddr_t), caddr_t arg,

ddi_dma_cookie_t *cookiep, uint_t *ccountp);

The following arguments are common to both ddi_dma_addr_bind_handle(9F) and
ddi_dma_buf_bind_handle(9F):

handle DMA handle and the object for allocating resources.

flags Set of flags that indicate the transfer direction and other attributes. DDI_DMA_READ
indicates a data transfer from device to memory. DDI_DMA_WRITE indicates a data
transfer from memory to device. See the ddi_dma_addr_bind_handle(9F) or
ddi_dma_buf_bind_handle(9F) man page for a complete discussion of the
available flags.

callback Address of callback function for handling resource allocation failures. See the
ddi_dma_alloc_handle(9F) man page.

arg Argument to pass to the callback function.

cookiep Pointer to the first DMA cookie for this object.

ccountp Pointer to the number of DMA cookies for this object.

Managing DMA Resources

Writing Device Drivers • March 2012162

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sddi-dma-attr-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-addr-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-addr-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-addr-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-alloc-handle-9f

For ddi_dma_addr_bind_handle(9F), the object is described by an address range with the
following parameters:

as Pointer to an address space structure. The value of as must be NULL.

addr Base kernel address of the object.

len Length of the object in bytes.

For ddi_dma_buf_bind_handle(9F), the object is described by a buf(9S) structure pointed to by
bp.

Device Register Structure
DMA-capable devices require more registers than were used in the previous examples.

The following fields are used in the device register structure to support DMA-capable device
with no scatter-gather support:

uint32_t dma_addr; /* starting address for DMA */

uint32_t dma_size; /* amount of data to transfer */

The following fields are used in the device register structure to support DMA-capable devices
with scatter-gather support:

struct sglentry {

uint32_t dma_addr;

uint32_t dma_size;

} sglist[SGLLEN];

caddr_t iopb_addr; /* When written, informs the device of the next */

/* command’s parameter block address. */

/* When read after an interrupt, contains */

/* the address of the completed command. */

DMA Callback Example
In Example 9–1, xxstart() is used as the callback function. The per-device state structure is
used as the argument to xxstart(). The xxstart() function attempts to start the command. If
the command cannot be started because resources are not available, xxstart() is scheduled to
be called later when resources are available.

Because xxstart() is used as a DMA callback, xxstart() must adhere to the following rules,
which are imposed on DMA callbacks:

■ Resources cannot be assumed to be available. The callback must try to allocate resources
again.

Managing DMA Resources

Chapter 9 • Direct Memory Access (DMA) 163

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-addr-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s

■ The callback must indicate to the system whether allocation succeeded.
DDI_DMA_CALLBACK_RUNOUT should be returned if the callback fails to allocate resources, in
which case xxstart() needs to be called again later. DDI_DMA_CALLBACK_DONE indicates
success, so that no further callback is necessary.

EXAMPLE 9–1 DMA Callback Example

static int

xxstart(caddr_t arg)

{

struct xxstate *xsp = (struct xxstate *)arg;

struct device_reg *regp;

int flags;

mutex_enter(&xsp->mu);

if (xsp->busy) {

/* transfer in progress */

mutex_exit(&xsp->mu);

return (DDI_DMA_CALLBACK_RUNOUT);

}

xsp->busy = 1;

regp = xsp->regp;

if (/* transfer is a read */) {

flags = DDI_DMA_READ;

} else {

flags = DDI_DMA_WRITE;

}

mutex_exit(&xsp->mu);

if (ddi_dma_buf_bind_handle(xsp->handle,xsp->bp,flags, xxstart,

(caddr_t)xsp, &cookie, &ccount) != DDI_DMA_MAPPED) {

/* really should check all return values in a switch */

mutex_enter(&xsp->mu);

xsp->busy=0;

mutex_exit(&xsp->mu);

return (DDI_DMA_CALLBACK_RUNOUT);

}

/* Program the DMA engine. */

return (DDI_DMA_CALLBACK_DONE);

}

Determining Maximum Burst Sizes
Drivers specify the DMA burst sizes that their device supports in the
dma_attr_burstsizesfield of the ddi_dma_attr(9S) structure. This field is a bitmap of the
supported burst sizes. However, when DMA resources are allocated, the system might impose
further restrictions on the burst sizes that might be actually used by the device. The
ddi_dma_burstsizes(9F) routine can be used to obtain the allowed burst sizes. This routine
returns the appropriate burst size bitmap for the device. When DMA resources are allocated, a
driver can ask the system for appropriate burst sizes to use for its DMA engine.

Managing DMA Resources

Writing Device Drivers • March 2012164

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sddi-dma-attr-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-burstsizes-9f

EXAMPLE 9–2 Determining Burst Size

#define BEST_BURST_SIZE 0x20 /* 32 bytes */

if (ddi_dma_buf_bind_handle(xsp->handle,xsp->bp, flags, xxstart,

(caddr_t)xsp, &cookie, &ccount) != DDI_DMA_MAPPED) {

/* error handling */

}

burst = ddi_dma_burstsizes(xsp->handle);

/* check which bit is set and choose one burstsize to */

/* program the DMA engine */

if (burst & BEST_BURST_SIZE) {

/* program DMA engine to use this burst size */

} else {

/* other cases */

}

Allocating Private DMA Buffers
Some device drivers might need to allocate memory for DMA transfers in addition to
performing transfers requested by user threads and the kernel. Some examples of allocating
private DMA buffers are setting up shared memory for communication with the device and
allocating intermediate transfer buffers. Use ddi_dma_mem_alloc(9F) to allocate memory for
DMA transfers.

int ddi_dma_mem_alloc(ddi_dma_handle_t handle, size_t length,

ddi_device_acc_attr_t *accattrp, uint_t flags,

int (*waitfp)(caddr_t), caddr_t arg, caddr_t *kaddrp,

size_t *real_length, ddi_acc_handle_t *handlep);

where:

handle DMA handle

length Length in bytes of the desired allocation

accattrp Pointer to a device access attribute structure

flags Data transfer mode flags. Possible values are DDI_DMA_CONSISTENT and
DDI_DMA_STREAMING.

waitfp Address of callback function for handling resource allocation failures. See the
ddi_dma_alloc_handle(9F) man page.

arg Argument to pass to the callback function

kaddrp Pointer on a successful return that contains the address of the allocated storage

real_length Length in bytes that was allocated

handlep Pointer to a data access handle

Managing DMA Resources

Chapter 9 • Direct Memory Access (DMA) 165

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-mem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-alloc-handle-9f

The flags parameter should be set to DDI_DMA_CONSISTENT if the device accesses in a
nonsequential fashion. Synchronization steps that use ddi_dma_sync(9F) should be as
lightweight as possible due to frequent application to small objects. This type of access is
commonly known as consistent access. Consistent access is particularly useful for I/O
parameter blocks that are used for communication between a device and the driver.

On the x86 platform, allocation of DMA memory that is physically contiguous has these
requirements:

■ The length of the scatter-gather list dma_attr_sgllen in the ddi_dma_attr(9S) structure
must be set to 1.

■ Do not specify DDI_DMA_PARTIAL. DDI_DMA_PARTIAL allows partial resource allocation.

The following example shows how to allocate IOPB memory and the necessary DMA resources
to access this memory. DMA resources must still be allocated, and the DDI_DMA_CONSISTENT
flag must be passed to the allocation function.

EXAMPLE 9–3 Using ddi_dma_mem_alloc(9F)

if (ddi_dma_mem_alloc(xsp->iopb_handle, size, &accattr,

DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &xsp->iopb_array,

&real_length, &xsp->acchandle) != DDI_SUCCESS) {

/* error handling */

goto failure;

}

if (ddi_dma_addr_bind_handle(xsp->iopb_handle, NULL,

xsp->iopb_array, real_length,

DDI_DMA_READ | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP,

NULL, &cookie, &count) != DDI_DMA_MAPPED) {

/* error handling */

ddi_dma_mem_free(&xsp->acchandle);

goto failure;

}

The flags parameter should be set to DDI_DMA_STREAMING for memory transfers that are
sequential, unidirectional, block-sized, and block-aligned. This type of access is commonly
known as streaming access.

In some cases, an I/O transfer can be sped up by using an I/O cache. I/O cache transfers one
cache line at a minimum. The ddi_dma_mem_alloc(9F) routine rounds size to a multiple of the
cache line to avoid data corruption.

The ddi_dma_mem_alloc(9F) function returns the actual size of the allocated memory object.
Because of padding and alignment requirements, the actual size might be larger than the
requested size. The ddi_dma_addr_bind_handle(9F) function requires the actual length.

Use the ddi_dma_mem_free(9F) function to free the memory allocated by
ddi_dma_mem_alloc(9F).

Managing DMA Resources

Writing Device Drivers • March 2012166

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-sync-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sddi-dma-attr-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-mem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-mem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-addr-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-mem-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-mem-alloc-9f

Note – Drivers must ensure that buffers are aligned appropriately. Drivers for devices that have
alignment requirements on down bound DMA buffers might need to copy the data into a driver
intermediate buffer that meets the requirements, and then bind that intermediate buffer to the
DMA handle for DMA. Use ddi_dma_mem_alloc(9F) to allocate the driver intermediate buffer.
Always use ddi_dma_mem_alloc(9F) instead of kmem_alloc(9F) to allocate memory for the
device to access.

Handling Resource Allocation Failures
The resource-allocation routines provide the driver with several options when handling
allocation failures. The waitfp argument indicates whether the allocation routines block, return
immediately, or schedule a callback, as shown in the following table.

TABLE 9–1 Resource Allocation Handling

waitfp value Indicated Action

DDI_DMA_DONTWAIT Driver does not want to wait for resources to become available

DDI_DMA_SLEEP Driver is willing to wait indefinitely for resources to become available

Other values The address of a function to be called when resources are likely to be
available

Programming the DMA Engine
When the resources have been successfully allocated, the device must be programmed.
Although programming a DMA engine is device specific, all DMA engines require a starting
address and a transfer count. Device drivers retrieve these two values from the DMA cookie
returned by a successful call from ddi_dma_addr_bind_handle(9F),
ddi_dma_buf_bind_handle(9F), or ddi_dma_getwin(9F). These functions all return the first
DMA cookie and a cookie count indicating whether the DMA object consists of more than one
cookie. If the cookie count N is greater than 1, ddi_dma_nextcookie(9F) must be called N-1
times to retrieve all the remaining cookies.

A DMA cookie is of type ddi_dma_cookie(9S). This type of cookie has the following fields:

uint64_t _dmac_ll; /* 64-bit DMA address */

uint32_t _dmac_la[2]; /* 2 x 32-bit address */

size_t dmac_size; /* DMA cookie size */

uint_t dmac_type; /* bus specific type bits */

The dmac_laddress specifies a 64-bit I/O address that is appropriate for programming the
device's DMA engine. If a device has a 64-bit DMA address register, a driver should use this
field to program the DMA engine. The dmac_address field specifies a 32-bit I/O address that

Managing DMA Resources

Chapter 9 • Direct Memory Access (DMA) 167

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-addr-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-getwin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-nextcookie-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sddi-dma-cookie-9s

should be used for devices that have a 32-bit DMA address register. The dmac_size field
contains the transfer count. Depending on the bus architecture, the dmac_type field in the
cookie might be required by the driver. The driver should not perform any manipulations, such
as logical or arithmetic, on the cookie.

EXAMPLE 9–4 ddi_dma_cookie(9S) Example

ddi_dma_cookie_t cookie;

if (ddi_dma_buf_bind_handle(xsp->handle,xsp->bp, flags, xxstart,

(caddr_t)xsp, &cookie, &xsp->ccount) != DDI_DMA_MAPPED) {

/* error handling */

}

sglp = regp->sglist;

for (cnt = 1; cnt <= SGLLEN; cnt++, sglp++) {

/* store the cookie parms into the S/G list */

ddi_put32(xsp->access_hdl, &sglp->dma_size,

(uint32_t)cookie.dmac_size);

ddi_put32(xsp->access_hdl, &sglp->dma_addr,

cookie.dmac_address);

/* Check for end of cookie list */

if (cnt == xsp->ccount)

break;

/* Get next DMA cookie */

(void) ddi_dma_nextcookie(xsp->handle, &cookie);

}

/* start DMA transfer */

ddi_put8(xsp->access_hdl, ®p->csr,

ENABLE_INTERRUPTS | START_TRANSFER);

Freeing the DMA Resources
After a DMA transfer is completed, usually in the interrupt routine, the driver can release DMA
resources by calling ddi_dma_unbind_handle(9F).

As described in “Synchronizing Memory Objects” on page 171, ddi_dma_unbind_handle(9F)
calls ddi_dma_sync(9F), eliminating the need for any explicit synchronization. After calling
ddi_dma_unbind_handle(9F), the DMA resources become invalid, and further references to the
resources have undefined results. The following example shows how to use
ddi_dma_unbind_handle(9F).

EXAMPLE 9–5 Freeing DMA Resources

static uint_t

xxintr(caddr_t arg)

{

struct xxstate *xsp = (struct xxstate *)arg;

uint8_t status;

volatile uint8_t temp;

mutex_enter(&xsp->mu);

/* read status */

status = ddi_get8(xsp->access_hdl, &xsp->regp->csr);

Managing DMA Resources

Writing Device Drivers • March 2012168

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-unbind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-unbind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-sync-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-unbind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-unbind-handle-9f

EXAMPLE 9–5 Freeing DMA Resources (Continued)

if (!(status & INTERRUPTING)) {

mutex_exit(&xsp->mu);

return (DDI_INTR_UNCLAIMED);

}

ddi_put8(xsp->access_hdl, &xsp->regp->csr, CLEAR_INTERRUPT);

/* for store buffers */

temp = ddi_get8(xsp->access_hdl, &xsp->regp->csr);

ddi_dma_unbind_handle(xsp->handle);

/* Check for errors. */

xsp->busy = 0;

mutex_exit(&xsp->mu);

if (/* pending transfers */) {

(void) xxstart((caddr_t)xsp);

}

return (DDI_INTR_CLAIMED);

}

The DMA resources should be released. The DMA resources should be reallocated if a different
object is to be used in the next transfer. However, if the same object is always used, the resources
can be allocated once. The resources can then be reused as long as intervening calls to
ddi_dma_sync(9F) remain.

Freeing the DMA Handle
When the driver is detached, the DMA handle must be freed. The ddi_dma_free_handle(9F)
function destroys the DMA handle and destroys any residual resources that the system is
caching on the handle. Any further references of the DMA handle will have undefined results.

Canceling DMA Callbacks
DMA callbacks cannot be canceled. Canceling a DMA callback requires some additional code
in the driver's detach(9E) entry point. The detach() routine must not return DDI_SUCCESS if
any outstanding callbacks exist. See Example 9–6. When DMA callbacks occur, the detach()
routine must wait for the callback to run. When the callback has finished, detach() must
prevent the callback from rescheduling itself. Callbacks can be prevented from rescheduling
through additional fields in the state structure, as shown in the following example.

EXAMPLE 9–6 Canceling DMA Callbacks

static int

xxdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)

{

/* ... */

mutex_enter(&xsp->callback_mutex);

xsp->cancel_callbacks = 1;

while (xsp->callback_count > 0) {

Managing DMA Resources

Chapter 9 • Direct Memory Access (DMA) 169

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-sync-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-free-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e

EXAMPLE 9–6 Canceling DMA Callbacks (Continued)

cv_wait(&xsp->callback_cv, &xsp->callback_mutex);

}

mutex_exit(&xsp->callback_mutex);

/* ... */

}

static int

xxstrategy(struct buf *bp)

{

/* ... */

mutex_enter(&xsp->callback_mutex);

xsp->bp = bp;

error = ddi_dma_buf_bind_handle(xsp->handle, xsp->bp, flags,

xxdmacallback, (caddr_t)xsp, &cookie, &ccount);

if (error == DDI_DMA_NORESOURCES)

xsp->callback_count++;

mutex_exit(&xsp->callback_mutex);

/* ... */

}

static int

xxdmacallback(caddr_t callbackarg)

{

struct xxstate *xsp = (struct xxstate *)callbackarg;

/* ... */

mutex_enter(&xsp->callback_mutex);

if (xsp->cancel_callbacks) {

/* do not reschedule, in process of detaching */

xsp->callback_count--;

if (xsp->callback_count == 0)

cv_signal(&xsp->callback_cv);

mutex_exit(&xsp->callback_mutex);

return (DDI_DMA_CALLBACK_DONE); /* don’t reschedule it */

}

/*

* Presumably at this point the device is still active

* and will not be detached until the DMA has completed.

* A return of 0 means try again later

*/

error = ddi_dma_buf_bind_handle(xsp->handle, xsp->bp, flags,

DDI_DMA_DONTWAIT, NULL, &cookie, &ccount);

if (error == DDI_DMA_MAPPED) {

/* Program the DMA engine. */

xsp->callback_count--;

mutex_exit(&xsp->callback_mutex);

return (DDI_DMA_CALLBACK_DONE);

}

if (error != DDI_DMA_NORESOURCES) {

xsp->callback_count--;

mutex_exit(&xsp->callback_mutex);

return (DDI_DMA_CALLBACK_DONE);

}

mutex_exit(&xsp->callback_mutex);

return (DDI_DMA_CALLBACK_RUNOUT);

}

Managing DMA Resources

Writing Device Drivers • March 2012170

Synchronizing Memory Objects
In the process of accessing the memory object, the driver might need to synchronize the
memory object with respect to various caches. This section provides guidelines on when and
how to synchronize memory objects.

Cache
CPU cache is a very high-speed memory that sits between the CPU and the system's main
memory. I/O cache sits between the device and the system's main memory, as shown in the
following figure.

When an attempt is made to read data from main memory, the associated cache checks for the
requested data. If the data is available, the cache supplies the data quickly. If the cache does not
have the data, the cache retrieves the data from main memory. The cache then passes the data
on to the requester and saves the data in case of a subsequent request.

Similarly, on a write cycle, the data is stored in the cache quickly. The CPU or device is allowed
to continue executing, that is, transferring data. Storing data in a cache takes much less time
than waiting for the data to be written to memory.

With this model, after a device transfer is complete, the data can still be in the I/O cache with no
data in main memory. If the CPU accesses the memory, the CPU might read the wrong data
from the CPU cache. The driver must call a synchronization routine to flush the data from the
I/O cache and update the CPU cache with the new data. This action ensures a consistent view of
the memory for the CPU. Similarly, a synchronization step is required if data modified by the
CPU is to be accessed by a device.

FIGURE 9–1 CPU and System I/O Caches

CPU cache

CPU

I/O device

System
I/O cache

Memory

Bus extender
I/O cache

Managing DMA Resources

Chapter 9 • Direct Memory Access (DMA) 171

You can create additional caches and buffers between the device and memory, such as bus
extenders and bridges. Use ddi_dma_sync(9F) to synchronize all applicable caches.

ddi_dma_sync() Function
A memory object might have multiple mappings, such as for the CPU and for a device, by
means of a DMA handle. A driver with multiple mappings needs to call ddi_dma_sync(9F) if
any mappings are used to modify the memory object. Calling ddi_dma_sync() ensures that the
modification of the memory object is complete before the object is accessed through a different
mapping. The ddi_dma_sync() function can also inform other mappings of the object if any
cached references to the object are now stale. Additionally, ddi_dma_sync() flushes or
invalidates stale cache references as necessary.

Generally, the driver must call ddi_dma_sync() when a DMA transfer completes. The
exception to this rule is if deallocating the DMA resources with ddi_dma_unbind_handle(9F)
does an implicit ddi_dma_sync() on behalf of the driver. The syntax for ddi_dma_sync() is as
follows:

int ddi_dma_sync(ddi_dma_handle_t handle, off_t off,

size_t length, uint_t type);

If the object is going to be read by the DMA engine of the device, the device's view of the object
must be synchronized by setting type to DDI_DMA_SYNC_FORDEV. If the DMA engine of the
device has written to the memory object and the object is going to be read by the CPU, the
CPU's view of the object must be synchronized by setting type to DDI_DMA_SYNC_FORCPU.

The following example demonstrates synchronizing a DMA object for the CPU:

if (ddi_dma_sync(xsp->handle, 0, length, DDI_DMA_SYNC_FORCPU)

== DDI_SUCCESS) {

/* the CPU can now access the transferred data */

/* ... */

} else {

/* error handling */

}

Use the flag DDI_DMA_SYNC_FORKERNEL if the only mapping is for the kernel, as in the case of
memory that is allocated by ddi_dma_mem_alloc(9F). The system tries to synchronize the
kernel's view more quickly than the CPU's view. If the system cannot synchronize the kernel
view faster, the system acts as if the DDI_DMA_SYNC_FORCPU flag were set.

Managing DMA Resources

Writing Device Drivers • March 2012172

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-sync-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-unbind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-mem-alloc-9f

DMA Windows
If an object does not fit within the limitations of the DMA engine, the transfer must be broken
into a series of smaller transfers. The driver can break up the transfer itself. Alternatively, the
driver can allow the system to allocate resources for only part of the object, thereby creating a
series of DMA windows. Allowing the system to allocate resources is the preferred solution,
because the system can manage the resources more effectively than the driver can manage the
resources.

A DMA window has two attributes. The offset attribute is measured from the beginning of the
object. The length attribute is the number of bytes of memory to be allocated. After a partial
allocation, only a range of length bytes that starts at offset has allocated resources.

A DMA window is requested by specifying the DDI_DMA_PARTIAL flag as a parameter to
ddi_dma_buf_bind_handle(9F) or ddi_dma_addr_bind_handle(9F). Both functions return
DDI_DMA_PARTIAL_MAP if a window can be established. However, the system might allocate
resources for the entire object, in which case DDI_DMA_MAPPED is returned. The driver should
check the return value to determine whether DMA windows are in use. See the following
example.

EXAMPLE 9–7 Setting Up DMA Windows

static int

xxstart (caddr_t arg)

{

struct xxstate *xsp = (struct xxstate *)arg;

struct device_reg *regp = xsp->reg;

ddi_dma_cookie_t cookie;

int status;

mutex_enter(&xsp->mu);

if (xsp->busy) {

/* transfer in progress */

mutex_exit(&xsp->mu);

return (DDI_DMA_CALLBACK_RUNOUT);

}

xsp->busy = 1;

mutex_exit(&xsp->mu);

if (/* transfer is a read */) {

flags = DDI_DMA_READ;

} else {

flags = DDI_DMA_WRITE;

}

flags |= DDI_DMA_PARTIAL;

status = ddi_dma_buf_bind_handle(xsp->handle, xsp->bp,

flags, xxstart, (caddr_t)xsp, &cookie, &ccount);

if (status != DDI_DMA_MAPPED &&

status != DDI_DMA_PARTIAL_MAP)

return (DDI_DMA_CALLBACK_RUNOUT);

if (status == DDI_DMA_PARTIAL_MAP) {

ddi_dma_numwin(xsp->handle, &xsp->nwin);

xsp->partial = 1;

xsp->windex = 0;

} else {

DMA Windows

Chapter 9 • Direct Memory Access (DMA) 173

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-addr-bind-handle-9f

EXAMPLE 9–7 Setting Up DMA Windows (Continued)

xsp->partial = 0;

}

/* Program the DMA engine. */

return (DDI_DMA_CALLBACK_DONE);

}

Two functions operate with DMA windows. The first, ddi_dma_numwin(9F), returns the
number of DMA windows for a particular DMA object. The other function,
ddi_dma_getwin(9F), allows repositioning within the object, that is, reallocation of system
resources. The ddi_dma_getwin() function shifts the current window to a new window within
the object. Because ddi_dma_getwin() reallocates system resources to the new window, the
previous window becomes invalid.

Caution – Do not move the DMA windows with a call to ddi_dma_getwin() before transfers into
the current window are complete. Wait until the transfer to the current window is complete,
which is when the interrupt arrives. Then call ddi_dma_getwin() to avoid data corruption.

The ddi_dma_getwin() function is normally called from an interrupt routine, as shown in
Example 9–8. The first DMA transfer is initiated as a result of a call to the driver. Subsequent
transfers are started from the interrupt routine.

The interrupt routine examines the status of the device to determine whether the device
completes the transfer successfully. If not, normal error recovery occurs. If the transfer is
successful, the routine must determine whether the logical transfer is complete. A complete
transfer includes the entire object as specified by the buf(9S) structure. In a partial transfer, only
one DMA window is moved. In a partial transfer, the interrupt routine moves the window with
ddi_dma_getwin(9F), retrieves a new cookie, and starts another DMA transfer.

If the logical request has been completed, the interrupt routine checks for pending requests. If
necessary, the interrupt routine starts a transfer. Otherwise, the routine returns without
invoking another DMA transfer. The following example illustrates the usual flow control.

EXAMPLE 9–8 Interrupt Handler Using DMA Windows

static uint_t

xxintr(caddr_t arg)

{

struct xxstate *xsp = (struct xxstate *)arg;

uint8_t status;

volatile uint8_t temp;

mutex_enter(&xsp->mu);

/* read status */

status = ddi_get8(xsp->access_hdl, &xsp->regp->csr);

if (!(status & INTERRUPTING)) {

mutex_exit(&xsp->mu);

DMA Windows

Writing Device Drivers • March 2012174

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-numwin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-getwin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-getwin-9f

EXAMPLE 9–8 Interrupt Handler Using DMA Windows (Continued)

return (DDI_INTR_UNCLAIMED);

}

ddi_put8(xsp->access_hdl,&xsp->regp->csr, CLEAR_INTERRUPT);

/* for store buffers */

temp = ddi_get8(xsp->access_hdl, &xsp->regp->csr);

if (/* an error occurred during transfer */) {

bioerror(xsp->bp, EIO);

xsp->partial = 0;

} else {

xsp->bp->b_resid -= /* amount transferred */ ;

}

if (xsp->partial && (++xsp->windex < xsp->nwin)) {

/* device still marked busy to protect state */

mutex_exit(&xsp->mu);

(void) ddi_dma_getwin(xsp->handle, xsp->windex,

&offset, &len, &cookie, &ccount);

/* Program the DMA engine with the new cookie(s). */

return (DDI_INTR_CLAIMED);

}

ddi_dma_unbind_handle(xsp->handle);

biodone(xsp->bp);

xsp->busy = 0;

xsp->partial = 0;

mutex_exit(&xsp->mu);

if (/* pending transfers */) {

(void) xxstart((caddr_t)xsp);

}

return (DDI_INTR_CLAIMED);

}

DMA Windows

Chapter 9 • Direct Memory Access (DMA) 175

176

Mapping Device and Kernel Memory

Some device drivers allow applications to access device or kernel memory through mmap(2).
Frame buffer drivers, for example, enable the frame buffer to be mapped into a user thread.
Another example would be a pseudo driver that uses a shared kernel memory pool to
communicate with an application. This chapter provides information on the following subjects:
■ “Memory Mapping Overview” on page 177
■ “Exporting the Mapping” on page 177
■ “Associating Device Memory With User Mappings” on page 181
■ “Associating Kernel Memory With User Mappings” on page 182

Memory Mapping Overview
The steps that a driver must take to export device or kernel memory are as follows:

1. Set the D_DEVMAP flag in the cb_flag flag of the cb_ops(9S) structure.
2. Define a devmap(9E) driver entry point and optional segmap(9E) entry point to export the

mapping.
3. Use devmap_devmem_setup(9F) to set up user mappings to a device. To set up user

mappings to kernel memory, use devmap_umem_setup(9F).

Exporting the Mapping
This section describes how to use the segmap(9E) and devmap(9E) entry points.

The segmap(9E) Entry Point
The segmap(9E) entry point is responsible for setting up a memory mapping requested by an
mmap(2) system call. Drivers for many memory-mapped devices use ddi_devmap_segmap(9F) as
the entry point rather than defining their own segmap(9E) routine. By providing a segmap()

10C H A P T E R 1 0

177

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Scb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Esegmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-umem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Esegmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Esegmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-devmap-segmap-9f

entry point, a driver can take care of general tasks before or after creating the mapping. For
example, the driver can check mapping permissions and allocate private mapping resources.
The driver can also make adjustments to the mapping to accommodate non-page-aligned
device buffers. The segmap() entry point must call the ddi_devmap_segmap(9F) function before
returning. The ddi_devmap_segmap() function calls the driver's devmap(9E) entry point to
perform the actual mapping.

The segmap() function has the following syntax:

int segmap(dev_t dev, off_t off, struct as *asp, caddr_t *addrp,
off_t len, unsigned int prot, unsigned int maxprot,
unsigned int flags, cred_t *credp);

where:

dev Device whose memory is to be mapped.

off Offset within device memory at which mapping begins.

asp Pointer to the address space into which the device memory should be mapped.

Note that this argument can be either a struct as *, as shown in Example 10–1,
or a ddi_as_handle_t, as shown in Example 10–2. This is because ddidevmap.h
includes the following declaration:

typedef struct as *ddi_as_handle_t

addrp Pointer to the address in the address space to which the device memory should be
mapped.

len Length (in bytes) of the memory being mapped.

prot A bit field that specifies the protections. Possible settings are PROT_READ,
PROT_WRITE, PROT_EXEC, PROT_USER, and PROT_ALL. See the man page
for details.

maxprot Maximum protection flag possible for attempted mapping. The PROT_WRITE bit
can be masked out if the user opened the special file read-only.

flags Flags that indicate the type of mapping. Possible values include MAP_SHARED
and MAP_PRIVATE.

credp Pointer to the user credentials structure.

In the following example, the driver controls a frame buffer that allows write-only mappings.
The driver returns EINVAL if the application tries to gain read access and then calls
ddi_devmap_segmap(9F) to set up the user mapping.

EXAMPLE 10–1 segmap(9E) Routine

static int

xxsegmap(dev_t dev, off_t off, struct as *asp, caddr_t *addrp,

Exporting the Mapping

Writing Device Drivers • March 2012178

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-devmap-segmap-9f

EXAMPLE 10–1 segmap(9E) Routine (Continued)

off_t len, unsigned int prot, unsigned int maxprot,

unsigned int flags, cred_t *credp)

{

if (prot & PROT_READ)

return (EINVAL);

return (ddi_devmap_segmap(dev, off, as, addrp,

len, prot, maxprot, flags, cred));

}

The following example shows how to handle a device that has a buffer that is not page-aligned in
its register space. This example maps a buffer that starts at offset 0x800, so that mmap(2) returns
an address that corresponds to the start of the buffer. The devmap_devmem_setup(9F) function
maps entire pages, requires the mapping to be page aligned, and returns an address to the start
of a page. If this address is passed through segmap(9E), or if no segmap() entry point is defined,
mmap() returns the address that corresponds to the start of the page, not the address that
corresponds to the start of the buffer. In this example, the buffer offset is added to the
page-aligned address that was returned by devmap_devmem_setup so that the resulting address
returned is the desired start of the buffer.

EXAMPLE 10–2 Using the segmap() Function to Change the Address Returned by the mmap() Call

#define BUFFER_OFFSET 0x800

int

xx_segmap(dev_t dev, off_t off, ddi_as_handle_t as, caddr_t *addrp, off_t len,

uint_t prot, uint_t maxprot, uint_t flags, cred_t *credp)

{

int rval;

unsigned long pagemask = ptob(1L) - 1L;

if ((rval = ddi_devmap_segmap(dev, off, as, addrp, len, prot, maxprot,

flags, credp)) == DDI_SUCCESS) {

/*

* The address returned by ddi_devmap_segmap is the start of the page

* that contains the buffer. Add the offset of the buffer to get the

* final address.

*/

*addrp += BUFFER_OFFSET & pagemask);

}

return (rval);

}

The devmap(9E) Entry Point
The devmap(9E) entry point is called from the ddi_devmap_segmap(9F) function inside the
segmap(9E) entry point.

Exporting the Mapping

Chapter 10 • Mapping Device and Kernel Memory 179

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Esegmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-devmap-segmap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Esegmap-9e

The devmap(9E) entry point is called as a result of the mmap(2) system call. The devmap(9E)
function is called to export device memory or kernel memory to user applications. The
devmap() function is used for the following operations:

■ Validate the user mapping to the device or kernel memory
■ Translate the logical offset within the application mapping to the corresponding offset

within the device or kernel memory
■ Pass the mapping information to the system for setting up the mapping

The devmap() function has the following syntax:

int devmap(dev_t dev, devmap_cookie_t handle, offset_t off,
size_t len, size_t *maplen, uint_t model);

where:

dev Device whose memory is to be mapped.

handle Device-mapping handle that the system creates and uses to describe a mapping to
contiguous memory in the device or kernel.

off Logical offset within the application mapping that has to be translated by the driver
to the corresponding offset within the device or kernel memory.

len Length (in bytes) of the memory being mapped.

maplen Enables driver to associate different kernel memory regions or multiple physically
discontiguous memory regions with one contiguous user application mapping.

model Data model type of the current thread.

The system creates multiple mapping handles in one mmap(2) system call. For example, the
mapping might contain multiple physically discontiguous memory regions.

Initially, devmap(9E) is called with the parameters off and len. These parameters are passed by
the application to mmap(2). devmap(9E) sets *maplen to the length from off to the end of a
contiguous memory region. The *maplen value must be rounded up to a multiple of a page size.
The *maplen value can be set to less than the original mapping length len. If so, the system uses
a new mapping handle with adjusted off and len parameters to call devmap(9E) repeatedly until
the initial mapping length is satisfied.

If a driver supports multiple application data models, model must be passed to
ddi_model_convert_from(9F). The ddi_model_convert_from() function determines whether
a data model mismatch exists between the current thread and the device driver. The device
driver might have to adjust the shape of data structures before exporting the structures to a user
thread that supports a different data model. See Appendix C, “Making a Device Driver 64-Bit
Ready,” page for more details.

Exporting the Mapping

Writing Device Drivers • March 2012180

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-model-convert-from-9f

The devmap(9E) entry point must return -1 if the logical offset, off, is out of the range of
memory exported by the driver.

Associating Device Memory With User Mappings
Call devmap_devmem_setup(9F) from the driver's devmap(9E) entry point to export device
memory to user applications.

The devmap_devmem_setup(9F) function has the following syntax:

int devmap_devmem_setup(devmap_cookie_t handle, dev_info_t *dip,
struct devmap_callback_ctl *callbackops, uint_t rnumber,
offset_t roff, size_t len, uint_t maxprot, uint_t flags,
ddi_device_acc_attr_t *accattrp);

where:

handle Opaque device-mapping handle that the system uses to identify the mapping.

dip Pointer to the device's dev_info structure.

callbackops Pointer to a devmap_callback_ctl(9S) structure that enables the driver to be
notified of user events on the mapping.

rnumber Index number to the register address space set.

roff Offset into the device memory.

len Length in bytes that is exported.

maxprot Allows the driver to specify different protections for different regions within the
exported device memory.

flags Must be set to DEVMAP_DEFAULTS.

accattrp Pointer to a ddi_device_acc_attr(9S) structure.

The roff and len arguments describe a range within the device memory specified by the register
set rnumber. The register specifications that are referred to by rnumber are described by the reg
property. For devices with only one register set, pass zero for rnumber. The range is defined by
roff and len. The range is made accessible to the user's application mapping at the offset that is
passed in by the devmap(9E) entry point. Usually the driver passes the devmap(9E) offset directly
to devmap_devmem_setup(9F). The return address of mmap(2) then maps to the beginning
address of the register set.

The maxprot argument enables the driver to specify different protections for different regions
within the exported device memory. For example, to disallow write access for a region, set only
PROT_READ and PROT_USER for that region.

Associating Device Memory With User Mappings

Chapter 10 • Mapping Device and Kernel Memory 181

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sdevmap-callback-ctl-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sddi-device-acc-attr-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2mmap-2

The following example shows how to export device memory to an application. The driver first
determines whether the requested mapping falls within the device memory region. The size of
the device memory is determined using ddi_dev_regsize(9F). The length of the mapping is
rounded up to a multiple of a page size using ptob(9F) and btopr(9F). Then
devmap_devmem_setup(9F) is called to export the device memory to the application.

EXAMPLE 10–3 Using the devmap_devmem_setup() Routine

static int

xxdevmap(dev_t dev, devmap_cookie_t handle, offset_t off, size_t len,

size_t *maplen, uint_t model)

{

struct xxstate *xsp;

int error, rnumber;

off_t regsize;

/* Set up data access attribute structure */

struct ddi_device_acc_attr xx_acc_attr = {

DDI_DEVICE_ATTR_V0,

DDI_NEVERSWAP_ACC,

DDI_STRICTORDER_ACC

};

xsp = ddi_get_soft_state(statep, getminor(dev));

if (xsp == NULL)

return (-1);

/* use register set 0 */

rnumber = 0;

/* get size of register set */

if (ddi_dev_regsize(xsp->dip, rnumber, ®size) != DDI_SUCCESS)

return (-1);

/* round up len to a multiple of a page size */

len = ptob(btopr(len));

if (off + len > regsize)

return (-1);

/* Set up the device mapping */

error = devmap_devmem_setup(handle, xsp->dip, NULL, rnumber,

off, len, PROT_ALL, DEVMAP_DEFAULTS, &xx_acc_attr);

/* acknowledge the entire range */

*maplen = len;

return (error);

}

Associating Kernel Memory With User Mappings
Some device drivers might need to allocate kernel memory that is made accessible to user
programs through mmap(2). One example is setting up shared memory for communication
between two applications. Another example is sharing memory between a driver and an
application.

When exporting kernel memory to user applications, follow these steps:

1. Use ddi_umem_alloc(9F) to allocate kernel memory.

Associating Kernel Memory With User Mappings

Writing Device Drivers • March 2012182

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dev-regsize-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fptob-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fbtopr-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-umem-alloc-9f

2. Use devmap_umem_setup(9F) to export the memory.
3. Use ddi_umem_free(9F) to free the memory when the memory is no longer needed.

Allocating Kernel Memory for User Access
Use ddi_umem_alloc(9F) to allocate kernel memory that is exported to applications.
ddi_umem_alloc() uses the following syntax:

void *ddi_umem_alloc(size_t size, int flag, ddi_umem_cookie_t

*cookiep);

where:

size Number of bytes to allocate.

flag Used to determine the sleep conditions and the memory type.

cookiep Pointer to a kernel memory cookie.

ddi_umem_alloc(9F) allocates page-aligned kernel memory. ddi_umem_alloc() returns a
pointer to the allocated memory. Initially, the memory is filled with zeroes. The number of bytes
that are allocated is a multiple of the system page size, which is rounded up from the size
parameter. The allocated memory can be used in the kernel. This memory can be exported to
applications as well. cookiep is a pointer to the kernel memory cookie that describes the kernel
memory being allocated. cookiep is used in devmap_umem_setup(9F) when the driver exports
the kernel memory to a user application.

The flag argument indicates whether ddi_umem_alloc(9F) blocks or returns immediately, and
whether the allocated kernel memory is pageable. The values for the flag argument as follows:

DDI_UMEM_NOSLEEP Driver does not need to wait for memory to become available. Return
NULL if memory is not available.

DDI_UMEM_SLEEP Driver can wait indefinitely for memory to become available.

DDI_UMEM_PAGEABLE Driver allows memory to be paged out. If not set, the memory is
locked down.

The ddi_umem_lock() function can perform device-locked-memory checks. The function
checks against the limit value that is specified in project.max-locked-memory. If the current
project locked-memory usage is below the limit, the project's locked-memory byte count is
increased. After the limit check, the memory is locked. The ddi_umem_unlock() function
unlocks the memory, and the project's locked-memory byte count is decremented.

The accounting method that is used is an imprecise full price model. For example, two callers of
umem_lockmemory() within the same project with overlapping memory regions are charged
twice.

Associating Kernel Memory With User Mappings

Chapter 10 • Mapping Device and Kernel Memory 183

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-umem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-umem-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-umem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-umem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-umem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-umem-alloc-9f

For information about the project.max-locked-memory and zone.max-locked_memory

resource controls on Oracle Solaris systems with zones installed, see Resource Management and
Oracle Solaris Zones Developer’s Guide and see resource_controls(5).

The following example shows how to allocate kernel memory for application access. The driver
exports one page of kernel memory, which is used by multiple applications as a shared memory
area. The memory is allocated in segmap(9E) when an application maps the shared page the first
time. An additional page is allocated if the driver has to support multiple application data
models. For example, a 64-bit driver might export memory both to 64-bit applications and to
32-bit applications. 64-bit applications share the first page, and 32-bit applications share the
second page.

EXAMPLE 10–4 Using the ddi_umem_alloc() Routine

static int

xxsegmap(dev_t dev, off_t off, struct as *asp, caddr_t *addrp, off_t len,

unsigned int prot, unsigned int maxprot, unsigned int flags,

cred_t *credp)

{

int error;

minor_t instance = getminor(dev);

struct xxstate *xsp = ddi_get_soft_state(statep, instance);

size_t mem_size;

/* 64-bit driver supports 64-bit and 32-bit applications */

switch (ddi_mmap_get_model()) {

case DDI_MODEL_LP64:

mem_size = ptob(2);

break;

case DDI_MODEL_ILP32:

mem_size = ptob(1);

break;

}

mutex_enter(&xsp->mu);

if (xsp->umem == NULL) {

/* allocate the shared area as kernel pageable memory */

xsp->umem = ddi_umem_alloc(mem_size,

DDI_UMEM_SLEEP | DDI_UMEM_PAGEABLE, &xsp->ucookie);

}

mutex_exit(&xsp->mu);

/* Set up the user mapping */

error = devmap_setup(dev, (offset_t)off, asp, addrp, len,

prot, maxprot, flags, credp);

return (error);

}

Associating Kernel Memory With User Mappings

Writing Device Drivers • March 2012184

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=RSCMGRDEVGD
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=RSCMGRDEVGD
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN5resource-controls-5
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Esegmap-9e

Exporting Kernel Memory to Applications
Use devmap_umem_setup(9F) to export kernel memory to user applications.
devmap_umem_setup() must be called from the driver's devmap(9E) entry point. The syntax for
devmap_umem_setup() is as follows:

int devmap_umem_setup(devmap_cookie_t handle, dev_info_t *dip,
struct devmap_callback_ctl *callbackops, ddi_umem_cookie_t cookie,
offset_t koff, size_t len, uint_t maxprot, uint_t flags,
ddi_device_acc_attr_t *accattrp);

where:

handle Opaque structure used to describe the mapping.

dip Pointer to the device's dev_info structure.

callbackops Pointer to a devmap_callback_ctl(9S) structure.

cookie Kernel memory cookie returned by ddi_umem_alloc(9F).

koff Offset into the kernel memory specified by cookie.

len Length in bytes that is exported.

maxprot Specifies the maximum protection possible for the exported mapping.

flags Must be set to DEVMAP_DEFAULTS.

accattrp Pointer to a ddi_device_acc_attr(9S) structure.

handle is a device-mapping handle that the system uses to identify the mapping. handle is
passed in by the devmap(9E) entry point. dip is a pointer to the device's dev_info structure.
callbackops enables the driver to be notified of user events on the mapping. Most drivers set
callbackops to NULL when kernel memory is exported.

koff and len specify a range within the kernel memory allocated by ddi_umem_alloc(9F). This
range is made accessible to the user's application mapping at the offset that is passed in by the
devmap(9E) entry point. Usually, the driver passes the devmap(9E) offset directly to
devmap_umem_setup(9F). The return address of mmap(2) then maps to the kernel address
returned by ddi_umem_alloc(9F). koff and len must be page-aligned.

maxprot enables the driver to specify different protections for different regions within the
exported kernel memory. For example, one region might not allow write access by only setting
PROT_READ and PROT_USER.

The following example shows how to export kernel memory to an application. The driver first
checks whether the requested mapping falls within the allocated kernel memory region. If a
64-bit driver receives a mapping request from a 32-bit application, the request is redirected to

Associating Kernel Memory With User Mappings

Chapter 10 • Mapping Device and Kernel Memory 185

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-umem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sdevmap-callback-ctl-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-umem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sddi-device-acc-attr-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-umem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-umem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-umem-alloc-9f

the second page of the kernel memory area. This redirection ensures that only applications
compiled to the same data model share the same page.

EXAMPLE 10–5 devmap_umem_setup(9F) Routine

static int

xxdevmap(dev_t dev, devmap_cookie_t handle, offset_t off, size_t len,

size_t *maplen, uint_t model)

{

struct xxstate *xsp;

int error;

/* round up len to a multiple of a page size */

len = ptob(btopr(len));

/* check if the requested range is ok */

if (off + len > ptob(1))

return (ENXIO);

xsp = ddi_get_soft_state(statep, getminor(dev));

if (xsp == NULL)

return (ENXIO);

if (ddi_model_convert_from(model) == DDI_MODEL_ILP32)

/* request from 32-bit application. Skip first page */

off += ptob(1);

/* export the memory to the application */

error = devmap_umem_setup(handle, xsp->dip, NULL, xsp->ucookie,

off, len, PROT_ALL, DEVMAP_DEFAULTS, NULL);

*maplen = len;

return (error);

}

Freeing Kernel Memory Exported for User Access
When the driver is unloaded, the memory that was allocated by ddi_umem_alloc(9F) must be
freed by calling ddi_umem_free(9F).

void ddi_umem_free(ddi_umem_cookie_t cookie);

cookie is the kernel memory cookie returned by ddi_umem_alloc(9F).

Associating Kernel Memory With User Mappings

Writing Device Drivers • March 2012186

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-umem-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-umem-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-umem-alloc-9f

Device Context Management

Some device drivers, such as drivers for graphics hardware, provide user processes with direct
access to the device. These devices often require that only one process at a time accesses the
device.

This chapter describes the set of interfaces that enable device drivers to manage access to such
devices. The chapter provides information on the following subjects:

■ “Introduction to Device Context” on page 187
■ “Context Management Model” on page 187
■ “Context Management Operation” on page 189

Introduction to Device Context
This section introduces device context and the context management model.

What Is a Device Context?
The context of a device is the current state of the device hardware. The device driver manages
the device context for a process on behalf of the process. The driver must maintain a separate
device context for each process that accesses the device. The device driver has the responsibility
to restore the correct device context when a process accesses the device.

Context Management Model
Frame buffers provide a good example of device context management. An accelerated frame
buffer enables user processes to directly manipulate the control registers of the device through
memory-mapped access. Because these processes do not use traditional system calls, a process
that accesses the device need not call the device driver. However, the device driver must be

11C H A P T E R 1 1

187

notified when a process is about to access a device. The driver needs to restore the correct device
context and needs to provide any necessary synchronization.

To resolve this problem, the device context management interfaces enable a device driver to be
notified when a user process accesses memory-mapped regions of the device, and to control
accesses to the device's hardware. Synchronization and management of the various device
contexts are the responsibility of the device driver. When a user process accesses a mapping, the
device driver must restore the correct device context for that process.

A device driver is notified whenever a user process performs any of the following actions:

■ Accesses a mapping
■ Duplicates a mapping
■ Frees a mapping
■ Creates a mapping

The following figure shows multiple user processes that have memory-mapped a device. The
driver has granted process B access to the device, and process B no longer notifies the driver of
accesses. However, the driver is still notified if either process A or process C accesses the device.

At some point in the future, process A accesses the device. The device driver is notified and
blocks future access to the device by process B. The driver then saves the device context for
process B. The driver restores the device context of process A. The driver then grants access to
process A, as illustrated in the following figure. At this point, the device driver is notified if
either process B or process C accesses the device.

FIGURE 11–1 Device Context Management

Process A

Current context

User processes Device memory

Process B Device

Process C

Introduction to Device Context

Writing Device Drivers • March 2012188

On a multiprocessor machine, multiple processes could attempt to access the device at the same
time. This situation can cause thrashing. Some devices require a longer time to restore a device
context. To prevent more CPU time from being used to restore a device context than to actually
use that device context, the minimum time that a process needs to have access to the device can
be set using devmap_set_ctx_timeout(9F).

The kernel guarantees that once a device driver has granted access to a process, no other process
is allowed to request access to the same device for the time interval specified by
devmap_set_ctx_timeout(9F).

Context Management Operation
The general steps for performing device context management are as follows:

1. Define a devmap_callback_ctl(9S) structure.
2. Allocate space to save device context if necessary.
3. Set up user mappings to the device and driver notifications with devmap_devmem_setup(9F).
4. Manage user access to the device with devmap_load(9F) and devmap_unload(9F).
5. Free the device context structure, if needed.

devmap_callback_ctl Structure
The device driver must allocate and initialize a devmap_callback_ctl(9S) structure to inform
the system about the entry point routines for device context management.

This structure uses the following syntax:

struct devmap_callback_ctl {

int devmap_rev;

int (*devmap_map)(devmap_cookie_t dhp, dev_t dev,

uint_t flags, offset_t off, size_t len, void **pvtp);

FIGURE 11–2 Device Context Switched to User Process A

Process ACurrent context

User processes Device memory

Process B Device

Process C

Context Management Operation

Chapter 11 • Device Context Management 189

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-set-ctx-timeout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-set-ctx-timeout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sdevmap-callback-ctl-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-load-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-unload-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sdevmap-callback-ctl-9s

int (*devmap_access)(devmap_cookie_t dhp, void *pvtp,

offset_t off, size_t len, uint_t type, uint_t rw);

int (*devmap_dup)(devmap_cookie_t dhp, void *pvtp,

devmap_cookie_t new_dhp, void **new_pvtp);

void (*devmap_unmap)(devmap_cookie_t dhp, void *pvtp,

offset_t off, size_t len, devmap_cookie_t new_dhp1,

void **new_pvtp1, devmap_cookie_t new_dhp2,

void **new_pvtp2);

};

devmap_rev The version number of the devmap_callback_ctl structure. The version
number must be set to DEVMAP_OPS_REV.

devmap_map Must be set to the address of the driver's devmap_map(9E) entry point.

devmap_access Must be set to the address of the driver's devmap_access(9E) entry point.

devmap_dup Must be set to the address of the driver's devmap_dup(9E) entry point.

devmap_unmap Must be set to the address of the driver's devmap_unmap(9E) entry point.

Entry Points for Device Context Management
The following entry points are used to manage device context:

■ devmap(9E)
■ devmap_access(9E)
■ devmap_contextmgt(9E)
■ devmap_dup(9E)
■ devmap_unmap(9E)

devmap_map() Entry Point
The syntax for devmap(9E) is as follows:

int xxdevmap_map(devmap_cookie_t handle, dev_t dev, uint_t flags,
offset_t offset, size_t len, void **new-devprivate);

The devmap_map() entry point is called after the driver returns from its devmap() entry point
and the system has established the user mapping to the device memory. The devmap() entry
point enables a driver to perform additional processing or to allocate mapping specific private
data. For example, in order to support context switching, the driver has to allocate a context
structure. The driver must then associate the context structure with the mapping.

The system expects the driver to return a pointer to the allocated private data in
*new-devprivate. The driver must store offset and len, which define the range of the mapping, in
its private data. Later, when the system calls devmap_unmap(9E), the driver uses this information
to determine how much of the mapping is being unmapped.

Context Management Operation

Writing Device Drivers • March 2012190

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-map-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-access-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-dup-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-unmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-access-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-contextmgt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-dup-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-unmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-unmap-9e

flags indicates whether the driver should allocate a private context for the mapping. For
example, a driver can allocate a memory region to store the device context if flags is set to
MAP_PRIVATE. If MAP_SHARED is set, the driver returns a pointer to a shared region.

The following example shows a devmap() entry point. The driver allocates a new context
structure. The driver then saves relevant parameters passed in by the entry point. Next, the
mapping is assigned a new context either through allocation or by attaching the mapping to an
already existing shared context. The minimum time interval that the mapping should have
access to the device is set to one millisecond.

EXAMPLE 11–1 Using the devmap() Routine

static int

int xxdevmap_map(devmap_cookie_t handle, dev_t dev, uint_t flags,

offset_t offset, size_t len, void **new_devprivate)

{

struct xxstate *xsp = ddi_get_soft_state(statep,

getminor(dev));

struct xxctx *newctx;

/* create a new context structure */

newctx = kmem_alloc(sizeof (struct xxctx), KM_SLEEP);

newctx->xsp = xsp;

newctx->handle = handle;

newctx->offset = offset;

newctx->flags = flags;

newctx->len = len;

mutex_enter(&xsp->ctx_lock);

if (flags & MAP_PRIVATE) {

/* allocate a private context and initialize it */

newctx->context = kmem_alloc(XXCTX_SIZE, KM_SLEEP);

xxctxinit(newctx);

} else {

/* set a pointer to the shared context */

newctx->context = xsp->ctx_shared;

}

mutex_exit(&xsp->ctx_lock);

/* give at least 1 ms access before context switching */

devmap_set_ctx_timeout(handle, drv_usectohz(1000));

/* return the context structure */

*new_devprivate = newctx;

return(0);

}

devmap_access() Entry Point
The devmap_access(9E) entry point is called when an access is made to a mapping whose
translations are invalid. Mapping translations are invalidated when the mapping is created with
devmap_devmem_setup(9F) in response to mmap(2), duplicated by fork(2), or explicitly
invalidated by a call to devmap_unload(9F).

The syntax for devmap_access() is as follows:

Context Management Operation

Chapter 11 • Device Context Management 191

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-access-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-unload-9f

int xxdevmap_access(devmap_cookie_t handle, void *devprivate,
offset_t offset, size_t len, uint_t type, uint_t rw);

where:

handle Mapping handle of the mapping that was accessed by a user process.

devprivate Pointer to the driver private data associated with the mapping.

offset Offset within the mapping that was accessed.

len Length in bytes of the memory being accessed.

type Type of access operation.

rw Specifies the direction of access.

The system expects devmap_access(9E) to call either devmap_do_ctxmgt(9F) or
devmap_default_access(9F) to load the memory address translations before
devmap_access() returns. For mappings that support context switching, the device driver
should call devmap_do_ctxmgt(). This routine is passed all parameters from
devmap_access(9E), as well as a pointer to the driver entry point devmap_contextmgt(9E),
which handles the context switching. For mappings that do not support context switching, the
driver should call devmap_default_access(9F). The purpose of devmap_default_access() is
to call devmap_load(9F) to load the user translation.

The following example shows a devmap_access(9E) entry point. The mapping is divided into
two regions. The region that starts at offset OFF_CTXMG with a length of CTXMGT_SIZE bytes
supports context management. The rest of the mapping supports default access.

EXAMPLE 11–2 Using the devmap_access() Routine

#define OFF_CTXMG 0

#define CTXMGT_SIZE 0x20000

static int

xxdevmap_access(devmap_cookie_t handle, void *devprivate,

offset_t off, size_t len, uint_t type, uint_t rw)

{

offset_t diff;

int error;

if ((diff = off - OFF_CTXMG) >= 0 && diff < CTXMGT_SIZE) {

error = devmap_do_ctxmgt(handle, devprivate, off,

len, type, rw, xxdevmap_contextmgt);

} else {

error = devmap_default_access(handle, devprivate,

off, len, type, rw);

}

return (error);

}

Context Management Operation

Writing Device Drivers • March 2012192

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-access-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-do-ctxmgt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-default-access-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-access-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-contextmgt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-default-access-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-load-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-access-9e

devmap_contextmgt() Entry Point
The syntax for devmap_contextmgt(9E) is as follows:

int xxdevmap_contextmgt(devmap_cookie_t handle, void *devprivate,
offset_t offset, size_t len, uint_t type, uint_t rw);

devmap_contextmgt() should call devmap_unload(9F) with the handle of the mapping that
currently has access to the device. This approach invalidates the translations for that mapping.
The approach ensures that a call to devmap_access(9E) occurs for the current mapping the next
time the mapping is accessed. The mapping translations for the mapping that caused the access
event to occur need to be validated. Accordingly, the driver must restore the device context for
the process requesting access. Furthermore, the driver must call devmap_load(9F) on the handle
of the mapping that generated the call to this entry point.

Accesses to portions of mappings that have had their mapping translations validated by a call to
devmap_load() do not generate a call to devmap_access(). A subsequent call to
devmap_unload() invalidates the mapping translations. This call enables devmap_access() to
be called again.

If either devmap_load() or devmap_unload() returns an error, devmap_contextmgt() should
immediately return that error. If the device driver encounters a hardware failure while restoring
a device context, a -1 should be returned. Otherwise, after successfully handling the access
request, devmap_contextmgt() should return zero. A return of other than zero from
devmap_contextmgt() causes a SIGBUS or SIGSEGV to be sent to the process.

The following example shows how to manage a one-page device context.

Note – xxctxsave() and xxctxrestore() are device-dependent context save and restore
functions. xxctxsave() reads data from the registers and saves the data in the soft state
structure. xxctxrestore() takes data that is saved in the soft state structure and writes the data
to device registers. Note that the read, write, and save are all performed with the DDI/DKI data
access routines.

EXAMPLE 11–3 Using the devmap_contextmgt() Routine

static int

xxdevmap_contextmgt(devmap_cookie_t handle, void *devprivate,

offset_t off, size_t len, uint_t type, uint_t rw)

{

int error;

struct xxctx *ctxp = devprivate;

struct xxstate *xsp = ctxp->xsp;

mutex_enter(&xsp->ctx_lock);

/* unload mapping for current context */

if (xsp->current_ctx != NULL) {

if ((error = devmap_unload(xsp->current_ctx->handle,

off, len)) != 0) {

Context Management Operation

Chapter 11 • Device Context Management 193

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-contextmgt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-unload-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-access-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-load-9f

EXAMPLE 11–3 Using the devmap_contextmgt() Routine (Continued)

xsp->current_ctx = NULL;

mutex_exit(&xsp->ctx_lock);

return (error);

}

}

/* Switch device context - device dependent */

if (xxctxsave(xsp->current_ctx, off, len) < 0) {

xsp->current_ctx = NULL;

mutex_exit(&xsp->ctx_lock);

return (-1);

}

if (xxctxrestore(ctxp, off, len) < 0){

xsp->current_ctx = NULL;

mutex_exit(&xsp->ctx_lock);

return (-1);

}

xsp->current_ctx = ctxp;

/* establish mapping for new context and return */

error = devmap_load(handle, off, len, type, rw);

if (error)

xsp->current_ctx = NULL;

mutex_exit(&xsp->ctx_lock);

return (error);

}

devmap_dup() Entry Point
The devmap_dup(9E) entry point is called when a device mapping is duplicated, for example, by
a user process that calls fork(2). The driver is expected to generate new driver private data for
the new mapping.

The syntax fordevmap_dup() is as follows:

int xxdevmap_dup(devmap_cookie_t handle, void *devprivate,
devmap_cookie_t new-handle, void **new-devprivate);

where:

handle Mapping handle of the mapping being duplicated.

new-handle Mapping handle of the mapping that was duplicated.

devprivate Pointer to the driver private data associated with the mapping being
duplicated.

*new-devprivate Should be set to point to the new driver private data for the new mapping.

Mappings that have been created with devmap_dup() by default have their mapping
translations invalidated. Invalid mapping translations force a call to the devmap_access(9E)
entry point the first time the mapping is accessed.

Context Management Operation

Writing Device Drivers • March 2012194

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-dup-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-access-9e

The following example shows a typical devmap_dup() routine.

EXAMPLE 11–4 Using the devmap_dup() Routine

static int

xxdevmap_dup(devmap_cookie_t handle, void *devprivate,

devmap_cookie_t new_handle, void **new_devprivate)

{

struct xxctx *ctxp = devprivate;

struct xxstate *xsp = ctxp->xsp;

struct xxctx *newctx;

/* Create a new context for the duplicated mapping */

newctx = kmem_alloc(sizeof (struct xxctx), KM_SLEEP);

newctx->xsp = xsp;

newctx->handle = new_handle;

newctx->offset = ctxp->offset;

newctx->flags = ctxp->flags;

newctx->len = ctxp->len;

mutex_enter(&xsp->ctx_lock);

if (ctxp->flags & MAP_PRIVATE) {

newctx->context = kmem_alloc(XXCTX_SIZE, KM_SLEEP);

bcopy(ctxp->context, newctx->context, XXCTX_SIZE);

} else {

newctx->context = xsp->ctx_shared;

}

mutex_exit(&xsp->ctx_lock);

*new_devprivate = newctx;

return(0);

}

devmap_unmap() Entry Point
The devmap_unmap(9E) entry point is called when a mapping is unmapped. Unmapping can be
caused by a user process exiting or by calling the munmap(2) system call.

The syntax for devmap_unmap() is as follows:

void xxdevmap_unmap(devmap_cookie_t handle, void *devprivate,
offset_t off, size_t len, devmap_cookie_t new-handle1,
void **new-devprivate1, devmap_cookie_t new-handle2,
void **new-devprivate2);

where:

handle Mapping handle of the mapping being freed.

devprivate Pointer to the driver private data associated with the mapping.

off Offset within the logical device memory at which the unmapping begins.

len Length in bytes of the memory being unmapped.

new-handle1 Handle that the system uses to describe the new region that ends at off - 1.
The value of new-handle1 can be NULL.

Context Management Operation

Chapter 11 • Device Context Management 195

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-unmap-9e

new-devprivate1 Pointer to be filled in by the driver with the private driver mapping data for
the new region that ends at off -1. new-devprivate1 is ignored if
new-handle1 is NULL.

new-handle2 Handle that the system uses to describe the new region that begins at off +
len. The value of new-handle2 can be NULL.

new-devprivate2 Pointer to be filled in by the driver with the driver private mapping data for
the new region that begins at off + len. new-devprivate2 is ignored if
new-handle2 is NULL.

The devmap_unmap() routine is expected to free any driver private resources that were allocated
when this mapping was created, either by devmap_map(9E) or by devmap_dup(9E). If the
mapping is only partially unmapped, the driver must allocate new private data for the
remaining mapping before freeing the old private data. Calling devmap_unload(9F) on the
handle of the freed mapping is not necessary, even if this handle points to the mapping with the
valid translations. However, to prevent future devmap_access(9E) problems, the device driver
should make sure the current mapping representation is set to “no current mapping”.

The following example shows a typical devmap_unmap() routine.

EXAMPLE 11–5 Using the devmap_unmap() Routine

static void

xxdevmap_unmap(devmap_cookie_t handle, void *devprivate,

offset_t off, size_t len, devmap_cookie_t new_handle1,

void **new_devprivate1, devmap_cookie_t new_handle2,

void **new_devprivate2)

{

struct xxctx *ctxp = devprivate;

struct xxstate *xsp = ctxp->xsp;

mutex_enter(&xsp->ctx_lock);

/*

* If new_handle1 is not NULL, we are unmapping

* at the end of the mapping.

*/

if (new_handle1 != NULL) {

/* Create a new context structure for the mapping */

newctx = kmem_alloc(sizeof (struct xxctx), KM_SLEEP);

newctx->xsp = xsp;

if (ctxp->flags & MAP_PRIVATE) {

/* allocate memory for the private context and copy it */

newctx->context = kmem_alloc(XXCTX_SIZE, KM_SLEEP);

bcopy(ctxp->context, newctx->context, XXCTX_SIZE);

} else {

/* point to the shared context */

newctx->context = xsp->ctx_shared;

}

newctx->handle = new_handle1;

newctx->offset = ctxp->offset;

newctx->len = off - ctxp->offset;

*new_devprivate1 = newctx;

}

Context Management Operation

Writing Device Drivers • March 2012196

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-map-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-dup-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-unload-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-access-9e

EXAMPLE 11–5 Using the devmap_unmap() Routine (Continued)

/*

* If new_handle2 is not NULL, we are unmapping

* at the beginning of the mapping.

*/

if (new_handle2 != NULL) {

/* Create a new context for the mapping */

newctx = kmem_alloc(sizeof (struct xxctx), KM_SLEEP);

newctx->xsp = xsp;

if (ctxp->flags & MAP_PRIVATE) {

newctx->context = kmem_alloc(XXCTX_SIZE, KM_SLEEP);

bcopy(ctxp->context, newctx->context, XXCTX_SIZE);

} else {

newctx->context = xsp->ctx_shared;

}

newctx->handle = new_handle2;

newctx->offset = off + len;

newctx->flags = ctxp->flags;

newctx->len = ctxp->len - (off + len - ctxp->off);

*new_devprivate2 = newctx;

}

if (xsp->current_ctx == ctxp)

xsp->current_ctx = NULL;

mutex_exit(&xsp->ctx_lock);

if (ctxp->flags & MAP_PRIVATE)

kmem_free(ctxp->context, XXCTX_SIZE);

kmem_free(ctxp, sizeof (struct xxctx));

}

Associating User Mappings With Driver Notifications
When a user process requests a mapping to a device with mmap(2), the driver‘s segmap(9E) entry
point is called. The driver must use ddi_devmap_segmap(9F) or devmap_setup(9F) when setting
up the memory mapping if the driver needs to manage device contexts. Both functions call the
driver's devmap(9E) entry point, which uses devmap_devmem_setup(9F) to associate the device
memory with the user mapping. See Chapter 10, “Mapping Device and Kernel Memory,” for
details on how to map device memory.

The driver must inform the system of the devmap_callback_ctl(9S) entry points to get
notifications of accesses to the user mapping. The driver informs the system by providing a
pointer to a devmap_callback_ctl(9S) structure to devmap_devmem_setup(9F). A
devmap_callback_ctl(9S) structure describes a set of entry points for context management.
These entry points are called by the system to notify a device driver to manage events on the
device mappings.

The system associates each mapping with a mapping handle. This handle is passed to each of
the entry points for context management. The mapping handle can be used to invalidate and
validate the mapping translations. If the driver invalidates the mapping translations, the driver

Context Management Operation

Chapter 11 • Device Context Management 197

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Esegmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-devmap-segmap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-devmem-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sdevmap-callback-ctl-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sdevmap-callback-ctl-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sdevmap-callback-ctl-9s

will be notified of any future access to the mapping. If the driver validates the mapping
translations, the driver will no longer be notified of accesses to the mapping. Mappings are
always created with the mapping translations invalidated so that the driver will be notified on
first access to the mapping.

The following example shows how to set up a mapping using the device context management
interfaces.

EXAMPLE 11–6 devmap(9E) Entry Point With Context Management Support

static struct devmap_callback_ctl xx_callback_ctl = {

DEVMAP_OPS_REV, xxdevmap_map, xxdevmap_access,

xxdevmap_dup, xxdevmap_unmap

};

static int

xxdevmap(dev_t dev, devmap_cookie_t handle, offset_t off,

size_t len, size_t *maplen, uint_t model)

{

struct xxstate *xsp;

uint_t rnumber;

int error;

/* Setup data access attribute structure */

struct ddi_device_acc_attr xx_acc_attr = {

DDI_DEVICE_ATTR_V0,

DDI_NEVERSWAP_ACC,

DDI_STRICTORDER_ACC

};

xsp = ddi_get_soft_state(statep, getminor(dev));

if (xsp == NULL)

return (ENXIO);

len = ptob(btopr(len));

rnumber = 0;

/* Set up the device mapping */

error = devmap_devmem_setup(handle, xsp->dip, &xx_callback_ctl,

rnumber, off, len, PROT_ALL, 0, &xx_acc_attr);

*maplen = len;

return (error);

}

Managing Mapping Accesses
The device driver is notified when a user process accesses an address in the memory-mapped
region that does not have valid mapping translations. When the access event occurs, the
mapping translations of the process that currently has access to the device must be invalidated.
The device context of the process that requested access to the device must be restored.
Furthermore, the translations of the mapping of the process requesting access must be
validated.

Context Management Operation

Writing Device Drivers • March 2012198

The functions devmap_load(9F) and devmap_unload(9F) are used to validate and invalidate
mapping translations.

devmap_load() Entry Point
The syntax for devmap_load(9F) is as follows:

int devmap_load(devmap_cookie_t handle, offset_t offset,
size_t len, uint_t type, uint_t rw);

devmap_load() validates the mapping translations for the pages of the mapping specified by
handle,offset, and len. By validating the mapping translations for these pages, the driver is
telling the system not to intercept accesses to these pages of the mapping. Furthermore, the
system must not allow accesses to proceed without notifying the device driver.

devmap_load() must be called with the offset and the handle of the mapping that generated the
access event for the access to complete. If devmap_load(9F) is not called on this handle, the
mapping translations are not validated, and the process receives a SIGBUS.

devmap_unload() Entry Point
The syntax for devmap_unload(9F) is as follows:

int devmap_unload(devmap_cookie_t handle, offset_t offset, size_t len);

devmap_unload() invalidates the mapping translations for the pages of the mapping specified
by handle, offset, and len. By invalidating the mapping translations for these pages, the device
driver is telling the system to intercept accesses to these pages of the mapping. Furthermore, the
system must notify the device driver the next time that these mapping pages are accessed by
calling the devmap_access(9E) entry point.

For both functions, requests affect the entire page that contains the offset and all pages up to and
including the entire page that contains the last byte, as indicated by offset + len. The device
driver must ensure that for each page of device memory being mapped, only one process has
valid translations at any one time.

Both functions return zero if successful. If, however, an error occurred in validating or
invalidating the mapping translations, that error is returned to the device driver. The device
driver must return this error to the system.

Context Management Operation

Chapter 11 • Device Context Management 199

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-load-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-unload-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-load-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-load-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-unload-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-access-9e

200

Power Management

Power management provides the ability to control and manage the electrical power usage of a
computer system or device. Power management enables systems to conserve energy by using
less power when idle and by shutting down completely when not in use. For example, desktop
computer systems can use a significant amount of power and often are left idle, particularly at
night. Power management software can detect that the system is not being used. Accordingly,
power management can power down the system or some of its components.

This chapter provides information on the following subjects:

■ “Power Management Framework” on page 201
■ “Device Power Management Model” on page 203
■ “System Power Management Model” on page 210
■ “Power Management Device Access Example” on page 215
■ “Power Management Flow of Control” on page 216

Power Management Framework
The Oracle Solaris Power Management framework depends on device drivers to implement
device-specific power management functions. The framework is implemented in two parts:

■ Device power management – Automatically turns off unused devices to reduce power
consumption

■ System power management – Automatically turns off the computer when the entire system
is idle

12C H A P T E R 1 2

201

Device Power Management
The framework enables devices to reduce their energy consumption after a specified idle time
interval. As part of power management, system software checks for idle devices. The Power
Management framework exports interfaces that enable communication between the system
software and the device driver.

The Oracle Solaris Power Management framework provides the following features for device
power management:

■ A device-independent model for power-manageable devices.
■ dtpower(1M), a tool for configuring workstation power management.
■ A set of DDI interfaces for notifying the framework about power management compatibility

and idleness state.

System Power Management
System power management involves saving the state of the system prior to powering the system
down. Thus, the system can be returned to the same state immediately when the system is
turned back on.

To shut down an entire system with return to the state prior to the shutdown, take the following
steps:

■ Stop kernel threads and user processes. Restart these threads and processes later.
■ Save the hardware state of all devices on the system to disk. Restore the state later.

SPARC only – System power management is currently implemented only on some SPARC
systems supported by the Oracle Solaris OS.

The System Power Management framework in the Oracle Solaris OS provides the following
features for system power management:

■ A platform-independent model of system idleness.
■ A set of interfaces for the device driver to override the method for determining which

drivers have hardware state.
■ A set of interfaces to enable the framework to call into the driver to save and restore the

device state.
■ A mechanism for notifying processes that a resume operation has occurred.

Power Management Framework

Writing Device Drivers • March 2012202

Device Power Management Model
The following sections describe the details of the device power management model. This model
includes the following elements:
■ Components
■ Idleness
■ Power levels
■ Dependency
■ Policy
■ Device power management interfaces
■ Power management entry points

Power Management Components
A device is power manageable if the power consumption of the device can be reduced when the
device is idle. Conceptually, a power-manageable device consists of a number of
power-manageable hardware units that are called components.

The device driver notifies the system about device components and their associated power
levels. Accordingly, the driver creates a pm-components(9P) property in the driver's attach(9E)
entry point as part of driver initialization.

Most devices that are power manageable implement only a single component. An example of a
single-component, power-manageable device is a disk whose spindle motor can be stopped to
save power when the disk is idle.

If a device has multiple power-manageable units that are separately controllable, the device
should implement multiple components.

An example of a two-component, power-manageable device is a frame buffer card with a
monitor. Frame buffer electronics is the first component [component 0]. The frame buffer's
power consumption can be reduced when not in use. The monitor is the second component
[component 1]. The monitor can also enter a lower power mode when the monitor is not in use.
The frame buffer electronics and monitor are considered by the system as one device with two
components.

Multiple Power Management Components
To the power management framework, all components are considered equal and completely
independent of each other. If the component states are not completely compatible, the device
driver must ensure that undesirable state combinations do not occur. For example, a frame
buffer/monitor card has the following possible states: D0, D1, D2, and D3. The monitor attached
to the card has the following potential states: On, Standby, Suspend, and Off. These states are
not necessarily compatible with each other. For example, if the monitor is On, then the frame

Device Power Management Model

Chapter 12 • Power Management 203

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Spm-components-9p
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e

buffer must be at D0, that is, full on. If the frame buffer driver gets a request to power up the
monitor to On while the frame buffer is at D3, the driver must call pm_raise_power(9F) to bring
the frame buffer up before setting the monitor On. System requests to lower the power of the
frame buffer while the monitor is On must be refused by the driver.

Power Management States
Each component of a device can be in one of two states: busy or idle. The device driver notifies
the framework of changes in the device state by calling pm_busy_component(9F) and
pm_idle_component(9F). When components are initially created, the components are
considered idle.

Power Levels
From the pm-components property exported by the device, the Device Power Management
framework knows what power levels the device supports. Power-level values must be positive
integers. The interpretation of power levels is determined by the device driver writer. Power
levels must be listed in monotonically increasing order in the pm-components property. A
power level of 0 is interpreted by the framework to mean off. When the framework must power
up a device due to a dependency, the framework sets each component at its highest power level.

The following example shows a pm-components entry from the .conf file of a driver that
implements a single power-managed component consisting of a disk spindle motor. The disk
spindle motor is component 0. The spindle motor supports two power levels. These levels
represent “stopped” and “spinning at full speed.”

EXAMPLE 12–1 Sample pm-component Entry

pm-components="NAME=Spindle Motor", "0=Stopped", "1=Full Speed";

The following example shows how Example 12–1 could be implemented in the attach()
routine of the driver.

EXAMPLE 12–2 attach(9E) Routine With pm-components Property

static char *pmcomps[] = {

"NAME=Spindle Motor",
"0=Stopped",
"1=Full Speed"

};

/* ... */

xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)

{

/* ... */

if (ddi_prop_update_string_array(DDI_DEV_T_NONE, dip,

"pm-components", &pmcomp[0],

Device Power Management Model

Writing Device Drivers • March 2012204

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-idle-component-9f

EXAMPLE 12–2 attach(9E) Routine With pm-components Property (Continued)

sizeof (pmcomps) / sizeof (char *)) != DDI_PROP_SUCCESS)

goto failed;

/* ... */

The following example shows a frame buffer that implements two components. Component 0 is
the frame buffer electronics that support four different power levels. Component 1 represents
the state of power management of the attached monitor.

EXAMPLE 12–3 Multiple Component pm-components Entry

pm-components="NAME=Frame Buffer", "0=Off", "1=Suspend", \

"2=Standby", "3=On",
"NAME=Monitor", "0=Off", "1=Suspend", "2=Standby", "3=On";

When a device driver is first attached, the framework does not know the power level of the
device. A power transition can occur when:

■ The driver calls pm_raise_power(9F) or pm_lower_power(9F).
■ The framework has lowered the power level of a component because a time threshold has

been exceeded.
■ Another device has changed power and a dependency exists between the two devices. See

“Power Management Dependencies” on page 205.

After a power transition, the framework begins tracking the power level of each component of
the device. Tracking also occurs if the driver has informed the framework of the power level.
The driver informs the framework of a power level change by calling
pm_power_has_changed(9F).

The system calculates a default threshold for each potential power transition. These thresholds
are based on the system idleness threshold. Another default threshold based on the system
idleness threshold is used when the component power level is unknown.

Power Management Dependencies
Some devices should be powered down only when other devices are also powered down. For
example, if a CD-ROM drive is allowed to power down, necessary functions, such as the ability
to eject a CD, might be lost.

To prevent a device from powering down independently, you can make that device dependent
on another device that is likely to remain powered on. Typically, a device is made dependent
upon a frame buffer, because a monitor is generally on whenever a user is utilizing a system.

Device Power Management Model

Chapter 12 • Power Management 205

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-lower-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-power-has-changed-9f

Where dependent-phys-path is the device that is kept powered up, such as the CD-ROM drive.
phys-path represents the device whose power state is to be depended on, such as the frame
buffer.

The following syntax enables you to indicate dependency in a general fashion:

device-dependency-property property phys-path

Such an entry mandates that any device that exports the property property must be dependent
upon the device named by phys-path. Because this dependency applies especially to
removable-media devices, /etc/power.conf includes the following line by default:

device_dependent-property removable-media /dev/fb

With this syntax, no device that exports the removable-media property can be powered down
unless the console frame buffer is also powered down.

For more information, see the removable-media(9P) man page.

Automatic Power Management for Devices
If automatic power management is enabled, then all devices with a pm-components(9P)
property automatically will use power management. After a component has been idle for a
default period, the component is automatically lowered to the next lowest power level. The
default period is calculated by the power management framework to set the entire device to its
lowest power state within the system idleness threshold.

Note – By default, automatic power management is enabled on all SPARC desktop systems first
shipped after July 1, 1999. This feature is disabled by default for all other systems.

Device Power Management Interfaces
A device driver that supports a device with power-manageable components must create a
pm-components(9P) property. This property indicates to the system that the device has
power-manageable components. pm-components also tells the system which power levels are
available. The driver typically informs the system by calling
ddi_prop_update_string_array(9F) from the driver's attach(9E) entry point. An alternative
means of informing the system is from a driver.conf(4) file. See the pm-components(9P) man
page for details.

Busy-Idle State Transitions
The driver must keep the framework informed of device state transitions from idle to busy or
busy to idle. Where these transitions happen is entirely device-specific. The transitions between
the busy and idle states depend on the nature of the device and the abstraction represented by

Device Power Management Model

Writing Device Drivers • March 2012206

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sremovable-media-9p
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Spm-components-9p
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Spm-components-9p
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-update-string-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4driver.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Spm-components-9p

the specific component. For example, SCSI disk target drivers typically export a single
component, which represents whether the SCSI target disk drive is spun up or not. The
component is marked busy whenever an outstanding request to the drive exists. The
component is marked idle when the last queued request finishes. Some components are created
and never marked busy. For example, components created by pm-components(9P) are created
in an idle state.

The pm_busy_component(9F) and pm_idle_component(9F) interfaces notify the power
management framework of busy-idle state transitions. The pm_busy_component(9F) call has the
following syntax:

int pm_busy_component(dev_info_t *dip, int component);

pm_busy_component(9F) marks component as busy. While the component is busy, that
component should not be powered off. If the component is already powered off, then marking
that component busy does not change the power level. The driver needs to call
pm_raise_power(9F) for this purpose. Calls to pm_busy_component(9F) are cumulative and
require a corresponding number of calls to pm_idle_component to idle the component.

The pm_idle_component(9F) routine has the following syntax:

int pm_idle_component(dev_info_t *dip, int component);

pm_idle_component(9F) marks component as idle. An idle component is subject to being
powered off. pm_idle_component(9F) must be called once for each call to
pm_busy_component(9F) in order to idle the component.

Device Power State Transitions
A device driver can call pm_raise_power(9F) to request that a component be set to at least a
given power level. Setting the power level in this manner is necessary before using a component
that has been powered off. For example, the read(9E) routine of a SCSI disk target driver might
need to spin up the disk, if the disk has been powered off. The pm_raise_power(9F) function
requests the power management framework to initiate a device power state transition to a
higher power level. Normally, reductions in component power levels are initiated by the
framework. However, a device driver should call pm_lower_power(9F) when detaching, in order
to reduce the power consumption of unused devices as much as possible.

Powering down can pose risks for some devices. For example, some tape drives damage tapes
when power is removed. Similarly, some disk drives have a limited tolerance for power cycles,
because each cycle results in a head landing. Use the no-involuntary-power-cycles(9P)
property to notify the system that the device driver should control all power cycles for the
device. This approach prevents power from being removed from a device while the device
driver is detached unless the device was powered off by a driver's call to pm_lower_power(9F)
from its detach(9E) entry point.

Device Power Management Model

Chapter 12 • Power Management 207

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Spm-components-9p
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-idle-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-idle-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-idle-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-lower-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sno-involuntary-power-cycles-9p
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e

The pm_raise_power(9F) function is called when the driver discovers that a component needed
for some operation is at an insufficient power level. This interface causes the driver to raise the
current power level of the component to the needed level. All the devices that depend on this
device are also brought back to full power by this call.

Call the pm_lower_power(9F) function when the device is detaching once access to the device is
no longer needed. Call pm_lower_power(9F) to set each component at the lowest power so that
the device uses as little power as possible while not in use. The pm_lower_power() function
must be called from the detach() entry point. The pm_lower_power() function has no effect if
it is called from any other part of the driver.

The pm_power_has_changed(9F) function is called to notify the framework about a power
transition. The transition might be due to the device changing its own power level. The
transition might also be due to an operation such as suspend-resume. The syntax for
pm_power_has_changed(9F) is the same as the syntax for pm_raise_power(9F).

power() Entry Point
The power management framework uses the power(9E) entry point.

power() uses the following syntax:

int power(dev_info_t *dip, int component, int level);

When a component's power level needs to be changed, the system calls the power(9E) entry
point. The action taken by this entry point is device driver-specific. In the example of the SCSI
target disk driver mentioned previously, setting the power level to 0 results in sending a SCSI
command to spin down the disk, while setting the power level to the full power level results in
sending a SCSI command to spin up the disk.

If a power transition can cause the device to lose state, the driver must save any necessary state
in memory for later restoration. If a power transition requires the saved state to be restored
before the device can be used again, then the driver must restore that state. The framework
makes no assumptions about what power transactions cause the loss of state or require the
restoration of state for automatically power-managed devices. The following example shows a
sample power() routine.

EXAMPLE 12–4 Using the power() Routine for a Single-Component Device

int

xxpower(dev_info_t *dip, int component, int level)

{

struct xxstate *xsp;

int instance;

instance = ddi_get_instance(dip);

xsp = ddi_get_soft_state(statep, instance);

Device Power Management Model

Writing Device Drivers • March 2012208

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-lower-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-power-has-changed-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-power-has-changed-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Epower-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Epower-9e

EXAMPLE 12–4 Using the power() Routine for a Single-Component Device (Continued)

/*

* Make sure the request is valid

*/

if (!xx_valid_power_level(component, level))

return (DDI_FAILURE);

mutex_enter(&xsp->mu);

/*

* If the device is busy, don’t lower its power level

*/

if (xsp->xx_busy[component] &&

xsp->xx_power_level[component] > level) {

mutex_exit(&xsp->mu);

return (DDI_FAILURE);

}

if (xsp->xx_power_level[component] != level) {

/*

* device- and component-specific setting of power level

* goes here

*/

xsp->xx_power_level[component] = level;

}

mutex_exit(&xsp->mu);

return (DDI_SUCCESS);

}

The following example is a power() routine for a device with two components, where
component 0 must be on when component 1 is on.

EXAMPLE 12–5 power(9E) Routine for Multiple-Component Device

int

xxpower(dev_info_t *dip, int component, int level)

{

struct xxstate *xsp;

int instance;

instance = ddi_get_instance(dip);

xsp = ddi_get_soft_state(statep, instance);

/*

* Make sure the request is valid

*/

if (!xx_valid_power_level(component, level))

return (DDI_FAILURE);

mutex_enter(&xsp->mu);

/*

* If the device is busy, don’t lower its power level

*/

if (xsp->xx_busy[component] &&

xsp->xx_power_level[component] > level) {

mutex_exit(&xsp->mu);

return (DDI_FAILURE);

}

/*

Device Power Management Model

Chapter 12 • Power Management 209

EXAMPLE 12–5 power(9E) Routine for Multiple-Component Device (Continued)

* This code implements inter-component dependencies:

* If we are bringing up component 1 and component 0

* is off, we must bring component 0 up first, and if

* we are asked to shut down component 0 while component

* 1 is up we must refuse

*/

if (component == 1 && level > 0 && xsp->xx_power_level[0] == 0) {

xsp->xx_busy[0]++;

if (pm_busy_component(dip, 0) != DDI_SUCCESS) {

/*

* This can only happen if the args to

* pm_busy_component()

* are wrong, or pm-components property was not

* exported by the driver.

*/

xsp->xx_busy[0]--;

mutex_exit(&xsp->mu);

cmn_err(CE_WARN, "xxpower pm_busy_component()

failed");
return (DDI_FAILURE);

}

mutex_exit(&xsp->mu);

if (pm_raise_power(dip, 0, XX_FULL_POWER_0) != DDI_SUCCESS)

return (DDI_FAILURE);

mutex_enter(&xsp->mu);

}

if (component == 0 && level == 0 && xsp->xx_power_level[1] != 0) {

mutex_exit(&xsp->mu);

return (DDI_FAILURE);

}

if (xsp->xx_power_level[component] != level) {

/*

* device- and component-specific setting of power level

* goes here

*/

xsp->xx_power_level[component] = level;

}

mutex_exit(&xsp->mu);

return (DDI_SUCCESS);

}

System Power Management Model
This section describes the details of the System Power Management model. The model includes
the following components:

■ Autoshutdown threshold
■ Busy state
■ Hardware state
■ Policy
■ Power management entry points

System Power Management Model

Writing Device Drivers • March 2012210

Autoshutdown Threshold
The system can be shut down, that is, powered off, automatically after a configurable period of
idleness. This period is known as the autoshutdown threshold. This behavior is enabled by
default for SPARC desktop systems first shipped after October 1, 1995 and before July 1, 1999.

Busy State
The busy state of the system can be measured in several ways. The currently supported built-in
metric items are keyboard characters, mouse activity, tty characters, load average, disk reads,
and NFS requests. Any one of these items can make the system busy. In addition to the built-in
metrics, an interface is defined for running a user-specified process that can indicate that the
system is busy.

Hardware State
Devices that export a reg property are considered to have hardware state that must be saved
prior to shutting down the system. A device without the reg property is considered to be
stateless. However, this consideration can be overridden by the device driver.

A device with hardware state but no reg property, such as a SCSI driver, must be called to save
and restore the state if the driver exports a pm-hardware-state property with the value
needs-suspend-resume. Otherwise, the lack of a reg property is taken to mean that the device
has no hardware state. For information on device properties, see Chapter 4, “Properties.”

A device with a reg property and no hardware state can export a pm-hardware-state property
with the value no-suspend-resume. Using no-suspend-resume with the pm-hardware-state
property keeps the framework from calling the driver to save and restore that state. For more
information on power management properties, see the pm-components(9P) man page.

Automatic Power Management for Systems
The system is shut down if the system has been idle for autoshutdown threshold minutes:

Entry Points Used by System Power Management
System power management passes the command DDI_SUSPEND to the detach(9E) driver entry
point to request the driver to save the device hardware state. System power management passes
the command DDI_RESUME to the attach(9E) driver entry point to request the driver to restore
the device hardware state.

System Power Management Model

Chapter 12 • Power Management 211

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Spm-components-9p
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e

detach() Entry Point
The syntax for detach(9E) is as follows:

int detach(dev_info_t *dip, ddi_detach_cmd_t cmd);

A device with a reg property or a pm-hardware-state property set to needs-suspend-resume

must be able to save the hardware state of the device. The framework calls into the driver's
detach(9E) entry point to enable the driver to save the state for restoration after the system
power returns. To process the DDI_SUSPEND command, detach(9E) must perform the following
tasks:

■ Block further operations from being initiated until the device is resumed, except for
dump(9E) requests.

■ Wait until outstanding operations have completed. If an outstanding operation can be
restarted, you can abort that operation.

■ Cancel any timeouts and callbacks that are pending.
■ Save any volatile hardware state to memory. The state includes the contents of device

registers, and can also include downloaded firmware.

If the driver is unable to suspend the device and save its state to memory, then the driver must
return DDI_FAILURE. The framework then aborts the system power management operation.

In some cases, powering down a device involves certain risks. For example, if a tape drive is
powered off with a tape inside, the tape can be damaged. In such a case, attach(9E) should do
the following:

■ Call ddi_removing_power(9F) to determine whether a DDI_SUSPEND command can cause
power to be removed from the device.

■ Determine whether power removal can cause problems.

If both cases are true, the DDI_SUSPEND request should be rejected. Example 12–6 shows an
attach(9E) routine using ddi_removing_power(9F) to check whether the DDI_SUSPEND
command causes problems.

Dump requests must be honored. The framework uses the dump(9E) entry point to write out the
state file that contains the contents of memory. See the dump(9E) man page for the restrictions
that are imposed on the device driver when using this entry point.

Calling the detach(9E) entry point of a power-manageable component with the DDI_SUSPEND
command should save the state when the device is powered off. The driver should cancel
pending timeouts. The driver should also suppress any calls to pm_raise_power(9F) except for
dump(9E) requests. When the device is resumed by a call to attach(9E) with a command of
DDI_RESUME, timeouts and calls to pm_raise_power() can be resumed. The driver must keep
sufficient track of its state to be able to deal appropriately with this possibility. The following
example shows a detach(9E) routine with the DDI_SUSPEND command implemented.

System Power Management Model

Writing Device Drivers • March 2012212

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edump-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-removing-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-removing-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edump-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edump-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edump-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e

EXAMPLE 12–6 detach(9E) Routine Implementing DDI_SUSPEND

int

xxdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)

{

struct xxstate *xsp;

int instance;

instance = ddi_get_instance(dip);

xsp = ddi_get_soft_state(statep, instance);

switch (cmd) {

case DDI_DETACH:

/* ... */

case DDI_SUSPEND:

/*

* We do not allow DDI_SUSPEND if power will be removed and

* we have a device that damages tape when power is removed

* We do support DDI_SUSPEND for Device Reconfiguration.

*/

if (ddi_removing_power(dip) && xxdamages_tape(dip))

return (DDI_FAILURE);

mutex_enter(&xsp->mu);

xsp->xx_suspended = 1; /* stop new operations */

/*

* Sleep waiting for all the commands to be completed

*

* If a callback is outstanding which cannot be cancelled

* then either wait for the callback to complete or fail the

* suspend request

*

* This section is only needed if the driver maintains a

* running timeout

*/

if (xsp->xx_timeout_id) {

timeout_id_t temp_timeout_id = xsp->xx_timeout_id;

xsp->xx_timeout_id = 0;

mutex_exit(&xsp->mu);

untimeout(temp_timeout_id);

mutex_enter(&xsp->mu);

}

if (!xsp->xx_state_saved) {

/*

* Save device register contents into

* xsp->xx_device_state

*/

}

mutex_exit(&xsp->mu);

return (DDI_SUCCESS);

default:

return (DDI_FAILURE);

}

attach() Entry Point
The syntax for attach(9E) is as follows:

int attach(dev_info_t *dip, ddi_attach_cmd_t cmd);

System Power Management Model

Chapter 12 • Power Management 213

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e

When power is restored to the system, each device with a reg property or with a
pm-hardware-state property of value needs-suspend-resume has its attach(9E) entry point
called with a command value of DDI_RESUME. If the system shutdown is aborted, each suspended
driver is called to resume even though the power has not been shut off. Consequently, the
resume code in attach(9E) must make no assumptions about whether the system actually lost
power.

The power management framework considers the power level of the components to be
unknown at DDI_RESUME time. Depending on the nature of the device, the driver writer has two
choices:

■ If the driver can determine the actual power level of the components of the device without
powering the components up, such as by reading a register, then the driver should notify the
framework of the power level of each component by calling pm_power_has_changed(9F).

■ If the driver cannot determine the power levels of the components, then the driver should
mark each component internally as unknown and call pm_raise_power(9F) before the first
access to each component.

The following example shows an attach(9E) routine with the DDI_RESUME command.

EXAMPLE 12–7 attach(9E) Routine Implementing DDI_RESUME

int

xxattach(devinfo_t *dip, ddi_attach_cmd_t cmd)

{

struct xxstate *xsp;

int instance;

instance = ddi_get_instance(dip);

xsp = ddi_get_soft_state(statep, instance);

switch (cmd) {

case DDI_ATTACH:

/* ... */

case DDI_RESUME:

mutex_enter(&xsp->mu);

if (xsp->xx_pm_state_saved) {

/*

* Restore device register contents from

* xsp->xx_device_state

*/

}

/*

* This section is optional and only needed if the

* driver maintains a running timeout

*/

xsp->xx_timeout_id = timeout(/* ... */);

xsp->xx_suspended = 0; /* allow new operations */

cv_broadcast(&xsp->xx_suspend_cv);

/* If it is possible to determine in a device-specific

* way what the power levels of components are without

* powering the components up,

System Power Management Model

Writing Device Drivers • March 2012214

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-power-has-changed-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e

EXAMPLE 12–7 attach(9E) Routine Implementing DDI_RESUME (Continued)

* then the following code is recommended

*/

for (i = 0; i < num_components; i++) {

xsp->xx_power_level[i] = xx_get_power_level(dip, i);

if (xsp->xx_power_level[i] != XX_LEVEL_UNKNOWN)

(void) pm_power_has_changed(dip, i,

xsp->xx_power_level[i]);

}

mutex_exit(&xsp->mu);

return(DDI_SUCCESS);

default:

return(DDI_FAILURE);

}

}

Note – The detach(9E) and attach(9E) interfaces can also be used to resume a system that has
been quiesced.

Power Management Device Access Example
If power management is supported, and detach(9E) and attach(9E) are used as in
Example 12–6 and Example 12–7, then access to the device can be made from user context, for
example, from read(2), write(2), and ioctl(2).

The following example demonstrates this approach. The example assumes that the operation
about to be performed requires a component component that is operating at power level level.

EXAMPLE 12–8 Device Access

mutex_enter(&xsp->mu);

/*

* Block command while device is suspended by DDI_SUSPEND

*/

while (xsp->xx_suspended)

cv_wait(&xsp->xx_suspend_cv, &xsp->mu);

/*

* Mark component busy so xx_power() will reject attempt to lower power

*/

xsp->xx_busy[component]++;

if (pm_busy_component(dip, component) != DDI_SUCCESS) {

xsp->xx_busy[component]--;

/*

* Log error and abort

*/

}

if (xsp->xx_power_level[component] < level) {

mutex_exit(&xsp->mu);

if (pm_raise_power(dip, component, level) != DDI_SUCCESS) {

Power Management Device Access Example

Chapter 12 • Power Management 215

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2ioctl-2

EXAMPLE 12–8 Device Access (Continued)

/*

* Log error and abort

*/

}

mutex_enter(&xsp->mu);

}

The code fragment in the following example can be used when device operation completes, for
example, in the device's interrupt handler.

EXAMPLE 12–9 Device Operation Completion

/*

* For each command completion, decrement the busy count and unstack

* the pm_busy_component() call by calling pm_idle_component(). This

* will allow device power to be lowered when all commands complete

* (all pm_busy_component() counts are unstacked)

*/

xsp->xx_busy[component]--;

if (pm_idle_component(dip, component) != DDI_SUCCESS) {

xsp->xx_busy[component]++;

/*

* Log error and abort

*/

}

/*

* If no more outstanding commands, wake up anyone (like DDI_SUSPEND)

* waiting for all commands to be completed

*/

Power Management Flow of Control
Figure 12–1 illustrates the flow of control in the power management framework.

When a component's activity is complete, a driver can call pm_idle_component(9F) to mark the
component as idle. When the component has been idle for its threshold time, the framework
can lower the power of the component to its next lower level. The framework calls the
power(9E) function to set the component's power to the next lower supported power level, if a
lower level exists. The driver's power(9E) function should reject any attempt to lower the power
level of a component when that component is busy. The power(9E) function should save any
state that could be lost in a transition to a lower level prior to making that transition.

When the component is needed at a higher level, the driver calls pm_busy_component(9F). This
call keeps the framework from lowering the power still further and then calls
pm_raise_power(9F) on the component. The framework next calls power(9E) to raise the
power of the component before the call to pm_raise_power(9F) returns. The driver's power(9E)
code must restore any state that was lost in the lower level but that is needed in the higher level.

Power Management Flow of Control

Writing Device Drivers • March 2012216

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-idle-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Epower-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Epower-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Epower-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Epower-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Epower-9e

When a driver is detaching, the driver should call pm_lower_power(9F) for each component to
lower its power to its lowest level. The framework can then call the driver's power(9E) routine to
lower the power of the component before the call to pm_lower_power(9F) returns.

FIGURE 12–1 Power Management Conceptual State Diagram

Busy Idle

Higher power level

Note:
9E routines are always called by the framework.
9F routines are always called by the driver.

pm_busy_component(9F)

pm_idle_component(9F)

Lower power level

pm_busy_component(9F)

pm_idle_component(9F)

A power(9E) can be called by the framework to raise the power level of a
 component as a result of a dependency or can be called by the framework
 as a result of the driver's call to pm_raise_power(9F).

B power(9E) can be called by the framework to lower the power level of a
 component as a result of a device idleness, or can be called by the framework
 as a result of the driver's call to pm_lower_power(9F) when the driver is detaching.

Busy Idle

A

pm_raise_power(9F)

power(9E)

A

pm_raise_power(9F)

power(9E) B

pm_lower_power(9F)

power(9E)

B

pm_lower_power(9F)

power(9E)

Power Management Flow of Control

Chapter 12 • Power Management 217

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-lower-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Epower-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-lower-power-9f

Changes to Power Management Interfaces
Prior to the Solaris 8 release, power management of devices was not automatic. Developers had
to add an entry to /etc/power.conf for each device that was to be power-managed. The
framework assumed that all devices supported only two power levels: 0 and standard power.

Power assumed an implied dependency of all other components on component 0. When
component 0 changed to level 0, a call was made into the driver's detach(9E) with the
DDI_PM_SUSPEND command to save the hardware state. When component 0 changed from level
0, a call was made to the attach(9E) routine with the command DDI_PM_RESUME to restore
hardware state.

The following interfaces and commands are obsolete, although they are still supported for
binary purposes:

■ ddi_dev_is_needed(9F)
■ pm_create_components(9F)
■ pm_destroy_components(9F)
■ pm_get_normal_power(9F)
■ pm_set_normal_power(9F)
■ DDI_PM_SUSPEND

■ DDI_PM_RESUME

Since the Solaris 8 release, devices that export the pm-components property automatically use
power management if autopm is enabled.

The framework now knows from the pm-components property which power levels are
supported by each device.

The framework makes no assumptions about dependencies among the different components of
a device. The device driver is responsible for saving and restoring hardware state as needed
when changing power levels.

These changes enable the power management framework to deal with emerging device
technology. Power management now results in greater power savings. The framework can
detect automatically which devices can save power. The framework can use intermediate power
states of the devices. A system can now meet energy consumption goals without powering down
the entire system and without any functions.

TABLE 12–1 Power Management Interfaces

Removed Interfaces Equivalent Interfaces

pm_create_components(9F) pm-components(9P)

pm_set_normal_power(9F) pm-components(9P)

pm_destroy_components(9F) None

Changes to Power Management Interfaces

Writing Device Drivers • March 2012218

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Spm-components-9p
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Spm-components-9p

TABLE 12–1 Power Management Interfaces (Continued)
Removed Interfaces Equivalent Interfaces

pm_get_normal_power(9F) None

ddi_dev_is_needed(9F) pm_raise_power(9F)

None pm_lower_power(9F)

None pm_power_has_changed(9F)

DDI_PM_SUSPEND None

DDI_PM_RESUME None

Changes to Power Management Interfaces

Chapter 12 • Power Management 219

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-lower-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-power-has-changed-9f

220

Hardening Oracle Solaris Drivers

Fault Management Architecture (FMA) I/O Fault Services enable driver developers to integrate
fault management capabilities into I/O device drivers. The Oracle Solaris I/O fault services
framework defines a set of interfaces that enable all drivers to coordinate and perform basic
error handling tasks and activities. The Oracle Solaris FMA as a whole provides for error
handling and fault diagnosis, in addition to response and recovery. FMA is a component of
Oracle's Predictive Self-Healing strategy.

A driver is considered hardened when it uses the defensive programming practices described in
this document in addition to the I/O fault services framework for error handling and diagnosis.
The driver hardening test harness tests that the I/O fault services and defensive programming
requirements have been correctly fulfilled.

This document contains the following section:

■ “Oracle Fault Management Architecture I/O Fault Services” on page 221 provides a reference
for driver developers who want to integrate fault management capabilities into I/O device
drivers.

Oracle Fault Management Architecture I/O Fault Services
This section explains how to integrate fault management error reporting, error handling, and
diagnosis for I/O device drivers. This section provides an in-depth examination of the I/O fault
services framework and how to utilize the I/O fault service APIs within a device driver.

This section discusses the following topics:

■ “What Is Predictive Self-Healing?” on page 222 provides background and an overview of the
Oracle Fault Management Architecture.

■ “Oracle Solaris Fault Manager” on page 222 describes additional background with a focus on
a high-level overview of the Oracle Solaris Fault Manager, fmd(1M).

13C H A P T E R 1 3

221

■ “Error Handling” on page 225 is the primary section for driver developers. This section
highlights the best practice coding techniques for high-availability and the use of I/O fault
services in driver code to interact with the FMA.

What Is Predictive Self-Healing?
Traditionally, systems have exported hardware and software error information directly to
human administrators and to management software in the form of syslog messages. Often,
error detection, diagnosis, reporting, and handling was embedded in the code of each driver.

A system like the Solaris OS predictive self-healing system is first and foremost self-diagnosing.
Self-diagnosing means the system provides technology to automatically diagnose problems
from observed symptoms, and the results of the diagnosis can then be used to trigger automated
response and recovery. A fault in hardware or a defect in software can be associated with a set of
possible observed symptoms called errors. The data generated by the system as the result of
observing an error is called an error report or ereport.

In a system capable of self-healing, ereports are captured by the system and are encoded as a set
of name-value pairs described by an extensible event protocol to form an ereport event. Ereport
events and other data are gathered to facilitate self-healing, and are dispatched to software
components called diagnosis engines designed to diagnose the underlying problems
corresponding to the error symptoms observed by the system. A diagnosis engine runs in the
background and silently consumes error telemetry until it can produce a diagnosis or predict a
fault.

After processing sufficient telemetry to reach a conclusion, a diagnosis engine produces another
event called a fault event. The fault event is then broadcast to all agents that are interested in the
specific fault event. An agent is a software component that initiates recovery and responds to
specific fault events. A software component known as the Oracle Solaris Fault Manager,
fmd(1M), manages the multiplexing of events between ereport generators, diagnosis engines,
and agent software.

Oracle Solaris Fault Manager
The Oracle Solaris Fault Manager, fmd(1M), is responsible for dispatching in-bound error
telemetry events to the appropriate diagnosis engines. The diagnosis engine is responsible for
identifying the underlying hardware faults or software defects that are producing the error
symptoms. The fmd(1M) daemon is the Oracle Solaris OS implementation of a fault manager. It
starts at boot time and loads all of the diagnosis engines and agents available on the system. The
Oracle Solaris Fault Manager also provides interfaces for system administrators and service
personnel to observe fault management activity.

Oracle Fault Management Architecture I/O Fault Services

Writing Device Drivers • March 2012222

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mfmd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mfmd-1m

Diagnosis, Suspect Lists, and Fault Events
Once a diagnosis has been made, the diagnosis is output in the form of a list.suspect event. A
list.suspect event is an event comprised of one or more possible fault or defect events.
Sometimes the diagnosis cannot narrow the cause of errors to a single fault or defect. For
example, the underlying problem might be a broken wire connecting controllers to the main
system bus. The problem might be with a component on the bus or with the bus itself. In this
specific case, the list.suspect event will contain multiple fault events: one for each controller
attached to the bus, and one for the bus itself.

In addition to describing the fault that was diagnosed, a fault event also contains four payload
members for which the diagnosis is applicable.
■ The resource is the component that was diagnosed as faulty. The fmdump(1M) command

shows this payload member as “Problem in.”
■ The Automated System Recovery Unit (ASRU) is the hardware or software component that

must be disabled to prevent further error symptoms from occurring. The fmdump(1M)
command shows this payload member as “Affects.”

■ The Field Replaceable Unit (FRU) is the component that must be replaced or repaired to fix
the underlying problem.

■ The Label payload is a string that gives the location of the FRU in the same form as it is
printed on the chassis or motherboard, for example next to a DIMM slot or PCI card slot.
The fmdumpcommand shows this payload member as “Location.”

For example, after receiving a certain number of ECC correctable errors in a given amount of
time for a particular memory location, the CPU and memory diagnosis engine issues a
diagnosis (list.suspect event) for a faulty DIMM.

fmdump -v -u 38bd6f1b-a4de-4c21-db4e-ccd26fa8573c

TIME UUID SUNW-MSG-ID

Oct 31 13:40:18.1864 38bd6f1b-a4de-4c21-db4e-ccd26fa8573c AMD-8000-8L

100% fault.cpu.amd.icachetag

Problem in: hc:///motherboard=0/chip=0/cpu=0

Affects: cpu:///cpuid=0

FRU: hc:///motherboard=0/chip=0

Location: SLOT 2

In this example, fmd(1M) has identified a problem in a resource, specifically a CPU
(hc:///motherboard=0/chip=0/cpu=0). To suppress further error symptoms and to prevent
an uncorrectable error from occurring, an ASRU, (cpu:///cpuid=0), is identified for
retirement. The component that needs to be replaced is the FRU
(hc:///motherboard=0/chip=0).

Response Agents
An agent is a software component that takes action in response to a diagnosis or repair. For
example, the CPU and memory retire agent is designed to act on list.suspects that contain a

Oracle Fault Management Architecture I/O Fault Services

Chapter 13 • Hardening Oracle Solaris Drivers 223

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mfmdump-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mfmd-1m

fault.cpu.* event. The cpumem-retire agent will attempt to off-line a CPU or retire a physical
memory page from service. If the agent is successful, an entry in the fault manager's ASRU
cache is added for the page or CPU that was successfully retired. The fmadm(1M) utility, as
shown in the example below, shows an entry for a memory rank that has been diagnosed as
having a fault. ASRUs that the system does not have the ability to off-line, retire, or disable, will
also have an entry in the ASRU cache, but they will be seen as degraded. Degraded means the
resource associated with the ASRU is faulty, but the ASRU is unable to be removed from
service. Currently Oracle Solaris agent software cannot act upon I/O ASRUs (device instances).
All faulty I/O resource entries in the cache are in the degraded state.

fmadm faulty

STATE RESOURCE / UUID

-------- --

degraded mem:///motherboard=0/chip=1/memory-controller=0/dimm=3/rank=0

ccae89df-2217-4f5c-add4-d920f78b4faf

-------- --

The primary purpose of a retire agent is to isolate (safely remove from service) the piece of
hardware or software that has been diagnosed as faulty.

Agents can also take other important actions such as the following actions:

■ Send alerts via SNMP traps. This can translate a diagnosis into an alert for SNMP that plugs
into existing software mechanisms.

■ Post a syslog message. Message specific diagnoses (for example, syslog message agent) can
take the result of a diagnosis and translate it into a syslog message that administrators can
use to take a specific action.

■ Other agent actions such as update the FRUID. Response agents can be platform-specific.

Message IDs and Dictionary Files
The syslog message agent takes the output of the diagnosis (the list.suspect event) and writes
specific messages to the console or /var/adm/messages. Often console messages can be difficult
to understand. FMA remedies this problem by providing a defined fault message structure that
is generated every time a list.suspect event is delivered to a syslog message.

The syslog agent generates a message identifier (MSG ID). The event registry generates
dictionary files (.dict files) that map a list.suspect event to a structured message identifier that
should be used to identify and view the associated knowledge article. Message files, (.po files)
map the message ID to localized messages for every possible list of suspected faults that the
diagnosis engine can generate. The following is an example of a fault message emitted on a test
system.

SUNW-MSG-ID: AMD-8000-7U, TYPE: Fault, VER: 1, SEVERITY: Major

EVENT-TIME: Fri Jul 28 04:26:51 PDT 2006

PLATFORM: Sun Fire V40z, CSN: XG051535088, HOSTNAME: parity

SOURCE: eft, REV: 1.16

Oracle Fault Management Architecture I/O Fault Services

Writing Device Drivers • March 2012224

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mfmadm-1m

EVENT-ID: add96f65-5473-69e6-dbe1-8b3d00d5c47b

DESC: The number of errors associated with this CPU has exceeded

acceptable levels. Refer to http://sun.com/msg/AMD-8000-7U for

more information.

AUTO-RESPONSE: An attempt will be made to remove this CPU from service.

IMPACT: Performance of this system may be affected.

REC-ACTION: Schedule a repair procedure to replace the affected CPU.

Use fmdump -v -u <EVENT_ID> to identify the module.

System Topology
To identify where a fault might have occurred, diagnosis engines need to have the topology for a
given software or hardware system represented. The fmd(1M) daemon provides diagnosis
engines with a handle to a topology snapshot that can be used during diagnosis. Topology
information is used to represent the resource, ASRU, and FRU found in each fault event. The
topology can also be used to store the platform label, FRUID, and serial number identification.

The resource payload member in the fault event is always represented by the physical path
location from the platform chassis outward. For example, a PCI controller function that is
bridged from the main system bus to a PCI local bus is represented by its hc scheme path name:

hc:///motherboard=0/hostbridge=1/pcibus=0/pcidev=13/pcifn=0

The ASRU payload member in the fault event is typically represented by the Oracle Solaris
device tree instance name that is bound to a hardware controller, device, or function. FMA uses
the dev scheme to represent the ASRU in its native format for actions that might be taken by a
future implementation of a retire agent specifically designed for I/O devices:

dev:////pci@1e,600000/ide@d

The FRU payload representation in the fault event varies depending on the closest replaceable
component to the I/O resource that has been diagnosed as faulty. For example, a fault event for
a broken embedded PCI controller might name the motherboard of the system as the FRU that
needs to be replaced:

hc:///motherboard=0

The label payload is a string that gives the location of the FRU in the same form as it is printed
on the chassis or motherboard, for example next to a DIMM slot or PCI card slot:

Label: SLOT 2

Error Handling
This section describes how to use I/O fault services APIs to handle errors within a driver. This
section discusses how drivers should indicate and initialize their fault management capabilities,
generate error reports, and register the driver's error handler routine.

Oracle Fault Management Architecture I/O Fault Services

Chapter 13 • Hardening Oracle Solaris Drivers 225

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mfmd-1m

Drivers that have been instrumented to provide FMA error report telemetry detect errors and
determine the impact of those errors on the services provided by the driver. Following the
detection of an error, the driver should determine when its services have been impacted and to
what degree.

An I/O driver must respond immediately to detected errors. Appropriate responses include:
■ Attempt recovery
■ Retry an I/O transaction
■ Attempt fail-over techniques
■ Report the error to the calling application/stack
■ If the error cannot be constrained any other way, then panic

Errors detected by the driver are communicated to the fault management daemon as an ereport.
An ereport is a structured event defined by the FMA event protocol. The event protocol is a
specification for a set of common data fields that must be used to describe all possible error and
fault events, in addition to the list of suspected faults. Ereports are gathered into a flow of error
telemetry and dispatched to the diagnosis engine.

Declaring Fault Management Capabilities
A hardened device driver must declare its fault management capabilities to the I/O Fault
Management framework. Use the ddi_fm_init(9F) function to declare the fault management
capabilities of your driver.

void ddi_fm_init(dev_info_t *dip, int *fmcap, ddi_iblock_cookie_t *ibcp)

The ddi_fm_init() function can be called from kernel context in a driver attach(9E) or
detach(9E) entry point. The ddi_fm_init() function usually is called from the attach() entry
point. The ddi_fm_init() function allocates and initializes resources according to fmcap. The
fmcap parameter must be set to the bitwise-inclusive-OR of the following fault management
capabilities:
■ DDI_FM_EREPORT_CAPABLE - Driver is responsible for and capable of generating FMA

protocol error events (ereports) upon detection of an error condition.
■ DDI_FM_ACCCHK_CAPABLE - Driver is responsible for and capable of checking for errors upon

completion of one or more access I/O transactions.
■ DDI_FM_DMACHK_CAPABLE - Driver is responsible for and capable of checking for errors upon

completion of one or more DMA I/O transactions.
■ DDI_FM_ERRCB_CAPABLE - Driver has an error callback function.

A hardened leaf driver generally sets all these capabilities. However, if its parent nexus is not
capable of supporting any one of the requested capabilities, the associated bit is cleared and
returned as such to the driver. Before returning from ddi_fm_init(9F), the I/O fault services
framework creates a set of fault management capability properties: fm-ereport-capable,
fm-accchk-capable, fm-dmachk-capable and fm-errcb-capable. The currently supported
fault management capability level is observable by using the prtconf(1M) command.

Oracle Fault Management Architecture I/O Fault Services

Writing Device Drivers • March 2012226

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-fm-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mprtconf-1m

To make your driver support administrative selection of fault management capabilities, export
and set the fault management capability level properties to the values described above in the
driver.conf(4) file. The fm-capable properties must be set and read prior to calling
ddi_fm_init() with the desired capability list.

The following example from the bge driver shows the bge_fm_init() function, which calls the
ddi_fm_init(9F) function. The bge_fm_init() function is called in the bge_attach()
function.

static void

bge_fm_init(bge_t *bgep)

{

ddi_iblock_cookie_t iblk;

/* Only register with IO Fault Services if we have some capability */

if (bgep->fm_capabilities) {

bge_reg_accattr.devacc_attr_access = DDI_FLAGERR_ACC;

dma_attr.dma_attr_flags = DDI_DMA_FLAGERR;

/*

* Register capabilities with IO Fault Services

*/

ddi_fm_init(bgep->devinfo, &bgep->fm_capabilities, &iblk);

/*

* Initialize pci ereport capabilities if ereport capable

*/

if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities) ||

DDI_FM_ERRCB_CAP(bgep->fm_capabilities))

pci_ereport_setup(bgep->devinfo);

/*

* Register error callback if error callback capable

*/

if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities))

ddi_fm_handler_register(bgep->devinfo,

bge_fm_error_cb, (void*) bgep);

} else {

/*

* These fields have to be cleared of FMA if there are no

* FMA capabilities at runtime.

*/

bge_reg_accattr.devacc_attr_access = DDI_DEFAULT_ACC;

dma_attr.dma_attr_flags = 0;

}

}

Cleaning Up Fault Management Resources
The ddi_fm_fini(9F) function cleans up resources allocated to support fault management for
dip.

void ddi_fm_fini(dev_info_t *dip)

The ddi_fm_fini() function can be called from kernel context in a driver attach(9E) or
detach(9E) entry point.

Oracle Fault Management Architecture I/O Fault Services

Chapter 13 • Hardening Oracle Solaris Drivers 227

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4driver.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-fm-fini-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e

The following example from the bge driver shows the bge_fm_fini() function, which calls the
ddi_fm_fini(9F) function. The bge_fm_fini() function is called in the bge_unattach()
function, which is called in both the bge_attach() and bge_detach() functions.

static void

bge_fm_fini(bge_t *bgep)

{

/* Only unregister FMA capabilities if we registered some */

if (bgep->fm_capabilities) {

/*

* Release any resources allocated by pci_ereport_setup()

*/

if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities) ||

DDI_FM_ERRCB_CAP(bgep->fm_capabilities))

pci_ereport_teardown(bgep->devinfo);

/*

* Un-register error callback if error callback capable

*/

if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities))

ddi_fm_handler_unregister(bgep->devinfo);

/*

* Unregister from IO Fault Services

*/

ddi_fm_fini(bgep->devinfo);

}

}

Getting the Fault Management Capability Bit Mask
The ddi_fm_capable(9F) function returns the capability bit mask currently set for dip.

void ddi_fm_capable(dev_info_t *dip)

Reporting Errors
This section provides information about the following topics:

■ “Queueing an Error Event” on page 228 discusses how to queue error events.
■ “Detecting and Reporting PCI-Related Errors” on page 229 describes how to report

PCI-related errors.
■ “Reporting Standard I/O Controller Errors” on page 230 describes how to report standard

I/O controller errors.
■ “Service Impact Function” on page 232 discusses how to report whether an error has

impacted the services provided by a device.

Queueing an Error Event

The ddi_fm_ereport_post(9F) function causes an ereport event to be queued for delivery to
the fault manager daemon, fmd(1M).

Oracle Fault Management Architecture I/O Fault Services

Writing Device Drivers • March 2012228

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-fm-capable-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-fm-ereport-post-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mfmd-1m

void ddi_fm_ereport_post(dev_info_t *dip,
const char *error_class,
uint64_t ena,
int sflag, ...)

The sflag parameter indicates whether the caller is willing to wait for system memory and event
channel resources to become available.

The ENA indicates the Error Numeric Association (ENA) for this error report. The ENA might
have been initialized and obtained from another error detecting software module such as a bus
nexus driver. If the ENA is set to 0, it will be initialized by ddi_fm_ereport_post().

The name-value pair (nvpair) variable argument list contains one or more name, type, value
pointer nvpair tuples for non-array data_type_t types or one or more name, type, number of
element, value pointer tuples for data_type_t array types. The nvpair tuples make up the
ereport event payload required for diagnosis. The end of the argument list is specified by NULL.

The ereport class names and payloads described in “Reporting Standard I/O Controller Errors”
on page 230 for I/O controllers are used as appropriate for error_class. Other ereport class
names and payloads can be defined, but they must be registered in the Oracle event registry and
accompanied by driver specific diagnosis engine software, or the Eversholt fault tree (eft) rules.

void

bge_fm_ereport(bge_t *bgep, char *detail)

{

uint64_t ena;

char buf[FM_MAX_CLASS];

(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);

ena = fm_ena_generate(0, FM_ENA_FMT1);

if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities)) {

ddi_fm_ereport_post(bgep->devinfo, buf, ena, DDI_NOSLEEP,

FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);

}

}

Detecting and Reporting PCI-Related Errors
PCI-related errors, including PCI, PCI-X, and PCI-E, are automatically detected and reported
when you use pci_ereport_post(9F).

void pci_ereport_post(dev_info_t *dip, ddi_fm_error_t *derr, uint16_t *xx_status)

Drivers do not need to generate driver-specific ereports for errors that occur in the PCI Local
Bus configuration status registers. The pci_ereport_post() function can report data parity
errors, master aborts, target aborts, signaled system errors, and much more.

If pci_ereport_post() is to be used by a driver, then pci_ereport_setup(9F) must have been
previously called during the driver's attach(9E) routine, and pci_ereport_teardown(9F) must
subsequently be called during the driver's detach(9E) routine.

The bge code samples below show the bge driver invoking the pci_ereport_post() function
from the driver's error handler.

Oracle Fault Management Architecture I/O Fault Services

Chapter 13 • Hardening Oracle Solaris Drivers 229

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpci-ereport-post-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpci-ereport-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpci-ereport-teardown-9f

/*

* The I/O fault service error handling callback function

*/

/*ARGSUSED*/

static int

bge_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)

{

/*

* as the driver can always deal with an error

* in any dma or access handle, we can just return

* the fme_status value.

*/

pci_ereport_post(dip, err, NULL);

return (err->fme_status);

}

Reporting Standard I/O Controller Errors

A standard set of device ereports is defined for commonly seen errors for I/O controllers. These
ereports should be generated whenever one of the error symptoms described in this section is
detected.

The ereports described in this section are dispatched for diagnosis to the eft diagnosis engine,
which uses a common set of standard rules to diagnose them. Any other errors detected by
device drivers must be defined as ereport events in the Sun event registry and must be
accompanied by device specific diagnosis software or eft rules.

DDI_FM_DEVICE_INVAL_STATE
The driver has detected that the device is in an invalid state.

A driver should post an error when it detects that the data it transmits or receives appear to
be invalid. For example, in the bge code, the bge_chip_reset() and bge_receive_ring()

routines generate the ereport.io.device.inval_state error when these routines detect
invalid data.

/*

* The SEND INDEX registers should be reset to zero by the

* global chip reset; if they’re not, there’ll be trouble

* later on.

*/

sx0 = bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0));

if (sx0 != 0) {

BGE_REPORT((bgep, "SEND INDEX - device didn’t RESET"));
bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);

return (DDI_FAILURE);

}

/* ... */

/*

* Sync (all) the receive ring descriptors

* before accepting the packets they describe

*/

DMA_SYNC(rrp->desc, DDI_DMA_SYNC_FORKERNEL);

if (*rrp->prod_index_p >= rrp->desc.nslots) {

bgep->bge_chip_state = BGE_CHIP_ERROR;

Oracle Fault Management Architecture I/O Fault Services

Writing Device Drivers • March 2012230

bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);

return (NULL);

}

DDI_FM_DEVICE_INTERN_CORR
The device has reported a self-corrected internal error. For example, a correctable ECC error
has been detected by the hardware in an internal buffer within the device. This error flag is
not used in the bge driver.

DDI_FM_DEVICE_INTERN_UNCORR
The device has reported an uncorrectable internal error. For example, an uncorrectable ECC
error has been detected by the hardware in an internal buffer within the device.

This error flag is not used in the bge driver.

DDI_FM_DEVICE_STALL
The driver has detected that data transfer has stalled unexpectedly.

The bge_factotum_stall_check() routine provides an example of stall detection.

dogval = bge_atomic_shl32(&bgep->watchdog, 1);

if (dogval < bge_watchdog_count)

return (B_FALSE);

BGE_REPORT((bgep, "Tx stall detected,

watchdog code 0x%x", dogval));

bge_fm_ereport(bgep, DDI_FM_DEVICE_STALL);

return (B_TRUE);

DDI_FM_DEVICE_NO_RESPONSE
The device is not responding to a driver command.

bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,

uint32_t mask, uint32_t val)

{

uint32_t regval;

uint32_t n;

for (n = 200; n; --n) {

regval = bge_reg_get32(bgep, regno);

if ((regval & mask) == val)

return (B_TRUE);

drv_usecwait(100);

}

bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);

return (B_FALSE);

}

DDI_FM_DEVICE_BADINT_LIMIT
The device has raised too many consecutive invalid interrupts.

The bge_intr() routine within the bge driver provides an example of stuck interrupt
detection. The bge_fm_ereport() function is a wrapper for the ddi_fm_ereport_post(9F)
function. See the bge_fm_ereport() example in “Queueing an Error Event” on page 228.

Oracle Fault Management Architecture I/O Fault Services

Chapter 13 • Hardening Oracle Solaris Drivers 231

if (bgep->missed_dmas >= bge_dma_miss_limit) {

/*

* If this happens multiple times in a row,

* it means DMA is just not working. Maybe

* the chip has failed, or maybe there’s a

* problem on the PCI bus or in the host-PCI

* bridge (Tomatillo).

*

* At all events, we want to stop further

* interrupts and let the recovery code take

* over to see whether anything can be done

* about it ...

*/

bge_fm_ereport(bgep,

DDI_FM_DEVICE_BADINT_LIMIT);

goto chip_stop;

}

Service Impact Function

A fault management capable driver must indicate whether or not an error has impacted the
services provided by a device. Following detection of an error and, if necessary, a shutdown of
services, the driver should invoke the ddi_fm_service_impact(9F) routine to reflect the
current service state of the device instance. The service state can be used by diagnosis and
recovery software to help identify or react to the problem.

The ddi_fm_service_impact() routine should be called both when an error has been detected
by the driver itself, and when the framework has detected an error and marked an access or
DMA handle as faulty.

void ddi_fm_service_impact(dev_info_t *dip, int svc_impact)

The following service impact values (svc_impact) are accepted by ddi_fm_service_impact():

DDI_SERVICE_LOST The service provided by the device is unavailable due to a
device fault or software defect.

DDI_SERVICE_DEGRADED The driver is unable to provide normal service, but the
driver can provide a partial or degraded level of service.
For example, the driver might have to make repeated
attempts to perform an operation before it succeeds, or it
might be running at less that its configured speed.

DDI_SERVICE_UNAFFECTED The driver has detected an error, but the services provided
by the device instance are unaffected.

DDI_SERVICE_RESTORED All of the device's services have been restored.

The call to ddi_fm_service_impact() generates the following ereports on behalf of the driver,
based on the service impact argument to the service impact routine:

■ ereport.io.service.lost

Oracle Fault Management Architecture I/O Fault Services

Writing Device Drivers • March 2012232

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-fm-service-impact-9f

■ ereport.io.service.degraded

■ ereport.io.service.unaffected

■ ereport.io.service.restored

In the following bge code, the driver determines that it is unable to successfully restart
transmitting or receiving packets as the result of an error. The service state of the device
transitions to DDI_SERVICE_LOST.

/*

* All OK, reinitialize hardware and kick off GLD scheduling

*/

mutex_enter(bgep->genlock);

if (bge_restart(bgep, B_TRUE) != DDI_SUCCESS) {

(void) bge_check_acc_handle(bgep, bgep->cfg_handle);

(void) bge_check_acc_handle(bgep, bgep->io_handle);

ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);

mutex_exit(bgep->genlock);

return (DDI_FAILURE);

}

Note – The ddi_fm_service_impact() function should not be called from the registered
callback routine.

Oracle Fault Management Architecture I/O Fault Services

Chapter 13 • Hardening Oracle Solaris Drivers 233

234

Layered Driver Interface (LDI)

The LDI is a set of DDI/DKI that enables a kernel module to access other devices in the system.
The LDI also enables you to determine which devices are currently being used by kernel
modules.

This chapter covers the following topics:

■ “Kernel Interfaces” on page 236
■ “User Interfaces” on page 251

LDI Overview
The LDI includes two categories of interfaces:

■ Kernel interfaces. User applications use system calls to open, read, and write to devices that
are managed by a device driver within the kernel. Kernel modules can use the LDI kernel
interfaces to open, read, and write to devices that are managed by another device driver
within the kernel. For example, a user application might use read(2) and a kernel module
might use ldi_read(9F) to read the same device. See “Kernel Interfaces” on page 236.

■ User interfaces. The LDI user interfaces can provide information to user processes
regarding which devices are currently being used by other devices in the kernel. See “User
Interfaces” on page 251.

The following terms are commonly used in discussing the LDI:

■ Target Device. A target device is a device within the kernel that is managed by a device
driver and is being accessed by a device consumer.

■ Device Consumer. A device consumer is a user process or kernel module that opens and
accesses a target device. A device consumer normally performs operations such as open,
read, write, or ioctl on a target device.

14C H A P T E R 1 4

235

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-read-9f

■ Kernel Device Consumer. A kernel device consumer is a particular kind of device
consumer. A kernel device consumer is a kernel module that accesses a target device. The
kernel device consumer usually is not the device driver that manages the target device that is
being accessed. Instead, the kernel device consumer accesses the target device indirectly
through the device driver that manages the target device.

■ Layered Driver. A layered driver is a particular kind of kernel device consumer. A layered
driver is a kernel driver that does not directly manage any piece of hardware. Instead, a
layered driver accesses one of more target devices indirectly through the device drivers that
manage those target devices. Volume managers and STREAMS multiplexers are good
examples of layered drivers.

Kernel Interfaces
Some LDI kernel interfaces enable the LDI to track and report kernel device usage information.
See “Layered Identifiers – Kernel Device Consumers” on page 236.

Other LDI kernel interfaces enable kernel modules to perform access operations such as open,
read, and write a target device. These LDI kernel interfaces also enable a kernel device
consumer to query property and event information about target devices. See “Layered Driver
Handles – Target Devices” on page 237.

“LDI Kernel Interfaces Example” on page 241 shows an example driver that uses many of these
LDI interfaces.

Layered Identifiers – Kernel Device Consumers
Layered identifiers enable the LDI to track and report kernel device usage information. A
layered identifier (ldi_ident_t) identifies a kernel device consumer. Kernel device consumers
must obtain a layered identifier prior to opening a target device using the LDI.

Layered drivers are the only supported types of kernel device consumers. Therefore, a layered
driver must obtain a layered identifier that is associated with the device number, the device
information node, or the stream of the layered driver. The layered identifier is associated with
the layered driver. The layered identifier is not associated with the target device.

You can retrieve the kernel device usage information that is collected by the LDI by using the
libdevinfo(3LIB) interfaces, the fuser(1M) command, or the prtconf(1M) command. For
example, the prtconf(1M) command can show which target devices a layered driver is
accessing or which layered drivers are accessing a particular target device. See “User Interfaces”
on page 251 to learn more about how to retrieve device usage information.

The following describes the LDI layered identifier interfaces:

ldi_ident_t Layered identifier. An opaque type.

Kernel Interfaces

Writing Device Drivers • March 2012236

ldi_ident_from_dev(9F) Allocate and retrieve a layered identifier that is associated
with a dev_t device number.

ldi_ident_from_dip(9F) Allocate and retrieve a layered identifier that is associated
with a dev_info_t device information node.

ldi_ident_from_stream(9F) Allocate and retrieve a layered identifier that is associated
with a stream.

ldi_ident_release(9F) Release a layered identifier that was allocated with
ldi_ident_from_dev(9F), ldi_ident_from_dip(9F), or
ldi_ident_from_stream(9F).

Layered Driver Handles – Target Devices
Kernel device consumers must use a layered driver handle (ldi_handle_t) to access a target
device through LDI interfaces. The ldi_handle_t type is valid only with LDI interfaces. The
LDI allocates and returns this handle when the LDI successfully opens a device. A kernel device
consumer can then use this handle to access the target device through the LDI interfaces. The
LDI deallocates the handle when the LDI closes the device. See “LDI Kernel Interfaces Example”
on page 241 for an example.

This section discusses how kernel device consumers can access target devices and retrieve
different types of information. See “Opening and Closing Target Devices” on page 237 to learn
how kernel device consumers can open and close target devices. See “Accessing Target Devices”
on page 238 to learn how kernel device consumers can perform operations such as read, write,
strategy, and ioctl on target devices. “Retrieving Target Device Information” on page 239
describes interfaces that retrieve target device information such as device open type and device
minor name. “Retrieving Target Device Property Values” on page 239 describes interfaces that
retrieve values and address of target device properties. See “Receiving Asynchronous Device
Event Notification” on page 240 to learn how kernel device consumers can receive event
notification from target devices.

Opening and Closing Target Devices
This section describes the LDI kernel interfaces for opening and closing target devices. The
open interfaces take a pointer to a layered driver handle. The open interfaces attempt to open
the target device specified by the device number, device ID, or path name. If the open operation
is successful, the open interfaces allocate and return a layered driver handle that can be used to
access the target device. The close interface closes the target device associated with the specified
layered driver handle and then frees the layered driver handle.

ldi_handle_t Layered driver handle for target device access. An opaque data
structure that is returned when a device is successfully opened.

Kernel Interfaces

Chapter 14 • Layered Driver Interface (LDI) 237

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-ident-from-dev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-ident-from-dip-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-ident-from-stream-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-ident-release-9f

ldi_open_by_dev(9F) Open the device specified by the dev_t device number parameter.

ldi_open_by_devid(9F) Open the device specified by the ddi_devid_t device ID
parameter. You also must specify the minor node name to open.

ldi_open_by_name(9F) Open a device by path name. The path name is a null-terminated
string in the kernel address space. The path name must be an
absolute path, beginning with a forward slash character (/).

ldi_close(9F) Close a device that was opened with ldi_open_by_dev(9F),
ldi_open_by_devid(9F), or ldi_open_by_name(9F). After
ldi_close(9F) returns, the layered driver handle of the device
that was closed is no longer valid.

Accessing Target Devices
This section describes the LDI kernel interfaces for accessing target devices. These interfaces
enable a kernel device consumer to perform operations on the target device specified by the
layered driver handle. Kernel device consumers can perform operations such as read, write,
strategy, and ioctl on the target device.

ldi_handle_t Layered driver handle for target device access. An opaque data
structure.

ldi_read(9F) Pass a read request to the device entry point for the target device. This
operation is supported for block, character, and STREAMS devices.

ldi_aread(9F) Pass an asynchronous read request to the device entry point for the
target device. This operation is supported for block and character
devices.

ldi_write(9F) Pass a write request to the device entry point for the target device. This
operation is supported for block, character, and STREAMS devices.

ldi_awrite(9F) Pass an asynchronous write request to the device entry point for the
target device. This operation is supported for block and character
devices.

ldi_strategy(9F) Pass a strategy request to the device entry point for the target device.
This operation is supported for block and character devices.

ldi_dump(9F) Pass a dump request to the device entry point for the target device. This
operation is supported for block and character devices.

ldi_poll(9F) Pass a poll request to the device entry point for the target device. This
operation is supported for block, character, and STREAMS devices.

ldi_ioctl(9F) Pass an ioctl request to the device entry point for the target device.
This operation is supported for block, character, and STREAMS
devices. The LDI supports STREAMS linking and STREAMS ioctl

Kernel Interfaces

Writing Device Drivers • March 2012238

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-open-by-dev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-open-by-devid-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-open-by-name-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-close-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-read-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-aread-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-write-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-awrite-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-strategy-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-dump-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-poll-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-ioctl-9f

commands. See the “STREAM IOCTLS” section of the ldi_ioctl(9F)
man page. See also the ioctl commands in the streamio(7I) man page.

ldi_devmap(9F) Pass a devmap request to the device entry point for the target device. This
operation is supported for block and character devices.

ldi_getmsg(9F) Get a message block from a stream.

ldi_putmsg(9F) Put a message block on a stream.

Retrieving Target Device Information
This section describes LDI interfaces that kernel device consumers can use to retrieve device
information about a specified target device. A target device is specified by a layered driver
handle. A kernel device consumer can receive information such as device number, device open
type, device ID, device minor name, and device size.

ldi_get_dev(9F) Get the dev_t device number for the target device specified by
the layered driver handle.

ldi_get_otyp(9F) Get the open flag that was used to open the target device
specified by the layered driver handle. This flag tells you whether
the target device is a character device or a block device.

ldi_get_devid(9F) Get the ddi_devid_t device ID for the target device specified by
the layered driver handle. Use ddi_devid_free(9F) to free the
ddi_devid_t when you are finished using the device ID.

ldi_get_minor_name(9F) Retrieve a buffer that contains the name of the minor node that
was opened for the target device. Use kmem_free(9F) to release
the buffer when you are finished using the minor node name.

ldi_get_size(9F) Retrieve the partition size of the target device specified by the
layered driver handle.

Retrieving Target Device Property Values
This section describes LDI interfaces that kernel device consumers can use to retrieve property
information about a specified target device. A target device is specified by a layered driver
handle. A kernel device consumer can receive values and addresses of properties and determine
whether a property exists.

ldi_prop_exists(9F) Return 1 if the property exists for the target device
specified by the layered driver handle. Return 0 if the
property does not exist for the specified target
device.

Kernel Interfaces

Chapter 14 • Layered Driver Interface (LDI) 239

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7streamio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-devmap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-getmsg-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-putmsg-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-get-dev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-get-otyp-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-get-devid-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-devid-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-get-minor-name-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fkmem-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-get-size-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-prop-exists-9f

ldi_prop_get_int(9F) Search for an int integer property that is associated
with the target device specified by the layered driver
handle. If the integer property is found, return the
property value.

ldi_prop_get_int64(9F) Search for an int64_t integer property that is
associated with the target device specified by the
layered driver handle. If the integer property is
found, return the property value.

ldi_prop_lookup_int_array(9F) Retrieve the address of an int integer array property
value for the target device specified by the layered
driver handle.

ldi_prop_lookup_int64_array(9F) Retrieve the address of an int64_t integer array
property value for the target device specified by the
layered driver handle.

ldi_prop_lookup_string(9F) Retrieve the address of a null-terminated string
property value for the target device specified by the
layered driver handle.

ldi_prop_lookup_string_array(9F) Retrieve the address of an array of strings. The string
array is an array of pointers to null-terminated
strings of property values for the target device
specified by the layered driver handle.

ldi_prop_lookup_byte_array(9F) Retrieve the address of an array of bytes. The byte
array is a property value of the target device specified
by the layered driver handle.

Receiving Asynchronous Device Event Notification
The LDI enables kernel device consumers to register for event notification and to receive event
notification from target devices. A kernel device consumer can register an event handler that
will be called when the event occurs. The kernel device consumer must open a device and
receive a layered driver handle before the kernel device consumer can register for event
notification with the LDI event notification interfaces.

The LDI event notification interfaces enable a kernel device consumer to specify an event name
and to retrieve an associated kernel event cookie. The kernel device consumer can then pass the
layered driver handle (ldi_handle_t), the cookie (ddi_eventcookie_t), and the event handler
to ldi_add_event_handler(9F) to register for event notification. When registration completes
successfully, the kernel device consumer receives a unique LDI event handler identifier
(ldi_callback_id_t). The LDI event handler identifier is an opaque type that can be used only
with the LDI event notification interfaces.

Kernel Interfaces

Writing Device Drivers • March 2012240

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-prop-get-int-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-prop-get-int64-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-prop-lookup-int-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-prop-lookup-int64-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-prop-lookup-string-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-prop-lookup-string-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-prop-lookup-byte-array-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-add-event-handler-9f

The LDI provides a framework to register for events generated by other devices. The LDI itself
does not define any event types or provide interfaces for generating events.

The following describes the LDI asynchronous event notification interfaces:

ldi_callback_id_t Event handler identifier. An opaque type.

ldi_get_eventcookie(9F) Retrieve an event service cookie for the target device
specified by the layered driver handle.

ldi_add_event_handler(9F) Add the callback handler specified by the
ldi_callback_id_t registration identifier. The callback
handler is invoked when the event specified by the
ddi_eventcookie_t cookie occurs.

ldi_remove_event_handler(9F) Remove the callback handler specified by the
ldi_callback_id_t registration identifier.

LDI Kernel Interfaces Example
This section shows an example kernel device consumer that uses some of the LDI calls
discussed in the preceding sections in this chapter. This section discusses the following aspects
of this example module:

■ “Device Configuration File” on page 241
■ “Driver Source File” on page 242
■ “Test the Layered Driver” on page 250

This example kernel device consumer is named lyr. The lyr module is a layered driver that
uses LDI calls to send data to a target device. In its open(9E) entry point, the lyr driver opens
the device that is specified by the lyr_targ property in the lyr.conf configuration file. In its
write(9E) entry point, the lyr driver writes all of its incoming data to the device specified by
the lyr_targ property.

Device Configuration File
In the configuration file shown below, the target device that the lyr driver is writing to is the
console.

EXAMPLE 14–1 Configuration File

#

Use is subject to license terms.

#

#pragma ident "%Z%%M% %I% %E% SMI"

name="lyr" parent="pseudo" instance=1;

lyr_targ="/dev/console";

Kernel Interfaces

Chapter 14 • Layered Driver Interface (LDI) 241

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-get-eventcookie-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-add-event-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-remove-event-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Ewrite-9e

Driver Source File
In the driver source file shown below, the lyr_state_t structure holds the soft state for the lyr
driver. The soft state includes the layered driver handle (lh) for the lyr_targ device and the
layered identifier (li) for the lyr device. For more information on soft state, see “Retrieving
Driver Soft State Information” on page 521.

In the lyr_open() entry point, ddi_prop_lookup_string(9F) retrieves from the lyr_targ
property the name of the target device for the lyr device to open. The
ldi_ident_from_dev(9F) function gets an LDI layered identifier for the lyr device. The
ldi_open_by_name(9F) function opens the lyr_targ device and gets a layered driver handle for
the lyr_targ device.

Note that if any failure occurs in lyr_open(), the ldi_close(9F), ldi_ident_release(9F), and
ddi_prop_free(9F) calls undo everything that was done. The ldi_close(9F) function closes
the lyr_targ device. The ldi_ident_release(9F) function releases the lyr layered identifier.
The ddi_prop_free(9F) function frees resources allocated when the lyr_targ device name was
retrieved. If no failure occurs, the ldi_close(9F) and ldi_ident_release(9F) functions are
called in the lyr_close() entry point.

In the last line of the driver module, the ldi_write(9F) function is called. The ldi_write(9F)
function takes the data written to the lyr device in the lyr_write() entry point and writes that
data to the lyr_targ device. The ldi_write(9F) function uses the layered driver handle for the
lyr_targ device to write the data to the lyr_targ device.

EXAMPLE 14–2 Driver Source File

#include <sys/types.h>

#include <sys/file.h>

#include <sys/errno.h>

#include <sys/open.h>

#include <sys/cred.h>

#include <sys/cmn_err.h>

#include <sys/modctl.h>

#include <sys/conf.h>

#include <sys/stat.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

#include <sys/sunldi.h>

typedef struct lyr_state {

ldi_handle_t lh;

ldi_ident_t li;

dev_info_t *dip;

minor_t minor;

int flags;

kmutex_t lock;

} lyr_state_t;

#define LYR_OPENED 0x1 /* lh is valid */

#define LYR_IDENTED 0x2 /* li is valid */

Kernel Interfaces

Writing Device Drivers • March 2012242

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-lookup-string-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-ident-from-dev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-open-by-name-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-close-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-ident-release-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fldi-write-9f

EXAMPLE 14–2 Driver Source File (Continued)

static int lyr_info(dev_info_t *, ddi_info_cmd_t, void *, void **);

static int lyr_attach(dev_info_t *, ddi_attach_cmd_t);

static int lyr_detach(dev_info_t *, ddi_detach_cmd_t);

static int lyr_open(dev_t *, int, int, cred_t *);

static int lyr_close(dev_t, int, int, cred_t *);

static int lyr_write(dev_t, struct uio *, cred_t *);

static void *lyr_statep;

static struct cb_ops lyr_cb_ops = {

lyr_open, /* open */

lyr_close, /* close */

nodev, /* strategy */

nodev, /* print */

nodev, /* dump */

nodev, /* read */

lyr_write, /* write */

nodev, /* ioctl */

nodev, /* devmap */

nodev, /* mmap */

nodev, /* segmap */

nochpoll, /* poll */

ddi_prop_op, /* prop_op */

NULL, /* streamtab */

D_NEW | D_MP, /* cb_flag */

CB_REV, /* cb_rev */

nodev, /* aread */

nodev /* awrite */

};

static struct dev_ops lyr_dev_ops = {

DEVO_REV, /* devo_rev, */

0, /* refcnt */

lyr_info, /* getinfo */

nulldev, /* identify */

nulldev, /* probe */

lyr_attach, /* attach */

lyr_detach, /* detach */

nodev, /* reset */

&lyr_cb_ops, /* cb_ops */

NULL, /* bus_ops */

NULL, /* power */

ddi_quiesce_not_needed, /* quiesce */

};

static struct modldrv modldrv = {

&mod_driverops,

"LDI example driver",
&lyr_dev_ops

};

static struct modlinkage modlinkage = {

MODREV_1,

&modldrv,

Kernel Interfaces

Chapter 14 • Layered Driver Interface (LDI) 243

EXAMPLE 14–2 Driver Source File (Continued)

NULL

};

int

_init(void)

{

int rv;

if ((rv = ddi_soft_state_init(&lyr_statep, sizeof (lyr_state_t),

0)) != 0) {

cmn_err(CE_WARN, "lyr _init: soft state init failed\n");
return (rv);

}

if ((rv = mod_install(&modlinkage)) != 0) {

cmn_err(CE_WARN, "lyr _init: mod_install failed\n");
goto FAIL;

}

return (rv);

/*NOTEREACHED*/

FAIL:

ddi_soft_state_fini(&lyr_statep);

return (rv);

}

int

_info(struct modinfo *modinfop)

{

return (mod_info(&modlinkage, modinfop));

}

int

_fini(void)

{

int rv;

if ((rv = mod_remove(&modlinkage)) != 0) {

return(rv);

}

ddi_soft_state_fini(&lyr_statep);

return (rv);

}

/*

* 1:1 mapping between minor number and instance

*/

static int

lyr_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)

{

int inst;

minor_t minor;

lyr_state_t *statep;

char *myname = "lyr_info";

minor = getminor((dev_t)arg);

inst = minor;

switch (infocmd) {

Kernel Interfaces

Writing Device Drivers • March 2012244

EXAMPLE 14–2 Driver Source File (Continued)

case DDI_INFO_DEVT2DEVINFO:

statep = ddi_get_soft_state(lyr_statep, inst);

if (statep == NULL) {

cmn_err(CE_WARN, "%s: get soft state "
"failed on inst %d\n", myname, inst);

return (DDI_FAILURE);

}

*result = (void *)statep->dip;

break;

case DDI_INFO_DEVT2INSTANCE:

*result = (void *)inst;

break;

default:

break;

}

return (DDI_SUCCESS);

}

static int

lyr_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)

{

int inst;

lyr_state_t *statep;

char *myname = "lyr_attach";

switch (cmd) {

case DDI_ATTACH:

inst = ddi_get_instance(dip);

if (ddi_soft_state_zalloc(lyr_statep, inst) != DDI_SUCCESS) {

cmn_err(CE_WARN, "%s: ddi_soft_state_zallac failed "
"on inst %d\n", myname, inst);

goto FAIL;

}

statep = (lyr_state_t *)ddi_get_soft_state(lyr_statep, inst);

if (statep == NULL) {

cmn_err(CE_WARN, "%s: ddi_get_soft_state failed on "
"inst %d\n", myname, inst);

goto FAIL;

}

statep->dip = dip;

statep->minor = inst;

if (ddi_create_minor_node(dip, "node", S_IFCHR, statep->minor,

DDI_PSEUDO, 0) != DDI_SUCCESS) {

cmn_err(CE_WARN, "%s: ddi_create_minor_node failed on "
"inst %d\n", myname, inst);

goto FAIL;

}

mutex_init(&statep->lock, NULL, MUTEX_DRIVER, NULL);

return (DDI_SUCCESS);

case DDI_RESUME:

case DDI_PM_RESUME:

default:

break;

Kernel Interfaces

Chapter 14 • Layered Driver Interface (LDI) 245

EXAMPLE 14–2 Driver Source File (Continued)

}

return (DDI_FAILURE);

/*NOTREACHED*/

FAIL:

ddi_soft_state_free(lyr_statep, inst);

ddi_remove_minor_node(dip, NULL);

return (DDI_FAILURE);

}

static int

lyr_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)

{

int inst;

lyr_state_t *statep;

char *myname = "lyr_detach";

inst = ddi_get_instance(dip);

statep = ddi_get_soft_state(lyr_statep, inst);

if (statep == NULL) {

cmn_err(CE_WARN, "%s: get soft state failed on "
"inst %d\n", myname, inst);

return (DDI_FAILURE);

}

if (statep->dip != dip) {

cmn_err(CE_WARN, "%s: soft state does not match devinfo "
"on inst %d\n", myname, inst);

return (DDI_FAILURE);

}

switch (cmd) {

case DDI_DETACH:

mutex_destroy(&statep->lock);

ddi_soft_state_free(lyr_statep, inst);

ddi_remove_minor_node(dip, NULL);

return (DDI_SUCCESS);

case DDI_SUSPEND:

case DDI_PM_SUSPEND:

default:

break;

}

return (DDI_FAILURE);

}

/*

* on this driver’s open, we open the target specified by a property and store

* the layered handle and ident in our soft state. a good target would be

* "/dev/console" or more interestingly, a pseudo terminal as specified by the

* tty command

*/

/*ARGSUSED*/

static int

lyr_open(dev_t *devtp, int oflag, int otyp, cred_t *credp)

{

int rv, inst = getminor(*devtp);

lyr_state_t *statep;

char *myname = "lyr_open";
dev_info_t *dip;

Kernel Interfaces

Writing Device Drivers • March 2012246

EXAMPLE 14–2 Driver Source File (Continued)

char *lyr_targ = NULL;

statep = (lyr_state_t *)ddi_get_soft_state(lyr_statep, inst);

if (statep == NULL) {

cmn_err(CE_WARN, "%s: ddi_get_soft_state failed on "
"inst %d\n", myname, inst);

return (EIO);

}

dip = statep->dip;

/*

* our target device to open should be specified by the "lyr_targ"
* string property, which should be set in this driver’s .conf file

*/

if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, DDI_PROP_NOTPROM,

"lyr_targ", &lyr_targ) != DDI_PROP_SUCCESS) {

cmn_err(CE_WARN, "%s: ddi_prop_lookup_string failed on "
"inst %d\n", myname, inst);

return (EIO);

}

/*

* since we only have one pair of lh’s and li’s available, we don’t

* allow multiple on the same instance

*/

mutex_enter(&statep->lock);

if (statep->flags & (LYR_OPENED | LYR_IDENTED)) {

cmn_err(CE_WARN, "%s: multiple layered opens or idents "
"from inst %d not allowed\n", myname, inst);

mutex_exit(&statep->lock);

ddi_prop_free(lyr_targ);

return (EIO);

}

rv = ldi_ident_from_dev(*devtp, &statep->li);

if (rv != 0) {

cmn_err(CE_WARN, "%s: ldi_ident_from_dev failed on inst %d\n",
myname, inst);

goto FAIL;

}

statep->flags |= LYR_IDENTED;

rv = ldi_open_by_name(lyr_targ, FREAD | FWRITE, credp, &statep->lh,

statep->li);

if (rv != 0) {

cmn_err(CE_WARN, "%s: ldi_open_by_name failed on inst %d\n",
myname, inst);

goto FAIL;

}

statep->flags |= LYR_OPENED;

cmn_err(CE_CONT, "\n%s: opened target ’%s’ successfully on inst %d\n",
myname, lyr_targ, inst);

rv = 0;

FAIL:

/* cleanup on error */

if (rv != 0) {

if (statep->flags & LYR_OPENED)

(void)ldi_close(statep->lh, FREAD | FWRITE, credp);

Kernel Interfaces

Chapter 14 • Layered Driver Interface (LDI) 247

EXAMPLE 14–2 Driver Source File (Continued)

if (statep->flags & LYR_IDENTED)

ldi_ident_release(statep->li);

statep->flags &= ~(LYR_OPENED | LYR_IDENTED);

}

mutex_exit(&statep->lock);

if (lyr_targ != NULL)

ddi_prop_free(lyr_targ);

return (rv);

}

/*

* on this driver’s close, we close the target indicated by the lh member

* in our soft state and release the ident, li as well. in fact, we MUST do

* both of these at all times even if close yields an error because the

* device framework effectively closes the device, releasing all data

* associated with it and simply returning whatever value the target’s

* close(9E) returned. therefore, we must as well.

*/

/*ARGSUSED*/

static int

lyr_close(dev_t devt, int oflag, int otyp, cred_t *credp)

{

int rv, inst = getminor(devt);

lyr_state_t *statep;

char *myname = "lyr_close";
statep = (lyr_state_t *)ddi_get_soft_state(lyr_statep, inst);

if (statep == NULL) {

cmn_err(CE_WARN, "%s: ddi_get_soft_state failed on "
"inst %d\n", myname, inst);

return (EIO);

}

mutex_enter(&statep->lock);

rv = ldi_close(statep->lh, FREAD | FWRITE, credp);

if (rv != 0) {

cmn_err(CE_WARN, "%s: ldi_close failed on inst %d, but will ",
"continue to release ident\n", myname, inst);

}

ldi_ident_release(statep->li);

if (rv == 0) {

cmn_err(CE_CONT, "\n%s: closed target successfully on "
"inst %d\n", myname, inst);

}

statep->flags &= ~(LYR_OPENED | LYR_IDENTED);

mutex_exit(&statep->lock);

return (rv);

}

/*

* echo the data we receive to the target

*/

/*ARGSUSED*/

static int

lyr_write(dev_t devt, struct uio *uiop, cred_t *credp)

{

int rv, inst = getminor(devt);

lyr_state_t *statep;

char *myname = "lyr_write";

Kernel Interfaces

Writing Device Drivers • March 2012248

EXAMPLE 14–2 Driver Source File (Continued)

statep = (lyr_state_t *)ddi_get_soft_state(lyr_statep, inst);

if (statep == NULL) {

cmn_err(CE_WARN, "%s: ddi_get_soft_state failed on "
"inst %d\n", myname, inst);

return (EIO);

}

return (ldi_write(statep->lh, uiop, credp));

}

▼ How to Build and Load the Layered Driver

Compile the driver.
Use the -D_KERNEL option to indicate that this is a kernel module.

■ If you are compiling for a SPARC architecture, use the -xarch=v9 option:

% cc -c -D_KERNEL -xarch=v9 lyr.c

■ If you are compiling for a 32-bit x86 architecture, use the following command:

% cc -c -D_KERNEL lyr.c

Link the driver.
% ld -r -o lyr lyr.o

Install the configuration file.
As user root, copy the configuration file to the kernel driver area of the machine:
cp lyr.conf /usr/kernel/drv

Install the driver binary.

■ As user root, copy the driver binary to the sparcv9 driver area on a SPARC architecture:

cp lyr /usr/kernel/drv/sparcv9

■ As user root, copy the driver binary to the drv driver area on a 32-bit x86 architecture:

cp lyr /usr/kernel/drv

Load the driver.
As user root, use the add_drv(1M) command to load the driver.
add_drv lyr

List the pseudo devices to confirm that the lyr device now exists:

ls /devices/pseudo | grep lyr

lyr@1

lyr@1:node

1

2

3

4

5

Kernel Interfaces

Chapter 14 • Layered Driver Interface (LDI) 249

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Madd-drv-1m

Test the Layered Driver
To test the lyr driver, write a message to the lyr device and verify that the message displays on
the lyr_targ device.

EXAMPLE 14–3 Write a Short Message to the Layered Device

In this example, the lyr_targ device is the console of the system where the lyr device is
installed.

If the display you are viewing is also the display for the console device of the system where the
lyr device is installed, note that writing to the console will corrupt your display. The console
messages will appear outside your window system. You will need to redraw or refresh your
display after testing the lyr driver.

If the display you are viewing is not the display for the console device of the system where the
lyr device is installed, log into or otherwise gain a view of the display of the target console
device.

The following command writes a very brief message to the lyr device:

echo "\n\n\t===> Hello World!! <===\n" > /devices/pseudo/lyr@1:node

You should see the following messages displayed on the target console:

console login:

===> Hello World!! <===

lyr:

lyr_open: opened target ’/dev/console’ successfully on inst 1

lyr:

lyr_close: closed target successfully on inst 1

The messages from lyr_open() and lyr_close() come from the cmn_err(9F) calls in the
lyr_open() and lyr_close() entry points.

EXAMPLE 14–4 Write a Longer Message to the Layered Device

The following command writes a longer message to the lyr device:

cat lyr.conf > /devices/pseudo/lyr@1:node

You should see the following messages displayed on the target console:

lyr:

lyr_open: opened target ’/dev/console’ successfully on inst 1

#

Use is subject to license terms.

#

#pragma ident "%Z%%M% %I% %E% SMI"

Kernel Interfaces

Writing Device Drivers • March 2012250

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcmn-err-9f

EXAMPLE 14–4 Write a Longer Message to the Layered Device (Continued)

name="lyr" parent="pseudo" instance=1;

lyr_targ="/dev/console";
lyr:

lyr_close: closed target successfully on inst 1

EXAMPLE 14–5 Change the Target Device

To change the target device, edit /usr/kernel/drv/lyr.conf and change the value of the
lyr_targ property to be a path to a different target device. For example, the target device could
be the output of a tty command in a local terminal. An example of such a device path is
/dev/pts/4.

Make sure the lyr device is not in use before you update the driver to use the new target device.

modinfo -c | grep lyr

174 3 lyr UNLOADED/UNINSTALLED

Use the update_drv(1M) command to reload the lyr.conf configuration file:

update_drv lyr

Write a message to the lyr device again and verify that the message displays on the new
lyr_targ device.

User Interfaces
The LDI includes user-level library and command interfaces to report device layering and usage
information. “Device Information Library Interfaces” on page 251 discusses the
libdevinfo(3LIB) interfaces for reporting device layering information. “Print System
Configuration Command Interfaces” on page 253 discusses the prtconf(1M) interfaces for
reporting kernel device usage information. “Device User Command Interfaces” on page 256
discusses the fuser(1M) interfaces for reporting device consumer information.

Device Information Library Interfaces
The LDI includes libdevinfo(3LIB) interfaces that report a snapshot of device layering
information. Device layering occurs when one device in the system is a consumer of another
device in the system. Device layering information is reported only if both the consumer and the
target are bound to a device node that is contained within the snapshot.

User Interfaces

Chapter 14 • Layered Driver Interface (LDI) 251

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mupdate-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN3Flibdevinfo-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mprtconf-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mfuser-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN3Flibdevinfo-3lib

Device layering information is reported by the libdevinfo(3LIB) interfaces as a directed graph.
An lnode is an abstraction that represents a vertex in the graph and is bound to a device node.
You can use libdevinfo(3LIB) interfaces to access properties of an lnode, such as the name and
device number of the node.

The edges in the graph are represented by a link. A link has a source lnode that represents the
device consumer. A link also has a target lnode that represents the target device.

The following describes the libdevinfo(3LIB) device layering information interfaces:

DINFOLYR Snapshot flag that enables you to capture device
layering information.

di_link_t A directed link between two endpoints. Each
endpoint is a di_lnode_t. An opaque structure.

di_lnode_t The endpoint of a link. An opaque structure. A
di_lnode_t is bound to a di_node_t.

di_node_t Represents a device node. An opaque structure. A
di_node_t is not necessarily bound to a
di_lnode_t.

di_walk_link(3DEVINFO) Walk all links in the snapshot.

di_walk_lnode(3DEVINFO) Walk all lnodes in the snapshot.

di_link_next_by_node(3DEVINFO) Get a handle to the next link where the specified
di_node_t node is either the source or the target.

di_link_next_by_lnode(3DEVINFO) Get a handle to the next link where the specified
di_lnode_t lnode is either the source or the target.

di_link_to_lnode(3DEVINFO) Get the lnode that corresponds to the specified
endpoint of a di_link_t link.

di_link_spectype(3DEVINFO) Get the link spectype. The spectype indicates how
the target device is being accessed. The target
device is represented by the target lnode.

di_lnode_next(3DEVINFO) Get a handle to the next occurrence of the specified
di_lnode_t lnode associated with the specified
di_node_t device node.

di_lnode_name(3DEVINFO) Get the name that is associated with the specified
lnode.

di_lnode_devinfo(3DEVINFO) Get a handle to the device node that is associated
with the specified lnode.

User Interfaces

Writing Device Drivers • March 2012252

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN3Ddi-walk-link-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN3Ddi-walk-lnode-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN3Ddi-link-next-by-node-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN3Ddi-link-next-by-lnode-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN3Ddi-link-to-lnode-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN3Ddi-link-spectype-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN3Ddi-lnode-next-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN3Ddi-lnode-name-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN3Ddi-lnode-devinfo-3devinfo

di_lnode_devt(3DEVINFO) Get the device number of the device node that is
associated with the specified lnode.

The device layering information returned by the LDI can be quite complex. Therefore, the LDI
provides interfaces to help you traverse the device tree and the device usage graph. These
interfaces enable the consumer of a device tree snapshot to associate custom data pointers with
different structures within the snapshot. For example, as an application traverses lnodes, the
application can update the custom pointer associated with each lnode to mark which lnodes
already have been seen.

The following describes the libdevinfo(3LIB) node and link marking interfaces:

di_lnode_private_set(3DEVINFO) Associate the specified data with the specified lnode.
This association enables you to traverse lnodes in the
snapshot.

di_lnode_private_get(3DEVINFO) Retrieve a pointer to data that was associated with an
lnode through a call to
di_lnode_private_set(3DEVINFO).

di_link_private_set(3DEVINFO) Associate the specified data with the specified link.
This association enables you to traverse links in the
snapshot.

di_link_private_get(3DEVINFO) Retrieve a pointer to data that was associated with a
link through a call to
di_link_private_set(3DEVINFO).

Print System Configuration Command Interfaces
The prtconf(1M) command is enhanced to display kernel device usage information. The
default prtconf(1M) output is not changed. Device usage information is displayed when you
specify the verbose option (-v) with the prtconf(1M) command. Usage information about a
particular device is displayed when you specify a path to that device on the prtconf(1M)
command line.

prtconf -v Display device minor node and device usage information. Show kernel
consumers and the minor nodes each kernel consumer currently has
open.

prtconf path Display device usage information for the device specified by path.

prtconf -a path Display device usage information for the device specified by path and all
device nodes that are ancestors of path.

prtconf -c path Display device usage information for the device specified by path and all
device nodes that are children of path.

User Interfaces

Chapter 14 • Layered Driver Interface (LDI) 253

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN3Ddi-lnode-devt-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN3Ddi-lnode-private-set-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN3Ddi-lnode-private-get-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN3Ddi-link-private-set-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN3Ddi-link-private-get-3devinfo
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mprtconf-1m

EXAMPLE 14–6 Device Usage Information

When you want usage information about a particular device, the value of the path parameter
can be any valid device path.

% prtconf /dev/cfg/c0

SUNW,isptwo, instance #0

EXAMPLE 14–7 Ancestor Node Usage Information

To display usage information about a particular device and all device nodes that are ancestors of
that particular device, specify the -a flag with the prtconf(1M) command. Ancestors include all
nodes up to the root of the device tree. If you specify the -a flag with the prtconf(1M)
command, then you must also specify a device path name.

% prtconf -a /dev/cfg/c0

SUNW,Sun-Fire

ssm, instance #0

pci, instance #0

pci, instance #0

SUNW,isptwo, instance #0

EXAMPLE 14–8 Child Node Usage Information

To display usage information about a particular device and all device nodes that are children of
that particular device, specify the -c flag with the prtconf(1M) command. If you specify the -c
flag with the prtconf(1M) command, then you must also specify a device path name.

% prtconf -c /dev/cfg/c0

SUNW,isptwo, instance #0

sd (driver not attached)

st (driver not attached)

sd, instance #1

sd, instance #0

sd, instance #6

st, instance #1 (driver not attached)

st, instance #0 (driver not attached)

st, instance #2 (driver not attached)

st, instance #3 (driver not attached)

st, instance #4 (driver not attached)

st, instance #5 (driver not attached)

st, instance #6 (driver not attached)

ses, instance #0 (driver not attached)

...

EXAMPLE 14–9 Layering and Device Minor Node Information – Keyboard

To display device layering and device minor node information about a particular device, specify
the -v flag with the prtconf(1M) command.

% prtconf -v /dev/kbd

conskbd, instance #0

User Interfaces

Writing Device Drivers • March 2012254

EXAMPLE 14–9 Layering and Device Minor Node Information – Keyboard (Continued)

System properties:

...

Device Layered Over:

mod=kb8042 dev=(101,0)

dev_path=/isa/i8042@1,60/keyboard@0

Device Minor Nodes:

dev=(103,0)

dev_path=/pseudo/conskbd@0:kbd

spectype=chr type=minor

dev_link=/dev/kbd

dev=(103,1)

dev_path=/pseudo/conskbd@0:conskbd

spectype=chr type=internal

Device Minor Layered Under:

mod=wc accesstype=chr

dev_path=/pseudo/wc@0

This example shows that the /dev/kbd device is layered on top of the hardware keyboard device
(/isa/i8042@1,60/keyboard@0). This example also shows that the /dev/kbd device has two
device minor nodes. The first minor node has a /dev link that can be used to access the node.
The second minor node is an internal node that is not accessible through the file system. The
second minor node has been opened by the wc driver, which is the workstation console.
Compare the output from this example to the output from Example 14–12.

EXAMPLE 14–10 Layering and Device Minor Node Information – Network Device

This example shows which devices are using the currently plumbed network device.

% prtconf -v /dev/iprb0

pci1028,145, instance #0

Hardware properties:

...

Interrupt Specifications:

...

Device Minor Nodes:

dev=(27,1)

dev_path=/pci@0,0/pci8086,244e@1e/pci1028,145@c:iprb0

spectype=chr type=minor

alias=/dev/iprb0

dev=(27,4098)

dev_path=<clone>

Device Minor Layered Under:

mod=udp6 accesstype=chr

dev_path=/pseudo/udp6@0

dev=(27,4097)

dev_path=<clone>

Device Minor Layered Under:

mod=udp accesstype=chr

dev_path=/pseudo/udp@0

dev=(27,4096)

dev_path=<clone>

Device Minor Layered Under:

User Interfaces

Chapter 14 • Layered Driver Interface (LDI) 255

EXAMPLE 14–10 Layering and Device Minor Node Information – Network Device (Continued)

mod=udp accesstype=chr

dev_path=/pseudo/udp@0

This example shows that the iprb0 device has been linked under udp and udp6. Notice that no
paths are shown to the minor nodes that udp and udp6 are using. No paths are shown in this case
because the minor nodes were created through clone opens of the iprb driver, and therefore
there are no file system paths by which these nodes can be accessed. Compare the output from
this example to the output from Example 14–11.

Device User Command Interfaces
The fuser(1M) command is enhanced to display device usage information. The fuser(1M)
command displays device usage information only if path represents a device minor node. The
-d flag is valid for the fuser(1M) command only if you specify a path that represents a device
minor node.

fuser path Display information about application device consumers and kernel device
consumers if path represents a device minor node.

fuser -d path Display all users of the underlying device that is associated with the device
minor node represented by path.

Kernel device consumers are reported in one of the following four formats. Kernel device
consumers always are surrounded by square brackets ([]).

[kernel_module_name]
[kernel_module_name,dev_path=path]
[kernel_module_name,dev=(major,minor)]
[kernel_module_name,dev=(major,minor),dev_path=path]

When the fuser(1M) command displays file or device users, the output consists of a process ID
on stdout followed by a character on stderr. The character on stderr describes how the file or
device is being used. All kernel consumer information is displayed to stderr. No kernel
consumer information is displayed to stdout.

If you do not use the -d flag, then the fuser(1M) command reports consumers of only the
device minor node that is specified by path. If you use the -d flag, then the fuser(1M) command
reports consumers of the device node that underlies the minor node specified by path. The
following example illustrates the difference in report output in these two cases.

EXAMPLE 14–11 Consumers of Underlying Device Nodes

Most network devices clone their minor node when the device is opened. If you request device
usage information for the clone minor node, the usage information might show that no process
is using the device. If instead you request device usage information for the underlying device

User Interfaces

Writing Device Drivers • March 2012256

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mfuser-1m

EXAMPLE 14–11 Consumers of Underlying Device Nodes (Continued)

node, the usage information might show that a process is using the device. In this example, no
device consumers are reported when only a device path is passed to the fuser(1M) command.
When the -d flag is used, the output shows that the device is being accessed by udp and udp6.

% fuser /dev/iprb0

/dev/iprb0:

% fuser -d /dev/iprb0

/dev/iprb0: [udp,dev_path=/pseudo/udp@0] [udp6,dev_path=/pseudo/udp6@0]

Compare the output from this example to the output from Example 14–10.

EXAMPLE 14–12 Consumer of the Keyboard Device

In this example, a kernel consumer is accessing /dev/kbd. The kernel consumer that is
accessing the /dev/kbd device is the workstation console driver.

% fuser -d /dev/kbd

/dev/kbd: [genunix] [wc,dev_path=/pseudo/wc@0]

Compare the output from this example to the output from Example 14–9.

User Interfaces

Chapter 14 • Layered Driver Interface (LDI) 257

258

Designing Specific Kinds of Device Drivers
The second part of the book provides design information that is specific to the type of
driver:

■ Chapter 15, “Drivers for Character Devices,” describes drivers for character-oriented
devices.

■ Chapter 16, “Drivers for Block Devices,” describes drivers for a block-oriented devices.
■ Chapter 17, “SCSI Target Drivers,” outlines the Sun Common SCSI Architecture

(SCSA) and the requirements for SCSI target drivers.
■ Chapter 18, “SCSI Host Bus Adapter Drivers,” explains how to apply SCSA to SCSI Host

Bus Adapter (HBA) drivers.
■ Chapter 19, “Drivers for Network Devices,” describes the Generic LAN driver (GLD).

The GLDv3 framework is a function calls-based interface of MAC plugins and MAC
driver service routines and structures.

■ Chapter 20, “USB Drivers,” describes how to write a client USB device driver using the
USBA 2.0 framework.

■ Chapter 21, “SR-IOV Drivers,” describes the SR-IOV device driver and the interfaces
available to write an SR-IOV driver.

P A R T I I

259

260

Drivers for Character Devices

A character device does not have physically addressable storage media, such as tape drives or
serial ports, where I/O is normally performed in a byte stream. This chapter describes the
structure of a character device driver, focusing in particular on entry points for character
drivers. In addition, this chapter describes the use of physio(9F) and aphysio(9F) in the
context of synchronous and asynchronous I/O transfers.

This chapter provides information on the following subjects:

■ “Overview of the Character Driver Structure” on page 261
■ “Character Device Autoconfiguration” on page 263
■ “Device Access (Character Drivers)” on page 264
■ “I/O Request Handling” on page 266
■ “Mapping Device Memory” on page 275
■ “Multiplexing I/O on File Descriptors” on page 276
■ “Miscellaneous I/O Control” on page 278
■ “32-bit and 64-bit Data Structure Macros” on page 283

Overview of the Character Driver Structure
Figure 15–1 shows data structures and routines that define the structure of a character device
driver. Device drivers typically include the following elements:

■ Device-loadable driver section
■ Device configuration section
■ Character driver entry points

The shaded device access section in the following figure illustrates character driver entry points.

15C H A P T E R 1 5

261

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Faphysio-9f

Associated with each device driver is a dev_ops(9S) structure, which in turn refers to a
cb_ops(9S) structure. These structures contain pointers to the driver entry points:

■ open(9E)
■ close(9E)
■ read(9E)
■ write(9E)
■ ioctl(9E)
■ chpoll(9E)
■ aread(9E)
■ awrite(9E)
■ mmap(9E)
■ devmap(9E)
■ segmap(9E)
■ prop_op(9E)

Note – Some of these entry points can be replaced with nodev(9F) or nulldev(9F) as
appropriate.

FIGURE 15–1 Character Driver Roadmap

modlinkage(9S)

modldrv(9S)

dev_ops(9S)

cb_ops(9S) Character Device

open(9E)
close(9E)
read(9E)
write(9E)
ioctl(9E)
chpoll(9E)
aread(9E)
awrite(9E)
mmap(9E)
devmap(9E)
segmap(9E)
prop_op(9E)

Overview of the Character Driver Structure

Writing Device Drivers • March 2012262

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sdev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Scb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Echpoll-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Earead-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eawrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Esegmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprop-op-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnulldev-9f

Character Device Autoconfiguration
The attach(9E) routine should perform the common initialization tasks that all devices
require, such as:

■ Allocating per-instance state structures
■ Registering device interrupts
■ Mapping the device's registers
■ Initializing mutex variables and condition variables
■ Creating power-manageable components
■ Creating minor nodes

See “attach() Entry Point” on page 104 for code examples of these tasks.

Character device drivers create minor nodes of type S_IFCHR. A minor node of S_IFCHR causes a
character special file that represents the node to eventually appear in the /devices hierarchy.

The following example shows a typical attach(9E) routine for character drivers. Properties that
are associated with the device are commonly declared in an attach() routine. This example
uses a predefined Size property. Size is the equivalent of the Nblocks property for getting the
size of partition in a block device. If, for example, you are doing character I/O on a disk device,
you might use Size to get the size of a partition. Since Size is a 64-bit property, you must use a
64-bit property interface. In this case, you use ddi_prop_update_int64(9F). See “Device
Properties” on page 77 for more information about properties.

EXAMPLE 15–1 Character Driver attach() Routine

static int

xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)

{

int instance = ddi_get_instance(dip);

switch (cmd) {

case DDI_ATTACH:

/*

* Allocate a state structure and initialize it.

* Map the device’s registers.

* Add the device driver’s interrupt handler(s).

* Initialize any mutexes and condition variables.

* Create power manageable components.

*

* Create the device’s minor node. Note that the node_type

* argument is set to DDI_NT_TAPE.

*/

if (ddi_create_minor_node(dip, minor_name, S_IFCHR,

instance, DDI_NT_TAPE, 0) == DDI_FAILURE)

{

/* Free resources allocated so far. */

/* Remove any previously allocated minor nodes. */

ddi_remove_minor_node(dip, NULL);

return (DDI_FAILURE);

}

/*

Character Device Autoconfiguration

Chapter 15 • Drivers for Character Devices 263

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-update-int64-9f

EXAMPLE 15–1 Character Driver attach() Routine (Continued)

* Create driver properties like "Size." Use "Size"
* instead of "size" to ensure the property works

* for large bytecounts.

*/

xsp->Size = size_of_device_in_bytes;
maj_number = ddi_driver_major(dip);

if (ddi_prop_update_int64(makedevice(maj_number, instance),

dip, "Size", xsp->Size) != DDI_PROP_SUCCESS) {

cmn_err(CE_CONT, "%s: cannot create Size property\n",
ddi_get_name(dip));

/* Free resources allocated so far. */

return (DDI_FAILURE);

}

/* ... */

return (DDI_SUCCESS);

case DDI_RESUME:

/* See the "Power Management" chapter in this book. */

default:

return (DDI_FAILURE);

}

}

Device Access (Character Drivers)
Access to a device by one or more application programs is controlled through the open(9E) and
close(9E) entry points. An open(2) system call to a special file that represents a character device
always causes a call to the open(9E) routine for the driver. For a particular minor device,
open(9E) can be called many times. The close(9E) routine is called only when the final
reference to a device is removed. If the device is accessed through file descriptors, the final call to
close(9E) can occur as a result of a close(2) or exit(2) system call. If the device is accessed
through memory mapping, the final call to close(9E) can occur as a result of a munmap(2)
system call.

open() Entry Point (Character Drivers)
The primary function of open() is to verify that the open request is allowed. The syntax for
open(9E) is as follows:

int xxopen(dev_t *devp, int flag, int otyp, cred_t *credp);

where:

devp Pointer to a device number. The open() routine is passed a pointer so that the driver
can change the minor number. With this pointer, drivers can dynamically create
minor instances of the device. An example would be a pseudo terminal driver that
creates a new pseudo-terminal whenever the driver is opened. A driver that

Device Access (Character Drivers)

Writing Device Drivers • March 2012264

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2close-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2munmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eopen-9e

dynamically chooses the minor number normally creates only one minor device node
in attach(9E) with ddi_create_minor_node(9F), then changes the minor number
component of *devp using makedevice(9F) and getmajor(9F):

*devp = makedevice(getmajor(*devp), new_minor);

You do not have to call ddi_create_minor_node(9F) for the new minor. A driver
must not change the major number of *devp. The driver must keep track of available
minor numbers internally.

flag Flag with bits to indicate whether the device is opened for reading (FREAD), writing
(FWRITE), or both. User threads issuing the open(2) system call can also request
exclusive access to the device (FEXCL) or specify that the open should not block for
any reason (FNDELAY), but the driver must enforce both cases. A driver for a
write-only device such as a printer might consider an open(9E) for reading invalid.

otyp Integer that indicates how open() was called. The driver must check that the value of
otyp is appropriate for the device. For character drivers, otyp should be OTYP_CHR (see
the open(9E) man page).

credp Pointer to a credential structure containing information about the caller, such as the
user ID and group IDs. Drivers should not examine the structure directly, but should
instead use drv_priv(9F) to check for the common case of root privileges. In this
example, only root or a user with the PRIV_SYS_DEVICES privilege is allowed to
open the device for writing.

The following example shows a character driver open(9E) routine.

EXAMPLE 15–2 Character Driver open(9E) Routine

static int

xxopen(dev_t *devp, int flag, int otyp, cred_t *credp)

{

minor_t instance;

if (getminor(*devp) /* if device pointer is invalid */

return (EINVAL);

instance = getminor(*devp); /* one-to-one example mapping */

/* Is the instance attached? */

if (ddi_get_soft_state(statep, instance) == NULL)

return (ENXIO);

/* verify that otyp is appropriate */

if (otyp != OTYP_CHR)

return (EINVAL);

if ((flag & FWRITE) && drv_priv(credp) == EPERM)

return (EPERM);

return (0);

}

Device Access (Character Drivers)

Chapter 15 • Drivers for Character Devices 265

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-create-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmakedevice-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fgetmajor-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-create-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdrv-priv-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eopen-9e

close() Entry Point (Character Drivers)
The syntax for close(9E) is as follows:

int xxclose(dev_t dev, int flag, int otyp, cred_t *credp);

close() should perform any cleanup necessary to finish using the minor device, and prepare
the device (and driver) to be opened again. For example, the open routine might have been
invoked with the exclusive access (FEXCL) flag. A call to close(9E) would allow additional open
routines to continue. Other functions that close(9E) might perform are:

■ Waiting for I/O to drain from output buffers before returning
■ Rewinding a tape (tape device)
■ Hanging up the phone line (modem device)

A driver that waits for I/O to drain could wait forever if draining stalls due to external
conditions such as flow control. See “Threads Unable to Receive Signals” on page 75 for
information about how to avoid this problem.

I/O Request Handling
This section discusses I/O request processing in detail.

User Addresses
When a user thread issues a write(2) system call, the thread passes the address of a buffer in
user space:

char buffer[] = "python";
count = write(fd, buffer, strlen(buffer) + 1);

The system builds a uio(9S) structure to describe this transfer by allocating an iovec(9S)
structure and setting the iov_base field to the address passed to write(2), in this case, buffer.
The uio(9S) structure is passed to the driver write(9E) routine. See “Vectored I/O” on page 267
for more information about the uio(9S) structure.

The address in the iovec(9S) is in user space, not kernel space. Thus, the address is neither
guaranteed to be currently in memory nor to be a valid address. In either case, accessing a user
address directly from the device driver or from the kernel could crash the system. Thus, device
drivers should never access user addresses directly. Instead, a data transfer routine in the Oracle
Solaris DDI/DKI should be used to transfer data into or out of the kernel. These routines can
handle page faults. The DDI/DKI routines can bring in the proper user page to continue the
copy transparently. Alternatively, the routines can return an error on an invalid access.

I/O Request Handling

Writing Device Drivers • March 2012266

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Suio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Siovec-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Suio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Suio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Siovec-9s

copyout(9F) can be used to copy data from kernel space to user space. copyin(9F) can copy
data from user space to kernel space. ddi_copyout(9F) and ddi_copyin(9F) operate similarly
but are to be used in the ioctl(9E) routine. copyin(9F) and copyout(9F) can be used on the
buffer described by each iovec(9S) structure, or uiomove(9F) can perform the entire transfer to
or from a contiguous area of driver or device memory.

Vectored I/O
In character drivers, transfers are described by a uio(9S) structure. The uio(9S) structure
contains information about the direction and size of the transfer, plus an array of buffers for one
end of the transfer. The other end is the device.

The uio(9S) structure contains the following members:

iovec_t *uio_iov; /* base address of the iovec */

/* buffer description array */

int uio_iovcnt; /* the number of iovec structures */

off_t uio_offset; /* 32-bit offset into file where */

/* data is transferred from or to */

offset_t uio_loffset; /* 64-bit offset into file where */

/* data is transferred from or to */

uio_seg_t uio_segflg; /* identifies the type of I/O transfer */

/* UIO_SYSSPACE: kernel <-> kernel */

/* UIO_USERSPACE: kernel <-> user */

short uio_fmode; /* file mode flags (not driver setTable) */

daddr_t uio_limit; /* 32-bit ulimit for file (maximum */

/* block offset). not driver settable. */

diskaddr_t uio_llimit; /* 64-bit ulimit for file (maximum block */

/* block offset). not driver settable. */

int uio_resid; /* amount (in bytes) not */

/* transferred on completion */

A uio(9S) structure is passed to the driver read(9E) and write(9E) entry points. This structure
is generalized to support what is called gather-write and scatter-read. When writing to a device,
the data buffers to be written do not have to be contiguous in application memory. Similarly,
data that is transferred from a device into memory comes off in a contiguous stream but can go
into noncontiguous areas of application memory. See the readv(2), writev(2), pread(2), and
pwrite(2) man pages for more information on scatter-gather I/O.

Each buffer is described by an iovec(9S) structure. This structure contains a pointer to the data
area and the number of bytes to be transferred.

caddr_t iov_base; /* address of buffer */

int iov_len; /* amount to transfer */

The uio structure contains a pointer to an array of iovec(9S) structures. The base address of
this array is held in uio_iov, and the number of elements is stored in uio_iovcnt.

I/O Request Handling

Chapter 15 • Drivers for Character Devices 267

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcopyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcopyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-copyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcopyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcopyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Siovec-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fuiomove-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Suio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Suio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Suio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Suio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2readv-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2writev-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2pread-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2pwrite-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Siovec-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Siovec-9s

The uio_offset field contains the 32-bit offset into the device at which the application needs to
begin the transfer. uio_loffset is used for 64-bit file offsets. If the device does not support the
notion of an offset, these fields can be safely ignored. The driver should interpret either
uio_offset or uio_loffset, but not both. If the driver has set the D_64BIT flag in the
cb_ops(9S) structure, that driver should use uio_loffset.

The uio_resid field starts out as the number of bytes to be transferred, that is, the sum of all the
iov_len fields in uio_iov. This field must be set by the driver to the number of bytes that were
not transferred before returning. The read(2) and write(2) system calls use the return value
from the read(9E) and write(9E) entry points to determine failed transfers. If a failure occurs,
these routines return -1. If the return value indicates success, the system calls return the number
of bytes requested minus uio_resid. If uio_resid is not changed by the driver, the read(2) and
write(2) calls return 0. A return value of 0 indicates end-of-file, even though all the data has
been transferred.

The support routines uiomove(9F), physio(9F), and aphysio(9F) update the uio(9S) structure
directly. These support routines update the device offset to account for the data transfer.
Neither the uio_offset or uio_loffset fields need to be adjusted when the driver is used with
a seekable device that uses the concept of position. I/O performed to a device in this manner is
constrained by the maximum possible value of uio_offset or uio_loffset. An example of
such a usage is raw I/O on a disk.

If the device has no concept of position, the driver can take the following steps:

1. Save uio_offset or uio_loffset.
2. Perform the I/O operation.
3. Restore uio_offset or uio_loffset to the field's initial value.

I/O that is performed to a device in this manner is not constrained by the maximum possible
value of uio_offset or uio_loffset. An example of this type of usage is I/O on a serial line.

The following example shows one way to preserve uio_loffset in the read(9E) function.

static int

xxread(dev_t dev, struct uio *uio_p, cred_t *cred_p)

{

offset_t off;

/* ... */

off = uio_p->uio_loffset; /* save the offset */

/* do the transfer */

uio_p->uio_loffset = off; /* restore it */

}

I/O Request Handling

Writing Device Drivers • March 2012268

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Scb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fuiomove-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Faphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Suio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eread-9e

Differences Between Synchronous and Asynchronous
I/O
Data transfers can be synchronous or asynchronous. The determining factor is whether the entry
point that schedules the transfer returns immediately or waits until the I/O has been completed.

The read(9E) and write(9E) entry points are synchronous entry points. The transfer must not
return until the I/O is complete. Upon return from the routines, the process knows whether the
transfer has succeeded.

The aread(9E) and awrite(9E) entry points are asynchronous entry points. Asynchronous
entry points schedule the I/O and return immediately. Upon return, the process that issues the
request knows that the I/O is scheduled and that the status of the I/O must be determined later.
In the meantime, the process can perform other operations.

With an asynchronous I/O request to the kernel, the process is not required to wait while the
I/O is in process. A process can perform multiple I/O requests and allow the kernel to handle
the data transfer details. Asynchronous I/O requests enable applications such as transaction
processing to use concurrent programming methods to increase performance or response time.
Any performance boost for applications that use asynchronous I/O, however, comes at the
expense of greater programming complexity.

Data Transfer Methods
Data can be transferred using either programmed I/O or DMA. These data transfer methods
can be used either by synchronous or by asynchronous entry points, depending on the
capabilities of the device.

Programmed I/O Transfers
Programmed I/O devices rely on the CPU to perform the data transfer. Programmed I/O data
transfers are identical to other read and write operations for device registers. Various data
access routines are used to read or store values to device memory.

uiomove(9F) can be used to transfer data to some programmed I/O devices. uiomove(9F)
transfers data between the user space, as defined by the uio(9S) structure, and the kernel.
uiomove() can handle page faults, so the memory to which data is transferred need not be
locked down. uiomove() also updates the uio_resid field in the uio(9S) structure. The
following example shows one way to write a ramdisk read(9E) routine. It uses synchronous I/O
and relies on the presence of the following fields in the ramdisk state structure:

caddr_t ram; /* base address of ramdisk */

int ramsize; /* size of the ramdisk */

I/O Request Handling

Chapter 15 • Drivers for Character Devices 269

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Earead-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eawrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fuiomove-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fuiomove-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Suio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eread-9e

EXAMPLE 15–3 Ramdisk read(9E) Routine Using uiomove(9F)

static int

rd_read(dev_t dev, struct uio *uiop, cred_t *credp)

{

rd_devstate_t *rsp;

rsp = ddi_get_soft_state(rd_statep, getminor(dev));

if (rsp == NULL)

return (ENXIO);

if (uiop->uio_offset >= rsp->ramsize)

return (EINVAL);

/*

* uiomove takes the offset into the kernel buffer,

* the data transfer count (minimum of the requested and

* the remaining data), the UIO_READ flag, and a pointer

* to the uio structure.

*/

return (uiomove(rsp->ram + uiop->uio_offset,

min(uiop->uio_resid, rsp->ramsize - uiop->uio_offset),

UIO_READ, uiop));

}

Another example of programmed I/O would be a driver that writes data one byte at a time
directly to the device's memory. Each byte is retrieved from the uio(9S) structure by using
uwritec(9F). The byte is then sent to the device. read(9E) can use ureadc(9F) to transfer a byte
from the device to the area described by the uio(9S) structure.

EXAMPLE 15–4 Programmed I/O write(9E) Routine Using uwritec(9F)

static int

xxwrite(dev_t dev, struct uio *uiop, cred_t *credp)

{

int value;

struct xxstate *xsp;

xsp = ddi_get_soft_state(statep, getminor(dev));

if (xsp == NULL)

return (ENXIO);

/* if the device implements a power manageable component, do this: */

pm_busy_component(xsp->dip, 0);

if (xsp->pm_suspended)

pm_raise_power(xsp->dip, normal power);

while (uiop->uio_resid > 0) {

/*

* do the programmed I/O access

*/

value = uwritec(uiop);

if (value == -1)

return (EFAULT);

ddi_put8(xsp->data_access_handle, &xsp->regp->data,

(uint8_t)value);

ddi_put8(xsp->data_access_handle, &xsp->regp->csr,

START_TRANSFER);

I/O Request Handling

Writing Device Drivers • March 2012270

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Suio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fuwritec-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fureadc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Suio-9s

EXAMPLE 15–4 Programmed I/O write(9E) Routine Using uwritec(9F) (Continued)

/*

* this device requires a ten microsecond delay

* between writes

*/

drv_usecwait(10);

}

pm_idle_component(xsp->dip, 0);

return (0);

}

DMA Transfers (Synchronous)
Character drivers generally use physio(9F) to do the setup work for DMA transfers in read(9E)
and write(9E), as is shown in Example 15–5.

int physio(int (*strat)(struct buf *), struct buf *bp,
dev_t dev, int rw, void (*mincnt)(struct buf *),

struct uio *uio);

physio(9F) requires the driver to provide the address of a strategy(9E) routine. physio(9F)
ensures that memory space is locked down, that is, memory cannot be paged out, for the
duration of the data transfer. This lock-down is necessary for DMA transfers because DMA
transfers cannot handle page faults. physio(9F) also provides an automated way of breaking a
larger transfer into a series of smaller, more manageable ones. See “minphys() Entry Point” on
page 273 for more information.

EXAMPLE 15–5 read(9E) and write(9E) Routines Using physio(9F)

static int

xxread(dev_t dev, struct uio *uiop, cred_t *credp)

{

struct xxstate *xsp;

int ret;

xsp = ddi_get_soft_state(statep, getminor(dev));

if (xsp == NULL)

return (ENXIO);

ret = physio(xxstrategy, NULL, dev, B_READ, xxminphys, uiop);

return (ret);

}

static int

xxwrite(dev_t dev, struct uio *uiop, cred_t *credp)

{

struct xxstate *xsp;

int ret;

xsp = ddi_get_soft_state(statep, getminor(dev));

if (xsp == NULL)

return (ENXIO);

ret = physio(xxstrategy, NULL, dev, B_WRITE, xxminphys, uiop);

I/O Request Handling

Chapter 15 • Drivers for Character Devices 271

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fphysio-9f

EXAMPLE 15–5 read(9E) and write(9E) Routines Using physio(9F) (Continued)

return (ret);

}

In the call to physio(9F), xxstrategy is a pointer to the driver strategy() routine. Passing
NULL as the buf(9S) structure pointer tells physio(9F) to allocate a buf(9S) structure. If the
driver must provide physio(9F) with a buf(9S) structure, getrbuf(9F) should be used to
allocate the structure. physio(9F) returns zero if the transfer completes successfully, or an error
number on failure. After calling strategy(9E), physio(9F) calls biowait(9F) to block until the
transfer either completes or fails. The return value of physio(9F) is determined by the error
field in the buf(9S) structure set by bioerror(9F).

DMA Transfers (Asynchronous)
Character drivers that support aread(9E) and awrite(9E) use aphysio(9F) instead of
physio(9F).

int aphysio(int (*strat)(struct buf *), int (*cancel)(struct buf *),

dev_t dev, int rw, void (*mincnt)(struct buf *),

struct aio_req *aio_reqp);

Note – The address of anocancel(9F) is the only value that can currently be passed as the second
argument to aphysio(9F).

aphysio(9F) requires the driver to pass the address of a strategy(9E) routine. aphysio(9F)
ensures that memory space is locked down, that is, cannot be paged out, for the duration of the
data transfer. This lock-down is necessary for DMA transfers because DMA transfers cannot
handle page faults. aphysio(9F) also provides an automated way of breaking a larger transfer
into a series of smaller, more manageable ones. See “minphys() Entry Point” on page 273 for
more information.

Example 15–5 and Example 15–6 demonstrate that the aread(9E) and awrite(9E) entry points
differ only slightly from the read(9E) and write(9E) entry points. The difference is primarily in
their use of aphysio(9F) instead of physio(9F).

EXAMPLE 15–6 aread(9E) and awrite(9E) Routines Using aphysio(9F)

static int

xxaread(dev_t dev, struct aio_req *aiop, cred_t *cred_p)

{

struct xxstate *xsp;

xsp = ddi_get_soft_state(statep, getminor(dev));

if (xsp == NULL)

return (ENXIO);

I/O Request Handling

Writing Device Drivers • March 2012272

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fgetrbuf-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fbiowait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fbioerror-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Earead-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eawrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Faphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fanocancel-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Faphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Faphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Faphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Faphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Earead-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eawrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Faphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fphysio-9f

EXAMPLE 15–6 aread(9E) and awrite(9E) Routines Using aphysio(9F) (Continued)

return (aphysio(xxstrategy, anocancel, dev, B_READ,

xxminphys, aiop));

}

static int

xxawrite(dev_t dev, struct aio_req *aiop, cred_t *cred_p)

{

struct xxstate *xsp;

xsp = ddi_get_soft_state(statep, getminor(dev));

if (xsp == NULL)

return (ENXIO);

return (aphysio(xxstrategy, anocancel, dev, B_WRITE,

xxminphys,aiop));

}

In the call to aphysio(9F), xxstrategy() is a pointer to the driver strategy routine. aiop is a
pointer to the aio_req(9S) structure. aiop is passed to aread(9E) and awrite(9E). aio_req(9S)
describes where the data is to be stored in user space. aphysio(9F) returns zero if the I/O
request is scheduled successfully or an error number on failure. After calling strategy(9E),
aphysio(9F) returns without waiting for the I/O to complete or fail.

minphys() Entry Point
The minphys() entry point is a pointer to a function to be called by physio(9F) or aphysio(9F).
The purpose of xxminphys is to ensure that the size of the requested transfer does not exceed a
driver-imposed limit. If the user requests a larger transfer, strategy(9E) is called repeatedly,
requesting no more than the imposed limit at a time. This approach is important because DMA
resources are limited. Drivers for slow devices, such as printers, should be careful not to tie up
resources for a long time.

Usually, a driver passes the address of the kernel function minphys(9F), but the driver can
define its own xxminphys() routine instead. The job of xxminphys() is to keep the b_bcount
field of the buf(9S) structure under a driver's limit. The driver should adhere to other system
limits as well. For example, the driver's xxminphys() routine should call the system
minphys(9F) routine after setting the b_bcount field and before returning.

EXAMPLE 15–7 minphys(9F) Routine

#define XXMINVAL (512 << 10) /* 512 KB */

static void

xxminphys(struct buf *bp)

{

if (bp->b_bcount > XXMINVAL)

bp->b_bcount = XXMINVAL

minphys(bp);

}

I/O Request Handling

Chapter 15 • Drivers for Character Devices 273

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Faphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Saio-req-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Earead-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eawrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Saio-req-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Faphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Faphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Faphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fminphys-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fminphys-9f

strategy() Entry Point
The strategy(9E) routine originated in block drivers. The strategy function got its name from
implementing a strategy for efficient queuing of I/O requests to a block device. A driver for a
character-oriented device can also use a strategy(9E) routine. In the character I/O model
presented here, strategy(9E) does not maintain a queue of requests, but rather services one
request at a time.

In the following example, the strategy(9E) routine for a character-oriented DMA device
allocates DMA resources for synchronous data transfer. strategy() starts the command by
programming the device register. See Chapter 9, “Direct Memory Access (DMA),” for a detailed
description.

Note – strategy(9E) does not receive a device number (dev_t) as a parameter. Instead, the
device number is retrieved from the b_edev field of the buf(9S) structure passed to
strategy(9E).

EXAMPLE 15–8 strategy(9E) Routine

static int

xxstrategy(struct buf *bp)

{

minor_t instance;

struct xxstate *xsp;

ddi_dma_cookie_t cookie;

instance = getminor(bp->b_edev);

xsp = ddi_get_soft_state(statep, instance);

/* ... */

* If the device has power manageable components,

* mark the device busy with pm_busy_components(9F),

* and then ensure that the device is

* powered up by calling pm_raise_power(9F).

*/

/* Set up DMA resources with ddi_dma_alloc_handle(9F) and

* ddi_dma_buf_bind_handle(9F).

*/

xsp->bp = bp; /* remember bp */

/* Program DMA engine and start command */

return (0);

}

Note – Although strategy() is declared to return an int, strategy() must always return zero.

On completion of the DMA transfer, the device generates an interrupt, causing the interrupt
routine to be called. In the following example, xxintr() receives a pointer to the state structure
for the device that might have generated the interrupt.

I/O Request Handling

Writing Device Drivers • March 2012274

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e

EXAMPLE 15–9 Interrupt Routine

static u_int

xxintr(caddr_t arg)

{

struct xxstate *xsp = (struct xxstate *)arg;

if (/* device did not interrupt */) {

return (DDI_INTR_UNCLAIMED);

}

if (/* error */) {

/* error handling */

}

/* Release any resources used in the transfer, such as DMA resources.

* ddi_dma_unbind_handle(9F) and ddi_dma_free_handle(9F)

* Notify threads that the transfer is complete.

*/

biodone(xsp->bp);

return (DDI_INTR_CLAIMED);

}

The driver indicates an error by calling bioerror(9F). The driver must call biodone(9F) when
the transfer is complete or after indicating an error with bioerror(9F).

Mapping Device Memory
Some devices, such as frame buffers, have memory that is directly accessible to user threads by
way of memory mapping. Drivers for these devices typically do not support the read(9E) and
write(9E) interfaces. Instead, these drivers support memory mapping with the devmap(9E)
entry point. For example, a frame buffer driver might implement the devmap(9E) entry point to
enable the frame buffer to be mapped in a user thread.

The devmap(9E) entry point is called to export device memory or kernel memory to user
applications. The devmap() function is called from devmap_setup(9F) inside segmap(9E) or on
behalf of ddi_devmap_segmap(9F).

The segmap(9E) entry point is responsible for setting up a memory mapping requested by an
mmap(2) system call. Drivers for many memory-mapped devices use ddi_devmap_segmap(9F) as
the entry point rather than defining their own segmap(9E) routine.

See Chapter 10, “Mapping Device and Kernel Memory,” and Chapter 11, “Device Context
Management,” for details.

Mapping Device Memory

Chapter 15 • Drivers for Character Devices 275

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fbioerror-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fbiodone-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fbioerror-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdevmap-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-devmap-segmap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Esegmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-devmap-segmap-9f

Multiplexing I/O on File Descriptors
A thread sometimes needs to handle I/O on more than one file descriptor. One example is an
application program that needs to read the temperature from a temperature-sensing device and
then report the temperature to an interactive display. A program that makes a read request with
no data available should not block while waiting for the temperature before interacting with the
user again.

The poll(2) system call provides users with a mechanism for multiplexing I/O over a set of file
descriptors that reference open files. poll(2) identifies those file descriptors on which a
program can send or receive data without blocking, or on which certain events have occurred.

To enable a program to poll a character driver, the driver must implement the chpoll(9E) entry
point. The system calls chpoll(9E) when a user process issues a poll(2) system call on a file
descriptor associated with the device. The chpoll(9E) entry point routine is used by
non-STREAMS character device drivers that need to support polling.

The chpoll(9E) function uses the following syntax:

int xxchpoll(dev_t dev, short events, int anyyet, short *reventsp,
struct pollhead **phpp);

In the chpoll(9E) entry point, the driver must follow these rules:

■ Implement the following algorithm when the chpoll(9E) entry point is called:

if (/* events are satisfied now */) {

*reventsp = mask_of_satisfied_events
} else {

*reventsp = 0;

if (!anyyet)

*phpp = &local_pollhead_structure;
}

return (0);

See the chpoll(9E) man page for a discussion of events to check. The chpoll(9E) entry
point should then return the mask of satisfied events by setting the return events in
*reventsp.

If no events have occurred, the return field for the events is cleared. If the anyyet field is not
set, the driver must return an instance of the pollhead structure. The pollhead structure is
usually allocated in a state structure. The pollhead structure should be treated as opaque by
the driver. None of the pollhead fields should be referenced.

■ Call pollwakeup(9F) whenever a device condition of type events, listed in Example 15–10,
occurs. This function should be called only with one event at a time. You can call
pollwakeup(9F) in the interrupt routine when the condition has occurred.

Multiplexing I/O on File Descriptors

Writing Device Drivers • March 2012276

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Echpoll-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Echpoll-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Echpoll-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpollwakeup-9f

Example 15–10 and Example 15–11 show how to implement the polling discipline and how to
use pollwakeup(9F).

The following example shows how to handle the POLLIN and POLLERR events. The driver first
reads the status register to determine the current state of the device. The parameter events
specifies which conditions the driver should check. If an appropriate condition has occurred,
the driver sets that bit in *reventsp. If none of the conditions has occurred and if anyyet is not
set, the address of the pollhead structure is returned in *phpp.

EXAMPLE 15–10 chpoll(9E) Routine

static int

xxchpoll(dev_t dev, short events, int anyyet,

short *reventsp, struct pollhead **phpp)

{

uint8_t status;

short revent;

struct xxstate *xsp;

xsp = ddi_get_soft_state(statep, getminor(dev));

if (xsp == NULL)

return (ENXIO);

revent = 0;

/*

* Valid events are:

* POLLIN | POLLOUT | POLLPRI | POLLHUP | POLLERR

* This example checks only for POLLIN and POLLERR.

*/

status = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);

if ((events & POLLIN) && data available to read) {

revent |= POLLIN;

}

if (status & DEVICE_ERROR) {

revent |= POLLERR;

}

/* if nothing has occurred */

if (revent == 0) {

if (!anyyet) {

*phpp = &xsp->pollhead;

}

}

*reventsp = revent;

return (0);

}

The following example shows how to use the pollwakeup(9F) function. The pollwakeup(9F)
function usually is called in the interrupt routine when a supported condition has occurred. The
interrupt routine reads the status from the status register and checks for the conditions. The
routine then calls pollwakeup(9F) for each event to possibly notify polling threads that they
should check again. Note that pollwakeup(9F) should not be called with any locks held, since
deadlock could result if another routine tried to enter chpoll(9E) and grab the same lock.

Multiplexing I/O on File Descriptors

Chapter 15 • Drivers for Character Devices 277

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpollwakeup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Echpoll-9e

EXAMPLE 15–11 Interrupt Routine Supporting chpoll(9E)

static u_int

xxintr(caddr_t arg)

{

struct xxstate *xsp = (struct xxstate *)arg;

uint8_t status;

/* normal interrupt processing */

/* ... */

status = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);

if (status & DEVICE_ERROR) {

pollwakeup(&xsp->pollhead, POLLERR);

}

if (/* just completed a read */) {

pollwakeup(&xsp->pollhead, POLLIN);

}

/* ... */

return (DDI_INTR_CLAIMED);

}

Miscellaneous I/O Control
The ioctl(9E) routine is called when a user thread issues an ioctl(2) system call on a file
descriptor associated with the device. The I/O control mechanism is a catchall for getting and
setting device-specific parameters. This mechanism is frequently used to set a device-specific
mode, either by setting internal driver software flags or by writing commands to the device. The
control mechanism can also be used to return information to the user about the current device
state. In short, the control mechanism can do whatever the application and driver need to have
done.

ioctl() Entry Point (Character Drivers)
int xxioctl(dev_t dev, int cmd, intptr_t arg, int mode,

cred_t *credp, int *rvalp);

The cmd parameter indicates which command ioctl(9E) should perform. By convention, the
driver with which an I/O control command is associated is indicated in bits 8-15 of the
command. Typically, the ASCII code of a character represents the driver. The driver-specific
command in bits 0-7. The creation of some I/O commands is illustrated in the following
example:

#define XXIOC (’x’ << 8) /* ’x’ is a character that represents device xx */

#define XX_GET_STATUS (XXIOC | 1) /* get status register */

#define XX_SET_CMD (XXIOC | 2) /* send command */

The interpretation of arg depends on the command. I/O control commands should be
documented in the driver documentation or a man page. The command should also be defined
in a public header file, so that applications can determine the name of the command, what the

Miscellaneous I/O Control

Writing Device Drivers • March 2012278

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eioctl-9e

command does, and what the command accepts or returns as arg. Any data transfer of arg into
or out of the driver must be performed by the driver.

Certain classes of devices such as frame buffers or disks must support standard sets of I/O
control requests. These standard I/O control interfaces are documented in the Solaris 8
Reference Manual Collection. For example, fbio(7I) documents the I/O controls that frame
buffers must support, and dkio(7I) documents standard disk I/O controls. See “Miscellaneous
I/O Control” on page 278 for more information on I/O controls.

Drivers must use ddi_copyin(9F) to transfer arg data from the user-level application to the
kernel level. Drivers must use ddi_copyout(9F) to transfer data from the kernel to the user
level. Failure to use ddi_copyin(9F) or ddi_copyout(9F) can result in panics under two
conditions. A panic occurs if the architecture separates the kernel and user address spaces, or if
the user address has been swapped out.

ioctl(9E) is usually a switch statement with a case for each supported ioctl(9E) request.

EXAMPLE 15–12 ioctl(9E) Routine

static int

xxioctl(dev_t dev, int cmd, intptr_t arg, int mode,

cred_t *credp, int *rvalp)

{

uint8_t csr;

struct xxstate *xsp;

xsp = ddi_get_soft_state(statep, getminor(dev));

if (xsp == NULL) {

return (ENXIO);

}

switch (cmd) {

case XX_GET_STATUS:

csr = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);

if (ddi_copyout(&csr, (void *)arg, sizeof (uint8_t), mode) != 0) {

return (EFAULT);

}

break;

case XX_SET_CMD:

if (ddi_copyin((void *)arg, &csr, sizeof (uint8_t), mode) != 0) {

return (EFAULT);

}

ddi_put8(xsp->data_access_handle, &xsp->regp->csr, csr);

break;

default:

/* generic "ioctl unknown" error */

return (ENOTTY);

}

return (0);

}

The cmd variable identifies a specific device control operation. A problem can occur if arg
contains a user virtual address. ioctl(9E) must call ddi_copyin(9F) or ddi_copyout(9F) to

Miscellaneous I/O Control

Chapter 15 • Drivers for Character Devices 279

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7fbio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7dkio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-copyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-copyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-copyout-9f

transfer data between the data structure in the application program pointed to by arg and the
driver. In Example 15–12, for the case of an XX_GET_STATUS request, the contents of
xsp->regp->csr are copied to the address in arg. ioctl(9E) can store in *rvalp any integer value
as the return value to the ioctl(2) system call that makes a successful request. Negative return
values, such as -1, should be avoided. Many application programs assume that negative values
indicate failure.

The following example demonstrates an application that uses the I/O controls discussed in the
previous paragraph.

EXAMPLE 15–13 Usingioctl(9E)

#include <sys/types.h>

#include "xxio.h" /* contains device’s ioctl cmds and args */

int

main(void)

{

uint8_t status;

/* ... */

/*

* read the device status

*/

if (ioctl(fd, XX_GET_STATUS, &status) == -1) {

/* error handling */

}

printf("device status %x\n", status);

exit(0);

}

I/O Control Support for 64-Bit Capable Device Drivers
The Oracle Solaris kernel runs in 64-bit mode on suitable hardware, supporting both 32-bit
applications and 64-bit applications. A 64-bit device driver is required to support I/O control
commands from programs of both sizes. The difference between a 32-bit program and a 64-bit
program is the C language type model. A 32-bit program is ILP32, and a 64-bit program is
LP64. See Appendix C, “Making a Device Driver 64-Bit Ready,” for information on C data type
models.

If data that flows between programs and the kernel is not identical in format, the driver must be
able to handle the model mismatch. Handling a model mismatch requires making appropriate
adjustments to the data.

To determine whether a model mismatch exists, the ioctl(9E) mode parameter passes the data
model bits to the driver. As Example 15–14 shows, the mode parameter is then passed to
ddi_model_convert_from(9F) to determine whether any model conversion is necessary.

A flag subfield of the mode argument is used to pass the data model to the ioctl(9E) routine.
The flag is set to one of the following:

Miscellaneous I/O Control

Writing Device Drivers • March 2012280

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-model-convert-from-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eioctl-9e

■ DATAMODEL_ILP32

■ DATAMODEL_LP64

FNATIVE is conditionally defined to match the data model of the kernel implementation. The
FMODELS mask should be used to extract the flag from the mode argument. The driver can then
examine the data model explicitly to determine how to copy the application data structure.

The DDI function ddi_model_convert_from(9F) is a convenience routine that can assist some
drivers with their ioctl() calls. The function takes the data type model of the user application
as an argument and returns one of the following values:

■ DDI_MODEL_ILP32 – Convert from ILP32 application
■ DDI_MODEL_NONE – No conversion needed

DDI_MODEL_NONE is returned if no data conversion is necessary, as occurs when the application
and driver have the same data model. DDI_MODEL_ILP32 is returned to a driver that is compiled
to the LP64 model and that communicates with a 32-bit application.

In the following example, the driver copies a data structure that contains a user address. The
data structure changes size from ILP32 to LP64. Accordingly, the 64-bit driver uses a 32-bit
version of the structure when communicating with a 32-bit application.

EXAMPLE 15–14 ioctl(9E) Routine to Support 32-bit Applications and 64-bit Applications

struct args32 {

uint32_t addr; /* 32-bit address in LP64 */

int len;

}

struct args {

caddr_t addr; /* 64-bit address in LP64 */

int len;

}

static int

xxioctl(dev_t dev, int cmd, intptr_t arg, int mode,

cred_t *credp, int *rvalp)

{

struct xxstate *xsp;

struct args a;

xsp = ddi_get_soft_state(statep, getminor(dev));

if (xsp == NULL) {

return (ENXIO);

}

switch (cmd) {

case XX_COPYIN_DATA:

switch(ddi_model_convert_from(mode)) {

case DDI_MODEL_ILP32:

{

struct args32 a32;

/* copy 32-bit args data shape */

if (ddi_copyin((void *)arg, &a32,

sizeof (struct args32), mode) != 0) {

Miscellaneous I/O Control

Chapter 15 • Drivers for Character Devices 281

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-model-convert-from-9f

EXAMPLE 15–14 ioctl(9E) Routine to Support 32-bit Applications and 64-bit Applications
(Continued)

return (EFAULT);

}

/* convert 32-bit to 64-bit args data shape */

a.addr = a32.addr;

a.len = a32.len;

break;

}

case DDI_MODEL_NONE:

/* application and driver have same data model. */

if (ddi_copyin((void *)arg, &a, sizeof (struct args),

mode) != 0) {

return (EFAULT);

}

}

/* continue using data shape in native driver data model. */

break;

case XX_COPYOUT_DATA:

/* copyout handling */

break;

default:

/* generic "ioctl unknown" error */

return (ENOTTY);

}

return (0);

}

Handling copyout() Overflow
Sometimes a driver needs to copy out a native quantity that no longer fits in the 32-bit sized
structure. In this case, the driver should return EOVERFLOW to the caller. EOVERFLOW serves as an
indication that the data type in the interface is too small to hold the value to be returned, as
shown in the following example.

EXAMPLE 15–15 Handling copyout(9F) Overflow

int

xxioctl(dev_t dev, int cmd, intptr_t arg, int mode,

cred_t *cr, int *rval_p)

{

struct resdata res;

/* body of driver */

switch (ddi_model_convert_from(mode & FMODELS)) {

case DDI_MODEL_ILP32: {

struct resdata32 res32;

if (res.size > UINT_MAX)

return (EOVERFLOW);

res32.size = (size32_t)res.size;

res32.flag = res.flag;

Miscellaneous I/O Control

Writing Device Drivers • March 2012282

EXAMPLE 15–15 Handling copyout(9F) Overflow (Continued)

if (ddi_copyout(&res32,

(void *)arg, sizeof (res32), mode))

return (EFAULT);

}

break;

case DDI_MODEL_NONE:

if (ddi_copyout(&res, (void *)arg, sizeof (res), mode))

return (EFAULT);

break;

}

return (0);

}

32-bit and 64-bit Data Structure Macros
The method in Example 15–15 works well for many drivers. An alternate scheme is to use the
data structure macros that are provided in <sys/model.h>to move data between the application
and the kernel. These macros make the code less cluttered and behave identically, from a
functional perspective.

EXAMPLE 15–16 Using Data Structure Macros to Move Data

int

xxioctl(dev_t dev, int cmd, intptr_t arg, int mode,

cred_t *cr, int *rval_p)

{

STRUCT_DECL(opdata, op);

if (cmd != OPONE)

return (ENOTTY);

STRUCT_INIT(op, mode);

if (copyin((void *)arg,

STRUCT_BUF(op), STRUCT_SIZE(op)))

return (EFAULT);

if (STRUCT_FGET(op, flag) != XXACTIVE ||

STRUCT_FGET(op, size) > XXSIZE)

return (EINVAL);

xxdowork(device_state, STRUCT_FGET(op, size));

return (0);

}

32-bit and 64-bit Data Structure Macros

Chapter 15 • Drivers for Character Devices 283

How Do the Structure Macros Work?
In a 64-bit device driver, structure macros enable the use of the same piece of kernel memory by
data structures of both sizes. The memory buffer holds the contents of the native form of the
data structure, that is, the LP64 form, and the ILP32 form. Each structure access is implemented
by a conditional expression. When compiled as a 32-bit driver, only one data model, the native
form, is supported. No conditional expression is used.

The 64-bit versions of the macros depend on the definition of a shadow version of the data
structure. The shadow version describes the 32-bit interface with fixed-width types. The name
of the shadow data structure is formed by appending “32” to the name of the native data
structure. For convenience, place the definition of the shadow structure in the same file as the
native structure to ease future maintenance costs.

The macros can take the following arguments:

structname The structure name of the native form of the data structure as entered after the
struct keyword.

umodel A flag word that contains the user data model, such as FILP32 or FLP64,
extracted from the mode parameter of ioctl(9E).

handle The name used to refer to a particular instance of a structure that is
manipulated by these macros.

fieldname The name of the field within the structure.

When to Use Structure Macros
Macros enable you to make in-place references only to the fields of a data item. Macros do not
provide a way to take separate code paths that are based on the data model. Macros should be
avoided if the number of fields in the data structure is large. Macros should also be avoided if the
frequency of references to these fields is high.

Macros hide many of the differences between data models in the implementation of the macros.
As a result, code written with this interface is generally easier to read. When compiled as a
32-bit driver, the resulting code is compact without needing clumsy #ifdefs, but still preserves
type checking.

Declaring and Initializing Structure Handles
STRUCT_DECL(9F) and STRUCT_INIT(9F) can be used to declare and initialize a handle and space
for decoding an ioctl on the stack. STRUCT_HANDLE(9F) and STRUCT_SET_HANDLE(9F) declare

32-bit and 64-bit Data Structure Macros

Writing Device Drivers • March 2012284

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fstruct-decl-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fstruct-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fstruct-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fstruct-set-handle-9f

and initialize a handle without allocating space on the stack. The latter macros can be useful if
the structure is very large, or is contained in some other data structure.

Note – Because the STRUCT_DECL(9F) and STRUCT_HANDLE(9F) macros expand to data structure
declarations, these macros should be grouped with such declarations in C code.

The macros for declaring and initializing structures are as follows:

STRUCT_DECL(structname, handle)
Declares a structure handle that is called handle for a structname data structure.
STRUCT_DECL allocates space for its native form on the stack. The native form is assumed to
be larger than or equal to the ILP32 form of the structure.

STRUCT_INIT(handle, umodel)
Initializes the data model for handle to umodel. This macro must be invoked before any
access is made to a structure handle declared with STRUCT_DECL(9F).

STRUCT_HANDLE(structname, handle)
Declares a structure handle that is called handle. Contrast with STRUCT_DECL(9F).

STRUCT_SET_HANDLE(handle, umodel, addr)
Initializes the data model for handle to umodel, and sets addr as the buffer used for
subsequent manipulation. Invoke this macro before accessing a structure handle declared
with STRUCT_DECL(9F).

Operations on Structure Handles
The macros for performing operations on structures are as follows:

size_t STRUCT_SIZE(handle)
Returns the size of the structure referred to by handle, according to its embedded data
model.

typeof fieldname STRUCT_FGET(handle, fieldname)
Returns the indicated field in the data structure referred to by handle. This field is a
non-pointer type.

typeof fieldname STRUCT_FGETP(handle, fieldname)
Returns the indicated field in the data structure referred to by handle. This field is a pointer
type.

STRUCT_FSET(handle, fieldname, val)
Sets the indicated field in the data structure referred to by handle to value val. The type of val
should match the type of fieldname. The field is a non-pointer type.

32-bit and 64-bit Data Structure Macros

Chapter 15 • Drivers for Character Devices 285

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fstruct-decl-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fstruct-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fstruct-decl-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fstruct-decl-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fstruct-decl-9f

STRUCT_FSETP(handle, fieldname, val)
Sets the indicated field in the data structure referred to by handle to value val. The field is a
pointer type.

typeof fieldname *STRUCT_FADDR(handle, fieldname)
Returns the address of the indicated field in the data structure referred to by handle.

struct structname *STRUCT_BUF(handle)
Returns a pointer to the native structure described by handle.

Other Operations
Some miscellaneous structure macros follow:

size_t SIZEOF_STRUCT(struct_name, datamodel)
Returns the size of struct_name, which is based on the given data model.

size_t SIZEOF_PTR(datamodel)
Returns the size of a pointer based on the given data model.

32-bit and 64-bit Data Structure Macros

Writing Device Drivers • March 2012286

Drivers for Block Devices

This chapter describes the structure of block device drivers. The kernel views a block device as a
set of randomly accessible logical blocks. The file system uses a list of buf(9S) structures to
buffer the data blocks between a block device and the user space. Only block devices can
support a file system.

This chapter provides information on the following subjects:

■ “Block Driver Structure Overview” on page 287
■ “File I/O” on page 288
■ “Block Device Autoconfiguration” on page 289
■ “Controlling Device Access” on page 291
■ “Synchronous Data Transfers (Block Drivers)” on page 295
■ “Asynchronous Data Transfers (Block Drivers)” on page 299
■ “dump() and print() Entry Points” on page 303
■ “Disk Device Drivers” on page 304

Block Driver Structure Overview
Figure 16–1 shows data structures and routines that define the structure of a block device
driver. Device drivers typically include the following elements:

■ Device-loadable driver section
■ Device configuration section
■ Device access section

The shaded device access section in the following figure illustrates entry points for block
drivers.

16C H A P T E R 1 6

287

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s

Associated with each device driver is a dev_ops(9S) structure, which in turn refers to a
cb_ops(9S) structure. See Chapter 6, “Driver Autoconfiguration,” for details on driver data
structures.

Block device drivers provide these entry points:

■ open(9E)
■ close(9E)
■ strategy(9E)
■ print(9E)

Note – Some of the entry points can be replaced by nodev(9F) or nulldev(9F) as appropriate.

File I/O
A file system is a tree-structured hierarchy of directories and files. Some file systems, such as the
UNIX File System (UFS), reside on block-oriented devices. File systems are created by
format(1M) and newfs(1M).

When an application issues a read(2) or write(2) system call to an ordinary file on the UFS file
system, the file system can call the device driver strategy(9E) entry point for the block device
on which the file system resides. The file system code can call strategy(9E) several times for a
single read(2) or write(2) system call.

FIGURE 16–1 Block Driver Roadmap

modlinkage(9S)

modldrv(9S)

dev_ops(9S)

cb_ops(9S) Block Device

open(9E)
close(9E)
strategy(9E)
print(9E)

File I/O

Writing Device Drivers • March 2012288

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sdev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Scb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprint-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnodev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fnulldev-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mformat-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mnewfs-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2write-2

The file system code determines the logical device address, or logical block number, for each
ordinary file block. A block I/O request is then built in the form of a buf(9S) structure directed
at the block device. The driver strategy(9E) entry point then interprets the buf(9S) structure
and completes the request.

Block Device Autoconfiguration
attach(9E) should perform the common initialization tasks for each instance of a device:
■ Allocating per-instance state structures
■ Mapping the device's registers
■ Registering device interrupts
■ Initializing mutex and condition variables
■ Creating power manageable components
■ Creating minor nodes

Block device drivers create minor nodes of type S_IFBLK. As a result, a block special file that
represents the node appears in the /devices hierarchy.

Logical device names for block devices appear in the /dev/dsk directory, and consist of a
controller number, bus-address number, disk number, and slice number. These names are
created by the devfsadm(1M) program if the node type is set to DDI_NT_BLOCK or
DDI_NT_BLOCK_CHAN. DDI_NT_BLOCK_CHAN should be specified if the device communicates on a
channel, that is, a bus with an additional level of addressability. SCSI disks are a good example.
DDI_NT_BLOCK_CHAN causes a bus-address field (tN) to appear in the logical name.
DDI_NT_BLOCK should be used for most other devices.

A minor device refers to a partition on the disk. For each minor device, the driver must create
an nblocks or Nblocks property. This integer property gives the number of blocks supported
by the minor device expressed in units of DEV_BSIZE, that is, 512 bytes. The file system uses the
nblocks and Nblocks properties to determine device limits. Nblocks is the 64-bit version of
nblocks. Nblocks should be used with storage devices that can hold over 1 Tbyte of storage per
disk. See “Device Properties” on page 77 for more information.

Example 16–1 shows a typical attach(9E) entry point with emphasis on creating the device's
minor node and the Nblocks property. Note that because this example uses Nblocks and not
nblocks, ddi_prop_update_int64(9F) is called instead of ddi_prop_update_int(9F).

As a side note, this example shows the use of makedevice(9F) to create a device number for
ddi_prop_update_int64(). The makedevice function makes use of ddi_driver_major(9F),
which generates a major number from a pointer to a dev_info_t structure. Using
ddi_driver_major() is similar to using getmajor(9F), which gets a dev_t structure pointer.

EXAMPLE 16–1 Block Driver attach() Routine

static int

xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)

Block Device Autoconfiguration

Chapter 16 • Drivers for Block Devices 289

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mdevfsadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-update-int64-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-update-int-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmakedevice-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-driver-major-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fgetmajor-9f

EXAMPLE 16–1 Block Driver attach() Routine (Continued)

{

int instance = ddi_get_instance(dip);

switch (cmd) {

case DDI_ATTACH:

/*

* allocate a state structure and initialize it

* map the devices registers

* add the device driver’s interrupt handler(s)

* initialize any mutexes and condition variables

* read label information if the device is a disk

* create power manageable components

*

* Create the device minor node. Note that the node_type

* argument is set to DDI_NT_BLOCK.

*/

if (ddi_create_minor_node(dip, "minor_name", S_IFBLK,

instance, DDI_NT_BLOCK, 0) == DDI_FAILURE) {

/* free resources allocated so far */

/* Remove any previously allocated minor nodes */

ddi_remove_minor_node(dip, NULL);

return (DDI_FAILURE);

}

/*

* Create driver properties like "Nblocks". If the device

* is a disk, the Nblocks property is usually calculated from

* information in the disk label. Use "Nblocks" instead of

* "nblocks" to ensure the property works for large disks.

*/

xsp->Nblocks = size;
/* size is the size of the device in 512 byte blocks */

maj_number = ddi_driver_major(dip);

if (ddi_prop_update_int64(makedevice(maj_number, instance), dip,

"Nblocks", xsp->Nblocks) != DDI_PROP_SUCCESS) {

cmn_err(CE_CONT, "%s: cannot create Nblocks property\n",
ddi_get_name(dip));

/* free resources allocated so far */

return (DDI_FAILURE);

}

xsp->open = 0;

xsp->nlayered = 0;

/* ... */

return (DDI_SUCCESS);

case DDI_RESUME:

/* For information, see Chapter 12, "Power Management," in this book. */

default:

return (DDI_FAILURE);

}

}

Block Device Autoconfiguration

Writing Device Drivers • March 2012290

Controlling Device Access
This section describes the entry points for open() and close() functions in block device
drivers. See Chapter 15, “Drivers for Character Devices,” for more information on open(9E) and
close(9E).

open() Entry Point (Block Drivers)
The open(9E) entry point is used to gain access to a given device. The open(9E) routine of a
block driver is called when a user thread issues an open(2) or mount(2) system call on a block
special file associated with the minor device, or when a layered driver calls open(9E). See “File
I/O” on page 288 for more information.

The open() entry point should check for the following conditions:

■ The device can be opened, that is, the device is online and ready.
■ The device can be opened as requested. The device supports the operation. The device's

current state does not conflict with the request.
■ The caller has permission to open the device.

The following example demonstrates a block driver open(9E) entry point.

EXAMPLE 16–2 Block Driver open(9E) Routine

static int

xxopen(dev_t *devp, int flags, int otyp, cred_t *credp)

{

minor_t instance;

struct xxstate *xsp;

instance = getminor(*devp);

xsp = ddi_get_soft_state(statep, instance);

if (xsp == NULL)

return (ENXIO);

mutex_enter(&xsp->mu);

/*

* only honor FEXCL. If a regular open or a layered open

* is still outstanding on the device, the exclusive open

* must fail.

*/

if ((flags & FEXCL) && (xsp->open || xsp->nlayered)) {

mutex_exit(&xsp->mu);

return (EAGAIN);

}

switch (otyp) {

case OTYP_LYR:

xsp->nlayered++;

break;

case OTYP_BLK:

xsp->open = 1;

Controlling Device Access

Chapter 16 • Drivers for Block Devices 291

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2mount-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eopen-9e

EXAMPLE 16–2 Block Driver open(9E) Routine (Continued)

break;

default:

mutex_exit(&xsp->mu);

return (EINVAL);

}

mutex_exit(&xsp->mu);

return (0);

}

The otyp argument is used to specify the type of open on the device. OTYP_BLK is the typical
open type for a block device. A device can be opened several times with otyp set to OTYP_BLK.
close(9E) is called only once when the final close of type OTYP_BLK has occurred for the device.
otyp is set to OTYP_LYR if the device is being used as a layered device. For every open of type
OTYP_LYR, the layering driver issues a corresponding close of type OTYP_LYR. The example keeps
track of each type of open so the driver can determine when the device is not being used in
close(9E).

close() Entry Point (Block Drivers)
The close(9E) entry point uses the same arguments as open(9E) with one exception. dev is the
device number rather than a pointer to the device number.

The close() routine should verify otyp in the same way as was described for the open(9E) entry
point. In the following example, close() must determine when the device can really be closed.
Closing is affected by the number of block opens and layered opens.

EXAMPLE 16–3 Block Device close(9E) Routine

static int

xxclose(dev_t dev, int flag, int otyp, cred_t *credp)

{

minor_t instance;

struct xxstate *xsp;

instance = getminor(dev);

xsp = ddi_get_soft_state(statep, instance);

if (xsp == NULL)

return (ENXIO);

mutex_enter(&xsp->mu);

switch (otyp) {

case OTYP_LYR:

xsp->nlayered--;

break;

case OTYP_BLK:

xsp->open = 0;

break;

default:

mutex_exit(&xsp->mu);

Controlling Device Access

Writing Device Drivers • March 2012292

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eopen-9e

EXAMPLE 16–3 Block Device close(9E) Routine (Continued)

return (EINVAL);

}

if (xsp->open || xsp->nlayered) {

/* not done yet */

mutex_exit(&xsp->mu);

return (0);

}

/* cleanup (rewind tape, free memory, etc.) */

/* wait for I/O to drain */

mutex_exit(&xsp->mu);

return (0);

}

strategy() Entry Point
The strategy(9E) entry point is used to read and write data buffers to and from a block device.
The name strategy refers to the fact that this entry point might implement some optimal
strategy for ordering requests to the device.

strategy(9E) can be written to process one request at a time, that is, a synchronous transfer.
strategy() can also be written to queue multiple requests to the device, as in an asynchronous
transfer. When choosing a method, the abilities and limitations of the device should be taken
into account.

The strategy(9E) routine is passed a pointer to a buf(9S) structure. This structure describes
the transfer request, and contains status information on return. buf(9S) and strategy(9E) are
the focus of block device operations.

buf Structure
The following buf structure members are important to block drivers:

int b_flags; /* Buffer status */

struct buf *av_forw; /* Driver work list link */

struct buf *av_back; /* Driver work list link */

size_t b_bcount; /* # of bytes to transfer */

union {

caddr_t b_addr; /* Buffer’s virtual address */

} b_un;

daddr_t b_blkno; /* Block number on device */

diskaddr_t b_lblkno; /* Expanded block number on device */

size_t b_resid; /* # of bytes not transferred after error */

int b_error; /* Expanded error field */

void *b_private; /* "opaque" driver private area */

dev_t b_edev; /* expanded dev field */

Controlling Device Access

Chapter 16 • Drivers for Block Devices 293

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e

where:

av_forw and av_back Pointers that the driver can use to manage a list of buffers by the
driver. See “Asynchronous Data Transfers (Block Drivers)” on
page 299 for a discussion of the av_forw and av_back pointers.

b_bcount Specifies the number of bytes to be transferred by the device.

b_un.b_addr The kernel virtual address of the data buffer. Only valid after
bp_mapin(9F) call.

b_blkno The starting 32-bit logical block number on the device for the data
transfer, which is expressed in 512-byte DEV_BSIZE units. The driver
should use either b_blkno or b_lblkno but not both.

b_lblkno The starting 64-bit logical block number on the device for the data
transfer, which is expressed in 512-byte DEV_BSIZE units. The driver
should use either b_blkno or b_lblkno but not both.

b_resid Set by the driver to indicate the number of bytes that were not
transferred because of an error. See Example 16–7 for an example of
setting b_resid. The b_resid member is overloaded. b_resid is also
used by disksort(9F).

b_error Set to an error number by the driver when a transfer error occurs.
b_error is set in conjunction with the b_flags B_ERROR bit. See the
Intro(9E) man page for details about error values. Drivers should
use bioerror(9F) rather than setting b_error directly.

b_flags Flags with status and transfer attributes of the buf structure. If
B_READ is set, the buf structure indicates a transfer from the device to
memory. Otherwise, this structure indicates a transfer from memory
to the device. If the driver encounters an error during data transfer,
the driver should set the B_ERROR field in the b_flags member. In
addition, the driver should provide a more specific error value in
b_error. Drivers should use bioerror(9F) rather than setting
B_ERROR.

Caution – Drivers should never clear b_flags.

b_private For exclusive use by the driver to store driver-private data.

b_edev Contains the device number of the device that was used in the
transfer.

Controlling Device Access

Writing Device Drivers • March 2012294

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fbp-mapin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdisksort-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eintro-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fbioerror-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fbioerror-9f

bp_mapin Structure
A buf structure pointer can be passed into the device driver's strategy(9E) routine. However,
the data buffer referred to by b_un.b_addr is not necessarily mapped in the kernel's address
space. Therefore, the driver cannot directly access the data. Most block-oriented devices have
DMA capability and therefore do not need to access the data buffer directly. Instead, these
devices use the DMA mapping routines to enable the device's DMA engine to do the data
transfer. For details about using DMA, see Chapter 9, “Direct Memory Access (DMA).”

If a driver needs to access the data buffer directly, that driver must first map the buffer into the
kernel's address space by using bp_mapin(9F). bp_mapout(9F) should be used when the driver
no longer needs to access the data directly.

Caution – bp_mapout(9F) should only be called on buffers that have been allocated and are
owned by the device driver. bp_mapout() must not be called on buffers that are passed to the
driver through the strategy(9E) entry point, such as a file system. bp_mapin(9F) does not keep
a reference count. bp_mapout(9F) removes any kernel mapping on which a layer over the device
driver might rely.

Synchronous Data Transfers (Block Drivers)
This section presents a simple method for performing synchronous I/O transfers. This method
assumes that the hardware is a simple disk device that can transfer only one data buffer at a time
by using DMA. Another assumption is that the disk can be spun up and spun down by software
command. The device driver's strategy(9E) routine waits for the current request to be
completed before accepting a new request. The device interrupts when the transfer is complete.
The device also interrupts if an error occurs.

The steps for performing a synchronous data transfer for a block driver are as follows:

1. Check for invalid buf(9S) requests.
Check the buf(9S) structure that is passed to strategy(9E) for validity. All drivers should
check the following conditions:
■ The request begins at a valid block. The driver converts the b_blkno field to the correct

device offset and then determines whether the offset is valid for the device.
■ The request does not go beyond the last block on the device.
■ Device-specific requirements are met.

If an error is encountered, the driver should indicate the appropriate error with
bioerror(9F). The driver should then complete the request by calling biodone(9F).
biodone() notifies the caller of strategy(9E) that the transfer is complete. In this case, the
transfer has stopped because of an error.

Synchronous Data Transfers (Block Drivers)

Chapter 16 • Drivers for Block Devices 295

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fbp-mapin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fbp-mapout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fbp-mapout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fbp-mapin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fbp-mapout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fbioerror-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fbiodone-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e

2. Check whether the device is busy.
Synchronous data transfers allow single-threaded access to the device. The device driver
enforces this access in two ways:
■ The driver maintains a busy flag that is guarded by a mutex.
■ The driver waits on a condition variable with cv_wait(9F), when the device is busy.

If the device is busy, the thread waits until the interrupt handler indicates that the device is
not longer busy. The available status can be indicated by either the cv_broadcast(9F) or the
cv_signal(9F) function. See Chapter 3, “Multithreading,” for details on condition variables.

When the device is no longer busy, the strategy(9E) routine marks the device as available.
strategy() then prepares the buffer and the device for the transfer.

3. Set up the buffer for DMA.
Prepare the data buffer for a DMA transfer by using ddi_dma_alloc_handle(9F) to allocate
a DMA handle. Use ddi_dma_buf_bind_handle(9F) to bind the data buffer to the handle.
For information on setting up DMA resources and related data structures, see Chapter 9,
“Direct Memory Access (DMA).”

4. Begin the transfer.
At this point, a pointer to the buf(9S) structure is saved in the state structure of the device.
The interrupt routine can then complete the transfer by calling biodone(9F).
The device driver then accesses device registers to initiate a data transfer. In most cases, the
driver should protect the device registers from other threads by using mutexes. In this case,
because strategy(9E) is single-threaded, guarding the device registers is not necessary. See
Chapter 3, “Multithreading,” for details about data locks.
When the executing thread has started the device's DMA engine, the driver can return
execution control to the calling routine, as follows:

static int

xxstrategy(struct buf *bp)

{

struct xxstate *xsp;

struct device_reg *regp;

minor_t instance;

ddi_dma_cookie_t cookie;

instance = getminor(bp->b_edev);

xsp = ddi_get_soft_state(statep, instance);

if (xsp == NULL) {

bioerror(bp, ENXIO);

biodone(bp);

return (0);

}

/* validate the transfer request */

if ((bp->b_blkno >= xsp->Nblocks) || (bp->b_blkno < 0)) {

bioerror(bp, EINVAL);

biodone(bp);

return (0);

Synchronous Data Transfers (Block Drivers)

Writing Device Drivers • March 2012296

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-broadcast-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-signal-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-alloc-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fbiodone-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e

}

/*

* Hold off all threads until the device is not busy.

*/

mutex_enter(&xsp->mu);

while (xsp->busy) {

cv_wait(&xsp->cv, &xsp->mu);

}

xsp->busy = 1;

mutex_exit(&xsp->mu);

/*

* If the device has power manageable components,

* mark the device busy with pm_busy_components(9F),

* and then ensure that the device

* is powered up by calling pm_raise_power(9F).

*

* Set up DMA resources with ddi_dma_alloc_handle(9F) and

* ddi_dma_buf_bind_handle(9F).

*/

xsp->bp = bp;

regp = xsp->regp;

ddi_put32(xsp->data_access_handle, ®p->dma_addr,

cookie.dmac_address);

ddi_put32(xsp->data_access_handle, ®p->dma_size,

(uint32_t)cookie.dmac_size);

ddi_put8(xsp->data_access_handle, ®p->csr,

ENABLE_INTERRUPTS | START_TRANSFER);

return (0);

}

5. Handle the interrupting device.
When the device finishes the data transfer, the device generates an interrupt, which
eventually results in the driver's interrupt routine being called. Most drivers specify the state
structure of the device as the argument to the interrupt routine when registering interrupts.
See the ddi_add_intr(9F) man page and “Registering Interrupts” on page 128. The
interrupt routine can then access the buf(9S) structure being transferred, plus any other
information that is available from the state structure.
The interrupt handler should check the device's status register to determine whether the
transfer completed without error. If an error occurred, the handler should indicate the
appropriate error with bioerror(9F). The handler should also clear the pending interrupt
for the device and then complete the transfer by calling biodone(9F).
As the final task, the handler clears the busy flag. The handler then calls cv_signal(9F) or
cv_broadcast(9F) on the condition variable, signaling that the device is no longer busy.
This notification enables other threads waiting for the device in strategy(9E) to proceed
with the next data transfer.
The following example shows a synchronous interrupt routine.

EXAMPLE 16–4 Synchronous Interrupt Routine for Block Drivers

static u_int

xxintr(caddr_t arg)

Synchronous Data Transfers (Block Drivers)

Chapter 16 • Drivers for Block Devices 297

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-add-intr-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fbioerror-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fbiodone-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-signal-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-broadcast-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e

EXAMPLE 16–4 Synchronous Interrupt Routine for Block Drivers (Continued)

{

struct xxstate *xsp = (struct xxstate *)arg;

struct buf *bp;

uint8_t status;

mutex_enter(&xsp->mu);

status = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);

if (!(status & INTERRUPTING)) {

mutex_exit(&xsp->mu);

return (DDI_INTR_UNCLAIMED);

}

/* Get the buf responsible for this interrupt */

bp = xsp->bp;

xsp->bp = NULL;

/*

* This example is for a simple device which either

* succeeds or fails the data transfer, indicated in the

* command/status register.

*/

if (status & DEVICE_ERROR) {

/* failure */

bp->b_resid = bp->b_bcount;

bioerror(bp, EIO);

} else {

/* success */

bp->b_resid = 0;

}

ddi_put8(xsp->data_access_handle, &xsp->regp->csr,

CLEAR_INTERRUPT);

/* The transfer has finished, successfully or not */

biodone(bp);

/*

* If the device has power manageable components that were

* marked busy in strategy(9F), mark them idle now with

* pm_idle_component(9F)

* Release any resources used in the transfer, such as DMA

* resources ddi_dma_unbind_handle(9F) and

* ddi_dma_free_handle(9F).

*

* Let the next I/O thread have access to the device.

*/

xsp->busy = 0;

cv_signal(&xsp->cv);

mutex_exit(&xsp->mu);

return (DDI_INTR_CLAIMED);

}

Synchronous Data Transfers (Block Drivers)

Writing Device Drivers • March 2012298

Asynchronous Data Transfers (Block Drivers)
This section presents a method for performing asynchronous I/O transfers. The driver queues
the I/O requests and then returns control to the caller. Again, the assumption is that the
hardware is a simple disk device that allows one transfer at a time. The device interrupts when a
data transfer has completed. An interrupt also takes place if an error occurs. The basic steps for
performing asynchronous data transfers are:

1. Check for invalid buf(9S) requests.
2. Enqueue the request.
3. Start the first transfer.
4. Handle the interrupting device.

Checking for Invalid buf Requests
As in the synchronous case, the device driver should check the buf(9S) structure passed to
strategy(9E) for validity. See “Synchronous Data Transfers (Block Drivers)” on page 295 for
more details.

Enqueuing the Request
Unlike synchronous data transfers, a driver does not wait for an asynchronous request to
complete. Instead, the driver adds the request to a queue. The head of the queue can be the
current transfer. The head of the queue can also be a separate field in the state structure for
holding the active request, as in Example 16–5.

If the queue is initially empty, then the hardware is not busy and strategy(9E) starts the
transfer before returning. Otherwise, if a transfer completes with a non-empty queue, the
interrupt routine begins a new transfer. Example 16–5 places the decision of whether to start a
new transfer into a separate routine for convenience.

The driver can use the av_forw and the av_back members of the buf(9S) structure to manage a
list of transfer requests. A single pointer can be used to manage a singly linked list, or both
pointers can be used together to build a doubly linked list. The device hardware specification
specifies which type of list management, such as insertion policies, is used to optimize the
performance of the device. The transfer list is a per-device list, so the head and tail of the list are
stored in the state structure.

The following example provides multiple threads with access to the driver shared data, such as
the transfer list. You must identify the shared data and must protect the data with a mutex. See
Chapter 3, “Multithreading,” for more details about mutex locks.

Asynchronous Data Transfers (Block Drivers)

Chapter 16 • Drivers for Block Devices 299

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s

EXAMPLE 16–5 Enqueuing Data Transfer Requests for Block Drivers

static int

xxstrategy(struct buf *bp)

{

struct xxstate *xsp;

minor_t instance;

instance = getminor(bp->b_edev);

xsp = ddi_get_soft_state(statep, instance);

/* ... */

/* validate transfer request */

/* ... */

/*

* Add the request to the end of the queue. Depending on the device, a sorting

* algorithm, such as disksort(9F) can be used if it improves the

* performance of the device.

*/

mutex_enter(&xsp->mu);

bp->av_forw = NULL;

if (xsp->list_head) {

/* Non-empty transfer list */

xsp->list_tail->av_forw = bp;

xsp->list_tail = bp;

} else {

/* Empty Transfer list */

xsp->list_head = bp;

xsp->list_tail = bp;

}

mutex_exit(&xsp->mu);

/* Start the transfer if possible */

(void) xxstart((caddr_t)xsp);

return (0);

}

Starting the First Transfer
Device drivers that implement queuing usually have a start() routine. start() dequeues the
next request and starts the data transfer to or from the device. In this example, start()
processes all requests regardless of the state of the device, whether busy or free.

Note – start() must be written to be called from any context. start() can be called by both the
strategy routine in kernel context and the interrupt routine in interrupt context.

start() is called by strategy(9E) every time strategy() queues a request so that an idle
device can be started. If the device is busy, start() returns immediately.

start() is also called by the interrupt handler before the handler returns from a claimed
interrupt so that a nonempty queue can be serviced. If the queue is empty, start() returns
immediately.

Asynchronous Data Transfers (Block Drivers)

Writing Device Drivers • March 2012300

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e

Because start() is a private driver routine, start() can take any arguments and can return
any type. The following code sample is written to be used as a DMA callback, although that
portion is not shown. Accordingly, the example must take a caddr_t as an argument and return
an int. See “Handling Resource Allocation Failures” on page 167 for more information about
DMA callback routines.

EXAMPLE 16–6 Starting the First Data Request for a Block Driver

static int

xxstart(caddr_t arg)

{

struct xxstate *xsp = (struct xxstate *)arg;

struct buf *bp;

mutex_enter(&xsp->mu);

/*

* If there is nothing more to do, or the device is

* busy, return.

*/

if (xsp->list_head == NULL || xsp->busy) {

mutex_exit(&xsp->mu);

return (0);

}

xsp->busy = 1;

/* Get the first buffer off the transfer list */

bp = xsp->list_head;

/* Update the head and tail pointer */

xsp->list_head = xsp->list_head->av_forw;

if (xsp->list_head == NULL)

xsp->list_tail = NULL;

bp->av_forw = NULL;

mutex_exit(&xsp->mu);

/*

* If the device has power manageable components,

* mark the device busy with pm_busy_components(9F),

* and then ensure that the device

* is powered up by calling pm_raise_power(9F).

*

* Set up DMA resources with ddi_dma_alloc_handle(9F) and

* ddi_dma_buf_bind_handle(9F).

*/

xsp->bp = bp;

ddi_put32(xsp->data_access_handle, &xsp->regp->dma_addr,

cookie.dmac_address);

ddi_put32(xsp->data_access_handle, &xsp->regp->dma_size,

(uint32_t)cookie.dmac_size);

ddi_put8(xsp->data_access_handle, &xsp->regp->csr,

ENABLE_INTERRUPTS | START_TRANSFER);

return (0);

}

Asynchronous Data Transfers (Block Drivers)

Chapter 16 • Drivers for Block Devices 301

Handling the Interrupting Device
The interrupt routine is similar to the asynchronous version, with the addition of the call to
start() and the removal of the call to cv_signal(9F).

EXAMPLE 16–7 Block Driver Routine for Asynchronous Interrupts

static u_int

xxintr(caddr_t arg)

{

struct xxstate *xsp = (struct xxstate *)arg;

struct buf *bp;

uint8_t status;

mutex_enter(&xsp->mu);

status = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);

if (!(status & INTERRUPTING)) {

mutex_exit(&xsp->mu);

return (DDI_INTR_UNCLAIMED);

}

/* Get the buf responsible for this interrupt */

bp = xsp->bp;

xsp->bp = NULL;

/*

* This example is for a simple device which either

* succeeds or fails the data transfer, indicated in the

* command/status register.

*/

if (status & DEVICE_ERROR) {

/* failure */

bp->b_resid = bp->b_bcount;

bioerror(bp, EIO);

} else {

/* success */

bp->b_resid = 0;

}

ddi_put8(xsp->data_access_handle, &xsp->regp->csr,

CLEAR_INTERRUPT);

/* The transfer has finished, successfully or not */

biodone(bp);

/*

* If the device has power manageable components that were

* marked busy in strategy(9F), mark them idle now with

* pm_idle_component(9F)

* Release any resources used in the transfer, such as DMA

* resources (ddi_dma_unbind_handle(9F) and

* ddi_dma_free_handle(9F)).

*

* Let the next I/O thread have access to the device.

*/

xsp->busy = 0;

mutex_exit(&xsp->mu);

(void) xxstart((caddr_t)xsp);

return (DDI_INTR_CLAIMED);

}

Asynchronous Data Transfers (Block Drivers)

Writing Device Drivers • March 2012302

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-signal-9f

dump() and print() Entry Points
This section discusses the dump(9E) and print(9E) entry points.

dump() Entry Point (Block Drivers)
The dump(9E) entry point is used to copy a portion of virtual address space directly to the
specified device in the case of a system failure. dump() is also used to copy the state of the kernel
out to disk during a checkpoint operation. See the cpr(7) and dump(9E) man pages for more
information. The entry point must be capable of performing this operation without the use of
interrupts, because interrupts are disabled during the checkpoint operation.

int dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)

where:

dev Device number of the device to receive the dump.

addr Base kernel virtual address at which to start the dump.

blkno Block at which the dump is to start.

nblk Number of blocks to dump.

The dump depends upon the existing driver working properly.

print() Entry Point (Block Drivers)
int print(dev_t dev, char *str)

The print(9E) entry point is called by the system to display a message about an exception that
has been detected. print(9E) should call cmn_err(9F) to post the message to the console on
behalf of the system. The following example demonstrates a typical print() entry point.

static int

xxprint(dev_t dev, char *str)

{

cmn_err(CE_CONT, “xx: %s\n”, str);

return (0);

}

dump() and print() Entry Points

Chapter 16 • Drivers for Block Devices 303

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edump-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprint-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edump-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7cpr-7
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edump-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprint-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprint-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcmn-err-9f

Disk Device Drivers
Disk devices represent an important class of block device drivers.

Disk ioctls
Oracle Solaris disk drivers need to support a minimum set of ioctl commands specific to
Oracle Solaris disk drivers. These I/O controls are specified in the dkio(7I) manual page. Disk
I/O controls transfer disk information to or from the device driver. An Oracle Solaris disk
device is supported by disk utility commands such as format(1M) and newfs(1M). The
mandatory Sun disk I/O controls are as follows:

DKIOCINFO Returns information that describes the disk controller

DKIOCGAPART Returns a disk's partition map

DKIOCSAPART Sets a disk's partition map

DKIOCGGEOM Returns a disk's geometry

DKIOCSGEOM Sets a disk's geometry

DKIOCGVTOC Returns a disk's Volume Table of Contents

DKIOCSVTOC Sets a disk's Volume Table of Contents

Disk Performance
The Oracle Solaris DDI/DKI provides facilities to optimize I/O transfers for improved file
system performance. A mechanism manages the list of I/O requests so as to optimize disk access
for a file system. See “Asynchronous Data Transfers (Block Drivers)” on page 299 for a
description of enqueuing an I/O request.

The diskhd structure is used to manage a linked list of I/O requests.

struct diskhd {

long b_flags; /* not used, needed for consistency*/

struct buf *b_forw, *b_back; /* queue of unit queues */

struct buf *av_forw, *av_back; /* queue of bufs for this unit */

long b_bcount; /* active flag */

};

The diskhd data structure has two buf pointers that the driver can manipulate. The av_forw
pointer points to the first active I/O request. The second pointer, av_back, points to the last
active request on the list.

Disk Device Drivers

Writing Device Drivers • March 2012304

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7dkio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mformat-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mnewfs-1m

A pointer to this structure is passed as an argument to disksort(9F), along with a pointer to the
current buf structure being processed. The disksort() routine sorts the buf requests to
optimize disk seek. The routine then inserts the buf pointer into the diskhd list. The
disksort() program uses the value that is in b_resid of the buf structure as a sort key. The
driver is responsible for setting this value. Most Sun disk drivers use the cylinder group as the
sort key. This approach optimizes the file system read-ahead accesses.

When data has been added to the diskhd list, the device needs to transfer the data. If the device
is not busy processing a request, the xxstart() routine pulls the first buf structure off the
diskhd list and starts a transfer.

If the device is busy, the driver should return from the xxstrategy() entry point. When the
hardware is done with the data transfer, an interrupt is generated. The driver's interrupt routine
is then called to service the device. After servicing the interrupt, the driver can then call the
start() routine to process the next buf structure in the diskhd list.

Disk Device Drivers

Chapter 16 • Drivers for Block Devices 305

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdisksort-9f

306

SCSI Target Drivers

The Oracle Solaris DDI/DKI divides the software interface to SCSI devices into two major parts:
target drivers and host bus adapter (HBA) drivers. Target refers to a driver for a device on a SCSI
bus, such as a disk or a tape drive. Host bus adapter refers to the driver for the SCSI controller on
the host machine. SCSA defines the interface between these two components. This chapter
discusses target drivers only. See Chapter 18, “SCSI Host Bus Adapter Drivers,” for information
on host bus adapter drivers.

Note – The terms “host bus adapter” and “HBA” are equivalent to “host adapter,” which is
defined in SCSI specifications.

This chapter provides information on the following subjects:

■ “Introduction to Target Drivers” on page 307
■ “Sun Common SCSI Architecture Overview” on page 308
■ “Hardware Configuration File” on page 311
■ “Declarations and Data Structures” on page 311
■ “Autoconfiguration for SCSI Target Drivers” on page 315
■ “Resource Allocation” on page 320
■ “Building and Transporting a Command” on page 323
■ “SCSI Options” on page 329

Introduction to Target Drivers
Target drivers can be either character or block device drivers, depending on the device. Drivers
for tape drives are usually character device drivers, while disks are handled by block device
drivers. This chapter describes how to write a SCSI target driver. The chapter discusses the
additional requirements that SCSA places on block and character drivers for SCSI target
devices.

17C H A P T E R 1 7

307

The following reference documents provide supplemental information needed by the designers
of target drivers and host bus adapter drivers.

Small Computer System Interface 2 (SCSI-2), ANSI/NCITS X3.131-1994, Global Engineering
Documents, 1998. ISBN 1199002488.

The Basics of SCSI, Fourth Edition, ANCOT Corporation, 1998. ISBN 0963743988.

Refer also to the SCSI command specification for the target device, provided by the hardware
vendor.

Sun Common SCSI Architecture Overview
The Sun Common SCSI Architecture (SCSA) is the Solaris DDI/DKI programming interface
for the transmission of SCSI commands from a target driver to a host bus adapter driver. This
interface is independent of the type of host bus adapter hardware, the platform, the processor
architecture, and the SCSI command being transported across the interface.

Conforming to the SCSA enables the target driver to pass SCSI commands to target devices
without knowledge of the hardware implementation of the host bus adapter.

The SCSA conceptually separates building the SCSI command from transporting the command
with data across the SCSI bus. The architecture defines the software interface between
high-level and low-level software components. The higher level software component consists of
one or more SCSI target drivers, which translate I/O requests into SCSI commands appropriate
for the peripheral device. The following example illustrates the SCSI architecture.

Sun Common SCSI Architecture Overview

Writing Device Drivers • March 2012308

The lower-level software component consists of a SCSA interface layer and one or more host
bus adapter drivers. The target driver is responsible for the generation of the proper SCSI
commands required to execute the desired function and for processing the results.

General Flow of Control
Assuming no transport errors occur, the following steps describe the general flow of control for
a read or write request.

1. The target driver's read(9E) or write(9E) entry point is invoked. physio(9F) is used to lock
down memory, prepare a buf structure, and call the strategy routine.

2. The target driver's strategy(9E) routine checks the request. strategy() then allocates a
scsi_pkt(9S) by using scsi_init_pkt(9F). The target driver initializes the packet and sets
the SCSI command descriptor block (CDB) using the scsi_setup_cdb(9F) function. The
target driver also specifies a timeout. Then, the driver provides a pointer to a callback
function. The callback function is called by the host bus adapter driver on completion of the
command. The buf(9S) pointer should be saved in the SCSI packet's target-private space.

3. The target driver submits the packet to the host bus adapter driver by using
scsi_transport(9F). The target driver is then free to accept other requests. The target
driver should not access the packet while the packet is in transport. If either the host bus
adapter driver or the target supports queueing, new requests can be submitted while the
packet is in transport.

4. As soon as the SCSI bus is free and the target not busy, the host bus adapter driver selects the
target and passes the CDB. The target driver executes the command. The target then
performs the requested data transfers.

FIGURE 17–1 SCSA Block Diagram

Applications

Hardware

Kernel

SCSI hardware
interface

SCSI hardware
interface

Application
program 1

Application
program 2

Host bus adapter
driver 1

Target
driver 2

Target
driver 3

Target
driver 1

Sun Common SCSI Architecture (SCSA)

Host bus adapter
driver 2

System calls

Sun Common SCSI Architecture Overview

Chapter 17 • SCSI Target Drivers 309

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Ewrite-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fphysio-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-setup-cdb-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-transport-9f

5. After the target sends completion status and the command completes, the host bus adapter
driver notifies the target driver. To perform the notification, the host calls the completion
function that was specified in the SCSI packet. At this time the host bus adapter driver is no
longer responsible for the packet, and the target driver has regained ownership of the
packet.

6. The SCSI packet's completion routine analyzes the returned information. The completion
routine then determines whether the SCSI operation was successful. If a failure has
occurred, the target driver retries the command by calling scsi_transport(9F) again. If the
host bus adapter driver does not support auto request sense, the target driver must submit a
request sense packet to retrieve the sense data in the event of a check condition.

7. After successful completion or if the command cannot be retried, the target driver calls
scsi_destroy_pkt(9F). scsi_destroy_pkt() synchronizes the data. scsi_destroy_pkt()
then frees the packet. If the target driver needs to access the data before freeing the packet,
scsi_sync_pkt(9F) is called.

8. Finally, the target driver notifies the requesting application that the read or write transaction
is complete. This notification is made by returning from the read(9E) entry point in the
driver for character devices. Otherwise, notification is made indirectly through
biodone(9F).

SCSA allows the execution of many of such operations, both overlapped and queued, at various
points in the process. The model places the management of system resources on the host bus
adapter driver. The software interface enables the execution of target driver functions on host
bus adapter drivers by using SCSI bus adapters of varying degrees of sophistication.

SCSA Functions
SCSA defines functions to manage the allocation and freeing of resources, the sensing and
setting of control states, and the transport of SCSI commands. These functions are listed in the
following table.

TABLE 17–1 Standard SCSA Functions

Function Name Category

scsi_abort(9F) Error handling

scsi_alloc_consistent_buf(9F)

scsi_destroy_pkt(9F)

scsi_dmafree(9F)

scsi_free_consistent_buf(9F)

scsi_ifgetcap(9F) Transport information and control

Sun Common SCSI Architecture Overview

Writing Device Drivers • March 2012310

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-destroy-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-sync-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eread-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fbiodone-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-abort-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-alloc-consistent-buf-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-destroy-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-dmafree-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-free-consistent-buf-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-ifgetcap-9f

TABLE 17–1 Standard SCSA Functions (Continued)
Function Name Category

scsi_ifsetcap(9F)

scsi_init_pkt(9F) Resource management

scsi_poll(9F) Polled I/O

scsi_probe(9F) Probe functions

scsi_reset(9F)

scsi_setup_cdb(9F) CDB initialization function

scsi_sync_pkt(9F)

scsi_transport(9F) Command transport

scsi_unprobe(9F)

Note – If your driver needs to work with a SCSI-1 device, use the makecom(9F).

Hardware Configuration File
Because SCSI devices are not self-identifying, a hardware configuration file is required for a
target driver. See the driver.conf(4) and scsi_free_consistent_buf(9F) man pages for
details. The following is a typical configuration file:

name="xx" class="scsi" target=2 lun=0;

The system reads the file during autoconfiguration. The system uses the class property to
identify the driver's possible parent. Then, the system attempts to attach the driver to any parent
driver that is of class scsi. All host bus adapter drivers are of this class. Using the class property
rather than the parent property is preferred. This approach enables any host bus adapter driver
that finds the expected device at the specified target and lun IDs to attach to the target. The
target driver is responsible for verifying the class in its probe(9E) routine.

Declarations and Data Structures
Target drivers must include the header file <sys/scsi/scsi.h>.

SCSI target drivers must use the following command to generate a binary module:

ld -r xx xx.o -N"misc/scsi"

Declarations and Data Structures

Chapter 17 • SCSI Target Drivers 311

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-ifsetcap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-poll-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-reset-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-setup-cdb-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-sync-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-unprobe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmakecom-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4driver.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-free-consistent-buf-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprobe-9e

scsi_device Structure
The host bus adapter driver allocates and initializes a scsi_device(9S) structure for the target
driver before either the probe(9E) or attach(9E) routine is called. This structure stores
information about each SCSI logical unit, including pointers to information areas that contain
both generic and device-specific information. One scsi_device(9S) structure exists for each
logical unit that is attached to the system. The target driver can retrieve a pointer to this
structure by calling ddi_get_driver_private(9F).

Caution – Because the host bus adapter driver uses the private field in the target device's
dev_info structure, target drivers must not use ddi_set_driver_private(9F).

The scsi_device(9S) structure contains the following fields:

struct scsi_device {

struct scsi_address sd_address; /* opaque address */

dev_info_t *sd_dev; /* device node */

kmutex_t sd_mutex;

void *sd_reserved;

struct scsi_inquiry *sd_inq;

struct scsi_extended_sense *sd_sense;

caddr_t sd_private;

};

where:

sd_address Data structure that is passed to the routines for SCSI resource allocation.

sd_dev Pointer to the target's dev_info structure.

sd_mutex Mutex for use by the target driver. This mutex is initialized by the host bus
adapter driver and can be used by the target driver as a per-device mutex. Do
not hold this mutex across a call to scsi_transport(9F) or scsi_poll(9F). See
Chapter 3, “Multithreading,” for more information on mutexes.

sd_inq Pointer for the target device's SCSI inquiry data. The scsi_probe(9F) routine
allocates a buffer, fills the buffer in with inquiry data, and attaches the buffer to
this field.

sd_sense Pointer to a buffer to contain SCSI request sense data from the device. The
target driver must allocate and manage this buffer. See “attach() Entry Point
(SCSI Target Drivers)” on page 317.

sd_private Pointer field for use by the target driver. This field is commonly used to store a
pointer to a private target driver state structure.

Declarations and Data Structures

Writing Device Drivers • March 2012312

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-get-driver-private-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-set-driver-private-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-poll-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-probe-9f

scsi_pkt Structure (Target Drivers)
The scsi_pkt structure contains the following fields:

struct scsi_pkt {

opaque_t pkt_ha_private; /* private data for host adapter */

struct scsi_address pkt_address; /* destination packet is for */

opaque_t pkt_private; /* private data for target driver */

void (*pkt_comp)(struct scsi_pkt *); /* completion routine */

uint_t pkt_flags; /* flags */

int pkt_time; /* time allotted to complete command */

uchar_t *pkt_scbp; /* pointer to status block */

uchar_t *pkt_cdbp; /* pointer to command block */

ssize_t pkt_resid; /* data bytes not transferred */

uint_t pkt_state; /* state of command */

uint_t pkt_statistics; /* statistics */

uchar_t pkt_reason; /* reason completion called */

};

where:

pkt_address Target device's address set by scsi_init_pkt(9F).

pkt_private Place to store private data for the target driver. pkt_private is commonly used
to save the buf(9S) pointer for the command.

pkt_comp Address of the completion routine. The host bus adapter driver calls this
routine when the driver has transported the command. Transporting the
command does not mean that the command succeeded. The target might
have been busy. Another possibility is that the target might not have
responded before the time out period elapsed. See the description for
pkt_time field. The target driver must supply a valid value in this field. This
value can be NULL if the driver does not want to be notified.

Note – Two different SCSI callback routines are provided. The pkt_comp field identifies a
completion callback routine, which is called when the host bus adapter completes its processing.
A resource callback routine is also available, which is called when currently unavailable
resources are likely to be available. See the scsi_init_pkt(9F) man page.

pkt_flags Provides additional control information, for example, to transport the
command without disconnect privileges (FLAG_NODISCON) or to disable
callbacks (FLAG_NOINTR). See the scsi_pkt(9S) man page for details.

pkt_time Time out value in seconds. If the command is not completed within this
time, the host bus adapter calls the completion routine with pkt_reason

set to CMD_TIMEOUT. The target driver should set this field to longer than

Declarations and Data Structures

Chapter 17 • SCSI Target Drivers 313

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s

the maximum time the command might take. If the timeout is zero, no
timeout is requested. Timeout starts when the command is transmitted on
the SCSI bus.

pkt_scbp Pointer to the block for SCSI status completion. This field is filled in by the
host bus adapter driver.

pkt_cdbp Pointer to the SCSI command descriptor block, the actual command to be
sent to the target device. The host bus adapter driver does not interpret
this field. The target driver must fill the field in with a command that the
target device can process.

pkt_resid Residual of the operation. The pkt_resid field has two different uses
depending on how pkt_resid is used. When pkt_resid is used to allocate
DMA resources for a command scsi_init_pkt(9F), pkt_resid indicates
the number of unallocable bytes. DMA resources might not be allocated
due to DMA hardware scatter-gather or other device limitations. After
command transport, pkt_resid indicates the number of non-transferable
data bytes. The field is filled in by the host bus adapter driver before the
completion routine is called.

pkt_state Indicates the state of the command. The host bus adapter driver fills in
this field as the command progresses. One bit is set in this field for each of
the five following command states:
■ STATE_GOT_BUS – Acquired the bus
■ STATE_GOT_TARGET – Selected the target
■ STATE_SENT_CMD – Sent the command
■ STATE_XFERRED_DATA – Transferred data, if appropriate
■ STATE_GOT_STATUS – Received status from the device

pkt_statistics Contains transport-related statistics set by the host bus adapter driver.

pkt_reason Gives the reason the completion routine was called. The completion
routine decodes this field. The routine then takes the appropriate action.
If the command completes, that is, no transport errors occur, this field is
set to CMD_CMPLT. Other values in this field indicate an error. After a
command is completed, the target driver should examine the pkt_scbp
field for a check condition status. See the scsi_pkt(9S) man page for
more information.

Declarations and Data Structures

Writing Device Drivers • March 2012314

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s

Autoconfiguration for SCSI Target Drivers
SCSI target drivers must implement the standard autoconfiguration routines _init(9E),
_fini(9E), and _info(9E). See “Loadable Driver Interfaces” on page 97 for more information.

The following routines are also required, but these routines must perform specific SCSI and
SCSA processing:

■ probe(9E)
■ attach(9E)
■ detach(9E)
■ getinfo(9E)

probe() Entry Point (SCSI Target Drivers)
SCSI target devices are not self-identifying, so target drivers must have a probe(9E) routine.
This routine must determine whether the expected type of device is present and responding.

The general structure and the return codes of the probe(9E) routine are the same as the
structure and return codes for other device drivers. SCSI target drivers must use the
scsi_probe(9F) routine in their probe(9E) entry point. scsi_probe(9F) sends a SCSI inquiry
command to the device and returns a code that indicates the result. If the SCSI inquiry
command is successful, scsi_probe(9F) allocates a scsi_inquiry(9S) structure and fills the
structure in with the device's inquiry data. Upon return from scsi_probe(9F), the sd_inq field
of the scsi_device(9S) structure points to this scsi_inquiry(9S) structure.

Because probe(9E) must be stateless, the target driver must call scsi_unprobe(9F) before
probe(9E) returns, even if scsi_probe(9F) fails.

Example 17–1 shows a typical probe(9E) routine. The routine in the example retrieves the
scsi_device(9S) structure from the private field of its dev_info structure. The routine also
retrieves the device's SCSI target and logical unit numbers for printing in messages. The
probe(9E) routine then calls scsi_probe(9F) to verify that the expected device, a printer in this
case, is present.

If successful, scsi_probe(9F) attaches the device's SCSI inquiry data in a scsi_inquiry(9S)
structure to the sd_inq field of the scsi_device(9S) structure. The driver can then determine
whether the device type is a printer, which is reported in the inq_dtype field. If the device is a
printer, the type is reported with scsi_log(9F), using scsi_dname(9F) to convert the device
type into a string.

EXAMPLE 17–1 SCSI Target Driver probe(9E) Routine

static int

xxprobe(dev_info_t *dip)

Autoconfiguration for SCSI Target Drivers

Chapter 17 • SCSI Target Drivers 315

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-info-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Egetinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-inquiry-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-inquiry-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-unprobe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-inquiry-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-log-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-dname-9f

EXAMPLE 17–1 SCSI Target Driver probe(9E) Routine (Continued)

{

struct scsi_device *sdp;

int rval, target, lun;

/*

* Get a pointer to the scsi_device(9S) structure

*/

sdp = (struct scsi_device *)ddi_get_driver_private(dip);

target = sdp->sd_address.a_target;

lun = sdp->sd_address.a_lun;

/*

* Call scsi_probe(9F) to send the Inquiry command. It will

* fill in the sd_inq field of the scsi_device structure.

*/

switch (scsi_probe(sdp, NULL_FUNC)) {

case SCSIPROBE_FAILURE:

case SCSIPROBE_NORESP:

case SCSIPROBE_NOMEM:

/*

* In these cases, device might be powered off,

* in which case we might be able to successfully

* probe it at some future time - referred to

* as ‘deferred attach’.

*/

rval = DDI_PROBE_PARTIAL;

break;

case SCSIPROBE_NONCCS:

default:

/*

* Device isn’t of the type we can deal with,

* and/or it will never be usable.

*/

rval = DDI_PROBE_FAILURE;

break;

case SCSIPROBE_EXISTS:

/*

* There is a device at the target/lun address. Check

* inq_dtype to make sure that it is the right device

* type. See scsi_inquiry(9S)for possible device types.

*/

switch (sdp->sd_inq->inq_dtype) {

case DTYPE_PRINTER:

scsi_log(sdp, "xx", SCSI_DEBUG,

"found %s device at target%d, lun%d\n",
scsi_dname((int)sdp->sd_inq->inq_dtype),

target, lun);

rval = DDI_PROBE_SUCCESS;

break;

case DTYPE_NOTPRESENT:

default:

rval = DDI_PROBE_FAILURE;

break;

}

}

scsi_unprobe(sdp);

Autoconfiguration for SCSI Target Drivers

Writing Device Drivers • March 2012316

EXAMPLE 17–1 SCSI Target Driver probe(9E) Routine (Continued)

return (rval);

}

A more thorough probe(9E) routine could check scsi_inquiry(9S) to make sure that the
device is of the type expected by a particular driver.

attach() Entry Point (SCSI Target Drivers)
After the probe(9E) routine has verified that the expected device is present, attach(9E) is
called. attach() performs these tasks:

■ Allocates and initializes any per-instance data.
■ Creates minor device node information.
■ Restores the hardware state of a device after a suspension of the device or the system. See

“attach() Entry Point” on page 104 for details.

A SCSI target driver needs to call scsi_probe(9F) again to retrieve the device's inquiry data.
The driver must also create a SCSI request sense packet. If the attach is successful, the attach()
function should not call scsi_unprobe(9F).

Three routines are used to create the request sense packet: scsi_alloc_consistent_buf(9F),
scsi_init_pkt(9F), and scsi_setup_cdb(9F). scsi_alloc_consistent_buf(9F) allocates a
buffer that is suitable for consistent DMA. scsi_alloc_consistent_buf() then returns a
pointer to a buf(9S) structure. The advantage of a consistent buffer is that no explicit
synchronization of the data is required. In other words, the target driver can access the data
after the callback. The sd_sense element of the device's scsi_device(9S) structure must be
initialized with the address of the sense buffer. scsi_init_pkt(9F) creates and partially
initializes a scsi_pkt(9S) structure. scsi_setup_cdb(9F) creates a SCSI command descriptor
block, in this case by creating a SCSI request sense command.

Note that a SCSI device is not self-identifying and does not have a reg property. As a result, the
driver must set the pm-hardware-state property. Setting pm-hardware-state informs the
framework that this device needs to be suspended and then resumed.

The following example shows the SCSI target driver's attach() routine.

EXAMPLE 17–2 SCSI Target Driver attach(9E) Routine

static int

xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)

{

struct xxstate *xsp;

struct scsi_pkt *rqpkt = NULL;

Autoconfiguration for SCSI Target Drivers

Chapter 17 • SCSI Target Drivers 317

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-inquiry-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-unprobe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-alloc-consistent-buf-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-setup-cdb-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-alloc-consistent-buf-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-setup-cdb-9f

EXAMPLE 17–2 SCSI Target Driver attach(9E) Routine (Continued)

struct scsi_device *sdp;

struct buf *bp = NULL;

int instance;

instance = ddi_get_instance(dip);

switch (cmd) {

case DDI_ATTACH:

break;

case DDI_RESUME:

/* For information, see the "Directory Memory Access (DMA)" */

/* chapter in this book. */

default:

return (DDI_FAILURE);

}

/*

* Allocate a state structure and initialize it.

*/

xsp = ddi_get_soft_state(statep, instance);

sdp = (struct scsi_device *)ddi_get_driver_private(dip);

/*

* Cross-link the state and scsi_device(9S) structures.

*/

sdp->sd_private = (caddr_t)xsp;

xsp->sdp = sdp;

/*

* Call scsi_probe(9F) again to get and validate inquiry data.

* Allocate a request sense buffer. The buf(9S) structure

* is set to NULL to tell the routine to allocate a new one.

* The callback function is set to NULL_FUNC to tell the

* routine to return failure immediately if no

* resources are available.

*/

bp = scsi_alloc_consistent_buf(&sdp->sd_address, NULL,

SENSE_LENGTH, B_READ, NULL_FUNC, NULL);

if (bp == NULL)

goto failed;

/*

* Create a Request Sense scsi_pkt(9S) structure.

*/

rqpkt = scsi_init_pkt(&sdp->sd_address, NULL, bp,

CDB_GROUP0, 1, 0, PKT_CONSISTENT, NULL_FUNC, NULL);

if (rqpkt == NULL)

goto failed;

/*

* scsi_alloc_consistent_buf(9F) returned a buf(9S) structure.

* The actual buffer address is in b_un.b_addr.

*/

sdp->sd_sense = (struct scsi_extended_sense *)bp->b_un.b_addr;

/*

* Create a Group0 CDB for the Request Sense command

*/

if (scsi_setup_cdb((union scsi_cdb *)rqpkt->pkt_cdbp,

SCMD_REQUEST_SENSE, 0, SENSE__LENGTH, 0) == 0)

goto failed;;

/*

* Fill in the rest of the scsi_pkt structure.

Autoconfiguration for SCSI Target Drivers

Writing Device Drivers • March 2012318

EXAMPLE 17–2 SCSI Target Driver attach(9E) Routine (Continued)

* xxcallback() is the private command completion routine.

*/

rqpkt->pkt_comp = xxcallback;

rqpkt->pkt_time = 30; /* 30 second command timeout */

rqpkt->pkt_flags |= FLAG_SENSING;

xsp->rqs = rqpkt;

xsp->rqsbuf = bp;

/*

* Create minor nodes, report device, and do any other initialization. */

* Since the device does not have the ’reg’ property,

* cpr will not call its DDI_SUSPEND/DDI_RESUME entries.

* The following code is to tell cpr that this device

* needs to be suspended and resumed.

*/

(void) ddi_prop_update_string(device, dip,

"pm-hardware-state", "needs-suspend-resume");
xsp->open = 0;

return (DDI_SUCCESS);

failed:

if (bp)

scsi_free_consistent_buf(bp);

if (rqpkt)

scsi_destroy_pkt(rqpkt);

sdp->sd_private = (caddr_t)NULL;

sdp->sd_sense = NULL;

scsi_unprobe(sdp);

/* Free any other resources, such as the state structure. */

return (DDI_FAILURE);

}

detach() Entry Point (SCSI Target Drivers)
The detach(9E) entry point is the inverse of attach(9E). detach() must free all resources that
were allocated in attach(). If successful, the detach should call scsi_unprobe(9F). The
following example shows a target driver detach() routine.

EXAMPLE 17–3 SCSI Target Driver detach(9E) Routine

static int

xxdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)

{

struct xxstate *xsp;

switch (cmd) {

case DDI_DETACH:

/*

* Normal detach(9E) operations, such as getting a

* pointer to the state structure

*/

scsi_free_consistent_buf(xsp->rqsbuf);

scsi_destroy_pkt(xsp->rqs);

xsp->sdp->sd_private = (caddr_t)NULL;

Autoconfiguration for SCSI Target Drivers

Chapter 17 • SCSI Target Drivers 319

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-unprobe-9f

EXAMPLE 17–3 SCSI Target Driver detach(9E) Routine (Continued)

xsp->sdp->sd_sense = NULL;

scsi_unprobe(xsp->sdp);

/*

* Remove minor nodes.

* Free resources, such as the state structure and properties.

*/

return (DDI_SUCCESS);

case DDI_SUSPEND:

/* For information, see the "Directory Memory Access (DMA)" */

/* chapter in this book. */

default:

return (DDI_FAILURE);

}

}

getinfo() Entry Point (SCSI Target Drivers)
The getinfo(9E) routine for SCSI target drivers is much the same as for other drivers (see
“getinfo() Entry Point” on page 110 for more information on DDI_INFO_DEVT2INSTANCE

case). However, in the DDI_INFO_DEVT2DEVINFO case of the getinfo() routine, the target driver
must return a pointer to its dev_info node. This pointer can be saved in the driver state
structure or can be retrieved from the sd_dev field of the scsi_device(9S) structure. The
following example shows an alternative SCSI target driver getinfo() code fragment.

EXAMPLE 17–4 Alternative SCSI Target Driver getinfo() Code Fragment

case DDI_INFO_DEVT2DEVINFO:

dev = (dev_t)arg;

instance = getminor(dev);

xsp = ddi_get_soft_state(statep, instance);

if (xsp == NULL)

return (DDI_FAILURE);

*result = (void *)xsp->sdp->sd_dev;

return (DDI_SUCCESS);

Resource Allocation
To send a SCSI command to the device, the target driver must create and initialize a
scsi_pkt(9S) structure. This structure must then be passed to the host bus adapter driver.

scsi_init_pkt() Function
The scsi_init_pkt(9F) routine allocates and zeroes a scsi_pkt(9S) structure.
scsi_init_pkt() also sets pointers to pkt_private, *pkt_scbp, and *pkt_cdbp. Additionally,

Resource Allocation

Writing Device Drivers • March 2012320

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Egetinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s

scsi_init_pkt() provides a callback mechanism to handle the case where resources are not
available. This function has the following syntax:

struct scsi_pkt *scsi_init_pkt(struct scsi_address *ap,
struct scsi_pkt *pktp, struct buf *bp, int cmdlen,
int statuslen, int privatelen, int flags,
int (*callback)(caddr_t), caddr_t arg)

where:

ap Pointer to a scsi_address structure. ap is the sd_address field of the device's
scsi_device(9S) structure.

pktp Pointer to the scsi_pkt(9S) structure to be initialized. If this pointer is set to
NULL, a new packet is allocated.

bp Pointer to a buf(9S) structure. If this pointer is not null and has a valid byte
count, DMA resources are allocated.

cmdlen Length of the SCSI command descriptor block in bytes.

statuslen Required length of the SCSI status completion block in bytes.

privatelen Number of bytes to allocate for the pkt_private field.

flags Set of flags:
■ PKT_CONSISTENT – This bit must be set if the DMA buffer was allocated using

scsi_alloc_consistent_buf(9F). In this case, the host bus adapter driver
guarantees that the data transfer is properly synchronized before performing
the target driver's command completion callback.

■ PKT_DMA_PARTIAL – This bit can be set if the driver accepts a partial DMA
mapping. If set, scsi_init_pkt(9F) allocates DMA resources with the
DDI_DMA_PARTIAL flag set. The pkt_resid field of the scsi_pkt(9S) structure
can be returned with a nonzero residual. A nonzero value indicates the
number of bytes for which scsi_init_pkt(9F) was unable to allocate DMA
resources.

callback Specifies the action to take if resources are not available. If set to NULL_FUNC,
scsi_init_pkt(9F) returns the value NULL immediately. If set to SLEEP_FUNC,
scsi_init_pkt() does not return until resources are available. Any other valid
kernel address is interpreted as the address of a function to be called when
resources are likely to be available.

arg Parameter to pass to the callback function.

The scsi_init_pkt() routine synchronizes the data prior to transport. If the driver needs to
access the data after transport, the driver should call scsi_sync_pkt(9F) to flush any
intermediate caches. The scsi_sync_pkt() routine can be used to synchronize any cached
data.

Resource Allocation

Chapter 17 • SCSI Target Drivers 321

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-alloc-consistent-buf-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-sync-pkt-9f

scsi_sync_pkt() Function
If the target driver needs to resubmit the packet after changing the data, scsi_sync_pkt(9F)
must be called before calling scsi_transport(9F). However, if the target driver does not need
to access the data, scsi_sync_pkt() does not need to be called after the transport.

scsi_destroy_pkt() Function
The scsi_destroy_pkt(9F) routine synchronizes any remaining cached data that is associated
with the packet, if necessary. The routine then frees the packet and associated command, status,
and target driver-private data areas. This routine should be called in the command completion
routine.

scsi_alloc_consistent_buf() Function
For most I/O requests, the data buffer passed to the driver entry points is not accessed directly
by the driver. The buffer is just passed on to scsi_init_pkt(9F). If a driver sends SCSI
commands that operate on buffers that the driver itself examines, the buffers should be DMA
consistent. The SCSI request sense command is a good example. The
scsi_alloc_consistent_buf(9F) routine allocates a buf(9S) structure and a data buffer that is
suitable for DMA-consistent operations. The HBA performs any necessary synchronization of
the buffer before performing the command completion callback.

Note – scsi_alloc_consistent_buf(9F) uses scarce system resources. Thus, you should use
scsi_alloc_consistent_buf() sparingly.

scsi_free_consistent_buf() Function
scsi_free_consistent_buf(9F) releases a buf(9S) structure and the associated data buffer
allocated with scsi_alloc_consistent_buf(9F). See “attach() Entry Point (SCSI Target
Drivers)” on page 317 and “detach() Entry Point (SCSI Target Drivers)” on page 319 for
examples.

Resource Allocation

Writing Device Drivers • March 2012322

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-sync-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-destroy-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-alloc-consistent-buf-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-alloc-consistent-buf-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-free-consistent-buf-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-alloc-consistent-buf-9f

Building and Transporting a Command
The host bus adapter driver is responsible for transmitting the command to the device.
Furthermore, the driver is responsible for handling the low-level SCSI protocol. The
scsi_transport(9F) routine hands a packet to the host bus adapter driver for transmission.
The target driver has the responsibility to create a valid scsi_pkt(9S) structure.

Building a Command
The routine scsi_init_pkt(9F) allocates space for a SCSI CDB, allocates DMA resources if
necessary, and sets the pkt_flags field, as shown in this example:

pkt = scsi_init_pkt(&sdp->sd_address, NULL, bp,

CDB_GROUP0, 1, 0, 0, SLEEP_FUNC, NULL);

This example creates a new packet along with allocating DMA resources as specified in the
passed buf(9S) structure pointer. A SCSI CDB is allocated for a Group 0 (6-byte) command.
The pkt_flags field is set to zero, but no space is allocated for the pkt_private field. This call
to scsi_init_pkt(9F), because of the SLEEP_FUNC parameter, waits indefinitely for resources if
no resources are currently available.

The next step is to initialize the SCSI CDB, using the scsi_setup_cdb(9F) function:

if (scsi_setup_cdb((union scsi_cdb *)pkt->pkt_cdbp,

SCMD_READ, bp->b_blkno, bp->b_bcount >> DEV_BSHIFT, 0) == 0)

goto failed;

This example builds a Group 0 command descriptor block. The example fills in the pkt_cdbp
field as follows:

■ The command itself is in byte 0. The command is set from the parameter SCMD_READ.
■ The address field is in bits 0-4 of byte 1 and bytes 2 and 3. The address is set from

bp->b_blkno.
■ The count field is in byte 4. The count is set from the last parameter. In this case, count is set

to bp->b_bcount >> DEV_BSHIFT, where DEV_BSHIFT is the byte count of the transfer
converted to the number of blocks.

Note – scsi_setup_cdb(9F) does not support setting a target device's logical unit number
(LUN) in bits 5-7 of byte 1 of the SCSI command block. This requirement is defined by SCSI-1.
For SCSI-1 devices that require the LUN bits set in the command block, use makecom_g0(9F) or
some equivalent rather than scsi_setup_cdb(9F).

Building and Transporting a Command

Chapter 17 • SCSI Target Drivers 323

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-setup-cdb-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-setup-cdb-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmakecom-g0-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-setup-cdb-9f

After initializing the SCSI CDB, initialize three other fields in the packet and store as a pointer
to the packet in the state structure.

pkt->pkt_private = (opaque_t)bp;

pkt->pkt_comp = xxcallback;

pkt->pkt_time = 30;

xsp->pkt = pkt;

The buf(9S) pointer is saved in the pkt_private field for later use in the completion routine.

Setting Target Capabilities
The target drivers use scsi_ifsetcap(9F) to set the capabilities of the host adapter driver. A
cap is a name-value pair, consisting of a null-terminated character string and an integer value.
The current value of a capability can be retrieved using scsi_ifgetcap(9F).
scsi_ifsetcap(9F) allows capabilities to be set for all targets on the bus.

In general, however, setting capabilities of targets that are not owned by the target driver is not
recommended. This practice is not universally supported by HBA drivers. Some capabilities,
such as disconnect and synchronous, can be set by default by the HBA driver. Other capabilities
might need to be set explicitly by the target driver. Wide-xfer and tagged-queueing must be set
by the target drive, for example.

Transporting a Command
After the scsi_pkt(9S) structure is filled in, use scsi_transport(9F) to hand the structure to
the bus adapter driver:

if (scsi_transport(pkt) != TRAN_ACCEPT) {

bp->b_resid = bp->b_bcount;

bioerror(bp, EIO);

biodone(bp);

}

The other return values from scsi_transport(9F) are as follows:

■ TRAN_BUSY – A command for the specified target is already in progress.
■ TRAN_BADPKT – The DMA count in the packet was too large, or the host adapter driver

rejected this packet for other reasons.

■ TRAN_FATAL_ERROR – The host adapter driver is unable to accept this packet.

Note – The mutex sd_mutex in the scsi_device(9S) structure must not be held across a call to
scsi_transport(9F).

Building and Transporting a Command

Writing Device Drivers • March 2012324

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sbuf-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-ifsetcap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-ifgetcap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-ifsetcap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-transport-9f

If scsi_transport(9F) returns TRAN_ACCEPT, the packet becomes the responsibility of the host
bus adapter driver. The packet should not be accessed by the target driver until the command
completion routine is called.

Synchronous scsi_transport() Function
If FLAG_NOINTR is set in the packet, then scsi_transport(9F) does not return until the
command is complete. No callback is performed.

Note – Do not use FLAG_NOINTR in interrupt context.

Command Completion
When the host bus adapter driver is through with the command, the driver invokes the packet's
completion callback routine. The driver then passes a pointer to the scsi_pkt(9S) structure as a
parameter. After decoding the packet, the completion routine takes the appropriate action.

Example 17–5 presents a simple completion callback routine. This code checks for transport
failures. In case of failure, the routine gives up rather than retrying the command. If the target is
busy, extra code is required to resubmit the command at a later time.

If the command results in a check condition, the target driver needs to send a request sense
command unless auto request sense has been enabled.

Otherwise, the command succeeded. At the end of processing for the command, the command
destroys the packet and calls biodone(9F).

In the event of a transport error, such as a bus reset or parity problem, the target driver can
resubmit the packet by using scsi_transport(9F). No values in the packet need to be changed
prior to resubmitting.

The following example does not attempt to retry incomplete commands.

Note – Normally, the target driver's callback function is called in interrupt context.
Consequently, the callback function should never sleep.

EXAMPLE 17–5 Completion Routine for a SCSI Driver

static void

xxcallback(struct scsi_pkt *pkt)

{

struct buf *bp;

struct xxstate *xsp;

minor_t instance;

Building and Transporting a Command

Chapter 17 • SCSI Target Drivers 325

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fbiodone-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-transport-9f

EXAMPLE 17–5 Completion Routine for a SCSI Driver (Continued)

struct scsi_status *ssp;

/*

* Get a pointer to the buf(9S) structure for the command

* and to the per-instance data structure.

*/

bp = (struct buf *)pkt->pkt_private;

instance = getminor(bp->b_edev);

xsp = ddi_get_soft_state(statep, instance);

/*

* Figure out why this callback routine was called

*/

if (pkt->pkt_reason != CMP_CMPLT) {

bp->b_resid = bp->b_bcount;

bioerror(bp, EIO);

scsi_destroy_pkt(pkt); /* Release resources */

biodone(bp); /* Notify waiting threads */ ;

} else {

/*

* Command completed, check status.

* See scsi_status(9S)

*/

ssp = (struct scsi_status *)pkt->pkt_scbp;

if (ssp->sts_busy) {

/* error, target busy or reserved */

} else if (ssp->sts_chk) {

/* Send a request sense command. */

} else {

bp->b_resid = pkt->pkt_resid; /* Packet completed OK */

scsi_destroy_pkt(pkt);

biodone(bp);

}

}

}

Reuse of Packets
A target driver can reuse packets in the following ways:

■ Resubmit the packet unchanged.
■ Use scsi_sync_pkt(9F) to synchronize the data. Then, process the data in the driver.

Finally, resubmit the packet.
■ Free DMA resources, using scsi_dmafree(9F), and pass the pkt pointer to

scsi_init_pkt(9F) for binding to a new bp. The target driver is responsible for
reinitializing the packet. The CDB has to have the same length as the previous CDB.

■ If only partial DMA is allocated during the first call to scsi_init_pkt(9F), subsequent calls
to scsi_init_pkt(9F) can be made for the same packet. Calls can be made to bp as well to
adjust the DMA resources to the next portion of the transfer.

Building and Transporting a Command

Writing Device Drivers • March 2012326

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-sync-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-dmafree-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-init-pkt-9f

Auto-Request Sense Mode
Auto-request sense mode is most desirable if queuing is used, whether the queuing is tagged or
untagged. A contingent allegiance condition is cleared by any subsequent command and,
consequently, the sense data is lost. Most HBA drivers start the next command before
performing the target driver callback. Other HBA drivers can use a separate, lower-priority
thread to perform the callbacks. This approach might increase the time needed to notify the
target driver that the packet completed with a check condition. In this case, the target driver
might not be able to submit a request sense command in time to retrieve the sense data.

To avoid this loss of sense data, the HBA driver, or controller, should issue a request sense
command if a check condition has been detected. This mode is known as auto-request sense
mode. Note that not all HBA drivers are capable of auto-request sense mode, and some drivers
can only operate with auto-request sense mode enabled.

A target driver enables auto-request-sense mode by using scsi_ifsetcap(9F). The following
example shows auto-request sense enabling.

EXAMPLE 17–6 Enabling Auto-Request Sense Mode

static int

xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)

{

struct xxstate *xsp;

struct scsi_device *sdp = (struct scsi_device *)

ddi_get_driver_private(dip);

/*

* Enable auto-request-sense. An auto-request-sense command might

* fail due to a BUSY condition or transport error. Therefore,

* it is recommended to allocate a separate request sense

* packet as well.

* Note that scsi_ifsetcap(9F) can return -1, 0, or 1

*/

xsp->sdp_arq_enabled =

((scsi_ifsetcap(ROUTE, "auto-rqsense", 1, 1) == 1) ? 1 : 0);

/*

* If the HBA driver supports auto request sense then the

* status blocks should be sizeof (struct scsi_arq_status).

* Else, one byte is sufficient.

*/

xsp->sdp_cmd_stat_size = (xsp->sdp_arq_enabled ?

sizeof (struct scsi_arq_status) : 1);

/* ... */

}

If a packet is allocated using scsi_init_pkt(9F) and auto-request sense is desired on this
packet, additional space is needed. The target driver must request this space for the status block
to hold the auto-request sense structure. The sense length used in the request sense command is
sizeof, from struct scsi_extended_sense. Auto-request sense can be disabled per individual
packet by allocating sizeof, from struct scsi_status, for the status block.

Building and Transporting a Command

Chapter 17 • SCSI Target Drivers 327

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-ifsetcap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-init-pkt-9f

The packet is submitted using scsi_transport(9F) as usual. When a check condition occurs
on this packet, the host adapter driver takes the following steps:

■ Issues a request sense command if the controller does not have auto-request sense capability
■ Obtains the sense data
■ Fills in the scsi_arq_status information in the packet's status block
■ Sets STATE_ARQ_DONE in the packet's pkt_state field
■ Calls the packet's callback handler (pkt_comp())

The target driver's callback routine should verify that sense data is available by checking the
STATE_ARQ_DONE bit in pkt_state. STATE_ARQ_DONE implies that a check condition has
occurred and that a request sense has been performed. If auto-request sense has been
temporarily disabled in a packet, subsequent retrieval of the sense data cannot be guaranteed.

The target driver should then verify whether the auto-request sense command completed
successfully and decode the sense data.

Dump Handling
The dump(9E) entry point copies a portion of virtual address space directly to the specified
device in the case of system failure or checkpoint operation. See the cpr(7) and dump(9E) man
pages. The dump(9E) entry point must be capable of performing this operation without the use
of interrupts.

The arguments for dump() are as follows:

dev Device number of the dump device

addr Kernel virtual address at which to start the dump

blkno First destination block on the device

nblk Number of blocks to dump

EXAMPLE 17–7 dump(9E) Routine

static int

xxdump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)

{

struct xxstate *xsp;

struct buf *bp;

struct scsi_pkt *pkt;

int rval;

int instance;

instance = getminor(dev);

xsp = ddi_get_soft_state(statep, instance);

Building and Transporting a Command

Writing Device Drivers • March 2012328

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edump-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7cpr-7
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edump-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edump-9e

EXAMPLE 17–7 dump(9E) Routine (Continued)

if (tgt->suspended) {

(void) pm_raise_power(DEVINFO(tgt), 0, 1);

}

bp = getrbuf(KM_NOSLEEP);

if (bp == NULL) {

return (EIO);

}

/* Calculate block number relative to partition. */

bp->b_un.b_addr = addr;

bp->b_edev = dev;

bp->b_bcount = nblk * DEV_BSIZE;

bp->b_flags = B_WRITE | B_BUSY;

bp->b_blkno = blkno;

pkt = scsi_init_pkt(ROUTE(tgt), NULL, bp, CDB_GROUP1,

sizeof (struct scsi_arq_status),

sizeof (struct bst_pkt_private), 0, NULL_FUNC, NULL);

if (pkt == NULL) {

freerbuf(bp);

return (EIO);

}

(void) scsi_setup_cdb((union scsi_cdb *)pkt->pkt_cdbp,

SCMD_WRITE_G1, blkno, nblk, 0);

/*

* While dumping in polled mode, other cmds might complete

* and these should not be resubmitted. we set the

* dumping flag here which prevents requeueing cmds.

*/

tgt->dumping = 1;

rval = scsi_poll(pkt);

tgt->dumping = 0;

scsi_destroy_pkt(pkt);

freerbuf(bp);

if (rval != DDI_SUCCESS) {

rval = EIO;

}

return (rval);

}

SCSI Options
SCSA defines a global variable, scsi_options, for control and debugging. The defined bits in
scsi_options can be found in the file <sys/scsi/conf/autoconf.h>. The scsi_options uses the
bits as follows:

SCSI_OPTIONS_DR Enables global disconnect or reconnect.

SCSI Options

Chapter 17 • SCSI Target Drivers 329

SCSI_OPTIONS_FAST Enables global FAST SCSI support: 10 Mbytes/sec transfers. The
HBA should not operate in FAST SCSI mode unless the
SCSI_OPTIONS_FAST (0x100) bit is set.

SCSI_OPTIONS_FAST20 Enables global FAST20 SCSI support: 20 Mbytes/sec transfers. The
HBA should not operate in FAST20 SCSI mode unless the
SCSI_OPTIONS_FAST20 (0x400) bit is set.

SCSI_OPTIONS_FAST40 Enables global FAST40 SCSI support: 40 Mbytes/sec transfers. The
HBA should not operate in FAST40 SCSI mode unless the
SCSI_OPTIONS_FAST40 (0x800) bit is set.

SCSI_OPTIONS_FAST80 Enables global FAST80 SCSI support: 80 Mbytes/sec transfers. The
HBA should not operate in FAST80 SCSI mode unless the
SCSI_OPTIONS_FAST80 (0x1000) bit is set.

SCSI_OPTIONS_FAST160 Enables global FAST160 SCSI support: 160 Mbytes/sec transfers.
The HBA should not operate in FAST160 SCSI mode unless the
SCSI_OPTIONS_FAST160 (0x2000) bit is set.

SCSI_OPTIONS_FAST320 Enables global FAST320 SCSI support: 320 Mbytes/sec transfers.
The HBA should not operate in FAST320 SCSI mode unless the
SCSI_OPTIONS_FAST320 (0x4000) bit is set.

SCSI_OPTIONS_LINK Enables global link support.

SCSI_OPTIONS_PARITY Enables global parity support.

SCSI_OPTIONS_QAS Enables the Quick Arbitration Select feature. QAS is used to
decrease protocol overhead when devices arbitrate for and access
the bus. QAS is only supported on Ultra4 (FAST160) SCSI devices,
although not all such devices support QAS. The HBA should not
operate in QAS SCSI mode unless the SCSI_OPTIONS_QAS
(0x100000) bit is set. Consult the appropriate Oracle hardware
documentation to determine whether your machine supports
QAS.

SCSI_OPTIONS_SYNC Enables global synchronous transfer capability.

SCSI_OPTIONS_TAG Enables global tagged queuing support.

SCSI_OPTIONS_WIDE Enables global WIDE SCSI.

Note – The setting of scsi_options affects all host bus adapter drivers and all target drivers that are
present on the system. Refer to the scsi_hba_attach(9F) man page for information on
controlling these options for a particular host adapter.

SCSI Options

Writing Device Drivers • March 2012330

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-attach-9f

SCSI Host Bus Adapter Drivers

This chapter contains information on creating SCSI host bus adapter (HBA) drivers. The
chapter provides sample code illustrating the structure of a typical HBA driver. The sample
code shows the use of the HBA driver interfaces that are provided by the Sun Common SCSI
Architecture (SCSA). This chapter provides information on the following subjects:

■ “Introduction to Host Bus Adapter Drivers” on page 331
■ “SCSI Interface” on page 332
■ “SCSA HBA Interfaces” on page 334
■ “HBA Driver Dependency and Configuration Issues” on page 344
■ “Entry Points for SCSA HBA Drivers” on page 350
■ “SCSI HBA Driver Specific Issues” on page 376
■ “Support for Queuing” on page 379

Introduction to Host Bus Adapter Drivers
As described in Chapter 17, “SCSI Target Drivers,” the DDI/DKI divides the software interface
to SCSI devices into two major parts:

■ Target devices and drivers
■ Host bus adapter devices and drivers

Target device refers to a device on a SCSI bus, such as a disk or a tape drive. Target driver refers
to a software component installed as a device driver. Each target device on a SCSI bus is
controlled by one instance of the target driver.

Host bus adapter device refers to HBA hardware, such as an SBus or PCI SCSI adapter card. Host
bus adapter driver refers to a software component that is installed as a device driver. Some
examples are the esp driver on a SPARC machine, the ncrs driver on an x86 machine, and the
isp driver, which works on both architectures. An instance of the HBA driver controls each of
its host bus adapter devices that are configured in the system.

18C H A P T E R 1 8

331

The Sun Common SCSI Architecture (SCSA) defines the interface between the target and HBA
components.

Note – Understanding SCSI target drivers is an essential prerequisite to writing effective SCSI
HBA drivers. For information on SCSI target drivers, see Chapter 17, “SCSI Target Drivers.”
Target driver developers can also benefit from reading this chapter.

The host bus adapter driver is responsible for performing the following tasks:

■ Managing host bus adapter hardware
■ Accepting SCSI commands from the SCSI target driver
■ Transporting the commands to the specified SCSI target device
■ Performing any data transfers that the command requires
■ Collecting status
■ Handling auto-request sense (optional)
■ Informing the target driver of command completion or failure

SCSI Interface
SCSA is the DDI/DKI programming interface for the transmission of SCSI commands from a
target driver to a host adapter driver. By conforming to the SCSA, the target driver can easily
pass any combination of SCSI commands and sequences to a target device. Knowledge of the
hardware implementation of the host adapter is not necessary. Conceptually, SCSA separates
the building of a SCSI command from the transporting of the command with data to the SCSI
bus. SCSA manages the connections between the target and HBA drivers through an HBA
transport layer, as shown in the following figure.

SCSI Interface

Writing Device Drivers • March 2012332

The HBA transport layer is a software and hardware layer that is responsible for transporting a
SCSI command to a SCSI target device. The HBA driver provides resource allocation, DMA
management, and transport services in response to requests made by SCSI target drivers
through SCSA. The host adapter driver also manages the host adapter hardware and the SCSI
protocols necessary to perform the commands. When a command has been completed, the
HBA driver calls the target driver's SCSI pkt command completion routine.

The following example illustrates this flow, with emphasis on the transfer of information from
target drivers to SCSA to HBA drivers. The figure also shows typical transport entry points and
function calls.

FIGURE 18–1 SCSA Interface

Target
Driver

SCSA
Interface

HBA
Driver

HBA
Device

TapeDisk

HBA transport layer

SCSI Bus

Target devices

TapeDisk

Target devices

SCSI Interface

Chapter 18 • SCSI Host Bus Adapter Drivers 333

SCSA HBA Interfaces
SCSA HBA interfaces include HBA entry points, HBA data structures, and an HBA framework.

SCSA HBA Entry Point Summary
SCSA defines a number of HBA driver entry points. These entry points are listed in the
following table. The entry points are called by the system when a target driver instance
connected to the HBA driver is configured. The entry points are also called when the target
driver makes a SCSA request. See “Entry Points for SCSA HBA Drivers” on page 350 for more
information.

TABLE 18–1 SCSA HBA Entry Point Summary

Function Name Called as a Result of

tran_abort(9E) Target driver calling scsi_abort(9F)

tran_bus_reset(9E) System resetting bus

tran_destroy_pkt(9E) Target driver calling scsi_destroy_pkt(9F)

FIGURE 18–2 Transport Layer Flow

Target driver request

Allocate scsi_pkt(9S) scsi_init_pkt(9F) tran_init_pkt(9E)

Target Driver

SCSA Interface HBA Driver

Transport command scsi_transport(9F) tran_start(9E)

Command completion

Build SCSI command

Callback handling

Free scsi_pkt(9S) scsi_destroy_pkt(9F) tran_destroy_pkt(9E)

Request completion

SCSA HBA Interfaces

Writing Device Drivers • March 2012334

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-abort-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-abort-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-bus-reset-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-destroy-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-destroy-pkt-9f

TABLE 18–1 SCSA HBA Entry Point Summary (Continued)
Function Name Called as a Result of

tran_dmafree(9E) Target driver calling scsi_dmafree(9F)

tran_getcap(9E) Target driver calling scsi_ifgetcap(9F)

tran_init_pkt(9E) Target driver calling scsi_init_pkt(9F)

tran_quiesce(9E) System quiescing bus

tran_reset(9E) Target driver calling scsi_reset(9F)

tran_reset_notify(9E) Target driver calling scsi_reset_notify(9F)

tran_setcap(9E) Target driver calling scsi_ifsetcap(9F)

tran_start(9E) Target driver calling scsi_transport(9F)

tran_sync_pkt(9E) Target driver calling scsi_sync_pkt(9F)

tran_tgt_free(9E) System detaching target device instance

tran_tgt_init(9E) System attaching target device instance

tran_tgt_probe(9E) Target driver calling scsi_probe(9F)

tran_unquiesce(9E) System resuming activity on bus

SCSA HBA Data Structures
SCSA defines data structures to enable the exchange of information between the target and
HBA drivers. The following data structures are included:

■ scsi_hba_tran(9S)
■ scsi_address(9S)
■ scsi_device(9S)
■ scsi_pkt(9S)

scsi_hba_tran() Structure
Each instance of an HBA driver must allocate a scsi_hba_tran(9S) structure by using the
scsi_hba_tran_alloc(9F) function in the attach(9E) entry point. The
scsi_hba_tran_alloc() function initializes the scsi_hba_tran structure. The HBA driver
must initialize specific vectors in the transport structure to point to entry points within the HBA
driver. After the scsi_hba_tran structure is initialized, the HBA driver exports the transport
structure to SCSA by calling the scsi_hba_attach_setup(9F) function.

SCSA HBA Interfaces

Chapter 18 • SCSI Host Bus Adapter Drivers 335

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-dmafree-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-dmafree-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-getcap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-ifgetcap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-quiesce-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-reset-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-reset-notify-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-reset-notify-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-setcap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-ifsetcap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-start-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-sync-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-sync-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-unquiesce-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-address-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-tran-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-attach-setup-9f

Caution – Because SCSA keeps a pointer to the transport structure in the driver-private field on
the devinfo node, HBA drivers must not use ddi_set_driver_private(9F). HBA drivers can,
however, use ddi_get_driver_private(9F) to retrieve the pointer to the transport structure.

The SCSA interfaces require the HBA driver to supply a number of entry points that are callable
through the scsi_hba_tran structure. See “Entry Points for SCSA HBA Drivers” on page 350
for more information.

The scsi_hba_tran structure contains the following fields:

struct scsi_hba_tran {

dev_info_t *tran_hba_dip; /* HBAs dev_info pointer */

void *tran_hba_private; /* HBA softstate */

void *tran_tgt_private; /* HBA target private pointer */

struct scsi_device *tran_sd; /* scsi_device */

int (*tran_tgt_init)(); /* Transport target */

/* Initialization */

int (*tran_tgt_probe)(); /* Transport target probe */

void (*tran_tgt_free)(); /* Transport target free */

int (*tran_start)(); /* Transport start */

int (*tran_reset)(); /* Transport reset */

int (*tran_abort)(); /* Transport abort */

int (*tran_getcap)(); /* Capability retrieval */

int (*tran_setcap)(); /* Capability establishment */

struct scsi_pkt *(*tran_init_pkt)(); /* Packet and DMA allocation */

void (*tran_destroy_pkt)(); /* Packet and DMA */

/* Deallocation */

void (*tran_dmafree)(); /* DMA deallocation */

void (*tran_sync_pkt)(); /* Sync DMA */

void (*tran_reset_notify)(); /* Bus reset notification */

int (*tran_bus_reset)(); /* Reset bus only */

int (*tran_quiesce)(); /* Quiesce a bus */

int (*tran_unquiesce)(); /* Unquiesce a bus */

int tran_interconnect_type; /* transport interconnect */

};

The following descriptions give more information about these scsi_hba_tran structure fields:

tran_hba_dip Pointer to the HBA device instance dev_info structure. The
function scsi_hba_attach_setup(9F) sets this field.

tran_hba_private Pointer to private data maintained by the HBA driver. Usually,
tran_hba_private contains a pointer to the state structure of
the HBA driver.

tran_tgt_private Pointer to private data maintained by the HBA driver when
using cloning. By specifying SCSI_HBA_TRAN_CLONE when
calling scsi_hba_attach_setup(9F), the scsi_hba_tran(9S)
structure is cloned once per target. This approach enables the
HBA to initialize this field to point to a per-target instance data
structure in the tran_tgt_init(9E) entry point. If

SCSA HBA Interfaces

Writing Device Drivers • March 2012336

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-set-driver-private-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-get-driver-private-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-attach-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-attach-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-tgt-init-9e

SCSI_HBA_TRAN_CLONE is not specified, tran_tgt_private is
NULL, and tran_tgt_private must not be referenced. See
“Transport Structure Cloning” on page 342 for more
information.

tran_sd Pointer to a per-target instance scsi_device(9S) structure used
when cloning. If SCSI_HBA_TRAN_CLONE is passed to
scsi_hba_attach_setup(9F), tran_sd is initialized to point to
the per-target scsi_device structure. This initialization takes
place before any HBA functions are called on behalf of that
target. If SCSI_HBA_TRAN_CLONE is not specified, tran_sd is
NULL, and tran_sd must not be referenced. See “Transport
Structure Cloning” on page 342 for more information.

tran_tgt_init Pointer to the HBA driver entry point that is called when
initializing a target device instance. If no per-target initialization
is required, the HBA can leave tran_tgt_init set to NULL.

tran_tgt_probe Pointer to the HBA driver entry point that is called when a target
driver instance calls scsi_probe(9F). This routine is called to
probe for the existence of a target device. If no target probing
customization is required for this HBA, the HBA should set
tran_tgt_probe to scsi_hba_probe(9F).

tran_tgt_free Pointer to the HBA driver entry point that is called when a target
device instance is destroyed. If no per-target deallocation is
necessary, the HBA can leave tran_tgt_free set to NULL.

tran_start Pointer to the HBA driver entry point that is called when a target
driver calls scsi_transport(9F).

tran_reset Pointer to the HBA driver entry point that is called when a target
driver calls scsi_reset(9F).

tran_abort Pointer to the HBA driver entry point that is called when a target
driver calls scsi_abort(9F).

tran_getcap Pointer to the HBA driver entry point that is called when a target
driver calls scsi_ifgetcap(9F).

tran_setcap Pointer to the HBA driver entry point that is called when a target
driver calls scsi_ifsetcap(9F).

tran_init_pkt Pointer to the HBA driver entry point that is called when a target
driver calls scsi_init_pkt(9F).

tran_destroy_pkt Pointer to the HBA driver entry point that is called when a target
driver calls scsi_destroy_pkt(9F).

SCSA HBA Interfaces

Chapter 18 • SCSI Host Bus Adapter Drivers 337

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-attach-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-reset-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-abort-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-ifgetcap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-ifsetcap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-destroy-pkt-9f

tran_dmafree Pointer to the HBA driver entry point that is called when a target
driver calls scsi_dmafree(9F).

tran_sync_pkt Pointer to the HBA driver entry point that is called when a target
driver calls scsi_sync_pkt(9F).

tran_reset_notify Pointer to the HBA driver entry point that is called when a target
driver calls tran_reset_notify(9E).

tran_bus_reset The function entry that resets the SCSI bus without resetting
targets.

tran_quiesce The function entry that waits for all outstanding commands to
complete and blocks (or queues) any I/O requests issued.

tran_unquiesce The function entry that allows I/O activities to resume on the
SCSI bus.

tran_interconnect_type Integer value denoting interconnect type of the transport as
defined in the services.h header file.

scsi_address Structure
The scsi_address(9S) structure provides transport and addressing information for each SCSI
command that is allocated and transported by a target driver instance.

The scsi_address structure contains the following fields:

struct scsi_address {

struct scsi_hba_tran *a_hba_tran; /* Transport vectors */

ushort_t a_target; /* Target identifier */

uchar_t a_lun; /* LUN on that target */

uchar_t a_sublun; /* Sub LUN on that LUN */

/* Not used */

};

a_hba_tran Pointer to the scsi_hba_tran(9S) structure, as allocated and initialized by the
HBA driver. If SCSI_HBA_TRAN_CLONE was specified as the flag to
scsi_hba_attach_setup(9F), a_hba_tran points to a copy of that structure.

a_target Identifies the SCSI target on the SCSI bus.

a_lun Identifies the SCSI logical unit on the SCSI target.

scsi_device Structure
The HBA framework allocates and initializes a scsi_device(9S) structure for each instance of a
target device. The allocation and initialization occur before the framework calls the HBA
driver's tran_tgt_init(9E) entry point. This structure stores information about each SCSI

SCSA HBA Interfaces

Writing Device Drivers • March 2012338

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-dmafree-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-sync-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-reset-notify-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-address-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-attach-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-tgt-init-9e

logical unit, including pointers to information areas that contain both generic and
device-specific information. One scsi_device(9S) structure exists for each target device
instance that is attached to the system.

If the per-target initialization is successful, the HBA framework sets the target driver's
per-instance private data to point to the scsi_device(9S) structure, using
ddi_set_driver_private(9F). Note that an initialization is successful if tran_tgt_init()
returns success or if the vector is null.

The scsi_device(9S) structure contains the following fields:

struct scsi_device {

struct scsi_address sd_address; /* routing information */

dev_info_t *sd_dev; /* device dev_info node */

kmutex_t sd_mutex; /* mutex used by device */

void *sd_reserved;

struct scsi_inquiry *sd_inq;

struct scsi_extended_sense *sd_sense;

caddr_t sd_private; /* for driver’s use */

};

where:

sd_address Data structure that is passed to the routines for SCSI resource allocation.

sd_dev Pointer to the target's dev_info structure.

sd_mutex Mutex for use by the target driver. This mutex is initialized by the HBA
framework. The mutex can be used by the target driver as a per-device mutex.
This mutex should not be held across a call to scsi_transport(9F) or
scsi_poll(9F). See Chapter 3, “Multithreading,” for more information on
mutexes.

sd_inq Pointer for the target device's SCSI inquiry data. The scsi_probe(9F) routine
allocates a buffer, fills the buffer in, and attaches the buffer to this field.

sd_sense Pointer to a buffer to contain request sense data from the device. The target
driver must allocate and manage this buffer itself. See the target driver's
attach(9E) routine in “attach() Entry Point” on page 104 for more
information.

sd_private Pointer field for use by the target driver. This field is commonly used to store a
pointer to a private target driver state structure.

scsi_pkt Structure (HBA)
To execute SCSI commands, a target driver must first allocate a scsi_pkt(9S) structure for the
command. The target driver must then specify its own private data area length, the command
status, and the command length. The HBA driver is responsible for implementing the packet

SCSA HBA Interfaces

Chapter 18 • SCSI Host Bus Adapter Drivers 339

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-set-driver-private-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-poll-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s

allocation in the tran_init_pkt(9E) entry point. The HBA driver is also responsible for freeing
the packet in its tran_destroy_pkt(9E) entry point. See “scsi_pkt Structure (Target Drivers)”
on page 313 for more information.

The scsi_pkt(9S) structure contains these fields:

struct scsi_pkt {

opaque_t pkt_ha_private; /* private data for host adapter */

struct scsi_address pkt_address; /* destination address */

opaque_t pkt_private; /* private data for target driver */

void (*pkt_comp)(struct scsi_pkt *); /* completion routine */

uint_t pkt_flags; /* flags */

int pkt_time; /* time allotted to complete command */

uchar_t *pkt_scbp; /* pointer to status block */

uchar_t *pkt_cdbp; /* pointer to command block */

ssize_t pkt_resid; /* data bytes not transferred */

uint_t pkt_state; /* state of command */

uint_t pkt_statistics; /* statistics */

uchar_t pkt_reason; /* reason completion called */

};

where:

pkt_ha_private Pointer to per-command HBA-driver private data.

pkt_address Pointer to the scsi_address(9S) structure providing address information
for this command.

pkt_private Pointer to per-packet target-driver private data.

pkt_comp Pointer to the target-driver completion routine called by the HBA driver
when the transport layer has completed this command.

pkt_flags Flags for the command.

pkt_time Specifies the completion timeout in seconds for the command.

pkt_scbp Pointer to the status completion block for the command.

pkt_cdbp Pointer to the command descriptor block (CDB) for the command.

pkt_resid Count of the data bytes that were not transferred when the command
completed. This field can also be used to specify the amount of data for
which resources have not been allocated. The HBA must modify this field
during transport.

pkt_state State of the command. The HBA must modify this field during transport.

pkt_statistics Provides a history of the events that the command experienced while in
the transport layer. The HBA must modify this field during transport.

pkt_reason Reason for command completion. The HBA must modify this field during
transport.

SCSA HBA Interfaces

Writing Device Drivers • March 2012340

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-destroy-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-address-9s

Per-Target Instance Data
An HBA driver must allocate a scsi_hba_tran(9S) structure during attach(9E). The HBA
driver must then initialize the vectors in this transport structure to point to the required entry
points for the HBA driver. This scsi_hba_tran structure is then passed into
scsi_hba_attach_setup(9F).

The scsi_hba_tran structure contains a tran_hba_private field, which can be used to refer to
the HBA driver's per-instance state.

Each scsi_address(9S) structure contains a pointer to the scsi_hba_tran structure. In
addition, the scsi_address structure provides the target, that is, a_target, and logical unit
(a_lun) addresses for the particular target device. Each entry point for the HBA driver is passed
a pointer to the scsi_address structure, either directly or indirectly through the
scsi_device(9S) structure. As a result, the HBA driver can reference its own state. The HBA
driver can also identify the target device that is addressed.

The following figure illustrates the HBA data structures for transport operations.

FIGURE 18–3 HBA Transport Structures

HBA private
data pointer

Transport
vectors

scsi_hba_tran
structure

2

scsi_address
structure

scsi_device
structure

1
HBA driver
entry points

HBA driver module

HBA soft state
structure

2

1

SCSI Bus

Target devices

Per HBA
device instance

Per target
device instance

Per HBA
device instance

One SCSI device structure per target device instance

SCSA HBA Interfaces

Chapter 18 • SCSI Host Bus Adapter Drivers 341

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-attach-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-address-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-device-9s

Transport Structure Cloning
Cloning can be useful if an HBA driver needs to maintain per-target private data in the
scsi_hba_tran(9S) structure. Cloning can also be used to maintain a more complex address
than is provided in the scsi_address(9S) structure.

In the cloning process, the HBA driver must still allocate a scsi_hba_tran structure at
attach(9E) time. The HBA driver must also initialize the tran_hba_private soft state pointer
and the entry point vectors for the HBA driver. The difference occurs when the framework
begins to connect an instance of a target driver to the HBA driver. Before calling the HBA
driver's tran_tgt_init(9E) entry point, the framework clones the scsi_hba_tran structure
that is associated with that instance of the HBA. Accordingly, each scsi_address structure that
is allocated and initialized for a particular target device instance points to a per-target instance
copy of the scsi_hba_tran structure. The scsi_address structures do not point to the
scsi_hba_tran structure that is allocated by the HBA driver at attach() time.

An HBA driver can use two important pointers when cloning is specified. These pointers are
contained in the scsi_hba_tran structure. The first pointer is the tran_tgt_private field,
which the driver can use to point to per-target HBA private data. The tran_tgt_private
pointer is useful, for example, if an HBA driver needs to maintain a more complex address than
a_target and a_lun provide. The second pointer is the tran_sd field, which is a pointer to the
scsi_device(9S) structure referring to the particular target device.

When specifying cloning, the HBA driver must allocate and initialize the per-target data. The
HBA driver must then initialize the tran_tgt_private field to point to this data during its
tran_tgt_init(9E) entry point. The HBA driver must free this per-target data during its
tran_tgt_free(9E) entry point.

When cloning, the framework initializes the tran_sd field to point to the scsi_device
structure before the HBA driver tran_tgt_init() entry point is called. The driver requests
cloning by passing the SCSI_HBA_TRAN_CLONE flag to scsi_hba_attach_setup(9F). The
following figure illustrates the HBA data structures for cloning transport operations.

SCSA HBA Interfaces

Writing Device Drivers • March 2012342

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-address-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-tgt-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-tgt-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-tgt-free-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-attach-setup-9f

SCSA HBA Functions
SCSA also provides a number of functions. The functions are listed in the following table, for
use by HBA drivers.

TABLE 18–2 SCSA HBA Functions

Function Name Called by Driver Entry Point

scsi_hba_init(9F) _init(9E)

scsi_hba_fini(9F) _fini(9E)

scsi_hba_attach_setup(9F) attach(9E)

scsi_hba_detach(9F) detach(9E)

scsi_hba_tran_alloc(9F) attach(9E)

FIGURE 18–4 Cloning Transport Operation

original
scsi_hba_tran

structure
2

scsi_address
structure

scsi_device
structures

1

HBA driver
entry points

HBA driver
module

2

1

SCSI
Bus

Target
devices

Allocated by
HBA driver

HBA soft state
structure

One soft state
structure per HBA

One SCSI device structure per target device instance

2
1

Back pointers to SCSI
device structures

Cloned
scsi_hba_tran
structures
1 and 2

HBA
per-target data

HBA Transport Structures
(cloning example)

SCSA HBA Interfaces

Chapter 18 • SCSI Host Bus Adapter Drivers 343

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-fini-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-attach-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-detach-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-tran-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e

TABLE 18–2 SCSA HBA Functions (Continued)
Function Name Called by Driver Entry Point

scsi_hba_tran_free(9F) detach(9E)

scsi_hba_probe(9F) tran_tgt_probe(9E)

scsi_hba_pkt_alloc(9F) tran_init_pkt(9E)

scsi_hba_pkt_free(9F) tran_destroy_pkt(9E)

scsi_hba_lookup_capstr(9F) tran_getcap(9E) and tran_setcap(9E)

HBA Driver Dependency and Configuration Issues
In addition to incorporating SCSA HBA entry points, structures, and functions into a driver, a
developer must deal with driver dependency and configuration issues. These issues involve
configuration properties, dependency declarations, state structure and per-command structure,
entry points for module initialization, and autoconfiguration entry points.

Declarations and Structures
HBA drivers must include the following header files:

#include <sys/scsi/scsi.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

To inform the system that the module depends on SCSA routines, the driver binary must be
generated with the following command. See “SCSA HBA Interfaces” on page 334 for more
information on SCSA routines.

% ld -r xx.o -o xx -N "misc/scsi"

The code samples are derived from a simplified isp driver for the QLogic Intelligent SCSI
Peripheral device. The isp driver supports WIDE SCSI, with up to 15 target devices and 8
logical units (LUNs) per target.

Per-Command Structure
An HBA driver usually needs to define a structure to maintain state for each command
submitted by a target driver. The layout of this per-command structure is entirely up to the
device driver writer. The layout needs to reflect the capabilities and features of the hardware and
the software algorithms that are used in the driver.

The following structure is an example of a per-command structure. The remaining code
fragments of this chapter use this structure to illustrate the HBA interfaces.

HBA Driver Dependency and Configuration Issues

Writing Device Drivers • March 2012344

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-tran-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-tgt-probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-pkt-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-pkt-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-destroy-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-lookup-capstr-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-getcap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-setcap-9e

struct isp_cmd {

struct isp_request cmd_isp_request;

struct isp_response cmd_isp_response;

struct scsi_pkt *cmd_pkt;

struct isp_cmd *cmd_forw;

uint32_t cmd_dmacount;

ddi_dma_handle_t cmd_dmahandle;

uint_t cmd_cookie;

uint_t cmd_ncookies;

uint_t cmd_cookiecnt;

uint_t cmd_nwin;

uint_t cmd_curwin;

off_t cmd_dma_offset;

uint_t cmd_dma_len;

ddi_dma_cookie_t cmd_dmacookies[ISP_NDATASEGS];

u_int cmd_flags;

u_short cmd_slot;

u_int cmd_cdblen;

u_int cmd_scblen;

};

Entry Points for Module Initialization
This section describes the entry points for operations that are performed by SCSI HBA drivers.

The following code for a SCSI HBA driver illustrates a representative dev_ops(9S) structure.
The driver must initialize the devo_bus_ops field in this structure to NULL. A SCSI HBA driver
can provide leaf driver interfaces for special purposes, in which case the devo_cb_ops field
might point to a cb_ops(9S) structure. In this example, no leaf driver interfaces are exported, so
the devo_cb_ops field is initialized to NULL.

_init() Entry Point (SCSI HBA Drivers)
The _init(9E) function initializes a loadable module. _init() is called before any other
routine in the loadable module.

In a SCSI HBA, the _init() function must call scsi_hba_init(9F) to inform the framework of
the existence of the HBA driver before calling mod_install(9F). If scsi_hba__init() returns a
nonzero value,_init() should return this value. Otherwise, _init() must return the value
returned by mod_install(9F).

The driver should initialize any required global state before calling mod_install(9F).

If mod_install() fails, the _init() function must free any global resources allocated. _init()
must call scsi_hba_fini(9F) before returning.

The following example uses a global mutex to show how to allocate data that is global to all
instances of a driver. The code declares global mutex and soft-state structure information. The
global mutex and soft state are initialized during _init().

HBA Driver Dependency and Configuration Issues

Chapter 18 • SCSI Host Bus Adapter Drivers 345

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sdev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Scb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmod-install-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmod-install-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmod-install-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-fini-9f

_fini() Entry Point (SCSI HBA Drivers)
The _fini(9E) function is called when the system is about to try to unload the SCSI HBA driver.
The _fini() function must call mod_remove(9F) to determine whether the driver can be
unloaded. If mod_remove() returns 0, the module can be unloaded. The HBA driver must
deallocate any global resources allocated in _init(9E). The HBA driver must also call
scsi_hba_fini(9F).

_fini() must return the value returned by mod_remove().

Note – The HBA driver must not free any resources or call scsi_hba_fini(9F) unless
mod_remove(9F) returns 0.

Example 18–1 shows module initialization for SCSI HBA.

EXAMPLE 18–1 Module Initialization for SCSI HBA

static struct dev_ops isp_dev_ops = {

DEVO_REV, /* devo_rev */

0, /* refcnt */

isp_getinfo, /* getinfo */

nulldev, /* identify */

nulldev, /* probe */

isp_attach, /* attach */

isp_detach, /* detach */

nodev, /* reset */

NULL, /* driver operations */

NULL, /* bus operations */

isp_power, /* power management */

isp_quiesce, /* quiesce */

};

/*

* Local static data

*/

static kmutex_t isp_global_mutex;

static void *isp_state;

int

_init(void)

{

int err;

if ((err = ddi_soft_state_init(&isp_state,

sizeof (struct isp), 0)) != 0) {

return (err);

}

if ((err = scsi_hba_init(&modlinkage)) == 0) {

mutex_init(&isp_global_mutex, "isp global mutex",
MUTEX_DRIVER, NULL);

if ((err = mod_install(&modlinkage)) != 0) {

mutex_destroy(&isp_global_mutex);

scsi_hba_fini(&modlinkage);

HBA Driver Dependency and Configuration Issues

Writing Device Drivers • March 2012346

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmod-remove-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-fini-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-fini-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmod-remove-9f

EXAMPLE 18–1 Module Initialization for SCSI HBA (Continued)

ddi_soft_state_fini(&isp_state);

}

}

return (err);

}

int

_fini(void)

{

int err;

if ((err = mod_remove(&modlinkage)) == 0) {

mutex_destroy(&isp_global_mutex);

scsi_hba_fini(&modlinkage);

ddi_soft_state_fini(&isp_state);

}

return (err);

}

Autoconfiguration Entry Points
Associated with each device driver is a dev_ops(9S) structure, which enables the kernel to locate
the autoconfiguration entry points of the driver. A complete description of these
autoconfiguration routines is given in Chapter 6, “Driver Autoconfiguration.” This section
describes only those entry points associated with operations performed by SCSI HBA drivers.
These entry points include attach(9E) and detach(9E).

attach() Entry Point (SCSI HBA Drivers)
The attach(9E) entry point for a SCSI HBA driver performs several tasks when configuring and
attaching an instance of the driver for the device. For a typical driver of real devices, the
following operating system and hardware concerns must be addressed:

■ Soft-state structure
■ DMA
■ Transport structure
■ Attaching an HBA driver
■ Register mapping
■ Interrupt specification
■ Interrupt handling
■ Create power manageable components
■ Report attachment status

Soft-State Structure

When allocating the per-device-instance soft-state structure, a driver must clean up carefully if
an error occurs.

HBA Driver Dependency and Configuration Issues

Chapter 18 • SCSI Host Bus Adapter Drivers 347

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sdev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e

DMA

The HBA driver must describe the attributes of its DMA engine by properly initializing the
ddi_dma_attr_t structure.

static ddi_dma_attr_t isp_dma_attr = {

DMA_ATTR_V0, /* ddi_dma_attr version */

0, /* low address */

0xffffffff, /* high address */

0x00ffffff, /* counter upper bound */

1, /* alignment requirements */

0x3f, /* burst sizes */

1, /* minimum DMA access */

0xffffffff, /* maximum DMA access */

(1<<24)-1, /* segment boundary restrictions */

1, /* scatter-gather list length */

512, /* device granularity */

0 /* DMA flags */

};

The driver, if providing DMA, should also check that its hardware is installed in a DMA-capable
slot:

if (ddi_slaveonly(dip) == DDI_SUCCESS) {

return (DDI_FAILURE);

}

Transport Structure

The driver should further allocate and initialize a transport structure for this instance. The
tran_hba_private field is set to point to this instance's soft-state structure. The
tran_tgt_probe field can be set to NULL to achieve the default behavior, if no special probe
customization is needed.

tran = scsi_hba_tran_alloc(dip, SCSI_HBA_CANSLEEP);

isp->isp_tran = tran;

isp->isp_dip = dip;

tran->tran_hba_private = isp;

tran->tran_tgt_private = NULL;

tran->tran_tgt_init = isp_tran_tgt_init;

tran->tran_tgt_probe = scsi_hba_probe;

tran->tran_tgt_free = (void (*)())NULL;

tran->tran_start = isp_scsi_start;

tran->tran_abort = isp_scsi_abort;

tran->tran_reset = isp_scsi_reset;

tran->tran_getcap = isp_scsi_getcap;

tran->tran_setcap = isp_scsi_setcap;

tran->tran_init_pkt = isp_scsi_init_pkt;

tran->tran_destroy_pkt = isp_scsi_destroy_pkt;

tran->tran_dmafree = isp_scsi_dmafree;

tran->tran_sync_pkt = isp_scsi_sync_pkt;

HBA Driver Dependency and Configuration Issues

Writing Device Drivers • March 2012348

tran->tran_reset_notify = isp_scsi_reset_notify;

tran->tran_bus_quiesce = isp_tran_bus_quiesce

tran->tran_bus_unquiesce = isp_tran_bus_unquiesce

tran->tran_bus_reset = isp_tran_bus_reset

tran->tran_interconnect_type = isp_tran_interconnect_type

Attaching an HBA Driver

The driver should attach this instance of the device, and perform error cleanup if necessary.

i = scsi_hba_attach_setup(dip, &isp_dma_attr, tran, 0);

if (i != DDI_SUCCESS) {

/* do error recovery */

return (DDI_FAILURE);

}

Register Mapping

The driver should map in its device's registers. The driver need to specify the following items:
■ Register set index
■ Data access characteristics of the device
■ Size of the register to be mapped

ddi_device_acc_attr_t dev_attributes;

dev_attributes.devacc_attr_version = DDI_DEVICE_ATTR_V0;

dev_attributes.devacc_attr_dataorder = DDI_STRICTORDER_ACC;

dev_attributes.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;

if (ddi_regs_map_setup(dip, 0, (caddr_t *)&isp->isp_reg,

0, sizeof (struct ispregs), &dev_attributes,

&isp->isp_acc_handle) != DDI_SUCCESS) {

/* do error recovery */

return (DDI_FAILURE);

}

Adding an Interrupt Handler

The driver must first obtain the iblock cookie to initialize any mutexes that are used in the driver
handler. Only after those mutexes have been initialized can the interrupt handler be added.

i = ddi_get_iblock_cookie(dip, 0, &isp->iblock_cookie};

if (i != DDI_SUCCESS) {

/* do error recovery */

return (DDI_FAILURE);

}

mutex_init(&isp->mutex, "isp_mutex", MUTEX_DRIVER,

(void *)isp->iblock_cookie);

i = ddi_add_intr(dip, 0, &isp->iblock_cookie,

0, isp_intr, (caddr_t)isp);

if (i != DDI_SUCCESS) {

HBA Driver Dependency and Configuration Issues

Chapter 18 • SCSI Host Bus Adapter Drivers 349

/* do error recovery */

return (DDI_FAILURE);

}

If a high-level handler is required, the driver should be coded to provide such a handler.
Otherwise, the driver must be able to fail the attach. See “Handling High-Level Interrupts” on
page 147 for a description of high-level interrupt handling.

Create Power Manageable Components

With power management, if the host bus adapter only needs to power down when all target
adapters are at power level 0, the HBA driver only needs to provide a power(9E) entry point.
Refer to Chapter 12, “Power Management.” The HBA driver also needs to create a
pm-components(9P) property that describes the components that the device implements.

Nothing more is necessary, since the components will default to idle, and the power
management framework's default dependency processing will ensure that the host bus adapter
will be powered up whenever an target adapter is powered up. Provided that automatic power
management is enabled automatically, the processing will also power down the host bus adapter
when all target adapters are powered down ().

Report Attachment Status

Finally, the driver should report that this instance of the device is attached and return success.

ddi_report_dev(dip);

return (DDI_SUCCESS);

detach() Entry Point (SCSI HBA Drivers)
The driver should perform standard detach operations, including calling
scsi_hba_detach(9F).

Entry Points for SCSA HBA Drivers
An HBA driver can work with target drivers through the SCSA interface. The SCSA interfaces
require the HBA driver to supply a number of entry points that are callable through the
scsi_hba_tran(9S) structure.

These entry points fall into five functional groups:

■ Target driver instance initialization
■ Resource allocation and deallocation
■ Command transport
■ Capability management
■ Abort and reset handling

Entry Points for SCSA HBA Drivers

Writing Device Drivers • March 2012350

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Epower-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Spm-components-9p
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-detach-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-hba-tran-9s

■ Dynamic reconfiguration

The following table lists the entry points for SCSA HBA by function groups.

TABLE 18–3 SCSA Entry Points

Function Groups Entry Points Within Group Description

Target Driver Instance
Initialization

tran_tgt_init(9E) Performs per-target initialization
(optional)

tran_tgt_probe(9E) Probes SCSI bus for existence of a target
(optional)

tran_tgt_free(9E) Performs per-target deallocation
(optional)

Resource Allocation tran_init_pkt(9E) Allocates SCSI packet and DMA resources

tran_destroy_pkt(9E) Frees SCSI packet and DMA resources

tran_sync_pkt(9E) Synchronizes memory before and after
DMA

tran_dmafree(9E) Frees DMA resources

Command Transport tran_start(9E) Transports a SCSI command

Capability Management tran_getcap(9E) Inquires about a capability's value

tran_setcap(9E) Sets a capability's value

Abort and Reset tran_abort(9E) Aborts outstanding SCSI commands

tran_reset(9E) Resets a target device or the SCSI bus

tran_bus_reset(9E) Resets the SCSI bus

tran_reset_notify(9E) Request to notify target of bus reset
(optional)

Dynamic Reconfiguration tran_quiesce(9E) Stops activity on the bus

tran_unquiesce(9E) Resumes activity on the bus

Target Driver Instance Initialization
The following sections describe target entry points.

Entry Points for SCSA HBA Drivers

Chapter 18 • SCSI Host Bus Adapter Drivers 351

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-tgt-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-tgt-probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-tgt-free-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-destroy-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-sync-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-dmafree-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-start-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-getcap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-setcap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-abort-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-reset-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-bus-reset-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-reset-notify-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-quiesce-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-unquiesce-9e

tran_tgt_init() Entry Point
The tran_tgt_init(9E) entry point enables the HBA to allocate and initialize any per-target
resources. tran_tgt_init() also enables the HBA to qualify the device's address as valid and
supportable for that particular HBA. By returning DDI_FAILURE, the instance of the target
driver for that device is not probed or attached.

tran_tgt_init() is not required. If tran_tgt_init() is not supplied, the framework attempts
to probe and attach all possible instances of the appropriate target drivers.

static int

isp_tran_tgt_init(

dev_info_t *hba_dip,

dev_info_t *tgt_dip,

scsi_hba_tran_t *tran,

struct scsi_device *sd)

{

return ((sd->sd_address.a_target < N_ISP_TARGETS_WIDE &&

sd->sd_address.a_lun < 8) ? DDI_SUCCESS : DDI_FAILURE);

}

tran_tgt_probe() Entry Point
The tran_tgt_probe(9E) entry point enables the HBA to customize the operation of
scsi_probe(9F), if necessary. This entry point is called only when the target driver calls
scsi_probe().

The HBA driver can retain the normal operation of scsi_probe() by calling
scsi_hba_probe(9F) and returning its return value.

This entry point is not required, and if not needed, the HBA driver should set the
tran_tgt_probe vector in the scsi_hba_tran(9S) structure to point to scsi_hba_probe().

scsi_probe() allocates a scsi_inquiry(9S) structure and sets the sd_inq field of the
scsi_device(9S) structure to point to the data in scsi_inquiry. scsi_hba_probe() handles
this task automatically. scsi_unprobe(9F) then frees the scsi_inquiry data.

Except for the allocation of scsi_inquiry data, tran_tgt_probe() must be stateless, because
the same SCSI device might call tran_tgt_probe() several times. Normally, allocation of
scsi_inquiry data is handled by scsi_hba_probe().

Note – The allocation of the scsi_inquiry(9S) structure is handled automatically by
scsi_hba_probe(). This information is only of concern if you want custom scsi_probe()

handling.

static int

isp_tran_tgt_probe(

struct scsi_device *sd,

Entry Points for SCSA HBA Drivers

Writing Device Drivers • March 2012352

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-tgt-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-tgt-probe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-probe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-inquiry-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-device-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-unprobe-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-inquiry-9s

int (*callback)())

{

/*

* Perform any special probe customization needed.

* Normal probe handling.

*/

return (scsi_hba_probe(sd, callback));

}

tran_tgt_free() Entry Point
The tran_tgt_free(9E) entry point enables the HBA to perform any deallocation or clean-up
procedures for an instance of a target. This entry point is optional.

static void

isp_tran_tgt_free(

dev_info_t *hba_dip,

dev_info_t *tgt_dip,

scsi_hba_tran_t *hba_tran,

struct scsi_device *sd)

{

/*

* Undo any special per-target initialization done

* earlier in tran_tgt_init(9F) and tran_tgt_probe(9F)

*/

}

Resource Allocation
The following sections discuss resource allocation.

tran_init_pkt() Entry Point
The tran_init_pkt(9E) entry point allocates and initializes a scsi_pkt(9S) structure and
DMA resources for a target driver request.

The tran_init_pkt(9E) entry point is called when the target driver calls the SCSA function
scsi_init_pkt(9F).

Each call of the tran_init_pkt(9E) entry point is a request to perform one or more of three
possible services:
■ Allocation and initialization of a scsi_pkt(9S) structure
■ Allocation of DMA resources for data transfer
■ Reallocation of DMA resources for the next portion of the data transfer

Allocation and Initialization of a scsi_pkt(9S) Structure
The tran_init_pkt(9E) entry point must allocate a scsi_pkt(9S) structure through
scsi_hba_pkt_alloc(9F) if pkt is NULL.

scsi_hba_pkt_alloc(9F) allocates space for the following items:

Entry Points for SCSA HBA Drivers

Chapter 18 • SCSI Host Bus Adapter Drivers 353

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-tgt-free-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-init-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-pkt-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-pkt-alloc-9f

■ scsi_pkt(9S)
■ SCSI CDB of length cmdlen

■ Completion area for SCSI status of length statuslen

■ Per-packet target driver private data area of length tgtlen

■ Per-packet HBA driver private data area of length hbalen

The scsi_pkt(9S) structure members, including pkt, must be initialized to zero except for the
following members:
■ pkt_scbp – Status completion
■ pkt_cdbp – CDB
■ pkt_ha_private – HBA driver private data
■ pkt_private – Target driver private data

These members are pointers to memory space where the values of the fields are stored, as shown
in the following figure. For more information, refer to “scsi_pkt Structure (HBA)” on
page 339.

The following example shows allocation and initialization of a scsi_pkt structure.

EXAMPLE 18–2 HBA Driver Initialization of a SCSI Packet Structure

static struct scsi_pkt *

isp_scsi_init_pkt(

struct scsi_address *ap,

struct scsi_pkt *pkt,

struct buf *bp,

int cmdlen,

FIGURE 18–5 scsi_pkt(9S) Structure Pointers

scsi_address

HBA driver
per pkt data

TGT driver
per pkt data

...

...

pkt_cdbp

pkt_scbp

pkt_private

pkt_ha_private

scsi_pkt structure

Status

CDB

Entry Points for SCSA HBA Drivers

Writing Device Drivers • March 2012354

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s

EXAMPLE 18–2 HBA Driver Initialization of a SCSI Packet Structure (Continued)

int statuslen,

int tgtlen,

int flags,

int (*callback)(),

caddr_t arg)

{

struct isp_cmd *sp;

struct isp *isp;

struct scsi_pkt *new_pkt;

ASSERT(callback == NULL_FUNC || callback == SLEEP_FUNC);

isp = (struct isp *)ap->a_hba_tran->tran_hba_private;

/*

* First step of isp_scsi_init_pkt: pkt allocation

*/

if (pkt == NULL) {

pkt = scsi_hba_pkt_alloc(isp->isp_dip, ap, cmdlen,

statuslen, tgtlen, sizeof (struct isp_cmd),

callback, arg);

if (pkt == NULL) {

return (NULL);

}

sp = (struct isp_cmd *)pkt->pkt_ha_private;

/*

* Initialize the new pkt

*/

sp->cmd_pkt = pkt;

sp->cmd_flags = 0;

sp->cmd_scblen = statuslen;

sp->cmd_cdblen = cmdlen;

sp->cmd_dmahandle = NULL;

sp->cmd_ncookies = 0;

sp->cmd_cookie = 0;

sp->cmd_cookiecnt = 0;

sp->cmd_nwin = 0;

pkt->pkt_address = *ap;

pkt->pkt_comp = (void (*)())NULL;

pkt->pkt_flags = 0;

pkt->pkt_time = 0;

pkt->pkt_resid = 0;

pkt->pkt_statistics = 0;

pkt->pkt_reason = 0;

new_pkt = pkt;

} else {

sp = (struct isp_cmd *)pkt->pkt_ha_private;

new_pkt = NULL;

}

/*

* Second step of isp_scsi_init_pkt: dma allocation/move

*/

if (bp && bp->b_bcount != 0) {

if (sp->cmd_dmahandle == NULL) {

if (isp_i_dma_alloc(isp, pkt, bp, flags, callback) == 0) {

if (new_pkt) {

Entry Points for SCSA HBA Drivers

Chapter 18 • SCSI Host Bus Adapter Drivers 355

EXAMPLE 18–2 HBA Driver Initialization of a SCSI Packet Structure (Continued)

scsi_hba_pkt_free(ap, new_pkt);

}

return ((struct scsi_pkt *)NULL);

}

} else {

ASSERT(new_pkt == NULL);

if (isp_i_dma_move(isp, pkt, bp) == 0) {

return ((struct scsi_pkt *)NULL);

}

}

}

return (pkt);

}

Allocation of DMA Resources
The tran_init_pkt(9E) entry point must allocate DMA resources for a data transfer if the
following conditions are true:

■ bp is not null.
■ bp->b_bcount is not zero.
■ DMA resources have not yet been allocated for this scsi_pkt(9S).

The HBA driver needs to track how DMA resources are allocated for a particular command.
This allocation can take place with a flag bit or a DMA handle in the per-packet HBA driver
private data.

The PKT_DMA_PARTIAL flag in the pkt enables the target driver to break up a data transfer into
multiple SCSI commands to accommodate the complete request. This approach is useful when
the HBA hardware scatter-gather capabilities or system DMA resources cannot complete a
request in a single SCSI command.

The PKT_DMA_PARTIAL flag enables the HBA driver to set the DDI_DMA_PARTIAL flag. The
DDI_DMA_PARTIAL flag is useful when the DMA resources for this SCSI command are allocated.
For example the ddi_dma_buf_bind_handle(9F)) command can be used to allocate DMA
resources. The DMA attributes used when allocating the DMA resources should accurately
describe any constraints placed on the ability of the HBA hardware to perform DMA. If the
system can only allocate DMA resources for part of the request,
ddi_dma_buf_bind_handle(9F) returns DDI_DMA_PARTIAL_MAP.

The tran_init_pkt(9E) entry point must return the amount of DMA resources not allocated
for this transfer in the field pkt_resid.

A target driver can make one request to tran_init_pkt(9E) to simultaneously allocate both a
scsi_pkt(9S) structure and DMA resources for that pkt. In this case, if the HBA driver is
unable to allocate DMA resources, that driver must free the allocated scsi_pkt(9S) before
returning. The scsi_pkt(9S) must be freed by calling scsi_hba_pkt_free(9F).

Entry Points for SCSA HBA Drivers

Writing Device Drivers • March 2012356

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-dma-buf-bind-handle-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-pkt-free-9f

The target driver might first allocate the scsi_pkt(9S) and allocate DMA resources for this pkt
at a later time. In this case, if the HBA driver is unable to allocate DMA resources, the driver
must not free pkt. The target driver in this case is responsible for freeing the pkt.

EXAMPLE 18–3 HBA Driver Allocation of DMA Resources

static int

isp_i_dma_alloc(

struct isp *isp,

struct scsi_pkt *pkt,

struct buf *bp,

int flags,

int (*callback)())

{

struct isp_cmd *sp = (struct isp_cmd *)pkt->pkt_ha_private;

int dma_flags;

ddi_dma_attr_t tmp_dma_attr;

int (*cb)(caddr_t);

int i;

ASSERT(callback == NULL_FUNC || callback == SLEEP_FUNC);

if (bp->b_flags & B_READ) {

sp->cmd_flags &= ~CFLAG_DMASEND;

dma_flags = DDI_DMA_READ;

} else {

sp->cmd_flags |= CFLAG_DMASEND;

dma_flags = DDI_DMA_WRITE;

}

if (flags & PKT_CONSISTENT) {

sp->cmd_flags |= CFLAG_CMDIOPB;

dma_flags |= DDI_DMA_CONSISTENT;

}

if (flags & PKT_DMA_PARTIAL) {

dma_flags |= DDI_DMA_PARTIAL;

}

tmp_dma_attr = isp_dma_attr;

tmp_dma_attr.dma_attr_burstsizes = isp->isp_burst_size;

cb = (callback == NULL_FUNC) ? DDI_DMA_DONTWAIT : DDI_DMA_SLEEP;

if ((i = ddi_dma_alloc_handle(isp->isp_dip, &tmp_dma_attr,

cb, 0, &sp->cmd_dmahandle)) != DDI_SUCCESS) {

switch (i) {

case DDI_DMA_BADATTR:

bioerror(bp, EFAULT);

return (0);

case DDI_DMA_NORESOURCES:

bioerror(bp, 0);

return (0);

}

}

i = ddi_dma_buf_bind_handle(sp->cmd_dmahandle, bp, dma_flags,

cb, 0, &sp->cmd_dmacookies[0], &sp->cmd_ncookies);

switch (i) {

Entry Points for SCSA HBA Drivers

Chapter 18 • SCSI Host Bus Adapter Drivers 357

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s

EXAMPLE 18–3 HBA Driver Allocation of DMA Resources (Continued)

case DDI_DMA_PARTIAL_MAP:

if (ddi_dma_numwin(sp->cmd_dmahandle, &sp->cmd_nwin) == DDI_FAILURE) {

cmn_err(CE_PANIC, "ddi_dma_numwin() failed\n");
}

if (ddi_dma_getwin(sp->cmd_dmahandle, sp->cmd_curwin,

&sp->cmd_dma_offset, &sp->cmd_dma_len, &sp->cmd_dmacookies[0],

&sp->cmd_ncookies) == DDI_FAILURE) {

cmn_err(CE_PANIC, "ddi_dma_getwin() failed\n");
}

goto get_dma_cookies;

case DDI_DMA_MAPPED:

sp->cmd_nwin = 1;

sp->cmd_dma_len = 0;

sp->cmd_dma_offset = 0;

get_dma_cookies:

i = 0;

sp->cmd_dmacount = 0;

for (;;) {

sp->cmd_dmacount += sp->cmd_dmacookies[i++].dmac_size;

if (i == ISP_NDATASEGS || i == sp->cmd_ncookies)

break;

ddi_dma_nextcookie(sp->cmd_dmahandle,

&sp->cmd_dmacookies[i]);

}

sp->cmd_cookie = i;

sp->cmd_cookiecnt = i;

sp->cmd_flags |= CFLAG_DMAVALID;

pkt->pkt_resid = bp->b_bcount - sp->cmd_dmacount;

return (1);

case DDI_DMA_NORESOURCES:

bioerror(bp, 0);

break;

case DDI_DMA_NOMAPPING:

bioerror(bp, EFAULT);

break;

case DDI_DMA_TOOBIG:

bioerror(bp, EINVAL);

break;

case DDI_DMA_INUSE:

cmn_err(CE_PANIC, "ddi_dma_buf_bind_handle:"
" DDI_DMA_INUSE impossible\n");

default:

cmn_err(CE_PANIC, "ddi_dma_buf_bind_handle:"
" 0x%x impossible\n", i);

}

ddi_dma_free_handle(&sp->cmd_dmahandle);

sp->cmd_dmahandle = NULL;

sp->cmd_flags &= ~CFLAG_DMAVALID;

Entry Points for SCSA HBA Drivers

Writing Device Drivers • March 2012358

EXAMPLE 18–3 HBA Driver Allocation of DMA Resources (Continued)

return (0);

}

Reallocation of DMA Resources for Data Transfer
For a previously allocated packet with data remaining to be transferred, the tran_init_pkt(9E)
entry point must reallocate DMA resources when the following conditions apply:
■ Partial DMA resources have already been allocated.
■ A non-zero pkt_resid was returned in the previous call to tran_init_pkt(9E).
■ bp is not null.
■ bp->b_bcount is not zero.

When reallocating DMA resources to the next portion of the transfer, tran_init_pkt(9E) must
return the amount of DMA resources not allocated for this transfer in the field pkt_resid.

If an error occurs while attempting to move DMA resources, tran_init_pkt(9E) must not free
the scsi_pkt(9S). The target driver in this case is responsible for freeing the packet.

If the callback parameter is NULL_FUNC, the tran_init_pkt(9E) entry point must not sleep or
call any function that might sleep. If the callback parameter is SLEEP_FUNC and resources are not
immediately available, the tran_init_pkt(9E) entry point should sleep. Unless the request is
impossible to satisfy, tran_init_pkt() should sleep until resources become available.

EXAMPLE 18–4 DMA Resource Reallocation for HBA Drivers

static int

isp_i_dma_move(

struct isp *isp,

struct scsi_pkt *pkt,

struct buf *bp)

{

struct isp_cmd *sp = (struct isp_cmd *)pkt->pkt_ha_private;

int i;

ASSERT(sp->cmd_flags & CFLAG_COMPLETED);

sp->cmd_flags &= ~CFLAG_COMPLETED;

/*

* If there are no more cookies remaining in this window,

* must move to the next window first.

*/

if (sp->cmd_cookie == sp->cmd_ncookies) {

/*

* For small pkts, leave things where they are

*/

if (sp->cmd_curwin == sp->cmd_nwin && sp->cmd_nwin == 1)

return (1);

/*

* At last window, cannot move

*/

if (++sp->cmd_curwin >= sp->cmd_nwin)

Entry Points for SCSA HBA Drivers

Chapter 18 • SCSI Host Bus Adapter Drivers 359

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-init-pkt-9e

EXAMPLE 18–4 DMA Resource Reallocation for HBA Drivers (Continued)

return (0);

if (ddi_dma_getwin(sp->cmd_dmahandle, sp->cmd_curwin,

&sp->cmd_dma_offset, &sp->cmd_dma_len,

&sp->cmd_dmacookies[0], &sp->cmd_ncookies) == DDI_FAILURE)

return (0);

sp->cmd_cookie = 0;

} else {

/*

* Still more cookies in this window - get the next one

*/

ddi_dma_nextcookie(sp->cmd_dmahandle, &sp->cmd_dmacookies[0]);

}

/*

* Get remaining cookies in this window, up to our maximum

*/

i = 0;

for (;;) {

sp->cmd_dmacount += sp->cmd_dmacookies[i++].dmac_size;

sp->cmd_cookie++;

if (i == ISP_NDATASEGS || sp->cmd_cookie == sp->cmd_ncookies)

break;

ddi_dma_nextcookie(sp->cmd_dmahandle, &sp->cmd_dmacookies[i]);

}

sp->cmd_cookiecnt = i;

pkt->pkt_resid = bp->b_bcount - sp->cmd_dmacount;

return (1);

}

tran_destroy_pkt() Entry Point
The tran_destroy_pkt(9E) entry point is the HBA driver function that deallocates
scsi_pkt(9S) structures. The tran_destroy_pkt() entry point is called when the target driver
calls scsi_destroy_pkt(9F).

The tran_destroy_pkt() entry point must free any DMA resources that have been allocated
for the packet. An implicit DMA synchronization occurs if the DMA resources are freed and
any cached data remains after the completion of the transfer. The tran_destroy_pkt() entry
point frees the SCSI packet by calling scsi_hba_pkt_free(9F).

EXAMPLE 18–5 HBA Driver tran_destroy_pkt(9E) Entry Point

static void

isp_scsi_destroy_pkt(

struct scsi_address *ap,

struct scsi_pkt *pkt)

{

struct isp_cmd *sp = (struct isp_cmd *)pkt->pkt_ha_private;

/*

* Free the DMA, if any

*/

if (sp->cmd_flags & CFLAG_DMAVALID) {

sp->cmd_flags &= ~CFLAG_DMAVALID;

(void) ddi_dma_unbind_handle(sp->cmd_dmahandle);

Entry Points for SCSA HBA Drivers

Writing Device Drivers • March 2012360

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-destroy-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-destroy-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-pkt-free-9f

EXAMPLE 18–5 HBA Driver tran_destroy_pkt(9E) Entry Point (Continued)

ddi_dma_free_handle(&sp->cmd_dmahandle);

sp->cmd_dmahandle = NULL;

}

/*

* Free the pkt

*/

scsi_hba_pkt_free(ap, pkt);

}

tran_sync_pkt() Entry Point
The tran_sync_pkt(9E) entry point synchronizes the DMA object allocated for the
scsi_pkt(9S) structure before or after a DMA transfer. The tran_sync_pkt() entry point is
called when the target driver calls scsi_sync_pkt(9F).

If the data transfer direction is a DMA read from device to memory, tran_sync_pkt() must
synchronize the CPU's view of the data. If the data transfer direction is a DMA write from
memory to device, tran_sync_pkt() must synchronize the device's view of the data.

EXAMPLE 18–6 HBA Driver tran_sync_pkt(9E) Entry Point

static void

isp_scsi_sync_pkt(

struct scsi_address *ap,

struct scsi_pkt *pkt)

{

struct isp_cmd *sp = (struct isp_cmd *)pkt->pkt_ha_private;

if (sp->cmd_flags & CFLAG_DMAVALID) {

(void)ddi_dma_sync(sp->cmd_dmahandle, sp->cmd_dma_offset,

sp->cmd_dma_len,

(sp->cmd_flags & CFLAG_DMASEND) ?

DDI_DMA_SYNC_FORDEV : DDI_DMA_SYNC_FORCPU);

}

}

tran_dmafree() Entry Point
The tran_dmafree(9E) entry point deallocates DMA resources that have been allocated for a
scsi_pkt(9S) structure. The tran_dmafree() entry point is called when the target driver calls
scsi_dmafree(9F).

tran_dmafree() must free only DMA resources allocated for a scsi_pkt(9S) structure, not the
scsi_pkt(9S) itself. When DMA resources are freed, a DMA synchronization is implicitly
performed.

Entry Points for SCSA HBA Drivers

Chapter 18 • SCSI Host Bus Adapter Drivers 361

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-sync-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-sync-pkt-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-dmafree-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-dmafree-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s

Note – The scsi_pkt(9S) is freed in a separate request to tran_destroy_pkt(9E). Because
tran_destroy_pkt() must also free DMA resources, the HBA driver must keep accurate note
of whether scsi_pkt() structures have DMA resources allocated.

EXAMPLE 18–7 HBA Driver tran_dmafree(9E) Entry Point

static void

isp_scsi_dmafree(

struct scsi_address *ap,

struct scsi_pkt *pkt)

{

struct isp_cmd *sp = (struct isp_cmd *)pkt->pkt_ha_private;

if (sp->cmd_flags & CFLAG_DMAVALID) {

sp->cmd_flags &= ~CFLAG_DMAVALID;

(void)ddi_dma_unbind_handle(sp->cmd_dmahandle);

ddi_dma_free_handle(&sp->cmd_dmahandle);

sp->cmd_dmahandle = NULL;

}

}

Command Transport
An HBA driver goes through the following steps as part of command transport:

1. Accept a command from the target driver.
2. Issue the command to the device hardware.
3. Service any interrupts that occur.
4. Manage time outs.

tran_start() Entry Point
The tran_start(9E) entry point for a SCSI HBA driver is called to transport a SCSI command
to the addressed target. The SCSI command is described entirely within the scsi_pkt(9S)
structure, which the target driver allocated through the HBA driver's tran_init_pkt(9E) entry
point. If the command involves a data transfer, DMA resources must also have been allocated
for the scsi_pkt(9S) structure.

The tran_start() entry point is called when a target driver calls scsi_transport(9F).

tran_start() should perform basic error checking along with any initialization that is
required by the command. The FLAG_NOINTR flag in the pkt_flags field of the scsi_pkt(9S)
structure can affect the behavior of tran_start(). If FLAG_NOINTR is not set, tran_start()
must queue the command for execution on the hardware and return immediately. Upon
completion of the command, the HBA driver should call the pkt completion routine.

If the FLAG_NOINTR is set, then the HBA driver should not call the pkt completion routine.

Entry Points for SCSA HBA Drivers

Writing Device Drivers • March 2012362

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-destroy-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-start-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s

The following example demonstrates how to handle the tran_start(9E) entry point. The ISP
hardware provides a queue per-target device. For devices that can manage only one active
outstanding command, the driver is typically required to manage a per-target queue. The driver
then starts up a new command upon completion of the current command in a round-robin
fashion.

EXAMPLE 18–8 HBA Driver tran_start(9E) Entry Point

static int

isp_scsi_start(

struct scsi_address *ap,

struct scsi_pkt *pkt)

{

struct isp_cmd *sp;

struct isp *isp;

struct isp_request *req;

u_long cur_lbolt;

int xfercount;

int rval = TRAN_ACCEPT;

int i;

sp = (struct isp_cmd *)pkt->pkt_ha_private;

isp = (struct isp *)ap->a_hba_tran->tran_hba_private;

sp->cmd_flags = (sp->cmd_flags & ~CFLAG_TRANFLAG) |

CFLAG_IN_TRANSPORT;

pkt->pkt_reason = CMD_CMPLT;

/*

* set up request in cmd_isp_request area so it is ready to

* go once we have the request mutex

*/

req = &sp->cmd_isp_request;

req->req_header.cq_entry_type = CQ_TYPE_REQUEST;

req->req_header.cq_entry_count = 1;

req->req_header.cq_flags = 0;

req->req_header.cq_seqno = 0;

req->req_reserved = 0;

req->req_token = (opaque_t)sp;

req->req_target = TGT(sp);

req->req_lun_trn = LUN(sp);

req->req_time = pkt->pkt_time;

ISP_SET_PKT_FLAGS(pkt->pkt_flags, req->req_flags);

/*

* Set up data segments for dma transfers.

*/

if (sp->cmd_flags & CFLAG_DMAVALID) {

if (sp->cmd_flags & CFLAG_CMDIOPB) {

(void) ddi_dma_sync(sp->cmd_dmahandle,

sp->cmd_dma_offset, sp->cmd_dma_len,

DDI_DMA_SYNC_FORDEV);

}

ASSERT(sp->cmd_cookiecnt > 0 &&

sp->cmd_cookiecnt <= ISP_NDATASEGS);

xfercount = 0;

Entry Points for SCSA HBA Drivers

Chapter 18 • SCSI Host Bus Adapter Drivers 363

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-start-9e

EXAMPLE 18–8 HBA Driver tran_start(9E) Entry Point (Continued)

req->req_seg_count = sp->cmd_cookiecnt;

for (i = 0; i < sp->cmd_cookiecnt; i++) {

req->req_dataseg[i].d_count =

sp->cmd_dmacookies[i].dmac_size;

req->req_dataseg[i].d_base =

sp->cmd_dmacookies[i].dmac_address;

xfercount +=

sp->cmd_dmacookies[i].dmac_size;

}

for (; i < ISP_NDATASEGS; i++) {

req->req_dataseg[i].d_count = 0;

req->req_dataseg[i].d_base = 0;

}

pkt->pkt_resid = xfercount;

if (sp->cmd_flags & CFLAG_DMASEND) {

req->req_flags |= ISP_REQ_FLAG_DATA_WRITE;

} else {

req->req_flags |= ISP_REQ_FLAG_DATA_READ;

}

} else {

req->req_seg_count = 0;

req->req_dataseg[0].d_count = 0;

}

/*

* Set up cdb in the request

*/

req->req_cdblen = sp->cmd_cdblen;

bcopy((caddr_t)pkt->pkt_cdbp, (caddr_t)req->req_cdb,

sp->cmd_cdblen);

/*

* Start the cmd. If NO_INTR, must poll for cmd completion.

*/

if ((pkt->pkt_flags & FLAG_NOINTR) == 0) {

mutex_enter(ISP_REQ_MUTEX(isp));

rval = isp_i_start_cmd(isp, sp);

mutex_exit(ISP_REQ_MUTEX(isp));

} else {

rval = isp_i_polled_cmd_start(isp, sp);

}

return (rval);

}

Interrupt Handler and Command Completion
The interrupt handler must check the status of the device to be sure the device is generating the
interrupt in question. The interrupt handler must also check for any errors that have occurred
and service any interrupts generated by the device.

If data is transferred, the hardware should be checked to determine how much data was actually
transferred. The pkt_resid field in the scsi_pkt(9S) structure should be set to the residual of
the transfer.

Entry Points for SCSA HBA Drivers

Writing Device Drivers • March 2012364

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s

Commands that are marked with the PKT_CONSISTENT flag when DMA resources are allocated
through tran_init_pkt(9E) take special handling. The HBA driver must ensure that the data
transfer for the command is correctly synchronized before the target driver's command
completion callback is performed.

Once a command has completed, you need to act on two requirements:
■ If a new command is queued up, start the command on the hardware as quickly as possible.
■ Call the command completion callback. The callback has been set up in the scsi_pkt(9S)

structure by the target driver to notify the target driver when the command is complete.

Start a new command on the hardware, if possible, before calling the PKT_COMP command
completion callback. The command completion handling can take considerable time. Typically,
the target driver calls functions such as biodone(9F) and possibly scsi_transport(9F) to begin
a new command.

The interrupt handler must return DDI_INTR_CLAIMED if this interrupt is claimed by this driver.
Otherwise, the handler returns DDI_INTR_UNCLAIMED.

The following example shows an interrupt handler for the SCSI HBA isp driver. The caddr_t
parameter is set up when the interrupt handler is added in attach(9E). This parameter is
typically a pointer to the state structure, which is allocated on a per instance basis.

EXAMPLE 18–9 HBA Driver Interrupt Handler

static u_int

isp_intr(caddr_t arg)

{

struct isp_cmd *sp;

struct isp_cmd *head, *tail;

u_short response_in;

struct isp_response *resp;

struct isp *isp = (struct isp *)arg;

struct isp_slot *isp_slot;

int n;

if (ISP_INT_PENDING(isp) == 0) {

return (DDI_INTR_UNCLAIMED);

}

do {

again:

/*

* head list collects completed packets for callback later

*/

head = tail = NULL;

/*

* Assume no mailbox events (e.g., mailbox cmds, asynch

* events, and isp dma errors) as common case.

*/

if (ISP_CHECK_SEMAPHORE_LOCK(isp) == 0) {

mutex_enter(ISP_RESP_MUTEX(isp));

/*

Entry Points for SCSA HBA Drivers

Chapter 18 • SCSI Host Bus Adapter Drivers 365

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-init-pkt-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fbiodone-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-transport-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e

EXAMPLE 18–9 HBA Driver Interrupt Handler (Continued)

* Loop through completion response queue and post

* completed pkts. Check response queue again

* afterwards in case there are more.

*/

isp->isp_response_in =

response_in = ISP_GET_RESPONSE_IN(isp);

/*

* Calculate the number of requests in the queue

*/

n = response_in - isp->isp_response_out;

if (n < 0) {

n = ISP_MAX_REQUESTS -

isp->isp_response_out + response_in;

}

while (n-- > 0) {

ISP_GET_NEXT_RESPONSE_OUT(isp, resp);

sp = (struct isp_cmd *)resp->resp_token;

/*

* Copy over response packet in sp

*/

isp_i_get_response(isp, resp, sp);

}

if (head) {

tail->cmd_forw = sp;

tail = sp;

tail->cmd_forw = NULL;

} else {

tail = head = sp;

sp->cmd_forw = NULL;

}

ISP_SET_RESPONSE_OUT(isp);

ISP_CLEAR_RISC_INT(isp);

mutex_exit(ISP_RESP_MUTEX(isp));

if (head) {

isp_i_call_pkt_comp(isp, head);

}

} else {

if (isp_i_handle_mbox_cmd(isp) != ISP_AEN_SUCCESS) {

return (DDI_INTR_CLAIMED);

}

/*

* if there was a reset then check the response

* queue again

*/

goto again;

}

} while (ISP_INT_PENDING(isp));

return (DDI_INTR_CLAIMED);

}

static void

isp_i_call_pkt_comp(

struct isp *isp,

Entry Points for SCSA HBA Drivers

Writing Device Drivers • March 2012366

EXAMPLE 18–9 HBA Driver Interrupt Handler (Continued)

struct isp_cmd *head)

{

struct isp *isp;

struct isp_cmd *sp;

struct scsi_pkt *pkt;

struct isp_response *resp;

u_char status;

while (head) {

sp = head;

pkt = sp->cmd_pkt;

head = sp->cmd_forw;

ASSERT(sp->cmd_flags & CFLAG_FINISHED);

resp = &sp->cmd_isp_response;

pkt->pkt_scbp[0] = (u_char)resp->resp_scb;

pkt->pkt_state = ISP_GET_PKT_STATE(resp->resp_state);

pkt->pkt_statistics = (u_long)

ISP_GET_PKT_STATS(resp->resp_status_flags);

pkt->pkt_resid = (long)resp->resp_resid;

/*

* If data was xferred and this is a consistent pkt,

* do a dma sync

*/

if ((sp->cmd_flags & CFLAG_CMDIOPB) &&

(pkt->pkt_state & STATE_XFERRED_DATA)) {

(void) ddi_dma_sync(sp->cmd_dmahandle,

sp->cmd_dma_offset, sp->cmd_dma_len,

DDI_DMA_SYNC_FORCPU);

}

sp->cmd_flags = (sp->cmd_flags & ~CFLAG_IN_TRANSPORT) |

CFLAG_COMPLETED;

/*

* Call packet completion routine if FLAG_NOINTR is not set.

*/

if (((pkt->pkt_flags & FLAG_NOINTR) == 0) &&

pkt->pkt_comp) {

(*pkt->pkt_comp)(pkt);

}

}

}

Timeout Handler
The HBA driver is responsible for enforcing time outs. A command must be complete within a
specified time unless a zero time out has been specified in the scsi_pkt(9S) structure.

When a command times out, the HBA driver should mark the scsi_pkt(9S) with pkt_reason

set to CMD_TIMEOUT and pkt_statistics OR'd with STAT_TIMEOUT. The HBA driver should also

Entry Points for SCSA HBA Drivers

Chapter 18 • SCSI Host Bus Adapter Drivers 367

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s

attempt to recover the target and bus. If this recovery can be performed successfully, the driver
should mark the scsi_pkt(9S) using pkt_statistics OR'd with either STAT_BUS_RESET or
STAT_DEV_RESET.

After the recovery attempt has completed, the HBA driver should call the command completion
callback.

Note – If recovery was unsuccessful or not attempted, the target driver might attempt to recover
from the timeout by calling scsi_reset(9F).

The ISP hardware manages command timeout directly and returns timed-out commands with
the necessary status. The timeout handler for the isp sample driver checks active commands for
the time out state only once every 60 seconds.

The isp sample driver uses the timeout(9F) facility to arrange for the kernel to call the timeout
handler every 60 seconds. The caddr_t argument is the parameter set up when the timeout is
initialized at attach(9E) time. In this case, the caddr_t argument is a pointer to the state
structure allocated per driver instance.

If timed-out commands have not been returned as timed-out by the ISP hardware, a problem
has occurred. The hardware is not functioning correctly and needs to be reset.

Capability Management
The following sections discuss capability management.

tran_getcap() Entry Point
The tran_getcap(9E) entry point for a SCSI HBA driver is called by scsi_ifgetcap(9F). The
target driver calls scsi_ifgetcap() to determine the current value of one of a set of
SCSA-defined capabilities.

The target driver can request the current setting of the capability for a particular target by
setting the whom parameter to nonzero. A whom value of zero indicates a request for the current
setting of the general capability for the SCSI bus or for adapter hardware.

The tran_getcap() entry point should return -1 for undefined capabilities or the current value
of the requested capability.

The HBA driver can use the function scsi_hba_lookup_capstr(9F) to compare the capability
string against the canonical set of defined capabilities.

EXAMPLE 18–10 HBA Driver tran_getcap(9E) Entry Point

static int

isp_scsi_getcap(

struct scsi_address *ap,

Entry Points for SCSA HBA Drivers

Writing Device Drivers • March 2012368

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-reset-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Ftimeout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-getcap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-ifgetcap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-lookup-capstr-9f

EXAMPLE 18–10 HBA Driver tran_getcap(9E) Entry Point (Continued)

char *cap,

int whom)

{

struct isp *isp;

int rval = 0;

u_char tgt = ap->a_target;

/*

* We don’t allow getting capabilities for other targets

*/

if (cap == NULL || whom == 0) {

return (-1);

}

isp = (struct isp *)ap->a_hba_tran->tran_hba_private;

ISP_MUTEX_ENTER(isp);

switch (scsi_hba_lookup_capstr(cap)) {

case SCSI_CAP_DMA_MAX:

rval = 1 << 24; /* Limit to 16MB max transfer */

break;

case SCSI_CAP_MSG_OUT:

rval = 1;

break;

case SCSI_CAP_DISCONNECT:

if ((isp->isp_target_scsi_options[tgt] &

SCSI_OPTIONS_DR) == 0) {

break;

} else if (

(isp->isp_cap[tgt] & ISP_CAP_DISCONNECT) == 0) {

break;

}

rval = 1;

break;

case SCSI_CAP_SYNCHRONOUS:

if ((isp->isp_target_scsi_options[tgt] &

SCSI_OPTIONS_SYNC) == 0) {

break;

} else if (

(isp->isp_cap[tgt] & ISP_CAP_SYNC) == 0) {

break;

}

rval = 1;

break;

case SCSI_CAP_WIDE_XFER:

if ((isp->isp_target_scsi_options[tgt] &

SCSI_OPTIONS_WIDE) == 0) {

break;

} else if (

(isp->isp_cap[tgt] & ISP_CAP_WIDE) == 0) {

break;

}

rval = 1;

break;

case SCSI_CAP_TAGGED_QING:

if ((isp->isp_target_scsi_options[tgt] &

SCSI_OPTIONS_DR) == 0 ||

(isp->isp_target_scsi_options[tgt] &

Entry Points for SCSA HBA Drivers

Chapter 18 • SCSI Host Bus Adapter Drivers 369

EXAMPLE 18–10 HBA Driver tran_getcap(9E) Entry Point (Continued)

SCSI_OPTIONS_TAG) == 0) {

break;

} else if (

(isp->isp_cap[tgt] & ISP_CAP_TAG) == 0) {

break;

}

rval = 1;

break;

case SCSI_CAP_UNTAGGED_QING:

rval = 1;

break;

case SCSI_CAP_PARITY:

if (isp->isp_target_scsi_options[tgt] &

SCSI_OPTIONS_PARITY) {

rval = 1;

}

break;

case SCSI_CAP_INITIATOR_ID:

rval = isp->isp_initiator_id;

break;

case SCSI_CAP_ARQ:

if (isp->isp_cap[tgt] & ISP_CAP_AUTOSENSE) {

rval = 1;

}

break;

case SCSI_CAP_LINKED_CMDS:

break;

case SCSI_CAP_RESET_NOTIFICATION:

rval = 1;

break;

case SCSI_CAP_GEOMETRY:

rval = (64 << 16) | 32;

break;

default:

rval = -1;

break;

}

ISP_MUTEX_EXIT(isp);

return (rval);

}

tran_setcap() Entry Point
The tran_setcap(9E) entry point for a SCSI HBA driver is called by scsi_ifsetcap(9F). A
target driver calls scsi_ifsetcap() to change the current one of a set of SCSA-defined
capabilities.

The target driver might request that the new value be set for a particular target by setting the
whom parameter to nonzero. A whom value of zero means the request is to set the new value for
the SCSI bus or for adapter hardware in general.

tran_setcap() should return the following values as appropriate:
■ -1 for undefined capabilities

Entry Points for SCSA HBA Drivers

Writing Device Drivers • March 2012370

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-setcap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-ifsetcap-9f

■ 0 if the HBA driver cannot set the capability to the requested value
■ 1 if the HBA driver is able to set the capability to the requested value

The HBA driver can use the function scsi_hba_lookup_capstr(9F) to compare the capability
string against the canonical set of defined capabilities.

EXAMPLE 18–11 HBA Driver tran_setcap(9E) Entry Point

static int

isp_scsi_setcap(

struct scsi_address *ap,

char *cap,

int value,

int whom)

{

struct isp *isp;

int rval = 0;

u_char tgt = ap->a_target;

int update_isp = 0;

/*

* We don’t allow setting capabilities for other targets

*/

if (cap == NULL || whom == 0) {

return (-1);

}

isp = (struct isp *)ap->a_hba_tran->tran_hba_private;

ISP_MUTEX_ENTER(isp);

switch (scsi_hba_lookup_capstr(cap)) {

case SCSI_CAP_DMA_MAX:

case SCSI_CAP_MSG_OUT:

case SCSI_CAP_PARITY:

case SCSI_CAP_UNTAGGED_QING:

case SCSI_CAP_LINKED_CMDS:

case SCSI_CAP_RESET_NOTIFICATION:

/*

* None of these are settable through

* the capability interface.

*/

break;

case SCSI_CAP_DISCONNECT:

if ((isp->isp_target_scsi_options[tgt] &

SCSI_OPTIONS_DR) == 0) {

break;

} else {

if (value) {

isp->isp_cap[tgt] |= ISP_CAP_DISCONNECT;

} else {

isp->isp_cap[tgt] &= ~ISP_CAP_DISCONNECT;

}

}

rval = 1;

break;

case SCSI_CAP_SYNCHRONOUS:

if ((isp->isp_target_scsi_options[tgt] &

SCSI_OPTIONS_SYNC) == 0) {

Entry Points for SCSA HBA Drivers

Chapter 18 • SCSI Host Bus Adapter Drivers 371

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-lookup-capstr-9f

EXAMPLE 18–11 HBA Driver tran_setcap(9E) Entry Point (Continued)

break;

} else {

if (value) {

isp->isp_cap[tgt] |= ISP_CAP_SYNC;

} else {

isp->isp_cap[tgt] &= ~ISP_CAP_SYNC;

}

}

rval = 1;

break;

case SCSI_CAP_TAGGED_QING:

if ((isp->isp_target_scsi_options[tgt] &

SCSI_OPTIONS_DR) == 0 ||

(isp->isp_target_scsi_options[tgt] &

SCSI_OPTIONS_TAG) == 0) {

break;

} else {

if (value) {

isp->isp_cap[tgt] |= ISP_CAP_TAG;

} else {

isp->isp_cap[tgt] &= ~ISP_CAP_TAG;

}

}

rval = 1;

break;

case SCSI_CAP_WIDE_XFER:

if ((isp->isp_target_scsi_options[tgt] &

SCSI_OPTIONS_WIDE) == 0) {

break;

} else {

if (value) {

isp->isp_cap[tgt] |= ISP_CAP_WIDE;

} else {

isp->isp_cap[tgt] &= ~ISP_CAP_WIDE;

}

}

rval = 1;

break;

case SCSI_CAP_INITIATOR_ID:

if (value < N_ISP_TARGETS_WIDE) {

struct isp_mbox_cmd mbox_cmd;

isp->isp_initiator_id = (u_short) value;

/*

* set Initiator SCSI ID

*/

isp_i_mbox_cmd_init(isp, &mbox_cmd, 2, 2,

ISP_MBOX_CMD_SET_SCSI_ID,

isp->isp_initiator_id,

0, 0, 0, 0);

if (isp_i_mbox_cmd_start(isp, &mbox_cmd) == 0) {

rval = 1;

}

}

break;

case SCSI_CAP_ARQ:

if (value) {

Entry Points for SCSA HBA Drivers

Writing Device Drivers • March 2012372

EXAMPLE 18–11 HBA Driver tran_setcap(9E) Entry Point (Continued)

isp->isp_cap[tgt] |= ISP_CAP_AUTOSENSE;

} else {

isp->isp_cap[tgt] &= ~ISP_CAP_AUTOSENSE;

}

rval = 1;

break;

default:

rval = -1;

break;

}

ISP_MUTEX_EXIT(isp);

return (rval);

}

Abort and Reset Management
The following sections discuss the abort and reset entry points for SCSI HBA.

tran_abort() Entry Point
The tran_abort(9E) entry point for a SCSI HBA driver is called to abort any commands that
are currently in transport for a particular target. This entry point is called when a target driver
calls scsi_abort(9F).

The tran_abort() entry point should attempt to abort the command denoted by the pkt
parameter. If the pkt parameter is NULL, tran_abort() should attempt to abort all outstanding
commands in the transport layer for the particular target or logical unit.

Each command successfully aborted must be marked with pkt_reason CMD_ABORTED and
pkt_statistics OR'd with STAT_ABORTED.

tran_reset() Entry Point
The tran_reset(9E) entry point for a SCSI HBA driver is called to reset either the SCSI bus or a
particular SCSI target device. This entry point is called when a target driver calls
scsi_reset(9F).

The tran_reset() entry point must reset the SCSI bus if level is RESET_ALL. If level is
RESET_TARGET, just the particular target or logical unit must be reset.

Active commands affected by the reset must be marked with pkt_reason CMD_RESET. The type
of reset determines whether STAT_BUS_RESET or STAT_DEV_RESET should be used to OR
pkt_statistics.

Commands in the transport layer, but not yet active on the target, must be marked with
pkt_reason CMD_RESET, and pkt_statistics OR'd with STAT_ABORTED.

Entry Points for SCSA HBA Drivers

Chapter 18 • SCSI Host Bus Adapter Drivers 373

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-abort-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-abort-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-reset-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-reset-9f

tran_bus_reset() Entry Point
tran_bus_reset(9E) must reset the SCSI bus without resetting targets.

#include <sys/scsi/scsi.h>

int tran_bus_reset(dev_info_t *hba-dip, int level);

where:

*hba-dip Pointer associated with the SCSI HBA

level Must be set to RESET_BUS so that only the SCSI bus is reset, not the targets

The tran_bus_reset() vector in the scsi_hba_tran(9S) structure should be initialized during
the HBA driver's attach(9E). The vector should point to an HBA entry point that is to be called
when a user initiates a bus reset.

Implementation is hardware specific. If the HBA driver cannot reset the SCSI bus without
affecting the targets, the driver should fail RESET_BUS or not initialize this vector.

tran_reset_notify() Entry Point
Use the tran_reset_notify(9E) entry point when a SCSI bus reset occurs. This function
requests the SCSI HBA driver to notify the target driver by callback.

EXAMPLE 18–12 HBA Driver tran_reset_notify(9E) Entry Point

isp_scsi_reset_notify(

struct scsi_address *ap,

int flag,

void (*callback)(caddr_t),

caddr_t arg)

{

struct isp *isp;

struct isp_reset_notify_entry *p, *beforep;

int rval = DDI_FAILURE;

isp = (struct isp *)ap->a_hba_tran->tran_hba_private;

mutex_enter(ISP_REQ_MUTEX(isp));

/*

* Try to find an existing entry for this target

*/

p = isp->isp_reset_notify_listf;

beforep = NULL;

while (p) {

if (p->ap == ap)

break;

beforep = p;

p = p->next;

}

if ((flag & SCSI_RESET_CANCEL) && (p != NULL)) {

Entry Points for SCSA HBA Drivers

Writing Device Drivers • March 2012374

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-bus-reset-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-reset-notify-9e

EXAMPLE 18–12 HBA Driver tran_reset_notify(9E) Entry Point (Continued)

if (beforep == NULL) {

isp->isp_reset_notify_listf = p->next;

} else {

beforep->next = p->next;

}

kmem_free((caddr_t)p, sizeof (struct isp_reset_notify_entry));

rval = DDI_SUCCESS;

} else if ((flag & SCSI_RESET_NOTIFY) && (p == NULL)) {

p = kmem_zalloc(sizeof (struct isp_reset_notify_entry),

KM_SLEEP);

p->ap = ap;

p->callback = callback;

p->arg = arg;

p->next = isp->isp_reset_notify_listf;

isp->isp_reset_notify_listf = p;

rval = DDI_SUCCESS;

}

mutex_exit(ISP_REQ_MUTEX(isp));

return (rval);

}

Dynamic Reconfiguration
To support the minimal set of hot-plugging operations, drivers might need to implement
support for bus quiesce, bus unquiesce, and bus reset. The scsi_hba_tran(9S) structure
supports these operations. If quiesce, unquiesce, or reset are not required by hardware, no
driver changes are needed.

The scsi_hba_tran structure includes the following fields:

int (*tran_quiesce)(dev_info_t *hba-dip);
int (*tran_unquiesce)(dev_info_t *hba-dip);
int (*tran_bus_reset)(dev_info_t *hba-dip, int level);

These interfaces quiesce and unquiesce a SCSI bus.

#include <sys/scsi/scsi.h>

int prefixtran_quiesce(dev_info_t *hba-dip);
int prefixtran_unquiesce(dev_info_t *hba-dip);

tran_quiesce(9E) and tran_unquiesce(9E) are used for SCSI devices that are not designed for
hot-plugging. These functions must be implemented by an HBA driver to support dynamic
reconfiguration (DR).

The tran_quiesce() and tran_unquiesce() vectors in the scsi_hba_tran(9S) structure
should be initialized to point to HBA entry points during attach(9E). These functions are
called when a user initiates quiesce and unquiesce operations.

Entry Points for SCSA HBA Drivers

Chapter 18 • SCSI Host Bus Adapter Drivers 375

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-quiesce-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Etran-unquiesce-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-hba-tran-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e

The tran_quiesce() entry point stops all activity on a SCSI bus prior to and during the
reconfiguration of devices that are attached to the SCSI bus. The tran_unquiesce() entry point
is called by the SCSA framework to resume activity on the SCSI bus after the reconfiguration
operation has been completed.

HBA drivers are required to handle tran_quiesce() by waiting for all outstanding commands
to complete before returning success. After the driver has quiesced the bus, any new I/O
requests must be queued until the SCSA framework calls the corresponding tran_unquiesce()
entry point.

HBA drivers handle calls to tran_unquiesce() by starting any target driver I/O requests in the
queue.

SCSI HBA Driver Specific Issues
The section covers issues specific to SCSI HBA drivers.

Installing HBA Drivers
A SCSI HBA driver is installed in similar fashion to a leaf driver. See Chapter 22, “Compiling,
Loading, Packaging, and Testing Drivers.” The difference is that the add_drv(1M) command
must specify the driver class as SCSI, such as:

add_drv -m" * 0666 root root" -i’"pci1077,1020"’ -c scsi isp

HBA Configuration Properties
When attaching an instance of an HBA device, scsi_hba_attach_setup(9F) creates a number
of SCSI configuration properties for that HBA instance. A particular property is created only if
no existing property of the same name is already attached to the HBA instance. This restriction
avoids overriding any default property values in an HBA configuration file.

An HBA driver must use ddi_prop_get_int(9F) to retrieve each property. The HBA driver
then modifies or accepts the default value of the properties to configure its specific operation.

scsi-reset-delay Property
The scsi-reset-delay property is an integer specifying the recovery time in milliseconds for a
reset delay by either a SCSI bus or SCSI device.

SCSI HBA Driver Specific Issues

Writing Device Drivers • March 2012376

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Madd-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-hba-attach-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-prop-get-int-9f

scsi-options Property
The scsi-options property is an integer specifying a number of options through individually
defined bits:

■ SCSI_OPTIONS_DR (0x008) – If not set, the HBA should not grant disconnect privileges to a
target device.

■ SCSI_OPTIONS_LINK (0x010) – If not set, the HBA should not enable linked commands.
■ SCSI_OPTIONS_SYNC (0x020) – If not set, the HBA driver must not negotiate synchronous

data transfer. The driver should reject any attempt to negotiate synchronous data transfer
initiated by a target.

■ SCSI_OPTIONS_PARITY (0x040) – If not set, the HBA should run the SCSI bus without
parity.

■ SCSI_OPTIONS_TAG (0x080) – If not set, the HBA should not operate in Command Tagged
Queuing mode.

■ SCSI_OPTIONS_FAST (0x100) – If not set, the HBA should not operate the bus in FAST SCSI
mode.

■ SCSI_OPTIONS_WIDE (0x200) – If not set, the HBA should not operate the bus in WIDE
SCSI mode.

Per-Target scsi-options
An HBA driver might support a per-target scsi-options feature in the following format:

target<n>-scsi-options=<hex value>

In this example, < n> is the target ID. If the per-target scsi-options property is defined, the
HBA driver uses that value rather than the per-HBA driver instance scsi-options property.
This approach can provide more precise control if, for example, synchronous data transfer
needs to be disabled for just one particular target device. The per-target scsi-options property
can be defined in the driver.conf(4) file.

The following example shows a per-target scsi-options property definition to disable
synchronous data transfer for target device 3:

target3-scsi-options=0x2d8

x86 Target Driver Configuration Properties
Some x86 SCSI target drivers, such as the driver for cmdk disk, use the following configuration
properties:

■ disk

SCSI HBA Driver Specific Issues

Chapter 18 • SCSI Host Bus Adapter Drivers 377

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4driver.conf-4

■ queue

■ flow_control

If you use the cmdk sample driver to write an HBA driver for an x86 platform, any appropriate
properties must be defined in the driver.conf(4) file.

Note – These property definitions should appear only in an HBA driver's driver.conf(4) file.
The HBA driver itself should not inspect or attempt to interpret these properties in any way.
These properties are advisory only and serve as an adjunct to the cmdk driver. The properties
should not be relied upon in any way. The property definitions might not be used in future
releases.

The disk property can be used to define the type of disk supported by cmdk. For a SCSI HBA,
the only possible value for the disk property is:

■ disk="scdk" – Disk type is a SCSI disk

The queue property defines how the disk driver sorts the queue of incoming requests during
strategy(9E). Two values are possible:

■ queue="qsort" – One-way elevator queuing model, provided by disksort(9F)
■ queue="qfifo" – FIFO, that is, first in, first out queuing model

The flow_control property defines how commands are transported to the HBA driver. Three
values are possible:

■ flow_control="dsngl" – Single command per HBA driver
■ flow_control="dmult" – Multiple commands per HBA driver. When the HBA queue is full,

the driver returns TRAN_BUSY.
■ flow_control="duplx" – The HBA can support separate read and write queues, with

multiple commands per queue. FIFO ordering is used for the write queue. The queuing
model that is used for the read queue is described by the queue property. When an HBA
queue is full, the driver returns TRAN_BUSY

The following example is a driver.conf(4) file for use with an x86 HBA PCI device that has
been designed for use with the cmdk sample driver:

#

config file for ISP 1020 SCSI HBA driver

#

flow_control="dsngl" queue="qsort" disk="scdk"
scsi-initiator-id=7;

SCSI HBA Driver Specific Issues

Writing Device Drivers • March 2012378

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4driver.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4driver.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Estrategy-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdisksort-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4driver.conf-4

Support for Queuing
For a definition of tagged queuing, refer to the SCSI-2 specification. To support tagged queuing,
first check the scsi_options flag SCSI_OPTIONS_TAG to see whether tagged queuing is enabled
globally. Next, check to see whether the target is a SCSI-2 device and whether the target has
tagged queuing enabled. If these conditions are all true, attempt to enable tagged queuing by
using scsi_ifsetcap(9F).

If tagged queuing fails, you can attempt to set untagged queuing. In this mode, you submit as
many commands as you think necessary or optimal to the host adapter driver. Then the host
adapter queues the commands to the target one command at a time, in contrast to tagged
queuing. In tagged queuing, the host adapter submits as many commands as possible until the
target indicates that the queue is full.

Support for Queuing

Chapter 18 • SCSI Host Bus Adapter Drivers 379

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-ifsetcap-9f

380

Drivers for Network Devices

Over the years several, slightly different NIC architectures have emerged. The MAC layer is the
common Oracle Solaris framework which interacts with the NIC hardware. The MAC layer
needs to be able to take advantage of as many hardware features as possible, such as hardware
classification, VLAN tagging, VLAN stripping, hardware checksum offload, large segment
offload, load spreading and so on, while providing a common model which is applicable by
different types of hardware.

To write a network driver for the Oracle Solaris OS, use the Solaris Generic LAN Driver (GLD)
framework.

■ For new Ethernet drivers, use the GLDv3 framework. See “GLDv3 Network Device Driver
Framework” on page 381. The GLDv3 framework is a function calls-based interface.

■ To maintain older Ethernet, Token Ring, or FDDI drivers, use the GLDv2 framework. See
“GLDv2 Network Device Driver Framework” on page 403. The GLDv2 is a kernel module
that provides common code for drivers to share.

■ If you are writing a NIC driver, see also Chapter 21, “SR-IOV Drivers.”

GLDv3 Network Device Driver Framework
The GLDv3 framework is a function calls-based interface of MAC plugins and MAC driver
service routines and structures. The GLDv3 framework implements the necessary STREAMS
entry points on behalf of GLDv3 compliant drivers and handles DLPI compatibility.

This section discusses the following topics:

■ “GLDv3 MAC Registration” on page 382
■ “GLDv3 Capabilities” on page 386
■ “GLDv3 Data Paths” on page 393
■ “GLDv3 State Change Notifications” on page 397
■ “GLDv3 Network Statistics” on page 397

19C H A P T E R 1 9

381

■ “GLDv3 Properties” on page 399
■ “Summary of GLDv3 Interfaces” on page 399

GLDv3 MAC Registration
GLDv3 defines a driver API for drivers that register with a plugin type of
MAC_PLUGIN_IDENT_ETHER.

GLDv3 MAC Registration Process
A GLDv3 device driver must perform the following steps to register with the MAC layer:

■ Include the following two MAC header files: sys/mac_ether.h, and sys/mac_provider.h.
Do not include any other MAC-related header file in your driver.

■ Populate the mac_callbacks structure.
■ Invoke the mac_init_ops() function in its _init() entry point.
■ Invoke the mac_alloc() function in its attach() entry point to allocate a mac_register

structure.
■ Populate the mac_register structure and invoke the mac_register() function in its

attach() entry point.
■ Invoke the mac_unregister() function in its detach() entry point.
■ Invoke the mac_fini_ops() function in its _fini() entry point.
■ Link with a dependency on misc/mac:

ld -N"misc/mac" xx.o -o xx

GLDv3 MAC Registration Functions
The GLDv3 interface includes driver entry points that are advertised during registration with
the MAC layer and MAC entry points that are invoked by drivers.

The mac_init_ops() and mac_fini_ops() Functions
void mac_init_ops(struct dev_ops *ops, const char *name);

A GLDv3 device driver must invoke the mac_init_ops(9F) function in its _init(9E) entry
point before calling mod_install(9F).

void mac_fini_ops(struct dev_ops *ops);

A GLDv3 device driver must invoke the mac_fini_ops(9F) function in its _fini(9E) entry
point after calling mod_remove(9F).

GLDv3 Network Device Driver Framework

Writing Device Drivers • March 2012382

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-init-ops-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmod-install-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-fini-ops-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmod-remove-9f

EXAMPLE 19–1 The mac_init_ops() and mac_fini_ops() Functions

int

_init(void)

{

int rv;

mac_init_ops(&xx_devops, "xx");
if ((rv = mod_install(&xx_modlinkage)) != DDI_SUCCESS) {

mac_fini_ops(&xx_devops);

}

return (rv);

}

int

_fini(void)

{

int rv;

if ((rv = mod_remove(&xx_modlinkage)) == DDI_SUCCESS) {

mac_fini_ops(&xx_devops);

}

return (rv);

}

The mac_alloc() and mac_free() Functions
mac_register_t *mac_alloc(uint_t version);

The mac_alloc(9F) function allocates a new mac_register structure and returns a pointer to it.
Initialize the structure members before you pass the new structure to mac_register().
MAC-private elements are initialized by the MAC layer before mac_alloc() returns. The value
of version must be MAC_VERSION_V1.

void mac_free(mac_register_t *mregp);

The mac_free(9F) function frees a mac_register structure that was previously allocated by
mac_alloc().

The mac_register() and mac_unregister() Functions
int mac_register(mac_register_t *mregp, mac_handle_t *mhp);

To register a new instance with the MAC layer, a GLDv3 driver must invoke the
mac_register(9F) function in its attach(9E) entry point. The mregp argument is a pointer to a
mac_register registration information structure. On success, the mhp argument is a pointer to
a MAC handle for the new MAC instance. This handle is needed by other routines such as
mac_tx_update(), mac_link_update(), and mac_rx().

EXAMPLE 19–2 The mac_alloc(), mac_register(), and mac_free() Functions and mac_register Structure

int

xx_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)

{

mac_register_t *macp;

GLDv3 Network Device Driver Framework

Chapter 19 • Drivers for Network Devices 383

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-register-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e

EXAMPLE 19–2 The mac_alloc(), mac_register(), and mac_free() Functions and mac_register Structure
(Continued)

/* ... */

if ((macp = mac_alloc(MAC_VERSION)) == NULL) {

xx_error(dip, "mac_alloc failed");
goto failed;

}

macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;

macp->m_driver = xxp;

macp->m_dip = dip;

macp->m_src_addr = xxp->xx_curraddr;

macp->m_callbacks = &xx_m_callbacks;

macp->m_min_sdu = 0;

macp->m_max_sdu = ETHERMTU;

macp->m_margin = VLAN_TAGSZ;

if (mac_register(macp, &xxp->xx_mh) == DDI_SUCCESS) {

mac_free(macp);

return (DDI_SUCCESS);

}

/* failed to register with MAC */

mac_free(macp);

failed:

/* ... */

}

int mac_unregister(mac_handle_t mh);

The mac_unregister(9F) function unregisters a MAC instance that was previously registered
with mac_register(). The mh argument is the MAC handle that was allocated by
mac_register(). Invoke mac_unregister() from the detach(9E) entry point.

EXAMPLE 19–3 The mac_unregister() Function

int

xx_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)

{

xx_t *xxp; /* driver soft state */

/* ... */

switch (cmd) {

case DDI_DETACH:

if (mac_unregister(xxp->xx_mh) != 0) {

return (DDI_FAILURE);

}

/* ... */

}

GLDv3 Network Device Driver Framework

Writing Device Drivers • March 2012384

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-unregister-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e

GLDv3 MAC Registration Data Structures
The structures described in this section are defined in the sys/mac_provider.h header file.
Include the sys/mac_ether.h, and sys/mac_provider.h MAC header files in your GLDv3
driver. Do not include any other MAC-related header file.

The mac_register(9S) data structure is the MAC registration information structure that is
allocated by mac_alloc() and passed to mac_register(). Initialize the structure members
before you pass the new structure to mac_register(). MAC-private elements are initialized by
the MAC layer before mac_alloc() returns. The m_version structure member is the MAC
version. Do not modify the MAC version. The m_type_ident structure member is the MAC
type identifier. Set the MAC type identifier to MAC_PLUGIN_IDENT_ETHER. The m_callbacks
member of the mac_register structure is a pointer to an instance of the mac_callbacks
structure.

The mac_callbacks(9S) data structure is the structure that your device driver uses to expose its
entry points to the MAC layer. These entry points are used by the MAC layer to control the
driver. These entry points are used to do tasks such as start and stop the adapters, manage
multicast addresses, set promiscuous mode, query the capabilities of the adapter, and get and
set properties. See Table 19–1 for a complete list of required and optional GLDv3 entry points.
Provide a pointer to your mac_callbacks structure in the m_callbacks field of the
mac_register structure.

The mc_callbacks member of the mac_callbacks structure is a bit mask that is a combination
of the following flags that specify which of the optional entry points are implemented by the
driver. Other members of the mac_callbacks structure are pointers to each of the entry points
of the driver.

MC_IOCTL The mc_ioctl() entry point is present.

MC_GETCAPAB The mc_getcapab() entry point is present.

MC_SETPROP The mc_setprop() entry point is present.

MC_GETPROP The mc_getprop() entry point is present.

MC_PROPINFO The mc_propinfo() entry point is present.

MC_PROPERTIES All properties entry points are present. Setting MC_PROPERTIES is
equivalent to setting all three flags: MC_SETPROP, MC_GETPROP, and
MC_PROPINFO.

EXAMPLE 19–4 The mac_callbacks Structure

#define XX_M_CALLBACK_FLAGS \

(MC_IOCTL | MC_GETCAPAB | MC_PROPERTIES)

static mac_callbacks_t xx_m_callbacks = {

XX_M_CALLBACK_FLAGS,

xx_m_getstat, /* mc_getstat() */

xx_m_start, /* mc_start() */

GLDv3 Network Device Driver Framework

Chapter 19 • Drivers for Network Devices 385

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Smac-register-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Smac-callbacks-9s

EXAMPLE 19–4 The mac_callbacks Structure (Continued)

xx_m_stop, /* mc_stop() */

xx_m_promisc, /* mc_setpromisc() */

xx_m_multicst, /* mc_multicst() */

xx_m_unicst, /* mc_unicst() */

xx_m_tx, /* mc_tx() */

NULL, /* Reserved, do not use */

xx_m_ioctl, /* mc_ioctl() */

xx_m_getcapab, /* mc_getcapab() */

NULL, /* Reserved, do not use */

NULL, /* Reserved, do not use */

xx_m_setprop, /* mc_setprop() */

xx_m_getprop, /* mc_getprop() */

xx_m_propinfo /* mc_propinfo() */

};

GLDv3 Capabilities
GLDv3 implements a capability mechanism that allows the framework to query and enable
capabilities that are supported by the GLDv3 driver. Use the mc_getcapab(9E)entry point to
report capabilities. If a capability is supported by the driver, pass information about that
capability, such as capability-specific entry points or flags through mc_getcapab(). Pass a
pointer to the mc_getcapab() entry point in the mac_callback structure. See “GLDv3 MAC
Registration Data Structures” on page 385 for more information about the mac_callbacks
structure.

boolean_t mc_getcapab(void *driver_handle, mac_capab_t cap, void *cap_data);

The cap argument specifies the type of capability being queried. The value of cap can be
MAC_CAPAB_HCKSUM (hardware checksum offload), MAC_CAPAB_LSO (large segment offload) or
MAC_CAPAB_RINGS. Use the cap_data argument to return the capability data to the framework.

If the driver supports the cap capability, the mc_getcapab() entry point must return B_TRUE. If
the driver does not support the cap capability, mc_getcapab() must return B_FALSE.

EXAMPLE 19–5 The mc_getcapab() Entry Point

static boolean_t

xx_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)

{

switch (cap) {

case MAC_CAPAB_HCKSUM: {

uint32_t *txflags = cap_data;

*txflags = HCKSUM_INET_FULL_V4 | HCKSUM_IPHDRCKSUM;

break;

}

case MAC_CAPAB_LSO: {

/* ... */

break;

GLDv3 Network Device Driver Framework

Writing Device Drivers • March 2012386

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emc-getcapab-9e

EXAMPLE 19–5 The mc_getcapab() Entry Point (Continued)

}

case MAC_CAPAB_RINGS: {

/* ... */

break;

}

default:

return (B_FALSE);

}

return (B_TRUE);

}

MAC Rings Capability
The following sections describe the supported capabilities and the corresponding capability
data to return.

Rings and Ring Groups Layer–2 Classification

Both transmit and receive hardware rings are DMA channels and can be exposed by device
drivers. Rings are associated with ring groups. Receive ring groups are associated with one or
more MAC addresses, and all network traffic matching any of the MAC addresses associated
with a receive group must be delivered by the NIC through one of the rings of that group. The
steering of traffic to the receive ring groups is enabled in hardware through layer-2
classification.

The mapping of receive rings to ring groups can be either dynamic or static. With dynamic ring
groups, rings can be moved between the groups, as requested by the framework, thereby
dynamically shrinking or growing the size of the groups. However with static ring groups, the
rings are statically assigned to the groups and this assignment cannot change.

If a receive group contains more than one ring, the NIC must spread traffic through these rings
using a hashing mechanism such as RSS (Receive Side Scaling) allowing multiple connections to
be assigned different ring.

Exactly one of the receive groups must be designated as the default group (usually the first
group at index 0). The following properties are associated with this receive group :

■ Should have at least one ring.
■ Is assigned to the primary MAC client of the NIC. The primary MAC client is assigned the

primary MAC address of the NIC, and is typically IP.
■ Must be used to receive all multicast and broadcast traffic received from the network.
■ If the NIC is placed in promiscuous mode, it must be used to receive all traffic which does

not match the MAC addresses assigned to non-default receive groups.

GLDv3 Network Device Driver Framework

Chapter 19 • Drivers for Network Devices 387

The following points are noteworthy with regards to the hardware implementation of receive
rings and receive ring groups:

■ If multiple receive rings are implemented but layer-2 classification is not supported, the
hardware should expose a single receive ring group with all the ring belonging to that group
to the framework.

■ If layer-2 hardware classification is implemented but RSS is not supported, the hardware
should register multiple receive groups, with one ring per group.

■ If both layer-2 hardware classification and RSS are implemented, the hardware should
register multiple receive groups with one or more rings per group.

■ If neither layer-2 hardware classification nor RSS is implemented, the hardware should
either not advertise a ring capability, or advertise a ring capability with a single pseudo ring
and ring group, which can be used to dynamically poll the adapter for traffic.

Registering Rings and Groups Process Overview

Registering rings with the framework involves a process consisting of various calls from the
framework to the driver. The following steps describe the registration process :

1. The framework queries the MAC_CAPAB_RINGS capability of the driver by calling the driver.
One call is made for the transmit rings and one call for the receive rings. See
“MAC_CAPAB_RINGS Capability” on page 388 for more information.

2. The framework uses the mr_rget(9E) and mr_gget(9E) entry points which are obtained
from the previous step, to retrieve information about a specific ring or ring group. See the
mr_rget(9E) and mr_gget(9E) man pages for more information.

3. When the framework wants to use a ring, it starts the ring group with the mgi_start(9E)
entry point, and then starts the ring using the mri_start(9E) entry point as advertised in the
previous step.
Traffic can now flow through the rings until they are stopped through the mgi_stop(9E) and
mri_stop(9E) entry points.

MAC_CAPAB_RINGS Capability

To obtain information about support for hardware transmit and receive rings, the framework
sends MAC_CAPAB_RINGS in the cap argument and expects the information back in the cap_data
field, which points to the mac_capab_rings structure.

The framework allocates the mac_capab_rings(9S) structure and sets the mr_type member to
MAC_RING_TYPE_RX for receive rings, or MAC_RING_TYPE_TX for transmit rings. The remaining
members of the structure mac_capab_rings is then filled by the drivers.

The following fields are defined in the mac_capab_rings structure:

GLDv3 Network Device Driver Framework

Writing Device Drivers • March 2012388

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emr-rget-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emr-gget-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Smac-capab-rings-9s

mr_version Must be set to MAC_RINGS_VERSION_1.

mr_rnum Number of rings.

mr_gnum Number of groups.

mr_group_type The following values are defined:
■ MAC_GROUP_TYPE_DYNAMIC – The group is dynamic.
■ MAC_GROUP_TYPE_STATIC – The group is static.

See “Rings and Ring Groups Layer–2 Classification” on page 387 for more
information.

mr_gget() Driver entry point to get more information about ring groups. See
“mr_gget() Entry Point” on page 389 for more information.

mr_rget() Driver entry point to get more information about ring. See “mr_rget()
Entry Point” on page 390 for more information.

mr_gaddring() Driver entry point to add a ring to a group. See mr_gaddring(9E).

mr_gremring() Driver entry point to remove a ring from a group. See mr_gremring(9E).

mr_gget() Entry Point

The mr_gget(9E) entry point is invoked by the framework for each valid group indices
corresponding to the number of groups which is indicated by mr_gnum parameter. See
mr_gget(9E) for more information. After the call to mr_gget(), the group information is
returned in the mac_group_info structure by the driver. The structure itself is pre-allocated by
the framework and is filled in by the driver.

The following fields are defined in the mac_group_infostructure:

mgi_driver An opaque driver group handle which is used by the framework in
future calls to group entry points.

mgi_count Number of rings in the group.

mgi_flags Group flags MAC_GROUP_DEFAULT identifies the group to be a default
group. See “Rings and Ring Groups Layer–2 Classification” on
page 387 for more information.

mgi_start Group start entry point.

mgi_stop Group stop entry point.

mgi_addmac Add unicast MAC address entry point.

mgi_remmac Remove unicast MAC address entry point.

GLDv3 Network Device Driver Framework

Chapter 19 • Drivers for Network Devices 389

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emr-gaddring-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emr-gremring-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emr-gget-9e

mgi_addvlan Entry point to add hardware VLAN filtering, tagging, and stripping of
VLAN tags.

mgi_remvlan Entry point to remove hardware VLAN filtering, tagging, and
stripping of VLAN tags.

mgi_setmtu Set RX group MTU entry point

mgi_getsriov_info Entry point to retrieve SR-IOV information for the group. See “Ring
Groups and SR-IOV ” on page 391 for more information.

See mac_group_info(9S) and mac_group_info(9E) for detailed information.

Note – mgi_addmac(9E) and mgi_remmac(9E) entry points are used only for the receive groups.
The mc_unicst(9E) entry point must be set to NULL whenever device drivers support rings
capability.

Note – The mgi_addvlan() entry point performs the following actions:

■ It defines VLAN IDs that must be allowed, for transmission and reception, by the NIC. That is,
any tagged packet that is not in the configured list will be dropped.

■ If the MAC_GROUP_VLAN_TRANSPARENT_ENABLE flag is set then it also enables the hardware
VLAN tagging and stripping for that particular VLAN ID.

mr_rget() Entry Point

The mr_rget(9E) entry point is invoked by the framework for each valid group and ring indices
corresponding to the number of groups which is indicated by mr_gnum and the number of
rings which is indicated by mr_rnum as advertised by the call to MAC_CAPAB_RINGS. See
mr_rget(9E) for detailed information.

After the call to mr_rget() is completed, the ring information is returned in the mac_ring_info
structure by the driver. The structure is pre-allocated by the framework and is filled in by the
driver.

The following fields are defined in the mac_ring_info structure:

mri_driver An opaque driver group handle which is used by the framework in
future calls to ring entry points.

mri_start Ring start entry point.

mri_stop Ring stop entry point

GLDv3 Network Device Driver Framework

Writing Device Drivers • March 2012390

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Smac-group-info-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emac-group-info-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emgi-addmac-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emgi-remmac-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emc-unicst-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emr-rget-9e

mri_stat Ring statistics entry point. See “GLDv3 Network Statistics” on
page 397 for more information.

mri_tx Ring transmit entry point. See “Transmit Data Path” on page 394
for more information.

mri_poll Ring poll entry point. “Receive Data Path” on page 395 for more
information.

mri_intr_ddi_handle The DDI interrupt handle associate with the interrupt for this ring.

mri_intr_enable(9E) Enable interrupts on RX rings. See “Receive Data Path” on page 395
for more information.

mri_intr_disable(9E) Disable interrupts on RX rings. “Receive Data Path” on page 395 for
more information.

See mac_group_info(9S) and mac_ring_info(9S) man pages for detailed information.

Note – mri_tx() must be set for transmit rings only and mri_poll() must be set only for receive
rings.

Note – If a driver implements rings capability, then the mc_tx() entry point in the
mac_callbacks structure must be set to NULL.

Ring Groups and SR-IOV

The device drivers that are SR-IOV capable use the MAC_CAPAB_RINGS capability to inform the
framework that they are SR-IOV capable by implementing the mgi_getsriov_info(9E) group
entry point. The PF driver is responsible for implementing this entry point.

After the call to mgi_getsriov_info(9E), the SR-IOV information is returned in the
mac_sriov_info structure by the driver. The structure is pre-allocated by the framework and is
filled-in by the driver.

The PF (Physical Function) driver instance registers as many transmit and receive ring groups
as the number of VFs (Virtual Functions). These ring groups advertised by the PF driver are
special and are used to manage the VFs. The ring groups do not have any data flowing through
them. They are used to configure unicast MAC address, set MTU, add VLAN filters, remove
VLAN filters, remove VLAN hardware, and perform VLAN tagging and stripping for VFs.

Note – The VF driver programs the MAC multicast group that the driver wants to join. The PF
driver does not control the programming of these addresses.

GLDv3 Network Device Driver Framework

Chapter 19 • Drivers for Network Devices 391

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emri-intr-enable-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emri-intr-disable-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Smac-group-info-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Smac-ring-info-9s

The msi_vf_index structure member, set by the PF driver, captures the VF index that
corresponds to a ring group. This is the same index used by the device driver when the driver
calls the pci_plist_getvf(9F) function.

See Chapter 21, “SR-IOV Drivers,” for detailed information about SR-IOV drivers.

Hardware Checksum Offload
To get data about support for hardware checksum offload, the framework sends
MAC_CAPAB_HCKSUM in the cap argument. See “Hardware Checksum Offload Capability
Information” on page 392.

To query checksum offload metadata and retrieve the per-packet hardware checksumming
metadata when hardware checksumming is enabled, use mac_hcksum_get(9F). See “The
mac_hcksum_get() Function Flags” on page 392.

To set checksum offload metadata, use mac_hcksum_set(9F). See “The mac_hcksum_set()
Function Flags” on page 393.

See “Hardware Checksumming: Hardware” on page 395 and “Hardware Checksumming: MAC
Layer” on page 396 for more information.

Hardware Checksum Offload Capability Information

To pass information about the MAC_CAPAB_HCKSUM capability to the framework, the driver must
set a combination of the following flags in cap_data, which points to a uint32_t. These flags
indicate the level of hardware checksum offload that the driver is capable of performing for
outbound packets.

HCKSUM_INET_PARTIAL Partial 1's complement checksum ability

HCKSUM_INET_FULL_V4 Full 1's complement checksum ability for IPv4 packets

HCKSUM_INET_FULL_V6 Full 1's complement checksum ability for IPv6 packets

HCKSUM_IPHDRCKSUM IPv4 Header checksum offload capability

The mac_hcksum_get() Function Flags

The flags argument of mac_hcksum_get() is a combination of the following values:

HCK_FULLCKSUM Compute the full checksum for this packet.

HCK_FULLCKSUM_OK The full checksum was verified in hardware and is correct.

HCK_PARTIALCKSUM Compute the partial 1's complement checksum based on other
parameters passed to mac_hcksum_get(). HCK_PARTIALCKSUM is
mutually exclusive with HCK_FULLCKSUM.

GLDv3 Network Device Driver Framework

Writing Device Drivers • March 2012392

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpci-plist-getvf-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-hcksum-get-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-hcksum-set-9f

HCK_IPV4_HDRCKSUM Compute the IP header checksum.

HCK_IPV4_HDRCKSUM_OK The IP header checksum was verified in hardware and is correct.

The mac_hcksum_set() Function Flags

The flags argument of mac_hcksum_set() is a combination of the following values:

HCK_FULLCKSUM The full checksum was computed and passed through the value
argument.

HCK_FULLCKSUM_OK The full checksum was verified in hardware and is correct.

HCK_PARTIALCKSUM The partial checksum was computed and passed through the value
argument. HCK_PARTIALCKSUM is mutually exclusive with
HCK_FULLCKSUM.

HCK_IPV4_HDRCKSUM The IP header checksum was computed and passed through the
value argument.

HCK_IPV4_HDRCKSUM_OK The IP header checksum was verified in hardware and is correct.

Large Segment (or Send) Offload
To query support for large segment (or send) offload, the framework sends MAC_CAPAB_LSO in
the cap argument and expects the information back in cap_data, which points to a
mac_capab_lso(9S) structure. The framework allocates the mac_capab_lso structure and
passes a pointer to this structure in cap_data. The mac_capab_lso structure consists of an
lso_basic_tcp_ipv4(9S) structure and an lso_flags member. If the driver instance supports
LSO for TCP on IPv4, set the LSO_TX_BASIC_TCP_IPV4 flag in lso_flags and set the lso_max
member of the lso_basic_tcp_ipv4 structure to the maximum payload size supported by the
driver instance.

Use mac_lso_get(9F) to obtain per-packet LSO metadata. If LSO is enabled for this packet, the
HW_LSO flag is set in the mac_lso_get() flags argument. The maximum segment size (MSS) to
be used during segmentation of the large segment is returned through the location pointed to
by the mss argument. See “Large Segment Offload” on page 395 for more information.

GLDv3 Data Paths
Data-path entry points are comprised of the following components:

■ Callbacks exported by the driver and invoked by the GLDv3 framework for sending packets.
■ GLDv3 framework entry points called by the driver for transmit flow control and for

receiving packets.

GLDv3 Network Device Driver Framework

Chapter 19 • Drivers for Network Devices 393

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Smac-capab-lso-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Slso-basic-tcp-ipv4-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-lso-get-9f

Note – If a driver implements the rings capability then all data sent and received by the driver is
passed through ring-specific entry points.

Transmit Data Path
The type of transmit entry point invoked by the GLDv3 framework to pass a message block to
the driver is dependent on the underlying driver support for MAC_CAPAB_RINGS. If the driver
supports MAC_CAPAB_RINGS capability then the framework invokes mri_tx(9E) ring entry point.
Otherwise the framework invokes mc_tx(9E) entry point.

Accordingly, the device driver has to provide a pointer to the transmit entry point in either
mc_tx() or mri_tx(). See “GLDv3 MAC Registration Data Structures” on page 385 and
“mr_rget() Entry Point” on page 390 for more information.

EXAMPLE 19–6 The mc_tx() and mri_tx() Entry Point

mblk_t *

xx_m_tx(void *arg, mblk_t *mp)

{

xx_t *xxp = arg;

mblk_t *nmp;

mutex_enter(&xxp->xx_xmtlock);

if (xxp->xx_flags & XX_SUSPENDED) {

while ((nmp = mp) != NULL) {

xxp->xx_carrier_errors++;

mp = mp->b_next;

freemsg(nmp);

}

mutex_exit(&xxp->xx_xmtlock);

return (NULL);

}

while (mp != NULL) {

nmp = mp->b_next;

mp->b_next = NULL;

if (!xx_send(xxp, mp)) {

mp->b_next = nmp;

break;

}

mp = nmp;

}

mutex_exit(&xxp->xx_xmtlock);

return (mp);

}

The following sections discuss topics related to transmitting data to the hardware.

GLDv3 Network Device Driver Framework

Writing Device Drivers • March 2012394

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emc-tx-9e

Flow Control

If the driver cannot send the packets because of insufficient hardware resources, the driver
returns the sub-chain of packets that could not be sent. When more descriptors become
available at a later time, the driver must invoke mac_tx_update(9F) or mac_tx_ring(9F) to
notify the framework. The driver will invoke either function depending on whether the driver
implements Rings Capability.

Hardware Checksumming: Hardware

If the driver specified hardware checksum support (see “Hardware Checksum Offload” on
page 392), then the driver must do the following tasks:

■ Use mac_hcksum_get(9F) to check every packet for hardware checksum metadata.
■ Program the hardware to perform the required checksum calculation.

Large Segment Offload

If the driver specified LSO capabilities (see “Large Segment (or Send) Offload” on page 393),
then the driver must use mac_lso_get(9F) to query whether LSO must be performed on the
packet.

Virtual LAN: Hardware

When the administrator configures VLANs, the MAC layer inserts the needed VLAN headers
on the outbound packets before they are passed to the driver through the mc_tx() entry point.
However, if the hardware supports VLAN tagging then the tagging is offloaded to the hardware.
See “mr_gget() Entry Point” on page 389 for more details.

Receive Data Path
The receive data-path can be interrupt-driven or poll-driven.

Receive Interrupt Data Path

Note: If the driver does not support the rings capability then call the mac_rx(9F) function in
your driver's interrupt handler to pass a chain of one or more packets up the stack to the MAC
layer. Avoid holding mutex or other locks during the call to mac_rx() or mac_rx_ring(). In
particular, do not hold locks that could be taken by a transmit thread during a call to mac_rx()

or mac_rx_ring().

In interrupt mode, packet chains are sent up from the driver to the framework whenever they
are received by the NIC and available by the driver for pickup. Packet chains consists of one or

GLDv3 Network Device Driver Framework

Chapter 19 • Drivers for Network Devices 395

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-tx-update-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-hcksum-get-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-lso-get-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-rx-9f

more mblk_t chained with each other through b_next and allow per-packet processing
overhead to be reduced. Received packets are passed up to the framework in interrupt mode by
calling the mac_rx_ring() entry point.

void mac_rx_ring(mac_handle_t mh, mac_ring_handle_t mrh, mblk_t *mp_chain, int64_tmr_gen_num)

The mh_handle corresponds to the MAC handle obtained by the device driver when it
registered with the kernel via the mac_register() function. The mrh _handle is the framework
ring handle which was passed to the driver as part of the mr_rget() call. mr_gen_num must be
set to the generation number specified by the framework when the receive ring was started via
the mri_start() entry point. The ring generation number provided by the driver is matched
with the ring generation number held in framework. If they do not match, received packets are
considered stale packets coming from an older assignment of the ring and they will be dropped.

Receive Polling Data-Path

In addition to being able to receive packets through an interrupt-driven path, framework also
supports a polling-based data path. In polling mode, a kernel thread running in the stack fetches
packets from the driver through a polling entry point. This allows the stack to efficiently control
when packets will be processed, with which priority, while reducing the numbers of interrupts
coming into the system based on actual load. In addition, polling allows the stack to more
effectively enforce bandwidth limits on received traffic, which is especially critical in
virtualization scenarios. The host toggles between interrupt and polling mode on demand.
While a ring is in polling mode, the driver should not deliver packets received through the
receive ring using mac_rx_ring() function. This is guaranteed as interrupts are disabled while
in polling mode. Instead, the framework will call the mri_poll() entry point that was exposed
by the driver as part of the mac_ring_info structure. See “mr_rget() Entry Point” on page 390
for more information.

Switching Between Interrupt and Polling Mode

By default, a ring should be in interrupt mode after it is started. As long as a ring is in interrupt
mode, it should pass up received packets in the form of chains through the entry points. When
the host switches a ring to polling mode, it disables its interrupt by invoking the entry point
through the mac_intr structure, which was previously exposed through the mac_ring_info
structure.

Hardware Checksumming: MAC Layer

If the driver specified hardware checksum support (see “Hardware Checksum Offload” on
page 392), then the driver must use the mac_hcksum_set(9F) function to associate hardware
checksumming metadata with the packet.

GLDv3 Network Device Driver Framework

Writing Device Drivers • March 2012396

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-hcksum-set-9f

Virtual LAN: MAC Layer

VLAN packets must be passed with their tags to the MAC layer. Do not strip the VLAN headers
from the packets. However if the hardware supports VLAN stripping and the framework has
requested the hardware to strip VLAN tags then the hardware can strip VLAN tags to improve
performance. See “mr_gget() Entry Point” on page 389 for more information.

GLDv3 State Change Notifications
A driver can call the following functions to notify the network stack that the driver's state has
changed.

void mac_tx_update(mac_handle_t mh);

void mac_tx_ring_update(mac_handle_t mh, mac_ring_handle_t rh)

The mac_tx_update(9F) or mac_tx_ring(9F) functions notify the framework that more TX
descriptors are available. If mc_tx() or mri_tx() return a non-empty chain of packets, then the
driver must call mac_tx_update() or mac_tx_ring_update() as soon as possible after
resources are available to inform the MAC layer to retry the packets that were returned as not
sent. See “Transmit Data Path” on page 394 for more information about the mc_tx() and
mri_tx() entry points.

void mac_link_update(mac_handle_t mh, link_state_t new_state);

The mac_link_update(9F) function notifies the MAC layer that the state of the media link has
changed. The new_state argument must be one of the following values:

LINK_STATE_UP The media link is up.

LINK_STATE_DOWN The media link is down.

LINK_STATE_UNKNOWN The media link is unknown.

GLDv3 Network Statistics
Device drivers maintain a set of statistics for the device instances they manage. The MAC layer
queries these statistics through the mc_getstat(9E) entry point of the driver.

int mc_getstat(void *driver_handle, uint_t stat, uint64_t *stat_value);

The GLDv3 framework uses stat to specify the statistic being queried. The driver uses stat_value
to return the value of the statistic specified by stat. If the value of the statistic is returned,
mc_getstat() must return 0. If the stat statistic is not supported by the driver, mc_getstat()
must return ENOTSUP.

GLDv3 Network Device Driver Framework

Chapter 19 • Drivers for Network Devices 397

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-tx-update-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-link-update-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emc-getstat-9e

The GLDv3 statistics that are supported are the union of generic MAC statistics and
Ethernet-specific statistics. See the mc_getstat(9E) man page for a complete list of supported
statistics.

EXAMPLE 19–7 The mc_getstat() Entry Point

int

xx_m_getstat(void *arg, uint_t stat, uint64_t *val)

{

xx_t *xxp = arg;

mutex_enter(&xxp->xx_xmtlock);

if ((xxp->xx_flags & (XX_RUNNING|XX_SUSPENDED)) == XX_RUNNING)

xx_reclaim(xxp);

mutex_exit(&xxp->xx_xmtlock);

switch (stat) {

case MAC_STAT_MULTIRCV:

*val = xxp->xx_multircv;

break;

/* ... */

case ETHER_STAT_MACRCV_ERRORS:

*val = xxp->xx_macrcv_errors;

break;

/* ... */

default:

return (ENOTSUP);

}

return (0);

}

The mri_stat() ring entry point is a mandatory ring entry point that must be implemented by
all the device drivers that support rings capability. This entry point will be used by the
framework to query the statistics maintained for each of the hardware transmit and receive
rings.

For the hardware transmit rings, the framework queries the following statistics:

■ MAC_STAT_OERRORS

■ MAC_STAT_OBYTES

■ MAC_STAT_OPACKETS

For the hardware receive rings, the framework queries the following statistics:

■ MAC_STAT_IERRORS

■ MAC_STAT_RBYTES

■ MAC_STAT_IPACKETS

GLDv3 Network Device Driver Framework

Writing Device Drivers • March 2012398

GLDv3 Properties
Use the mc_propinfo(9E) entry point to return immutable attributes of a property. This
information includes permissions, default values, and allowed value ranges. Use
mc_setprop(9E) to set the value of a property for this particular driver instance. Use
mc_getprop(9E) to return the current value of a property.

See the mc_propinfo(9E) man page for a complete list of properties and their types.

The mc_propinfo() entry point should invoke the mac_prop_info_set_perm(),
mac_prop_info_set_default(), and mac_prop_info_set_range() functions to associate
specific attributes of the property being queried, such as default values, permissions, or allowed
value ranges.

The mac_prop_info_set_default_uint8(9F), mac_prop_info_set_default_str(9F), and
mac_prop_info_set_default_link_flowctrl(9F) functions associate a default value with a
specific property. The mac_prop_info_set_range_uint32(9F) function associates an allowed
range of values for a specific property.

The mac_prop_info_set_perm(9F) function specifies the permission of the property. The
permission can be one of the following values:

MAC_PROP_PERM_READ The property is read-only

MAC_PROP_PERM_WRITE The property is write-only

MAC_PROP_PERM_RW The property can be read and written

If the mc_propinfo() entry point does not call mac_prop_info_set_perm() for a particular
property, the GLDv3 framework assumes that the property has read and write permissions,
corresponding to MAC_PROP_PERM_RW.

In addition to the properties listed in the mc_propinfo(9E) man page, drivers can also expose
driver-private properties. Use the m_priv_props field of the mac_register structure to specify
driver-private properties supported by the driver. The framework passes the
MAC_PROP_PRIVATE property ID in mc_setprop(), mc_getprop(), or mc_propinfo(). See the
mc_propinfo(9E) man page for more information.

Summary of GLDv3 Interfaces
The following table lists entry points, other DDI functions, and data structures that are part of
the GLDv3 network device driver framework.

GLDv3 Network Device Driver Framework

Chapter 19 • Drivers for Network Devices 399

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emc-propinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emc-setprop-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emc-getprop-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-prop-info-set-default-uint8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-prop-info-set-default-str-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-prop-info-set-default-link-flowctrl-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-prop-info-set-range-uint32-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-prop-info-set-perm-9f

TABLE 19–1 GLDv3 Interfaces

Interface Name Description

Required Entry Points

mc_getstat(9E) Retrieve network statistics from the driver. See
“GLDv3 Network Statistics” on page 397.

mc_start(9E) Start a driver instance. The GLDv3 framework
invokes the start entry point before any operation is
attempted.

mc_stop(9E) Stop a driver instance. The MAC layer invokes the
stop entry point before the device is detached.

mc_setpromisc(9E) Change the promiscuous mode of the device driver
instance.

mc_multicst(9E) Add or remove a multicast address.

mc_unicst(9E) Set the primary unicast address. The device must start
passing back through mac_rx() the packets with a
destination MAC address that matches the new
unicast address. See “Receive Data Path” on page 395
for information about mac_rx().

mc_tx(9E) Send one or more packets. See “Transmit Data Path”
on page 394.

mr_rget(9E) Obtain transmit and receive ring information. See
“mr_rget() Entry Point” on page 390 for more
information.

mr_gget(9E) Obtain transmit and receive ring information. See
“mr_gget() Entry Point” on page 389 for more
information.

mr_gaddring(9E) Add ring to a receive group. This is required only if
dynamic ring grouping is supported. See
“MAC_CAPAB_RINGS Capability” on page 388.

mr_gremring(9E) Remove ring from a receive group. This is required
only if dynamic ring grouping is supported. See
“MAC_CAPAB_RINGS Capability” on page 388.

mri_tx(9E) Transmit packets for TX rings. See “mr_rget() Entry
Point” on page 390 for more information.

mri_poll() Poll RX ring for packets. See “mr_rget() Entry Point”
on page 390 for more information.

mri_stat() Ring statistics. See “mr_rget() Entry Point” on
page 390 for more information.

GLDv3 Network Device Driver Framework

Writing Device Drivers • March 2012400

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emc-getstat-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emc-start-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emc-stop-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emc-setpromisc-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emc-multicst-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emc-unicst-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emc-tx-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emr-rget-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emr-gget-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emr-gaddring-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emr-gremring-9e

TABLE 19–1 GLDv3 Interfaces (Continued)
Interface Name Description

mri_intr_enable(9E) Enable interrupts on RX ring. See “mr_rget() Entry
Point” on page 390 for more information.

mri_intr_enable(9E) Disable interrupts on RX ring. See “mr_rget() Entry
Point” on page 390 for more information.

mgi_addmac(9E) Program a MAC address into the driver's hardware for
RX ring group. See “mr_gget() Entry Point” on
page 389 for more information.

mgi_remmac(9E) Remove a previously programmed MAC address from
the driver's hardware for RX ring group. See
“mr_gget() Entry Point” on page 389 for more
information.

Optional Entry Points

mc_ioctl(9E) Optional ioctl driver interface. This facility is intended
to be used only for debugging purposes.

mc_getcapab(9E) Retrieve capabilities. See “GLDv3 Capabilities” on
page 386.

mc_setprop(9E) Set a property value. See “GLDv3 Properties” on
page 399.

mc_getprop(9E) Get a property value. See “GLDv3 Properties” on
page 399.

mc_propinfo(9E) Get information about a property. See “GLDv3
Properties” on page 399.

mri_start() Start ring. See “mr_rget() Entry Point” on page 390
for more information

mri_stop() Stop ring. See “mr_rget() Entry Point” on page 390
for more information.

mgi_start(9E) Ring Group start. See “mr_gget() Entry Point” on
page 389 for more information.

mgi_stop(9E) Ring Group stop. See “mr_gget() Entry Point” on
page 389 for more information.

mgi_addvlan() Enable VLAN filtering in hardware. See “mr_gget()
Entry Point” on page 389 for more information.

mgi_remvlan() Remove previously programmed VLAN filter. See
“mr_gget() Entry Point” on page 389 for more
information.

GLDv3 Network Device Driver Framework

Chapter 19 • Drivers for Network Devices 401

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emri-intr-enable-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emri-intr-enable-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emgi-addmac-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emgi-remmac-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emc-ioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emc-getcapab-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emc-setprop-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emc-getprop-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emc-propinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emgi-start-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emgi-stop-9e

TABLE 19–1 GLDv3 Interfaces (Continued)
Interface Name Description

mgi_setmtu() Set RX group MTU. See “mr_gget() Entry Point” on
page 389 for more information.

mgi_get_sriov_info() Obtain SR-IOV information. See “Ring Groups and
SR-IOV ” on page 391 for more information.

Data Structures

mac_register(9S) Registration information. See “GLDv3 MAC
Registration Data Structures” on page 385.

mac_callbacks(9S) Driver callbacks. See “GLDv3 MAC Registration Data
Structures” on page 385.

mac_capab_lso(9S) LSO metadata. See “Large Segment (or Send) Offload”
on page 393.

lso_basic_tcp_ipv4(9S) LSO metadata for TCP/IPv4. See “Large Segment (or
Send) Offload” on page 393.

mac_capab_rings(9S) See “MAC Rings Capability” on page 387 for more
information.

mac_group_info(9S) See “mr_gget() Entry Point” on page 389 for more
information.

mac_ring_info(9S) See “mr_rget() Entry Point” on page 390 for more
information.

mac_intr_t

mac_sriov_info

MAC Registration Functions

mac_alloc(9F) Allocate a new mac_register structure. See “GLDv3
MAC Registration” on page 382.

mac_free(9F) Free a mac_register structure.

mac_register(9F) Register with the MAC layer.

mac_unregister(9F) Unregister from the MAC layer.

mac_init_ops(9F) Initialize the driver's dev_ops(9S) structure.

mac_fini_ops(9F) Release the driver's dev_ops structure.

Data Transfer Functions

mac_rx(9F) Pass up received packets. See “Receive Data Path” on
page 395.

GLDv3 Network Device Driver Framework

Writing Device Drivers • March 2012402

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Smac-register-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Smac-callbacks-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Smac-capab-lso-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Slso-basic-tcp-ipv4-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Smac-capab-rings-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Smac-group-info-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Smac-ring-info-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-register-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-unregister-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-init-ops-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sdev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-fini-ops-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-rx-9f

TABLE 19–1 GLDv3 Interfaces (Continued)
Interface Name Description

mac_rx_ring(9F) Pass up received packets. See “Receive Data Path” on
page 395.

mac_tx_update(9F) TX resources are available. See “GLDv3 State Change
Notifications” on page 397.

mac_tx_ring_update(9F) TX resources are available. See “GLDv3 State Change
Notifications” on page 397 for more information.

mac_link_update(9F) Link state has changed.

mac_hcksum_get(9F) Retrieve hardware checksum information. See
“Hardware Checksum Offload” on page 392 and
“Transmit Data Path” on page 394.

mac_hcksum_set(9F) Attach hardware checksum information. See
“Hardware Checksum Offload” on page 392 and
“Receive Data Path” on page 395.

mac_lso_get(9F) Retrieve LSO information. See “Large Segment (or
Send) Offload” on page 393.

Properties Functions

mac_prop_info_set_perm(9F) Set the permission of a property. See “GLDv3
Properties” on page 399.

mac_prop_info_set_default_uint8(9F),
mac_prop_info_set_default_str(9F),
mac_prop_info_set_default_link_flowctrl(9F)

Set a property value.

mac_prop_info_set_range_uint32(9F) Set a property values range.

GLDv2 Network Device Driver Framework
GLDv2 is a multi-threaded, clonable, loadable kernel module that provides support to device
drivers for local area networks. Local area network (LAN) device drivers in the Oracle Solaris
OS are STREAMS-based drivers that use the Data Link Provider Interface (DLPI) to
communicate with network protocol stacks. These protocol stacks use the network drivers to
send and receive packets on a LAN. The GLDv2 implements much of the STREAMS and DLPI
functionality for an Oracle Solaris LAN driver. The GLDv2 provides common code that many
network drivers can share. Using the GLDv2 reduces duplicate code and simplifies your
network driver.

For more information about GLDv2, see the gld(7D) man page.

STREAMS drivers are documented in Part II, “Kernel Interface,” in STREAMS Programming
Guide. Specifically, see Chapter 9, “STREAMS Drivers,” in the STREAMS guide. The STREAMS

GLDv2 Network Device Driver Framework

Chapter 19 • Drivers for Network Devices 403

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-tx-update-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-link-update-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-hcksum-get-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-hcksum-set-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-lso-get-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-prop-info-set-perm-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-prop-info-set-default-uint8-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-prop-info-set-default-str-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-prop-info-set-default-link-flowctrl-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmac-prop-info-set-range-uint32-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7gld-7d
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=STREAMSpart2-1
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=STREAMSpart2-1

framework is a message-based framework. Interfaces that are unique to STREAMS drivers
include STREAMS message queue processing entry points.

The DLPI specifies an interface to the Data Link Services (DLS) of the Data Link Layer of the
OSI Reference Model. The DLPI enables a DLS user to access and use any of a variety of
conforming DLS providers without special knowledge of the provider's protocol. The DLPI
specifies access to the DLS provider in the form of M_PROTO and M_PCPROTO type
STREAMS messages. A DLPI module uses STREAMS ioctl calls to link to the MAC sub-layer.
For more information about the DLPI protocol, including Oracle Solaris-specific DPLI
extensions, see the dlpi(7P) man page. For general information about DLPI, see the DLPI
standard at http://www.opengroup.org/pubs/catalog/c811.htm.

An Oracle Solaris network driver that is implemented using GLDv2 has two distinct parts:

■ Generic component. Handles STREAMS and DLPI interfaces.
■ Device-specific component. Handles the particular hardware device.

■ Indicates the driver's dependence on the GLDv2 module by linking with a dependency
on misc/gld. The GLDv2 module can be found at /kernel/misc/sparcv9/gld on
SPARC systems, /kernel/misc/amd64/gld on 64–bit x86 systems, and
/kernel/misc/gld on 32–bit x86 systems.

■ Registers with GLDv2: In its attach(9E) entry point, the driver provides GLDv2 with
pointers to its other entry points. GLDv2 uses these pointers to call into the gld(9E)
entry point.

■ Calls gld(9F) functions to process data or to use some other GLDv2 service. The
gld_mac_info(9S) structure is the primary data interface between GLDv2 and the
device-specific driver.

GLDv2 drivers must process fully formed MAC-layer packets and must not perform logical link
control (LLC) handling.

This section discusses the following topics:

■ “GLDv2 Device Support” on page 405
■ “GLDv2 DLPI Providers” on page 406
■ “GLDv2 DLPI Primitives” on page 407
■ “GLDv2 I/O Control Functions” on page 408
■ “GLDv2 Driver Requirements” on page 409
■ “GLDv2 Network Statistics” on page 410
■ “GLDv2 Declarations and Data Structures” on page 414
■ “GLDv2 Function Arguments” on page 418
■ “GLDv2 Entry Points” on page 419
■ “GLDv2 Return Values” on page 423
■ “GLDv2 Service Routines” on page 423

GLDv2 Network Device Driver Framework

Writing Device Drivers • March 2012404

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7dlpi-7p
http://www.opengroup.org/pubs/catalog/c811.htm
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Egld-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fgld-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sgld-mac-info-9s

GLDv2 Device Support
The GLDv2 framework supports the following types of devices:

■ DL_ETHER: ISO 8802-3, IEEE 802.3 protocol
■ DL_TPR: IEEE 802.5, Token Passing Ring
■ DL_FDDI: ISO 9314-2, Fibre Distributed Data Interface

Ethernet V2 and ISO 8802-3 (IEEE 802.3)
For devices that are declared to be type DL_ETHER, GLDv2 provides support for both Ethernet
V2 and ISO 8802-3 (IEEE 802.3) packet processing. Ethernet V2 enables a user to access a
conforming provider of data link services without special knowledge of the provider's protocol.
A service access point (SAP) is the point through which the user communicates with the service
provider.

Streams bound to SAP values in the range [0-255] are treated as equivalent and denote that the
user wants to use 8802-3 mode. If the SAP value of the DL_BIND_REQ is within this range, GLDv2
computes the length of each subsequent DL_UNITDATA_REQ message on that stream. The length
does not include the 14-byte media access control (MAC) header. GLDv2 then transmits
8802-3 frames that have those lengths in the MAC frame header type fields. Such lengths do not
exceed 1500.

Frames that have a type field in the range [0-1500] are assumed to be 8802-3 frames. These
frames are routed up all open streams in 8802-3 mode. Those streams with SAP values in the
[0-255] range are considered to be in 8802-3 mode. If more than one stream is in 8802-3 mode,
the incoming frame is duplicated and routed up these streams.

Those streams that are bound to SAP values that are greater than 1500 are assumed to be in
Ethernet V2 mode. These streams receive incoming packets whose Ethernet MAC header type
value exactly matches the value of the SAP to which the stream is bound.

TPR and FDDI: SNAP Processing
For media types DL_TPR and DL_FDDI, GLDv2 implements minimal SNAP (Sub-Net Access
Protocol) processing. This processing is for any stream that is bound to a SAP value that is
greater than 255. SAP values in the range [0-255] are LLC SAP values. Such values are carried
naturally by the media packet format. SAP values that are greater than 255 require a SNAP
header, subordinate to the LLC header, to carry the 16-bit Ethernet V2-style SAP value.

SNAP headers are carried under LLC headers with destination SAP 0xAA. Outbound packets
with SAP values that are greater than 255 require an LLC+SNAP header take the following
form:

AA AA 03 00 00 00 XX XX

GLDv2 Network Device Driver Framework

Chapter 19 • Drivers for Network Devices 405

XX XX represents the 16-bit SAP, corresponding to the Ethernet V2 style type. This header is
unique in supporting non-zero organizational unique identifier fields. LLC control fields other
than 03 are considered to be LLC packets with SAP 0xAA. Clients that want to use SNAP formats
other than this format must use LLC and bind to SAP 0xAA.

Incoming packets are checked for conformance with the above format. Packets that conform
are matched to any streams that have been bound to the packet's 16-bit SNAP type. In addition,
these packets are considered to match the LLC SNAP SAP 0xAA.

Packets received for any LLC SAP are passed up all streams that are bound to an LLC SAP, as
described for media type DL_ETHER.

TPR: Source Routing
For type DL_TPR devices, GLDv2 implements minimal support for source routing.

Source routing support includes the following tasks:

■ Specify routing information for a packet to be sent across a bridged medium. The routing
information is stored in the MAC header. This information is used to determine the route.

■ Learn routes.
■ Solicit and respond to requests for information about possible multiple routes.
■ Select among available routes.

Source routing adds routing information fields to the MAC headers of outgoing packets. In
addition, this support recognizes such fields in incoming packets.

GLDv2 source routing support does not implement the full route determination entity (RDE)
specified in Section 9 of ISO 8802-2 (IEEE 802.2). However, this support can interoperate with
any RDE implementations that might exist in the same or a bridged network.

GLDv2 DLPI Providers
GLDv2 implements both Style 1 and Style 2 DLPI providers. A physical point of attachment
(PPA) is the point at which a system attaches itself to a physical communication medium. All
communication on that physical medium funnels through the PPA. The Style 1 provider
attaches the streams to a particular PPA based on the major or minor device that has been
opened. The Style 2 provider requires the DLS user to explicitly identify the desired PPA using
DL_ATTACH_REQ. In this case, open(9E) creates a stream between the user and GLDv2, and
DL_ATTACH_REQ subsequently associates a particular PPA with that stream. Style 2 is denoted by
a minor number of zero. If a device node whose minor number is not zero is opened, Style 1 is
indicated and the associated PPA is the minor number minus 1. In both Style 1 and Style 2
opens, the device is cloned.

GLDv2 Network Device Driver Framework

Writing Device Drivers • March 2012406

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eopen-9e

GLDv2 DLPI Primitives
GLDv2 implements several DLPI primitives. The DL_INFO_REQ primitive requests information
about the DLPI streams. The message consists of one M_PROTO message block. GLDv2 returns
device-dependent values in the DL_INFO_ACK response to this request. These values are based on
information that the GLDv2-based driver specified in the gld_mac_info(9S) structure that was
passed to the gld_register(9F) function.

GLDv2 returns the following values on behalf of all GLDv2-based drivers:

■ Version is DL_VERSION_2.
■ Service mode is DL_CLDLS. GLDv2 implements connectionless-mode service.
■ Provider style is DL_STYLE1 or DL_STYLE2, depending on how the stream was opened.
■ No optional Quality of Service (QOS) support is present. The QOS fields are zero.

Note – Contrary to the DLPI specification, GLDv2 returns the correct address length and
broadcast address of the device in DL_INFO_ACK even before the stream has been attached to a
PPA.

The DL_ATTACH_REQ primitive is used to associate a PPA with a stream. This request is needed
for Style 2 DLS providers to identify the physical medium over which the communication is
sent. Upon completion, the state changes from DL_UNATTACHED to DL_UNBOUND. The message
consists of one M_PROTO message block. This request is not allowed when Style 1 mode is used.
Streams that are opened using Style 1 are already attached to a PPA by the time the open
completes.

The DL_DETACH_REQ primitive requests to detach the PPA from the stream. This detachment is
allowed only if the stream was opened using Style 2.

The DL_BIND_REQ and DL_UNBIND_REQ primitives bind and unbind a DLSAP (data link service
access point) to the stream. The PPA that is associated with a stream completes initialization
before the completion of the processing of the DL_BIND_REQ on that stream. You can bind
multiple streams to the same SAP. Each stream in this case receives a copy of any packets that
were received for that SAP.

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable and disable reception of
individual multicast group addresses. Through iterative use of these primitives, an application
or other DLS user can create or modify a set of multicast addresses. The streams must be
attached to a PPA for these primitives to be accepted.

The DL_PROMISCON_REQ and DL_PROMISCOFF_REQ primitives turn promiscuous mode on or off
on a per-stream basis. These controls operate at either at a physical level or at the SAP level. The
DL Provider routes all received messages on the media to the DLS user. Routing continues until

GLDv2 Network Device Driver Framework

Chapter 19 • Drivers for Network Devices 407

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sgld-mac-info-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fgld-register-9f

a DL_DETACH_REQ is received, a DL_PROMISCOFF_REQ is received, or the stream is closed. You can
specify physical level promiscuous reception of all packets on the medium or of multicast
packets only.

Note – The streams must be attached to a PPA for these promiscuous mode primitives to be
accepted.

The DL_UNITDATA_REQ primitive is used to send data in a connectionless transfer. Because this
service is not acknowledged, delivery is not guaranteed. The message consists of one M_PROTO
message block followed by one or more M_DATA blocks containing at least one byte of data.

The DL_UNITDATA_IND type is used when a packet is to be passed on upstream. The packet is put
into an M_PROTO message with the primitive set to DL_UNITDATA_IND.

The DL_PHYS_ADDR_REQ primitive requests the MAC address currently associated with the PPA
attached to the streams. The address is returned by the DL_PHYS_ADDR_ACK primitive. When
using Style 2, this primitive is only valid following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive changes the MAC address currently associated with the
PPA attached to the streams. This primitive affects all other current and future streams attached
to this device. Once changed, all streams currently or subsequently opened and attached to this
device obtain this new physical address. The new physical address remains in effect until this
primitive changes the physical address again or the driver is reloaded.

Note – The superuser is allowed to change the physical address of a PPA while other streams are
bound to the same PPA.

The DL_GET_STATISTICS_REQ primitive requests a DL_GET_STATISTICS_ACK response
containing statistics information associated with the PPA attached to the stream. Style 2
Streams must be attached to a particular PPA using DL_ATTACH_REQ before this primitive can
succeed.

GLDv2 I/O Control Functions
GLDv2 implements the ioctl ioc_cmd function described below. If GLDv2 receives an
unrecognizable ioctl command, GLDv2 passes the command to the device-specific driver's
gldm_ioctl() routine, as described in gld(9E).

The DLIOCRAW ioctl function is used by some DLPI applications, most notably the snoop(1M)
command. The DLIOCRAW command puts the stream into a raw mode. In raw mode, the driver
passes full MAC-level incoming packets upstream in M_DATA messages instead of transforming
the packets into the DL_UNITDATA_IND form. The DL_UNITDATA_IND form is normmally used for

GLDv2 Network Device Driver Framework

Writing Device Drivers • March 2012408

reporting incoming packets. Packet SAP filtering is still performed on streams that are in raw
mode. If a stream user wants to receive all incoming packets, the user must also select the
appropriate promiscuous modes. After successfully selecting raw mode, the application is also
allowed to send fully formatted packets to the driver as M_DATA messages for transmission.
DLIOCRAW takes no arguments. Once enabled, the stream remains in this mode until closed.

GLDv2 Driver Requirements
GLDv2-based drivers must include the header file <sys/gld.h>.

GLDv2-based drivers must be linked with the -N“misc/gld” option:

%ld -r -N"misc/gld" xx.o -o xx

GLDv2 implements the following functions on behalf of the device-specific driver:

■ open(9E)
■ close(9E)
■ put(9E), required for STREAMS
■ srv(9E), required for STREAMS
■ getinfo(9E)

The mi_idname element of the module_info(9S) structure is a string that specifies the name of
the driver. This string must exactly match the name of the driver module as defined in the file
system.

The read-side qinit(9S) structure should specify the following elements:

qi_putp NULL

qi_srvp gld_rsrv

qi_qopen gld_open

qi_qclose gld_close

The write-side qinit(9S) structure should specify these elements:

qi_putp gld_wput

qi_srvp gld_wsrv

qi_qopen NULL

qi_qclose NULL

The devo_getinfo element of the dev_ops(9S) structure should specify gld_getinfo as the
getinfo(9E) routine.

GLDv2 Network Device Driver Framework

Chapter 19 • Drivers for Network Devices 409

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eclose-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eput-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Esrv-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Egetinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Smodule-info-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sqinit-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sdev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Egetinfo-9e

The driver's attach(9E) function associates the hardware-specific device driver with the
GLDv2 facility. attach() then prepares the device and driver for use.

The attach(9E) function allocates a gld_mac_info(9S) structure using gld_mac_alloc(). The
driver usually needs to save more information per device than is defined in the macinfo
structure. The driver should allocate the additional required data structure and save a pointer to
the structure in the gldm_private member of the gld_mac_info(9S) structure.

The attach(9E) routine must initialize the macinfo structure as described in the
gld_mac_info(9S) man page. The attach() routine should then call gld_register() to link
the driver with the GLDv2 module. The driver should map registers if necessary and be fully
initialized and prepared to accept interrupts before calling gld_register(). The attach(9E)
function should add interrupts but should not enable the device to generate these interrupts.
The driver should reset the hardware before calling gld_register() to ensure the hardware is
quiescent. A device must not be put into a state where the device might generate an interrupt
before gld_register() is called. The device is started later when GLDv2 calls the driver's
gldm_start() entry point, which is described in the gld(9E) man page. After gld_register()
succeeds, the gld(9E) entry points might be called by GLDv2 at any time.

The attach(9E) routine should return DDI_SUCCESS if gld_register() succeeds. If
gld_register() fails, DDI_FAILURE is returned. If a failure occurs, the attach(9E) routine
should deallocate any resources that were allocated before gld_register() was called. The
attach routine should then also return DDI_FAILURE. A failed macinfo structure should never be
reused. Such a structure should be deallocated using gld_mac_free().

The detach(9E)function should attempt to unregister the driver from GLDv2 by calling
gld_unregister(). For more information about gld_unregister(), see the gld(9F) man
page. The detach(9E) routine can get a pointer to the needed gld_mac_info(9S) structure from
the device's private data using ddi_get_driver_private(9F). gld_unregister() checks
certain conditions that could require that the driver not be detached. If the checks fail,
gld_unregister() returns DDI_FAILURE, in which case the driver's detach(9E) routine must
leave the device operational and return DDI_FAILURE.

If the checks succeed, gld_unregister() ensures that the device interrupts are stopped. The
driver's gldm_stop() routine is called if necessary. The driver is unlinked from the GLDv2
framework. gld_unregister() then returns DDI_SUCCESS. In this case, the detach(9E) routine
should remove interrupts and use gld_mac_free() to deallocate any macinfo data structures
that were allocated in the attach(9E) routine. The detach() routine should then return
DDI_SUCCESS. The routine must remove the interrupt before calling gld_mac_free().

GLDv2 Network Statistics
Oracle Solaris network drivers must implement statistics variables. GLDv2 tallies some network
statistics, but other statistics must be counted by each GLDv2-based driver. GLDv2 provides

GLDv2 Network Device Driver Framework

Writing Device Drivers • March 2012410

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sgld-mac-info-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fgld-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-get-driver-private-9f

support for GLDv2-based drivers to report a standard set of network driver statistics. Statistics
are reported by GLDv2 using the kstat(7D) and kstat(9S) mechanisms. The
DL_GET_STATISTICS_REQ DLPI command can also be used to retrieve the current statistics
counters. All statistics are maintained as unsigned. The statistics are 32 bits unless otherwise
noted.

GLDv2 maintains and reports the following statistics.

rbytes64 Total bytes successfully received on the interface. Stores 64-bit statistics.

rbytes Total bytes successfully received on the interface

obytes64 Total bytes that have requested transmission on the interface. Stores 64-bit
statistics.

obytes Total bytes that have requested transmission on the interface.

ipackets64 Total packets successfully received on the interface. Stores 64-bit statistics.

ipackets Total packets successfully received on the interface.

opackets64 Total packets that have requested transmission on the interface. Stores 64-bit
statistics.

opackets Total packets that have requested transmission on the interface.

multircv Multicast packets successfully received, including group and functional
addresses (long).

multixmt Multicast packets requested to be transmitted, including group and functional
addresses (long).

brdcstrcv Broadcast packets successfully received (long).

brdcstxmt Broadcast packets that have requested transmission (long).

unknowns Valid received packets not accepted by any stream (long).

noxmtbuf Packets discarded on output because transmit buffer was busy, or no buffer
could be allocated for transmit (long).

blocked Number of times a received packet could not be put up a stream because the
queue was flow-controlled (long).

xmtretry Times transmit was retried after having been delayed due to lack of resources
(long).

promisc Current “promiscuous” state of the interface (string).

The device-dependent driver tracks the following statistics in a private per-instance structure.
To report statistics, GLDv2 calls the driver's gldm_get_stats() entry point.
gldm_get_stats() then updates device-specific statistics in the gld_stats(9S) structure. See

GLDv2 Network Device Driver Framework

Chapter 19 • Drivers for Network Devices 411

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7kstat-7d
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Skstat-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sgld-stats-9s

the gldm_get_stats(9E) man page for more information. GLDv2 then reports the updated
statistics using the named statistics variables that are shown below.

ifspeed Current estimated bandwidth of the interface in bits per second. Stores 64-bit
statistics.

media Current media type in use by the device (string).

intr Number of times that the interrupt handler was called, causing an interrupt
(long).

norcvbuf Number of times a valid incoming packet was known to have been discarded
because no buffer could be allocated for receive (long).

ierrors Total number of packets that were received but could not be processed due to
errors (long).

oerrors Total packets that were not successfully transmitted because of errors (long).

missed Packets known to have been dropped by the hardware on receive (long).

uflo Times FIFO underflowed on transmit (long).

oflo Times receiver overflowed during receive (long).

The following group of statistics applies to networks of type DL_ETHER. These statistics are
maintained by device-specific drivers of that type, as shown previously.

align_errors Packets that were received with framing errors, that is, the packets
did not contain an integral number of octets (long).

fcs_errors Packets received with CRC errors (long).

duplex Current duplex mode of the interface (string).

carrier_errors Number of times carrier was lost or never detected on a transmission
attempt (long).

collisions Ethernet collisions during transmit (long).

ex_collisions Frames where excess collisions occurred on transmit, causing
transmit failure (long).

tx_late_collisions Number of times a transmit collision occurred late, that is, after 512
bit times (long).

defer_xmts Packets without collisions where first transmit attempt was delayed
because the medium was busy (long).

first_collisions Packets successfully transmitted with exactly one collision.

multi_collisions Packets successfully transmitted with multiple collisions.

sqe_errors Number of times that SQE test error was reported.

GLDv2 Network Device Driver Framework

Writing Device Drivers • March 2012412

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Egldm-get-stats-9e

macxmt_errors Packets encountering transmit MAC failures, except carrier and
collision failures.

macrcv_errors Packets received with MAC errors, except align_errors,
fcs_errors, and toolong_errors.

toolong_errors Packets received larger than the maximum allowed length.

runt_errors Packets received smaller than the minimum allowed length (long).

The following group of statistics applies to networks of type DL_TPR. These statistics are
maintained by device-specific drivers of that type, as shown above.

line_errors Packets received with non-data bits or FCS errors.

burst_errors Number of times an absence of transitions for five half-bit timers
was detected.

signal_losses Number of times loss of signal condition on the ring was detected.

ace_errors Number of times that an AMP or SMP frame, in which A is equal to
C is equal to 0, is followed by another SMP frame without an
intervening AMP frame.

internal_errors Number of times the station recognized an internal error.

lost_frame_errors Number of times the TRR timer expired during transmit.

frame_copied_errors Number of times a frame addressed to this station was received with
the FS field ‘A' bit set to 1.

token_errors Number of times the station acting as the active monitor recognized
an error condition that needed a token transmitted.

freq_errors Number of times the frequency of the incoming signal differed from
the expected frequency.

The following group of statistics applies to networks of type DL_FDDI. These statistics are
maintained by device-specific drivers of that type, as shown above.

mac_errors Frames detected in error by this MAC that had not been detected in error
by another MAC.

mac_lost_errors Frames received with format errors such that the frame was stripped.

mac_tokens Number of tokens that were received, that is, the total of non-restricted
and restricted tokens.

mac_tvx_expired Number of times that TVX has expired.

mac_late Number of TRT expirations since either this MAC was reset or a token
was received.

GLDv2 Network Device Driver Framework

Chapter 19 • Drivers for Network Devices 413

mac_ring_ops Number of times the ring has entered the “Ring Operational” state from
the “Ring Not Operational” state.

GLDv2 Declarations and Data Structures
This section describes the gld_mac_info(9S) and gld_stats structures.

gld_mac_info Structure
The GLDv2 MAC information (gld_mac_info) structure is the main data interface that links
the device-specific driver with GLDv2. This structure contains data required by GLDv2 and a
pointer to an optional additional driver-specific information structure.

Allocate the gld_mac_info structure using gld_mac_alloc(). Deallocate the structure using
gld_mac_free(). Drivers must not make any assumptions about the length of this structure,
which might vary in different releases of the Oracle Solaris OS, GLDv2, or both. Structure
members private to GLDv2, not documented here, should neither be set nor be read by the
device-specific driver.

The gld_mac_info(9S) structure contains the following fields.

caddr_t gldm_private; /* Driver private data */

int (*gldm_reset)(); /* Reset device */

int (*gldm_start)(); /* Start device */

int (*gldm_stop)(); /* Stop device */

int (*gldm_set_mac_addr)(); /* Set device phys addr */

int (*gldm_set_multicast)(); /* Set/delete multicast addr */

int (*gldm_set_promiscuous)(); /* Set/reset promiscuous mode */

int (*gldm_send)(); /* Transmit routine */

uint_t (*gldm_intr)(); /* Interrupt handler */

int (*gldm_get_stats)(); /* Get device statistics */

int (*gldm_ioctl)(); /* Driver-specific ioctls */

char *gldm_ident; /* Driver identity string */

uint32_t gldm_type; /* Device type */

uint32_t gldm_minpkt; /* Minimum packet size */

/* accepted by driver */

uint32_t gldm_maxpkt; /* Maximum packet size */

/* accepted by driver */

uint32_t gldm_addrlen; /* Physical address length */

int32_t gldm_saplen; /* SAP length for DL_INFO_ACK */

unsigned char *gldm_broadcast_addr; /* Physical broadcast addr */

unsigned char *gldm_vendor_addr; /* Factory MAC address */

t_uscalar_t gldm_ppa; /* Physical Point of */

/* Attachment (PPA) number */

dev_info_t *gldm_devinfo; /* Pointer to device’s */

/* dev_info node */

ddi_iblock_cookie_t gldm_cookie; /* Device’s interrupt */

/* block cookie */

GLDv2 Network Device Driver Framework

Writing Device Drivers • March 2012414

The gldm_private structure member is visible to the device driver. gldm_private is also
private to the device-specific driver. gldm_private is not used or modified by GLDv2.
Conventionally, gldm_private is used as a pointer to private data, pointing to a per-instance
data structure that is both defined and allocated by the driver.

The following group of structure members must be set by the driver before calling
gld_register(), and should not thereafter be modified by the driver. Because
gld_register() might use or cache the values of structure members, changes made by the
driver after calling gld_register() might cause unpredictable results. For more information
on these structures, see the gld(9E) man page.

gldm_reset Pointer to driver entry point.

gldm_start Pointer to driver entry point.

gldm_stop Pointer to driver entry point.

gldm_set_mac_addr Pointer to driver entry point.

gldm_set_multicast Pointer to driver entry point.

gldm_set_promiscuous Pointer to driver entry point.

gldm_send Pointer to driver entry point.

gldm_intr Pointer to driver entry point.

gldm_get_stats Pointer to driver entry point.

gldm_ioctl Pointer to driver entry point. This pointer is allowed to be null.

gldm_ident Pointer to a string that contains a short description of the device.
This pointer is used to identify the device in system messages.

gldm_type Type of device the driver handles. GLDv2 currently supports the
following values:
■ DL_ETHER (ISO 8802-3 (IEEE 802.3) and Ethernet Bus)
■ DL_TPR (IEEE 802.5 Token Passing Ring)
■ DL_FDDI (ISO 9314-2 Fibre Distributed Data Interface)

This structure member must be correctly set for GLDv2 to
function properly.

gldm_minpkt Minimum Service Data Unit size: the minimum packet size, not
including the MAC header, that the device can transmit. This size
is allowed to be zero if the device-specific driver handles any
required padding.

gldm_maxpkt Maximum Service Data Unit size: the maximum size of packet, not
including the MAC header, that can be transmitted by the device.
For Ethernet, this number is 1500.

GLDv2 Network Device Driver Framework

Chapter 19 • Drivers for Network Devices 415

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Egld-9e

gldm_addrlen The length in bytes of physical addresses handled by the device.
For Ethernet, Token Ring, and FDDI, the value of this structure
member should be 6.

gldm_saplen The length in bytes of the SAP address used by the driver. For
GLDv2-based drivers, the length should always be set to -2. A
length of -2 indicates that 2-byte SAP values are supported and
that the SAP appears after the physical address in a DLSAP
address. See Appendix A.2, “Message DL_INFO_ACK,” in the
DLPI specification for more details.

gldm_broadcast_addr Pointer to an array of bytes of length gldm_addrlen containing the
broadcast address to be used for transmit. The driver must provide
space to hold the broadcast address, fill the space with the
appropriate value, and set gldm_broadcast_addr to point to the
address. For Ethernet, Token Ring, and FDDI, the broadcast
address is normally 0xFF-FF-FF-FF-FF-FF.

gldm_vendor_addr Pointer to an array of bytes of length gldm_addrlen that contains
the vendor-provided network physical address of the device. The
driver must provide space to hold the address, fill the space with
information from the device, and set gldm_vendor_addr to point
to the address.

gldm_ppa PPA number for this instance of the device. The PPA number
should always be set to the instance number that is returned from
ddi_get_instance(9F).

gldm_devinfo Pointer to the dev_info node for this device.

gldm_cookie Interrupt block cookie returned by one of the following routines:
■ ddi_get_iblock_cookie(9F)
■ ddi_add_intr(9F)
■ ddi_get_soft_iblock_cookie(9F)
■ ddi_add_softintr(9F)

This cookie must correspond to the device's receive-interrupt,
from which gld_recv() is called.

gld_stats Structure
After calling gldm_get_stats(), a GLDv2-based driver uses the (gld_stats) structure to
communicate statistics and state information to GLDv2. See the gld(9E) and gld(7D) man
pages. The members of this structure, having been filled in by the GLDv2-based driver, are used
when GLDv2 reports the statistics. In the tables below, the name of the statistics variable
reported by GLDv2 is noted in the comments. See the gld(7D) man page for a more detailed
description of the meaning of each statistic.

GLDv2 Network Device Driver Framework

Writing Device Drivers • March 2012416

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-get-instance-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-get-iblock-cookie-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-add-intr-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-get-soft-iblock-cookie-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-add-softintr-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7gld-7d

Drivers must not make any assumptions about the length of this structure. The structure length
might vary in different releases of the Oracle Solaris OS, GLDv2, or both. Structure members
private to GLDv2, which are not documented here, should not be set or be read by the
device-specific driver.

The following structure members are defined for all media types:

uint64_t glds_speed; /* ifspeed */

uint32_t glds_media; /* media */

uint32_t glds_intr; /* intr */

uint32_t glds_norcvbuf; /* norcvbuf */

uint32_t glds_errrcv; /* ierrors */

uint32_t glds_errxmt; /* oerrors */

uint32_t glds_missed; /* missed */

uint32_t glds_underflow; /* uflo */

uint32_t glds_overflow; /* oflo */

The following structure members are defined for media type DL_ETHER:

uint32_t glds_frame; /* align_errors */

uint32_t glds_crc; /* fcs_errors */

uint32_t glds_duplex; /* duplex */

uint32_t glds_nocarrier; /* carrier_errors */

uint32_t glds_collisions; /* collisions */

uint32_t glds_excoll; /* ex_collisions */

uint32_t glds_xmtlatecoll; /* tx_late_collisions */

uint32_t glds_defer; /* defer_xmts */

uint32_t glds_dot3_first_coll; /* first_collisions */

uint32_t glds_dot3_multi_coll; /* multi_collisions */

uint32_t glds_dot3_sqe_error; /* sqe_errors */

uint32_t glds_dot3_mac_xmt_error; /* macxmt_errors */

uint32_t glds_dot3_mac_rcv_error; /* macrcv_errors */

uint32_t glds_dot3_frame_too_long; /* toolong_errors */

uint32_t glds_short; /* runt_errors */

The following structure members are defined for media type DL_TPR:

uint32_t glds_dot5_line_error /* line_errors */

uint32_t glds_dot5_burst_error /* burst_errors */

uint32_t glds_dot5_signal_loss /* signal_losses */

uint32_t glds_dot5_ace_error /* ace_errors */

uint32_t glds_dot5_internal_error /* internal_errors */

uint32_t glds_dot5_lost_frame_error /* lost_frame_errors */

uint32_t glds_dot5_frame_copied_error /* frame_copied_errors */

uint32_t glds_dot5_token_error /* token_errors */

uint32_t glds_dot5_freq_error /* freq_errors */

The following structure members are defined for media type DL_FDDI:

uint32_t glds_fddi_mac_error; /* mac_errors */

uint32_t glds_fddi_mac_lost; /* mac_lost_errors */

uint32_t glds_fddi_mac_token; /* mac_tokens */

uint32_t glds_fddi_mac_tvx_expired; /* mac_tvx_expired */

uint32_t glds_fddi_mac_late; /* mac_late */

GLDv2 Network Device Driver Framework

Chapter 19 • Drivers for Network Devices 417

uint32_t glds_fddi_mac_ring_op; /* mac_ring_ops */

Most of the above statistics variables are counters that denote the number of times that the
particular event was observed. The following statistics do not represent the number of times:

glds_speed Estimate of the interface's current bandwidth in bits per second. This object
should contain the nominal bandwidth for those interfaces that do not vary in
bandwidth or where an accurate estimate cannot be made.

glds_media Type of media (wiring) or connector used by the hardware. The following
media names are supported:
■ GLDM_AUI

■ GLDM_BNC

■ GLDM_TP

■ GLDM_10BT

■ GLDM_100BT

■ GLDM_100BTX

■ GLDM_100BT4

■ GLDM_RING4

■ GLDM_RING16

■ GLDM_FIBER

■ GLDM_PHYMII

■ GLDM_UNKNOWN

glds_duplex Current duplex state of the interface. Supported values are GLD_DUPLEX_HALF
and GLD_DUPLEX_FULL. GLD_DUPLEX_UNKNOWN is also allowed.

GLDv2 Function Arguments
The following arguments are used by the GLDv2 routines.

macinfo Pointer to a gld_mac_info(9S) structure.

macaddr Pointer to the beginning of a character array that contains a valid MAC
address. The array is of the length specified by the driver in the
gldm_addrlen element of the gld_mac_info(9S) structure.

multicastaddr Pointer to the beginning of a character array that contains a multicast, group,
or functional address. The array is of the length specified by the driver in the
gldm_addrlen element of the gld_mac_info(9S) structure.

multiflag Flag indicating whether to enable or disable reception of the multicast
address. This argument is specified as GLD_MULTI_ENABLE or
GLD_MULTI_DISABLE.

GLDv2 Network Device Driver Framework

Writing Device Drivers • March 2012418

promiscflag Flag indicating what type of promiscuous mode, if any, is to be enabled. This
argument is specified as GLD_MAC_PROMISC_PHYS, GLD_MAC_PROMISC_MULTI,
or GLD_MAC_PROMISC_NONE.

mp gld_ioctl() uses mp as a pointer to a STREAMS message block containing
the ioctl to be executed. gldm_send() uses mp as a pointer to a STREAMS
message block containing the packet to be transmitted. gld_recv() uses mp
as a pointer to a message block containing a received packet.

stats Pointer to a gld_stats(9S) structure to be filled in with the current values of
statistics counters.

q Pointer to the queue(9S) structure to be used in the reply to the ioctl.

dip Pointer to the device's dev_info structure.

name Device interface name.

GLDv2 Entry Points
Entry points must be implemented by a device-specific network driver that has been designed
to interface with GLDv2.

The gld_mac_info(9S) structure is the main structure for communication between the
device-specific driver and the GLDv2 module. See the gld(7D) man page. Some elements in
that structure are function pointers to the entry points that are described here. The
device-specific driver must, in its attach(9E) routine, initialize these function pointers before
calling gld_register().

gldm_reset() Entry Point
int prefix_reset(gld_mac_info_t *macinfo);

gldm_reset() resets the hardware to its initial state.

gldm_start() Entry Point
int prefix_start(gld_mac_info_t *macinfo);

gldm_start() enables the device to generate interrupts. gldm_start() also prepares the driver
to call gld_recv() to deliver received data packets to GLDv2.

gldm_stop() Entry Point
int prefix_stop(gld_mac_info_t *macinfo);

GLDv2 Network Device Driver Framework

Chapter 19 • Drivers for Network Devices 419

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Squeue-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7gld-7d
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e

gldm_stop() disables the device from generating any interrupts and stops the driver from
calling gld_recv() for delivering data packets to GLDv2. GLDv2 depends on the gldm_stop()
routine to ensure that the device will no longer interrupt. gldm_stop() must do so without fail.
This function should always return GLD_SUCCESS.

gldm_set_mac_addr() Entry Point
int prefix_set_mac_addr(gld_mac_info_t *macinfo, unsigned char *macaddr);

gldm_set_mac_addr() sets the physical address that the hardware is to use for receiving data.
This function enables the device to be programmed through the passed MAC address macaddr.
If sufficient resources are currently not available to carry out the request, gldm_set_mac_add()
should return GLD_NORESOURCES. If the requested function is not supported,
gldm_set_mac_add() should return GLD_NOTSUPPORTED.

gldm_set_multicast() Entry Point
int prefix_set_multicast(gld_mac_info_t *macinfo,

unsigned char *multicastaddr, int multiflag);

gldm_set_multicast() enables and disables device-level reception of specific multicast
addresses. If the third argument multiflag is set to GLD_MULTI_ENABLE, then
gldm_set_multicast() sets the interface to receive packets with the multicast address.
gldm_set_multicast() uses the multicast address that is pointed to by the second argument. If
multiflag is set to GLD_MULTI_DISABLE, the driver is allowed to disable reception of the specified
multicast address.

This function is called whenever GLDv2 wants to enable or disable reception of a multicast,
group, or functional address. GLDv2 makes no assumptions about how the device does
multicast support and calls this function to enable or disable a specific multicast address. Some
devices might use a hash algorithm and a bitmask to enable collections of multicast addresses.
This procedure is allowed, and GLDv2 filters out any superfluous packets. If disabling an
address could result in disabling more than one address at the device level, the device driver
should keep any necessary information. This approach avoids disabling an address that GLDv2
has enabled but not disabled.

gldm_set_multicast() is not called to enable a particular multicast address that is already
enabled. Similarly, gldm_set_multicast() is not called to disable an address that is not
currently enabled. GLDv2 keeps track of multiple requests for the same multicast address.
GLDv2 only calls the driver's entry point when the first request to enable, or the last request to
disable, a particular multicast address is made. If sufficient resources are currently not available
to carry out the request, the function should return GLD_NORESOURCES. The function should
return GLD_NOTSUPPORTED if the requested function is not supported.

GLDv2 Network Device Driver Framework

Writing Device Drivers • March 2012420

gldm_set_promiscuous() Entry Point
int prefix_set_promiscuous(gld_mac_info_t *macinfo, int promiscflag);

gldm_set_promiscuous() enables and disables promiscuous mode. This function is called
whenever GLDv2 wants to enable or disable the reception of all packets on the medium. The
function can also be limited to multicast packets on the medium. If the second argument
promiscflag is set to the value of GLD_MAC_PROMISC_PHYS, then the function enables
physical-level promiscuous mode. Physical-level promiscuous mode causes the reception of all
packets on the medium. If promiscflag is set to GLD_MAC_PROMISC_MULTI, then reception of all
multicast packets are enabled. If promiscflag is set to GLD_MAC_PROMISC_NONE, then
promiscuous mode is disabled.

In promiscuous multicast mode, drivers for devices without multicast-only promiscuous mode
must set the device to physical promiscuous mode. This approach ensures that all multicast
packets are received. In this case, the routine should return GLD_SUCCESS. The GLDv2 software
filters out any superfluous packets. If sufficient resources are currently not available to carry out
the request, the function should return GLD_NORESOURCES. The gld_set_promiscuous()
function should return GLD_NOTSUPPORTED if the requested function is not supported.

For forward compatibility, gldm_set_promiscuous() routines should treat any unrecognized
values for promiscflag as though these values were GLD_MAC_PROMISC_PHYS.

gldm_send() Entry Point
int prefix_send(gld_mac_info_t *macinfo, mblk_t *mp);

gldm_send() queues a packet to the device for transmission. This routine is passed a STREAMS
message containing the packet to be sent. The message might include multiple message blocks.
The send() routine must traverse all the message blocks in the message to access the entire
packet to be sent. The driver should be prepared to handle and skip over any zero-length
message continuation blocks in the chain. The driver should also check that the packet does not
exceed the maximum allowable packet size. The driver must pad the packet, if necessary, to the
minimum allowable packet size. If the send routine successfully transmits or queues the packet,
GLD_SUCCESS should be returned.

The send routine should return GLD_NORESOURCES if the packet for transmission cannot be
immediately accepted. In this case, GLDv2 retries later. If gldm_send() ever returns
GLD_NORESOURCES, the driver must call gld_sched() at a later time when resources have
become available. This call to gld_sched() informs GLDv2 to retry packets that the driver
previously failed to queue for transmission. (If the driver's gldm_stop() routine is called, the
driver is absolved from this obligation until the driver returns GLD_NORESOURCES from the
gldm_send() routine. However, extra calls to gld_sched() do not cause incorrect operation.)

If the driver's send routine returns GLD_SUCCESS, then the driver is responsible for freeing the
message when the message is no longer needed. If the hardware uses DMA to read the data

GLDv2 Network Device Driver Framework

Chapter 19 • Drivers for Network Devices 421

directly, the driver must not free the message until the hardware has completely read the data.
In this case, the driver can free the message in the interrupt routine. Alternatively, the driver can
reclaim the buffer at the start of a future send operation. If the send routine returns anything
other than GLD_SUCCESS, then the driver must not free the message. Return GLD_NOLINK if
gldm_send() is called when there is no physical connection to the network or link partner.

gldm_intr() Entry Point
int prefix_intr(gld_mac_info_t *macinfo);

gldm_intr() is called when the device might have interrupted. Because interrupts can be
shared with other devices, the driver must check the device status to determine whether that
device actually caused the interrupt. If the device that the driver controls did not cause the
interrupt, then this routine must return DDI_INTR_UNCLAIMED. Otherwise, the driver must
service the interrupt and return DDI_INTR_CLAIMED. If the interrupt was caused by successful
receipt of a packet, this routine should put the received packet into a STREAMS message of type
M_DATA and pass that message to gld_recv().

gld_recv() passes the inbound packet upstream to the appropriate next layer of the network
protocol stack. The routine must correctly set the b_rptr and b_wptr members of the
STREAMS message before calling gld_recv().

The driver should avoid holding mutex or other locks during the call to gld_recv(). In
particular, locks that could be taken by a transmit thread must not be held during a call to
gld_recv(). In some cases, the interrupt thread that calls gld_recv() sends an outgoing
packet, which results in a call to the driver's gldm_send() routine. If gldm_send() tries to
acquire a mutex that is held by gldm_intr() when gld_recv() is called, a panic occurs due to
recursive mutex entry. If other driver entry points attempt to acquire a mutex that the driver
holds across a call to gld_recv(), deadlock can result.

The interrupt code should increment statistics counters for any errors. Errors include the
failure to allocate a buffer that is needed for the received data and any hardware-specific errors,
such as CRC errors or framing errors.

gldm_get_stats() Entry Point
int prefix_get_stats(gld_mac_info_t *macinfo, struct gld_stats *stats);

gldm_get_stats() gathers statistics from the hardware, driver private counters, or both, and
updates the gld_stats(9S) structure pointed to by stats. This routine is called by GLDv2 for
statistics requests. GLDv2 uses the gldm_get_stats() mechanism to acquire device-dependent
statistics from the driver before GLDv2 composes the reply to the statistics request. See the
gld_stats(9S), gld(7D), and qreply(9F) man pages for more information about defined
statistics counters.

GLDv2 Network Device Driver Framework

Writing Device Drivers • March 2012422

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sgld-stats-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7gld-7d
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fqreply-9f

gldm_ioctl() Entry Point
int prefix_ioctl(gld_mac_info_t *macinfo, queue_t *q, mblk_t *mp);

gldm_ioctl() implements any device-specific ioctl commands. This element is allowed to be
null if the driver does not implement any ioctl functions. The driver is responsible for
converting the message block into an ioctl reply message and calling the qreply(9F) function
before returning GLD_SUCCESS. This function should always return GLD_SUCCESS. The driver
should report any errors as needed in a message to be passed to qreply(9F). If the gldm_ioctl
element is specified as NULL, GLDv2 returns a message of type M_IOCNAK with an error of
EINVAL.

GLDv2 Return Values
Some entry point functions in GLDv2 can return the following values, subject to the restrictions
above:

GLD_BADARG If the function detected an unsuitable argument, for example, a bad multicast
address, a bad MAC address, or a bad packet

GLD_FAILURE On hardware failure

GLD_SUCCESS On success

GLDv2 Service Routines
This section provides the syntax and description for the GLDv2 service routines.

gld_mac_alloc() Function
gld_mac_info_t *gld_mac_alloc(dev_info_t *dip);

gld_mac_alloc() allocates a new gld_mac_info(9S) structure and returns a pointer to the
structure. Some of the GLDv2-private elements of the structure might be initialized before
gld_mac_alloc() returns. All other elements are initialized to zero. The device driver must
initialize some structure members, as described in the gld_mac_info(9S) man page, before
passing the pointer to the gld_mac_info structure to gld_register().

gld_mac_free() Function
void gld_mac_free(gld_mac_info_t *macinfo);

gld_mac_free() frees a gld_mac_info(9S) structure previously allocated by gld_mac_alloc().

GLDv2 Network Device Driver Framework

Chapter 19 • Drivers for Network Devices 423

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fqreply-9f

gld_register() Function
int gld_register(dev_info_t *dip, char *name, gld_mac_info_t *macinfo);

gld_register() is called from the device driver's attach(9E) routine. gld_register() links
the GLDv2-based device driver with the GLDv2 framework. Before calling gld_register(),
the device driver's attach(9E) routine uses gld_mac_alloc() to allocate a gld_mac_info(9S)
structure, and then initializes several structure elements. See gld_mac_info(9S) for more
information. A successful call to gld_register() performs the following actions:

■ Links the device-specific driver with the GLDv2 system
■ Sets the device-specific driver's private data pointer, using ddi_set_driver_private(9F) to

point to the macinfo structure
■ Creates the minor device node
■ Returns DDI_SUCCESS

The device interface name passed to gld_register() must exactly match the name of the
driver module as that name exists in the file system.

The driver's attach(9E) routine should return DDI_SUCCESS if gld_register() succeeds. If
gld_register() does not return DDI_SUCCESS, the attach(9E) routine should deallocate any
allocated resources before calling gld_register(), and then return DDI_FAILURE.

gld_unregister() Function
int gld_unregister(gld_mac_info_t *macinfo);

gld_unregister() is called by the device driver's detach(9E) function, and if successful,
performs the following tasks:

■ Ensures that the device's interrupts are stopped, calling the driver's gldm_stop() routine if
necessary

■ Removes the minor device node
■ Unlinks the device-specific driver from the GLDv2 system
■ Returns DDI_SUCCESS

If gld_unregister() returns DDI_SUCCESS, the detach(9E) routine should deallocate any data
structures allocated in the attach(9E) routine, using gld_mac_free() to deallocate the
macinfo structure, and return DDI_SUCCESS. If gld_unregister() does not return
DDI_SUCCESS, the driver's detach(9E) routine must leave the device operational and return
DDI_FAILURE.

gld_recv() Function
void gld_recv(gld_mac_info_t *macinfo, mblk_t *mp);

GLDv2 Network Device Driver Framework

Writing Device Drivers • March 2012424

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-set-driver-private-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e

gld_recv() is called by the driver's interrupt handler to pass a received packet upstream. The
driver must construct and pass a STREAMS M_DATA message containing the raw packet.
gld_recv() determines which STREAMS queues should receive a copy of the packet,
duplicating the packet if necessary. gld_recv() then formats a DL_UNITDATA_IND message, if
required, and passes the data up all appropriate streams.

The driver should avoid holding mutex or other locks during the call to gld_recv(). In
particular, locks that could be taken by a transmit thread must not be held during a call to
gld_recv(). The interrupt thread that calls gld_recv() in some cases carries out processing
that includes sending an outgoing packet. Transmission of the packet results in a call to the
driver's gldm_send() routine. If gldm_send() tries to acquire a mutex that is held by
gldm_intr() when gld_recv() is called, a panic occurs due to a recursive mutex entry. If other
driver entry points attempt to acquire a mutex that the driver holds across a call to gld_recv(),
deadlock can result.

gld_sched() Function
void gld_sched(gld_mac_info_t *macinfo);

gld_sched() is called by the device driver to reschedule stalled outbound packets. Whenever
the driver's gldm_send() routine returns GLD_NORESOURCES, the driver must call gld_sched()
to inform the GLDv2 framework to retry previously unsendable packets. gld_sched() should
be called as soon as possible after resources become available so that GLDv2 resumes passing
outbound packets to the driver's gldm_send() routine. (If the driver's gldm_stop() routine is
called, the driver need not retry until GLD_NORESOURCES is returned from gldm_send().
However, extra calls to gld_sched() do not cause incorrect operation.)

gld_intr() Function
uint_t gld_intr(caddr_t);

gld_intr() is GLDv2's main interrupt handler. Normally, gld_intr() is specified as the
interrupt routine in the device driver's call to ddi_add_intr(9F). The argument to the interrupt
handler is specified as int_handler_arg in the call to ddi_add_intr(9F). This argument must be
a pointer to the gld_mac_info(9S) structure. gld_intr(), when appropriate, calls the device
driver's gldm_intr() function, passing that pointer to the gld_mac_info(9S) structure.
However, to use a high-level interrupt, the driver must provide its own high-level interrupt
handler and trigger a soft interrupt from within the handler. In this case, gld_intr() would
normally be specified as the soft interrupt handler in the call to ddi_add_softintr().
gld_intr() returns a value that is appropriate for an interrupt handler.

GLDv2 Network Device Driver Framework

Chapter 19 • Drivers for Network Devices 425

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-add-intr-9f

426

USB Drivers

This chapter describes how to write a client USB device driver using the USBA 2.0 framework
for the Oracle Solaris environment. This chapter discusses the following topics:
■ “USB in the Oracle Solaris Environment” on page 427
■ “Binding Client Drivers” on page 430
■ “Basic Device Access” on page 435
■ “Device Communication” on page 438
■ “Device State Management” on page 448
■ “Utility Functions” on page 456
■ “Sample USB Device Drivers” on page 459

USB in the Oracle Solaris Environment
The Oracle Solaris USB architecture includes the USBA 2.0 framework and USB client drivers.

USBA 2.0 Framework
The USBA 2.0 framework is a service layer that presents an abstract view of USB devices to
USBA-compliant client drivers. The framework enables USBA-compliant client drivers to
manage their USB devices. The USBA 2.0 framework supports the USB 2.0 specification except
for high speed isochronous pipes. For information on the USB 2.0 specification, see
http://www.usb.org/home.

The USBA 2.0 framework is platform-independent. The Oracle Solaris USB architecture is
shown in the following figure. The USBA 2.0 framework is the USBA layer in the figure. This
layer interfaces through a hardware-independent host controller driver interface to
hardware-specific host controller drivers. The host controller drivers access the USB physical
devices through the host controllers they manage.

20C H A P T E R 2 0

427

http://www.usb.org/home

USB Client Drivers
The USBA 2.0 framework is not a device driver itself. This chapter describes the client drivers
shown in Figure 20–1 and Figure 20–2. The client drivers interact with various kinds of USB
devices such as mass storage devices, printers, and human interface devices. The hub driver is a
client driver that is also a nexus driver. The hub driver enumerates devices on its ports and
creates devinfo nodes for those devices and then attaches the client drivers. This chapter does
not describe how to write a hub driver.

USB drivers have the same structure as any other Oracle Solaris driver. USB drivers can be
block drivers, character drivers, or STREAMS drivers. USB drivers follow the calling
conventions and use the data structures and routines described in the Oracle Solaris OS section
9 man pages. See Intro(9E), Intro(9F), and Intro(9S).

The difference between USB drivers and other Oracle Solaris drivers is that USB drivers call
USBA 2.0 framework functions to access the device instead of directly accessing the device. The
USBA 2.0 framework supplements the standard Oracle Solaris DDI routines. See the following
figure.

FIGURE 20–1 Oracle Solaris USB Architecture

Host Controller

Peripheral PeripheralPeripheral

USBAI HUBDI

HCDI

Host Controller Driver
(HCD)

Client Driver Hub Driver (HUBD)

USBA

USBAI: Solaris USB Architecture Interfaces,
 Interfaces between USBA and client drivers

HUBDI: Hub Driver Interfaces

HCDI: Host Controller Driver Interfaces

Transport Layer

USB in the Oracle Solaris Environment

Writing Device Drivers • March 2012428

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eintro-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fintro-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sintro-9s

Figure 20–2 shows interfaces in more detail than Figure 20–1 does. Figure 20–2 shows that the
USBA is a kernel subsystem into which a client driver can call, just as a client driver can call DDI
functions.

Not all systems have all of the host controller interfaces shown in Figure 20–2. OHCI (Open
Host Controller Interface) hardware is most prevalent on SPARC systems and third-party USB
PCI cards. UHCI (Universal Host Controller Interface) hardware is most prevalent on x86
systems. However, both OHCI and UHCI hardware can be used on any system. When EHCI
(Enhanced Host Controller Interface) hardware is present, the EHCI hardware is on the same
card and shares the same ports with either OHCI or UHCI.

The host controllers, host controller drivers, and HCDI make up a transport layer that is
commanded by the USBA. You cannot directly call into the OHCI, EHCI, or UHCI. You call
into them indirectly through the platform-independent USBA interface.

FIGURE 20–2 Driver and Controller Interfaces

Client Driver Client Driver

Standard Solaris
DDI functions such as

ddi_get_soft_state(9F)

OHCI
Host Controller

Hardware

EHCI
Host Controller

Hardware

UHCI
Host Controller

Hardware

USB 1.1 USB 2.0 USB 1.1

USB Device USB Device USB Device

OHCI EHCI UHCI

USBAI
USBA functions such as
usb_pipe_open(9F)

Solaris OS Kernel

USB in the Oracle Solaris Environment

Chapter 20 • USB Drivers 429

Binding Client Drivers
This section discusses binding a driver to a device. It discusses compatible device names for
devices with single interfaces and devices with multiple interfaces.

How USB Devices Appear to the System
A USB device can support multiple configurations. Only one configuration is active at any given
time. The active configuration is called the current configuration.

A configuration can have more than one interface, possibly with intervening
interface-associations that group two or more interfaces for a function. All interfaces of a
configuration are active simultaneously. Different interfaces might be operated by different
device drivers.

An interface can represent itself to the host system in different ways by using alternate settings.
Only one alternate setting is active for any given interface.

Each alternate setting provides device access through endpoints. Each endpoint has a specific
purpose. The host system communicates with the device by establishing a communication
channel to an endpoint. This communication channel is called a pipe.

USB Devices and the Oracle Solaris Device Tree
If a USB device has one configuration, one interface, and device class zero, the device is
represented as a single device node. If a USB device has multiple interfaces, the device is
represented as a hierarchical device structure. In a hierarchical device structure, the device node
for each interface is a child of the top-level device node. An example of a device with multiple
interfaces is an audio device that presents simultaneously to the host computer both an audio
control interface and an audio streaming interface. The audio control interface and the audio
streaming interface each could be controlled by its own driver.

Compatible Device Names
The Oracle Solaris software builds an ordered list of compatible device names for USB binding
based on identification information kept within each device. This information includes device
class, subclass, vendor ID, product ID, revision, and protocol. See http://www.usb.org/home
for a list of USB classes and subclasses.

This name hierarchy enables binding to a general driver if a more device-specific driver is not
available. An example of a general driver is a class-specific driver. Device names that begin with
usbif designate single interface devices. See Example 20–1 for examples. The USBA 2.0
framework defines all compatible names for a device. Use the prtconf command to display
these device names, as shown in Example 20–2.

Binding Client Drivers

Writing Device Drivers • March 2012430

http://www.usb.org/home

The following example shows an example of compatible device names for a USB mouse device.
This mouse device represents a combined node entirely operated by a single driver. The
USBA 2.0 framework gives this device node the names shown in the example, in the order
shown.

EXAMPLE 20–1 USB Mouse Compatible Device Names

1. ’usb430,100.102’ Vendor 430, product 100, revision 102

2. ’usb430,100’ Vendor 430, product 100

3. ’usbif430,class3.1.2’ Vendor 430, class 3, subclass 1, protocol 2

4. ’usbif430,class3.1’ Vendor 430, class 3, subclass 1

5. ’usbif430,class3’ Vendor 430, class 3

6. ’usbif,class3.1.2’ Class 3, subclass 1, protocol 2

7. ’usbif,class3.1’ Class 3, subclass 1

8. ’usbif,class3’ Class 3

Note that the names in the above example progress from the most specific to the most general.
Entry 1 binds only to a particular revision of a specific product from a particular vendor. Entries
3, 4, and 5 are for class 3 devices manufactured by vendor 430. Entries 6, 7, and 8 are for class 3
devices from any vendor. The binding process looks for a match on the name from the top
name down. To bind, drivers must be added to the system with an alias that matches one of
these names. To get a list of compatible device names to which to bind when you add your
driver, check the compatible property of the device in the output from the prtconf -vp
command.

The following example shows compatible property lists for a keyboard and a mouse. Use the
prtconf -D command to display the bound driver.

EXAMPLE 20–2 Compatible Device Names Shown by the Print Configuration Command

prtconf -vD | grep compatible

compatible: ’usb430,5.200’ + ’usb430,5’ + ’usbif430,class3.1.1’

+ ’usbif430,class3.1’ + ’usbif430,class3’ + ’usbif,class3.1.1’ +

’usbif,class3.1’ + ’usbif,class3’

compatible: ’usb2222,2071.200’ + ’usb2222,2071’ +

’usbif2222,class3.1.2’ + ’usbif2222,class3.1’ + ’usbif2222,class3’ +

’usbif,class3.1.2’ + ’usbif,class3.1’ + ’usbif,class3’

Use the most specific name you can to more accurately identify a driver for a device or group of
devices. To bind drivers written for a specific revision of a specific product, use the most specific
name match possible. For example, if you have a USB mouse driver written by vendor 430 for
revision 102 of their product 100, use the following command to add that driver to the system:

add_drv -n -i ’"usb430,100.102"’ specific_mouse_driver

To add a driver written for any USB mouse (class 3, subclass 1, protocol 2) from vendor 430, use
the following command:

add_drv -n -i ’"usbif430,class3.1.2"’ more_generic_mouse_driver

Binding Client Drivers

Chapter 20 • USB Drivers 431

If you install both of these drivers and then connect a compatible device, the system binds the
correct driver to the connected device. For example, if you install both of these drivers and then
connect a vendor 430, model 100, revision 102 device, this device is bound to
specific_mouse_driver. If you connect a vendor 430, model 98 device, this device is bound to
more_generic_mouse_driver. If you connect a mouse from another vendor, this device also is
bound to more_generic_mouse_driver. If multiple drivers are available for a specific device,
the driver binding framework selects the driver with the first matching compatible name in the
compatible names list.

Devices With Multiple Interfaces
Composite devices are devices that support multiple interfaces. Composite devices have a list of
compatible names for each interface. This compatible names list ensures that the best available
driver is bound to the interface. The most general multiple interface entry is usb,device.

For a USB audio composite device, the compatible names are as follows:

1. ’usb471,101.100’ Vendor 471, product 101, revision 100

2. ’usb471,101’ Vendor 471, product 101

3. ’usb,device’ Generic USB device

The name usb,device is a compatible name that represents any whole USB device. The
usb_mid(7D) driver (USB multiple-interface driver) binds to the usb,device device node if no
other driver has claimed the whole device. The usb_mid driver creates a child device node for
each interface of the physical device. The usb_mid driver also generates a set of compatible
names for each interface. Each of these generated compatible names begins with usbif. The
system then uses these generated compatible names to find the best driver for each interface. In
this way, different interfaces of one physical device can be bound to different drivers.

For example, the usb_mid driver binds to a multiple-interface audio device through the
usb,device node name of that audio device. The usb_mid driver then creates interface-specific
device nodes. Each of these interface-specific device nodes has its own compatible name list. For
an audio control interface node, the compatible name list might look like the list shown in the
following example.

EXAMPLE 20–3 USB Audio Compatible Device Names

1. ’usbif471,101.100.config1.0’ Vend 471, prod 101, rev 100, cnfg 1, iface 0

2. ’usbif471,101.config1.0’ Vend 471, product 101, config 1, interface 0

3. ’usbif471,class1.1.0’ Vend 471, class 1, subclass 1, protocol 0

4. ’usbif471,class1.1’ Vend 471, class 1, subclass 1

5. ’usbif471,class1’ Vend 471, class 1

6. ’usbif,class1.1.0’ Class 1, subclass 1, protocol 0

7. ’usbif,class1.1’ Class 1, subclass 1

8. ’usbif,class1’ Class 1

Binding Client Drivers

Writing Device Drivers • March 2012432

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7usb-mid-7d

Use the following command to bind a vendor-specific, device-specific client driver named
vendor_model_audio_usb to the vendor-specific, device-specific configuration 1, interface 0
interface compatible name shown in Example 20–3.

add_drv -n -i ’"usbif471,101.config1.0"’ vendor_model_audio_usb

Use the following command to bind a class driver named audio_class_usb_if_driver to the
more general class 1, subclass 1 interface compatible name shown in Example 20–3:

add_drv -n -i ’"usbif,class1.1"’ audio_class_usb_if_driver

Use the prtconf -D command to show a list of devices and their drivers. In the following
example, the prtconf -D command shows that the usb_mid driver manages the audio device.
The usb_mid driver is splitting the audio device into interfaces. Each interface is indented
under the audio device name. For each interface shown in the indented list, the prtconf -D
command shows which driver manages the interface.

audio, instance #0 (driver name: usb_mid)

sound-control, instance #2 (driver name: usb_ac)

sound, instance #2 (driver name: usb_as)

input, instance #8 (driver name: hid)

Devices With Interface-Association Descriptors
If the device includes an interface-association descriptor, the device tree can be parsed at the
following three levels:

■ The usb_mid(7D) USB multi-interface driver binds to device level nodes of a composite
device if no vendor or class-specific driver is available.

■ A client driver is bound to the interface association nodes.
■ The usb_ia(7D) USB interface association driver is bound by default if no client driver is

found. Then client drivers can be bound to the interface level of this interface association.

The usb_mid driver creates an ia (interface association) node for each ia. The compatible
names of ia nodes generally begin with usbia. The name usb,ia is a compatible name that
represents any ia as the tail of the compatible names. The usb_ia driver is bound to an ia node
if no other driver has claimed this ia. The usb_ia driver creates a child node for each interface.
An interface node as the child node of an ia node has the same properties with an interface
node as the child of a device node.

EXAMPLE 20–4 USB Video Interface Association Compatible Names

1. ’usbia46d,8c9.5.config1.0’ vend 46d, prod 8c9, rev 5, cnfg 1, first_if_in_ia 0

2. ’usbia46d,8c9.config1.0’ vend 46d, prod 8c9, cnfg 1, first_if_in_ia 0

3. ’usbia46d,classe.3.0’ vend 46d, class e, subclass 3, protocol 0

4. ’usbia46d,classe.3’ vend 46d, class e, subclass 3

5. ’usbia46d,classe’ vend 46d, class e

Binding Client Drivers

Chapter 20 • USB Drivers 433

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7usb-mid-7d
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7usb-ia-7d

EXAMPLE 20–4 USB Video Interface Association Compatible Names (Continued)

6. ’usbia,classe.3.0’ class e, subclass 3, protocol 0

7. ’usbia,classe.3’ class e, subclass 3

8. ’usbia,classe’ class e

9. ’usb,ia’ by default

Use the following command to bind a vendor-specific, device-specific client driver named
vendor_model_video_usb to the vendor-specific, device-specific configuration 1, first_if_in_ia
0 compatible name shown in Example 20–4:

add_drv -n -i ’"usbia46d,8c9.config1.0"’ vendor_model_video_usb

Use the following command to bind a class driver named video_class_usb_ia_driver to the
more general class e compatible names shown in Example 20–4:

add_drv -n -i ’"usbia,classee"’ video_class_usb_ia_driver

In the following example, the prtconf -D command shows a device tree of a webcam with ia of
video and audio. The usb_mid driver manages the device and creates two ia respectively for
video and audio. A video driver usbvc is bound to the video ia, and audio drivers are bound to
the interface of the audio ia.

miscellaneous, instance #28 (driver name: usb_mid)

video, instance #24 (driver name: usbvc)

audio, instance #30 (driver name: usb_ia)

sound-control, instance #38 (driver name: usb_ac)

sound, instance #47 (driver name: usb_as)

Checking Device Driver Bindings
The file /etc/driver_aliases contains entries for the bindings that already exist on a system.
Each line of the /etc/driver_aliases file shows a driver name, followed by a space, followed
by a device name. Use this file to check existing device driver bindings.

Note – Do not edit the /etc/driver_aliases file manually. Use the add_drv(1M) command to
establish a binding. Use the update_drv(1M) command to change a binding.

Binding Client Drivers

Writing Device Drivers • March 2012434

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Madd-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mupdate-drv-1m

Basic Device Access
This section describes how to access a USB device and how to register a client driver. This
section also discusses the descriptor tree.

Before the Client Driver Is Attached
The following events take place before the client driver is attached:

1. The PROM (OBP/BIOS) and USBA framework gain access to the device before any client
driver is attached.

2. The hub driver probes devices on each of its hub's ports for identity and configuration.

3. The default control pipe to each device is opened, and each device is probed for its device
descriptor.

4. Compatible names properties are constructed for each device, using the device and interface
descriptors.

The compatible names properties define different parts of the device that can be individually
bound to client drivers. Client drivers can bind either to the entire device or to just one
interface. See “Binding Client Drivers” on page 430.

The Descriptor Tree
Parsing descriptors involves aligning structure members at natural boundaries and converting
the structure members to the endianness of the host CPU. Parsed standard USB configuration
descriptors, interface descriptors, and endpoint descriptors are available to the client driver in
the form of a hierarchical tree for each configuration. Any raw class-specific or vendor-specific
descriptor information also is available to the client driver in the same hierarchical tree.

Call the usb_get_dev_data(9F) function to retrieve the hierarchical descriptor tree. The “SEE
ALSO” section of the usb_get_dev_data(9F) man page lists the man pages for each standard
USB descriptor. Use the usb_parse_data(9F) function to parse raw descriptor information.

A descriptor tree for a device with two configurations might look like the tree shown in the
following figure.

Basic Device Access

Chapter 20 • USB Drivers 435

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-get-dev-data-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-parse-data-9f

The dev_cfg array shown in the above figure contains nodes that correspond to configurations.
Each node contains the following information:

■ A parsed configuration descriptor
■ A pointer to an array of descriptors that correspond to the interfaces of that configuration
■ A pointer to an array of class-specific or vendor-specific raw data, if any exists

The node that represents the second interface of the second indexed configuration is at
dev_cfg[1].cfg_if[1] in the diagram. That node contains an array of nodes that represent the
alternate settings for that interface. The hierarchy of USB descriptors propagates through the
tree. ASCII strings from string descriptor data are attached where the USB specification says
these strings exist.

The array of configurations is non-sparse and is indexed by the configuration index. The first
valid configuration (configuration 1) is dev_cfg[0]. Interfaces and alternate settings have
indices that align with their numbers. Endpoints of each alternate setting are indexed
consecutively. The first endpoint of each alternate setting is at index 0.

This numbering scheme makes the tree easy to traverse. For example, the raw descriptor data of
endpoint index 0, alternate 0, interface 1, configuration index 1 is at the node defined by the
following path:

dev_cfg[1].cfg_if[1].if_alt[0].altif_ep[0].ep_descr

FIGURE 20–3 A Hierarchical USB Descriptor Tree

cfg_if[0]
cfg_if[1]

if_alt[0]
if_alt[1]

if_alt[0]
if_alt[1]

cfg_if[0]
cfg_if[1]

dev_cfg[0]
dev_cfg[1]

altif_ep[0]
altif_ep[1]
altif_cvs[0]

altif_ep[0]
altif_cvs[0]

if_alt[0]

ep_cvs[0]

altif_ep[0]

if_alt[0]

altif_ep[0]
altif_cvs[0]

Basic Device Access

Writing Device Drivers • March 2012436

An alternative to using the descriptor tree directly is using the usb_lookup_ep_data(9F)
function. The usb_lookup_ep_data(9F) function takes as arguments the interface, alternate,
which endpoint, endpoint type, and direction. You can use the usb_lookup_ep_data(9F)
function to traverse the descriptor tree to get a particular endpoint. See the
usb_get_dev_data(9F) man page for more information.

Registering Drivers to Gain Device Access
Two of the first calls into the USBA 2.0 framework by a client driver are calls to the
usb_client_attach(9F) function and the usb_get_dev_data(9F) function. These two calls
come from the client driver's attach(9E) entry point. You must call the
usb_client_attach(9F) function before you call the usb_get_dev_data(9F) function.

The usb_client_attach(9F) function registers a client driver with the USBA 2.0 framework.
The usb_client_attach(9F) function enforces versioning. All client driver source files must
start with the following lines:

#define USBDRV_MAJOR_VER 2

#define USBDRV_MINOR_VER minor-version
#include <sys/usb/usba.h>

The value of minor-version must be less than or equal to USBA_MINOR_VER. The symbol
USBA_MINOR_VER is defined in the <sys/usb/usbai.h> header file. The <sys/usb/usbai.h>
header file is included by the <sys/usb/usba.h> header file.

USBDRV_VERSION is a macro that generates the version number from USBDRV_MAJOR_VERSION

and USBDRV_MINOR_VERSION. The second argument to usb_client_attach() must be
USBDRV_VERSION. The usb_client_attach() function fails if the second argument is not
USBDRV_VERSION or if USBDRV_VERSION reflects an invalid version. This restriction ensures
programming interface compatibility.

The usb_get_dev_data() function returns information that is required for proper USB device
management. For example, the usb_get_dev_data() function returns the following
information:

■ The default control pipe
■ The iblock_cookie to use in mutex initializations (see mutex_init(9F))
■ The parsed device descriptor
■ ID strings
■ The tree hierarchy as described in “The Descriptor Tree” on page 435

The call to the usb_get_dev_data() function is mandatory. Calling usb_get_dev_data() is
the only way to retrieve the default control pipe and retrieve the iblock_cookie required for
mutex initialization.

Basic Device Access

Chapter 20 • USB Drivers 437

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-lookup-ep-data-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-get-dev-data-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-client-attach-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-get-dev-data-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmutex-init-9f

After calling usb_get_dev_data(), the client driver's attach(9E) routine typically copies the
desired descriptors and data from the descriptor tree to the driver's soft state. Endpoint
descriptors copied to the soft state are used later to open pipes to those endpoints. The
attach(9E) routine usually calls usb_free_descr_tree(9F) to free the descriptor tree after
copying descriptors. Alternatively, you might choose to keep the descriptor tree and not copy
the descriptors.

Specify one of the following three parse levels to the usb_get_dev_data(9F) function to request
the breadth of the descriptor tree you want returned. You need greater tree breadth if your
driver needs to bind to more of the device.
■ USB_PARSE_LVL_IF. If your client driver binds to a specific interface, the driver needs the

descriptors for only that interface. Specify USB_PARSE_LVL_IF for the parse level in the
usb_get_dev_data() call to retrieve only those descriptors.

■ USB_PARSE_LVL_CFG. If your client driver binds to the whole device, specify
USB_PARSE_LVL_CFG to retrieve all descriptors of the current configuration.

■ USB_PARSE_LVL_ALL. Specify USB_PARSE_LVL_ALL to retrieve all descriptors of all
configurations. For example, you need this greatest tree breadth to use
usb_print_descr_tree(9F) to print a descriptor dump of all configurations of a device.

The client driver's detach(9E) routine must call the usb_free_dev_data(9F) function to
release all resources allocated by theusb_get_dev_data() function. The usb_free_dev_data()
function accepts handles where the descriptor tree has already been freed with the
usb_free_descr_tree() function. The client driver's detach() routine also must call the
usb_client_detach(9F) function to release all resources allocated by the
usb_client_attach(9F) function.

Device Communication
USB devices operate by passing requests through communication channels called pipes. Pipes
must be open before you can submit requests. Pipes also can be flushed, queried, and closed.
This section discusses pipes, data transfers and callbacks, and data requests.

USB Endpoints
The four kinds of pipes that communicate with the four kinds of USB endpoints are:
■ Control. Control pipes are used primarily to send commands and retrieve status. Control

pipes are intended for non-periodic, host-initiated request and response communication of
small-sized structured data. Control pipes are bidirectional. The default pipe is a control
pipe. See “The Default Pipe” on page 439.

■ Bulk. Bulk pipes are used primarily for data transfer. Bulk pipes offer reliable transportation
of large amounts of data. Bulk pipes do not necessarily deliver the data in a timely manner.
Bulk pipes are unidirectional.

Device Communication

Writing Device Drivers • March 2012438

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-free-descr-tree-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-get-dev-data-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-print-descr-tree-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-free-dev-data-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-client-detach-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-client-attach-9f

■ Interrupt. Interrupt pipes offer timely, reliable communication of small amounts of
unstructured data. Periodic polling often is started on interrupt-IN pipes. Interrupt-IN
pipes return data to the host when the data becomes present on the device. Some devices
have interrupt-OUT pipes. Interrupt-OUT pipes transfer data to the device with the same
timely, reliable “interrupt pipe” characteristics of interrupt-IN pipes. Interrupt pipes are
unidirectional.

■ Isochronous. Isochronous pipes offer a channel for transferring constant-rate,
time-relevant data, such as for audio devices. Data is not retried on error. Isochronous pipes
are unidirectional.

See Chapter 5 of the USB 2.0 specification or see “Requests” on page 442 for more information
on the transfer types that correspond to these endpoints.

The Default Pipe
Each USB device has a special control endpoint called the default endpoint. Its communication
channel is called the default pipe. Most, if not all, device setup is done through this pipe. Many
USB devices have this pipe as their only control pipe.

The usb_get_dev_data(9F) function provides the default control pipe to the client driver. This
pipe is pre-opened to accommodate any special setup needed before opening other pipes. This
default control pipe is special in the following ways:
■ This pipe is shared. Drivers that are operating other interfaces of the same device use the

same default control pipe. The USBA 2.0 framework arbitrates this pipe among the different
drivers.

■ This pipe cannot be opened, closed, or reset by the client driver. This restriction exists
because the pipe is shared.

■ The pipe is autocleared on an exception.

Other pipes, including other control pipes, must be opened explicitly and are exclusive-open
only.

Pipe States
Pipes are in one of the following states:
■ USB_PIPE_STATE_IDLE

■ All control and bulk pipes, interrupt-OUT pipes, and isochronous-OUT pipes: No
request is in progress.

■ Interrupt-IN and isochronous-IN pipes: No polling is in progress.
■ USB_PIPE_STATE_ACTIVE

Device Communication

Chapter 20 • USB Drivers 439

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-get-dev-data-9f

■ All control and bulk pipes, interrupt-OUT pipes, and isochronous-OUT pipes: The pipe
is transferring data or an I/O request is active.

■ Interrupt-IN and isochronous-IN pipes: Polling is active.
■ USB_PIPE_STATE_ERROR. An error occurred. If this pipe is not the default pipe and if

autoclearing is not enabled, then the client driver must call the usb_pipe_reset(9F)
function.

■ USB_PIPE_STATE_CLOSING. The pipe is being closed.
■ USB_PIPE_STATE_CLOSED. The pipe is closed.

Call the usb_pipe_get_state(9F) function to retrieve the state of a pipe.

Opening Pipes
To open a pipe, pass to the usb_pipe_open(9F) function the endpoint descriptor that
corresponds to the pipe you want to open. Use the usb_get_dev_data(9F) and
usb_lookup_ep_data(9F) functions to retrieve the endpoint descriptor from the descriptor
tree. The usb_pipe_open(9F) function returns a handle to the pipe.

You must specify a pipe policy when you open a pipe. The pipe policy contains an estimate of
the number of concurrent asynchronous operations that require separate threads that will be
needed for this pipe. An estimate of the number of threads is the number of parallel operations
that could occur during a callback. The value of this estimate must be at least 2. See the
usb_pipe_open(9F) man page for more information on pipe policy.

Closing Pipes
The driver must use the usb_pipe_close(9F) function to close pipes other than the default
pipe. The usb_pipe_close(9F) function enables all remaining requests in the pipe to complete.
The function then allows one second for all callbacks of those requests to complete.

Data Transfer
For all pipe types, the programming model is as follows:

1. Allocate a request.
2. Submit the request using one of the pipe transfer functions. See the

usb_pipe_bulk_xfer(9F), usb_pipe_ctrl_xfer(9F), usb_pipe_intr_xfer(9F), and
usb_pipe_isoc_xfer(9F) man pages.

3. Wait for completion notification.
4. Free the request.

Device Communication

Writing Device Drivers • March 2012440

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-pipe-reset-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-pipe-get-state-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-pipe-open-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-get-dev-data-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-lookup-ep-data-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-pipe-close-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-pipe-bulk-xfer-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-pipe-ctrl-xfer-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-pipe-intr-xfer-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-pipe-isoc-xfer-9f

See “Requests” on page 442 for more information on requests. The following sections describe
the features of different request types.

Synchronous and Asynchronous Transfers and Callbacks
Transfers are either synchronous or asynchronous. Synchronous transfers block until they
complete. Asynchronous transfers callback into the client driver when they complete. Most
transfer functions called with the USB_FLAGS_SLEEP flag set in the flags argument are
synchronous.

Continuous transfers such as polling and isochronous transfers cannot be synchronous. Calls to
transfer functions for continuous transfers made with the USB_FLAGS_SLEEP flag set block only
to wait for resources before the transfer begins.

Synchronous transfers are the most simple transfers to set up because synchronous transfers do
not require any callback functions. Synchronous transfer functions return a transfer start status,
even though synchronous transfer functions block until the transfer is completed. Upon
completion, you can find additional information about the transfer status in the completion
reason field and callback flags field of the request. Completion reasons and callback flags fields
are discussed below.

If the USB_FLAGS_SLEEP flag is not specified in the flags argument, that transfer operation is
asynchronous. The exception to this rule are isochronous transfers. Asynchronous transfer
operations set up and start the transfer, and then return before the transfer is complete.
Asynchronous transfer operations return a transfer start status. The client driver receives
transfer completion status through callback handlers.

Callback handlers are functions that are called when asynchronous transfers complete. Do not
set up an asynchronous transfer without callbacks. The two types of callback handlers are
normal completion handlers and exception handlers. You can specify one handler to be called
in both of these cases.

■ Normal completion. A normal completion callback handler is called to notify of a normally
completed transfer.

■ Exception. An exception callback handler is called to notify of an abnormally completed
transfer and to process its errors.

Both completion handlers and exception handlers receive the transfer's request as an argument.
Exception handlers use the completion reason and callback status in the request to find out
what happened. The completion reason (usb_cr_t) indicates how the original transaction
completed. For example, a completion reason of USB_CR_TIMEOUT indicates that the transfer
timed out. As another example, if a USB device is removed while in use, client drivers might
receive USB_CR_DEV_NOT_RESP as the completion reason on their outstanding requests. The
callback status (usb_cb_flags_t) indicates what the USBA framework did to remedy the
situation. For example, a callback status of USB_CB_STALL_CLEARED indicates that the USBA

Device Communication

Chapter 20 • USB Drivers 441

framework cleared a functional stall condition. See the usb_completion_reason(9S) man page
for more information on completion reasons. See the usb_callback_flags(9S) man page for
more information on callback status flags.

The context of the callback and the policy of the pipe on which the requests are run limit what
you can do in the callback.

■ Callback context. Most callbacks execute in kernel context and usually can block. Some
callbacks execute in interrupt context and cannot block. The USB_CB_INTR_CONTEXT flag is
set in the callback flags to denote interrupt context. See the usb_callback_flags(9S) man
page for more information on callback context and details on blocking.

■ Pipe policy. The pipe policy's hint on concurrent asynchronous operations limits the
number of operations that can be run in parallel, including those executed from a callback
handler. Blocking on a synchronous operation counts as one operation. See the
usb_pipe_open(9F) man page for more information on pipe policy.

Requests
This section discusses request structures and allocating and deallocating different types of
requests.

Request Allocation and Deallocation

Requests are implemented as initialized request structures. Each different endpoint type takes a
different type of request. Each type of request has a different request structure type. The
following table shows the structure type for each type of request. This table also lists the
functions to use to allocate and free each type of structure.

TABLE 20–1 Request Initialization

Pipe or Endpoint Type Request Structure Request Structure Allocation Function Request Structure Free Function

Control usb_ctrl_req_t (see the
usb_ctrl_request(9S) man
page)

usb_alloc_ctrl_req(9F) usb_free_ctrl_req(9F)

Bulk usb_bulk_req_t (see the
usb_bulk_request(9S) man
page)

usb_alloc_bulk_req(9F) usb_free_bulk_req(9F)

Interrupt usb_intr_req_t (see the
usb_intr_request(9S) man
page)

usb_alloc_intr_req(9F) usb_free_intr_req(9F)

Isochronous usb_isoc_req_t (see the
usb_isoc_request(9S) man
page)

usb_alloc_isoc_req(9F) usb_free_isoc_req(9F)

Device Communication

Writing Device Drivers • March 2012442

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Susb-completion-reason-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Susb-callback-flags-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Susb-callback-flags-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-pipe-open-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Susb-ctrl-request-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-alloc-ctrl-req-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-free-ctrl-req-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Susb-bulk-request-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-alloc-bulk-req-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-free-bulk-req-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Susb-intr-request-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-alloc-intr-req-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-free-intr-req-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Susb-isoc-request-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-alloc-isoc-req-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-free-isoc-req-9f

The following table lists the transfer functions that you can use for each type of request.

TABLE 20–2 Request Transfer Setup

Pipe or Endpoint Type Transfer Functions

Control usb_pipe_ctrl_xfer(9F), usb_pipe_ctrl_xfer_wait(9F)

Bulk usb_pipe_bulk_xfer(9F)

Interrupt usb_pipe_intr_xfer(9F), usb_pipe_stop_intr_polling(9F)

Isochronous usb_pipe_isoc_xfer(9F), usb_pipe_stop_isoc_polling(9F)

Use the following procedure to allocate and deallocate a request:

1. Use the appropriate allocation function to allocate a request structure for the type of request
you need. The man pages for the request structure allocation functions are listed in
Table 20–1.

2. Initialize any fields you need in the structure. See “Request Features and Fields” on page 443
or the appropriate request structure man page for more information. The man pages for the
request structures are listed in Table 20–1.

3. When the data transfer is complete, use the appropriate free function to free the request
structure. The man pages for the request structure free functions are listed in Table 20–1.

Request Features and Fields

Data for all requests is passed in message blocks so that the data is handled uniformly whether
the driver is a STREAMS, character, or block driver. The message block type, mblk_t, is
described in the mblk(9S) man page. The DDI offers several routines for manipulating message
blocks. Examples include allocb(9F) and freemsg(9F). To learn about other routines for
manipulating message blocks, see the “SEE ALSO” sections of the allocb(9F) and freemsg(9F)
man pages. Also see the STREAMS Programming Guide.

The following request fields are included in all transfer types. In each field name, the possible
values for xxxx are: ctrl, bulk, intr, or isoc.

xxxx_client_private This field value is a pointer that is intended for internal data to be
passed around the client driver along with the request. This
pointer is not used to transfer data to the device.

xxxx_attributes This field value is a set of transfer attributes. While this field is
common to all request structures, the initialization of this field is
somewhat different for each transfer type. See the appropriate
request structure man page for more information. These man
pages are listed in Table 20–1. See also the
usb_request_attributes(9S) man page.

Device Communication

Chapter 20 • USB Drivers 443

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-pipe-ctrl-xfer-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-pipe-ctrl-xfer-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-pipe-bulk-xfer-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-pipe-intr-xfer-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-pipe-stop-intr-polling-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-pipe-isoc-xfer-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-pipe-stop-isoc-polling-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Smblk-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fallocb-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Ffreemsg-9f
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=STREAMS
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Susb-request-attributes-9s

xxxx_cb This field value is a callback function for normal transfer
completion. This function is called when an asynchronous
transfer completes without error.

xxxx_exc_cb This field value is a callback function for error handling. This
function is called only when asynchronous transfers complete
with errors.

xxxx_completion_reason This field holds the completion status of the transfer itself. If an
error occurred, this field shows what went wrong. See the
usb_completion_reason(9S) man page for more information.
This field is updated by the USBA 2.0 framework.

xxxx_cb_flags This field lists the recovery actions that were taken by the
USBA 2.0 framework before calling the callback handler. The
USB_CB_INTR_CONTEXT flag indicates whether a callback is
running in interrupt context. See the usb_callback_flags(9S)
man page for more information. This field is updated by the
USBA 2.0 framework.

The following sections describe the request fields that are different for the four different transfer
types. These sections describe how to initialize these structure fields. These sections also
describe the restrictions on various combinations of attributes and parameters.

Control Requests

Use control requests to initiate message transfers down a control pipe. You can set up transfers
manually, as described below. You can also set up and send synchronous transfers using the
usb_pipe_ctrl_xfer_wait(9F) wrapper function.

The client driver must initialize the ctrl_bmRequestType, ctrl_bRequest, ctrl_wValue,
ctrl_wIndex, and ctrl_wLength fields as described in the USB 2.0 specification.

The ctrl_data field of the request must be initialized to point to a data buffer. The
usb_alloc_ctrl_req(9F) function initializes this field when you pass a positive value as the
buffer len. The buffer must, of course, be initialized for any outbound transfers. In all cases, the
client driver must free the request when the transfer is complete.

Multiple control requests can be queued. Queued requests can be a combination of
synchronous and asynchronous requests.

The ctrl_timeout field defines the maximum wait time for the request to be processed, excluding
wait time on the queue. This field applies to both synchronous and asynchronous requests. The
ctrl_timeout field is specified in seconds.

Device Communication

Writing Device Drivers • March 2012444

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Susb-completion-reason-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Susb-callback-flags-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-pipe-ctrl-xfer-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-alloc-ctrl-req-9f

The ctrl_exc_cb field accepts the address of a function to call if an exception occurs. The
arguments of this exception handler are specified in the usb_ctrl_request(9S) man page. The
second argument of the exception handler is the usb_ctrl_req_t structure. Passing the request
structure as an argument allows the exception handler to check the ctrl_completion_reason and
ctrl_cb_flags fields of the request to determine the best recovery action.

The USB_ATTRS_ONE_XFER and USB_ATTRS_ISOC_* flags are invalid attributes for all control
requests. The USB_ATTRS_SHORT_XFER_OK flag is valid only for host-bound requests.

Bulk Requests

Use bulk requests to send data that is not time-critical. Bulk requests can take several USB
frames to complete, depending on overall bus load.

All requests must receive an initialized message block. See the mblk(9S) man page for a
description of the mblk_t message block type. This message block either supplies the data or
stores the data, depending on the transfer direction. Refer to the usb_bulk_request(9S) man
page for more details.

The USB_ATTRS_ONE_XFER and USB_ATTRS_ISOC_* flags are invalid attributes for all bulk
requests. The USB_ATTRS_SHORT_XFER_OK flag is valid only for host-bound requests.

The usb_pipe_get_max_bulk_transfer_size(9F) function specifies the maximum number of
bytes per request. The value retrieved can be the maximum value used in the client driver's
minphys(9F) routine.

Multiple bulk requests can be queued.

Interrupt Requests

Interrupt requests typically are for periodic inbound data. Interrupt requests periodically poll
the device for data. However, the USBA 2.0 framework supports one-time inbound interrupt
data requests, as well as outbound interrupt data requests. All interrupt requests can take
advantage of the USB interrupt transfer features of timeliness and retry.

The USB_ATTRS_ISOC_* flags are invalid attributes for all interrupt requests. The
USB_ATTRS_SHORT_XFER_OK and USB_ATTRS_ONE_XFER flags are valid only for host-bound
requests.

Only one-time polls can be done as synchronous interrupt transfers. Specifying the
USB_ATTRS_ONE_XFER attribute in the request results in a one-time poll.

Periodic polling is started as an asynchronous interrupt transfer. An original interrupt request
is passed to usb_pipe_intr_xfer(9F). When polling finds new data to return, a new
usb_intr_req_t structure is cloned from the original and is populated with an initialized data

Device Communication

Chapter 20 • USB Drivers 445

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Susb-ctrl-request-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Smblk-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Susb-bulk-request-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-pipe-get-max-bulk-transfer-size-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fminphys-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-pipe-intr-xfer-9f

block. When allocating the request, specify zero for the len argument to the
usb_alloc_intr_req(9F) function. The len argument is zero because the USBA 2.0 framework
allocates and fills in a new request with each callback. After you allocate the request structure,
fill in the intr_len field to specify the number of bytes you want the framework to allocate with
each poll. Data beyond intr_len bytes is not returned.

The client driver must free each request it receives. If the message block is sent upstream,
decouple the message block from the request before you send the message block upstream. To
decouple the message block from the request, set the data pointer of the request to NULL. Setting
the data pointer of the request to NULL prevents the message block from being freed when the
request is deallocated.

Call the usb_pipe_stop_intr_polling(9F) function to cancel periodic polling. When polling
is stopped or the pipe is closed, the original request structure is returned through an exception
callback. This returned request structure has its completion reason set to
USB_CR_STOPPED_POLLING.

Do not start polling while polling is already in progress. Do not start polling while a call to
usb_pipe_stop_intr_polling(9F) is in progress.

Isochronous Requests

Isochronous requests are for streaming, constant-rate, time-relevant data. Retries are not made
on errors. Isochronous requests have the following request-specific fields:

isoc_frame_no Specify this field when the overall transfer must start from a specific frame
number. The value of this field must be greater than the current frame
number. Use usb_get_current_frame_number(9F) to find the current
frame number. Note that the current frame number is a moving target. For
low-speed and full-speed buses, the current frame is new each millisecond.
For high-speed buses, the current frame is new each 0.125 millisecond. Set
the USB_ATTR_ISOC_START_FRAME attribute so that the isoc_frame_no field
is recognized.

To ignore this frame number field and start as soon as possible, set the
USB_ATTR_ISOC_XFER_ASAP flag.

isoc_pkts_count This field is the number of packets in the request. This value is bounded by
the value returned by the usb_get_max_pkts_per_isoc_request(9F)
function and by the size of the isoc_pkt_descr array (see below). The
number of bytes transferable with this request is equal to the product of
this isoc_pkts_count value and the wMaxPacketSize value of the endpoint.

isoc_pkts_length This field is the sum of the lengths of all packets of the request. This value is
set by the initiator. This value should be set to zero so that the sum of

Device Communication

Writing Device Drivers • March 2012446

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-alloc-intr-req-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-pipe-stop-intr-polling-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-get-current-frame-number-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-get-max-pkts-per-isoc-request-9f

isoc_pkts_length in the isoc_pkt_descr list will be used automatically and
no check will be applied to this element.

isoc_error_count This field is the number of packets that completed with errors. This value
is set by the USBA 2.0 framework.

isoc_pkt_descr This field points to an array of packet descriptors that define how much
data to transfer per packet. For an outgoing request, this value defines a
private queue of sub-requests to process. For an incoming request, this
value describes how the data arrived in pieces. The client driver allocates
these descriptors for outgoing requests. The framework allocates and
initializes these descriptors for incoming requests. Descriptors in this
array contain framework-initialized fields that hold the number of bytes
actually transferred and the status of the transfer. See the
usb_isoc_request(9S) man page for more details.

All requests must receive an initialized message block. This message block either supplies the
data or stores the data. See the mblk(9S) man page for a description of the mblk_t message block
type.

The USB_ATTR_ONE_XFER flag is an illegal attribute because the system decides how to vary the
amounts of data through available packets. The USB_ATTR_SHORT_XFER_OK flag is valid only on
host-bound data.

The usb_pipe_isoc_xfer(9F) function makes all isochronous transfers asynchronous,
regardless of whether the USB_FLAGS_SLEEP flag is set. All isochronous input requests start
polling.

Call the usb_pipe_stop_isoc_polling(9F) function to cancel periodic polling. When polling
is stopped or the pipe is closed, the original request structure is returned through an exception
callback. This returned request structure has its completion reason set to
USB_CR_STOPPED_POLLING.

Polling continues until one of the following events occurs:

■ A usb_pipe_stop_isoc_polling(9F) call is received.
■ A device disconnect is reported through an exception callback.
■ A usb_pipe_close(9F) call is received.

Flushing Pipes
You might need to clean up a pipe after errors, or you might want to wait for a pipe to clear. Use
one of the following methods to flush or clear pipes:

Device Communication

Chapter 20 • USB Drivers 447

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Susb-isoc-request-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Smblk-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-pipe-isoc-xfer-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-pipe-stop-isoc-polling-9f

■ The usb_pipe_reset(9F) function resets the pipe and flushes all of its requests. Do this for
pipes that are in an error state if autoclearing is not enabled on those pipes. Use
usb_pipe_get_state(9F) to determine the state of a pipe.

■ The usb_pipe_drain_reqs(9F) function blocks waiting for all pending requests to
complete before continuing. This function can wait indefinitely, or it can time-out after a
specified period of time. The usb_pipe_drain_reqs(9F) function neither closes nor flushes
the pipe.

Device State Management
Managing a USB device includes accounting for hotplugging, system power management
(checkpoint and resume), and device power management. All client drivers should implement
the basic state machine shown in the following figure. For more information, see
/usr/include/sys/usb/usbai.h.

This state machine and its four states can be augmented with driver-specific states. Device states
0x80 to 0xff can be defined and used only by client drivers.

FIGURE 20–4 USB Device State Machine

PWRED_DWN ONLINE

SUSPENDED

DISCONNECTED

1 Device unplugged.

2 Original device reconnected.

3 Device idles for time T and transitions to low power state.

4 Remote wakeup by the device or by an application sending
 I/O to the device.

5 Notification to save state via DDI_SUSPEND.

6 Notification to restore state via DDI_RESUME with correct device.

7 Notification to restore state via DDI_RESUME with device
 disconnected or a wrong device.

3 4 2 1

6

5

5 5

7

Device State Management

Writing Device Drivers • March 2012448

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-pipe-reset-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-pipe-get-state-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-pipe-drain-reqs-9f

Hotplugging USB Devices
USB devices support hotplugging. A USB device can be inserted or removed at any time. The
client driver must handle removal and reinsertion of an open device. Use hotplug callbacks to
handle open devices. Insertion and removal of closed devices is handled by the attach(9E) and
detach(9E) entry points.

Hotplug Callbacks
The USBA 2.0 framework supports the following event notifications:

■ The client driver receives a callback when the device is hot removed.
■ The client driver receives a callback when the device is returned after hot removal. This

event callback can occur when the user returns the device to its original port if the driver
instance of the device is not offlined. If the driver instance is held open, then the driver
instance cannot be offlined.

Client drivers must call usb_register_hotplug_cbs(9F) in their attach(9E) routine to
register for event callbacks. Drivers must call usb_unregister_hotplug_cbs(9F) in their
detach(9E) routine before dismantling.

Hot Insertion
The sequence of events for hot insertion of a USB device is as follows:

1. The hub driver, hubd(7D), waits for a port connect status change.
2. The hubd driver detects a port connect.
3. The hubd driver enumerates the device, creates child device nodes, and attaches client

drivers. Refer to “Binding Client Drivers” on page 430 for compatible names definitions.
4. The client driver manages the device. The driver is in the ONLINE state.

Hot Removal
The sequence of events for hot removal of a USB device is as follows:

1. The hub driver, hubd(7D), waits for a port connect status change.
2. The hubd driver detects a port disconnect.
3. The hubd driver sends a disconnect event to the child client driver. If the child client driver is

the hubd driver or the usb_mid(7D) multi-interface driver, then the child client driver
propagates the event to its children.

4. The client driver receives the disconnect event notification in kernel thread context. Kernel
thread context enables the driver's disconnect handler to block.

Device State Management

Chapter 20 • USB Drivers 449

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-register-hotplug-cbs-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-unregister-hotplug-cbs-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7hubd-7d
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7hubd-7d
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7usb-mid-7d

5. The client driver moves to the DISCONNECTED state. Outstanding I/O transfers fail with the
completion reason of device not responding. All new I/O transfers and attempts to open
the device node also fail. The client driver is not required to close pipes. The driver is
required to save the device and driver context that needs to be restored if the device is
reconnected.

6. The hubd driver attempts to offline the OS device node and its children in bottom-up order.

The following events take place if the device node is not open when the hubd driver attempts to
offline the device node:

1. The client driver's detach(9E) entry point is called.
2. The device node is destroyed.
3. The port becomes available for a new device.
4. The hotplug sequence of events starts over. The hubd driver waits for a port connect status

change.

The following events take place if the device node is open when the hubd driver attempts to
offline the device node:

1. The hubd driver puts the offline request in the periodic offline retry queue.
2. The port remains unavailable for a new device.

If the device node was open when the hubd driver attempted to offline the device node and the
user later closes the device node, the hubd driver periodic offlining of that device node succeeds
and the following events take place:

1. The client driver's detach(9E) entry point is called.
2. The device node is destroyed.
3. The port becomes available for a new device.
4. The hotplug sequence of events starts over. The hubd driver waits for a port connect status

change.

If the user closes all applications that use the device, the port becomes available again. If the
application does not terminate or does not close the device, the port remains unavailable.

Hot Reinsertion
The following events take place if a previously-removed device is reinserted into the same port
while the device node of the device is still open:

1. The hub driver, hubd(7D), detects a port connect.
2. The hubd driver restores the bus address and the device configuration.
3. The hubd driver cancels the offline retry request.

Device State Management

Writing Device Drivers • March 2012450

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7hubd-7d

4. The hubd driver sends a connect event to the client driver.
5. The client driver receives the connect event.
6. The client driver determines whether the new device is the same as the device that was

previously connected. The client driver makes this determination first by comparing device
descriptors. The client driver might also compare serial numbers and configuration
descriptor clouds.

The following events might take place if the client driver determines that the current device is
not the same as the device that was previously connected:

1. The client driver might issue a warning message to the console.
2. The user might remove the device again. If the user removes the device again, the hot

remove sequence of events starts over. The hubd driver detects a port disconnect. If the user
does not remove the device again, the following events take place:
a. The client driver remains in the DISCONNECTED state, failing all requests and opens.
b. The port remains unavailable. The user must close and disconnect the device to free the

port.
c. The hotplug sequence of events starts over when the port is freed. The hubd driver waits

for a port connect status change.

The following events might take place if the client driver determines that the current device is
the same as the device that was previously connected:

1. The client driver might restore its state and continue normal operation. This policy is up to
the client driver. Audio speakers are a good example where the client driver should
continue.

2. If it is safe to continue using the reconnected device, the hotplug sequence of events starts
over. The hubd driver waits for a port connect status change. The device is in service once
again.

Power Management
This section discusses device power management and system power management.

Device power management manages individual USB devices depending on their I/O activity or
idleness.

System power management uses checkpoint and resume to checkpoint the state of the system
into a file and shut down the system completely. (Checkpoint is sometimes called “system
suspend.”) The system is resumed to its pre-suspend state when the system is powered up again.

Device State Management

Chapter 20 • USB Drivers 451

Device Power Management
The following summary lists what your driver needs to do to power manage a USB device. A
more detailed description of power management follows this summary.

1. Create power management components during attach(9E). See the
usb_create_pm_components(9F) man page.

2. Implement the power(9E) entry point.
3. Call pm_busy_component(9F) and pm_raise_power(9F) before accessing the device.
4. Call pm_idle_component(9F) when finished accessing the device.

The USBA 2.0 framework supports four power levels as specified by the USB interface power
management specification. See /usr/include/sys/usb/usbai.h for information on mapping
USB power levels to operating system power levels.

The hubd driver suspends the port when the device goes to the USB_DEV_OS_PWR_OFF state. The
hubd driver resumes the port when the device goes to the USB_DEV_OS_PWR_1 state and above.
Note that port suspend is different from system suspend. In port suspend, only the USB port is
shut off. System suspend is defined in “System Power Management” on page 455.

The client driver might choose to enable remote wakeup on the device. See the
usb_handle_remote_wakeup(9F) man page. When the hubd driver sees a remote wakeup on a
port, the hubd driver completes the wakeup operation and calls pm_raise_power(9F) to notify
the child.

The following figure shows the relationship between the different pieces of power management.

Device State Management

Writing Device Drivers • March 2012452

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-create-pm-components-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Epower-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-idle-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-handle-remote-wakeup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-raise-power-9f

The driver can implement one of the two power management schemes described at the bottom
of Figure 20–5. The passive scheme is simpler than the active scheme because the passive
scheme does not do power management during device transfers.

Active Power Management

This section describes the functions you need to use to implement the active power
management scheme.

Do the following work in the attach(9E) entry point for your driver:

1. Call usb_create_pm_components(9F).
2. Optionally call usb_handle_remote_wakeup(9F) with USB_REMOTE_WAKEUP_ENABLE as the

second argument to enable a remote wakeup on the device.
3. Call pm_busy_component(9F).
4. Call pm_raise_power(9F) to take power to the USB_DEV_OS_FULL_PWR level.

FIGURE 20–5 USB Power Management

USB Power
Management

Remote
Wakeup

Bad
Device

No PM
Components PM

Components

Good
Device

No Remote
Wakeup

Driver
Policy

Driver
Policy

No PM
Components

The driver sets the PM state
to busy and raises power when
starting I/O activity. The driver
sets the PM state to idle
when I/O completes.

Examples: hid, hub, usb_mid,
scsa2usb

Active Scheme
The driver sets the PM state
to busy and raises power
in open(9E). The driver sets
the PM state to idle in
close(9E).

Examples: usb_audio,
usbprn (printer)

Passive Scheme

Device State Management

Chapter 20 • USB Drivers 453

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-create-pm-components-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-handle-remote-wakeup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-raise-power-9f

5. Communicate with the device to initialize the device.
6. Call pm_idle_component(9F).

Do the following work in the detach(9E) entry point for your driver:

1. Call pm_busy_component(9F).
2. Call pm_raise_power(9F) to take power to the USB_DEV_OS_FULL_PWR level.
3. If you called the usb_handle_remote_wakeup(9F) function in your attach(9E) entry point,

call usb_handle_remote_wakeup(9F) here with USB_REMOTE_WAKEUP_DISABLE as the second
argument.

4. Communicate with the device to cleanly shut down the device.
5. Call pm_lower_power(9F) to take power to the USB_DEV_OS_PWR_OFF level.

This is the only time a client driver calls pm_lower_power(9F).
6. Call pm_idle_component(9F).

When a driver thread wants to start I/O to the device, that thread does the following tasks:

1. Call pm_busy_component(9F).
2. Call pm_raise_power(9F) to take power to the USB_DEV_OS_FULL_PWR level.
3. Begin the I/O transfer.

The driver calls pm_idle_component(9F) when the driver receives notice that an I/O transfer
has completed.

In the power(9E) entry point for your driver, check whether the power level to which you are
transitioning is valid. You might also need to account for different threads calling into
power(9E) at the same time.

The power(9E) routine might be called to take the device to the USB_DEV_OS_PWR_OFF state if the
device has been idle for some time or the system is shutting down. This state corresponds to the
PWRED_DWN state shown in Figure 20–4. If the device is going to the USB_DEV_OS_PWR_OFF state,
do the following work in your power(9E) routine:

1. Put all open pipes into the idle state. For example, stop polling on the interrupt pipe.
2. Save any device or driver context that needs to be saved.

The port to which the device is connected is suspended after the call to power(9E)
completes.

The power(9E) routine might be called to power on the device when either a device-initiated
remote wakeup or a system-initiated wakeup is received. Wakeup notices occur after the device
has been powered down due to extended idle time or system suspend. If the device is going to
the USB_DEV_OS_PWR_1 state or above, do the following work in your power(9E) routine:

1. Restore any needed device and driver context.

Device State Management

Writing Device Drivers • March 2012454

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-idle-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-lower-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-idle-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-idle-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Epower-9e

2. Restart activity on the pipe that is appropriate to the specified power level. For example, start
polling on the interrupt pipe.

If the port to which the device is connected was previously suspended, that port is resumed
before power(9E) is called.

Passive Power Management

The passive power management scheme is simpler than the active power management scheme
described above. In this passive scheme, no power management is done during transfers. To
implement this passive scheme, call pm_busy_component(9F) and pm_raise_power(9F) when
you open the device. Then call pm_idle_component(9F) when you close the device.

System Power Management
System power management consists of turning off the entire system after saving its state, and
restoring the state after the system is turned back on. This process is called CPR (checkpoint and
resume). USB client drivers operate the same way that other client drivers operate with respect
to CPR. To suspend a device, the driver's detach(9E) entry point is called with a cmd argument
of DDI_SUSPEND. To resume a device, the driver's attach(9E) entry point is called with a cmd
argument of DDI_RESUME. When you handle the DDI_SUSPEND command in your detach(9E)
routine, clean up device state and clean up driver state as much as necessary for a clean resume
later. (Note that this corresponds to the SUSPENDED state in Figure 20–4.) When you handle the
DDI_RESUME command in your attach(9E) routine, always take the device to full power to put
the system in sync with the device.

For USB devices, suspend and resume are handled similarly to a hotplug disconnect and
reconnect (see “Hotplugging USB Devices” on page 449). An important difference between
CPR and hotplugging is that with CPR the driver can fail the checkpoint process if the device is
not in a state from which it can be suspended. For example, the device cannot be suspended if
the device has an error recovery in progress. The device also cannot be suspended if the device is
busy and cannot be stopped safely.

Serialization
In general, a driver should not call USBA functions while the driver is holding a mutex.
Therefore, race conditions in a client driver can be difficult to prevent.

Do not allow normal operational code to run simultaneously with the processing of
asynchronous events such as a disconnect or CPR. These types of asynchronous events
normally clean up and dismantle pipes and could disrupt the normal operational code.

One way to manage race conditions and protect normal operational code is to write a
serialization facility that can acquire and release an exclusive-access synchronization object.

Device State Management

Chapter 20 • USB Drivers 455

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-busy-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-raise-power-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpm-idle-component-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e

You can write the serialization facility in such a way that the synchronization object is safe to
hold through calls to USBA functions. The usbskel sample driver demonstrates this technique.

Utility Functions
This section describes several functions that are of general use.

Device Configuration Facilities
This section describes functions related to device configuration.

Getting Interface Numbers
If you are using a multiple-interface device where the usb_mid(7D) driver is making only one of
its interfaces available to the calling driver, you might need to know the number of the interface
to which the calling driver is bound. Use the usb_get_if_number(9F) function to do any of the
following tasks:

■ Return the number of the interface to which the calling driver is bound. The
usb_get_if_number(9F) function returns an interface number greater than zero in this
case.

■ Discover that the calling driver manages an entire multi-interface device. The driver is
bound at the device level so that usb_mid has not split it. The usb_get_if_number(9F)
function returns USB_DEVICE_NODE in this case.

■ Discover that the calling driver manages an entire device by managing the only interface
that device offers in its current configuration. The usb_get_if_number(9F) function returns
USB_COMBINED_NODE in this case.

Managing Entire Devices
If a driver manages an entire composite device, that driver can bind to the entire device by using
a compatible name that contains vendor ID, product ID, and revision ID. A driver that is bound
to an entire composite device must manage all the interfaces of that device as a nexus driver
would. In general, you should not bind your driver to an entire composite device. Instead, you
should use the generic multiple-interface driver usb_mid(7D).

Use the usb_owns_device(9F) function to determine whether a driver owns an entire device.
The device might be a composite device. The usb_owns_device(9F) function returns TRUE if the
driver owns the entire device.

Utility Functions

Writing Device Drivers • March 2012456

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7usb-mid-7d
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-get-if-number-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7usb-mid-7d
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-owns-device-9f

Multiple-Configuration Devices
USB devices make only a single configuration available to the host at any particular time. Most
devices support only a single configuration. However, a few USB devices support multiple
configurations.

Any device that has multiple configurations is placed into the first configuration for which a
driver is available. When seeking a match, device configurations are considered in numeric
order. If no matching driver is found, the device is set to the first configuration. In this case, the
usb_mid driver takes over the device and splits the device into interface nodes. Use the
usb_get_cfg(9F) function to return the current configuration of a device.

You can use either of the following two methods to request a different configuration. Using
either of these two methods to modify the device configuration ensures that the USBA module
remains in sync with the device.

■ Use the cfgadm_usb(1M) command.
■ Call the usb_set_cfg(9F) function from the driver.

Because changing device configuration affects an entire device, the client driver must meet
all of the following criteria to call the usb_set_cfg(9F) function successfully:
■ The client driver must own the entire device.
■ The device must have no child nodes, because other drivers could drive the device

through them.
■ All pipes except the default pipe must be closed.
■ The device must have multiple configurations.

Caution – Do not change the device configuration by doing a SET_CONFIGURATION USB request
manually. Using a SET_CONFIGURATION request to change the configuration is not supported.

Modifying or Getting the Alternate Setting
A client driver can call the usb_set_alt_if(9F) function to change the selected alternate
setting of the currently selected interface. Be sure to close all pipes that were opened explicitly.
When switching alternate settings, the usb_set_alt_if(9F) function verifies that only the
default pipe is open. Be sure the device is settled before you call usb_set_alt_if(9F).

Changing the alternate setting can affect which endpoints and which class-specific and
vendor-specific descriptors are available to the driver. See “The Descriptor Tree” on page 435
for more information about endpoints and descriptors.

Call the usb_get_alt_if(9F) function to retrieve the number of the current alternate setting.

Utility Functions

Chapter 20 • USB Drivers 457

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-get-cfg-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mcfgadm-usb-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-set-cfg-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-set-alt-if-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-get-alt-if-9f

Note – When you request a new alternate setting, a new configuration, or a new interface, all
pipes except the default pipe to the device must be closed. This is because changing an alternate
setting, a configuration, or an interface changes the mode of operation of the device. Also,
changing an alternate setting, a configuration, or an interface changes the device's presentation
to the system.

Other Utility Functions
This section describes other functions that are useful in USB device drivers.

Retrieving a String Descriptor
Call the usb_get_string_descr(9F) function to retrieve a string descriptor given its index.
Some configuration, interface, or device descriptors have string IDs associated with them. Such
descriptors contain string index fields with nonzero values. Pass a string index field value to the
usb_get_string_descr(9F) to retrieve the corresponding string.

Pipe Private Data Facility
Each pipe has one pointer of space set aside for the client driver's private use. Use the
usb_pipe_set_private(9F) function to install a value. Use the usb_pipe_get_private(9F)
function to retrieve the value. This facility is useful in callbacks, when pipes might need to bring
their own client-defined state to the callback for specific processing.

Clearing a USB Condition
Use the usb_clr_feature(9F) function to do the following tasks:

■ Issue a USB CLEAR_FEATURE request to clear a halt condition on an endpoint.
■ Clear a remote wakeup condition on a device.
■ Clear a device-specific condition at a device, interface, or endpoint level.

Getting Device, Interface, or Endpoint Status
Use the usb_get_status(9F) function to issue a USB GET_STATUS request to retrieve the status
of a device, interface, or endpoint.

■ Device status. Self-powered and remote-wakeup-enabled.
■ Interface status. Returns zero, per USB 2.0 specification.
■ Endpoint status. Endpoint halted. This status indicates a functional stall. A halt must be

cleared before the device can operate again.

Utility Functions

Writing Device Drivers • March 2012458

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-get-string-descr-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-pipe-set-private-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-pipe-get-private-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-clr-feature-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-get-status-9f

A protocol stall indicates that an unsupported control pipe request has been made. A
protocol stall is cleared automatically at the beginning of the next control transfer.

Getting the Bus Address of a Device
Use the usb_get_addr(9F) function to get the USB bus address of a device for debugging
purposes. This address maps to a particular USB port.

Sample USB Device Drivers
This section describes a template USB device driver that uses the USBA 2.0 framework for the
Oracle Solaris environment. This driver demonstrates many of the features discussed in this
chapter. This template or skeleton driver is named usbskel.

The usbskel driver is a template that you can use to start your own USB device driver. The
usbskel driver demonstrates the following features:

■ Reading the raw configuration data of a device. Every USB device needs to be able to report
device raw configuration data.

■ Managing pipes. The usbskel driver opens an interrupt pipe to show how to manage pipes.
■ Polling. Comments in the usbskel driver discuss how to do polling.
■ USB version management and registration.
■ USB logging.
■ Accommodations for USB hotplugging.
■ Accommodations for Oracle Solaris suspend and resume.
■ Accommodations for power management.
■ USB serialization.
■ Use of USB callbacks.

Sample USB Device Drivers

Chapter 20 • USB Drivers 459

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fusb-get-addr-9f

460

SR-IOV Drivers

This chapter describes the Single Root IO Virtualization (SR-IOV) device drivers and provides
information on the following topics:

■ “Introduction to SR-IOV” on page 461
■ “Supported Platforms” on page 463
■ “Glossary” on page 464
■ “Overview of SR-IOV Device Driver” on page 464
■ “Boot Configuration Sequence” on page 469
■ “SR-IOV Interfaces Summary” on page 470
■ “Interfaces for SR-IOV Drivers” on page 471
■ “SR-IOV Driver Ioctls” on page 479

Introduction to SR-IOV
The SR-IOV technology is a hardware based virtualization solution that improves both
performance and scalability. The SR-IOV standard enables efficient sharing of PCIe (Peripheral
Component Interconnect) Express devices among virtual machines and is implemented in the
hardware to achieve I/O performance which is comparable to native performance. The SR-IOV
specification defines a new standard wherein the new devices that are created will enable the
virtual machine to be directly connected to the I/O device.

The SR-IOV specification is defined and maintained by PCI-SIG at http://www.pcisig.com

A single I/O resource can be shared by many virtual machines. The shared devices will provide
dedicated resources and also utilize shared common resources. In this way, each virtual
machine will have access to unique resources. Therefore, a PCIe device, such as an Ethernet
Port, that is SR-IOV enabled with appropriate hardware and OS support can appear as multiple,
separate physical devices, each with its own configuration space.

The following figure illustrates the SR-IOV technology for PCIe hardware.

21C H A P T E R 2 1

461

http://www.pcisig.com

Two new function types in SR-IOV are:

Physical Function (PF) A PCI Function that supports the SR-IOV capabilities as defined in
SR-IOV specification. A PF contains the SR-IOV capability
structure and is used to manage the SR-IOV functionality. PFs are
fully featured PCIe functions that can be discovered, managed, and
manipulated like any other PCIe device. PFs have full configuration
resources, and can be used to configure or control the PCIe device.

Virtual Function (VF) A function that is associated with a Physical Function. A VF is a
lightweight PCIe function that shares one or more physical
resources with the Physical Function and with other VFs that are
associated with the same PF. VFs are only allowed to have
configuration resources for its own behavior.

Each SR-IOV device can have a Physical Function (PF) and each PF can have upto 64K Virtual
Functions (VFs) associated with the PF. The VFs can be created by the PF through registers
designed with properties specifically for this purpose.

FIGURE 21–1 SR-IOV Technology

VM0

System Device
Configuration Space

Virtual NIC

Physical NIC

Hypervisor

App App App

PF0

VF2

VF3

Device
Configuration Space

...

Guest OS0

VF1

VF1

Introduction to SR-IOV

Writing Device Drivers • March 2012462

Once SR-IOV is enabled in the PF, the PCI configuration space of each VF can be accessed by
the bus, device, and function number (Routing ID) of the PF. Each VF also has a PCI Memory
Space, which is used to map its register set. The device drivers of the VFs operate on the register
set to enable its functionality and appear as a real existing PCI device. Once VFs are created,
they can be directly assigned to IO guest domains or individual applications such as Oracle
Solaris Zones on bare-metal platforms. This capability enables them to share the physical device
and perform I/O without CPU and Hypervisor software overhead.

Benefits of SR-IOV
The SR-IOV standard allows efficient sharing of PCIe devices among IO Guest Domains. An
SR-IOV device can have hundreds of Virtual Functions (VFs) associating with a Physical
Function (PF). The creation of VFs can be dynamically controlled by the PF through registers
designed to turn on the SR-IOV capability. By default, the SR-IOV capability is turned off, and
the PF behaves as traditional PCIe device.

Devices that have SR-IOV capability can take advantage of the following benefits:

■ Performance – Direct access to hardware from virtual machines environment.
■ Cost Reduction – Capital and operational expenditure savings include:

■ Power savings
■ Reduced adapter count
■ Less cabling
■ Fewer switch ports

Supported Platforms
■ Sparc: All T3 and T4 series of systems support Oracle Solaris SR-IOV capable devices.
■ x86: Intel Nehalem-EX based systems such as x4470 and x4800 support Oracle Solaris

SR-IOV capable devices.

The following cards support SR-IOV capable devices:

■ Intel based NICs such as Kawela (82576, 1G)
■ Niantic (82599, 10G)

Note – To be able to run SR-IOV capable devices, the system firmware should support SR-IOV
capability.

Supported Platforms

Chapter 21 • SR-IOV Drivers 463

Glossary

Control Domain A domain that manages virtualization policies.

Root Domain A domain that manages the PCIe fabric.

IO Domain A domain that has exclusive access to IO devices assigned to it.

Fabric PCIe fabric components such as root-complexes, root-ports, switches, bridges; configuration space
registers of endpoints

VM Virtual Machine

PCI Device (PCI
Component)

■ Single or multiple PCI functions
■ Usually one piece of silicon

PCI Function ■ Smallest independent addressable unit in a PCI fabric
■ One set of PCI configuration space registers

PCI Virtual
Function

■ Lightweight PCI function in hardware
■ Looks almost the same as PCI function to software

Overview of SR-IOV Device Driver
The SR-IOV functionality is comprised of the Physical Function (PF) driver and the Virtual
Function (VF) driver. The following sections describe the PF and VF drivers and the details of
the required device configuration.

Physical Function (PF) Driver
The PF driver of a SR-IOV device is used to manage the Physical Function (PF) of an SR-IOV
capable device. A PCI Function that supports the SR-IOV capabilities is defined in the SR-IOV
specification. A PF contains the SR-IOV capability structure and is used to manage the SR-IOV
functionality. PFs are fully featured PCIe functions which can be discovered, managed, and
manipulated like any other PCIe device. PFs have full configuration resources, and can be used
to configure or control the PCIe device. A PF driver exhibits the following characteristics:

■ Visible in Root Domain only
■ May or may not possess data movement capabilities. The PF driver should function even in

SR-IOV mode.
■ Controls the enabling and disabling of the SR-IOV capability through APIs provided by the

Oracle Solaris IOV Framework.

Glossary

Writing Device Drivers • March 2012464

■ The number of VFs to be configured for a given PF is determined by the system
administrator. This number defined either in Machine Descriptors (MD) on the Sparc
OVM platforms or a configuration file in the bare metal environment.

■ The PF driver enables the VFs during the attachment phase by calling the Oracle Solaris
IOV framework through the DDI interface. If the PF driver does not enable VFs during
attachment, the Oracle Solaris IOV framework will attempt to configure VFs after the
attachment as long as the driver callback flags indicates that the driver has IOV capability is
supported.

■ PFs can enable and disable each associated VF individually through a device specific
mechanism

Virtual Function (VF) Driver
A function that is associated with a Physical Function. A VF is a lightweight PCIe function that
shares one or more physical resources with the Physical Function and with other VFs that are
associated with the same PF. A VF driver exhibits the following characteristics:

■ Visible in both the root domain and I/O domain
■ Can initiate communication with its PF either through the HW mailbox or an OS–provided

interface
■ Not visible in the root domain until the following conditions are satisfied:

■ The root domain has booted up
■ The PF driver attaches and invokes the configuration of the VF
■ The VFs are enabled by the root domain's Oracle Solaris IOV framework
■ The system firmware allocates resources to the VFs

■ Not visible in the I/O Domain until the following conditions are satisfied:
■ VFs are already enabled and are visible in the root domain
■ VFs are assigned to the I/O Domain
■ VFs are probed in the I/O Domain by the Oracle Solaris firmware (OBP)

Note – The SR-IOV Capable PF and VF drivers have to register Interrupt Resource Management
(IRM) callbacks and provide support for this feature. See Chapter 8, “Interrupt Handlers,” for
details and usage of IRM interfaces.

Overview of SR-IOV Device Driver

Chapter 21 • SR-IOV Drivers 465

Note – If the VF is a network VF, the following parameters can be configured after the numVFs are
enabled. The configuration should be completed before the VFs are enabled.

■ mac-addr

■ vlan (Virtual LAN) ID

■ port-vlan-id

■ alt-mac-addrs

■ mtu

Device Configuration Parameters
The PF driver must support the configuration parameters listed in the following table. These
parameters may be exported to the Sparc OVM Manager. Configuration is complete only when
all the parameters are configured.

TABLE 21–1 Configuration Parameters Definition

Configuration Parameters Definition Example

Standards related configuration
parameters

Number of VFs it can support

Note – Changes to the number of
VFs require the PF device to detach
and attach again.

max-config-vfs – Maximum
number of VFs that can actually be
configured. A PF driver can export
this parameter when the maximum
number of VFs that a PF driver
supports is different from the
capability indicated by the SR-IOV
functionality.

Resource and device-specific
parameters

Bandwidth, pools, and Q-pairs.
Changes to these parameters can
affect both PF and VF drivers.

The framework may not be aware
of device-specific parameters and
they may be known only to the PF
driver. These parameters should be
known before enabling the VFs so
that a PF driver initializes its
hardware appropriately

See igb(7D) and ixgbe(7D) to
learn how to obtain the device
specific parameters that are
exported to the IOV framework.

■ pvid-exclusive – Indicates
that a port-vlan-id and
vlan-ids cannot be supported
at the same time.

■ max-vf-mtu – Maximum MTU
allowed for a VF.

■ max-vlans – Maximum
number of vlan slots supported
by the network class PF driver.

Overview of SR-IOV Device Driver

Writing Device Drivers • March 2012466

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7igb-7d
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7ixgbe-7d

TABLE 21–1 Configuration Parameters Definition (Continued)
Configuration Parameters Definition Example

Class-specific parameters Common properties based on the
class of the device. For example,
Ethernet devices may have
properties such as MAC addresses,
VLAN-Ids, Port-VLAN-ID,
bandwidth and so on.

Class specific configuration is
expected to be used and may define
the behavior of each of the
parameters.

None

Note – When device configuration parameters are changed, the devices should be reattached.

Note – Configure the parameters in the following order before enabling the VFs. Class specific
parameters will be based on the class specific configurator.

1. Standards–related parameters
2. Resource and device–specific parameters
3. Class–specific parameters

pci.conf File
The PCI configuration information file, /etc/pci.conf enables the system to save PCI
configurations such as the number of VFs of a particular PF. The pci.conf file provides the
following:

■ - To persist the PCI configuration so that VFs can be created automatically upon booting of
the system.

■ - Since the configuration file is part of the boot_archive, VFs can be used during the booting
of the system.

See Appendix E, “pci.conf File,” for more information.

Setting Device Configuration Parameters
■ Sparc: The parameters can be set through the ldm command. See the ldm(1M) man page for

details.
■ x86: The class–specific parameters can be specified by the pci.conf file. The following

example shows the parameters set in a pci.conf file.

Overview of SR-IOV Device Driver

Chapter 21 • SR-IOV Drivers 467

http://www.oracle.com/pls/topic/lookup?ctx=E23120&id=LDOMSRMldm-1m

EXAMPLE 21–1 Setting Device Configuration Parameters

[[path=/pci@0,0/pci8086,3a40@1c/pci108e,4848@0,1]]

num-vf=2

[Device_Configuration]

[[path=/pci@0,0/pci8086,3a40@1c/pci108e,4848@0,1]]

VF[0] = {

primary-mac-addr = 0xaabbccddeeff

alt-mac-addrs = 0x102233445556, 0x102233445557

vlan-id = 20, 30

}

VF[1] = {

primary-mac-addr = 0xaabbccddeef1

alt-mac-addrs = 0x102233445568

vlan-id = 20, 30, 40, 50

}

SR-IOV Configuration on Sparc OVM Platform
The Sparc OVM Manager is responsible for the SR-IOV configuration on all Sparc OVM
platforms. The Sparc OVM Manager is responsible for the following operations:

■ Obtain a list of PFs that have SR-IOV capable drivers
■ Obtain the device specific parameters supported by the drivers
■ Validate a specific device configuration
■ Update the Machine Descriptor (MD) file with all valid configuration details along with the

assignment and removal of VFs

The following figure shows a high-level view of the Sparc OVM configuration.

Overview of SR-IOV Device Driver

Writing Device Drivers • March 2012468

SR-IOV Configuration on Bare Metal Platforms
At the time of Oracle Solaris 11 release, no configuration tool is available to configure SR-IOV
on bare metal platforms, including x86.

Boot Configuration Sequence
The SR-IOV capable PF driver performs the following actions during attachment :

1. Calls the pciv_vf_config() function to obtain the number of VFs.
2. Obtains the device specific parameters for both the PF and VF and validates them.
3. Initializes the hardware accordingly
4. Calls the pciv_vf_config() interface to enable the VF
5. If the PF driver is a network driver, the driver will register with the GLDv3 framework using

the mac_register() interface during attachment. The PF driver also performs class-specific
initialization. This results in the following set of actions:
■ The GLDv3 interface becomes aware of the existence of the PF device.

FIGURE 21–2 High-Level View of Sparc OVM Configuration

iovcfg

LDoms Manager LDoms Agent libiov

PF Driver

platcfg netcfg

GLDv3

PCI / DDI

Domain
Service

Kernel

loctls

ddi interfaces

modctl

mdeg

Mac client interfaces

Mac provider interfaces

GuestMD

Boot Configuration Sequence

Chapter 21 • SR-IOV Drivers 469

■ A new set of MAC provider interfaces are exported by the PF driver. This process
enables the MAC layer to become aware that the driver is a PF driver. The MAC layer
also obtains more information about the VF driver.

See Chapter 19, “Drivers for Network Devices,” and the Oracle Solaris Administration:
Network Interfaces and Network Virtualization chapter in for more information about
network drivers and interfaces.

The VF instances are now initialized. A VF driver is attached only if the VF is assigned to the
root domain.

SR-IOV Interfaces Summary
The following table lists the Oracle Solaris interfaces that are available to the SR-IOV drivers.
The interfaces are called to obtain PF and VF parameters, to configure VFs, and to export the
configuration parameters to any calling applications.

Note – All the interfaces listed in the table with the exception of pciv_send() are applicable only
for PF drivers.

TABLE 21–2 Interfaces for SR-IOV Drivers

Interface Name Description

pci_param_get(9F) Used by PCI device drivers to get the name-value pair list of the currently configured
parameters

pci_param_free(9F) Must be called by the device driver after they have obtained the device parameters by using
the param handle. This call frees up the resources allocated by the pci_param_get() and
pci_param_get_ioctl() interfaces.

pci_plist_get(9F) Used by the SR-IOV device drivers to get the name-value pair list for the PF devices.

pci_plist_getvf(9F) Used by the SR-IOV device drivers to get the name-value pair list for the VF devices.

pci_param_get_ioctl(9F) A helper function to SR-IOV device drivers to extract the parameters for the PF and VF
devices from the arg argument if the drivers implement the ioctl IOV_VALIDATE_PARAM.

pciv_vf_config(9F) Used by PF drivers to obtain VF configuration parameters and to configure their VFs.

pci_plist_lookup(9F) Used to obtain the parameters for PF and VF from the list obtained from the
pci_plist_get() and pci_plist_getvf() interfaces.

pciv_send(9F) Used by the PF and VF drivers to transmit information.

ddi_cb_register(9F) Callback registration mechanism interfaces.

SR-IOV Interfaces Summary

Writing Device Drivers • March 2012470

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=SYSADV8
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=SYSADV8
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpci-param-get-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpci-param-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpci-plist-get-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpci-plist-getvf-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpci-param-get-ioctl-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpciv-vf-config-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpci-plist-lookup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpciv-send-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-cb-register-9f

Driver Ioctls
The SR-IOV driver ioctls are used to identify the device–specific parameters that can be
configured by the administrator and to validate a specific configuration before it is applied. The
following ioctls and their data structures are defined.

■ “iov_param_ver_info Structure” on page 479
■ “iov_param_validate Structure” on page 480
■ “ iov_param_desc Structure” on page 480
■ “IOV_GET_VER_INFO Ioctl ” on page 481
■ “IOV_GET_PARAM_INFO Ioctl” on page 481
■ “IOV_VALIDATE_PARAM Ioctl” on page 481

Interfaces for SR-IOV Drivers
The following sections describe the interfaces for SR-IOV drivers.

pci_param_get() Interface
SR-IOV drivers must use the pci_param_get(9F) interface to obtain the list of currently
configured parameters. This interface is called during driver attachment or at any other
appropriate time. The returned data, which is a pointer to the parameter list, contains the
name-value information of both the PF and its corresponding VF devices.

int pci_param_get(dev_info_t *dip, pci_param_t *php)

where:

dip A pointer to the dev_info structure

php A pointer to param handle, pci_param_t

The device driver should perform the following steps to obtain the list of parameters of PF and
VF after calling the pci_param_get interface:

1. Call the pci_plist_get(9F) interface to obtain the list of parameters of the PF device and
the pci_plist_getvf(9F) interface to obtain the list of parameters of the configured VFs.

2. Call the pci_plist_lookup(9F) interface to obtain the device parameters.
3. Validate all the PF and VF parameters
4. If the parameters do not match the current configuration, the driver should fail the device

attachment.
5. Call the pci_param_free(9F) interface to free the pointer to the parameter handle obtaining

the parameters for PF and the configured VF devices. See Example 21–2

Interfaces for SR-IOV Drivers

Chapter 21 • SR-IOV Drivers 471

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpci-param-get-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpci-plist-get-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpci-plist-getvf-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpci-plist-lookup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpci-param-free-9f

Note – Validation of the parameters should be completed before the VFs are configured.

The name-value pairs are defined on a per–device basis. There is one set of name-value pairs for
the PF and one set each for the configured VFs. The name-value pairs are optional and may be
absent for any or all of the devices.

EXAMPLE 21–2 SR-IOV pci_param_get(9F) Routine

pci_param_t my_params;

pci_plist_t pf_plist;

pci_plist_t vf_plist[8];

labelp = NULL;

rval = pci_param_get(dip,&my_params);

if (rval || (my_params == NULL)) {

cmn_err(CE_NOTE, "No params available\n");
goto continue_with_attach;

}

rval = pci_plist_get(my_params, &pf_list);

if (rval || (pf_plist == NULL)) {

cmn_err(CE_NOTE, "No params for PF \n");
goto continue_with_attach;

}

for (i = 0; i < 8; i++) {

rval = pci_plist_getvf(my_params, i, &vf_plist[i]);

if (rval || (vf_plist[i] == NULL)) {

cmn_err(CE_WARN, "No params for VF %d\n", i);

continue;

}

}

pci_param_free(my_params);

/*

* Validate the PF and VF params lists.

* Fail the attach if the params are incompatible or exceed the

* resources available.

*/

continue_with_attach:

pci_param_get_ioctl() Interface
SR-IOV device drivers can use the pci_param_get_ioctl(9F) interface to extract the
parameters for the PF and VF devices from the arg argument if they implement the
IOV_VALIDATE_PARAM ioctl.

int pci_param_get_ioctl(dev_info_t *dip, intptr_t arg, int mode,pci_param_t
*php)

where:

dip A pointer to the dev_info structure

Interfaces for SR-IOV Drivers

Writing Device Drivers • March 2012472

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpci-param-get-ioctl-9f

arg Argument obtained from the driver's ioctl call

mode Argument obtained from the driver's ioctl call

php A pointer to the param handle, pci_param_t, which is a handle obtained from calling
the pci_param_get()or pci_param_get_ioctl() interfaces

The driver should call the pci_param_free() interface to free the param handle returned in this
call after retrieving the parameters.

pci_plist_get() Interface
The pci_plist_get(9F) interface is used to obtain the parameter list from the param handle
obtained from either the pci_param_get(9F) call or the pci_param_get_ioctl(9F) call.

int pci_plist_get(pci_param_t param, pci_plist_t *plist_p)

where:

param A handle obtained from the pci_param_get()or pci_param_get_ioctl()
interfaces.

plist_p A pointer to pci_plist_t where a non-NULL plist is returned on a successful
return.

The plist that is returned from the pci_plist_get() call is only for the PF function. The
structure pci_plist_t supports arrays of the following data types:

■ int8_t

■ uint8

■ int16_t

■ uint16_t

■ int32_t

■ uint32_t

■ int64_t

■ uint64_t

■ char *

pci_plist_getvf() Interface
The pci_plist_getvf(9F) interface is used to obtain the name-value pair list for VF devices.

int pciv_plist_getvf (pci_param_t param, uint16_t vf_index, pci_plist_t

*vfplist_p)

Interfaces for SR-IOV Drivers

Chapter 21 • SR-IOV Drivers 473

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpci-plist-get-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpci-param-get-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpci-param-get-ioctl-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpci-plist-getvf-9f

where:

param A handle obtained from pci_param_get()or pci_param_get_ioctl()
interfaces.

vf_index A value between 0 through #VFS - 1.

*vfplist_p A pointer to the pci_plist_t structure.

pciv_vf_config() Interface
The pciv_vf_config(9F) interface is used by the SR-IOV drivers to obtain configuration info
about the VFs and is also used to configure the VFs during the attachment of the driver.

#include <sys/sunddi.h>

int pciv_vf_config(dev_info_t *dip, pciv_config_vf_t *vfcfg_p)

where:

dip A pointer to the dev_info structure.

vfcfg_p A pointer to the pciv_config_vf structure.

typedef enum {

PCIV_VFCFG_PARAM,

PCIV_VF_ENABLE,

PCIV_VF_DISABLE

PCIV_EVT_VFENABLE_PRE,

PCIV_EVT_VFENABLE_POST,

PCIV_EVT_VFDISABLE_PRE,

PCIV_EVT_VFDISABLE_POST

} pciv_vf_config_cmd_t;

The pciv_config_vf structure contains the following fields:

typedef struct pciv_config_vf {

int version;

pciv_vf_config_cmd_t cmd;

uint16_t num_vf;

uint16_t first_vf_offset;

uint16_t vf_stride;

boolean_t ari_cap;

uint32_t page_size;

} pciv_config_vf_t;

where:

version Version number.

cmd Used to indicate whether this interface is called to obtain
configuration information or to attach the VFs.
■ PCIV_VFCFG_PARAM – Obtain configuration information

Interfaces for SR-IOV Drivers

Writing Device Drivers • March 2012474

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpciv-vf-config-9f

■ PCIV_VF_ENABLE – Enable the VFs
■ PCIV_EVT_VFENABLE_PRE

■ PCIV_EVT_VFDISABLE_PRE

■ PCIV_EVT_VFENABLE_POST

■ PCIV_EVT_VFDISABLE_POST

num_vf Number of VFs defined in the backend.

vf_stride Distance between the VFs.

first_vf_offset Offset between the first VF and PF.

ari_cap ARI-capable hierarchy.

page_size Specifies system page size.

The driver should first call the pciv_vfconfig() interface with the cmd field set to
PCIV_VFCFG_PARAM to obtain the configuration information. The driver should then call this
interface again with the cmd field set to PCIV_VF_ENABLE to configure the VFs.

The driver can return one of the following error codes:

DDI_SUCCESS

DDI_FAILURE

PCIV_REQRESET

PCIV_REQREATTACH

The driver does not have to register the callbacks with the DDI_CB_FLAG_SRIOV bit set before
calling the pciv_vf_config() interface to enable the VFs. However in order to receive
notifications when the VFs are unconfigured by the SR-IOV framework, the drivers must
register callbacks with DDI_CB_FLAG_SRIOV bit set after the VFs are enabled. See “Driver
Callbacks” on page 482 for additional information.

All PF drivers that can support VFs should inform the PCIe framework of their capability by
calling the ddi_cb_register(9F) with DDI_CB_FLAG_SRIOV flag set in the flags argument. The
ddi_cb_register() function must be called in the driver's attach routine. If the PF device
driver calls the pciv_vf_config() function to enable VFs in its attach routine, then the PF
driver should call the ddi_cb_register() function after enabling the VFs.

The DDI_CB_FLAG_SRIOV flag is required by the framework to perform the following actions:

■ Indicate to the Sparc OVM agent that there is a device driver capable of supporting VFs. The
Sparc OVM agent then will allow creation of VF devices. In the absence of this capability,
the user will not be able to create VFs on Sparc platforms.

Interfaces for SR-IOV Drivers

Chapter 21 • SR-IOV Drivers 475

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-cb-register-9f

■ The framework will callback the PF driver before and after it disables the VFs. This will
facilitate the PF driver to do its internal book keeping for VF support.

pci_plist_lookup() Interface
The pci_plist_lookup(9F) interface can be used by the drivers to look up name-value pairs of
the various data types that are supported. The functions find the nvpair (name-value pair) that
matches the name and type as indicated by the interface name. If found, nelem and val are
modified to contain the number of elements in value and the starting address of data,
respectively.

The following data types are supported by the pci_plist_lookup() interface:

■ int pci_plist_lookup_int8(pci_plist_t plist, const char *name,int8_t *val)
■ int pci_plist_lookup_uint8(pci_plist_t plist, const char *name,uint8_t *val)
■ int pci_plist_lookup_int16(pci_plist_t plist, const char *name,int16_t *val)
■ int pci_plist_lookup_uint16(pci_plist_t plist, const char *name, uint16_t

*val)
■ int pci_plist_lookup_int32(pci_plist_t plist, const char *name,int32_t *val)
■ int pci_plist_lookup_uint32(pci_plist_t plist, const char *name, uint32_t

*val)
■ int pci_plist_lookup_int64(pci_plist_t plist, const char *name,int64_t *val)
■ int pci_plist_lookup_uint64(pci_plist_t plist, const char *name, uint64_t

*val)
■ int pci_plist_lookup_string(pci_plist_t plist, const char *name, char **val)
■ int pci_plist_lookup_plist(pci_plist_t plist, const char *name, pci_plist_t

**val)
■ int pci_plist_lookup_int8_array(pci_plist_t plist, const char *name,int8_t

*val, uint_t *nelem)

■ int pci_plist_lookup_uint8_array(pci_plist_t plist, const char *name, int8_t

*val, uint_t *nelem)

■ int pci_plist_lookup_int16_array(pci_plist_t plist, const char *name,int16_t
*val, uint_t *nelem)

■ int pci_plist_lookup_uint16_array(pci_plist_t plist, const char *name,
uint16_t *val, uint_t *nelem)

■ int pci_plist_lookup_int32_array(pci_plist_t plist, const char *name,int32_t
*val, uint_t *nelem)

Interfaces for SR-IOV Drivers

Writing Device Drivers • March 2012476

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpci-plist-lookup-9f

■ int pci_plist_lookup_uint32_array(pci_plist_t plist, const char

*name,uint32_t *val, uint_t *nelem)

■ int pci_plist_lookup_int64_array(pci_plist_t plist, const char *name, int64_t

*val, uint_t *nelem)

■ int pci_plist_lookup_uint64_array(pci_plist_t plist,const char *name,uint64_t
*val, uint_t *nelem)

■ int pci_plist_lookup_string_array(pci_plist_t plist, const char *name,char
**val, uint_t *nelem)

where:

plist A pointer to the pci_plist_t structure to be processed.

name Name of the name-value pair to search.

nelem Address to store the number of elements in value.

val Starting address of data.

The pci_plist_lookup() function return 0 on success and an error value on failure. The
following error values are supported:

DDI_EINVAL Invalid argument

ENOENT No matching name-value pair found

ENOTSUP An encode or decode method is not supported

pci_param_free() Interface
The pci_param_free(9F) interface must be called by the driver after obtaining the device
parameters using the param handle. This call frees up the resources allocated by the
pci_param_get() and pci_param_get_ioctl() interfaces.

int pci_param_free (pci_param_t param)

where param is a handle obtained from pci_param_get()or pci_param_get_ioctl()
interfaces.

pciv_send() Interface
The pciv_send(9F) interface is used by SR-IOV capable PF and VF drivers to communicate
with each other. A PF driver can communicate with any of its VF drivers although a VF driver
can only communicate with its PF driver.

Interfaces for SR-IOV Drivers

Chapter 21 • SR-IOV Drivers 477

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpci-param-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpciv-send-9f

int pciv_send(dev_info_t *dip, pciv_pvp_req_t *req

where:

dip A pointer to the dev_info structure.

req A pointer to the pciv_pvp_req_t structure.

The structure of the pciv_pvp_req_t is :

typedef struct pciv_pvp_req {

int pvp_dstfunc;

caddr_t pvp_buf;

size_t pvp_nbyte;

buf_cb_t pvp_cb;

caddr_t pvp_cb_arg;

uint_t pvp_flag;

} pciv_pvp_req_t;

where:

pvp_dstfunc VF index ranges from 1 to num_vf if called by PF driver. If the caller is a VF
driver it should always be PCIV_PF.

pvp_buf Buffer address of caller's buffer to be sent.

pvp_nbyte Number of bytes to be transmitted, which must be less than 8k.

pvp_cb Call back function pointer if the pvp_flag is set as PCIV_NOWAIT.

If pvp_flag is set to PCIV_NOWAIT the call returns immediately and the callback
routine in pvp_cb is called before data in pvp_buf has been transmitted to the
destination. The caller is then allowed to free the buffer in its callback routine.

typedef void (*buf_cb_t)(int rc, caddr_t buf, size_t size, caddr_t cb_arg);

where:

rc DDI return code for the transmission.

buf Buffer address of caller's buffer to be sent.

size Number of bytes to be transmitted.

cb_arg Input argument the caller has set when calling the routine.

pvp_cb_arg Call back input argument for pvp_cb if the pvp_flag is set as PCIV_NOWAIT.

pvp_flag

■ PCIV_NOWAIT – Do not wait for receiver's response.
■ PCIV_WAIT – This is the default state. Wait until receiver acknowledges the

transmission.

Interfaces for SR-IOV Drivers

Writing Device Drivers • March 2012478

The pciv_send() interface returns one of the following return values:

DDI_SUCCESS Buffer has been sent successfully.

DDI_ENOTSUP Device driver does not support this operation. Caller may use other
mechanisms, such as hardware mailbox.

DDI_EINVAL The pvp_nbyte or pvp_dstfunc is invalid.

DDI_ENOMEM Operation failed due to lack of resources.

DDI_ETRANSPORT The remote end did not register a call back to handle incoming
transmission.

DDI_FAILURE Failed due to unspecified reasons.

SR-IOV Driver Ioctls
The SR-IOV driver ioctls are used to identify the device specific parameters that can be
configured by the administrator and to validate a specific configuration before it is applied. The
following sections describe the ioctls data structures and the interfaces.

Data Structures
The following sections list the data structures that the PF driver should define and initialize
before implementing the ioctls:

iov_param_ver_info Structure
The iov_param_ver_info structure is defined as follows:

#define IOV_IOCTL ((’I’ << 24) | (’O’ << 16) | (’V’ << 8))

#define IOV_GET_VER_INFO (IOV_IOCTL | 0)

#define IOV_GET_PARAM_INFO (IOV_IOCTL | 1)

#define IOV_VALIDATE_PARAM (IOV_IOCTL | 2)

#define IOV_PARAM_DESC_VERSION 1

The iov_param_ver_info structure contains the following fields:

typedef struct iov_param_ver_info {

uint32_t version;

uint32_t num_params;

} iov_param_ver_info_t;

where:

version Version information

SR-IOV Driver Ioctls

Chapter 21 • SR-IOV Drivers 479

num_params Number of parameters

iov_param_validate Structure
The iov_param_validate structure is defined as follows:

#define IOV_IOCTL ((’I’ << 24) | (’O’ << 16) | (’V’ << 8))

#define IOV_GET_VER_INFO (IOV_IOCTL | 0)

#define IOV_GET_PARAM_INFO (IOV_IOCTL | 1)

#define IOV_VALIDATE_PARAM (IOV_IOCTL | 2)

#define IOV_PARAM_DESC_VERSION 1

The iov_param_validate contains the following fields:

typedef struct iov_param_validate {

char pv_reason[MAX_REASON_LEN + 1];

int32_t pv_buflen;

/* encoded buffer containing params */

char pv_buf[1]; /* size of buf is pv_buflen */

} iov_param_validate_t;

where:

pv_reason An ASCII string that explains the reason for failure if the ioctl call fails.

pv_buflen Length of buffer pv_buf

pv_buf Buffer containing the parameters

iov_param_desc Structure
The iov_param_desc structure is defined as follows:

#define IOV_IOCTL ((’I’ << 24) | (’O’ << 16) | (’V’ << 8))

#define IOV_GET_VER_INFO (IOV_IOCTL | 0)

#define IOV_GET_PARAM_INFO (IOV_IOCTL | 1)

#define IOV_VALIDATE_PARAM (IOV_IOCTL | 2)

#define IOV_PARAM_DESC_VERSION 1

The structure iov_param_desc contains the following fields:

typedef struct iov_param_desc {

char pd_name[MAX_PARAM_NAME_SIZE];

char pd_desc[MAX_PARAM_DESC_SIZE];

int32_t pd_flag; /* applicable for PF or VF or both */

int32_t pd_data_type; /* integer, string, plist */

/* Following 3 are applicable for integer data types */

uint64_t pd_default_value;

uint64_t pd_min64;

uint64_t pd_max64;

char pd_default_string [MAX_PARAM_DEFAULT_STRING_SIZE];

} iov_param_desc_t;

SR-IOV Driver Ioctls

Writing Device Drivers • March 2012480

where:

pd_name Used in the ldm(1M) command or the pci.conf file to assign a value
to the parameter.

pd_desc A brief description of the parameter.

pd_flag Indicates if the parameter is applicable to only PF, only VF or
applicable to both PF and VF.

pd_default_value Value assigned by the driver if parameter is not specified in the ldm()
command or pci.conf file.

pd_min64 Specifies the minimum range of values for the integer parameter

pd_max64 Specifies the maximum range of values for the integer parameter.

pd_default_string Specifies the default string that will be used, if parameter is a string.

IOV_GET_VER_INFO Ioctl
SR-IOV device drivers that implement the IOV_GET_VER_INFO IOCTL() ioctl should set the
version and the num_params fields in the iov_param_ver_info structure and return the values
to the calling function. The calling function then uses the version and num_params parameters
to determine the size of buffer required to get parameter descriptions using the
IOV_GET_PARAM_INFO() ioctl call.

IOV_GET_PARAM_INFO Ioctl
The general flow of control for a driver that calls the IOV_GET_PARAM_INFO() ioctl is as follows:

1. Keep an array of iov_param_desc_t structures which contain description for each of the
configurable params that are supported by the structure. See the iov_param_desc structure
for the structure description.

2. Copy out the array of iov_param_desc_t structures to the arg parameter. The fields in the
iov_param_desc_t structure are static and can be defined at compile time.
The number of elements in the array is the num_params value returned by the
IOV_GET_VER_INFO() ioctl call. The size of the buffer is sizeof (iov_param_desc_t) *
num_params

IOV_VALIDATE_PARAM Ioctl
The general flow of control for a driver that calls the IOV_VALIDATE_PARAM() is as follows:

SR-IOV Driver Ioctls

Chapter 21 • SR-IOV Drivers 481

http://www.oracle.com/pls/topic/lookup?ctx=E23120&id=LDOMSRMldm-1m

1. Send the arg parameter to the pci_param_get_ioctl() interface and obtain a pointer to the
pci_param_t structure.

2. Write an explanatory string to the pv_reason array if param validation fails.
3. Call the pci_get_plist() interface followed by the pci_plist_lookup() interface to

obtain the device parameters.
4. Lookup the vfs name-value pair in the PF plist to obtain the number of VFs to be

configured for the validation of this configuration. The drivers should use integer data type
of at least 16 bits to look up vfs name-value pair. Use the pciv_plist_getvf() interface to
get the plist parameter for the VF devices.

5. Validate the parameters without actually applying them to the device.
6. Return 0 when a valid configuration is found.

Caution – The parameters validated in the above procedure are not related to the current
configuration of the device in any way. They need to be validated separately assuming they
could be a future configuration. If not, the driver should return DDI_EINVAL to indicate
improper configuration. The driver should also provide an explanatory string in the pv_reason
field in the iov_param_validate structure when invalid configurations are found. This string
informs the administrator why the configuration failed.

Driver Callbacks
The DDI interfaces ddi_cb_register() and ddi_cb_unregister() are used to register
callbacks. Callbacks are used for event notifications and incoming data traffic. Callbacks serve
as an event handler for each event during transmission.

The SR-IOV driver should implement additional callbacks to inform the PF driver before and
after configuring or unconfiguring the VFs.

The driver can implement the callbacks using the following DDI callback registration
mechanism interfaces:

■

int ddi_cb_register(dev_info_t *dip, ddi_cb_flags_t flags, ddi_cb_func_t cbfunc,

void *arg1, void *arg2,ddi_cb_handle_t *ret_hdlp)

See the ddi_cb_register(9F) man page for details.
■

typedef int(*ddi_cb_func_t)

(dev_info_t *dip, ddi_cb_action_t action,
void *cbarg, void *arg1, void *arg2)

SR-IOV Driver Ioctls

Writing Device Drivers • March 2012482

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-cb-register-9f

where:

dip Is a pointer to the dev_info structure

cbarg Is a pointer to the structure pciv_config_vf_t.

action Is set as DDI_CB_PCIV_CONFIG_VF to receive notifications about changes to the
VF configuration.

arg1 Private argument to send to itself during each execution of its cbfunc() routine.

arg2 Private argument to send to itself during each execution of its cbfunc() routine.

See “Register a Callback Handler Function” on page 135 for additional information.

Note – All PF drivers that are SR-IOV capable must use the ddi_cb_flags_t
DDI_CB_FLAG_SRIOV to inform the Oracle Solaris IOV framework that the PF drivers are
SR-IOV capable.

Sample Code for Driver Ioctls
enum ioc_reply

igb_ioctl(igb_t *igb, struct iocblk *iocp, mblk_t *mp)

{

int rval = 0;

iov_param_ver_info_t *iov_param_ver;

iov_param_validate_t pvalidate;

pci_param_t my_params;

char reason[81];

if (mp->b_cont == NULL)

return (IOC_INVAL);

if ((int)iocp->ioc_count < 0)

return (IOC_INVAL);

switch (iocp->ioc_cmd) {

case IOV_GET_PARAM_VER_INFO:

if (iocp->ioc_count < sizeof (iov_param_ver_info_t))

return (IOC_INVAL);

iov_param_ver = (iov_param_ver_info_t *)(mp->b_cont->b_rptr);

iov_param_ver->version = IOV_PARAM_DESC_VERSION;

iov_param_ver->num_params = NUM_OF_PARAMS;

return (IOC_REPLY);

case IOV_GET_PARAM_INFO:

if (iocp->ioc_count < sizeof (pci_list))

return (IOC_INVAL);

memcpy((caddr_t)(mp->b_cont->b_rptr), &pci_list,sizeof (pci_list));

return (IOC_REPLY);

case IOV_VALIDATE_PARAM:

if (iocp->ioc_count <= 0)

return (IOC_INVAL);

strcpy(reason, "Failed to read params sent\n");
rval = pci_param_get_ioctl(igb->dip,(uintptr_t)(mp->b_cont->b_rptr),

SR-IOV Driver Ioctls

Chapter 21 • SR-IOV Drivers 483

iocp->ioc_flag | FKIOCTL,&my_params);

if (rval == 0) {

rval = validate_params(igb->dip, my_params, reason);

pci_param_free(my_params);

}

if (rval) {

memcpy(mp->b_cont->b_rptr, reason, sizeof (reason));

iocp->ioc_count = sizeof (reason);

return (IOC_REPLY);

}

iocp->ioc_count = 0;

return (IOC_REPLY);

iov_param_ver_info_t iov_param_ver;

iov_param_validate_t pvalidate;

pci_param_t my_params;

switch (cmd) {

case IOV_GET_PARAM_VER_INFO:

iov_param_ver.version = IOV_PARAM_DESC_VERSION;

iov_param_ver.num_params = NUM_OF_PARAMS;

if (ddi_copyout(&iov_param_ver, (caddr_t)arg,

sizeof (iov_param_ver_info_t), mode) != DDI_SUCCESS)

return (DEFAULT);

return (0);

case IOV_GET_PARAM_INFO:

if (ddi_copyout(&pci_list, (caddr_t)arg,param_list_size, mode) != DDI_SUCCESS)

return (DEFAULT);

return (0);

case IOV_VALIDATE_PARAM:

strcpy(reason, "Failed to read params sent\n");
rv = pci_param_get_ioctl(state->dip, arg, mode, &my_params);

if (rv == 0)

rv = validate_params(state->dip, my_params, reason);

else

return (rv);

pci_param_free(my_params);

if (rv) {

if (ddi_copyout(reason,iov_param_validate_t *)arg)->pv_reason,

sizeof (reason), mode) != DDI_SUCCESS)

return (DEFAULT);

return (rv);

}

return (0);

SR-IOV Driver Ioctls

Writing Device Drivers • March 2012484

Building a Device Driver
The third part of this book provides advice on building device drivers for the Oracle Solaris
OS:

■ Chapter 22, “Compiling, Loading, Packaging, and Testing Drivers,” provides
information on compiling, linking, and installing a driver.

■ Chapter 23, “Debugging, Testing, and Tuning Device Drivers,” describes techniques for
debugging, testing, and tuning drivers.

■ Chapter 24, “Recommended Coding Practices,” describes the recommended coding
practices for writing drivers.

P A R T I I I

485

486

Compiling, Loading, Packaging, and Testing
Drivers

This chapter describes the procedure for driver development, including code layout,
compilation, packaging, and testing.

This chapter provides information on the following subjects:
■ “Driver Code Layout” on page 488
■ “Preparing for Driver Installation” on page 490
■ “Installing, Updating, and Removing Drivers” on page 492
■ “Loading and Unloading Drivers” on page 495
■ “Driver Packaging” on page 495
■ “Criteria for Testing Drivers” on page 496

Driver Development Summary
This chapter and the following two chapters, Chapter 23, “Debugging, Testing, and Tuning
Device Drivers,” and Chapter 24, “Recommended Coding Practices,” provide detailed
information on developing a device driver.

Take the following steps to build a device driver:

1. Write, compile, and link the new code.
See “Driver Code Layout” on page 488 for the conventions on naming files. Use a C compiler
to compile the driver. Link the driver using ld(1). See “Compiling and Linking the Driver”
on page 491 and “Module Dependencies” on page 492.

2. Create the necessary hardware configuration files.
Create a hardware configuration file unique to the device called xx.conf where xx is the
prefix for the device. This file is used to update the driver.conf(4) file. See “Writing a
Hardware Configuration File” on page 492. For a pseudo device driver, create a pseudo(4)
file.

3. Copy the driver to the appropriate module directory.

22C H A P T E R 2 2

487

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4driver.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4pseudo-4

See “Copying the Driver to a Module Directory” on page 493.
4. Install the device driver using add_drv(1M).

Installing the driver with add_drv is usually done as part of a postinstall script. See
“Installing Drivers with add_drv” on page 494. Use the update_drv(1M) command to make
any changes to the driver. See “Updating Driver Information” on page 494.

5. Load the driver.
The driver can be loaded automatically by accessing the device. See “Loading and Unloading
Drivers” on page 495. Drivers can also be loaded by using the modload(1M) command. The
modload command does not call any routines in the module and therefore is useful for
testing. See “Loading and Unloading Test Modules” on page 505.

6. Test the driver.
Drivers should be rigorously tested in the following areas:
■ “Configuration Testing” on page 496
■ “Functionality Testing” on page 496
■ “Error Handling” on page 497
■ “Testing Loading and Unloading” on page 497
■ “Stress, Performance, and Interoperability Testing” on page 497
■ “DDI/DKI Compliance Testing” on page 498
■ “Installation and Packaging Testing” on page 498

For additional driver-specific testing, see “Testing Specific Types of Drivers” on page 498.
7. Remove the driver if necessary.

Use the rem_drv(1M) command to remove a device driver. See “Removing the Driver” on
page 495.

Driver Code Layout
The code for a device driver is usually divided into the following files:
■ Header files (.h files)
■ Source files (.c files)
■ Optional configuration file (driver.conf file)

Header Files
Header files provide the following definitions:
■ Data structures specific to the device, such as a structure representing the device registers
■ Data structures defined by the driver for maintaining state information
■ Defined constants, such as those representing the bits of the device registers

Driver Code Layout

Writing Device Drivers • March 2012488

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Madd-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mupdate-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mmodload-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mrem-drv-1m

■ Macros, such as those defining the static mapping between the minor device number and
the instance number

Some of the header file definitions, such as the state structure, might be needed only by the
device driver. This information should go in private header files that are only included by the
device driver itself.

Any information that an application might require, such as the I/O control commands, should
be in public header files. These files are included by the driver and by any applications that need
information about the device.

While there is no standard for naming private and public files, one convention is to name the
private header file xximpl.h and the public header file xxio.h.

Source Files
A C source file (a .c file) for a device driver has the following responsibilities:

■ Contains the data declarations and the code for the entry points of the driver
■ Contains the #include statements that are needed by the driver
■ Declares extern references
■ Declares local data
■ Sets up the cb_ops and dev_ops structures
■ Declares and initializes the module configuration section, that is, the modlinkage(9S) and

modldrv(9S) structures
■ Makes any other necessary declarations
■ Defines the driver entry points

Configuration Files
In general, the configuration file for a driver defines all of the properties that the driver needs.
Entries in the driver configuration file specify possible device instances that the driver can probe
for existence. Driver global properties can be set in the driver's configuration file. See the
driver.conf(4) man page for more information.

Driver configuration files are required for devices that are not self-identifying.

Driver configuration files are optional for self-identifying devices (SID). For self-identifying
devices, the configuration file can be used to add properties into SID nodes.

Driver Code Layout

Chapter 22 • Compiling, Loading, Packaging, and Testing Drivers 489

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Smodlinkage-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Smodldrv-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4driver.conf-4

The following properties are examples of properties that are not set in the driver configuration
file:

■ Drivers that use the SBus peripheral bus generally get property information from the SBus
card. In cases where additional properties are needed, the driver configuration file can
contain properties that are defined by sbus(4).

■ The properties of a PCI bus can generally be derived from the PCI configuration space. In
cases where private driver properties are needed, the driver configuration file can contain
properties that are defined by pci(4).

■ Drivers on the ISA bus can use additional properties that are defined by isa(4).

Preparing for Driver Installation
The following steps precede installation of a driver:

1. Compile the driver.

2. Create a configuration file if necessary.

3. Identify the driver module to the system through either of the following alternatives:
■ Match the driver's name to the name of the device node.
■ Use either add_drv(1M) or update_drv(1M) to inform the system of the module names.

The system maintains a one-to-one association between the name of the driver module and the
name of the dev_info node. For example, consider a dev_info node for a device that is named
mydevice. The device mydevice is handled by a driver module that is also named mydevice. The
mydevice module resides in a subdirectory that is called drv, which is in the module path. The
module is in drv/mydevice if you are using a 32-bit kernel. The module is in
drv/sparcv9/mydevice if you are using a 64-bit SPARC kernel. The module is in
drv/amd64/mydevice if you are using a 64-bit x86 kernel.

If the driver is a STREAMS network driver, then the driver name must meet the following
constraints:

■ Only alphanumeric characters (a-z, A-Z, 0-9), plus the underscore ('_'), are allowed.
■ Neither the first nor the last character of the name can be a digit.
■ The name cannot exceed 16 characters in length. Names in the range of 3-8 characters in

length are preferable.

If the driver must manage dev_info nodes with different names, the add_drv(1M) utility can
create aliases. The -i flag specifies the names of other dev_info nodes that the driver handles.
The update_drv command can also modify aliases for an installed device driver.

Preparing for Driver Installation

Writing Device Drivers • March 2012490

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4sbus-4
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4pci-4
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4isa-4
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Madd-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mupdate-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Madd-drv-1m

Compiling and Linking the Driver
You need to compile each driver source file and link the resulting object files into a driver
module. The OS is compatible with both the Oracle Solaris Studio C compiler and the GNU C
compiler from the Free Software Foundation, Inc. The examples in this section use the Oracle
Solaris Studio C compiler unless otherwise noted. For information on the Oracle Solaris Studio
C compiler, see the Sun Studio 12: C User’s Guide and the Oracle Solaris Studio Documentation.
For more information on compile and link options, see the Sun Studio Man Pages. The GNU C
compiler is supplied in the /usr/sfw directory. For information on the GNU C compiler, see
http://gcc.gnu.org/ or check the man pages in /usr/sfw/man.

The example below shows a driver that is called xx with two C source files. A driver module that
is called xx is generated. The driver that is created in this example is for a 32-bit kernel. You
must use ld -r even if your driver has only one object module.

% cc -D_KERNEL -c xx1.c
% cc -D_KERNEL -c xx2.c
% ld -r -o xx xx1.o xx2.o

The _KERNEL symbol must be defined to indicate that this code defines a kernel module. No
other symbols should be defined, except for driver private symbols. The DEBUG symbol can be
defined to enable any calls to ASSERT(9F).

TABLE 22–1 Compiler Options for SPARC and x86 64–bit Architectures

Compiler SPARC 64 x86 64

Studio 9 cc -D_KERNEL -xarch=v9 -c xx.c Not Supported

Studio 10 cc -D_KERNEL -xarch=v9 -c xx.c cc -D_KERNEL -xarch=amd64 -xmodel=kernel -c xx.c

Studio 11 cc -D_KERNEL -xarch=v9 -c xx.c cc -D_KERNEL -xarch=amd64 -xmodel=kernel -c xx.c

Studio 12 cc -D_KERNEL -m64 -c xx.c cc -D_KERNEL -m64 -xmodel=kernel -c xx.c

Note – If you are compiling for a 32–bit or 64–bit x86 architecture using Sun Studio 12.2 or older
compilers, do not add -xarch=sse2a since the default value is SSE2.

Caution – MMX instructions are not supported in the x86 kernel. Use of MMX instructions
triggers a kernel panic and therefore should not be used.

Preparing for Driver Installation

Chapter 22 • Compiling, Loading, Packaging, and Testing Drivers 491

http://www.oracle.com/pls/topic/lookup?ctx=dsc&id=/app/docs/doc/819-5265
http://www.oracle.com/technetwork/server-storage/sunstudio/documentation/index.html
http://www.oracle.com/pls/topic/lookup?ctx=dsc&id=/app/docs/doc/820-4180
http://gcc.gnu.org/
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fassert-9f

After the driver is stable, you might want to add optimization flags to build a production quality
driver. See the cc(1) man page in Sun Studio Man Pages for specific information on
optimizations in the C compiler.

Global variables should be treated as volatile in device drivers. The volatile tag is discussed
in greater detail in “Declaring a Variable Volatile” on page 532. Use of the flag depends on the
platform. See the man pages.

Module Dependencies
If the driver module depends on symbols exported by another kernel module, the dependency
can be specified by the -dy and -N options of the loader, ld(1). If the driver depends on a symbol
exported by misc/mySymbol, the example below should be used to create the driver binary.

% ld -dy -r -o xx xx1.o xx2.o -N misc/mySymbol

Writing a Hardware Configuration File
If a device is non-self-identifying, the kernel might require a hardware configuration file for that
device. If the driver is called xx, the hardware configuration file for the driver should be called
xx.conf.

On the x86 platform, device information is now supplied by the booting system. Hardware
configuration files should no longer be needed, even for non-self-identifying devices.

See the driver.conf(4), pseudo(4), sbus(4), scsi_free_consistent_buf(9F), and
update_drv(1M) man pages for more information on hardware configuration files.

Arbitrary properties can be defined in hardware configuration files. Entries in the configuration
file are in the form property=value, where property is the property name and value is its initial
value. The configuration file approach enables devices to be configured by changing the
property values.

Installing, Updating, and Removing Drivers
Before a driver can be used, the system must be informed that the driver exists. The
add_drv(1M) utility must be used to correctly install the device driver. After a driver is installed,
that driver can be loaded and unloaded from memory without using the add_drv command.

Installing, Updating, and Removing Drivers

Writing Device Drivers • March 2012492

http://www.oracle.com/pls/topic/lookup?ctx=dsc&id=/app/docs/doc/820-4180
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1ld-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4driver.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4pseudo-4
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4sbus-4
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-free-consistent-buf-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mupdate-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Madd-drv-1m

Copying the Driver to a Module Directory
Three conditions determine a device driver module's path:

■ The platform that the driver runs on
■ The architecture for which the driver is compiled
■ Whether the path is needed at boot time

Device drivers reside in the following locations:

/platform/‘uname -i‘/kernel/drv
Contains 32-bit drivers that run only on a specific platform.

/platform/‘uname -i‘/kernel/drv/sparcv9
Contains 64-bit drivers that run only on a specific SPARC-based platform.

/platform/‘uname -i‘/kernel/drv/amd64
Contains 64-bit drivers that run only on a specific x86-based platform.

/platform/‘uname -m‘/kernel/drv
Contains 32-bit drivers that run only on a specific family of platforms.

/platform/‘uname -m‘/kernel/drv/sparcv9
Contains 64-bit drivers that run only on a specific family of SPARC-based platforms.

/platform/‘uname -m‘/kernel/drv/amd64
Contains 64-bit drivers that run only on a specific family of x86-based platforms.

/usr/kernel/drv

Contains 32-bit drivers that are independent of platforms.

/usr/kernel/drv/sparcv9

Contains 64-bit drivers on SPARC-based systems that are independent of platforms.

/usr/kernel/drv/amd64

Contains 64-bit drivers on x86-based systems that are independent of platforms.

To install a 32-bit driver, the driver and its configuration file must be copied to a drv directory
in the module path. For example, to copy a driver to /usr/kernel/drv, type:

$ su

cp xx /usr/kernel/drv

cp xx.conf /usr/kernel/drv

To install a SPARC driver, copy the driver to a drv/sparcv9 directory in the module path. Copy
the driver configuration file to the drv directory in the module path. For example, to copy a
driver to /usr/kernel/drv, you would type:

$ su

cp xx /usr/kernel/drv/sparcv9

cp xx.conf /usr/kernel/drv

Installing, Updating, and Removing Drivers

Chapter 22 • Compiling, Loading, Packaging, and Testing Drivers 493

To install a 64-bit x86 driver, copy the driver to a drv/amd64 directory in the module path. Copy
the driver configuration file to the drv directory in the module path. For example, to copy a
driver to /usr/kernel/drv, you would type:

$ su

cp xx /usr/kernel/drv/amd64

cp xx.conf /usr/kernel/drv

Note – All driver configuration files (.conf files) must go in the drv directory in the module
path. The .conf files cannot go into any subdirectory of the drv directory.

Installing Drivers with add_drv
Use the add_drv(1M) command to install the driver in the system. If the driver installs
successfully,add_drv runs devfsadm(1M) to create the logical names in the /dev directory.

add_drv xx

In this case, the device identifies itself as xx. The device special files have default ownership and
permissions (0600 root sys). The add_drv command also allows additional names for the
device (aliases) to be specified. See the add_drv(1M) man page for information on adding
aliases and setting file permissions explicitly.

Note – Do not use the add_drv command to install a STREAMS module. See the STREAMS
Programming Guide for details.

If the driver creates minor nodes that do not represent terminal devices such as disks, tapes, or
ports, you can modify /etc/devlink.tab to cause devfsadm to create logical device names in
/dev. Alternatively, logical names can be created by a program that is run at driver installation
time.

Updating Driver Information
Use the update_drv(1M) command to notify the system of any changes to an installed device
driver. By default, the system re-reads the driver configuration file and reloads the driver binary
module.

Installing, Updating, and Removing Drivers

Writing Device Drivers • March 2012494

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Madd-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mdevfsadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=STREAMS
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=STREAMS
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mupdate-drv-1m

Removing the Driver
To remove a driver from the system, use the rem_drv(1M) command, and then delete the driver
module and configuration file from the module path. A driver cannot be used again until that
driver is reinstalled with add_drv(1M). The removal of a SCSI HBA driver requires a reboot to
take effect.

Loading and Unloading Drivers
Opening a special file (accessing the device) that is associated with a device driver causes that
driver to be loaded. You can use the modload(1M) command to load the driver into memory,
but modload does not call any routines in the module. The preferred method is to open the
device.

Normally, the system automatically unloads device drivers when the device is no longer in use.
During development, you might want to use modunload(1M) to unload the driver explicitly. In
order for modunload to be successful, the device driver must be inactive. No outstanding
references to the device should exist, such as through open(2) or mmap(2).

The modunload command takes a runtime-dependent module_id as an argument. To find the
module_id, use grep to search the output of modinfo(1M) for the driver name in question.
Check in the first column.

modunload -i module-id

To unload all currently unloadable modules, specify module ID zero:

modunload -i 0

In addition to being inactive, the driver must have working detach(9E) and _fini(9E) routines
for modunload(1M) to succeed.

Driver Packaging
The normal delivery vehicle for software is to create a package that contains all of the software
components. A package provides a controlled mechanism for installation and removal of all the
components of a software product. In Oracle Solaris 11, the native packaging system provides
built in support for adding and removing drivers through driver actions. See Adding and
Updating Oracle Solaris 11 Software Packages for more information.

In prior versions of Oracle Solaris, the SVR4 packaging system was used, which required
including postinstall and preremove scripts in the package to run add_drv(1M) and
rem_drv(1M) commands. Existing driver packages using these commands may still be installed
on Oracle Solaris 11.

Driver Packaging

Chapter 22 • Compiling, Loading, Packaging, and Testing Drivers 495

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mrem-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Madd-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mmodload-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mmodunload-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mmodinfo-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mmodunload-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=AUOSS
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=AUOSS
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Madd-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mrem-drv-1m

Criteria for Testing Drivers
Once a device driver is functional, that driver should be thoroughly tested prior to distribution.
Besides testing the features in traditional UNIX device drivers, Oracle Solaris drivers require
testing power management features, such as dynamic loading and unloading of drivers.

Configuration Testing
A driver's ability to handle multiple device configurations is an important part of the test
process. Once the driver is working on a simple, or default, configuration, additional
configurations should be tested. Depending on the device, configuration testing can be
accomplished by changing jumpers or DIP switches. If the number of possible configurations is
small, all configurations should be tried. If the number is large, various classes of possible
configurations should be defined, and a sampling of configurations from each class should be
tested. Defining these classes depends on the potential interactions among the different
configuration parameters. These interactions are a function of the type of the device and the
way in which the driver was written.

For each device configuration, the basic functions must be tested, which include loading,
opening, reading, writing, closing, and unloading the driver. Any function that depends upon
the configuration deserves special attention. For example, changing the base memory address of
device registers is not likely to affect the behavior of most driver functions. If a driver works well
with one address, that driver is likely to work as well with a different address. On the other hand,
a special I/O control call might have different effects depending on the particular device
configuration.

Loading the driver with varying configurations ensures that the probe(9E) and attach(9E)
entry points can find the device at different addresses. For basic functional testing, using regular
UNIX commands such as cat(1) or dd(1M) is usually sufficient for character devices. Mounting
or booting might be required for block devices.

Functionality Testing
After a driver has been completely tested for configuration, all of the driver's functionality
should be thoroughly tested. These tests require exercising the operation of all of the driver's
entry points.

Many drivers require custom applications to test functionality. However, basic drivers for
devices such as disks, tapes, or asynchronous boards can be tested using standard system
utilities. All entry points should be tested in this process, including devmap(9E), chpoll(9E),
and ioctl(9E), if applicable. The ioctl() tests might be quite different for each driver. For
nonstandard devices, a custom testing application is generally required.

Criteria for Testing Drivers

Writing Device Drivers • March 2012496

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eprobe-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1cat-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mdd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Echpoll-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eioctl-9e

Error Handling
A driver might perform correctly in an ideal environment but fail in cases of errors, such as
erroneous operations or bad data. Therefore, an important part of driver testing is the testing of
the driver's error handling.

All possible error conditions of a driver should be exercised, including error conditions for
actual hardware malfunctions. Some hardware error conditions might be difficult to induce, but
an effort should be made to force or to simulate such errors if possible. All of these conditions
could be encountered in the field. Cables should be removed or be loosened, boards should be
removed, and erroneous user application code should be written to test those error paths. See
also Chapter 13, “Hardening Oracle Solaris Drivers.”

Caution – Be sure to take proper electrical precautions when testing.

Testing Loading and Unloading
Because a driver that does not load or unload can force unscheduled downtime, loading and
unloading must be thoroughly tested.

A script like the following example should suffice:

#!/bin/sh

cd <location_of_driver>

while [1]

do

modunload -i ’modinfo | grep " <driver_name> " | cut -cl-3’ &

modload <driver_name> &

done

Stress, Performance, and Interoperability Testing
To help ensure that a driver performs well, that driver should be subjected to vigorous stress
testing. For example, running single threads through a driver does not test locking logic or
conditional variables that have to wait. Device operations should be performed by multiple
processes at once to cause several threads to execute the same code simultaneously.

Techniques for performing simultaneous tests depend upon the driver. Some drivers require
special testing applications, while starting several UNIX commands in the background is
suitable for others. Appropriate testing depends upon where the particular driver uses locks and
condition variables. Testing a driver on a multiprocessor machine is more likely to expose
problems than testing on a single-processor machine.

Criteria for Testing Drivers

Chapter 22 • Compiling, Loading, Packaging, and Testing Drivers 497

Interoperability between drivers must also be tested, particularly because different devices can
share interrupt levels. If possible, configure another device at the same interrupt level as the one
being tested. A stress test can determine whether the driver correctly claims its own interrupts
and operates according to expectations. Stress tests should be run on both devices at once. Even
if the devices do not share an interrupt level, this test can still be valuable. For example, consider
a case in which serial communication devices experience errors when a network driver is tested.
The same problem might be causing the rest of the system to encounter interrupt latency
problems as well.

Driver performance under these stress tests should be measured using UNIX
performance-measuring tools. This type of testing can be as simple as using the time(1)
command along with commands to be used in the stress tests.

DDI/DKI Compliance Testing
To ensure compatibility with later releases and reliable support for the current release, every
driver should be DDI/DKI compliant. Check that only kernel routines in man pages section 9:
DDI and DKI Kernel Functions and man pages section 9: DDI and DKI Driver Entry Points and
data structures in man pages section 9: DDI and DKI Properties and Data Structures are used.

Installation and Packaging Testing
Drivers are delivered to customers in packages. A package can be added or be removed from the
system using a standard mechanism (see the Adding and Updating Oracle Solaris 11 Software
Packages).

The ability of a user to add or remove the package from a system should be tested. In testing, the
package should be both installed directly through the pkg install command and through
system installation procedures such as the Automated Installer and install media created with
the Distribution Constructor. See Oracle Solaris 11 Express Distribution Constructor Guide and
Oracle Solaris 11 Express Automated Installer Guide for more information. This testing should
include several system configurations.

Testing Specific Types of Drivers
This section provides some suggestions about how to test certain types of standard devices.

Tape Drivers
Tape drivers should be tested by performing several archive and restore operations. The
cpio(1) and tar(1) commands can be used for this purpose. Use the dd(1M) command to write
an entire disk partition to tape. Next, read back the data, and write the data to another partition

Criteria for Testing Drivers

Writing Device Drivers • March 2012498

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1time-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9F
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9F
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9E
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9S
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=AUOSS
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=AUOSS
http://www.oracle.com/pls/topic/lookup?ctx=dsc&id=/app/docs/doc/820-6564
http://www.oracle.com/pls/topic/lookup?ctx=dsc&id=/app/docs/doc/820-6566
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1cpio-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1tar-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mdd-1m

of the same size. Then compare the two copies. The mt(1) command can exercise most of the
I/O controls that are specific to tape drivers. See the mtio(7I) man page. Try to use all the
options. These three techniques can test the error-handling capabilities of tape drivers:

■ Remove the tape and try various operations
■ Write-protect the tape and try a write
■ Turn off power in the middle of different operations

Tape drivers typically implement exclusive-access open(9E) calls. These open() calls can be
tested by opening a device and then having a second process try to open the same device.

Disk Drivers
Disk drivers should be tested in both the raw and block device modes. For block device tests,
create a new file system on the device. Then try to mount the new file system. Then try to
perform multiple file operations.

Note – The file system uses a page cache, so reading the same file over and over again does not
really exercise the driver. The page cache can be forced to retrieve data from the device by
memory-mapping the file with mmap(2). Then use msync(3C) to invalidate the in-memory
copies.

Copy another (unmounted) partition of the same size to the raw device. Then use a command
such as fsck(1M) to verify the correctness of the copy. The new partition can also be mounted
and then later compared to the old partition on a file-by-file basis.

Asynchronous Communication Drivers
Asynchronous drivers can be tested at the basic level by setting up a login line to the serial
ports. A good test is to see whether a user can log in on this line. To sufficiently test an
asynchronous driver, however, all the I/O control functions must be tested, with many
interrupts at high speed. A test involving a loopback serial cable and high data transfer rates can
help determine the reliability of the driver. You can run uucp(1C) over the line to provide some
exercise. However, because uucp performs its own error handling, verify that the driver is not
reporting excessive numbers of errors to the uucp process.

Network Drivers
Network drivers can be tested using standard network utilities. The ftp(1) and rcp(1)
commands are useful because the files can be compared on each end of the network. The driver
should be tested under heavy network loading, so that various commands can be run by
multiple processes.

Criteria for Testing Drivers

Chapter 22 • Compiling, Loading, Packaging, and Testing Drivers 499

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1mt-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7mtio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eopen-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN3Amsync-3c
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mfsck-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1uucp-1c
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1ftp-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1rcp-1

Heavy network loading includes the following conditions:

■ Traffic to the test machine is heavy.
■ Traffic among all machines on the network is heavy.

Network cables should be unplugged while the tests are executing to ensure that the driver
recovers gracefully from the resulting error conditions. Another important test is for the driver
to receive multiple packets in rapid succession, that is, back-to-back packets. In this case, a
relatively fast host on a lightly loaded network should send multiple packets in quick succession
to the test machine. Verify that the receiving driver does not drop the second and subsequent
packets.

Criteria for Testing Drivers

Writing Device Drivers • March 2012500

Debugging, Testing, and Tuning Device Drivers

This chapter presents an overview of the various tools that are provided to assist with testing,
debugging, and tuning device drivers. This chapter provides information on the following
subjects:
■ “Testing Drivers” on page 501 – Testing a driver can potentially impair a system's ability to

function. Use of both serial connections and alternate kernels helps facilitate recovery from
crashes.

■ “Debugging Tools” on page 509 – Integral debugging facilities enable you to exercise and
observe driver features conveniently without having to run a separate debugger.

■ “Tuning Drivers” on page 522 – The Oracle Solaris OS provides facilities for measuring the
performance of device drivers. Writing kernel statistics structures for your device exports
continuous statistics as the device is running. If an area for performance improvement is
determined, then the DTrace dynamic instrumentation tool can help determine any
problems more precisely.

Testing Drivers
To avoid data loss and other problems, you should take special care when testing a new device
driver. This section discusses various testing strategies. For example, setting up a separate
system that you control through a serial connection is the safest way to test a new driver. You
can load test modules with various kernel variable settings to test performance under different
kernel conditions. Should your system crash, you should be prepared to restore backup data,
analyze any crash dumps, and rebuild the device directory.

Enable the Deadman Feature to Avoid a Hard Hang
If your system is in a hard hang, then you cannot break into the debugger. If you enable the
deadman feature, the system panics instead of hanging indefinitely. You can then use the
kmdb(1) kernel debugger to analyze your problem.

23C H A P T E R 2 3

501

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1kmdb-1

The deadman feature checks every second whether the system clock is updating. If the system
clock is not updating, then you are in an indefinite hang. If the system clock has not been
updated for 50 seconds, the deadman feature induces a panic and puts you in the debugger.

Take the following steps to enable the deadman feature:

1. Make sure you are capturing crash images with dumpadm(1M).
2. Set the snooping variable in the /etc/system file. See the system(4) man page for

information on the /etc/system file.

set snooping=1

3. Reboot the system so that the /etc/system file is read again and the snooping setting takes
effect.

Note that any zones on your system inherit the deadman setting as well.

If your system hangs while the deadman feature is enabled, you should see output similar to the
following example on your console:

panic[cpu1]/thread=30018dd6cc0: deadman: timed out after 9 seconds of

clock inactivity

panic: entering debugger (continue to save dump)

Inside the debugger, use the ::cpuinfo command to investigate why the clock interrupt was
not able to fire and advance the system time.

Testing With a Serial Connection
Using a serial connection is a good way to test drivers. Use the tip(1) command to make a serial
connection between a host system and a test system. With this approach, the tip window on the
host console is used as the console of the test machine. See the tip(1) man page for additional
information.

A tip window has the following advantages:

■ Interactions with the test system and kernel debuggers can be monitored. For example, the
window can keep a log of the session for use if the driver crashes the test system.

■ The test machine can be accessed remotely by logging into a tip host machine and using
tip(1) to connect to the test machine.

Note – Although using a tip connection and a second machine are not required to debug an
Oracle Solaris device driver, this technique is still recommended.

Testing Drivers

Writing Device Drivers • March 2012502

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mdumpadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4system-4
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1tip-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1tip-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1tip-1

▼ To Set Up the Host System for a tip Connection

Connect the host system to the test machine using serial port A on both machines.
This connection must be made with a null modem cable.

On the host system, make sure there is an entry in /etc/remote for the connection. See the
remote(4) man page for details.
The terminal entry must match the serial port that is used. The operating system comes with the
correct entry for serial port B, but a terminal entry must be added for serial port A:
debug:\

:dv=/dev/term/a:br#9600:el=^C^S^Q^U^D:ie=%$:oe=^D:

Note – The baud rate must be set to 9600.

In a shell window on the host, run tip(1) and specify the name of the entry:
% tip debug

connected

The shell window is now a tip window with a connection to the console of the test machine.

Caution – Do not use STOP-A for SPARC machines or F1-A for x86 architecture machines on the
host machine to stop the test machine. This action actually stops the host machine. To send a
break to the test machine, type ~# in the tip window. Commands such as ~# are recognized only
if these characters on first on the line. If the command has no effect, press either the Return key
or Control-U.

Setting Up a Target System on the SPARC Platform
A quick way to set up the test machine on the SPARC platform is to unplug the keyboard before
turning on the machine. The machine then automatically uses serial port A as the console.

Another way to set up the test machine is to use boot PROM commands to make serial port A
the console. On the test machine, at the boot PROM ok prompt, direct console I/O to the serial
line. To make the test machine always come up with serial port A as the console, set the
environment variables: input-device and output-device.

EXAMPLE 23–1 Setting input-device and output-device With Boot PROM Commands

ok setenv input-device ttya

ok setenv output-device ttya

The eeprom command can also be used to make serial port A the console. As superuser, execute
the following commands to make the input-device and output-device parameters point to
serial port A. The following example demonstrates the eeprom command.

1

2

3

Testing Drivers

Chapter 23 • Debugging, Testing, and Tuning Device Drivers 503

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4remote-4
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1tip-1

EXAMPLE 23–2 Setting input-device and output-device With the eeprom Command

eeprom input-device=ttya

eeprom output-device=ttya

The eeprom commands cause the console to be redirected to serial port A at each subsequent
system boot.

Setting Up a Target System on the x86 Platform
On x86 platforms, use the eeprom command to make serial port A the console. This procedure
is the same as the SPARC platform procedure. See “Setting Up a Target System on the SPARC
Platform” on page 503. The eeprom command causes the console to switch to serial port A
(COM1) during reboot.

Note – x86 machines do not transfer console control to the tip connection until an early stage in
the boot process unless the BIOS supports console redirection to a serial port. In SPARC
machines, the tip connection maintains console control throughout the boot process.

Setting Up Test Modules
The system(4) file in the /etc directory enables you to set the value of kernel variables at boot
time. With kernel variables, you can toggle different behaviors in a driver and take advantage of
debugging features that are provided by the kernel. The kernel variables moddebug and
kmem_flags, which can be very useful in debugging, are discussed later in this section. See also
“Enable the Deadman Feature to Avoid a Hard Hang” on page 501.

Changes to kernel variables after boot are unreliable, because /etc/system is read only once
when the kernel boots. After this file is modified, the system must be rebooted for the changes to
take effect. If a change in the file causes the system not to work, boot with the ask (-a) option.
Then specify /dev/null as the system file.

Note – Kernel variables cannot be relied on to be present in subsequent releases.

Setting Kernel Variables
The set command changes the value of module or kernel variables. To set module variables,
specify the module name and the variable:

set module_name:variable=value

For example, to set the variable test_debug in a driver that is named myTest, use set as follows:

% set myTest:test_debug=1

Testing Drivers

Writing Device Drivers • March 2012504

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4system-4

To set a variable that is exported by the kernel itself, omit the module name.

You can also use a bitwise OR operation to set a value, for example:

% set moddebug | 0x80000000

Loading and Unloading Test Modules
The commands modload(1M), modunload(1M), and modinfo(1M) can be used to add test
modules, which is a useful technique for debugging and stress-testing drivers. These commands
are generally not needed in normal operation, because the kernel automatically loads needed
modules and unloads unused modules. The moddebug kernel variable works with these
commands to provide information and set controls.

Using the modload() Function

Use modload(1M) to force a module into memory. The modload command verifies that the
driver has no unresolved references when that driver is loaded. Loading a driver does not
necessarily mean that the driver can attach. When a driver loads successfully, the driver's
_info(9E) entry point is called. The attach() entry point is not necessarily called.

Using the modinfo() Function

Use modinfo(1M) to confirm that the driver is loaded.

EXAMPLE 23–3 Using modinfo to Confirm a Loaded Driver

$ modinfo

Id Loadaddr Size Info Rev Module Name

6 101b6000 732 - 1 obpsym (OBP symbol callbacks)

7 101b65bd 1acd0 226 1 rpcmod (RPC syscall)

7 101b65bd 1acd0 226 1 rpcmod (32-bit RPC syscall)

7 101b65bd 1acd0 1 1 rpcmod (rpc interface str mod)

8 101ce8dd 74600 0 1 ip (IP STREAMS module)

8 101ce8dd 74600 3 1 ip (IP STREAMS device)

...

$ modinfo | grep mydriver

169 781a8d78 13fb 0 1 mydriver (Test Driver 1.5)

The number in the info field is the major number that has been chosen for the driver. The
modunload(1M) command can be used to unload a module if the module ID is provided. The
module ID is found in the left column of modinfo output.

Sometimes a driver does not unload as expected after a modunload is issued, because the driver
is determined to be busy. This situation occurs when the driver fails detach(9E), either because
the driver really is busy, or because the detach entry point is implemented incorrectly.

Testing Drivers

Chapter 23 • Debugging, Testing, and Tuning Device Drivers 505

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mmodload-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mmodunload-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mmodinfo-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-info-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edetach-9e

Using modunload()

To remove all of the currently unused modules from memory, run modunload(1M) with a
module ID of 0:

modunload -i 0

Setting the moddebug Kernel Variable

The moddebug kernel variable controls the module loading process. The possible values of
moddebug are:

0x80000000 Prints messages to the console when loading or unloading modules.

0x40000000 Gives more detailed error messages.

0x20000000 Prints more detail when loading or unloading, such as including the address
and size.

0x00001000 No auto-unloading drivers. The system does not attempt to unload the device
driver when the system resources become low.

0x00000080 No auto-unloading streams. The system does not attempt to unload the
STREAMS module when the system resources become low.

0x00000010 No auto-unloading of kernel modules of any type.

0x00000001 If running with kmdb, moddebug causes a breakpoint to be executed and a
return to kmdb immediately before each module's _init() routine is called.
This setting also generates additional debug messages when the module's
_info() and _fini() routines are executed.

Setting kmem_flags Debugging Flags
The kmem_flags kernel variable enables debugging features in the kernel's memory allocator.
Set kmem_flags to 0xf to enable the allocator's debugging features. These features include
runtime checks to find the following code conditions:

■ Writing to a buffer after the buffer is freed
■ Using memory before the memory is initialized
■ Writing past the end of a buffer

The Oracle Solaris Modular Debugger Guide describes how to use the kernel memory allocator
to analyze such problems.

Testing Drivers

Writing Device Drivers • March 2012506

http://www.oracle.com/pls/topic/lookup?ctx=E23824_01&id=MODDEBUG

Note – Testing and developing with kmem_flags set to 0xf can help detect latent memory
corruption bugs. Because setting kmem_flags to 0xf changes the internal behavior of the kernel
memory allocator, you should thoroughly test without kmem_flags as well.

Avoiding Data Loss on a Test System
A driver bug can sometimes render a system incapable of booting. By taking precautions, you
can avoid system reinstallation in this event, as described in this section.

Using an Alternate Boot Environment
A number of driver-related system files are difficult, if not impossible, to reconstruct. Files such
as /etc/name_to_major, /etc/driver_aliases, /etc/driver_classes, and
/etc/minor_perm can be corrupted if the driver crashes the system during installation. See the
add_drv(1M) man page.

To be safe, use the beadm(1M) command to make a backup copy of the root file system after the
test machine is in the proper configuration. If you plan to modify the /etc/system file, make a
backup copy of the file before making modifications.

Booting With an Alternate Kernel
See the Chapter 4, “Administering Boot Environments,” in Creating and Administering Oracle
Solaris 11 Boot Environments and “Booting From a ZFS Boot Environment (Task Map)” in
Oracle Solaris Administration: Common Tasks for detailed information.

Consider Alternative Back-Up Plans
If the system is attached to a network, the test machine can be added as a client of a server. If a
problem occurs, the system can be booted from the network. The local disks can then be
mounted, and any fixes can be made. Alternatively, the system can be booted directly from the
Oracle Solaris system CD-ROM.

Another way to recover from disaster is to have another bootable root file system. Use
format(1M) to make a partition that is the exact size of the original. Then use dd(1M) to copy
the bootable root file system. After making a copy, run fsck(1M) on the new file system to
ensure its integrity.

Subsequently, if the system cannot boot from the original root partition, boot the backup
partition. Use dd(1M) to copy the backup partition onto the original partition. You might have
a situation where the system cannot boot even though the root file system is undamaged. For

Testing Drivers

Chapter 23 • Debugging, Testing, and Tuning Device Drivers 507

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Madd-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mbeadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=CMBEAadminister
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=CMBEAadminister
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=SYSADV1glbbd
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=SYSADV1glbbd
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mformat-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mdd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mfsck-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mdd-1m

example, the damage might be limited to the boot block or the boot program. In such a case, you
can boot from the backup partition with the ask (-a) option. You can then specify the original
file system as the root file system.

Capture System Crash Dumps
When a system panics, the system writes an image of kernel memory to the dump device. The
dump device is by default the most suitable swap device. The dump is a system crash dump,
similar to core dumps generated by applications. On rebooting after a panic, savecore(1M)
checks the dump device for a crash dump. If a dump is found, savecore makes a copy of the
kernel's symbol table, which is called unix.n. The savecore utility then dumps a core file that is
called vmcore.n in the core image directory. By default, the core image directory is
/var/crash/machine_name. If /var/crash has insufficient space for a core dump, the system
displays the needed space but does not actually save the dump. The mdb(1) debugger can then be
used on the core dump and the saved kernel.

In the Oracle Solaris operating system, crash dump is enabled by default. The dumpadm(1M)
command is used to configure system crash dumps. Use the dumpadm command to verify that
crash dumps are enabled and to determine the location of core files that have been saved.

Note – You can prevent the savecore utility from filling the file system. Add a file that is named
minfree to the directory in which the dumps are to be saved. In this file, specify the number of
kilobytes to remain free after savecore has run. If insufficient space is available, the core file is
not saved.

Recovering the Device Directory
Damage to the /devices and /dev directories can occur if the driver crashes during
attach(9E). If either directory is damaged, you can rebuild the directory by booting the system
and running fsck(1M) to repair the damaged root file system. The root file system can then be
mounted. Recreate the /devices and /dev directories by running devfsadm(1M) and
specifying the /devices directory on the mounted disk.

The following example shows how to repair a damaged root file system on a SPARC system. In
this example, the damaged disk is /dev/dsk/c0t3d0s0, and an alternate boot disk is
/dev/dsk/c0t1d0s0.

EXAMPLE 23–4 Recovering a Damaged Device Directory

ok boot disk1

...

Rebooting with command: boot kernel.test/sparcv9/unix

Boot device: /sbus@1f,0/espdma@e,8400000/esp@e,8800000/sd@31,0:a File and \

args:

Testing Drivers

Writing Device Drivers • March 2012508

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Msavecore-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1mdb-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mdumpadm-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eattach-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mfsck-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mdevfsadm-1m

EXAMPLE 23–4 Recovering a Damaged Device Directory (Continued)

kernel.test/sparcv9/unix

...

fsck /dev/dsk/c0t3d0s0** /dev/dsk/c0t3d0s0

** Last Mounted on /

** Phase 1 - Check Blocks and Sizes

** Phase 2 - Check Pathnames

** Phase 3 - Check Connectivity

** Phase 4 - Check Reference Counts

** Phase 5 - Check Cyl groups

1478 files, 9922 used, 29261 free

(141 frags, 3640 blocks, 0.4% fragmentation)

mount /dev/dsk/c0t3d0s0 /mnt

devfsadm -r /mnt

Note – A fix to the /devices and /dev directories can allow the system to boot while other parts
of the system are still corrupted. Such repairs are only a temporary fix to save information, such
as system crash dumps, before reinstalling the system.

Debugging Tools
This section describes two debuggers that can be applied to device drivers. Both debuggers are
described in detail in the Oracle Solaris Modular Debugger Guide.

■ The kmdb(1) kernel debugger provides typical runtime debugger facilities, such as
breakpoints, watch points, and single-stepping. The kmdb debugger supersedes kadb, which
was available in previous releases. The commands that were previously available from kadb

are used in kmdb, in addition to new functionality. Where kadb could only be loaded at boot
time, kmdb can be loaded at any time. The kmdb debugger is preferred for live, interactive
debugging due to its execution controls.

■ The mdb(1) modular debugger is more limited than kmdb as a real-time debugger, but mdb
has rich facilities for postmortem debugging.

The kmdb and mdb debuggers mostly share the same user interface. Many debugging techniques
therefore can be applied with the same commands in both tools. Both debuggers support
macros, dcmds, and dmods. A dcmd (pronounced dee-command) is a routine in the debugger
that can access any of the properties of the current target program. A dcmd can be dynamically
loaded at runtime. A dmod, which is short for debugger module, is a package of dcmds that can
be loaded to provide non-standard behavior.

Debugging Tools

Chapter 23 • Debugging, Testing, and Tuning Device Drivers 509

http://www.oracle.com/pls/topic/lookup?ctx=E23824_01&id=MODDEBUG
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1kmdb-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1mdb-1

Both mdb and kmdb are backward-compatible with legacy debuggers such as adb and kadb. The
mdb debugger can execute all of the macros that are available to kmdb as well as any legacy
user-defined macros for adb. See the Oracle Solaris Modular Debugger Guide for information
about where to find standard macro sets.

Postmortem Debugging
Postmortem analysis offers numerous advantages to driver developers. More than one
developer can examine a problem in parallel. Multiple instances of the debugger can be used
simultaneously on a single crash dump. The analysis can be performed offline so that the
crashed system can be returned to service, if possible. Postmortem analysis enables the use of
user-developed debugger functionality in the form of dmods. Dmods can bundle functionality
that would be too memory-intensive for real-time debuggers, such as kmdb.

When a system panics while kmdb is loaded, control is passed to the debugger for immediate
investigation. If kmdb does not seem appropriate for analyzing the current problem, a good
strategy is to use :c to continue execution and save the crash dump. When the system reboots,
you can perform postmortem analysis with mdb on the saved crash dump. This process is
analogous to debugging an application crash from a process core file.

Note – In earlier versions of the Oracle Solaris operating system, adb(1) was the recommended
tool for postmortem analysis. In the current Oracle Solaris operating system, mdb(1) is the
recommended tool for postmortem analysis. The mdb() feature set surpasses the set of
commands from the legacy crash(1M) utility. The crash utility is no longer available in the
Oracle Solaris operating system.

Using the kmdb Kernel Debugger
The kmdb debugger is an interactive kernel debugger that provides the following capabilities:

■ Control of kernel execution
■ Inspection of the kernel state
■ Live modifications to the code

This section assumes that you are already familiar with the kmdb debugger. The focus in this
section is on kmdb capabilities that are useful in device driver design. To learn how to use kmdb in
detail, refer to the kmdb(1) man page and to the Oracle Solaris Modular Debugger Guide. If you
are familiar with kadb, refer to the kadb(1M) man page for the major differences between kadb

and kmdb.

The kmdb debugger can be loaded and unloaded at will. Instructions for loading and unloading
kmdb are in the Oracle Solaris Modular Debugger Guide. For safety and convenience, booting

Debugging Tools

Writing Device Drivers • March 2012510

http://www.oracle.com/pls/topic/lookup?ctx=E23824_01&id=MODDEBUG
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1mdb-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1kmdb-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824_01&id=MODDEBUG
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mkadb-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824_01&id=MODDEBUG

with an alternate kernel is highly encouraged. The boot process is slightly different between the
SPARC platform and the x86 platform, as described in this section.

Note – By default, kmdb uses the CPU ID as the prompt when kmdb is running. In the examples in
this chapter [0] is used as the prompt unless otherwise noted.

Booting kmdb With an Alternate Kernel on the SPARC Platform
Use either of the following commands to boot a SPARC system with both kmdb and an alternate
kernel:

boot kmdb -D kernel.test/sparcv9/unix

boot kernel.test/sparcv9/unix -k

Booting kmdb With an Alternate Kernel on the x86 Platform
Use either of the following commands to boot an x86 system with both kmdb and an alternate
kernel:

b kmdb -D kernel.test/unix

b kernel.test/unix -k

Setting Breakpoints in kmdb
Use the bp command to set a breakpoint, as shown in the following example.

EXAMPLE 23–5 Setting Standard Breakpoints in kmdb

[0]> myModule‘myBreakpointLocation::bp

If the target module has not been loaded, then an error message that indicates this condition is
displayed, and the breakpoint is not created. In this case you can use a deferred breakpoint. A
deferred breakpoint activates automatically when the specified module is loaded. Set a deferred
breakpoint by specifying the target location after the bp command. The following example
demonstrates a deferred breakpoint.

EXAMPLE 23–6 Setting Deferred Breakpoints in kmdb

[0]>::bp myModule‘myBreakpointLocation

For more information on using breakpoints, see the Oracle Solaris Modular Debugger Guide.
You can also get help by typing either of the following two lines:

Debugging Tools

Chapter 23 • Debugging, Testing, and Tuning Device Drivers 511

http://www.oracle.com/pls/topic/lookup?ctx=E23824_01&id=MODDEBUG

> ::help bp

> ::bp dcmd

kmdb Macros for Driver Developers
The kmdb(1M) debugger supports macros that can be used to display kernel data structures. Use
$M to display kmdb macros. Macros are used in the form:

[address] $<macroname

Note – Neither the information displayed by these macros nor the format in which the
information is displayed, constitutes an interface. Therefore, the information and format can
change at any time.

The kmdb macros in the following table are particularly useful to developers of device drivers.
For convenience, legacy macro names are shown where applicable.

TABLE 23–1 kmdb Macros

Dcmd Legacy Macro Description

::devinfo devinfo

devinfo_brief

devinfo.prop

Print a summary of a device node

::walk devinfo_parents devinfo.parent Walk the ancestors of a device node

::walk devinfo_sibling devinfo.sibling Walk the siblings of a device node

::minornodes devinfo.minor Print the minor nodes that
correspond to the given device
node

::major2name Print the name of a device that is
bound to a given device node.

::devbindings Print the device nodes that are
bound to a given device node or
major number.

The ::devinfo dcmd displays a node state that can have one of the following values:

DS_ATTACHED The driver's attach(9E) routine returned successfully.

DS_BOUND The node is bound to a driver, but the driver's probe(9E) routine has not
yet been called.

Debugging Tools

Writing Device Drivers • March 2012512

DS_INITIALIZED The parent nexus has assigned a bus address for the driver. The
implementation-specific initializations have been completed. The driver's
probe(9E) routine has not yet been called at this point.

DS_LINKED The device node has been linked into the kernel's device tree, but the
system has not yet found a driver for this node.

DS_PROBED The driver's probe(9E) routine returned successfully.

DS_READY The device is fully configured.

Using the mdb Modular Debugger
The mdb(1) modular debugger can be applied to the following types of files:

■ Live operating system components
■ Operating system crash dumps
■ User processes
■ User process core dumps
■ Object files

The mdb debugger provides sophisticated debugging support for analyzing kernel problems.
This section provides an overview of mdb features. For a complete discussion of mdb, refer to the
Oracle Solaris Modular Debugger Guide.

Although mdb can be used to alter live kernel state, mdb lacks the kernel execution control that is
provided by kmdb. As a result kmdb is preferred for runtime debugging. The mdb debugger is used
more for static situations.

Note – The prompt for mdb is >.

Getting Started With the Modular Debugger
The mdb debugger provides an extensive programming API for implementing debugger
modules so that driver developers can implement custom debugging support. The mdb
debugger also provides many usability features, such as command-line editing, command
history, an output pager, and online help.

Note – The adbmacros should no longer be used. That functionality has largely been superseded
by the dcmds in mdb.

Debugging Tools

Chapter 23 • Debugging, Testing, and Tuning Device Drivers 513

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1mdb-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824_01&id=MODDEBUG

The mdb debugger provides a rich set of modules and dcmds. With these tools, you can debug
the Oracle Solaris kernel, any associated modules, and device drivers. These facilities enable you
to perform tasks such as:

■ Formulate complex debugging queries
■ Locate all the memory allocated by a particular thread
■ Print a visual picture of a kernel STREAM
■ Determine what type of structure a particular address refers to
■ Locate leaked memory blocks in the kernel
■ Analyze memory to locate stack traces
■ Assemble dcmds into modules called dmods for creating customized operations

To get started, switch to the crash directory and type mdb, specifying a system crash dump, as
illustrated in the following example.

EXAMPLE 23–7 Invoking mdb on a Crash Dump

% cd /var/crash/testsystem

% ls

bounds unix.0 vmcore.0

% mdb unix.0 vmcore.0

Loading modules: [unix krtld genunix ufs_log ip usba s1394 cpc nfs]

> ::status

debugging crash dump vmcore.0 (64-bit) from testsystem

operating system: 5.10 Generic (sun4u)

panic message: zero

dump content: kernel pages only

When mdb responds with the > prompt, you can run commands.

To examine the running kernel on a live system, run mdb from the system prompt as follows.

EXAMPLE 23–8 Invoking mdb on a Running Kernel

mdb -k

Loading modules: [unix krtld genunix ufs_log ip usba s1394 ptm cpc ipc nfs]

> ::status

debugging live kernel (64-bit) on testsystem

operating system: 5.10 Generic (sun4u)

Useful Debugging Tasks With kmdb and mdb
This section provides examples of useful debugging tasks. The tasks in this section can be
performed with either mdb or kmdb unless specifically noted. This section assumes a basic
knowledge of the use of kmdb and mdb. Note that the information presented here is dependent
on the type of system used. A Sun Blade 100 workstation running the 64-bit kernel was used to
produce these examples.

Debugging Tools

Writing Device Drivers • March 2012514

Caution – Because irreversible destruction of data can result from modifying data in kernel
structures, you should exercise extreme caution. Do not modify or rely on data in structures
that are not part of the Oracle Solaris DDI. See the Intro(9S) man page for information on
structures that are part of the Oracle Solaris DDI.

Exploring System Registers With kmdb
The kmdb debugger can display machine registers as a group or individually. To display all
registers as a group, use $r as shown in the following example.

EXAMPLE 23–9 Reading All Registers on a SPARC Processor With kmdb

[0]: $r

g0 0 l0 0

g1 100130a4 debug_enter l1 edd00028

g2 10411c00 tsbmiss_area+0xe00 l2 10449c90

g3 10442000 ti_statetbl+0x1ba l3 1b

g4 3000061a004 l4 10474400 ecc_syndrome_tab+0x80

g5 0 l5 3b9aca00

g6 0 l6 0

g7 2a10001fd40 l7 0

o0 0 i0 0

o1 c i1 10449e50

o2 20 i2 0

o3 300006b2d08 i3 10

o4 0 i4 0

o5 0 i5 b0

sp 2a10001b451 fp 2a10001b521

o7 1001311c debug_enter+0x78 i7 1034bb24 zsa_xsint+0x2c4

y 0

tstate: 1604 (ccr=0x0, asi=0x0, pstate=0x16, cwp=0x4)

pstate: ag:0 ie:1 priv:1 am:0 pef:1 mm:0 tle:0 cle:0 mg:0 ig:0

winreg: cur:4 other:0 clean:7 cansave:1 canrest:5 wstate:14

tba 0x10000000

pc edd000d8 edd000d8: ta %icc,%g0 + 125

npc edd000dc edd000dc: nop

The debugger exports each register value to a variable with the same name as the register. If you
read the variable, the current value of the register is returned. If you write to the variable, the
value of the associated machine register is changed. The following example changes the value of
the %o0 register from 0 to 1 on an x86 machine.

EXAMPLE 23–10 Reading and Writing Registers on an x86 Machine With kmdb

[0]> &<eax=K

c1e6e0f0

[0]> 0>eax

[0]> &<eax=K

0

[0]> c1e6e0f0>eax

Debugging Tools

Chapter 23 • Debugging, Testing, and Tuning Device Drivers 515

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sintro-9s

If you need to inspect the registers of a different processor, you can use the ::cpuregs dcmd.
The ID of the processor to be examined can be supplied as either the address to the dcmd or as
the value of the -c option, as shown in the following example.

EXAMPLE 23–11 Inspecting the Registers of a Different Processor

[0]> 0::cpuregs

%cs = 0x0158 %eax = 0xc1e6e0f0 kmdbmod‘kaif_dvec
%ds = 0x0160 %ebx = 0x00000000

The following example switches from processor 0 to processor 3 on a SPARC machine. The %g3
register is inspected and then cleared. To confirm the new value, %g3 is read again.

EXAMPLE 23–12 Retrieving the Value of an Individual Register From a Specified Processor

[0]> 3::switch

[3]> <g3=K

24

[3]> 0>g3

[3]> <g3

0

Detecting Kernel Memory Leaks
The ::findleaks dcmd provides powerful, efficient detection of memory leaks in kernel crash
dumps. The full set of kernel-memory debugging features must be enabled for ::findleaks to
be effective. For more information, see “Setting kmem_flags Debugging Flags” on page 506.
Run ::findleaks during driver development and testing to detect code that leaks memory,
thus wasting kernel resources. See Chapter 9, “Debugging With the Kernel Memory Allocator,”
in Oracle Solaris Modular Debugger Guide for a complete discussion of ::findleaks.

Note – Code that leaks kernel memory can render the system vulnerable to denial-of-service
attacks.

Writing Debugger Commands With mdb
The mdb debugger provides a powerful API for implementing debugger facilities that you
customize to debug your driver. The Oracle Solaris Modular Debugger Guide explains the
programming API in detail.

The SUNWmdbdm package installs sample mdb source code in the directory /usr/demo/mdb. You
can use mdb to automate lengthy debugging chores or help to validate that your driver is
behaving properly. You can also package your mdb debugging modules with your driver
product. With packaging, these facilities are available to service personnel at a customer site.

Debugging Tools

Writing Device Drivers • March 2012516

http://www.oracle.com/pls/topic/lookup?ctx=E23824_01&id=MODDEBUGkmem-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824_01&id=MODDEBUGkmem-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824_01&id=MODDEBUG

Obtaining Kernel Data Structure Information
The Oracle Solaris kernel provides data type information in structures that can be inspected
with either kmdb or mdb.

Note – The kmdb and mdb dcmds can be used only with objects that contain compressed symbolic
debugging information that has been designed for use with mdb. This information is currently
available only for certain Oracle Solaris kernel modules. The SUNWzlib package must be
installed to process the symbolic debugging information.

The following example demonstrates how to display the data in the scsi_pkt structure.

EXAMPLE 23–13 Displaying Kernel Data Structures With a Debugger

> 7079ceb0::print -t ’struct scsi_pkt’

{

opaque_t pkt_ha_private = 0x7079ce20

struct scsi_address pkt_address = {

struct scsi_hba_tran *a_hba_tran = 0x70175e68

ushort_t a_target = 0x6

uchar_t a_lun = 0

uchar_t a_sublun = 0

}

opaque_t pkt_private = 0x708db4d0

int (*)() *pkt_comp = sd_intr

uint_t pkt_flags = 0

int pkt_time = 0x78

uchar_t *pkt_scbp = 0x7079ce74

uchar_t *pkt_cdbp = 0x7079ce64

ssize_t pkt_resid = 0

uint_t pkt_state = 0x37

uint_t pkt_statistics = 0

uchar_t pkt_reason = 0

}

The size of a data structure can be useful in debugging. Use the ::sizeof dcmd to obtain the
size of a structure, as shown in the following example.

EXAMPLE 23–14 Displaying the Size of a Kernel Data Structure

> ::sizeof struct scsi_pkt

sizeof (struct scsi_pkt) = 0x58

The address of a specific member within a structure is also useful in debugging. Several methods
are available for determining a member's address.

Use the ::offsetof dcmd to obtain the offset for a given member of a structure, as in the
following example.

Debugging Tools

Chapter 23 • Debugging, Testing, and Tuning Device Drivers 517

EXAMPLE 23–15 Displaying the Offset to a Kernel Data Structure

> ::offsetof struct scsi_pkt pkt_state

offsetof (struct pkt_state) = 0x48

Use the ::print dcmd with the -a option to display the addresses of all members of a structure,
as in the following example.

EXAMPLE 23–16 Displaying the Relative Addresses of a Kernel Data Structure

> ::print -a struct scsi_pkt

{

0 pkt_ha_private

8 pkt_address {

...

}

18 pkt_private

...

}

If an address is specified with ::print in conjunction with the -a option, the absolute address
for each member is displayed.

EXAMPLE 23–17 Displaying the Absolute Addresses of a Kernel Data Structure

> 10000000::print -a struct scsi_pkt

{

10000000 pkt_ha_private

10000008 pkt_address {

...

}

10000018 pkt_private

...

}

The ::print, ::sizeof and ::offsetof dcmds enable you to debug problems when your
driver interacts with the Oracle Solaris kernel.

Caution – This facility provides access to raw kernel data structures. You can examine any
structure whether or not that structure appears as part of the DDI. Therefore, you should
refrain from relying on any data structure that is not explicitly part of the DDI.

Debugging Tools

Writing Device Drivers • March 2012518

Note – These dcmds should be used only with objects that contain compressed symbolic
debugging information that has been designed for use with mdb. Symbolic debugging
information is currently available for certain Oracle Solaris kernel modules only. The SUNWzlib
(32-bit) or SUNWzlibx (64-bit) decompression software must be installed to process the
symbolic debugging information. The kmdb debugger can process symbolic type data with or
without the SUNWzlib or SUNWzlibx packages.

Obtaining Device Tree Information
The mdb debugger provides the ::prtconf dcmd for displaying the kernel device tree. The
output of the ::prtconf dcmd is similar to the output of the prtconf(1M) command.

EXAMPLE 23–18 Using the ::prtconf Dcmd

> ::prtconf

300015d3e08 SUNW,Sun-Blade-100

300015d3c28 packages (driver not attached)

300015d3868 SUNW,builtin-drivers (driver not attached)

300015d3688 deblocker (driver not attached)

300015d34a8 disk-label (driver not attached)

300015d32c8 terminal-emulator (driver not attached)

300015d30e8 obp-tftp (driver not attached)

300015d2f08 dropins (driver not attached)

300015d2d28 kbd-translator (driver not attached)

300015d2b48 ufs-file-system (driver not attached)

300015d3a48 chosen (driver not attached)

300015d2968 openprom (driver not attached)

You can display the node by using a macro, such as the ::devinfo dcmd, as shown in the
following example.

EXAMPLE 23–19 Displaying Device Information for an Individual Node

> 300015d3e08::devinfo

300015d3e08 SUNW,Sun-Blade-100

System properties at 0x300015abdc0:

name=’relative-addressing’ type=int items=1

value=00000001

name=’MMU_PAGEOFFSET’ type=int items=1

value=00001fff

name=’MMU_PAGESIZE’ type=int items=1

value=00002000

name=’PAGESIZE’ type=int items=1

value=00002000

Driver properties at 0x300015abe00:

name=’pm-hardware-state’ type=string items=1

value=’no-suspend-resume’

Debugging Tools

Chapter 23 • Debugging, Testing, and Tuning Device Drivers 519

Use ::prtconf to see where your driver has attached in the device tree, and to display device
properties. You can also specify the verbose (-v) flag to ::prtconf to display the properties for
each device node, as follows.

EXAMPLE 23–20 Using the ::prtconf Dcmd in Verbose Mode

> ::prtconf -v

DEVINFO NAME

300015d3e08 SUNW,Sun-Blade-100

System properties at 0x300015abdc0:

name=’relative-addressing’ type=int items=1

value=00000001

name=’MMU_PAGEOFFSET’ type=int items=1

value=00001fff

name=’MMU_PAGESIZE’ type=int items=1

value=00002000

name=’PAGESIZE’ type=int items=1

value=00002000

Driver properties at 0x300015abe00:

name=’pm-hardware-state’ type=string items=1

value=’no-suspend-resume’

...

300015ce798 pci10b9,5229, instance #0

Driver properties at 0x300015ab980:

name=’target2-dcd-options’ type=any items=4

value=00.00.00.a4

name=’target1-dcd-options’ type=any items=4

value=00.00.00.a2

name=’target0-dcd-options’ type=any items=4

value=00.00.00.a4

Another way to locate instances of your driver is the ::devbindings dcmd. Given a driver
name, the command displays a list of all instances of the named driver as demonstrated in the
following example.

EXAMPLE 23–21 Using the ::devbindings Dcmd to Locate Driver Instances

> ::devbindings dad

300015ce3d8 ide-disk (driver not attached)

300015c9a60 dad, instance #0

System properties at 0x300015ab400:

name=’lun’ type=int items=1

value=00000000

name=’target’ type=int items=1

value=00000000

name=’class_prop’ type=string items=1

value=’ata’

name=’type’ type=string items=1

value=’ata’

name=’class’ type=string items=1

value=’dada’

...

300015c9880 dad, instance #1

System properties at 0x300015ab080:

Debugging Tools

Writing Device Drivers • March 2012520

EXAMPLE 23–21 Using the ::devbindings Dcmd to Locate Driver Instances (Continued)

name=’lun’ type=int items=1

value=00000000

name=’target’ type=int items=1

value=00000002

name=’class_prop’ type=string items=1

value=’ata’

name=’type’ type=string items=1

value=’ata’

name=’class’ type=string items=1

value=’dada’

Retrieving Driver Soft State Information
A common problem when debugging a driver is retrieving the soft state for a particular driver
instance. The soft state is allocated with the ddi_soft_state_zalloc(9F) routine. The driver
can obtain the soft state through ddi_get_soft_state(9F). The name of the soft state pointer is
the first argument to ddi_soft_state_init(9F)). With the name, you can use mdb to retrieve
the soft state for a particular driver instance through the ::softstate dcmd:

> *bst_state::softstate 0x3

702b7578

In this case, ::softstate is used to fetch the soft state for instance 3 of the bst sample driver.
This pointer references a bst_soft structure that is used by the driver to track state for this
instance.

Modifying Kernel Variables
You can use both kmdb and mdb to modify kernel variables or other kernel state. Kernel state
modification with mdb should be done with care, because mdb does not stop the kernel before
making modifications. Groups of modifications can be made atomically by using kmdb, because
kmdb stops the kernel before allowing access by the user. The mdb debugger is capable of making
single atomic modifications only.

Be sure to use the proper format specifier to perform the modification. The formats are:

■ w – Writes the lowest two bytes of the value of each expression to the target beginning at the
location specified by dot

■ W – Writes the lowest 4 bytes of the value of each expression to the target beginning at the
location specified by dot

■ Z – Write the complete 8 bytes of the value of each expression to the target beginning at the
location specified by dot

Use the ::sizeof dcmd to determine the size of the variable to be modified.

Debugging Tools

Chapter 23 • Debugging, Testing, and Tuning Device Drivers 521

The following example overwrites the value of moddebug with the value 0x80000000.

EXAMPLE 23–22 Modifying a Kernel Variable With a Debugger

> moddebug/W 0x80000000

moddebug: 0 = 0x80000000

Tuning Drivers
The Oracle Solaris OS provides kernel statistics structures so that you can implement counters
for your driver. The DTrace facility enables you to analyze performance in real time. This
section presents the following topics on device performance:

■ “Kernel Statistics” on page 522 – The Oracle Solaris OS provides a set of data structures and
functions for capturing performance statistics in the kernel. Kernel statistics (called kstats)
enable your driver to export continuous statistics while the system is running. The kstat data
is handled programmatically by using the kstat functions.

■ “DTrace for Dynamic Instrumentation” on page 528 – DTrace enables you to add
instrumentation to your driver dynamically so that you can perform tasks like analyzing the
system and measuring performance. DTrace takes advantage of predefined kstat structures.

Kernel Statistics
To assist in performance tuning, the Oracle Solaris kernel provides the kstat(3KSTAT) facility.
The kstat facility provides a set of functions and data structures for device drivers and other
kernel modules to export module-specific kernel statistics.

A kstat is a data structure for recording quantifiable aspects of a device's usage. A kstat is stored
as a null-terminated linked list. Each kstat has a common header section and a type-specific
data section. The header section is defined by the kstat_t structure.

Kernel Statistics Structure Members
The members of a kstat structure are:

ks_class[KSTAT_STRLEN] Categorizes the kstat type as bus, controller, device_error,
disk, hat, kmem_cache, kstat, misc, net, nfs, pages,
partition, rps, ufs, vm, or vmem.

ks_crtime Time at which the kstat was created. ks_crtime is commonly
used in calculating rates of various counters.

ks_data Points to the data section for the kstat.

ks_data_size Total size of the data section in bytes.

Tuning Drivers

Writing Device Drivers • March 2012522

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN3Ekstat-3kstat

ks_instance The instance of the kernel module that created this kstat.
ks_instance is combined with ks_module and ks_name to give
the kstat a unique, meaningful name.

ks_kid Unique ID for the kstat.

ks_module[KSTAT_STRLEN] Identifies the kernel module that created this kstat. ks_module
is combined with ks_instance and ks_name to give the kstat a
unique, meaningful name. KSTAT_STRLEN sets the maximum
length of ks_module.

ks_name[KSTAT_STRLEN] A name assigned to the kstat in combination with ks_module

and ks_instance. KSTAT_STRLEN sets the maximum length of
ks_module.

ks_ndata Indicates the number of data records for those kstat types that
support multiple records: KSTAT_TYPE_RAW,
KSTAT_TYPE_NAMED, and KSTAT_TYPE_TIMER

ks_next Points to next kstat in the chain.

ks_resv A reserved field.

ks_snaptime The timestamp for the last data snapshot, useful in calculating
rates.

ks_type The data type, which can be KSTAT_TYPE_RAW for binary data,
KSTAT_TYPE_NAMED for name/value pairs, KSTAT_TYPE_INTR
for interrupt statistics, KSTAT_TYPE_IO for I/O statistics, and
KSTAT_TYPE_TIMER for event timers.

Kernel Statistics Structures
The structures for the different kinds of kstats are:

kstat(9S) Each kernel statistic (kstat) that is exported by device drivers consists of a
header section and a data section. The kstat(9S) structure is the header
portion of the statistic.

kstat_intr(9S) Structure for interrupt kstats. The types of interrupts are:
■ Hard interrupt – Sourced from the hardware device itself
■ Soft interrupt – Induced by the system through the use of some

system interrupt source
■ Watchdog interrupt – Induced by a periodic timer call
■ Spurious interrupt – An interrupt entry point was entered but there

was no interrupt to service

Tuning Drivers

Chapter 23 • Debugging, Testing, and Tuning Device Drivers 523

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Skstat-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Skstat-intr-9s

■ Multiple service – An interrupt was detected and serviced just prior to
returning from any of the other types

Drivers generally report only claimed hard interrupts and soft interrupts
from their handlers, but measurement of the spurious class of interrupts
is useful for auto-vectored devices to locate any interrupt latency
problems in a particular system configuration. Devices that have more
than one interrupt of the same type should use multiple structures.

kstat_io(9S) Structure for I/O kstats.

kstat_named(9S) Structure for named kstats. A named kstat is an array of name-value
pairs. These pairs are kept in the kstat_named structure.

Kernel Statistics Functions
The functions for using kstats are:

kstat_create(9F)
Allocate and initialize a kstat(9S) structure.

kstat_delete(9F)
Remove a kstat from the system.

kstat_install(9F)
Add a fully initialized kstat to the system.

kstat_named_init(9F), kstat_named_setstr(9F)
Initialize a named kstat. kstat_named_setstr() associates str, a string, with the named
kstat pointer.

kstat_queue(9F)
A large number of I/O subsystems have at least two basic queues of transactions to be
managed. One queue is for transactions that have been accepted for processing but for which
processing has yet to begin. The other queue is for transactions that are actively being
processed but not yet done. For this reason, two cumulative time statistics are kept: wait time
and run time. Wait time is prior to service. Run time is during the service. The
kstat_queue() family of functions manages these times based on the transitions between
the driver wait queue and run queue:
■ kstat_runq_back_to_waitq(9F)
■ kstat_runq_enter(9F)
■ kstat_runq_exit(9F)
■ kstat_waitq_enter(9F)
■ kstat_waitq_exit(9F)
■ kstat_waitq_to_runq(9F)

Tuning Drivers

Writing Device Drivers • March 2012524

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Skstat-io-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Skstat-named-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fkstat-create-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Skstat-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fkstat-delete-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fkstat-install-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fkstat-named-init-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fkstat-named-setstr-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fkstat-queue-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fkstat-runq-back-to-waitq-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fkstat-runq-enter-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fkstat-runq-exit-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fkstat-waitq-enter-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fkstat-waitq-exit-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fkstat-waitq-to-runq-9f

Kernel Statistics for Oracle Solaris Ethernet Drivers
The kstat interface described in the following table is an effective way to obtain Ethernet
physical layer statistics from the driver. Ethernet drivers should export these statistics to guide
users in better diagnosis and repair of Ethernet physical layer problems. With exception of
link_up, all statistics have a default value of 0 when not present. The value of the link_up
statistic should be assumed to be 1.

The following example gives all the shared link setup. In this case mii is used to filter statistics.

kstat ce:0:mii:link_*

TABLE 23–2 Ethernet MII/GMII Physical Layer Interface Kernel Statistics

Kstat Variable Type Description

xcvr_addr KSTAT_DATA_UINT32 Provides the MII address of the transceiver that is currently in use.
■ (0) - (31) are for the MII address of the physical layer device in

use for a given Ethernet device.

■ (-1) is used where there is no externally accessible MII interface,
and therefore the MII address is undefined or irrelevant.

xcvr_id KSTAT_DATA_UINT32 Provides the specific vendor ID or device ID of the transceiver that is
currently in use.

xcvr_inuse KSTAT_DATA_UINT32 Indicates the type of transceiver that is currently in use. The IEEE
aPhytType enumerates the following set:
■ (0) other undefined
■ (1) no MII interface is present, but no transceiver is connected
■ (2) 10 Mbits/s Clause 7 10 Mbits/s Manchester
■ (3) 100BASE-T4 Clause 23 100 Mbits/s 8B/6T
■ (4) 100BASE-X Clause 24 100 Mbits/s 4B/5B
■ (5) 100BASE-T2 Clause 32 100 Mbits/s PAM5X5
■ (6) 1000BASE-X Clause 36 1000 Mbits/s 8B/10B
■ (7) 1000BASE-T Clause 40 1000 Mbits/s 4D-PAM5

This set is smaller than the set specified by ifMauType, which is
defined to include all of the above plus their half duplex/full duplex
options. Since this information can be provided by the cap_*
statistics, the missing definitions can be derived from the
combination of xcvr_inuse and cap_* to provide all the
combinations of ifMayType.

cap_1000fdx KSTAT_DATA_CHAR Indicates the device is 1 Gbits/s full duplex capable.

cap_1000hdx KSTAT_DATA_CHAR Indicates the device is 1 Gbits/s half duplex capable.

cap_100fdx KSTAT_DATA_CHAR Indicates the device is 100 Mbits/s full duplex capable.

Tuning Drivers

Chapter 23 • Debugging, Testing, and Tuning Device Drivers 525

TABLE 23–2 Ethernet MII/GMII Physical Layer Interface Kernel Statistics (Continued)
Kstat Variable Type Description

cap_100hdx KSTAT_DATA_CHAR Indicates the device is 100 Mbits/s half duplex capable.

cap_10fdx KSTAT_DATA_CHAR Indicates the device is 10 Mbits/s full duplex capable.

cap_10hdx KSTAT_DATA_CHAR Indicates the device is 10 Mbits/s half duplex capable.

cap_asmpause KSTAT_DATA_CHAR Indicates the device is capable of asymmetric pause Ethernet flow
control.

cap_pause KSTAT_DATA_CHAR Indicates the device is capable of symmetric pause Ethernet flow
control when cap_pause is set to 1 and cap_asmpause is set to 0.
When cap_asmpause is set to 1, cap_pause has the following
meaning:
■ cap_pause = 0 Transmit pauses based on receive congestion.
■ cap_pause = 1 Receive pauses and slow down transmit to avoid

congestion.

cap_rem_fault KSTAT_DATA_CHAR Indicates the device is capable of remote fault indication.

cap_autoneg KSTAT_DATA_CHAR Indicates the device is capable of auto-negotiation.

adv_cap_1000fdx KSTAT_DATA_CHAR Indicates the device is advertising 1 Gbits/s full duplex capability.

adv_cap_1000hdx KSTAT_DATA_CHAR Indicates the device is advertising 1 Gbits/s half duplex capability.

adv_cap_100fdx KSTAT_DATA_CHAR Indicates the device is advertising 100 Mbits/s full duplex capability.

adv_cap_100hdx KSTAT_DATA_CHAR Indicates the device is advertising 100 Mbits/s half duplex capability.

adv_cap_10fdx KSTAT_DATA_CHAR Indicates the device is advertising 10 Mbits/s full duplex capability.

adv_cap_10hdx KSTAT_DATA_CHAR Indicates the device is advertising 10 Mbits/s half duplex capability.

adv_cap_asmpause KSTAT_DATA_CHAR Indicates the device is advertising the capability of asymmetric
pause Ethernet flow control.

adv_cap_pause KSTAT_DATA_CHAR Indicates the device is advertising the capability of symmetric pause
Ethernet flow control when adv_cap_pause is set to 1 and
adv_cap_asmpause is set to 0. When adv_cap_asmpause is set to 1,
adv_cap_pause has the following meaning:
■ adv_cap_pause = 0 Transmit pauses based on receive

congestion.
■ adv_cap_pause = 1 Receive pauses and slow down transmit to

avoid congestion.

adv_rem_fault KSTAT_DATA_CHAR Indicates the device is experiencing a fault that it is going to forward
to the link partner.

adv_cap_autoneg KSTAT_DATA_CHAR Indicates the device is advertising the capability of auto-negotiation.

lp_cap_1000fdx KSTAT_DATA_CHAR Indicates the link partner device is 1 Gbits/s full duplex capable.

Tuning Drivers

Writing Device Drivers • March 2012526

TABLE 23–2 Ethernet MII/GMII Physical Layer Interface Kernel Statistics (Continued)
Kstat Variable Type Description

lp_cap_1000hdx KSTAT_DATA_CHAR Indicates the link partner device is 1 Gbits/s half duplex capable.

lp_cap_100fdx KSTAT_DATA_CHAR Indicates the link partner device is 100 Mbits/s full duplex capable.

lp_cap_100hdx KSTAT_DATA_CHAR Indicates the link partner device is 100 Mbits/s half duplex capable.

lp_cap_10fdx KSTAT_DATA_CHAR Indicates the link partner device is 10 Mbits/s full duplex capable.

lp_cap_10hdx KSTAT_DATA_CHAR Indicates the link partner device is 10 Mbits/s half duplex capable.

lp_cap_asmpause KSTAT_DATA_CHAR Indicates the link partner device is capable of asymmetric pause
Ethernet flow control.

lp_cap_pause KSTAT_DATA_CHAR Indicates the link partner device is capable of symmetric pause
Ethernet flow control when lp_cap_pause is set to 1 and
lp_cap_asmpause is set to 0. When lp_cap_asmpause is set to 1,
lp_cap_pause has the following meaning:
■ lp_cap_pause = 0 Link partner will transmit pauses based on

receive congestion.

■ lp_cap_pause = 1 Link partner will receive pauses and slow
down transmit to avoid congestion.

lp_rem_fault KSTAT_DATA_CHAR Indicates the link partner is experiencing a fault with the link.

lp_cap_autoneg KSTAT_DATA_CHAR Indicates the link partner device is capable of auto-negotiation.

link_asmpause KSTAT_DATA_CHAR Indicates the link is operating with asymmetric pause Ethernet flow
control.

link_pause KSTAT_DATA_CHAR Indicates the resolution of the pause capability. Indicates the link is
operating with symmetric pause Ethernet flow control when
link_pause is set to 1 and link_asmpause is set to 0. When
link_asmpause is set to 1 and is relative to a local view of the link,
link_pause has the following meaning:
■ link_pause = 0 This station will transmit pauses based on

receive congestion.

■ link_pause = 1 This station will receive pauses and slow down
transmit to avoid congestion.

link_duplex KSTAT_DATA_CHAR Indicates the link duplex.
■ link_duplex = 0 Link is down and duplex is unknown.
■ link_duplex = 1 Link is up and in half duplex mode.
■ link_duplex = 2 Link is up and in full duplex mode.

link_up KSTAT_DATA_CHAR Indicates whether the link is up or down.
■ link_up = 0 Link is down.
■ link_up = 1 Link is up.

Tuning Drivers

Chapter 23 • Debugging, Testing, and Tuning Device Drivers 527

DTrace for Dynamic Instrumentation
DTrace is a comprehensive dynamic tracing facility for examining the behavior of both user
programs and the operating system itself. With DTrace, you can collect data at strategic
locations in your environment, referred to as probes. DTrace enables you to record such data as
stack traces, timestamps, the arguments to a function, or simply counts of how often the probe
fires. Because DTrace enables you to insert probes dynamically, you do not need to recompile
your code.

Tuning Drivers

Writing Device Drivers • March 2012528

Recommended Coding Practices

This chapter describes how to write drivers that are robust. Drivers that are written in
accordance with the guidelines that are discussed in this chapter are easier to debug. The
recommended practices also protect the system from hardware and software faults.

This chapter provides information on the following subjects:

■ “Debugging Preparation Techniques” on page 529
■ “Declaring a Variable Volatile” on page 532
■ “Serviceability” on page 534

Debugging Preparation Techniques
Driver code is more difficult to debug than user programs because:

■ The driver interacts directly with the hardware
■ The driver operates without the protection of the operating system that is available to user

processes

Be sure to build debugging support into your driver. This support facilitates both maintenance
work and future development.

Use a Unique Prefix to Avoid Kernel Symbol Collisions
The name of each function, data element, and driver preprocessor definition must be unique for
each driver.

A driver module is linked into the kernel. The name of each symbol unique to a particular
driver must not collide with other kernel symbols. To avoid such collisions, each function and
data element for a particular driver must be named with a prefix common to that driver. The

24C H A P T E R 2 4

529

prefix must be sufficient to uniquely name each driver symbol. Typically, this prefix is the name
of the driver or an abbreviation for the name of the driver. For example, xx_open() would be
the name of the open(9E) routine of driver xx.

When building a driver, a driver must necessarily include a number of system header files. The
globally-visible names within these header files cannot be predicted. To avoid collisions with
these names, each driver preprocessor definition must be given a unique name by using an
identifying prefix.

A distinguishing driver symbol prefix also is an aid to deciphering system logs and panics when
troubleshooting. Instead of seeing an error related to an ambiguous attach() function, you see
an error message about xx_attach().

Use cmn_err() to Log Driver Activity
Use the cmn_err(9F) function to print messages to a system log from within the device driver.
The cmn_err(9F) function for kernel modules is similar to the printf(3C) function for
applications. The cmn_err(9F) function provides additional format characters, such as the %b
format to print device register bits. The cmn_err(9F) function writes messages to a system log.
Use the tail(1) command to monitor these messages on /var/adm/messages.

% tail -f /var/adm/messages

Use ASSERT() to Catch Invalid Assumptions
Assertions are an extremely valuable form of active documentation. The syntax for ASSERT(9F)
is as follows:

void ASSERT(EXPRESSION)

The ASSERT() macro halts the execution of the kernel if a condition that is expected to be true is
actually false. ASSERT() provides a way for the programmer to validate the assumptions made
by a piece of code.

The ASSERT() macro is defined only when the DEBUG compilation symbol is defined. When
DEBUG is not defined, the ASSERT() macro has no effect.

The following example assertion tests the assumption that a particular pointer value is not NULL:

ASSERT(ptr != NULL);

If the driver has been compiled with DEBUG, and if the value of ptr is NULL at this point in
execution, then the following panic message is printed to the console:

panic: assertion failed: ptr != NULL, file: driver.c, line: 56

Debugging Preparation Techniques

Writing Device Drivers • March 2012530

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcmn-err-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1tail-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fassert-9f

Note – Because ASSERT(9F) uses the DEBUG compilation symbol, any conditional debugging code
should also use DEBUG.

Use mutex_owned() to Validate and Document
Locking Requirements
The syntax for mutex_owned(9F) is as follows:

int mutex_owned(kmutex_t *mp);

A significant portion of driver development involves properly handling multiple threads.
Comments should always be used when a mutex is acquired. Comments can be even more
useful when an apparently necessary mutex is not acquired. To determine whether a mutex is
held by a thread, use mutex_owned() within ASSERT(9F):

void helper(void)

{

/* this routine should always be called with xsp’s mutex held */

ASSERT(mutex_owned(&xsp->mu));

/* ... */

}

Note – mutex_owned() is only valid within ASSERT() macros. You should use mutex_owned() to
control the behavior of a driver.

Use Conditional Compilation to Toggle Costly
Debugging Features
You can insert code for debugging into a driver through conditional compiles by using a
preprocessor symbol such as DEBUG or by using a global variable. With conditional compilation,
unnecessary code can be removed in the production driver. Use a variable to set the amount of
debugging output at runtime. The output can be specified by setting a debugging level at
runtime with an ioctl or through a debugger. Commonly, these two methods are combined.

The following example relies on the compiler to remove unreachable code, in this case, the code
following the always-false test of zero. The example also provides a local variable that can be set
in /etc/system or patched by a debugger.

#ifdef DEBUG

/* comments on values of xxdebug and what they do */

static int xxdebug;

#define dcmn_err if (xxdebug) cmn_err

Debugging Preparation Techniques

Chapter 24 • Recommended Coding Practices 531

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmutex-owned-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fassert-9f

#else

#define dcmn_err if (0) cmn_err

#endif

/* ... */

dcmn_err(CE_NOTE, "Error!\n");

This method handles the fact that cmn_err(9F) has a variable number of arguments. Another
method relies on the fact that the macro has one argument, a parenthesized argument list for
cmn_err(9F). The macro removes this argument. This macro also removes the reliance on the
optimizer by expanding the macro to nothing if DEBUG is not defined.

#ifdef DEBUG

/* comments on values of xxdebug and what they do */

static int xxdebug;

#define dcmn_err(X) if (xxdebug) cmn_err X

#else

#define dcmn_err(X) /* nothing */

#endif

/* ... */

/* Note:double parentheses are required when using dcmn_err. */

dcmn_err((CE_NOTE, "Error!"));

You can extend this technique in many ways. One way is to specify different messages from
cmn_err(9F), depending on the value of xxdebug. However, in such a case, you must be careful
not to obscure the code with too much debugging information.

Another common scheme is to write an xxlog() function, which uses vsprintf(9F) or
vcmn_err(9F) to handle variable argument lists.

Declaring a Variable Volatile
volatile is a keyword that must be applied when declaring any variable that will reference a
device register. Without the use of volatile, the compile-time optimizer can inadvertently
delete important accesses. Neglecting to use volatile might result in bugs that are difficult to
track down.

The correct use of volatile is necessary to prevent elusive bugs. The volatile keyword
instructs the compiler to use exact semantics for the declared objects, in particular, not to
remove or reorder accesses to the object. Two instances where device drivers must use the
volatile qualifier are:

■ When data refers to an external hardware device register, that is, memory that has side
effects other than just storage. Note, however, that if the DDI data access functions are used
to access device registers, you do not have to use volatile.

■ When data refers to global memory that is accessible by more than one thread, that is not
protected by locks, and that relies on the sequencing of memory accesses. Using
volatileconsumes fewer resources than using lock.

Declaring a Variable Volatile

Writing Device Drivers • March 2012532

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcmn-err-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcmn-err-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcmn-err-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fvsprintf-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fvcmn-err-9f

The following example uses volatile. A busy flag is used to prevent a thread from continuing
while the device is busy and the flag is not protected by a lock:

while (busy) {

/* do something else */

}

The testing thread will continue when another thread turns off the busy flag:

busy = 0;

Because busy is accessed frequently in the testing thread, the compiler can potentially optimize
the test by placing the value of busy in a register and test the contents of the register without
reading the value of busy in memory before every test. The testing thread would never see busy
change and the other thread would only change the value of busy in memory, resulting in
deadlock. Declaring the busy flag as volatile forces its value to be read before each test.

Note – An alternative to the busy flag is to use a condition variable. See “Condition Variables in
Thread Synchronization” on page 70.

When using the volatile qualifier, avoid the risk of accidental omission. For example, the
following code

struct device_reg {

volatile uint8_t csr;

volatile uint8_t data;

};

struct device_reg *regp;

is preferable to the next example:

struct device_reg {

uint8_t csr;

uint8_t data;

};

volatile struct device_reg *regp;

Although the two examples are functionally equivalent, the second one requires the writer to
ensure that volatile is used in every declaration of type struct device_reg. The first example
results in the data being treated as volatile in all declarations and is therefore preferred. As
mentioned above, using the DDI data access functions to access device registers makes
qualifying variables as volatile unnecessary.

if you are using Oracle Solaris Studio 12.2 with C++ 5.11, use -xvector=no to avoid generating
MMX instructions.

Declaring a Variable Volatile

Chapter 24 • Recommended Coding Practices 533

Serviceability
To ensure serviceability, the driver must be enabled to take the following actions:

■ Detect faulty devices and report the fault
■ Remove a device as supported by the Oracle Solaris hot-plug model
■ Add a new device as supported by the Oracle Solaris hot-plug model
■ Perform periodic health checks to enable the detection of latent faults

Periodic Health Checks
A latent fault is one that does not show itself until some other action occurs. For example, a
hardware failure occurring in a device that is a cold standby could remain undetected until a
fault occurs on the master device. At this point, the system now contains two defective devices
and might be unable to continue operation.

Latent faults that remain undetected typically cause system failure eventually. Without latent
fault checking, the overall availability of a redundant system is jeopardized. To avoid this
situation, a device driver must detect latent faults and report them in the same way as other
faults.

You should provide the driver with a mechanism for making periodic health checks on the
device. In a fault-tolerant situation where the device can be the secondary or failover device,
early detection of a failed secondary device is essential to ensure that the secondary device can
be repaired or replaced before any failure in the primary device occurs.

Periodic health checks can be used to perform the following activities:

■ Check any register or memory location on the device whose value might have been altered
since the last poll.
Features of a device that typically exhibit deterministic behavior include heartbeat
semaphores, device timers (for example, local lbolt used by download), and event
counters. Reading an updated predictable value from the device gives a degree of confidence
that things are proceeding satisfactorily.

■ Timestamp outgoing requests such as transmit blocks or commands that are issued by the
driver.
The periodic health check can look for any suspect requests that have not completed.

■ Initiate an action on the device that should be completed before the next scheduled check.
If this action is an interrupt, this check is an ideal way to ensure that the device's circuitry
can deliver an interrupt.

Serviceability

Writing Device Drivers • March 2012534

Appendixes
The appendixes provide the following background material:

■ Appendix A, “Hardware Overview,” discusses multiplatform hardware issues for device
drivers.

■ Appendix B, “Summary of Oracle Solaris DDI/DKI Services,” provides tables of kernel
functions for device drivers. Deprecated functions are indicated as well.

■ Appendix C, “Making a Device Driver 64-Bit Ready,” provides guidelines for updating a
device driver to run in a 64-bit environment.

■ Appendix D, “Console Frame Buffer Drivers,” describes how to add the necessary
interfaces to a frame buffer driver to enable the driver to interact with the Oracle Solaris
kernel terminal emulator.

■ Appendix E, “pci.conf File,” describes the pci.conf(4) configuration file.

P A R T I V

535

536

Hardware Overview

This appendix discusses general issues about hardware that is capable of supporting the Oracle
Solaris OS. The discussion includes the processor, bus architectures, and memory models that
are supported by the operating system. Various device issues and the PROM used in Oracle
platforms are also covered.

Note – The material in this appendix is for informational purposes only. This information might
be of use during driver debugging. However, many of these implementation details are hidden
from device drivers by the Oracle Solaris DDI/DKI interfaces.

This appendix provides information on the following subjects:

■ “SPARC Processor Issues” on page 537
■ “x86 Processor Issues” on page 539
■ “Endianness” on page 540
■ “Store Buffers” on page 541
■ “System Memory Model” on page 541
■ “Bus Architectures” on page 542
■ “Bus Specifics” on page 543
■ “Device Issues” on page 548
■ “PROM on SPARC Machines” on page 550

SPARC Processor Issues
This section describes a number of SPARC processor-specific topics such as data alignment,
byte ordering, register windows, and availability of floating-point instructions. For information
on x86 processor-specific topics, see “x86 Processor Issues” on page 539.

AA P P E N D I X A

537

Note – Drivers should never perform floating-point operations, because these operations are not
supported in the kernel.

SPARC Data Alignment
All quantities must be aligned on their natural boundaries, using standard C data types:

■ short integers are aligned on 16-bit boundaries.
■ int integers are aligned on 32-bit boundaries.
■ long integers are aligned on 64-bit boundaries for SPARC systems. For information on data

models, see Appendix C, “Making a Device Driver 64-Bit Ready.”
■ long long integers are aligned on 64-bit boundaries.

Usually, the compiler handles any alignment issues. However, driver writers are more likely to
be concerned about alignment because the proper data types must be used to access the devices.
Because device registers are commonly accessed through a pointer reference, drivers must
ensure that pointers are properly aligned when accessing the device.

Member Alignment in SPARC Structures
Because of the data alignment restrictions imposed by the SPARC processor, C structures also
have alignment requirements. Structure alignment requirements are imposed by the most
strictly aligned structure component. For example, a structure containing only characters has
no alignment restrictions, while a structure containing a long long member must be
constructed to guarantee that this member falls on a 64-bit boundary.

SPARC Byte Ordering
The SPARC processor uses big-endian byte ordering. The most significant byte (MSB) of an
integer is stored at the lowest address of the integer. The least significant byte is stored at the
highest address for words in this processor. For example, byte 63 is the least significant byte for
64-bit processors.

byte 0 byte 1 byte 2 byte 3

MSB LSB

SPARC Processor Issues

Writing Device Drivers • March 2012538

SPARC Register Windows
SPARC processors use register windows. Each register window consists of eight in registers,
eight local registers, eight out registers, and eight global registers. Out registers are the in
registers for the next window. The number of register windows ranges from 2 to 32, depending
on the processor implementation.

Because drivers are normally written in C, the compiler usually hides the fact that register
windows are used. However, you might have to use register windows when debugging the
driver.

SPARC Multiply and Divide Instructions
The Version 7 SPARC processors do not have multiply or divide instructions. The multiply and
divide instructions are emulated in software. Because a driver might run on a Version 7,
Version 8, or Version 9 processor, avoid intensive integer multiplication and division. Instead,
use bitwise left and right shifts to multiply and divide by powers of two.

The SPARC Architecture Manual, Version 9, contains more specific information on the SPARC
CPU. The SPARC Compliance Definition, Version 2.4, contains details of the application binary
interface (ABI) for SPARC V9. The manual describes the 32-bit SPARC V8 ABI and the 64-bit
SPARC V9 ABI. You can obtain this document from SPARC International at
http://www.sparc.com.

x86 Processor Issues
Data types have no alignment restrictions. However, extra memory cycles might be required for
the x86 processor to properly handle misaligned data transfers.

Note – Drivers should not perform floating-point operations, as these operations are not
supported in the kernel.

x86 Byte Ordering
The x86 processors use little-endian byte ordering. The least significant byte (LSB) of an integer
is stored at the lowest address of the integer. The most significant byte is stored at the highest
address for data items in this processor. For example, byte 7 is the most significant byte for
64-bit processors.

x86 Processor Issues

Appendix A • Hardware Overview 539

http://www.sparc.com

x86 Architecture Manuals
Both Intel Corporation and AMD publish a number of books on the x86 family of processors.
See http://www.intel.com and http://www.amd.com/.

Endianness
To achieve the goal of multiple-platform, multiple-instruction-set architecture portability, host
bus dependencies were removed from the drivers. The first dependency issue to be addressed
was the endianness, that is, byte ordering, of the processor. For example, the x86 processor
family is little-endian while the SPARC architecture is big-endian.

Bus architectures display the same endianness types as processors. The PCI local bus, for
example, is little-endian, the SBus is big-endian, the ISA bus is little-endian, and so on.

To maintain portability between processors and buses, DDI-compliant drivers must be endian
neutral. Although drivers can manage their endianness by runtime checks or by preprocessor
directives like #ifdef _LITTLE_ENDIAN in the source code, long-term maintenance can be
troublesome. In some cases, the DDI framework performs the byte swapping using a software
approach. In other cases, byte swapping can be done by hardware page-level swapping as in
memory management unit (MMU) or by special machine instructions. The DDI framework
can take advantage of the hardware features to improve performance.

Along with being endian-neutral, portable drivers must also be independent from data ordering
of the processor. Under most circumstances, data must be transferred in the sequence
instructed by the driver. However, sometimes data can be merged, batched, or reordered to
streamline the data transfer, as illustrated in the following figure. For example, data merging
can be applied to accelerate graphics display on frame buffers. Drivers have the option to advise
the DDI framework to use other optimal data transfer mechanisms during the transfer.

byte 3 byte 2 byte 1 byte 0

MSB LSB

FIGURE A–1 Byte Ordering Required for Host Bus Dependency

b0 27 a9 fe

Byte ordering
Data = 0xfea927b0

Little endian host

fe a9 27 b0
Big endian host

SWAP
CPU fe a9 27 b0

Big endian device

Endianness

Writing Device Drivers • March 2012540

http://www.intel.com
http://www.amd.com/

Store Buffers
To improve performance, the CPU uses internal store buffers to temporarily store data. Using
internal buffers can affect the synchronization of device I/O operations. Therefore, the driver
needs to take explicit steps to make sure that writes to registers are completed at the proper
time.

For example, consider the case where access to device space, such as registers or a frame buffer,
is synchronized by a lock. The driver needs to check that the store to the device space has
actually completed before releasing the lock. The release of the lock does not guarantee the
flushing of I/O buffers.

To give another example, when acknowledging an interrupt, the driver usually sets or clears a
bit in a device control register. The driver must ensure that the write to the control register has
reached the device before the interrupt handler returns. Similarly, a device might require a
delay, that is, driver busy-waits, after writing a command to the control register. In such a case,
the driver must ensure that the write has reached the device before delaying.

Where device registers can be read without undesirable side effects, verification of a write can
simply consist of reading the register immediately after the write. If that particular register
cannot be read without undesirable side effects, another device register in the same register set
can be used.

System Memory Model
The system memory model defines the semantics of memory operations such as load and store
and specifies how the order in which these operations are issued by a processor is related to the
order in which they reach memory. The memory model applies to both uniprocessors and
shared-memory multiprocessors. Two memory models are supported: total store ordering
(TSO) and partial store ordering (PSO).

FIGURE A–2 Data Ordering Host Bus Dependency

ff 00 aa ee ff 00 aa ee

ff 00 aa ee Strict order

Data merging

Data reordering00 aa ee ff

Data ordering

CPU

System Memory Model

Appendix A • Hardware Overview 541

Total Store Ordering (TSO)
TSO guarantees that the sequence in which store, FLUSH, and atomic load-store instructions
appear in memory for a given processor is identical to the sequence in which they were issued
by the processor.

Both x86 and SPARC processors support TSO.

Partial Store Ordering (PSO)
PSO does not guarantee that the sequence in which store, FLUSH, and atomic load-store
instructions appear in memory for a given processor is identical to the sequence in which they
were issued by the processor. The processor can reorder the stores so that the sequence of stores
to memory is not the same as the sequence of stores issued by the CPU.

SPARC processors support PSO; x86 processors do not.

For SPARC processors, conformance between issuing order and memory order is provided by
the system framework using the STBAR instruction. If two of the above instructions are
separated by an STBAR instruction in the issuing order of a processor, or if the instructions
reference the same location, the memory order of the two instructions is the same as the issuing
order. Enforcement of strong data-ordering in DDI-compliant drivers is provided by the
ddi_regs_map_setup(9F) interface. Compliant drivers cannot use the STBAR instruction
directly.

See the SPARC Architecture Manual, Version 9, for more details on the SPARC memory model.

Bus Architectures
This section describes device identification, device addressing, and interrupts.

Device Identification
Device identification is the process of determining which devices are present in the system.
Some devices are self-identifying meaning that the device itself provides information to the
system so that the system can identify the device driver that needs to be used. SBus and PCI
local bus devices are examples of self-identifying devices. On SBus, the information is usually
derived from a small Forth program stored in the FCode PROM on the device. Most PCI
devices provide a configuration space containing device configuration information. See the
sbus(4) and pci(4) man pages for more information.

All modern bus architectures require devices to be self-identifying.

Bus Architectures

Writing Device Drivers • March 2012542

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-regs-map-setup-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4sbus-4
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4pci-4

Supported Interrupt Types
The Oracle Solaris platform supports both polling and vectored interrupts. The Oracle Solaris
DDI/DKI interrupt model is the same for both types of interrupts. See Chapter 8, “Interrupt
Handlers,” for more information about interrupt handling.

Bus Specifics
This section covers addressing and device configuration issues specific to the buses that the
Oracle Solaris platform supports.

PCI Local Bus
The PCI local bus is a high-performance bus designed for high-speed data transfer. The PCI bus
resides on the system board. This bus is normally used as an interconnect mechanism between
highly integrated peripheral components, peripheral add-on boards, and host processor or
memory systems. The host processor, main memory, and the PCI bus itself are connected
through a PCI host bridge, as shown in Figure A–3.

A tree structure of interconnected I/O buses is supported through a series of PCI bus bridges.
Subordinate PCI bus bridges can be extended underneath the PCI host bridge to enable a single
bus system to be expanded into a complex system with multiple secondary buses. PCI devices
can be connected to one or more of these secondary buses. In addition, other bus bridges, such
as SCSI or USB, can be connected.

Every PCI device has a unique vendor ID and device ID. Multiple devices of the same kind are
further identified by their unique device numbers on the bus where they reside.

Bus Specifics

Appendix A • Hardware Overview 543

The PCI host bridge provides an interconnect between the processor and peripheral
components. Through the PCI host bridge, the processor can directly access main memory
independent of other PCI bus masters. For example, while the CPU is fetching data from the
cache controller in the host bridge, other PCI devices can also access the system memory
through the host bridge. The advantage of this architecture is that this architecture separates the
I/O bus from the processor's host bus.

The PCI host bridge also provides data access mappings between the CPU and peripheral I/O
devices. The bridge maps every peripheral device to the host address domain so that the
processor can access the device through programmed I/O. On the local bus side, the PCI host
bridge maps the system memory to the PCI address domain so that the PCI device can access
the host memory as a bus master. Figure A–3 shows the two address domains.

PCI Address Domain
The PCI address domain consists of three distinct address spaces: configuration, memory, and
I/O space.

PCI Configuration Address Space
Configuration space is defined geographically. The location of a peripheral device is determined
by its physical location within an interconnected tree of PCI bus bridges. A device is located by
its bus number and device (slot) number. Each peripheral device contains a set of well-defined
configuration registers in its PCI configuration space. The registers are used not only to identify
devices but also to supply device configuration information to the configuration framework.
For example, base address registers in the device configuration space must be mapped before a
device can respond to data access.

FIGURE A–3 Machine Block Diagram

SCSI HBA

CPU RAM

PCI host
bridge

Graphics
adapter

PCI bus
bridge

LAN
adapter

Bus 0

Bus 1

Host
address
domain

PCI
address
domain

Bus Specifics

Writing Device Drivers • March 2012544

The method for generating configuration cycles is host dependent. In x86 machines, special I/O
ports are used. On other platforms, the PCI configuration space can be memory-mapped to
certain address locations corresponding to the PCI host bridge in the host address domain.
When a device configuration register is accessed by the processor, the request is routed to the
PCI host bridge. The bridge then translates the access into proper configuration cycles on the
bus.

PCI Configuration Base Address Registers
The PCI configuration space consists of up to six 32-bit base address registers for each device.
These registers provide both size and data type information. System firmware assigns base
addresses in the PCI address domain to these registers.

Each addressable region can be either memory or I/O space. The value contained in bit 0 of the
base address register identifies the type. A value of 0 in bit 0 indicates a memory space and a
value of 1 indicates an I/O space. The following figure shows two base address registers: one for
memory and the other for I/O types.

PCI Memory Address Space
PCI supports both 32-bit and 64-bit addresses for memory space. System firmware assigns
regions of memory space in the PCI address domain to PCI peripherals. The base address of a
region is stored in the base address register of the device's PCI configuration space. The size of
each region must be a power of two, and the assigned base address must be aligned on a
boundary equal to the size of the region. Device addresses in memory space are
memory-mapped into the host address domain so that data access to any device can be
performed by the processor's native load or store instructions.

PCI I/O Address Space
PCI supports 32-bit I/O space. I/O space can be accessed differently on different platforms.
Processors with special I/O instructions, like the Intel processor family, access the I/O space
with in and out instructions. Machines without special I/O instructions will map to the address
locations corresponding to the PCI host bridge in the host address domain. When the processor

FIGURE A–4 Base Address Registers for Memory and I/O

Base address
31 4 3 2 01

Type 0

Base address register for memory

Base address
31 2 01

Resv 1

Base address register for I/O

Space
indicator

Bus Specifics

Appendix A • Hardware Overview 545

accesses the memory-mapped addresses, an I/O request will be sent to the PCI host bridge,
which then translates the addresses into I/O cycles and puts them on the PCI bus.
Memory-mapped I/O is performed by the native load/store instructions of the processor.

PCI Hardware Configuration Files
Hardware configuration files should be unnecessary for PCI local bus devices. However, on
some occasions drivers for PCI devices need to use hardware configuration files to augment the
driver private information. See the driver.conf(4) and pci(4) man pages for further details.

PCI Express
The standard PCI bus has evolved into PCI Express. PCI Express is the next generation high
performance I/O bus for connecting peripheral devices in such applications as desktop, mobile,
workstation, server, embedded computing and communication platforms.

PCI Express improves bus performance, reduces overall system cost and takes advantage of new
developments in computer design. PCI Express uses a serial, point-to-point type interconnect
for communication between two devices. Using switches enables users to connect a large
number of devices together in a system. Serial interconnect implies fewer pins per device
package, which reduces cost and makes the performance highly scalable.

The PCI Express bus has built-in features to accommodate the following technologies:

■ QoS (Quality of Service)
■ Hotplugging and hot swap
■ Advanced power management
■ RAS (Reliability, Available, Serviceable)
■ Improved error handling
■ MSI interrupts

A PCI Express interconnect that connects two devices together is called a link. A link can either
be x1, x2, x4, x8, x12, x16 or x32 bidirectional signal pairs. These signals are called lanes. The
bandwidth (x1) of each lane is 500 MB/sec in duplex mode. Although PCI-X and PCI Express
have different hardware connections, the two buses are identical from a driver writer's point of
view. PCI-X is a shared bus. For example, all the devices on the bus share a single set of data
lines and signal lines. PCI-Express is a switched bus, which enables more efficient use of the
bandwidth between the devices and the system bus.

For more information on PCI Express, please refer to the following web site:
http://www.pcisig.com/home

Bus Specifics

Writing Device Drivers • March 2012546

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4driver.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4pci-4
http://www.pcisig.com/home

SBus
Typical SBus systems consist of a motherboard (containing the CPU and SBus interface logic), a
number of SBus devices on the motherboard itself, and a number of SBus expansion slots. An
SBus can also be connected to other types of buses through an appropriate bus bridge.

The SBus is geographically addressed. Each SBus slot exists at a fixed physical address in the
system. An SBus card has a different address, depending on which slot it is plugged into.
Moving an SBus device to a new slot causes the system to treat this device as a new device.

The SBus uses polling interrupts. When an SBus device interrupts, the system only knows
which of several devices might have issued the interrupt. The system interrupt handler must ask
the driver for each device whether that device is responsible for the interrupt.

SBus Physical Address Space
The following table shows the physical address space layout of the Sun UltraSPARC 2 computer.
A physical address on the UltraSPARC 2 model consists of 41 bits. The 41-bit physical address
space is further broken down into multiple 33-bit address spaces identified by PA(40:33).

TABLE A–1 Device Physical Space in the Ultra 2

PA(40:33) 33-bit Space Usage

0x0 0x000000000 - 0x07FFFFFFF 2 Gbytes main memory

0x80 – 0xDF Reserved on Ultra 2 Reserved on Ultra 2

0xE0 Processor 0 Processor 0

0xE1 Processor 1 Processor 1

0xE2 – 0xFD Reserved on Ultra 2 Reserved on Ultra 2

0xFE 0x000000000 - 0x1FFFFFFFF UPA Slave (FFB)

0xFF 0x000000000 - 0x0FFFFFFFF System I/O space

0x100000000 - 0x10FFFFFFF SBus Slot 0

0x110000000 - 0x11FFFFFFF SBus Slot 1

0x120000000 - 0x12FFFFFFF SBus Slot 2

0x130000000 - 0x13FFFFFFF SBus Slot 3

0x1D0000000 - 0x1DFFFFFFF SBus Slot D

0x1E0000000 - 0x1EFFFFFFF SBus Slot E

0x1F0000000 - 0x1FFFFFFFF SBus Slot F

Bus Specifics

Appendix A • Hardware Overview 547

Physical SBus Addresses
The SBus has 32 address bits, as described in the SBus Specification. The following table
describes how the Ultra 2 uses the address bits.

TABLE A–2 Ultra 2 SBus Address Bits

Bits Description

0 - 27 These bits are the SBus address lines used by an SBus card to address the contents of
the card.

28 - 31 Used by the CPU to select one of the SBus slots. These bits generate the SlaveSelect
lines.

This addressing scheme yields the Ultra 2 addresses shown in Table A–1. Other
implementations might use a different number of address bits.

The Ultra 2 has seven SBus slots, four of which are physical. Slots 0 through 3 are available for
SBus cards. Slots 4-12 are reserved. The slots are used as follows:

■ Slots 0-3 are physical slots that have DMA-master capability.
■ Slots D, E, and F are not actual physical slots, but refer to the onboard direct memory access

(DMA), SCSI, Ethernet, and audio controllers. For convenience, these classes of devices are
viewed as being plugged into slots D, E, and F.

Note – Some SBus slots are slave-only slots. Drivers that require DMA capability should use
ddi_slaveonly(9F) to determine whether their device is in a DMA-capable slot. For an
example of this function, see “attach() Entry Point” on page 104.

SBus Hardware Configuration Files
Hardware configuration files are normally unnecessary for SBus devices. However, on some
occasions, drivers for SBus devices need to use hardware configuration files to augment the
information provided by the SBus card. See the driver.conf(4) and sbus(4) man page for
further details.

Device Issues
This section describes issues with special devices.

Device Issues

Writing Device Drivers • March 2012548

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-slaveonly-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4driver.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4sbus-4

Timing-Critical Sections
While most driver operations can be performed without mechanisms for synchronization and
protection beyond those provided by the locking primitives, some devices require that a
sequence of events occur in order without interruption. In conjunction with the locking
primitives, the function ddi_enter_critical(9F) asks the system to guarantee, to the best of
its ability, that the current thread will neither be preempted nor interrupted. This guarantee
stays in effect until a closing call to ddi_exit_critical(9F) is made. See the
ddi_enter_critical(9F) man page for details.

Delays
Many chips specify that they can be accessed only at specified intervals. For example, the Zilog
Z8530 SCC has a “write recovery time” of 1.6 microseconds. This specification means that a
delay must be enforced with drv_usecwait(9F) when writing characters with an 8530. In some
instances, the specifications do not make explicit what delays are needed, so the delays must be
determined empirically.

Be careful not to compound delays for parts of devices that might exist in large numbers, for
example, thousands of SCSI disk drives.

Internal Sequencing Logic
Devices with internal sequencing logic map multiple internal registers to the same external
address. The various kinds of internal sequencing logic include the following types:

■ The Intel 8251A and the Signetics 2651 alternate the same external register between two
internal mode registers. Writing to the first internal register is accomplished by writing to
the external register. This write, however, has the side effect of setting up the sequencing
logic in the chip so that the next read/write operation refers to the second internal register.

■ The NEC PD7201 PCC has multiple internal data registers. To write a byte into a particular
register, two steps must be performed. The first step is to write into register zero the number
of the register into which the following byte of data will go. The data is then written to the
specified data register. The sequencing logic automatically sets up the chip so that the next
byte sent will go into data register zero.

■ The AMD 9513 timer has a data pointer register that points at the data register into which a
data byte will go. When sending a byte to the data register, the pointer is incremented. The
current value of the pointer register cannot be read.

Interrupt Issues
Note the following common interrupt-related issues:

Device Issues

Appendix A • Hardware Overview 549

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-enter-critical-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-exit-critical-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-enter-critical-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdrv-usecwait-9f

■ A controller interrupt does not necessarily indicate that both the controller and one of its
slave devices are ready. For some controllers, an interrupt can indicate that either the
controller is ready or one of its devices is ready but not both.

■ Not all devices power up with interrupts disabled and can begin interrupting at any time.
■ Some devices do not provide a way to determine that the board has generated an interrupt.
■ Not all interrupting boards shut off interrupts when told to do so or after a bus reset.

PROM on SPARC Machines
Some platforms have a PROM monitor that provides support for debugging a device without an
operating system. This section describes how to use the PROM on SPARC machines to map
device registers so that they can be accessed. Usually, the device can be exercised enough with
PROM commands to determine whether the device is working correctly.

See the boot(1M) man page for a description of the x86 boot subsystem.

The PROM has several purposes, including:

■ Bringing the machine up from power on, or from a hard reset PROM reset command
■ Providing an interactive tool for examining and setting memory, device registers, and

memory mappings
■ Booting the Oracle Solaris system.

Simply powering up the computer and attempting to use its PROM to examine device
registers can fail. While the device might be correctly installed, those mappings are specific
to the Oracle Solaris OS and do not become active until the Oracle Solaris kernel is booted.
Upon power up, the PROM maps only essential system devices, such as the keyboard.

■ Taking a system crash dump using the sync command

Open Boot PROM 3
For complete documentation on the Open Boot PROM, see the Open Boot PROM Toolkit User's
Guide and the monitor(1M) man page. The examples in this section refer to a Sun4U
architecture. Other architectures might require different commands to perform actions.

Note – The Open Boot PROM is currently used on Sun machines with an SBus or UPA/PCI. The
Open Boot PROM uses an “ok” prompt. On older machines, you might have to type ‘n' to get
the “ok” prompt.

If the PROM is in secure mode (the security-mode parameter is not set to none), the PROM
password might be required (set in the security-password parameter).

PROM on SPARC Machines

Writing Device Drivers • March 2012550

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mboot-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mmonitor-1m

The printenv command displays all parameters and their values.

Help is available with the help command.

EMACS-style command-line history is available. Use Control-N (next) and Control-P
(previous) to traverse the history list.

Forth Commands
The Open Boot PROM uses the Forth programming language. Forth is a stack-based language.
Arguments must be pushed on the stack before running the correct command (called a word),
and the result is left on the stack.

To place a number on the stack, type its value.

ok 57

ok 68

To add the two top values on the stack, use the + operator.

ok +

The result remains on the stack. The stack is shown with the .s word.

ok .s

bf

The default base is hexadecimal. The hex and decimal words can be used to switch bases.

ok decimal

ok .s

191

See the Forth User's Guide for more information.

Walking the PROMs Device Tree
The commands pwd, cd, and ls walk the PROM device tree to get to the device. The cd
command must be used to establish a position in the tree before pwd will work. This example is
from an Ultra 1 workstation with a cgsix frame buffer on an SBus.

ok cd /

To see the devices attached to the current node in the tree, use ls.

ok ls

f006a064 SUNW,UltraSPARC@0,0

f00598b0 sbus@1f,0

f00592dc counter-timer@1f,3c00

f004eec8 virtual-memory

PROM on SPARC Machines

Appendix A • Hardware Overview 551

f004e8e8 memory@0,0

f002ca28 aliases

f002c9b8 options

f002c880 openprom

f002c814 chosen

f002c7a4 packages

The full node name can be used:

ok cd sbus@1f,0

ok ls

f006a4e4 cgsix@2,0

f0068194 SUNW,bpp@e,c800000

f0065370 ledma@e,8400010

f006120c espdma@e,8400000

f005a448 SUNW,pll@f,1304000

f005a394 sc@f,1300000

f005a24c zs@f,1000000

f005a174 zs@f,1100000

f005a0c0 eeprom@f,1200000

f0059f8c SUNW,fdtwo@f,1400000

f0059ec4 flashprom@f,0

f0059e34 auxio@f,1900000

f0059d28 SUNW,CS4231@d,c000000

Rather than using the full node name in the previous example, you could also use an
abbreviation. The abbreviated command-line entry looks like the following example:

ok cd sbus

The name is actually device@slot,offset (for SBus devices). The cgsix device is in slot 2 and
starts at offset 0. If an SBus device is displayed in this tree, the device has been recognized by the
PROM.

The .properties command displays the PROM properties of a device. These properties can be
examined to determine which properties the device exports. This information is useful later to
ensure that the driver is looking for the correct hardware properties. These properties are the
same properties that can be retrieved with ddi_getprop(9F).

ok cd cgsix

ok .properties

character-set ISO8859-1

intr 00000005 00000000

interrupts 00000005

reg 00000002 00000000 01000000

dblbuf 00 00 00 00

vmsize 00 00 00 01

...

The reg property defines an array of register description structures containing the following
fields:

uint_t bustype; /* cookie for related bus type*/

uint_t addr; /* address of reg relative to bus */

uint_t size; /* size of this register set */

PROM on SPARC Machines

Writing Device Drivers • March 2012552

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-getprop-9f

For the cgsix example, the address is 0.

Mapping the Device
A device must be mapped into memory to be tested. The PROM can then be used to verify
proper operation of the device by using data-transfer commands to transfer bytes, words, and
long words. If the device can be operated from the PROM, even in a limited way, the driver
should also be able to operate the device.

To set up the device for initial testing, perform the following steps:

1. Determine the SBus slot number the device is in.
In this example, the cgsix device is located in slot 2.

2. Determine the offset within the physical address space used by the device.
The offset used is specific to the device. In the cgsix example, the video memory happens to
start at an offset of 0x800000.

3. Use the select-dev word to select the Sbus device and the map-in word to map the device
in.
The select-dev word takes a string of the device path as its argument. The map-in word
takes an offset, a slot number, and a size as arguments to map. Like the offset, the size of the
byte transfer is specific to the device. In the cgsix example, the size is set to 0x100000 bytes.
In the following code example, the Sbus path is displayed as an argument to the select-dev
word, and the offset, slot number, and size values for the frame buffer are displayed as
arguments to the map-in word. Notice the space between the opening quote and / in the
select-dev argument. The virtual address to use remains on top of the stack. The stack is
shown using the .s word. The stack can be assigned a name with the constant operation.

ok " sbus@1f,0" select-dev

ok 800000 2 100000 map-in

ok .s

ffe98000

ok constant fb

Reading and Writing
The PROM provides a variety of 8-bit, 16-bit, and 32-bit operations. In general, a c (character)
prefix indicates an 8-bit (one-byte) operation; a w (word) prefix indicates a 16-bit (two-byte)
operation; and an L (longword) prefix indicates a 32-bit (four-byte) operation.

A suffix of ! indicates a write operation. The write operation takes the first two items off the
stack. The first item is the address, and the second item is the value.

ok 55 ffe98000 c!

A suffix of @ indicates a read operation. The read operation takes the address off the stack.

PROM on SPARC Machines

Appendix A • Hardware Overview 553

ok ffe98000 c@

ok .s

55

A suffix of ? is used to display the value without affecting the stack.

ok ffe98000 c?

55

Be careful when trying to query the device. If the mappings are not set up correctly, trying to
read or write could cause errors. Special words are provided to handle these cases. cprobe,
wprobe, and lprobe, for example, read from the given address but return zero if the location
does not respond, or nonzero if it does.

ok fffa4000 c@

Data Access Error

ok fffa4000 cprobe

ok .s0

ok ffe98000 cprobe

ok .s

0 ffffffffffffffff

A region of memory can be shown with the dump word. This takes an address and a length, and
displays the contents of the memory region in bytes.

In the following example, the fill word is used to fill video memory with a pattern. fill takes
the address, the number of bytes to fill, and the byte to use. Use wfill and an Lfill for words
and longwords. This fill example causes the cgsix to display simple patterns based on the byte
passed.

ok " /sbus" select-dev

ok 800000 2 100000 map-in

ok constant fb

ok fb 10000 ff fill

ok fb 20000 0 fill

ok fb 18000 55 fill

ok fb 15000 3 fill

ok fb 10000 5 fillok fb 5000 f9 fill

PROM on SPARC Machines

Writing Device Drivers • March 2012554

Summary of Oracle Solaris DDI/DKI Services

This appendix discusses the interfaces provided by the Oracle Solaris DDI/DKI. These
descriptions should not be considered complete or definitive, nor do they provide a thorough
guide to usage. The descriptions are intended to describe what the functions do in general
terms. See physio(9F) for more detailed information. The categories are:

■ “Module Functions” on page 556
■ “Device Information Tree Node (dev_info_t) Functions” on page 556
■ “Device (dev_t) Functions” on page 556
■ “Property Functions” on page 557
■ “Device Software State Functions” on page 558
■ “Memory Allocation and Deallocation Functions” on page 558
■ “Kernel Thread Control and Synchronization Functions” on page 559
■ “Task Queue Management Functions” on page 560
■ “Interrupt Functions” on page 561
■ “Programmed I/O Functions” on page 563
■ “Direct Memory Access (DMA) Functions” on page 569
■ “User Space Access Functions” on page 571
■ “User Process Event Functions” on page 572
■ “User Process Information Functions” on page 572
■ “User Application Kernel and Device Access Functions” on page 573
■ “Time-Related Functions” on page 574
■ “Power Management Functions” on page 575
■ “Fault Management Functions” on page 575
■ “Kernel Statistics Functions” on page 576
■ “Kernel Logging and Printing Functions” on page 577
■ “Buffered I/O Functions” on page 577
■ “Virtual Memory Functions” on page 578
■ “Device ID Functions” on page 578
■ “SCSI Functions” on page 579
■ “Resource Map Management Functions” on page 581
■ “System Global State” on page 581

BA P P E N D I X B

555

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fphysio-9f

■ “Utility Functions” on page 581

Module Functions
The module functions are:

mod_info Query a loadable module

mod_install Add a loadable module

mod_remove Remove a loadable module

Device Information Tree Node (dev_info_t) Functions
The device information tree node functions are:

ddi_binding_name() Return driver binding name

ddi_dev_is_sid() Tell whether a device is self-identifying

ddi_driver_major() Return driver major device number

ddi_driver_name() Return normalized driver name

ddi_node_name() Return the devinfo node name

ddi_get_devstate() Check device state

ddi_get_instance() Get device instance number

ddi_get_name() Return driver binding name

ddi_get_parent() Find the parent of a device information structure

ddi_root_node() Get the root of the dev_info tree

Device (dev_t) Functions
The device functions are:

ddi_create_minor_node() Create a minor node for a device

ddi_getiminor() Get kernel internal minor number from an external dev_t

ddi_remove_minor_node() Remove a minor mode for a device

getmajor() Get major device number

getminor() Get minor device number

Module Functions

Writing Device Drivers • March 2012556

makedevice() Make device number from major and minor numbers

Property Functions
The property functions are:

ddi_prop_exists() Check for the existence of a property

ddi_prop_free() Free resources consumed by property lookup

ddi_prop_get_int() Look up integer property

ddi_prop_get_int64() Look up 64-bit integer property

ddi_prop_lookup_byte_array() Look up byte array property

ddi_prop_lookup_int_array() Look up integer array property

ddi_prop_lookup_int64_array() Look up 64-bit integer array property

ddi_prop_lookup_string() Look up string property

ddi_prop_lookup_string_array() Look up string array property

ddi_prop_remove() Remove a property of a device

ddi_prop_remove_all() Remove all properties of a device

ddi_prop_undefine() Hide a property of a device

ddi_prop_update_byte_array() Create or update byte array property

ddi_prop_update_int() Create or update integer property

ddi_prop_update_int64() Create or update 64-bit integer property

ddi_prop_update_int_array() Create or update integer array property

ddi_prop_update_int64_array() Create or update 64-bit integer array property

ddi_prop_update_string() Create or update string property

ddi_prop_update_string_array() Create or update string array property

TABLE B–1 Deprecated Property Functions

Deprecated Functions Replacements

ddi_getlongprop() see ddi_prop_lookup()

ddi_getlongprop_buf() ddi_prop_lookup()

ddi_getprop() ddi_prop_get_int()

Property Functions

Appendix B • Summary of Oracle Solaris DDI/DKI Services 557

TABLE B–1 Deprecated Property Functions (Continued)
Deprecated Functions Replacements

ddi_getproplen() ddi_prop_lookup()

ddi_prop_create() ddi_prop_lookup()

ddi_prop_modify() ddi_prop_lookup()

ddi_prop_op() ddi_prop_lookup()

Device Software State Functions
The device software state functions are:

ddi_get_driver_private() Get the address of the device's private data area

ddi_get_soft_state() Get pointer to instance soft-state structure

ddi_set_driver_private() Set the address of the device's private data area

ddi_soft_state_fini() Destroy driver soft-state structure

ddi_soft_state_free() Free instance soft-state structure

ddi_soft_state_init() Initialize driver soft-state structure

ddi_soft_state_zalloc() Allocate instance soft-state structure

Memory Allocation and Deallocation Functions
The memory allocation and deallocation functions are:

kmem_alloc() Allocate kernel memory

kmem_free() Free kernel memory

kmem_zalloc() Allocate zero-filled kernel memory

The following functions allocate and free memory intended to be used for DMA. See “Direct
Memory Access (DMA) Functions” on page 569.

ddi_dma_mem_alloc() Allocate memory for DMA transfer

ddi_dma_mem_free() Free previously allocated DMA memory

The following functions allocate and free memory intended to be exported to user space. See
“User Space Access Functions” on page 571.

ddi_umem_alloc() Allocate page-aligned kernel memory

Device Software State Functions

Writing Device Drivers • March 2012558

ddi_umem_free() Free page-aligned kernel memory

TABLE B–2 Deprecated Memory Allocation and Deallocation Functions

Deprecated Function Replacement

ddi_iopb_alloc() ddi_dma_mem_alloc()

ddi_iopb_free() ddi_dma_mem_free()

ddi_mem_alloc() ddi_dma_mem_alloc()

ddi_mem_free() ddi_dma_mem_free()

Kernel Thread Control and Synchronization Functions
The kernel thread control and synchronization functions are:

cv_broadcast() Wake up all waiting threads

cv_destroy() Free an allocated condition variable

cv_init() Allocate a condition variable

cv_signal() Wake up one waiting thread

cv_timedwait() Await an event with timeout

cv_timedwait_sig() Await an event or signal with timeout

cv_wait() Await an event

cv_wait_sig() Await an event or signal

ddi_can_receive_sig() Determine whether the current thread can receive a signal

ddi_enter_critical() Enter a critical region of control

ddi_exit_critical() Exit a critical region of control

mutex_destroy() Destroy mutual exclusion lock

mutex_enter() Acquire mutual exclusion lock

mutex_exit() Release mutual exclusion lock

mutex_init() Initialize mutual exclusion lock

mutex_owned() Determine whether current thread is holding mutual exclusion
lock

mutex_tryenter() Attempt to acquire mutual exclusion lock without waiting

rw_destroy() Destroy a readers/writer lock

Kernel Thread Control and Synchronization Functions

Appendix B • Summary of Oracle Solaris DDI/DKI Services 559

rw_downgrade() Downgrade a readers/writer lock holding from writer to reader

rw_enter() Acquire a readers/writer lock

rw_exit() Release a readers/writer lock

rw_init() Initialize a readers/writer lock

rw_read_locked() Determine whether readers/writer lock is held for read or write

rw_tryenter() Attempt to acquire a readers/writer lock without waiting

rw_tryupgrade() Attempt to upgrade readers/writer lock holding from reader to
writer

sema_destroy() Destroy a semaphore

sema_init() Initialize a semaphore

sema_p() Decrement semaphore and possibly block

sema_p_sig() Decrement semaphore but do not block if signal is pending

sema_tryp() Attempt to decrement semaphore but do not block

sema_v() Increment semaphore and possibly unblock waiter

Task Queue Management Functions
The task queue management functions are listed below. See the taskq(9F) man page for more
information about these interfaces.

ddi_taskq_create() Create a task queue

ddi_taskq_destroy() Destroy a task queue

ddi_taskq_dispatch() Add a task to a task queue

ddi_taskq_wait() Wait for pending tasks to complete

ddi_taskq_suspend() Suspend a task queue

ddi_taskq_suspended() Check whether a task queue is suspended

ddi_taskq_resume() Resume a suspended task queue

Task Queue Management Functions

Writing Device Drivers • March 2012560

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Ftaskq-9f

Interrupt Functions
The interrupt functions are:

ddi_intr_add_handler(9F) Adds an interrupt handler.

ddi_intr_add_softint(9F) Adds a soft interrupt handler.

ddi_intr_alloc(9F) Allocates system resources and interrupt vectors for
the specified type of interrupt.

ddi_intr_block_disable(9F) Disables the specified range of interrupts. For MSI
only.

ddi_intr_block_enable(9F) Enables the specified range of interrupts. For MSI
only.

ddi_intr_clr_mask(9F) Clears an interrupt mask if the specified interrupt is
enabled.

ddi_intr_disable(9F) Disables the specified interrupt.

ddi_intr_dup_handler(9F) Use with MSI-X only. Copies an address and data
pair for an allocated interrupt vector to an unused
interrupt vector on the same device.

ddi_intr_enable(9F) Enables the specified interrupt.

ddi_intr_free(9F) Releases the system resources and interrupt vectors
for a specified interrupt handle.

ddi_intr_get_cap(9F) Returns interrupt capability flags for the specified
interrupt.

ddi_intr_get_hilevel_pri(9F) Returns the minimum priority level for a high-level
interrupt.

ddi_intr_get_navail(9F) Returns the number of interrupts available for a
particular hardware device and given interrupt type.

ddi_intr_get_nintrs(9F) Get the number of interrupts that the device
supports for the given interrupt type.

ddi_intr_get_pending(9F) Read the interrupt pending bit if one is supported by
either the host bridge or the device.

ddi_intr_get_pri(9F) Returns the current software priority setting for the
specified interrupt.

ddi_intr_get_softint_pri(9F) Returns the soft interrupt priority for the specified
interrupt.

Interrupt Functions

Appendix B • Summary of Oracle Solaris DDI/DKI Services 561

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-add-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-add-softint-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-block-disable-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-block-enable-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-clr-mask-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-disable-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-dup-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-enable-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-cap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-hilevel-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-navail-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-nintrs-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-pending-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-softint-pri-9f

ddi_intr_get_supported_types(9F) Returns the hardware interrupt types that are
supported by both the device and the host.

ddi_intr_remove_handler(9F) Removes the specified interrupt handler.

ddi_intr_remove_softint(9F) Remove the specified soft interrupt handler.

ddi_intr_set_cap(9F) Sets the DDI_INTR_FLAG_LEVEL or
DDI_INTR_FLAG_EDGE flag for the specified
interrupt.

ddi_intr_set_mask(9F) Sets an interrupt mask if the specified interrupt is
enabled.

ddi_intr_set_pri(9F) Sets the interrupt priority level for the specified
interrupt.

ddi_intr_set_softint_pri(9F) Changes the relative soft interrupt priority for the
specified soft interrupt.

ddi_intr_trigger_softint(9F) Trigger the specified soft interrupt.

To take advantage of the features of the new framework, use the above interfaces. Do not use the
deprecated interfaces that are listed in the following table. These deprecated interfaces are
retained for compatibility purposes only.

TABLE B–3 Deprecated Interrupt Functions

Deprecated Interrupt Functions Replacements

ddi_add_intr(9F) Three-step process:
1. ddi_intr_alloc(9F)
2. ddi_intr_add_handler(9F)
3. ddi_intr_enable(9F)

ddi_add_softintr(9F) ddi_intr_add_softint(9F)

ddi_dev_nintrs(9F) ddi_intr_get_nintrs(9F)

ddi_get_iblock_cookie(9F) Three-step process:
1. ddi_intr_alloc(9F)
2. ddi_intr_get_pri(9F)
3. ddi_intr_free(9F)

ddi_get_soft_iblock_cookie(9F) Three-step process:
1. ddi_intr_add_softint(9F)
2. ddi_intr_get_softint_pri(9F)
3. ddi_intr_remove_softint(9F)

Interrupt Functions

Writing Device Drivers • March 2012562

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-supported-types-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-remove-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-remove-softint-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-set-cap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-set-mask-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-set-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-set-softint-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-trigger-softint-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-add-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-enable-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-add-softint-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-nintrs-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-add-softint-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-softint-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-remove-softint-9f

TABLE B–3 Deprecated Interrupt Functions (Continued)
Deprecated Interrupt Functions Replacements

ddi_intr_hilevel(9F) Three-step process:
1. ddi_intr_alloc(9F)
2. ddi_intr_get_hilevel_pri(9F)
3. ddi_intr_free(9F)

ddi_remove_intr(9F) Three-step process:
1. ddi_intr_disable(9F)
2. ddi_intr_remove_handler(9F)
3. ddi_intr_free(9F)

ddi_remove_softintr(9F) ddi_intr_remove_softint(9F)

ddi_trigger_softintr(9F) ddi_intr_trigger_softint(9F)

Programmed I/O Functions
The programmed I/O functions are:

ddi_dev_nregs() Return the number of register sets a device has

ddi_dev_regsize() Return the size of a device's register

ddi_regs_map_setup() Set up a mapping for a register address space

ddi_regs_map_free() Free a previously mapped register address space

ddi_device_copy() Copy data from one device register to another device register

ddi_device_zero() Zero fill the device

ddi_check_acc_handle() Check data access handle

ddi_get8() Read 8-bit data from mapped memory, device register, or DMA
memory

ddi_get16() Read 16-bit data from mapped memory, device register, or
DMA memory

ddi_get32() Read 32-bit data from mapped memory, device register, or
DMA memory

ddi_get64() Read 64-bit data from mapped memory, device register, or
DMA memory

ddi_put8() Write 8-bit data to mapped memory, device register, or DMA
memory

ddi_put16() Write 16-bit data to mapped memory, device register, or DMA
memory

Programmed I/O Functions

Appendix B • Summary of Oracle Solaris DDI/DKI Services 563

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-alloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-get-hilevel-pri-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-disable-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-remove-handler-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-remove-softint-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-intr-trigger-softint-9f

ddi_put32() Write 32-bit data to mapped memory, device register, or DMA
memory

ddi_put64() Write 64-bit data to mapped memory, device register, or DMA
memory

ddi_rep_get8() Read multiple 8-bit data from mapped memory, device register,
or DMA memory

ddi_rep_get16() Read multiple 16-bit data from mapped memory, device
register, or DMA memory

ddi_rep_get32() Read multiple 32-bit data from mapped memory, device
register, or DMA memory

ddi_rep_get64() Read multiple 64-bit data from mapped memory, device
register, or DMA memory

ddi_rep_put8() Write multiple 8-bit data to mapped memory, device register, or
DMA memory

ddi_rep_put16() Write multiple 16-bit data to mapped memory, device register,
or DMA memory

ddi_rep_put32() Write multiple 32-bit data to mapped memory, device register,
or DMA memory

ddi_rep_put64() Write multiple 64-bit data to mapped memory, device register,
or DMA memory

ddi_peek8() Cautiously read an 8-bit value from a location

ddi_peek16() Cautiously read a 16-bit value from a location

ddi_peek32() Cautiously read a 32-bit value from a location

ddi_peek64() Cautiously read a 64-bit value from a location

ddi_poke8() Cautiously write an 8-bit value to a location

ddi_poke16() Cautiously write a 16-bit value to a location

ddi_poke32() Cautiously write a 32-bit value to a location

ddi_poke64() Cautiously write a 64-bit value to a location

The general programmed I/O functions listed above can always be used rather than the mem, io,
and pci_config functions that follow. However, the following functions can be used as
alternatives in cases where the type of access is known at compile time.

ddi_io_get8() Read 8-bit data from a mapped device register in I/O space

ddi_io_get16() Read 16-bit data from a mapped device register in I/O space

Programmed I/O Functions

Writing Device Drivers • March 2012564

ddi_io_get32() Read 32-bit data from a mapped device register in I/O space

ddi_io_put8() Write 8-bit data to a mapped device register in I/O space

ddi_io_put16() Write 16-bit data to a mapped device register in I/O space

ddi_io_put32() Write 32-bit data to a mapped device register in I/O space

ddi_io_rep_get8() Read multiple 8-bit data from a mapped device register in I/O
space

ddi_io_rep_get16() Read multiple 16-bit data from a mapped device register in I/O
space

ddi_io_rep_get32() Read multiple 32-bit data from a mapped device register in I/O
space

ddi_io_rep_put8() Write multiple 8-bit data to a mapped device register in I/O space

ddi_io_rep_put16() Write multiple 16-bit data to a mapped device register in I/O
space

ddi_io_rep_put32() Write multiple 32-bit data to a mapped device register in I/O
space

ddi_mem_get8() Read 8-bit data from a mapped device in memory space or DMA
memory

ddi_mem_get16() Read 16-bit data from a mapped device in memory space or
DMA memory

ddi_mem_get32() Read 32-bit data from a mapped device in memory space or
DMA memory

ddi_mem_get64() Read 64-bit data from a mapped device in memory space or
DMA memory

ddi_mem_put8() Write 8-bit data to a mapped device in memory space or DMA
memory

ddi_mem_put16() Write 16-bit data to a mapped device in memory space or DMA
memory

ddi_mem_put32() Write 32-bit data to a mapped device in memory space or DMA
memory

ddi_mem_put64() Write 64-bit data to a mapped device in memory space or DMA
memory

ddi_mem_rep_get8() Read multiple 8-bit data from a mapped device in memory space
or DMA memory

Programmed I/O Functions

Appendix B • Summary of Oracle Solaris DDI/DKI Services 565

ddi_mem_rep_get16() Read multiple 16-bit data from a mapped device in memory
space or DMA memory

ddi_mem_rep_get32() Read multiple 32-bit data from a mapped device in memory
space or DMA memory

ddi_mem_rep_get64() Read multiple 64-bit data from a mapped device in memory
space or DMA memory

ddi_mem_rep_put8() Write multiple 8-bit data to a mapped device in memory space or
DMA memory

ddi_mem_rep_put16() Write multiple 16-bit data to a mapped device in memory space
or DMA memory

ddi_mem_rep_put32() Write multiple 32-bit data to a mapped device in memory space
or DMA memory

ddi_mem_rep_put64() Write multiple 64-bit data to a mapped device in memory space
or DMA memory

pci_config_setup() Set up access to PCI Local Bus Configuration space

pci_config_teardown() Tear down access to PCI Local Bus Configuration space

pci_config_get8() Read 8-bit data from the PCI Local Bus Configuration space

pci_config_get16() Read 16-bit data from the PCI Local Bus Configuration space

pci_config_get32() Read 32-bit data from the PCI Local Bus Configuration space

pci_config_get64() Read 64-bit data from the PCI Local Bus Configuration space

pci_config_put8() Write 8-bit data to the PCI Local Bus Configuration space

pci_config_put16() Write 16-bit data to the PCI Local Bus Configuration space

pci_config_put32() Write 32-bit data to the PCI Local Bus Configuration space

pci_config_put64() Write 64-bit data to the PCI Local Bus Configuration space

TABLE B–4 Deprecated Programmed I/O Functions

Deprecated Function Replacement

ddi_getb() ddi_get8()

ddi_getl() ddi_get32()

ddi_getll() ddi_get64()

ddi_getw() ddi_get16()

ddi_io_getb() ddi_io_get8()

Programmed I/O Functions

Writing Device Drivers • March 2012566

TABLE B–4 Deprecated Programmed I/O Functions (Continued)
Deprecated Function Replacement

ddi_io_getl() ddi_io_get32()

ddi_io_getw() ddi_io_get16()

ddi_io_putb() ddi_io_put8()

ddi_io_putl() ddi_io_put32()

ddi_io_putw() ddi_io_put16()

ddi_io_rep_getb() ddi_io_rep_get8()

ddi_io_rep_getl() ddi_io_rep_get32()

ddi_io_rep_getw() ddi_io_rep_get16()

ddi_io_rep_putb() ddi_io_rep_put8()

ddi_io_rep_putl() ddi_io_rep_put32()

ddi_io_rep_putw() ddi_io_rep_put16()

ddi_map_regs() ddi_regs_map_setup()

ddi_mem_getb() ddi_mem_get8()

ddi_mem_getl() ddi_mem_get32()

ddi_mem_getll() ddi_mem_get64()

ddi_mem_getw() ddi_mem_get16()

ddi_mem_putb() ddi_mem_put8()

ddi_mem_putl() ddi_mem_put32()

ddi_mem_putll() ddi_mem_put64()

ddi_mem_putw() ddi_mem_put16()

ddi_mem_rep_getb() ddi_mem_rep_get8()

ddi_mem_rep_getl() ddi_mem_rep_get32()

ddi_mem_rep_getll() ddi_mem_rep_get64()

ddi_mem_rep_getw() ddi_mem_rep_get16()

ddi_mem_rep_putb() ddi_mem_rep_put8()

ddi_mem_rep_putl() ddi_mem_rep_put32()

ddi_mem_rep_putll() ddi_mem_rep_put64()

ddi_mem_rep_putw() ddi_mem_rep_put16()

Programmed I/O Functions

Appendix B • Summary of Oracle Solaris DDI/DKI Services 567

TABLE B–4 Deprecated Programmed I/O Functions (Continued)
Deprecated Function Replacement

ddi_peekc() ddi_peek8()

ddi_peekd() ddi_peek64()

ddi_peekl() ddi_peek32()

ddi_peeks() ddi_peek16()

ddi_pokec() ddi_poke8()

ddi_poked() ddi_poke64()

ddi_pokel() ddi_poke32()

ddi_pokes() ddi_poke16()

ddi_putb() ddi_put8()

ddi_putl() ddi_put32()

ddi_putll() ddi_put64()

ddi_putw() ddi_put16()

ddi_rep_getb() ddi_rep_get8()

ddi_rep_getl() ddi_rep_get32()

ddi_rep_getll() ddi_rep_get64()

ddi_rep_getw() ddi_rep_get16()

ddi_rep_putb() ddi_rep_put8()

ddi_rep_putl() ddi_rep_put32()

ddi_rep_putll() ddi_rep_put64()

ddi_rep_putw() ddi_rep_put16()

ddi_unmap_regs() ddi_regs_map_free()

inb() ddi_io_get8()

inl() ddi_io_get32()

inw() ddi_io_get16()

outb() ddi_io_put8()

outl() ddi_io_put32()

outw() ddi_io_put16()

pci_config_getb() pci_config_get8()

Programmed I/O Functions

Writing Device Drivers • March 2012568

TABLE B–4 Deprecated Programmed I/O Functions (Continued)
Deprecated Function Replacement

pci_config_getl() pci_config_get32()

pci_config_getll() pci_config_get64()

pci_config_getw() pci_config_get16()

pci_config_putb() pci_config_put8()

pci_config_putl() pci_config_put32()

pci_config_putll() pci_config_put64()

pci_config_putw() pci_config_put16()

repinsb() ddi_io_rep_get8()

repinsd() ddi_io_rep_get32()

repinsw() ddi_io_rep_get16()

repoutsb() ddi_io_rep_put8()

repoutsd() ddi_io_rep_put32()

repoutsw() ddi_io_rep_put16()

Direct Memory Access (DMA) Functions
The DMA functions are:

ddi_dma_alloc_handle() Allocate a DMA handle

ddi_dma_free_handle() Free a DMA handle

ddi_dma_mem_alloc() Allocate memory for a DMA transfer

ddi_dma_mem_free() Free previously allocated DMA memory

ddi_dma_addr_bind_handle() Bind an address to a DMA handle

ddi_dma_buf_bind_handle() Bind a system buffer to a DMA handle

ddi_dma_unbind_handle() Unbind the address in a DMA handle

ddi_dma_nextcookie() Retrieve the subsequent DMA cookie

ddi_dma_getwin() Activate a new DMA window

ddi_dma_numwin() Retrieve number of DMA windows

ddi_dma_sync() Synchronize CPU and I/O views of memory

ddi_check_dma_handle() Check a DMA handle

Direct Memory Access (DMA) Functions

Appendix B • Summary of Oracle Solaris DDI/DKI Services 569

ddi_dma_set_sbus64() Allow 64-bit transfers on SBus

ddi_slaveonly() Report whether a device is installed in a slave access-only
location

ddi_iomin() Find the minimum alignment and transfer size for DMA

ddi_dma_burstsizes() Find out the allowed burst sizes for a DMA mapping

ddi_dma_devalign() Find DMA mapping alignment and minimum transfer size

ddi_dmae_alloc() Acquire a DMA channel

ddi_dmae_release() Release a DMA channel

ddi_dmae_getattr() Get the DMA engine attributes

ddi_dmae_prog() Program a DMA channel

ddi_dmae_stop() Terminate a DMA engine operation

ddi_dmae_disable() Disable a DMA channel

ddi_dmae_enable() Enable a DMA channel

ddi_dmae_getcnt() Get the remaining DMA engine count

ddi_dmae_1stparty() Configure the DMA channel cascade mode

ddi_dma_coff() Convert a DMA cookie to an offset within a DMA handle

TABLE B–5 Deprecated Direct Memory Access (DMA) Functions

Deprecated Function Replacement

ddi_dma_addr_setup() ddi_dma_alloc_handle(), ddi_dma_addr_bind_handle()

ddi_dma_buf_setup() ddi_dma_alloc_handle(), ddi_dma_buf_bind_handle()

ddi_dma_curwin() ddi_dma_getwin()

ddi_dma_free() ddi_dma_free_handle()

ddi_dma_htoc() ddi_dma_addr_bind_handle(),
ddi_dma_buf_bind_handle()

ddi_dma_movwin() ddi_dma_getwin()

ddi_dma_nextseg() ddi_dma_nextcookie()

ddi_dma_segtocookie() ddi_dma_nextcookie()

ddi_dma_setup() ddi_dma_alloc_handle(), ddi_dma_addr_bind_handle(),
ddi_dma_buf_bind_handle()

ddi_dmae_getlim() ddi_dmae_getattr()

Direct Memory Access (DMA) Functions

Writing Device Drivers • March 2012570

TABLE B–5 Deprecated Direct Memory Access (DMA) Functions (Continued)
Deprecated Function Replacement

ddi_iopb_alloc() ddi_dma_mem_alloc()

ddi_iopb_free() ddi_dma_mem_free()

ddi_mem_alloc() ddi_dma_mem_alloc()

ddi_mem_free() ddi_dma_mem_free()

hat_getkpfnum() ddi_dma_addr_bind_handle(),
ddi_dma_buf_bind_handle(), ddi_dma_nextcookie()

User Space Access Functions
The user space access functions are:

ddi_copyin() Copy data to a driver buffer

ddi_copyout() Copy data from a driver

uiomove() Copy kernel data using a uio structure

ureadc() Add character to a uio structure

uwritec() Remove a character from a uio structure

getminor() Get minor device number.

ddi_model_convert_from() Determine a data model type mismatch

IOC_CONVERT_FROM() Determine whether there is a need to translate M_IOCTL
contents

STRUCT_DECL() Establish the handle to application data in a possibly differing
data model

STRUCT_HANDLE() Establish the handle to application data in a possibly differing
data model

STRUCT_INIT() Establish the handle to application data in a possibly differing
data model

STRUCT_SET_HANDLE() Establish the handle to application data in a possibly differing
data model

SIZEOF_PTR() Return the size of pointer in specified data model

SIZEOF_STRUCT() Return the size of a structure in the specified data model

STRUCT_SIZE() Return the size of a structure in the application data model

STRUCT_BUF() Return a pointer to the native mode instance of the structure

User Space Access Functions

Appendix B • Summary of Oracle Solaris DDI/DKI Services 571

STRUCT_FADDR() Return a pointer to the specified field of a structure

STRUCT_FGET() Return the specified field of a structure in the application data
model

STRUCT_FGETP() Return the specified pointer field of a structure in the
application data model

STRUCT_FSET() Set a specified field of a structure in the application data
model

STRUCT_FSETP() Set a specified pointer field of a structure in the application
data model

TABLE B–6 Deprecated User Space Access Functions

Deprecated Function Replacement

copyin() ddi_copyin()

copyout() ddi_copyout()

ddi_getminor() getminor()

User Process Event Functions
The user process event functions are:

pollwakeup() Inform a process that an event has occurred

proc_ref() Get a handle on a process to signal

proc_unref() Release a handle on a process to signal

proc_signal() Send a signal to a process

User Process Information Functions
The user process information functions are:

ddi_get_cred() Return a pointer to the credential structure of the caller

drv_priv() Determine process credentials privilege

ddi_get_pid() Return the process ID

User Process Event Functions

Writing Device Drivers • March 2012572

TABLE B–7 Deprecated User Process Information Functions

Deprecated Functions Replacement

drv_getparm() ddi_get_pid(), ddi_get_cred()

User Application Kernel and Device Access Functions
The user application kernel and device access functions are:

ddi_dev_nregs() Return the number of register sets a device has

ddi_dev_regsize() Return the size of a device's register

ddi_devmap_segmap(), devmap_setup() Set up a user mapping to device memory using
the devmap framework

devmap_devmem_setup() Export device memory to user space

devmap_load() Validate memory address translations

devmap_unload() Invalidate memory address translations

devmap_do_ctxmgt() Perform device context switching on a mapping

devmap_set_ctx_timeout() Set the timeout value for the context management
callback

devmap_default_access() Default driver memory access function

ddi_umem_alloc() Allocate page-aligned kernel memory

ddi_umem_free() Free page-aligned kernel memory

ddi_umem_lock() Lock memory pages

ddi_umem_unlock() Unlock memory pages

ddi_umem_iosetup() Setup I/O requests to application memory

devmap_umem_setup() Export kernel memory to user space

ddi_model_convert_from() Determine data model type mismatch

TABLE B–8 Deprecated User Application Kernel and Device Access Functions

Deprecated Function Replacement

ddi_mapdev() devmap_setup()

ddi_mapdev_intercept() devmap_load()

ddi_mapdev_nointercept() devmap_unload()

User Application Kernel and Device Access Functions

Appendix B • Summary of Oracle Solaris DDI/DKI Services 573

TABLE B–8 Deprecated User Application Kernel and Device Access Functions (Continued)
Deprecated Function Replacement

ddi_mapdev_set_device_acc_attr() devmap()

ddi_segmap() devmap()

ddi_segmap_setup() devmap_setup()

hat_getkpfnum() devmap()

ddi_mmap_get_model() devmap()

Time-Related Functions
The time-related functions are:

ddi_get_lbolt() Return the number of clock ticks since reboot

ddi_get_time() Return the current time in seconds

ddi_periodic_add() Issue nanosecond periodic timeout requests

ddi_periodic_delete() Cancel nanosecond periodic timeout requests

delay() Delay execution for a specified number of clock ticks

drv_hztousec() Convert clock ticks to microseconds

drv_usectohz() Convert microseconds to clock ticks

drv_usecwait() Busy-wait for specified interval

gethrtime() Get high-resolution time

gethrvtime() Get high-resolution LWP virtual time

timeout() Execute a function after a specified length of time

untimeout() Cancel the previous time out function call

drv_getparm() ddi_get_lbolt(), ddi_get_time()

TABLE B–9 Deprecated Time-Related Functions

Deprecated Function Replacement

drv_getparm() ddi_get_lbolt(), ddi_get_time()

Time-Related Functions

Writing Device Drivers • March 2012574

Power Management Functions
The power management functions are:

ddi_removing_power() Check if device loses power with DDI_SUSPEND

pci_report_pmcap() Report the power management capability of a PCI device

pm_busy_component() Mark a component as busy

pm_idle_component() Mark a component as idle

pm_raise_power() Raise the power level of a component

pm_lower_power() Lower the power level of a component

pm_power_has_changed() Notify the power management framework of an autonomous
power level change

pm_trans_check() Device power cycle advisory check

TABLE B–10 Deprecated Power Management Functions

Function Name Description

ddi_dev_is_needed() Inform the system that a device's component is required

pm_create_components() Create power-manageable components

pm_destroy_components() Destroy power-manageable components

pm_get_normal_power() Get the normal power level of a device component

pm_set_normal_power() Set the normal power level of a device component

Fault Management Functions
The fault management functions are:

ddi_fm_init() Allocates and initializes resources based on declared fault
management capabilities

ddi_fm_fini() Cleans up resources that were allocated for this device
instance to support fault management capabilities
declared to ddi_fm_init()

ddi_fm_capable() Returns the capability bit mask currently set for this
device instance

ddi_fm_handler_register() Registers an error handler callback routine with the IO
Fault Management framework

Fault Management Functions

Appendix B • Summary of Oracle Solaris DDI/DKI Services 575

ddi_fm_handler_unregister() Removes an error handler callback routine that was
registered with ddi_fm_handler_register()

ddi_fm_acc_err_get() Returns the error status for an access handle

ddi_fm_dma_err_get() Returns the error status for a DMA handle

ddi_fm_acc_err_clear() Clears the error status for an access handle

ddi_fm_dma_err_clear() Clears the error status for a DMA handle

ddi_fm_ereport_post() Queues an encoded fault management error report
name-value pair list for delivery to the Fault Manager
daemon, fmd(1M)

ddi_fm_service_impact() Reports the impact of an error

pci_ereport_setup() Initializes support for error report generation and sets up
the resources for subsequent accesses to PCI, PCI/X, or
PCI Express configuration space

pci_ereport_teardown() Releases any resources allocated and setup by
pci_ereport_setup() for this device instance

pci_ereport_post() Scans for and posts any PCI, PCI/X, or PCI Express bus
errors

Kernel Statistics Functions
The kernel statistics (kstats) functions are:

kstat_create() Create and initialize a new kstat

kstat_delete() Remove a kstat from the system

kstat_install() Add a fully initialized kstat to the system

kstat_named_init() Initialize a named kstat

kstat_runq_back_to_waitq() Record a transaction migration from run queue to the wait
queue

kstat_runq_enter() Record a transaction addition to the run queue

kstat_runq_exit() Record a transaction removal from the run queue

kstat_waitq_enter() Record a transaction addition to the wait queue

kstat_waitq_exit() Record a transaction removal from the wait queue

kstat_waitq_to_runq() Record a transaction migration from the wait queue to the
run queue

Kernel Statistics Functions

Writing Device Drivers • March 2012576

Kernel Logging and Printing Functions
The kernel logging and printing functions are:

cmn_err(), vcmn_err() Display an error message

ddi_report_dev() Announce a device

strlog() Submit messages to the log driver

ddi_dev_report_fault() Report a hardware failure

scsi_errmsg() Display a SCSI request sense message

scsi_log() Display a SCSI-device-related message

scsi_vu_errmsg() Display a SCSI request sense message

Buffered I/O Functions
The buffered I/O functions are:

physio() Perform physical I/O

aphysio() Perform asynchronous physical I/O

anocancel() Prevent cancellation of an asynchronous I/O request

minphys() Limit the physio() buffer size

biowait() Suspend processes pending completion of block I/O

biodone() Release the buffer after buffer I/O transfer and notify blocked threads

bioerror() Indicate the error in a buffer header

geterror() Return an I/O error

bp_mapin() Allocate virtual address space

bp_mapout() Deallocate virtual address space

disksort() Use a single-direction elevator seek strategy to sort for buffers

getrbuf() Get a raw buffer header

freerbuf() Free a raw buffer header

biosize() Return the size of a buffer structure

bioinit() Initialize a buffer structure

biofini() Uninitialize a buffer structure

Buffered I/O Functions

Appendix B • Summary of Oracle Solaris DDI/DKI Services 577

bioreset() Reuse a private buffer header after I/O is complete

bioclone() Clone another buffer

biomodified() Check whether a buffer is modified

clrbuf() Erase the contents of a buffer

Virtual Memory Functions
The virtual memory functions are:

ddi_btop() Convert device bytes to pages (round down)

ddi_btopr() Convert device bytes to pages (round up)

ddi_ptob() Convert device pages to bytes

btop() Convert size in bytes to size in pages (round down)

btopr() Convert size in bytes to size in pages (round up)

ptob() Convert size in pages to size in bytes

TABLE B–11 Deprecated Virtual Memory Functions

Deprecated Functions Replacement

hat_getkpfnum() devmap(), ddi_dma_*_bind_handle(),
ddi_dma_nextcookie()

Device ID Functions
The device ID functions are:

ddi_devid_init() Allocate a device ID structure

ddi_devid_free() Free a device ID structure

ddi_devid_register() Register a device ID

ddi_devid_unregister() Unregister a device ID

ddi_devid_compare() Compare two device IDs

ddi_devid_sizeof() Return the size of a device ID

ddi_devid_valid() Validate a device ID

ddi_devid_str_encode() Encode a device ID and minor_name into a null-terminated
ASCII string; return a pointer to that string

Virtual Memory Functions

Writing Device Drivers • March 2012578

ddi_devid_str_decode() Decode the device ID and minor_name from a previously
encoded string; allocate and return pointers to the extracted
parts

ddi_devid_str_free() Free all strings returned by the ddi_devid_* functions

SCSI Functions
The SCSI functions are:

scsi_probe() Probe a SCSI device

scsi_unprobe() Free resources allocated during initial probing

scsi_alloc_consistent_buf() Allocate an I/O buffer for SCSI DMA

scsi_free_consistent_buf() Free a previously allocated SCSI DMA I/O buffer

scsi_init_pkt() Prepare a complete SCSI packet

scsi_destroy_pkt() Free an allocated SCSI packet and its DMA resource

scsi_setup_cdb() Set up SCSI command descriptor block (CDB)

scsi_transport() Start a SCSI command

scsi_poll() Run a polled SCSI command

scsi_ifgetcap() Get SCSI transport capability

scsi_ifsetcap() Set SCSI transport capability

scsi_sync_pkt() Synchronize CPU and I/O views of memory

scsi_abort() Abort a SCSI command

scsi_reset() Reset a SCSI bus or target

scsi_reset_notify() Notify the target driver of bus resets

scsi_cname() Decode a SCSI command

scsi_dname() Decode a SCSI peripheral device type

scsi_mname() Decode a SCSI message

scsi_rname() Decode a SCSI packet completion reason

scsi_sname() Decode a SCSI sense key

scsi_errmsg() Display a SCSI request sense message

scsi_log() Display a SCSI-device-related message

SCSI Functions

Appendix B • Summary of Oracle Solaris DDI/DKI Services 579

scsi_vu_errmsg() Display a SCSI request sense message

scsi_hba_init() SCSI HBA system initialization routine

scsi_hba_fini() SCSI HBA system completion routine

scsi_hba_attach_setup() SCSI HBA attach routine

scsi_hba_detach() SCSI HBA detach routine

scsi_hba_probe() Default SCSI HBA probe function

scsi_hba_tran_alloc() Allocate a transport structure

scsi_hba_tran_free() Free a transport structure

scsi_hba_pkt_alloc() Allocate a scsi_pkt structure

scsi_hba_pkt_free() Free a scsi_pkt structure

scsi_hba_lookup_capstr() Return an index matching capability string

TABLE B–12 Deprecated SCSI Functions

Deprecated Function Replacement

free_pktiopb() scsi_free_consistent_buf()

get_pktiopb() scsi_alloc_consistent_buf()

makecom_g0() scsi_setup_cdb()

makecom_g0_s() scsi_setup_cdb()

makecom_g1() scsi_setup_cdb()

makecom_g5() scsi_setup_cdb()

scsi_dmafree() scsi_destroy_pkt()

scsi_dmaget() scsi_init_pkt()

scsi_hba_attach() scsi_hba_attach_setup()

scsi_pktalloc() scsi_init_pkt()

scsi_pktfree() scsi_destroy_pkt()

scsi_resalloc() scsi_init_pkt()

scsi_resfree() scsi_destroy_pkt()

scsi_slave() scsi_probe()

scsi_unslave() scsi_unprobe()

SCSI Functions

Writing Device Drivers • March 2012580

Resource Map Management Functions
The resource map management functions are:

rmallocmap() Allocate a resource map

rmallocmap_wait() Allocate a resource map, wait if necessary

rmfreemap() Free a resource map

rmalloc() Allocate space from a resource map

rmalloc_wait() Allocate space from a resource map, wait if necessary

rmfree() Free space back into a resource map

System Global State
ddi_in_panic() Determine whether the system is in panic state

Utility Functions
The utility functions are:

nulldev() Zero return function

nodev() Error return function

nochpoll() Error return function for non-pollable devices

ASSERT() Expression verification

bcopy() Copy data between address locations in the kernel

bzero() Clear memory for a given number of bytes

bcmp() Compare two byte arrays

ddi_ffs() Find the first bit set in a long integer

ddi_fls() Find the last bit set in a long integer

swab() Swap bytes in 16-bit halfwords

strcmp() Compare two null-terminated strings

strncmp() Compare two null-terminated strings, with length limit

strlen() Determine the number of non-null bytes in a string

Utility Functions

Appendix B • Summary of Oracle Solaris DDI/DKI Services 581

strnlen() (Available starting with SXCE build 88) Determine the number of
non-null bytes in a string, with length limit

strcpy() Copy a string from one location to another

strncpy() Copy a string from one location to another, with length limit

strchr() Find a character in a string

sprintf(), vsprintf() Format characters in memory

numtos() Convert an integer to a decimal string

stoi() Convert a decimal string to an integer

max() Return the larger of two integers

min() Return the lesser of two integers

va_arg() Finds the next value in a variable argument list

va_copy() Copies the state of a variable argument list

va_end() Deletes pointer to a variable argument list

va_start() Finds the pointer to the start of a variable argument list

Utility Functions

Writing Device Drivers • March 2012582

Making a Device Driver 64-Bit Ready

This appendix provides information for device driver writers who are converting their device
drivers to support the 64-bit kernel. It presents the differences between 32-bit and 64-bit device
drivers and describes the steps to convert 32-bit device drivers to 64-bit. This information is
specific to regular character and block device drivers only.

This appendix provides information on the following subjects:

■ “Introduction to 64-Bit Driver Design” on page 583
■ “General Conversion Steps” on page 584
■ “Well Known ioctl Interfaces” on page 591

Introduction to 64-Bit Driver Design
For drivers that only need support for the 32-bit kernel, existing 32-bit device drivers will
continue to work without recompilation. However, most device drivers require some changes
to run correctly in the 64-bit kernel, and all device drivers require recompilation to create a
64-bit driver module. The information in this appendix will help you to enable drivers for 32-bit
and 64-bit environments to be generated from common source code, thus increasing code
portability and reducing the maintenance effort.

Before starting to modify a device driver for the 64-bit environment, you should understand
how the 32-bit environment differs from the 64-bit environment. In particular, you must be
familiar with the C language data type models ILP32 and LP64. See the following table.

TABLE C–1 Comparison of ILP32 and LP64 Data Types

C Type ILP32 LP64

char 8 8

short 16 16

CA P P E N D I X C

583

TABLE C–1 Comparison of ILP32 and LP64 Data Types (Continued)
C Type ILP32 LP64

int 32 32

long 32 64

long long 64 64

float 32 32

double 64 64

long double 96 128

pointer 32 64

The driver-specific issues due to the differences between ILP32 and LP64 are the subject of this
appendix.

In addition to general code cleanup to support the data model changes for LP64, driver writers
have to provide support for both 32-bit and 64-bit applications.

The ioctl(9E), devmap(9E), and mmap(9E) entry points enable data structures to be shared
directly between applications and device drivers. If those data structures change size between
the 32-bit and 64-bit environments, then the entry points must be modified so that the driver
can determine whether the data model of the application is the same as that of the kernel. When
the data models differ, data structures can be adjusted. See “I/O Control Support for 64-Bit
Capable Device Drivers” on page 280, “32-bit and 64-bit Data Structure Macros” on page 283,
and “Associating Kernel Memory With User Mappings” on page 182.

In many drivers, only a few ioctls need this kind of handling. The other ioctls should work
without change as long as these ioctls pass data structures that do not change in size.

General Conversion Steps
The sections below provide information on converting drivers to run in a 64-bit environment.
Driver writers might need to perform one or more of the following tasks:

1. Use fixed-width types for hardware registers.
2. Use fixed-width common access functions.
3. Check and extend use of derived types.
4. Check changed fields within DDI data structures.
5. Check changed arguments of DDI functions.
6. Modify the driver entry points that handle user data, where needed.
7. Check structures that use 64-bit long types on x86 platforms.

These steps are explained in detail below.

General Conversion Steps

Writing Device Drivers • March 2012584

After each step is complete, fix all compiler warnings, and use lint to look for other problems.
The SC5.0 (or newer) version of lint should be used with -Xarch=v9 and -errchk=longptr64

specified to find 64-bit problems.

Note – Do not ignore compilation warnings during conversion for LP64. Warnings that were
safe to ignore previously in the ILP32 environment might now indicate a more serious problem.

After all the steps are complete, compile and test the driver as both a 32-bit and 64-bit module.

Use Fixed-Width Types for Hardware Registers
Many device drivers that manipulate hardware devices use C data structures to describe the
layout of the hardware. In the LP64 data model, data structures that use long or unsigned long
to define hardware registers are almost certainly incorrect, because long is now a 64-bit
quantity. Start by including <sys/inttypes.h>, and update this class of data structure to use
int32_t or uint32_t instead of long for 32-bit device data. This approach preserves the binary
layout of 32-bit data structures. For example, change:

struct device_regs {

ulong_t addr;

uint_t count;

}; /* Only works for ILP32 compilation */

to:

struct device_regs {

uint32_t addr;

uint32_t count;

}; /* Works for any data model */

Use Fixed-Width Common Access Functions
The Oracle Solaris DDI allows device registers to be accessed by access functions for portability
to multiple platforms. Previously, the DDI common access functions specified the size of data in
terms of bytes, words, and so on. For example, ddi_getl(9F) is used to access 32-bit quantities.
This function is not available in the 64-bit DDI environment, and has been replaced by versions
of the function that specify the number of bits to be acted on.

These routines were added to the 32-bit kernel in the Solaris 2.6 operating environment, to
enable their early adoption by driver writers. For example, to be portable to both 32-bit and
64-bit kernels, the driver must use ddi_get32(9F) to access 32-bit data rather than
ddi_getl(9F).

All common access routines are replaced by their fixed-width equivalents. See the
ddi_get8(9F), ddi_put8(9F), ddi_rep_get8(9F), and ddi_rep_put8(9F) man pages for details.

General Conversion Steps

Appendix C • Making a Device Driver 64-Bit Ready 585

Check and Extend Use of Derived Types
System-derived types, such as size_t, should be used where possible so that the resulting
variables make sense when passed between functions. The new derived types uintptr_t or
intptr_t should be used as the integral type for pointers.

Fixed-width integer types are useful for representing explicit sizes of binary data structures or
hardware registers, while fundamental C language data types, such as int, can still be used for
loop counters or file descriptors.

Some system-derived types represent 32-bit quantities on a 32-bit system but represent 64-bit
quantities on a 64-bit system. Derived types that change size in this way include: clock_t,
daddr_t, dev_t, ino_t, intptr_t, off_t, size_t, ssize_t, time_t, uintptr_t, and
timeout_id_t.

When designing drivers that use these derived types, pay particular attention to the use of these
types, particularly if the drivers are assigning these values to variables of another derived type,
such as a fixed-width type.

Check Changed Fields in DDI Data Structures
The data types of some of the fields within DDI data structures, such as buf(9S), have been
changed. Drivers that use these data structures should make sure that these fields are being used
appropriately. The data structures and the fields that were changed in a significant way are listed
below.

buf Structure Changes
The fields listed below pertain to transfer size, which can now exceed more than 4 Gbytes.

size_t b_bcount; /* was type unsigned int */

size_t b_resid; /* was type unsigned int */

size_t b_bufsize; /* was type long */

ddi_dma_attr
The ddi_dma_attr(9S) structure defines attributes of the DMA engine and the device. Because
these attributes specify register sizes, fixed-width data types have been used instead of
fundamental types.

ddi_dma_cookie Structure Changes
uint32_t dmac_address; /* was type unsigned long */

size_t dmac_size; /* was type u_int */

The ddi_dma_cookie(9S) structure contains a 32-bit DMA address, so a fixed-width data type
has been used to define the address. The size has been redefined as size_t.

General Conversion Steps

Writing Device Drivers • March 2012586

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sddi-dma-attr-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sddi-dma-cookie-9s

csi_arq_status Structure Changes
uint_t sts_rqpkt_state; /* was type u_long */

uint_t sts_rqpkt_statistics; /* was type u_long */

These fields in the structure do not need to grow and have been redefined as 32-bit quantities.

scsi_pkt Structure Changes
uint_t pkt_flags; /* was type u_long */

int pkt_time; /* was type long */

ssize_t pkt_resid; /* was type long */

uint_t pkt_state; /* was type u_long */

uint_t pkt_statistics; /* was type u_long */

Because the pkt_flags, pkt_state, and pkt_statistics fields in the scsi_pkt(9S) structure
do not need to grow, these fields have been redefined as 32-bit integers. The data transfer size
pkt_resid field does grow and has been redefined as ssize_t.

Check Changed Arguments of DDI Functions
This section describes the DDI function argument data types that have been changed.

getrbuf() Argument Changes
struct buf *getrbuf(int sleepflag);

In previous releases, sleepflag was defined as a type long.

drv_getparm() Argument Changes
int drv_getparm(unsigned int parm, void *value_p);

In previous releases, value_p was defined as type unsigned long. In the 64-bit kernel,
drv_getparm(9F) can fetch both 32-bit and 64-bit quantities. The interface does not define data
types of these quantities, and simple programming errors can occur.

The following new routines offer a safer alternative:

clock_t ddi_get_lbolt(void);

time_t ddi_get_time(void);

cred_t *ddi_get_cred(void);

pid_t ddi_get_pid(void);

Driver writers are strongly urged to use these routines instead of drv_getparm(9F).

delay() and timeout() Argument Changes
void delay(clock_t ticks);

timeout_id_t timeout(void (*func)(void *), void *arg, clock_t ticks);

General Conversion Steps

Appendix C • Making a Device Driver 64-Bit Ready 587

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sscsi-pkt-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdrv-getparm-9f

The ticks argument to the delay(9F) and timeout(9F) routines has been changed from long to
clock_t.

rmallocmap() and rmallocmap_wait() Argument Changes
struct map *rmallocmap(size_t mapsize);

struct map *rmallocmap_wait(size_t mapsize);

The mapsize argument to the rmallocmap(9F) and rmallocmap_wait(9F) routines has been
changed from ulong_t to size_t.

scsi_alloc_consistent_buf() Argument Changes
struct buf *scsi_alloc_consistent_buf(struct scsi_address *ap,

struct buf *bp, size_t datalen, uint_t bflags,

int (*callback)(caddr_t), caddr_t arg);

In previous releases, datalen was defined as an int and bflags was defined as a ulong.

uiomove() Argument Changes
int uiomove(caddr_t address, size_t nbytes,

enum uio_rw rwflag, uio_t *uio_p);

The nbytes argument was defined as a type long, but because nbytes represents a size in bytes,
size_t is more appropriate.

cv_timedwait() and cv_timedwait_sig() Argument Changes
int cv_timedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t timeout);

int cv_timedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t timeout);

In previous releases, the timeout argument to the cv_timedwait(9F) and
cv_timedwait_sig(9F) routines was defined to be of type long. Because these routines
represent time in ticks, clock_t is more appropriate.

ddi_device_copy() Argument Changes
int ddi_device_copy(ddi_acc_handle_t src_handle,

caddr_t src_addr, ssize_t src_advcnt,

ddi_acc_handle_t dest_handle, caddr_t dest_addr,

ssize_t dest_advcnt, size_t bytecount, uint_t dev_datasz);

The src_advcnt, dest_advcnt, dev_datasz arguments have changed type. These arguments were
previously defined as long, long, and ulong_t respectively.

ddi_device_zero() Argument Changes
int ddi_device_zero(ddi_acc_handle_t handle,

caddr_t dev_addr, size_t bytecount, ssize_t dev_advcnt,

uint_t dev_datasz):

General Conversion Steps

Writing Device Drivers • March 2012588

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdelay-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Ftimeout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Frmallocmap-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Frmallocmap-wait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-timedwait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fcv-timedwait-sig-9f

In previous releases, dev_advcnt was defined as a type long and dev_datasz as a ulong_t.

ddi_dma_mem_alloc() Argument Changes
int ddi_dma_mem_alloc(ddi_dma_handle_t handle,

size_t length, ddi_device_acc_attr_t *accattrp,

uint_t flags, int (*waitfp)(caddr_t), caddr_t arg,

caddr_t *kaddrp, size_t *real_length,

ddi_acc_handle_t *handlep);

In previous releases, length, flags, and real_length were defined with types uint_t, ulong_t, and
uint_t *.

Modify Routines That Handle Data Sharing
If a device driver shares data structures that contain longs or pointers with a 32-bit application
using ioctl(9E), devmap(9E), or mmap(9E), and the driver is recompiled for a 64-bit kernel, the
binary layout of data structures will be incompatible. If a field is currently defined in terms of
type long and 64-bit data items are not used, change the data structure to use data types that
remain as 32-bit quantities (int and unsigned int). Otherwise, the driver needs to be aware of
the different structure shapes for ILP32 and LP64 and determine whether a model mismatch
between the application and the kernel has occurred.

To handle potential data model differences, the ioctl(), devmap(), and mmap() driver entry
points, which interact directly with user applications, need to be written to determine whether
the argument came from an application using the same data model as the kernel.

Data Sharing in ioctl()
To determine whether a model mismatch exists between the application and the driver, the
driver uses the FMODELS mask to determine the model type from the ioctl() mode argument.
The following values are OR-ed into mode to identify the application data model:

■ FLP64 – Application uses the LP64 data model
■ FILP32 – Application uses the ILP32 data model

The code examples in “I/O Control Support for 64-Bit Capable Device Drivers” on page 280
show how this situation can be handled using ddi_model_convert_from(9F).

Data Sharing in devmap()
To enable a 64-bit driver and a 32-bit application to share memory, the binary layout generated
by the 64-bit driver must be the same as the layout consumed by the 32-bit application. The
mapped memory being exported to the application might need to contain
data-model-dependent data structures.

General Conversion Steps

Appendix C • Making a Device Driver 64-Bit Ready 589

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Emmap-9e

Few memory-mapped devices face this problem because the device registers do not change size
when the kernel data model changes. However, some pseudo-devices that export mappings to
the user address space might want to export different data structures to ILP32 or LP64
applications. To determine whether a data model mismatch has occurred, devmap(9E) uses the
model parameter to describe the data model expected by the application. The model parameter
is set to one of the following values:
■ DDI_MODEL_ILP32 – The application uses the ILP32 data model
■ DDI_MODEL_LP64 – The application uses the LP64 data model

The model parameter can be passed untranslated to the ddi_model_convert_from(9F) routine
or to STRUCT_INIT(). See “32-bit and 64-bit Data Structure Macros” on page 283.

Data Sharing in mmap()
Because mmap(9E) does not have a parameter that can be used to pass data model information,
the driver's mmap(9E) entry point can be written to use the new DDI function
ddi_model_convert_from(9F). This function returns one of the following values to indicate the
application's data type model:
■ DDI_MODEL_ILP32 – Application expects the ILP32 data model
■ DDI_MODEL_ILP64 – Application expects the LP64 data model
■ DDI_FAILURE – Function was not called from mmap(9E)

As with ioctl() and devmap(), the model bits can be passed to ddi_model_convert_from(9F)
to determine whether data conversion is necessary, or the model can be handed to
STRUCT_INIT().

Alternatively, migrate the device driver to support the devmap(9E) entry point.

Check Structures with 64-bit Long Data Types on
x86-Based Platforms
You should carefully check structures that use 64-bit long types, such as uint64_t, on the x86
platforms. The alignment and size can differ between compilation in 32-bit mode versus a
64-bit mode. Consider the following example.

#include <studio>

#include <sys>

struct myTestStructure {

uint32_t my1stInteger;

uint64_t my2ndInteger;

};

main()

{

General Conversion Steps

Writing Device Drivers • March 2012590

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Edevmap-9e

struct myTestStructure a;

printf("sizeof myTestStructure is: %d\n", sizeof(a));

printf("offset to my2ndInteger is: %d\n", (uintptr_t)&a.bar - (uintptr_t)&a);

}

On a 32-bit system, this example displays the following results:

sizeof myTestStructure is: 12

offset to my2ndInteger is: 4

Conversely, on a 64-bit system, this example displays the following results:

sizeof myTestStructure is: 16

offset to my2ndInteger is: 8

Thus, the 32-bit application and the 64-bit application view the structure differently. As a result,
trying to make the same structure work in both a 32-bit and 64-bit environment can cause
problems. This situation occurs often, particularly in situations where structures are passed into
and out of the kernel through ioctl() calls.

Well Known ioctl Interfaces
Many ioctl(9E) operations are common to a class of device drivers. For example, most disk
drivers implement many of the dkio(7I) family of ioctls. Many of these interfaces copy in or
copy out data structures from the kernel, and some of these data structures have changed size in
the LP64 data model. The following section lists the ioctlsthat now require explicit conversion
in 64-bit driver ioctl routines for the dkio, fbio(7I), cdio(7I), and mtio(7I) families of
ioctls.

ioctl command Affected data structure Reference

DKIOCGAPART

DKIOCSAPART

dk_map

dk_allmap

dkio(7I)

DKIOGVTOC

DKIOSVTOC

partition

vtoc

dkio(7I)

FBIOPUTCMAP

FBIOGETCMAP

fbcmap fbio(7I)

FBIOPUTCMAPI

FBIOGETCMAPI

fbcmap_i fbio(7I)

FBIOCCURSOR

FBIOSCURSOR

fbcursor fbio(7I)

Well Known ioctl Interfaces

Appendix C • Making a Device Driver 64-Bit Ready 591

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eioctl-9e
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7dkio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7fbio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7cdio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7mtio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7dkio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7dkio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7fbio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7fbio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7fbio-7i

ioctl command Affected data structure Reference

CDROMREADMODE1

CDROMREADMODE2

cdrom_read cdio(7I)

CDROMCDDA cdrom_cdda cdio(7I)

CDROMCDXA cdrom_cdxa cdio(7I)

CDROMSUBCODE cdrom_subcode cdio(7I)

MTIOCTOP mtop mtio(7I)

MTIOCGET mtget mtio(7I)

MTIOCGETDRIVETYPE mtdrivetype_request mtio(7I)

USCSICMD uscsi_cmd scsi_free_consistent_buf(9F)

Device Sizes
The nblocks property is exported by each slice of a block device driver. This property contains
the number of 512-byte blocks that each slice of the device can support. The nblocks property is
defined as a signed 32-bit quantity, which limits the maximum size of a slice to 1 Tbyte.

Disk devices that provide more than 1 Tbyte of storage per disk must define the Nblocks
property, which should still contain the number of 512 byte blocks that the device can support.
However, Nblocks is a signed 64-bit quantity, which removes any practical limit on disk space.

The nblocks property is now deprecated. All disk devices should provide the Nblocks property.

Well Known ioctl Interfaces

Writing Device Drivers • March 2012592

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7cdio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7cdio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7cdio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7cdio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7mtio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7mtio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7mtio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fscsi-free-consistent-buf-9f

Console Frame Buffer Drivers

Drivers for frame buffers that are used for the system console must provide interfaces to enable
the system to display text on the console. The Oracle Solaris OS provides enhanced visual I/O
interfaces to enable the kernel terminal emulator to display text directly on the console frame
buffer. This appendix describes how to add the necessary interfaces to a frame buffer driver to
enable the driver to interact with the Oracle Solaris kernel terminal emulator.

Oracle Solaris Consoles and the Kernel Terminal Emulator
The role of the kernel terminal emulator is to render text onto the console frame buffer in the
proper position and representation determined by the frame buffer's screen height, width, and
pixel depth mode. The terminal emulator also drives scrolling, controls a software cursor, and
interprets ANSI terminal escape sequences. The terminal emulator accesses the console frame
buffer in either VGA text mode or pixel mode, depending upon the graphics card. To be used as
a Oracle Solaris console frame buffer driver, your frame buffer driver must be compatible with
the Oracle Solaris kernel terminal emulator. The target platform is the most significant factor
that determines whether you need to modify your frame buffer driver to make your driver
compatible with the Oracle Solaris kernel terminal emulator.

■ x86 platforms – Console frame buffer drivers do not need to be modified because x86
console frame buffer drivers already support the console frame buffer interfaces.

■ SPARC platforms – Console frame buffer drivers should use the interfaces described in this
appendix to enable the driver to interact with the Oracle Solaris kernel terminal emulator.

x86 Platform Console Communication
On x86 platforms, the Oracle Solaris kernel terminal emulator module (tem) uses VGA text
mode exclusively to interact with the vgatext module. The vgatext module uses industry
standard VGA text mode to interact with x86 compatible frame buffer devices. Because the

DA P P E N D I X D

593

vgatext module already supports the console frame buffer interfaces, x86 frame buffer drivers
are compatible with the kernel tem module. You do not need to add special interfaces to x86
frame buffer drivers.

The remainder of this appendix applies to SPARC platforms only.

SPARC Platform Console Communication
SPARC frame buffer drivers typically do not operate in VGA text mode. SPARC frame buffer
drivers typically are required to send pixel patterns that depict the text and images displayed.
The kernel tem requires SPARC drivers to support specific interfaces to facilitate rendering data
to the screen, perform scrolling, and display a text cursor. How the driver actually renders data
sent from the tem onto the screen depends on the device. The driver typically draws the data
into video memory according to the hardware and video mode.

The Oracle Solaris OS provides interfaces that enable the kernel terminal emulator to drive
compatible console frame buffers directly. The advantages of converting a driver to be
compatible with the kernel terminal emulator are:

■ Dramatically improved performance, particularly for scrolling
■ Enhanced ANSI text color capabilities
■ The ability to start a login session on the console frame buffer even when the system console

stream is directed out the serial port

SPARC console frame buffer drivers are not required to be compatible with the kernel terminal
emulator. If the console frame buffer driver is not compatible with the kernel terminal
emulator, the system uses the FCode terminal emulator in the OpenBoot PROM.

The console frame buffer is identified through the EEPROM screen environment variable. The
system determines whether the console frame buffer is compatible with the kernel terminal
emulator module by checking whether the frame buffer driver exports the tem-support DDI
property. If the tem-support property is exported, then the system issues the VIS_DEVINIT I/O
control (ioctl) command to the frame buffer driver during system boot, while configuring the
console. If the tem-support DDI property is exported and the VIS_DEVINIT ioctl command
succeeds and returns a compatible version number to the tem, the system configures the system
console to utilize that frame buffer driver through the kernel terminal emulator. See the
ioctl(9E) man page for information about the I/O control driver entry point.

SPARC drivers that support the kernel terminal emulator should export the tem-support DDI
property. This property indicates that the driver supports the kernel terminal emulator. If a
frame buffer driver exports the tem-support DDI property, then that driver will be handled
early in the boot process, while the console is being configured. If a frame buffer driver does not
export the tem-support property, then that driver might not be handled early enough in the
boot process.

Oracle Solaris Consoles and the Kernel Terminal Emulator

Writing Device Drivers • March 2012594

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eioctl-9e

tem-support When set to 1, this DDI property indicates that this driver is compatible with
the console kernel frame buffer interface.

The kernel terminal emulator module interacts with the console frame buffer driver through
two major interfaces:

■ Through ioctl interfaces during normal system operation
■ Through polled I/O interfaces during standalone mode

The following section provides detailed information.

Console Visual I/O Interfaces
The kernel terminal emulator interacts with the console frame buffer driver through two
interfaces. During normal system activity (after a successful boot of the system),
communication between the kernel terminal emulator and the console frame buffer driver is
through ioctl interfaces. During standalone mode (before system boot or during debugging),
communication between the kernel terminal emulator and the console frame buffer driver is
through polled I/O interfaces. All activity between the kernel terminal emulator and the console
frame buffer driver is initiated by the kernel terminal emulator, with the exception of a callback
function used by the console frame buffer driver to notify the kernel terminal emulator of
changes in the video mode.

The console visual I/O interfaces are documented in detail in the visual_io(7I) man page. For
more information on the video mode change callback function, see “Video Mode Change
Callback Interface” on page 596.

I/O Control Interfaces
During normal system activity, the kernel terminal emulator communicates with the console
frame buffer driver through the ioctl interfaces listed in the following table:

ioctlName Corresponding Data Structure Description

VIS_DEVINIT vis_devinit Initializes the session between the
terminal emulator module and the
frame buffer. See “VIS_DEVINIT”
on page 597.

VIS_DEVFINI Not Applicable Terminates the session between the
terminal emulator module and the
frame buffer. See “VIS_DEFINI” on
page 599.

Console Visual I/O Interfaces

Appendix D • Console Frame Buffer Drivers 595

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7visual-io-7i

ioctlName Corresponding Data Structure Description

VIS_CONSDISPLAY vis_consdisplay Displays pixels as a rectangle. See
“VIS_CONSDISPLAY” on page 600.

VIS_CONSCOPY vis_conscopy Copies a rectangle of pixels (scroll).
See “VIS_CONSCOPY” on page 601.

VIS_CONSCURSOR vis_conscursor Displays or hides a text cursor. See
“VIS_CONSCURSOR” on page 601.

VIS_PUTCMAP vis_cmap Sends the terminal emulator
module color map to the frame
buffer driver. See “VIS_PUTCMAP”
on page 602.

VIS_GETCMAP vis_cmap Reads the terminal emulator
module color map from the frame
buffer. See “VIS_GETCMAP” on
page 603.

Polled I/O Interfaces
The polled I/O interfaces provide the same functionality as the VIS_CONSDISPLAY,
VIS_CONSCOPY, and VIS_CONSCURSOR ioctl interfaces. The polled I/O interfaces are called only
when the operating system is quiesced and in standalone mode. See “Implementing Polled I/O
in Console Frame Buffer Drivers” on page 603 for more information.

While in standalone mode, the kernel terminal emulator communicates with the console frame
buffer driver through the polled I/O interfaces listed in the following table:

Polled I/O Function Corresponding Data Structure Description

(*display)() vis_consdisplay Displays pixels as a rectangle.

(*copy)() vis_conscopy Copies a rectangle of pixels (scroll).

(*cursor)() vis_conscursor Displays or hides a text cursor.

Video Mode Change Callback Interface
The console frame buffer driver and the kernel terminal emulator must be in agreement about
the video mode at all times. Video mode includes the console screen height, width, and depth in
pixels. Video mode also includes whether communication between the kernel terminal
emulator and the console frame buffer is in VGA text mode or pixel mode.

Console Visual I/O Interfaces

Writing Device Drivers • March 2012596

In order for the console frame buffer driver to notify the kernel terminal emulator of changes in
the video mode, the console frame buffer driver is initialized with the address of the
(*modechg_cb)() kernel terminal emulator callback function described in the following table:

Callback Function Corresponding Data Structures Description

(*modechg_cb)() vis_modechg_arg

vis_devinit

Keep the terminal emulator
module synchronized with the
driver video mode (screen height,
width, and pixel depth).

Implementing the Visual I/O Interfaces in Console Frame
Buffer Drivers

Except for the video mode change callback, all activity between the driver and the kernel
terminal emulator is initiated by the tem (terminal emulator module). This means that the tem
issues all of the ioctl commands described in this document. The following sections provide
implementation details for each ioctl command. For more information, see the visual_io(7I)
man page and the /usr/include/sys/visual_io.h include file. See “Video Mode Change
Callback Interface” on page 596 for detailed information about the video mode change callback
function.

Note – Each ioctl command should determine whether the FKIOCTL is set in the ioctl flag
argument and return EPERM if that bit is not set.

VIS_DEVINIT
The VIS_DEVINIT ioctl command initializes the frame buffer driver as the system console
device. This ioctl passes the address of a vis_devinit structure.

The tem first loads the address of its video mode change callback function into the modechg_cb
field of the vis_devinit structure and loads its soft state into the modechg_arg field. The tem
then issues the VIS_DEVINIT ioctl command. The frame buffer driver then initializes itself and
returns a summary of its configuration back to the tem by setting the version, width, height,
linebytes, depth, mode, and polledio fields in the vis_devinit structure. The vis_devinit
structure is shown in the following code.

struct vis_devinit {

/*

* This set of fields are used as parameters passed from the

* layered frame buffer driver to the terminal emulator.

*/

Implementing the Visual I/O Interfaces in Console Frame Buffer Drivers

Appendix D • Console Frame Buffer Drivers 597

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN7visual-io-7i

int version; /* Console IO interface rev */

screen_size_t width; /* Width of the device */

screen_size_t height; /* Height of the device */

screen_size_t linebytes; /* Bytes per scan line */

int depth; /* Device depth */

short mode; /* Display mode Mode */

struct vis_polledio *polledio; /* Polled output routines */

/*

* The following fields are used as parameters passed from the

* terminal emulator to the underlying frame buffer driver.

*/

vis_modechg_cb_t modechg_cb; /* Video mode change callback */

struct vis_modechg_arg *modechg_arg; /* Mode change cb arg */

};

To implement the VIS_DEVINIT ioctl command in the console frame buffer driver, follow
these general steps:

1. Define a struct to contain the console-specific state. This structure is private to the console
frame buffer driver. This structure is referred to as consinfo in this appendix. The consinfo
structure contains information such as:
■ Current size of the blit buffer
■ Pointer to the blit buffer
■ Color map information
■ Driver rendering mode information such as line pitch
■ Background color
■ Video memory address
■ Terminal emulator callback address

2. Allocate memory:
a. Allocate a blit buffer large enough to store a reasonable default sized rectangle of pixels at

the highest video depth. Additional memory can be allocated if an incoming request
exceeds the size of the buffer. The frame buffer driver's largest font is 12×22. Assuming
DEFAULT_HEIGHT is 12, DEFAULT_WIDTH is 22, and the maximum video depth is 32, the
buffer size should be 8448 bytes (DEFAULT_HEIGHT × DEFAULT_WIDTH × 32).

b. Allocate a vis_polledio structure.
c. Allocate a buffer to hold a cursor. This buffer should be the size of the largest character.

This buffer will not change size.
3. Obtain the video change callback address and callback context of the tem from modechg_cb

and modechg_ctx and store this information in the consinfo structure.
4. Populate the vis_polledio structure with entry point addresses for the polled display, copy,

and cursor functions.
5. Provide the appropriate information in the fields of the vis_devinit structure that was

passed to the driver by the tem:
a. Set the version field to VIS_CONS_REV, which is a constant defined in the

/usr/include/sys/visual_io.h header file.
b. Set the mode field to VIS_PIXEL.

Implementing the Visual I/O Interfaces in Console Frame Buffer Drivers

Writing Device Drivers • March 2012598

c. Set the polledio field to the address of the vis_polledio structure.
d. Set the height field to the video mode height in pixels.
e. Set the width field to the video mode width in pixels.
f. Set the depth field to the frame buffer pixel depth in bytes (for example, a 32-bit pixel

depth would be 4 bytes).
g. Set the linebytes field to the value of height × width × depth.

This information is sent from the driver to the tem by using the vis_devinit structure.
This information tells the terminal emulator how to render information and pass it to
the graphics driver.

Whenever the console frame buffer driver changes its video mode (specifically height,
width, or depth), the driver must call the video mode change callback function of the tem to
update the vis_devinit structure and to pass this structure back to the terminal emulator.
The terminal emulator passes its mode change callback function address in the modechg_cb
field of the vis_devinit structure. The mode change callback function has the following
function signature:

typedef void (*vis_modechg_cb_t)

(struct vis_modechg_arg *, struct vis_devinit *);

As shown in the preceding typedef, the mode change callback function takes two
arguments. The first argument is the modechg_arg and the second argument is the
vis_devinit structure. The modechg_arg is sent from the tem to the driver during the
VIS_DEVINIT ioctl command initialization. The driver must send the modechg_arg back to
the tem with each video mode change callback.

6. Initialize the context of the kernel console. Specific requirements vary depending upon the
capability of the graphics device. This initialization might include such steps as setting the
draw engine state, initializing the palette, or locating and mapping video memory or the
rendering engine so that data can be blitted onto the screen.

7. Return the vis_devinit structure to the caller.

VIS_DEFINI
The VIS_DEFINI ioctl command releases the driver's console resources and finishes the
session.

To implement the VIS_DEVFINI ioctl command in the console frame buffer driver, follow
these general steps:

1. Reset the console frame buffer driver state.
2. Clear the polled I/O entry points and the kernel terminal emulator video change function

callback address.
3. Release memory.

Implementing the Visual I/O Interfaces in Console Frame Buffer Drivers

Appendix D • Console Frame Buffer Drivers 599

VIS_CONSDISPLAY
The VIS_CONSDISPLAY ioctl command displays a rectangle of pixels at a specified location.
This display is also referred to as blitting a rectangle. The vis_consdisplay structure contains
the information necessary to render a rectangle at the video depth that both the driver and the
tem are using. The vis_consdisplay structure is shown in the following code.

struct vis_consdisplay {

screen_pos_t row; /* Row (in pixels) to display data at */

screen_pos_t col; /* Col (in pixels) to display data at */

screen_size_t width; /* Width of data (in pixels) */

screen_size_t height; /* Height of data (in pixels) */

unsigned char *data; /* Address of pixels to display */

unsigned char fg_color; /* Foreground color */

unsigned char bg_color; /* Background color */

};

To implement the VIS_CONSDISPLAY ioctl command in the console frame buffer driver, follow
these general steps:

1. Copy the vis_consdisplay structure.

2. Validate the display parameters. Return an error if any of the display parameters is out of
range.

3. Calculate the size of the rectangle to be blitted into video memory. Validate this size against
the size of the blit buffer created during VIS_DEVINIT. Allocate additional memory for the
blit buffer if necessary.

4. Retrieve the blit data. This data has been prepared by the kernel terminal emulator at the
agreed upon pixel depth. That depth is the same pixel depth that was conveyed by the tem
during VIS_DEVINIT. The pixel depth is updated whenever the device driver changes video
modes through callback to the tem. Typical pixel depths are 8-bit color map indexed, and
32-bit TrueColor.

5. Invalidate any user context so that user applications cannot simultaneously access the frame
buffer hardware through user memory mappings. This step is neither allowed nor necessary
in polled I/O mode because user applications are not running. Be sure to hold a lock so that
users cannot restore the mapping through a page fault until the VIS_CONSDISPLAY ioctl
completes.

6. Establish the driver-specific console rendering context.

7. If the frame buffer is running in 8-bit color indexed mode, restore the kernel console color
map that the tem set up through a previous VIS_PUTCMAP ioctl. A lazy color map loading
scheme is recommended to optimize performance. In a lazy scheme, the console frame
buffer only restores colors it has actually used since the VIS_DEVINIT ioctl was issued.

8. Display the data passed from the tem at the pixel coordinates sent by the tem. You might
need to transform the RGB pixel data byte order.

Implementing the Visual I/O Interfaces in Console Frame Buffer Drivers

Writing Device Drivers • March 2012600

VIS_CONSCOPY
The VIS_CONSCOPY ioctl command copies a rectangular region of pixels from one location to
another location. One use for this ioctl is to scroll.

To implement the VIS_CONSCOPY ioctl command in the console frame buffer driver, follow
these general steps:

1. Copy the vis_conscopy structure. The vis_conscopy structure describes the source and
target rectangle sizes and locations.

2. Validate the display parameters. Return an error if any of the display parameters is out of
range.

3. Invalidate any user context so that user applications cannot simultaneously access the frame
buffer hardware through user memory mappings. This step is neither allowed nor necessary
in polled I/O mode because user applications are not running. Be sure to hold a lock so that
users cannot restore the mapping through a page fault until the VIS_CONSDISPLAY ioctl
completes.

4. Call the function to copy the rectangle.

Note – For optimal performance, use the rendering engine of the graphic device to
implement the copy function. You need to decide how to do the context management
within the driver to set up the rendering engine for best performance.

VIS_CONSCURSOR
The VIS_CONSCURSOR ioctl command displays or hides a cursor. The vis_conscursor
structure is shown in the following code.

struct vis_conscursor {

screen_pos_t row; /* Row to display cursor (in pixels) */

screen_pos_t col; /* Col to display cursor (in pixels) */

screen_size_t width; /* Width of cursor (in pixels) */

screen_size_t height; /* Height of cursor (in pixels) */

color_t fg_color; /* Foreground color */

color_t bg_color; /* Background color */

short action; /* Show or Hide cursor */

};

To implement the VIS_CONSCOPY ioctl command in the console frame buffer driver, follow
these general steps:

1. Copy the vis_conscursor structure from the kernel terminal emulator.
2. Validate the display parameters. Return an error if any of the display parameters are out of

range.

Implementing the Visual I/O Interfaces in Console Frame Buffer Drivers

Appendix D • Console Frame Buffer Drivers 601

3. Invalidate any user context so that user applications cannot simultaneously access the frame
buffer hardware through user memory mappings. This step is neither allowed nor necessary
in polled I/O mode because user applications are not running. Be sure to hold a lock so that
users cannot restore the mapping through a page fault until the VIS_CONSDISPLAY ioctl
completes.

4. The terminal emulator can call the VIS_CONSCOPY ioctl with one of the following two
actions: SHOW_CURSOR and HIDE_CURSOR. The following steps describe how to implement
this functionality by reading and writing video memory. You might also be able to use the
rendering engine to do this work. Whether you can use the rendering engine depends on the
frame buffer hardware.

Take these steps to implement the SHOW_CURSOR functionality:

a. Save the pixels within the rectangle where the cursor will be drawn. These saved pixels
will be needed to hide the cursor.

b. Scan all the pixels on the screen bounded by the rectangle where the cursor will be
drawn. Within this rectangle, replace the pixels that match the specified cursor
foreground color (fg_color) with white pixels. Replace the pixels that match the
specified cursor background color (bg_color) with black pixels. The visual effect is of a
black cursor over white text. This method works with any foreground and background
color of text. Attempting to invert colors based upon color map position is not feasible.
More sophisticated strategies, such as attempting color inversion using HSB coloring
(Hue, Saturation, Brightness), are not necessary.

To implement the HIDE_CURSOR functionality, replace the pixels beneath the cursor
rectangle with the pixels saved from the previous SHOW_CURSOR action.

VIS_PUTCMAP
The VIS_PUTCMAP ioctl command establishes the console color map. The terminal emulator
calls this function to set up the color map of the kernel. The vis_cmap structure is shown in the
following code. This structure only applies to 8-bit color indexed mode.

struct vis_cmap {

int index; /* Index into colormap to start updating */

int count; /* Number of entries to update */

unsigned char *red; /* List of red values */

unsigned char *green; /* List of green values */

unsigned char *blue; /* List of blue values */

};

The VIS_PUTCMAP ioctl command is similar to the FBIOPUTCMAP command. The VIS_PUTCMAP
command is specific to the frame buffer terminal-emulator compatible console code.

Implementing the Visual I/O Interfaces in Console Frame Buffer Drivers

Writing Device Drivers • March 2012602

VIS_GETCMAP
The terminal emulator calls the VIS_GETCMAP ioctl command to retrieve the console color
map.

Implementing Polled I/O in Console Frame Buffer Drivers
The polled I/O interfaces are implemented as functions in the driver and are called directly by
the kernel terminal emulator. The driver passes the address of its polled I/O entry points to the
terminal emulator during the execution of the VIS_DEVINIT ioctl command. The
VIS_DEVINIT command is initiated by the terminal emulator.

The vis_polledio structure is shown in the following code.

typedef void * vis_opaque_arg_t;

struct vis_polledio {

struct vis_polledio_arg *arg;

void (*display)(vis_opaque_arg_t, struct vis_consdisplay *);

void (*copy)(vis_opaque_arg_t, struct vis_conscopy *);

void (*cursor)(vis_opaque_arg_t, struct vis_conscursor *);

};

The polled I/O interfaces provide the same functionality as the VIS_CONSDISPLAY,
VIS_CONSCOPY, and VIS_CONSCURSOR ioctl interfaces. The polled I/O interfaces should follow
the same steps that are described above for the respective ioctl commands. The polled I/O
interfaces must very strictly adhere to the additional restrictions that are described in the
remainder of this section.

The polled I/O interfaces are called only when the operating system is quiesced and in
standalone mode. The system enters standalone mode whenever the user enters OpenBoot
PROM or enters the kmdb debugger, or when the system panics. Only one CPU and one thread
are active. All other CPUs and threads are stopped. Timesharing, DDI interrupts, and system
services are turned off.

Standalone mode severely restricts driver functionality but simplifies driver synchronization
requirements. For example, a user application cannot access the console frame buffer driver by
way of the driver's memory mappings from within a polled I/O routine.

In standalone mode, the console frame buffer driver must not perform any of the following
actions:

■ Wait for interrupts
■ Wait for mutexes
■ Allocate memory
■ Use DDI or LDI interfaces
■ Use system services

Implementing Polled I/O in Console Frame Buffer Drivers

Appendix D • Console Frame Buffer Drivers 603

These restrictions are not difficult to obey since the polled I/O functions are relatively simple
operations. For example, when working with the rendering engine, the console frame buffer
driver can poll a bit in the device rather than wait for an interrupt. The driver can use
pre-allocated memory to render blit data. DDI or LDI interfaces should not be needed.

Frame Buffer Specific Configuration Module
When the driver-specific fbconfig() module causes a change in resolution or color depth, that
fbconfig() module must send an ioctl to the frame buffer driver. This ioctl triggers the
frame buffer driver to call the terminal emulator's mode change callback function with the new
screen size and depth. The frame buffer driver and the terminal emulator must agree about the
video mode at all times. When the frame buffer driver and the terminal emulator do not agree
about the video mode, the information on the screen is illegible and meaningless.

The X Window System Frame Buffer Specific DDX Module
When the X Window System exits to the command line, the frame buffer's DDX module must
send an ioctl to the frame buffer driver. This ioctl triggers the frame buffer driver to call the
terminal emulator's mode change callback function. This communication keeps the frame
buffer driver and the terminal emulator in agreement about the video mode if the X Window
System starts and then changes the video resolution before exiting. The frame buffer driver and
the terminal emulator must agree about the video mode at all times. When the frame buffer
driver and the terminal emulator do not agree about the video mode, the information on the
screen is illegible and meaningless.

Developing, Testing, and Debugging Console Frame Buffer
Drivers

Debugging a console frame buffer driver on an active system can be problematic.

■ Errors that are encountered in the early stages of booting the system do not generate a core
dump.

■ Error or informative messages might not be displayed correctly on the screen.
■ USB keyboard input might fail.

This section offers some suggestions to help you develop, test, and debug console frame buffer
drivers.

Frame Buffer Specific Configuration Module

Writing Device Drivers • March 2012604

Testing the I/O Control Interfaces
To test the ioctl commands, create additional ioctl entry points that are callable from a user
application. Be sure to copy in the arguments appropriately. Use the ddi_copyin(9F) and
ddi_copyout(9F) routines to transfer data to and from user address space. Then write an
application to validate rendering, scrolling, and cursor behavior. This way, these ioctl
commands do not affect your console while you develop and test the commands.

To ensure that the ioctl commands are working correctly, boot the system and log in. Check
whether you get expected behavior when you execute commands such as prstat(1M), ls(1),
vi(1), and man(1).

Execute the following script to validate that ANSI color is working correctly:

#!/bin/bash

printf "\n\n\n\e[37;40m Color List \e[m\n\n"
printf "\e[30m Color 30 black\e[m\n"
printf "\e[31m Color 31 red\e[m\n"
printf "\e[32m Color 32 green\e[m\n"
printf "\e[33m Color 33 yellow\e[m\n"
printf "\e[34m Color 34 blue\e[m\n"
printf "\e[35m Color 35 purple\e[m\n"
printf "\e[36m Color 36 cyan\e[m\n"
printf "\e[37m Color 37 white\e[m\n\n"
printf "\e[40m Backlight 40 black \e[m\n"
printf "\e[41m Backlight 41 red \e[m\n"
printf "\e[34;42m Backlight 42 green \e[m\n"
printf "\e[43m Backlight 43 yellow\e[m\n"
printf "\e[37;44m Backlight 44 blue \e[m\n"
printf "\e[45m Backlight 45 purple\e[m\n"
printf "\e[30;46m Backlight 46 cyan \e[m\n"
printf "\e[30;47m Backlight 47 white \e[m\n\n"

Testing the Polled I/O Interfaces
The polled I/O interfaces are only available under the following circumstances:
■ When you enter the OpenBoot PROM by using the L1+A keystroke sequence
■ When you boot the system with a standalone debugger such as kmdb(1)
■ When the system panics

The polled I/O interfaces only become available at a certain point in the boot process. Polled I/O
requests issued from the OpenBoot PROM before the system is running are not rendered.
Similarly, kmdb prompts issued before the console is configured are not rendered.

To test the polled I/O interfaces, enter the OpenBoot PROM by using the L1+A keystroke
sequence. To validate that the polled I/O interfaces are being used, type the following command
at the OpenBoot PROM ok prompt:

ok 1b emit ." [32m This is a test" 1b emit ." [m"

Developing, Testing, and Debugging Console Frame Buffer Drivers

Appendix D • Console Frame Buffer Drivers 605

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-copyin-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fddi-copyout-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1kmdb-1

The polled I/O interfaces are working properly if the following statements are true:

■ The result of the above command is that the phrase This is a test is displayed in green.
■ The OpenBoot PROM continues to function correctly.
■ Scrolling performs as expected.
■ The cursor displays correctly.
■ The system can be reentered and continued repeatedly.

Testing the Video Mode Change Callback Function
To determine whether the video mode change callback function is working properly, log in to
the system and use fbconfig(1M) to change the resolution and depth of the frame buffer
several times. If the console continues to display text properly, the video mode change callback
function is working correctly. The kernel terminal emulator might adjust the font size to
accommodate different screen sizes, but that is not significant to the console frame buffer
driver.

To determine whether the X Window System and the console frame buffer driver interact
correctly, switch between the X Window System and the command line several times while
modifying the X Window System's video resolution and the command line resolution in
different ways. If the X Window System exits and the console characters are not displayed
correctly, either the X Window System did not notify the driver console code that the video
mode changed or the driver did not call the kernel terminal emulator's video mode change
callback function.

Additional Suggestions for Testing Console Frame
Buffer Drivers
During boot, the system sends messages to /var/adm/messages if the system fails to locate or
successfully load a kernel terminal emulator compatible frame buffer driver. To monitor these
messages, type the following command in a separate window:

% tail -f /var/adm/messages

To avoid problems with USB while debugging the driver, change the EEPROM input-device

NVRAM configuration parameter to use a serial port instead of the keyboard. See the
eeprom(1M) man page for more information about this parameter.

Developing, Testing, and Debugging Console Frame Buffer Drivers

Writing Device Drivers • March 2012606

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mfbconfig-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Meeprom-1m

pci.conf File

This section describes the pci.conf file, its uses, and the syntax.

Description
The pci.conf is introduced to save PCI configurations, such as Number of VFs (Virtual
Functions) of a particular PF (Physical Function) on the system. This file has a few purposes:

■ To persist the PCI configuration, so VFs can be created automatically upon boot.
■ Since the configuration file is part of the boot_archive, VFs can be used during the boot.

This file is also used by non-IOV system configurations when VFs are used on bare-metal
systems. Currently, it contains only VF-related configurations. In the future, more PCI bus
specific configuration and even device specific workarounds may make their way to it. Number
of VF configurations is saved in "[System_Configuration]" section, which looks like:

[System Configuration]

[[path=<pf_device_path>]]

num-vf=<num_of_vf>

System Configuration Section
The [System Configuration] section of the file is interpreted by the Oracle Solaris PCIe
framework. Unrecognized keywords are flagged as errors. There is only one [System
Configuration] section in the entire file and it must reside at the beginning of the file.

The [System Configuration] section is comprised of a series of subsections. Each subsection
must have an unique text label, followed by a list of filters enclosed in double square brackets
which matches the device(s) of interest. The content of each subsection is a list of actions that
the framework will take against each matched device. For example:

EA P P E N D I X E

607

[System Configuration]

new_e1kg_driver [[id=0x8086,0x1000,,0x108e,]] [[classcode=0x020000]]

num-vf=4

The filter within the double brackets matches all Intel devices with device ID 0x1000, a Sun
subsystem vendor ID, and network controller class code in the system. Oracle Solaris sets the
device's number of VFs to 4.

Note – Device path can be used in the filter to narrow the scope of the filter to a single device
instance.

Device Configuration Section
The [Device Configuration] section is comprised of the same type of subsections as the [System
Configuration] section with the difference that the content is only interpreted by the drivers of
the devices that match the filter.

Device Configuration]

label must be file-globally unique

igbe-sriov-test [[path=/pci@0,0/network@2]]

number of rx/tx ring pairs for each VF

dma-channel-distribution=2,2,8,4

Syntax
/etc/pci.conf = <system section><device section>

<system section> = "[System_Configuration]" {<framework subsection>}*

<device section> = "[Device_Configuration]" {<device subsection>}*

<framework subsection> = <label> [{filter>}*]

[{<framework action>}+]

<device subsection> = <label> [{<filter>}+*] <devicenvlist>

<filter> = ["[[" "id" "=" (vendorid>) "," (<deviceid>) "," (<revisionid>) "," (<subsystem-vendorid>) "," (<subsystemid>)"]]"]
| ["[[" "classcode" "=" <classcode> (,<mask>) "]]"] | ["[[" "path"
"=" ,devpath> "]]"]
<framework action> = ["num-vf" "=" <val>]

<deice nvlist> = [{name string> "=" <value string>} +]

References
See also pci_param_get(9F).

Device Configuration Section

Writing Device Drivers • March 2012608

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fpci-param-get-9f

Index

Numbers and Symbols
64-bit device drivers, 280, 583

A
add_drv command, 249, 434

description of, 494
device name, 431

address spaces, description of, 57
agent, definition, 222
allocb()function, 443–444
alternate access mechanisms, 564
aphysio() function, 272
aread() entry point, asynchronous data transfers, 269
ASSERT() macro, 491, 530–531
associating kernel memory with user applications, 182
asynchronous communication drivers, testing, 499
asynchronous data transfers

block drivers, 299
character drivers, 269
USB, 441–442

attach() entry point, 437–438, 452–455
active power management, 453
description of, 104–109
network drivers, 383–384, 404
system power management, 455

auto-request sense mode, 327
autoconfiguration

of block devices, 289–290
of character devices, 263
overview, 93

autoconfiguration (Continued)
routines, 42
of SCSI HBA drivers, 347
of SCSI target drivers, 315

Automated System Recovery Unit (ASRU),
definition, 223

autoshutdown threshold, 211
autovectored interrupts, 122
avoiding data loss while testing, 507–508
awrite() entry point, asynchronous data

transfers, 269

B
binary compatibility

description of, 58
potential problems, 589

binding a driver to a device, 62
binding a driver to a USB device, 430–432
biodone() function, 295
blitting, 600
block driver

autoconfiguration of, 289
buf structure, 293
cb_ops structure, 96
overview, 44
slice number, 289

block driver entry points, 288
close() function, 292
open() function, 291
strategy() function, 293

609

booting the kmdb debugger
on SPARC systems, 511
on x86 systems, 511

buf structure
changes to, 586
description of, 293

buffer allocation, DMA, 165
buffered I/O functions, 577–578
burst sizes, DMA, 164
bus

architectures, 542
PCI architectures, 543
SBus architecture, 547
SCSI, 307

bus-master DMA, 154, 156
bus nexus device drivers, description of, 59
byte ordering, 540

C
cache, description of, 171
callback functions

description of, 51
example of, 163

cb_ops structure, description of, 96
cc command, 491–492
cfgadm_usb command, 457
character device driver

aphysio() function, 272
autoconfiguration, 263
cb_ops structure, 96
close() entry point, 266
data transfers, 266
device polling, 276
entry points for, 262
I/O control mechanism, 278
memory mapping, 275
minphys() function, 273
open() entry point, 264–265
overview, 45–46
physio() function, 271
strategy() entry point, 274

checksumming, 392–393, 395, 396
cloning SCSI HBA driver, 342

close() entry point
block drivers, 292
description of, 266

cmn_err() function, 250
debugging, 530
description of, 53
example of, 303

compatible property, description of, 63
compiling drivers, 491–492
condition variable functions, 559–560

cv_broadcast(), 71
cv_destroy(), 70
cv_init(), 70
cv_timedwait(), 72
cv_timedwait_sig(), 73
cv_wait(), 71
cv_wait_sig(), 73

condition variables
and mutex locks, 70
routines, 71

.conf files, See hardware configuration files
configuration, testing device drivers, 501–509
configuration descriptor clouds, 450–451
configuration entry points

attach() function, 104
detach() function, 109
getinfo() function, 110

configuration files, hardware, See hardware
configuration files

console frame buffer drivers, 593
debugging, 604
kernel terminal emulator, 593
polled I/O interfaces, 596, 603–604
standalone mode, 596, 603–604
video mode change callback interface, 596, 599, 604
visual I/O interfaces, 595

context management, See device context management
context of device driver, 52
cookies, DMA, 154
copying data

copyin() function, 267
copyout() function, 267

CPR (CheckPoint and Resume), 455
crash command, 510

Index

Writing Device Drivers • March 2012610

crash dumps, saving, 508
csi_arq_status structure, changes to, 587
cv_timedwait() function, changes to, 588
cv_timedwait_sig() function, changes to, 588

D
data alignment for SPARC, 538
data sharing

using devmap(), 589
using ioctl(), 589
using mmap(), 590

data storage classes, 67
data structures

dev_ops structure, 95–96
GLDv2, 414, 416–418
modldrv structure, 95

data transfers, character drivers, 266
ddi_cb_register() function, 135–137
ddi_cb_unregister() function, 135–137
DDI-compliant drivers

byte ordering, 540
compliance testing, 498

ddi_create_minor_node() function, 106
ddi_device_copy() function, 588
ddi_device_zero() function, 589
ddi_devid_free() function, 239
DDI/DKI

See also LDI
design considerations, 50
and disk performance, 304
overview, 58
purpose in kernel, 57

ddi_dma_attr structure, 158, 586
ddi_dma_cookie structure, 586
ddi_dma_getwin() function, 155
ddi_dma_mem_alloc() function, 589
ddi_dma_nextseg() function, 156
ddi_driver_major() function, 289
ddi_enter_critical() function, 549
ddi_eventcookie_t, 240–241
ddi_fm_capable() function, 228
ddi_fm_ereport_post() function, 228–229, 231
ddi_fm_fini() function, 227–228

ddi_fm_init() function, 226–227
ddi_fm_service_impact() function, 232–233
DDI function tables, 555–582
ddi_get_cred() function, 587, 589
ddi_get_driver_private() function, 312, 410
ddi_get_instance() function, 416
ddi_get_lbolt() function, 587
ddi_get_pid() function, 587
ddi_get_time() function, 587
DDI_INFO_DEVT2DEVINFO, 110
DDI_INFO_DEVT2INSTANCE, 110
ddi_intr_add_handler() function, 124, 125, 128
ddi_intr_add_softint() function, 126
ddi_intr_alloc() function, 124, 125, 137–139
ddi_intr_block_disable() function, 125
ddi_intr_block_enable() function, 125
DDI_INTR_CLAIMED, 146
ddi_intr_clr_mask() function, 125, 128
ddi_intr_disable() function, 124, 125
ddi_intr_dup_handler() function, 124, 125
ddi_intr_enable() function, 124, 125
ddi_intr_free() function, 124, 125
ddi_intr_get_cap() function, 125
ddi_intr_get_hilevel_pri() function, 126, 147
ddi_intr_get_navail() function, 125
ddi_intr_get_nintrs() function, 125
ddi_intr_get_pending() function, 125, 127
ddi_intr_get_pri() function, 126, 147
ddi_intr_get_softint_pri() function, 126
ddi_intr_get_supported_types() function, 125
ddi_intr_hilevel() function, 123
ddi_intr_remove_handler() function, 124, 125
ddi_intr_remove_softint() function, 126
ddi_intr_set_cap() function, 125
ddi_intr_set_mask() function, 125, 127
ddi_intr_set_nreq() function, 137–139
ddi_intr_set_pri() function, 126
ddi_intr_set_softint_pri() function, 126, 127
ddi_intr_trigger_softint() function, 123, 126
DDI_INTR_UNCLAIMED, 145
ddi_log_sysevent() function, 85
ddi_model_convert_from() function, 589
ddi_prop_free() function, 242
ddi_prop_get_int() function, 376

Index

611

ddi_prop_lookup() function, 79
ddi_prop_lookup_string() function, 242
ddi_prop_op() function, 81
ddi_regs_map_setup() function, 116
ddi_removing_power() function, 212
DDI_RESUME, detach() function, 212
ddi_set_driver_private() function, 312
DDI_SUSPEND, detach() function, 212
ddi_umem_alloc() function, 183
ddi_umem_free() function, 186
DDX module, 604
deadman kernel feature, 501
DEBUG symbol, 491, 530–531
debugging

ASSERT() macro, 530–531
coding hints, 529
common tasks, 514–522
conditional compilation, 531
console frame buffer drivers, 604
DEBUG symbol, 530–531
detecting kernel memory leaks, 516
displaying kernel data structures, 517–519
system file, 504
kmdb debugger, 510–513
kmem_flags, 506–507
mdb debugger, 513–514
moddebug, 505–506
postmortem, 510
preparing for disasters, 507
setting up a serial connection, 502
setting up a SPARC test system, 503–504
setting up an x86 test system, 504
system registers, 515–516
tools, 509–522
using kernel variables, 521–522
using the SPARC PROM for device debugging, 550
writing mdb commands, 516

delay() function, 588
changes to, 588

dependency, 205–206
deprecated device access functions, 573–574
deprecated DMA functions, 570–571
deprecated interrupt functions, 562–563
deprecated memory allocation functions, 559

deprecated power management functions, 575
deprecated programmed I/O functions, 566–569
deprecated property functions, 557–558
deprecated SCSI functions, 580–581
deprecated time-related functions, 574
deprecated user application kernel functions, 573–574
deprecated user process information functions, 573
deprecated user space access functions, 572
deprecated virtual memory functions, 578
descriptor tree, 435–437, 438
dest_adcent argument, ddi_device_copy(), changes

to, 588
detach() entry point

active power management, 453
description of, 109–110
hot removal, 449–450
network drivers, 383–384
system power management, 455

detecting kernel memory leaks with mdb, 516
dev_advcnt argument, ddi_device_zero(), changes

to, 589
dev_datasz argument, ddi_device_copy(), changes

to, 588
dev_datasz argument, ddi_device_zero(), changes

to, 589
dev_info_t functions, 556
dev_ops structure, description of, 95–96
dev_t functions, 556–557
devfsadm command, 494
device

alternate settings, 430
composite, 432–433, 456
configurations, 430
endpoints, 430
interface number, 456
interfaces, 430
quiesce, 42, 141
resume, 42, 141
splitting interfaces, 433, 457

device access functions
block drivers, 291
character drivers, 264–265
deprecated, 573–574
table, 573–574

Index

Writing Device Drivers • March 2012612

device configuration, entry points, 100
device context management, 187

entry points, 190
model, 188
operation, 189

device-dependency, power.conf entry, 206
device-dependency-property, power.conf entry, 206
device directory, recovering, 508–509
device drivers

See also compiling drivers
See also linking drivers
See also loading drivers
64-bit drivers, 280, 583
access from within kernel, 235
aliases, 494
binding to device node, 62, 430–432
bindings, 434
block driver, 44
configuration descriptor clouds, 450–451
context, 52
debugging, 501–528

coding hints, 529
setting up a serial connection, 502
tools, 509–522
using the PROM, 550

definition, 39
entry points, 40
error handling, 497
header files, 488
hubd USB hub driver, 449
interface association nodes, 433–434
loadable interface, 97
modifying information with update_drv, 494
modifying permissions, 494
module configuration, 489
network drivers, 381–425
offlining, 449
packaging, 495
printing messages, 53
purpose in kernel, 55
source files, 489
standard character driver, 45–46
testing, 496, 501–509
tuning, 522–528

device drivers (Continued)
USB driver, 427–459
usb_ia USB interface association driver, 433–434
usb_mid USB multi-interface driver, 432, 433–434,

449–450, 456
using kstats, 522–528

device ID functions, 578–579
device information

binding a driver to a device, 62
binding a driver to a USB device, 430–432
compatible device names, 430–432
di_link_next_by_lnode() function, 252
di_link_next_by_node() function, 252
di_link_private_get() function, 253
di_link_private_set() function, 253
di_link_spectype() function, 252
di_link_t, 252
di_link_to_lnode() function, 252
di_lnode_devinfo() function, 252
di_lnode_devt() function, 252
di_lnode_name() function, 252
di_lnode_next() function, 252
di_lnode_private_get() function, 253
di_lnode_private_set() function, 253
di_lnode_t, 252
di_node_t, 252
di_walk_link() function, 252
di_walk_lnode() function, 252
DINFOLYR, 252
LDI, 239
lnode, 251–253
nblocks property, 592
Nblocks property, 592
property values, 239–240
self-identifying, 542
tree structure, 59

device interrupts, See interrupts; interrupt handling
device layering, See LDI
device memory

D_DEVMAP flag in cb_ops, 97
mapping, 47, 177–186

device node, 430
device number, description of, 58
device polling, 145

Index

613

device polling (Continued)
in character drivers, 276
chpoll() function, 276
poll() function, 276

device power management
components, 203
definition of, 201–202
dependency, 205–206
entry points, 208
interfaces, 206
model, 203
pm_busy_component() function, 204, 207, 452–455
pm_idle_component() function, 204, 207, 452–455
pm_lower_power() function, 205
pm_raise_power() function, 203–204, 205, 207,

452–455
power() entry point, 452–455
power() function, 208
power levels, 204–205
state transitions, 206
usb_create_pm_components() function, 452–455
USB devices, 452–455

device registers, mapping, 104
device state in power management, 211
device tree

displaying, 60
navigating, in debugger, 519–521
overview, 59
purpose in kernel, 56

device usage, 236
See LDI

/devices directory
description of, 57
displaying the device tree, 62

devmap_ entry point, devmap_access()
function, 191–192

devmap_ entry points
devmap_access() function, 199
devmap_contextmgt()function, 193
devmap_dup() function, 194–195
devmap() function, 180
devmap_map() function, 190
devmap_unmap() function, 195–197

devmap_ functions
devmap_devmem_setup() function, 181
devmap_load() function, 199
devmap_umem_setup() function, 185
devmap_unload() function, 199

diagnosis engine, definition, 222
.dict dictionary files, 224
disaster recovery, 508–509
disk

I/O controls, 304
performance, 304

disk driver testing, 499
DKI, See DDI/DKI
DL_ETHER, network statistics, 412
DLIOCRAW, ioctl() function, 408
DLPI (Data Link Provider Interface), See network

drivers, GLDv2
DLPI primitives, DL_GET_STATISTICS_REQ, 410
DMA

buffer allocation, 165
burst sizes, 164
callbacks, 169
cookie, 154, 155
freeing handle, 169
freeing resources, 168–169
handle, 154, 155, 161
object, 153
object locking, 161
operations, 156–161
physical addresses, 155
private buffer allocation, 165–167
register structure, 163
resource allocation, 162–164
restrictions, 157
transfers, 156, 271–272
virtual addresses, 155
windows, 155, 173

DMA functions, 569–571
deprecated, 570–571

driver binding name, 62
driver.conf files, See hardware configuration files
driver module entry points, See entry points
drv_getparm() function, changes to, 587
drv_usecwait(9F), 549

Index

Writing Device Drivers • March 2012614

DTrace
definition, 528
task queues, 92

dump() entry point, block drivers, 303
DVMA

SBus slots supporting, 548
virtual addresses, 155

dynamic memory allocation, 53

E
eeprom(1M) command, 606
EHCI (Enhanced Host Controller Interface), 428
ENA (Error Numeric Association), 228–229
entry points

attach() function, 104–109, 213–215, 437–438,
452–455
active power management, 453
system power management, 455

for block drivers, 288
for character drivers, 262
definition, 40
detach() function, 109–110, 212–213, 453

hot removal, 449–450
system power management, 455

for device power management, 208
device context management, 190
for device configuration, 100
for network drivers, 419–423
ioctl() function, 278
power() function, 208–210, 452–455
probe() function, 101–104
quiesce() function, 42
SCSA HBA summary, 334
system power management, 211

ereport, definition, 222
ereport event, definition, 222
error handling, 497
error messages, printing, 53, 303
system file, 504
/etc/driver_aliases file, 434
Ethernet V2, See DL_ETHER
event registry, 224, 229

events
asynchronous notification, 240–241
attributes, 86–89
description of, 83–84
hotplug notification, 449

Eversholt fault tree (eft) rules, 229
exporting device memory to user applications, 181
external registers, 549

F
fault, definition, 222
fault event, definition, 222
fault management

access or DMA handle error, 232–233
agent, 222
Automated System Recovery Unit (ASRU), 223
DDI_FM_* I/O controller errors, 230–232
ddi_fm_capable() function, 228
ddi_fm_ereport_post() function, 228–229, 231
ddi_fm_fini() function, 227–228
ddi_fm_init() function, 226–227
ddi_fm_service_impact() function, 232–233
DDI_SERVICE_* service impact values, 232–233
diagnosis engine, 222
.dict dictionary files, 224
eft diagnosis engine, 230–232
ENA (Error Numeric Association), 228–229
ereport, 222, 226
ereport events, 222, 228–229
error handling, 225–233
event registry, 224, 229, 230–232
Eversholt fault tree (eft) rules, 229
fault, 222
fault event, 222, 225
fault management capabilities, 226
fault management capabilities, declaring, 226–227
fault management capability bit mask, 228
fault management capability properties, 226
fault management resources, cleaning up, 227–228
fault manager daemon fmd, 222–225
fault messages, 224–225
Field Replaceable Unit (FRU), 223
fmadm command, 223–224

Index

615

fault management (Continued)
fmdump command, 223
I/O Fault Services, 221
interfaces, 575–576
list suspect, 223, 224–225
pci_ereport_post() function, 229–230
pci_ereport_seetup() function, 229–230
pci_ereport_setup() function, 227
pci_ereport_teardown() function, 228, 229–230
.po message files, 224
response agent, 223–224
retire agent, 223–224
suspect list, 223
topology of system, 225

Fault Management Architecture (FMA), See fault
management

faults, latent fault, definition of, 534
fbconfig(1M) command, 606
fbconfig() module, 604
FDDI (Fibre Distributed Data Interface), 405–406
fibre distributed data interface, See DL_FDDI
Field Replaceable Unit (FRU), definition, 223
file system I/O, 288–289
_fini() entry point

example of, 99
network drivers, 382–383
required implementation, 41

first-party DMA, 155, 157
flags argument, ddi_dma_mem_alloc(), changes

to, 589
flow of control for power management, 216
fmadm command, 223–224
fmd fault manager daemon, 222–225
fmdump command, 223
freemsg() function, 443–444
functions

See also condition variable functions
See also device power management
See individual functions
See also LDI functions
See specific function name

fuser command, display device usage
information, 256–257

G
GCC, 491–492
gcc command, 491–492
generic device name, 63
getinfo() entry point, 110
getmajor() function, 289
getrbuf() function, changes to, 587
getting major numbers, example of, 289
GLD (Generic LAN Driver), See network drivers
gld() entry point, 404
gld() functions, 404
gld_intr() function, 425
gld_mac_alloc() function, 423
gld_mac_free() function, 423
gld_mac_info structure, 404

description of, 414–416
GLDv2 arguments, 418
network drivers, 410
used in gld_intr() function, 425

gld_recv() function, 424–425
gld_register() function, 424
gld_sched() function, 425
gld_stats structure, network driver, 411
gld_unregister() function, 424
gld(9F) function, network driver, 410
gldm_get_stats(), description of, 411
gldm_private structure, 415
GLDv2 data structures

gld_mac_info, 414–416
gld_stats, 416–418

GLDv2 entry points
gldm_get_stats(), 422
gldm_intr(), 422
gldm_ioctl(), 423
gldm_reset(), 419
gldm_send(), 421–422
gldm_set_mac_addr(), 420
gldm_set_multicast(), 420
gldm_set_promiscuous(), 421
gldm_start(), 419
gldm_stop(), 419–420

GLDv2 ioctl functions, 408–409
GLDv2 network statistics, 410–414

Index

Writing Device Drivers • March 2012616

GLDv2 service routines
gld_intr() function, 425
gld_mac_alloc() function, 423
gld_mac_free() function, 423
gld_recv() function, 424–425
gld_register() function, 424
gld_sched() function, 425
gld_unregister() function, 424

GLDv2 symbols
GLD_BADARG, 423
GLD_FAILURE, 423
GLD_MAC_PROMISC_MULTI, 419
GLD_MAC_PROMISC_NONE, 419
GLD_MAC_PROMISC_PHYS, 419
GLD_MULTI_DISABLE, 420
GLD_MULTI_ENABLE, 420
GLD_NOLINK, 421
GLD_NORESOURCES, 425
GLD_NOTSUPPORTED, 420
GLD_SUCCESS, 423

graphics devices, device context management of, 187

H
handle, DMA, 154, 161, 169
hardening drivers, 221
hardware checksumming, 392–393, 395, 396
hardware configuration files, 489, 492

PCI devices, 546
SBus devices, 548
SCSI target devices, 311
where to place, 494

hardware context, 187
hardware state in power management, 211
HBA driver, See SCSI HBA driver
header files for device drivers, 488
high-level mutexes, interrupts, 147
host bus adapter transport layer, 333
hot-plug, See hotplugging
hotpluggable drivers, See hotplugging
hotplugging, 54

and SCSI HBA driver, 54, 375–376
USB device, 449–451

hub driver, 428–429

hubd USB hub driver, 449

I
I/O

asynchronous data transfers, 269, 299
byte stream, 45
disk controls, 304
DMA transfers, 271
file system structure, 288–289
miscellaneous control of, 278–283
multiplexing, 276
polled I/O interfaces, 596, 603–604
programmed transfers, 269
scatter/gather structures, 267
synchronous data transfers, 269, 295
visual I/O interfaces, 595

IEEE 802.3, 405
IEEE 802.5, 405–406
ILP32

use in devmap(), 590
use in ioctl(), 589
use in mmap(), 590

ILP64, use in mmap(), 590
_info() entry point

example of, 100
required implementation, 41

_init() entry point
network drivers, 382–383
example of, 99
required implementation, 41

instance numbers, 101
interface association nodes, 433–434
internal mode registers, 549
internal sequencing logic, 549
interrupt functions, 561–563
interrupt handlers

functionality, 145–147
registering, 128

interrupt handling, 121–151
callback handler function, 135–137
clearing masks, 128
ddi_cb_register() function, 135–137
ddi_cb_unregister() function, 135–137

Index

617

interrupt handling (Continued)
ddi_intr_add_handler() function, 124, 125, 128
ddi_intr_add_softint() function, 126
ddi_intr_alloc() function, 124, 125, 137–139
ddi_intr_block_disable() function, 125
ddi_intr_block_enable() function, 125
ddi_intr_clr_mask() function, 125, 128
ddi_intr_disable() function, 124, 125
ddi_intr_dup_handler() function, 124, 125
ddi_intr_enable() function, 124, 125
ddi_intr_free() function, 124, 125
ddi_intr_get_cap() function, 125
ddi_intr_get_hilevel_pri() function, 126, 147
ddi_intr_get_navail() function, 125
ddi_intr_get_nintrs() function, 125
ddi_intr_get_pending() function, 125, 127
ddi_intr_get_pri() function, 126, 147
ddi_intr_get_softint_pri() function, 126
ddi_intr_get_supported_types() function, 125
ddi_intr_hilevel() function, 123
ddi_intr_remove_handler() function, 124, 125
ddi_intr_remove_softint() function, 126
ddi_intr_set_cap() function, 125
ddi_intr_set_mask() function, 125, 127
ddi_intr_set_nreq() function, 137–139
ddi_intr_set_pri() function, 126
ddi_intr_set_softint_pri() function, 126, 127
ddi_intr_trigger_softint() function, 123, 126
gld_intr() function, 425
high-level interrupts, 122, 125, 147
overview, 50
pending interrupts, 127
setting masks, 127
software interrupts, 124, 127, 147

interrupt property, definition, 50
Interrupt Resource Management, 134–145
interrupts

allocating, 137–139
callback support, 135–137
capability functions, 125
changing soft interrupt priority example, 127
checking pending interrupts example, 127
clearing interrupt masks example, 127
common problems with, 549

interrupts (Continued)
description of, 121
handling high-level interrupts examples, 147–151
handling low-level interrupts example, 150
high-level mutexes, 147
initialization and destruction functions, 125
interrupt handling example, 146
legacy defined, 122
message-signaled defined, 122
MSI defined, 122
MSI implementation, 123
MSI-X defined, 122
MSI-X implementation, 124
network drivers, 410
priority levels, 122
priority management functions, 126
registering legacy interrupt example, 129–130
registering legacy interrupts, 128–131
registering MSI interrupts, 131–133
registering MSI interrupts example, 131–133
removing legacy interrupt example, 130–131
removing MSI interrupts example, 133
requesting, 137–139
setting interrupt masks example, 127
soft interrupt functions, 126
software interrupts, 147
types of, 122
using legacy, 123
writing handlers, 121–151

ioctl(9E) driver entry point, 594
ioctl() function

character drivers, 278–280
commands, 591
DLIOCRAW, 408

iovec structure, 267
IRM, See Interrupt Resource Management
ISO 8802-3, 405
ISO 9314-2, 405–406
ISR (interrupt service routine), 146

K
_KERNEL symbol, 491

Index

Writing Device Drivers • March 2012618

kernel
debugger

See kmdb debugger
device tree, 56
memory

allocation, 53
associating with user applications, 182
detecting leaks with mdb, 516

module directory, 493–494
overview, 55

kernel data structures, 517–519
kernel logging functions, 577
kernel statistics, See kstats
kernel statistics functions, 576
kernel terminal emulator, 593
kernel thread functions, 559–560
kernel variables

setting, 504–505
use with debuggers, 521–522
using, 504

kmdb debugger, 510–513
booting on SPARC systems, 511
booting on x86 systems, 511
macros, 512–513
setting breakpoints, 511–512

kmdb kernel debugger, 501
kmem_alloc() function, 53
kmem_flags kernel variable, 506–507
kmem_free() function, 239
kstats

See network statistics
definition, 522–528
Ethernet drivers, 525–528
functions, 524, 576
structure members, 522
structures, 523
task queues, 91–92

L
latent fault, definition of, 534
layered driver handle, See LDI
Layered Driver Interface, See LDI
layered identifier, See LDI

ld command, 491–492
LDI, 235–257

definition, 57
device access, 236
device consumer, 235
device information, 236
device layering, 251–257
device usage, 236, 251–257, 256–257
event notification interfaces, 240–241
fuser command, 256–257
kernel device consumer, 235
layered driver, 235
layered driver handle, 237–241, 242–249
layered identifier, 236–237, 242–249
libdevinfo interfaces, 251–257
prtconf command, 253–256
target device, 235, 237–241

LDI functions
ldi_add_event_handler() function, 240–241
ldi_aread() function, 238–239
ldi_awrite() function, 238–239
ldi_close() function, 237–238, 242
ldi_devmap() function, 238–239
ldi_dump() function, 238–239
ldi_get_dev() function, 239
ldi_get_devid() function, 239
ldi_get_eventcookie() function, 240–241
ldi_get_minor_name() function, 239
ldi_get_otyp() function, 239
ldi_get_size() function, 239
ldi_getmsg() function, 238–239
ldi_ident_from_dev() function, 236–237, 242
ldi_ident_from_dip() function, 236–237
ldi_ident_from_stream() function, 236–237
ldi_ident_release() function, 236–237, 242
ldi_ioctl() function, 238–239
ldi_open_by_dev() function, 237–238
ldi_open_by_devid() function, 237–238
ldi_open_by_name() function, 237–238, 242
ldi_poll() function, 238–239
ldi_prop_exists() function, 239–240
ldi_prop_get_int() function, 239–240
ldi_prop_get_int64() function, 239–240

Index

619

LDI functions (Continued)
ldi_prop_lookup_byte_array()

function, 239–240
ldi_prop_lookup_int_array() function, 239–240
ldi_prop_lookup_int64_array()

function, 239–240
ldi_prop_lookup_string_array()

function, 239–240
ldi_prop_lookup_string() function, 239–240
ldi_putmsg() function, 238–239
ldi_read() function, 238–239
ldi_remove_event_handler() function, 240–241
ldi_strategy() function, 238–239
ldi_write() function, 238–239, 242

LDI types
ldi_callback_id_t, 240–241
ldi_handle_t, 237–241
ldi_ident_t, 236–237

leaf devices, description of, 59
legacy interrupts

defined, 122
using, 123

length argument, ddi_dma_mem_alloc(), changes
to, 589

libdevinfo(), displaying the device tree, 61
libdevinfo device information library, 251–257
linking drivers, 491–492
lint command, 64-bit environment, 585
list suspect, definition, 223
lnode, 251–253
loadable module functions, 556
loading drivers, 491–492

add_drv command, 494
hardware configuration file, 492

loading modules, 41, 493–494
loading test modules, 505–506
locking primitives, types of, 67
locks

manipulating, 559–560
mutex, 68–69
readers/writer, 69
scheme for, 74

LP64
use in devmap(), 590

LP64 (Continued)
use in ioctl(), 589

lso_basic_tcp_ipv4() structure, 393
LUN bits, 323

M
mac_alloc() function, 383
mac_callbacks MAC entry points structure, 385–386
mac_capab_lso() structure, 393
mac_fini_ops() function, 382–383
mac_hcksum_get() function, 392–393, 395
mac_hcksum_set() function, 392–393, 396
mac_init_ops() function, 382–383
mac_link_update() function, 397
mac_lso_get() function, 393, 395
mac_register() function, 383–384
mac_register MAC registration information

structure, 383, 385–386
mac_rx() function, 395–397
mac_tx_update() function, 395, 397
mac_unregister() function, 383–384
major numbers

description of, 58
example of, 289

makedevice() function, 289
mapsize argument, rmallocmap(), changes to, 588
mc_getcapab() entry point, 386–393
mc_getprop() entry point, 399
mc_getstat() entry point, 397–398
mc_propinfo() entry point, 399
mc_setprop() entry point, 399
mc_tx() entry point, 394–395
mc_unicst() entry point, 395–397
mdb

detecting kernel memory leaks, 516
writing commands, 516

mdb debugger, 513–514
navigating device tree with, 519–521
retrieving soft state information, 521
running, 513–514

memory allocation, description of, 53
memory allocation functions, 558–559

deprecated, 559

Index

Writing Device Drivers • March 2012620

memory leaks, detecting with mdb, 516
memory management unit, description of, 57
memory mapping

device context management of, 187
device memory management, 47, 177–186, 275

memory model
SPARC, 541
store buffers, 541

message-signaled interrupts, defined, 122
minor device node, 105

modifying permissions of, 494
minor numbers, 58
minphys() function, 273

bulk requests, 445
mmap() function, driver notification, 197
mod_install() function, network drivers, 382–383
mod_remove() function, network drivers, 382–383
moddebug kernel variable, 506
modinfo command, 251, 505–506
modldrv structure, description of, 95
modlinkage structure, description of, 95
modload command, 505–506
modular debugger, See mdb debugger
module directory, 493–494
module functions, 556
module_info structure, network drivers, 409
modunload command, 505–506

description of, 495
mount() function, block drivers, 291
msgb() structure, 445, 447
MSI interrupts

defined, 122
implementation, 123

MSI-X interrupts
defined, 122
implementation, 124

multiplexing I/O, 276
multiprocessor considerations, 189
multithreading

and condition variables, 70
D_MP flag in cb_ops structure, 97
execution environment, 57
and locking primitives, 67
thread synchronization, 70

mutex
functions, 68
locks, 68–69

manipulating, 559
related panics, 74
routines, 68

mutex_enter() function, 122
mutex_exit() function, 122
mutex_init() function, 437
mutex_owned() function, example of, 531
mutual-exclusion locks, See mutex

N
name property, description of, 63
naming

unique prefix for driver symbols, 40, 529–530
Nblocks property, definition, 592
nblocks property, deprecated, 592
nblocks property, use in block device drivers, 289
Nblocks property, use in block device drivers, 289
nbytes argument, uiomove(), changes to, 588
network drivers

attach() entry point, 383–384, 404
detach() entry point, 383–384
DL_ETHER, 405
DL_FDDI, 405–406
DL_TPR, 405–406
entry points, 385–386, 399–403
Ethernet V2 packet processing, 405
FDDI (Fibre Distributed Data Interface), 405–406
_fini() entry point, 382–383
gld() entry point, 404
gld() functions, 404
gld_mac_info structure, 404, 407–408
gld_register() function, 407–408
GLDv2, 403–425
hardware checksumming, 392–393, 395, 396
IEEE 802.3, 405
IEEE 802.5, 405–406
_init() entry point, 382–383
ISO 8802-3, 405
ISO 9314-2, 405–406
lso_basic_tcp_ipv4() structure, 393

Index

621

network drivers (Continued)
mac_alloc() function, 383
mac_callbacks structure, 385–386
mac_capab_lso() structure, 393
mac_fini_ops() function, 382–383
mac_hcksum_get() function, 392–393, 395
mac_hcksum_set() function, 392–393, 396
mac_init_ops() function, 382–383
mac_link_update() function, 397
mac_lso_get() function, 393, 395
mac_register() function, 383–384
mac_register structure, 383, 385–386
mac_rx() function, 395–397
mac_tx_update() function, 395, 397
MAC type identifier, 385
mac_unregister() function, 383–384
MAC version number, 383
mc_getcapab() entry point, 386–393
mc_getprop() entry point, 399
mc_getstat() entry point, 397–398
mc_propinfo() entry point, 399
mc_setprop() entry point, 399
mc_tx() entry point, 394–395
mc_unicst() entry point, 395–397
mod_install() function, 382–383
mod_remove() function, 382–383
open() entry point, 406
SAP (Service Access Point), 405
SNAP processing, 405–406
source routing, 406
testing, 499
TPR (Token Passing Ring), 405–406

network statistics
DL_ETHER, 412
gld_stats, 411
gldm_get_stats(), 411
kstat structures, 410

nexus, See bus nexus device drivers
nexus driver, 428–429
no-involuntary-power-cycles property, 207
nvlist_alloc structure, description of, 87

O
object locking, 161
offlining, 449
OHCI (Open Host Controller Interface), 428
open() entry point

block drivers, 291
character drivers, 264
network drivers, 406

P
packaging, 495
partial store ordering, 542
PCI bus, 543

configuration address space, 544
configuration base address registers, 545
hardware configuration files, 546
I/O address space, 545
memory address space, 545

PCI configuration functions, alternate access
mechanisms, 564

PCI devices, 543
pci_ereport_post() function, 229–230
pci_ereport_setup() function, 227, 229–230
pci_ereport_teardown() function, 228, 229–230
physical DMA, 155
physio() function, description of, 271
pipe, alternate setting, 457–458
pipes

closing, 440
default control, 437, 439
flushing, 447–448
mutex initialization, 438
opening, 440
policy, 442
USB device communication, 438–448
USB devices, 430
use before attach(), 435

pixel depth mode, 593
pm_busy_component() function, 452–455
pm_idle_component() function, 452–455
pm_lower_power() function, 453
pm_raise_power() function, 452–455
.po message files, 224

Index

Writing Device Drivers • March 2012622

polled I/O interfaces, 596, 603–604
postmortem debugging, 510
power cycle, 207
power() entry point, 452–455
power management

See also device power management
See also system power management
flow of control, 216
USB devices, 451–455

power management functions, 575
deprecated, 575

Predictive Self-Healing, 222
See also fault management

prefix
unique prefix for driver symbols, 40, 529–530

print() entry point, block drivers, 303
printing functions, 577
printing messages, 53
probe() entry point

description of, 101–104
SCSI target drivers, 315

processor issues
SPARC, 537, 539
x86, 539

programmed I/O, 269
programmed I/O functions, 563–569

deprecated, 566–569
PROM commands, 550
prop_op() entry point, description of, 81
properties

class property, 311
ddi_prop_op, 81
device node name property, 63
LDI, 239–240
nblocks property, 289
Nblocks property, 289
nblocks property, 592
Nblocks property, 592
no-involuntary-power-cycles, 207
overview, 50, 77
pm-hardware-state property, 211, 214, 317
prtconf, 79
reg property, 211
removable-media, 206

properties (Continued)
reporting device properties, 81
SCSI HBA properties, 376
SCSI target driver, 377
size property, 263
types of, 77

property functions, 557–558
prtconf command

displaying device names, 430–432
displaying interfaces, 433
displaying kernel device usage

information, 253–256
displaying properties, 79
displaying the bound driver, 431
displaying the device tree, 61

pseudo device driver, 39

Q
queuing, 379
quiesce a device, 42, 141
quiesce() entry point, 42

R
read() entry point, synchronous data transfers, 269
readers/writer locks, 69

manipulating, 559
real_length argument, ddi_dma_mem_alloc(), changes

to, 589
recovering the device directory, 508–509
reg property, 77
register structure, DMA, 163
removable-media, 206
resource map functions, 581
resume a device, 42, 141
retire agent, definition, 223–224
rmallocmap() function, changes to, 588
rmallocmap_wait() function, changes to, 588

Index

623

S
S_IFCHR, 106
SAP (Service Access Point), 405
saving crash dumps, 508
SBus

address bits, 548
geographical addressing, 547
hardware configuration files, 548
physical address space, 547
slots supporting DVMA, 548

scatter-gather
DMA engines, 156
I/O, 267

scheduling tasks, 89–92
SCSA, 308, 332

global data definitions, 329
HBA transport layer, 333
interfaces, 334

SCSI
architecture, 308
bus, 307

scsi_ functions
scsi_alloc_consistent_buf()function, 322
scsi_destroy_pkt() function, 322
scsi_dmafree() function, 326
scsi_free_consistent_buf() function, 322
scsi_ifgetcap() function, 324
scsi_ifsetcap() function, 324
scsi_init_pkt() function, 320
scsi_probe() function, 352
scsi_setup_cdb() function, 323
scsi_sync_pkt() function, 322, 326
scsi_transport() function, 324
scsi_unprobe() function, 352
summary, 310

scsi_ structures
scsi_address structure, 338
scsi_device structure, 338
scsi_hba_tran structure, 335
scsi_pkt structure, 339

scsi_alloc_consistent_buf() function, changes
to, 588

scsi_device structure, 312
SCSI functions, 579–581

SCSI functions (Continued)
deprecated, 580–581

scsi_hba_ functions
scsi_hba_attach_setup() function, 376
scsi_hba_lookup_capstr() function, 368
scsi_hba_pkt_alloc() function, 353

scsi_hba_ functions, scsi_hba_pkt_free()
function, 360

scsi_hba_ functions
scsi_hba_probe() function, 352
summary list, 343

SCSI HBA driver
abort and reset management, 373
autoconfiguration, 347
capability management, 368
cloning, 342
command state structure, 344
command timeout, 367
command transport, 362
configuration properties, 376
data structures, 335
DMA resources, 356
driver instance initialization, 352
entry points summary, 334
header files, 344
and hotplugging, 54, 375–376
initializing a transport structure, 348
installation, 376
interrupt handling, 364
overview, 332–333, 333
properties, 378
resource allocation, 353

SCSI HBA driver entry points
by category, 351
tran_abort() function, 373
tran_dmafree() function, 361
tran_getcap() function, 368
tran_init_pkt() function, 353
tran_reset() function, 373
tran_reset_notify() function, 374
tran_setcap() function, 370
tran_start() function, 362
tran_sync_pkt() function, 361
tran_tgt_free() function, 353

Index

Writing Device Drivers • March 2012624

SCSI HBA driver entry points (Continued)
tran_tgt_init() function, 352
tran_tgt_probe() function, 352

scsi_hba_tran structures, scsi_pkt structure, 341
scsi_pkt structure, 313

changes to, 587
SCSI target driver

auto-request sense mode, 327
autoconfiguration of, 315
building a command, 323
callback routine, 325
data structures, 311
initializing a command descriptor block, 323
overview, 307
properties, 311, 317, 377
resource allocation, 320
reusing packets, 326
SCSI routines, 310
transporting a command, 324

segmap() entry point
description of, 177, 275
driver notification, 197

self-identifying devices, 542
serial connection, 502
serviceability

add new device, 534
detect faulty device, 534
perform periodic health checks, 534
remove faulty device, 534
report faults, 534

single device node, 430
size property, 263
slice number for block devices, 289
SNAP (Sub-Net Access Protocol), 405–406
snoop command, network drivers, 408
snooping kernel variable, 501
soft interrupts, 124
soft state information

LDI, 242–249
retrieving in mdb, 521
USB, 438

software interrupts, changing priority, 127
software state functions, 558
Solaris kernel, See kernel

source compatibility, description of, 58
source files for device drivers, 489
SPARC processor

byte ordering, 538
data alignment, 538
floating point operations, 537
multiply and divide instructions, 539
register windows, 539
structure member alignment, 538

special files, description of, 57
src_advcnt argument, ddi_device_copy(), changes

to, 588
standalone mode, 595, 603
state structure, 51, 105, 242–249
storage classes, driver data, 67
store buffers, 541
strategy() entry point

block drivers, 293
character drivers, 274

streaming access, 166
STREAMS

See network drivers, GLDv2
cb_ops structure, 97
drivers, 46

Sun Studio, 491–492
suspect list, definition, 223
synchronous data transfers

block drivers, 295
character drivers, 269
USB, 441–442

system calls, 55
system global state functions, 581
system power management

description of, 202
entry points, 211
model, 210
policy, 211
saving hardware state, 211
USB devices, 455

system registers, reading and writing, 515–516

T
tagged queuing, 379

Index

625

tape drivers, testing, 498
task queues, 89–92

definition, 90
interfaces, 90, 560

tem (terminal emulator module), 593–594
See also kernel terminal emulator

tem-support DDI property, 593, 594
test modules, 504
testing

asynchronous communication drivers, 499
configurations, 496
console frame buffer drivers, 604
DDI compliance, 498
device drivers, 496
disk drivers, 499
functionality, 496
installation and packaging, 498
network drivers, 499
tape drivers, 498–499

testing debuggers, avoiding data loss, 507–508
testing device drivers, 501–509
third-party DMA, 154, 157
thread synchronization

condition variables, 70–72
mutex_init, 68
mutex locks, 68–69
per instance mutex, 104
readers/writer locks, 69

threads
preemption of, 67
task queues, 89–92

ticks argument, delay(), changes to, 588
ticks argument, timeout(), changes to, 588
time-related functions, 574

deprecated, 574
timeout argument, cv_timedwait(), changes to, 588
timeout() function, 588

changes to, 588
tip connection, 502
total store ordering, 542
TPR (Token Passing Ring), 405–406
tran_abort() entry point, SCSI HBA drivers, 373
tran_destroy_pkt() entry point, SCSI HBA

drivers, 360

tran_dmafree() entry point, SCSI HBA drivers, 361
tran_getcap() entry point, SCSI HBA drivers, 368
tran_init_pkt() entry point, SCSI HBA drivers, 353
tran_reset() entry point, SCSI HBA drivers, 373
tran_reset_notify() entry point, SCSI HBA

drivers, 374
tran_setcap() entry point, SCSI HBA drivers, 370
tran_start() entry point, SCSI HBA drivers, 362
tran_sync_pkt() entry point, SCSI HBA drivers, 361
tuning device drivers, 522–528

DTrace, 528
kstats, 522–528

U
UHCI (Universal Host Controller Interface), 428
uiomove() example, 269
uiomove() function

changes to, 588
example of, 269

unloading drivers, 495
unloading test modules, 505–506
untagged queuing, 379
update_drv command, 251, 434

description of, 494
USB device

alternate settings, 430
compatible device names, 430–432
composite, 432–433, 456
configuration descriptors, 435–437
current configuration, 430
endpoints, 430

bulk, 438–439
control, 438–439
default, 439
interrupt, 438–439
isochronous, 438–439

hotplugging, 449–451
callbacks, 449
insertion, 449
reinsertion, 450–451
removal, 449–450

interface number, 456
interfaces, 430

Index

Writing Device Drivers • March 2012626

USB device (Continued)
multiple configurations, 430
power management, 451–455

active, 453–455
device, 452–455
passive, 455
system, 455

remote wakeup, 452
splitting interfaces, 433, 457
states, 448–456

USB drivers, 428–429
asynchronous transfer callbacks, 441
bulk data transfer requests, 445
control data transfer requests, 444–445
data transfer

callback status flags, 441, 444
completion reasons, 441, 444

data transfer requests, 442–447
descriptor tree, 435–437, 438
event notification, 449
hubd USB hub driver, 449
interfaces, 428
interrupt data transfer requests, 445–446
isochronous data transfer requests, 446–447
message blocks, 443–444
mutex initialization, 437
pipes, 430, 438

closing, 440
default control, 435, 437, 439
flushing, 447–448
opening, 440

registering, 437–438
registering for events, 449
set alternate, 457–458
set configuration, 457
synchronous control requests, 444–445
usb_ia USB interface association driver, 433–434
usb_mid USB multi-interface driver, 432, 433–434,

449–450, 456
versioning, 437

USB functions
cfgadm_usb command, 457
usb_alloc_bulk_req() function, 442–443
usb_alloc_ctrl_req() function, 442–443

USB functions (Continued)
usb_alloc_intr_req() function, 442–443
usb_alloc_isoc_req() function, 442–443
usb_client_attach() function, 437–438
usb_client_detach() function, 438
usb_clr_feature() function, 458
usb_create_pm_components() function, 452–455
usb_free_bulk_req() function, 442–443
usb_free_ctrl_req() function, 442–443
usb_free_descr_tree() function, 438
usb_free_dev_data() function, 438
usb_free_intr_req() function, 442–443
usb_free_isoc_req() function, 442–443
usb_get_addr() function, 459
usb_get_alt_if() function, 457–458
usb_get_cfg() function, 457
usb_get_current_frame_number() function, 446
usb_get_dev_data() function, 435–437, 437–438,

439
usb_get_if_number() function, 456
usb_get_max_pkts_per_isoc_request()

function, 446
usb_get_status() function, 458–459
usb_get_string_descr() function, 458
usb_handle_remote_wakeup() function, 452, 453
usb_lookup_ep_data() function, 437, 440
usb_owns_device() function, 456
usb_parse_data() function, 435–437
usb_pipe_bulk_xfer() function, 440–447
usb_pipe_close() function, 440, 447
usb_pipe_ctrl_xfer() function, 440–447
usb_pipe_ctrl_xfer_wait() function, 443,

444–445
usb_pipe_drain_reqs() function, 447–448
usb_pipe_get_max_bulk_transfer_ size()

function, 445
usb_pipe_get_private() function, 458
usb_pipe_get_state() function, 440, 447–448
usb_pipe_intr_xfer() function, 440–447,

445–446
usb_pipe_isoc_xfer() function, 440–447
usb_pipe_open() function, 440, 442
usb_pipe_reset() function, 440, 447–448
usb_pipe_set_private() function, 458

Index

627

USB functions (Continued)
usb_pipe_stop_intr_polling() function, 443,

445–446
usb_pipe_stop_isoc_polling() function, 443,

447
usb_print_descr_tree() function, 438
usb_register_hotplug_cbs() function, 449
usb_set_alt_if() function, 457–458
usb_set_cfg() function, 457
usb_unregister_hotplug_cbs() function, 449

usb_ia USB interface association driver, 433–434
usb_mid USB multi-interface driver, 432, 433–434,

449–450, 456
USB structures

usb_alloc_intr_request, 445–446
usb_bulk_request, 442–443, 445
usb_callback_flags, 441, 444
usb_completion_reason, 441, 444
usb_ctrl_request, 442–443, 444–445
usb_intr_request, 442–443
usb_isoc_request, 442–443, 447
usb_request_attributes, 443

USB 2.0 specification, 427
USBA (Solaris USB Architecture), 427–459
USBA 2.0 framework, 427–459
user application kernel functions

deprecated, 573–574
table, 573–574

user process event functions, 572
user process information functions, 572–573

deprecated, 573
user space access functions, 571–572

deprecated, 572
utility functions, table, 581–582

V
/var/adm/messages file, 606
VGA text mode, 593
vgatext module, 593–594
video mode, 594–595, 595, 596, 604
virtual addresses, description of, 57
virtual DMA, 155

virtual memory
address spaces, 57
memory management unit (MMU), 57

virtual memory functions
deprecated, 578
table, 578

visual I/O interfaces, 595
volatile keyword, 532

W
windows, DMA, 173
write() function

synchronous data transfers, 269
user address example, 266

X
x86 processor

byte ordering, 539
data alignment, 539
floating point operations, 539

Index

Writing Device Drivers • March 2012628

	Writing Device Drivers
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Related Books and Papers
	Access to Oracle Support
	Typographic Conventions
	Shell Prompts in Command Examples

	Designing Device Drivers for the Oracle Solaris Platform
	Overview of Oracle Solaris Device Drivers
	Device Driver Basics
	What Is a Device Driver?
	What Is a Device Driver Entry Point?

	Device Driver Entry Points
	Entry Points Common to All Drivers
	Device Access Entry Points
	Loadable Module Entry Points
	Autoconfiguration Entry Points
	Kernel Statistics Entry Points
	Power Management Entry Point
	System Quiesce Entry Point
	Summary of Common Entry Points

	Entry Points for Block Device Drivers
	Entry Points for Character Device Drivers
	Entry Points for STREAMS Device Drivers
	Entry Points for Memory Mapped Devices
	Entry Points for Network Device Drivers
	Entry Points for SCSI HBA Drivers
	Entry Points for PC Card Drivers

	Considerations in Device Driver Design
	DDI/DKI Facilities
	Device IDs
	Device Properties
	Interrupt Handling
	Callback Functions
	Software State Management
	Programmed I/O Device Access
	Direct Memory Access (DMA)
	Layered Driver Interfaces

	Driver Context
	Returning Errors
	Dynamic Memory Allocation
	Hotplugging

	Oracle Solaris Kernel and Device Tree
	What Is the Kernel?
	Multithreaded Execution Environment
	Virtual Memory
	Devices as Special Files
	DDI/DKI Interfaces

	Overview of the Device Tree
	Device Tree Components
	Displaying the Device Tree
	libdevinfo Library
	prtconf Command
	/devices Directory

	Binding a Driver to a Device
	Generic Device Names

	Multithreading
	Locking Primitives
	Storage Classes of Driver Data
	Mutual-Exclusion Locks
	Setting Up Mutexes
	Using Mutexes

	Readers/Writer Locks
	Semaphores

	Thread Synchronization
	Condition Variables in Thread Synchronization
	Initializing Condition Variables
	Waiting for the Condition
	Signaling the Condition

	cv_wait() and cv_timedwait() Functions
	cv_wait_sig() Function
	cv_timedwait_sig() Function

	Choosing a Locking Scheme
	Potential Locking Pitfalls
	Threads Unable to Receive Signals

	Properties
	Device Properties
	Device Property Names
	Creating and Updating Properties
	Looking Up Properties
	Changes to the driver.conf File
	prop_op() Entry Point

	Managing Events and Queueing Tasks
	Managing Events
	Introduction to Events
	Using ddi_log_sysevent() to Log Events
	ddi_log_sysevent() Syntax
	Sample Code for Logging Events

	Defining Event Attributes

	Queueing Tasks
	Introduction to Task Queues
	Task Queue Interfaces
	Observing Task Queues
	Task Queue Kernel Statistics Counters
	Task Queue DTrace SDT Probes

	Driver Autoconfiguration
	Driver Loading and Unloading
	Data Structures Required for Drivers
	modlinkage Structure
	modldrv Structure
	dev_ops Structure
	cb_ops Structure

	Loadable Driver Interfaces
	_init() Example
	_fini() Example
	_info() Example

	Device Configuration Concepts
	Device Instances and Instance Numbers
	Minor Nodes and Minor Numbers
	probe() Entry Point
	attach() Entry Point
	Driver Soft-State Management
	Lock Variable and Conditional Variable Initialization
	Creating Minor Device Nodes
	Deferred Attach

	detach() Entry Point
	getinfo() Entry Point

	Using Device IDs
	Registering Device IDs
	Registering a Device-Supplied ID
	Registering a Fabricated ID

	Unregistering Device IDs

	Device Access: Programmed I/O
	Device Memory
	Managing Differences in Device and Host Endianness
	Managing Data Ordering Requirements
	ddi_device_acc_attr Structure
	Mapping Device Memory
	Mapping Setup Example

	Device Access Functions
	Alternate Device Access Interfaces
	Memory Space Access
	I/O Space Access
	PCI Configuration Space Access

	Interrupt Handlers
	Interrupt Handler Overview
	Device Interrupts
	High-Level Interrupts
	Legacy Interrupts
	Standard and Extended Message-Signaled Interrupts
	MSI Interrupts
	MSI-X Interrupts

	Software Interrupts

	DDI Interrupt Functions
	Interrupt Capability Functions
	Interrupt Initialization and Destruction Functions
	Priority Management Functions
	Soft Interrupt Functions
	Interrupt Function Examples

	Registering Interrupts
	Registering Legacy Interrupts
	Registering MSI Interrupts

	Interrupt Resource Management
	The Interrupt Resource Management Feature
	Callback Interfaces
	Register a Callback Handler Function
	Unregister a Callback Handler Function
	Callback Handler Function

	Interrupt Request Interfaces
	Allocate an Interrupt
	Modify Number of Interrupt Vectors Requested
	Interrupt Usage and Flexibility

	Example Implementation of Interrupt Resource Management

	Interrupt Handler Functionality
	Handling High-Level Interrupts
	High-Level Mutexes
	High-Level Interrupt Handling Example

	Direct Memory Access (DMA)
	DMA Model
	Types of Device DMA
	Bus-Master DMA
	Third-Party DMA
	First-Party DMA

	Types of Host Platform DMA
	DMA Software Components: Handles, Windows, and Cookies
	DMA Operations
	Performing Bus-Master DMA Transfers
	Performing First-Party DMA Transfers
	Performing Third-Party DMA Transfers
	DMA Attributes
	ddi_dma_attr Structure
	SBus Example
	ISA Bus Example

	Managing DMA Resources
	Object Locking
	Allocating a DMA Handle
	Allocating DMA Resources
	Device Register Structure
	DMA Callback Example

	Determining Maximum Burst Sizes
	Allocating Private DMA Buffers
	Handling Resource Allocation Failures
	Programming the DMA Engine
	Freeing the DMA Resources
	Freeing the DMA Handle
	Canceling DMA Callbacks
	Synchronizing Memory Objects
	Cache
	ddi_dma_sync() Function

	DMA Windows

	Mapping Device and Kernel Memory
	Memory Mapping Overview
	Exporting the Mapping
	The segmap(9E) Entry Point
	The devmap(9E) Entry Point

	Associating Device Memory With User Mappings
	Associating Kernel Memory With User Mappings
	Allocating Kernel Memory for User Access
	Exporting Kernel Memory to Applications
	Freeing Kernel Memory Exported for User Access

	Device Context Management
	Introduction to Device Context
	What Is a Device Context?
	Context Management Model

	Context Management Operation
	devmap_callback_ctl Structure
	Entry Points for Device Context Management
	devmap_map() Entry Point
	devmap_access() Entry Point
	devmap_contextmgt() Entry Point
	devmap_dup() Entry Point
	devmap_unmap() Entry Point

	Associating User Mappings With Driver Notifications
	Managing Mapping Accesses
	devmap_load() Entry Point
	devmap_unload() Entry Point

	Power Management
	Power Management Framework
	Device Power Management
	System Power Management

	Device Power Management Model
	Power Management Components
	Multiple Power Management Components

	Power Management States
	Power Levels
	Power Management Dependencies
	Automatic Power Management for Devices
	Device Power Management Interfaces
	Busy-Idle State Transitions
	Device Power State Transitions

	power() Entry Point

	System Power Management Model
	Autoshutdown Threshold
	Busy State
	Hardware State
	Automatic Power Management for Systems
	Entry Points Used by System Power Management
	detach() Entry Point
	attach() Entry Point

	Power Management Device Access Example
	Power Management Flow of Control
	Changes to Power Management Interfaces

	Hardening Oracle Solaris Drivers
	Oracle Fault Management Architecture I/O Fault Services
	What Is Predictive Self-Healing?
	Oracle Solaris Fault Manager
	Diagnosis, Suspect Lists, and Fault Events
	Response Agents
	Message IDs and Dictionary Files
	System Topology

	Error Handling
	Declaring Fault Management Capabilities
	Cleaning Up Fault Management Resources
	Getting the Fault Management Capability Bit Mask
	Reporting Errors
	Queueing an Error Event
	Detecting and Reporting PCI-Related Errors
	Reporting Standard I/O Controller Errors
	Service Impact Function

	Layered Driver Interface (LDI)
	LDI Overview
	Kernel Interfaces
	Layered Identifiers – Kernel Device Consumers
	Layered Driver Handles – Target Devices
	Opening and Closing Target Devices
	Accessing Target Devices
	Retrieving Target Device Information
	Retrieving Target Device Property Values
	Receiving Asynchronous Device Event Notification

	LDI Kernel Interfaces Example
	Device Configuration File
	Driver Source File
	How to Build and Load the Layered Driver
	Test the Layered Driver

	User Interfaces
	Device Information Library Interfaces
	Print System Configuration Command Interfaces
	Device User Command Interfaces

	Designing Specific Kinds of Device Drivers
	Drivers for Character Devices
	Overview of the Character Driver Structure
	Character Device Autoconfiguration
	Device Access (Character Drivers)
	open() Entry Point (Character Drivers)
	close() Entry Point (Character Drivers)

	I/O Request Handling
	User Addresses
	Vectored I/O
	Differences Between Synchronous and Asynchronous I/O
	Data Transfer Methods
	Programmed I/O Transfers
	DMA Transfers (Synchronous)
	DMA Transfers (Asynchronous)
	minphys() Entry Point
	strategy() Entry Point

	Mapping Device Memory
	Multiplexing I/O on File Descriptors
	Miscellaneous I/O Control
	ioctl() Entry Point (Character Drivers)
	I/O Control Support for 64-Bit Capable Device Drivers
	Handling copyout() Overflow

	32-bit and 64-bit Data Structure Macros
	How Do the Structure Macros Work?
	When to Use Structure Macros
	Declaring and Initializing Structure Handles
	Operations on Structure Handles
	Other Operations

	Drivers for Block Devices
	Block Driver Structure Overview
	File I/O
	Block Device Autoconfiguration
	Controlling Device Access
	open() Entry Point (Block Drivers)
	close() Entry Point (Block Drivers)
	strategy() Entry Point
	buf Structure
	bp_mapin Structure

	Synchronous Data Transfers (Block Drivers)
	Asynchronous Data Transfers (Block Drivers)
	Checking for Invalid buf Requests
	Enqueuing the Request
	Starting the First Transfer
	Handling the Interrupting Device

	dump() and print() Entry Points
	dump() Entry Point (Block Drivers)
	print() Entry Point (Block Drivers)

	Disk Device Drivers
	Disk ioctls
	Disk Performance

	SCSI Target Drivers
	Introduction to Target Drivers
	Sun Common SCSI Architecture Overview
	General Flow of Control
	SCSA Functions

	Hardware Configuration File
	Declarations and Data Structures
	scsi_device Structure
	scsi_pkt Structure (Target Drivers)

	Autoconfiguration for SCSI Target Drivers
	probe() Entry Point (SCSI Target Drivers)
	attach() Entry Point (SCSI Target Drivers)
	detach() Entry Point (SCSI Target Drivers)
	getinfo() Entry Point (SCSI Target Drivers)

	Resource Allocation
	scsi_init_pkt() Function
	scsi_sync_pkt() Function
	scsi_destroy_pkt() Function
	scsi_alloc_consistent_buf() Function
	scsi_free_consistent_buf() Function

	Building and Transporting a Command
	Building a Command
	Setting Target Capabilities
	Transporting a Command
	Synchronous scsi_transport() Function

	Command Completion
	Reuse of Packets
	Auto-Request Sense Mode
	Dump Handling

	SCSI Options

	SCSI Host Bus Adapter Drivers
	Introduction to Host Bus Adapter Drivers
	SCSI Interface
	SCSA HBA Interfaces
	SCSA HBA Entry Point Summary
	SCSA HBA Data Structures
	scsi_hba_tran() Structure
	scsi_address Structure
	scsi_device Structure
	scsi_pkt Structure (HBA)

	Per-Target Instance Data
	Transport Structure Cloning
	SCSA HBA Functions

	HBA Driver Dependency and Configuration Issues
	Declarations and Structures
	Per-Command Structure

	Entry Points for Module Initialization
	_init() Entry Point (SCSI HBA Drivers)
	_fini() Entry Point (SCSI HBA Drivers)

	Autoconfiguration Entry Points
	attach() Entry Point (SCSI HBA Drivers)
	Soft-State Structure
	DMA
	Transport Structure
	Attaching an HBA Driver
	Register Mapping
	Adding an Interrupt Handler
	Create Power Manageable Components
	Report Attachment Status

	detach() Entry Point (SCSI HBA Drivers)

	Entry Points for SCSA HBA Drivers
	Target Driver Instance Initialization
	tran_tgt_init() Entry Point
	tran_tgt_probe() Entry Point
	tran_tgt_free() Entry Point

	Resource Allocation
	tran_init_pkt() Entry Point
	Allocation and Initialization of a scsi_pkt(9S) Structure
	Allocation of DMA Resources
	Reallocation of DMA Resources for Data Transfer
	tran_destroy_pkt() Entry Point
	tran_sync_pkt() Entry Point
	tran_dmafree() Entry Point

	Command Transport
	tran_start() Entry Point
	Interrupt Handler and Command Completion
	Timeout Handler

	Capability Management
	tran_getcap() Entry Point
	tran_setcap() Entry Point

	Abort and Reset Management
	tran_abort() Entry Point
	tran_reset() Entry Point
	tran_bus_reset() Entry Point
	tran_reset_notify() Entry Point

	Dynamic Reconfiguration

	SCSI HBA Driver Specific Issues
	Installing HBA Drivers
	HBA Configuration Properties
	scsi-reset-delay Property
	scsi-options Property
	Per-Target scsi-options

	x86 Target Driver Configuration Properties

	Support for Queuing

	Drivers for Network Devices
	GLDv3 Network Device Driver Framework
	GLDv3 MAC Registration
	GLDv3 MAC Registration Process
	GLDv3 MAC Registration Functions
	The mac_init_ops() and mac_fini_ops() Functions
	The mac_alloc() and mac_free() Functions
	The mac_register() and mac_unregister() Functions

	GLDv3 MAC Registration Data Structures

	GLDv3 Capabilities
	MAC Rings Capability
	Rings and Ring Groups Layer–2 Classification
	Registering Rings and Groups Process Overview
	MAC_CAPAB_RINGS Capability
	mr_gget() Entry Point
	mr_rget() Entry Point
	Ring Groups and SR-IOV

	Hardware Checksum Offload
	Hardware Checksum Offload Capability Information
	The mac_hcksum_get() Function Flags
	The mac_hcksum_set() Function Flags

	Large Segment (or Send) Offload

	GLDv3 Data Paths
	Transmit Data Path
	Flow Control
	Hardware Checksumming: Hardware
	Large Segment Offload
	Virtual LAN: Hardware

	Receive Data Path
	Receive Interrupt Data Path
	Receive Polling Data-Path
	Switching Between Interrupt and Polling Mode
	Hardware Checksumming: MAC Layer
	Virtual LAN: MAC Layer

	GLDv3 State Change Notifications
	GLDv3 Network Statistics
	GLDv3 Properties
	Summary of GLDv3 Interfaces

	GLDv2 Network Device Driver Framework
	GLDv2 Device Support
	Ethernet V2 and ISO 8802-3 (IEEE 802.3)
	TPR and FDDI: SNAP Processing
	TPR: Source Routing

	GLDv2 DLPI Providers
	GLDv2 DLPI Primitives
	GLDv2 I/O Control Functions
	GLDv2 Driver Requirements
	GLDv2 Network Statistics
	GLDv2 Declarations and Data Structures
	gld_mac_info Structure
	gld_stats Structure

	GLDv2 Function Arguments
	GLDv2 Entry Points
	gldm_reset() Entry Point
	gldm_start() Entry Point
	gldm_stop() Entry Point
	gldm_set_mac_addr() Entry Point
	gldm_set_multicast() Entry Point
	gldm_set_promiscuous() Entry Point
	gldm_send() Entry Point
	gldm_intr() Entry Point
	gldm_get_stats() Entry Point
	gldm_ioctl() Entry Point

	GLDv2 Return Values
	GLDv2 Service Routines
	gld_mac_alloc() Function
	gld_mac_free() Function
	gld_register() Function
	gld_unregister() Function
	gld_recv() Function
	gld_sched() Function
	gld_intr() Function

	USB Drivers
	USB in the Oracle Solaris Environment
	USBA 2.0 Framework
	USB Client Drivers

	Binding Client Drivers
	How USB Devices Appear to the System
	USB Devices and the Oracle Solaris Device Tree
	Compatible Device Names
	Devices With Multiple Interfaces
	Devices With Interface-Association Descriptors
	Checking Device Driver Bindings

	Basic Device Access
	Before the Client Driver Is Attached
	The Descriptor Tree
	Registering Drivers to Gain Device Access

	Device Communication
	USB Endpoints
	The Default Pipe
	Pipe States
	Opening Pipes
	Closing Pipes
	Data Transfer
	Synchronous and Asynchronous Transfers and Callbacks
	Requests
	Request Allocation and Deallocation
	Request Features and Fields
	Control Requests
	Bulk Requests
	Interrupt Requests
	Isochronous Requests

	Flushing Pipes

	Device State Management
	Hotplugging USB Devices
	Hotplug Callbacks
	Hot Insertion
	Hot Removal
	Hot Reinsertion

	Power Management
	Device Power Management
	Active Power Management
	Passive Power Management

	System Power Management

	Serialization

	Utility Functions
	Device Configuration Facilities
	Getting Interface Numbers
	Managing Entire Devices
	Multiple-Configuration Devices
	Modifying or Getting the Alternate Setting

	Other Utility Functions
	Retrieving a String Descriptor
	Pipe Private Data Facility
	Clearing a USB Condition
	Getting Device, Interface, or Endpoint Status
	Getting the Bus Address of a Device

	Sample USB Device Drivers

	SR-IOV Drivers
	Introduction to SR-IOV
	Benefits of SR-IOV

	Supported Platforms
	Glossary
	Overview of SR-IOV Device Driver
	Physical Function (PF) Driver
	Virtual Function (VF) Driver
	Device Configuration Parameters
	pci.conf File
	Setting Device Configuration Parameters
	SR-IOV Configuration on Sparc OVM Platform
	SR-IOV Configuration on Bare Metal Platforms

	Boot Configuration Sequence
	SR-IOV Interfaces Summary
	Driver Ioctls

	Interfaces for SR-IOV Drivers
	pci_param_get() Interface
	pci_param_get_ioctl() Interface
	pci_plist_get() Interface
	pci_plist_getvf() Interface
	pciv_vf_config() Interface
	pci_plist_lookup() Interface
	pci_param_free() Interface
	pciv_send() Interface

	SR-IOV Driver Ioctls
	Data Structures
	iov_param_ver_info Structure
	iov_param_validate Structure
	iov_param_desc Structure

	IOV_GET_VER_INFO Ioctl
	IOV_GET_PARAM_INFO Ioctl
	IOV_VALIDATE_PARAM Ioctl
	Driver Callbacks
	Sample Code for Driver Ioctls

	Building a Device Driver
	Compiling, Loading, Packaging, and Testing Drivers
	Driver Development Summary
	Driver Code Layout
	Header Files
	Source Files
	Configuration Files

	Preparing for Driver Installation
	Compiling and Linking the Driver
	Module Dependencies
	Writing a Hardware Configuration File

	Installing, Updating, and Removing Drivers
	Copying the Driver to a Module Directory
	Installing Drivers with add_drv
	Updating Driver Information
	Removing the Driver

	Loading and Unloading Drivers
	Driver Packaging
	Criteria for Testing Drivers
	Configuration Testing
	Functionality Testing
	Error Handling
	Testing Loading and Unloading
	Stress, Performance, and Interoperability Testing
	DDI/DKI Compliance Testing
	Installation and Packaging Testing
	Testing Specific Types of Drivers
	Tape Drivers
	Disk Drivers
	Asynchronous Communication Drivers
	Network Drivers

	Debugging, Testing, and Tuning Device Drivers
	Testing Drivers
	Enable the Deadman Feature to Avoid a Hard Hang
	Testing With a Serial Connection
	To Set Up the Host System for a tip Connection
	Setting Up a Target System on the SPARC Platform
	Setting Up a Target System on the x86 Platform

	Setting Up Test Modules
	Setting Kernel Variables
	Loading and Unloading Test Modules
	Using the modload() Function
	Using the modinfo() Function
	Using modunload()
	Setting the moddebug Kernel Variable

	Setting kmem_flags Debugging Flags

	Avoiding Data Loss on a Test System
	Using an Alternate Boot Environment
	Booting With an Alternate Kernel
	Consider Alternative Back-Up Plans
	Capture System Crash Dumps

	Recovering the Device Directory

	Debugging Tools
	Postmortem Debugging
	Using the kmdb Kernel Debugger
	Booting kmdb With an Alternate Kernel on the SPARC Platform
	Booting kmdb With an Alternate Kernel on the x86 Platform
	Setting Breakpoints in kmdb
	kmdb Macros for Driver Developers

	Using the mdb Modular Debugger
	Getting Started With the Modular Debugger

	Useful Debugging Tasks With kmdb and mdb
	Exploring System Registers With kmdb
	Detecting Kernel Memory Leaks
	Writing Debugger Commands With mdb
	Obtaining Kernel Data Structure Information
	Obtaining Device Tree Information
	Retrieving Driver Soft State Information
	Modifying Kernel Variables

	Tuning Drivers
	Kernel Statistics
	Kernel Statistics Structure Members
	Kernel Statistics Structures
	Kernel Statistics Functions
	Kernel Statistics for Oracle Solaris Ethernet Drivers

	DTrace for Dynamic Instrumentation

	Recommended Coding Practices
	Debugging Preparation Techniques
	Use a Unique Prefix to Avoid Kernel Symbol Collisions
	Use cmn_err() to Log Driver Activity
	Use ASSERT() to Catch Invalid Assumptions
	Use mutex_owned() to Validate and Document Locking Requirements
	Use Conditional Compilation to Toggle Costly Debugging Features

	Declaring a Variable Volatile
	Serviceability
	Periodic Health Checks

	Appendixes
	Hardware Overview
	SPARC Processor Issues
	SPARC Data Alignment
	Member Alignment in SPARC Structures
	SPARC Byte Ordering
	SPARC Register Windows
	SPARC Multiply and Divide Instructions

	x86 Processor Issues
	x86 Byte Ordering
	x86 Architecture Manuals

	Endianness
	Store Buffers
	System Memory Model
	Total Store Ordering (TSO)
	Partial Store Ordering (PSO)

	Bus Architectures
	Device Identification
	Supported Interrupt Types

	Bus Specifics
	PCI Local Bus
	PCI Address Domain
	PCI Configuration Address Space
	PCI Configuration Base Address Registers
	PCI Memory Address Space
	PCI I/O Address Space
	PCI Hardware Configuration Files

	PCI Express
	SBus
	SBus Physical Address Space
	Physical SBus Addresses
	SBus Hardware Configuration Files

	Device Issues
	Timing-Critical Sections
	Delays
	Internal Sequencing Logic
	Interrupt Issues

	PROM on SPARC Machines
	Open Boot PROM 3
	Forth Commands
	Walking the PROMs Device Tree
	Mapping the Device

	Reading and Writing

	Summary of Oracle Solaris DDI/DKI Services
	Module Functions
	Device Information Tree Node (dev_info_t) Functions
	Device (dev_t) Functions
	Property Functions
	Device Software State Functions
	Memory Allocation and Deallocation Functions
	Kernel Thread Control and Synchronization Functions
	Task Queue Management Functions
	Interrupt Functions
	Programmed I/O Functions
	Direct Memory Access (DMA) Functions
	User Space Access Functions
	User Process Event Functions
	User Process Information Functions
	User Application Kernel and Device Access Functions
	Time-Related Functions
	Power Management Functions
	Fault Management Functions
	Kernel Statistics Functions
	Kernel Logging and Printing Functions
	Buffered I/O Functions
	Virtual Memory Functions
	Device ID Functions
	SCSI Functions
	Resource Map Management Functions
	System Global State
	Utility Functions

	Making a Device Driver 64-Bit Ready
	Introduction to 64-Bit Driver Design
	General Conversion Steps
	Use Fixed-Width Types for Hardware Registers
	Use Fixed-Width Common Access Functions
	Check and Extend Use of Derived Types
	Check Changed Fields in DDI Data Structures
	buf Structure Changes
	ddi_dma_attr
	ddi_dma_cookie Structure Changes
	csi_arq_status Structure Changes
	scsi_pkt Structure Changes

	Check Changed Arguments of DDI Functions
	getrbuf() Argument Changes
	drv_getparm() Argument Changes
	delay() and timeout() Argument Changes
	rmallocmap() and rmallocmap_wait() Argument Changes
	scsi_alloc_consistent_buf() Argument Changes
	uiomove() Argument Changes
	cv_timedwait() and cv_timedwait_sig() Argument Changes
	ddi_device_copy() Argument Changes
	ddi_device_zero() Argument Changes
	ddi_dma_mem_alloc() Argument Changes

	Modify Routines That Handle Data Sharing
	Data Sharing in ioctl()
	Data Sharing in devmap()
	Data Sharing in mmap()

	Check Structures with 64-bit Long Data Types on x86-Based Platforms

	Well Known ioctl Interfaces
	Device Sizes

	Console Frame Buffer Drivers
	Oracle Solaris Consoles and the Kernel Terminal Emulator
	x86 Platform Console Communication
	SPARC Platform Console Communication

	Console Visual I/O Interfaces
	I/O Control Interfaces
	Polled I/O Interfaces
	Video Mode Change Callback Interface

	Implementing the Visual I/O Interfaces in Console Frame Buffer Drivers
	VIS_DEVINIT
	VIS_DEFINI
	VIS_CONSDISPLAY
	VIS_CONSCOPY
	VIS_CONSCURSOR
	VIS_PUTCMAP
	VIS_GETCMAP

	Implementing Polled I/O in Console Frame Buffer Drivers
	Frame Buffer Specific Configuration Module
	The X Window System Frame Buffer Specific DDX Module
	Developing, Testing, and Debugging Console Frame Buffer Drivers
	Testing the I/O Control Interfaces
	Testing the Polled I/O Interfaces
	Testing the Video Mode Change Callback Function
	Additional Suggestions for Testing Console Frame Buffer Drivers

	pci.conf File
	Description
	System Configuration Section
	Device Configuration Section
	Syntax
	References

	Index

