
SPARC Assembly Language Reference
Manual
Beta

Part No: 821–1607–02
November 2010

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following
notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
“commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are
trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

110425@25097

Contents

Preface ...7

1 SPARC Assembler for SunOS 5.x .. 11
1.1 Operating Environment ... 11
1.2 SPARC Assembler for SunOS 4.1 Versus SunOS 5.x ... 11

1.2.1 Labeling Format .. 11
1.2.2 Object File Format .. 12
1.2.3 Pseudo-Operations ... 12
1.2.4 Command Line Options .. 12

2 Assembler Syntax ..13
2.1 Syntax Notation ... 13
2.2 Assembler File Syntax ... 14

2.2.1 Lines Syntax ... 14
2.2.2 Statement Syntax ... 14

2.3 Lexical Features ... 14
2.3.1 Case Distinction .. 14
2.3.2 Comments ... 14
2.3.3 Labels .. 15
2.3.4 Numbers ... 15
2.3.5 Strings ... 15
2.3.6 Symbol Names ... 16
2.3.7 Special Symbols - Registers .. 16
2.3.8 Operators and Expressions .. 18
2.3.9 SPARC V9 Operators and Expressions .. 19

2.4 Assembler Error Messages ... 20

3

3 Executable and Linking Format ..21
3.1 ELF Header ... 22
3.2 Sections ... 23

3.2.1 Section Header .. 24
3.2.2 Predefined User Sections ... 27
3.2.3 Predefined Non-User Sections .. 29

3.3 Locations .. 30
3.4 Addresses .. 30
3.5 Relocation Tables .. 30
3.6 Symbol Tables .. 30
3.7 String Tables ... 32
3.8 Assembler Directives .. 32

3.8.1 Section Control Directives ... 33
3.8.2 Symbol Attribute Directives .. 33
3.8.3 Assignment Directive ... 33
3.8.4 Data Generating Directives ... 33

4 Converting Files to the New Format ... 35
4.1 Conversion Instructions ... 35
4.2 Examples .. 35

5 Instruction-Set Mapping ..37
5.1 Table Notation ... 37
5.2 Integer Instructions ... 39
5.3 Floating-Point Instruction ... 46
5.4 Coprocessor Instructions ... 48
5.5 Synthetic Instructions ... 48
5.6 V8/V9 Natural Pseudo Instructions .. 50

A Pseudo-Operations ...53
A.1 Alphabetized Listing with Descriptions .. 53

B Examples of Pseudo-Operations ...61
B.1 Example 1 ... 61

Contents

SPARC Assembly Language Reference Manual • November 2010 (Beta)4

B.2 Example 2 ... 62
B.3 Example 3 ... 62
B.4 Example 4 ... 63
B.5 Example 5 ... 63

C Using the Assembler Command Line ... 65
C.1 Assembler Command Line .. 65
C.2 Assembler Command Line Options ... 66
C.3 Disassembling Object Code .. 69

D An Example Language Program ...71

E SPARC-V9 Instruction Set ...77
E.1 SPARC-V9 Changes .. 77

E.1.1 Registers ... 77
E.1.2 Alternate Space Access ... 79
E.1.3 Byte Order ... 79

E.2 SPARC-V9 Instruction Set Changes ... 79
E.2.1 Extended Instruction Definitions to Support the 64-Bit Model 79
E.2.2 Added Instructions to Support 64 Bits ... 80
E.2.3 Added Instructions to Support High-Performance System Implementation 81
E.2.4 Deleted Instructions ... 81
E.2.5 Miscellaneous Instruction Changes ... 82

E.3 SPARC-V9 Instruction Set Mapping .. 82
E.4 SPARC-V9 Floating-Point Instruction Set Mapping .. 90
E.5 SPARC-V9 Synthetic Instruction-Set Mapping .. 91
E.6 UltraSPARC and VIS Instruction Set Extensions ... 93

E.6.1 Graphics Data Formats .. 94
E.6.2 Eight-bit Format ... 94
E.6.3 Fixed Data Formats .. 94
E.6.4 SHUTDOWN Instruction ... 94
E.6.5 Graphics Status Register (GSR) .. 94
E.6.6 Graphics Instructions .. 95
E.6.7 Memory Access Instructions ... 99

Contents

5

Index ... 103

Contents

SPARC Assembly Language Reference Manual • November 2010 (Beta)6

Preface

The SunOS assembler that runs on the SPARC operating environment, referred to as the
“SunOS SPARC” in this manual, translates source files that are in assembly language format
into object files in linking format.

In the program development process, the assembler is a tool to use in producing program
modules intended to exploit features of the SPARC architecture in ways that cannot be easily
done using high level languages and their compilers.

Whether assembly language is chosen for the development of program modules depends on the
extent to which and the ease with which the language allows the programmer to control the
architectural features of the processor.

The assembly language described in this manual offers full direct access to the SPARC
instruction set. The assembler may also be used in connection with SunOS 5.x macro
preprocessors to achieve full macro-assembler capability. Furthermore, the assembler responds
to directives that allow the programmer direct control over the contents of the relocatable
object file.

This document describes the language in which the source files must be written. The nature of
the machine mnemonics governs the way in which the program's executable portion is written.
This document includes descriptions of the pseudo operations that allow control over the object
file. This facilitates the development of programs that are easy to understand and maintain.

Before You Read This Book
You should also become familiar with the following:

■ Manual pages: as(1), ld(1), cpp(1), elf(3f), dis(1), a.out(1)
■ SPARC Architecture Manual (Version 8 and Version 9)
■ System V Application Binary Interface: SPARC Processor Supplement

7

How This Book is Organized
This book is organized as follows:

Chapter 1, “SPARC Assembler for SunOS 5.x,” discusses features of the SunOS 5.x SPARC
Assembler.

Chapter 2, “Assembler Syntax,” describes the syntax of the SPARC assembler that takes
assembly programs and produces relocatable object files for processing by the link editor.

Chapter 3, “Executable and Linking Format,” describes the relocatable ELF files that hold code
and data suitable for linking with other object files.

Chapter 4, “Converting Files to the New Format,” describes how to convert existing SunOS 4.1
SPARC assembly files to the SunOS 5.x assembly file format.

Chapter 5, “Instruction-Set Mapping,” describes the relationship between hardware
instructions of the SPARC architecture and the assembly language instruction set.

Appendix A, “Pseudo-Operations,” lists the pseudo-operations supported by the SPARC
assembler.

Appendix B, “Examples of Pseudo-Operations,” shows some examples of ways to use various
pseudo-operations.

Appendix C, “Using the Assembler Command Line,” describes the available assembler
command-line options.

Appendix D, “An Example Language Program,” describes an example C language program with
comments to show correspondence between the assembly code and the C code.

Appendix E, “SPARC-V9 Instruction Set,” describes the SPARC-V9 instruction set and the
changes due to the SPARC-V9 implementation.

Documentation, Support, and Training
See the following web sites for additional resources:

■ Documentation (http://docs.sun.com)
■ Support (http://www.oracle.com/us/support/systems/index.html)
■ Training (http://education.oracle.com) – Click the Sun link in the left navigation bar.

Preface

SPARC Assembly Language Reference Manual • November 2010 (Beta)8

http://docs.sun.com
http://www.oracle.com/us/support/systems/index.html
http://education.oracle.com

Oracle Software Resources
Oracle Technology Network (http://www.oracle.com/technetwork/index.html) offers a
range of resources related to Oracle software:

■ Discuss technical problems and solutions on the Discussion Forums
(http://forums.oracle.com).

■ Get hands-on step-by-step tutorials with Oracle By Example (http://www.oracle.com/
technetwork/tutorials/index.html).

■ Download Sample Code (http://www.oracle.com/technology/sample_code/
index.html).

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Preface

9

http://www.oracle.com/technetwork/index.html
http://forums.oracle.com
http://forums.oracle.com
http://www.oracle.com/technetwork/tutorials/index.html
http://www.oracle.com/technetwork/tutorials/index.html
http://www.oracle.com/technology/sample_code/index.html
http://www.oracle.com/technology/sample_code/index.html

Shell Prompts in Command Examples
The following table shows the default UNIX system prompt and superuser prompt for shells
that are included in the Oracle Solaris OS. Note that the default system prompt that is displayed
in command examples varies, depending on the Oracle Solaris release.

TABLE P–2 Shell Prompts

Shell Prompt

Bash shell, Korn shell, and Bourne shell $

Bash shell, Korn shell, and Bourne shell for superuser #

C shell machine_name%

C shell for superuser machine_name#

Preface

SPARC Assembly Language Reference Manual • November 2010 (Beta)10

SPARC Assembler for SunOS 5.x

This chapter discusses features of the SunOS 5.x SPARC assembler. This document is
distributed as part of the developer documentation set with every SunOS operating system
release.

This document is also distributed with the on-line documentation set for the convenience of
SPARCworks and SPARCompiler 4.0 users who have products that run on the SunOS 5.x
operating system. It is included as part of the SPARCworks/SPARCompiler Floating Point and
Common Tools AnswerBook, which is the on-line information retrieval system.

This document contains information from The SPARC Architecture Manual, Version 8.
Information about Version 9 support is summarized in Appendix E, “SPARC-V9 Instruction
Set.”

1.1 Operating Environment
The SunOS SPARC assembler runs under the SunOS 5.x operating system or the Solaris 2.x
operating environment. SunOS 5.x refers to SunOS 5.2 operating system and later releases.
Solaris 2.x refers to the Solaris 2.2 operating environment and later releases.

1.2 SPARC Assembler for SunOS 4.1 Versus SunOS 5.x
This section describes the differences between the SunOS 4.1 SPARC assembler and the SunOS
5.x SPARC assembler.

1.2.1 Labeling Format
■ Symbol names beginning with a dot (.) are assumed to be local symbols.

■ Names beginning with an underscore (_) are reserved by ANSI C.

1C H A P T E R 1

11

1.2.2 Object File Format
The type of object files created by the SPARC assembler are ELF (Executable and Linking
Format) files. These relocatable object files hold code and data suitable for linking with other
object files to create an executable file or a shared object file, and are the assembler normal
output.

1.2.3 Pseudo-Operations
See Appendix A, “Pseudo-Operations,” for a detailed description of the pseudo-operations
(pseudo-ops).

1.2.4 Command Line Options
See Appendix C, “Using the Assembler Command Line,” for a detailed description of command
line options and a list of SPARC architectures.

1.2 SPARC Assembler for SunOS 4.1 Versus SunOS 5.x

SPARC Assembly Language Reference Manual • November 2010 (Beta)12

Assembler Syntax

The SunOS 5.x SPARC assembler takes assembly language programs, as specified in this
document, and produces relocatable object files for processing by the SunOS 5.x SPARC link
editor. The assembly language described in this document corresponds to the SPARC
instruction set defined in the SPARC Architecture Manual (Version 8 and Version 9) and is
intended for use on machines that use the SPARC architecture.

This chapter is organized into the following sections:

■ “2.1 Syntax Notation” on page 13
■ “2.2 Assembler File Syntax” on page 14
■ “2.3 Lexical Features” on page 14
■ “2.4 Assembler Error Messages” on page 20

2.1 Syntax Notation
In the descriptions of assembly language syntax in this chapter:

■ Brackets ([]) enclose optional items.

■ Asterisks (*) indicate items to be repeated zero or more times.

■ Braces ({ }) enclose alternate item choices, which are separated from each other by vertical
bars (|).

■ Wherever blanks are allowed, arbitrary numbers of blanks and horizontal tabs may be used.
Newline characters are not allowed in place of blanks.

2C H A P T E R 2

13

2.2 Assembler File Syntax
The syntax of assembly language files is:

[line]*

2.2.1 Lines Syntax
The syntax of assembly language lines is:

[statement [; statement]*] [!comment]

2.2.2 Statement Syntax
The syntax of an assembly language statement is:

[label:] [instruction]

where:

label

Description: is a symbol name.

instruction

Description: is an encoded pseudo-op, synthetic instruction, or instruction.

2.3 Lexical Features
This section describes the lexical features of the assembler syntax.

2.3.1 Case Distinction
Uppercase and lowercase letters are distinct everywhere except in the names of special symbols.
Special symbol names have no case distinction.

2.3.2 Comments
A comment is preceded by an exclamation mark character (!); the exclamation mark character
and all following characters up to the end of the line are ignored. C language-style comments
(‘‘/*…*/'') are also permitted and may span multiple lines.

2.2 Assembler File Syntax

SPARC Assembly Language Reference Manual • November 2010 (Beta)14

2.3.3 Labels
A label is either a symbol or a single decimal digit n (0…9). A label is immediately followed by
a colon (:).

Numeric labels may be defined repeatedly in an assembly file; normal symbolic labels may be
defined only once.

A numeric label n is referenced after its definition (backward reference) as nb, and before its
definition (forward reference) as nf.

2.3.4 Numbers
Decimal, hexadecimal, and octal numeric constants are recognized and are written as in the C
language. However, integer suffixes (such as L) are not recognized.

For floating-point pseudo-operations, floating-point constants are written with 0r or 0R (where
r or R means REAL) followed by a string acceptable to atof(3); that is, an optional sign followed
by a non-empty string of digits with optional decimal point and optional exponent.

The special names 0rnan and 0rinf represent the special floating-point values Not-A-Number
(NaN) and INFinity. Negative Not-A-Number and Negative INFinity are specified as 0r-nan and
0r-inf.

Note – The names of these floating-point constants begin with the digit zero, not the letter “O.”

2.3.5 Strings
A string is a sequence of characters quoted with either double-quote mark (") or single-quote
mark (’) characters. The sequence must not include a newline character. When used in an
expression, the numeric value of a string is the numeric value of the ASCII representation of its
first character.

The suggested style is to use single quote mark characters for the ASCII value of a single
character, and double quote mark characters for quoted-string operands such as used by
pseudo-ops. An example of assembly code in the suggested style is:

add %g1,’a’-’A’,%g1 ! g1 + (’a’ - ’A’) --> g1

The escape codes described in Table 2–1, derived from ANSI C, are recognized in strings.

2.3 Lexical Features

Chapter 2 • Assembler Syntax 15

TABLE 2–1 Escape Codes Recognized in Strings

Escape Code Description

\a Alert

\b Backspace

\f Form feed

\n Newline (line feed)

\r Carriage return

\t Horizontal tab

\v Vertical tab

\nnn Octal value nnn

\xnn... Hexadecimal value nn...

2.3.6 Symbol Names
The syntax for a symbol name is:

{ letter | _ | $ | . } { letter | _ | $ | . | digit }*

In the above syntax:

■ Uppercase and lowercase letters are distinct; the underscore (_), dollar sign ($), and dot (.)
are treated as alphabetic characters.

■ Symbol names that begin with a dot (.) are assumed to be local symbols. To simplify
debugging, avoid using this type of symbol name in hand-coded assembly language
routines.

■ The symbol dot (.) is predefined and always refers to the address of the beginning of the
current assembly language statement.

■ External variable names beginning with the underscore character are reserved by the ANSI
C Standard. Do not begin these names with the underscore; otherwise, the program will not
conform to ANSI C and unpredictable behavior may result.

2.3.7 Special Symbols - Registers
Special symbol names begin with a percentage sign (%) to avoid conflict with user symbols.
Table 2–2 lists these special symbol names.

2.3 Lexical Features

SPARC Assembly Language Reference Manual • November 2010 (Beta)16

TABLE 2–2 Special Symbol Names

Symbol Object Name Comment

General-purpose registers %r0 … %r31

General-purpose global registers %g0 … %g7 Same as %r0 … %r7

General-purpose out registers %o0 … %o7 Same as %r8 … %r15

General-purpose local registers %l0 … %l7 Same as %r16 … %r23

General-purpose in registers %i0 … %i7 Same as %r24 … %r31

Stack-pointer register %sp (%sp = %o6 = %r14)

Frame-pointer register %fp (%fp = %i6 = %r30)

Floating-point registers %f0 … %f31

Floating-point status register %fsr

Front of floating-point queue %fq

Coprocessor registers %c0 … %c31

Coprocessor status register %csr

Coprocessor queue %cq

Program status register %psr

Trap vector base address register %tbr

Window invalid mask %wim

Y register %y

Unary operators %lo Extracts least significant 10 bits

%hi Extracts most significant 22 bits

%r_disp32 Used only in Sun
compiler-generated code.

%r_plt32 Used only in Sun
compiler-generated code.

Ancillary state registers %asr1 … %asr31

There is no case distinction in special symbols; for example,

%PSR

is equivalent to

2.3 Lexical Features

Chapter 2 • Assembler Syntax 17

%psr

The suggested style is to use lowercase letters.

The lack of case distinction allows for the use of non-recursive preprocessor substitutions, for
example:

#define psr %PSR

The special symbols %hi and %lo are true unary operators which can be used in any expression
and, as other unary operators, have higher precedence than binary operations. For example:

%hi a+b = (%hi a)+b

%lo a+b = (%lo a)+b

To avoid ambiguity, enclose operands of the %hi or %lo operators in parentheses. For example:

%hi(a) + b

2.3.8 Operators and Expressions
The operators described in Table 2–3 are recognized in constant expressions.

TABLE 2–3 Operators Recognized in Constant Expressions

Binary Operators Unary Operators

+ Integer addition + (No effect)

– Integer subtraction – 2's Complement

* Integer multiplication ~ 1's Complement

/ Integer division %lo(address) Extract least significant 10 bits as
computed by: (address & 0x3ff)

% Modulo %hi(address) Extract most significant 22 bits as
computed by: (address >>10)

^ Exclusive OR %r_disp32

%r_disp64

Used in Sun compiler-generated code
only to instruct the assembler to generate
specific relocation information for the
given expression.

<< Left shift %r_plt32

%r_plt64

Used in Sun compiler-generated code
only to instruct the assembler to generate
specific relocation information for the
given expression.

>> Right shift

2.3 Lexical Features

SPARC Assembly Language Reference Manual • November 2010 (Beta)18

TABLE 2–3 Operators Recognized in Constant Expressions (Continued)
Binary Operators Unary Operators

& Bitwise AND

| Bitwise OR

Since these operators have the same precedence as in the C language, put expressions in
parentheses to avoid ambiguity.

To avoid confusion with register names or with the %hi, %lo, %r_disp32/64, or %r_plt32/64
operators, the modulo operator % must not be immediately followed by a letter or digit. The
modulo operator is typically followed by a space or left parenthesis character.

2.3.9 SPARC V9 Operators and Expressions
The following V9 64-bit operators and expressions in Table 2–4 ease the task of converting
from V8/V8plus assembly code to V9 assembly code.

TABLE 2–4 V9 64-bit Operators and Expressions

Unary Calculation Operators

%hh (address) >> 42 Extract bits 42-63 of a 64-bit word

%hm ((address) >> 32) & 0x3ff Extract bits 32-41 of a 64-bit word

%lm (((address) >> 10) & 0x3fffff) Extract bits 10-31 of a 64-bit word

For example:

sethi %hh (address), %l1

or %l1, %hm (address), %l1

sethi %lm (address), %12

or %12, %lo (address), %12

sllx %l1, 32, %l1

or %l1, %12, %l1

The V9 high 32-bit operators and expressions are identified in Table 2–5.

TABLE 2–5 V9 32-bit Operators and Expressions

Unary Calculation Operators

%hix ((((address) ^ 0xffffffffffffffff >> 10) &0x4fffff) Invert every bit and extract bits 10-31

2.3 Lexical Features

Chapter 2 • Assembler Syntax 19

TABLE 2–5 V9 32-bit Operators and Expressions (Continued)
Unary Calculation Operators

%lox ((address) & 0x3ff | 0x1c00 Extract bits 0-9 and sign extend that to 13
bits

For example:

%sethi %hix (address), %l1

or %l1, %lox (address), %l1

The V9 low 44-bit operators and expressions are identified in Table 2–6.

TABLE 2–6 Low 44-Bit Operators and Expressions

Unary Calculation Operators

%h44 ((address) >> 22) Extract bits 22-43 of a 64-bit word

%m44 ((address) >> 12) & 0x3ff Extract bits 12-21 of a 64-bit word

l44 (address) & 0xfff Extract bits 0-11 of a 64-bit word

For example:

%sethi %h44 (address), %l1

or %l1, %m44 (address), %l1

sllx %l1, 12, %l1

or %l1, %144 (address), %l1

2.4 Assembler Error Messages
Messages generated by the assembler are generally self-explanatory and give sufficient
information to allow correction of a problem.

Certain conditions will cause the assembler to issue warnings associated with delay slots
following Control Transfer Instructions (CTI). These warnings are:

■ Set synthetic instructions in delay slots
■ Labels in delay slots
■ Segments that end in control transfer instructions

These warnings point to places where a problem could exist. If you have intentionally written
code this way, you can insert an .empty pseudo-operation immediately after the control
transfer instruction.

The .empty pseudo-operation in a delay slot tells the assembler that the delay slot can be empty
or can contain whatever follows because you have verified that either the code is correct or the
content of the delay slot does not matter.

2.4 Assembler Error Messages

SPARC Assembly Language Reference Manual • November 2010 (Beta)20

Executable and Linking Format

The type of object files created by the SPARC assembler version for SunOS 5.x are now
Executable and Linking Format (ELF) files. These relocatable ELF files hold code and data
suitable for linking with other object files to create an executable or a shared object file, and are
the assembler normal output. The assembler can also write information to standard output (for
example, under the -S option) and to standard error (for example, under the -V option). The
SPARC assembler creates a default output file when standard input or multiple files are used.

This chapter is organized into the following sections:

■ “3.1 ELF Header” on page 22
■ “3.2 Sections” on page 23
■ “3.3 Locations” on page 30
■ “3.5 Relocation Tables” on page 30
■ “3.6 Symbol Tables” on page 30
■ “3.4 Addresses” on page 30
■ “3.7 String Tables” on page 32
■ “3.8 Assembler Directives” on page 32

The ELF object file format consists of:

■ Header
■ Sections
■ Locations
■ Addresses
■ Relocation tables
■ Symbol tables
■ String tables

For more information, see the System V Application Binary Interface: SPARC Processor
Supplement.

3C H A P T E R 3

21

3.1 ELF Header
The ELF header is always located at the beginning of the ELF file. It describes the ELF file
organization and contains the actual sizes of the object file control structures. The initial bytes
of an ELF header specify how the file is to be interpreted.

The ELF header contains the following information:

ehsize

Description: ELF header size in bytes.

entry

Description: Virtual address at which the process is to start. A value of 0 indicates no
associated entry point.

flag

Description: Processor-specific flags associated with the file.

ident

Description: Marks the file as an object file and provides machine-independent data to decode
and interpret the file contents.

machine

Description: Specifies the required architecture for an individual file. A value of 2 specifies
SPARC.

phentsize

Description: Size in bytes of entries in the program header table. All entries are the same size.

phnum

Description: Number of entries in program header table. A value of 0 indicates the file has no
program header table.

phoff

Description: Program header table file offset in bytes. The value of 0 indicates no program
header.

shentsize

Description: Size in bytes of the section header. A section header is one entry in the section
header table; all entries are the same size.

shnum

Description: Number of entries in section header table. A value of 0 indicates the file has no
section header table.

3.1 ELF Header

SPARC Assembly Language Reference Manual • November 2010 (Beta)22

shoff

Description: Section header table file offset in bytes. The value of 0 indicates no
section header.

shstrndx

Description: Section header table index of the entry associated with the section name string
table. A value of SHN_UNDEF indicates the file does not have a section name string table.

type

Description: Identifies the object file type. Table 3–1 describes the reserved object
file types.

version

Description: Identifies the object file version.

Table 3–1 shows reserved object file types.

TABLE 3–1 Reserved Object File Types

Type Value Description

none 0 No file type

rel 1 Relocatable file

exec 2 Executable file

dyn 3 Shared object file

core 4 Core file

loproc 0xff00 Processor-specific

hiproc 0xffff Processor-specific

3.2 Sections
A section is the smallest unit of an object that can be relocated. The following sections are
commonly present in an ELF file:

■ Section header
■ Executable text
■ Read-only data
■ Read-write data
■ Read-write uninitialized data (section header only)

Sections do not need to be specified in any particular order. The current section is the section to
which code is generated.

3.2 Sections

Chapter 3 • Executable and Linking Format 23

These sections contain all other information in an object file and satisfy several conditions.

1. Every section must have one section header describing the section. However, a section
header does not need to be followed by a section.

2. Each section occupies one contiguous sequence of bytes within a file. The section may be
empty (that is, of zero-length).

3. A byte in a file can reside in only one section. Sections in a file cannot overlap.

4. An object file may have inactive space. The contents of the data in the inactive space are
unspecified.

Sections can be added for multiple text or data segments, shared data, user-defined sections, or
information in the object file for debugging.

Note – Not all of the sections need to be present.

3.2.1 Section Header
The section header allows you to locate all of the file sections. An entry in a section header table
contains information characterizing the data in a section.

The section header contains the following information:

addr

Description: Address at which the first byte resides if the section appears in the memory
image of a process; the default value is 0.

addralign

Description: Aligns the address if a section has an address alignment constraint; for example,
if a section contains a double-word, the entire section must be ensured double-word
alignment. Only 0 and positive integral powers of 2 are currently allowed. A value of 0 or 1
indicates no address alignment constraints.

entsize

Description: Size in bytes for entries in fixed-size tables such as the symbol table.

flags

Description: One-bit descriptions of section attributes. Table 3–2 describes the section
attribute flags.

3.2 Sections

SPARC Assembly Language Reference Manual • November 2010 (Beta)24

TABLE 3–2 Section Attribute Flags

Flag Default Value Description

SHF_WRITE 0x1 Contains data that is writable during process execution.

SHF_ALLOC 0x2 Occupies memory during process execution. This attribute is off
if a control section does not reside in the memory image of the
object file.

SHF_EXECINSTR 0x4 Contains executable machine instructions.

SHF_MASKPROC 0xf0000000 Reserved for processor-specific semantics.

info

Description: Extra information. The interpretation of this information depends on the
section type, as described in Table 3–3.

link

Description: Section header table index link. The interpretation of this information depends
on the section type, as described in Table 3–3.

name

Description: Specifies the section name. An index into the section header string table section
specifies the location of a null-terminated string.

offset

Description: Specifies the byte offset from the beginning of the file to the first byte in the
section.

Note – If the section type is SHT_NOBITS, offset specifies the conceptual placement of the file.

size

Description: Specifies the size of the section in bytes.

Note – If the section type is SHT_NOBITS, size may be non-zero; however, the section still
occupies no space in the file.

type

Description: Categorizes the section contents and semantics. Table 3–3 describes the section
types.

3.2 Sections

Chapter 3 • Executable and Linking Format 25

TABLE 3–3 Section Types

Name Value Description Interpretation by

info link

null 0 Marks section header as inactive.

progbits 1 Contains information defined
explicitly by the program.

symtab 2 Contains a symbol table for link
editing. This table may also be used
for dynamic linking; however, it may
contain many unnecessary symbols.

Note: Only one section of this type is
allowed in a file

One greater than the symbol
table index of the last local
symbol.

The section header
index of the associated
string table.

strtab 3 Contains a string table. A file may
have multiple string table sections.

rela 4 Contains relocation entries with
explicit addends. A file may have
multiple relocation sections.

The section header index of
the section to which the
relocation applies.

The section header
index of the associated
symbol table.

hash 5 Contains a symbol rehash table.

Note: Only one section of this type is
allowed in a file

0 The section header
index of the symbol
table to which the hash
table applies.

dynamic 6 Contains dynamic linking
information.

Note: Only one section of this type is
allowed in a file

0 The section header
index of the string
table used by entries in
the section.

note 7 Contains information that marks the
file.

nobits 8 Contains information defined
explicitly by the program; however, a
section of this type does not occupy
any space in the file.

rel 9 Contains relocation entries without
explicit addends. A file may have
multiple relocation sections.

The section header index of
the section to which the
relocation applies.

The section header
index of the associated
symbol table.

shlib 10 Reserved.

3.2 Sections

SPARC Assembly Language Reference Manual • November 2010 (Beta)26

TABLE 3–3 Section Types (Continued)
Name Value Description Interpretation by

info link

dynsym 11 Contains a symbol table with a
minimal set of symbols for dynamic
linking.

Note: Only one section of this type is
allowed in a file

One greater than the symbol
table index of the last local
symbol.

The section header
index of the associated
string table.

loproc

hiproc

0x70000000

0x7fffffff

Lower and upper bound of range
reserved for processor-specific
semantics.

louser

hiuser

0x80000000

0xffffffff

Lower and upper bound of range
reserved for application programs.

Note: Section types in this range may
be used by an application without
conflicting with system-defined
section types.

Note – Some section header table indexes are reserved and the object file will not contain
sections for these special indexes.

3.2.2 Predefined User Sections
A section that can be manipulated by the section control directives is known as a user section.
You can use the section control directives to change the user section in which code or data is
generated. Table 3–4 lists the predefined user sections that can be named in the section control
directives.

TABLE 3–4 User Sections In Section Control Directives

Section Name Description

.bss Section contains uninitialized read-write data.

.comment Comment section.

.data & .data1 Section contains initialized read-write data.

.debug Section contains debugging information.

.fini Section contains runtime finalization instructions.

.init Section contains runtime initialization instructions.

3.2 Sections

Chapter 3 • Executable and Linking Format 27

TABLE 3–4 User Sections In Section Control Directives (Continued)
Section Name Description

.rodata & .rodata1 Section contains read-only data.

.text Section contains executable text.

.line Section contains line # info for symbolic debugging.

.note Section contains note information.

3.2.2.1 Creating an .init Section in an Object File
The .init sections contain codes that are to be executed before the the main program is
executed. To create an .init section in an object file, use the assembler pseudo-ops shown in
Example 3–1.

EXAMPLE 3–1 Creating an .init Section

.section ".init"

.align 4

<instructions>

At link time, the .init sections in a sequence of .o files are concatenated into an .init section
in the linker output file. The code in the .init section are executed before the main program is
executed.

Because the whole .init section is treated as a single function body, it is recommented that the
only code added to these sections be in the following form:.

call routine_namenop

The called routine should be located in another section. This will prevent conflicting register
and stack usage within the .init sections.

3.2.2.2 Creating a .fini Section in an Object File
.fini sections contain codes that are to be executed after the the main program is executed. To
create an .fini section in an object file, use the assembler pseudo-ops shown in Example 3–2.

EXAMPLE 3–2 Creating an .fini Section

.section ".fini"

.align 4

<instructions>

3.2 Sections

SPARC Assembly Language Reference Manual • November 2010 (Beta)28

At link time, the .fini sections in a sequence of .o files are concatenated into a .fini section in
the linker output file. The codes in the .fini section are executed after the main program is
executed.

Because the whole .fini section is treated as a single function body, it is recommended that the
only code added to these section be in the following form:.

call routine_namenop

The called routine should be located in another section. This will prevent conflicting register
and stack usage within the .fini sections.

3.2.3 Predefined Non-User Sections
Table 3–5 lists sections that are predefined but cannot be named in the section control
directives because they are not under user control.

TABLE 3–5 Sections Not In Section Control Directives

Section Name Description

".dynamic" Section contains dynamic linking information.

.dynstr Section contains strings needed for dynamic linking.

.dynsym Section contains the dynamic linking symbol table.

.got Section contains the global offset table.

.hash Section contains a symbol hash table.

.interp Section contains the path name of a program interpreter.

.plt Section contains the procedure linking table.

.relname & .relaname Section containing relocation information. name is the section to which
the relocations apply, that is, ".rel.text", ".rela.text".

.shstrtab String table for the section header table names.

.strtab Section contains the string table.

.symtab Section contains a symbol table.

3.2 Sections

Chapter 3 • Executable and Linking Format 29

3.3 Locations
A location is a specific position within a section. Each location is identified by a section and a
byte offset from the beginning of the section. The current location is the location within the
current section where code is generated.

A location counter tracks the current offset within each section where code or data is being
generated. When a section control directive (for example, the .section pseudo-op) is
processed, the location information from the location counter associated with the new section
is assigned to and stored with the name and value of the current location.

The current location is updated at the end of processing each statement, but can be updated
during processing of data-generating assembler directives (for example, the .word pseudo-op).

Note – Each section has one location counter; if more than one section is present, only one
location can be current at any time.

3.4 Addresses
Locations represent addresses in memory if a section is allocatable; that is, its contents are to be
placed in memory at program runtime. Symbolic references to these locations must be changed
to addresses by the SPARC link editor.

3.5 Relocation Tables
The assembler produces a companion relocation table for each relocatable section. The table
contains a list of relocations (that is, adjustments to data in the section) to be performed by the
link editor.

3.6 Symbol Tables
A symbol table contains information to locate and relocate symbolic definitions and references.
The SPARC assembler creates a symbol table section for the object file. It makes an entry in the
symbol table for each symbol that is defined or referenced in the input file and is needed during
linking. The symbol table is then used by the SPARC link editor during relocation. The section
header contains the symbol table index for the first non-local symbol.

A symbol table contains the following information:

3.3 Locations

SPARC Assembly Language Reference Manual • November 2010 (Beta)30

name

Description: Index into the object file symbol string table. A value of zero indicates the symbol
table entry has no name; otherwise, the value represents the string table index that gives the
symbol name.

value

Description: Value of the associated symbol. This value is dependent on the context; for
example, it may be an address, or it may be an absolute value.

size

Description: Size of symbol. A value of 0 indicates that the symbol has either no size or an
unknown size.

info

Description: Specifies the symbol type and binding attributes. Table 3–6 and Table 3–7
describe these values.

other

Description: Undefined meaning. Current value is 0.

shndx

Description: Contains the section header table index to another relevant section, if specified.
As a section moves during relocation, references to the symbol will continue to point to the
same location because the value of the symbol will change as well.

TABLE 3–6 Symbol Type Attributes

Value Type Description

0 notype Type not specified.

1 object Symbol is associated with a data object; for example, a variable or an array.

2 func Symbol is associated with a function or other executable code. When another
object file references a function from a shared object, the link editor
automatically creates a procedure linkage table entry for the referenced symbol.

3 section Symbol is associated with a section. These types of symbols are primarily used
for relocation.

4 file Gives the name of the source file associated with the object file.

13

15

loproc

hiproc

Values reserved for processor-specific semantics.

Table 3–7 shows the symbol binding attributes.

3.6 Symbol Tables

Chapter 3 • Executable and Linking Format 31

TABLE 3–7 Symbol Binding Attributes

Value Binding Description

0 local Symbol is defined in the object file and not accessible in other files. Local
symbols of the same name may exist in multiple files.

1 global Symbol is either defined externally or defined in the object file and accessible in
other files.

2 weak Symbol is either defined externally or defined in the object file and accessible in
other files; however, these definitions have a lower precedence than globally
defined symbols.

13

15

loproc

hiproc

Values reserved for processor-specific semantics.

3.7 String Tables
A string table is a section which contains null-terminated variable-length character sequences,
or strings, in the object file; for example, symbol names and file names. The strings are
referenced in the section header as indexes into the string table section.

■ A string table index may refer to any byte in the section.
■ Empty string table sections are permitted; however, the index referencing this section must

contain zero.

A string may appear multiple times and may also be referenced multiple times. References to
substrings may exist, and unreferenced strings are allowed.

3.8 Assembler Directives
Assembler directives, or pseudo-operations (pseudo-ops), are commands to the assembler that
may or may not result in the generation of code. The different types of assembler directives are:

■ Section Control Directives
■ Symbol Attribute Directives
■ Assignment Directives
■ Data Generating Directives
■ Optimizer Directives

See Appendix A, “Pseudo-Operations,” for a complete description of the pseudo-ops supported
by the SPARC assembler.

3.7 String Tables

SPARC Assembly Language Reference Manual • November 2010 (Beta)32

3.8.1 Section Control Directives
When a section is created, a section header is generated and entered in the ELF object file
section header table. The section control pseudo-ops allow you to make entries in this table.
Sections that can be manipulated with the section control directives are known as user sections.
You can also use the section control directives to change the user section in which code or data
is generated.

Note – The symbol table, relocation table, and string table sections are created implicitly. The
section control pseudo-ops cannot be used to manipulate these sections.

The section control directives also create a section symbol which is associated with the location
at the beginning of each created section. The section symbol has an offset value of zero.

3.8.2 Symbol Attribute Directives
The symbol attribute pseudo-ops declare the symbol type and size and whether it is local or
global.

3.8.3 Assignment Directive
The assignment directive associates the value and type of expression with the symbol and
creates a symbol table entry for the symbol. This directive constitutes a definition of the symbol
and, therefore, must be the only definition of the symbol.

3.8.4 Data Generating Directives
The data generating directives are used for allocating storage and loading values.

3.8 Assembler Directives

Chapter 3 • Executable and Linking Format 33

34

Converting Files to the New Format

This chapter discusses how to convert existing SunOS 4.1 SPARC assembly files to the SunOS
5.x SPARC assembly file format.

4.1 Conversion Instructions
■ Remove the leading underscore (_) from symbol names. The Solaris 2.x SPARCompilers do

not prepend a leading underscore to symbol names in the users' programs as did the
SPARCompilers that ran under SunOS 4.1.

■ Prefix local symbol names with a dot (.). Local symbol names in the SunOS 5.x SPARC
assembly language begin with a dot (.) so that they will not conflict with user programs'
symbol names.

■ Change the usage of the pseudo-op .seg to .section, for example, change .seg data to
.section .data. See Appendix A, “Pseudo-Operations,” for more information.

The above conversions can be automatically achieved by passing the -T option to the assembler.

4.2 Examples
Figure 4–1 shows how to convert an existing 4.1 file to the new format. The lines that are
different in the new format are marked with change bars.

4C H A P T E R 4

35

FIGURE 4–1 Converting a 4.x File to the New Format

.seg "data1"

.align 4
L16:

.ascii "hello world\n"

.seg "text"

.proc 04

.global _main

.align 4
_main:

!#PROLOGUE# 0
sethi %hi(LF12),%g1
add %g1,%lo(LF12),%g1
save %sp,%g1,%sp
!#PROLOGUE# 1

L14:
.seg "text"
set L16,%o0
call _printf,1
nop

LE12:
ret
restore
.optim "-O~Q~R~S"
LF12 = -96
LP12 = 96
LST12 = 96
LT12 = 96

.section ".data1"

.align 4
.L16:

.ascii "hello world\n"

.section ".text"

.proc 04

.global main

.align 4
main:

!#PROLOGUE# 0
sethi %hi(.LF12),%g1
add %g1,%lo(.LF12),%g1
save %sp,%g1,%sp
!#PROLOGUE# 1

.L14:
.section ".text"
set .L16,%o0
call printf,1
nop

.LE12:
ret
restore
.optim "-O~Q~R~S"
.LF12 = -96
.LP12 = 96
.LST12 = 96
.LT12 = 96

Example 4.x File Converted to the New Format

Change bars

4.2 Examples

SPARC Assembly Language Reference Manual • November 2010 (Beta)36

Instruction-Set Mapping

The tables in this chapter describe the relationship between hardware instructions of the
SPARC architecture, as defined in The SPARC Architecture Manual and the assembly language
instruction set recognized by the SunOS 5.x SPARC assembler.
■ “5.1 Table Notation” on page 37
■ “5.2 Integer Instructions” on page 39
■ “5.3 Floating-Point Instruction” on page 46
■ “5.4 Coprocessor Instructions” on page 48
■ “5.5 Synthetic Instructions” on page 48

The SPARC-V9 instruction set is described in Appendix E, “SPARC-V9 Instruction Set.”

5.1 Table Notation
Table 5–1 shows the table notation used in this chapter to describe the instruction set of the
assembler. The following notations are commonly suffixed to assembler mnemonics (uppercase
letters refer to SPARC architecture instruction names.

TABLE 5–1 Instruction Set Notations

Notations Describes Comment

address regrs1 + regrs2

regrs1 + const13

regrs1 – const13

const13 + regrs1

const13

Address formed from register contents, immediate constant, or
both.

asi Alternate address space identifier; an unsigned 8–bit value. It can
be the result of the evaluation of a symbol expression.

5C H A P T E R 5

37

TABLE 5–1 Instruction Set Notations (Continued)
Notations Describes Comment

const13 A signed constant which fits in 13 bits. It can be the result of the
evaluation of a symbol expression.

const22 A constant which fits in 22 bits. It can be the result of the
evaluation of a symbol expression.

creg %c0 ... %c31 Coprocessor registers.

freg %f0 ... %f31 Floating-point registers.

imm7 A signed or unsigned constant that can be represented in 7 bits
(it is in the range -64 ... 127). It can be the result of the evaluation
of a symbol expression.

reg %r0 ... %r31 General purpose registers.

%g0 ... %g7 Same as %r0 ... %r7 (Globals)

%o0 ... %o7 Same as %r8 ... %r15 (Outs)

%l0 ... %l7 Same as %r16 ... %r23 (Locals)

%i0 ... %i7 Same as %r24 ... %r31 (Ins)

regrd Destination register.

regrs1, regrs2 Source register 1, source register 2.

reg_or_imm regrs2, const13 Value from either a single register, or an immediate constant.

regaddr regrs1 regrs1 + regrs2 Address formed with register contents only.

Software_trap_number regrs1 + regrs2

regrs1 + imm7

regrs1 - imm7

uimm7

imm7 + regrs1

A value formed from register contents, immediate constant, or
both. The resulting value must be in the range 0.....127, inclusive.

uimm7 An unsigned constant that can be represented in 7 bits (it is in the
range 0 ... 127). It can be the result of the evaluation of a symbol
expression.

5.1 Table Notation

SPARC Assembly Language Reference Manual • November 2010 (Beta)38

5.2 Integer Instructions
The notations described in Table 5–2 are commonly suffixed to assembler mnemonics
(uppercase letters for architecture instruction names).

TABLE 5–2 Assembler Mnemonics Suffixes

Notation Description

a Instructions that deal with alternate space

b Byte instructions

c Reference to coprocessor registers

d Doubleword instructions

f Reference to floating-point registers

h Halfword instructions

q Quadword instructions

sr Status register

Table 5–3 outlines the correspondence between SPARC hardware integer instructions and
SPARC assembly language instructions.

The syntax of individual instructions is designed so that a destination operand (if any), which
may be either a register or a reference to a memory location, is always the last operand in a
statement.

Note – In Table 5–3,

■ Braces ({ }) indicate optional arguments.

Braces are not literally coded.
■ Brackets ([]) indicate indirection: the contents of the addressed memory location are being

read from or written to.

Brackets are coded literally in the assembly language. Note that the usage of brackets
described in Chapter 2, “Assembler Syntax,” differs from the usage of these brackets.

■ All Bicc and Bfcc instructions described may indicate that the annul bit is to be set by
appending ",a" to the opcode mnemonic; for example,

"bgeu,a label"

5.2 Integer Instructions

Chapter 5 • Instruction-Set Mapping 39

TABLE 5–3 Hardware Integer Instructions and Assembly Language Instructions

Opcode Mnemonic Argument List Operation Comments

ADD add regrs1, reg_or_imm, regrd Add

ADDcc addcc regrs1, reg_or_imm, regrd Add and modify icc

ADDX addx regrs1, reg_or_imm, regrd Add with carry

ADDXcc addxcc regrs1, reg_or_imm, regrd

AND and regrs1, reg_or_imm, regrd And

ANDcc andcc regrs1, reg_or_imm, regrd

ANDcc andn regrs1, reg_or_imm, regrd

ANDNcc andcc regrs1, reg_or_imm, regrd

BN bn{,a} label Branch on integer condition codes branch never

BNE bne{,a} label synonym: bnz

BE

BG

BLE

BGE

BI

BGU

BLEU

be{,a}

bg{,a}

ble{,a}

bge{,a}

bl{,a}

bgu{,a}

bleu{,a}

label

label

label

label

label

label

label

synonym: bz

BCC bcc{,a} label synonym: bgeu

BCS

BPOS

BNEG

BVC

BVS

bcs{,a}

bpos{,a}

bneg{,a}

bvc{,a}

bvs{,a}

label

label

label

label

label

synonym: blu

BA ba{,a} label synonym: b

CALL call label Call subprogram

5.2 Integer Instructions

SPARC Assembly Language Reference Manual • November 2010 (Beta)40

TABLE 5–3 Hardware Integer Instructions and Assembly Language Instructions (Continued)
Opcode Mnemonic Argument List Operation Comments

CBccc cbn{,a}

cb3{,a}

cb2{,a}

cb23{,a}

cb1{,a}

cb13{,eo}

cb12{,a}

cb123{,a}

cb0{,a}

cb03{,a}

cb02{,a}

cb023{,a}

cb01{,a}

cb013{,a}

cb012{,a}

cba{,a}

label

label

label

label

label

label

label

label

label

label

label

label

label

label

label

label

Branch on coprocessor condition
codes

branch never

FBN

FBU

FBG

FBUG

FBL

FBUL

FBLG

fbn{,a}

fbu{,a}

fbg{,a}

fbug{,a}

fbl{,a}

fbul{,a}

fblg{,a}

label

label

label

label

label

label

label

Branch on floating-point condition
codes

branch never

FBNE fbne{,a} label synonym: fbnz

FBE fbe{,a} label synonym: fbz

5.2 Integer Instructions

Chapter 5 • Instruction-Set Mapping 41

TABLE 5–3 Hardware Integer Instructions and Assembly Language Instructions (Continued)
Opcode Mnemonic Argument List Operation Comments

FBUE

FBGE

FBUGE

FBLE

FBULE

FBO

FBA

fbue{,a}

fbge{,a}

fbuge{,a}

fble{,a}

fbule{,a}

fbo{,a}

fba{,a}

label

label

label

label

label

label

label

FLUSH flush address Instruction cache flush

JMPL jmpl address, regrd Jump and link

LDSB ldsb [address], regrd Load signed byte

LDSH ldsh [address], regrd Load signed halfword

LDSTUB ldstub [address], regrd Load-store unsigned byte

LDUB ldub [address], regrd Load unsigned byte

LDUH lduh [address], regrd Load unsigned halfword

LD ld [address], regrd Load word

LDD ldd [address], regrd Load double word regrd must be even

LDF ld [address], fregrd

LDFSR ld [address], %fsr Load floating-point register

LDDF ldd [address], fregrd Load double floating-point fregrd must be even

LDC ld [address], cregrd Load coprocessor

LDCSR ld [address], %csr Load double coprocessor

LDDC ldd [address], cregrd

LDSBA

LDSHA

LDUBA

LDUHA

LDA

ldsba

ldsha

lduba

lduha

lda

[regaddr]asi, regrd

[regaddr]asi, regrd

[regaddr]asi, regrd

[regaddr]asi, regrd

[regaddr]asi, regrd

Load signed byte from alternate
space

LDDA ldda [regaddr]asi, regrd regrd must be even

5.2 Integer Instructions

SPARC Assembly Language Reference Manual • November 2010 (Beta)42

TABLE 5–3 Hardware Integer Instructions and Assembly Language Instructions (Continued)
Opcode Mnemonic Argument List Operation Comments

LDSTUBA ldstuba [regaddr]asi, regrd

MULScc mulscc regrs1, reg_or_imm, regrd Multiply step (and modify icc)

NOP nop No operation

OR

ORcc

ORN

ORNcc

or

orcc

orn

orncc

regrs1, reg_or_imm, regrd

regrs1, reg_or_imm, regrd

regrs1, reg_or_imm, regrd

regrs1, reg_or_imm, regrd

Inclusive or

RDASR rd %asrnrs1, regrd

RDY rd %y, regrd See synthetic
instructions.

RDPSR rd %psr, regrd See synthetic
instructions.

RDWIM rd %wim, regrd See synthetic
instructions.

RDTBR rd %tbr, regrd See synthetic
instructions.

RESTORE restore regrs1, reg_or_imm, reg rd See synthetic
instructions.

RETT rett address Return from trap

SAVE save regrs1, reg_or_imm, regrd See synthetic
instructions.

SDIV sdiv regrs1, reg_or_imm, regrd Signed divide

SDIVcc sdivcc regrs1, reg_or_imm, regrd Signed divide and modify icc

SMUL smul regrs1, reg_or_imm, regrd Signed multiply

SMULcc smulcc regrs1, reg_or_imm, regrd Signed multiply and modify icc

SETHI sethi const22, regrd Set high 22 bits of register

sethi %hi(value), regrd See synthetic
instructions.

SLL sll regrs1, reg_or_imm, regrd Shift left logical

SRL srl regrs1, reg_or_imm, regrd Shift right logical

SRA sra regrs1, reg_or_imm, regrd Shift right arithmetic

5.2 Integer Instructions

Chapter 5 • Instruction-Set Mapping 43

TABLE 5–3 Hardware Integer Instructions and Assembly Language Instructions (Continued)
Opcode Mnemonic Argument List Operation Comments

STB stb regrd, [address] Store byte Synonyms: stub, stsb

STH sth regrd, [address] Store half-word Synonyms: stuh, stsh

ST st regrd, [address]

STD std regrd, [address] regrd Must be even

STF st fregrd, [address]

STDF std fregrd, [address]

STFSR st %fsr, [address] Store floating-point status register fregrd Must be even

STDFQ std %fq, [address] Store double floating-point queue

STC st cregrd, [address] Store coprocessor cregrd Must be even

STDC std cregrd, [address] cregrd Must be even

STCSR st %csr, [address]

STDCQ std %cq, [address] Store double coprocessor

STBA stba regrd [regaddr]asi Store byte into alternate space Synonyms: stuba, stsba

STHA stha regrd [regaddr]asi Synonyms: stuha, stsha

STA sta regrd, [regaddr]asi

STDA stda regrd, [regaddr]asi regrd Must be even

SUB sub regrs1, reg_or_imm, regrd Subtract

SUBcc subcc regrs1, reg_or_imm, regrd Subtract and modify icc

SUBX subx regrs1, reg_or_imm, regrd Subtract with carry

SUBXcc subxcc regrs1, reg_or_imm, regrd

SWAP

SWAPA

swap

swapa

[address], regrd

[regaddr]asi, regrd

Swap memory word with register

Ticc tn software_trap_number Trap on integer condition code Trap never

tne software_trap_number Note: Trap numbers 16-31 are
reserved for the user.
Currently-defined trap numbers are
those defined in
/usr/include/sys/trap.h

Synonym: tnz

5.2 Integer Instructions

SPARC Assembly Language Reference Manual • November 2010 (Beta)44

TABLE 5–3 Hardware Integer Instructions and Assembly Language Instructions (Continued)
Opcode Mnemonic Argument List Operation Comments

te

tg

tle

tge

tl

tgu

software_trap_number

software_trap_number

software_trap_number

software_trap_number

software_trap_number

software_trap_number

Synonym: tz

tleu software_trap_number Synonym: tcc

tlu

tgeu

tpos

tneg

software_trap_number

software_trap_number

software_trap_number

software_trap_number

Synonym: tcc

tvc

tvs

ta

software_trap_number

software_trap_number

software_trap_number

Synonym: t

TADDcc

TSUBcc

taddcc

tsubcc

regrs1, reg_or_imm, regrd

regrs1, reg_or_imm, regrd

Tagged add and modify icc

TADDccTV

TSUBccTV

taddcctv

tsubcctv

regrs1, reg_or_imm, regrd

regrs1, reg_or_imm, regrd

Tagged add and modify icc and
trap on overflow

UDIV udiv regrs1, reg_or_imm, regrd Unsigned divide

UDIVcc udivcc regrs1, reg_or_imm, regrd Unsigned divide and modify icc

UMUL umul regrs1, reg_or_imm, regrd Unsigned multiply

UMULcc umulcc regrs1, reg_or_imm, regrd Unsigned multiply and modify icc

UNIMP unimp const22 Illegal instruction

WRASR wr reg_or_imm, %asrnrs1

WRY wr regrs1, reg_or_imm, %y See synthetic
instructions

WRPSR wr regrs1, reg_or_imm, %psr See synthetic
instructions

WRWIM wr regrs1, reg_or_imm, %wim See synthetic
instructions

5.2 Integer Instructions

Chapter 5 • Instruction-Set Mapping 45

TABLE 5–3 Hardware Integer Instructions and Assembly Language Instructions (Continued)
Opcode Mnemonic Argument List Operation Comments

WRTBR wr regrs1, reg_or_imm, %tbr See synthetic
instructions

XNOR

XNORcc

xnor

xnorcc

regrs1, reg_or_imm, regrd

regrs1, reg_or_imm, regrd

Exclusive nor

XOR

XORcc

xor

xorcc

regrs1, reg_or_imm, regrd

regrs1, reg_or_imm, regrd

Exclusive or

5.3 Floating-Point Instruction
Table 5–4 shows floating-point instructions. In cases where more than numeric type is
involved, each instruction in a group is described; otherwise, only the first member of a group is
described.

In the Mnemonic column, types of operands are denoted by the following lowercase letters: i
for integer, s for single, d for double, and q for quad.

TABLE 5–4 Floating-Point Instructions

SPARC Mnemonic Argument List Description

FiTOs fitos fregrs2, fregrd Convert integer to single

FiTOd fitod fregrs2, fregrd Convert integer to double

FiTOq fitoq fregrs2, fregrd Convert integer to quad

FsTOi fstoi fregrs2, fregrd Convert single to integer

FdTOi fdtoi fregrs2, fregrd Convert double to integer

FqTOi fqtoi fregrs2, fregrd Convert quad to integer

FsTOd fstod fregrs2, fregrd Convert single to double

FsTOq fstoq fregrs2, fregrd Convert single to quad

FdTOs fdtos fregrs2, fregrd Convert double to single

FdTOq fdtoq fregrs2, fregrd Convert double to quad

FqTOd fqtod fregrs2, fregrd Convert quad to double

FqTOs fqtos fregrs2, fregrd Convert quad to single

FMOVs fmovs fregrs2, fregrd Move

5.3 Floating-Point Instruction

SPARC Assembly Language Reference Manual • November 2010 (Beta)46

TABLE 5–4 Floating-Point Instructions (Continued)
SPARC Mnemonic Argument List Description

FNEGs fnegs fregrs2, fregrd Negate

FABSs fabss fregrs2, fregrd Absolute value

FSQRTs

FSQRTd

FSQRTq

fsqrts

fsqrtd

fsqrtq

fregrs2, fregrd

fregrs2, fregrd

fregrs2, fregrd

Square root

FADDs

FADDd

FADDq

fadds

faddd

faddq

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

Add

FSUBs

FSUBd

FSUBq

fsubs

fsubd

fsubq

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

Subtract

FMULs

FMULd

FMULq

fmuls

fmuld

fmulq

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

Multiply

FdMULq fmulq fregrs1, fregrs2, fregrd Multiply double to quad

FsMULd fsmuld fregrs1, fregrs2, fregrd Multiply single to double

FDIVs

FDIVd

FDIVq

fdivs

fdivd

fdivq

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

Divide

FCMPs

FCMPd

FCMPq

fcmps

fcmpd

fcmpq

fregrs1, fregrs2

fregrs1, fregrs2

fregrs1, fregrs2

Compare

FCMPEs

FCMPEd

FCMPEq

fcmpes

fcmped

fcmpeq

fregrs1, fregrs2

fregrs1, fregrs2

fregrs1, fregrs2

Compare, generate exception if not
ordered

5.3 Floating-Point Instruction

Chapter 5 • Instruction-Set Mapping 47

5.4 Coprocessor Instructions
All coprocessor-operate (cpopn) instructions take all operands from and return all results to
coprocessor registers. The data types supported by the coprocessor are coprocessor-dependent.
Operand alignment is also coprocessor-dependent. Coprocessor-operate instructions are
described in Table 5–5.

If the EC (PSR_enable_coprocessor) field of the processor state register (PSR) is 0, or if a
coprocessor is not present, a cpopn instruction causes a cp_disabled trap.

The conditions that cause a cp_exception trap are coprocessor-dependent.

TABLE 5–5 Coprocessor Instructions

SPARC Mnemonic Argument List Name Comments

CPop1 cpop1 opc, regrs1, regrs2, regrd Coprocessor operation

CPop2 cpop2 opc, regrs1, regrs2, regrd Coprocessor operation May modify ccc

5.5 Synthetic Instructions
Table 5–6 describes the mapping of synthetic instructions to hardware instructions.

TABLE 5–6 Synthetic Instructions and Hardware Instructions Mapping

Synthetic Instruction Hardware Equivalents Comment

btst reg_or_imm, regrs1 andcc regrs1, reg_or_imm, %g0 Bit test

bset reg_or_imm, regrd or regrd, reg_or_imm, regrd Bit set

bclr reg_or_imm, regrd andn regrd, reg_or_imm, regrd Bit clear

btog reg_or_imm, regrd xor regrd, reg_or_imm, regrd Bit toggle

call reg_or_imm jmpl reg_or_imm, %o7

clr regrd or %g0, %g0, regrd Clear (zero) register

clrb [address] stb %g0, [address] Clear byte

clrh [address] st %g0, [address] Clear halfword

clr [address] st %g0, [address] Clear word

cmp reg, reg_or_imm subcc regrs1, reg_or_imm, %g0 Compare

dec regrd sub regrd, 1, regrd Decrement by 1

dec const13, regrd sub regrd, const13, regrd Decrement by const13

5.4 Coprocessor Instructions

SPARC Assembly Language Reference Manual • November 2010 (Beta)48

TABLE 5–6 Synthetic Instructions and Hardware Instructions Mapping (Continued)
Synthetic Instruction Hardware Equivalents Comment

deccc regrd subcc regrd, 1, regrd Decrement by 1 and set icc

deccc const13, regrd subcc regrd, const13, regrd Decrement by const13 and set
icc

inc regrd add regrd, 1, regrd Increment by 1

inc const13, regrd add regrd, const13, regrd Increment by const13

inccc regrd addcc regrd, 1, regrd Increment by 1 and set icc

inccc const13, regrd addcc regrd, const13, regrd Increment by const13 and set
icc

jmp address jmpl address, %g0

mov

mov

mov

mov

mov

mov

mov

mov

mov

reg_or_imm,regrd

%y, regrs1

%psr, regrs1

%wim, regrs1

%tbr, regrs1

reg_or_imm, %y

reg_or_imm, %psr

reg_or_imm, %wim

reg_or_imm, %tbr

or

rd

rd

rd

rd

wr

wr

wr

wr

%g0, reg_or_imm, regrd

%y, regrs1

%psr, regrs1

%wim, regrs1

%tbr, regrs1

%g0,reg_or_imm,%y

%g0,reg_or_imm,%psr

%g0,reg_or_imm,%wim

%g0,reg_or_imm,%tbr

not regrs1, regrd xnor regrs1, %g0, regrd One's complement

not regrd xnor regrd, %g0, regrd One's complement

neg regrs1, regrd sub %g0, regrs2, regrd Two's complement

neg regrd sub %g0, regrd, regrd Two's complement

restore restore %g0, %g0, %g0 Trivial restore

save save %g0, %g0, %g0 Trivial save

trivial save should only be
used in supervisor code!

set value,regrd or %g0, value, regrd if -4096 ≤value ≤ 4095

Do not use the set synthetic
instruction in an instruction
delay slot.

5.5 Synthetic Instructions

Chapter 5 • Instruction-Set Mapping 49

TABLE 5–6 Synthetic Instructions and Hardware Instructions Mapping (Continued)
Synthetic Instruction Hardware Equivalents Comment

set value,regrd sethi %hi(value), regrd if ((value & 0x3ff) == 0)

set value, regrd sethi

or

%hi(value), regrd; regrd,
%lo(value), regrd

otherwise

Do not use the set synthetic
instruction in an instruction
delay slot.

skipz bnz,a .+8 if z is set, ignores next
instruction

skipnz bz,a .+8 if z is not set, ignores next
instruction

tst reg orcc regrs1, %g0, %g0 test

5.6 V8/V9 Natural Pseudo Instructions
Table 5–7 describes the V8/V9 natural pseudo instructions that will help increase the
portability of your assembly code from V8/V8plus to V9.

TABLE 5–7 V8/V9 Natural Pseudo Instructions

Pseudo Instructions

-xarch=

V8/V8plus1 V9

ldn ld ldx

stn st stx

ldna lda ldxa

stna sta stxa

setn set setx

setnhi sethi setxhi

casn cas casx

slln sll sllx

srln srl srlx

sran sra srax

clrn clr clrx
1 Indicates default setting

5.6 V8/V9 Natural Pseudo Instructions

SPARC Assembly Language Reference Manual • November 2010 (Beta)50

Note – Depending on the value set for the -xarch option, the assembler substitutes the
appropriate pseudo instruction.

5.6 V8/V9 Natural Pseudo Instructions

Chapter 5 • Instruction-Set Mapping 51

52

Pseudo-Operations

The pseudo-operations listed in this appendix are supported by the SPARC assembler.

A.1 Alphabetized Listing with Descriptions
.alias

Description: Turns off the effect of the preceding .noalias pseudo-op. (Compiler-generated
only.)

.align boundary

Description: Aligns the location counter on a boundary where ((“location counter” mod
boundary)==0); boundary may be any power of 2.

.ascii string [, string"]
Description: Generates the given sequences of ASCII characters.

.asciz string [, string]*

Description: Generates the given sequences of ASCII characters. This pseudo-op appends a
null (zero) byte to each string.

.byte 8bitval [, 8bitval]*

Description: Generates (a sequence of) initialized bytes in the current segment.

.common symbol, size [, sect_name] [, alignment]

Description: Provides a tentative definition of symbol. Size bytes are allocated for the object
represented by symbol.

AA P P E N D I X A

53

■ If the symbol is not defined in the input file and is declared to be local to the file, the
symbol is allocated in sect_name and its location is optionally aligned to a multiple of
alignment. If sect_name is not given, the symbol is allocated in the uninitialized data
section (bss). Currently, only .bss is supported for the section name. (.data is not
currently supported.)

■ If the symbol is not defined in the input file and is declared to be global, the SPARC link
editor allocates storage for the symbol, depending on the definition of symbol_name in
other files. Global is the default binding for common symbols.

■ If the symbol is defined in the input file, the definition specifies the location of the
symbol and the tentative definition is overridden.

.double 0rfloatval [, 0rfloatval]*

Description: Generates (a sequence of) initialized double-precision floating-point values in
the current segment. floatval is a string acceptable to atof(3); that is, an optional sign
followed by a non-empty string of digits with optional decimal point and optional exponent.

.empty

Description: Suppresses assembler complaints about the next instruction presence in a delay
slot when used in the delay slot of a Control Transfer Instruction (CTI).

Description: Some instructions should not be in the delay slot of a CTI. See the SPARC
Architecture Manual for details.

.file string

Description: Creates a symbol table entry where string is the symbol name and STT_FILE is
the symbol table type. string specifies the name of the source file associated with the object
file.

.global symbol [, symbol]* .globl symbol [, symbol]*

Description: Declares each symbol in the list to be global; that is, each symbol is either defined
externally or defined in the input file and accessible in other files; default bindings for the
symbol are overridden.

■ A global symbol definition in one file will satisfy an undefined reference to the same
global symbol in another file.

■ Multiple definitions of a defined global symbol is not allowed. If a defined global symbol
has more than one definition, an error will occur.

■ A global psuedo-op oes not need to occur before a definition, or tentative definition, of
the specified symbol.

Note – This pseudo-op by itself does not define the symbol.

A.1 Alphabetized Listing with Descriptions

SPARC Assembly Language Reference Manual • November 2010 (Beta)54

.half 16bitval [, 16bitval]*

Description: Generates (a sequence of) initialized halfwords in the current segment. The
location counter must already be aligned on a halfword boundary (use .align 2).

.ident string

Description: Generates the null terminated string in a comment section. This operation is
equivalent to:

.pushsection .comment .asciz string .popsection

.local symbol [, symbol]*

Description: Declares each symbol in the list to be local; that is, each symbol is defined in the
input file and not accessible in other files; default bindings for the symbol are overridden.
These symbols take precedence over weak and global symbols.

Description: Since local symbols are not accessible to other files, local symbols of the same
name may exist in multiple files.

Note – This pseudo-op by itself does not define the symbol.

.noalias %reg1, %reg2

Description: %reg1 and %reg2 will not alias each other (that is, point to the same destination)
until a .alias pseudo-op is issued. (Compiler-generated only.)

.nonvolatile

Description: Defines the end of a block of instruction. The instructions in the block may not
be permuted. This pseudo-op has no effect if:

■ The block of instruction has been previously terminated by a Control Transfer
Instruction (CTI) or a label

■ There is no preceding .volatile pseudo-op

.nword 64bitval [, 64bitval]*

Description: If -xarch=v8/v8plus then assembler interprets the instruction as .word. If
-xarch=v9 the assembler interprets the instruction as .xword.

.optim string

Description: This pseudo-op changes the optimization level of a particular function.
(Compiler-generated only.)

.popsection

Description: Removes the top section from the section stack. The new section on the top of
the stack becomes the current section. This pseudo-op and its corresponding .pushsection
command allow you to switch back and forth between the named sections.

A.1 Alphabetized Listing with Descriptions

Appendix A • Pseudo-Operations 55

.proc n

Description: Signals the beginning of a procedure (that is, a unit of optimization) to the
peephole optimizer in the SPARC assembler; n specifies which registers will contain the
return value upon return from the procedure. (Compiler-generated only.)

.pushsection sect_name [, attributes]

Description: Moves the named section to the top of the section stack. This new top section
then becomes the current section. This pseudo-op and its corresponding .popsection
command allow you to switch back and forth between the named sections.

.quad 0rfloatval [, 0rfloatval]*

Description: Generates (a sequence of) initialized quad-precision floating-point values in the
current segment. floatval is a string acceptable to atof(3); that is, an optional sign followed
by a non-empty string of digits with optional decimal point and optional exponent.

Note – The .quad command currently generates quad-precision values with only
double-precision significance.

.reserve symbol, size [, sect_name [, alignment]]

Description: Defines symbol, and reserves size bytes of space for it in the sect_name. This
operation is equivalent to:

.pushsection sect_name

.align alignment

symbol:

.skip size

.popsection

If a section is not specified, space is reserved in the current segment.

.section section_name [, attributes]

Description: Makes the specified section the current section.

Description: The assembler maintains a section stack which is manipulated by the section
control directives. The current section is the section that is currently on top of the stack.
This pseudo-op changes the top of the section stack.
■ If section_name does not exist, a new section with the specified name and attributes is

created.
■ If section_name is a non-reserved section, attributes must be included the first time it is

specified by the .section directive.

See the sections “3.2.2 Predefined User Sections” on page 27 and “3.2.3 Predefined
Non-User Sections” on page 29 in Chapter 3, “Executable and Linking Format,” for a

A.1 Alphabetized Listing with Descriptions

SPARC Assembly Language Reference Manual • November 2010 (Beta)56

detailed description of the reserved sections. See Table 3–2 in Chapter 3, “Executable and
Linking Format,” for a detailed description of the section attribute flags.

Attributes can be:

#write | #alloc | #execinstr

.seg section_name

Description: This pseudo-op is currently supported for compatibility with existing SunOS 4.1
SPARC assembly language programs. This pseudo-op has been replaced by the .section
pseudo-op.

Changes the current section to one of the predefined user sections. The assembler will
interpret the following SunOS 4.1 SPARC assembly directive: to be the same as the following
SunOS 5.x SPARC assembly directive:

.seg text, .seg data, .seg data1, .seg bss,

.section .text, .section .data, .section .data1,

.section .bss.

Predefined user section names are changed in SunOS 5.x.

.single 0rfloatval [, 0rfloatval]*

Description: Generates (a sequence of) initialized single-precision floating-point values in the
current segment.

Note – This operation does not align automatically.

.size symbol, expr

Description: Declares the symbol size to be expr. expr must be an absolute expression.

.skip n

Description: Increments the location counter by n, which allocates n bytes of empty space in
the current segment.

.stabn <various parameters>

Description: The pseudo-op is used by Solaris 2.x SPARCompilers only to pass debugging
information to the symbolic debuggers.

.stabs <various parameters>

Description: The pseudo-op is used by Solaris 2.x SPARCompilers only to pass debugging
information to the symbolic debuggers.

A.1 Alphabetized Listing with Descriptions

Appendix A • Pseudo-Operations 57

.type symbol, type

Description: Declares the type of symbol, where type can be:

#object

#function

#no_type

See Table 3–6 in Chapter 3, “Executable and Linking Format,” for detailed information on
symbols.

.uahalf 16bitval [, 16bitval]*

Description: Generates a (sequence of) 16-bit values.

Note – This operation does not align automatically.

.uaword 32bitval [, 32bitval]*

Description: Generates a (sequence of) 32-bit values.

Note – This operation does not align automatically.

.version string

Description: Identifies the minimum assembler version necessary to assemble the input file.
You can use this pseudo-op to ensure assembler-compiler compatibility. If string indicates a
newer version of the assembler than this version of the assembler, a fatal error message is
displayed and the SPARC assembler exits.

.volatile

Description: Defines the beginning of a block of instruction. The instructions in the section
may not be changed. The block of instruction should end at a .nonvolatile pseudo-op and
should not contain any Control Transfer Instructions (CTI) or labels. The volatile block of
instructions is terminated after the last instruction preceding a CTI or label.

.weak symbol [, symbol]

Description: Declares each symbol in the list to be defined either externally, or in the input file
and accessible to other files; default bindings of the symbol are overridden by this directive.

Description: Note the following:

■ A weak symbol definition in one file will satisfy an undefined reference to a global
symbol of the same name in another file.

■ Unresolved weak symbols have a default value of zero; the link editor does not resolve
these symbols.

A.1 Alphabetized Listing with Descriptions

SPARC Assembly Language Reference Manual • November 2010 (Beta)58

■ If a weak symbol has the same name as a defined global symbol, the weak symbol is
ignored and no error results.

Note – This pseudo-op does not itself define the symbol.

.word 32bitval [, 32bitval]*

Description: Generates (a sequence of) initialized words in the current segment.

Note – This operation does not align automatically.

.xword 64bitval [, 64bitval]*

Description: Generates (a sequence of) initialized 64-bit values in the current segment.

Note – This operation does not align automatically.

.xstabs <various parameters>

Description: The pseudo-op is used by Solaris 2.x SPARCompilers only to pass debugging
information to the symbolic debuggers.

symbol =expr

Description: Assigns the value of expr to symbol.

A.1 Alphabetized Listing with Descriptions

Appendix A • Pseudo-Operations 59

60

Examples of Pseudo-Operations

This appendix shows some examples of ways to use various pseudo-ops.

B.1 Example 1
This example shows how to use the following pseudo-ops to specify the bindings of variables in
C:

common, .global, .local, .weak

The following C definitions/declarations:

int foo1 = 1;

#pragma weak foo2 = foo1

static int foo3;

static int foo4 = 2;

can be translated into the following assembly code.

EXAMPLE B–1 Using Pseudo-ops to Specify C Variable Bindings

.pushsection ".data"

.global foo1 ! int foo1 = 1

.align 4

foo1:

.word 0x1

.type foo1,#object ! foo1 is of type data object,

.size foo1,4 ! with size = 4 bytes

.weak foo2 ! #pragma weak foo2 = foo1

foo2 = foo1

.local foo3 ! static int foo3

.common foo3,4,4

.align 4 ! static int foo4 = 2

BA P P E N D I X B

61

EXAMPLE B–1 Using Pseudo-ops to Specify C Variable Bindings (Continued)

foo4:

.word 0x2

.type foo4,#object

.size foo4,4

.popsection

B.2 Example 2
This example shows how to use the pseudo-op .ident to generate a string in the .comment
section of the object file for identification purposes.

.ident "acomp: (CDS) SPARCompilers 2.0 alpha4 12 Aug 1991"

B.3 Example 3
The pseudo-ops shown in this example are .align, .global, .type, and .size.

The following C subroutine:

int sum(a, b)

int a, b;

{

return(a + b);

}

can be translated into the following assembly code:

.section ".text"

.global sum

.align 4

sum:

retl

add %o0,%o1,%o0 ! (a + b) is done in the

! delay slot of retl

.type sum,#function ! sum is of type function

.size sum,.-sum ! size of sum is the diff

! of current location

! counter and the initial

! definition of sum

B.2 Example 2

SPARC Assembly Language Reference Manual • November 2010 (Beta)62

B.4 Example 4
The pseudo-ops shown in this example are .section, .ascii, and .align. The example calls
the printf function to output the string "hello world".

.section ".data1"

.align 4

.L16:

.ascii "hello world\n\0"

.section ".text"

.global main

main:

save %sp,-96,%sp

set .L16,%o0

call printf,1

nop

restore

B.5 Example 5
This example shows how to use the .volatile and .nonvolatile pseudo-ops to protect a
section of handwritten assembly code from peephole optimization.

.volatile

t 0x24

std %g2, [%o0]

retl

nop

.nonvolatile

B.5 Example 5

Appendix B • Examples of Pseudo-Operations 63

64

Using the Assembler Command Line

This appendix is organized into the following secitons:

■ “C.1 Assembler Command Line” on page 65
■ “C.2 Assembler Command Line Options” on page 66
■ “C.3 Disassembling Object Code” on page 69

C.1 Assembler Command Line
You invoke the assembler command line as follows:

as [options] [inputfile] ...

Note – The language drivers (such as cc and f77) invoke the assembler command line with the
fbe command. You can use either the as or fbe command to invoke the assembler command
line.

The as command translates the assembly language source files, inputfile, into an executable
object file, objfile. The SPARC assembler recognizes the filename argument hyphen (-) as the
standard input. It accepts more than one file name on the command line. The input file is the
concatenation of all the specified files. If an invalid option is given or the command line
contains a syntax error, the SPARC assembler prints the error (including a synopsis of the
command line syntax and options) to standard error output, and then terminates.

The SPARC assembler supports macros, #include files, and symbolic substitution through use
of the C preprocessor cpp. The assembler invokes the preprocessor before assembly begins if it
has been specified from the command line as an option. (See the -P option.)

CA P P E N D I X C

65

C.2 Assembler Command Line Options
-b

Description: This option generates extra symbol table information for the source code
browser.

■ If the as command line option -P is set, the cpp preprocessor also collects browser
information.

■ If the as command line option -m is set, this option is ignored as the m4 macro processor
does not generate browser data.

For more information about the SPARCworks SourceBrowser, see the Browsing Source Code
manual.

-Dname -Dname=def

Description: When the -P option is in effect, these options are passed to the cpp preprocessor
without interpretation by the as command; otherwise, they are ignored.

-Ipath

Description: When the -P option is in effect, this option is passed to the cpp preprocessor
without interpretation by the as command; otherwise, it is ignored.

-K PIC

Description: This option generates position-independent code. This option has the same
functionality as the -k option under the SunOS 4.1 SPARC assembler.

Note – -K PIC and -K pic are equivalent.

-L

Description: Saves all symbols, including temporary labels that are normally discarded to save
space, in the ELF symbol table.

-m

Description: This option runs m4 macro preprocessing on input. The m4 preprocessor is more
powerful than the C preprocessor (invoked by the -P option), so it is more useful for
complex preprocessing. See the m4(1) man page for more information about the m4
macro-processor.

-n

Description: Suppress all warnings while assembling.

C.2 Assembler Command Line Options

SPARC Assembly Language Reference Manual • November 2010 (Beta)66

-o outfile

Description: Takes the next argument as the name of the output file to be produced. By
default, the .s suffix, if present, is removed from the input file and the .o suffix is appended to
form the ouput file name.

-P

Description: Run cpp, the C preprocessor, on the files being assembled. The preprocessor is
run separately on each input file, not on their concatenation. The preprocessor output is
passed to the assembler.

-Q{y|n}

Description: This option produces the “assembler version” information in the comment
section of the output object file if the y option is specified; if the n option is specified, the
information is suppressed.

-q

Description: This option causes the assembler to perform a quick assembly. Many
error-checks are not performed when -q is specified.

Note – This option disables many error checks. It is recommended that you do not use this
option to assemble handwritten assembly language.

-S[a|b|c|l|A|B|C|L]

Description: Produces a disassembly of the emitted code to the standard output. Adding each
of the following characters to the -S option produces:

■ a - disassembling with address
■ b - disassembling with ".bof"
■ c - disassembling with comments
■ l - disassembling with line numbers

Capital letters turn the switch off for the corresponding option.

-s

Description: This option places all stabs in the ".stabs" section. By default, stabs are placed in
"stabs.excl" sections, which are stripped out by the static linker ld during final execution.
When the -s option is used, stabs remain in the final executable because ".stab" sections are
not stripped out by the static linker ld.

-T

Description: This is a migration option for SunOS 4.1 assembly files to be assembled on
SunOS 5.x systems. With this option, the symbol names in SunOS 4.1 assembly files will be
interpreted as SunOS 5.x symbol names. This option can be used in conjunction with the -S
option to convert SunOS 4.1 assembly files to their corresponding SunOS 5.x versions.

C.2 Assembler Command Line Options

Appendix C • Using the Assembler Command Line 67

-Uname

Description: When the -P option is in effect, this option is passed to the cpp preprocessor
without interpretation by the as command; otherwise, it is ignored.

-V

Description: This option writes the version information on the standard error output.

-xarch=v7

Description: This option instructs the assembler to accept instructions defined in the SPARC
version 7 (V7) architecture. The resulting object code is in ELF format.

-xarch=v8

Description: This option instructs the assembler to accept instructions defined in the
SPARC-V8 architecture. The resulting object code is in ELF format. The quad-precision
floating-point instructions are allowed; however when the program is executed these
instructions cause a hardware exception called "trap" (an illegal instruction trap). The
kernel has the trap handler to emulate the quad precision floating-point arithmetic.
Consequently, all quad precision arithmetic is performed by the emulator in the kernel.

-xarch=v8a

Description: This option instructs the assembler to accept instructions defined in the
SPARC-V8 architecture, less the fsmuld instruction. The resulting object code is in ELF
format. The quad-precision floating-point instructions are allowed; however when the
program is executed these instructions cause a hardware exception called "trap" (an illegal
instruction trap). The kernel has the trap handler to emulate the quad precision
floating-point arithmetic. Consequently, all quad precision arithmetic is performed by the
emulator in the kernel. This is the default choice of the -xarch= options.

-xarch=v8plus

Description: This option instructs the assembler to accept instructions defined in the
SPARC-V9 architecture. The resulting object code is in ELF format. The quad-precision
floating-point instructions are allowed; however when the program is executed these
instructions cause a hardware exception called "trap" (an illegal instruction trap). The
kernel has the trap handler to emulate the quad precision floating-point arithmetic.
Consequently, all quad precision arithmetic is performed by the emulator in the kernel. It
will not execute on a Solaris V8 system (a machine with a V8 processor). It will execute on a
Solaris V8+ system. This combination is a SPARC 64-bit processor and a 32-bit OS. For
more information regarding SPARC-V9 instructions, see Appendix E, “SPARC-V9
Instruction Set.”

-xarch=v8plusa

Description: This option instructs the assembler to accept instructions defined in the
SPARC-V9 architecture, plus the instructions in the Visual Instruction Set (VIS). The
resulting object code is in V8+ ELF format. It will not execute on a Solaris V8 system. It will

C.2 Assembler Command Line Options

SPARC Assembly Language Reference Manual • November 2010 (Beta)68

execute on a Solaris V8+ system. For more information about VIS instructions, see the
UltraSPARC Programmer's Reference Manual and the UltraSPARC User's Guide. The
quad-precision floating-point instructions are allowed; however when the program is
executed these instructions cause a hardware exception called "trap" (an illegal instruction
trap). The kernel has the trap handler to emulate the quad precision floating-point
arithmetic. Consequently, all quad precision arithmetic is performed by the emulator in the
kernel.

-xarch=v9

Description: This option limits instruction set to the SPARC-V9 architecture. The resulting
.o object files are in 64-bit ELF format and can only be linked with other object files in the
same format. The resulting executable can only be run on a 64-bit SPARC processor running
64-bit Solaris 7 with the 64-bit kernel.

Note – This option is available only on Solaris 7.

-xarch=v9a

Description: This option limits instruction set to the SPARC-V9 architecture, adding the
Visual Instruction Set (VIS) and extensions specific to UltraSPARC processors. The
resulting .o object files are in 64-bit ELF format and can only be run on a 64-bit SPARC
processor running 64-bit Solaris 7 with the 64-bit kernel.

Note – This option is available only on Solaris 7.

C.3 Disassembling Object Code
The dis program is the object code disassembler for ELF. It produces an assembly language
listing of the object file. For detailed information about this function, see the man page dis(1).

C.3 Disassembling Object Code

Appendix C • Using the Assembler Command Line 69

http://www.oracle.com/pls/topic/lookup?ctx=821-1461&id=dis-1

70

An Example Language Program

The following code shows an example C language program; the second example code shows the
corresponding assembly code generated by SPARCompiler C 3.0.2 that runs on the Solaris 2.x
operating environment. Comments have been added to the assembly code to show
correspondence to the C code.

The following C Program computes the first n Fibonacci numbers.

EXAMPLE D–1 C Program Example Source

/* a simple program computing the first n Fibonacci numbers */

extern unsigned * fibonacci();

#define MAX_FIB_REPRESENTABLE 49

/* compute the first n Fibonacci numbers */

unsigned * fibonacci(n)

int n;

{

static unsigned fib_array[MAX_FIB_REPRESENTABLE] = {0,1};

unsigned prev_number = 0;

unsigned curr_number = 1;

int i;

if (n >= MAX_FIB_REPRESENTABLE) {

printf("Fibonacci(%d) cannot be represented in a 32 bit word\n", n);

exit(1);

}

for (i = 2; i < n; i++) {

fib_array[i] = prev_number + curr_number;

prev_number = curr_number;

curr_number = fib_array[i];

}

return(fib_array);

}

DA P P E N D I X D

71

EXAMPLE D–1 C Program Example Source (Continued)

main()

{

int n, i;

unsigned * result;

printf("Fibonacci(n):, please enter n:\n");
scanf("%d", &n);

result = fibonacci(n);

for (i = 1; i <= n; i++)

printf("Fibonacci (%d) is %u\n", i, *result++);

}

The C SPARCompiler generates the following assembler output for the Fibonacci number C
source. Annotation has been added to help you understand the code.

EXAMPLE D–2 Assembler Output From C Source

!

! a simple program computing the first n Fibonacci numbers,

! showing various pseudo-operations, sparc instructions, synthetic instructions

!

! pseudo-operations: .align, .ascii, .file, .global, .ident, .proc, .section,

! .size, .skip, .type, .word

! sparc instructions: add, bg, bge, bl, ble, ld, or, restore, save, sethi, st

! synthetic instructions: call, cmp, inc, mov, ret

!

.file "fibonacci.c" ! the original source file name

.section ".text" ! text section (executable instructions)

.proc 79 ! subroutine fibonacci, it’s return

! value will be in %i0

.global fibonacci ! fibonacci() can be referenced

! outside this file

.align 4 ! align the beginning of this section

! to word boundary

fibonacci:

save %sp,-96,%sp ! create new stack frame and register

! window for this subroutine

/* if (n >= MAX_FIB_REPRESENTABLE) { */

! note, C style comment strings are

! also permitted

cmp %i0,49 ! n >= MAX_FIB_REPRESENTABLE ?

! note, n, the 1st parameter to

! fibonacci(), is stored in %i0 upon

! entry

bl .L77003

mov 0,%i2 ! initialization of variable

! prev_number is executed in the

! delay slot

An Example Language Program

SPARC Assembly Language Reference Manual • November 2010 (Beta)72

EXAMPLE D–2 Assembler Output From C Source (Continued)

/* printf("Fibonacci(%d) cannot be represented in a 32 bits word\n", n); */

sethi %hi(.L20),%o0 ! if branch not taken, call printf(),

or %o0,%lo(.L20),%o0 ! set up 1st, 2nd argument in %o0, %o1;

call printf,2 ! the ",2" means there are 2 out

mov %i0,%o1 ! registers used as arguments

/* exit(1); */

call exit,1

mov 1,%o0

.L77003: ! initialize variables before the loop

/* for (i = 2; i < n; i++) { */

mov 1,%i4 ! curr_number = 1

mov 2,%i3 ! i = 2

cmp %i3,%i0 ! i <= n?

bge .L77006 ! if not, return

sethi %hi(.L16+8),%o0 ! use %i5 to store fib_array[i]

add %o0,%lo(.L16+8),%i5

.LY1: ! loop body

/* fib_array[i] = prev_number + curr_number; */

add %i2,%i4,%i2 ! fib_array[i] = prev_number+curr_number

st %i2,[%i5]

/* prev_number = curr_number; */

mov %i4,%i2 ! prev_number = curr_number

/* curr_number = fib_array[i]; */

ld [%i5],%i4 ! curr_number = fib_array[i]

inc %i3 ! i++

cmp %i3,%i0 ! i <= n?

bl .LY1 ! if yes, repeat loop

inc 4,%i5 ! increment ptr to fib_array[]

.L77006:

/* return(fib_array); */

sethi %hi(.L16),%o0 ! return fib_array in %i0

add %o0,%lo(.L16),%i0

ret

restore ! destroy stack frame and register

! window

.type fibonacci,#function ! fibonacci() is of type function

.size fibonacci,(.-fibonacci) ! size of function:

! current location counter minus

! beginning definition of function

.proc 18 ! main program

.global main

.align 4

main:

save %sp,-104,%sp ! create stack frame for main()

/* printf("Fibonacci(n):, please input n:\n"); */

sethi %hi(.L31),%o0 ! call printf, with 1st arg in %o0

call printf,1

or %o0,%lo(.L31),%o0

/* scanf("%d", &n); */

sethi %hi(.L33),%o0 ! call scanf, with 1st arg, in %o0

or %o0,%lo(.L33),%o0 ! move 2nd arg. to %o1, in delay slot

call scanf,2

add %fp,-4,%o1

An Example Language Program

Appendix D • An Example Language Program 73

EXAMPLE D–2 Assembler Output From C Source (Continued)

/* result = fibonacci(n); */

call fibonacci,1

ld [%fp-4],%o0

! some initializations before the for-

! loop, put the variables in registers

/* for (i = 1; i <= n; i++) */

mov 1,%i5 ! %i5 <-- i

mov %o0,%i4 ! %i4 <-- result

sethi %hi(.L38),%o0 ! %i2 <-- format string for printf

add %o0,%lo(.L38),%i2

ld [%fp-4],%o0 ! test if (i <= n) ?

cmp %i5,%o0 ! note, n is stored in [%fp-4]

bg .LE27

nop

.LY2: ! loop body

/* printf("Fibonacci (%d) is %u\n", i, *result++); */

ld [%i4],%o2 ! call printf, with (*result) in %o2,

mov %i5,%o1 ! i in %o1, format string in %o0

call printf,3

mov %i2,%o0

inc %i5 ! i++

ld [%fp-4],%o0 ! i <= n?

cmp %i5,%o0

ble .LY2

inc 4,%i4 ! result++

.LE27:

ret

restore

.type main,#function ! type and size of main

.size main,(.-main)

.section ".data" ! switch to data section

! (contains initialized data)

.align 4

.L16:

/* static unsigned fib_array[MAX_FIB_REPRESENTABLE] = {0,1}; */

.align 4 ! initialization of first 2 elements

.word 0 ! of fib_array[]

.align 4

.word 1

.skip 188

.type .L16,#object ! storage allocation for the rest of

! fib_array[]

.section ".data1" ! the ascii string data are entered

! into the .data1 section;

! #alloc: memory would be allocated

! for this section during run time

! #write: the section contains data

! that is writeable during process

! execution

.align 4

.L20: ! ascii strings used in the printf stmts

An Example Language Program

SPARC Assembly Language Reference Manual • November 2010 (Beta)74

EXAMPLE D–2 Assembler Output From C Source (Continued)

.ascii "Fibonacci(%d) cannot be represented in a 32 bit w"

.ascii "ord\n\0"

.align 4 ! align the next ascii string to word

! boundary

.L31:

.ascii "Fibonacci(n):, please enter n:\n\0"

.align 4

.L33:

.ascii "%d\0"

.align 4

.L38:

.ascii "Fibonacci (%d) is %u\n\0"

.ident "acomp: (CDS) SPARCompilers 2.0 05 Jun 1991"
! an idenitfication string produced

! by the compiler to be entered into

! the .comment section

An Example Language Program

Appendix D • An Example Language Program 75

76

SPARC-V9 Instruction Set

This appendix describes changes made to the SPARC instruction set due to the SPARC-V9
architecture. Application software for the 32-bit SPARC-V8 (Version8) architecture can
execute, unchanged, on SPARC-V9 systems.

This appendix is organized into the following sections:

■ “E.1 SPARC-V9 Changes” on page 77
■ “E.2 SPARC-V9 Instruction Set Changes” on page 79
■ “E.3 SPARC-V9 Instruction Set Mapping” on page 82
■ “E.4 SPARC-V9 Floating-Point Instruction Set Mapping” on page 90
■ “E.5 SPARC-V9 Synthetic Instruction-Set Mapping” on page 91
■ “E.6 UltraSPARC and VIS Instruction Set Extensions” on page 93

E.1 SPARC-V9 Changes
The SPARC-V9 architecture differs from SPARC-V8 architecture in the following areas,
expanded below: registers, alternate space access, byte order, and instruction set.

E.1.1 Registers
These registers have been deleted.

TABLE E–1 Deleted Registers

PSR Processor State Register

TBR Trap Base Register

WIM Window Invalid Mask

These registers have been widened from 32 to 64 bits.

EA P P E N D I X E

77

TABLE E–2 Widened Registers

Integer registers

All state registers FSR, PC, nPC, and Y

Note – FSR Floating-Point State Register: fcc1, fcc2, and fcc3 (added floating-point condition
code) bits are added and the register widened to 64-bits.

These SPARC-V9 registers are within a SPARC-V8 register field.

TABLE E–3 SPARC-V9 Registers Within a SPARC-V8 Field

CCR Condition Codes Register

CWP Current Window Pointer

PIL Processor Interrupt Level

TBA Trap Base Address

TT[MAXTL] Trap Type

VER Version

These are registers that have been added.

TABLE E–4 Added Registers

ASI Address Space Identifier

CANRESTORE Restorable Windows

CANSAVE Savable windows

CLEANWIN Clean Windows

FPRS Floating-point Register State

OTHERWIN Other Windows

PSTATE Processor State

TICK Hardware clock tick-counter

TL Trap Level

TNPC[MAXTL] Trap Next Program Counter

TPC[MAXTL] Trap Program Counter

E.1 SPARC-V9 Changes

SPARC Assembly Language Reference Manual • November 2010 (Beta)78

TABLE E–4 Added Registers (Continued)
TSTATE[MAXTL] Trap State

WSTATE Windows State

Also, there are sixteen additional double-precision floating-point registers, f[32] .. f[62]. These
registers overlap (and are aliased with) eight additional quad-precision floating-point registers,
f[32] .. f[60]

The SPARC-V9, CWP register is decremented during a RESTORE instruction, and
incremented during a SAVE instruction. This is the opposite of PSR.CWP's behavior in
SPARC-V8. This change has no effect on nonprivileged instructions.

E.1.2 Alternate Space Access
Load- and store-alternate instructions to one-half of the alternate spaces can now be included in
user code. In SPARC-V9, loads and stores to ASIs 0016 .. 7f16 are privileged; those to ASIs 8016 ..
FF16 are nonprivileged. In SPARC-V8, access to alternate address spaces is privileged.

E.1.3 Byte Order
SPARC-V9 supports both little- and big-endian byte orders for data accesses only; instruction
accesses are always performed using big-endian byte order. In SPARC-V8, all data and
instruction accesses are performed in big-endian byte order.

E.2 SPARC-V9 Instruction Set Changes
Application software written for the SPARC-V8 processor runs unchanged on a SPARC-V9
processor.

E.2.1 Extended Instruction Definitions to Support the 64-Bit
Model
TABLE E–5 Extended Instruction Definitions

FCMP, FCMPE Floating-Point Compare – can set any of the four floating-point condition codes.

LDFSR, STFSR Load/Store FSR- only affect low-order 32 bits of FSR

LDUW, LDUWA Same as LD, LDA in SPARC-V8

E.2 SPARC-V9 Instruction Set Changes

Appendix E • SPARC-V9 Instruction Set 79

TABLE E–5 Extended Instruction Definitions (Continued)
RDASR/WRASR Read/Write State Registers - access additional registers

SAVE/RESTORE

SETHI

SRA, SRL, SLL, Shifts Split into 32-bit and 64-bit versions

Tcc (was Ticc) Operates with either the 32-bit integer condition codes (icc), or the
64-bit integer condition codes (xcc)

All other arithmetic operations operate on 64-bit operands and produce 64-bit results.

E.2.2 Added Instructions to Support 64 Bits

TABLE E–6 Added 64–Bit Instructions

F[sdq]TOx Convert floating point to 64-bit word

FxTO[sdq] Convert 64-bit word to floating point

FMOV[dq] Floating-Point Move, double and quad

FNEG[dq] Floating-point Negate, double and quad

FABS[dq] Floating-point Absolute Value, double and quad

LDDFA, STDFA, LDFA,
STFA

Alternate address space forms of LDDF, STDF, LDF, and STF

LDSW Load a signed word

LDSWA Load a signed word from an alternate space

LDX Load an extended word

LDXA Load an extended word from an alternate space

LDXFSR Load all 64 bits of the FSR register

STX Store an extended word

STXA Store an extended word into an alternate space

STXFSR Store all 64 bits if the FSR register

E.2 SPARC-V9 Instruction Set Changes

SPARC Assembly Language Reference Manual • November 2010 (Beta)80

E.2.3 Added Instructions to Support High-Performance
System Implementation

TABLE E–7 Added High-Performance System Instructions

BPcc Branch on integer condition code with prediction

BPr Branch on integer register contents with prediction

CASA, CASXA Compare and Swap from an alternate space

FBPfcc Branch on floating-point condition code with prediction

FLUSHW Flush windows

FMOVcc Move floating-point register if condition code is satisfied

FMOVr Move floating-point register if integer register satisfies condition

LDQF(A), STQF(A) Load/Store Quad Floating-point (in an alternate space)

MOVcc Move integer register if condition code is satisfied

MOVr Move integer register if register contents satisfy condition

MULX Generic 64-bit multiply

POPC Population count

PREFETCH,
PREFETCHA

Prefetch Data

SDIVX, UDIVX Signed and Unsigned 64-bit divide

E.2.4 Deleted Instructions

TABLE E–8 Deleted Instructions

Coprocessor loads and
stores

RDTBR and WRTBR TBR no longer exists. It is replaced by TBA, which can be read/written with
RDPR/WRPR instructions

RDWIM and WRWIM WIM no longer exists. WIM has been replaced by several register-window registers

REPSR and WRPSR PSR no longer exists. It has been replaced by several separate registers that are
read/written with other instructions

RETT Return from trap (replace by DONE/RETRY)

E.2 SPARC-V9 Instruction Set Changes

Appendix E • SPARC-V9 Instruction Set 81

TABLE E–8 Deleted Instructions (Continued)
STDFQ Store Double from Floating-point Queue (replaced by the RDPR FQ instruction

E.2.5 Miscellaneous Instruction Changes

TABLE E–9 Changed Instructions

IMPDEPn (Changed) Implementation-dependent instructions (replace SPARC-V8 CPop
instructions)

MEMBAR (Added) Memory barrier (memory synchronization support)

E.3 SPARC-V9 Instruction Set Mapping
TABLE E–10 SPARC-V9 Instruction Set Mapping

Opcode Mnemonic Argument List Operation Comments

BPA ba{,a}

{,pt|,pn}

%icc or %xcc, label
(Branch on cc with
prediction)

Branch always

1

BPN bn{,a}

{,pt|,pn}

%icc or %xcc, label Branch never 0

BPNE bne{,a}

{,pt|,pn}

%icc or %xcc, label Branch on not equal not Z

BPE be{,a}

{,pt|,pn}

%icc or %xcc, label Branch on equal Z

BPG bg{,a}

{,pt|,pn}

%icc or %xcc, label Branch on greater not (Z or (N xor
V))

BPLE ble{,a}

{,pt|,pn}

%icc or %xcc, label Branch on less or equal Z or (N xor V)

BPGE bge{,a}

{,pt|,pn}

%icc or %xcc, label Branch on greater or equal not (N xor V)

BPL bl{,a}

{,pt|,pn}

%icc or %xcc, label Branch on less N xor V

E.3 SPARC-V9 Instruction Set Mapping

SPARC Assembly Language Reference Manual • November 2010 (Beta)82

TABLE E–10 SPARC-V9 Instruction Set Mapping (Continued)
Opcode Mnemonic Argument List Operation Comments

BPGU bgu{,a}

{,pt|,pn}

%icc or %xcc, label Branch on greater unsigned not (C or Z)

BPLEU bleu{,a}

{,pt|,pn}

%icc or %xcc, label Branch on less or equal
unsigned

C or Z

BPCC bcc{,a}

{,pt|,pn}

%icc or %xcc, label Branch on carry clear
(greater than or equal,
unsigned)

not C

BPCS bcs{,a}

{,pt|,pn}

%icc or %xcc, label Branch on carry set (less
than, unsigned)

C

BPPOS bpos{,a}

{,pt|,pn}

%icc or %xcc, label Branch on positive not N

BPNEG bneg{,a}

{,pt|,pn}

%icc or %xcc, label Branch on negative N

BPVC bvc{,a}

{,pt|,pn}

%icc or %xcc, label Branch on overflow clear not V

BPVS bvs{,a}

{,pt|,pn}

%icc or %xcc, label Branch on overflow set V

BRZ brz{,a}

{,pt|,pn}

regrs1, label Branch on register zero Z

BRLEZ brlez{,a}

{,pt|,pn}

regrs1, label Branch on register less than
or equal to zero

N or Z

BRLZ brlz{,a}

{,pt|,pn}

regrs1, label Branch on register less than
zero

N

BRNZ brnz{,a}

{,pt|,pn}

regrs1, label Branch on register not zero not Z

BRGZ brgz{,a}

{,pt|,pn}

regrs1, label Branch on register greater
than zero

not (N or Z)

BRGEZ brgez{,a}

{,pt|,pn}

regrs1, label Branch on register greater
than or equal to zero

not N

E.3 SPARC-V9 Instruction Set Mapping

Appendix E • SPARC-V9 Instruction Set 83

TABLE E–10 SPARC-V9 Instruction Set Mapping (Continued)
Opcode Mnemonic Argument List Operation Comments

CASA casa

casa

[regrs1]imm_asi,regrs2,regrd

[regrs1]%asi,regrs2,regrd

Compare and swap word
from alternate space

CASXA casxa

casxa

[regrs1]imm_asi,regrs2,regrd

[regrs1]%asi,regrs2,regrd

Compare and swap extended
from alternate space

FBPA fba{,a}

{,pt|,pn}

%fccn, label
(Branch on cc with
prediction)

Branch never

1

FBPN fbn{,a}

{,pt|,pn}

%fccn, label Branch always 0

FBPU fbu{,a}

{,pt|,pn}

%fccn, label Branch on unordered U

FBPG fbg{,a}

{,pt|,pn}

%fccn, label Branch on greater G

FBPUG fbug{,a}

{,pt|,pn}

%fccn, label Branch on unordered or
greater

G or U

FBPL fbl{,a}

{,pt|,pn}

%fccn, label Branch on less L

FBPUL fbul{,a}

{,pt|,pn}

%fccn, label Branch on unordered or less L or U

FBPLG fblg{,a}

{,pt|,pn}

%fccn, label Branch on less or greater L or G

FBPNE fbne{,a}

{,pt|,pn}

%fccn, label Branch on not equal L or G or U

FBPE fbe{,a}

{,pt|,pn}

%fccn, label Branch on equal E

FBPUE fbue{,a}

{,pt|,pn}

%fccn, label Branch on unordered or
equal

E or U

FBPGE fbge{,a}

{,pt|,pn}

%fccn, label Branch on greater or equal E or G

E.3 SPARC-V9 Instruction Set Mapping

SPARC Assembly Language Reference Manual • November 2010 (Beta)84

TABLE E–10 SPARC-V9 Instruction Set Mapping (Continued)
Opcode Mnemonic Argument List Operation Comments

FBPUGE fbuge{,a}

{,pt|,pn}

%fccn, label Branch on unordered or
greater or equal

E or G or U

FBPLE fble{,a}

{,pt|,pn}

%fccn, label Branch on less or equal E or L

FBPULE fbule{,a}

{,pt|,pn}

%fccn, label Branch on unordered or less
or equal

E or L or u

FBPO fbo{,a}

{,pt|,pn}

%fccn, label Branch on ordered E or L or G

FLUSHW flushw Flush register windows

FMOVA fmov

{s,d,q}a

%icc or %xcc, fregrs2, fregrd
(Move on integer cc)

Move always
1

FMOVN fmov

{s,d,q}n

%icc or %xcc, fregrs2, fregrd Move never 0

FMOVNE fmov

{s,d,q}ne

%icc or %xcc, fregrs2, fregrd Move if not equal not Z

FMOVE fmov

{s,d,q}e

%icc or %xcc, fregrs2, fregrd Move if equal Z

FMOVG fmov

{s,d,q}g

%icc or %xcc, fregrs2, fregrd Move if greater not (Z or (N xor
V))

FMOVLE fmov

{s,d,q}le

%icc or %xcc, fregrs2, fregrd Move if less or equal Z or (N xor V)

FMOVGE fmov

{s,d,q}ge

%icc or %xcc, fregrs2, fregrd Move if greater or equal not (N xor V)

FMOVL fmov

{s,d,q}l

%icc or %xcc, fregrs2, fregrd Move if less N xor V

FMOVGU fmov

{s,d,q}gu

%icc or %xcc, fregrs2, fregrd Move if greater unsigned not (C or Z)

E.3 SPARC-V9 Instruction Set Mapping

Appendix E • SPARC-V9 Instruction Set 85

TABLE E–10 SPARC-V9 Instruction Set Mapping (Continued)
Opcode Mnemonic Argument List Operation Comments

FMOVLEU fmov

{s,d,q}leu

%icc or %xcc, fregrs2, fregrd Move if less or equal
unsigned

C or Z

FMOVCC fmov

{s,d,q}cc

%icc or %xcc, fregrs2, fregrd Move if carry clear (greater
or equal, unsigned)

not C

FMOVCS fmov

{s,d,q}cs

%icc or %xcc, fregrs2, fregrd Move if carry set (less than,
unsigned)

C

FMOVPOS fmov

{s,d,q}pos

%icc or %xcc, fregrs2, fregrd Move if positive not N

FMOVNEG fmov

{s,d,q}neg

%icc or %xcc, fregrs2, fregrd Move if negative N

FMOVVC fmov

{s,d,q}vc

%icc or %xcc, fregrs2, fregrd Move if overflow clear not V

FMOVVS fmov

{s,d,q}vs

%icc or %xcc, fregrs2, fregrd Move if overflow set V

FMOVRZ fmovr

{s,d,q}e

regrs1, fregrs2, fregrd
(Move f-p register on cc)

Move if register zero

FMOVRLEZ fmovr

{s,d,q}lz

regrs1, fregrs2, fregrd Move if register less than or
equal zero

FMOVRLZ fmovr

{s,d,q}lz

regrs1, fregrs2, fregrd Move if register less than zero

FMOVRNZ

FMOVRGZ

FMOVRGEZ

fmovr

{s,d,q}ne

fmovr

{s,d,q}gz

fmovr

{s,d,q}gez

regrs1, fregrs2, fregrd

regrs1, fregrs2, fregrd

regrs1, fregrs2, fregrd

Move if register not zero

Move if register greater than
zero

Move if register greater than
or equal to zero

E.3 SPARC-V9 Instruction Set Mapping

SPARC Assembly Language Reference Manual • November 2010 (Beta)86

TABLE E–10 SPARC-V9 Instruction Set Mapping (Continued)
Opcode Mnemonic Argument List Operation Comments

FMOVFA

FMOVFN

FMOVFU

FMOVFG

FMOVFUG

FMOVFL

FMOVFUL

FMOVFLG

FMOVFNE

FMOVFE

FMOVFUE

FMOVFGE

FMOVFUGE

FMOVFLE

FMOVFULE

FMOVFO

fmov{s,d,q}a

fmov{s,d,q}n

fmov{s,d,q}u

fmov{s,d,q}g

fmov{s,d,q}ug

fmov{s,d,q}l

fmov{s,d,q}ul

fmov{s,d,q}lg

fmov{s,d,q}ne

fmov{s,d,q}e

fmov{s,d,q}ue

fmov{s,d,q}ge

fmov{s,d,q}uge

fmov{s,d,q}le

fmov{s,d,q}ule

fmov{s,d,q}o

%fccn,fregrs2,fregrd

%fccn,fregrs2,fregrd

%fccn,fregrs2,fregrd

%fccn,fregrs2,fregrd

%fccn,fregrs2,fregrd

%fccn,fregrs2,fregrd

%fccn,fregrs2,fregrd

%fccn,fregrs2,fregrd

%fccn,fregrs2,fregrd

%fccn,fregrs2,fregrd

%fccn,fregrs2,fregrd

%fccn,fregrs2,fregrd

%fccn,fregrs2,fregrd

%fccn,fregrs2,fregrd

%fccn,fregrs2,fregrd

%fccn,fregrs2,fregrd

(Move on floating-point cc)

Move always

Move never

Move if unordered

Move if greater

Move if unordered or greater

Move if less

Move if unordered or less

Move if less or greater

Move if not equal

Move if equal

Move if unordered or equal

Move if greater or equal

Move if unordered or greater
or equal

Move if less or equal

Move if unordered or less or
equal

Move if ordered

1

0

U

G

G or U

L

L or U

L or G

L or G or U

E

E or U

E or G

E or G or U

E or L

E or L or u

E or L or G

LDSW

LDSWA

ldsw

ldsw

[address], regrd

[regaddr] imm_asi, regrd

Load a signed word

Load signed word from
alternate space

LDX

LDXA

LDXFSR

ldx

ldxa

ldxa

ldx

[address], regrd

[regaddr] imm_asi, regrd

[reg_plus_imm] %asi, regrd

[address], %fsr

Load extended word

Load extended word from
alternate space

Load floating-point state
register

MEMBAR membar membar_mask Memory barrier

E.3 SPARC-V9 Instruction Set Mapping

Appendix E • SPARC-V9 Instruction Set 87

TABLE E–10 SPARC-V9 Instruction Set Mapping (Continued)
Opcode Mnemonic Argument List Operation Comments

MOVA

MOVN

MOVNE

MOVE

MOVG

MOVLE

MOVGE

MOVL

MOVGU

MOVLEU

MOVCC

MOVCS

MOVPOS

MOVNEG

MOVVC

MOVVS

mova

movn

movne

move

movg

movle

movge

movl

movgu

movleu

movcc

movcs

movpos

movneg

movvc

movvs

%icc or %xcc, reg_or_imm11, regrd

%icc or %xcc, reg_or_imm11, regrd

%icc or %xcc, reg_or_imm11, regrd

%icc or %xcc, reg_or_imm11, regrd

%icc or %xcc, reg_or_imm11, regrd

%icc or %xcc, reg_or_imm11, regrd

%icc or %xcc, reg_or_imm11, regrd

%icc or %xcc, reg_or_imm11, regrd

%icc or %xcc, reg_or_imm11, regrd

%icc or %xcc, reg_or_imm11, regrd

%icc or %xcc, reg_or_imm11, regrd

%icc or %xcc, reg_or_imm11, regrd

%icc or %xcc, reg_or_imm11, regrd

%icc or %xcc, reg_or_imm11, regrd

%icc or %xcc, reg_or_imm11, regrd

%icc or %xcc, reg_or_imm11, regrd

(Move integer register on cc)

Move always

Move never

Move if not equal

Move if equal

Move if greater

Move if less or equal

Move if greater or equal

Move if less

Move if greater unsigned

Move if less or equal
unsigned

Move if carry clear (greater
or equal, unsigned)

Move if carry set (less than,
unsigned)

Move if positive

Move if negative

Move if overflow clear

Move if overflow set

1

0

not Z

Z

not (Z or (N xor
V))

Z or (N xor V)

not (N xor V)

N xor V

not (C or Z)

C or Z

not C

C

not N

N

not V

V

E.3 SPARC-V9 Instruction Set Mapping

SPARC Assembly Language Reference Manual • November 2010 (Beta)88

TABLE E–10 SPARC-V9 Instruction Set Mapping (Continued)
Opcode Mnemonic Argument List Operation Comments

MOVFA

MOVFN

MOVFU

MOVFG

MOVFUG

MOVFL

MOVFUL

MOVFLG

MOVFNE

MOVFE

MOVFUE

MOVFGE

MOVFUGE

MOVFLE

MOVFULE

MOVFO

mova

movn

movu

movg

movug

movl

movul

movlg

movne

move

movue

movge

movuge

movle

movule

movo

%fccn,reg_or_imm11,regrd

%fccn,reg_or_imm11,regrd

%fccn,reg_or_imm11,regrd

%fccn,reg_or_imm11,regrd

%fccn,reg_or_imm11,regrd

%fccn,reg_or_imm11,regrd

%fccn,reg_or_imm11,regrd

%fccn,reg_or_imm11,regrd

%fccn,reg_or_imm11,regrd

%fccn,reg_or_imm11,regrd

%fccn,reg_or_imm11,regrd

%fccn,reg_or_imm11,regrd

%fccn,reg_or_imm11,regrd

%fccn,reg_or_imm11,regrd

%fccn,reg_or_imm11,regrd

%fccn,reg_or_imm11,regrd

(Move on floating-point cc)

Move always

Move never

Move if unordered

Move if greater

Move if unordered or greater

Move if less

Move if unordered or less

Move if less or greater

Move if not equal

Move if equal

Move if unordered or equal

Move if greater or equal

Move if unordered or greater
or equal

Move if less or equal

Move if unordered or less or
equal

Move if ordered

1

0

U

G

G or U

L

L or U

L or G

L or G or U

E E or U

E or G

E or G or U

E or L

E or L or u

E or L or G

MOVRZ

MOVRLEZ

MOVRLZ

MOVRNZ

MOVRGZ

MOVRGEZ

movre

movrlez

movrlz

movrnz

movrgz

movrgez

regrs1, reg_or_imm10,regrd

regrs1, reg_or_imm10,regrd

regrs1, reg_or_imm10,regrd

regrs1, reg_or_imm10,regrd

regrs1, reg_or_imm10,regrd

regrs1, reg_or_imm10,regrd

(Move register on register cc)

Move if register zero

Move if register less than or
equal to zero

Move if register less than zero

Move if register not zero

Move if register greater than
zero

Move if register greater than
or equal to zero

Z

N or Z

N

not Z

N nor Z

not N

MULX mulx regrs1, reg_or_imm,regrd (Generic 64-bit Multiply)
Multiply (signed or
unsigned)

See SDIVX and
UDIVX

E.3 SPARC-V9 Instruction Set Mapping

Appendix E • SPARC-V9 Instruction Set 89

TABLE E–10 SPARC-V9 Instruction Set Mapping (Continued)
Opcode Mnemonic Argument List Operation Comments

POPC popc reg_or_imm, regrd Population count

PREFETCH

PREFETCHA

prefetch

prefetcha

prefetcha

[address], prefetch_dcn [regaddr]
imm_asi, prefetch_fcn
[reg_plus_imm] %asi, prefetch_fcn

Prefetch data

Prefetch data from alternate
space

See The SPARC
architecture
manual, version 9

SDIVX

sdivx regrs1, reg_or_imm,regrd (64-bit signed divide) Signed
Divide

See MULX and
UDIVX

STX

STXA

STXFSR

stx

stxa

stxa

stx

regrd, [address]

regrd, [address] imm_asi

regrd, [reg_plus_imm] %asi %fsr,
[address]

Store extended word

Store extended word into
alternate space

Store floating-point register
(all 64-bits)

UDIVX udivx regrs1, reg_or_imm, regrd (64-bit unsigned divide)
Unsigned divide

See MULX and
SDIVX

E.4 SPARC-V9 Floating-Point Instruction Set Mapping
SPARC-V9 floating-point instructions are shown in the following table.

In the Mnemonic column, types of operands are denoted by the following lowercase letters: i
for 32–bit integer, x for 64–bit integer, s for single, d for double, and q for quad.

TABLE E–11 SPARC-V9 Floating-Point Instruction Set Mapping

SPARC Mnemonic Argument List Description

F[sdq]TOx fstox

fdtox

fqtox

fregrs2, fregrd

fregrs2, fregrd

fregrs2, fregrd

Convert floating point to 64-bit integer

fstoi

fdtoi

fqtoi

fregrs2, fregrd

fregrs2, fregrd

fregrs2, fregrd

Convert floating-point to 32-bit integer

FxTO[sdq] fxtos

fxtod

fxtoq

fregrs2, fregrd

fregrs2, fregrd

fregrs2, fregrd

Convert 64-bit integer to floating point

E.4 SPARC-V9 Floating-Point Instruction Set Mapping

SPARC Assembly Language Reference Manual • November 2010 (Beta)90

TABLE E–11 SPARC-V9 Floating-Point Instruction Set Mapping (Continued)
SPARC Mnemonic Argument List Description

fitos

fitod

fitoq

fregrs2, fregrd

fregrs2, fregrd

fregrs2, fregrd

Convert 32-bit integer to floating point

FMOV[dq] fmovd

fmovq

fregrs2, fregrd

fregrs2, fregrd

Move double

Move quad

FNEG[dq] fnegd

fnegq

fregrs2, fregrd

fregrs2, fregrd

Negate double

Negate quad

FABS[dq] fabsd

fabsq

fregrs2, fregrd

fregrs2, fregrd

Absolute value double

Absolute value quad

LDFA

LDDFA

LDQFA

lda

lda

ldda

ldda

ldqa

ldqa

[regaddr] imm_asi, fregrd

[reg_plus_imm] %asi, fregrd

[regaddr] imm_asi, fregrd

[reg_plus_imm] %asi, fregrd

[regaddr] imm_asi, fregrd

[reg_plus_imm] %asi, fregrd

Load floating-point register from alternate
space

Load double floating-point register from
alternate space.

Load quad floating-point register from
alternate space

STFA

STDFA

STQFA

sta

sta

stda

stda

stqa

stqa

fregrd, [regaddr] imm_asi

fregrd, [reg_plus_imm] %asi

fregrd, [regaddr] imm_asi

fregrd, [reg_plus_imm] %asi

fregrd, [regaddr] imm_asi

fregrd, [reg_plus_imm] %asi

Store floating-point register to alternate space

Store double floating-point register to
alternate space

Store quad floating-point register to alternate
space

E.5 SPARC-V9 Synthetic Instruction-Set Mapping
Here is a mapping of synthetic instructions to hardware equivalent instructions.

E.5 SPARC-V9 Synthetic Instruction-Set Mapping

Appendix E • SPARC-V9 Instruction Set 91

TABLE E–12 SPARC-V9 Synthetic Instruction-Set Mapping

Synthetic Instruction Hardware Equivalents Comment

cas

casl

casx

casxl

[regrsl], regrs2, regrd

[regrsl], regrs2, regrd

[regrsl], regrs2, regrd

[regrsl], regrs2, regrd

casa

casa

casxa

casxa

[regrsl]ASI_P, regrs2, regrd

[regrsl]ASI_P_L, regrs2, regrd

[regrsl]ASI_P, regrs2, regrd

[regrsl]ASI_P_L, regrs2, regrd

Compare & swap (cas)

cas little-endian

cas extended

cas little-endian, extended

clrx [address] stx %g0, [address] Clear extended word

clruw

clruw

regrs1, regrd

regrd

srl

srl

regrs1, %g0, regrd

regrd, %g0, regrd

Copy and clear upper word

Clear upper word

iprefetch label bn, pt %xcc, label Instruction prefetch,

mov

mov

mov

%y, regrd

%asrn, regrd

reg_or_imm, %asrn

rd

rd

wr

%y, regrd

%asrn, regrd

%g0, reg_or_imm, %asrn

ret

retl

jmpl

jmpl

%i7+8, %g0

%o7+8, %g0

Return from subroutine

Return from leaf subroutine

setn value, r1, r2 for -xarch=v9 same as setx value r1, r2

for -xarch=v8 same as set value r2

setnhi value, r1, r2 for -xarch=v9 same as setxhi value r1, r2

for -xarch=v8 same as sethi value r2

setuw value,regrd sethi

or

sethi

or

%hi(value), regrd

%g0, value, regrd

%hi(value), regrd;

regrd, %lo(value), regrd

(value & 3FF16)==0

when 0 ≤ value ≤ 4095

(otherwise)

Do not use setuw in a DCTI
delay slot.

E.5 SPARC-V9 Synthetic Instruction-Set Mapping

SPARC Assembly Language Reference Manual • November 2010 (Beta)92

TABLE E–12 SPARC-V9 Synthetic Instruction-Set Mapping (Continued)
Synthetic Instruction Hardware Equivalents Comment

setsw value,regrd sethi

or

sethi

sra

sethi

or

sethi

or

sra

%hi(value), regrd

%g0, value, regrd

%hi(value), regrd

regrd, %g0, regrd

%hi(value), regrd;

regrd, %lo(value), regrd

%hi(value), regrd;

regrd, %lo(value), regrd

regrd, %g0, regrd

value>=0 and (value &
3FF16)==0

-4096 ≤ value ≤ 4095

if (value<0) and ((value &
3FF)==0)

(otherwise, if value>=0)

(otherwise, if value<0)

Do not use setsw in a CTI
delay slot.

setx value, r1, r2 sethi

or

sethi

or

sllx

or

%hh(value), r1

r1, %hm(value), r1

%lm(value), r2

r2, %lo(value), r2

r1, 32, r1

r1, r2, r2

setxhi value r1, r2 sethi

or

sethi

sllx

or

%hh(value), r1

r1, %hm(value), r1

%lm(value), r2

r1, 32, r1

r1, r2, r2

signx

signx

regrsl, regrd

regrd

sra

sra

regrsl, %g0, regrd

regrd, %g0, regrd

Sign-extend 32-bit value to 64
bits

E.6 UltraSPARC and VIS Instruction Set Extensions
This section describes extensions that require SPARC-V9. The extensions support enhanced
graphics functionality and improved memory access efficiency.

Note – SPARC-V9 instruction set extensions used in executables may not be portable to other
SPARC-V9 systems.

E.6 UltraSPARC and VIS Instruction Set Extensions

Appendix E • SPARC-V9 Instruction Set 93

E.6.1 Graphics Data Formats
The overhead of converting to and from floating-point arithmetic is high, so the graphics
instructions are optimized for short-integer arithmetic. Image components are 8 or 16 bits.
Intermediate results are 16 or 32 bits.

E.6.2 Eight-bit Format
A 32-bit word contains pixels of four unsigned 8-bit integers. The integers represent image
intensity values (, G, B, R). Support is provided for band interleaved images (store color
components of a point), and band sequential images (store all values of one color component).

E.6.3 Fixed Data Formats
A 64-bit word contains four 16-bit signed fixed-point values. This is the fixed 16-bit data
format.

A 64-bit word contains two 8-bit signed fixed-point values. This is the fixed 32-bit data format.

Enough precision and dynamic range (for filtering and simple image computations on pixel
values) can be provided by an intermediate format of fixed data values. Pixel multiplication is
used to convert from pixel data to fixed data. Pack instructions are used to convert from fixed
data to pixel data (clip and truncate to an 8-bit unsigned value). The FPACKFIX instruction
supports conversion from 32-bit fixed to 16-bit fixed. Rounding is done by adding one to the
rounding bit position. You should use floating-point data to perform complex calculations
needing more precision or dynamic range.

E.6.4 SHUTDOWN Instruction
All outstanding transactions are completed before the SHUTDOWN instruction completes.

TABLE E–13 SHUTDOWN Instruction

SPARC Mnemonic Argument List Description

SHUTDOWN shutdown shutdown to enter power down mode

E.6.5 Graphics Status Register (GSR)
You use ASR 0x13 instructions RDASR and WRASR to access the Graphics Status Register.

E.6 UltraSPARC and VIS Instruction Set Extensions

SPARC Assembly Language Reference Manual • November 2010 (Beta)94

TABLE E–14 Graphics Status Register (GSR)

SPARC Mnemonic Argument List Description

RDASR

WRASR

rdasr

wrasr

%gsr, regrd

regrs1, reg_or_imm, %gsr

read GSR

write GSR

E.6.6 Graphics Instructions
Unless otherwise specified, floating-point registers contain all instruction operands. There are
32 double-precision registers. Single-precision floating-point registers contain the pixel values,
and double-precision floating-point registers contain the fixed values.

The opcode space reserved for the Implementation-Dependent Instruction1 (IMPDEP1)
instructions is where the graphics instruction set is mapped.

Partitioned add/subtract instructions perform two 32-bit or four 16-bit partitioned adds or
subtracts between the source operands corresponding fixed point values.

TABLE E–15 Graphics Instructions

SPARC Mnemonic Argument List Description

FPADD16

FPADD16S

FPADD32

FPADD32S

FPSUB16

FPSUB16S

FPSUB32

FPSUB32S

fpadd16

fpadd16s

fpadd32

fpadd32s

fpsub16

fpsub16s

fpsub32

fpsub32s

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

four 16-bit add

two 16-bit add

two 32-bit add

one 32-bit add

four 16-bit subtract

two 16-bit subtract

two 32-bit subtract

one 32-bit subtract

Pack instructions convert to a lower pixel or precision fixed format.

E.6 UltraSPARC and VIS Instruction Set Extensions

Appendix E • SPARC-V9 Instruction Set 95

TABLE E–16 Pack Instructions

SPARC Mnemonic Argument List Description

FPACK16

FPACK32

FPACKFIX

FEXPAND

FPMERGE

fpack16

fpack32

fpackfix

fexpand

fpmerge

fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs2, fregrd

fregrs2, fregrd

fregrs1, fregrs2, fregrd

four 16-bit packs

two 32-bit packs

four 16-bit packs

four 16-bit expands

two 32-bit merges

Partitioned multiply instructions have the following variations.

TABLE E–17 Partitioned Multiply Instructions

SPARC Mnemonic Argument List Description

FMUL8x16

FMUL8x16AU

FMUL8x16AL

FMUL8SUx16

FMUL8ULx16

FMULD8SUx16

FMULD8ULx16

fmul8x16

fmul8x16au

fmul8x16al

fmul8sux16

fmul8ulx16

fmuld8sux16

fmuld8ulx16

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

8x16-bit partition

8x16-bit upper partition

8x16-bit lower partition

upper 8x16-bit partition

lower unsigned 8x16-bit partition

upper 8x16-bit partition

lower unsigned 8x16-bit partition

Alignment instructions have the following variations.

TABLE E–18 Alignment Instructions

SPARC Mnemonic Argument List Description

ALIGNADDRESS

ALIGNADDRESS_LITTLE

FALIGNDATA

alignaddr

alignaddrl

faligndata

regrs1, regrs2, regrd

regrs1, regrs2, regrd

fregrs1, fregrs2, fregrd

find misaligned data access address

same as above, but little-endian

do misaligned data, data alignment

Logical operate instructions perform one of sixteen 64-bit logical operations between rs1 and
rs2 (in the standard 64-bit version).

E.6 UltraSPARC and VIS Instruction Set Extensions

SPARC Assembly Language Reference Manual • November 2010 (Beta)96

TABLE E–19 Logical Operate Instructions

SPARC Mnemonic Argument List Description

FZERO

FZEROS

FONE

FONES

FSRC1

fzero

fzeros

fone

fones

fsrc1

fregrd

fregrd

fregrd

fregrd

fregrs1, fregrd

zero fill

zero fill, single precision

one fill

one fill, single precision

copy src1

FSRC1S

FSRC2

FSRC2S

FNOT1

FNOT1S

fsrc1s

fsrc2

fsrc2s

fnot1

fnot1s

fregrs1, fregrd

fregrs2, fregrd

fregrs2, fregrd

fregrs1, fregrd

fregrs1, fregrd

copy src1, single precision

copy src2

copy src2, single precision

negate src1, 1's complement

same as above, single precision

FNOT2

FNOT2S

FOR

FORS

FNOR

fnot2

fnot2s

for

fors

fnor

fregrs2, fregrd

fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

negate src2, 1's complement

same as above, single precision

logical OR

logical OR, single precision

logical NOR

FNORS

FAND

FANDS

FNAND

FNANDS

fnors

fand

fands

fnand

fnands

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

logical NOR, single precision

logical AND

logical AND, single precision

logical NAND

logical NAND, single precision

FXOR

FXORS

FXNOR

FXNORS

FORNOT1

fxor

fxors

fxnor

fxnors

fornot1

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

logical XOR

logical XOR, single precision

logical XNOR

logical XNOR, single precision

negated src1 OR src2

FORNOT1S

FORNOT2

FORNOT2S

FANDNOT1

fornot1s

fornot2

fornot2s

fandnot1

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

same as above, single precision

src1 OR negated src2

same as above, single precision

negated src1 AND src2

E.6 UltraSPARC and VIS Instruction Set Extensions

Appendix E • SPARC-V9 Instruction Set 97

TABLE E–19 Logical Operate Instructions (Continued)
SPARC Mnemonic Argument List Description

FANDNOT1S

FANDNOT2

FANDNOT2S

fandnot1s

fandnot2

fandnot2s

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

fregrs1, fregrs2, fregrd

same as above, single precision

src1 AND negated src2

same as above, single precision

Pixel compare instructions compare fixed-point values in rs1 and rs2 (two 32 bit or four 16 bit).

TABLE E–20 Pixel Compare Instructions

SPARC Mnemonic Argument List Description

FCMPGT16

FCMPGT32

FCMPLE16

FCMPLE32

fcmpgt16

fcmpgt32

fcmple16

fcmple32

fregrs1, fregrs2, regrd

fregrs1, fregrs2, regrd

fregrs1, fregrs2, regrd

fregrs1, fregrs2, regrd

4 16-bit compare, set rd if src1>src2

2 32-bit compare, set rd if src1>src2

4 16-bit compare, set rd if src1≤src2

2 32-bit compare, set rd if src1≤src2

FCMPNE16

FCMPNE32

FCMPEQ16

FCMPEQ32

fcmpne16

fcmpne32

fcmpeq16

fcmpeq32

fregrs1, fregrs2, regrd

fregrs1, fregrs2, regrd

fregrs1, fregrs2, regrd

fregrs1, fregrs2, regrd

4 16-bit compare, set rd if src1≠src2

2 32-bit compare, set rd if src1≠src2

4 16-bit compare, set rd if src1=src2

2 32-bit compare, set rd if src1=src2

Edge handling instructions handle the boundary conditions for parallel pixel scan line loops.

TABLE E–21 Edge Handling Instructions

SPARC Mnemonic Argument List Description

EDGE8

EDGE8L

EDGE16

edge8

edge8l

edge16

regrs1, regrs2, regrd

regrs1, regrs2, regrd

regrs1, regrs2, regrd

8 8-bit edge boundary processing

same as above, little-endian

4 16-bit edge boundary processing

EDGE16L

EDGE32

EDGE32L

edge16l

edge32

edge32l

regrs1, regrs2, regrd

regrs1, regrs2, regrd

regrs1, regrs2, regrd

same as above, little-endian

2 32-bit edge boundary processing

same as above, little-endian

Pixel component distance instructions are used for motion estimation in video compression
algorithms.

E.6 UltraSPARC and VIS Instruction Set Extensions

SPARC Assembly Language Reference Manual • November 2010 (Beta)98

TABLE E–22 Pixel Component Distance Instructions

SPARC Mnemonic Argument List Description

PDIST pdist fregrs1, fregrs2, fregrd 8 8-bit components, distance between

The three-dimensional array addressing instructions convert three- dimensional fixed-point
addresses (in rs1) to a blocked-byte address. The result is stored in rd.

TABLE E–23 Three-Dimensional Array Addressing Instructions

SPARC Mnemonic Argument List Description

ARRAY8

ARRAY16

ARRAY32

array8

array16

array32

regrs1, regrs2, regrd

regrs1, regrs2, regrd

regrs1, regrs2, regrd

convert 8-bit 3-D address to blocked byte
address

same as above, but 16-bit

same as above, but 32-bit

E.6.7 Memory Access Instructions
These memory access instructions are part of the SPARC-V9 instruction set extensions.

TABLE E–24 Memory Access Instructions

SPARC imm_asi Argument List Description

eight 8-bit conditional stores to:

STDFA

STDFA

STDFA

STDFA

ASI_PST8_P

ASI_PST8_S

ASI_PST8_PL

ASI_PST8_SL

stda fregrd, [regaddr] regmask,
imm_asi

primary address space

secondary address space

primary address space, little endian

secondary address space, little endian

four 16-bit conditional stores to:

STDFA

STDFA

STDFA

STDFA

ASI_PST16_P

ASI_PST16_S

ASI_PST16_PL

ASI_PST16_SL

primary address space

secondary address space

primary address space, little endian

secondary address space, little endian

two 32-bit conditional stores to:

E.6 UltraSPARC and VIS Instruction Set Extensions

Appendix E • SPARC-V9 Instruction Set 99

TABLE E–24 Memory Access Instructions (Continued)
SPARC imm_asi Argument List Description

STDFA

STDFA

STDFA

STDFA

ASI_PST32_P

ASI_PST32_S

ASI_PST32_PL

ASI_PST32_SL

primary address space

secondary address space

primary address space, little endian

secondary address space, little endian

Note – To select a partial store instruction, use one of the partial store ASIs with the STDA
instruction.

TABLE E–25 Partial Store Instructions

SPARC imm_asi Argument List Description

8-bit load/store from/to:

LDDFA

STDFA

ASI_FL8_P ldda [reg_addr] imm_asi, fregrd

stda fregrd, [reg_addr] imm_asi

8-bit load/store from/to:primary address
space

LDDFA

STDFA

ASI_FL8_S ldda [reg_plus_imm] %asi, fregrd

stda [reg_plus_imm] %asi

secondary address space

LDDFA

STDFA

ASI_FL8_PL primary address space, little endian

LDDFA

STDFA

ASI_FL8_SL secondary address space, little endian

16-bit load/store from/to:

LDDFA

STDFA

ASI_FL16_P primary address space

LDDFA

STDFA

ASI_FL16_S secondary address space

LDDFA

STDFA

ASI_FL16_PL primary address space, little endian

LDDFA

STDFA

ASI_FL16_SL secondary address space, little endian

E.6 UltraSPARC and VIS Instruction Set Extensions

SPARC Assembly Language Reference Manual • November 2010 (Beta)100

Note – To select a short floating-point load and store instruction, use one of the short ASIs with
the LDDA and STDA instructions.

TABLE E–26 Load and Store Instructions

SPARC imm_asi Argument List Description

LDDA

LDDA

ASI_NUCLEUS_QUAD_LDD

ASI_NUCLEUS_QUAD_LDD_L

[reg_addr] imm_asi, regrd

[reg_plus_imm] %asi, regrd

128-bit atomic load

128-bit atomic load, little endian

LDDFA

STDFA

ASI_BLK_AIUP ldda [reg_addr] imm_asi,
fregrd

stda fregrd, [reg_addr]
imm_asi

64-byte block load/store from/to:

primary address space, user privilege

LDDFA

STDFA

ASI_BLK_AIUS ldda [reg_plus_imm] %asi,
fregrd

stda fregrd, [reg_plus_imm]
%asi

secondary address space, user privilege.

LDDFA

STDFA

ASI_BLK_AIUPL primary address space, user privilege, little
endian

LDDFA

STDFA

ASI_BLK_AIUSL secondary address space, user privilege
little endian

LDDFA

STDFA

ASI_BLK_P primary address space

LDDFA

STDFA

ASI_BLK_S secondary address space

LDDFA

STDFA

ASI_BLK_PL primary address space, little endian

LDDFA

STDFA

ASI_BLK_SL secondary address space, little endian

LDDFA

STDFA

ASI_BLK_COMMIT_P 64-byte block commit store to primary
address space

LDDFA

STDFA

ASI_BLK_COMMIT_S 64-byte block commit store to secondary
address space

E.6 UltraSPARC and VIS Instruction Set Extensions

Appendix E • SPARC-V9 Instruction Set 101

Note – To select a block load and store instruction, use one of the block transfer ASIs with the
LDDA and STDA instructions.

E.6 UltraSPARC and VIS Instruction Set Extensions

SPARC Assembly Language Reference Manual • November 2010 (Beta)102

Index

A
addresses, 30
.alias, 53
.align, 53
as command, 65
.ascii, 53
.asciz, 53
assembler command line, 65
assembler command line options, 66–69
assembler directives, 32–33

types, 32
assembly language, 13

lines, 14
statements, 14
syntax notation, 13

assignment directive, 33
atof, 15, 54, 56

B
binary operations, 18
.byte, 53
byte order for V9, 79

C
case distinction, 14
case distinction, in special symbols, 18
cc language driver, 65
command-line options, 66–69

comment lines, 14
comment lines, multiple, 14
.common, 53
constants, 15

decimal, 15
floating-point, 15
hexadecimal, 15
octal numeric, 15

Control Transfer Instructions (CTI), 20
converting existing object files, 35
coprocessor instruction, 48
cp_disabled trap, 48
cp_exception trap, 48
current location, 30
current section, 23

D
-D option, 66
data generating directives, 33
default output file, 21
dis program, 69
disassembling object code, 69
.double, 54

E
ELF header, 22, 23

ehsize, 22
entry, 22
flag, 22

103

ELF header (Continued)
ident, 22
machine, 22
phentsize, 22
phnum, 22
phoff, 22
shentsize, 22
shnum, 22
shoff, 23
shstrndx, 23
type, 23
version, 23

.empty pseudo-operation, 20

.empty, 54
error messages, 20
escape codes, in strings, 15
Executable and Linking Format (ELF) files, 12, 21
expressions, 18–19
expressions, SPARC-V9, 19–20

F
f77 language driver, 65
fbe command, 65
features, lexical, 14
.file, 54
file syntax, 14
floating-point instructions, 46–47
floating-point pseudo-operations, 15

G
.global, 54
.globl, 54

H
.half, 55
hardware instructions, SPARC architecture, 37
hardware integer, assembly language instructions, 39
hyphen (-), 65

I
-I option, 66
.ident, 55
instruction set, used by assembler, 37
instruction set changes (V9), 79–82
instruction set extensions (V9), 93–102
instructions

assembly language, 39
hardware integer, 39

integer instructions, 39–46
integer suffixes, 15
invoking, as command, 65

K
-K option, 66

L
-L option, 66
labeling format, 11
labels, 15
language drivers, 65
lexical features, 14
lines syntax, 14
.local, 55
location counter, 30
locations, 30

M
-m option, 66
multiple comment lines, 14
multiple files, on, 65
multiple sections, 24
multiple strings, in string table, 32

N
.noalias pseudo-op, 53
.noalias, 55

Index

SPARC Assembly Language Reference Manual • November 2010 (Beta)104

.nonvolatile, 55
numbers, 15
numeric labels, 15

O
-o option, 67
object file format, 12
object files

type, 12, 21
operators, 18–19
operators, SPARC-V9, 19–20
.optim, 55
options, command-line, 66–69

P
-P option, 67
percentage sign (%), 16
.popsection, 55
predefined non-user sections, 29
predefined user sections, 27–29
.proc, 56
pseudo-operations, 53
pseudo-ops, examples of, 61
.pushsection, 56

Q
-Q option, 67
-q option, 67
.quad, 56

R
references, 7
registers, 16–18
relocatable files, 12, 21
relocation tables, 30
.reserve, 56

S
-S option, 67
-s option, 67
-sb option, 66
.section, 56
section control directives, 33
section control pseudo-ops, 33
section header, 24, 27

addr, 24
addralign, 24
entsize, 24
flags, 24
info, 25
link, 25
name, 25
offset, 25
size, 25
type, 25

sections, 23–29
.seg, 57
.single, 57
.size, 57
.skip, 57
SPARC-V9, 77–79

8-bit format, 94
alternate space access, 79
byte order, 79
fixed data formats, 94
floating-point instructions, 90–91
graphics data formats, 94
instruction set changes, 79–82
instruction set extensions, 93–102
instruction set mapping, 82–90
registers, 77–79
synthetic instruction set, 91–93

SPARC-V9, 64-bit expressions, 19–20
SPARC-V9, 64-bit operators, 19–20
special floating-point values, 15
special names, floating point values, 15
special symbols, 16–18
.stabn, 57
.stabs, 57
statement syntax, 14
string tables, 32

Index

105

strings, 15–16
multiple in string table, 32
multiple references in string table, 32
suggested style, 15
unreferenced in string table, 32

sub-strings in string table, references to, 32
symbol, 59
symbol attribute directives, 33
symbol names, 16
symbol table, 30, 31

info, 31
name, 31
other, 31
shndx, 31
size, 31
value, 31

symbol tables, 30–32
syntax notation, 13
synthetic instructions, 48–50

T
-T option, 67
table notation, 37–38
trap numbers, reserved, 44
.type, 58

U
-U option, 68
.uahalf, 58
.uaword, 58
unary operators, 18
user sections, 33
/usr/include/sys/trap.h, 44

V
-V option, 68
.version, 58
.volatile, 58

W
.weak, 58
.word, 59

X
-xarch=v7 option, 68
-xarch=v8 option, 68
-xarch=v8a option, 68
-xarch=v8plus option, 68
-xarch=v8plusa option, 68
.xstabs, 59

Index

SPARC Assembly Language Reference Manual • November 2010 (Beta)106

	SPARC Assembly Language Reference Manual
	Preface
	Before You Read This Book
	How This Book is Organized
	Documentation, Support, and Training
	Oracle Software Resources
	Typographic Conventions
	Shell Prompts in Command Examples

	SPARC Assembler for SunOS 5.x
	1.1 Operating Environment
	1.2 SPARC Assembler for SunOS 4.1 Versus SunOS 5.x
	1.2.1 Labeling Format
	1.2.2 Object File Format
	1.2.3 Pseudo-Operations
	1.2.4 Command Line Options

	Assembler Syntax
	2.1 Syntax Notation
	2.2 Assembler File Syntax
	2.2.1 Lines Syntax
	2.2.2 Statement Syntax

	2.3 Lexical Features
	2.3.1 Case Distinction
	2.3.2 Comments
	2.3.3 Labels
	2.3.4 Numbers
	2.3.5 Strings
	2.3.6 Symbol Names
	2.3.7 Special Symbols - Registers
	2.3.8 Operators and Expressions
	2.3.9 SPARC V9 Operators and Expressions

	2.4 Assembler Error Messages

	Executable and Linking Format
	3.1 ELF Header
	3.2 Sections
	3.2.1 Section Header
	3.2.2 Predefined User Sections
	3.2.2.1 Creating an .init Section in an Object File
	3.2.2.2 Creating a .fini Section in an Object File

	3.2.3 Predefined Non-User Sections

	3.3 Locations
	3.4 Addresses
	3.5 Relocation Tables
	3.6 Symbol Tables
	3.7 String Tables
	3.8 Assembler Directives
	3.8.1 Section Control Directives
	3.8.2 Symbol Attribute Directives
	3.8.3 Assignment Directive
	3.8.4 Data Generating Directives

	Converting Files to the New Format
	4.1 Conversion Instructions
	4.2 Examples

	Instruction-Set Mapping
	5.1 Table Notation
	5.2 Integer Instructions
	5.3 Floating-Point Instruction
	5.4 Coprocessor Instructions
	5.5 Synthetic Instructions
	5.6 V8/V9 Natural Pseudo Instructions

	Pseudo-Operations
	A.1 Alphabetized Listing with Descriptions

	Examples of Pseudo-Operations
	B.1 Example 1
	B.2 Example 2
	B.3 Example 3
	B.4 Example 4
	B.5 Example 5

	Using the Assembler Command Line
	C.1 Assembler Command Line
	C.2 Assembler Command Line Options
	C.3 Disassembling Object Code

	An Example Language Program
	SPARC-V9 Instruction Set
	E.1 SPARC-V9 Changes
	E.1.1 Registers
	E.1.2 Alternate Space Access
	E.1.3 Byte Order

	E.2 SPARC-V9 Instruction Set Changes
	E.2.1 Extended Instruction Definitions to Support the 64-Bit Model
	E.2.2 Added Instructions to Support 64 Bits
	E.2.3 Added Instructions to Support High-Performance System Implementation
	E.2.4 Deleted Instructions
	E.2.5 Miscellaneous Instruction Changes

	E.3 SPARC-V9 Instruction Set Mapping
	E.4 SPARC-V9 Floating-Point Instruction Set Mapping
	E.5 SPARC-V9 Synthetic Instruction-Set Mapping
	E.6 UltraSPARC and VIS Instruction Set Extensions
	E.6.1 Graphics Data Formats
	E.6.2 Eight-bit Format
	E.6.3 Fixed Data Formats
	E.6.4 SHUTDOWN Instruction
	E.6.5 Graphics Status Register (GSR)
	E.6.6 Graphics Instructions
	E.6.7 Memory Access Instructions

	Index

