
Oracle Solaris WBEM Developer's Guide
Beta

Part No: 821–1605–02
November 2010

Copyright © 1999, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following
notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
“commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are
trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

110425@25097

Contents

Preface ...15

1 Overview of Solaris Web-Based Enterprise Management .. 19
About Web-Based Enterprise Management .. 19
About the Common Information Model .. 20
About Solaris WBEM Services ... 20

Software Components ... 21
CIM Object Manager ... 24
Managed Object Format Compiler .. 24
Solaris Schema .. 25
Solaris WBEM SDK ... 25

Using CIM Workshop to Develop WBEM Applications ... 26
CIM Workshop Documentation ... 27
Running CIM Workshop .. 27

2 Using the CIM Object Manager ... 29
About the CIM Object Manager .. 29
init.wbem Command ... 30

Solaris Management Console Server ... 30
System Booting ... 31

Stopping and Restarting the CIM Object Manager ... 31
▼ How to Stop the CIM Object Manager .. 31
▼ How to Restart the CIM Object Manager .. 31

Upgrading the CIM Object Manager Repository .. 31
▼ How to Recompile Your MOF Files ... 32
▼ How to Merge WBEM Data .. 33

Exception Messages ... 33

3

3 Using the Sample Programs ..35
About the Sample Programs ... 35
Sample Applet .. 36

▼ How to Run the Sample Applet Using Appletviewer ... 36
▼ How to Run the Sample Applet in a Web Browser ... 36

Sample Client Programs ... 36
Running the Sample Client Programs ... 37

Sample Provider Programs ... 38
▼ How to Run the Sample Provider Programs ... 39

4 Writing a Client Program ..41
Client API Overview ... 41

Sequence of a Client Application ... 41
Opening and Closing a Client Connection .. 42

About Namespaces .. 42
Opening a Client Connection .. 43
Closing a Client Connection .. 44

Performing Basic Client Operations ... 44
Creating an Instance .. 44
Deleting an Instance .. 45
Getting and Setting Instances ... 47
Getting and Setting Properties ... 48
Enumerating Objects ... 49
Creating Associations .. 54
Calling Methods ... 58
Retrieving Class Definitions ... 59
Handling Exceptions ... 60
Creating a Namespace ... 60
Deleting a Namespace ... 61
Creating a Base Class ... 61
Deleting a Class .. 62

Setting Access Control .. 63
Solaris_UserAcl Class .. 63
Solaris_NamespaceAcl Class .. 65

Working With Qualifiers and Qualifier Types .. 66

Contents

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)4

Getting and Setting CIM Qualifiers ... 66
Batching Client Requests .. 67
Handling CIM Events ... 69

About Indications .. 70
About Subscriptions .. 72
Adding a CIM Listener .. 72
Creating an Event Filter ... 73
Creating an Event Handler ... 75
Binding an Event Filter to an Event Handler .. 76

Reading and Writing Log Messages .. 77
About Log Files ... 77

5 Writing WBEM Queries ..83
About the WBEM Query Language .. 83
Writing Queries ... 84

WQL Key Words .. 84
Parsing Queries .. 87

SELECT List .. 87
FROM Clause ... 87
WHERE Clause .. 88
Writing a Provider That Handles Queries .. 88

6 Writing a Provider Program ...91
About Providers ... 91

Provider Data Sources ... 92
Types of Providers ... 92

Implementing the Provider Interfaces .. 94
Writing an Instance Provider ... 95
Writing a Method Provider .. 97
Writing an Associator Provider ... 98
Writing an Indication Provider .. 100
Writing a Native Provider ... 103

Creating a Provider ... 104
▼ How to Set the Provider CLASSPATH ... 104
▼ How to Register a Provider ... 105

Contents

5

7 Creating JavaBeans Components Using the MOF Compiler .. 107
About the MOF Compiler .. 107

Generating JavaBeans Components Using mofcomp ... 108
How CIM Maps to the Java Programming Language ... 109
Example of Generating JavaBeans Components ... 113

8 Administering Security ...125
WBEM Security Mechanisms .. 125

Client Authentication .. 126
Role Assumption .. 126
Secure Messaging ... 127
Authorization ... 127
Auditing .. 128
Logging .. 129

Using Sun WBEM User Manager to Set Access Control .. 129
What You Can and Cannot Do With Sun WBEM User Manager 129

Using Sun WBEM User Manager .. 130
▼ How to Start Sun WBEM User Manager ... 130
▼ How to Grant Default Access Rights to a User ... 131
▼ How to Change Access Rights for a User .. 131
▼ How to Remove Access Rights for a User .. 131
▼ How to Set Access Rights for a Namespace ... 132
▼ How to Remove Access Rights for a Namespace .. 132

Using the Solaris WBEM SDK APIs to Set Access Control .. 133
Solaris_UserAcl Class .. 133
Solaris_NamespaceAcl Class .. 135

Troubleshooting Problems With WBEM Security ... 136
If a Client (User) Cannot Be Authenticated by the CIMOM on the WBEM Server 136
If Other CIM Security Exception Errors Appear .. 137
If an Authorization Check Fails .. 138

9 Troubleshooting ... 139
Viewing Log Data Through Log Viewer ... 139

▼ How to Start the Solaris Management Console Application and Log Viewer 139
About WBEM Error Messages ... 140

Contents

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)6

Parts of an Error Message .. 140
WBEM Error Messages ... 141

A Solaris Schema ...157
Solaris Schema Files .. 158

Solaris_Acl.mof File ... 159
Solaris_Application.mof File .. 159
Solaris_CIMOM.mof File ... 160
Solaris_Core.mof File ... 160
Solaris_Device.mof File ... 161
Solaris_Event.mof File ... 161
Solaris_Network.mof File ... 162
Solaris_Performance.mof File .. 162
Solaris_Project.mof File ... 163
Solaris_Schema.mof File ... 163
Solaris_SNMP.mof File ... 163
Solaris_System.mof File ... 164
Solaris_Users.mof File ... 164
Solaris_VM1.0.mof File ... 165
WBEMServices.mof File ... 166

Index ... 167

Contents

7

8

Figures

FIGURE 1–1 Solaris WBEM Services Architecture .. 22
FIGURE 4–1 TeacherStudent Association 1 ... 54
FIGURE 4–2 TeacherStudent Association 2 ... 55

9

10

Tables

TABLE 1–1 Solaris WBEM APIs .. 26
TABLE 2–1 Determining Whether to Recompile or Merge WBEM Data 32
TABLE 3–1 Sample Client Programs ... 36
TABLE 3–2 Sample Provider Programs ... 38
TABLE 4–1 Enumerating Objects .. 49
TABLE 4–2 Association Methods ... 54
TABLE 4–3 TeacherStudent Methods ... 56
TABLE 4–4 invokeMethodParameters .. 58
TABLE 4–5 CIM_IndicationClass Structure ... 70
TABLE 4–6 CIM_IndicationFilterProperties .. 73
TABLE 4–7 CIM_IndicationHandlerProperties .. 75
TABLE 4–8 Log Message Elements .. 77
TABLE 5–1 Mapping of SQL Concepts to WQL .. 83
TABLE 5–2 Supported WQL Key Words .. 84
TABLE 5–3 Sample SELECT Statements ... 85
TABLE 5–4 WQL Operators for WHERE Clauses ... 86
TABLE 6–1 Provider Types ... 93
TABLE 6–2 EventProviderMethods .. 102
TABLE 7–1 MOF File Elements .. 109
TABLE 7–2 How CIM Elements Map to Java Elements .. 109
TABLE 7–3 How CIM Data Types Map to Java Data Elements .. 110
TABLE 7–4 Meta Qualifiers .. 111
TABLE 7–5 Standard Qualifiers ... 111
TABLE 7–6 How MOF Elements Map to Java Elements ... 112
TABLE A–1 Solaris Schema Files .. 158

11

12

Examples

EXAMPLE 3–1 Running the SystemInfo Program ... 38
EXAMPLE 4–1 Connecting to the Root Account ... 43
EXAMPLE 4–2 Connecting to a User Account ... 43
EXAMPLE 4–3 Authenticating as an RBAC Role Identity .. 44
EXAMPLE 4–4 Closing a Client Connection .. 44
EXAMPLE 4–5 Creating an Instance ... 45
EXAMPLE 4–6 Deleting Instances ... 45
EXAMPLE 4–7 Getting and Setting Instances .. 47
EXAMPLE 4–8 Getting a Property ... 48
EXAMPLE 4–9 Setting a Property .. 49
EXAMPLE 4–10 Enumerating Classes ... 50
EXAMPLE 4–11 Enumerating Classes and Instances .. 51
EXAMPLE 4–12 Enumerating Class Names ... 52
EXAMPLE 4–13 Enumerating Namespaces .. 53
EXAMPLE 4–14 Passing Instances ... 57
EXAMPLE 4–15 Calling a Method ... 58
EXAMPLE 4–16 Retrieving a Class Definition .. 59
EXAMPLE 4–17 Creating a Namespace ... 60
EXAMPLE 4–18 Deleting a Class .. 62
EXAMPLE 4–19 Setting CIM Qualifiers .. 66
EXAMPLE 4–20 Batching Example .. 67
EXAMPLE 4–21 Adding a CIM Listener ... 73
EXAMPLE 4–22 Creating an Event Filter .. 75
EXAMPLE 4–23 Creating an Event Handler ... 76
EXAMPLE 4–24 Binding an Event Filter to an Event Handler .. 76
EXAMPLE 4–25 Creating an Instance of Solaris_LogEntry ... 78
EXAMPLE 4–26 Displaying a List of Log Records .. 80
EXAMPLE 5–1 Provider That Handles Queries ... 88

13

EXAMPLE 6–1 CIMInstanceProvider .. 95
EXAMPLE 6–2 Method Provider ... 98
EXAMPLE 6–3 CIMAssociatorProvider .. 100
EXAMPLE 6–4 Registering a Provider ... 106
EXAMPLE 7–1 Generating JavaBeans Components ... 113
EXAMPLE 9–1 Parts of an Error Message ... 141

Examples

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)14

Preface

The Solaris WBEM Developer's Guide explains Common Information Model (CIM) concepts.
In addition, this guide describes how to administer Web-Based Enterprise Management
(WBEM) services in the Oracle Solaris operating environment.

In addition, this guide describes the Oracle Solaris Web-Based Enterprise Management
Software Developer's Kit (WBEM SDK). The WBEM SDK enables developers to create
standards-based applications that manage resources in the Solaris operating environment.
Developers can also use this toolkit to write providers, which are programs that communicate
with managed resources to access data.

The Solaris WBEM SDK includes the following items:

■ Client application programming interfaces (APIs) for describing and managing resources
using the Distributed Management Task Force (DMTF) Common Information Model
(CIM)

■ Provider APIs for getting and setting dynamic data on managed resources
■ Sample WBEM client and provider programs
■ CIM Workshop, an application written in the Java programming language that you can use

to create and view managed resources on a system

Who Should Use This Book
This book is for the following types of software developers:

■ Instrumentation developers – Write software that communicates device information in a
standard CIM format to the CIM Object Manager through software providers.

■ System and network application developers – Write applications that manage the
information stored in CIM classes and instances. These people use the Solaris WBEM
Services APIs to get and set the properties of CIM instances and classes.

15

http://www.dmtf.org/home

Before You Read This Book
This book requires a solid understanding of the following information:

■ Object-oriented programming concepts
■ The Java programming language
■ Common Information Model (CIM) concepts
■ Network management concepts

If you are unfamiliar with these areas, you might find the following references useful:

■ The Java Programming Language, Second Edition, Ken Arnold and James Gosling,
Addison-Wesley, ISBN 0–201–31006–6.

■ The Java Class Libraries, Second Edition, Volume 1, Patrick Chan, Rosanna Lee, Douglas
Kramer, Addison-Wesley, ISBN 0–201–31002–3.

The following web sites are useful resources when working with WBEM technologies:

■ Distributed Management Task Force (DMTF) – dmtf.org
This site discusses the latest CIM developments, provides information about various
working groups, and lists contact information for extending the CIM Schema.

■ Rational Software – www.ibm.com/software/rational/uml
This site contains documentation about the Unified Modeling Language (UML).

How This Book Is Organized
Chapter 1, “Overview of Solaris Web-Based Enterprise Management,” introduces Web-Based
Enterprise Management (WBEM), the Common Information Model (CIM), the application
programming interfaces (APIs) in the Solaris WBEM SDK, and CIM Workshop.

Chapter 2, “Using the CIM Object Manager,” describes the CIM Object Manager. This chapter
covers how to start and how to stop the CIM Object Manager and how to upgrade the CIM
Object Manager Repository.

Chapter 3, “Using the Sample Programs,” describes the sample programs that are provided with
the Solaris WBEM SDK.

Chapter 4, “Writing a Client Program,” explains how to use the client APIs to write client
programs.

Chapter 5, “Writing WBEM Queries,” explains how to use the WBEM Query Language (WQL)
and the Query APIs to write and handle queries.

Chapter 6, “Writing a Provider Program,” explains how to use the provider APIs to write
provider programs.

Preface

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)16

http://www.dmtf.org/home
http://www.ibm.com/software/rational/uml/

Chapter 7, “Creating JavaBeans Components Using the MOF Compiler,” explains how to use
the MOF compiler.

Chapter 8, “Administering Security,” describes WBEM security mechanisms and the features
that the CIM Object Manager enforces.

Chapter 9, “Troubleshooting,” describes how to view log data and explains the error messages
that are generated by components of the Solaris WBEM SDK.

Appendix A, “Solaris Schema,” describes the MOF files that are included with the Solaris
WBEM SDK.

Related Information
You might also want to refer to the following related documentation:

■ Javadoc reference pages – Describe the WBEM APIs. See
file:/usr/sadm/lib/wbem/doc/index.html.

■ CIM/Solaris Schema – Describe the CIM and Solaris Schema. See
file:/usr/sadm/lib/wbem/doc/mofhtml/index.html.

■ Distributed Management Task Force (DMTF) Glossary – A comprehensive glossary of CIM
and WBEM-related terms. See dmtf.org/education.

Documentation, Support, and Training
See the following web sites for additional resources:

■ Documentation (http://docs.sun.com)
■ Support (http://www.oracle.com/us/support/systems/index.html)
■ Training (http://education.oracle.com) – Click the Sun link in the left navigation bar.

Oracle Software Resources
Oracle Technology Network (http://www.oracle.com/technetwork/index.html) offers a
range of resources related to Oracle software:

■ Discuss technical problems and solutions on the Discussion Forums
(http://forums.oracle.com).

■ Get hands-on step-by-step tutorials with Oracle By Example (http://www.oracle.com/
technetwork/tutorials/index.html).

■ Download Sample Code (http://www.oracle.com/technology/sample_code/
index.html).

Preface

17

http://dmtf.org/education
http://docs.sun.com
http://www.oracle.com/us/support/systems/index.html
http://education.oracle.com
http://www.oracle.com/technetwork/index.html
http://forums.oracle.com
http://forums.oracle.com
http://www.oracle.com/technetwork/tutorials/index.html
http://www.oracle.com/technetwork/tutorials/index.html
http://www.oracle.com/technology/sample_code/index.html
http://www.oracle.com/technology/sample_code/index.html

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Shell Prompts in Command Examples
The following table shows the default UNIX system prompt and superuser prompt for shells
that are included in the Oracle Solaris OS. Note that the default system prompt that is displayed
in command examples varies, depending on the Oracle Solaris release.

TABLE P–2 Shell Prompts

Shell Prompt

Bash shell, Korn shell, and Bourne shell $

Bash shell, Korn shell, and Bourne shell for superuser #

C shell machine_name%

C shell for superuser machine_name#

Preface

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)18

Overview of Solaris Web-Based Enterprise
Management

This chapter provides an overview of Solaris Web-Based Enterprise Management, and includes
the following topics:

■ “About Web-Based Enterprise Management” on page 19
■ “About the Common Information Model” on page 20
■ “About Solaris WBEM Services” on page 20
■ “Using CIM Workshop to Develop WBEM Applications” on page 26

Note – This chapter provides a general overview of Web-Based Enterprise Management
(WBEM) and the Common Information Model (CIM). For more in-depth information about
WBEM and CIM, refer to the Distributed Management Task Force(DMTF) Web site at
dmtf.org.

About Web-Based Enterprise Management
Web-Based Enterprise Management (WBEM) is a set of management and Internet
technologies. WBEM unifies the management of enterprise computing environments. With
WBEM, you can deliver an integrated set of standardized management tools that leverage
emerging web technologies. By developing management applications according to WBEM
principles, you can create compatible products at a low development cost.

The Distributed Management Task Force (DMTF) is an industry group that represents
corporations in the computer and telecommunications industries. The DMTF is leading the
effort to develop and disseminate standards for the management of desktop environments,
enterprise-wide systems, and the Internet. The goal of the DMTF is to develop an integrated
approach to managing computers and networks across platforms and protocols. The approach
is intended to result in cost-effective products that interoperate as flawlessly as possible.

1C H A P T E R 1

19

http://www.dmtf.org/home

About the Common Information Model
The Common Information Model (CIM), developed by the DMTF, is an industry standard used
to manage systems and networks. This standard provides a common conceptual framework
that classifies and defines the parts of a networked environment, and depicts how these various
parts interact. The CIM captures notions that are applicable to all areas of management,
independent of technology implementation.

CIM consists of the following components:
■ CIM Specification – Defines the language and methodology for integration with other

management models.
■ CIM Schema – Provides the actual model descriptions for systems, applications, local area

networks, and devices. The CIM Schema consists of the following models:
■ Core Model – Provides the underlying, general assumptions of the managed

environment. This model comprises a small set of classes and associations that provide a
basic vocabulary for analyzing and describing managed systems.

■ Common Model – Captures notions that are common to particular management areas,
but which are independent of a particular technology or implementation. Provides a
basis for the development of management applications.

■ Extension schema – Represents technology and platform-specific extensions to the
Common Model. These schemas are specific to environments such as operating systems.
For example, the Solaris Schema is an extension schema. Vendors extend the model for their
products by creating subclasses of objects. Applications can then transverse object instances
in the standard model to manage different products in a heterogeneous environment.

About Solaris WBEM Services
The Solaris WBEM Services software is the Solaris implementation of WBEM and CIM
standards. The following components are included with Solaris WBEM Services:
■ “CIM Object Manager” on page 24
■ “Managed Object Format Compiler” on page 24
■ “Solaris Schema” on page 25
■ “Solaris WBEM SDK” on page 25

Solaris WBEM Services software provides WBEM services in the Solaris operating
environment, including secure access and manipulation of management data. The product
includes a Solaris provider that enables management applications to access information about
managed resources such as devices and software in the Solaris operating environment.

The CIMOM accepts connections from management applications that use either the Remote
Method Invocation (RMI) protocol or the XML over HTTP protocol. The CIMOM provides
the following services to connected clients:

About the Common Information Model

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)20

■ Management services – These services are in the form of a CIMOM. The CIMOM checks
the semantics and syntax of CIM data and distributes data between applications, the CIM
Object Manager Repository, and managed resources.

■ Security services – Specify these services for WBEM through the Solaris Management
Console User tool. These services are described inSystem Administration Guide: Security
Services.

■ Sun WBEM User Manager – Use this tool to establish an access control list (ACL) for a
specific name space on the WBEM server. Sun WBEM User Manager enables you to add and
delete authorized users, set access privileges for authorized users, and manage user
authentication and access to CIM objects on a WBEM-enabled system. ACL-based security
is uniquely provided by Solaris WBEM Services.

■ Logging services – Consist of classes that developers can use to create applications that
dynamically record and retrieve event data. Administrators use this data to track and
determine the cause of events. Logging services are described in more detail in Chapter 9,
“Troubleshooting.”

■ XML services – Convert XML data into CIM classes, enabling XML/HTTP-based WBEM
clients to communicate with the CIM Object Manager.

Once connected to a WBEM-enabled system, WBEM clients can request WBEM operations
such as creating, viewing, and deleting CIM classes and instances, querying for properties that
have a specified value, and enumerating instances or classes in a specified class hierarchy.

Software Components
Solaris WBEM Services software consists of three software components: Application,
Management, and Provider. These components interact with the operating system and with
hardware. The following figure shows the software components and how these components
interact.

About Solaris WBEM Services

Chapter 1 • Overview of Solaris Web-Based Enterprise Management 21

http://www.oracle.com/pls/topic/lookup?ctx=821-1456&id=sysadv6
http://www.oracle.com/pls/topic/lookup?ctx=821-1456&id=sysadv6

■ Application layer – WBEM clients process and display data from managed resources.
Solaris WBEM Services include the following applications.

FIGURE 1–1 Solaris WBEM Services Architecture

Solaris Management
Console

Java WBEM Client and CIM API
Java VM

Solaris Operating Environment

CIM Object
Manager

Java VM

MOF Compiler
(mofcomp)

Solaris WBEM
Administration

Third-Party
Indication
Reception

RMI
Indication
Reception

CIM-RMICIM-XMLThird
Party

Third-Party
Indication
Reception

RMI
Indication
Reception

CIM-RMICIM-XMLThird
Party

Client
Protocol

Adapters

Indication
Delivery
Handlers

CIM Repository

Provider
Protocol

Adapters

Providers

Third
Party

Third-Party
Providers

Native

Sun
Providers

Java

Third-Party
Providers

Operating
System

SPARC x86Hardware

Application
layer

Management
layer

Provider
layer

About Solaris WBEM Services

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)22

■ Sun WBEM User Manager and Solaris Management Console User tool – Applications
that enable system administrators to add and delete authorized users and to set these
users' access privileges to managed resources.

■ Solaris Management Console Log Viewer – An application that displays log files. A
user can view details of a log record, including the name of the user who issued a logged
command and the client computer on which a logged event occurred.

■ Managed Object Format (MOF) compiler – A program that parses a file containing
MOF statements, converts the classes and instances defined in the file to Java classes, and
then adds the Java classes to the CIM Object Manager Repository, a central storage area
for management data.
MOF is a language for defining CIM classes and instances. MOF files are ASCII text files
that use the MOF language to describe CIM objects. A CIM object is a representation, or
model, of a managed resource, such as a printer, disk drive, or CPU. MOF files are
located in /usr/sadm/mof.
Many sites store information about managed resources in MOF files. Because MOF can
be converted to Java, applications that can run on any system with a Java virtual machine
can interpret and exchange this information. You can also use the mofcomp command to
compile MOF files at any time after installation. MOF is described on the DMTF web
page at dmtf.org.

■ Management layer – Components at this layer provide services to connected WBEM
clients.
■ Common Information Model (CIM) Object Manager – Software that manages CIM

objects on a WBEM system. CIM objects are stored internally as Java classes. The CIM
Object Manager transfers information between WBEM clients, the CIM Object Manager
Repository, and managed resources.

■ CIM Object Manager Repository – Central storage area for CIM class and instance
definitions.

■ Client and CIM application programming interfaces (APIs) – WBEM client
applications use these Java interfaces to request operations, such as creating or viewing
classes or instances of managed resources, from the CIM Object Manager.

■ Provider interfaces – Providers use these interfaces to transfer information about
managed resources to the CIM Object Manager. The CIM Object Manager uses the
provider interfaces to transfer information to locally installed providers.

■ Provider layer – Providers act as intermediaries between the CIM Object Manager and one
or more managed resources. When the CIMOM receives a request from a WBEM client for
data that is not available from the CIM Object Manager Repository, the CIMOM forwards
the request to the appropriate provider.
■ Solaris providers – Provide the CIM Object Manager with instances of managed

resources in the Solaris operating environment. Providers get and set information on
managed devices. A native provider is a machine-specific program that is written to run
on a managed device. For example, a provider that accesses data on a system running the

About Solaris WBEM Services

Chapter 1 • Overview of Solaris Web-Based Enterprise Management 23

http://www.dmtf.org/home

Solaris operating environment probably includes C functions to query that system. The
Java Native Interface is part of the JDK software. By writing programs using the Java
Native Interface, you ensure that your code is portable across all platforms. The Java
Native Interface enables Java code that runs within a Java virtual machine to operate with
applications and libraries that are written in other languages, such as C, C++, and
assembly.

■ Solaris Schema – A collection of classes that describes managed objects in the Solaris
operating environment. The CIM Schema and Solaris Schema classes are stored in the
CIM Object Manager Repository. The CIM Schema is a collection of class definitions
used to represent managed objects that occur in every management environment.
The Solaris Schema is a collection of class definitions that extend the CIM Schema and
represent managed objects in a typical Solaris operating environment. Users can also use
the MOF compiler (mofcomp) to add CIM Schema, Solaris Schema, or other classes to the
CIM Object Manager Repository.

■ Operating system layer – The Solaris providers enable management applications to access
information about managed resources such as devices and software, in the Solaris operating
environment.

■ Hardware layer – A management client can access management data on any supported
Solaris platform.

CIM Object Manager
The CIM Object Manager manages CIM objects on a WBEM-enabled system. When a WBEM
client application accesses information about a CIM object, the CIMOM contacts either the
appropriate provider for that object, or the CIM Object Manager Repository. When a WBEM
client application requests data from a managed resource that is not available for the
Repository, the CIMOM forwards the request to the provider for that managed resource. The
provider dynamically retrieves the information.

WBEM client applications contact the CIM Object Manager to establish a connection. This
connection is used to perform WBEM operations, such as creating a CIM class or updating a
CIM instance. When a WBEM client application connects to the CIM Object Manager, the
WBEM client gets a reference to the CIM Object Manager. The client can use that reference to
request services and perform operations.

Managed Object Format Compiler
You use the Managed Object Format (MOF) language to specify CIM schema. You define
classes and instances using ASCII text, and place those classes in a file that you submit to the
MOF compiler, mofcomp(1M). The MOF compiler parses the file and adds the classes and
instances defined in the file to the CIM Object Manager repository. See Chapter 7, “Creating

About Solaris WBEM Services

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)24

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=mofcomp-1m

JavaBeans Components Using the MOF Compiler,” for information on how to use the MOF
compiler to automatically generate JavaBeans components from MOF files.

Because you can convert MOF to Java, applications developed in MOF can run on any system or
in any environment that supports the Java platform.

Note – For more in-depth information about the MOF language, files, and syntax, see
dmtf.org/education.

Solaris Schema
The Solaris Schema is an extension schema of the Common Model. The Solaris Schema
specifically describes managed objects running in the Solaris operating environment.

When you install Solaris WBEM Services, the CIM Schema and the Solaris Schema MOF files
populate the /usr/sadm/mof directory. These files are automatically compiled when the
CIMOM starts. The CIM Schema files, denoted by the CIM_ prefix, form standard CIM objects.
The Solaris Schema extends the standard CIM Schema by describing Solaris objects. The MOF
files that make up the Solaris Schema have the Solaris_ prefix.

Note – The CIM Schema and Solaris Schema are installed at
file:/usr/sadm/lib/wbem/doc/mofhtml/index.html.

Solaris WBEM SDK
The Solaris WBEM SDK is a set of APIs that contain the components necessary to write
management applications. These applications communicate with WBEM-enabled
management devices using XML and HTTP communication standards.

Solaris WBEM applications request information or services from the Common Information
Model (CIM) Object Manager through the WBEM APIs. These APIs represent CIM objects as
Java classes. You use the APIs to describe managed objects and to retrieve information about
managed objects in a system environment. The advantage of modeling managed resources by
using CIM is that those objects can be shared across any system that is CIM-compliant.

Note – The Solaris WBEM application programming interface (API) documentation is in
Javadoc format and is installed at file:/usr/sadm/lib/wbem/doc/index.html during a
Solaris installation.

The Solaris WBEM APIs are described in the following table.

About Solaris WBEM Services

Chapter 1 • Overview of Solaris Web-Based Enterprise Management 25

http://dmtf.org/education

TABLE 1–1 Solaris WBEM APIs

API Package Name Description

CIM javax.wbem.cim Includes common classes and methods that
represent the basic CIM elements. The CIM
APIs create objects on the local system.

Client javax.wbem.client Applications use the CIMClient class to
connect to the CIM Object Manager.
Applications use the other classes and
methods to transfer data to and from the CIM
Object Manager.

The Batching APIs, a subset of the Client
APIs, enable clients to batch multiple requests
in one remote call. This capability reduces the
delay introduced by multiple remote message
exchanges.

Provider javax.wbem.provider The CIM Object Manager uses these APIs to
pass application requests for dynamic data to
providers.

Query javax.wbem.query Contains classes and methods that you use to
formulate and manipulate queries by using
the WBEM Query Language (WQL).

Using CIM Workshop to Develop WBEM Applications
You can develop WBEM applications that use CIM Workshop, a GUI-based development tool
included with the Solaris WBEM SDK. You use CIM Workshop to do the following:

■ View, add, delete, and search for classes
■ View, add, and delete name spaces
■ Add properties, qualifiers, and methods to new classes
■ Create instances
■ Modify instance values
■ Traverse associations
■ Subscribe to events
■ Execute methods

Note – CIM guidelines prevent you from modifying the properties, methods, and qualifiers of
CIM Schema and Solaris Schema classes. You also cannot change the values of inherited
properties, methods, and qualifiers.

Using CIM Workshop to Develop WBEM Applications

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)26

CIM Workshop Documentation
CIM Workshop has context-sensitive online help for every dialog box except for the main
window. When you click the interface components, the appropriate help text displays in the
Information pane on the left side of the dialog box.

Tip – To close and reopen the Information pane, click the question mark button on the upper left
corner of the dialog box.

Running CIM Workshop
By default, CIM Workshop connects to a CIMOM running on the local host in the root\cimv2
default name space using the Remote Method Invocation (RMI) protocol. You can also point to
a remote host that is running the CIM Object Manager.

▼ How to Start CIM Workshop

At the system prompt, type:
% /usr/sadm/bin/cimworkshop

The CIM Workshop Login dialog box displays.

Follow the instructions in the context-sensitive help to fill in the fields in the Login dialog box.
Then click OK.
The CIM Workshop main window displays.

▼ How to Exit CIM Workshop

From the CIM Workshop main window, choose Workshop->Exit.
CIM Workshop exits.

About the Main Window
The main window in CIM Workshop is divided into three panes:

■ Left pane – Displays the class inheritance tree of the current name space.
■ Right pane – Displays the Properties, Methods, and Events tabs. When you select a class in

the left pane, click one of these tabs in the right pane to display more information on the
properties, methods, or events of the selected class.

■ Bottom pane – Displays notification when events occur to which you are subscribed.

1

2

●

Using CIM Workshop to Develop WBEM Applications

Chapter 1 • Overview of Solaris Web-Based Enterprise Management 27

28

Using the CIM Object Manager

The Common Information Model (CIM) Object Manager is software that transfers CIM data
between WBEM client applications and managed resources.

This chapter discusses the following topics:

■ “About the CIM Object Manager” on page 29
■ “init.wbem Command” on page 30
■ “Stopping and Restarting the CIM Object Manager” on page 31
■ “Exception Messages” on page 33

About the CIM Object Manager
The CIM Object Manager (CIMOM) manages CIM objects on a WBEM-enabled system. A
CIM object is a representation, or model, of a managed resource, such as a printer, disk drive, or
CPU. CIM objects are stored internally as Java programming language classes.

When a WBEM client application accesses information about an object, the CIMOM contacts
either the provider for that object or the CIM Object Manager Repository. Providers are classes
that communicate with managed objects to access data. A WBEM client application might
request data from a managed resource that is not available from the CIM Object Manager
Repository. In this case, the CIM Object Manager forwards the request to the provider for that
managed resource. The provider dynamically retrieves the information.

At startup, the CIM Object Manager performs the following functions:

■ Listens for RMI connections on port 5987 and for XML over HTTP connections on port
5988

■ Sets up a connection to the CIM Object Manager Repository
■ Waits for incoming requests

The CIM Object Manager:

2C H A P T E R 2

29

■ Performs security checks to authenticate user login and authorization to access namespaces
■ Performs syntactical and semantic checking of CIM data operations to ensure that the

operations comply with the latest CIM specification
■ Routes requests to the appropriate provider or to the CIM Object Manager Repository
■ Delivers data from providers and from the CIM Object Manager Repository to WBEM

client applications

A WBEM client application contacts the CIMOM to establish a connection when the client
needs to perform WBEM operations. Examples of such operations include creating a CIM class
or updating a CIM instance. When a WBEM client application connects to the CIMOM, the
client application gets a reference to the CIMOM. The client application uses that reference to
request services and operations.

init.wbemCommand
The init.wbem command is automatically run during installation, and then each time you
reboot a system. The init.wbem command starts the CIM Object Manager and Solaris
Management Console server, both of which run combined in a single process. You can also use
init.wbem to stop the CIM Object Manager, to stop the Solaris Management Console server, or
to retrieve status from a server. You can find additional information about this command in the
init.wbem(1M) man page.

Generally, you do not need to stop the CIM Object Manager. However, if you change an
existing provider, you must stop and restart the CIM Object Manager before using the updated
provider.

You can specify three options with init.wbem:
■ start – Starts the CIM Object Manager or Solaris Management Console server on the local

host
■ stop – Stops the CIM Object Manager and Solaris Management Console server on the local

host
■ status – Gets status for the CIM Object Manager and Solaris Management Console server

on the local host

Solaris Management Console Server
The Solaris Management Console software provides Solaris management applications such as
User Manager, Disk Manager, and Log Viewer. The Solaris Management Console server
provides tools that the console can download. The server also performs common services for
the console and its tools, such as authentication, authorization, logging, messaging, and
persistence.

init.wbem Command

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)30

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=init.wbem-1m

The Solaris Management Console is described in other chapters in this document. For more
information see the System Administration Guide: Basic Administration.

System Booting
The init.wbem command is located in the /etc/init.d directory. The file
/etc/rc2.d/S90wbem runs with the start option when initialization state 2 is entered,
normally at boot time. The files /etc/rc0.d/K36wbem, /etc/rc1.d/K36wbem, and
/etc/rcS.d/K36wbem are run with the stop option when initialization states 0, 1, and S are
entered.

Stopping and Restarting the CIM Object Manager
If you change a provider, you must stop and restart the CIM Object Manager before using the
updated provider.

▼ How to Stop the CIM Object Manager
Become superuser.

Stop the CIM Object Manager.
/etc/init.d/init.wbem stop

▼ How to Restart the CIM Object Manager
Become superuser.

Restart the CIM Object Manager.
/etc/init.d/init.wbem start

Upgrading the CIM Object Manager Repository
If you have upgraded to the Solaris 9 platform from a previous version of the Solaris software,
you must update any proprietary custom Managed Object Format (MOF) data to the new
repository format that is used in the Solaris 9 software. Any CIM and Solaris MOF data that you
modified prior to the upgrade is destroyed by the upgrade. As a result, you will either need to
recompile your MOF files or merge the WBEM data after you upgrade.

1

2

1

2

Upgrading the CIM Object Manager Repository

Chapter 2 • Using the CIM Object Manager 31

http://www.oracle.com/pls/topic/lookup?ctx=821-1451&id=sysadv1

Caution – Failure to recompile or merge the modified data results in data loss.

Use the following table to determine whether to recompile or merge the WBEM data after you
upgrade to the Solaris 9 operating environment.

TABLE 2–1 Determining Whether to Recompile or Merge WBEM Data

Environment Before Upgrade Recompile Proprietary Managed Object Format (MOF) Files?

Solaris 8 (Solaris WBEM Services 2.0)

Solaris 8 6/00 (WBEM Services 2.0)

Solaris 8 10/00 (WBEM Services 2.2)

Yes

Solaris 8 1/01 (WBEM Services 2.3)

Solaris 8 4/01 (WBEM Services 2.4)

Solaris 8 7/01 (WBEM Services 2.4)

Solaris 8 10/01 (WBEM Services 2.4)

Solaris 9 5/02 (WBEM Services 2.5)

Solaris 9 9/02 (WBEM Services 2.5)

Solaris 9 12/02 (WBEM Services 2.5)

No. However, you need to merge the data into an upgraded repository.

▼ How to Recompile Your MOF Files
Upgrade your system to the Solaris 9 operating environment.

Become superuser.

Change directory to the location of your proprietary MOF files.

Use the mofcomp command to compile each of your proprietary MOF files.
/usr/sadm/bin/mofcomp root root-passwd MOF-filename

Note – For more information on the MOF compiler, see mofcomp(1M).

Stop the CIM Object Manager.
/etc/init.d/init.wbem stop

1

2

3

4

5

Upgrading the CIM Object Manager Repository

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)32

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=mofcomp-1m

Start the CIM Object Manager.
/etc/init.d/init.wbem start

The CIMOM adds repository files that contain the converted data to the directory
/var/sadm/wbem/logr/. This directory was created when you upgraded your system to the
Solaris 9 operating environment.

▼ How to Merge WBEM Data
Upgrade your system to the Solaris 9 operating environment.

Become superuser.

Stop the CIM Object Manager.
/etc/init.d/init.wbem stop

Caution – Failure to stop the CIM Object Manager before you run wbemconfig convert might
corrupt your data.

Merge the original data in the previous Reliable Log with the data in the Solaris 9 Reliable Log.
/usr/sadm/lib/wbem/wbemconfig convert

Note – The wbemconfig convert command successfully converts any proprietary custom MOF
data, but not any CIM or Solaris MOF data that you have modified. CIM and Solaris MOF data
that you have modified is destroyed. To recompile any modified CIM or Solaris MOF data in
the new repository, use the mofcomp command to compile the MOF files that contain the class
definitions.

Exception Messages
The CIM Object Manager generates exception messages to indicate incorrect MOF syntax and
semantics. Chapter 9, “Troubleshooting,” contains information about exception messages.

6

1

2

3

4

Exception Messages

Chapter 2 • Using the CIM Object Manager 33

34

Using the Sample Programs

This chapter describes the sample programs provided with the Solaris WBEM SDK, and
includes the following topics:

■ “About the Sample Programs” on page 35
■ “Sample Applet” on page 36
■ “Sample Client Programs” on page 36
■ “Sample Provider Programs” on page 38

About the Sample Programs
When you install the Solaris WBEM SDK, a sample Java applet and several programs are
installed in file:/usr/demo/wbem. You can use these samples as a basis for developing your
own programs.

Note – To use the applet and sample programs, make sure that /usr/java points to at least JDK
1.2.2, and that the program files are installed in the /usr/demo/wbem directory.

The following samples are provided:

■ Applet – Enumerates the Solaris software packages that are installed on a system running
Solaris WBEM Services, and connects to the CIM Object Manager running on a local or a
remote system.

■ Client programs – Use the Java APIs to make requests to the CIM Object Manager.
■ Provider programs – Communicate with managed objects to access data.

3C H A P T E R 3

35

Sample Applet

Note – For more detailed information on this applet, see
file:/usr/demo/wbem/applet/README.

You must run the applet on a machine that has network access to the CIM Object Manager. In
addition, the machine must run one of the following programs:

■ JDK 1.2 appletviewer
■ Web browser that uses at least version 1.2.2 of the Java runtime environment, or has at least

version 1.2.2 of the Java Plug-in product installed.

For more information on the JDK appletviewer or the Java runtime environment, see
java.sun.com. For more information on Java Plug-in, see Java Plug-in Technology

▼ How to Run the Sample Applet Using Appletviewer
To run the sample applet using appletviewer, type the following command:
% appletviewer -JD \

java.security.policy=/usr/demo/wbem/applet/applet.policy \

/usr/demo/wbem/applet/GetPackageInfoAp.html

▼ How to Run the Sample Applet in a Web Browser
To run the sample applet in a web browser, open the following file in your web browser:
file:/usr/demo/wbem/applet/GetPackageInfoAp.html

Sample Client Programs
The sample client programs are located in subdirectories of /usr/demo/wbem/client, and are
described in the following table.

TABLE 3–1 Sample Client Programs

Directory Program Purpose

./batching ./TestBatch host username password
classname rmi|http

Perform enumerateInstanceName,
getClass, and enumerateInstances in a
single batching call

●

●

Sample Applet

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)36

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index-jsp-141438.html

TABLE 3–1 Sample Client Programs (Continued)
Directory Program Purpose

./enumeration ./ClientEnum host username password
classname rmi|http

Enumerate classes and instances in the
specified class in the default namespace,
root\cimv2, on the specified host

./events ./Subscribe host username password
classname

Subscribe to lifecycle events for a specified
class, print events that occur within one
minute of the subscription, and then
unsubscribe to the events

./logging ./CreateLog host root-username
root-password rmi|http

Create a log record on the specified host

./ReadLog host root-username
root-password rmi|http

Read a log record on the specified host

./misc ./DeleteClass host classname
root-username root-password rmi|http

Delete the specified class in the default
namespace root\cimv2 on the specified
host

./DeleteInstances host classname
root-username root-password rmi|http

Delete instances of the specified class in
the default namespace root\cimv2 on the
specified host

./namespace ./CreateNameSpace host parentNS
childNS root-username root-password
rmi|http

Connect to the CIM Object Manager as
the specified user, and create a namespace
on the specified host

./DeleteNameSpace host parentNS
childNS root-username root-password
rmi|http

Delete the specified namespace on the
specified host

./query ./ExampleQuery host username
password rmi|http WQL-query

Create a test class with sample instances,
and perform queries on that class

./TestQuery host username password
rmi|httpWQL-query

Perform the specified WQL query

./systeminfo ./SystemInfo host username password
rmi|http

Display Solaris processor and system
information for the specified host in a
separate window

Running the Sample Client Programs
You must first set the CLASSPATH to include the necessary .jar files before you run the client
programs.

Sample Client Programs

Chapter 3 • Using the Sample Programs 37

▼ How to Set the CLASSPATH

Set the CLASSPATH environment variable using one of the following methods:

■ To use the C shell, type:

% setenv CLASSPATH .:/usr/sadm/lib/wbem.jar:/usr/sadm/lib/xml.jar

:/usr/sadm/lib/wbem/sunwbem.jar:/usr/sadm/lib/wbem/extension

■ To use the Bourne shell, type:

% >setenv CLASSPATH .:/usr/sadm/lib/wbem.jar:/usr/sadm/lib/xml.jar

:/usr/sadm/lib/wbem/sunwbem.jar:/usr/sadm/lib/wbem/extension

▼ How to Run the Sample Client Programs
Most of the sample client programs accept an optional parameter that specifies the protocol to
use to connect to the CIM Object Manager. RMI is the default protocol.

Run the sample client programs using the following format:
% java program_name parameters

Running the SystemInfo Program

For instance, the following example runs the SystemInfo program by connecting to myhost as
the root user with the secret password using the HTTP protocol.

% java SystemInfo myhost root secret http

Sample Provider Programs
The sample provider programs are located in subdirectories of /usr/demo/wbem/provider, and
are described in the following table.

TABLE 3–2 Sample Provider Programs

File Name Purpose

NativeProvider.java Top-level provider program that fulfills requests from the CIM Object
Manager and routes these requests to the Native_Example provider. This
program implements the instanceProvider and methodProvider APIs.
This program also declares methods to enumerate instances and to get an
instance of the Native_Example class. This program also declares a
method that invokes a method to print the string “Hello World.”

●

●

Example 3–1

Sample Provider Programs

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)38

TABLE 3–2 Sample Provider Programs (Continued)
File Name Purpose

Native_Example.mof Creates a class that registers the NativeProvider provider with the CIM
Object Manager. This MOF file identifies NativeProvider as the provider
to service requests for dynamic data in the Native_Example class. The file
also declares the properties and methods to be implemented by the
NativeProvider.

Native_Example.java The NativeProvider program calls this provider to enumerate instances
and to get an instance of the Native_Example class. The Native_Example
provider uses the APIs to enumerate objects and to create instances of
objects. The Native_Example class declares native methods, which call C
functions in the native.c file to get system-specific values. Examples of
such values include host name, serial number, release, machine,
architecture, and manufacturer.

native.c This C program implements methods in the Native_Example Java
provider in native C code.

Native_Example.h A machine-generated header file for the Native_Example class. Defines the
correspondence between the names of native method in the Java
programming language and the native C functions that execute those
methods.

libnative.so Binary native C code compiled from the native.c file.

▼ How to Run the Sample Provider Programs
You must set up your environment before you can run the sample provider programs.

Set the LD_LIBRARY_PATH environment variable to the location of the provider class files.

■ To use the C shell, type:

% setenv LD_LIBRARY_PATH /usr/sadm/lib/wbem

■ To use the Bourne shell, type:

% LD_LIBRARY_PATH = /usr/sadm/lib/wbem

Copy the libnative.so shared library file to the directory specified by the LD_LIBRARY_PATH
environment variable.
% cp libnative.so /usr/sadm/lib/wbem

Move the provider class files to the same path as the package to which those files belong.
% mv *.class /usr/sadm/lib/wbem

Become root superuser.

1

2

3

4

Sample Provider Programs

Chapter 3 • Using the Sample Programs 39

Stop the CIM Object Manager in the same shell in which you set the LD_LIBRARY_PATH
environment variable.
/etc/init.d/init.wbem stop

Note – When you set the LD_LIBRARY_PATH environment variable in a shell, you must stop and
restart the CIMOM in the same shell to recognize the new variable.

Start the CIM Object Manager.
/etc/init.d/init.wbem start

Exit being superuser.

Compile the program's associated .moffile to load the appropriate class in the CIMOM and to
identify the provider.
% mofcomp -u root -p root-password Native_Example.mof

Start CIM Workshop.
% /usr/sadm/bin/cimworkshop

In the CIM Workshop toolbar, click the Find Class icon.

In the Input dialog box, type the name of the class that you want to display and then click OK.
The class displays in CIM Workshop.

5

6

7

8

9

10

11

Sample Provider Programs

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)40

Writing a Client Program

This chapter explains how to use the Solaris WBEM SDK client APIs (javax.wbem.client) to
write client programs. This chapter includes the following topics:

■ “Client API Overview” on page 41
■ “Opening and Closing a Client Connection” on page 42
■ “Performing Basic Client Operations” on page 44
■ “Setting Access Control” on page 63
■ “Working With Qualifiers and Qualifier Types” on page 66
■ “Batching Client Requests” on page 67
■ “Handling CIM Events” on page 69
■ “Reading and Writing Log Messages” on page 77

Note – For detailed information on the WBEM client APIs (javax.wbem.client), see
file:/usr/sadm/lib/wbem/doc/index.html.

Client API Overview
WBEM client applications use the javax.wbem.client APIs to manipulate Common
Information Model (CIM) objects. A client application uses the CIM API to construct an object
and then to create an instance of that object. Examples of such an object include a class, an
instance, or a namespace. The application uses the client APIs to pass the object to the CIM
Object Manager and request a WBEM operation. Examples of such an operation are creating a
CIM class, creating an instance, or creating a namespace.

Sequence of a Client Application
Client applications typically follow this sequence:

4C H A P T E R 4

41

1. Connect to the CIMOM using CIMClient. A client application connects to the CIMOM
each time the client needs to perform a WBEM operation. These operations might include
creating a CIM class and updating a CIM instance. See “Opening and Closing a Client
Connection” on page 42.

2. Use the client APIs to request operations and to perform programming tasks. The
application's feature set determines which operations it needs to request. The tasks that
most programs perform include:
■ Creating, deleting and updating instances
■ Enumerating objects
■ Calling methods
■ Retrieving class definitions
■ Handling errors

Client programs can also create and delete classes, create and delete namespaces, and use
qualifiers. See “Performing Basic Client Operations” on page 44.

3. Close the client connection to the CIM Object Manager using CIMClient, to free the server
resources used by the client session. See “Opening and Closing a Client Connection” on
page 42.

Opening and Closing a Client Connection
A client application must first establish a connection with the CIMOM before the client can
perform WBEM operations. These operations might include adding, modifying, or deleting a
CIM class, CIM instance, or CIM qualifier type. The client application and CIM Object
Manager can run on the same host or on different hosts. In addition, multiple clients can
establish connections to the same CIM Object Manager.

About Namespaces
When an application connects to the CIMOM, the application must also connect to a
namespace, where all subsequent operations occur. A namespace is a directory-like structure
that contains classes, instances, and qualifier types. The names of all objects within a namespace
must be unique. When you install the Solaris WBEM SDK, four namespaces are created:

■ root\cimv2 – The default namespace. Contains the CIM classes that represent objects on
the system on which Solaris WBEM software is installed.

■ root\security – Contains the security classes.
■ root\snmp– Contains the SNMP adapter classes.
■ root\system– Contains the classes that manage the CIM Object Manager.

Opening and Closing a Client Connection

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)42

Opening a Client Connection
To open a client connection, you use the CIMClient class to connect to the CIM Object
Manager. The CIMClient class takes four arguments:
■ name – Required. An instance of a CIMNameSpace object that contains the name of the host

and the namespace used for the client connection. The default value is root\cimv2 on the
local host. The local host is the same host in which the client application is running. Once
the client is connected to the CIMOM, all subsequent CIMClient operations occur within
the specified namespace.

■ principal – Required. An instance of a UserPrincipal object that contains the name of a
valid Solaris user account. The CIMOM checks the access privileges for the user name to
determine the type of access that is allowed to CIM objects.

■ credential – Required. An instance of a PasswordCredential object that contains a valid
password for the UserPrincipal Solaris account.

■ protocol – Optional (string). Protocol that is used for sending messages to the CIMOM.
Possible values are RMI, which is the default value, or HTTP.

EXAMPLE 4–1 Connecting to the Root Account

In this example, the application connects to the CIM Object Manager running on the local host
in the default namespace. The application creates a UserPrincipal object for the root account,
which has read and write access to all CIM objects in the default namespace.

{

...

/* Create a namespace object initialized with two null strings

that specify the default host (the local host) and the default

namespace (root\cimv2).*/

CIMNameSpace cns = new CIMNameSpace("", "");

UserPrincipal up = new UserPrincipal("root");
PasswordCredential pc = new PasswordCredential("root-password");
/* Connect to the namespace as root with the root password. */

CIMClient cc = new CIMClient(cns, up, pc);

...

}

EXAMPLE 4–2 Connecting to a User Account

In this example, the application first creates an instance of a CIMNameSpace, UserPrincipal,
and PasswordCredential object. Then, the application uses the CIMClient class to pass the
host name, namespace, user name, and password credential in order to create a connection to
the CIMOM.

{

...

Opening and Closing a Client Connection

Chapter 4 • Writing a Client Program 43

EXAMPLE 4–2 Connecting to a User Account (Continued)

/* Create a namespace object initialized with A

(name of namespace) on host happy.*/

CIMNameSpace cns = new CIMNameSpace("happy", "A");
UserPrincipal up = new UserPrincipal("Mary");
PasswordCredential pc = new PasswordCredential("marys-password");
CIMClient cc = new CIMClient(cns, up, pc);

...

}

EXAMPLE 4–3 Authenticating as an RBAC Role Identity

You use the SolarisUserPrincipal and SolarisPasswordCredential classes to authenticate
a user's role identity. This example authenticates as Mary and assumes the role Admin.

{

...

CIMNameSpaceRole cns = new CIMNameSpace("happy", "A");
SolarisUserPrincipal sup = new SolarisUserRolePrincipal("Mary", "Admin");
SolarisPswdCredential spc = new

SolarisPswdCredential("marys-password", "admins-password");
CIMClient cc = new CIMClient(cns, sup, spc);

Closing a Client Connection
Use the close method of the CIMClient class to close a client connection and free the server
resources used by the session.

EXAMPLE 4–4 Closing a Client Connection

This example closes a client connection. The instance variable cc represents the client
connection.

...

cc.close(); ...

Performing Basic Client Operations
This section describes how to use the javax.wbem.client APIs to request operations and to
perform common programming tasks.

Creating an Instance
Use the newInstance method to create an instance of an existing class. If the existing class has a
key property, the application must set the key property to a unique value. As an option, an

Performing Basic Client Operations

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)44

instance can define additional qualifiers that are not defined for the class. These qualifiers can be
defined for the instance or for a particular property of the instance. The qualifiers do not need to
appear in the class declaration.

Applications can use the getQualifiers method to get the set of qualifiers that are defined for a
class.

EXAMPLE 4–5 Creating an Instance

This example uses the newInstance method to create a Java class representing a CIM instance,
for example, a Solaris package, from the Solaris_Package class.

...

{

/*Connect to the CIM Object Manager in the root\cimv2

namespace on the local host. Specify the username and password of an

account that has write permission to the objects in the

root\cimv2 namespace. */

UserPrincipal up = new UserPrincipal("root");
PasswordCredential pc = new PasswordCredential("root-password");
/* Connect to the namespace as root with the root password. */

CIMClient cc = new CIMClient(cns, up, pc);

...

// Get the Solaris_Package class

cimclass = cc.getClass(new CIMObjectPath("Solaris_Package"),
true, true, true, null);

/* Create a new instance of the Solaris_Package

class populated with the default values for properties. If the provider

for the class does not specify default values, the values of the

properties will be null and must be explicitly set. */

CIMInstance ci = cc.createInstance (new CIMObjectPath("Solaris_Package"),
ci);

}

...

Deleting an Instance
Use the deleteInstance method to delete an instance.

EXAMPLE 4–6 Deleting Instances

The example does the following:
■ Connects the client application to the CIMOM
■ Uses CIMObjectPath to construct an object containing the CIM object path of the object to

be deleted
■ Calls enumerateInstance to get the specified instance and all instances of its subclasses

Performing Basic Client Operations

Chapter 4 • Writing a Client Program 45

EXAMPLE 4–6 Deleting Instances (Continued)

■ Calls deleteInstance to delete each instance

import java.rmi.*;

import java.util.Enumeration;

import javax.wbem.cim.CIMClass;

import javax.wbem.cim.CIMException;

import javax.wbem.cim.CIMInstance;

import javax.wbem.cim.CIMNameSpace;

import javax.wbem.cim.CIMObjectPath;

import javax.wbem.client.CIMClient;

import javax.wbem.client.PasswordCredential;

import javax.wbem.client.UserPrincipal;

/**

* Returns all instances of the specified class.

* This example takes five arguments: hostname (args[0]), username

* (args[1]), password (args[2]) namespace (args[3] and classname (args[4])

* It will delete all instances of the specified classname. The specified

* username must have write permissions to the specified namespace

*/

public class DeleteInstances {

public static void main(String args[]) throws CIMException {

CIMClient cc = null;

// if not five arguments, show usage and exit

if (args.length != 5) {

System.out.println("Usage: DeleteInstances host username " +

"password namespace classname ");
System.exit(1);

}

try {

// args[0] contains the hostname and args[3] contains the

// namespace. We create a CIMNameSpace (cns) pointing to

// the specified namespace on the specified host

CIMNameSpace cns = new CIMNameSpace(args[0], args[3]);

// args[1] and args[2] contain the username and password.

// We create a UserPrincipal (up) using the username and

// a PasswordCredential using the password.

UserPrincipal up = new UserPrincipal(args[1]);

PasswordCredential pc = new PasswordCredential(args[2]);

// Connect to the CIM Object Manager and pass it the

// CIMNameSpace, UserPrincipal and PasswordCredential objects

// we created.

cc = new CIMClient(cns, up, pc);

// Get the class name (args[4]) and create a CIMObjectPath

CIMObjectPath cop = new CIMObjectPath(args[4]);

// Get an enumeration of all the instance object paths of the

// class and all subclasses of the class. An instance object

// path is a reference used by the CIM object manager to

Performing Basic Client Operations

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)46

EXAMPLE 4–6 Deleting Instances (Continued)

// locate the instance

Enumeration e = cc.enumerateInstanceNames(cop);

// Iterate through the instance object paths in the enumeration.

// Construct an object to store the object path of each

// enumerated instance, print the instance and then delete it

while (e.hasMoreElements()) {

CIMObjectPath op = (CIMObjectPath)e.nextElement();

System.out.println(op);

cc.deleteInstance(op);

} // end while

} catch (Exception e) {

// if we have an exception, catch it and print it out.

System.out.println("Exception: "+e);
} // end catch

// close session.

if (cc != null) {

cc.close();

}

}

}

Getting and Setting Instances
Client applications commonly use the getInstance method to retrieve CIM instances from the
CIMOM. When an instance of a class is created, the class inherits the properties of all the parent
classes in its class hierarchy. The getInstance method takes the Boolean argument localOnly.

■ If localOnly is true, getInstance returns only the noninherited properties in the specified
instance. The noninherited properties are defined in the instance.

■ If localOnly is false, all properties in the class are returned. These properties include those
properties that are defined in the instance, and all properties inherited from all parent
classes in its class hierarchy.

Use the setInstance method to update an existing instance.

EXAMPLE 4–7 Getting and Setting Instances

This example does the following:

■ Gets instances of an object path in an enumeration
■ Updates the property value of b to 10 in each instance
■ Passes the updated instances to the CIMOM

...

{

// Create an object path, an object that contains the CIM name for

// "myclass"

Performing Basic Client Operations

Chapter 4 • Writing a Client Program 47

EXAMPLE 4–7 Getting and Setting Instances (Continued)

CIMObjectPath cop = new CIMObjectPath("myclass");

/* Get instances for each instance object path in an enumeration,

update the property value of b to 10 in each instance, and pass the

updated instance to the CIM Object Manager. */

while(e.hasMoreElements()) {

CIMInstance ci = cc.getInstance((CIMObjectPath)

(e.nextElement()),true, true, true, null);

ci.setProperty("b", new CIMValue(new Integer(10)));

cc.setInstance(new CIMObjectPath(),ci);

}

}

...

Getting and Setting Properties
A CIM property is a value that describes the characteristic of a CIM class. Properties can be
thought of as a pair of functions. One function gets the property value and one function sets the
property value.

EXAMPLE 4–8 Getting a Property

The following example uses enumerateInstanceNames to return the names of all instances of
the Solaris processor. This example uses getProperty to get the value of the current clock speed
for each instance, and println to print the current clockspeed values.

...

{

/* Create an object (CIMObjectPath) to store the name of the

Solaris_Processor class. */

CIMObjectPath cop = new CIMObjectPath("Solaris_Processor");

/* The CIM Object Manager returns an enumeration containing the names

of instances of the Solaris_Processor class. */

Enumeration e = cc.enumerateInstanceNames(cop);

/* Iterate through the enumeration of instance object paths.

Use the getProperty method to get the current clockspeed

value for each Solaris processor. */

while(e.hasMoreElements()) {

CIMValue cv = cc.getProperty(e.nextElement(CIMObjectPath),

"CurrentClockSpeed");
System.out.println(cv);

}

...

}

Performing Basic Client Operations

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)48

EXAMPLE 4–9 Setting a Property

The following example sets the initial shell value for all Solaris_UserTemplate instances. This
code segment uses enumerateInstanceNames to get the names of all instances of the
Solaris_User Template. This code segment uses setProperty to set the value of the initial
shell for each instance.

...

{

/* Create an object (CIMObjectPath) to store the name of the

Solaris_Processor class. */

CIMObjectPath cop = new CIMObjectPath("Solaris_UserTemplate");

/* The CIM Object Manager returns an enumeration containing the names

of instances of the Solaris_UserTemplate class and

all its subclasses. */

Enumeration e = cc.enumerateInstanceNames(cop);

/* Iterate through the enumeration of instance object paths.

Use the setProperty method to set the initial shell

value to /usr/bin/sh for each Solaris_UserTemplate instance. */

for (; e.hasMoreElements(); cc.setProperty(e.nextElement(),

"/usr/bin/sh", new CIMValue(new Integer(500))));

}

Enumerating Objects
An enumeration is a collection of objects that can be retrieved one object at a time. You can
enumerate classes, class names, instances, instance names, and namespaces. The results of an
enumeration depend on the method and the arguments used, as shown in the following table.

Enumerating Objects

TABLE 4–1 Enumerating Objects

Method No args deep localOnly

enumerateClasses Returns the contents of the class
specified in path.

If true: Returns the contents of
the subclasses of the specified
class, but does not return the
class.

If true: Returns only
noninherited properties and
methods of the specified class.

If false: Returns the contents of
the direct subclasses of the
specified class.

If false: Returns all properties
of the specified class.

Performing Basic Client Operations

Chapter 4 • Writing a Client Program 49

TABLE 4–1 Enumerating Objects (Continued)
Method No args deep localOnly

enumerateInstances Returns the instances of the
class specified in path.

If true: Returns the instances of
the specified class and its
subclasseses.

If true: Returns only
noninherited properties of the
instances of the specified class.

If false: Returns the instances of
the specified class and its
subclasses. The properties of
the subclasses are filtered out.

If false: Returns all properties
of the instances of the specified
class.

enumerateClassNames Returns the names of the class
specified in path.

If true: Returns the names of all
classes derived from the
specified class.

N/A

If false: Returns only the names
of the first-level children of the
specified class.

N/A

enumerateInstanceNames Returns the names of the
instances of the class specified
in path.

N/A N/A

enumNameSpace Returns a list of the namespaces
within the namespace specified
in path

If true: Returns the entire
hierarchy of namespaces under
the specified namespace.

N/A

If false: Returns only the first
level children of the specified
namespace.

N/A

EXAMPLE 4–10 Enumerating Classes

The following example program returns the contents of a class and its subclasses.

...

{

/* Creates a CIMObjectPath object and initializes it

with the name of the CIM class to be enumerated (myclass). */

CIMObjectPath cop = new CIMObjectPath(myclass);

/* This enumeration contains the classes and subclasses

in the enumerated class (deep=true). This enumeration

returns only the noninherited methods and properties

for each class and subclass (localOnly is true).*/

Enumeration e = cc.enumerateClasses(cop, true, true);

}

...

Performing Basic Client Operations

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)50

EXAMPLE 4–11 Enumerating Classes and Instances

The following example program performs a deep and shallow (deep=false) enumeration of
classes and instances. The localOnly flag returns the contents of the classes and instances instead
of the names of the classes and instances.

import java.rmi.*;

import java.util.Enumeration;

import javax.wbem.client.CIMClient;

import javax.wbem.cim.CIMClass;

import javax.wbem.cim.CIMException;

import javax.wbem.cim.CIMInstance;

import javax.wbem.cim.CIMNameSpace;

import javax.wbem.cim.CIMObjectPath;

import javax.wbem.client.UserPrincipal;

import javax.wbem.client.PasswordCredential;

/**

* This example enumerates classes and instances. It does deep and

* shallow enumerations on a class that is passed from the command line

*/

public class ClientEnum {

public static void main(String args[]) throws CIMException {

CIMClient cc = null;

CIMObjectPath cop = null;

if (args.length < 4) {

System.out.println("Usage: ClientEnum host user passwd " +

"classname");
System.exit(1);

}

try {

CIMNameSpace cns = new CIMNameSpace(args[0]);

UserPrincipal up = new UserPrincipal(args[1]);

PasswordCredential pc = new PasswordCredential(args[2]);

cc = new CIMClient(cns, up, pc);

// Get the class name from the command line

cop = new CIMObjectPath(args[3]);

// Do a deep enumeration of the class

Enumeration e = cc.enumerateClasses(cop, true, true, true,

true);

// Will print out all the subclasses of the class.

while (e.hasMoreElements()) {

System.out.println(e.nextElement());

}

System.out.println("+++++");
// Do a shallow enumeration of the class

e = cc.enumerateClasses(cop, false, true, true, true);

// Will print out the first-level subclasses.

while (e.hasMoreElements()) {

System.out.println(e.nextElement());

}

System.out.println("+++++");
// Do a deep enumeration of the instances of the class

Performing Basic Client Operations

Chapter 4 • Writing a Client Program 51

EXAMPLE 4–11 Enumerating Classes and Instances (Continued)

e = cc.enumerateInstances(cop, false, true, true, true, null);

// Will print out all the instances of the class and its

// subclasses.

while (e.hasMoreElements()) {

System.out.println(e.nextElement());

}

System.out.println("+++++");
// Do a shallow enumeration of the instances of the class

e = cc.enumerateInstances(cop, false, false, true, true, null);

// Will print out all the instances of the class.

while (e.hasMoreElements()) {

System.out.println(e.nextElement());

}

System.out.println("+++++");
e = cc.enumerateInstanceNames(cop);

while (e.hasMoreElements()) {

System.out.println(e.nextElement());

}

System.out.println("+++++");
e = cc.enumerateInstanceNames(cop);

while (e.hasMoreElements()) {

CIMObjectPath opInstance = (CIMObjectPath)e.nextElement();

CIMInstance ci = cc.getInstance(opInstance, false,

true, true, null);

System.out.println(ci);

}

System.out.println("+++++");
}

catch (Exception e) {

System.out.println("Exception: "+e);
}

// close session.

if (cc != null) {

cc.close();

}

}

}

EXAMPLE 4–12 Enumerating Class Names

The following example program returns a list of class names and subclass names.

...

{

/* Creates a CIMObjectPath object and initializes it

with the name of the CIM class to be enumerated (myclass). */

CIMObjectPath cop = new CIMObjectPath(myclass);

/* This enumeration contains the names of the classes and subclasses

in the enumerated class. */

Enumeration e = cc.enumerateClassNames(cop, true);

}

...

Performing Basic Client Operations

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)52

EXAMPLE 4–13 Enumerating Namespaces

This example program uses the enumNameSpace method in the CIMClient class to print the
name of the namespace and all the namespaces contained within the namespace.

import java.rmi.*;

import java.util.Enumeration;

import javax.wbem.cim.CIMClass;

import javax.wbem.cim.CIMException;

import javax.wbem.cim.CIMInstance;

import javax.wbem.cim.CIMNameSpace;

import javax.wbem.cim.CIMObjectPath;

import javax.wbem.client.CIMClient;

import javax.wbem.client.PasswordCredential;

import javax.wbem.client.UserPrincipal;

/**

*

*/

public class EnumNameSpace {

public static void main(String args[]) throws CIMException {

CIMClient cc = null;

// if not four arguments, show usage and exit

if (args.length < 4) {

System.out.println("Usage: EnumNameSpace host username " +

"password namespace");
System.exit(1);

}

try {

// args[0] contains the hostname. We create a CIMNameSpace

// (cns) pointing to the specified namespace on the

// specified host

CIMNameSpace cns = new CIMNameSpace(args[0], "");

// args[1] and args[2] contain the username and password.

// We create a UserPrincipal (up) using the username and

// a PasswordCredential using the password.

UserPrincipal up = new UserPrincipal(args[1]);

PasswordCredential pc = new PasswordCredential(args[2]);

// Connect to the CIM Object Manager and pass it the

// CIMNameSpace, UserPrincipal and PasswordCredential objects

// we created.

cc = new CIMClient(cns, up, pc);

// Use the namespace (args[3]) to create a CIMObjectPath

CIMObjectPath cop = new CIMObjectPath("", args[3]);

// Enumerate the namespace

Enumeration e = cc.enumNameSpace(cop);

while (e.hasMoreElements()) {

System.out.println((CIMObjectPath)e.nextElement());

} // end while

Performing Basic Client Operations

Chapter 4 • Writing a Client Program 53

EXAMPLE 4–13 Enumerating Namespaces (Continued)

} catch (Exception e) {

// is we have an exception, catch it and print it out.

System.out.println("Exception: "+ e);

} // end catch

// close session.

if (cc != null) {

cc.close();

}

}

}

Creating Associations
An association describes a relationship between two or more managed resources such as a
computer and its hard disk. This relationship is abstracted in an association class, which is a
special type of class that contains an association qualifier. You can add or change an association
class without affecting the actual objects.

The preceding figure shows two classes, Teacher and Student. Both classes are linked by the
TeacherStudent association. The TeacherStudent association has two references:
■ Teaches, a property that refers to an instance of the Teacher class
■ TaughtBy, a property that refers to an instance of the Student class

About the Association Methods
The association methods in CIMClient return information about the relationships between
classes and instances. These methods are described in the following table.

TABLE 4–2 Association Methods

Method Description

associators Gets the CIM classes or instances that are associated with the specified
CIM class or instance

FIGURE 4–1 TeacherStudent Association 1

Teacher

Name: String

Student

Name: String
Teaches

Taught By

Teacher Student

Performing Basic Client Operations

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)54

TABLE 4–2 Association Methods (Continued)
Method Description

associatorNames Gets the names of the CIM classes or instances that are associated with
the specified CIM class or instance

references Gets the association classes or instances that refer to the specified CIM
class or instance, respectively

referenceNames Gets the names of the association classes or instances that refer to the
specified CIM classes or instances, respectively

These methods take one required argument, CIMObjectPath. CIMObjectPath is the name of a
source CIM class or CIM instance whose associations, associated classes, or instances you want
to return. If the CIMOM does not find any associations, associated classes, or instances, the
CIMOM does not return anything.

■ If CIMObjectpath is a class, the methods return the associated classes and the subclasses of
each associated class.

■ If CIMObjectpath is an instance, the methods return the instances of the associated class and
the subclasses of each associated class.

In the preceding figure, the associators and associatorNames methods return information
about the classes associated with the Teacher and Student classes. The references and
referenceNames methods return information about the associations between the Teacher and
Student classes.

FIGURE 4–2 TeacherStudent Association 2

Teacher

Name: String

Student

Name: String
Teaches

Taught By

Art Teacher

Name: String

Math Teacher

Name: String

Teacher 1:
Math Teacher

Student 1:
Student

Teacher 2:
Art Teacher

Teacher Student

Performing Basic Client Operations

Chapter 4 • Writing a Client Program 55

TABLE 4–3 TeacherStudent Methods

Example Output Description

associators(Teacher, null, null,
null, null, false, false, null)

Student class Returns associated classes. Student is
linked to Teacher by the
TeacherStudentassociation

associators(MathTeacher, null,
null, null, null,,false, false,
null)

Student Returns associated classes. Teacher is
linked to Student by the
TeacherStudentassociation. MathTeacher
and ArtTeacher inherit the
TeacherStudentassociation from Teacher

associatorNames(Teacher, null,
null, null, null)

Name of the Student class Returns the names of the associated
classes. Student is linked to Teacher by the
TeacherStudent association

references(Student, null, null.
false, false, null)

TeacherStudent Returns the associations in which Student

participates

references(Teacher, null, null.
false, false, null)

TeacherStudent Returns the associations in which Teacher

participates

references(Teacher, null, null,
false, false, null)

TeacherStudent Returns the associations in which Teacher

participates

referenceNames(Teacher, null,
null)

Name of the
TeacherStudent class

Returns the names of the associations in
which Teacher participates

referenceNames(Teacher, null,
null)

Name of the
TeacherStudent class

Returns the names of the associations in
which Teacher participates

Note – The associatorNames and referenceNames methods do not take the arguments
includeQualifiers, includeClassOrigin, and propertyList. These arguments are irrelevant to a
method that returns only the names of instances or classes, not their entire contents.

Passing a Class to the Association Methods

To specify the name of a class, you specify its model path. The model path includes the class's
namespace, class name, and keys. A key is a property or set of properties that uniquely identify
managed resource. Key properties are marked with the key qualifier. The following example
shows a sample model path:

\\myserver\\root\cimv2\Solaris_ComputerSystem.Name=mycomputer:CreationClassName=Solaris_ComputerSystem

This model path specifies the following values:

■ \\myserver\root\cimv2 is the default CIM namespace on host myserver.

Performing Basic Client Operations

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)56

■ Solaris_ComputerSystem is the name of the class from which the instance is derived.
■ Name=mycomputer, CreationClassName=Solaris_ComputerSystem are two key properties

in the format key property=value.

Passing Instances to the Association Methods

You use the enumerateInstances method to return all instances of a given class, and a loop
structure to iterate through the instances. In the loop, you can pass each instance to an
association method.

EXAMPLE 4–14 Passing Instances

This example enumerates the instances in the op class and its subclasses. The example uses a
while loop to cast each instance to a CIMObjectPath (op), and passes each instance as the first
argument to the associators method.

{

...

Enumeration e = cc.enumerateInstances(op, true);

while (e.hasMoreElements()) {

op = (CIMObjectPath)e.nextElement();

Enumeration e1 = cc.associators(op, null, null,

null, null, false, false, null);

...

}

Using Optional Arguments With the Association Methods

You can use the optional arguments with the association methods to filter the classes and
instances that are returned. Each optional parameter value passes its results to the next
parameter for filtering until all parameters have been processed.

You can pass values for any one or a combination of the optional parameters. You must enter a
value or null for each parameter. The first four parameters are used to filter the classes and
instances that are returned:

■ assocClass

■ resultClass

■ resultRole

■ role

Only the classes and instances that match the values specified for these parameters are returned.
The includeQualifiers, includeClassOrigin, and propertyList parameters filter the
information that is included in the classes and instances that are returned.

Performing Basic Client Operations

Chapter 4 • Writing a Client Program 57

Calling Methods
You use the invokeMethod interface to call a method in a class supported by a provider. To
retrieve the signature of a method, an application must first get the definition of the class to
which the method belongs. The invokeMethod method returns a CIMValue. The return value is
null when the method that you invoke does not define a return value.

The invokeMethod interface takes four arguments, as described in the following table.

TABLE 4–4 invokeMethodParameters

Parameter Data Type Description

name CIMObjectPath The name of the instance on which the method must be
invoked

methodName String The name of the method to call

inParams Vector Input parameters to pass to the method

outParams Vector Output parameters to get from the method

EXAMPLE 4–15 Calling a Method

This example gets the instances of the CIM_Service class, which represent services that manage
device or software features. The example uses the invokeMethod method to stop each service.

{

...

/* Pass the CIM Object Path of the CIM_Service class

to the CIM Object Manager. We want to invoke a method defined in

this class. */

CIMObjectPath op = new CIMObjectPath("CIM_Service");

/* The CIM Object Manager returns an enumeration of instance

object paths, the names of instances of the CIM_Service

class. */

Enumeration e = cc.enumerateInstanceNames (op, true);

/* Iterate through the enumeration of instance object paths */

while(e.hasMoreElements()) {

// Get the instance

CIMObjectPath op = (CIMObjectPath) e.nextElement();

//Invoke the Stop Service method to stop the CIM services.

cc.invokeMethod("StopService", null, null);

}

}

Performing Basic Client Operations

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)58

Retrieving Class Definitions
The getClass method gets a CIM class. When a class is created, the class inherits the methods
and properties of all parent classes in the class hierarchy. The getClass method takes the
localOnly Boolean argument.
■ If localOnly is true, getClass returns only noninherited properties and methods.
■ If localOnly is false, getClass returns all properties in the class.

EXAMPLE 4–16 Retrieving a Class Definition

This example uses the following methods to retrieve a class definition:
■ CIMNameSpace – Create a new namespace
■ CIMClient – Create a new client connection to the CIM Object Manager
■ CIMObjectPath – Create an object path, which is an object to contain the name of the class

to retrieve
■ getClass – Retrieve the class from the CIM Object Manager

import java.rmi.*;

import javax.wbem.client.CIMClient;

import javax.wbem.cim.CIMInstance;

import javax.wbem.cim.CIMValue;

import javax.wbem.cim.CIMProperty;

import javax.wbem.cim.CIMNameSpace;

import javax.wbem.cim.CIMObjectPath;

import javax.wbem.cim.CIMClass;

import javax.wbem.cim.CIMException;

import java.util.Enumeration;

/**

* Gets the class specified in the command line. Works in the default

* namespace root\cimv2.

*/

public class GetClass {

public static void main(String args[]) throws CIMException {

CIMClient cc = null;

try {

CIMNameSpace cns = new CIMNameSpace(args[0]);

UserPrincipal up = new UserPrincipal("root");
PasswordCredential pc = new PasswordCredential("root_password");
cc = new CIMClient(cns);

CIMObjectPath cop = new CIMObjectPath(args[1]);

// Returns only the methods and properties that

// are local to the specified class (localOnly is true).

cc.getClass(cop, true);

} catch (Exception e) {

System.out.println("Exception: "+e);
}

if(cc != null) {

cc.close();

}

}

}

Performing Basic Client Operations

Chapter 4 • Writing a Client Program 59

Handling Exceptions
Each CIMClient method throws a CIMException, or error condition. The CIMOM creates a
hierarchy of WBEM-specific exceptions by using Java exception handling. The CIMException
class is the base class for CIM exceptions. All other CIM exception classes extend from the
CIMException class.

Each class of CIM exceptions defines a particular type of error condition that the API code
handles. CIMException has methods to retrieve error codes and parameters that relate to the
exception. Refer to file:/usr/sadm/lib/wbem/doc/index.html for more information on the
CIMException class.

Creating a Namespace
The Solaris operating environment installation compiles the standard CIM Managed Object
Format (MOF) files into the default namespaces. If you create a new namespace, you must
compile the appropriate CIM .mof files into the new namespace before you create objects in
that namespace. For example, if you plan to create classes that use the standard CIM elements,
compile the CIM Core Schema into the namespace. If you plan to create classes that extend the
CIM Application Schema, compile the CIM Application into the namespace.

EXAMPLE 4–17 Creating a Namespace

This example uses a two-step process to create a namespace within an existing namespace:

1. When the namespace is created, the CIMNameSpace method constructs a namespace object
that contains the parameters to be passed to the CIM Object Manager.

2. The CIMClient class connects to the CIM Object Manager and passes the namespace object.
The CIM Object Manager creates the namespace, using the parameters contained in the
namespace object.

{

...

/* Creates a namespace object on the client, which stores parameters

passed to it from the command line. args[0] contains the host

name (for example, myhost); args[1] contains the

parent namespace (for example, the toplevel directory.) */

CIMNameSpace cns = new CIMNameSpace (args[0], args[1]);

UserPrincipal up = new UserPrincipal("root");
PasswordCredential pc = new PasswordCredential("root_password");

/* Connects to the CIM Object Manager and passes it three parameters:

the namespace object (cns), which contains the host name (args[0]) and

parent namespace name (args[1]), a user name string (args[3]), and a

password string (args[4]). */

Performing Basic Client Operations

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)60

EXAMPLE 4–17 Creating a Namespace (Continued)

CIMClient cc = new CIMClient (cns, up, pc);

/* Passes to the CIM Object Manager another namespace object that

contains a null string (host name) and args[2], the name of a

child namespace (for example, secondlevel). */

CIMNameSpace cop = new CIMNameSpace("", args[2]);

/* Creates a new namespace by the name passed in as args[2] under the

toplevel namespace on myhost./*

cc.createNameSpace(cop);

...

}

Deleting a Namespace
Use the deleteNameSpace method to delete a namespace.

Creating a Base Class

Note – You can also create a base class using the MOF language. If you are familiar with MOF
syntax, use a text editor to create a MOF file. Then use the MOF compiler to compile the file into
Java classes. See Chapter 7, “Creating JavaBeans Components Using the MOF Compiler.”

Use the CIMClass class to create a Java class representing a CIM class. To declare the most basic
class, you need only specify the class name and a key property or an abstract qualifier. However,
most classes include properties that describe the data of the class. To declare a property, include
the property's data type, name, and an optional default value. The property data type must be an
instance of CIMDataType.

A property can have a key qualifier, which identifies the property as a key property. A key
property uniquely defines the instances of the class. Only keyed classes can have instances.
Therefore, if you do not define a key property in a class, the class can only be used as an abstract
class. If you define a key property in a class in a new namespace, you must first compile the core
MOF files into the namespace. The core MOF files contain the declarations of the standard CIM
qualifiers, such as the key qualifier.

Class definitions can be more complicated, including such features as aliases, qualifiers, and
qualifier flavors.

Performing Basic Client Operations

Chapter 4 • Writing a Client Program 61

Deleting a Class
Use the CIMClient method, deleteClass, to delete a class. This method removes the class and
throws a CIMException.

Note – You must first remove any existing subclasses or instances before deleting a base class.

EXAMPLE 4–18 Deleting a Class

This example uses the deleteClass method to delete a class in the default namespace
root\cimv2. This program takes four required string arguments:
■ hostname
■ classname
■ username
■ password

The user running this program must specify the username and the password for an account,
which has write permission to the root\cimv2 namespace.

import javax.wbem.cim.CIMClass;

import javax.wbem.cim.CIMException;

import javax.wbem.cim.CIMNameSpace;

import javax.wbem.cim.CIMObjectPath;

import javax.wbem.client.CIMClient;

import javax.wbem.client.UserPrincipal;

import javax.wbem.client.PasswordCredential;

import java.rmi.*;

import java.util.Enumeration;

/**

* Deletes the class specified in the command line. Works in the default

* namespace root\cimv2.

*/

public class DeleteClass {

public static void main(String args[]) throws CIMException {

CIMClient cc = null;

// if not four arguments, show usage and exit

if (args.length != 4) {

System.out.println("Usage: DeleteClass host className " +

"username password");
System.exit(1);

}

try {

// args[0] contains the hostname. We create a CIMNameSpace

// (cns) pointing to the default namespace on the specified host

CIMNameSpace cns = new CIMNameSpace(args[0]);

// args[2] and args[3] contain the username and password.

// We create a UserPrincipal (up) using the username and

// a PasswordCredential using the password.

Performing Basic Client Operations

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)62

EXAMPLE 4–18 Deleting a Class (Continued)

UserPrincipal up = new UserPrincipal(args[2]);

PasswordCredential pc = new PasswordCredential(args[3]);

cc = new CIMClient(cns, up, pc);

// Get the class name (args[4]) and create a CIMObjectPath

CIMObjectPath cop = new CIMObjectPath(args[1]);

// delete the class

cc.deleteClass(cop);

}

catch (Exception e) {

System.out.println("Exception: "+e);
}

if (cc != null) {

cc.close();

}

}

}

Setting Access Control
You can set access control on a per-user basis or namespace basis. The following access control
classes are stored in the root\security namespace:

■ Solaris_Acl – Base class for Solaris access control lists (ACLs). This class defines the string
property capability and sets its default value to r (read only).

■ Solaris_UserAcl – Represents a user's access control to the CIM objects within the
specified namespace.

■ Solaris_NamespaceAcl – Represents the access control on a namespace.

You can set access control for individual users to CIM objects within a namespace. Create an
instance of the Solaris_UserACL class and then change the access rights for that instance.
Similarly, you can set access control for a namespace by creating an instance of the
Solaris_NameSpaceACL class and then using the createInstance method to set the access
rights for that instance.

Combine the use of these two classes by using the Solaris_NameSpaceACL class to first restrict
access for all users to the objects in a namespace. Then, you can use the Solaris_UserACL class
to grant selected users access to the namespace.

Solaris_UserAclClass
The Solaris_UserAcl class extends the Solaris_Acl base class, from which it inherits the
string property capability with a default value of r (read only). You can set the capability
property to any one of the values for access privileges shown in the following table.

Setting Access Control

Chapter 4 • Writing a Client Program 63

Access Right Description

r Read

rw Read and Write

w Write

none No access

The Solaris_UserAcl class defines the key properties that are shown in the following table.
Only one instance of the namespace and user name ACL pair can exist in a namespace.

Property Data Type Purpose

nspace string Identifies the namespace to which
the ACL applies

username string Identifies the user to which the
ACL applies

▼ To Set Access Control for a User

Create an instance of the Solaris_UserAcl class.
...

/* Create a namespace object initialized with root\security

(name of namespace) on the local host. */

CIMNameSpace cns = new CIMNameSpace("", "root\security");

// Connect to the root\security namespace as root.

cc = new CIMClient(cns, user, user_passwd);

// Get the Solaris_UserAcl class

cimclass = cc.getClass(new CIMObjectPath("Solaris_UserAcl");

// Create a new instance of the Solaris_UserAcl

class ci = cimclass.newInstance();

...

Set the capability property to the desired access rights.
...

/* Change the access rights (capability) to read/write for user Guest

on objects in the root\molly namespace.*/

ci.setProperty("capability", new CIMValue(new String("rw"));
ci.setProperty("nspace", new CIMValue(new String("root\molly"));
ci.setProperty("username", new CIMValue(new String("guest"));
...

1

2

Setting Access Control

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)64

Update the instance.
...

// Pass the updated instance to the CIM Object Manager

cc.createInstance(new CIMObjectPath(), ci);

...

Solaris_NamespaceAclClass
The Solaris_NamespaceAcl extends the Solaris_Acl base class and inherits the string
property capability with a default value r (read-only for all users). The Solaris_NamespaceAcl
class defines this key property.

Property Data Type Purpose

nspace string Identifies the namespace to which
the access control list applies. Only
one instance of the namespace ACL
can exist in a namespace.

▼ To Set Access Control for a Namespace

Create an instance of the Solaris_namespaceAcl class.
...

/* Create a namespace object initialized with root\security

(name of namespace) on the local host. */

CIMNameSpace cns = new CIMNameSpace("", "root\security");

// Connect to the root\security namespace as root.

cc = new CIMClient(cns, user, user_passwd);

// Get the Solaris_namespaceAcl class

cimclass = cc.getClass(new CIMObjectPath("Solaris_namespaceAcl");

// Create a new instance of the Solaris_namespaceAcl

class ci = cimclass.newInstance();

...

Set the capability property to the desired access rights.
...

/* Change the access rights (capability) to read/write

to the root\molly namespace. */

ci.setProperty("capability", new CIMValue(new String("rw"));
ci.setProperty("nspace", new CIMValue(new String("root\molly"));
...

Update the instance.
// Pass the updated instance to the CIM Object Manager

cc.createInstance(new CIMObjectPath(), ci);

3

1

2

3

Setting Access Control

Chapter 4 • Writing a Client Program 65

Working With Qualifiers and Qualifier Types
A CIM qualifier is an element that characterizes one of the following: CIM class, instance,
property, method, or parameter. Qualifiers have the following attributes:

■ Type
■ Value
■ Name

In MOF syntax, each CIM qualifier must have a CIM qualifier type defined. Qualifiers do not
have a scope attribute, which indicates the CIM elements that can use the qualifier. You can
only define scope in the qualifier type declaration. You cannot change scope in a qualifier.

The following sample code shows the MOF syntax for a CIM qualifier type declaration. This
statement defines a qualifier type which is named key, with a Boolean data type (default value
false). This qualifier can describe only a property and a reference to an object. The
DisableOverride flavor means that key qualifiers cannot change their value.

Qualifier Key : boolean = false, Scope(property, reference),

Flavor(DisableOverride);

The following sample code shows the MOF syntax for a CIM qualifier. In this sample MOF file,
key and description are qualifiers for the property a. The property data type is an integer with
the property name a.

{

[key, Description("test")]
int a;

};

Getting and Setting CIM Qualifiers
A qualifier flavor is a flag that governs the use of a qualifier. Flavors describe rules that specify
whether a qualifier can be propagated to derived classes and instances. Rules also determine
whether a derived class or instance can override the qualifier's original value.

EXAMPLE 4–19 Setting CIM Qualifiers

This example sets a list of CIM qualifiers for a new class to the qualifiers in its superclass.

{

try {

cimSuperClass = cimClient.getClass(new CIMObjectPath(scName));

Vector v = new Vector();

for (Enumeration e = cimSuperClass.getQualifiers().elements();

e.hasMoreElements();) {

CIMQualifier qual = (CIMQualifier)

Working With Qualifiers and Qualifier Types

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)66

EXAMPLE 4–19 Setting CIM Qualifiers (Continued)

((CIMQualifier)e.nextElement()).clone();

v.addElement(qual);

}

cimClass.setQualifiers(v);

} catch (CIMException exc) {

return;

}

}

...

Batching Client Requests
You can batch multiple CIMClient API calls into a single remote call to reduce the delay
introduced by multiple remote message exchanges. You use an instance of the BatchCIMClient
class to build the list of operations that you want to execute in a batch request. Then use the
performBatchOperations method of the CIMClient class to send the list of operations to the
CIM Object Manager.

Note – A batch operation does not imply a single transaction. Each operation is independent of
the other operations in the batch. The operations have no dependencies on the success or failure
of the preceding operations.

The BatchCIMClient class contains methods that enable you to perform the same CIM
operations as in non-batch mode. These methods are similar to CIMClient methods except that
the BatchCIMClient methods do not return the same types as their equivalents in the
CIMClient class. The types are different because the values are returned as a list after the batch
operation is complete. The methods return an integer operation ID that you can use to get the
result of the operation later. As methods of BatchCIMClient are invoked, the BatchCIMClient
object builds a list of CIMOperationobjects that will be executed later.

The client executes the batch operation list by invoking the performBatchOperations method
of CIMClient. The results of the batch operation are returned in a BatchResult object. Clients
can then pass the operation ID to the getResult method of the BatchResult class to get the
results of the operations. If an operation on the list generates an exception, an exception object
is embedded in the BatchResult object. When you invoke the getResult method with the ID
of the operation that failed, the exception is thrown by the getResult method.

EXAMPLE 4–20 Batching Example

The following example shows how you can use the batching API to perform multiple
operations in one remote call. In this example, three operations are performed as a single batch
operation. The operations are enumerateInstanceNames, getClass, and enumerateInstances.

Batching Client Requests

Chapter 4 • Writing a Client Program 67

EXAMPLE 4–20 Batching Example (Continued)

import java.util.Enumeration;

import java.util.ArrayList;

import java.util.Vector;

import java.lang.String;

import javax.wbem.cim.*;

import javax.wbem.client.*;

import javax.wbem.client.UserPrincipal;

import javax.wbem.client.PasswordCredential;

public class TestBatch {

public static void main(String args[]) throws CIMException {

CIMClient cc = null;

CIMObjectPath cop = null;

String protocol = CIMClient.CIM_RMI;

if (args.length < 4) {

System.out.println("Usage: TestBatch host user passwd

classname " + "[rmi|http]");
System.exit(1);

}

try {

CIMNameSpace cns = new CIMNameSpace(args[0]);

UserPrincipal up = new UserPrincipal(args[1]);

PasswordCredential pc = new PasswordCredential(args[2]);

if (args.length == 5 && args[4].equalsIgnoreCase("http")) {

protocol = CIMClient.CIM_XML;

}

cc = new CIMClient(cns, up, pc, protocol);

CIMObjectPath op = new CIMObjectPath(args[3]);

BatchCIMClient bc = new BatchCIMClient();

int[] ids = new int[3];

ids[0] = bc.enumerateInstanceNames(op);

ids[1] = bc.getClass(op, false, true, true, null);

ids[2] = bc.enumerateInstances(op, true, false, false,

false, null);

BatchResult br = cc.performBatchOperations(bc);

Enumeration instanceNames = (Enumeration)br.getResult

(ids[0]);

CIMClass cl = (CIMClass)br.getResult(ids[1]);

Enumeration instances = (Enumeration)br.getResult(ids[2]);

while (instanceNames.hasMoreElements()) {

System.out.println((CIMObjectPath)instanceNames.

nextElement());

}

System.out.println(cl.toMOF());

while (instances.hasMoreElements()) {

Batching Client Requests

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)68

EXAMPLE 4–20 Batching Example (Continued)

System.out.println((CIMInstance)instances.

nextElement());

}

}

catch (Exception e) {

e.printStackTrace();

System.out.println("Exception: "+e);
}

// close session.

if (cc != null) {

cc.close();

}

}

}

Handling CIM Events

Note – For in-depth information on CIM indications and how indications are used to
communicate occurrences of events, see the Distributed Management Task Force (DMTF)
Event white paper at dmtf.org/education.

An event is a real world occurrence. An indication is an object that communicates the
occurrence of an event. In the Common Information Model, indications are published, not
events. Providers generate an indication when an event takes place.

An indication may have zero or more triggers, which are recognitions of changes in state.
WBEM does not have an explicit object representing a trigger. Instead, a trigger is implied by
the following actions:

■ An operation on a basic object of a system. An operation could create, delete, modify, or
access a class. An operation might also modify or access an instance.

■ Any event that takes place in the managed environment.

For example, when a trigger is engaged due to service termination, this event results in an
indication that serves as notification that the service has terminated.

You can view the related CIM event classes in the Solaris WBEM Services schema at
file:/usr/sadm/lib/wbem/doc/mofhtml/index.html. The class is structured as shown in the
following table.

Handling CIM Events

Chapter 4 • Writing a Client Program 69

http://dmtf.org/education

TABLE 4–5 CIM_IndicationClass Structure

Root Class Superclass Subclass

CIM_Indication CIM_ClassIndication CIM_ClassCreation,
CIM_ClassDeletion,
CIM_ClassModification

CIM_InstIndication CIM_InstCreation,
CIM_InstDeletion,
CIM_InstMethodCall,
CIM_InstModification,
CIM_InstRead

CIM_ProcessIndication CIM_AlertIndication,
CIM_AlertInstIndication,
CIM_ThresholdIndication,
CIM_SNMPTrapIndication

About Indications
CIM events can be classified as either life cycle or process. A life cycle event is a built-in CIM
event that occurs in response to a change to a particular change in data. The types of changes
that trigger a life cycle event are:
■ A class is created, modified, or deleted
■ A class instance is created, modified, deleted, read, or has a method invocation

A process event is a user-defined event that is not described by a life cycle event.

Event providers generate indications in response to requests made by the CIMOM. The
CIMOM analyzes subscription requests. The CIMOM uses the EventProvider or the
CIMIndicationProvider interface to contact the provider, requesting the provider to generate
the appropriate indications. When the provider generates the indication, the CIMOM routes
the indication to the destinations specified by the CIM_IndicationHandler instances. These
instances are created by the subscribers.

Event providers are located in the same manner as instance providers. There is a sequence of
steps that the CIMOM follows in the case of subscriptions pertaining to instance life cycle
indication, such as subclasses of CIM_InstIndication. Once the CIMOM determines the
classes covered by the subscription, the CIMOM contacts the instance providers for those
classes. For process indications, the CIMOM contacts the appropriate provider using the
Provider qualifier.

The CIM Object Manager and the CIM Object Manager Repository handle indications under
the following circumstances:
■ The CIMOM handles the following events, if either the provider does not support

indications or the provider tells the CIMOM not to poll:

Handling CIM Events

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)70

■ CIM_InstMethodCall

■ CIM_InstModification

■ CIM_InstDeletion

■ CIM_InstCreation

■ The CIM Object Manager Repository handles all class indications and life cycle indications
for classes that do not have providers. These classes include the following:
■ CIM_ClassCreation

■ CIM_ClassDeletion

■ CIM_ClassModification

■ CIM_InstCreation

■ CIM_InstModification

■ CIM_InstDeletion

■ CIM_InstRead

In these cases, the provider does not generate indications or implement the EventProvider
interface. In addition, the provider can delegate event generation responsibilities to the CIM
Object Manager. The CIM Object Manager invokes enumerateInstances on the providers.
The CIMOM compares snapshots of previous states to current states to determine whether
instances have been created, modified, or deleted.

Note – In most cases, providers should handle their own indications because polling carries a
high overhead. In order to generate indications, the provider must poll. In this case, the
provider can delegate the task to the CIMOM.

If a provider implements the EventProvider interface, the CIMOM invokes the methods in the
interface and takes actions according to the responses. When the CIMOM determines that a
particular provider must participate in a subscription request, the methods are invoked in the
following order:

1. mustPoll– Invoked by the CIM Object Manager for CIM_InstCreation,
CIM_InstDeletion, and CIM_InstModification to determine whether the provider wants
the CIM Object Manager to poll. If the provider does not implement the EventProvider
interface, the CIM Object Manager assumes polling by default.

2. authorizeFilter– If the provider implements the Authorizable interface, this method is
invoked by the CIMOM to determine whether the subscription is authorized. The provider
can make the determination based on either: the user ID of the owner of the indication
handler, which is the user who receives the indications, or based on the user ID of the user
who created the subscription.
If the provider does not implement the Authorizable interface, the CIM Object Manager
performs the default read authorization check for the name space.
If the provider does not implement the EventProvider interface and the CIMOM tries to
poll, the authorization succeeds if enumerateInstances succeeds on the provider.

Handling CIM Events

Chapter 4 • Writing a Client Program 71

3. activateFilter– Invoked by the CIMOM when the authorization succeeds and the
provider does not want to be polled.

4. deActivateFilter– Called when a subscription is removed either by the subscriber or the
CIMOM. For example, if the destination handler malfunctions.

About Subscriptions
A client application can subscribe to be notified of CIM events. A subscription is a declaration of
interest in one or more streams of indications. Currently, providers cannot subscribe for event
indications.

An application that subscribes for indications of CIM events provides the following
information:

■ The indications to which the application wants to subscribe
■ The handler to which the CIMOM delivers the indication

The occurrence of an event is represented as an instance of one of the subclasses of the
CIM_Indication class. An indication is generated only when a client subscribes to the event.

▼ To Create a Subscription
An application can create one or more event filters with one or more event handlers. Event
indications are not delivered until the application creates the event subscription.

Create an instance of CIM_Listener. See Adding a CIM Listener.

Create an instance of CIM_IndicationFilter. See Creating an Event Filter.

Create an instance of CIM_IndicationHandler. See Creating an Event Handler.

Bind the CIM_IndicationFilter to the CIM_IndicationHandler. See Binding an Event Filter to
an Event Handler.

Adding a CIM Listener
To receive indications of CIM events, first add an instance of CIMListener to CIMClient, by
invoking the addCIMListener method on CIMClient.

1

2

3

4

Handling CIM Events

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)72

Note – The CIMListener interface must implement the indicationOccured method, which
takes the argument CIMEvent. This method is invoked when an indication is available for
delivery.

EXAMPLE 4–21 Adding a CIM Listener

// Connect to the CIM Object Manager

cc = new CIMClient();

// Register the CIM Listener

cc.addCIMListener(

new CIMListener() {

public void indicationOccured(CIMEvent e) {

}

});

Creating an Event Filter
Event filters describe the types of events to be delivered and the conditions under which they are
delivered. To create an event filter, create an instance of the CIM_IndicationFilter class and
define values for its properties. Each event filter works only on events that belong to the name
space to which the filter belongs.

The CIM_IndicationFilter class has string properties. These properties can be set to uniquely
identify the filter, specify a query string, and specify the query language that parses the query
string. Currently, only the WBEM Query Language (WQL) is supported.

TABLE 4–6 CIM_IndicationFilterProperties

Property Description Required/Optional

SystemCreationClassName The name of the system on which
the creation class for the filter
resides or to which it applies.

Optional. The value is decided by
the CIM Object Manager.

SystemName The name of the system on which
the filter resides or to which it
applies.

Optional. The default for this key
property is the name of the system
on which the CIM Object Manager
is running.

CreationClassName The name of the class or subclass
used to create the filter.

Optional. The CIM Object
Manager assigns
CIM_IndicationFilteras the
default for this key property.

Name The unique name of the filter. Optional. The CIM Object
Manager assigns a unique name.

Handling CIM Events

Chapter 4 • Writing a Client Program 73

TABLE 4–6 CIM_IndicationFilterProperties (Continued)
Property Description Required/Optional

SourceNamespace The path to a local name space
where the CIM indications
originate.

Optional. The default is null.

Query A query expression that defines
the conditions under which
indications are generated.
Currently, only Level 1 WBEM
Query Language (WQL)
expressions are supported. To
learn more about WQL query
expressions, see Chapter 5,
“Writing WBEM Queries.”

Required.

QueryLanguage The language in which the query
is expressed.

Required. The default is WQL
(WBEM Query Language).

▼ To Create an Event Filter

Create an instance of the CIM_IndicationFilter class
CIMClass cimfilter = cc.getClass

(new CIMObjectPath "CIM_IndicationFilter"),
true, true, true, null);

CIMInstance ci = cimfilter.newInstance();

Specify the name of the event filter
Name = "filter_all_new_solarisdiskdrive"

Create a WQL string identifying event indications to return
String filterString = "SELECT *

FROM CIM_InstCreation WHERE sourceInstance

ISA Solaris_DiskDrive";

Set property values in the cimfilter instance to identify the following information:

■ Name of the filter
■ Filter string to select CIM events
■ Query language (WQL) to parse the query string

ci.setProperty("Name", new

CIMValue("filter_all_new_solarisdiskdrives"));
ci.setProperty("Query", new CIMValue(filterString));

ci.setProperty("QueryLanguage", new CIMValue("WQL");)

1

2

3

4

Handling CIM Events

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)74

Create a cimfilter instance that is called filter. Store the instance in the CIM Object Manager
Repository
CIMObjectPath filter =

cc.createInstance(new CIMObjectPath(),

ci);

Creating an Event Filter

CIMClass cimfilter = cc.getClass(new CIMObjectPath

("CIM_IndicationFilter"), true);

CIMInstance ci = cimfilter.newInstance();

//Assuming that the test_a class exists in the namespace

String filterString = "select * from CIM_InstCreation where

sourceInstance isa test_a"

ci.setProperty("query", new CIMValue(filterString));

CIMObjectPath filter = cc.createInstance(newCIMObjectPath(), ci);

Creating an Event Handler
An event handler is an instance of a CIM_IndicationHandler class. You set the properties in an
instance of the CIM_IndicationHandler class to uniquely name the handler and to identify the
UID of its owner. The CIM Event MOF defines a CIM_IndicationHandlerCIMXML class for
describing the destination for indications to be delivered to client applications that use the
HTTP protocol. The Solaris Event MOF extends the CIM_IndicationHandler class by creating
the Solaris_JAVAXRMIDelivery class. This subclass handles delivery of indications of CIM
events to client applications that use the RMI protocol. RMI clients must instantiate the
Solaris_JAVAXRMIDelivery class to set up an RMI delivery location.

TABLE 4–7 CIM_IndicationHandlerProperties

Property Description Required or Optional

SystemCreationClassName The name of the system on
which the creation class for the
handler resides or to which it
applies.

Optional. Completed by the CIM
Object Manager.

SystemName The name of the system on
which the handler resides or to
which it applies.

Optional. The default value for this key
property is the name of the system on
which the CIM Object Manager is
running.

CreationClassName The class or subclass used to
create the handler.

Optional. The CIM Object Manager
assigns the appropriate class name as
the default for this key property.

Name The unique name of the
handler.

Optional. The client application must
assign a unique name.

5

Example 4–22

Handling CIM Events

Chapter 4 • Writing a Client Program 75

TABLE 4–7 CIM_IndicationHandlerProperties (Continued)
Property Description Required or Optional

Owner The name of the entity that
created or maintains this
handler. The provider can
check this value to determine
whether to authorize a handler
to receive an indication.

Optional. The default value is the
Solaris user name of the user who
creates the instance.

EXAMPLE 4–23 Creating an Event Handler

// Create an instance of the Solaris_JAVAXRMIDelivery class or get

// the appropriate instance of the handler.

CIMInstance ci = cc.getIndicationHandler(null);

//Create a new instance (delivery) from

//the rmidelivery instance.

CIMObjectPath delivery = cc.createInstance(new CIMObjectPath(), ci);

Binding an Event Filter to an Event Handler
You bind an event filter to an event handler by creating an instance of the
CIM_IndicationSubscription class. When you create an indication of this class, indications
for the events specified by the event filter are delivered.

The following example creates a subscription (filterdelivery) and defines the filter
property to the filter object path created in “To Create an Event Filter” on page 74. The
example also defines the handler property to the delivery object path that is created in
Example 4–23.

EXAMPLE 4–24 Binding an Event Filter to an Event Handler

CIMClass filterdelivery = cc.getClass(new

CIMObjectPath("CIM_IndicationSubscription"),
true, true, true, null);

ci = filterdelivery.newInstance():

//Create a property called filter that refers to the filter instance.

ci.setProperty("filter", new CIMValue(filter));

//Create a property called handler that refers to the delivery instance.

ci.setProperty("handler", new CIMValue(delivery));

CIMObjectPath indsub = cc.createInstance(new CIMObjectPath(), ci);

Handling CIM Events

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)76

Reading and Writing Log Messages
The Solaris MOF files include logging classes. Clients can create and read log records using
these classes to record errors, warnings, and informational messages. For example, a log
message can indicate one of the following conditions:
■ A system cannot access a serial port
■ A system successfully mounts a file system
■ The number of processes that are running on a system exceeds the allowed number

The underlying providers for the logging classes can forward logging requests to the syslog
daemon, the default logging system in the Solaris operating environment. See thesyslogd(1M)
man page for more information.

About Log Files
WBEM log messages are stored in individual log files in the /var/sadm/wbem/log directory.
Properties that you manipulate with the singleton instance of the
Solaris_LogServiceProperties class:
■ Names of the log files
■ Directory in which the log files are stored
■ Log file size limit
■ Number of log files to store
■ Whether to forward messages to syslogd(1M)

The format of each log entry is defined by the Solaris_LogEntry class, which is a subclass of
CIM_LogRecord. You can find Solaris_LogEntry in Solaris_Device.mof, and CIM_LogRecord

in CIM_Device26.mof.

A log message includes the following elements.

TABLE 4–8 Log Message Elements

Element Description

Category Type of message – application, system, or security

Severity Severity of the condition – warning or error

Application Name of the application or the provider that is writing
the log message

User Name of the user who was using the application when
the log message was generated

Client Machine Name and IP address of the system that the user was
on when the log message was generated

Reading and Writing Log Messages

Chapter 4 • Writing a Client Program 77

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=syslogd-1m
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=syslogd-1m

TABLE 4–8 Log Message Elements (Continued)
Element Description

Server Machine Name of the system on which the incident that
generated the log message occurred

Summary Message Descriptive summary of the incident

Detailed Message Detailed description of the incident

Data Contextual information that provides a better
understanding of the incident

SyslogFlag Boolean flag that specifies whether to send the
message to syslogd(1M)

The following examples show how to create a log and how to display the contents of a log.

EXAMPLE 4–25 Creating an Instance of Solaris_LogEntry

This example creates an instance of Solaris_LogEntry and sets the instance.

public class CreateLog {

public static void main(String args[]) throws CIMException {

// Display usage statement if insufficient command line

// arguments are passed.

if (args.length < 3) {

System.out.println("Usage: CreateLog host username password

" + "[rmi|http]");
System.exit(1);

}

String protocol = CIMClient.CIM_RMI;

CIMClient cc = null;

CIMObjectPath cop = null;

BufferedReader d = new BufferedReader(new InputStreamReader

(System.in));

String input_line = "";

// Query user for number of records that need to be created.

System.out.print("How many log records do you want to write? ");
int num_recs = 0;

try {

num_recs = Integer.parseInt(d.readLine());

} catch (Exception ex) {

ex.printStackTrace();

System.exit(1);

}

// Over-arching try-catch block

try {

CIMNameSpace cns = new CIMNameSpace(args[0]);

UserPrincipal up = new UserPrincipal(args[1]);

Reading and Writing Log Messages

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)78

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=syslogd-1m

EXAMPLE 4–25 Creating an Instance of Solaris_LogEntry (Continued)

PasswordCredential pc = new PasswordCredential(args[2]);

// Set up the transport protocol - set by default to RMI.

if (args.length == 4 && args[3].equalsIgnoreCase("http")) {

protocol = CIMClient.CIM_XML;

}

cc = new CIMClient(cns, up, pc, protocol);

Vector keys = new Vector();

CIMProperty logsvcKey = null;

// Prompt user for relevant info needed to create the

// log record.

System.out.println("Please enter the record Category: ");
System.out.println("\t(0)application, (1)security,

(2)system");
logsvcKey = new CIMProperty("category");
input_line = d.readLine();

logsvcKey.setValue(new CIMValue(Integer.valueOf

(input_line)));

keys.addElement(logsvcKey);

System.out.println("Please enter the record Severity:");
System.out.println("\t(0)Informational, (1)Warning,

(2)Error");
logsvcKey = new CIMProperty("severity");
input_line = d.readLine();

logsvcKey.setValue(new CIMValue(Integer.valueOf

(input_line)));

keys.addElement(logsvcKey);

logsvcKey = new CIMProperty("Source");
System.out.println("Please enter Application Name:");
logsvcKey.setValue(new CIMValue(d.readLine()));

keys.addElement(logsvcKey);

logsvcKey = new CIMProperty("SummaryMessage");
System.out.println("Please enter a summary message:");
logsvcKey.setValue(new CIMValue(d.readLine()));

keys.addElement(logsvcKey);

logsvcKey = new CIMProperty("DetailedMessage");
System.out.println("Please enter a detailed message:");
logsvcKey.setValue(new CIMValue(d.readLine()));

keys.addElement(logsvcKey);

logsvcKey = new CIMProperty("RecordData");
logsvcKey.setValue(

new CIMValue("0xfe 0x45 0xae 0xda random data"));
keys.addElement(logsvcKey);

logsvcKey = new CIMProperty("SyslogFlag");
logsvcKey.setValue(new CIMValue(new Boolean(true)));

keys.addElement(logsvcKey);

CIMObjectPath logreccop =

new CIMObjectPath("Solaris_LogEntry", keys);

CIMClass logClass = cc.getClass(logreccop);

CIMInstance ci = logClass.newInstance();

ci.setClassName("Solaris_LogEntry");

Reading and Writing Log Messages

Chapter 4 • Writing a Client Program 79

EXAMPLE 4–25 Creating an Instance of Solaris_LogEntry (Continued)

ci.setProperties(keys);

// System.out.println(ci.toString());

// Create as many instances of the record as requested.

for (int i = 0; i < num_recs; i++) {

cc.createInstance(logreccop, ci);

}

} catch (Exception e) {

System.out.println("Exception: "+e);
e.printStackTrace();

}

// close session.

if (cc != null) {

cc.close();

}

}

}

EXAMPLE 4–26 Displaying a List of Log Records

This example displays a list of log records.

public class ReadLog {

public static void main(String args[]) throws CIMException {

String protocol = CIMClient.CIM_RMI;

// Display usage statement if insufficient command line

// arguments are passed.

if (args.length < 3) {

System.out.println("Usage: ReadLog host username password " +

"[rmi|http]");
System.exit(1);

}

CIMClient cc = null;

CIMObjectPath cop = null;

CIMObjectPath serviceObjPath = null;

Vector inVec = new Vector();

Vector outVec = new Vector();

// Over-arching try-catch block

try {

CIMNameSpace cns = new CIMNameSpace(args[0]);

UserPrincipal up = new UserPrincipal(args[1]);

PasswordCredential pc = new PasswordCredential(args[2]);

// Set up the transport protocol - set by default to RMI.

if (args.length == 4 && args[3].equalsIgnoreCase("http")) {

protocol = CIMClient.CIM_XML;

}

cc = new CIMClient(cns, up, pc, protocol);

Reading and Writing Log Messages

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)80

EXAMPLE 4–26 Displaying a List of Log Records (Continued)

cop = new CIMObjectPath("Solaris_LogEntry");

// Enumerate the list of instances of class Solaris_LogEntry

Enumeration e = cc.enumerateInstances(cop, true, false,

false, false, null);

// iterate over the list and print out each property.

for (; e.hasMoreElements();) {

System.out.println("---------------------------------");
CIMInstance ci = (CIMInstance)e.nextElement();

System.out.println("Log filename : " +

((String)ci.getProperty("LogName").getValue().
getValue()));

int categ =

(((Integer)ci.getProperty("Category").getValue().getValue()).
intValue());

if (categ == 0)

System.out.println("Category : Application Log");
else if (categ == 1)

System.out.println("Category : Security Log");
else if (categ == 2)

System.out.println("Category : System Log");
int severity =

(((Integer)ci.getProperty("Severity").getValue().getValue()).
intValue());

if (severity == 0)

System.out.println("Severity : Informational");
else if (severity == 1)

System.out.println("Severity : Warning Log!");
else if (severity == 2)

System.out.println("Severity : Error!!");
System.out.println("Log Record written by :" +

((String)ci.getProperty("Source").getValue().getValue()));
System.out.println("User : " +

((String)ci.getProperty("UserName").getValue().getValue()));
System.out.println("Client Machine : " +

((String)ci.getProperty("ClientMachineName").getValue().getValue()));
System.out.println("Server Machine : " +

((String)ci.getProperty("ServerMachineName").getValue().getValue()));
System.out.println("Summary Message : " +

((String)ci.getProperty("SummaryMessage").getValue().getValue()));
System.out.println("Detailed Message : " +

((String)ci.getProperty("DetailedMessage").getValue().getValue()));
System.out.println("Additional data : " +

((String)ci.getProperty("RecordData").getValue().getValue()));
boolean syslogflag =

((Boolean)ci.getProperty("SyslogFlag").getValue().getValue()).
booleanValue();

if (syslogflag == true) {

System.out.println("Record was written to syslog");
} else {

System.out.println("Record was not written to syslog");
}

System.out.println("---------------------------------");
}

} catch (Exception e) {

Reading and Writing Log Messages

Chapter 4 • Writing a Client Program 81

EXAMPLE 4–26 Displaying a List of Log Records (Continued)

System.out.println("Exception: "+e);
e.printStackTrace();

}

// close session.

if (cc != null) {

cc.close();

}

}

}

Reading and Writing Log Messages

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)82

Writing WBEM Queries

This chapter explains how to use the WBEM Query Language (WQL) and the query APIs to
write queries. The chapter includes the following topics:

■ “About the WBEM Query Language” on page 83
■ “Writing Queries” on page 84
■ “Parsing Queries” on page 87

Note – For detailed information on the WBEM query APIs in javax.wbem.query, see
file:/usr/sadm/lib/wbem/doc/index.html.

About the WBEM Query Language
The WBEM Query Language (WQL) is a subset of the standard American National Standards
Institute Structured Query Language (ANSI SQL). WQL has semantic changes to support
WBEM in the Solaris environment.

The following table shows the mapping of SQL concepts to WQL.

TABLE 5–1 Mapping of SQL Concepts to WQL

SQL Concept WQL Representation

Table CIM class

Row CIM instance

Column CIM property

5C H A P T E R 5

83

Note – Like SQL, WQL statements use single (‘ ') quotation marks.

In the implementation of Solaris WBEM Services, WQL is a retrieval-only language. You can
use WQL to query data that is stored using the CIM data model. In the CIM model, information
about objects is stored in CIM classes and CIM instances. CIM instances can contain properties,
which have a name, data type, and value.

Writing Queries
WBEM clients use WQL to query and filter data. When the data is served by a particular
provider, the CIMOM passes the client queries to the appropriate provider. You can search for
instances that match a specified query in a particular class, or in all classes within a particular
namespace.

The following example shows a search for all instances of the Solaris_DiskDrive class that
have a particular value for the Storage_Capacity property:

select * from Solaris_DiskDrive where Storage_Capacity = 1000

WQL Key Words
The Solaris WBEM SDK supports Level 1 WBEM SQL, which enables simple select operations
without joins. The following table describes the supported WQL key words.

TABLE 5–2 Supported WQL Key Words

Key Word Description

AND Combines two Boolean expressions and returns TRUE when both expressions are
TRUE.

FROM Specifies the classes that contain the properties that are listed in a SELECT
statement.

NOT Comparison operator that is used with NULL.

OR Combines two conditions. When more than one logical operator is used in a
statement, OR operators are evaluated after AND operators.

SELECT Specifies the properties that are used in a query.

WHERE Narrows the scope of a query.

LIKE Generates a result set that is based on a minimum amount of information
provided.

Writing Queries

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)84

SELECT Statement
You use the SELECT statement to retrieve instances of a single class and its subclasses. You can
also specify the properties to retrieve and the conditions that must be met.

Note – Currently, join operations are not supported.

The syntax for the SELECT statement is as follows:

SELECT list FROM class WHERE condition

The following table shows examples of using arguments in the SELECT clause to refine a search.

TABLE 5–3 Sample SELECT Statements

Example Query Description

SELECT * FROM class Selects all instances of the specified class and all of its
subclasses. Each instance that is returned contains all
the properties.

SELECT PropertyA FROM class Selects all instances that contain PropertyA of the
specified class and all of its subclasses.

SELECT PropertyA, PropertyB FROM class WHERE
PropertyB=20

Selects all instances of the specified class and all of its
subclasses where PropertyB=20. Each returned
instance contains only PropertyA and PropertyB.

FROM Clause
The FROM clause identifies the class in which to search for instances that match the query
string. Only non-joined expressions are supported, which means that a valid WQL FROM
clause includes only a single class.

The FROM clause is represented by the abstract class, fromExp. Currently, NonJoinExp is the
only direct subclass of fromExp. The NonJoinExp subclass represents FROM clauses with only
one table (CIM class) to which the SELECT operation is applied.

WHERE Clause
The WHERE clause narrows the scope of a query. This clause contains a conditional expression,
that can contain a property or key word, an operator, and a constant.

The syntax for a WHERE clause appended to a SELECT statement is as follows:

SELECT CIMinstance FROM CIMclass WHERE conditional_expression

The conditional_expression in the WHERE clause takes the following form:

Writing Queries

Chapter 5 • Writing WBEM Queries 85

property operator constant

The expression is composed of a property or key word, an operator, and a constant. You can
append the WHERE clause to the SELECT statement using one of the following forms:

SELECT instance FROM class WHERE constant operator property

Valid WHERE clauses follow these rules:

■ The value of the constant must be of the correct data type for the property.
■ The operator must be a valid WQL operator.
■ Either a property name or a constant must appear on either side of the operator in the

WHERE clause.
■ Arbitrary arithmetic expressions cannot be used. For example, the following query returns

only instances of the Solaris_Printer class that represent a printer with ready status:

SELECT * FROM Solaris_Printer WHERE Status = ‘ready’
■ Multiple groups of properties, operators, and constants can be combined in a WHERE

clause using logical operators and parenthetical expressions. Each group must be joined
with the AND, OR, or NOT operators.
The following example retrieves all instances of the Solaris_FileSystem class with the
Name property set to either home or files:

SELECT * FROM Solaris_FileSystem WHERE Name= ‘home’ OR Name= ‘files’

The following example retrieves disks named home and files only if the disks have a certain
amount of available space remaining, and have Solaris file systems.

SELECT * FROM Solaris_FileSystem WHERE (Name = ‘home’ OR

Name = ‘files’) AND AvailableSpace > 2000000 AND FileSystem = ‘Solaris’

Standard WQL Operators for WHERE Clauses

You can use the following standard WQL operators for a binary expression in the WHERE
clause of a SELECT statement.

TABLE 5–4 WQL Operators for WHERE Clauses

Operator Description

= Equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

Writing Queries

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)86

TABLE 5–4 WQL Operators for WHERE Clauses (Continued)
Operator Description

<> Not equal to

Parsing Queries
The javax.wbem.query package contains utility classes that you use to parse WQL queries. The
main class is SelectExp, whose constructor takes in a WQL query string. SelectExp parses the
string and splits the string into three parts. These parts can be retrieved using their
corresponding accessor methods, as shown in the following table.

Query Part Accessor Method

SELECT list getSelectList

FROM clause getFromClause

WHERE clause getWhereClause

The following query, once parsed, has a SELECT list containing PropertyA and PropertyB. The
FROM clause contains test_class, and the WHERE clause contains a parse tree of the
conditional expression.

select PropertyA, PropertyB from test_class where

PropertyA > 20 and PropertyB < 30

SELECT List
The list returned by the getSelectList method for each SelectExp is an instance of the
SelectList class. This list specifies properties that must be included in the selected instances,
and consists of a list of AttributeExp instances. You can retrieve these AttributeExp instances
using the elements method of SelectList. Each attribute denotes the name of a column that
maps to a property of a CIMInstance in WQL. The AttributeExp has an apply method that,
when passed in a CIMInstance, returns the value of the property that the AttributeExp
represents. The SelectList has an apply method that, when passed in a CIMInstance, returns a
CIMInstance containing only the properties that the SelectList AttributeExp instances
denote.

FROM Clause
Currently, the only non-join expression that is allowed is the FROM clause. An instance of
NonJoinExp is returned when the getFromClause method is invoked on SelectExp. The
NonJoinExp represents the name of the class on which the selection is performed.

Parsing Queries

Chapter 5 • Writing WBEM Queries 87

WHERE Clause
The WHERE clause is represented by QueryExp, an abstract class. The concrete subclasses are
AndQueryExp, OrQueryExp, NotQueryExp, and BinaryRelQueryExp. Instances of these
expressions are combined in the form of a parse tree that represents the original conditional
expression.

The interior nodes of this tree consist of AndQueryExp, OrQueryExp, and NotQueryExp

instances. These instances represent AND, OR, and NOT expressions. These expressions in
turn can consist of other AND, OR, and NOT expressions and binary relations.

The leaf nodes are BinaryRelQueryExp, which represent expressions of the form property
operator constant. This form represents a binary relation between a property and a constant
value. You retrieve property operator constant using the getLeftValue, getRightValue, and
getOperator methods.

Each QueryExp has an apply method that, when passed in a CIMInstance, returns a boolean
value. The boolean value is true if the conditional expression represented by the QueryExp is
true for the CIMInstance. Otherwise, the boolean value is false.

The QueryExp has two other useful methods, canonizeDOC and canonizeCOD, which are used to
simplify conditional expressions for further processing. The canonizeDOC method converts the
parse tree from an arbitrary combination of ANDs and ORs to a canonical disjunction of
conjunctions form (OR of ANDs). The canonizeCOD method converts the parse tree from an
arbitrary combination of ANDs and ORs to canonical conjunction of disjunctions form (AND
of ORs). These classes and methods are used by providers that need to filter instances based on
input queries.

Note – Details of these classes can be found in the API reference pages, generated by thejavadoc
command. See file:/usr/sadm/lib/wbem/doc/index.html.

Writing a Provider That Handles Queries
The following example provider program uses the query APIs to parse the WQL string that was
passed to the provider by the execQuery method. This program parses the select expression in
the query string, performs a deep enumeration of the class, and iterates through the instances in
the enumeration, matching the query expression and select list to each instance. Finally, the
program returns a vector containing the enumeration of the instances that match the query
string.

EXAMPLE 5–1 Provider That Handles Queries

/*

* The execQuery method will support only limited queries

* based upon partial key matching. An empty Vector is

Parsing Queries

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)88

EXAMPLE 5–1 Provider That Handles Queries (Continued)

* returned if no entries are selected by the query.

*

* @param op The CIM object path of the CIM instance to be returned

* @param query The CIM query expression

* @param ql The CIM query language indicator

* @param cc The CIM class reference

*

* @return A vector of CIM object instances

*

* @version 1.19 01/26/00

* @author Sun Microsystems, Inc.

*/

public CIMInstance[] execQuery(CIMObjectPath op,

String query,

String ql,

CIMClass cc)

throws CIMException {

Vector result = new Vector();

try {

SelectExp q = new SelectExp(query);

SelectList attrs = q.getSelectList();

NonJoinExp from = (NonJoinExp)q.getFromClause();

QueryExp where = q.getWhereClause();

CIMInstance[] v = enumerateInstances(op, false, true,

true, null, cc);

// filtering the instances

for (int i = 0; i < v.length; i++) {

if ((where == null) || (where.apply(v[i]) == true)) {

result.addElement(attrs.apply(v[i]));

}

}

} catch (Exception e) {

throw new CIMException(CIMException.CIM_ERR_FAILED, e.toString());

}

return (CIMInstance[])result.toArray();

} // execQuery

}

Parsing Queries

Chapter 5 • Writing WBEM Queries 89

90

Writing a Provider Program

This chapter describes how to write a provider program, and includes the following topics:

■ “About Providers” on page 91
■ “Implementing the Provider Interfaces” on page 94
■ “Creating a Provider” on page 104

Note – For detailed information on the WBEM provider APIs in javax.wbem.provider, see
file:/usr/sadm/lib/wbem/doc/index.html.

About Providers
Providers are special classes that communicate with managed resources, such as disk drives and
CPUs, to access data. The providers then forward the data to the CIM Object Manager
(CIMOM), the primary WBEM agent that coordinates Solaris WBEM Services, for integration
and interpretation. These providers can relieve the CIMOM by assuming the task of managing
distinct subsets of WBEM resources. Providers use the javax.wbem.provider API to transfer
this data. When the CIMOM receives a request from an application for data that is not available
in the CIM Object Manager Repository, the CIMOM forwards the request, using the provider
interfaces, to the appropriate provider.

Solaris software providers exist for a variety of areas: users, groups, aliases, roles, file systems,
disks, processes, cron tool, network configuration, product registry, and device and system
performance monitoring.

Providers create, modify, and delete instances rather than classes, which serve as templates for
the instances. Instances can exist in persistent storage or be used dynamically.

Although providers have their own process and memory, providers perform work delegated by
the CIMOM. The CIMOM must know the location of each provider in order to coordinate
WBEM. You inform the CIMOM about new or modified providers by including those

6C H A P T E R 6

91

providers in a MOF file. A MOF file defines the classes and instances that a provider supports.
You register a MOF file using the mofcomp(1M) command.

Providers perform the following tasks:

■ Provide data to management applications – When a management application requests
data about a managed resource that is not available in the CIM Object Manager Repository,
the CIMOM forwards the request to a provider. The provider accesses the data from the
managed resource and passes the data back to the CIMOM. If the data received from a
managed resource is in a native format such as C code, the provider maps the data to Java
CIM classes prior to passing the data to the CIMOM.

■ Control management resources – When a management application sends data to the
CIMOM to control a managed resource, the CIMOM passes the data to the appropriate
provider. If the managed resource requires data in a native format, the provider maps the
CIM classes to the resource's native format prior to passing the data along.

Note – Providers must reside on the same machine as the CIMOM.

Provider Data Sources
Providers can retrieve data from the following sources:

■ Non-persistent data – Variables that are local to the provider class that exist only when the
provider's methods are run.

■ Persistent memory that is local to the provider – Used by creating global variables in the
provider class. This provider memory is erased when the CIMOM is stopped and restarted.

■ CIM Object Manager Repository – This persistent memory is erased when Solaris WBEM
Services software is uninstalled. The provider must use CIMOM handles and an internal
provider to access this memory through the CIMOM.

■ Files and databases maintained by the provider, or dynamic data – Providers can generate
data dynamically by retrieving data from a system. For example, a provider can make a
system call to retrieve the number of processes currently running.

Types of Providers
Providers are categorized according to the types of requests the providers handle. Client
programs communicate with the CIMOM and access WBEM data through the client API. The
CIMOM maps the provider methods to the corresponding client methods in the client API.
However, the argument lists and return values of corresponding methods might differ. See
file:/usr/sadm/lib/wbem/doc/index.html.

About Providers

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)92

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=mofcomp-1m

■ If a provider stores data in the CIM Object Manager Repository, then the provider accesses
the Repository using handles to the CIMOM. These handles call the methods of the client
API. See “Implementing the Provider Interfaces” on page 94.

■ If a provider needs to create instances or associations in the CIM Object Manager
Repository, then it uses an internal provider. The provider calls methods of Instance or
Associator Providers that are internal to WBEM. See “Implementing the Provider
Interfaces” on page 94.

Ensure that your argument list and return type are correct for the method and class used.

The Solaris WBEM SDK provider types are shown in the following table.

TABLE 6–1 Provider Types

Type Class Name Description

Instance CIMInstanceProvider Supply dynamic instances of a
given class, and support instance
retrieval, enumeration,
modification, and deletion

Method MethodProvider Supply methods of one or more
classes

Associator CIMAssociatorProvider Supply instances of dynamic
association classes

Indication EventProvider Handle indications of CIM events

Authorizable None A marker interface that indicates to
the CIMOM that the provider does
its own authorization check

A single provider can act as one or more of the provider types by registering and implementing
the relevant methods.

Provider Naming Conventions
You can include providers in a single Java class file or store each provider in a separate class. The
provider name identifies the Java class that serves as the provider for the class. Currently, the
CIMOM supports only providers that are written in the Java language.

Provider and class names must follow these rules:

■ The class name must be a valid CIM class. The name must contain a prefix of characters,
followed by an underscore, followed by more characters.
For example, green_apples and red_apples are valid CIM class names, whereas apples,
apples_, and _apples are not.

About Providers

Chapter 6 • Writing a Provider Program 93

■ The provider name that is specified in the MOF file must match the name of the provider
class file.
For example, SimpleCIMInstanceProvider is the provider and
Ex_SimpleCIMInstanceProvider is the class.

Note – You must prepend “java:” to every provider qualifier to notify the CIMOM that the
provider is written in the Java language.

Follow standard Java class and package naming conventions to create your provider names. The
prefix of a package name is written in lowercase ASCII letters and must be one of the top-level
domain names (com, edu, gov, mil, net, org), or one of the English two-letter country codes
specified in ISO Standards 3166, 1981.

Subsequent components of the package name can vary according to your organization's
internal naming conventions. Such conventions might specify that certain directory name
components are division, department, project, machine, or login names. For example, the
provider name java:com.sun.wbem.cimom indicates the following information:

■ java: – Language used to write the provider
■ com – Top-level domain name
■ sun – Company name
■ wbem – Product name
■ cimom – Type of class files that implement the CIMOM

Implementing the Provider Interfaces
When you write a provider, you must determine the interfaces that your provider supports. You
must implement all the methods of each interface that your provider supports. In addition,
every provider must implement the CIMProvider interface, which has two methods:

■ initialize(CIMOMHandle cimom) – If your provider stores data in the CIM Object Manager
Repository, it must assign the passed CIMOM handle to the CIMOM handle that it will use
to contact the CIMOM. For example:

private CIMOMHandle cimom = null;

...

public void initialize(CIMOMHandle cimom)

throws CIMException {

this.cimom = (CIMOMHandle) cimom;

Before the provider can create instances or manipulate associations in the CIM Object
Manager Repository, the provider must first cast the passed CIMOM handle to the subclass
ProviderCIMOMHandle. Then the provider must fetch an internal instance or association
provider. For example:

Implementing the Provider Interfaces

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)94

private ProviderCIMOMHandle cimom = null;

private CIMAssociatorProvider ap = null;

...

public void initialize(CIMOMHandle cimom)

throws CIMException {

this.cimom = (ProviderCIMOMHandle) cimom;

ap = pcimom.getInternalProvider();

Note – The initialize command automatically runs each time a provider is initialized after
the CIMOM restarts.

■ cleanup() – Currently acts as a placeholder.

Writing an Instance Provider
This following sample code implements the enumerateInstances and getInstance interfaces
for the Ex_SimpleCIMInstanceProvider class. For brevity, this example implements the
deleteInstance, createInstance, setInstance, and execQuery interfaces by throwing a
CIMException.

Note – For information on implementing the execQuery method, see “Parsing Queries” on
page 87.

EXAMPLE 6–1 CIMInstanceProvider

/*

* "@(#)SimpleCIMInstanceProvider.java"
*/

import javax.wbem.cim.*;

import javax.wbem.client.*;

import javax.wbem.provider.CIMProvider;

import javax.wbem.provider.CIMInstanceProvider;

import javax.wbem.provider.MethodProvider;

import java.util.*;

import java.io.*;

public class SimpleCIMInstanceProvider implements CIMInstanceProvider {

static int loop = 0;

public void initialize(CIMOMHandle cimom) throws CIMException {

}

public void cleanup() throws CIMException {

}

public CIMObjectPath[] enumerateInstanceNames(CIMObjectPath op,

CIMClass cc)

throws CIMException {

return null;

}

/*

* enumerateInstances:

Implementing the Provider Interfaces

Chapter 6 • Writing a Provider Program 95

EXAMPLE 6–1 CIMInstanceProvider (Continued)

* The entire instances and not just the names are returned.

*/

public CIMInstance[] enumerateInstances(CIMObjectPath op,

boolean localOnly,boolean includeQualifiers,

boolean includeClassOrigin,String[]

propertyList, CIMClass cc) throws CIMException

{

if (op.getObjectName().equalsIgnoreCase

("Ex_SimpleCIMInstanceProvider")) {

Vector instances = new Vector();

CIMInstance ci = cc.newInstance();

if (loop == 0){

ci.setProperty("First", new CIMValue("red"));
ci.setProperty("Last", new CIMValue("apple"));
// only include the properties that were requested

ci = ci.filterProperties(propertyList, includeQualifier,

includeClassOrigin);

instances.addElement(ci);

loop += 1;

} else {

ci.setProperty("First", new CIMValue("red"));
ci.setProperty("Last", new CIMValue("apple"));
// only include the requested properties

ci = ci.filterProperties(propertyList, includeQualifier,

includeClassOrigin);

instances.addElement(ci);

ci = cc.newInstance();

ci.setProperty("First", new CIMValue("green"));
ci.setProperty("Last", new CIMValue("apple"));
// only include the requested properties

ci = ci.filterProperties(propertyList, includeQualifier,

includeClassOrigin);

instances.addElement(ci);

}

return (CIMInstance[])instances.toArray();

}

throw new CIMException(CIM_ERR_INVALID_CLASS);

}

public CIMInstance getInstance(CIMObjectPath op,

boolean localOnly,

boolean includeQualifiers,

boolean includeClassOrigin,

String[] propertyList,

CIMClass cc)

throws CIMException {

if (op.getObjectName().equalsIgnoreCase

("Ex_SimpleCIMInstanceProvider"))
{

CIMInstance ci = cc.newInstance();

// we need to get the keys from the passed in object path,

// this will uniquely identify the instance we want to get

java.util.Vector keys = cop.getKeys();

// Since this is a contrived example we will simply place

// the keys into the instance and be done.

ci.setProperties(keys);

Implementing the Provider Interfaces

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)96

EXAMPLE 6–1 CIMInstanceProvider (Continued)

// if we had other non-key properties we should add them

//here.

// only include the properties that were requested

ci = ci.filterProperties(propertyList, includeQualifiers,

includeClassOrigin);

return ci;

}

throw new CIMException(CIM_ERR_INVALID_CLASS);

}

public CIMInstance[] execQuery(CIMObjectPath op, \

String query, String ql, CIMClass cc)

throws CIMException {

throw(new CIMException(CIMException.CIM_ERR_NOT_SUPPORTED));

}

public void setInstance(CIMObjectPath op, CIMInstance ci, boolean

includeQualifiers, String[] propertyList)

throws CIMException {

throw(new CIMException(CIMException.CIM_ERR_NOT_SUPPORTED));

}

public CIMObjectPath createInstance(CIMObjectPath op,

CIMInstance ci)

throws CIMException {

throw(new CIMException(

CIMException.CIM_ERR_NOT_SUPPORTED));

}

public void deleteInstance(CIMObjectPath cp)

throws CIMException {

throw(new CIMException(CIMException.CIM_ERR_NOT_SUPPORTED));

}

}

Writing a Method Provider
The method invokeMethod is the only way that a client program can call the methods of Solaris
WBEM providers. This condition is true for both providers that are built in or that are added by
developers.

■ Built–in – The “platform-free” CIM_* providers or the Solaris_* providers specific to the
Solaris platform.

■ Added by developers – For example, a method provider, whether the provider supplies
provider or non-WBEM methods, is created by implementing the MethodProvider
interface.

The following sample code creates the Solaris_ComputerSystem provider class that routes
requests from the CIMOM to one or more specialized providers. These providers handle

Implementing the Provider Interfaces

Chapter 6 • Writing a Provider Program 97

requests for dynamic data for a particular type of managed object. For example, the
Solaris_Package provider handles requests to execute methods in the Solaris_Package class.

The method provider implements a single method, invokeMethod. This method calls the
appropriate provider to either reboot a system, shut down a system, or delete a serial port.

EXAMPLE 6–2 Method Provider

...

public class Solaris_ComputerSystem implements MethodProvider {

ProviderCIMOMHandle pch = null;

public void initialize(CIMOMHandle ch) throws CIMException {

pch = (ProviderCIMOMHandle)ch;

}

public void cleanup() throws CIMException {

}

public CIMValue invokeMethod(CIMObjectPath op, String methodName,

Vector inParams, Vector outParams) throws CIMException {

if (op.getObjectName().equalsIgnoreCase("solaris_computersystem")) {

if (methodName.equalsIgnoreCase("reboot")) {

// call helper function, not shown here

return new CIMValue(rebootSystem());

}

if (methodName.equalsIgnoreCase("shutdown")) {

// call helper function, not shown here

return new CIMValue(shutdownSystem());

}

}

if (op.getObjectName().equalsIgnoreCase("solaris_serialport")) {

if (methodName.equalsIgnoreCase("disableportservice")) {

// call helper function, not shown here

return new CIMValue(deletePort(op));

}

}

// error if we get here

throw new CIMException(CIMException.CIM_ERR_NOT_SUPPORTED,

"The requested function does not exist");
}

// helper functions would be defined below

...

}

Writing an Associator Provider

Note – The objectName argument in each of the association methods called by your client
program. In other words, CIMObjectPath must be the object path of an instance, not a class.

Unless the CIMOM sees the object path of an instance, it assumes that the client wants to see the
class definitions of the association in the CIM Object Manager Repository. The class definitions

Implementing the Provider Interfaces

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)98

of the association includes the templates from which the association's member instances are
derived. Therefore, the CIMOM will use the client API's association method and not the
provider's association method.

The most important part of designing and coding an association is the association class. Your
association will only be as complex as the contents of the association class. The number of
members of the association equals the number of references in the association class. Roles can
be used to model more complicated associations. The following examples show some sample
association classes.

■ An asymmetrical pair relationship, such as a one-to-one relationship between a teacher and
a student, with two roles defined (teaches and taughtby):

class TeacherStudent

{

Teacher REF teaches;

Student REF taughtby;

};

■ A one-to-many relationship:

class Classroom

{

Teacher REF teaches;

Student1 REF taughtby;

Student2 REF taughtby;

Student3 REF taughtby;

Student4 REF taughtby;

};

■ A many-to-many relationship:

class TeachingAssistants

{

Assistant1 REF assists;

Assistant2 REF assists;

Student1 REF assistedby;

Student2 REF assistedby;

Student3 REF assistedby;

Student4 REF assistedby;

Student5 REF assistedby;

};

■ An association of more than two members of equal standing:

class Club

{

Member1 REF;

Member2 REF;

Member3 REF;

};

The following code sample implements the associators method. The CIMOM passes values
for associatorNames, objectName, role, resultRole, includeQualifiers,
includeClassOrigin, and propertyList to the association provider. In addition, the code

Implementing the Provider Interfaces

Chapter 6 • Writing a Provider Program 99

prints the name of the CIM associator class and the CIM class or instance whose associated
objects are to be returned. This provider handles instances of example_teacher and
example_student classes.

EXAMPLE 6–3 CIMAssociatorProvider

...

public CIMInstance[] associators(CCIMObjectPath assocName, CIMObjectPath

objectName, String resultClass, String role, String

resultRole, boolean includeQualifiers, boolean

includeClassOrigin, String[] propertyList)

throws CIMException {

System.out.println("Associators "+assocName+" "+objectName);
if (objectName.getObjectName()equalsIgnoreCase("example_teacher")) {

Vector v = new Vector();

if ((role != null) && (!role.equalsIgnoreCase("teaches"))) {

// Teachers only play the teaches role.

return v;

}

if ((resultRole != null) && (!resultRole.equalsIgnoreCase

("taughtby"))) {

// Teachers only result in taughtby role

return v;

}

// Get the associators of a teacher

CIMProperty nameProp = (CIMProperty)objectName.getKeys().elementAt

(0);

String name = (String)nameProp.getValue().getValue();

// Get the student class

CIMObjectPath tempOp = new CIMObjectPath("example_student");
tempOp.setNameSpace(assocName.getNameSpace());

CIMClass cc = cimom.getClass(tempOp, false);

// Test the instance name passed by objectName

// and return the associated instances of the student class.

if(name.equals("teacher1")) {

// Get students for teacher1

CIMInstance ci = cc.newInstance();

ci.setProperty("name", new CIMValue("student1"));
v.addElement(ci.filterProperties(propertyList,

includeQualifiers,

includeClassOrigin));

ci = cc.newInstance();

ci.setProperty("name", new CIMValue("student2"));
v.addElement(ci.filterProperties(propertyList,

includeQualifiers, includeClassOrigin));

return v;

}

}

}

Writing an Indication Provider
To generate an indication for a CIM event, you need to perform the following tasks:

Implementing the Provider Interfaces

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)100

■ Use the methods in the EventProvider interface to detect when to start and stop delivering
indications of the CIM event.

■ Create an instance of one or more subclasses of the CIM_Indication class to store
information about the CIM event that occurred.

■ Use the deliverEvent method in the ProviderCIMOMHandle interface to deliver indications
to the CIMOM.

▼ How To Generate an Event Indication

Implement the EventProvider interface.
For example:
public class sampleEventProvider

implements InstanceProvider EventProvider{

// Reference for provider to contact the CIM Object Manager

private ProviderCIMOMHandle cimom;

}

Execute each of the methods listed in Table 6–2 for each instance indication that the provider
handles.

Create an indication for create, modify, and delete instance event type.
For example, in the createInstance method:
public CIMObjectPath createInstance(CIMObjectPath op,

CIMInstance ci)

throws CIMException {

CIMObjectpath newop = ip.createInstance(op, ci);

CIMInstance indication = new CIMInstance();

indication.setClassName("CIM_InstCreation");

CIMProperty cp = new CIMProperty();

cp.setName("SourceInstance");
cp.setValue(new CIMValue(ci));

Vector v = new Vector();

v.addElement(cp);

indication.setProperties(v);

...

}

Deliver the event indication to the CIM Object Manager.
cimom.deliverEvent(op.getNameSpace(), indication);

Event Provider Methods
An event provider implements the EventProvider interface. This interface contains methods
that the CIMOM uses to notify the provider when a client has subscribed for indications of CIM

1

2

3

4

Implementing the Provider Interfaces

Chapter 6 • Writing a Provider Program 101

events. This method is also used when a client has cancelled the subscription for CIM events.
These methods allow the provider to indicate whether the CIMOM should poll for some event
indications and whether the provider should authorize the return of an indication to a handler.

The following table lists the methods in the EventProvider interface that must be implemented
by an event provider.

TABLE 6–2 EventProviderMethods

Method Description

activateFilter When a client creates a subscription, the CIMOM calls this method to
ask the provider to check for CIM events.

authorizeFilter When a client creates a subscription, the CIMOM calls this method to
test if the specified filter expression is allowed.

deActivateFilter When a client removes a subscription, the CIMOM calls this method
to ask the provider to deactivate the specified event filter.

mustPoll When a client creates a subscription, the CIMOM calls this method to
test whether the specified filter expression is allowed by the provider,
and if it must be polled.

The CIMOM passes values for the following arguments to all methods:

■ filter – SelectExp that specifies the CIM events for which indications must be generated.
■ eventType – String that specifies the type of CIM event, which can also be extracted from

the FROM clause of the select expression.
■ classPath – CIMObjectPath that specifies the name of the class for which the event is

required.

In addition, the activateFilter method takes the boolean firstActivation, indicating that
this filter is the first filter for this event type. The deActivateFilter method takes the boolean
lastActivation, indicating that this filter is the last filter for this event type.

Creating and Delivering Indications
When a client application subscribes for indications of CIM events by creating an instance of
the CIM_IndicationSubscription class. The CIMOM then forwards the request to the
appropriate provider. If the provider implements the EventProvider interface, the CIMOM
notifies the provider when to start sending indications for the specified events. The provider
performs this notification by calling the provider's activateFilter method. In addition, the
CIMOM notifies the provider when to stop sending indications for the specified events by
calling the provider's deActivateFilter method.

Implementing the Provider Interfaces

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)102

The provider responds to the CIMOM's requests by creating and delivering an indication each
time the provider creates, modifies, or deletes an instance. A provider typically defines a flag
variable that is set when the CIMOM calls the activateFilter method. This flag is cleared
when the CIMOM calls the deActivateFilter method. Then in each method that creates,
modifies, or deletes an instance, the provider checks the status of the activate filter flag. If the
flag is set, the provider creates an indication containing the created CIM instance object. The
provider uses the deliverEvent method to return the indication to the CIMOM. If the flag is
not set, the provider does not create and deliver an indication of the event.

A provider starts delivering indications when the activateFilter method is called. The
provider creates instances of concrete subclasses of CIM_Indication and invokes the
ProviderCIMOMHandled.deliverIndication method. The CIMOM receives the indication
and delivers the indication to the appropriate indication handlers. A provider can handle
multiple event types. For example, in the case of life cycle indications, a provider can handle
CIM_InstCreation, CIM_InstDeletion, and CIM_InstModification.

To keep track of types that have subscriber interest, the provider can use the firstActivation
and lastActivation flags passed in the activateFilter and deActivateFilter calls,
respectively. The firstActivation flag is true when the subscription is the first subscription
for the particular event type. Similarly, lastActivation is true when the last subscription for
the particular event type is removed. By checking these flags, the provider can easily allocate or
deallocate resources to monitor the specified event types.

About Authorizations
A provider that handles sensitive data can check authorizations for requests for indications. The
provider must implement the Authorizable interface to indicate that the provider handles
authorization checking. The provider also implements the authorizeFilter method. The
CIMOM calls this method to test whether the owner (UID) of an event handler is authorized to
receive the indications that result from evaluating a filter expression. The UID for the owner of
the event destination, the event handler, can be different than the owner of the client
application requesting the filter activation.

Writing a Native Provider
Providers get information from and set information on managed devices. A native provider is a
program specifically written for a particular managed device. For example, a provider that
accesses data on a Solaris system usually includes C functions to query the system.

The common reasons for writing a native provider are as follows:

■ Efficiency – You may want to implement a small portion of time-critical code in a
lower-level programming language, such as Assembly, and then have your Java application
call these functions.

Implementing the Provider Interfaces

Chapter 6 • Writing a Provider Program 103

■ Need to access platform-specific features – The standard Java class library might not
support the platform-dependent features required by your application.

■ Legacy code – You want to continue to use your legacy code with a Java provider.

The Java Native Interface is part of the JDK software. By writing programs using the Java Native
Interface, you ensure that your code is completely portable across all platforms. The Java Native
Interface enables Java code to operate with applications and libraries written in other languages,
such as C, C++, and assembly.

For more information on writing and integrating Java programs with native methods, visit the
Java Web site at http://java.sun.com.

Creating a Provider
Follow these steps to create a provider:

1. Create or edit your provider program.
2. Compile the Java program to create the class files.
3. Copy any shared object files (.so) to /usr/sadm/lib/wbem.
4. Set your CLASSPATH to the location of your .class and .jar files.
5. Register the provider.

▼ How to Set the Provider CLASSPATH
You set the provider CLASSPATH to tell the CIM Object Manager where the .class and .jar files
are located.

Create an instance of the Solaris_ProviderPath class.
For example:
/* Create a namespace object initialized with root\system

(name of namespace) on the local host. */

CIMNameSpace cns = new CIMNameSpace("", "root\system");

// Connect to the root\system namespace as root.

cc = new CIMClient(cns, "root", "root_password");

// Get the Solaris_ProviderPath class

cimclass = cc.getClass(new CIMObjectPath("Solaris_ProviderPath");

// Create a new instance of Solaris_ProviderPath.

class ci = cimclass.newInstance();

Set the pathurl property to the location of the files by using standard URL format.
For example:
/* Set the provider CLASSPATH to /myhome/myproviders */

ci.setProperty("pathurl", new CIMValue(new String

1

2

Creating a Provider

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)104

http://www.oracle.com/technetwork/java/index.html

("file:///myhome/myproviders/")));

The standard URL format is shown in the following table.

Provider CLASSPATH Standard URL Format

Absolute path to directory file:///a/b/c/

Absolute path to .jar file file:///a/b/my.jar

Create the instance.

For example:
// Pass the updated instance to the CIM Object Manager

cc.createInstance(new CIMObjectPath(), ci);

▼ How to Register a Provider
You register a new or modified provider with the CIM Object Manager to communicate
information about the data and operations that the provider supports. You also register a
provider to notify the CIM Object Manager of the provider's location. The CIM Object
Manager uses this information to load and initialize the provider, and to determine the
appropriate provider for a particular client request.

Create a Managed Object Format (MOF) file that defines the classes that the provider supports.

Note – For more information on creating MOF files, see the DMTF Web site at dmtf.org.

Include the provider qualifier in the MOF file to specify the provider type and location for the
CIMOM.

For example:
[Provider("java:com.sun.providers.myprovider")]
Class_name {

...

};

This qualifier indicates the following information:

■ java: – The provider is written in the Java language and implements the
javax.wbem.provider interfaces

■ com.sun.providers.myprovider – The name of the Java class that implements the provider

Compile the MOF file by using the mofcomp(1M) command.

3

1

2

3

Creating a Provider

Chapter 6 • Writing a Provider Program 105

http://www.dmtf.org/home
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=mofcomp-1m

Registering a Provider

This MOF file declares the Ex_SimpleCIMInstanceProvider class that is served by
SimpleCIMInstanceProvider.

// ==

// Title: SimpleCIMInstanceProvider

// Filename: SimpleCIMInstanceProvider.mof

// Description:

// ==

// ==

// Pragmas

// ==

#pragma Locale ("en-US")

// ==

// SimpleCIMInstanceProvider

// ==

[Provider("java:SimpleCIMInstanceProvider")]
class Ex_SimpleCIMInstanceProvider

{

// Properties

[Key, Description("First Name of the User")]
string First;

[Description("Last Name of the User")]
string Last;

};

Example 6–4

Creating a Provider

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)106

Creating JavaBeans Components Using the
MOF Compiler

This chapter provides an overview of the Managed Object Format (MOF) compiler. This
chapter also describes how to create JavaBeans components by using the -j option to the
mofcomp command. This chapter covers the following topics.

■ “About the MOF Compiler” on page 107
■ “How CIM Maps to the Java Programming Language” on page 109
■ “Example of Generating JavaBeans Components” on page 113

Note – For more information on the MOF Compiler, see the mofcomp(1M) man page.

About the MOF Compiler
Managed Object Format (MOF) is a compiled language developed by the Distributed
Management Task Force (DMTF). The MOF language defines static and dynamic classes and
instances for CIM and WBEM. You can use the CIM and Solaris MOF files that are included
with Solaris WBEM Services. You can also create your own MOF files. For more information on
creating your own MOF files using the DMTF's MOF language, see the DMTF Web site at
dmtf.org.

The MOF Compiler, mofcomp(1M) performs the following tasks:

■ Parses MOF files
■ Converts the classes and instances to Java programming language classes
■ Adds the classes to the CIM Object Manager Repository in the default (root\cimv2) or

other specified namespace

You can easily convert MOF files to the Java programming language. As a result, applications
based on Java technology can interpret and exchange data in MOF files on any machine that
runs a Java Virtual Machine.

7C H A P T E R 7

107

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=mofcomp-1m
http://www.dmtf.org/home
http://www.dmtf.org/home
http://www.dmtf.org/home
http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=mofcomp-1m

During a Solaris installation, the MOF compiler compiles the bundled MOF files that describe
the CIM and Solaris Schema and adds those files to the CIM Object Manager Repository.

Generating JavaBeans Components Using mofcomp

In the context of WBEM, JavaBeans components, or beans, define methods for accessing and
manipulating CIM classes and data. To simplify your development efforts, you can use the -j
option to the mofcomp command to generate beans from the CIM classes in your MOF files.
These automatically-generated beans define the interfaces. You must add the implementation
code.

Note – To safeguard your program from changes that you make to the underlying JavaBeans
implementation, use the interfaces rather than the original JavaBeans components.

When you specify the -j option with mofcomp, a Java interface, CIMBean.java, and a bean that
implements that interface, CIMBeanImpl.java, are generated. CIMBeanImpl.javacontains all of
the code that is common to the generated beans. All generated Java interfaces extend from
CIMBean.java. All generated beans extend fromCIMBeanImpl.java, and inherit the base
implementation.

For each CIM class that is defined in a MOF file, the MOF compiler JavaBeans generation
feature generates a Java programming language interface that contains the following methods:

■ Accessor and mutator methods for the properties that are defined in the MOF file
■ Methods that are comparable to the invokeMethods that are defined in the MOF file

The Java interfaces are named CIMClassBean.java. Bean classes that implement those Java
interfaces are named CIMClassBeanImpl.java. In addition, accessor methods for properties
that contain the CIM DisplayName, Units, and Version qualifiers are generated.

For each invokeMethod that contains an OUT qualified parameter in a CIM class, a container
interface that holds the output that the invoking of the method generates is generated. These
interfaces are named CIMClass_MethodNameOutput.java. An instance of this
CIMClass_MethodNameOutput.java container interface is required as the last parameter of
the bean's method. This container interface is required because the object datatype or datatypes
that the bean's method takes as parameters are not mutable. Therefore these data types cannot
be used to hold both input and output data.

MOF File Elements
You must include the PACKAGE element in your MOF file to take advantage of the -j option. In
addition, you can specify the IMPORTS and EXCEPTIONS elements in the following format:

About the MOF Compiler

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)108

PACKAGE=NameOfJavaPackage
IMPORTS=JavaClassName1:JavaClassName2:...
EXCEPTIONS=Exception1:Exception2:...

The following table describes these elements.

TABLE 7–1 MOF File Elements

Element Description

PACKAGE Required. Specifies the name of the Java package that contains the source files
generated by the MOF compiler.

IMPORTS Optional. Specifies the names of the Java classes to import into the generated
source files. These classes are separated with a colon (:). You can specify as
many Java classes as you want, on as many lines as you want.

EXCEPTIONS Optional. Specifies the names of the Java exceptions that are included in the
generated source files. These exceptions are separated with a colon (:). You can
specify as many Java class exceptions as you want, on as many lines as you want.

Note – If you specify EXCEPTIONS, you must specify IMPORTS.

How CIM Maps to the Java Programming Language
The following table describes how CIM elements map to elements of the Java programming
language.

TABLE 7–2 How CIM Elements Map to Java Elements

CIM Element Java Element

Class The CIM class name is used as the basis for the name of the generated Java
source files. The generated Java classes follow the same inheritance as defined
in the class-subclass relationships in the MOF.

Property An accessor and a mutator method are created for each CIM property. The
CIM property name is used as the basis for the associated accessor and mutator
methods.

Method For each CIM method, a comparable Java method is created. The method name
is used as the basis for the related Java method name. The return value is the
same, accounting for the Java data type mapping. Input and output parameters
are used as arguments to the Java method. Output parameters are not directly
included in the method signature. Instead, output parameters are encapsulated
in an output container object that is included as a method parameter.

Qualifier Qualifiers are described in Table 7–4 and Table 7–5.

Association Nothing specific required.

How CIM Maps to the Java Programming Language

Chapter 7 • Creating JavaBeans Components Using the MOF Compiler 109

TABLE 7–2 How CIM Elements Map to Java Elements (Continued)
CIM Element Java Element

Indication Nothing specific required.

Reference For each CIM reference, a reference to a generated Java interface is created.

Trigger Nothing specific required.

Schema Nothing specific required.

The following table describes how CIM data types map to Java data types.

TABLE 7–3 How CIM Data Types Map to Java Data Elements

CIM Data Type Java Data Type Accessor Method Mutator Method

uint8 X UnsignedInt8 UnsignedInt8 getX(); void setX(UnsignedInt8

x);

sint8 X Byte Byte getX(); void setX(Byte x);

uint16 X UnsignedInt16 UnsignedInt16 getX(); void setX(UnsignedInt16

x);

sint16 X Short Short getX(); void setX(Short x);

uint32 X UnsignedInt32 UnsignedInt32 getX(); void setX(UnsignedInt32

x);

sint32 X Integer Integer getX(); void setX(Integer x);

uint64 X UnsignedInt64 UnsignedInt64 getX(); void setX(UnsignedInt64

x);

sint64 X Long Long getX(); void setX(Long x);

String X String String getX(); void setX(String x);

Boolean X Boolean Boolean isX(); void setX(Boolean x);

real32 X Float Float getX(); void setX(Float x);

real64 X Double Double getX(); void setX(Double x);

DateTime X CIMDateTime CIMDateTime getX(); void setX(CIMDateTime x);

Reference X CIMObjectPath CIMObjectPath getX(); void setX(CIMObjectPath

x);

char16 X Character Character getX(); void setX(Character x);

How CIM Maps to the Java Programming Language

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)110

The following table lists the meta qualifiers that refine the definition of the meta constructs in
the model. These qualifiers are mutually exclusive and are used to refine the actual usage of an
object class or property declaration within the MOF syntax.

TABLE 7–4 Meta Qualifiers

Qualifier Scope Type Meaning

Association class Boolean No affect on mapping

Indication class Boolean Class is abstract

The following table lists the standard qualifiers and the effect that these qualifiers have on the
mapping of a CIM object to a bean. There is no support for optional qualifiers. Javadoc API
documentation is produced for each interface and class based on this mapping.

TABLE 7–5 Standard Qualifiers

Qualifier Scope Meaning

ABSTRACT Class, Association, Indication The class is abstract and has no effect on
the Java programming language
interfaces.

DESCRIPTION Any The information that is provided
generates Javadoc comments in the
source file.

DISPLAYNAME Property An accessor method for the display
name is created:

public String

displayNameForProperty();

IN Parameter Determines the method signature.

OUT Parameter Determines the method parameter
signature and return values.

TERMINAL Class Class or interface is final.

UNITS Property, Method, Parameter Another accessor method is created:

public String getpropertyUnits();

How CIM Maps to the Java Programming Language

Chapter 7 • Creating JavaBeans Components Using the MOF Compiler 111

TABLE 7–5 Standard Qualifiers (Continued)
Qualifier Scope Meaning

VALUEMAP Property, Method, Parameter Beans contain generated constants for
each property in a CIM class that has a
CIM ValueMap or a Values qualifier.
The way in which the constant name
and constant value are obtained to
generate these class variables depends
on the data type of the property and the
qualifiers that the property possesses.

Note – The ValueMap and Values
qualifiers as defined in the CIM
specification have meanings contrary to
what the qualifier names might imply.
ValueMap defines the legal set of values
for a property. Values provides
translation between an integer value
and a string.

VALUES Property, Method, Parameter Beans contain generated constants for
each property in a CIM class that has a
CIM ValueMap or a Values qualifier.
The way in which the constant name
and constant value are obtained to
generate these class variables depends
on the data type of the property and
qualifiers that the property possesses.

Note – The ValueMap and Values
qualifiers as defined in the CIM
specification have meanings contrary to
what the qualifier names might imply.
ValueMap defines the legal set of values
for a property. Values provides
translation between an integer value
and a string.

VERSION Class, Schema, Association,
Indication

Class possesses a getClassVersion()
method

The following table describes how MOF elements map to Java elements.

TABLE 7–6 How MOF Elements Map to Java Elements

MOF Element Java Element

Description qualifier Description of the class, property, or method

How CIM Maps to the Java Programming Language

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)112

TABLE 7–6 How MOF Elements Map to Java Elements (Continued)
MOF Element Java Element

Complete MOF representation of the class The Javadoc class description for both the Java interface and the
implementation bean

Example of Generating JavaBeans Components
The following example shows the JavaBeans components that are produced when you use the
mofcomp command with the -j option.

You must run the mofcomp command as root or as a user with write access to the namespace in
which you are compiling.

Note – Avoid specifying both the -u (user) and -p (password) options when running the
mofcomp command. You want to avoid having to type your password directly on the command
line. Instead, specify only the -u option so that you are prompted to specify an encrypted
password.

EXAMPLE 7–1 Generating JavaBeans Components

/usr/sadm/bin/mofcomp -u root -p mypassword -o /tmp
-j /tmp/bean.txt /usr/sadm/mof/Simple.mof

The content of /usr/sadm/mof/Simple.mof is as follows:

/usr/sadm/mof/Simple.mof

#pragma include ("CIM_Core26.mof")

class Simple_Class {

[Key, Description ("Name of the class.")]

string Name;

[Description ("Method to print the contents of the class.")]

string printClass();

};

The content of /tmp/bean.txt is as follows:

/tmp/bean.txt

PACKAGE=foo.com

IMPORTS=java.lang.Exception

EXCEPTIONS=Exception

The content of CIMBean.java is as follows:

Example of Generating JavaBeans Components

Chapter 7 • Creating JavaBeans Components Using the MOF Compiler 113

EXAMPLE 7–1 Generating JavaBeans Components (Continued)

package foo.com;

import javax.wbem.cim.CIMException;

import javax.wbem.client.CIMOMHandle;

import javax.wbem.cim.CIMInstance;

/**

* This Interface defines the methods that must be implemented by

* CIMBeanImpl and its subclasses. CIMBeanImpl constitutes the base

* class of the Java source generated by ’mofcomp -j’.

*/

public interface CIMBean {

/**

* This method returns the CIMBean’s CIMOMHandle.

*

* @return CIMOMHandle handle to the CIMOM

*/

public CIMOMHandle getCIMOMHandle();

/**

* This method sets the CIMBean’s CIMOMHandle to the specifed value.

*

* @param CIMOMHandle handle to the CIMOM

*/

public void setCIMOMHandle(CIMOMHandle handle);

/**

* This method returns the CIMBean’s CIMInstance.

*

* @return CIMInstance handle to the CIMInstance being managed

*/

public CIMInstance getCIMInstance();

/**

* This method sets the CIMBean’s CIMInstance to the specified value.

*

* @param CIMInstance handle to the CIMInstance being managed

*/

public void setCIMInstance(CIMInstance instance);

/**

* This method makes the remote call to update the CIMInstance in the

* CIMOM.

*/

public void update() throws CIMException;

/**

* This method makes the remote call to update the specified

* CIMProperty of the CIMInstance in the CIMOM.

*

* @param String property name to update in the CIMInstance

* @param Object property value to update in the CIMProperty

*/

public void update(String propName, Object value) throws CIMException;

Example of Generating JavaBeans Components

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)114

EXAMPLE 7–1 Generating JavaBeans Components (Continued)

/**

* This method makes the remote call to delete the CIMInstance in the

* CIMOM.

*/

public void delete() throws CIMException;

/**

* This method returns a string array of the Key qualified property

* name(s) in the CIMInstance. This is needed to build the

* CIMObjectPath for the CIMInstance if it does not contain any

* qualifier information.

*

* @return String Version qualifier value or "-1" if there isn’t

* one

*/

public String[] getBeanKeys();

/**

* This method returns the CIM class’s Version qualifier value or

* ’-1’ if it does not have this qualifier.

*

* @return String[] array of the key qualified property names

*/

public String getBeanVersion();

/**

* This method returns a string representation of the CIMBean.

* This method is intended for debug purposes and the format of the

* string may vary from implementation to implementation. The string

* returned may be empty, but may not be null.

*

* @return String string representation of the Bean

*/

public String toString();

} // Interface CIMBean

The content of CIMBeanImpl.java is as follows:

package foo.com;

import java.io.Serializable;

import java.util.*;

import javax.wbem.client.CIMOMHandle;

import javax.wbem.cim.CIMException;

import javax.wbem.cim.CIMInstance;

import javax.wbem.cim.CIMObjectPath;

import javax.wbem.cim.CIMValue;

import javax.wbem.client.CIMOMHandle;

/**

* This Class implements the CIMBean Interface. It is the base Class

* of the Java source code generated by ’mofcomp -j’.

*/

public class CIMBeanImpl implements CIMBean, Serializable {

Example of Generating JavaBeans Components

Chapter 7 • Creating JavaBeans Components Using the MOF Compiler 115

EXAMPLE 7–1 Generating JavaBeans Components (Continued)

private CIMInstance cimInstance = null;

private CIMOMHandle cimomHandle = null;

/**

* This default constructor takes no parameters and creates an empty

* instance of CIMBeanImpl.

*/

public CIMBeanImpl() {

super();

} // constructor

/**

* This constructor takes the specified CIMOMHandle and CIMInstance and

* creates a CIMBeanImpl.

*

* @param CIMOMHandle handle to the CIMOM

* @param CIMInstance handle to the CIMInstance being managed

*/

public CIMBeanImpl(CIMOMHandle handle, CIMInstance instance) {

super();

cimomHandle = handle;

cimInstance = instance;

} // constructor

/**

* This method returns the CIMBean’s CIMOMHandle.

*

* @return CIMOMHandle handle to the CIMOM

*/

public CIMOMHandle getCIMOMHandle() {

return (cimomHandle);

} // getCIMOMHandle

/**

* This method sets the CIMBean’s CIMOMHandle to the specifed value.

*

* @param CIMOMHandle handle to the CIMOM

*/

public void setCIMOMHandle(CIMOMHandle handle) {

this.cimomHandle = handle;

} // setCIMOMHandle

/**

* This method returns the CIMBean’s CIMInstance.

*

* @return CIMInstance handle to the CIMInstance being managed

*/

Example of Generating JavaBeans Components

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)116

EXAMPLE 7–1 Generating JavaBeans Components (Continued)

public CIMInstance getCIMInstance() {

return (cimInstance);

} // getCIMInstance

/**

* This method sets the CIMBean’s CIMInstance to the specified

* value.

*

* @param CIMInstance handle to the CIMInstance being managed

*/

public void setCIMInstance(CIMInstance instance) {

this.cimInstance = instance;

} // setCIMInstance

/**

* This method makes the remote call to update the CIMInstance in

* the CIMOM.

*/

public void update() throws CIMException {

cimomHandle.setInstance(getObjectPath(), cimInstance);

} // update

/**

* This method makes the remote call to update the specified

* CIMProperty of the CIMInstance in the CIMOM.

*

* @param String property name to update in the CIMInstance

* @param Object property value to update in the CIMProperty

*/

public void update(String propName, Object value) throws CIMException {

cimomHandle.setProperty(getObjectPath(), propName, new CIMValue(value));

} // update

/**

* This method makes the remote call to delete the CIMInstance in the

* CIMOM.

*/

public void delete() throws CIMException {

cimomHandle.deleteInstance(getObjectPath());

} // delete

/**

* This is a convenience method for use by subclasses to get the

* Object contained in the given CIMProperty’s CIMValue.

* NOTE: The Object returned may be null.

*

Example of Generating JavaBeans Components

Chapter 7 • Creating JavaBeans Components Using the MOF Compiler 117

EXAMPLE 7–1 Generating JavaBeans Components (Continued)

* @param String property name whose value should be retrieved

* @return Object object contained in the CIMProperty’s CIMValue

*/

protected Object getProperty(String propName) {

try {

return (cimInstance.getProperty(propName).getValue().getValue());

} catch (NullPointerException npe) {

}

return ((Object)null);

} // getProperty

/**

* This is a convenience method for use by subclasses to get

* the String[] equivalent to the Vector contained in the given

* CIMProperty’s CIMValue.

* NOTE: The String[] returned may be null.

*

* @param String property name to get the value for

* @param String[] property Values qualifier data

* @param Object[] property ValueMap qualifier data

* @return String[] container of constants for property value

*/

protected String[] getArrayProperty(String propName, String[]

valueArr, Object[] valueMapArr) {

List propList = null;

try {

propList =

((List)cimInstance.getProperty(propName).getValue().getValue());

} catch (NullPointerException npe) {

}

if (propList != null) {

String[] returnArr;

returnArr = new String[propList.size()];

ListIterator listIterator = propList.listIterator();

int counter = 0;

while (listIterator.hasNext()) {

returnArr[counter] = valueArr[getArrayIndex(valueMapArr,

listIterator.next())];

counter++;

}

return (returnArr);

}

return ((String[])null);

Example of Generating JavaBeans Components

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)118

EXAMPLE 7–1 Generating JavaBeans Components (Continued)

} // getArrayProperty

/**

* This method gets the CIMInstance referenced by the property

* value (i.e., the object path specified) and sets it in the

* specified Bean. This method is used by accessor methods of

* Association properties.

*

* @param CIMObjectPath object path for the CIMInstance

* @param CIMBeanImpl Bean container for CIMInstance retrieved

*/

protected void getAssociationProperty(CIMObjectPath cop,

CIMBeanImp bean) throws CIMException {

cop.setNameSpace("");
CIMInstance ci = cimomHandle.getInstance(cop, false, true, true,

(String[])null);

bean.setCIMInstance(ci);

bean.setCIMOMHandle(cimomHandle);

} // getAssociationProperty

/**

* This is a convenience method for use by subclasses to set a

* CIMValue containing the specified Object value in the

* CIMProperty of the specified name.

*

* @param String property name to set a new value for

* @param Object property value to update in the CIMInstance

*/

protected void setProperty(String propName, Object propValue)throws

IllegalArgumentException {

cimInstance.setProperty(propName, new CIMValue(propValue));

} // setProperty

/**

* This is a convenience method for use by subclasses to set a

* CIMValue containing a Vector equivalent to the specified

* String[] in the CIMProperty of the specified name.

*

* @param String property name to get the value for

* @param String[] property Values qualifier data

* @param Object[] property ValueMap qualifier data

* @param String[] property value to set in the CIMInstance

*/

protected void setArrayProperty(String propName, String[] valueArr,

Object[] valueMapArr, String[] propValues) {

Vector vPropValue = new Vector(propValues.length);

for (int i = 0; i < propValues.length; i++) {

vPropValue.addElement(valueMapArr[getArrayIndex(valueArr,

propValues[i])]);

Example of Generating JavaBeans Components

Chapter 7 • Creating JavaBeans Components Using the MOF Compiler 119

EXAMPLE 7–1 Generating JavaBeans Components (Continued)

}

setProperty(propName, vPropValue);

} // setArrayProperty

/**

* This method returns a string array of the Key qualified property

* name(s) in the CIMInstance. This is needed to build the

* CIMObjectPath for the CIMInstance if it does not contain any

* qualifier information.

*

* @return String[] array of the key qualified property names

*/

public String[] getBeanKeys() {

return ((String[])null);

} // getBeanKeys

/**

* This method returns the CIMObjectPath of the class’s CIMInstance.

*

* @return CIMObjectPath object path for the CIMInstance

*/

protected CIMObjectPath getObjectPath() {

CIMObjectPath cop = new CIMObjectPath(cimInstance.getClassName());

Vector vKeys = cimInstance.getKeyValuePairs();

if ((vKeys != null) && (vKeys.size() > 0)) {

cop.setKeys(vKeys);

} else {

String[] keyArr = getBeanKeys();

if (keyArr != null) {

String keyProperty;

for (int i = 0; i < keyArr.length; i++) {

keyProperty = keyArr[i];

cop.addKey(keyProperty,

(cimInstance.getProperty(keyProperty)).getValue());

}

}

}

return (cop);

} // getObjectPath

/**

* This convenience method returns the index of the specified

* object in the specified array, or ’-1’ if the object is not

Example of Generating JavaBeans Components

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)120

EXAMPLE 7–1 Generating JavaBeans Components (Continued)

* contained in the array.

*

* @param Object[] Object array to find index of Object in

* @param Object Object to find index of in Object array

* @return int index of Object in Object array

*/

protected int getArrayIndex(Object[] objArr, Object obj) {

List arrList = Arrays.asList(objArr);

return (arrList.indexOf(obj));

} // getArrayIndex

/**

* This method returns the CIM class’s Version qualifier value, or

* ’-1’ if it does not have this qualifier.

*

* @return String Version qualifier value or ’-1’ if there isn’t

* one

*/

public String getBeanVersion() {

return ("-1");

} // getBeanVersion

/**

* This method returns a string representation of the CIMBean.

* This method is intended for debug purposes and the format of

* the string may vary from implementation to implementation.

* The string returned may be empty, but may not be null.

*

* @return String string representation of the Bean

*/

public String toString() {

return (cimInstance.toString());

} // toString

} // Class CIMBeanImpl

The content of Simple_ClassBean.java is as follows:

package foo.com;

import javax.wbem.client.*;

import javax.wbem.cim.*;

import java.util.*;

import java.lang.Exception;

/**

* This Interface contains accessor and mutator methods for all

* properties defined in CIM class Simple_Class as well as methods

* comparable to the invokeMethods defined for this class. This Interface

Example of Generating JavaBeans Components

Chapter 7 • Creating JavaBeans Components Using the MOF Compiler 121

EXAMPLE 7–1 Generating JavaBeans Components (Continued)

* is implemented by Simple_ClassBeanImpl. The CIM class Simple_Class is

* described as follows:

*/

public interface Simple_ClassBean extends CIMBean {

/**

* This method returns the Simple_Class.Name property value. This

* property is described as follows:

*

* Name of the class.

*

* @return String current Name property value

* @exception Exception

*/

public String getName() throws Exception;

/**

* This method sets the Simple_Class.Name property value. This

* property is described as follows:

*

* Name of the class.

*

* @param String new Name property value

* @exception Exception

*/

public void setName(String name) throws Exception;

/**

* This method invokes the Simple_Class.printClass() method. This

* method is described as follows:

*

* Method to print the contents of the class.

*

* @return String return value of printClass() invokation

* @exception Exception

*/

public String printClass() throws Exception, CIMException;

} // Interface Simple_ClassBean

The content of Simple_ClassBeanImpl.java is as follows:

package foo.com;

import javax.wbem.client.*;

import javax.wbem.cim.*;

import java.util.*;

import java.lang.Exception;

/**

* This class contains accessor and mutator methods for all properties

* defined in the CIM class Simple_Class as well as methods comparable

* to the invokeMethods defined for this class. This class implements

* the Simple_ClassBean interface. The CIM class Simple_Class is

Example of Generating JavaBeans Components

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)122

EXAMPLE 7–1 Generating JavaBeans Components (Continued)

* described as follows:

*/

public class Simple_ClassBeanImpl extends CIMBeanImpl implements

Simple_ClassBean {

private CIMOMHandle cimomHandle = null;

private CIMInstance cimInstance = null;

private final static String[] keysArr = {"Name"};

/**

* This constructor creates a Simple_ClassBeanImpl class which

* implements the Simple_ClassBean interface, and encapsulates the

* CIM class Simple_Class in a bean. The CIM class Simple_Class

* is described as follows:

*

* @param CIMOMHandle handle to the CIMOM

* @param CIMInstance handle to the CIMInstance being managed

*/

public Simple_ClassBeanImpl(CIMOMHandle handle, CIMInstance instance)

{

super(handle, instance);

this.cimomHandle = handle;

this.cimInstance = instance;

} // constructor

/**

* This method returns an array of Strings with the names of the key

* qualified properties defined for the CIM class. This method is

* used to build the CIMObjectPath of the CIMInstance managed by

* the Bean in the case that the key qualifiers are not included

* in the CIMInstance.

*

* @return String[] array of the key qualified property names

*/

public String[] getBeanKeys() {

return keysArr;

} // getBeanKeys

/**

* This method returns the Simple_Class.Name property value. This

* property is described as follows:

*

* Name of the class.

*

* @return String current Name property value

* @exception Exception

*/

public String getName() throws Exception {

return (String)getProperty("Name");

Example of Generating JavaBeans Components

Chapter 7 • Creating JavaBeans Components Using the MOF Compiler 123

EXAMPLE 7–1 Generating JavaBeans Components (Continued)

} // getName

/**

* This method sets the Simple_Class.Name property value. This

* property is described as follows:

*

* Name of the class.

*

* @param String new Name property value

* @exception Exception

*/

public void setName(String name) throws Exception {

setProperty("Name", name);

} // setName

/**

* This method invokes the Simple_Class.printClass() method. This

* method is described as follows:

*

* Method to print the contents of the class.

*

* @return String return value of printClass() invokation

* @exception Exception

*/

public String printClass() throws Exception, CIMException {

Vector vInParams = new Vector();

Vector vOutParams = new Vector();

CIMValue cv = cimomHandle.invokeMethod(cimInstance.getObjectPath(),

"printClass", vInParams, vOutParams);

return (String)cv.getValue();

} // printClass

} // Class Simple_ClassBeanImpl

Example of Generating JavaBeans Components

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)124

Administering Security

This chapter describes WBEM security mechanisms and the features that the CIM Object
Manager (CIMOM) enforces.

This chapter includes the following information:
■ “WBEM Security Mechanisms” on page 125
■ “Using Sun WBEM User Manager to Set Access Control” on page 129
■ “Troubleshooting Problems With WBEM Security” on page 136

WBEM Security Mechanisms
WBEM employs several mechanisms to ensure secure access to its data:
■ Authentication – The process of specifying a client's user identity to the WBEM server, and

then using the client's credentials to verify the client.
■ Role assumption – Process that assumes that a Solaris role-based access control (RBAC)

role identity is to be used by the WBEM server to check authorization.
■ Secure messaging – The process of adding a secure message authenticator to each client

request message. This authenticator enables the WBEM server to check the origin of the
message and to determine whether that message was modified during delivery.

■ Authorization – The process of verifying that an authenticated user or a role identity has
been granted access to the data that is managed by WBEM. You use the Solaris Management
Console User tool and Sun WBEM User Manager for authorization management.

■ Auditing – The process of writing an audit record of a specific operation that was performed
by the WBEM server. These records track the changes that an authenticated user makes to
the management data on the WBEM server system.

■ Logging – The writing of particular security-related events in the WBEM log. You can view
the WBEM log by using the Solaris Management Console Log Viewer.

Each mechanism is described in more detail in the sections that follow.

8C H A P T E R 8

125

Client Authentication
When a client application connects to a CIMOM server, the client's user identity must be
authenticated by the CIMOM on the WBEM server. The user's WBEM client must provide a
Solaris user identity and its associated login password. The identity and credential are used in a
security authentication exchange between the client and WBEM server. This exchange is to
verify that the client is a valid Solaris user who is allowed to log in to the WBEM server system.

If the WBEM server cannot verify the user identity and credential and the user's identity is
invalid, the WBEM server returns a CIM security exception. This exception includes the
NO_SUCH_PRINCIPAL error.

If the WBEM server cannot verify the user's identity and credential and the user's password is
invalid, the server returns a CIM security exception. This exception includes the
INVALID_CREDENTIAL error.

Role Assumption
A role identity can be assumed only when a WBEM user selects the Remote Method Invocation
(RMI) protocol. Role assumption is not supported by the XML over HTTP protocol.

The Solaris implementation of WBEM supports the ability of a client to assume the identity of a
Solaris role when that client is authenticated by the CIMOM on the WBEM server. To check
RBAC authorizations, the WBEM server uses the permission that is granted to the assumed role
rather than the permission that is granted to the underlying user identity.

RBAC roles are described in more detail in “Role-Based Access Control (Overview)” in System
Administration Guide: Security Services.

The client must provide the Solaris role identity and password in addition to a Solaris user
identity and password when the client attempts to connect.

If the WBEM server cannot verify the Solaris role identity, the WBEM server returns a CIM
security exception that includes the NO_SUCH_ROLE error.

If the role password is invalid for the specified role identity, the WBEM server returns the
INVALID_CREDENTIAL error in the CIM security exception.

If both the role identity and role password are valid, but the user is not allowed to assume the
role, the WBEM server returns an exception. The CANNOT_ASSUME_ROLE error is returned in the
CIM security exception.

WBEM Security Mechanisms

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)126

http://www.oracle.com/pls/topic/lookup?ctx=821-1456&id=rbac-1
http://www.oracle.com/pls/topic/lookup?ctx=821-1456&id=rbac-1

Secure Messaging
In the CIM RMI protocol, each request from the client to the WBEM server contains a message
authenticator that is constructed from the message data. A one-way digest is also created with a
session key that is established during the authentication exchange.

The WBEM server verifies this message authenticator. This verification guarantees that the
request came from the same client that was authenticated and that the message was not
modified or replayed on its way to the server.

If the message was modified, replayed, or created by a source that was not the original client, the
WBEM server returns a CIM security exception. This exception contains the CHECKSUM_ERROR
error. The WBEM server also writes a log message to the WBEM log.

Authorization
After the WBEM server connects, the WBEM server uses the authenticated user or the role
identity for all authorization checks on subsequent operations with the CIM client.

WBEM supports two types of authorization checking, using the following mechanisms:

■ Access control lists (ACLs) that are maintained by the WBEM server for specific
namespaces

■ RBAC authorizations that are configured as part of the Solaris operating environment

The particular authorization checking mechanism that WBEM uses depends on how the MOF
class provider is implemented. The particular authorization checking mechanism that WBEM
uses for a specific MOF class operation depends on the following factors:

■ The particular operation that WBEM executes
■ How the MOF class provider is implemented

The classes defined in Solaris_Acl.mof implement WBEM ACL-based security. WBEM
ACL-based security provides a default authorization scheme for Solaris WBEM Services. Under
specific circumstances, WBEM-based security applies to a particular set of CIM operations.
ACL-based security is uniquely provided by Solaris WBEM Services.

You use Sun WBEM User Manager (wbemadmin) to establish an ACL for a specific namespace
on the WBEM server. Sun WBEM User Manager enables you to add user, or role, names to the
ACL for the namespace. In addition, you can assign each user read or write permission. Sun
WBEM User Manager is described in “Using Sun WBEM User Manager to Set Access Control”
on page 129 and in wbemadmin(1M).

Write permission allows a user to modify the class metadata, modify instances of MOF classes
in that namespace, and issue an invoke method on instances. The local WBEM server root user
identity is always granted write permission to all namespaces on the server. All authenticated
users without an explicit ACL entry are granted read permission by default.

WBEM Security Mechanisms

Chapter 8 • Administering Security 127

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=wbemadmin-1m

Operations that include the accessing of MOF class metadata, such as getClass, use the WBEM
ACLs. These operations include the checking of permissions that are granted to the
authenticated user by the ACL for the namespace that contains the MOF class. You can set an
RBAC role in an ACL entry, but the ACL entry is always checked against the user identity rather
than the role identity. In other words, you can set a role name in an ACL, but the CIMOM does
not check the role name at runtime.

Operations that involve MOF class instances might include the checking of either WBEM ACLs
or RBAC authorizations.

You can also grant permissions to a user, or role identity, that allow that user to access and
modify the instances of MOF classes whose providers use the RBAC authorizations. You grant
these permissions by using the Rights tool in the Solaris Management Console User tool. The
granting of permissions to a user is described in “How to Create or Change a Rights Profile” in
System Administration Guide: Security Services.

If the instances for a MOF class are stored in the WBEM persistent datastore, the CIMOM
checks the WBEM ACL for the namespace that contains the MOF class. Under the following
conditions, the implementation of the MOF class provider almost always uses RBAC
authorization checking:

■ The MOF class provider implementation accesses the provider's datastore
■ The MOF class provider implementation accesses system data in the Solaris operating

environment

In general, if a MOF class definition contains a Provider qualifier, the provider implementation
usually makes RBAC authorization checks. If the MOF class definition does not contain a
Provider qualifier, the CIMOM takes the following actions:

■ Stores the instances of that class in the WBEM persistent datastore
■ Checks the ACL that controls access to the namespace for the class to ensure that access is

granted

Auditing
The WBEM server writes audit records for certain events during processing. For example, the
WBEM server writes audit records whenever client authentication succeeds or fails, and
whenever an operation that modifies user information is executed.

The WBEM server uses the underlying Solaris Basic Security Module (BSM) to write its audit
records. You must enable the BSM auditing mechanism (bsmconv) in the Solaris operating
environment on the WBEM server to ensure that audit information is recorded. This command
is described in bsmconv(1M).

WBEM Security Mechanisms

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)128

http://www.oracle.com/pls/topic/lookup?ctx=821-1456&id=rbactask-24
http://www.oracle.com/pls/topic/lookup?ctx=821-1456&id=rbactask-24

Note – If you are using the Trusted Solaris software, you do not need to enable the BSM auditing
mechanism.

Logging
The WBEM server writes log records to the WBEM log for particular security events. Two
examples are when an authenticated session for a client is established and when an
authorization fails. You can review the WBEM log in the Solaris Management Console Log
Viewer, which is described in Chapter 9, “Troubleshooting.”

You can identify security-related log events by the category Security log, which is listed in the
Category column. You can view only security log messages by selecting the category Security in
the Log Viewer filter dialog box. Most security log messages include the user identity of the
client and the name of the client host.

Using Sun WBEM User Manager to Set Access Control
Sun WBEM User Manager (wbemadmin) enables you and other privileged users to perform the
following tasks:
■ Add and delete authorized users
■ Set access privileges for authorized users
■ Manage user authentication and user access to CIM objects on a WBEM-enabled system

Note – The user for whom you specify access control must have a Solaris user account.

What You Can and Cannot Do With Sun WBEM User
Manager
You can set access privileges for individual namespaces or for a combination of a user and a
namespace. When you add a user and select a namespace, the user is granted read access to CIM
objects in the selected namespace by default.

Note – An effective way to combine user and namespace access rights is to start by restricting
access to a namespace. Then grant individual users read, read and write, or write access to that
namespace.

You cannot set access rights on individual managed objects. However, you can set access rights
for all managed objects in a namespace as well as on a per-user basis.

Using Sun WBEM User Manager to Set Access Control

Chapter 8 • Administering Security 129

If you log in as root, you can set the following types of access to CIM objects:
■ Read Only – Allows read-only access to CIM Schema objects. Users with this privilege can

retrieve instances and classes, but cannot create, delete, or modify CIM objects.
■ Read/Write – Allows full read, write, and delete access to all CIM classes, instances, and

invoked methods.
■ Write – Allows write and delete access, but not read access, to all CIM classes and instances.
■ None – Allows no access to CIM classes and instances.

Using Sun WBEM User Manager
This section describes how to start and use Sun WBEM User Manager.

▼ How to Start Sun WBEM User Manager
Become superuser.

In a command window, type the following command:
/usr/sadm/bin/wbemadmin

Sun WBEM User Manager starts, and a Login dialog box opens.

Note – Context-help information is available in the Context Help panel when you click on the
fields in the Login dialog box.

Fill in the fields on the Login dialog box.

a. In the User Name field, type the user name.

Note – You must have read access to the root\security namespace to log in. By default,
Solaris users have guest privileges, which grant them read access to the default namespaces.
Users with read access can view but not change user privileges.

You must log in as root or a user with write access to the root\security namespace to
grant access rights to users.

b. In the Password field, type the password for the user account.

Click OK.
The User Manager dialog box opens. The dialog box contains a list of users and their access
rights to WBEM objects within the namespaces on the current host.

1

2

3

4

Using Sun WBEM User Manager

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)130

▼ How to Grant Default Access Rights to a User
Start Sun WBEM User Manager.

In the Users Access portion of the dialog box, click Add.

A dialog box opens that lists the available namespaces.

Type the name of a Solaris user account in the User Name field.

Select a namespace from the listed namespaces.

Click OK.

The user name is added to the User Manager dialog box.

To save changes and close the User Manager dialog box, click OK. To save changes and keep the
dialog box open, click Apply.

The user that you specified is granted read access to CIM objects in the namespace that you
selected.

▼ How to Change Access Rights for a User
Start Sun WBEM User Manager.

Select the user whose access rights you want to change.

Set the user privileges. To grant the user read-only access, click the Read check box. To grant the
user write access, click the Write check box.

To save changes and close the User Manager dialog box, click OK. To save changes and keep the
dialog box open, click Apply.

▼ How to Remove Access Rights for a User
Start Sun WBEM User Manager.

In the Users Access portion of the dialog box, select the user name for which you want to remove
access rights.

1

2

3

4

5

6

1

2

3

4

1

2

Using Sun WBEM User Manager

Chapter 8 • Administering Security 131

Click Delete to delete the user's access rights to the namespace.
A confirmation dialog box opens. This dialog box prompts you to confirm your decision to
delete the user's access rights.

To confirm, click OK.

To save changes and close the User Manager dialog box, click OK. To save changes and keep the
dialog box open, click Apply.

▼ How to Set Access Rights for a Namespace
Start Sun WBEM User Manager.

In the Namespace Access portion of the dialog box, click Add.
A dialog box opens. The dialog box lists the available namespaces.

Select the namespace for which you want to set access rights.

Note – By default, users have read-only access to a namespace.

■ To allow no access to the namespace, make sure that the Read and Write check boxes are not
selected.

■ To allow write access, select Write.
■ To allow read access, select Read.

To save changes and close the User Manager dialog box, click OK. To save changes and keep the
dialog box open, click Apply.

▼ How to Remove Access Rights for a Namespace
Start Sun WBEM User Manager.

In the Namespace Access portion of the dialog box, select the namespace for which you want to
remove access control, and then click Delete.
Access control is removed from the namespace, and the namespace is removed from the list of
namespaces on the Sun WBEM User Manager dialog box.

To save changes and close the User Manager dialog box, click OK. To save changes and keep the
dialog box open, click Apply.

3

4

5

1

2

3

4

1

2

3

Using Sun WBEM User Manager

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)132

Using the Solaris WBEM SDK APIs to Set Access Control
You can use the WBEM SDK's application programming interfaces (SDK APIs) to set access
control on a namespace or on a per-user basis. These security classes are stored in the
root\security namespace:

■ Solaris_Acl – Base class for Solaris access control lists (ACLs). This class defines the string
property capability and sets its default value to r (read only).

■ Solaris_UserAcl – Represents the access control that a user has to the CIM objects within
the specified namespace.

■ Solaris_NamespaceAcl – Represents the access control on a namespace.

You can set access control for individual users to the CIM objects within a namespace by
creating an instance of the Solaris_UserACL class. Then use the APIs to change the access
rights for that instance. Similarly, you can set access control for namespaces by first creating an
instance of the Solaris_NameSpaceACL class. Then using APIs, such as the createInstance
method, to set the access rights for that instance.

An effective way to combine the use of these two classes is to use the Solaris_NameSpaceACL
class first to restrict access to all users to the objects in a namespace. Then, you can use the
Solaris_UserACL class to grant selected users access to the namespace.

Solaris_UserAclClass
The Solaris_UserAcl class inherits the string property capability with a default value r (read
only) from theSolaris_Acl class.

You can set the capability property to any one of these values for access privileges.

Access Right Description

r Read

rw Read and Write

w Write

none No access

The Solaris_UserAcl class defines the following two key properties. Only one instance of the
namespace and user-name ACL pair can exist in a namespace.

Using the Solaris WBEM SDK APIs to Set Access Control

Chapter 8 • Administering Security 133

Property Data Type Purpose

nspace string Identifies the namespace to which
this ACL applies

username string Identifies the user to which this
ACL applies

▼ How to Set Access Control for a User

Create an instance of the Solaris_UserAcl class.

For example:
...

/* Create a namespace object initialized with root\security

(name of namespace) on the local host. */

CIMNameSpace cns = new CIMNameSpace("", "root\security");

// Connect to the root\security namespace as root.

cc = new CIMClient(cns, user, user_passwd);

// Get the Solaris_UserAcl class

cimclass = cc.getClass(new CIMObjectPath("Solaris_UserAcl");

// Create a new instance of the Solaris_UserAcl

class ci = cimclass.newInstance();

...

Set the capability property to the desired access rights.

For example:
...

/* Change the access rights (capability) to read/write for user Guest

on objects in the root\molly namespace.*/

ci.setProperty("capability", new CIMValue(new String("rw"));
ci.setProperty("nspace", new CIMValue(new String("root\molly"));
ci.setProperty("username", new CIMValue(new String("guest"));
...

Update the instance.

For example:
...

// Pass the updated instance to the CIM Object Manager

cc.createInstance(new CIMObjectPath(), ci);

...

1

2

3

Using the Solaris WBEM SDK APIs to Set Access Control

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)134

Solaris_NamespaceAclClass
The Solaris_NamespaceAcl inherits the string property capability with a default value -r
(read-only for all users) from the Solaris_Acl class. The Solaris_NamespaceAcl class defines
this key property.

Property Data Type Purpose

nspace string Identifies the namespace to which
this access control list applies. Only
one instance of the namespace ACL
can exist in a namespace.

▼ How to Set Access Control for a Namespace

Create an instance of the Solaris_namespaceAcl class.

For example:
...

/* Create a namespace object initialized with root\security

(name of namespace) on the local host. */

CIMNameSpace cns = new CIMNameSpace("", "root\security");

// Connect to the root\security namespace as root.

cc = new CIMClient(cns, user, user_passwd);

// Get the Solaris_namespaceAcl class

cimclass = cc.getClass(new CIMObjectPath("Solaris_namespaceAcl");

// Create a new instance of the Solaris_namespaceAcl

class ci = cimclass.newInstance();

...

Set the capability property to the desired access rights.

For example:
...

/* Change the access rights (capability) to read/write

to the root\molly namespace. */

ci.setProperty("capability", new CIMValue(new String("rw"));
ci.setProperty("nspace", new CIMValue(new String("root\molly"));
...

Update the instance.

For example:
// Pass the updated instance to the CIM Object Manager

cc.createInstance(new CIMObjectPath(), ci);

1

2

3

Using the Solaris WBEM SDK APIs to Set Access Control

Chapter 8 • Administering Security 135

Troubleshooting Problems With WBEM Security
This section describes what to do in the following situations:
■ A client (user) cannot be authenticated by the CIMOM on the WBEM server
■ A role cannot be assumed
■ An ACCESS_DENIED error occurs

If a Client (User) Cannot Be Authenticated by the
CIMOM on the WBEM Server
If a client cannot be successfully authenticated by the CIMOM on the WBEM server, the
WBEM server returns a CIM security exception. This exception is returned when the server
attempts to establish the CIM client handle in the client application. The exception contains an
error code that indicates why the authentication attempt failed.

If the WBEM server cannot verify the user identity and credential and the user's identity is
invalid, the WBEM server returns a CIM security exception. This exception includes the
NO_SUCH_PRINCIPAL error. If the WBEM server cannot verify the user's identity and credential
and the user's password is invalid for that user's identity, the WBEM server returns a CIM
security exception. This exception includes the INVALID_CREDENTIAL error.

If the WBEM server cannot verify the Solaris role identity, the WBEM server returns a CIM
security exception that includes the NO_SUCH_ROLE error.

If the role password is invalid for the specified role identity, the WBEM server returns the
INVALID_CREDENTIAL error in the CIM security exception.

If both the role identity and role password are valid but the user is not allowed to assume the
role, the WBEM server returns the CANNOT_ASSUME_ROLE error in the CIM security exception.

These CIM security exceptions are described in more detail in the following table.

Error Probable Cause Solution

NO_SUCH_PRINCIPAL Specified user identity was not valid
in the Solaris operating
environment on the WBEM server,
or the user account for that user
identity either has no password or
is locked.

Check that the user has a valid user
identity. In other words, ensure
that the user can log in to the
Solaris operating environment on
the WBEM server machine. You
might also need to check the name
service tables. This check is to
determine whether the Solaris
WBEM server might be using user
identities from a name service
configured on the server.

Troubleshooting Problems With WBEM Security

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)136

Error Probable Cause Solution

INVALID_CREDENTIAL Password for the specified user, or
assumed role, is not valid for that
user in the Solaris operating
environment on the WBEM server.

Check that the user's password is
correct.

NO_SUCH_ROLE Role identity that is used for
authentication to the WBEM server
is not a valid RBAC role in the
Solaris operating environment on
that server.

The role identity might be valid in
the passwd table on the server, but
you cannot log into the server using
that identity. The Solaris software
does not allow you to log in directly
to role identities. You must check
the passwd table for the role
identity, and check the user_attr
table to ensure that the role is
defined as type user. Role identities
in the user_attr table contain an
attribute in the syntax type=role.

You can also check for a valid user
or valid role identity by using the
Solaris Management Console User
tool. You can use User
Management to check for a user,
and you can use Role Management
to check for a role. However, when
using the User tool, you must know
the correct source of the tables on
the CIMOM server. In other words,
if the CIMOM server is using a
name service such as NIS, you must
access the master server for that
name service.

CANNOT_ASSUME_ROLE Role identity is valid, but the
specified user identity in the
authentication exchange is not
configured to assume that role.

Explicitly assign users to roles by
using the Administrative Role tool
in the Solaris Management Console
User tool collection, which is
described in “How to Change the
Properties of a Role” in System
Administration Guide: Security
Services.

If Other CIM Security Exception Errors Appear
The WBEM server can return other error indications in the CIM security exception. However,
these indications typically identify a system failure in the authentication exchange. The WBEM

Troubleshooting Problems With WBEM Security

Chapter 8 • Administering Security 137

http://www.oracle.com/pls/topic/lookup?ctx=821-1456&id=rbactask-23
http://www.oracle.com/pls/topic/lookup?ctx=821-1456&id=rbactask-23
http://www.oracle.com/pls/topic/lookup?ctx=821-1456&id=rbactask-23
http://www.oracle.com/pls/topic/lookup?ctx=821-1456&id=rbactask-23

client configuration might not be compatible with the WBEM server configuration for the
security options in the authentication exchange.

If these error indications occur, check that the WBEM installation on the client machine
contains the appropriate configuration property values for security in
WbemClient.properties. This file is usually located in the vendor extension subdirectory in the
WBEM installation directory /usr/sadm/lib/wbem/extension.

Also, check the client application CLASSPATH setting to ensure that sunwbem.jar and the
extension directory are in the CLASSPATH.

If an Authorization Check Fails
If a client is not authorized to access or modify the data associated with a request to the WBEM
server, that server returns a CIM security exception. This exception includes the
ACCESS_DENIED error.

The ACCESS_DENIED error indicates that a request could not be completed because the user or
role does not have access to the data managed by that request.

Check the security messages in the WBEM log for the failed request. For information about
viewing log data, see “Viewing Log Data Through Log Viewer” on page 139. Authorization
failure log messages specify Access denied in the Summary column. The User column lists the
name of the authenticated user or the role name that was used in the check. The Source column
lists the name of the provider that is making the check. Note that the provider name that is listed
in this column is not the class of the provider implementation, but a user-friendly provider
name.

The detailed message contains the name of the permission that was being checked, and that
permission has not been granted to the user or role.

If the permission appears as namespace:right, the authorization check was using a namespace
ACL. The authenticated user has not been granted that permission (read or write) for that
namespace.

Use Sun WBEM User Manager (wbemadmin) to grant the user the appropriate permission. Sun
WBEM User Manager is described in “Using Sun WBEM User Manager to Set Access Control”
on page 129.

If the permission appears as solaris.application.right, the authorization check was using an
RBAC authorization.

Use the Administrative Role tool in the Solaris Management Console User tool collection to
grant the rights that you want to the user or role. This procedure is described in “How to
Change the Properties of a Role” in System Administration Guide: Security Services.

Troubleshooting Problems With WBEM Security

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)138

http://www.oracle.com/pls/topic/lookup?ctx=821-1456&id=rbactask-23
http://www.oracle.com/pls/topic/lookup?ctx=821-1456&id=rbactask-23

Troubleshooting

This chapter covers the following topics:

■ How to view log data
■ How to read WBEM error messages
■ List of error messages

Viewing Log Data Through Log Viewer
The WBEM logging service enables application developers and writers of providers to write log
messages to the log files. WBEM log files to track errors, warnings, and informational messages
that the management subsystem generates. For example, you might want to write out log
messages under the following conditions:

■ When a system is not able to access a serial port
■ When a system successfully mounts a file system
■ When the number of processes that are running on a system exceeds the allowed number

After you have created a log record, you can start the Solaris Management Console application
and Log Viewer. A log record is automatically created when you start the Solaris Management
Console software.

You can view all details of a log record in the Solaris Management Console Log Viewer.

▼ How to Start the Solaris Management Console
Application and Log Viewer

To start the Solaris Management Console, type this command:
$ smc

9C H A P T E R 9

1

139

In the Navigation panel, either double-click This Computer or click the expand/compress icon
next to This Computer.
A tree of commands is displayed below This Computer.

Double-click System Status.
The Log Viewer icon is displayed.

Click the Log Viewer icon.
Log Viewer starts.

About WBEM Error Messages
The CIM Object Manager (CIMOM) generates error messages that are used by both the
Managed Object Format (MOF) compiler and CIM Workshop. The MOF compiler appends a
line to the error message that indicates the line number in which the error occurs in the .mof
file.

Note – For more information on the MOF compiler, see the mofcomp(1M) man page.

Parts of an Error Message
An error message consists of the following parts:

2

3

4

About WBEM Error Messages

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)140

http://www.oracle.com/pls/topic/lookup?ctx=821-1462&id=mofcomp-1m

■ Unique identifier – A character string that identifies the error message. You can search for
the unique identifier in the Javadoc reference pages to see an explanation of the content of
the error message.

■ Parameters – Placeholders for the specific classes, methods, and qualifiers that are cited in
the exception message.

EXAMPLE 9–1 Parts of an Error Message

The MOF compiler returns the following error:

REF_REQUIRED = Association class CIM_Docked needs at least two refs.

Error in line 12.

■ REF_REQUIRED is the unique identifier.
■ CIM_Docked is a parameter.
■ Line 12 indicates the line number in the .mof file in which the error occurred.

WBEM Error Messages
This section describes the WBEM error messages, sorted by unique identifier.

ABSTRACT_INSTANCE

Description: This error message uses one parameter, {0}, which is replaced by the name of the
abstract class.

Cause: A create instance was attempted for the instance. However, the specified class is an
abstract class, and abstract classes cannot have instances.

Solution: Create instances for concrete classes.

CANNOT_ASSUME_ROLE

Description: This error message uses two parameters:

■ {0} is replaced by the user name.
■ {1} is replaced by the role name.

Cause: The specified principal cannot assume the specified role.

Solution: Make sure that the user has the appropriate rights to assume the given role. If the
user does not have the appropriate rights, contact your system administrator.

CHECKSUM_ERROR

Description: This error message does not use parameters.

Cause: The message could not be sent because the message was damaged or was corrupted.
The damage could have occurred accidentally in transit or by a malicious third party.

WBEM Error Messages

Chapter 9 • Troubleshooting 141

Note – This error message is displayed when the CIMOM receives an invalid checksum. A
checksum is the number of bits in a packet of data that were passed over the network. This
number is used by the sender and the receiver to ensure that the data has not been corrupted
or intentionally modified during transit. This number also used by the sender and receiver
of the information to verify that the transmission is secure.

An algorithm is run on the data before transmission. Then the checksum is generated and
included with the data to indicate the size of the data packet. When the message is received,
the receiver can recompute the checksum and compare the result to the sender's checksum.
If the checksums match, the transmission was secure, so the data was not corrupted or
modified.

Solution: Resend the message using the security features of Solaris WBEM Services. For
information about using these features of Solaris WBEM Services, see Chapter 8,
“Administering Security.”

CIM_ERR_ACCESS_DENIED

Description: This error message does not use parameters.

Cause: This error message is displayed when a user does not have the privileges and
permissions necessary to complete an action.

Solution: Request privileges to complete the operation from your system administrator or the
person who is responsible for your CIMOM.

CIM_ERR_ALREADY_EXISTS

Description: Instance 1: CIM_ERR_ALREADY_EXISTS

Description: This instance uses one parameter, {0}, which is replaced by the name of the
duplicate class.

Cause: The class that you attempted to create uses the same name as an existing class.

Solution: In CIM Workshop, search for existing classes to see the class names that are in use.
Then create the class by using a unique class name.

Description: Instance 2: CIM_ERR_ALREADY_EXISTS

Description: This instance uses one parameter, {0}, which is replaced by the name of the
duplicate instance.

Cause: The instance for a class you attempted to create uses the same name as an existing
instance.

Solution: In CIM Workshop, search for existing instances to see the names that are in use.
Then create the instance by using a unique name.

WBEM Error Messages

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)142

Description: Instance 3: CIM_ERR_ALREADY_EXISTS

Description: This instance uses one parameter, {0}, which is replaced by the name of the
duplicate namespace.

Cause: The namespace you attempted to create uses the same name as an existing namespace.

Solution: In CIM Workshop, search for existing namespaces to see the names that are in use.
Then create the namespace by using a unique name.

Description: Instance 4: CIM_ERR_ALREADY_EXISTS

Description: This instance uses one parameter, {0}, which is replaced by the name of the
duplicate qualifier type.

Cause: The qualifier type that you attempted to create uses the same name as an existing
qualifier type for the specified property.

Solution: In CIM Workshop, search for qualifier types that exist for the property to see the
names that are in use. Then create the qualifier type by using a unique name.

CIM_ERR_CLASS_HAS_CHILDREN

Description: This error message uses one parameter, {0}, which is replaced by the class name.

Cause: This exception is thrown by the CIMOM to disallow invalidation of the subclasses by
a superclass deletion. Clients must explicitly delete the subclasses first. The check for
subclasses is made before the check for class instances.

Solution: Remove the subclasses of the given class.

CIM_ERR_CLASS_HAS_INSTANCES

Description: This error message uses one parameter, {0}, which is replaced by the class name.

Cause: This exception is thrown if you attempt to delete a class that has instances.

Solution: Remove the instances of the given class.

CIM_ERR_FAILED

Description: This error message uses one parameter, {0}, which is replaced by a message that
explains the error condition and its possible cause.

Cause: This error message is generic, which means that this message can be displayed for
many different error conditions.

Solution: The solution varies depending on the error condition.

WBEM Error Messages

Chapter 9 • Troubleshooting 143

CIM_ERR_INVALID_PARAMETER

Description: This error message uses one parameter, {0}, which is replaced by the name of the
invalid parameter.

Cause: The name of the parameter or the method is invalid.

Solution: Fix the parameter.

CIM_ERR_INVALID_QUERY

Description: This error message uses two parameters:
■ {0} is replaced by the invalid part of the query.
■ {1} is replaced by additional information, including the actual error in the query.

Cause: The given query either has syntactical errors or semantic errors.

Solution: Fix the errors according to the exception details. In addition, make sure that the
query string and query language match.

CIM_ERR_INVALID_SUPERCLASS

Description: This error message uses two parameters:
■ {0} is replaced by the name of the specified subclass.
■ {1} is replaced by the name of the class for which a specified subclass does not exist.

Cause: A class is specified to belong to a subclass from a superclass, but the superclass does
not exist. The specified superclass might be misspelled, or a nonexistent superclass name
might have been specified in place of the intended superclass name. Or, the superclass and
the subclass might have been interpolated. In other words, the specified superclass may be a
subclass of the subclass. In the previous example, CIM_Chassis is specified as the superclass
of CIM_Container, but CIM_Chassis is a subclass of CIM_Container.

Solution: Check the spelling and the name of the superclass to ensure that the spelling is
correct. Ensure that the superclass exists in the namespace.

CIM_ERR_LOW_ON_MEMORY

Description: This error message does not use parameters.

Cause: The CIMOM is low on memory.

Solution: Delete some class definitions and static instances to free up memory.

CIM_ERR_NOT_FOUND

Description: Instance 1: CIM_ERR_NOT_FOUND

Description: This instance uses one parameter, {0}, which is replaced by the name of the
nonexistent class.

WBEM Error Messages

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)144

Cause: A class is specified but that class does not exist. The specified class might be
misspelled, or a nonexistent class name might have been accidentally specified in place of
the intended class name.

Solution: Check the spelling and the name of the class to ensure that the spelling is correct.
Ensure that the class exists in the namespace.

Description: Instance 2: CIM_ERR_NOT_FOUND

Description: This instance uses two parameters:

■ {0} is replaced by the name of the specified instance.
■ {1} is replaced by the name of the specified class.

Cause: The instance does not exist.

Solution: Create the instance.

Description: Instance 3: CIM_ERR_NOT_FOUND

Description: This instance uses one parameter, {0}, the name of the specified namespace.

Cause: The specified namespace is not found. This error can occur if the name of the
namespace was entered incorrectly due to a typing error or spelling mistake.

Solution: Retype the name of the namespace. Ensure that you type and spell the namespace
correctly.

CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTED

Description: This error message uses one parameter, {0}, which is replaced by the invalid
query language string.

Cause: The requested query language is not recognized by CIM.

Solution: Provide a supported query language.

CLASS_REFERENCE

Description: This error message uses two parameters:

■ {0} parameter is replaced by the name of the class that was defined to participate in a
reference.

■ {1} parameter is replaced by the name of the reference.

Cause: A property was defined for a class to indicate that the class has a reference. However,
the class is not an association. A class can only have a reference as a property if the class is an
association.

Solution: Add the association qualifier or remove the reference.

WBEM Error Messages

Chapter 9 • Troubleshooting 145

INVALID_CREDENTIAL

Description: This error message does not use parameters.

Cause: This error message is displayed when you enter an invalid password, or if your
CLASSPATH is not set up to include authentication checks for client applications.

Solution: Check the following:

■ Use the correct password.
■ Make sure your CLASSPATH contains the following directory and the following file:

/usr/sadm/lib/wbem/extension:/usr/sadm/lib/wbem/sunwbem.jar

INVALID_DATA

Description: This error message does not use parameters.

Cause: The security authenticator data is invalid or the data is not consistent with the security
mechanism you are using.

Solution: Make sure that your security modules are configured correctly.

INVALID_QUALIFIER_NAME

Description: This error message uses one parameter, {0}, which is replaced by the MOF
notation that depicts an empty qualifier name.

Cause: A qualifier was created for a property but a qualifier name was not specified.

Solution: Include the qualifier name.

KEY_OVERRIDE

Description: This error message uses two parameters:

■ {0} is replaced by the name of the concrete class that is in an override relationship with a
class that has one or more key qualifiers.

■ {1} is replaced by the name of the concrete class that has the key qualifier.

Cause: A non-abstract class, also referred to as a concrete class, is put into an override
relationship with a concrete class that has one or more key qualifiers. In CIM, all concrete
classes require at least one key qualifier, and a non-key class cannot override a class that has
a key.

Solution: Create a key qualifier for the non-key class.

KEY_REQUIRED

Description: This error message uses one parameter, {0}, which is replaced by the name of the
class that requires a key.

Cause: A key qualifier was not provided for a concrete class. In CIM, all non-abstract classes,
referred to as concrete classes, require at least one key qualifier.

WBEM Error Messages

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)146

Solution: Create a key qualifier for the class.

METHOD_OVERRIDDEN

Description: This error message uses three parameters:

■ {0} is replaced by the name of the method that is trying to override the method
represented by parameter {1}.

■ {1} is replaced by the name of the method that has already been overridden by the
method represented by parameter {2}.

■ {2} is replaced by the name of the method that has overridden parameter {1}.

Cause: A method is specified to override another method that has already been overridden by
a third method. Once a method has been overridden, that method cannot be overridden
again.

Solution: Specify a different method to override.

NEW_KEY

Description: This error message uses two parameters:

■ {0} is replaced by the name of the key.
■ {1} is replaced by the name of the class that is trying to define a new key.

Cause: A class is trying to define a new key when keys already have been defined in a
superclass. Once keys have been defined in a superclass, new keys cannot be introduced into
the subclasses.

Solution: Do not define a new key.

NO_CIMOM

Description: This error message uses one parameter, {0}, which is replaced by the name of the
host that is expected to be running the CIMOM.

Cause: The CIMOM is not running on the specified host.

Solution: Ensure that the CIMOM is running on the host to which you are trying to connect.
If the CIMOM is not running on that host, connect to a host running the CIMOM.

NO_EVENT_PROVIDER

Description: An event provider cannot be found.

Cause: The property provider class is not found.

WBEM Error Messages

Chapter 9 • Troubleshooting 147

Solution: Ensure that the CLASSPATH of the CIMOM contains the provider class parameters,
the indication class for which the provider is being defined, and the name of the Java
provider class. Ensure that the CIMOM Solaris provider is set and the provider qualifier is
correct.

NO_INSTANCE_PROVIDER

Description: This error message uses two parameters:
■ {0} is replaced by the name of the class for which the instance provider cannot be found.
■ {1} is replaced by the name of the instance provider class that was specified.

Cause: The Java class of the specified instance provider is not found. This error message
indicates that the CLASSPATH of the CIMOM is missing one or more of the following items:

■ Name of the provider class
■ Parameters of the provider class
■ CIM class for which the provider is defined

Solution: Set the CIMOM CLASSPATH environment variable. Ensure that the CIMOM Solaris
provider is set and the provider qualifier is correct.

NO_METHOD_PROVIDER

Description: This error message uses two parameters:

■ {0} is replaced by the name of the class for which the method provider cannot be found.
■ {1} is replaced by the name of the method provider class that was specified.

Cause: The Java class of the specified method provider is not found. This error message
indicates that the CLASSPATH of the CIMOM is missing one or more of the following items:

■ Name of the provider class
■ Parameters of the provider class
■ CIM class for which the provider is defined

Solution: Set the CIMOM CLASSPATH. Ensure that the CIMOM Solaris provider is set and the
provider qualifier is correct.

NO_OVERRIDDEN_METHOD

Description: This error message uses two parameters:

■ {0} is replaced by the name of the method that has overridden the method represented
by {1}.

■ {1} is replaced by the name of the method that has been overridden.

Cause: The method of a subclass is trying to override the method of the superclass. However,
the method that you are trying to override does not exist in the class hierarchy because the
method has not been defined.

WBEM Error Messages

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)148

When you override a method, you override its implementation and its signature.

Solution: Ensure that the method exists in the superclass.

NO_OVERRIDDEN_PROPERTY

Description: This error message uses two parameters:

■ {0} is replaced by the name of the property that has overridden {1}.
■ {1} is replaced by the name of the overriding property.

Cause: The property of a subclass is trying to override the property of the superclass.
However, the property that you are trying to override does not exist in the class hierarchy
because the method has not been defined.

Solution: Ensure that the property exists in the superclass.

NO_PROPERTY_PROVIDER

Description: This error message uses two parameters:

■ {0} is replaced by the name of the class for which the property provider cannot be found.
■ {1} is replaced by the name of the property provider class that was specified.

Cause: The Java class of the specified property provider is not found. This error message
indicates that the CLASSPATH of the CIMOM is missing one or more of the following items:

■ Name of the provider class
■ Parameters of the provider class
■ CIM class for which the provider is defined

Solution: Set the CIMOM CLASSPATH. Ensure that the CIMOM is running on the host to
which you are trying to connect. If the CIMOM is not running on that host, connect to a
host running the CIMOM.

NO_QUALIFIER_VALUE

Description: This error message uses two parameters:

■ {0} is replaced by the name of the qualifier that modifies the element {1}.
■ {1} is the element to which the qualifier refers. Depending on the qualifier, {1} can be a

class, property, method, or reference.

Cause: A qualifier was specified for a property or method but values were not included for the
qualifier. For example, the qualifier VALUES requires a string array to be specified. If the
VALUES qualifier is specified without the required string array, the NO_QUALIFIER_VALUE
error message is displayed.

Solution: Specify the required parameters for the qualifier. For information on what
attributes are required for which qualifiers, see the DMTF CIM specification at dmtf.org.

WBEM Error Messages

Chapter 9 • Troubleshooting 149

http://www.dmtf.org/home

NO_SUCH_METHOD

Description: This error message uses two parameters:

■ {0} is replaced by the name of the specified method.
■ {1} is replaced by the name of the specified class.

Cause: Most likely, the method was not defined for the specified class. If the method is
defined for the specified class, another method name might have been misspelled in the
definition.

Solution: Define the method for the specified class. Ensure that the method name and the
class name are spelled correctly.

NO_SUCH_PRINCIPAL

Description: This error message uses one parameter, {0}, which is replaced by the name of the
principal, a user account.

Cause: The specified user account cannot be found. The user name might have been
misspelled, or a the user does not have a user account.

Solution: Ensure that the user name is spelled and typed correctly upon login. Ensure that the
user has a user account.

NO_SUCH_QUALIFIER1

Description: This error message uses one parameter, {0}, which is replaced by the name of the
undefined qualifier.

Cause: A new qualifier was specified but that qualifier was not defined as part of the extension
schema. The qualifier must be defined as part of the CIM schema or part of an extension
schema. Otherwise, the qualifier is not recognized as a valid qualifier for a property or
method of a particular class.

Solution: Define the qualifier as part of the extension schema, or use a standard CIM
qualifier. For information about standard CIM qualifiers and the usage of qualifiers in the
CIM schema, see the DMTF CIM specification at: dmtf.org.

NO_SUCH_QUALIFIER2

Description: This error message uses two parameters:

■ {0} is replaced by the name of the class, property, or method that the qualifier modifies.
■ {1} is replaced by the name of the qualifier that cannot be found.

Cause: A new qualifier was specified to modify a property or method of a particular class. The
qualifier was not defined as part of the extension schema. The qualifier must be defined as
part of the CIM schema or part of an extension schema. Otherwise, the qualifier is not
recognized as a valid qualifier for a property or method of a particular class.

WBEM Error Messages

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)150

http://www.dmtf.org/home

Solution: Define the qualifier as part of the extension schema or use a standard CIM qualifier.
For information about standard CIM qualifiers and the usage of qualifiers in the CIM
schema, see the DMTF CIM specification at: dmtf.org.

NO_SUCH_ROLE

Description: This error message uses one parameter, {0}, which is replaced by the role name.

Cause: The specified role cannot be found or the specified role is not a role identity.

Solution: Make sure that the input role exists. If the role is required, contact your system
administrator to set up the role.

NO_SUCH_SESSION

Description: This error message uses one parameter, {0}, which is replaced by the session
identifier.

Cause: The session has been closed and is subsequently being used.

Solution: Do not close the session.

NOT_EVENT_PROVIDER

Description: This error message does not use parameters.

Cause: The provider class that was found in the class path does not implement the
EventProvider interface.

Solution: Ensure that the provider is correct and register the provider implements.

NOT_HELLO

Description: This error message does not use parameters.

Cause: This error message is displayed if the data in the hello message, the first message sent
to the CIMOM, is corrupted.

Solution: No action is available in response to this error message. For information about the
security features of Solaris WBEM Services, see Chapter 8, “Administering Security.”

NOT_INSTANCE_PROVIDER

Description: This error message uses two parameters:

■ {0} is replaced by the name of the instance for which the InstanceProvider interface is
being defined.

■ {1} is replaced by the name of the Java provider class that does not implement the
InstanceProvider interface. The InstanceProvider interface must be implemented to
enumerate all instances of the specified class.

Cause: The path to the Java provider class specified by the CLASSPATH environment variable
does not implement the InstanceProvider interface.

WBEM Error Messages

Chapter 9 • Troubleshooting 151

http://www.dmtf.org/home

Solution: Ensure that the provider is correct and register the provider implements.

NOT_METHOD_PROVIDER

Description: This error message uses two parameters:

■ {0} is replaced by the name of the method for which the MethodProvider interface is
being defined. The MethodProvider interface causes a specified method to be
implemented and to be called in a program.

■ {1} is replaced by the name of the Java provider class that does not implement the
MethodProvider interface.

Cause: The Java provider class that was found in the class path does not implement the
MethodProvider interface.

Solution: Ensure that the Java provider class that is in the class path implements the
MethodProvider interface. Use the following command when you declare the provider:
public Solaris implements MethodProvider.

NOT_PROPERTY_PROVIDER

Description: This error message uses two parameters:

■ {0} is replaced by the name of the method for which the PropertyProvider interface is
being defined. The PropertyProvider interface is required to retrieve the values of the
specified property.

■ {1} is replaced by the name of the Java provider class that does not implement the
PropertyProvider interface.

Cause: The Java provider class that is in the class path does not implement the
PropertyProvider interface.

Solution: Ensure that the Java provider class that is in the class path implements the
PropertyProvider interface. Use the following command when you declare the provider:
public Solaris implements PropertyProvider.

NOT_RESPONSE

Description: This error message does not use parameters.

Cause: This error message is displayed when the data in a first response message from the
CIMOM is corrupted.

Solution: No action is available in response to this error message. For information about the
security features of Solaris WBEM Services, see Chapter 8, “Administering Security.”

PROPERTY_OVERRIDDEN

Description: This error message uses three parameters:

WBEM Error Messages

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)152

■ {0} is replaced by the name of the property that is trying to override the property
represented by parameter {1}.

■ {1} is replaced by the name of the property that already has been overridden.
■ {2} is replaced by the name of the property that has overridden the property represented

by parameter {1}.

Cause: A property is specified to override another method that has already been overridden
by a third method. Once a property has been overridden, that property cannot be
overridden again.

Solution: Specify a different property to override.

QUALIFIER_UNOVERRIDABLE

Description: This error message uses two parameters:

■ {0} is replaced by the name of the qualifier with the DisableOverride flavor.
■ {1} is replaced by the name of the qualifier that is disabled by {0}.

Cause: The qualifier that is being overridden has the DisableOverride flavor.

Solution: Reset the ability of the qualifier to EnableOverride or to Override=True.

REF_REQUIRED

Description: This error message uses one parameter, {0}, which is replaced by the name of the
class.

Cause: A class was defined to participate in an association, but no references were cited. The
rules of the Common Information Model specify that an association must contain one or
more references.

Solution: Add references or remove the association qualifier.

SCOPE_ERROR

Description: This error message uses three parameters:

■ {0} is replaced by the name of the class the specified qualifier modifies.
■ {1} is replaced by the name of the specified qualifier.
■ {2} is replaced by the type of attribute that the qualifier modifies.

Cause: A qualifier was specified in a manner that conflicts with the qualifier type definition.
The scope of the [READ] qualifier is the definition that directs the [READ] qualifier to modify
a property. For example, if the [READ] qualifier is specified to modify a method, the
SCOPE_ERROR message is returned.

WBEM Error Messages

Chapter 9 • Troubleshooting 153

Note – The Common Information Model (CIM) specification defines the types of CIM
elements that a CIM qualifier can modify. This definition of the way in which a qualifier can
be used is referred to as its scope. Most qualifiers, by definition, have a scope that directs the
qualifiers to modify properties or methods or both. Many qualifiers have a scope that directs
the qualifiers to modify parameters, classes, associations, indications, or schemas.

Solution: Confirm the scope of the specified qualifier. Refer to the Qualifiers section of the
DMTF CIM specification at dmtf.org for the standard definitions of CIM qualifiers. Use a
different qualifier for the results that you want to achieve, or change your program to use the
qualifier according to its CIM definition.

TYPE_ERROR

Description: This error message uses five parameters:

■ {0} is replaced by the name of the specified element, such as a property, method, or
qualifier.

■ {1} is replaced by the name of the class to which the specified element belongs.
■ {2} is replaced by the type that is defined for the element.
■ {3} is replaced by the type of value that is assigned.
■ {4} is replaced by the actual value that is assigned.

Cause: The value of a property parameter or method parameter and its defined type are
mismatched.

Solution: Match the value of the property or method with its defined type.

UNKNOWNHOST

Description: This error message uses one parameter, {0}, which is replaced by the name of the
host.

Cause: A call was made to a specified host. The specified host is unavailable or that host
cannot be located. You might receive this message under any of the following conditions.

■ The host name was misspelled
■ The host computer was moved to a different domain
■ The host name has not been registered in this domain
■ The host is temporarily unavailable due to system conditions

Solution: Check the spelling of the host name. Use the ping command to ensure that the host
computer is responding. Check the system conditions of the host. Ensure that the host
belongs to the specified domain.

WBEM Error Messages

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)154

http://www.dmtf.org/home

VER_ERROR

Description: This error message uses one parameter, {0}, which is replaced by the version
number of the running CIMOM.

Cause: The CIMOM does not support the version of the client that is trying to connect to
CIMOM.

Solution: Install the appropriate version.

WBEM Error Messages

Chapter 9 • Troubleshooting 155

156

Solaris Schema

The Solaris Schema and CIM Schema are available by default in the CIM Object Manager. You
can view the MOF files, from which the Solaris Schema and CIM Schema are compiled, in
/usr/sadm/mof/. CIM Schema files, which implement the Core and Common models of the
Common Information Model, are denoted by the use of “CIM” in their associated file names.
The Solaris Schema files, denoted by the use of “Solaris” in their file names, provide the unique
extensions that Sun Microsystems has made to the Common Information Model. The MOF
files that you find in /usr/sadm/mof/will depend on the installation cluster of the system and
which packages have been installed.

Documentation of the Solaris providers listed in this chapter is included in the MOF file in
which the provider is specified.

■ “Solaris_Acl.mof File” on page 159
■ “Solaris_Application.mof File” on page 159
■ “Solaris_CIMOM.mof File” on page 160
■ “Solaris_Core.mof File” on page 160
■ “Solaris_Device.mof File” on page 161
■ “Solaris_Event.mof File” on page 161
■ “Solaris_Network.mof File” on page 162
■ “Solaris_Performance.mof File” on page 162
■ “Solaris_Project.mof File” on page 163
■ “Solaris_Schema.mof File” on page 163
■ “Solaris_SNMP.mof File” on page 163
■ “Solaris_System.mof File” on page 164
■ “Solaris_Users.mof File” on page 164
■ “Solaris_VM1.0.mof File” on page 165
■ “WBEMServices.mof File” on page 166

AA P P E N D I X A

157

Solaris Schema Files
This table provides a brief overview of the Solaris Schema files in /usr/sadm/mof.

TABLE A–1 Solaris Schema Files

Solaris Schema File What This Schema File Provides

Solaris_Acl.mof Contains the classes for WBEM access control list (ACL)
based security.

Solaris_Application.mof Models Solaris packages and patches in CIM.

Solaris_CIMOM.mof Contains configuration information for the CIM Object
Manager.

Solaris_Core.mof Contains class definition for core classes including the
computer system and statistical information.

Solaris_Device.mof Enables a description of your system's processor, serial
ports, printing devices, and time settings to make your
computer work with the CIM Object Manager.

Solaris_Event.mof Defines unique Solaris indication handlers. The class that
is defined in this file facilitates the delivery of indications
to Management clients. The protocol that is used for this
delivery is the implementation of the CIM Remote
Method Invocation (RMI) protocol from Sun
Microsystems.

Solaris_Network.mof Defines classes pertaining to network domains, IP
subnets, and naming services including NIS, NIS+,
LDAP, DNS, and server /etc files.

Solaris_Performance.mof Defines classes that pertain to the use and performance
of computing resources for each user and for each
project.

Solaris_Project.mof Defines classes that model the Solaris project database.

Solaris_Schema.mof Lists all of the MOF files of the Solaris Schema, and
specifies the order in which the MOF files are read and
are compiled.

Solaris_SNMP.mof Contains classes used to configure the SNMP provider
and its communication to SNMP agents on different
systems.

Solaris_System.mof Models the Solaris Schema components for a system,
including the operating system and processes of the
system.

Solaris_Users.mof Defines classes for working with user accounts.

Solaris Schema Files

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)158

TABLE A–1 Solaris Schema Files (Continued)
Solaris Schema File What This Schema File Provides

Solaris_VM1.0.mof Defines classes that pertain to storage devices.

WBEMServices.mof Contains classes to configure the class path of the CIM
object manager and its protocol adapters, both for clients
and providers.

The following sections describe the contents of each schema file in more detail.

Solaris_Acl.mof File
The Solaris_Acl.mof file specifies the security classes in Solaris WBEM Services. This file
defines these base classes for access control lists, users, and namespaces:

■ Solaris_Acl

■ Solaris_NamespaceAcl

■ Solaris_UserAcl

Solaris_Application.mof File
The Solaris_Application.mof file enables you to set up packages and patches for your
applications that extend the Solaris Schema. The Solaris_Application.mof file defines the
following classes:

■ Solaris_InstalledSoftwareElement

■ Solaris_Package

■ Solaris_Patch

■ Solaris_RegistrySoftwareElement

■ Solaris_SoftwareElement

■ Solaris_SoftwareFeature

In addition, the Solaris_Application.mof file defines the following association classes:

■ Solaris_PatchPackageDependency

■ Solaris_PatchToPatchDependency

■ Solaris_ProductSoftwareElementDependency

■ Solaris_ProductSoftwareElements

■ Solaris_ProductSoftwareFeatureDependency

■ Solaris_ProductSoftwareFeatures

■ Solaris_RegistryElementDependency

■ Solaris_SoftwareElementDependency

■ Solaris_SoftwareElementProductDependency

■ Solaris_SoftwareElementSoftwareFeatureDependency

Solaris Schema Files

Appendix A • Solaris Schema 159

■ Solaris_SoftwareFeatureDependency

■ Solaris_SoftwareFeatureParentChild

■ Solaris_SoftwareFeatureProductDependency

■ Solaris_SoftwareFeatureSoftwareElementDependency

■ Solaris_SoftwareFeatureSoftwareElements

Solaris_CIMOM.mof File
The Solaris_CIMOM.mof file contains all the system properties used by the CIM Object
Manager. The Solaris_CIMOM.mof file defines the following classes:

■ CIM_ObjectManager

■ CIM_ObjectManagerCommunicationMechanism

■ CIM_WBEMCommunicationMechanism

■ Solaris_CIMOM

■ Solaris_ObjectManagerClientProtocolAdapter

■ Solaris_ObjectManagerProtocolAdapter

■ Solaris_ObjectManagerProviderProtocolAdapter

■ Solaris_ProviderPath

In addition, the Solaris_CIMOM.mof file defines the association class
CIM_CommMechanismForManager.

Solaris_Core.mof File
The Solaris_Core.mof file is the first of the Solaris Schema files to be compiled after the
Solaris_Schema.mof file. This file provides the definition of the Solaris_ComputerSystem
class of the Solaris provider. The Solaris_Core.mof file defines the following classes:

■ Solaris_ComputerSystem

■ Solaris_LogRecord

■ Solaris_LogService

■ Solaris_Product

■ Solaris_SystemDownStatisticalInformation

■ Solaris_SystemUpStatisticalInformation

In addition, the Solaris_Core.mof file defines the following association classes:

■ Solaris_ProductParentChild

■ Solaris_ProductProductDependency

■ Solaris_SystemSetting

Solaris Schema Files

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)160

Solaris_Device.mof File
The Solaris_Device.mof file defines the following classes:

■ Solaris_Environment

■ Solaris_EthernetAdapter

■ Solaris_Keyboard

■ Solaris_LogEntry

■ Solaris_LogServiceProperties

■ Solaris_LogServiceSetting

■ Solaris_MessageLog

■ Solaris_MessageLogRecord

■ Solaris_MessageLogSetting

■ Solaris_Printer

■ Solaris_PrintJob

■ Solaris_PrintQueue

■ Solaris_PrintSAP

■ Solaris_PrintService

■ Solaris_Processor

■ Solaris_SerialPort

■ Solaris_SerialPortConfiguration

■ Solaris_SerialPortSetting

■ Solaris_SoundDevice

■ Solaris_SyslogRecord

■ Solaris_TimeZone

In addition, the Solaris_Device.mof file defines the following association classes:

■ Solaris_CpuSysinfoPerformanceMonitor

■ Solaris_CpuUtilizationPerformanceMonitor

■ Solaris_CpuVminfoPerformanceMonitor

■ Solaris_LogInDataFile

■ Solaris_OwningPrintQueue

■ Solaris_PrinterServicingQueue

■ Solaris_QueueForPrintService

■ Solaris_RecordInLog

■ Solaris_SystemTimeZone

Solaris_Event.mof File
The Solaris_Event.mof file contains classes that deal with indication handlers that are unique
to the Solaris platform. These Solaris indication handlers are subclasses of
CIM_IndicationHandler. These subclasses include Solaris_RMIDelivery and

Solaris Schema Files

Appendix A • Solaris Schema 161

Solaris_JAVAXRMIDelivery. The client RMI protocol uses the Solaris_JAVAXRMIDelivery
handler. Solaris_Event.mof contains Solaris_RMIDelivery to ensure compatibility with
previous versions of WBEM.

Solaris_Network.mof File
The Solaris_Network.mof file defines classes that pertain to network domains, IP subnets, and
naming services. These naming services include NIS, NIS+, LDAP, DNS, and server /etc files.
The Solaris_Network.mof file defines the following classes:

■ Solaris_AdminDomain

■ Solaris_DnsAdminDomain

■ Solaris_IPProtocolEndpoint

■ Solaris_IPSubnet

■ Solaris_LdapAdminDomain

■ Solaris_NisAdminDomain

■ Solaris_NisplusAdminDomain

■ Solaris_SystemAdminDomain

Solaris_Performance.mof File
The Solaris_Performance.mof file defines classes that pertain to computing resource metrics.
These classes pertain to the use and performance of computing resources for each user and for
each project. The Solaris_Performance.mof file defines the following classes:

■ Solaris_ActiveProject

■ Solaris_ActiveUser

■ Solaris_ProcessStatisticalInformation

■ Solaris_ProjectProcessAggregateStatisticalInformation

■ Solaris_UserProcessAggregateStatisticalInformation

In addition, the Solaris_Performance.mof file defines the following association classes:

■ Solaris_ActiveProjectProcessAggregateStatistics

■ Solaris_ActiveUserProcessAggregateStatistics

■ Solaris_ProcessStatistics

■ Solaris_ProjectProcessStatistics

■ Solaris_UserProcessStatistics

Solaris Schema Files

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)162

Solaris_Project.mof File
The Solaris_Project.mof file defines classes that represent the Solaris project database. The
Solaris_Project.mof file defines the class Solaris_Project. In addition, the
Solaris_Project.mof file defines the association classes Solaris_ProjectGroup and
Solaris_ProjectUser.

Solaris_Schema.mof File
The Solaris_Schema.mof file is the high-level container of all other MOF files that make up the
Solaris Schema. This file lists the MOF files in the order in which the files must be compiled.

The Java classes that you generate from each compilation are then sent to the CIMOM. At the
CIMOM, the classes are either enacted as events or sent to the CIM Object Manager Repository
for storage as objects. The following listing of the Solaris_Schema.mof file shows the Include
statements in the order that is required for compilation.

/*

Solaris Schema

Copyright (c) 2002 Sun Microsystems, Inc. All Rights Reserved.

*/

#pragma Include ("Solaris_Core.mof")
#pragma Include ("Solaris_Application.mof")
#pragma Include ("Solaris_System.mof")
#pragma Include ("Solaris_Device.mof")
#pragma Include ("Solaris_Network.mof")
#pragma Include ("Solaris_Users.mof")
#pragma Include ("Solaris_Project.mof")
#pragma Include ("Solaris_Event.mof")
#pragma Include ("Solaris_CIMOM.mof")
#pragma Include ("Solaris_SNMP.mof")

// This must be the last include since it changes the CIM namespace

#pragma Include ("Solaris_Acl.mof")

The compiler parses a line of the Solaris_Schema.mof file, compiles the file specified in the
Include statement, and then parses the next line of the Solaris_Schema.mof file. This process
continues until all included files are compiled.

Solaris_SNMP.mof File
The Solaris_SNMP.mof file defines classes that pertain to configuration information for an
SNMP device. The Solaris_SNMP.mof file defines the following classes:

■ Solaris_SNMPGroupConf

■ Solaris_SNMPSystem

■ Solaris_SNMPSystemConf

Solaris Schema Files

Appendix A • Solaris Schema 163

Solaris_System.mof File
The Solaris_System.mof file defines the following classes:

■ Solaris_CpuSysinfo

■ Solaris_CpuUtilizationInformation

■ Solaris_CpuVminfo

■ Solaris_DataFile

■ Solaris_DiskIOInformation

■ Solaris_DisklessClient

■ Solaris_Eeprom

■ Solaris_EepromSetting

■ Solaris_InstalledOS

■ Solaris_JobScheduler

■ Solaris_JobScheduler_Cron

■ Solaris_OperatingSystem

■ Solaris_OSProcess

■ Solaris_OsService

■ Solaris_Process

■ Solaris_RunningOS

■ Solaris_ScheduledJob

■ Solaris_ScheduledJob_Cron

In addition, the Solaris_System.mof file defines the following association classes:

■ Solaris_EepromElementSetting

■ Solaris_HostedJobScheduler

■ Solaris_OwningJobScheduler

■ Solaris_SystemDevice

Solaris_Users.mof File
The Solaris_Users.mof file defines the following classes:

■ Solaris_AuthorizationAttribute

■ Solaris_EmailAlias

■ Solaris_ExecutionProfile

■ Solaris_MailBox

■ Solaris_ProfileAttribute

■ Solaris_ShellSAP

■ Solaris_UserAccount

■ Solaris_UserGroup

■ Solaris_UserHomeDirectory

■ Solaris_UserTemplate

Solaris Schema Files

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)164

Solaris_VM1.0.mof File
The Solaris_VM1.0.mof file defines classes that pertain to storage devices, for example:

■ State database replicas within a slice
■ Range of extents within a storage extent that can be used for data
■ Stripes
■ Concatenated stripes
■ Mirrors
■ RAID Level 5 devices
■ UFS logging file systems
■ Spare pools
■ Disk sets
■ Storage volumes

The Solaris_VM1.0.mof file defines the following classes:

■ Solaris_Directory

■ Solaris_DiskDrive

■ Solaris_DiskPartition

■ Solaris_HSFS

■ Solaris_LocalFileSystem

■ Solaris_MediaPresent

■ Solaris_NFS

■ Solaris_UFS

■ Solaris_VMConcat

■ Solaris_VMDiskSet

■ Solaris_VMExtent

■ Solaris_VMHotSparePool

■ Solaris_VMMirror

■ Solaris_VMRaid5

■ Solaris_VMSoftPartition

■ Solaris_VMStateDatabase

■ Solaris_VMStorageVolume

■ Solaris_VMStripe

■ Solaris_VMTrans

In addition, the Solaris_VM1.0.mof file defines the following association classes:

■ Solaris_DiskIOPerformanceMonitor

■ Solaris_HSFSMount

■ Solaris_LocalFSResidesOnExtent

■ Solaris_Mount

■ Solaris_NFSExport

■ Solaris_NFSMount

■ Solaris_UFSMount

Solaris Schema Files

Appendix A • Solaris Schema 165

■ Solaris_VMConcatComponent

■ Solaris_VMDriveInDiskSet

■ Solaris_VMExtentBasedOn

■ Solaris_VMExtentInDiskSet

■ Solaris_VMHostInDiskSet

■ Solaris_VMHotSpareInUse

■ Solaris_VMHotSpares

■ Solaris_VMMirrorSubmirrors

■ Solaris_VMRaid5Component

■ Solaris_VMSoftPartComponent

■ Solaris_VMStatistics

■ Solaris_VMStripeComponent

■ Solaris_VMTransLog

■ Solaris_VMTransMaster

■ Solaris_VMUsesHotSparePool

■ Solaris_VMVolumeBasedOn

WBEMServices.mof File
The WBEMServices.mof file contains classes to configure the class path of the CIM object
manager and its protocol adapters, both for clients and providers. The WBEMServices.mof file
defines the following classes:

■ WBEMServices_CIMXMLObjectManagerClientProtocolAdapter

■ WBEMServices_Classpath

■ WBEMServices_ClientProtocolAdapterForManager

■ WBEMServices_ObjectManager

■ WBEMServices_ObjectManagerClientProtocolAdapter

■ WBEMServices_ObjectManagerProtocolAdapter

■ WBEMServices_ObjectManagerProviderProtocolAdapter

■ WBEMServices_ProtocolAdapterForManager

■ WBEMServices_ProviderProtocolAdapterForManager

■ WBEMServices_RMIObjectManagerClientProtocolAdapter

Solaris Schema Files

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)166

Index

A
application programming interfaces (APIs)

calling methods, 58
creating a namespace, 60
creating instances, 45
deleting a class, 62
deleting instances, 45
enumerating namespaces, 53
overview, 25
programming tasks, 42
retrieving classes, 59
security, 133
setting CIM qualifiers, 66
setting instances, 48

B
base class, creating, 61

C
CIM Object Manager

error messages, 140
Repository, 23, 29, 30, 31, 163
startup functions, 29
stopping, 31

CIM qualifiers, setting, 66
CIM Schema, files, 157–166
class

deleteClass, 62

class (Continued)
deleting, 62
retrieving, 59
security, 63, 133

classes
CIMClass, 61
creating, 61
deleting, 62

D
default namespace, 42
Distributed Management Task Force, 19

E
Error messages, 140
error messages, WBEM security, 136–138
examples

calling a method, 58
creating a namespace, 60
creating an instance, 45
deleting a class, 62
deleting an instance, 45
enumerating namespaces, 53
retrieving a class, 59
setting CIM qualifiers, 66
setting instances, 48

exceptions, See error messages

167

I
instance

creating, 44
deleting, 45
getting and setting, 47

J
Java

conversion from Managed Object Format
(MOF), 23

creating instances, 45
deleting instances, 45
integrating Java programs with native methods, 104
setting instances, 48
Solaris WBEM SDK example programs, 35

Java Native Interface, 23

L
log data, viewing, 139

M
Managed Object Format

creating base classes, 61
description, 24

Managed Object Format (MOF)
See also MOF files
conversion to Java, 23
Solaris Schema, 158

method
deleteInstance, 45
deleting a namespace, 61
enumNameSpace, 53
getClass, 59
getInstance, 47
invokeMethod, 58

method, createInstance, 63, 133
Methods, calling, 58
MOF file, security caution for compiling, 113
mofcomp command, security caution, 113

N
namespace, 63

creating, 60
default, 43
enumerating, 53
setting access control, 133

P
privileges, Sun WBEM User Manager, 129
provider

definition, 23
interfaces, 93
restarting the CIM Object Manager, 31
Solaris, 23
writing a native provider, 103
writing native, 23

Q
qualifier

definition, 66
example type declaration, 66
key, 61

R
Repository

CIM Object Manager, 23, 29, 30, 31

S
schema

CIM
files, 157–166

Solaris, 24
files, 157–166

Solaris Schema, 158
security, Sun WBEM User Manager, 129
security namespace, 42
single provider, 93

Index

Oracle Solaris WBEM Developer's Guide • November 2010 (Beta)168

software components, 21
Solaris providers, 23
Solaris Schema, 24

files, 157–166
Solaris WBEM SDK, programming tasks, 42
Solaris WBEM SDK error messages, See error messages
Solaris WBEM SDK example programs, See example

programs
Solaris WBEM Services, 20
Solaris WBEM Services error messages, See error

messages
startup functions, 29
Sun WBEM User Manager, setting user privileges, 129

W
WBEM, definition, 19
WBEM security, error messages, 136–138
WBEM Services, Solaris, 20

Index

169

170

	Oracle Solaris WBEM Developer's Guide
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Related Information
	Documentation, Support, and Training
	Oracle Software Resources
	Typographic Conventions
	Shell Prompts in Command Examples

	Overview of Solaris Web-Based Enterprise Management
	About Web-Based Enterprise Management
	About the Common Information Model
	About Solaris WBEM Services
	Software Components
	CIM Object Manager
	Managed Object Format Compiler
	Solaris Schema
	Solaris WBEM SDK

	Using CIM Workshop to Develop WBEM Applications
	CIM Workshop Documentation
	Running CIM Workshop
	How to Start CIM Workshop
	How to Exit CIM Workshop
	About the Main Window

	Using the CIM Object Manager
	About the CIM Object Manager
	init.wbem Command
	Solaris Management Console Server
	System Booting

	Stopping and Restarting the CIM Object Manager
	How to Stop the CIM Object Manager
	How to Restart the CIM Object Manager

	Upgrading the CIM Object Manager Repository
	How to Recompile Your MOF Files
	How to Merge WBEM Data

	Exception Messages

	Using the Sample Programs
	About the Sample Programs
	Sample Applet
	How to Run the Sample Applet Using Appletviewer
	How to Run the Sample Applet in a Web Browser

	Sample Client Programs
	Running the Sample Client Programs
	How to Set the CLASSPATH
	How to Run the Sample Client Programs

	Sample Provider Programs
	How to Run the Sample Provider Programs

	Writing a Client Program
	Client API Overview
	Sequence of a Client Application

	Opening and Closing a Client Connection
	About Namespaces
	Opening a Client Connection
	Closing a Client Connection

	Performing Basic Client Operations
	Creating an Instance
	Deleting an Instance
	Getting and Setting Instances
	Getting and Setting Properties
	Enumerating Objects
	Enumerating Objects

	Creating Associations
	About the Association Methods
	Passing a Class to the Association Methods
	Passing Instances to the Association Methods
	Using Optional Arguments With the Association Methods

	Calling Methods
	Retrieving Class Definitions
	Handling Exceptions
	Creating a Namespace
	Deleting a Namespace
	Creating a Base Class
	Deleting a Class

	Setting Access Control
	Solaris_UserAcl Class
	To Set Access Control for a User

	Solaris_NamespaceAcl Class
	To Set Access Control for a Namespace

	Working With Qualifiers and Qualifier Types
	Getting and Setting CIM Qualifiers

	Batching Client Requests
	Handling CIM Events
	About Indications
	About Subscriptions
	To Create a Subscription

	Adding a CIM Listener
	Creating an Event Filter
	To Create an Event Filter

	Creating an Event Handler
	Binding an Event Filter to an Event Handler

	Reading and Writing Log Messages
	About Log Files

	Writing WBEM Queries
	About the WBEM Query Language
	Writing Queries
	WQL Key Words
	SELECT Statement
	FROM Clause
	WHERE Clause
	Standard WQL Operators for WHERE Clauses

	Parsing Queries
	SELECT List
	FROM Clause
	WHERE Clause
	Writing a Provider That Handles Queries

	Writing a Provider Program
	About Providers
	Provider Data Sources
	Types of Providers
	Provider Naming Conventions

	Implementing the Provider Interfaces
	Writing an Instance Provider
	Writing a Method Provider
	Writing an Associator Provider
	Writing an Indication Provider
	How To Generate an Event Indication
	Event Provider Methods
	Creating and Delivering Indications
	About Authorizations

	Writing a Native Provider

	Creating a Provider
	How to Set the Provider CLASSPATH
	How to Register a Provider

	Creating JavaBeans Components Using the MOF Compiler
	About the MOF Compiler
	Generating JavaBeans Components Using mofcomp
	MOF File Elements

	How CIM Maps to the Java Programming Language
	Example of Generating JavaBeans Components

	Administering Security
	WBEM Security Mechanisms
	Client Authentication
	Role Assumption
	Secure Messaging
	Authorization
	Auditing
	Logging

	Using Sun WBEM User Manager to Set Access Control
	What You Can and Cannot Do With Sun WBEM User Manager

	Using Sun WBEM User Manager
	How to Start Sun WBEM User Manager
	How to Grant Default Access Rights to a User
	How to Change Access Rights for a User
	How to Remove Access Rights for a User
	How to Set Access Rights for a Namespace
	How to Remove Access Rights for a Namespace

	Using the Solaris WBEM SDK APIs to Set Access Control
	Solaris_UserAcl Class
	How to Set Access Control for a User

	Solaris_NamespaceAcl Class
	How to Set Access Control for a Namespace

	Troubleshooting Problems With WBEM Security
	If a Client (User) Cannot Be Authenticated by the CIMOM on the WBEM Server
	If Other CIM Security Exception Errors Appear
	If an Authorization Check Fails

	Troubleshooting
	Viewing Log Data Through Log Viewer
	How to Start the Solaris Management Console Application and Log Viewer

	About WBEM Error Messages
	Parts of an Error Message

	WBEM Error Messages

	Solaris Schema
	Solaris Schema Files
	Solaris_Acl.mof File
	Solaris_Application.mof File
	Solaris_CIMOM.mof File
	Solaris_Core.mof File
	Solaris_Device.mof File
	Solaris_Event.mof File
	Solaris_Network.mof File
	Solaris_Performance.mof File
	Solaris_Project.mof File
	Solaris_Schema.mof File
	Solaris_SNMP.mof File
	Solaris_System.mof File
	Solaris_Users.mof File
	Solaris_VM1.0.mof File
	WBEMServices.mof File

	Index

