1 IPMP-Tutorial Sneak Preview

Failure is not an option. ..

(Gene Kranz, Flight Director
Apollo 13)

January 21, 2010-19:36

1.1 The bridges at SuperUser Castle

root was sitting in SuperUser castle and everything was fine in the kingdom. But then
a loud squeaking and creaking noise found root’s attention. The demons of hypertext
wrote into the Scrolls of Log, that they couldn’t fulfill their work any longer, as the sole
bridge into the vast kingdom of root lowered at this moment was broken.

Root spoke: ”Use the other bridge ... there are two for a reason. Do I have to think for
you all?”. But the demons replied: ”We can’t do that ... only the infinite power of root
can lower the bridge”. Thus root lowered the bridge but thought "I have to do more
important things than lowering bridges”.

Thus root spoke a chant of infinite power and a daemon was spawned from the ether.
root told the daemon ”You are the guardian of the link! Protect it. Guard it. And when
everything else fails, you are allowed to lower the second bridge to SuperUser castle.”

1.2 Introduction

Before people start to think about clusters and load balancers to ensure the availability,
they should start with the low hanging fruits. Such a low hanging fruit is the protection
of the availability of the network connection. Solaris has an integrated mechanism to
ensure this availability. It’s called IP Multipathing.

[P Multipathing is an important part of the solution for an ever reoccurring problem , as
almost all applications interact with the outside world on one way or the other. Thus
ensuring the mechanisms of communication is a part of almost all architectures.

1 IPMP-Tutorial Sneak Preview

Even when you have other availability mechanisms like balancers, you want to use a
protection of the IP connection out of a simple reason: Many applications have a session
context and not all software architectures can replicate those session contexts to another
system to enable a failover without loosing the session. So do you really want to loose this
context just because of a failing network card or because of a admin unplugging a cable?
Or do you really want to provoke a cluster failover because of a failing network card?
IPMP can keep such failures on a low level without needing high-availability mechanisms
with a much larger impact.

Out of this reason IP Multipathing is an important part for most HA infrastructures.
This tutorial wants to give you an introduction in this topic. It’s not really an "less
known feature” because for many people working with Solaris, IPMP is a daily part of
their work. But many people new to Solaris or OpenSolaris aren’t aware of the fact that
Solaris has an integrated mechanism for IP Multipathing[] Furthermore this tutorial
wants to give some insights into new developments in the field of IP Multipathing.

1.2.1 Where should | start?

This tutorial will explain two mechanisms, because the realm of ”IP Multipathing” is
a topic in flux at the moment. The implementation in Solaris 10 and older releases
of Opensolaris (before Build 107) is vastly different to the implementation in current
releases of Opensolaris(Build 107 and up).

I thought a while about the problem, what method should make the start in this tutorial.
At the end I decided to explain the new IPMP mechanism first as the concepts of
multipathing are a little bit more obvious in the new implementation.

1.2.2 Basic Concept of IP Multipathing

The fundamental concepts of both implementations are pretty much the same, thus I
will start with a short introduction into the nomenclature of IPMP:

e IP Link: An IP link is the logical connection to an IP network. Think of a router,
that has to legs ... one to the Internet and one to the inside network. Such a router
has two IP links (even when the router has multiple connections to both networks).

e Physical Interface: The physical interface is the foundation of all networking,
but it isn’t really the basic entity in IPMP. The basic entity is the IP interface that
is bound to a physical interface. Or to simply it: It’s the IP address, not the cable

1 As well as most newbies to Solaris aren’t aware of MPxIO ... the counterpart of IPMP for storage

1 IPMP-Tutorial Sneak Preview

that is managed by IPMP. Of course, you need physical interfaces. At best two or
more of them, because with one path you can’t do multipathing]

e IPMP Group: Now you have physical interfaces on some network interface
cards into several IP Links. How do you tell the system, that certain interfaces are
redundant connections into the same IP link?

The concept of the IPMP group solves this problem. You put all interfaces into a
I[PMP group that connect into an IP link into a IPMP group. All interfaces in this
group are considered as redundancy to each other, so the IPMP can use them to
receive and transmit the traffic out of this network.

e Failure: Okay, you may think, this one is so obvious you don’t have to talk about
it. Well, not really. This is one of the most frequent errors in HA. Buying or using
a HA product without thinking about the failure modes that are addressed by the
mechanism.

You have to think about what failures are in-scope of IPMP and which one are
out-of-scope. IPMP is called IP Multipathing for a reason: It’s a tool for IP, it
isn’t meant for other protocols. So it protects the availability of IP services against
failures. But for this task it uses information of other layers of the stack, for
example the information if there is a link on the physical connection. Primarily it
uses this information to speed up failover. There is no need to check upper layers
if you already know that lower layers went away.

e Failure Detection: You do IPMP for a reason. You want protect your system
from loosing its network connection in the case a networking component fails.
One of the most important component of an automatic availability protection
mechanism is it’s capability to detect the need of doing something like switching
the IP configuration to another physical interface. Without such a mechanism it’s
just an easier interface to switch such configuration manually.

That said, IPMP provides two mechanisms to detect failures:

— Link based: As the name suggests, the link based failure detection checks
if the physical interface has an active and operational link to the physical
network. When a physical interface looses its link - for example by problems
with the cabling or a switch powered down - IPMP considers the interface as
failed and starts to failover to a operational link.

The monitoring mechanism for the link state is quite simple. It’s done by
monitoring the RUNNING flag of an IP interface. When you look at a functional
interface with ifconfig you will recognize this flag:

2Albeit I can think of remote cases were IPMP with one path can be useful

1 IPMP-Tutorial Sneak Preview

e1000g0: flags=209040843<UP,BROADCAST ,RUNNING ,MULTICAST ,DEPRECATED ,IPv4,
NOFAILOVER ,CoS> mtu 1500 index 11
inet 192.168.56.201 netmask ffffff00 broadcast 192.168.56.255
groupname productionO
ether 8:0:27:11:34:43

When you unplug the cable, the RUNNING flag is missing:

e1000g0: flags=219040803<UP,BROADCAST ,MULTICAST ,DEPRECATED ,IPv4,NOFAILOVER,
FAILED,CoS> mtu 1500 index 11
inet 192.168.56.201 netmask ffffff00 broadcast 192.168.56.255
groupname productionO
ether 8:0:27:11:34:43

This method of monitoring the interfaces mandates an capability of the
networking card driver to use link-based IPMP. They have to set and unset
the RUNNING flag based on the link state

— Probe based: The probe base mechanism itself is independent from the
hardware. It checks the IP layer on the IP layer. The basic idea is: When you
are able to communicate via IP to other systems, it’s safe to assume that the
IP layer is there.

The probing itself is a simple mechanism. The probe based failure detection
sends ICMP messages to a number of systems. As long the other systems
react on those ICMP packets, a link is considered as ok. When those other
systems don’t react in a certain time, the link is considered as failed and the
failover takes place

I will talk about the advantages and disadvantages of both in a later section.

e Data Address: In IPMP terminology the data addresses are the addresses that
are really used for communication. An IPMP group be used for multiple data
addresses. However, all data addresses have to be in the same IP link.

e Test Address: When you send ICMP messages to detect a failure, you need a
sourcing IP address for those messages. So each physical interface needs an address
that is just used for testing purposes. This address is called test address.

¢ Repair and Repair detection: When you talk about failures, you have to talk
about repairs as well. When an interface is functional again - for example by using
another cable or a different switch - you have to detect this situation and reactivate
the interface. Without repairs and the detection of repairs you would run out of
interfaces pretty soon. The repair detection is just the other side of the failure
dection, just that you check for probes getting through or a link that’s getting up
again.

3hme, eri, ce, ge, bge, gfe, dmfe, e1000g, ixgh, nge, nxge, rge, xge definitely work, ask the provider of
the driver for other cards

1 IPMP-Tutorial Sneak Preview

e Target systems: A target system is the matching opposite part of the test
address. When you want to check the availability of a network connection via
sending probe messages via ICMP, you need a source as well as a target for this

ICMP communication.

In IPMP speak a target system is a system that is used to test the availability of
an IP interface. The IPMP mechanism tries to ping the target system in order
to evaluate if the network interface is still fully functional. This is done for each
interface by choosing the test address as the source address of the IPMP request.

Target systems are chosen by the IPMP mechanism. The mechanism to do so is

quite simple:

— Routers in an ip link are chosen as target systems automatically.

— When there are no routers connected to the IP-link, the IPMP mechanism tries
to find hosts in the neighborhood. A ping is sent to the "all hosts”-multicast

address 224.0.0.1[

jmoekamp@hivemind:~$ ping -s 224.0.0.1
PING 224.0.0.1: 56 data bytes

64 bytes from hivemind-prod (192.168.178.200): icmp_seq=0. time=0.052 ms

64 bytes from 192.168.178.22: icmp_seq=0. time=0.284 ms
64 bytes from 192.168.178.114: icmp_seq=0. time=20.198 ms

The first few systems replying to this ping are chosen as target systems.

— The automatic mechanism doesn’t always choose the most optimal system
for this check, thus you can specify them in the case you think a manual
configuration ensures that the target system really represent a set of system,
whose availability represents a check the availability of the network. Manually
defined hosts have always precedence over routers, so manually defining such
systems can reduce the ICMP load on your router. However, in most cases

the automatic mechanism yields reasonable and sufficient results.

1.2.3 Link based vs. probe based failure/repair detection

As I wrote before, there are two methods of failure detection. Link based failure detection

and probe based failure detection. Both have advantages and disadvantages:

4This address is specified by RFC 1112 http://tools.ietf.org/html/rfc1112

http://tools.ietf.org/html/rfc1112

1 IPMP-Tutorial Sneak Preview

Link based

The link based method is the fasted method of both. Whenever the link goes down, the
IPMP gets a notification of the state change of the interface almost immediately. So it
can react instantaneously on such failures.

Furthermore it doesn’t need any test addresses. It doesn’t check the availability on the
IP layer and so there is no need for the interface to communicate independently from the
data address.

But there is a big disadvantage. The challenge lies in the point that it doesn’t check the
health of your IP connection, it just checks if there is a link. It’s like a a small signal
light, that indicates that there’s power on the plug, but doesn’t tell you if it’s 220v or
110v.

There are situations when a purely link-based mechanism is misguiding, especially when
the networks are getting more complex. Just think about the following network: Let’s
assume that link 1 fails. Obviously the link at the physical interface goes down. The
link based mechanism can detect this failure and the system can react to this problem
and switch over to the other networking card. But now let’s assume that link 2 fails.
The link on the connection 1 is still up and the system considers the connection to the
network as functional. There is no change in the flags of the IP interface. However your
networking connection is still broken as your defaultrouter is gone. A link means nothing
when you can’t communicate over it.

At first such scenarios doesn’t sound so common and an intelligent network design
can prevent such situations. Yes, that’s correct, but just think about el-cheapo media
converters from fibre to copper, that doesn’t take down the link on the copper side
when the link is down on the fibre side’l Or small switches that are misused as media
converterd’|

Probe based

So how you can circumvent this problem? The solution is somewhat obvious. Don’t
check only the link on the physical layer. Check it on the layer that really matters. In
the case of networking: Don’t check if there’s a physical link ... check if you can reach
other systems with the IP protocol. And the probe base failure detection does exactly
this.

5Albeit any decent media converter has a feature that mirrors the link down state from one side to the
other to ease management and to notify the connected system about problems

5Dont’ laugh about it ... I found dusty old 10BASET hubs in raised floors working perfectly as media
converters for years and years

1 IPMP-Tutorial Sneak Preview

CoreSwitch 1

Link 2 Link 3

Switch 2

Figure 1.1: Simple network with redundant server connection

1 IPMP-Tutorial Sneak Preview

CoreSwitch 1

Link 2 Link 3

Switch 2

Figure 1.2: Simple network with redundant server connection

1 IPMP-Tutorial Sneak Preview

CoreSwitch 1

Link 2 Link 3

Switch 2

Figure 1.3: Simple network with redundant server connection

1 IPMP-Tutorial Sneak Preview

As i wrote before, the probe based failure detection uses ICMP messages to check a
functional IP network. So it can check if you really have an IP connection to your default
router and not just a link to a switch somewhere between the server and the router.

But this method has a disadvantage as well: You need vastly more IP-addresses. Every
interface in the IPMP address needs a test address. The test address is used to test the
connection and stays on the interface even in the case of a failurd'|

The TP address consumption is huge. Given you have n interfaces you need n test
addresses.An IPMP group with four connections needs 4 test addresses. However you
can ease the consumption of IP-Address by using a private network for the test addresses
different to the network containing the data addresses. But I will get to this at the end
of this chapter.

1.2.4 Failure/Repair detection time

Another interesting question is the speed of the failure and repair detection. It’s different
for both mechanisms.

For link based failure detection it’s easy, as soon as the IPMP subsystem gets aware of
the situation, that an interface lost the RUNNING flag, it’s considered down. It’s nearly
instantaneous. Even probe-based IPMP uses this mechanism to speed up the failover.
Link-based failure detection is still in action, even when you use probe-based failure
detection.

But what’s with the reaction time of the probe based failure detection? As i’ve told you
before, the mechanism is based on ICMP messages. There are two simple rules:

e When 5 consecutive probes fail, the interface is considered as failed

e When 10 consecutive probes get through on an interface considered as failed, it’s
considered as repaired

In the default configuration, probing takes place roughly every 2 seconds. You can
observe this by snooping the interface when you have put it into a IPMP group.

jmoekamp@hivemind:~“# snoop -d e1000g0 -t a -r icmp

Using device e1000g0 (promiscuous mode)

18:56:10.82015 192.168.178.201 -> 192.168.178.1 ICMP Echo request (ID: 11017 Sequence
number: 27065)

18:56:10.82045 192.168.178.1 -> 192.168.178.201 ICMP Echo reply (ID: 11017 Sequence
number: 27065)

18:56:12.64018 192.168.178.201 -> 192.168.178.1 ICMP Echo request (ID: 11017 Sequence
number: 27066)

18:56:12.64053 192.168.178.1 -> 192.168.178.201 ICMP Echo reply (ID: 11017 Sequence
number: 27066)

"Obviously you need the test mechanism to check if the physical link was repaired by the admin

10

1 IPMP-Tutorial Sneak Preview

Given the 2 seconds between the probes, a failure is detected in 10 seconds by default, a
repair is detected in 20 seconds. However you can change this number in the case you
need a faster failure. I will explain that on page [37]in section [1.9.4]

1.2.5 IPMP vs. Link aggregation

Link aggregation is available on many switches for quite a while now. With link
aggregation it is possible to bundle a number of interfaces into a single logical interface.
There is a failure protection mechanism in Link Aggregation as well. At start it was
somewhat similar to the link based failure detection. When the link is down on a member
of an aggregation, the switch takes the link out of the aggregation and put it’s back as
soon as the link get’s up again. Later something similar to the probe-based mechanism
found it’s way into the Ethernet standards. It’s called LACP. With LACP special frames
are used on a link to determine if the other side of the connection is in the same aggregateﬁ
and if there is really an Ethernet connection between both switches.I won’t go in the
details now, as this will be the topic of another tutorial in the next days.

But the main purpose of link aggregation is to create a bigger pipe when a single Ethernet
connection isn’t enough.

So ... why should you use IPMP? The reason is a simple one. When you use link
aggregation, all your connections have to terminate on the same switch, thus this
mechanisms won’t really help you in the case of a switch failure.

The mechanisms of IPMP doesn’t work in the Layer 2 of the network, it works in the
third layer and so it doesn’t have this constraint. The connections of an IPMP group can
end in different switches, they can have different speeds, they could be even of a different
technology, as long they use IP (this was more of advantage in the past, today in the
”Ethernet Everything” age this point lost its appeal).

I tend to say that link aggregation is a performance technology with some high availability
capabilities, where as IPMP is a high-availability technology with some performance
capabilities.

1.3 Loadspreading

A source of frequent questions is the load spreading feature in IPMP. Customers have
asked me if this comparable to the aggregation. My answer is ” Yes, but not really!”

8Tt was common configuration error in early times to have non-matching aggregation configuration

11

1 IPMP-Tutorial Sneak Preview

Perhaps this is the right moment to explain a thing about IPMP. When you look at the
interfaces of a classic IPMP configuration, it looks like the IP addresses are assigned
to physical interfaces. But that isn’t the truth. When you send out data on such an
interface, it’s spread on all activd’| interfaces of such a group.

But you have to be cautious: IPMP can do this only for outbound traffic. As IPMP is a
server-only technology, there is no counterpart for it on the switch. So there is no load
spreading on the switch.

The switches doesn’t know about this situation. When an inbound packet reaches the
default gateway, the router uses the usual mechanisms to get the ethernet address of
the IP address and sends the data to this ethernet address. As there can be just one
ethernet address for every IP address, the inbound communication will always use just
one interface.

This isn’t a problem for many workloads as many server applications send more data
than they receiveEG]. But as soon your application receives at lot of dataE, you should
opt for another load distribution mechanism.

However there is a trick to circumvent this constraint: A single IPMP group can provide
several data addresses. By carefully distributing this data addresses over the physical
interfaces you are able to distribute the inbound load as well. So when you are able to
use multiple IP addresses you could do such a manual spreading of the inbound load.

However real load spreading mechanisms with the help of the switcheg™ will yield a much
better distribution for the inbound traffic in many cases.

But this disadvantage comes with an advantage: You are not bound to a single switch to
use this load spreading. You could terminate every interface of you server in a separate
switch and the IPMP group still spreads the traffic on all interfaces. That isn’t possible
with the standard link aggregation technologies of Ethernet.

[want to end this section a short warning: Both aggregation technologies will not increase
your bandwidth when you have just a single [P data stream. Both technologies will use
the same Ethernet interface for a communication relation between client and server. It’s
possible to separate them even based on Layer 4 properties, but at the end the single

9Active doesn’t mean functional. An interface can be functional but it isn’t used by IP traffic. An
interface can be declared as a standby interface, thus it may be functional but the IPMP subsystem
wouldn’t use it. That’s useful when you have a 10 GBe Interface and a 1 GBe Interface. You don’t
want the 1 GBE interface for normal use, but it’s better than nothing in the case the 10 GBe interface
fails

10For example a webserver

HFor example a webserver

121 ike bundling of Ethernet links via LACP

12

1 IPMP-Tutorial Sneak Preview

ftp download will use just one of your lines. This is necessary to prevent out-of-order
packetd™| due to different trip times of the data on separate links.

1.3.1 Classic IPMP vs. new IPMP

There are many similar concepts in Classic IPMP and New IPMP. But the both imple-
mentations have important differences as well.

The most important difference is the binding of the data address to the interfaces.

e With classic IPMP the data address is bound to a certain interface. In the case
of the failure of an interface, the interface isn’t used anymore for outbound traffic
and the data address gets switched to an operational and active interface.

e With new IPMP you have a virtual ipmp interface in front of the physical network
interfaces representing the IPMP group. The ipmp interface holds the data address
and it isn’t switched at any time. A physical interface may have a test address, but
they are never configured with a data address. The virtual IPMP interface is your
point of administration when you want to snoop network traffic for all interfaces in
this group for example.

1.4 in.mpathd

There is a component in both variants that controls all the mechanisms surrounding IP
multipathing. It’s the in.mpathd daemon.

jmoekamp@hivemind:~$ ps -ef | grep "mpathd" | grep -v "grep"
root 4523 1 0 Jan 19 7 8:22 /lib/inet/in.mpathd

This daemon is automatically started by ifconfig, as soon you are configuring something
in conjunction with IPMP on your system. The in.mpathd process is responsible for
network adapter failure detection, repair detection, recovery, automatic failover and

failback.

3You want to prevent this out of performance reasons

13

1 IPMP-Tutorial Sneak Preview

1.5 Prerequisites

At first you need a testbed. In this tutorial I will use a system with three interfaces. Two
of them are Intel networking cards. They are named 1000g0 and €1000g0. The third
interface is an onboard Realtek LAN adapter called rge0.

The configuration of the ip network is straight forward. The subnet in this test is
192.168.178.0/24. I have a router at 192.168.178.1.

The physical network is a little bit more complex to demonstrate the limits of link-based
failure detection. €1000g0 and e1000g1 are connected to a first switch called Switch A.
This switch connects to to a second switch called Switch B. The rge0 interface connects
directly to Switch B. The router of this network is connected to Switch B as well.

Cable 1
100090
Switch A o)
B)
5 &
E e1000g1 Cable 2
E
g Switch B
= Default
router
rge0 I[Cable 3

Figure 1.4: Configuration for the demo

To make the configuration a little bit more comfortable, we add a few hosts to our
/etc/hosts file. We need four adresses while going through the tutorial. At first we
need the name for the data address:

echo "192.168.178.200 hivemind-prod" >> /etc/hosts

Now we need names for our test addresses. It’s a good practice to use the name of the
data address appended with the name of the physical address:

echo "192.168.178.201 hivemind-prod-e1000g0" >> /etc/hosts
echo "192.168.178.202 hivemind-prod-e1000gl" >> /etc/hosts
echo "192.168.178.203 hivemind-prod-rge0" >> /etc/hosts

14

1 IPMP-Tutorial Sneak Preview

1.6 New IPMP

When you want to try new IPMP, you need a fairly recent build of OpenSolaris. New
IPMP was integrated into Build 107 for the first time.

At first: If you have already a working IPMP configuration, you can simply reuse this
config. However it yields a different looking, but functionally equivalent result compared
to your system with Classic IPMP. This is made possible by some automagic functions
in New IPMP. One example is the implicit creation of the IPMP interface with the name
of the IPMP group when there isn’t already an IPMP interface in the group. However
explicit creation should be prefered as you can choose a better name for your IPMP
interface and the dependencies are much more obvious.

As I wrote before, the new IPMP doesn’t use a logical interface switching from one
interface to the other. You have a special kind of interface for it. It’s a virtual interface.
It’s looking like a real interface but there is no hardware behind this interface.

So ... at first we have to configure this interface:

jmoekamp@hivemind:/etc# ifconfig productionO ipmp hivemind-prod up

With this command you've configured the IPMP interface. You can use any name for it
you want, it just has to begin with a letter and has to end on a number. I have chosen
the name production0 for this tutorial

Now let’s look at the interface:

jmoekamp@hivemind:“# ifconfig productionO

productionO: flags=8011000803<UP,BROADCAST ,MULTICAST,IPv4,FAILED,IPMP> mtu 68 index 6
inet 192.168.178.200 netmask ffffff00 broadcast 192.168.178.255
groupname productionO

As you see, it’s pretty much looking like a normal network interface with some specialities:
At first it’s in the mode FAILED at the moment. There are no network interfaces configured
to the group, thus you can’t connect anywhere over this interface.

The interface is already configured with the data address[”] The data address will never
move away from there. At the end you see the name of the IPMP group. The default
behavior sets the name of the IPMP group and the name of the IPMP interface to the
same value.

Okay, now we have to assign some physical interfaces to it. This is the moment where
we have to make a decision. Do we want to use IPMP with probes or without probes?
As I've explained before it’s important to know at this point, what failure scenarios you
want to cover with your configuration. You need to know it now, as the configuration is
slightly different.

14 Additional data addresses are configured as logical interfaces onto this virtual interface. You won’t
configure additional virtual IPMP interfaces

15

1 IPMP-Tutorial Sneak Preview

1.6.1 Link based failure detection

I want to explain the configuration of the link based failure detection first not only
because it’s easier, but to show you the problems of link based failure detection, too.

Configuration

As explained before, the link based failure detection just snoops on certain events of
the networking card like a lost link. Thus we just have to configure the interface into
the IPMP group that you want to protect against a link failure, but you don’t have to
configure any IP addresses on the member interfaces of the IPMP group.

Okay, at first we plumb the interfaces we want to use in our IPMP group:

jmoekamp@hivemind:/etc# ifconfig e1000g0 plumb
jmoekamp@hivemind:/etc# ifconfig e1000gl plumb
jmoekamp@hivemind:/etc# ifconfig rge0 plumb

Okay, now we add the three member interfaces into the IPMP group:

jmoekamp@hivemind:/etc# ifconfig e1000g0 -failover group productionO up
jmoekamp@hivemind:/etc# ifconfig e1000gl -failover group productionO up
jmoekamp@hivemind:/etc# ifconfig rge0 -failover group productionO up

As you may have noticed, we really didn’t specify an IP address or a hostname. With
link-based failure detection you don’t need it. The IP address of the group is located on
the IPMP interface we’ve defined a few moments ago.

But let’s have a look at the ifconfig statements. There are two parameters you may
not know:

e —failover: This parameter marks an interface as a non-failover one. In case of a
failure, this interface configuration doesn’t move. While a little bit strange in the
context of a physical interfacd™] but the rationale gets clearer with probe-based
IPMP.

e group productionO: the parameter group designates the [IPMP group membership
of an interface.

Let’s look at one of the interfaces:

rge0: flags=9040843<UP,BROADCAST ,RUNNING ,MULTICAST ,DEPRECATED ,IPv4,NOFAILOVER> mtu
1500 index 5
inet 0.0.0.0 netmask ff000000 broadcast 0.255.255.255
groupname productionO

15Moving hardware is a little bit problematic just by software....

16

1 IPMP-Tutorial Sneak Preview

We find the consequences of both ifconfig parameters: The NOFAILOVER is obvi-
ously the result of the -failover and groupname production0 is the result of the
group productionO statement. But there is another flag that is important in the realm
of IPMP. It’s the DEPRECATED flag.

The DEPRECATED flag has a very simple meaning: Don’t use this IP interface. When an
interface has this flag, the IP address won’t be used to send out data®} As those IP
addresses are just for test purposes, you don’t want them to appear in packets to the
outside world.

Playing around

Now we need to interact with the hardware, as we will fail network connections manually.
Or to say it differently: We will pull some cables.

But before we are doing this, we look at the initial status of our IPMP configuration.
The new IPMP model improved the monitoring capabilities of it’s state by introducing a
command for this task. It’s called ipmpstat.

jmoekamp@hivemind: “# ipmpstat -i

INTERFACE ACTIVE GROUP FLAGS LINK PROBE STATE
rge0 yes production0 ------- up disabled ok
e1000g1 yes production0 ------- up disabled ok
e1000g0 yes production0 --mb--- up disabled ok

Just to give you a brief tour through the output of the command. The first column
reports the name of the interface, the next one reports the state of the interface from the
perspective of IPMP. The third column tells you which IPMP group was assigned to this
interface.

The next columns gives us some more in-depth information about the interface. The
fourth column is a multipurpose column to report a number of states. In the last output,
the ——mb-- tells us, that the interface e1000g0 was chosen for sending and receiving
multicast and broadcast data. Other interfaces doesn’t have a special state, so there are
just dashes in the respective FLAGS field of these interfaces. The fifth column reveals,
that we've disabled probeq’| The last column details on the state of the interface. In
this example it is 0K and so it’s used in the IPMP group.

Okay, now pull the cable from the e1000g0 interface. It’s Cable 1 in the figure. The
system automatically switches to e1000g1 as the active interface.

160f course there are exceptions like an application specifically binding to the interface. Please look
into the man page for further information
170r to be more exact, that there is no probing as we didn’t configured it so far

17

1 IPMP-Tutorial Sneak Preview

jmoekamp@hivemind: "# ipmpstat -i

INTERFACE ACTIVE GROUP FLAGS LINK PROBE STATE
rge0 yes production0 ------- up disabled ok
e1000g1 yes production0 --mb--- up disabled ok
e1000g0 no production0 ------- down disabled failed

As you can see, the failure has been detected on the e1000g0 interface. The link is down,
thus it is no longer active. Okay, let’s repair it.

Put the cable back to the port of the e1000g0 interface. After a moments, the link is
up. The in.mpathd gets aware of the RUNNING flag on the interface. in.mpathd assumes
that the network connection got repaired, so the state of the interface is set to ok and
thus the interface is reactivated.

jmoekamp@hivemind:"# ipmpstat -i

INTERFACE ACTIVE GROUP FLAGS LINK PROBE STATE
rge0 yes production0 ------- up disabled ok
e1000g1 yes production0 --mb--- up disabled ok
e1000g0 yes production0 ------- up disabled ok

The problem with link-based failure detection

Just in case you've played with the ethernet cables, ensure that IPMP chooses an interface
connecting via Switch A as the active interface by zipping Cable 3 from the switch B for
a moment. When you check with ipmpstat -i the mb has to be assigned to the interface
e1000g0 or €1000g1.

As 1 wrote before there are failure modes link-based failure detection can’t detect. Now
let’s introduce such a fault. To do so, just remove Cable 4 between switch A and B.

jmoekamp@hivemind: "# ipmpstat -i

INTERFACE ACTIVE GROUP FLAGS LINK PROBE STATE
rge0 yes production0 ------- up disabled ok
e1000g1 yes production0 --mb--- up disabled ok
e1000g0 yes production0 ------- up disabled ok

As there is still a link on the Cables 1 and 2 everything is fine from the perspective of
IPMP. It doesn’t switch to the connection via rge0 which presents the only working
connection to the outside world. IPMP is simply not aware of the fact that Switch A
was seperated from the IP link 192.168.178.0/24 due to the removal of cable 4.

1.6.2 Probe based failure detection

The probe based detection has some additional capabilities. At first it has all the
capabilities of the link-based detection. It switches over to the other network card as soon
as the card loses the link. But additionally it checks the availability of the connection by
pinging other IP addresses called target systems. When the system doesn’t get a reply

18

1 IPMP-Tutorial Sneak Preview

on the ICMP messages, the interface is assumed to be in failure state and it isn’t used

anymore. in.mpathd switches the data addresses to other interfaces. So how do you
configure probe based IPMP?

Configuration

Okay, at first we revert back to the original state of the system. This is easy, we just have
to unplumb the interfaces. In my example I’'m unplumbing all interfaces. You could reuse
the productionO interface, but I'm including it here just in case you've started reading
this tutorial at the beginning of this paragraph| It’s important that you unplumb the
member interfaces of the group before you unplumb the IPMP interface, otherwise you
get an error message:

jmoekamp@hivemind:/etc# ifconfig e1000g0 unplumb
jmoekamp@hivemind:/etc# ifconfig €1000gl unplumb
jmoekamp@hivemind:/etc# ifconfig rge0 unplumb
jmoekamp@hivemind:/etc# ifconfig productionO unplumb

Okay, now all the interfaces are away. Now we recreate the IPMP group.

jmoekamp@hivemind:/etc# ifconfig productionO ipmp hivemind-prod up

We can check the successful creation of the IPMP interface by using the ipmpstat
command.

jmoekamp@hivemind:/etc# ipmpstat -g
GROUP GROUPNAME STATE FDT INTERFACES
productionO productionO failed -= -=

At start there isn’t an interface configured into the IPMP group. So let’s start to fill the
group with some life.

jmoekamp@hivemind:/etc# ifconfig e1000g0 plumb hivemind-prod-e1000g0 -failover group
productionO up

There is an important difference. This ifconfig statement contains an IP address, that
is assigned to the physical interface. This automatically configures IPMP to use the
probe based failure detection.

The idea behind the -failover setting gets clearer now. Obviously the test addresses of
an interface should be failovered by IPMP. They should stay on the logical interface. As
the interface has the FAILOVER flag, the complete interface including it’s IP address is
exempted from any failover.

Let’s check the ipmp group again:

18Tn this case, the first three commands will fail, but you have the explicitly defined IPMP interface

19

1 IPMP-Tutorial Sneak Preview

jmoekamp@hivemind:/etc# ipmpstat -g
GROUP GROUPNAME STATE FDT INTERFACES
productionO productionO ok 10.00s e1000g0

There is now an interface in the group. Of course an IPMP group with just one interface
doesn’t really make sense. So configure we will configure a second interface into the
group. You may have recognized the FTD column. FTD stands for ”Failure Detection
Time”. Why is there an own column for this number? Due to the dynamic nature of the
Failure Detection time, the FDT may be different for every group. With this column you
can check the the current FDT.

jmoekamp@hivemind:/etc# ifconfig e1000gl plumb hivemind-prod-e1000gl -failover group
productionO up

Let’s check again.

jmoekamp@hivemind:/etc# ipmpstat -g
GROUP GROUPNAME STATE FDT INTERFACES
productionO productionO ok 10.00s e1000gl e1000g0

Now we add the third interface that is connected to the default gateway just via Switch
B.

jmoekamp@hivemind:/etc# ifconfig rge0 plumb hivemind-prod-rge0 -failover group
productionO up

Let’s check again.

jmoekamp@hivemind:/etc# ipmpstat -g
GROUP GROUPNAME STATE FDT INTERFACES
production0 productionO ok 10.00s rge0 e1000gl1 e1000g0

All three interfaces are in the IPMP group now. And that’s all ... we’'ve just activated
failure detection and failover by this four commands. Really simple, isn’t it?

Playing around

I hope, you have still the hardware configuration in place, I used to show the problems
of link based failure detection. In the case you haven’t please create the configuration
we’ve used there.

At first we do a simple test: We simply unplug a cable from the system. In my case I
removed the cable 1:

jmoekamp@hivemind: "# ipmpstat -i

INTERFACE ACTIVE GROUP FLAGS LINK PROBE STATE
rge0 yes production0 --mb--- up ok ok
e1000g1 yes production0 ------- up ok ok
e1000g0 no production0 ------- down failed failed

20

1 IPMP-Tutorial Sneak Preview

The system reacts immediately, as the link-based failure detection is still active, even
when you use the probe-based mechanism. You can observe this in the ipmpstat output
by monitoring the state of the link column. It’s down at the moment and obviously
probes can’t reach their targets. The state is assumed as failed. Now plug the cable
back to the system:

jmoekamp@hivemind: “# ipmpstat -i

INTERFACE ACTIVE GROUP FLAGS LINK PROBE STATE
rge0 yes production0 --mb--- up ok ok
e1000g1 yes production0 ------- up ok ok
e1000g0 no production0 ------- up failed failed

The link is back, but the interface is still failed. IPMP works as designed here. The
probing of the interface with ICMP messages still considers this interface as down. As
we have now two mechanism to check the availability of the interface, both have to
confirm the repair. IPMP doesn’t consider an interface as repaired when just one ICMP
probe gets through, it waits until 20 ICMP probes were correctly replied by the target
system. Due to this probing at repair time instead of just relying on the link, you can
prevent that an interface is considered as OK when an unconfigured switch brings the link
back online, but the configuration of the switch doesn’t allow to the server to connect
anywhere (because of VLAN configuration for example).

jmoekamp@hivemind:"# ipmpstat -i

INTERFACE ACTIVE GROUP FLAGS LINK PROBE STATE
rge0 yes production0 --mb--- up ok ok
e1000g1 yes production0 ------- up ok ok
e1000g0 yes production0 ------- up ok ok

jmoekamp@hivemind:~#

As soon as the probing of the interface is successful, it brings the interface back to the
OK state and everything is fine.

Now we get to a more interesting use case of probe-based failure detection. Let’s assume
we’ve repaired everything and all is fine. You should see a situation similar to this one in
your ipmpstat output:

jmoekamp@hivemind: "# ipmpstat -i

INTERFACE ACTIVE GROUP FLAGS LINK PROBE STATE
rge0 yes production0 ------- up ok ok
e1000g1 yes production0 ------- up ok ok
e1000g0 yes production0 --mb--- up ok ok

Now unplug cable 4, the cable between the switch A and B. At first nothing happens,
but a few seconds later IPMP switches the IP addresses to rge0 and set the state of the
other interfaces to failed.

jmoekamp@hivemind: “# ipmpstat -i

INTERFACE ACTIVE GROUP FLAGS LINK PROBE STATE
rge0 yes production0 --mb--- up ok ok
e1000g1 no production0 ------- up failed failed
e1000g0 no production0 ------- up failed failed

21

1 IPMP-Tutorial Sneak Preview

When you look at the output of ipmpstat you will notice that the link is still up, but
the probe has failed, thus the interfaces were set into the state failed.

When you plug the cable 3 back to the switches nothing will happen at first. You have
to wait until the probing mechanism reports that the IPMP messages were correctly
returned by the target systems.

jmoekamp@hivemind: "# ipmpstat -i

INTERFACE ACTIVE GROUP FLAGS LINK PROBE STATE
rge0 yes production0 --mb--- up ok ok
e1000g1 no production0 ------- up failed failed
e1000g0 no production0 ------- up failed failed

After a few seconds it should deliver an ipmpstat output reporting everything is well
again.

jmoekamp@hivemind: "# ipmpstat -i

INTERFACE ACTIVE GROUP FLAGS LINK PROBE STATE
rge0 yes production0 --mb--- up ok ok
e1000g1 yes production0 ------- up ok ok
e1000g0 yes production0 ------- up ok ok

1.6.3 Making the configuration boot persistent

As you have recognized for sure, all this configuration took place with the ifconfig
statement. This configuration is lost when you reboot the system. But there is already
an entity that configures the interfaces at system start. It’s using the hostname.* files.
Thus we could use these files for IPMP as well.

Boot persistent link-based configuration

Okay, to recreate our link-based IPMP configuration in a boot persistent, we need to fill
the hostname. * files with the following statements:

jmoekamp@hivemind:/etc# echo "ipmp group productionO hivemind-prod up" > /etc/
hostname.productionO

jmoekamp@hivemind:/etc# echo "group production0 -failover up" > /etc/hostname.el1000g0

jmoekamp@hivemind:/etc# echo "group production0 -failover up" > /etc/hostname.el1000gl

jmoekamp@hivemind:/etc# echo "group production0 -failover up" > /etc/hostname.rge0

We reboot the system now to ensure that we did everything correctly. When the system
has booted up, we will check if we made an error.

jmoekamp@hivemind:~$ ipmpstat -g

GROUP GROUPNAME STATE FDT INTERFACES

productionO productionO ok -- rge0 e1000gl e1000g0
jmoekamp@hivemind:~$ ipmpstat -i

INTERFACE ACTIVE GROUP FLAGS LINK PROBE STATE
rge0 yes production0 ------- up disabled ok
e1000g1 yes production0 ------- up disabled ok
e1000g0 yes production0 --mb--- up disabled ok

22

1 IPMP-Tutorial Sneak Preview

Looks good. Now let’s look into the list of interfaces.

jmoekamp@hivemind:~$ ifconfig -a
lo0: flags=2001000849<UP,LOOPBACK ,RUNNING ,MULTICAST ,IPv4,VIRTUAL> mtu 8232 index 1
inet 127.0.0.1 netmask ££f000000
productionO: flags=8001000843<UP,BROADCAST ,RUNNING ,MULTICAST ,IPv4,IPMP> mtu 1500
index 2
inet 192.168.178.200 netmask ffffff00 broadcast 192.168.178.255
groupname productionO
e1000g0: flags=9040843<UP,BROADCAST ,RUNNING,MULTICAST ,DEPRECATED ,IPv4 ,NOFAILOVER> mtu
1500 index 3
inet 0.0.0.0 netmask ff000000 broadcast 0.255.255.255
groupname productionO
e1000g1l: flags=9040843<UP,BROADCAST ,RUNNING,MULTICAST ,DEPRECATED ,IPv4 ,NOFAILOVER> mtu
1500 index 4
inet 0.0.0.0 netmask ff000000 broadcast 0.255.255.255
groupname productionO
rge0: flags=9040843<UP,BROADCAST ,RUNNING ,MULTICAST ,DEPRECATED ,IPv4,NOFAILOVER> mtu
1500 index 5
inet 0.0.0.0 netmask ff000000 broadcast 0.255.255.255
groupname productionO
lo0: flags=2002000849<UP,LOOPBACK ,RUNNING ,MULTICAST ,IPv6 ,VIRTUAL> mtu 8252 index 1
inet6 ::1/128
jmoekamp@hivemind:~$

IPMP configured and boot-persistent? Check.

Boot persistent probe-based configuration

We can do the same for the probe-based IPMP:

jmoekamp@hivemind:/etc# echo "ipmp group productionO hivemind-prod up" > /etc/
hostname.productionO

jmoekamp@hivemind:/etc# echo "group production0 -failover hivemind-prod-e1000g0 up" >
/etc/hostname.e1000g0

jmoekamp@hivemind:/etc# echo "group production0 -failover hivemind-prod-e1000gl up" >
/etc/hostname.e1000g1

jmoekamp@hivemind:/etc# echo "group production0 -failover hivemind-prod-rgeO up" > /
etc/hostname.rge0

Reboot the system and login afterwards to check the list of interfaces.

jmoekamp@hivemind:~$ ifconfig -a
lo0: flags=2001000849<UP,LOOPBACK ,RUNNING ,MULTICAST ,IPv4,VIRTUAL> mtu 8232 index 1
inet 127.0.0.1 netmask ££f000000
productionO: flags=8001000843<UP,BROADCAST ,RUNNING ,MULTICAST,IPv4,IPMP> mtu 1500
index 2
inet 192.168.178.200 netmask ffffff00 broadcast 192.168.178.255
groupname productionO
e1000g0: flags=9040843<UP,BROADCAST ,RUNNING ,MULTICAST ,DEPRECATED ,IPv4,NOFAILOVER> mtu
1500 index 3
inet 192.168.178.201 netmask ffffff00 broadcast 192.168.178.255
groupname productionO
e1000g1: flags=9040843<UP,BROADCAST ,RUNNING ,MULTICAST ,DEPRECATED ,IPv4,NOFAILOVER> mtu
1500 index 4
inet 192.168.178.202 netmask ffffff00 broadcast 192.168.178.255
groupname productionO
rge0: flags=9040843<UP,BROADCAST ,RUNNING ,MULTICAST ,DEPRECATED ,IPv4 ,NOFAILOVER> mtu
1500 index 5

23

1 IPMP-Tutorial Sneak Preview

inet 192.168.178.203 netmask ffffff00 broadcast 192.168.178.255
groupname productionO
lo0: flags=2002000849<UP,LOOPBACK ,RUNNING ,MULTICAST ,IPv6,VIRTUAL> mtu 8252 index 1

inet6 ::1/128

Let’s check the configuration via ipmpstat, too:

jmoekamp@hivemind:~$ ipmpstat -i
INTERFACE ACTIVE

rge0 yes
e1000g1 yes
e1000g0 yes

jmoekamp@hivemind

Everything is find.

H

GROUP FLAGS LINK PROBE STATE
production0 --mb--- up ok ok
production0 ------- up ok ok
production0 ------- up ok ok

1.6.4 Using IPMP and Link Aggregation

As I wrote before there is another way to protect your system against the failure of a
network connection - Link Aggregation. As i’ve explained before, there are failure modes
that can’t be addressed by link aggregation. But you can use both in conjunction. This
makes sense, when your main connection is a 10GBe interface and you don’t want to
plug a second one into the system and use already existent 1GBe Interfaces as a backup

for it instead.

It’s pretty straightforward to do so. At first you have to configure the link aggregation.

jmoekamp@hivemind
jmoekamp@hivemind

H
H. 2

jmoekamp@hivemind:"#
jmoekamp@hivemind:~#
jmoekamp@hivemind:"#
LINK PORT
aggregate0 --
e1000g0
e1000g1

pfexec bash

ifconfig
ifconfig

e1000g0 unplumb
€1000g1 unplumb

dladm create-aggr -1 e1000g0 -1 e1000gl aggregateO
dladm show-aggr -x aggregateO

SPEED DUPLEX STATE ADDRESS PORTSTATE
OMb unknown unknown 0:1b:21:3d:91:£7 -=

OMb half down 0:1b:21:3d:91:£7 standby
OMb half down 0:1b:21:16:8d:7¢f standby

The dladm create-aggr creates an aggregation, that bundles the interfaces e1000g0
and e1000g1 into a single virtual interface. Now I plug both cables into the switch.

jmoekamp@hivemind:“# dladm show-aggr -x aggregateO

LINK PORT

aggregate0 --
e1000g0
e1000g1

SPEED DUPLEX STATE ADDRESS PORTSTATE
100Mb full up 0:1b:21:3d:91:£7 --

100Mb full up 0:1b:21:3d:91:£7 attached
100Mb full up 0:1b:21:16:84d:7f attached

Interfaces are up, the aggregation is ready for use.

jmoekamp@hivemind
jmoekamp@hivemind
jmoekamp@hivemind
jmoekamp@hivemind
jmoekamp@hivemind
jmoekamp@hivemind

T#
H
H 3
H
T#
T#

ifconfig
ifconfig
ifconfig
ifconfig
ifconfig
ifconfig

rge0 unplumb

productionO ipmp hivemind-prod up
aggregate0 plumb

aggregate0 -failover group productionO up
rge0 plumb

rge0 -failover group productionO up

24

1 IPMP-Tutorial Sneak Preview

Looks pretty much like a standard IPMP configuration. You can think of aggregate0 as
a plain-standard physical interface from the perspective the the admin. When we check

the IPMP configuration we will see both interfaces.

jmoekamp@hivemind: "# ipmpstat -i

INTERFACE ACTIVE GROUP FLAGS LINK PROBE STATE
rge0 yes production0 ------- up disabled ok
aggregate0 yes production0 --mb--- up disabled ok
jmoekamp@hivemind: "# ipmpstat -g

GROUP GROUPNAME STATE FDT INTERFACES

productionO productionO ok -- rge0 aggregateO

Now we unplug one of the aggregated cables.

jmoekamp@hivemind:“# dladm show-aggr -x aggregateO

LINK PORT SPEED DUPLEX STATE ADDRESS

aggregate0 -- 100Mb full up 0:1b:21:3d:91:£7
e1000g0 100Mb full up 0:1b:21:3d:91: 7
e1000g1 OMb half down 0:1b:21:16:8d:7¢f

jmoekamp@hivemind:"# ipmpstat -g

GROUP GROUPNAME STATE FDT INTERFACES

productionO productionO ok -- rge0 aggregateO

jmoekamp@hivemind: "# ipmpstat -i

INTERFACE ACTIVE GROUP FLAGS LINK PROBE STATE

rge0 yes production0 ------- up disabled ok

aggregate0 yes production0 --mb--- up disabled ok

PORTSTATE

attached
standby

Everything is still okay. The aggregate hides the fact of the one failed interface from the

IPMP subsystem. Now we unplug the second interface.

jmoekamp@hivemind:"# ipmpstat -i

INTERFACE ACTIVE GROUP FLAGS LINK PROBE STATE

rgel yes production0 --mb--- up disabled ok

aggregate0 no production0 ------- down disabled failed

jmoekamp@hivemind: "# ipmpstat -g

GROUP GROUPNAME STATE FDT INTERFACES

productionO production0 degraded -- rge0 [aggregateO]

jmoekamp@hivemind:"# ipmpstat -i

INTERFACE ACTIVE GROUP FLAGS LINK PROBE STATE

rgel yes production0 --mb--- up disabled ok

aggregate0 no production0 ------- down disabled failed

jmoekamp@hivemind:"# dladm show-aggr -x aggregateO

LINK PORT SPEED DUPLEX STATE ADDRESS

aggregate0 -- OMb unknown down 0:1b:21:3d:91: 7
e1000g0 OMb half down 0:1b:21:3d:91:£7
e1000g1 OMb half down 0:1b:21:16:8d:7f

PORTSTATE

standby
standby

The links are both down, and without a functional interface left, the ”link” of the
aggregate goes down as Wel]m Of course the IPMP subsystem switches to rge0 now.
When we plug one cable back to the switch, the aggregate is functional again and IPMP
detects this and the interface is considered as functional in IPMP again, too.

jmoekamp@hivemind:"# dladm show-aggr -x aggregateO

LINK PORT SPEED DUPLEX STATE ADDRESS

aggregate0 -- 100Mb full up 0:1b:21:3d:91: 7
e1000g0 100Mb full up 0:1b:21:3d:91:£7
e1000g1 OMb half down 0:1:21:16:8d:7f

9Tt stays up, as long as there’s a functional interface in the aggregate

25

PORTSTATE

attached
standby

1 IPMP-Tutorial Sneak Preview

jmoekamp@hivemind: "# ipmpstat -i

INTERFACE ACTIVE GROUP FLAGS LINK PROBE STATE
rge0 yes production0 --mb--- up disabled ok
aggregate0 yes production0 ------- up disabled ok

When you plug the second interface into the interface, the aggregate is complete. But it
doesn’t change a thing from the IPMP side, as the aggregate0 interface was already
functional from the perpective of IPMP with just one interface.

jmoekamp@hivemind:"# dladm show-aggr -x aggregateO

LINK PORT SPEED DUPLEX STATE ADDRESS PORTSTATE

aggregate0 -- 100Mb full up 0:1b:21:3d:91:£7 --
e1000g0 100Mb full up 0:1b:21:3d:91: 17 attached
e1000g1 100Mb full up 0:1b:21:16:8d:7¢f attached

jmoekamp@hivemind:"#

1.6.5 Monitoring the actions of IPMP in your logfiles

All actions of the IPMP subsystem are logged by syslog. In this section I will show you
the log messages that you get when a failure occurs and a repair takes place. The mpathd
is somewhat chatty about the stuff it does.

Failure and repair of a single interface

Jan 8 20:01:06 hivemind in.mpathd[15113]: [ID 215189 daemon.error] The link has gone
down on rge0

Jan 8 20:01:06 hivemind in.mpathd[15113]: [ID 968981 daemon.error] IP interface
fajlure detected on rge0 of group productionO

Jan 8 20:01:28 hivemind in.mpathd[15113]: [ID 820239 daemon.error] The link has come
up on rge0

Jan 8 20:01:43 hivemind in.mpathd[15113]: [ID 341557 daemon.error] IP interface
repair detected on rge0 of group productionO

Failure of all interfaces and repair of a single interface

Jan 8 20:00:35 hivemind in.mpathd[15113]: [ID 773107 daemon.error] All IP interfaces
in group productionO are now unusable

Jan 8 20:00:51 hivemind in.mpathd[15113]: [ID 561795 daemon.error] At least 1 IP
interface (rge0) in group productionO is now usable

1.7 Classic IPMP

IPMP itself is a really old feature. It’s in Solaris for several versions now. Just the
implementation I've described before is a new one. But in Solaris 10 you don’t have
this new IPMP implementation. Solaris 10 still uses the old implementation. I will call
the old implementation classic IPMP. The basic mechanism of new and classic IPMP is
pretty much the same: Providing failure detection mechanisms and switch something

26

1 IPMP-Tutorial Sneak Preview

to do a failover thus the data address stays available. But internally it’s a completely
different implementation. While the new mechanism is certainly the future of IPMP, I
m pretty sure you will old mechanism more often in the wild.

1.7.1 Prerequisites

This example works with the same configuration, but you need a system with Solaris 10
or an Opensolaris System with a build earlier than 107. I just use Opensolaris on my
lab machines, thus i used an virtualized Solaris 10 to explain the configuration of classic
IPMP.

I will use the following addresses:

192.168.178.200 vhivemind-prod
192.168.178.201 vhivemind-e1000gO0
192.168.178.202 vhivemind-e1000gl

I will demonstrate this on a recent release of Solaris 10:

bash-3.00# cat /etc/release
Solaris 10 5/09 s10x_u7wos_08 X86
Copyright 2009 Sun Microsystems, Inc. All Rights Reserved.
Use is subject to license terms.
Assembled 30 March 2009

1.7.2 Link based classic IPMP

An important difference to the new IPMP implementation is the point that you doesn’t
create a distinct IPMP interface because the concept of such a thing doesn’t exist in
classic IPMP. With link based classic IPMP you just put the interfaces in a group

bash-3.00# ifconfig e1000g0 plumb

bash-3.00# ifconfig e1000gl plumb

bash-3.00# ifconfig e1000g0 vhivemind-prod netmask + broadcast + group productionO up
bash-3.00# ifconfig e1000gl group productionO up

bash-3.00# ifconfig -a

Let’s have a short look onto the network configuration.

lo0: flags=2001000849<UP,LOOPBACK ,RUNNING ,MULTICAST ,IPv4,VIRTUAL> mtu 8232 index 1
inet 127.0.0.1 netmask f££000000

e1000g0: flags=201000843<UP,BROADCAST ,RUNNING ,MULTICAST ,IPv4,CoS> mtu 1500 index 15
inet 192.168.56.200 netmask ffffff00 broadcast 192.168.56.255
groupname productionO
ether 8:0:27:11:34:43

e1000gl: flags=201000843<UP,BROADCAST ,RUNNING ,MULTICAST ,IPv4,CoS> mtu 1500 index 16
inet 0.0.0.0 netmask ££000000
groupname productionO
ether 8:0:27:6d:9:be

27

1 IPMP-Tutorial Sneak Preview

The data address is directly bound to one of the interfaces. It’s important to know,that
even when the ifconfig output suggest something different, outbound data flows to the
network on both interfaces, not just the one which holds the data address.

Now unplug the cable connecting to e1000g0

bash-3.00# ifconfig -a

lo0: flags=2001000849<UP,LOOPBACK ,RUNNING ,MULTICAST ,IPv4,VIRTUAL> mtu 8232 index 1
inet 127.0.0.1 netmask f££f000000

e1000g0: flags=219000802<BROADCAST ,MULTICAST,IPv4,NOFAILOVER ,FAILED,CoS> mtu O index

15

inet 0.0.0.0 netmask O
groupname productionO
ether 8:0:27:11:34:43

e1000g1l: flags=201000843<UP,BROADCAST ,RUNNING ,MULTICAST ,IPv4,CoS> mtu 1500 index 16
inet 0.0.0.0 netmask f£f000000
groupname productionO
ether 8:0:27:6d:9:be

e1000g1:1: flags=201000843<UP,BROADCAST ,RUNNING,MULTICAST ,IPv4,CoS> mtu 1500 index 16
inet 192.168.56.200 netmask ffffff00 broadcast 192.168.56.255

The data address was moved away from e1000g1 and a logical interface was created to
hold it instead.

1.7.3 Probe based classic IPMP

The failure detection by IPMP probes is available in classic IPMP as well. Again all the
configuration is done via ifconfig

bash-3.00# ifconfig e1000g0 plumb

bash-3.00# ifconfig e1000gl plumb

bash-3.00# ifconfig e1000g0 vhivemind-e1000g0 deprecated -failover netmask +
broadcast + group productionO up

bash-3.00# ifconfig e1000g0 addif vhivemind-prod netmask + broadcast + up

Created new logical interface e1000g0:1

bash-3.00# ifconfig e1000gl vhivemind-e1000gl deprecated -failover netmask +
broadcast + group productionO up

bash-3.00# ifconfig -a

Please note that you have to use the deprecated option to set the DEPRECATED flag on
your own. New IPMP do this automagically. Forgetting this option leads to interesting,
but not always obvious malfunctions. Let’s check the network configuration.

lo0: flags=2001000849<UP,LOOPBACK ,RUNNING ,MULTICAST ,IPv4,VIRTUAL> mtu 8232 index 1
inet 127.0.0.1 netmask f£f000000
e1000g0: flags=209040843<UP,BROADCAST ,RUNNING ,MULTICAST ,DEPRECATED ,IPv4 ,NOFAILOVER,
CoS> mtu 1500 index 11
inet 192.168.56.201 netmask ffffff00 broadcast 192.168.56.255
groupname productionO
ether 8:0:27:11:34:43
e1000g0:1: flags=201000843<UP,BROADCAST ,RUNNING ,MULTICAST ,IPv4,CoS> mtu 1500 index 11
inet 192.168.56.200 netmask ffffff00 broadcast 192.168.56.255
e1000g1: flags=209040843<UP,BROADCAST ,RUNNING ,MULTICAST ,DEPRECATED ,IPv4 ,NOFAILOVER,
CoS> mtu 1500 index 12
inet 192.168.56.202 netmask ffffff00 broadcast 192.168.56.255
groupname productionO

28

1 IPMP-Tutorial Sneak Preview

ether 8:0:27:6d:9:be

Both interfaces have their test addresses. The data address is configured to an additional
logical interface. Asit’s the only interface without the -failover statement, this interface
is automatically managed by IPMP. Now remove the cable from the e1000g0 networking
card.

bash-3.00# ifconfig -a
lo0: flags=2001000849<UP,LOOPBACK ,RUNNING ,MULTICAST ,IPv4,VIRTUAL> mtu 8232 index 1
inet 127.0.0.1 netmask f£f000000
e1000g0: flags=219040803<UP,BROADCAST ,MULTICAST ,DEPRECATED ,IPv4,NOFAILOVER ,FAILED,CoS
> mtu 1500 index 11
inet 192.168.56.201 netmask ffffff00 broadcast 192.168.56.255
groupname productionO
ether 8:0:27:11:34:43
e1000g1l: flags=209040843<UP,BROADCAST ,RUNNING ,MULTICAST ,DEPRECATED ,IPv4 ,NOFAILOVER,
CoS> mtu 1500 index 12
inet 192.168.56.202 netmask ffffff00 broadcast 192.168.56.255
groupname productionO
ether 8:0:27:6d:9:be
e1000g1:1: flags=201000843<UP,BROADCAST ,RUNNING ,MULTICAST ,IPv4,CoS> mtu 1500 index 12
inet 192.168.56.200 netmask ffffff00 broadcast 192.168.56.255

The virtual interface with the data address has moved from €1000g0 to e1000g1

1.7.4 Making the configuration boot persistent

Making the configuration boot-persistent works works pretty much the same in both
implementation. As we used ifconfig commands again, we can use the hostname. *
files. We just have to translate the command lines accordingly:

Link-based IPMP

At first we configure the e1000g0 interface by creating the file /etc/hostname.e1000g0
containing a single line.

vhivemind -prod netmask + broadcast + group productionO up

Afterwards we do the same for e1000g1. We create a file named /etc/hostname.e1000g1
and put the following line (and just this line) in it:

group productionO up

Now reboot the system. After a few moments you can get a shell and check your
configuration.

29

1 IPMP-Tutorial Sneak Preview

ifconfig -a

lo0: flags=2001000849<UP,LO0PBACK ,RUNNING,MULTICAST ,IPv4,VIRTUAL> mtu 8232 index 1
inet 127.0.0.1 netmask f££000000

e1000g0: flags=201000843<UP,BROADCAST ,RUNNING ,MULTICAST,IPv4,CoS> mtu 1500 index 2
inet 192.168.56.200 netmask ffffff00 broadcast 192.168.56.255
groupname productionO
ether 8:0:27:11:34:43

e1000gl: flags=201000843<UP,BROADCAST ,RUNNING ,MULTICAST,IPv4,CoS> mtu 1500 index 3
inet 0.0.0.0 netmask ff000000 broadcast 0.255.255.255
groupname productionO
ether 8:0:27:6d:9:be

Everything configured as we’ve planned it.

Probe-based IPMP

Okay, let’s do the same for the probe-based IPMP. This is the /etc/hostname.e1000g0
file configuring the test address on the physical interface and the data address:

vhivemind-e1000g0 deprecated -failover netmask + broadcast + group productionO up \
addif vhivemind-prod netmask + broadcast + up

The file /etc/hostname.e1000gl with the following line will configures the e1000g1
interface of our system at boot:

vhivemind-e1000gl deprecated -failover netmask + broadcast + group production0O wup

Okay, reboot your system and you should yield an ifconfig output like this one
afterwards.

ifconfig -a
lo0: flags=2001000849<UP,LOOPBACK ,RUNNING ,MULTICAST ,IPv4,VIRTUAL> mtu 8232 index 1
inet 127.0.0.1 netmask f££f000000
e1000g0: flags=209040843<UP,BROADCAST ,RUNNING ,MULTICAST ,DEPRECATED,IPv4 ,NOFAILOVER,
CoS> mtu 1500 index 2
inet 192.168.56.201 netmask ffffff00 broadcast 192.168.56.255
groupname productionO
ether 8:0:27:11:34:43
e1000g0:1: flags=201000843<UP,BROADCAST ,RUNNING ,MULTICAST ,IPv4,CoS> mtu 1500 index 2
inet 192.168.56.200 netmask ffffff00 broadcast 192.168.56.255
e1000gl: flags=209040843<UP,BROADCAST ,RUNNING ,MULTICAST ,DEPRECATED ,IPv4 ,NOFAILOVER,
CoS> mtu 1500 index 3
inet 192.168.56.202 netmask ffffff00 broadcast 192.168.56.255
groupname productionO
ether 8:0:27:6d:9:be

Everything is fine.

30

1 IPMP-Tutorial Sneak Preview

1.8 Classic and new IPMP compared

We’ve configured both mechanisms now. Let’s summarize what we have seen so far.
When you use the new IPMP the data address is bound to its own interface. Whatever
happens to the physical interface there are no changes to the binding of interfaces to ip
addresses.

Classic IPMP is different. In the figure I've highlighted the data address by using a
bold font. When an interface fails it moves the data address is moved to the functional
interface.

There are other differences as well:
e New IPMP provides better observability by the ipmpstat tool

e You can assign test addresses with DHCP. This is especially useful when you using
a distinct network for your test addresses. As the test addresses are just used for
the failure probing you can use ephemeral addresses for them and don’t have to
manually track them.

e As new IPMP uses an distinct interface, it solves a lot of deficiencies of classic
I[PMP. To get an overview of this shortcomings you should look at the development
portal of the new IPMP mentioned in the sources of this document stated at the
end of this chapter.

1.9 Tips, Tricks and other comments

1.9.1 Reducing the address sprawl of probe based failure
detection

The probe based failure detection isn’t without a disadvantage. You need a test IP
adresses for every interface in an IPMP group. But: The IP addresses doesn’t have to
be routable ones, they doesn’t even have to be in the same subnet as the data address.
It’s perfectly possible to use a routable IP address as the data address and to use for
example the 192.168.1.0/24 address just for the IPMP test addresses . You have just
to take care of one additional configuration item: You have to provide test targets in
the same network. This can be done by configuring an an additional IP address on your
router interfaces for example.

31

1 IPMP-Tutorial Sneak Preview

IPMP group: productiond
(F)

2100090 21000g1 rged
192.168.178.200 || 192.168.178.201 || 192.168.178.202

—

Figure 1.5: New IPMP - everything okay

IPMP group: productiond
i ™

el rged
192.168.178.200 192.168.178.202

—

Figure 1.6: New IPMP - €1000g1 failed

32

1 IPMP-Tutorial Sneak Preview

IPMP group: productiond
-

21000g0
l 192.168.56.201 H 19;11&“?595& I

—

Figure 1.7: Classic IPMP - everything okay

IPMP group: production(

21000g1
192.168.56.202

—

Figure 1.8: Classic IPMP - €1000g0 failed

33

1 IPMP-Tutorial Sneak Preview

1.9.2 Explicitly configuring target systems

Configuring explicit target systems is easy. You just have to configure host routes to
them. Thus route add -host 192.168.178.2 192.168.178.2 -static would force
mpathd to use this system as a target system.

A transient service to configure those target systems

Those routes aren’t boot persistent. So you need a way to ensure that those routes are
configured at boot up. You could use a simple legacy jcode;init.dj/code; script, but I
want to implement it as a configurable transient SMF service. A transient service is a
service that is executed once at the start and isn’t monitored by the restarter daemon.
A transient service is a useful mechanism to do such initial configuration tasks at system
start.

The service consists out of a simple manifest. Store it in a file ipmptargets.xml:

<?7xml version="1.0"7>
<!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1">
<service_bundle type=’manifest’ name=’ipmptargets’>
<service
name=’network/ipmptargets’
type=’service’
version=’1’>

<dependency
name=’network’
grouping=’require_all’
restart_on=’none’
type=’service’>
<service_fmri value=’svc:/milestone/network:default’ />
</dependency >

<exec_method
type=’method’
name=’start’
exec=’/1lib/svc/method/ipmptargets %m’
timeout_seconds=’60’ />

<exec_method
type=’method’
name=’refresh’
exec=’/1lib/svc/method/ipmptargets %m’
timeout_seconds=’60’ />

<exec_method
type=’method’
name=’stop’
exec=’/1lib/svc/method/ipmptargets %m’
timeout_seconds=’60’ />

<property_group name=’startd’ type=’framework’>
<propval
name=’duration’ type=’astring’ value=’transient’ />
</property_group>

34

1 IPMP-Tutorial Sneak Preview

<property_group name=’general’ type=’framework’>
<propval
name=’action_authorization’
type=’astring’
value=’solaris.smf.manage.ipmptargets’ />
<propval name=’value_authorization’
type=’astring’
value=’solaris.smf.manage.ipmptargets’ />
</property_group>

<instance name=’targetl’ enabled=’false’>
<property_group
name=’config_params’ type=’application’>
<propval
name=’ip’ type=’astring’ value=’192.168.178.1°/>
</property_group>
</instance>

<instance name=’target2’ enabled=’false’>
<property_group
name=’config_params’ type=’application’>
<propval
name=’ip’ type=’astring’ value=’192.168.178.20°/>
</property_group>
</instance>

<stability value=’Unstable’ />
<template>
<common_name >
<loctext xml:lang=’C’>
system-wide configuration of IP routes for IPMP
</loctext>
</common_name >
<documentation>
<manpage
title=’ifconfig’
section=’1M"’
manpath=’/usr/share/man’ />
</documentation>
</template>
</service>
</service_bundle >

The specific host routes are implemented as instances of this service. So it is possible to
control the routes with a fine granularity.

Okay, obviously we need the script mentioned in the exec methods of the manifest. So
put the following script into the the file /1ib/svc/method/ipmptargets:
#!/bin/sh

/1lib/svc/share/smf_include.sh

getproparg () {

val=‘svcprop -p $1 $SMF_FMRI ¢
[-n "$val"] && echo $val

}

if [-z "$SMF_FMRI"]; then

echo "SMF framework variables are not initialized."
exit $SMF_EXIT_ERR_CONFIG

35

1 IPMP-Tutorial Sneak Preview

fi

OPENVPNBIN=’/usr/sbin/route’
IP=‘getproparg config_params/ip°

if [-z "$IP"]; then

echo "config_params/ip property not set"
exit $SMF_EXIT_ERR_CONFIG

fi

case "$1" in
’start ’)
route add -host $IP $IP -static

’stop’)
echo "not implemented"
route delete -host $IP $IP -static

3

‘refresh’)
route delete -host $IP $IP -static
route add -host $IP $IP -static

3

*)
echo $"Usage: $0 {start|refresh}"
exit 1

H)

esac
exit $SMF_EXIT_OK

Okay. Now we have to import the the SMF manifest into the repository.

jmoekamp@hivemind:"# svccfg import ipmp_hostroutes.zxml

It’s ready to use now. You can enable and disable your IPMP host routes as you need
them:

jmoekamp@hivemind: “# svcadm enable ipmptargets:targetl
jmoekamp@hivemind: "# netstat -nr

Routing Table: IPv4

Destination Gateway Flags Ref Use Interface
default 192.168.178.1 UG 23 496909
127.0.0.1 127.0.0.1 UH 2 2796 100
192.168.56.0 192.168.56.1 U 2 0 vboxnetO
192.168.178.0 192.168.178.9 U 3 0 productionO
192.168.178.1 192.168.178.1 UGH 1 0
Routing Table: IPv6

Destination/Mask Gateway Flags Ref Use If

1 1 UH 2 20 100
jmoekamp@hivemind:“# svcadm disable ipmptargets:targetl
jmoekamp@hivemind: "# netstat -nr
Routing Table: IPv4

Destination Gateway Flags Ref Use Interface

36

1 IPMP-Tutorial Sneak Preview

default 192.168.178.1 UG 24 496941

127.0.0.1 127.0.0.1 UH 2 2796 100
192.168.56.0 192.168.56.1 U 2 0 vboxnetO
192.168.178.0 192.168.178.9 U 3 0 productionO

Routing Table: IPv6
Destination/Mask Gateway Flags Ref Use If

1.9.3 Migration of the classic IPMP configuration

Albeit new IPMP should be configured like described above a correct configuration for
the classic IPMP will setup the new IPMP correctly as well.

1.9.4 Setting a shorter or longer Failure detection time

When i talked about probe based failure detection, i've told you that you have to wait a
certain time until a failure or a repair is detected by the in.mpathd. The default is 10
seconds for failure detection. The time for repair detection is always twice the time of
the failure detection, so it’s 20 seconds per default. But sometimes you want a faster
reaction to failures and repairs. You can control the failure detection time by editing
/etc/default/mpathd. You will find a configuration item controlling this time span in
the file

#

Time taken by mpathd to detect a NIC failure in ms. The minimum time
that can be specified is 100 ms.

#

FAILURE_DETECTION_TIME=10000

By using a smaller number, you can speed up the failure detection but you have a much
higher load of ICMP probes on you system. Keep in mind that i’ve told you that if 5
consecutive probes fail, the interfaces is considered as failed. When the failure detection
time is 10000 ms, the probes have to be sent every 2000 ms. When you configure 100 ms,
you will see a probe every 20ms. Furthermore this probing is done on every interface.
Thus at 100ms failure detection time, the targets will see 3 ping requests every 20
milliseconds.

So keep in mind that lowering this number will increase load on other systems. So choose
your the failure detection based on your business and application needs, not on the
thought ”I want the lowest possible time”.

Just to demonstrate this effect and to learn how you set the failure detection time,
you should modify the value in the line FAILURE_DETECTION_TIME to 100. Restart the

37

1 IPMP-Tutorial Sneak Preview

in.mpathd afterwards by sending a HUP signal to it with verb=.pkill -HUP in.mpathd=.
When you start a snoop with snoop -d e1000g0 -t a -r

output on your display scrolling at a very high speed.

1.10 Conclusion

The nice thing about IPMP is: It’s simply there. You can use it. When you have more
than one interface in your system and you care about the availability of your network, it
takes you just a few seconds to activate at least the link-based variant of IPMP. This

fruit is really hanging just a few centimeters above the ground.

1.11 Do you want to learn more?

Documentation

docs.sun.com - Solaris 10 - System Administration Guide: IP Services - Part VI: IPMP@

man pages

docs.sun.com - ifconfig(1M]
docs.sun.com - in.mpathd (1M)P

docs.sun.com - ipmpstat(1M]

Misc.

Project Clearview: IPMP Rearchitecturd®]

2Ohttp://docs.
2lhttp://docs.
2Znttp://docs.
23nttp://docs.

sun.
sun.
sun.
sun.

com/app/docs/doc/816-4554/ipmptm-171=en&a=view
com/app/docs/doc/816-5166/ifconfig-1m?a=view
com/app/docs/doc/816-5166/in.mpathd-1m?1=en&a=view
com/app/docs/doc/819-2240/ipmpstat-1m7a=view

24nttp://hub.opensolaris.org/bin/view/Project+clearview/ipmp

38

icmp you will have an

http://docs.sun.com/app/docs/doc/816-4554/ipmptm-1?l=en&a=view
http://docs.sun.com/app/docs/doc/816-5166/ifconfig-1m?a=view
http://docs.sun.com/app/docs/doc/816-5166/in.mpathd-1m?l=en&a=view
http://docs.sun.com/app/docs/doc/819-2240/ipmpstat-1m?a=view
http://hub.opensolaris.org/bin/view/Project+clearview/ipmp
http://docs.sun.com/app/docs/doc/816-4554/ipmptm-1?l=en&a=view
http://docs.sun.com/app/docs/doc/816-5166/ifconfig-1m?a=view
http://docs.sun.com/app/docs/doc/816-5166/in.mpathd-1m?l=en&a=view
http://docs.sun.com/app/docs/doc/819-2240/ipmpstat-1m?a=view
http://hub.opensolaris.org/bin/view/Project+clearview/ipmp

	IPMP-Tutorial Sneak Preview
	The bridges at SuperUser Castle
	Introduction
	Where should I start?
	Basic Concept of IP Multipathing
	Link based vs. probe based failure/repair detection
	Failure/Repair detection time
	IPMP vs. Link aggregation

	Loadspreading
	Classic IPMP vs. new IPMP

	in.mpathd
	Prerequisites
	New IPMP
	Link based failure detection
	Probe based failure detection
	Making the configuration boot persistent
	Using IPMP and Link Aggregation
	Monitoring the actions of IPMP in your logfiles

	Classic IPMP
	Prerequisites
	Link based classic IPMP
	Probe based classic IPMP
	Making the configuration boot persistent

	Classic and new IPMP compared
	Tips, Tricks and other comments
	Reducing the address sprawl of probe based failure detection
	Explicitly configuring target systems
	Migration of the classic IPMP configuration
	Setting a shorter or longer Failure detection time

	Conclusion
	Do you want to learn more?

