Quick answers to common problems

Microsoft SharePoint 2010 and
Windows PowerShell 2.0: Expert
Cookbook

50 advanced recipes for administrators and IT Pros to master
Microsoft SharePoint 2010 and Microsoft PowerShell 2.0 automation

Yaroslav Pentsarskyy | PACKT] enterprise =

PUBLISHING

http://www.it-ebooks.info/

Microsoft SharePoint
2010 and Windows

PowerShell 2.0:
Expert Cookbook

50 advanced recipes for administrators and IT Pros
to master Microsoft SharePoint 2010 and Microsoft
PowerShell 2.0 automation

Yaroslav Pentsarskyy

enterprise &

PUBLISHING

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Microsoft SharePoint 2010 and Windows
PowerShell 2.0: Expert Cookbook

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: November 2011
Production Reference: 1071111

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84968-410-1
www . packtpub.com

Cover Image by John Green (iguana@cogeco.ca)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Yaroslav Pentsarskyy

Reviewers
Muhammad A. Piracha

Ravikanth C

Acquisition Editor
Stephanie Moss

Development Editor
Maitreya Bhakal

Technical Editor
Manasi Poonthottam

Project Coordinator
Kushal Bhardwaj

Proofreader
Joel T. Johnson

Indexer
Monica Ajmera Mehta

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Yaroslav Pentsarskyy has been involved in SharePoint solution architecture and
implementation since 2003. He has been a Microsoft MVP since 2009 and keeps in close
contact with the SharePoint product team. Yaroslav frequently presents at technical events
worldwide as well as online. You can always find a fresh bit of SharePoint information on his
blog: http://www.sharemuch.com. To learn everything Yaroslav knows about SharePoint,
check out his two new books Top 60 Custom Solutions built on SharePoint 2010 and
SharePoint 2010 branding in practice.

www.it-ebooks.info

http://www.sharemuch.com
http://amzn.to/gHwtOM
http://amzn.to/fKrNen
http://www.it-ebooks.info/

About the Reviewers

Muhammad A. Piracha is a senior Software Engineer at Bamboo Solutions Corporation,
which is based in Reston, Virginia. Bamboo Solutions is a leading provider of software
solutions for the Microsoft SharePoint platform. Muhammad has over 15 years of experience
in building document management software applications using various Microsoft products.
He has experience in a variety of capacities, including architecting, designing, and developing
software for SharePoint technologies since its release in 2003. When he is not on a computer
writing code, he enjoys spending time with his family and outdoor activities.

Ravikanth C has more than 10 years of experience in the IT industry. In the beginning

of his career, he worked at Wipro Infotech managing Windows, Solaris servers, and Cisco
network equipment. He currently works at Dell Inc. as a lead engineer in the SharePoint
solutions group. As a part of his work, he has authored several whitepapers on MOSS 2007
and SharePoint 2010 that provide guidance around infrastructure elements of a SharePoint
deployment. His work also involves performance testing and sizing of SharePoint workloads
on Dell servers and storage. Ravikanth is passionate about automation and outside of work
he writes regularly on his blog, http://www.ravichaganti.com/blog, about topics
related to Windows PowerShell, Microsoft SharePoint, and Windows Server virtualization.

In 2010, Ravikanth received Microsoft's Most Valuable Professional (MVP) award in Windows
PowerShell. You can also hear him speak regularly at BITPro (http://bitpro. in) user
group meetings and other in-person events at Bangalore, India.

www.it-ebooks.info

http://www.ravichaganti.com/blog
http://bitpro.in/
http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more

You might want to visit www . PacktPub . com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www . PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at servicee
packtpub . com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

@ PACKT 1°

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?

» Fully searchable across every book published by Packt
» Copy and paste, print and bookmark content

» On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub . com, you can use this to access PacktLib today
and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books

Get notified! Find out when new books are published by following @PacktEnterprise on Twitter, or
the Packt Enterprise Facebook page.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.it-ebooks.info/

Table of Contents

Preface 1

Chapter 1: PowerShell Scripting Methods and Creating Custom

Commands 7
Introduction 7
Setting up your Virtual Machine and running a test script 8
Authoring, debugging, and executing script accessing farm settings
with PowerGUI and PowerShell ISE 10
Accessing advanced SharePoint 2010 functionality with external libraries 17
Creating a custom PowerShell command (CmdLet) 22
Creating a custom PowerShell Snap-In 26

Chapter 2: Enterprise Content Deployment and Provisioning

Using PowerShell 33
Introduction 33
Provisioning site hierarchy during solution deployment 34
Installing features on the site and managing existing site features 39
Creating permission levels and security groups that use them 46
Managing site templates and their availability on sites 50
Associating features to existing site templates 55
Managing SharePoint workflow association using PowerShell 60
Configuring site themes and user interface artifacts 65

Chapter 3: Performing Advanced List and Content Operations

in SharePoint using PowerShell 73
Introduction 73
Creating lists of custom structures 74
Setting SharePoint list item validation with PowerShell 78
Setting list item security 84

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Setting list relationships 89
Customizing list views 94
Managing the use of content types in lists 929
Chapter 4: Managing External Data in SharePoint and Business
Connectivity Services using PowerShell 105
Introduction 105
Importing a custom BCS model to SharePoint 106
Exporting SharePoint BCS model and schema 111
Creating instances of external lists with PowerShell 116
Managing permissions on an external list 121
Throttling items returned with external lists 127
Chapter 5: Managing SharePoint 2010 Metadata and Social Features
Using PowerShell 133
Introduction 133
Creating new user profiles 134
Adding and configuring new profile properties 140
Bulk provisioning data into user profile properties 145
Creating, importing, and exporting managed metadata taxonomy terms 151
Enabling social ratings on lists and libraries 157
Bulk tagging content and deleting tags in SharePoint 162
Chapter 6: Managing SharePoint Search and FAST Search
with PowerShell 169
Introduction 169
Configuring search query suggestions in your search center 170
Configuring search best bets 175
Configuring visual best bets 180
Configuring search audience targeting 186
Configuring search web parts automatically with PowerShell 191
Chapter 7: Managing SharePoint Site Content in Bulk using
PowerShell 199
Introduction 199
Creating basic and complex content types 200
Creating and configuring document sets 205
Creating and editing publishing pages with PowerShell 211
Provisioning web parts in bulk on to SharePoint pages 217
Configuring web parts in bulk with PowerShell 222
Provisioning list rollups using Powershell 227
Chapter 8: Managing Documents and Records in SharePoint
with PowerShell 233

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Introduction 233
Provisioning documents and records center with PowerShell 234
Configuring record routing 240
Configuring a common record expiration policy 246
Creating a custom expiration policy for the record 252
Configuring content hub for content types used in records center 257

Chapter 9: Administrating Web Application and Server Administration

in SharePoint with PowerShell 263
Introduction 263
Configuring web application settings 264
Parsing SharePoint logs using PowerShell 271
Managing web application throttling settings 276
Configuring sandbox solution policies 282
Managing sandbox solutions in SharePoint site collections 286

Index 293

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

PowerShell is tightly integrated with SharePoint 2010, demonstrating an important alliance
between the fastest growing collaboration and web publishing platform, and the latest task
automation framework. The advantages of PowerShell and SharePoint integration help
administrators and infrastructure specialists achieve everyday enterprise tasks more efficiently,
and this book will ensure you get the most out of SharePoint configuration and management.

When it comes to custom SharePoint 2010 solution configuration, creating robust PowerShell
scripts is the best option for saving time and providing a point of reference to when changes
are made in the server environment. This practical expert cookbook translates the most
commonly found scenarios into a series of immediately usable recipes, allowing you to get up
and running straight away with writing powerful PowerShell scripts for SharePoint.

Microsoft SharePoint 2010 and Windows PowerShell 2.0: Expert Cookbook focuses on a
range of distinct areas of SharePoint administration, with expert recipes targeting unique
business examples.

You will learn exactly how solutions were achieved for managing SharePoint list settings with
PowerShell, PowerShell configuration of SharePoint FAST Search, and more. You will also learn
how to tailor the recipe to your own business needs.

With this advanced cookbook in hand, you will be fully equipped with the source code as a
starting point for creating your scripts in order to take advantage of the integration between
SharePoint and PowerShell.

What this book covers

Chapter 1, PowerShell Scripting Methods and Creating Custom Commands: Go further with
PowerShell to create your own PowerShell commands (CmdLets) and snap-ins and share them
with your team.

Chapter 2, Enterprise Content Deployment and Provisioning using PowerShell: Automate your
SharePoint 2010 custom solution deployment by using a robust PowerShell script.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 3, Performing Advanced List and Content Operations in SharePoint using PowerShell:
Master the management of SharePoint lists and list settings with PowerShell.

Chapter 4, Managing External Data in SharePoint and Business Connectivity Services
using PowerShell: Get to the bottom of administering Business Connectivity Services (BCS)
in SharePoint.

Chapter 5, Managing SharePoint 2010 Metadata and Social Features using PowerShell:
Learn all about performing the most common configurations around SharePoint taxonomy
features and user profile services.

Chapter 6, Managing SharePoint Search and FAST Search with PowerShell: Configure
SharePoint FAST Search using PowerShell including audience targeting and improving
search results.

Chapter 7, Managing SharePoint Site Content in Bulk using PowerShell: Configure content
on SharePoint pages including bulk provisioning and configuration publishing pages, content
types and web parts.

Chapter 8, Managing Documents and Records in SharePoint with PowerShell: Get the most
out of document and records management in SharePoint 2010 by automating configuration.

Chapter 9, Administrating Web Application and Server Administration in SharePoint with
PowerShell: Simplify SharePoint server management by using PowerShell for tasks like web
application settings, configuration and monitoring, sandbox features, and more.

What you need for this book

To complete the tasks in this book, you will need a system with SharePoint 2010 Server
Standard installed. Some areas of the book will require FAST Search to be installed

and configured. We recommend downloading and installing 2010 Information Worker
Demonstration and Evaluation Virtual Machine (RTM) Virtual Machine environment if you

do not have a compatible system set up. The most current link to download the virtual
environment can be retrieved by searching for the 2010 Information Worker Demonstration
and Evaluation Virtual Machine (RTM). By downloading the preceding environment, you will
ensure all of the configurations and setups have been performed and your system is ready for
using PowerShell with SharePoint.

Who this book is for

If you are a SharePoint administrator or IT Pro who wants to extend your knowledge of
PowerShell automation, this book is a must have. You should have a solid grasp of working
with SharePoint and PowerShell.

—21

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: " Set the filename of the script to
ManageSandbox.ps1."

A block of code is set as follows:

SQuotaTemplate.UserCodeMaximumLevel = 200
SQuotaTemplate.UserCodeWarningLevel = 100
SAdminService.Update ()

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

$SPSite.WebApplication.Update ()

Write-Host "Web application configuration complete"

$SPSite.Dispose () Any command-line input or output is written as
follows:

PS C:\Users\Administrator\Desktop> .\ WebApplicationThrottling.psl

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Click File | Save to save the
script to your development machine's desktop."

Warnings or important notes appear in a box like this.

A\l =

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title via the subject of your message.
(3

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www . packtpub. com or e-mail suggest@packtpub.com

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub. com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed
directly to you.

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find

any errata, please report them by visiting http: //www.packtpub.com/support, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata

will be uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.it-ebooks.info/

Preface

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

mailto:copyright@packtpub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

PowerShell Scripting
Methods and Creating
Custom Commands

In this chapter, we will cover:

» Setting up your Virtual Machine and running a test script

» Authoring, debugging, and executing script accessing farm settings with PowerGUI
and PowerShell ISE

» Accessing advanced SharePoint 2010 functionality with external libraries
» Creating a custom PowerShell command (CmdLet)

» Creating a custom PowerShell Snap-In

Introduction

PowerShell as a scripting language will execute actions on your target environment. Scripting
is not a new concept and PowerShell is definitely not a new language. However, PowerShell
and SharePoint 2010 integrate very well. This integration allows administrators and
developers to access not just a limited set of commands, but also to connect to SharePoint
objects and libraries to take advantage of additional capabilities of SharePoint as a platform.
To ensure that we are on the same page while reading this book and trying out various
recipes, we'll start by setting up your environment and verifying the setup by running a test
script. After all, SharePoint relies on components, most of which we're going to be directly
interacting with, and having a consistently configured environment will help in reducing any
potential integration issues.

www.it-ebooks.info

http://www.it-ebooks.info/

PowerShell Scripting Methods and Creating Custom Commands

Although we can author our PowerShell scripts in Notepad and execute them in a PowerShell
command-line environment, you can experience more advantages from authoring and
debugging your scripts by using rich authoring environments, such as PowerGUI or PowerShell
ISE. In this chapter, we'll see exactly what the benefits of using those environments are.

Whether you are creating a PowerShell script in a professional scripting environment or calling
an existing script from a command line, you'll quickly notice that a default set of commands

is definitely not enough to manage and work with your SharePoint system. When you have the
need to author scripts accessing various other aspects of SharePoint functionality, you will
need to use the additional libraries available to facilitate custom or out-of-the-box functionality
required. This is a very common scenario for developers when building custom solutions for

a variety of platforms. PowerShell, as a scripting language, really takes advantage of this
concept allowing you to call functions from SharePoint and third-party libraries. In this chapter,
we'll take a look at exactly how you can access advanced SharePoint 2010 functionality using
external libraries.

As you become more familiar with authoring PowerShell scripts, you will realize that you can
create a collection of reusable functionality which can be shared with others. That's when you
can take advantage of sealing your custom functionality in a portable and sharable way. We'll
take a look at how you can package your custom scripts as custom PowerShell CmdLets, as
well as how to create a custom PowerShell Snap-In.

Setting up your Virtual Machine and

running a test script

In this recipe, we'll ensure your development environment is configured properly.

Getting ready

To complete the recipes in this book, it's assumed you're running a system with SharePoint
2010 Server Standard installed. If not, it is recommended you download and install the 2010
Information Worker Demonstration and Evaluation Virtual Machine (RTM) Virtual Machine
environment, if you do not have a compatible system set up. For the most current link to
download this virtual environment, search Microsoft Download Center with the keyword 2010
IW demo RTM.

By downloading the preceding environment, you will ensure all of the configurations and
setups have been performed and your system is ready for using PowerShell with SharePoint.
Whether you're using your own or a downloaded Virtual Machine, let's ensure PowerShell is
enabled in your environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

How to do it...

Let's see how you can get your virtual environment configured and run your first script using
the following steps:
1. On the target Virtual Machine, ensure you are logged in with an administrator's role.

2. Click Start | All Programs | Microsoft SharePoint 2010 Products | SharePoint
2010 Management Shell.

3. Input Get-ExecutionPolicy and press Enter on your keyboard. PowerShell may
return a value of Restricted.

4. Input Set-ExecutionPolicy Unrestricted and hit Enter.

1
‘Q Ensure this policy is reverted back on your production environments to

avoid the risk of malicious script execution.

5. Input the following command in the window:

Get-SPSite | Where-Object {$.Url -eq "http://intranet.contoso.
com"

6. You should see a result that looks similar to the following screenshot:

dministrator: SharePoint 2010 Management Shell
PS C:\Users“Administrator> Get—-SPSite | Where—Ohbject {5_.Url —eq "http://intranel’

t.contoso.com'}

http://intranet.contoso.com
WARNING: More results were found in Get—5PSite but were not returned. Use
*—Limit ALL' to return all possible results.

Ps C:sUserssAdministrator? o

On Windows 2008 Server, PowerShell script execution policy is set to restrict script execution
by default. As an administrator, you can choose to allow script execution by calling the
Set-ExecutionPolicy Unrestricted command.

www.it-ebooks.info

http://www.it-ebooks.info/

PowerShell Scripting Methods and Creating Custom Commands

For more information on options available for script execution policy and]

[how it affects your environment, search TechNet with the keyword Set-

ExecutionPolicy.

Once script execution is not restricted, we run a PowerShell command enumerating all of the
SharePoint sites with the http://intranet.contoso.com URL. This assumes you have
an existing site collection with such a URL. If you're using the downloadable environment from
above, the site collection will be already set up for you. If you're running a site collection with a
different URL, feel free to replace the value in this example.

There's more...

In this example, we assumed you were running a Virtual Machine downloaded from the
Microsoft download site with all of the pre-set options. In this case, you may see that the
execution policy has already been set to unrestricted. In this case, you don't need to set
the value again.

Authoring, debugging, and executing

script accessing farm settings with
PowerGUI and PowerShell ISE

As you can see from the previous recipe, authoring and executing a PowerShell script is a
simple task that can be done right from the command line. In this recipe, we'll take a look at
how you can author and debug your PowerShell scripts using two of the most popular tools:
PowerShell ISE and PowerGUI. Using these tools, we'll execute a script accessing farm
settings of the SharePoint site.

Getting ready

First, let's ensure you have installed PowerShell ISE:

1. On the target Virtual Machine, click Start | Administrative Tools | Server Manager.
2. Onthe left-hand side panel of the Server Manager window, click the Features node.
3. Inthe main window of the Server Manager, click Add Features.
4

From the Add Features Wizard, ensure Windows PowerShell Integrated Scripting
Environment (ISE) is selected. If it is selected and grayed out, as seen in the following
screenshot, skip to Step 6 in this sequence.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

%

%}' Select Features

@]

Select one or more Features ko install on this server,

Confirmation Features: Description:
Progress - - - ‘Windows PowerShell Inteqrated
. L Remote ifferential .C.ompn?sslon ;I Sctipking Environment (I5E) enables
Results [E] Remote Server Administration Tools (Installed) you ta run interactive commands, and
[RPC over HTTP Proxy edit and debug scripts in a graphical
[] simple TCRJIP Services environment, The main features
[] SMTP Server include color-coded syntax, selective
] SMP Services execution, graphical debugging,
Unicode support, and context-
[Storage Manager for SaNs sensitive Help, Windows PowerShell
[[] Subsystem For UNI¥-based aApplications 1SE also includes the Out-Gridview
[] Telnet Client crdlet, which sends the output of a
[Telnet Server command ko an inkeractive table in a

[TFTP Client separate window,

[windows Biometric Framewark
[windows Internal Database
Window Shell Inteqr: pting Ervironment (151
windows Process Activation Service {Installed)
[] windows Server Backup Features
[windows Server Migration Tools
’: ‘Windows System Fesource Manager
[windows TIFF IFilter

Il. WinRM 115 Extension | _Iﬂ
4 3

More sbout features

5. Click Next and Install on the following window to install the feature.
6. Upon installation completion, close the Server Manager window.

Let's now install PowerGUI:

Navigate to http://www.powergui .org or search the Internet with PowerGUI.
Download the latest version of PowerGUI installer.

Run the installation package on your development environment and install the
PowerGUI tool using the default installation options.

Now that you have all of the tools installed, let's use PowerShell ISE and PowerGUI to author,
debug, and execute our new script.

How to do it...

Let's see how PowerShell ISE and PowerGUI can help with your script authoring.

1. Onyour development environment, click Start | All Programs | Accessories |
Windows PowerShell | Windows PowerShell ISE.

s

www.it-ebooks.info

http://www.it-ebooks.info/

PowerShell Scripting Methods and Creating Custom Commands

2.

In the PowerShell ISE window's top section, type in the following script:

$siteUrl = "http://intranet.contoso.com"

$snapin = Get-PSSnapin | Where-Object {$.Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

$site = Get-SPSite | Where-Object {$.Url -eq $siteUrl}
$Ssite.WebApplication.QueryFeatures ("00BFEA71-EC85-4903-972D-
EBE475780106")

Downloading the example code

purchased from your account at http://www.PacktPub.com. If you

.\'Q You can download the example code fles for all Packt books you have

purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the fles e-mailed directly to you.

Press F5 on your keyboard.

Take a note of the results returned by the script which will contain multiple instances
in the following format:

DefinitionId : 00bfea7l1-ec85-4903-972d-ebe475780106
Parent : My

Properties : {}

Definition : SPFeatureDefinition

Name=FeatureDefinition/00bfea7l1-ec85-4903-972d-ebed475780106
Version : 3.0.0.0

FeatureDefinitionScope : Farm

Now let's see the result with PowerGUI. On your development environment, click Start
| All Programs | PowerGUI | PowerGUI Script Editor.

In the top section of the PowerGUI editor, insert the same code we used in step 2 of
this sequence:

$siteUrl = "http://intranet.contoso.com"

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

10.
11.

$site = Get-SPSite | Where-Object {$_ .Url -eq $siteUrl}
Ssite.WebApplication.QueryFeatures ("00BFEA71-EC85-4903-972D-
EBE475780106")

owerGUI Script Editor

File Edit Wiew Go Debug Tools Help

NEH@PS Q| ¥ @@ ;b |5 (E] &8 [dInputscipt parameters here>
% untitled* | -
1: §sziteUrl = "http://intranet.contoso.com® =
2 =
3i dsnapin = Get-PS5Snapin | Where-Object {§ .Name -eq 'Mic:
4i9 if (§snapin -eq fnull)] |
5:| Write-Host "Loading S3harePoint Powershell Snapin'
& Lndd—PSSnapin "Hicrosoft.SharePoint.Powershell”
Til}
s —
9: §site = Fet-SPSite | Where-Object {§_.Url -eq §sitelrl}
|1| 1N faite WMehirnnlicatinn ﬁnpruF‘nnfnrpqf"l‘lﬂ'FlF"F'h'?‘l—'F‘l"‘Fl'—T.—l‘lClnqilill
|Power5hel| Consola - J;lj
Farent i Search -
Properties HEE
Definition : SPFeaturelefinition Name=FeatureDefinit
ion/0Chfea?l-ecd5-4903-972d-ebed7578010
&
Version : 3.0.0.0
FeaturelefinitionScope : Farm
P3 C:4\U...%WDocuwnentss j

Script execution completed.

Press F5 to execute your script.

Take a note of the same result set in the PowerShell Console window right below the
editor, seen in the previous image.

Switch back to the script editor section of the screen and set your cursor on the last
line of the code.

Press F9 to set the breakpoint on the last line of the code.

Press F5 to execute the script up to the breakpoint.

[}

www.it-ebooks.info

http://www.it-ebooks.info/

PowerShell Scripting Methods and Creating Custom Commands

12. Take a note of the script editor window when the script has been executed up to the
breakpoint. Your PowerGUI editor will look similar to the following screenshot:

‘owerGUI Script Editor

File Edit Wew Go Debug Tools Help
EH@S Q|4 @@ _ir 0 @|%[E2=]| g || scipt parameters herer S

%] untitled* | -
1: $=2itelrl = "http://intranet.contoso.com”

§snapin = Get-PS5Snapin | Where-Object {$_.Name —eg 'Microsoft.3harePoint.Power:
= if ($snapin —eq fnull) {

Write-Host "Loading SharePoint Powershell Snapin®

\;ndd—PSSnapin "Hicrosoft.3harePoint.Powershell™

i

L I e I

jsite = Get-SPSite | Where-Object {§_.Url -eq §sitelrl}
j=ite.Webdpplication.QueryFeatures ("O0BFEA71-ECE5-4903-972D-EEE475780106"™)

(¥)

Version : 3.0.0.0 -
FeaturelefinitionScope : Farm

WARNIMNG: More results were found in Get-3P3ite but were not returned. Use '-Limit ALL'
to return all possikle results.

[DEG] : PS C:yUs...%\Documentss j

Executing script.. .

13. At this point you can press F5 on your keyboard to continue execution.

We launched the PowerShell ISE to execute our custom script. The first thing our script

is going to do is load the PowerShell cmdlet library for SharePoint. This extension library
holds various PowerShell functions allowing us to work with SharePoint objects from within
PowerShell. Once the library is loaded, our script connects to our SharePoint site, http://
intranet.contoso.com, and gets a hold of the current site. Further, the script calls a
function which enumerates all of the SharePoint sites and their basic details which have a
specified featured ID active in them, as seen in the following screenshot

www.it-ebooks.info

http://www.it-ebooks.info/

PowerShell Console
fersion

DefinitionId

Script execution completed.

: 3.0.0.0
FeaturebefinitionScope

Farm

: DObfeaVl1-ec85-4903-972d-ebed475780106

Farent : Marketing

Properties i

Definition : ZPFeaturelefinition Name=FeatureDefinit
ion/00khfea?l-ec85-4903-972d-ekbed47578010
3

fersion : 3.0.0.0

FeaturebefinitionScope : Farm

PefinitionId : D0khfea7l-ecS5-45903-972d-ebed4757501008

Parent : New Products

Properties i

DPefinition : 3PFeaturelefinition Name=FeatureDefinit
ion/00bfea?l-ec85-4903-972d-ebe47578010
3

ferzion : 3.0.0.0

FeaturelbefinitionScope : Farm

PefinitionId : O0bfea?l-ec85-4903-972d-ebed4 757501068

Farent : Projects

Properties i

efinition : SPFeaturelefinition Name=Featurelefinit
ion/00bfea?l-ec85-4903-972d-ebed47578010
3

fersion : 3.0.0.0

Chapter 1

This function can be pretty handy when you're trying to locate problem features, or determine
which site will be affected by the planned feature upgrade.

Our PowerShell script has been executed first in PowerShell ISE to see what capabilities you
have in this Integrated Scripting Environment (ISE).

We then used PowerGUI to see how the same script can be executed and debugged. As you
can see, PowerGUI has a few more features facilitating the script authoring process.

The debug option available in the script editor is particularly handy when your script doesn't
quite yet work to your standards, and you want to figure out potential problems in it. If you're
a developer, you already know all about debugging and its benefits.

Once you're satisfied with the script, you can execute it and run it on the current environment.

]

www.it-ebooks.info

http://www.it-ebooks.info/

PowerShell Scripting Methods and Creating Custom Commands

Let's take a look at how we can author and execute scripts with PowerGUI.

Script authoring with PowerGUI

One of the other advantages to PowerGUI is the ability to see values of variables in your script
as it executes. The Variables panel is, by default, on the right-hand side of your PowerGUI
window as seen here:

[(O] =]
elp
b= [F| g |<In|:uut soript parameters heres | = =N I= N =
Yariables
C:\Users' Administrator’ AppData’,Local,]
§7 True
38 .
§_ $null
fargs $null
frontentType Microsoft.SharePoint.SPContentType
$CurrentlvExecutingCommand $null
Finput $null
Flist Shared Documents
$MyInvocation $null
$newPolicy Microsoft.0ffice.RecordsManagement.Inf
$policy Microsoft.Office.RecordsManagement.Inf
$P3BoundParameters
$site SPSite Url=http:/ /intranet.contoso.com
$sitelr] http:/ /intranet.contoso.com
$snapin Microsoft.SharePoint.Powershell
$5kackTrace at System.Management.Automation.Int
$this $null
fmeh
|
|
Ln 11| Col1 | Ch1 httpsffpowerquiorgf .

Without this panel, if you wanted to list the variable value, you would typically need to call it in
a command line. If the variables in question are complex objects, you get to see the value of
all the properties too, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

HEHEEHEEHHEHEEEHEEHEBBR

e}

C\Users' Administrator’ AppData‘Loce = |

.$null

$_
$args gnull

$CurrentlvExecutingCommand $null

$input ¢null

$MyInvocation $null

$PSBoundParameters

= SPSite Url=http:/ fintranet.contoso.cor

ApplicationFightsMask, Fullrask,

£9d025ce-96a7-4131-adc0-7dal603e8d24

Systemacoount SHAREPOIMTYsystem
Cwiner CONTOSOadminiskr atar
SecondaryConkact $rull

GlobalPermidask Fullrask,

TI5AlowsAnany oS False

Protocol htkp:
HostHeaderIsSikekanme False

HostMame intranet,contosa, com

Part
ServerRelativelr|

80
!

UpgradeRedirectiri http:ffintranet. contoso, comy
Zone Dnefaule

Ll http:ffintranet, contoso, com
UserCodeEnabled True

Impersonating True

Audit Microsoft, SharePaint, SPAudit

Chapter 1

Also, to aid you with script authoring, PowerGUI has a collection of handy snippets which you
can access with the Edit | Insert Snippet option.

+ For more tips on working with PowerGUI user interface and features, check

out http://www. Powergui . org. For more tips on PowerShell ISE, search
TechNet for Windows PowerShell Integrated Scripting Environment.

Accessing advanced SharePoint 2010

functionality with external libraries

In the previous recipe, we looked at some of the functionalities available to you in the
PowerShell library, designed to help you access basic features in SharePoint. By using

those features, you can access SharePoint objects and manipulate their properties. But
what if you need to access the object model beyond what's available to you from the
PowerShell snap-in for SharePoint? In this recipe, we'll take a look at how you can access
more advanced features in SharePoint by referencing SharePoint assemblies and associated
methods in those libraries.

[}

www.it-ebooks.info

http://www.it-ebooks.info/

PowerShell Scripting Methods and Creating Custom Commands

Getting ready

In this example, we'll be using PowerGUI to execute our script. So log in to your environment

with administrative privileges and launch PowerGUI.

How to do it...

The following steps will demonstrate how you can use some of the advanced SharePoint

functions by referencing external assemblies in your PowerShell script:

1.

Navigate to the test site URL: http://intranet.contoso.comand click on the
Shared Documents library to access the library.

In the ribbon click Library | Library Settings.

Under Permissions and Management click Information management
policy settings as seen in the following screenshot:.

List Infarmation

Marne: Shared Documnents

w'eb Address:

Descriptian:

General Settings

Title, description and navigation
Versioning settings

advanced settings

Walidation settings

Zolurnn default value settings
Manage itern scheduling

Rating settings

Audience targeting settings
Metadata navigation settings
Per-location view settings

Form settings

http/fintranetShared Docurments/Forms/allltermns.asp
Share a document with the team by adding it to this do

Permissions and Management
Permissions for this docurnent
library

Manage files which have no
checked in version

workflow Settings

Enterprise Metadata and
Keywords Settings

Generate file plan repaort

Intorrmation managerment polic
seftinog

Record declaration settings

Select Document from the list of available content types.
Take note that none of the policies have been defined for this document library.

Switch to your PowerGUI scripting editor and enter the following script:

$siteUrl = "http://intranet.contoso.com"

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

SharePoint.Powershell'}

if ($snapin -eqg $null)
Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

$site = Get-SPSite | Where-Object {$_ .Url -eq $siteUrl}

Sweb = $site.OpenWeb () ;
$list = Sweb.Lists["Shared Documents"];
Spolicy = [Microsoft.Office.RecordsManagement.InformationPolicy.

ListPolicySettings] ($1list) ;
if ($policy.ListHasPolicy -eq 0)

{

Spolicy.UseListPolicy = "true";
$policy.Update () ;

}

ScontentType = $list.ContentTypes ["Document"] ;

[Microsoft.Office.RecordsManagement . InformationPolicy.Policy] ::
CreatePolicy ($ScontentType, $null) ;

$newPolicy = [Microsoft.Office.RecordsManagement.
InformationPolicy.Policyl] : :GetPolicy ($ScontentType) ;

S$newPolicy.Items.Add (
"Microsoft.Office.RecordsManagement.PolicyFeatures.Expiration",
"<Schedules nextStageId='3'>" +

"<Schedule type='Default's>" +

"<stages>" +

"<data stageId='1l' stageDeleted='true's></data>" +

"<data stageId='2'>" +

"<«formula id='Microsoft.Office.RecordsManagement.PolicyFeatures.
Expiration.Formula.BuiltIn's>" +

"<number>l</number>" +

"<property>Created</property>" +

"<periodsyears</period>" +

"«/formula>" +

"<action type='action' id='Microsoft.Office.RecordsManagement.
PolicyFeatures.Expiration.Action.MoveToRecycleBin' />" +
"</data>" +

"</stages>" +

"</Schedule>" +

[}

www.it-ebooks.info

http://www.it-ebooks.info/

PowerShell Scripting Methods and Creating Custom Commands

"</Schedules>") ;

$newPolicy.Update () ;

7. Press F5 to execute the script, and then wait until the script executes.

8. Switch back to the policy setting page we accessed in step 5. Take note of the new
policy added to the Retention policy where expiration has been enabled on the
document library items, as seen in the following screenshot:

¥ Enable Retention

Non-Records
Specify how to manage retention on iterns that have not been
declared records:

Event Ackion Recurrence

Created + 1 years Move to Recycle Bin Mo
add a retention stage...

» Mote: You can specify a different policy that applies once
== an item has been declared a record.

Records
Specify how to manage retention on records:
f* Use the same retention policy as non-records

" Define different retention stages for records:

The preceding code demonstrates how to take advantage of SharePoint class libraries to
access functionality and methods available in those class libraries, and not directly available
as PowerShell SharePoint script extensions. Although methods used here are discussed in
detail in Chapter 8, Managing Documents and Records in SharePoint with PowerShell, this
recipe demonstrates basics behind accessing SharePoint object model using PowerShell.

In this example, we created a new expiration policy on the document library of the team

site on the development environment downloaded from Microsoft's download site
http://intranet.contoso.com.

We started by accessing the site which we are interested in by using the PowerShell
Get-SPSite method. We then accessed the current site at which the SharePoint
Documents document library is hosted.

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Next, we got hold of the current policy on the library in order to add a new instance of a policy.

We used the CreatePolicy method available in the [Microsoft.Office.
RecordsManagement . InformationPolicy.Policy] hamespace to create a policy for
the library. This part demonstrates how the function is not available in the PowerShell syntax,
but is available in the SharePoint library, and can be called in order to access some of the
advanced functions in SharePoint.

The rest of the preceding code adds the definition of the policy we're trying to create on the
library and adds the new policy object to the list of available policies.

When you execute this script, the newly defined policy will be added to the library on the site.

There's more

Let's take a look at how you can access external SharePoint libraries to execute more
advanced PowerShell commands.

Accessing other SharePoint libraries and related functions

In this example, we looked at how you can create an expiration formula on the library, but
there is plenty more you can do. To access functions in SharePoint libraries, you need to
identify the object class and namespace those functions belong to so you can reference
them in PowerShell.

If you search for the policy function class on TechNet you will find: Microsoft.Office.
RecordsManagement . InformationPolicy.Policy. From there you can also determine
various functions available to be called.

To call any of the functions, you would use the method we used in the preceding source code
and reference the namespace first, followed by the class and function names.

Let's look at another example where we use PowerShell to connect to the current site and
then change the status of features on the site.

1. Open PowerGUI, click File | New to create a new script.
2. Add the following code to the script window:

$siteUrl = "http://intranet.contoso.com"

$snapin = Get-PSSnapin | Where-Object {$.Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

s

www.it-ebooks.info

http://www.it-ebooks.info/

PowerShell Scripting Methods and Creating Custom Commands

$site = Get-SPSite | Where-Object {$_ .Url -eq $siteUrl}
Sfeatures = S$site.FeatureDefinitions;
$features.get Item("CustomFeature") .Status = "Offline"

3. Run the script from within PowerGUI by pressing F5.
4. Verify the status of our CustomFeature which should be Offline.
Note that we did not have direct access to the features object but rather to its parent. Yet,

by using PowerShell, we were able to call function on a child object allowing us to change the
status of the feature on the site.

In this case, we set the feature to be 0ff1ine. Among other available options related
to a feature status, we could choose the following: Online, Disabled, Offline,
Unprovisioning, Provisioning, Upgrading.

As you can see, this method is handy when you need to disable defective features across
many sites in your environment.

This example demonstrates how you can access other available libraries in SharePoint and
even your own custom libraries to call functions from within them.

Creating a custom PowerShell command

(CmdLet)

In this chapter, previous recipes have tackled accessing custom functions in other SharePoint
libraries, and using those functions to perform various operations in our script. It's now time
for us to see how we can create our own custom function executing some custom logic. Once
the command has been created, it will be accessible from within PowerShell for users to call.

This is particularly handy when you're creating a collection of functions which perform
frequent administrative tasks on your server.

Another example where you might want to create your own CmdLet is when you're
planning to package those as custom offering for your customers to download and use
on their environments.

Getting ready

To create a custom CmdLet, we will be using Visual Studio 2010 Professional. If you're
using the virtualized environment we downloaded in the recipe, Setting up your Virtual
Machine and running a test script, Visual Studio 2010 Professional will already be installed
on your system. Otherwise, ensure you at least have the Professional version installed to
continue with this recipe.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

How to do it...

Let's take a look at how you can create your own CmdLet using the following steps:

1.

2
3.
4

From within your Visio Studio 2010, click File | New | Project
From Installed Templates select Visual C# | Class Library.
Leave the default name for the project as ClassLibraryl and click OK.

In the Solution Explorer, right-click References | Add Reference to add the
following references:

System.Management.Automation, which can be found in a list of assemblies in the
.NET tab.

Also add a reference to Microsoft.SharePoint. The reference can be found in the
SharePoint tab as seen here:

% fdd Reference K

"MET | com | Projects SharePaint | Browse | Recent |

M armne | Wersion | Pal

Microsoft SharePoint Foundation

sharePoint 14.0.0.0 B
Microzoft SharePaint. Ling 14.000 =3}
Microgaft. SharePaint. S earch 14.0.0.0 =3}
Microsoft SharePoint. 5 ecurity 14000 oh
Microzaft. SharePoint PowerShell 14.00.0 CN

Microgoft SharePoint Client

Microzaft. SharePaint. Client 14.000 =33
Microgzoft, SharePaint, Client, Runtime 14.0.0.0 =3}
Microsoft SharePoint Server hd
1| | »
[o]4 | Cancel |

In the Solution Explorer, pick the Classl1.cs and rename the file to PowerShell
Cmdletl.cs.

Replace the contents of the PowerShell Cmdletl.cs with the following code:

using System.Management.Automation;
using Microsoft.SharePoint;

namespace PowerShellCmdletl
{
=}

www.it-ebooks.info

http://www.it-ebooks.info/

PowerShell Scripting Methods and Creating Custom Commands

[Cmdlet (VerbsCommon.Set, "WebTitle")]
public class PowerShell Cmdletl : Cmdlet

{

[Parameter ()]
public string siteUrl;

[Parameter ()]
public string newTitle;

protected override void ProcessRecord ()

{

base.ProcessRecord() ;

using (SPSite site = new SPSite(siteUrl))

{

using (SPWeb web = site.OpenWeb())

{

web.Title = newTitle;
web.Update () ;
WriteObject ("New Title: " + web.Title);

}

Right-click the project name ClassLibraryl and select Properties.

9. From the Properties page, pick the Signing tab and check the check mark titled Sign
the assembly.

10. From the drop-down entitled Choose a strong name key file, pick New and provide
key filename of your choice, which usually is safe to call key.snk.

11. Uncheck Protect my file with a password and click OK.
12. Your project will now have an assigned key as shown in the following screenshot:

Reference Paths Timesktamp serwver LRL:

Signing

v Sign the assembly
Choose a strong name key file:
Ikev.snk j Change Password.,.

r Delay sign only
‘When delay signed, the project will not run or be debuggable.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

13. At this point, your Visual Studio Solution Explorer tree will look as in the
following screenshot:

Solution Explarer

2| S| EE R
7] PowerShellcmdlet1
=d| Properties
= |_7 References
- Microsaoft, SharePoink
A2 Syskem
A2 System, Configuration. Install
+ System.Management. Aukoration
f‘; ke, snk,
] Powershell Cradletl . cs

'—“i] Solution Explorer

At this stage, we have created a new class representing our CmdLet with Visual Studio
solution. Visual Studio will produce an assembly file as an output of the solution once built.

Our solution has only one CmdLet functionality which is defined in Powershell Cmdletl.
You will notice the [Cmdlet (VerbsCommon.Set, "WebTitle")] part of the code defines
the type of the command and the name of it.

If you noticed, all of the PowerShell commands we have called so far have a
. naming convention of a [Verb] - [Action]. The verb in this case is either
% Get or Set. In fact, for the full list of available verbs, in your command
s let code, place the cursor over VerbsCommon . Set and press F12. Visual
Studio will display all of the available verbs allowing you to find the one
appropriate to the CmdLet you're creating.

The second part of the CmdLet declaration is the action of your function, which can be titled
according to your preference.

1
‘\Q The best practice here is to name the command something descriptive

to the action executed by it.

=]

www.it-ebooks.info

http://www.it-ebooks.info/

PowerShell Scripting Methods and Creating Custom Commands

The actual functionality of the CmdLet is defined right below the CmdLet declaration, in our
case, in the PowerShell Cmdletl class.

We started with a parameter declaration, which is an optional piece but often used. Since
most PowerShell commands contain a reusable set of instructions to be performed on the
object, it's very common when authoring a new script to accept parameters specifying an
object. For PowerShell scripts interacting with SharePoint, this will be a URL of the site or list
name, and so on. In our case, we'll capture the URL and the new title of the SharePoint site.
The following function will use the parameters we supplied to connect to the URL we have
identified, and rename the site title to the one defined.

The logic defined in ProcessRecord of our code handles all of the functionality our CmdLet
will execute, and this is where you can code the functionality of your own CmdLet.

Finally, once the logic of our CmdLet has been created, we're prepared to make the
functionality available in the PowerShell command line. Details of the CmdLet installation
process are described in the Creating a custom PowerShell Snap-In recipe.

Due to the nature of CmdLet, before installing it on the system, we need to make sure the
output DLL is signed with a strong name.

The purpose of signing the assembly with the strong name is to ensure the assembly can
be dropped into the Global Assembly Cache (GAC), where it can be consumed by the
installation process.

Creating a custom PowerShell Snap-In recipe in this chapter.

Creating a custom PowerShell Snap-In

As we've seen in the Creating a custom PowerShell command (CmdLet) recipe, the creation
of PowerShell CmdLet is a process of defining the functionality you want to expose to the
user, and sealing it as a .NET assembly. In this recipe, we'll take a look at how you install your
custom CmdLet which directly involves the creation of a PowerShell Snap-in.

We have already used the PowerShell Snap-In when we referenced a set of SharePoint Set
earlier in this chapter. In this case, we called the following command:

Add-PSSnapin "Microsoft.SharePoint.Powershell"

In this example, we'll use similar approach to call our custom Snap-In.

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Getting ready

As trivial as it sounds, to create a Snap-In, you will need to create another class in the
Visual Studio solution you created earlier to define your CmdLet. Your Snap-In solution
doesn't need to contain both a Snap-In and a CmdLet. In fact, you can have them created
in two separate solutions as long as your Snap-In references the CmdLet. In this example
we'll add a Snap-In class to the existing CmdLet solution, which is very common when
creating PowerShell CmdLet libraries.

How to do it...

We'll take a look at how you can create your own PowerShell Snap-In.

1.
2.

Switch to the Visual Studio 2010 solution you used to create a CmdLet earlier.

From the Solution Explorer, right-click the project name, PowerShellCmdletl and
select Add | Class

In the Solution Explorer, pick the Class1.cs and rename the file to PowerShell
Cmdletl.cs

Rename the newly created class to PowerShellCmdlet Snapini.cs.

Open the class file created and replace the contents of the PowerShellCmdlet
Snapini.cs with the following code:

using System.Collections.ObjectModel;

using System.ComponentModel;

using System.Management.Automation;

using System.Management.Automation.Runspaces;

namespace PowerShellCmdletl
{
[RunInstaller (true)]
public class PowerShellCmdlet SnapInl : CustomPSSnapIn

{

private Collection<CmdletConfigurationEntry> cmdlets;

/// <summary>

/// The description of powershell snap-in.
/// </summarys>

public override string Description

{

get { return "A Description of MyCmdlet"; }

/// <summary>
/// The name of power shell snap-in

e

www.it-ebooks.info

http://www.it-ebooks.info/

PowerShell Scripting Methods and Creating Custom Commands

/// </summarys>
public override string Name

{

get { return "MyCmdlet"; }

/// <summary>

/// The name of the vendor
/// </summarys>

public override string Vendor

{

get { return ""; }

public override Collection<CmdletConfigurationEntrys>
Cmdlets

get

if (null == cmdlets)

{
cmdlets = new Collection<Cmdlet
EonfigurationEntry>();
_cmdlets.Add (new CmdletConfigurationEntry
("Set-WebTitle", typeof (PowerShell Cmdletl),
"Set-WebTitle.dll-Help.xml")) ;

}

return _cmdlets;

}

Right-click the project name PowerShellCmdletl and select Build.

Right-click the project name PowerShellCmdletl and select Open Folder in
Windows Explorer.

8. In the folder opened, open the bin\Debug folder and locate the
PowerShellCmdletl.dll.

9. Click Start | Run on your development environment and open the Global Assembly
Cache by typing c: \windows\assembly.

10. Drag-and-drop the PowerShellCmdletl.dl1l to the assembly folder.

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

11. Open a PowerShell command line from Start | All Programs | Accessories |
Windows PowerShell | Windows PowerShell.

12. Type in the following command to install our newly added Snap-In assembly.
Ensure the path to your assembly is correct. In this example, our path is C:\
Users\Administrator\Documents\visual studio 2010\projects\
PowerShellCmdletl\PowerShellCmdletl\bin\Debug:

PS> set-alias installutil $env:windir\Microsoft.NET\Framework\
v2.0.50727\installutil

PS> cd "C:\Users\Administrator\Documents\visual studio 2010\
projects\PowerShellCmdletl\PowerShellCmdletl\bin\Debug"

S> installutil PowerShellCmdletl.dll

Y installutil Fenv:iwindir\Mi of t .NET\Framework u2 .B.5872P\installutil B
3 1atn1) cd "C SUseprssAdministratorsDocumentsiwvisual studio 2B81B~projects~PowerShellCmdleti~PowerShe1lmm|

ninistratorsDocunentsiwisual studieo ZB18\projec serShellCndletis\PowerShellCmdletisbhinsDebug? installut|
lShellCmdletl dll
Microsoft (R> _MET Framework Installation utility Uersion 2.8
Copyright (c)> Microsoft Corporation. A1l rights reserved.

Running a transacted installation.

Beginning the Install phase of the installation.
See the contents of the log file for the C:“\Windows“assembly~GAC_MSIL“PowerShellCmdletli~l.B.@.8_ 6ha3eS56ddcl?cSf48 \Pouers
hellCmdletl.d1l]l assembly’s
lﬁ:e file is located at C: Y mb1y~GAC_MSI L PowerShellCmdleti~1.B.8.8__6a3e56ddcl?c5f48\PowerShellCndletl .Install

0
In..talllng assembly C \l.hn(luu..\ mb1ynGAC_MESILNPowerShellCmdlet1i~1.8.8.8_ 6aleS6ddcl?chf 48 FowerShellCndletl.d11” .
Affected paramet

logtoconsol

“Hindowssassembly~GAC_MSIL\PowerShellCmdleti~1.8.8.0__6a3e56ddcl?c5f48 \PowerShellCmndletl.d11l
logfile = C oussassembly~GAC_MSIL~PowerShellCmdleti~1.B.8.8__6a3e56ddcl1?c5f 48 \PoverShellCmdletl . Installlog

The Install phase completed succ uwlly,. and the Commit phase is beginning

See the contents f the C:“WindowsNassembly~GAC_| HSIL\Puue} S}lellCmdleti\i B.8.8_ 6ha3eS56ddcl?c5f48\Pouwers
hellCmdletl.dll em

The file is lul:ate(l at C:x\Window mhly~GAC_MSIL PowerShellCndleti™d. B__6aldeS56ddcl1?c5£48\PouerShellCndletl . Instal]

enbly *GC:\WindowsNassembhlyNGAC_MSIL\PowerShellCmdletisi.B.0A.A__6al3e56ddcl?e5£48 PoverShe11Cndletd .d11” .
Affected parameters arve:
logtoconsol
C:\MWindows~assemblyNGAC_MSIL\PowerShe1llCmdlet: __6a3eS6ddcl?c5f48N\PowerShellCmdletl.d11l
logfile = C:s\WindowshassemblysGAC_MSILNPowerShellCmdletli™~l .8 B 6a3e56ddc1'?|:5f43\1’nuexS]lellCmdletl InstallLog

The Commit phase completed successfully.

cted install has completed.
s\Administrator’\DocunmentsSwisual studico 2018\projects“\PouerShellCndletl1“PowerShellCmndletisbinsDebug> _

13. Now that our Snap-In has been installed, let's open our SharePoint test intranet site,
http://intranet.contoso.com. Take note of the current site title.

14. Switch back to the PowerShell command-line window and register the new Snap-In:
PS> Add-PSSnapin "MyCmdlet"

15. Let's change the title of the site by executing our custom CmdLet:
PS> Set-WebTitle -siteUrl "http://intranet.contoso.com" -newTitle
"Test Title"

16. Switch back to http://intranet.contoso.comand take note of the
changed title.

www.it-ebooks.info

http://www.it-ebooks.info/

PowerShell Scripting Methods and Creating Custom Commands

Since we have already created the actual CmdLet, we reused the same Visual Studio solution
to add a Snap-In class. The Snap-In class will perform the role of installer. As you can see, the
contents of the class declare the name and description on the CmdLet as well as a reference
to CmdLet class. This information will further be used to identify your custom CmdLet.

Once the solution has been built and the solution library has been generated, we copied the
library to GAC. We used InstallUtil to install and uninstall server resources by executing
the installer components in our CmdLet library. By executing the InstallUtil command we
will actually make the Snap-In available in the PowerShell command line.

Once installed, we can add the Snap-In and execute our custom CmdLet.

As you will notice, due to the fact that our custom Snap-In library will be placed into the GAC,
the custom code executed will have access to most of the server resources. Because of the
level of access, when downloading custom Snap-Ins ensure they come from a trusted source.

There's more

Let's take a look at how you can uninstall your Snap-In from the system as well as how Visual
Studio templates can help you with Snap-In authoring.

Uninstalling a Snap-In from your system

Previously, we looked at how you can install the Snap-In so it's available to be called from
the command line. You can also uninstall the Snap-In by using the uninstall key of the
InstallUtil command. Here is a sample uninstall syntax for our Snap-In:

PS> installutil /u PowerShellCmdletl.dll

It's quite common to need to uninstall the Snap-In. One common scenario includes the
CmdLet authoring process. As you author your CmdLet and discover problems with it or would
like to add more functionality, to have the new version available you would need to re-install
the Snap-in on the environment.

Visual Studio CmdLet and Snap-In item templates

In this example, we looked at how you can install a custom PowerShell Snap-In by adding
code to a Visual Studio solution. Since this is a fairly common task, there are a few templates
available online which you're welcome to use to create core CmdLet and Snap-In code
automatically. The core functionality will be your starting point which you can add your
customizations to.

One of the templates you can try is available at CodePlex. The project is called PowerShell
Visual Studio 2008 templates and recently was hosted at this URL: http://psvs2008.
codeplex.com.

NED

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Although the version of this package is specifically designed for Visual Studio 2008, it is also
compatible with Visual Studio 2010.

Once you download the package, open it on the development environment where you
have Visual Studio installed, and install all of the suggested components, as seen in the
following screenshot:

1. ¥isual Studio Content Installer | %]
-

| Select content to install

Which content items do you want to install?

Templates & Starter Kits

windows PowerShell Project Template

Windows Powershell Ikem Template For Crndlets

windows PowerShell Ikerm Template For PSCrdlets

windows PowerShell Tkem Template For Crdlets %ML help File
iindows Powershell Trem Template For Crdlets Snapln

‘Wiew Files in Windows Explorer...

—Publisher information
Publisher: (Unknown)

InFormation URL: (Mok Available)

= Previous | Mexk = I Finish Cancel

Once installed, to add a new instance of a template for CmdLet and Snap-In, simply right-click
on the project name in Solution Explorer, and select Add | New Item.

Es

www.it-ebooks.info

http://www.it-ebooks.info/

PowerShell Scripting Methods and Creating Custom Commands

From here, you need to pick the appropriate Snap-In or CmdLet template and click Add to
create an initial version of the file, as seen in the following screenshot:.

Add New Item - PowerShellCmdlet1

Installed Templates

‘Wisual Ca# Tkems
Code
Data
General
Wb
‘Windows Forms
WRF
Reporting
SharePaint
workflow

Cnling Templates

Marne:

Sart by I DeFault j

I MMM

2]
(=

1

LY
(=]
A

[e [1f]

PowerShell Cmdlst Visual C# Items

PowerShell PSCmdlet Visual C# Ttemns

PowerShellCrdlet Help XML ‘isual Ca# Ikems

PowerShellCrmdlet SnapIn ‘Wisual Ca# Ikems
Class Wisual C# Items
Interface Wisual C# Items
Windows Farm Visual Ca# Itemns
User Control Visual Ca# Itemns
Component Class Wisual C# Irems

I PowerShell CmdletZ.cs

-

Search Installed Templates o

Type: Visual C# Items

Powershell Cmdlet class template

|_aad J conce

Whether you will be using components from the preceding template, or creating your own
CmdLet classes, search MSDN with the keyword Cmdlet Development Guidelines for some
handy tips and details on authoring your CmdLets.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Enterprise Content
Deployment and
Provisioning Using
PowerShell

In this chapter, we will cover:

>

Provisioning site hierarchy during solution deployment

Installing features on the site and managing existing site features
Creating permission levels and security groups that use them
Managing site templates and their availability on sites
Associating features to existing site templates

Managing SharePoint workflow association using PowerShell

Configuring site themes and user interface artifacts

Introduction

As we've seen in Chapter 1, PowerShell Scripting Methods and Creating Custom Commands,
the strength of PowerShell lies in its ability to access and manipulate complex objects in
SharePoint. In this chapter, we'll take a look at many more PowerShell capabilities and usage
scenarios targeting enterprise content provisioning and deployment.

www.it-ebooks.info

http://www.it-ebooks.info/

Enterprise Content Deployment and Provisioning Using PowerShell

When setting up a new solution in your environment, you are likely to want to set it up on a
test environment before rolling it out to production. In more complex scenarios, customers
require the same solution to be deployed to testing, quality assurance, staging, and
production environments. If your solution requires site hierarchy to be provisioned to many
environments on the target system, it might be a very time consuming and error-prone task.
In this chapter, we'll take a look at how you can create a reusable deployment script with
PowerShell to automate your site hierarchy provisioning and solution deployment.

As your SharePoint environment is set up and used in production, periodically you will need
to upgrade or install additional functionality. In this chapter, we'll cover how you can activate
a set of features across multiple site collections allowing you to streamline your upgrade and
solution maintenance process.

Quite often, an out-of-the-box site template is all you need for your SharePoint sites. Over
time, your users request additional functionality which they would like to see in subsequent
instances of their SharePoint sites. We'll take a look at exactly what's involved in automatically
triggering customizations on your custom and out-of-the-box site templates. We'll also look at
how you can leverage PowerShell to limit the availability of templates on your SharePoint site.

Many corporate intranets make use of workflows to manage business processes on the site.
Whether you are using SharePoint or custom workflows on the site now, or planning to use it
in the future, we'll see how you can associate existing workflow templates to lists and libraries
within your site.

Finally, we'll see how you can automate managing the look and feel of the site using a
PowerShell script.

Provisioning site hierarchy during solution

deployment

In this recipe, we'll give full attention to one of the most common tasks administrators

and developers need to perform together when a new solution is deployed to client
environments: provisioning of site hierarchy. To keep this recipe within the scope of actual
site provisioning and not custom site template development, we will be provisioning a site
hierarchy of team sites. In your scenario, you are very likely to need to provision site hierarchy
of sites deriving from a custom site template. The template will be developed separately

and the PowerShell script we'll create here will not change regardless of the templates

we're provisioning.

In fact, the PowerShell script we'll create is going to use an XML file where developers will
specify the order of the site provisioning and site template used, as well any features activated
on the site once it's created.

S E

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

At the end of this recipe, you will have a reusable script which you can use on many other
projects, as well as being able to extend it to facilitate any additional deployment needs you
may have.

Getting ready

We'll assume you have already set up your virtual development environment as described in
Chapter 1, PowerShell Scripting Methods and Creating Custom Commands. We'll also assume
you're comfortable with using tools we discussed in the chapter. For this recipe, we'll be using
PowerGUI to author the script.

How to do it...

Let's take a look at how site and content provisioning can be accomplished with the script in
this recipe:

1. On the target Virtual Machine, ensure you are logged in with an administrator's role.
2. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.

3. Inthe main script editing window of PowerGUI, add the following script:

Defining script variables
[xml] $SiteStructure = get-content SiteStructure.xml
SWebAppUrl = $SiteStructure.Setup.Attributes.Item(0) .Value

$SiteCollectionUrl = $SiteStructure.Setup.SiteCollection.
Attributes.Item(1l) .Value

$SiteUrl = $WebAppUrl + $SiteCollectionUrl

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$.Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eqg $null) {

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

Deleting existing site found at target URL
$targetUrl = Get-SPSite | Where-Object {$_ .Url -eq $SiteUrl}
if ($targetUrl.Url.Length -gt 0) {
Write-Host "Deleting existing site at" $SiteUrl
Remove-SPSite -Identity $SiteUrl -Confirm:$false

Creating site structure

www.it-ebooks.info

http://www.it-ebooks.info/

Enterprise Content Deployment and Provisioning Using PowerShell

$SiteCollectionName = $SiteStructure.Setup.SiteCollection.
Attributes.Item(0) .Value;

$SiteCollectionOwner = S$SiteStructure.Setup.SiteCollection.
Attributes.Item(2) .Value;

$SiteCollectionTemplate = $SiteStructure.Setup.SiteCollection.
Attributes.Item(3) .Value;

Write-Host "Creating new site collection at" $SiteUrl

SNewSite = New-SPSite -URL S$WebAppUrl$SiteCollectionUrl -
OwnerAlias $SiteCollectionOwner -Template $SiteCollectionTemplate
-Name $SiteCollectionName

SRootWeb = S$SNewSite.RootWeb

Write-Host "Site collection created successfully"
Write-Host "Title:" $RootWeb.Title -foregroundcolor Green
Write-Host "URL:" SRootWeb.Url -foregroundcolor Green
Write-HoSt M"--------mmmm oo e "

for ($i=1; $i -1t $SiteStructure.Setup.SiteCollection.ChildNodes.
Count; $i++)

{

Schildsite = $SiteStructure.Setup.SiteCollection.ChildNodes.
Item($i) ;

SWebName = Schildsite.Attributes.Item(0) .Value

SWebUrl = Schildsite.Attributes.Item(1l) .Value

SWebTemplate = $Schildsite.Attributes.Item(2) .Value

Write-Host "Creating new web at" $SiteUrl/sWebUrl

$NewWeb = New-SPWeb $SiteUrl/S$WebUrl -Template $WebTemplate -
Addtotopnav -Useparenttopnav -Name S$WebName

Write-Host "Web created successfully"

Write-Host "Title:" $NewWeb.Title -foregroundcolor Green
Write-Host "URL:" S$NewWeb.Url -foregroundcolor Green
Write-HoSt M--------mmmmm oo e "

}

start-process -filepath iexplore -argumentlist $SiteUrl

4. Click File | Save to save the script to your development machine's desktop.
Set the filename of the script to setup.ps1.

5. Click File | New in PowerGUI application.
Add the following code in the newly opened file window:

<Setup WebAppUrl="http://intranet.contoso.com">

<SiteCollection Name="Root Site" Url="/sites/rootsite"
OwnerAlias="contoso\administrator" Template="STS#0">

<Site Name="Child 1" Url="childl" Template="STS#0"/>

NEQ

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

<Site Name="Child 2" Url="child2" Template="STS#0"/>
<Site Name="Child 3" Url="child3" Template="STS#0"/>
</SiteCollection>
</Setup>

7. Save the file on your desktop by clicking File | Save providing the following filename:
SetupStructure.xml.

8. Open the PowerShell console window and call setup.ps1 using the
following command:

PS C:\Users\Administrator\Desktop> .\setup.psl

9. As aresult, your PowerShell script will create a site structure as shown in the
following screenshot:

B Administrator: Windows PowerShell M=

PS C:sUsers™AdministratorsDesktop> .“setup.psl

LARNING: More results were found in Get—5PSite but were not returned. Use '"—Limit
Creating new site collection at http://intranet.contoso.comnssitessrootsite

Site collection created successfully

Title: Root Site

URL: http:-/intranet.contoso.comssites rootsite

Creating new web at http:/sintranet.contoso.comssitessrootsiteschildi
Web created successfully

Title: Child 1

URL: http:-/intranet.contoso.comssites rootsiteschildl

Creating new web at http://intranet.contoso.comssites rootsiterschild2
Web created successfully

Title: Child 2

URL: http:-/intranet.contoso.comssites rootsiteschild2

Creating new web at http://intranet.contoso.comssites rootsiterschild3
Web created successfully

Title: Child 3

R http://intranet._.contoso.com/sites/rootsiteschild3

10. Observe the Internet Explorer window opening and navigate to our newly created site
collection with URL: http://intranet.contoso.com/sites/rootsite.

The automated site provisioning process we created above consists of two parts: a PowerShell
script executing the commands, and the XML defining our site structure.

Let's take a look at the XML containing the site structure definition. The top element,
<Setup/ >, defines the web application URL which is used to connect to the site and create
new site collection.

Eis

www.it-ebooks.info

http://www.it-ebooks.info/

Enterprise Content Deployment and Provisioning Using PowerShell

<SiteCollection/> is the next node in the XML which defines parameter values required
for the script to create a new site collection on the specified web application.

The last item in the XML definition is the <Site/> node defining the sites which are going

to be created under the site collection. Some of the other parameters required for the site
creation are also captured here. These parameters include the URL, name, and the template.
In our recipe example, we're using the STS#0 template which is a Team Site.

Let's take a look at the actual PowerShell provisioning script. First, the script gets a hold of the
XML file defining provisioning variables we just looked at. The structure of the XML is parsed
to extract the variables from SiteStructure.xml.

Once the PowerShell snap-in has been loaded, the script proceeds in creating a site collection
defined in the <SiteCollection/> node. The existing site collection with the same URL will
be deleted. This may not be the behavior you would like to implement to avoid site deletion in
error, in which case remove the following code:

Deleting existing site found at target URL
$targetUrl = Get-SPSite | Where-Object {$_.Url -eq $SiteUrl}
if ($targetUrl.Url.Length -gt 0) {
Write-Host "Deleting existing site at" $SiteUrl
Remove-SPSite -Identity $SiteUrl -Confirm:$false

}

By removing this code, if an existing site collection exists on the URL provided, the provisioning
of the site collection will fail.

Once site collection has been provisioned, any associated sites under the site collection will
be provisioned.

As a result, when the provisioning is complete, the following is the resulting site collection with
child sites created in it: http://intranet.contoso.com/sites/rootsite, as seenin
the following screenshot:

NED

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Site Actions ~ B B

Horme Child 1

Libraries
Site Pages

Shared Docurments
Lists
Calendar

Tasks

Discussions

Browse

Root Site » Home

Child 2

(‘Root Site - Home - Windows Internet Explorer M= E3
I hittpe ffintranet. con, .. j *4 | X I Eing Pelihs
.7 Favarites Roat Site - Home: J ”-’|\) v) = v Page - Safety - i

2 Account -

Child 3 Search thi

Welcome to your sitel

Add a new image, change this welcorme text or add new lists
to this page by clicking the edit button above, You can click
on Shared Docurnents to add files or on the calendar to
create new team events, Use the links in the getting started
section to share your site and customize its look,

Shared Documents

Tearn Discussion

I~ Type Marne Modified

| |

Modified By _ILI
3

o | maee -

Done ’_ ’_ l_ ’_ ’_ ’_ |€i_ Local intranet | Protected Mode: OFF

The Installing features on the site and managing existing site features recipe in this chapter.

Installing features on the site and

managing existing site features

In the last recipe, we became familiar with how to create a script to provision your projects'
site hierarchy. It's quite common for any site template to use custom or out-of-the-box
SharePoint features. Those features give site templates consistent functionality once the
instance of the site has been created.

In this recipe, we'll take a look at what's involved in activating site features on sites
using PowerShell.

We'll also see how the functionality from this recipe can be incorporated in the script we
created in last recipe.

Getting ready

In this recipe, we'll use PowerGUI to add extra functionality to the script we discussed in the
Provisioning site hierarchy during solution deployment recipe.

s

www.it-ebooks.info

http://www.it-ebooks.info/

Enterprise Content Deployment and Provisioning Using PowerShell

How to do it...

Let's see how you can provision site hierarchy using the following steps:

1.
2.
3.

On the target Virtual Machine, ensure you are logged in with an administrator's role.
Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
In the main script editing window of PowerGUI add the following script:

Defining script variables
[xml] $SiteStructure = get-content SiteStructure.xml
SWebAppUrl = $SiteStructure.Setup.Attributes.Item(0) .Value

$SiteCollectionUrl = $SiteStructure.Setup.SiteCollection.
Attributes.Item(1l) .Value

$SiteUrl = $WebAppUrl + $SiteCollectionUrl

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
SharePoint.Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

Deleting existing site found at target URL
S$targetUrl = Get-SPSite | Where-Object {$_.Url -eq $SiteUrl}
if ($targetUrl.Url.Length -gt 0) {
Write-Host "Deleting existing site at" $SiteUrl
Remove-SPSite -Identity $SiteUrl -Confirm:S$false

Creating site structure

$SiteCollectionName = $SiteStructure.Setup.SiteCollection.
Attributes.Item(0) .Value;

$SiteCollectionOwner = S$SiteStructure.Setup.SiteCollection.
Attributes.Item(2) .Value;

$SiteCollectionTemplate = $SiteStructure.Setup.SiteCollection.
Attributes.Item(3) .Value;

Write-Host "Creating new site collection at" $SiteUrl

SNewSite = New-SPSite -URL $WebAppUrl$SiteCollectionUrl -
OwnerAlias $SiteCollectionOwner -Template $SiteCollectionTemplate
-Name $SiteCollectionName

SRootWeb = S$NewSite.RootWeb

Sfeatures = $SiteStructure.Setup.SiteCollection.Features

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

if ($features.Feature.Length -gt 0)

{

foreach ($SiteColFeature in S$features.Feature)

{

SActivatedFeature = Enable-SPFeature $SiteColFeature -url
SRootWeb.Url

Write-Host "Enabled Feature:" $SiteColFeature -
foregroundcolor Green

}

Write-Host "Site collection created successfully"
Write-Host "Title:" $RootWeb.Title -foregroundcolor Green
Write-Host "URL:" SRootWeb.Url -foregroundcolor Green
Write-HOoSt M--------mmmm oo e "

for ($i=1; $i -1t $SiteStructure.Setup.SiteCollection.ChildNodes.
Count; $i++)

{

Schildsite = $SiteStructure.Setup.SiteCollection.ChildNodes.
Item($i) ;

SWebName = Schildsite.Attributes.Item(0) .Value

SWebUrl = Schildsite.Attributes.Item(1l) .Value

SWebTemplate = $Schildsite.Attributes.Item(2) .Value

Write-Host "Creating new web at" $SiteUrl/sWebUrl

$NewWeb = New-SPWeb $SiteUrl/$WebUrl -Template $WebTemplate -
Addtotopnav -Useparenttopnav -Name S$WebName

Write-Host "Web created successfully"

Write-Host "Title:" $NewWeb.Title -foregroundcolor Green

Write-Host "URL:" S$NewWeb.Url -foregroundcolor Green

Sfeatures = $SiteStructure.Setup.SiteCollection.ChildNodes.
Item($i)

if ($features.Feature.Length -gt 0)

{

foreach (SWebFeature in $features.Feature)

{

SActivatedFeature = Enable-SPFeature S$SWebFeature -url
SNewWeb.Url

Write-Host "Enabled Feature:" S$SWebFeature -foregroundcolor
Green

}
}

Write-HoSt M--------mmmmm oo e "

}

start-process -filepath iexplore -argumentlist $SiteUrl

@l

www.it-ebooks.info

http://www.it-ebooks.info/

Enterprise Content Deployment and Provisioning Using PowerShell

4. Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to setup.ps1.

5. Click File | New in the PowerGUI application.
Add the following code in the newly opened file window:

<Setup WebAppUrl="http://intranet.contoso.com">
<SiteCollection Name="Root Site" Url="/sites/rootsite"

OwnerAlias="contoso\administrator" Template="STS#0">
<Featuress>
<Feature>ContentTypeSyndication</Feature>
</Features>
<Site Name="Child 1" Url="childl" Template="STS#0"/>
<Site Name="Child 2" Url="child2" Template="STS#0"/>
<Site Name="Child 3" Url="child3" Template="STS#0"/>
</SiteCollection>

</Setup>

7. Save the file on your desktop by clicking File | Save, providing the following filename:
SetupStructure.xml.

8. Switch back to your browser and navigate to our SharePoint test site:
http://intranet.contoso.com/sites/rootsite

9. Click Site Actions | Site Settings | Site Collection Administration | Site
collection features.

10. Take note that the In Place Records Management feature, seen below, should not
be set to Active.

{Zsite Collection Features - Windows Internet Explorer

@ w [retpusfivtranct contoso.comjsiesiraotsite/_tayoutsit =] | 42| X | [eine £~
e ; . " . = »
7. Favorites Site Collection Features ‘ i B - - Page - Safety - Took - @~

% Find: IIn Place Records Management Previous Mext | o/ Options + | 1 match

e e e
the Site Collsction, which can Activate =
be used to retrieve items
independent of their current
location.

Document Sets

Provides the content types

required for creating and

using docurment sets, Create a Activate
document set when you want

to manage multiple documents
as a single work product.

In Flace Records

Management
J Enable the definition and Activate

declaration of recards in

place.

Library and Folder Based
Retention

Allows list administraters to - -
override content type Be=Rie

retention schedules and set

schedules on libraries and .
Flrare
< |

[[T T i vocalintranet | Protected Mode: OFF fa - [Riow -

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

11. Open the PowerShell console window and call setup.ps1 using the following
command:

PS C:\Users\Administrator\Desktop> .\setup.psl

12. As a result, your PowerShell script will create a site structure and activate the In
Place Records Management feature as shown in the following screenshot:

Windows PowerShell

WARNING: More results were found in Get-8PSite but were not returned. Use
ALL' to return all possible results.

Creating new site collection at http:~/ intranet.contoso.coms/sites rootsite
Enabled Feature: InPlaceRecords

Site collection created successfully

Title: Root Site

URL: PP | sites/rootsite

Creating new webh at http:/sintranet.contoso.comssitessrootsiteschildl
lleb created successfully
: Child 1

s/sites /rootsiteschildl
Creating new web at http:~/~sintranet.contoso.comssites rootsiterschild2
Wleh created successfully
Title: Child 2
URL: http:/“intranet.contoso.comssites rootsiteschild2

Creating new web at http:/sintranet.contoso.comssites rootsiteschild3
lleb created successfully

Title: Child 3

URL: http:-/-intranet.contoso.comnssites rootsiterchild3

PS8 C:™Users:AdministratorsDesktop>

13. From the SharePoint site, click Site Actions | Site Settings | Site Collection
Administration | Site collection features.

14. Take note that the In Place Records Management feature is now set to Active.

Similar to the Provisioning site hierarchy during solution deployment recipe, the provisioning
process consists of two parts: the PowerShell script executing the provisioning, and the XML
defining our site structure and other parameters.

The additional node, <Features/ >, specifies any of the feature names that will be activated
on the site collection.

If there are features to be activated at the site collection level, the <Features/> node will
contain each feature folder name defined in the following format:

<Features>
<Features>Feature 1 Folder Name</Features>
<FeaturesFeature 2 Folder Name</Features>
</Features>

&1

www.it-ebooks.info

http://www.it-ebooks.info/

Enterprise Content Deployment and Provisioning Using PowerShell

To find out the name of the folder for a particular installed feature on your site, from the
development machine, navigate to: C:\Program Files\Common Files\Microsoft
Shared\Web Server Extensions\14\TEMPLATE\FEATURES. This is where SharePoint
holds all of the installed features, each of which has its own respective folder. In our
example, we have activated the In Place Records Management feature by calling out the
InPlaceRecords feature, as shown in the following screenshot:

- Libraries
<| Documents
-, Music
k= Pictures

ﬂ Yidenos

1M Computer
.f;u Local Disk ()
e Con WIN-6MITNENM
o D on WIN-BMSTMNEMMT
' E an WIN-6MSTHNEMME
2 F on WIN-6MITHNEMM:
o G on WIN-BMSTMNENMT

*-‘1& Mebwork,

B FEATURES M=] E3
€ 1K |\ < TEMPL... - FEATLRES - + 123 | Sesrch FEATURES D
Organize ¥ o Open Include inlibrary » Share with = Mew folder 4= - _|_] ﬂ
© Favorites Marne = Date modified ;I

N HelpLibrary 4172010 1246 PM
B Deskiop
Huold 4/1/2010 12:57 PM
4+ Dovwnloads
‘| Recent Flaces HolidarysList 4/1/2010 12:46 PM
SharePaint Sites IMEDicLisk 4/1/2010 12:46 PM

<

ipFsAdminLinks
IPFSAdmintweb

IPF3SiteFeatures
IPF5TenantFormsConfig
IPFaTenantWebProxyConfig
IPFSWWebFeatures

Issueslist
IssueTrackingWorkFlow
LegacvDocurnentLibrary
LegacyWiorkflows

LinksList

ListTargeting
LocalSiteDirectoryCantral
LocalSiteDirectoryMetaData
LocalSiteDirectory SetkingsLink,

LocationBasedPolicy

41/2010 1:00 FM
41/2010 1:00 M J
4{1/2010 1:00 PM
4{1/2010 1:00 PM
41/2010 1:00 FM
41/2010 1:00 M
4{1/2010 12:46 PM
41172010 12:46 FM
41/2010 12:56 FM
4{1/2010 12:57 PM
4{1/2010 12:46 PM
41/2010 1:01 FM
4{1/2010 12:57 FM
41172010 12:57 PM
411/2010 12:57 FM

ajifzmoizsrem x|
3

Similar to the <SiteCollection/> node, the <Site/> node defines sites to be created
under the site collection. Here, we can also define SharePoint features to be enabled.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The features for the site need to be scoped for the site
s level and not the site collection.

Let's take a look at our PowerShell provisioning script.
At first, the script gets a hold of the XML file which defines common provisioning variables.

Once the PowerShell snap-in has been loaded, the script proceeds to create the site collection
with details defined in the <SiteCollection/> node. If features are to be enabled on the
site collection level, the following script will enumerate all of the nodes representing features
and enable them sequentially:

Sfeatures = $SiteStructure.Setup.SiteCollection.Features
if ($features.Feature.Length -gt 0)

{

foreach ($SiteColFeature in $features.Feature)

{

SActivatedFeature = Enable-SPFeature $SiteColFeature -url
SRootWeb.Url

Write-Host "Enabled Feature:" $SiteColFeature -foregroundcolor
Green

}
}

Once site collection has been provisioned, any associated sites under the site collection are
now provisioned. If site nodes have features specified on them, those are also enabled after
the site has been created.

The following portion of the script enables site features associated to the site:

Sfeatures = $SiteStructure.Setup.SiteCollection.ChildNodes.Item($1)
if ($features.Feature.Length -gt 0)

{

foreach ($WebFeature in $features.Feature)

{

SActivatedFeature = Enable-SPFeature S$SWebFeature -url $NewWeb.
Url
Write-Host "Enabled Feature:" $WebFeature -foregroundcolor Green

}

When the provisioning is complete, the site structure with associated features gets
provisioned to your SharePoint system.

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Enterprise Content Deployment and Provisioning Using PowerShell

Creating permission levels and security

groups that use them

SharePoint permission architecture allows for site administrators and owners to assign
various types of access to site users. Permissions assigned will be used by various parts of
the system to determine whether a particular user has access to a certain feature or not.

The creation of custom permission levels and groups which will use those permission levels,
is as important as the site hierarchy definition. After all, our PowerShell script created in the
Provisioning site hierarchy during solution deployment recipe already creates site hierarchy,
so defining your custom permissions on the site will be a nice add-on for our automated site
deployment script.

Getting ready

In this example, we'll use PowerGUI to execute our script, so you'll need to log into your
environment with administrative privileges and launch PowerGUI.

How to do it...

In the following sequence, we'll take a look at how you can provision permission levels and
security groups using PowerShell:

1. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.

2. Inthe main script editing window of PowerGUI, add the following script:

Defining script variables

$SiteUrl = "http://intranet.contoso.com"

SRoleName = "Contso Read"

SRoleDescription = "Can open items and forms in SharePoint"
SRoleAccess = "Openltems, Open, ViewPages, ViewListItems,

ViewVersions, ViewFormPages"

$SGroupName = "Contoso Readers"
$GroupOwner = "contoso\administrator"

Loading Microsoft.SharePoint.PowerShell
$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
SharePoint .Powershell'}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

if ($snapin -eqg $null)
Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SPSite -ne S$null)
{
Provisioning new role to the site
SRootWeb = $SPSite.RootWeb

SNewRoleDefinition = New-Object Microsoft.SharePoint.
SPRoleDefinition

SNewRoleDefinition.Name = $SRoleName
SNewRoleDefinition.Description = $RoleDescription
SNewRoleDefinition.BasePermissions = $SRoleAccess

SRootWeb.RoleDefinitions.Add (SNewRoleDefinition)
Write-Host "Provisioned" $SRoleName "at" SRootWeb.Url

Creating a security group

SRootWeb.SiteGroups.Add ($GroupName, SRootWeb.
AllUsers [$GroupOwner], S$null, $GroupName)

Write-Host "Created" $GroupName "at" $RootWeb.Url

Assigning new permission level to the group

SNewGroup = $RootWeb.SiteGroups [$GroupName]
SRootWeb.Roles [$RoleName] . AddGroup ($NewGroup)

Write-Host "Assigned" SRoleName "to" $NewGroup "at" $RootWeb.Url

}

Write-HOoSt M--------mmm oo e "
Save the file on your desktop by clicking File | Save, providing the following filename:
SetSecurity.psl.

Switch back to your browser and navigate to our SharePoint test site:
http://intranet.contoso.com.

www.it-ebooks.info

http://www.it-ebooks.info/

Enterprise Content Deployment and Provisioning Using PowerShell

5. Click Site Actions | Site Permissions and take note of the list of available security
groups, as shown in the following screenshot:

r Mame Type FPermission Levels
r Adam Barr {COMTOSC adamb) User Lirmited Access
Il Approvers SharePoint Approve
Group
r Conkoso Adriniskrator User Full Control, Limited Access
{COMTOSOadminiskrakor)
Il Designers SharePoint Design, Limited Access
Group
Il Hierarchy Managers SharePoint Manage Hierarchy
Group
Il Restricted Readers SharePoint Restricted Read
Group
Il Skyle Resource Readers SharePoint Limited Access
Group
r Team Site Members SharePoint Contribute
Group
Il Team Site Owners SharePoint Full Control
Group

6. On the ribbon, under the Manage group, select Permission Levels and take
note of the list of available permission levels on the site, as shown in the
following screenshot:

Sadd & Permission Level | X Delete Selected Permission Levels
Perrission Level Description

I Full Contral Has full contral,

I Design Can view, add, update, delete, approve, and customize.

[Contribute Can view, add, update, and delete list iterns and
documents,

— Fead Can wiew pages and list items and download documents,

r Lirnited Access Can view specific lists, document libraries, list iterns,
folders, or docurnents when given permissions.

— Wiew Only Can view pages, list items, and docurments, Document type
with server-side file handlers can be viewed in the browser
but not downloaded.,

I Approve Can edit and approve pages, list iterns, and docurnents,

— Manage Hierarchy Can create sites and edit pages, list items, and documents,

[Restricted Read Can wiew pages and documents, but cannot view histarical
YEersions ar user permissions.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

7. Open the PowerShell console window and call SetSecurity.psl using the
following command:

PS C:\Users\Administrator\Desktop> .\SetSecurity.psl

As a result, your PowerShell script will create permission levels and security groups
with the command-line output results as shown in the following screenshot:

B Administrator: Windows PowerShell =]
PS C:sUsers“AdministratorsDesktop> .“SetSecurity.psl

WARNING: More results were found in Get—S5PS5ite but were not returned. mm
Provisioned Contso Read at http://intranet.contoso.com

Created Contoso Readers at http://intranet.contoso.com

Azsigned Contso Read to Contoso Readers at http:ssintranet.contoso.com

PS C:xUsers~AdministratorsDesktop> _

8. Switch back to your browser and navigate to our SharePoint test site:
http://intranet.contoso.com.

9. Click Site Actions | Site Permissions and take note of the list of a newly available
security group: Contoso Readers.

10. On the ribbon, under the Manage group, select Permission Levels, and take note of
the list of newly available permission level: Contoso Read.

As always, in the first part of our script, we assigned the variables further consumed in
the script. In this recipe, the main variables we've been working with include role name,
permission access, as well as the SharePoint security group name and owner's username.

We loaded the SharePoint PowerShell snap-in and connected to our test site collection:
http://intranet.contoso.com.

Once connected, we created a new role definition by using PowerShell command New-
Object Microsoft.SharePoint.SPRoleDefinition. We assigned the name and
the description for the role as well as the permission access our role will have on the site.
Permission access specifies the list of capabilities that members of the role will have access

to. The detailed list of available options can be retrieved from the MSDN when searching for
SPBasePermissions Enumeration.

@]

www.it-ebooks.info

http://www.it-ebooks.info/

Enterprise Content Deployment and Provisioning Using PowerShell

In our case, our access permission includes: OpenItems, Open, ViewPages,
ViewListItems, ViewVersions, ViewFormPages.

Once the role is created on the root site collection, it's available to be used in security groups
or when a user is directly added to the securable object. For example, if we add our user
directly to the document library, the newly created role will be available for the administrator
or site manager to be picked from. When our user accesses the site, they will inherit the level
of access a particular role has.

In our case, we go one step further and create a security group which uses the role. This
allows for multiple users to be added to the security group and will inherit the level of access
the group has been given. When the group is given an access to a securable object, everyone
in that group will have equal access to the securable object with the level of access the group
has been assigned. In our case, the group named Contoso Readers has been created and
contoso\administrator has been chosen as a group owner.

The last step was to associate the group with the role. This has been accomplished with the
following command: $RootWeb.Roles [$RoleName] . AddGroup (SNewGroup) . Here, the
role has been given a name of the newly provisioned group which assigns a permission level
to the group.

The approach described here can be used for automated permission provisioning, similar
to the one described for SharePoint sites in the Provisioning site hierarchy during solution
deployment recipe.

Managing site templates and their

availability on sites

As with many other features on SharePoint sites, you can define your own custom site
templates and then specify whether those templates are going to be available for users to
use. You can also define whether users can create an instance of the site based on chosen
out-of-the-box site templates.

In most scenarios, site owners in your organization will not need access to all of the site
templates available in SharePoint out of the box. One of the most common reasons is the fact
that the custom branding your organization may be using has not been designed for all site
templates. When such ad-hoc sites are created, they will not follow the envisioned corporate
look and feel as well as functionality.

In this recipe, we'll take a look at how you can define the set of specific site templates which
are allowed to be created below the hierarchy of the root site. By using PowerShell for this
scenario, we'll dramatically decrease the time required to perform this configuration as well
as provide more consistent configuration steps.

SNED

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Getting ready

In this example, we'll use PowerGUI to execute our script so log into your environment with
administrative privileges and launch PowerGUI.

How to do it...

In the following sequence, we're going to see how you can select which site templates are
going to be available to users:

1.
2.

Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
In the main script editing window of PowerGUI, add the following script:

Defining script variables
$SiteUrl = "http://intranet.contoso.com"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
SharePoint.Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SPSite -ne S$null)

{

Enabling selected web templates
SRootWeb = $SPSite.RootWeb

$ExistingWebTemps = $RootWeb.GetAvailableWebTemplates (1033) |
Where-Object {$.IsHidden -eq 0}

SNewWebTemps = New-Object System.Collections.ObjectModel.
Collection[Microsoft.SharePoint.SPWebTemplate]

$BlogTemplate = $ExistingWebTemps | Where-Object {$_.Title -
ccontains "Blog"}

SNewWebTemps .Add ($BlogTemplate) ;

SRootWeb.SetAvailableWebTemplates (SNewWebTemps, 1033);
$RootWeb.Update () ;

Write-Host "Updated available templates to inlcude"

i

www.it-ebooks.info

http://www.it-ebooks.info/

Enterprise Content Deployment and Provisioning Using PowerShell

SNewWebTemps "at" $RootWeb.Url

Write-HOoSt M--------mmmm oo e e "

Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to SetSiteTemplates.psl.

Switch back to your browser and navigate to our SharePoint test site:
http://intranet.contoso.com.

Click Site Actions | Site Settings | Look and Feel | Page layouts and
site templates.

Take note that the current Subsite Templates setting is set to Subsites can use any
site template, as seen in the following screenshot:

Subsite Templates

Specify the preferred
templates For the subsite,

Page Layouts

Specify the page layouts
preferred for new pages in) oo .
this site, {~ Pages in this site can only use the following layouts:

¢ Subsites inherit site ternplates from parent site
{* Subsites can use any site ternplate
(" Subsites can anly use the follawing site templates:

[tany =1

Assets Web Database {all) ﬂ

Basic Meeting Workspace (all)

Basic Search Centar (all)

Blank Meeting Workspace (all)

Blank =ite {all)

Blog (all} _ﬁﬁiJ
Business Intelligence Center (all)

Charitable Contributions Web Database (All) = Remove |
Contacts Web Database (all)

Decision Meeting Workspace (all)

Documnent Center {all)
Document Workspace (all) ﬂ

Ertarnrica Tazveh ankar (ALY

[~ Reset all subsites to inherit these preferred subsite template settings

(" Pages inherit preferred layouts from parent site
(¥ Pages in this site can use any layout

(Article Page) Body anly
(article Page) Image on left
(Article Page) Irmage on right
{article Page) Summary links

(Enterprise Wilki Page) Basic Page Add > |
(Project Page) Basic Project Page

7.

=

Open the PowerShell console window and call SetSiteTemplates.psl using the
following command:

PS C:\Users\Administrator\Desktop> .\ SetSiteTemplates.psl

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

As a result, your PowerShell script will execute the script with the results similar to the

following screenshot:

tes.psl
HARNING: More results were found in Get—SPSite
but were not returned. Use °‘-Limit ALL® to
return all possible results.
Dx1A33 — =GTID:_GLOBAL_#? — »THMPLID:BLOGHA

A site for a perszon or team to post ideas.
servations,
omment on.

at http:- sintranet.contoso.com

PS C:slUserssAdministrators~Desktop> _

Switch back to your browser and navigate to our Team Site:
http://intranet.contoso.com.

I[=] B3

X : Windows PowerShell
PS C:sUserssAdministratorsDezktopX .\EetSiteTemplaI!
|

Updated available templates to inlcude Blog - xLCI

ob
and expertisze that site visitors can c

Click Site Actions | New Site. Take note that the only available sub-site to be created

is of a Blog template, as seen in the following screenshot:.

Browse From:

Installed Items >
Office.com

Filter By:

All Types b

Site
Blog
All Categories

'

Content

Bleg

Type: Sit
Categorig
A site for

ideas, ob
site wisitol

www.it-ebooks.info

-

http://www.it-ebooks.info/

Enterprise Content Deployment and Provisioning Using PowerShell

Restricting site templates available on the site eliminates confusion among content authors
who maintain the site.

As always, our script starts with setting of the initial variables. In this case, we're setting the
site URL to our SharePoint site: http://intranet.contoso.com.

Once the connection to the desired site collection has been established, we proceed to
accessing the list of site templates:

$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
You can retrieve the current list of available site templates on the site by executing:

S$RootWeb.GetAvailableWebTemplates (1033) | Where-Object
{$_ .IsHidden -eq 0}

In this case, $SRootWeb.GetAvailableWebTemplates (1033) retrieves all site templates
with English-US locale ID, which is 1033.

The additional filter Where-Object {$.IsHidden -eg 0} specifies that the templates
retrieved are to be with the property of Hidden set to false. This is a fairly common
technique which allows script authors to quickly filter the collection of objects based on the
defined parameter.

Once we retrieve site templates which are not hidden on our root site, we create a new blank
collection of templates. This collection of templates will be used to define a new set of allowed
templates on the site:

New-Object System.Collections.ObjectModel.Collection[Microsoft.
SharePoint.SPWebTemplate]

In this recipe, we're going to allow content authors to only create sites of a B1og site template.
This is achieved by filtering the collection of available site templates to include the ones with
the Blog as the title:

$BlogTemplate = $ExistingWebTemps | Where-Object {$_ .Title -ccontains
llBlOgll }

Once the collection has been updated with the new set of allowed templates, we set this
collection to be used on the site:

SRootWeb.SetAvailableWebTemplates (SNewWebTemps, 1033);

Once our script has executed, we can see the results right away by the list of available

site templates on the site. We can also verify the list of available site templates on the site
settings page by navigating to: Site Actions | Site Settings | Look and Feel | Page layouts
and site templates, which is shown in the following screenshot:

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

~

(" Subsites can use any site ternplate

(= Subsites can only use the following site templates;

[al -

Assets Web Database (All) Blog (en-Us)
Basic Meeting waorkspace (all)

Basic Search Center {all)

Blank Meeting Warkspace (All)

Blank Site (All) -
Blog (all}
Business Intelligence Center (All)

Charitable Contributions web Database (All)

Contacts Web Database {all}

Decision Meeting Warkspace (All)

Document Center (All)
Cocurnent Workspace {all) j

Frtarmrica Sazsreh Cantar (Al

I Reset all subsites to inherit these preferred subsite termplate settings

The approach outlined here will greatly reduce the maintenance effort when new site
templates are deployed to the site and need to be automatically available on various levels
across the enterprise SharePoint environment.

Associating features to existing site

templates

The out-of-the-box set of templates available in SharePoint are made to be very
comprehensive. However, it's quite challenging to make an adjustment to the SharePoint
features being used on the particular site template.

In this recipe, we'll take a look at how you can attach an out-of-the-box feature to be
provisioned into the site template which didn't originally have this feature.

This method is incredibly powerful when your SharePoint site has been around for a while
and you'd now like to upgrade new sites to include new functionality requested by your
business users.

By using PowerShell for this purpose, you will be able to make quick and un-intrusive changes
to your new site templates.

Getting ready

In this example, we'll use PowerGUI to execute our script so log into your environment with
administrative privileges and launch PowerGUI.

www.it-ebooks.info

http://www.it-ebooks.info/

Enterprise Content Deployment and Provisioning Using PowerShell

How to do it...

The following steps will demonstrate how you can associate features to site templates
using a script:

1. On the target Virtual Machine, ensure you are logged in with an administrator's role.
2. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.

3. Inthe main script editing window of PowerGUI, add the following script:

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
SharePoint.Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

Get SharePoint Features folder
SFeaturesFolder = [Microsoft.SharePoint.Utilities.SPUtility]::GetG
enericSetupPath ("Template\Features")

Create a new Feature
New-Item $FeaturesFolder"\StapleFeature" -type directory

Copy Feature definition files
Copy-Item feature.xml $FeaturesFolder"\StapleFeature\feature.xml"

Copy-Item stapling.xml SFeaturesFolder"\StapleFeature\stapling.
xml"

Install-SPFeature -Path S$FeaturesFolder"\StapleFeature\feature.
xml"
Write-Host "Team Site definition updated to include Group Lists"

Write-HoSt "-----------m oo "

4. Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to AssociateFeatures.psl.

5]

www.it-ebooks.info

http://www.it-ebooks.info/

10.

11.

Chapter 2

Click File | New in PowerGUI application.
Add the following code in the newly opened file window:

<?xml version="1.0" encoding="utf-8" ?>
<Feature Id="B9486E41-09A0-48A5-8619-4278B9511B6D"
Title="Feature Stapling Sample"
Description="Staples features to site definition."
Version="1.0.0.0"
Scope="Farm"
Hidden="FALSE"
xmlns="http://schemas.microsoft.com/sharepoint/">
<ElementManifests>
<ElementManifest Location="stapling.xml" />
</ElementManifests>
</Feature>

Save the file on your desktop by clicking File | Save and providing the following
filename: feature.xml.

Click File | New in PowerGUI application.
Add the following code in the newly opened file window:

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
<FeatureSiteTemplateAssociation Id="9C03E124-EEF7-4DC6-B5EB-

86CCD207CB87" TemplateName="STS#0" />

</Elements>

Save the file on your desktop by clicking File | Save and providing the following
filename: stapling.xml.

Open the PowerShell console window and call AssociateFeatures.psl using the
following command:

PS C:\Users\Administrator\Desktop> .\ AssociateFeatures.psl

www.it-ebooks.info

http://www.it-ebooks.info/

Enterprise Content Deployment and Provisioning Using PowerShell

12. As a result, your PowerShell script will create site structure as shown in the
following screenshot:

2 Administrator: Windows PowerShell
PS C:slUserssAdministratorsDesktop> .“AssociateFeatures.psl

Directory: C:\Program Files“Common Files“Microzoft Shared-Weh Server Extenzions:14\Tem
tures

Mode

F; [E—

LastWriteTime

6s11-2811 2:38 PM

Length Name
StapleFeature

LELTE : FeatureDefinition 4af999%a—@517-4224—%ed3-d2f2f87d72e2
Id : 4af999%a-0517-4224-9ed3-d2f 9f87d92e2
DisplayMame : StapleFeature

: APPBARRA—ARBA-ARAA-AARR-ARRPAAAREAAR

UpgradeReceiverfzsembly
UpgradeReceiverClass H
Properties HI 3
Uersion :1.8.8.8
Scope : Farm

AutoActivatelnCentralAdmin
ActivateOnDefault
RootDirectory

Hidden
ActivationDependencies
AlvaysForcelnstall
RequireResources

: False
: True
: ¢:»Program Files“Common Files“Microsoft Shared>Web Server Ex

1i4°\Template~Features*StapleFeature

: False
:
: False

: False
DefaultResourceFile H

: Microsoft.SharePoint.fidministration.8PFeatureDefinition
: Online

: SPFarm Hame=S8harePoint_Conf ig

: SPFarm Name=SharePoint_Config
UpgradedPersistedProperties = {3

Team Site definition updated to include Group Lists

13. Navigate to your SharePoint test site: http://intranet.contoso.com.
14. Click Site Actions | New Site. Pick Team Site from the selection of sites.

15. Provide a new name and URL for the site, for example NewSite, and click the
Create button.

16. Once the site is created, you will see a Team Site with an additional list created
under the Lists in Quick Launch called Phone Call Memo, as seen in the
following screenshot.

NED

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

site actions ~ il B R

MNewSite » Home

MewSite

Libraries

Site Pages Welcome to your site!

Shared Docurnents

) Add a new image, change this welcome
Lists events, Use the links in the getting starte

Phone Call Memo

Calendar
Shared Documents
Tasks
[Type
Discussions There are na items ta show in this view of the "q
Tearmn Discussion &b add docurnent

To associate a new out-of-the-box feature to the site template of our choice, we need to create
and install a custom SharePoint Feature which will define such association.

We start by creating a feature.xml file which contains basic information about our custom
SharePoint Feature, such as name, ID, and description, as well as the location to the actual
feature manifest file.

The feature manifest file, in our case named stapling.xml, is the file that will define the
actual association.

The manifest associates an out-of-the-box feature with an ID of
9C03E124-EEF7-4DC6-B5EB-86CCD207CB87 to a site template with
g ID STS#0 denoting a Team Site.

The preceding manifest code associates the out-of-the-box SharePoint Feature, which is a
Group Lists feature, to the site definition of a Team Site. As a result, when provisioned, each
new instance of the Team Site will contain an instance of Group Lists which is a set of lists
including Phone Call Memo list.

Next, we provision our feature using a PowerShell script. In our script, we determine the
directory path which is used by SharePoint to host all of its features.

www.it-ebooks.info

http://www.it-ebooks.info/

Enterprise Content Deployment and Provisioning Using PowerShell

The directory path is saved in a variable $FeaturesFolder. Next, we create a new folder,
called staplingFeature, in the SharePoint Feature's directory and copy feature.xml and
staple.xml to it. Lastly, we use the Install-SPFeature command to install the feature
and complete the association of our Group List feature to the Team Site template.

To test the functionality, we can either navigate to our site and see whether the new lists have
been created, or see whether the feature is activated in the site settings or not.

To verify the feature from Site Settings, navigate to our newly created site with the new
associated feature: http://intranet.contoso.com/NewSite. Once on the site, click
Site Actions | Site Settings | Manage Site Features and ensure the Group Work Lists
feature is set to Active as shown in the following screenshot:

Group Work Lists

Provides Calendars with added functionality for Deactivate ‘
teamn and resource scheduling.

There's more

To disassociate the feature from the template, you would need to deactivate our custom
association feature, named StaplingFeature, by calling the following command in the
PowerShell command line:

UnInstall-SPFeature -Identity StapleFeature

After the confirmation below, your feature will be deactivated as shown with the
command-line output:

Confirm

Are you sure you want to perform this action?

Performing operation "Uninstall-SPFeature" on Target
"FeatureDefinition/4af9999a-0517-4224-9ed3-d2f9f87d92e2".

[Y] Yes [A] Yes to All |[N] No [L] No to All [S] Suspend [?] Help
(default is "Y"): Y

PS C:\Users\Administrator\Desktop>

Managing SharePoint workflow association

using PowerShell

SharePoint workflows allow business users to execute a custom set of instructions on
SharePoint objects. Workflows are deployed to site instances and can be associated to a
particular list or site to facilitate the business need.

&)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Just as many organizations realize the need for custom and out-of-the-box features to be
added to their site templates, workflows are often needed and associated to a list.

When a new business process is introduced in an organization, one of the most crucial tasks
is the ability to introduce it to your SharePoint portal quickly and effectively.

Workflow instance management shown in this recipe is very handy when you
need to standardize business processes available on various sites as your
’ business users request custom or out-of-the-box capabilities.

In this recipe, we'll take a look at how you can associate an instance of the workflow to one of
the existing libraries. We'll also see how you can disassociate an instance of the workflow from
the library.

Getting ready

In this example, we'll use PowerGUI to execute our script so log into your environment with
administrative privileges and launch PowerGUI.

How to do it...

The following sequence will demonstrate how you can associate a SharePoint workflow
to a library:

1. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
2. Inthe main script editing window of PowerGUI, add the following script:

Defining script variables

$SiteUrl = "http://intranet.contoso.com"
SList = "Shared Documents"
SWorkflowTemplateTitle = "Approval - SharePoint 2010"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
SharePoint.Powershell"'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

Setting site themes on sites and sub sites
$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}

[ei-

www.it-ebooks.info

http://www.it-ebooks.info/

Enterprise Content Deployment and Provisioning Using PowerShell

if ($SPSite -ne S$null)
{

SRootWeb = $SPSite.RootWeb;
$SPList =$SRootWeb.Lists[s$List];

$Culture = New-Object System.Globalization.CultureInfo("en-US") ;

STemplate = $RootWeb.WorkflowTemplates.GetTemplateByName ($SWorkfl
owTemplateTitle, $Culture) ;

STaskList = SRootWeb.Lists["Workflow Tasks"];

SHistoryList = SRootWeb.Lists["Workflow History"];

SAssociation=[Microsoft.SharePoint.Workflow.
SPWorkflowAssociation] : :reateListAssociation ($Template, "Approval",
$TaskList, SHistoryList) ;

SSPList.WorkflowAssociations.Add (SAssociation) ;
$SPList.Update () ;

}

Write-Host "Workflow has been associated to "S$List
Write-HOoSt M"--------mmmmmm oo e "

Click File | Save to save the file on the desktop of your environment. Name the file
AddWorkflow.psl.

Open the PowerShell console window and call AddWworkflow.ps1 using the
following command:

PS C:\Users\Administrator\Desktop> .\ AddWorkflow.psl

As a result, your PowerShell script will connect to the site and associates the
Approval workflow instance to the Shared Documents library. The output of the
command line will look similar to the following screenshot:

&

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

IS[=] 3

AllowAsyncHanualStart
StatusColumn
CompressInstanceData

IsDeclarative

Enabled

GlobhallyEnabled

MarkedForDelete

Modified 6-13-2011 4:53:58 AM
6-13-2011 4:53:58 AM
<WorkflowTemplate Hame="Approval" Description="Routes a docu
approval. Approvers can approve ok reject the document,. reas
approval task,. or request changes to the document.'" Instanti
"_layouts-Inillrkf 1IP . azpx' ' ><{Workf lowTemplateldSet Templateld
2—d867-48d8-21h?-f3h26edc??8?" Baseld="Bad4dBfA-93a7-4741-96
fAA482"" s>{AssociationData’>{string><dfz:myFields xmlnz:xs
Auv vl corg /2001 AEMLSchema’ xmlns tdms="http://schemas .micros
ffice 2889 /documentManagement-types" xmlns:dfs="http:- schem
oft.comsoffice-infopath-2883.rdataFormSolution’ xmlns:g="http
z_microsoft._.comsoffice/infopath /28089 U88List/queryFields" xm
tp:rs7zchemas .microsoft.comnsofficesinfopath-208% -UEEList . data
nlnsima="http://schemas.microsoft.comns/of f ice/200? /metadata-p
smetafittributes' xmlns:pc="http:-sschemas.microsoft.comsoffi
th/2887-PartnerControls" xmlns:xsi="http: - wuww.uwd.org 2001 %
instance > ;&1t;dfs :queryFields>&1t; df s iqueryFieldségt;
ataFields><d:SharePointListItem_RWigt ;&1t:;d:Approversd
Assignment>&1t;d:Assignee ~Bgt:;<d:Stage xsi:nil=""true'
;d:AssignmentTypedgt ;Serialkle; d:AssignmentTypedgt ;&1t;. d:-A
Bt &1t d:Approversigt;< ;d:-ExpandGroupsigt struedlt; -d:Exp
#gt;<d:NotificationMessage Afgt;<d:DueDateforfllTasks
true' sigti;<d:DurationforSerialTasks xsi:znil=""true' ~ >
ationUnits>Dayiklt;/d:DurationUnitsBgt;<d:CC Ahgt;<sd
Rejectionigt;falsed< d-CancelonRejectionfgt;&1t;d:Cancelon
sfalse< d:CancelonChangedgt;&1lt;d:EnableContentApprovalfyg
t; d:EnableContentApprovalégt:;< d:SharePointList]tem_RUg
g:dataFieldsdgt ;&1t; /dfs-myField=> ;< string>{-/AssociationD
data>{InitiationCategories>{string>List;Language 1833 ;:#Conte
nguage :1833<{string>{/InitiationCategoriesz>{Instantiation_Fo
ring>/_catalogs/wfpubsApproval — SharePoint 2818/veviewappro
xsn{s/string>{sInstantiation_FormURI >{AssignmentStagesName>{=s
rovers{/string>{/AssignmentStagesMame>{/Metadata><{ Workf lowT

UpgradedPersistedProperties :

Workf low has been associated to Shared Documents

PS C:-nUszerssAdministratorsDesktop>

6. Switch to our SharePoint site: http://intranet.contoso.com.

7. Click Shared Documents on the quick launch of the site and select Library from
the ribbon.

(&5}

www.it-ebooks.info

http://www.it-ebooks.info/

Enterprise Content Deployment and Provisioning Using PowerShell

8. From the Library tab in the ribbon, select the Workflow Settings fly out option as
shown in the following screenshot:

uments - Windows Internet Explorer [_ (O] x|

Fhared%:200acuments /Farmsalltems, aspx j 4| X I Eing 2~
e »»

ents - Al Documents J f v B v) o= - Page - Safety - Toos - (@~

Library Tools
=rn Account -
=] 17~ Currentwiew: L E-mail a Link s—| 4} 2] ._} Form Web Parts » . $
|! . | _ ¥ e
\'—‘) li All Documents = G Alert Me - =g |“_7‘| Edit Library &l-
Create Syncto SharePoint Connec
Wiew |0 Current Page [3 R5S Feed Wiarkspace Office Workflow Settings
Manage YWiews Share & Track Connedt & Export | Add a Waorkflow
Modified Madified B Create aWorkflow in SharePoint Designer]
. Create a Reusable Workflow in SharePoint Designer
w_Dwration_Report_2011-05-05T214523 S5/5/2011 9:43 PM System Ad oo e g
val - SharePoint 2010 4/20/2011 12:27 PM Systern Account Approved

9. Take note of the newly associated Approval workflow to the library:

Workflows
@ wWorkflow Mame (click to change settings) Workflows in
Progress
Approwval 0

These workflows are confiqured to run on iteris of this bype:
| all =]

(Selecting a different type will navigate you to the Workflow Settings page For that conkent bype.)

8 Add a workflow
8 Remove a workflow

a Wiew workflow reports

Workflow templates installed on SharePoint 2010 will become available for site owners and
administrators to be associated to libraries and lists. When a custom workflow template is
created and installed on the server, you can use the following command to get a hold of the
workflow template object:

SRootWeb.WorkflowTemplates.GetTemplateByName($WorkflowTemplateTitle,$SCulture);

Here, the WorkflowTemplates property contains the available workflow templates installed
on the SharePoint web. By providing the title of the workflow template and the culture ID,
you can get an object representing a template to further create an instance of it.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

To successfully create a new instance of a workflow template, we get a hold of the Workflow
Tasks and Workflow History lists which are integral for ensuring our workflow functions
properly. The workflow task list will store all of the tasks associated with the workflow, and the
workflow history list will log out-of-the-box and custom events as your workflow instance runs.

Next, we create a workflow association object representing a new workflow template, task,
and history lists, as well as the name of the workflow instance:

SAssociation = [Microsoft.SharePoint.Workflow.SPWorkflowAssociation]::
CreatelListAssociation ($Template, "Approval", $TaskList, $HistoryList) ;

Once the association has been created, it can be added to the list by using the
following command:

$SPList.WorkflowAssociations.Add ($Association) ;

Only after being added to the list will an association execute on list items according to
defined rules.

There's more

Similar to adding an association, you can remove it by using the following command:

$SPList.WorkflowAssociations.Remove ($Association) ;

Configuring site themes and user interface

artifacts

Custom branding and design artifacts are integral parts of any site. As developers create
solution packages which are going to deliver branding artifacts to the site, those changes
must be applied to the site in a traceable fashion so they can be reversed or backed up. Also,
as your SharePoint site goes through a branding upgrade, the design artifacts must be applied
on existing sites without much intrusion to site operation.

This recipe focuses on updating SharePoint managed theme references automatically by
using PowerShell. Using this approach, you will be able to update any of your existing sites
to use the new theme.

Getting ready

Ensure the site you are using for testing, in our case http://intranet.contoso.com,
has several sub-sites created under it.

If the root site doesn't have sites created under it, create them manually using the SharePoint
user interface, or follow the steps in the Provisioning site hierarchy during solution deployment
recipe in this chapter.

]

www.it-ebooks.info

http://www.it-ebooks.info/

Enterprise Content Deployment and Provisioning Using PowerShell

How to do it...

Let's see how we can automate branding configurations with PowerShell using the
following sequence:

1. Ensure that you're logged into your development environment with
administrative privileges.

2. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
3. In the main script editing window of PowerGUI, add the following script:

Defining script variables

$SiteUrl = "http://intranet.contoso.com"
SNewTheme = "Azure"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
SharePoint.Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

Setting site themes on sites and sub sites
$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SPSite -ne S$null)

{

Sthemes = [Microsoft.SharePoint.Utilities.ThmxTheme]
: :GetManagedThemes ($SiteUrl) ;

foreach (Stheme in S$Sthemes)

{

if ($theme.Name -eq $NewTheme)

{

break;

}

foreach ($SPWeb in $SPSite.AllWebs)

{
Stheme.ApplyTo ($SPWeb, S$Strue) ;
Write-Host "Set" $NewTheme "at :" $SPWeb.Title "
(" $SPWeb.Url ")"

}

Write-Host "Site theme update complete"

(&)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Write-Host "URL:" $SPSite.Url -foregroundcolor Green
Write-HOoSt M--------mmmm oo e "

4. Click File | Save to save the file on the desktop of your environment; let's name the
file SetThemes .ps1.

5. Open the PowerShell console window and call SetThemes . ps1 using the
following command:

PS C:\Users\Administrator\Desktop> .\ SetThemes.psl

6. As a result, your PowerShell script will connect to the site and apply the new theme
to it as shown in the following screenshot:

Administrator: Windows PowerShell

PS C:sUserssAdministratorsDesktop> .“~SetTheme.p=sl

Loading SharePoint Powershell Snapin

WARNING: More results were found in Get—-SPSite but were not returned.

return all possible results.
Azure Gears Project Home ¢ http:-/sintranet.contoso.com >
Azure Business Intelligence Site ¢ http:/sintranet.contoso.comsBI >
Azure esearch (http:-//intranet.contoso.comnsesearch >
Azure Monthly Canadian Review ¢ http://intranet.contoso.comsmeeting 2
Azure Meetings ¢ http://intranet.contoso.consmeetings >
Azure FAST Search Center ¢ http:-/intranet.contoso.comssearch >
Azure Hiki (http:~- /intranet.contoso.comswiki >

Site theme update complete
URL: http://intranet.contoso.com

PS C:sUserssAdministratorsDesktop?

7. Switch to the SharePoint site you have identified in the script variable of this recipe:
http://intranet.contoso.com.

8. Click Site Actions | Site Settings | Look and Feel | Site Theme.

&7}

www.it-ebooks.info

http://www.it-ebooks.info/

Enterprise Content Deployment and Provisioning Using PowerShell

9. Ensure the Current Theme is set to Azure, as you can see in the
following screenshot:

Gears Project Horne

Libraries
Site Pages
Shared Docurnents

Data connections

Gears Project Home »

Use this page to change the fonts and color scheme for your site, You can select a theme or you can
upload new themes to the Theme Gallery, Applying a theme does not affect yvour site's layout, and
will not change any pages that have been individually themed.

Fac ki Search

Inherit Theme
Specify whether this site uses the same

theme as its parent or if it uses its own
theme,

Select a Theme

¢ Inherit therne from the parent of this site
& Specify a therme to be used by this site and all site
inherit from it

Lsts HLOE(EEESN
Calendar]
Tasks . ol D |:| D D |:| D Current theme (Azure)
.=|:||:||:||:H:||:| Azure
Supplier Information . L | |:| . |:| |:| |:| |:| Berry
DevTeach . = gl;:tversweet
HENEEEEE | oo
Discussions |:| |:| Convention
Tearn Discussion I:‘ : Eerl‘;ham
[] Il
HE crapell
g Reeyele Bin I:‘ i mlosdsnlaorz Rose
—'_Tl all Site Content . . E’I_unictipal
Ricasso
Hunerlink Enllowed

Z

Ilike It

In SharePoint 2010, the theme engine allows developers and designers to provision site
themes right into the designated SharePoint library where all of the themes are stored. The
themes can be added or removed directly from the library. Once provisioned or updated,

themes would need to be manually set on the site.

In our PowerShell script, we start by setting variables specifying the URL of the site where we
need to update the theme and the name of the current theme.

The theme doesn't need to be an out-of-the-box theme. It can very well be a custom theme
which has been deployed manually or programmatically.

&)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

To find the list of available themes on your current site:

1. While logged into your SharePoint site, click Site Actions | Site Settings | Look
and Feel | Site Theme.

You can call the following method to get the list of available themes using
PowerShell: [Microsoft.SharePoint.Utilities.ThmxTheme] : :
g GetManagedThemes ([server urll).

2. Pick the theme of your choice and note its name.
The name of the theme is later specified in the script variable.

By using the [Microsoft.SharePoint.Utilities.ThmxTheme] library and its
method GetManagedThemes (), we connect to the site collection where the theme
has been deployed.

Next, we enumerate all of the available themes and find the one we're looking for. We save the
object representing the chosen theme and pass it on to the next loop. The loop will go through
the URL we have specified, in our case http://intranet.contoso.com, and its sub-sites
and apply the new theme to each of the sites.

One of the ways you can identify whether the theme has been applied or not is simply by
accessing the site. Another method is to navigate to the theme settings page to see what the
current theme is.

Since the theme provisioning process takes a few seconds, depending on the performance
of your environment, when executing the preceding theme provisioning script, ensure you
wait until the script execution has completed and you have received a confirmation message
from PowerShell.

There's More

Let's take at look how the new masterpage can be assigned to the site using PowerShell.

Assigning a new masterpage to the SharePoint site

One of the other design artifacts often used in SharePoint 2010 is the site masterpage.
The masterpage will define the look and feel of the site just as themes do. Additionally,
masterpages will drive the structure of the page parts.

As your SharePoint site goes through its life cycle, your design team may give you a new
masterpage which better fits business needs. In such cases, the masterpage will be
provisioned to the masterpage gallery. Just as in the scenario with themes, the masterpage
needs to be set at the site level in order to be used.

[}

www.it-ebooks.info

http://www.it-ebooks.info/

Enterprise Content Deployment and Provisioning Using PowerShell

PowerShell provides an easy mechanism for updating the masterpage of the site assuming it's
already deployed to the site.

1. Ensure you're logged into your development environment with administrative
privileges.

2. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
In the main script editing window of PowerGUI, add the following script:

Defining script variables

$SiteUrl = "http://intranet.contoso.com"
$NewMasterUrl = " catalogs/masterpage/newmaster.master"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$.Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

Setting site themes on sites and sub sites
$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SSPSite -ne S$Snull)
{
foreach ($SPWeb in $SPSite.AllWebs)
{
$SSPWeb.MasterUrl = $NewMasterUrl;
$SPWeb.Update ()

Write-Host "Set" $NewMasterUrl "at :" $SPWeb.Title " ("
$SSPWeb.Url ")"

}

Write-Host "Site masterpage update complete"
Write-Host "URL:" $SPSite.Url -foregroundcolor Green
Write-HosSt "------------"-~-~"-~-"-~-~"-~~"—~~—~~—~—~—~—— - "

4. Click File | Save to save the file on the desktop of your environment; let's name the
file SetMasterpage.psl.

5. Open PowerShell console window and call SetMasterpage.psl using the
following command:

PS C:\Users\Administrator\Desktop> .\ SetMasterpage.psl

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Provided the masterpage has been deployed, it will be applied to the specified site and its
sub-sites.

See also

The Provisioning site hierarchy during solution deployment recipe of this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Advanced
List and Content
Operations in
SharePoint using
PowerShell

In this chapter, we will cover:

» Creating lists of custom structure

» Setting SharePoint list item validation with PowerShell
» Setting list item security

» Setting list relationships

» Customizing list views

» Managing the use of content types in lists

Introduction

Lists and libraries are heavily used in any SharePoint site. In this chapter, we'll see how

you can use PowerShell to define lists based on a custom structure and deploy them on to
various levels of your SharePoint site. We'll see how you can define validation rules on items
created in lists.

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Advanced List and Content Operations in SharePoint using PowerShell

We'll also take a look at how you can automate provisioning of custom security on the
list items.

Since many lists in your custom SharePoint solution may be dependent on data coming from
other lists, we'll see how you can define lists with referential relationships as well as define
rules around referential integrity between list items.

Most of the time, the business users of SharePoint sites interact with lists using one or more
list views. In this chapter, we'll see how you can meet this need and create an automated
script which provisions list views into the list, as well as defines the behavior and the structure
of the view.

Lastly, we'll take a look at how you can assign lists to use a specific content type. This method
will allow your organization to standardize on types of business content and assign specific
lists to store only the defined set of that content.

Creating lists of custom structures

As business users in any organization use their company's SharePoint site, they often like

to add new types of data to specific SharePoint sites or across all of the sites in the farm.

For example, you may be asked to create a calendar list on each project site. This may sound
like a simple request, but there may be over 100 project sites, and each one now needs to
contain a new calendar list. The manual implementation of such a request may

be a cumbersome process.

In this recipe, we'll learn exactly what's involved in creating a PowerShell script which
provisions a custom SharePoint list and defines its fields. Once the fields are provisioned,
we'll add a few test items to the list to see it in action.

At the end of this recipe, you will be able to work with SharePoint lists and create instances
of them as well as define their structure and fields.

Getting ready

Considering you have already set up your virtual development environment as described in

Chapter 1, PowerShell Scripting Methods and Creating Custom Commands, we'll get right into
authoring our script. In this recipe, we'll be using PowerGUI to author the script, which means
you will be required to be logged in with an administrator's role on the target Virtual Machine.

How to do it...

1. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.

7

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Add the following script in the main script editing window of PowerGUI:

Defining script variables

$SiteUrl = "http://intranet.contoso.com"
SListTitle = "Custom List"
SListDescription = "Custom List"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$.Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SSPSite -ne S$Snull)
{
Creating an instance of a custom list
SRootWeb = $SPSite.RootWeb
SNewListTemplate = SRootWeb.ListTemplates["Custom List"]

SNewListInstance = SRootWeb.Lists.Add($ListTitle,
SListDescription, S$NewListTemplate)

Display list on quick launch

$SPList = SRootWeb.Lists[$NewListInstance]
SSPList.OnQuickLaunch = $true
$SPList.Update ()

Add few other fields to the list
SListFields = $SPList.Fields;
STextField = $LisgtFields.Add("TextField", [Microsoft.

SharePoint.SPFieldType] : : Text, S$false);

S$TextFieldInstance = SListFields.GetField($TextField)

SDateField = $ListFields.Add("DateField", [Microsoft.SharePoint.
SPFieldType] : :DateTime, S$false)

$SDateFieldInstance = $SListFields.GetField($DateField)

$SPList.Update ()

Add new fields to a default view
SListView = $SPList.DefaultView
SListViewFields = SListView.ViewFields
SListViewFields.Add ($TextFieldInstance)
SListViewFields.Add ($DateFieldInstance)

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Advanced List and Content Operations in SharePoint using PowerShell

$ListView.Update () ;

Add a new list item

SSPListItem = $SPList.Items.Add()
SSPListItem["Title"] = "New Item Title"
SSPListItem["TextField"] = "Text Fields Value"
SSPListItem["DateField"]
$SPListItem.Update ()

[System.DateTime] : :Now

Write-Host "Created list" $ListTitle "of template"
SNewListTemplate.Name "at" S$RootWeb.Url

}

Write-HosSt "-------------—-—-—- oo "
3. Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to CreatelList .ps1.

4. Open the PowerShell console window and call CreateList .ps1 using the following
command:

PS C:\Users\Administrator\Desktop> .\ CreateList.psl

5. As a result, your PowerShell script will create a site structure as shown in the
following screenshot:

B administrator: Windows Powershell

WVindows Powerfhell
Copyright (C)> 280? Microsoft Corporation. All rights reserved.

P8 G:islUserssAdministrator?> cd .“Desktop

PE C:slUserssAdministratorsDesktop> _~CreatelList_psi

Loading SharePoint Powershell Snapin

UARNING: More results were found in Get—-SPSite but were not returned. Use ’'-Limit ALL”
to return all possible results.

Created list Custom List of template Custom List at http:~/“intranet.contoso.com

PS GC:slUserssAdministratorsDesktop> _

6. Now, in your browser, let's switch to our SharePoint test site: http://intranet.
contoso.com/.

7. On the Quick launch menu of your site, under the Lists section locate the list titled
Custom List.

8. Open the list and ensure the test list item has been created in it as shown in the
following screenshot:

7@

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

List Tools

Brourse Items List

Gears Project Home »

Customn List
Gears Project Home FaQ wiki Search Al Sites ﬂ
Libraries o Title TextField DateFizld
Site Fages Mew Ttem Title & e Text Fields value 6/18/201

Shared Docurnents

Data connections * Add new itern

Lists

Calendar

Tasks

Supplier Information

Custorn List

First, we defined the script variables used in our script. In this recipe, the variables include: a
site URL, a list title, and a description.

Once a PowerShell snap-in has been loaded, we connect to the root site of our SharePoint site
collection and access the list template representing a Custom List:

SNewListTemplate = SRootWeb.ListTemplates["Custom List"]

Next, we used the Add function of our list collection property of the site to add a new list:
SRootWeb.Lists.Add.

The result from the Add function is the ID of the newly created list which we then used to
connect to an instance of our list:

$SPList = SRootWeb.Lists[$SNewListInstance]

Once we have an object representing an instance of our list, we specified the property to show
our list on the quick launch menu of the site.

So far, we have created the list and have it visible on the quick launch. However, the only field
in our list was the out-of-the-box Title field. To add a few custom fields to our list, we defined
them in our list field collection:

SListFields = $SPList.Fields;

STextField = $ListFields.Add ("TextField", [Microsoft.SharePoint.
SPFieldType] : : Text, S$false)

(77}

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Advanced List and Content Operations in SharePoint using PowerShell

In here, [Microsoft.SharePoint.SPFieldType] defines the type of SharePoint field
we've created. Our fields were: a text-type field and a date-type field.

1
~ To find out what other types of fields are available out
there, reference MSDN with the keyword SPFieldType.

Having our additional fields added to the list has now made them available in the default view
of the list. To allow users to see our newly added list fields, we connected to the default view
of the list and enabled new fields to be shown in the view.

Lastly, we added a test item to the list to demonstrate how our new items can be automatically
populated in the list, if the need be. To do that, we created a new list item object and then
populated fields of the new list item:

$SPListItem = $SPList.Items.Add()
$SPListItem["Title"] = "New Item Title"

Once complete, our list has been created with a defined set of fields as well as test items.

The Customizing list views recipe in this chapter.

Setting SharePoint list item validation with

PowerShell

As we've learned from the recipe Creating lists of custom structure, you can create a list of a
desired structure and deploy it to multiple sites in your SharePoint solution.

Since lists and libraries are containers of data in SharePoint, business users often require a
mechanism to ensure that the correct metadata is associated to list items. In past versions of
SharePoint, business users could define whether the metadata field is required to be filled in
or not. With SharePoint 2010, you can define custom validation formulas which allow for more
granular list item validation.

In this recipe, we'll learn how you can enforce business rules on list items by using list item
validation formulas.

The benefit of performing this type of customization using a PowerShell script is that it gives
you the ability to apply one or more rules across entire SharePoint farm when required to
do so.

@

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Getting ready

You are already familiar working with lists using PowerShell, as discussed in this chapter. For
this recipe, we'll be using PowerGUI to author our script, which means you will need to be
logged in with an administrator's role on the target Virtual Machine.

How to do it...

1. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
2. Inthe main script editing window of PowerGUI add the following script:

Defining script variables

$SiteUrl = "http://intranet.contoso.com"
SListTitle = "Custom List™"
$ListDescription = "Custom List"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$.Name -eq 'Microsoft.
SharePoint.Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SPSite -ne S$null)
{
Creating an instance of a custom list
SRootWeb = $SPSite.RootWeb
SNewListTemplate = $SRootWeb.ListTemplates["Custom List"]

SNewListInstance = $SRootWeb.Lists.Add (SListTitle,
SListDescription, S$NewListTemplate)

Display list on quick launch

$SPList = SRootWeb.Lists[$SNewListInstance]
$SPList.OnQuickLaunch = S$Strue
$SPList.Update ()

Add few other fields to the list
SListFields = $SPList.Fields;

STextField = $ListFields.Add("TextField", [Microsoft.
SharePoint.SPFieldType] : :Text, S$false)

STextFieldInstance = $ListFields.GetField($TextField)
$SPList.Update ()

(7]

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Advanced List and Content Operations in SharePoint using PowerShell

Adding validation on the list

$SPList.ValidationFormula = "=IF (TextField=Title, FALSE, TRUE)"

$SPList.ValidationMessage = "The TextField and Title should not
be the same"

Adding validation on the field
S$TitleField = $ListFields["Title"];

STitleField.ValidationFormula = '=IF(FIND("Contract",Title),
TRUE, FALSE)'
$TitleField.ValidationMessage = "The Title must contain a

contract number"
$TitleField.PushChangesToLists = S$true
$TitleField.Update ()
$SPList.Update ()

Add new fields to a default view

SListView = $SPList.DefaultView;
SListViewFields = S$SListView.ViewFields;
SListViewFields.Add (STextFieldInstance)
$ListView.Update ()

Write-Host "Validation added to list"™ $ListTitle "at" SRootWeb.
Url

}

3. Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to SetListItemValidation.psl.

4. Open the PowerShell console window and call SetListItemValidation.psl
using the following command:

PS C:\Users\Administrator\Desktop> .\ SetListItemValidation.psl

5. As a result, your PowerShell script will create a list with results as shown in the
following screenshot:

B Administrator: Windows PowerShell

PE C:slUzersAdministratorsDesktop> .“SetListltemlUalidation.psl
WARNING: More results were found in Get—S8PS5ite but were not returned.
all posszible results.

Ualidation added to list Custom List at http:/ intranet.contoso.com

P8 C:slUsers~AdministratorsDesktop> _

(&)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3
6. Now, in your browser, let's switch to our SharePoint test site: http://intranet.
contoso.com/

7. On the Quick launch menu of your site, under the Lists section locate the list titled
Custom List.

Open the list and select an option to add a new item.

9. For the Title field, enter a text value of wrong value and click Save to see the result
as shown in the following screenshot:

CuUstom List - Mew [tem

HWHE D, b Vv

Save Cancel Paste Aif:t_alch Spelling
ile -

cammit Clipboard Actions Spelling
Title * Ihrurcung value

The validation formula has evaluated to an error,

TextField |

Save Cancel

10. Now correct the value of the Title field to be Contract #44 and click Save to see the
item saved into the list.

11. Next, while in the list view, click the List tab in the ribbon and select
Settings | List Settings.

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Advanced List and Content Operations in SharePoint using PowerShell

12. From the settings page, click Validation Settings under General Settings to see the
validation rules as shown in the following screenshot:

Formula
Formula: Insert Column:

=IF{TextField=Title,FALSE, TRUE]

Specify the Formula vou want to use to
walidate the data in this column when new
ikems are saved ta this list, To pass

walidation, the Formula must evaluate to TextField
TRIE. For more information, see Formulas Title
in Help,

Example: =[Discount]<[Caosk] will only
pass validation if calumn Discount is less
than column Cost,

=
Learn mare about proper synkax For
formulas, Add b Formula

User Message
User Message:

The TextField and Title should not be the ;I

same LI

Type descriptive kext that will help site
wisitors understand what is needed For a
wvalid list ke, This description will be
shown if the walidation expression Fails,

Save I Cancel

As in previous recipes, we started by defining the script variables. In this recipe, we defined
the site URL: http://intranet.contoso.com, as well as the title and description of the
custom list we've created.

Next, we created a new list and added it to the quick launch menu of our site. By default,
custom lists are provisioned with an out-of-the-box Title field, so we added another text field
for our demonstration purposes:

SListFields.Add ("TextField", [Microsoft.SharePoint.SPFieldType] ::Text,
Sfalse)

Once added, we assign a validation formula to the list:

$SPList.ValidationFormula = "=IF (TextField=Title, FALSE, TRUE)"

[

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

This formula returns the value of TRUE and allows us to save an item only if the newly
provisioned TextField and the Title fields have different values. Otherwise, the following
message will be displayed:

$SPList.ValidationMessage = "The TextField and Title should not be the
same"

. You may have noticed how we added the new field first before the validation
% formula was declared for it. If you applied the list validation formula first,
i which uses columns that have not been created yet, you would get an error
in your script informing you that referenced columns do not exist.

Next, we assigned the validation formula to the individual field that was added earlier:

S$TitleField.ValidationFormula = '=IF(FIND("Contract",Title), TRUE,
FALSE) '

Here, the item is allowed to be saved when the word contract is found in the Title field.
Otherwise, the error message is returned as defined in the following line of code:

$TitleField.ValidationMessage = "The Title must contain a contract
number"

To ensure the field changes are saved in the list, we set the property responsible for pushing
field changes to true as shown in the following line of code:

$TitleField.PushChangesToLists = S$true

Once we're all set with the validation definition, the field and the list are both updated.

There's more...

In this recipe, the goal was to demonstrate how you can assign validation on the entire list
when a new item was inserted, or an existing item was edited. Also, we looked at how you can
assign a validation formula on the individual list column.

In the case of assigning a validation rule to the individual column, only that column value can
be referenced in the formula and no other columns can be used. Typically, an individual list
column formula is used to validate the specific column in the list.

The list validation formula can be a bit more complex and allows you to define rules applying
to more than one column. Here, you can specify values expected of other columns in relation
to each other.

In both cases, unless all of the validation rules are satisfied, the item will not be added
or edited.

&)

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Advanced List and Content Operations in SharePoint using PowerShell

Validation formulas have robust syntax which can be used to satisfy a variety of business
scenarios. For more information on the syntax of validation formula, search for Calculated
Field Formulas on MSDN.

Setting list item security

SharePoint lists represent a securable object to which you can apply desired permissions.
Items in your SharePoint lists can also have their distinct set of permissions. This allows you
to limit the level of access individuals on the site will have when accessing lists and items

in them.

In organizations restructuring their SharePoint site, quite often there is an immediate need to

assign a new set of permissions to a multitude of items within the site. Using PowerShell, you

can not only speed up the process, but also have a reference point in case you are required to
make an adjustment or are rolling back your changes.

Getting ready

You are already familiar working with lists using PowerShell. For this recipe, we will
use PowerGUI to author the script, which means you will need to be logged in with an
administrator's role on the target Virtual Machine.

How to do it...

1. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
2. Inthe main script editing window of PowerGUI, add the following script:

Defining script variables
$SiteUrl = "http://intranet.contoso.com"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$.Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if (SSPSite -ne S$Snull)
{
Creating an instance of a custom list
SRootWeb = $SPSite.RootWeb
$NewListTemplate = $RootWeb.ListTemplates["Custom List"]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

SNewListInstance = SRootWeb.Lists.Add("Custom List", "Custom
List", $NewListTemplate)

SSPList = SRootWeb.Lists[$SNewListInstance]

$SPList.OnQuickLaunch = S$Strue

$SPList.Update ()

Define unique permissions
$SPList.BreakRoleInheritance (Sfalse)

Allow only approvers to have approve access on the list

SRoleAssignment = [Microsoft.SharePoint.SPRoleAssignment] (SRootW
eb.SiteGroups ["Approvers"])

$ApproveRoleDefinition = $RootWeb.RoleDefinitions | Where-Object
{$_.Name -eg "Approve"}

SRoleAssignment .RoleDefinitionBindings.Add ($SApproveRoleDefinitio
n)

$SPList .RoleAssignments.Add (SRoleAssignment)

$SPList.Update ()

Add a new list item

SSPListItem = $SPList.Items.Add()
SSPListItem["Title"] = "New Item Title"
$SPListItem.Update ()

Add unique permission to the list item
SSPListItem.BreakRoleInheritance ($Sfalse)
SReadRoleDefinition = $SRootWeb.RoleDefinitions | Where-Object
{$.Name -eq "Read"}
$SItemRoleAssignment = [Microsoft.SharePoint.SPRoleAssignment] (SR
ootWeb.SiteGroups ["Approvers"])
SItemRoleAssignment .RoleDefinitionBindings.
Add ($SReadRoleDefinition)
$SPListItem.RoleAssignments.Add ($ItemRoleAssignment)
$SPListItem.Update ()

Write-Host "Custom permissions added to list" SListTitle "at™"
SRootWeb.Url

}

Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to SetListSecurity.psl.

Open the PowerShell console window and call SetListSecurity.psl using the
following command:

PS C:\Users\Administrator\Desktop> .\ SetListSecurity.psl

&1

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Advanced List and Content Operations in SharePoint using PowerShell

5. As aresult, your PowerShell script will execute and return results as shown in the
following screenshot:

B Administrator: Windows Powershell

PS5 C:lUserzsAdministratorsDesktop?> .“SetListSecurity.psl
HARNIMG: More results were found in Get—5PS8ite but were not returned. U

all possible results.
Custom permissions added to list Custom List at http:/~intranet.contoso.com
PS5 C:sUsersAdministratorsDesktop> _

6. Now, in your browser, let's switch to our SharePoint test site: http://intranet.
contoso.com/.

7. Onthe Quick launch menu of your site, under the Lists section, locate the list titled
Custom List.

Open the list and select the List tab in the ribbon.

9. Select List Permissions from the Settings group in the ribbon to see the list of
assigned groups and roles similar to what is shown in the following screenshot:

f?.' E% }?jl Q,_l Manage &ccess Requests
@y S AN

Inherit Grant Edit User Remowe User Check
Permissions Permissions Permissions Permissions Permissions

Inheritance Grant Modify Check Manage

Some iterns of this list may have unique permissians which are not controlled from this page. Show me uniguely secured itermns
of this list
This list has unique permissions

Librarias I Marmne Type Permission Levels
Site Pages - Approvers SharePaint Limited Access, Approve
Group
Shared Docurnents L
- System Account (SHAREPOINTYswstem) User Full Contral, Limited Access

Crata connections

10. Take note of the Approvers group being the only group allowed access to the list.

11. Next, navigate to the Custom List default view and select the only existing item in
the list.

12. While the item is selected, pick the ltem Permissions option from the Manage group
in the ribbon.

13. Observe how the Approvers group is the only group allowed access to the item.
However, the role given to the Approvers group is Read and not Approve, as shown
in the following screenshot:

~[ee]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Permizsion Toals

g & %2
oy G S
Inherit Grant Edit User Remowe User Check

Permissions Permissions Permizsions Permizsions Permissions

Inheritance Grant hodify Check

This list itern has unique permissions.,

Liareies |l Mame Type Fermission Levels
Site Pages - Bpprovers SharePoint Read
Group
Shared Documents
r Systern Acoount (SHAREPOINT swstem) User Full Control

Data connections

Let's take a look at exactly what happens in the script of this recipe. We start by defining the
script variables. In this recipe, we define the site URL: http://intranet.contoso. com.

Next, we create a new list and add it to the quick launch menu of our site. By default, custom
lists are provisioned with an out-of-the-box Title field.

Also, by default, newly created lists inherit their permissions from the parent, which is the root
site in our case. In our script, we break the default permission inheritance in order to define
our own:

$SPList.BreakRoleInheritance ($Sfalse)

The $false parameter in the preceding code specifies that when a permission inheritance is
broken, the parent groups and users are not to be automatically transferred over.

In some cases, you would want to transfer over the existing groups and users. This means
that only users and groups at the time of breaking the inheritance would be transferred over.
If at some point in the future we have new users or groups added to the site, those will not
propagate to lists in which permission inheritance has been broken.

Next, we create a new role assignment which defines a group further assigned to access
our list:

SRoleAssignment = [Microsoft.SharePoint.SPRoleAssignment] (SRootWeb.
SiteGroups ["Approvers"])

7}

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Advanced List and Content Operations in SharePoint using PowerShell

Group membership alone will not guarantee the level of access its members are going to
have. Even though the group we're adding is called Approvers, the only way users in the
group will be given the right to approve items is by having an Approve role assigned to the
group for our list as shown in the following code:

$ApproveRoleDefinition = $RootWeb.RoleDefinitions | Where-Object
{$.Name -eq "Approve"}.

After associating our new role to the group, we set it to be the first group allowed to access
the list:

$SPList.RoleAssignments.Add ($RoleAssignment)

Next, to demonstrate how we can assign unique permissions to the list item, we create a new
list item. Similar to the list, we break the security inheritance on the item as shown in the
following line of code:

SSPListItem.BreakRoleInheritance (Sfalse)
This time, we retrieve the Read role defined on the site:

$ReadRoleDefinition = $RootWeb.RoleDefinitions | Where-Object {3$_.Name
-eq "Read"}

The Read role retrieved in the preceding line of code is assigned to the same Approvers
group used before:

$ItemRoleAssignment = [Microsoft.SharePoint.SPRoleAssignment] ($SRootWeb
.SiteGroups ["Approvers"])

Just as in the example with the list, we assign the new role and our group association to the
permissions of the item:

$SPListItem.RoleAssignments.Add ($ItemRoleAssignment)

This guarantees unique permissions for the item despite different sets of permissions defined
in the list. The same security group, 2pprovers, has more limited access on the list item,
despite having more permissive access on the list level.

There's more

In this recipe, the goal was to demonstrate how you can assign custom permissions to a new
or existing SharePoint list. Also, we looked at how you can assign unique permissions and
roles to an individual item in the list.

As we saw in this recipe, the SharePoint security group we used (the Approvers group) has
a defined role on the site giving it certain privileges on the site level. When the Approvers
group is added to the list item, we give it a completely different set of roles. In our case the,
only role is to read an item and nothing else.

(e

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

This demonstrates a powerful principle where you can define unique permissions on the list
item using the same security group on the site but with a different set of roles.

Setting list relationships

Just as in its past versions, SharePoint 2010 allows you to create lists which contain lookup
columns in other lists. This way, business users can define a new list item and populate its
metadata based on fields from an existing list. In SharePoint 2010, business users can take
advantage of new features allowing them to enforce referential integrity on the list items.

When attempting to delete a list item, if any items in other lists use this item to look up their
values, the original item deletion can be prevented or the related item could automatically
be deleted.

If you require setting up referential integrity in your organization's lists, you can speed up the
provisioning process significantly using PowerShell.

Getting ready

You are already familiar working with lists using PowerShell. For this recipe, we are using
PowerGUI to author the script, which means it is necessary for you to be logged in with an
administrator's role on the target Virtual Machine.

How to do it...

1. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
2. Inthe main script editing window of PowerGUI, add the following script:

Defining script variables

$SiteUrl = "http://intranet.contoso.com"
SProductsListTitle = "Productg"
SProductLineListTitle = "Product Lineg"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$.Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SSPSite -ne S$Snull)

]

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Advanced List and Content Operations in SharePoint using PowerShell

{

Write-Host "Creating a products list™"
SRootWeb = $SPSite.RootWeb
SNewListTemplate = SRootWeb.ListTemplates["Custom List"]

SNewProductsListInstance = $SRootWeb.Lists.
Add ($ProductsListTitle, $ProductsListTitle, S$NewListTemplate)

SSPProductList = SRootWeb.Lists [$NewProductsListInstance]
$SPProductList.OnQuickLaunch = S$Strue
$SPProductList.Update ()

Write-Host "Creating a product line list™"

SNewProductLinesListInstance = $RootWeb.Lists.
Add ($ProductLineListTitle, S$ProductLineListTitle,
SNewListTemplate)

$SPProductLinelList = SRootWeb.Lists[$SNewProductLinesListInstance]
$SPProductLinelList.OnQuickLaunch = Strue
$SPProductLinelList.Update ()

Write-Host "Add a product line reference"
SListFields = $SPProductList.Fields

SLookupField = $ListFields.AddLookup ("Product Line",
SNewProductLinesListInstance, S$false)

$LookupFieldInstance = $ListFields.GetField ($LookupField)

$LookupFieldInstance.RelationshipDeleteBehavior = [Microsoft.
SharePoint.SPRelationshipDeleteBehavior] : :Cascade

SLookupFieldInstance.Indexed = S$Strue
$LookupFieldInstance.PushChangesToLists = Strue
$LookupFieldInstance.Update ()
$SPProductList.Update ()

Write-Host "Add new field to a default view"

SListView = $SPProductList.DefaultView
SListViewFields = SListView.ViewFields
$ListViewFields.Add ($LookupFieldInstance)
$ListView.Update ()

Write-Host "Add new product line"
SSPListItemProductLine = $SPProductLineList.Items.Add()
SSPListItemProductLine["Title"] = "New Product Line 1"
$SPListItemProductLine.Update ()

Write-Host "Add new products"

SSPListItem = $SPProductList.Items.Add()
SSPListItem["Title"] = "New Product 1"
SSPListItem["Product Line"] = $SPListItemProductLine

5]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

$SPListItem.Update ()

SSPListItem = $SPProductList.Items.Add()
$SSPListItem["Title"] = "New Product 2"
SSPListItem["Product Line"] = $SPListItemProductLine
$SPListItem.Update ()

Write-Host "Created list " $ProductsListTitle "related to "
SProductLineListTitle "at" S$SRootWeb.Url

}
3. Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to CreateRelatedList .psl.

4. Open the PowerShell console window and call CreateRelatedList .ps1 using the
following command:

PS C:\Users\Administrator\Desktop> .\ CreateRelatedList.psl

5. As aresult, your PowerShell script will set two related lists as shown in the
following screenshot:

istrator: Windows PowerShell

'S\Hdmln1¢trat0P\De¢ktop) -“CreateRelatedList .psl
UHRNIHG More results were found in Get—-8P8ite bhut were not returned.
all possible results.
Creating a products list
Creating a product line list
Add a product line reference
Add new field to a default view

Add new product line
Add new productd
Products related to Product Lines at http://intranet.contoso.con
C:xlserssAdministratornDesktop?>

6. Now, in your browser, let's switch to our SharePoint test site: http://intranet.
contoso.com/.

7. On the Quick launch menu of your site, locate the list titled Products under the
Lists section.

Open the list and select the List tab in the ribbon.
9. Select List Settings from the Settings group in the ribbon.

i

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Advanced List and Content Operations in SharePoint using PowerShell

10. From the list of Columns, click the Product Line column as shown in the
following screenshot:

Columns

A column stores information about each itern in the list, The following colurmns are currently available

this list:

Column {elick to edit) Type Required
Title Single line of text v
Product Line Lookup

Created By Ferson or Group

Modified By Person or Group

Create colurnn
Add from existing site columns

Column ordering

Indexed columns

11. Take note of the new relationship behavior defined in the Relationship section of the
column setting as shown in the following screenshot:

Relationship
¥ Enforce relationship behavior
& lookup columin establishes a relationship .
between lisk itemns in this list and related " Restrict delete
itemns in the target lisk, Specify the {* Cascade delete

relationship behavior enforced by this
lookup calurn when a list ikem in the
target list is deleted,

When an itern in the karget lisk is deleted,
cascacia gafera will delete all related items
in this lisk, Rastaif datafe will prevent the
deletion of anitem in the target list if it
hias one or maore related ikems in this list,

Delete [0]4 Cancel

12. Navigate back to the default view of the Product Lines list and select the only item
available in the list.

13. Delete the item.

14. Switch back to the Products list and ensure that all of the items associated with the
product line item have also been deleted.

[

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

We started by defining the script variables. In this recipe, we defined the site URL where our
new list is going to be created: http://intranet.contoso.com.

Next, we created the Products list and the Product lines list. Once our lists are created, we
add a new field to the Product list called Product line:

SLookupField = $ListFields.AddLookup ("Product Line",
SNewProductLinesListInstance, S$false)

This field holds a reference from each product to related product line. This is where we also
establish a referential behavior for our newly created field:

$LookupFieldInstance.RelationshipDeleteBehavior = [Microsoft.
SharePoint.SPRelationshipDeleteBehavior] : :Cascade

This is the field that is going to monitor the related items in the dependent list, and trigger a
relationship behavior, which is an action we have specified. The referential action in our case
is Cascade meaning all of the dependent items are deleted as soon as the parent item

is deleted.

M If you would rather warn the user that they cannot delete items which
Q have existing references, you can choose the Restrict option instead
of Cascade.

To speed up the performance of the referential lookup, the columns which have referential
rules defined on them are required to be indexed. This is achieved by setting the Indexed
property of the column to true:

SLookupFieldInstance.Indexed = S$true
The field changes are saved in the list and the field is then added to the default view.
Next, the test items are added to both Products and Product lines lists:

$SPListItemProductLine = $SPProductLineList.Items.Add()
SSPListItem = $SPProductList.Items.Add()

In the case of adding a new product, we also assign the associated product line to it:

SSPListItem["Product Line"] = $SPListItemProductLine

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Advanced List and Content Operations in SharePoint using PowerShell

There's more...

In this recipe, we created a referential integrity rule between the Product and the Product line
list. Every time the Product list item had a Product line assigned to it, the relationship has
been established. When a Product line has been deleted, the associated Product has also
been deleted.

This may not be the desired behavior since you may want to warn users that they are
potentially deleting an item with a significant connection to other items. In this case, you
would set the referential behavior to restrict the delete action.

As you're testing the creation of your lists, you're likely to want to delete the list in order to
re-create it with a new set of properties. One rule to remember is that before deleting the list
which has a referential integrity defined on its column, you are required to remove the rule
first. If the rule is in place and you attempt to delete the list, you will receive an error in your
script or SharePoint user interface.

Customizing list views

SharePoint list views are the core mechanism through which site users will interact with
the data stored in lists and libraries. As you may know, SharePoint list views allow for many
customizations related to how the data is displayed, filtered, and what some of the editing
capabilities are available with it.

The most common requests coming from business users related to functionality of lists
actually involves changes to list views.

In this recipe, we'll take a look at exactly what's involved in modifying a list view. We'll see how
you can filter and order list items using a custom query, add fields displayed in a view, and
change list view rendering parameters.

You will be able to increase the efficiency and consistency of how you deploy your list view
changes on the site.

Getting ready

In this recipe, you are already familiar working with lists using PowerShell. For this recipe, we
are using PowerGUI to author the script, which means it's necessary for you to be logged in
with an administrator's role on the target Virtual Machine.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

How to do it...

1.
2.

Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
In the main script editing window of PowerGUI, add the following script:

Defining script variables

$SiteUrl = "http://intranet.contoso.com"
SListTitle = "Announcements List"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
SharePoint.Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SPSite -ne S$null)
{
Write-Host "Creating a new instance of an announcement list"
SRootWeb = $SPSite.RootWeb
SNewListTemplate = $RootWeb.ListTemplates ["Announcements"]

SNewListInstance = SRootWeb.Lists.Add(SListTitle, S$SListTitle,
SNewListTemplate)

$SSPList = SRootWeb.Lists[$SNewListInstance]
$SPList.OnQuickLaunch = S$Strue
$SPList.Update ()

Write-Host "Modifying announcements list default view"
SListView = $SPList.DefaultView;
SListFields = $SPList.Fields;
SListViewFields = S$ListView.ViewFields;
SListViewFields.Add ($ListFields["Body"]) ;
$ListViewFields.Add ($ListFields ["Expires"]) ;

SListView.Query = "<OrderBy><FieldRef Name='Created'
Ascending='FALSE' /></OrderBy><Where><Gt><FieldRef Name='Expires'/
><Value Type='DateTime'><Today /></Value></Gt></Where>"

SListView.RowLimit = 5
SListView.InlineEdit = S$true
$SPList.Update ()

Write-Host "Adding few test announcements"
SSPListItem = $SPList.Items.Add()

[55]-

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Advanced List and Content Operations in SharePoint using PowerShell

SSPListItem["Title"] = "New Announcement 1"
$SPListItem["Body"] = "This is a test announcement 1"
$SPListItem["Expires"] = [System.DateTime] ::Now

$SPListItem.Update ()

SSPListItem = $SPList.Items.Add()

SSPListItem["Title"] = "New Announcement 2"
$SPListItem["Body"] = "This is a test announcement 2"
$SPListItem|["Expires"] = [System.DateTime]::Parse("1/1/2012")

$SPListItem.Update ()

Write-Host "Created list" S$SListTitle "of template"
SNewListTemplate.Name "at" S$SRootWeb.Url

}

3. Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to CreateListView.ps1.

4. Open the PowerShell console window and call CreateListView.ps1 using the
following command:

PS C:\Users\Administrator\Desktop> .\ CreateListView.psl

5. As a result, your PowerShell script will execute with results as shown in the
following screenshot:

B Administrator: Windows PowerShell

PS C:slUserssAdministratorsDesktopr _“CreateListUiew.psi

Loading SharePoint Powerzhell Snapin

VARNING: More results were found in Get—58PSite but were not returned. Use '-Limit ALL'
all possible results.

Creating a new instance of an announcement list

Modif ying announcements list default view

Adding few test announcements

Created list Announcements List of template Announcements at http:/sintranet.contoso.com
PE C:sUsers™Administrator~Desktop> _

6. Now, in your browser, let's switch to our SharePoint test site : http://intranet.
contoso.com/.

7. Onthe Quick launch menu of your site, under the Lists section locate the list titled
Announcements List.

8. Open the list and select the List tab in the ribbon.
9. Select Modify View from the Manage Views group in the ribbon.
10. From the list of Views, click the All items view.

5]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

11. Ensure the Sort and Filter sections of the view and their values are as shown in the

following screenshot:

= Sort

Select up to two columns to determine
the order in which the iterns in the

First sart by the column:

sarting items,
cl

|

afral

sl

view are displayed. Learn about |Created ;I

Show iterms in ascending order
(A, B, C,orl, 2, 3)

Show itemns in descending order
(C,B, A, or3, 2 1)

Then sort by the colurnn:

[

|k

= Filter

Show all of the iterns in this view, or
display a subset of the iterns by using
filters. To filter on a colurmnn based on
the current date or the current user of
the site, type [Today] or [Me] as the I
colurmn value. Use indexed columns in

the first clause in order to speed up

vour wiew, Filters are particularly

important for lists containing 5,000 or

rmore itermns because they allow you to

work with large lists maore efficiently.

Learn about filtering iterns.

INone

&

Show iterms in ascending order
(A, B, C,orl, 2, 3)

Show itemns in descending order
(C,B, A, or3, 2 1)

[T Sortonly by specified criteria (folders may not appear bef

& Djﬂ] Show all terns in this view

=== chow iterns only when the following is true:

Show the iterns when column

IExpires ;I

Iis greater than |

I[Today]

12. Similarly, ensure that the Inline Editing option for the list is now set to enabled.

13. Switch back to the list view and take note of the fact that only one item is displayed in
the view despite adding two items. This is an example of how our view filters out the
item based on the defined Expiry date column.

In this recipe, we customized a view for our newly created announcements list. The view has
been assigned some of the filtering options to show only the selected set of items. Also, this

recipe demonstrates some of the view parameter changes to enhance view usability.

We start by defining the script variables. In this recipe, we define the site URL: http://
intranet.contoso.com where our new list is going to be created. We also specify the title

and the description of our announcements list.

www.it-ebooks.info

o7}

http://www.it-ebooks.info/

Performing Advanced List and Content Operations in SharePoint using PowerShell

Next, we create the announcements list and add it to the quick launch. Once created,
the list is assigned a default list view. We get an instance of this view by executing the
following command:

SListView = $SPList.DefaultView;
Next, we get a hold of the collection of fields used in the view:

SListFields = $SPList.Fields;
SListViewFields = $ListView.ViewFields;

Once we have the object representing a list view field collection, we add a Body and an
Expires field to the collection:

SListViewFields.Add ($SListFields["Body"]) ;
SListViewFields.Add ($ListFields["Expires"]) ;

Only the fields added to the view participate in view-related tasks such as item filtering. In
other words, you cannot filter items based on the field that has not been explicitly added to
the view, even if that field is already available in the list.

In our recipe, we define the list item filtering query:

SListView.Query = "<OrderBy><FieldRef Name='Created' Ascending='FALSE'
/></0OrderBy><Where><Gt><FieldRef Name='Expires'/><Value
Type='DateTime'><Today /></Value></Gt></Where>"

The query is a Collaborative Application Markup Language (CAML) query specifying the
order of the items in the list within the <OrderBy/ > tag. The query also defines the item
filtering clause whereby any item must have the Expires field value greater than today's
date in order to be displayed in the list view.

Next, we define some of the general list parameters, such as enabling in-line editing. In-line
editing will add a user interface to the list view, allowing users to edit the item within a view
without bringing up the item edit form.

The last parameter change we made to the view was setting the RowLimit value. This
property value specifies how many items are going to be displayed for a given view. The
default page view item limit is 30 items.

We conclude by adding a few test items to the list which demonstrates how our view can filter
out items based on the query, as well as allow in-line editing for list items.

This recipe demonstrates how complex tasks involved with list view adjustments and changes
can be automated across an entire farm using PowerShell.

5]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Managing the use of content types in lists

The Content Type feature in SharePoint allows you to define a specific type of content and
associated metadata fields, and make this content type available to a variety of lists and
libraries. Since all of the rules were defined in an associated content type, users will not
need to define those rules again for each list which uses the content type.

This powerful concept makes content types incredibly popular in many organizations.

As your site goes through its life cycle, your business users will ask you to modify the content
type or add a new one and associate it to a variety of lists. When using the SharePoint 2010
user interface, the provisioning process could take a very long time. Let's see how much more
efficiently this task can be accomplished with PowerShell.

Getting ready

You are already familiar working with lists using PowerShell. For this recipe, we are using
PowerGUI to author the script, which means you need to be logged in with an administrator's
role on the target Virtual Machine.

How to do it...

1. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
2. Add the following script in the main script editing window of PowerGUI:

Defining script variables

$SiteUrl = "http://intranet.contoso.com"
SListTitle = "Announcements List"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SPSite -ne S$null)
{
Write-Host "Creating a new instance of an announcement list"
SRootWeb = $SPSite.RootWeb
SNewListTemplate = $RootWeb.ListTemplates ["Announcements"]

s

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Advanced List and Content Operations in SharePoint using PowerShell

SNewListInstance = SRootWeb.Lists.Add (SListTitle, S$SListTitle,
SNewListTemplate)

SSPList = SRootWeb.Lists[$SNewListInstance]
$SPList.OnQuickLaunch = S$Strue
$SPList.Update ()

Write-Host "Creating a new content type based on Event content
type n
SEventContentType = $RootWeb.AvailableContentTypes ["Event"]

$ContentType = New-Object Microsoft.SharePoint.SPContentType
-ArgumentList @ ($EventContentType, $RootWeb.ContentTypes,
"EventCT")

SCT = SRootWeb.ContentTypes.Add ($ContentType)
SNewCT = $SRootWeb.ContentTypes [$ContentType.Id]
SNewCTFields = SRootWeb.Fields

SCTField = $SNewCTFields.Add ("CTField", [Microsoft.SharePoint.
SPFieldTypel] : :Boolean, S$false)

SCTFieldObject = $NewCTFields.GetField ($CTField)
SNewCT.FieldLinks.Add ($CTFieldObject)
$NewCT.Update ()

Write-Host "Associating content type to a list"
$SPList.ContentTypes.Add ($NewCT)
$SPList.ContentTypesEnabled = Strue
$SPList.Update ()

Write-Host "Associated " S$EventContentType.Name "to" $SPList.
Title "at" SRootWeb.Url

}
3. Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to AssociateContentTypesToList .psl.

4. Open the PowerShell console window and call AssociateContentTypesToList.
ps1 using the following command:

PS C:\Users\Administrator\Desktop> .\ AssociateContentTypesToList.
psl

100

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

5. As a result, your PowerShell script will create a content type with output results
similar to the following screenshot:

dows Powershell

PS5 C:sUsersSAdministratorsDesktop> .“AssociateContentTypesToList._ ps1

WARNING: More results were found in Get—SPEite but were not returned. Use ’'-Limit ALL*
to return all poszsible results.

Creating a new instance of an announcement list

Creating a new content type
Azsociating content type to

MohileEditFormlr1l

DisplayFormlrl

MobileDisplayFormlrl
d

MameResource
Featureld
Description
DescriptionResource
Hidden

Scope

Group

FieldLinks

bhazed on Event content type

a

list

False
1

ListForm
ListForm
ListForm

BxA192AA?E41 2348432883 4481 CD5 D1 EBC8 A1 61300A8 472 A6 DCEESD4BA
bCC?C

False

EventCT1

Microsoft.SharePoint .SPUserResource
PARRRBERA—PARE—APAR—PRRA-BRPRRARRRARA

Create a new meeting, deadline or other event.
Microsoft.SharePoint .SPUserResource

False

sLizts Announcements List

Custom Content Types

{ContentType. Title. Location. StartDate...?
WorkflowAssociations >

True

Lists-Announcements List-EventCIl

{{FormTemplates xmlns="http:~- - zchemas.microsoft.comssharepo
tenttypesforns " ><Display>ListForn<d Display><Edit>ListForm</
ListFormn<-Neu><{ -FormTemplates>>

6. Now, in your browser, let's switch to our SharePoint test site: http://intranet.
contoso.com/.

7. On the Quick launch menu of your site, under the Lists section, locate the list titled
Announcements List.

Open the list and select the List tab in the ribbon.
9. Select List Settings from the Settings group in the ribbon.

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Advanced List and Content Operations in SharePoint using PowerShell

10. From the list of the General Settings group, click the Advanced Settings link and
ensure that the Allow management of content types option is set to Yes, as shown
in the following screenshot:

Content Types

Allow rmanagement of content types?
specify whether to allow the management

of conkent types on this lisk, Each content l';' EYES o
type will appeat on the new butkon and

can have a unique set of columns,

wotkflows and other behaviors,

11. Switch back to the list settings and ensure that both the Announcements and our
custom EventCT associated with the list are listed in the Content Types section as
shown in the following screenshot:

Content Types

This list is configured to allow multiple content types. Use content types to specify the infarmation you
want to display about an iterm, in addition to its policies, waorkflaws, or other behavior. The following
cantent types are currently awailable in this list:

Content Type Visible on New Button Default Content Type
announcement L4 "
EventZT1 ~

12. Switch back to the default view of the list and click the Items tab from
the ribbon.

13. Select the New option and ensure you can select two of the available content types
for our list, as shown in the following screenshot. Before our custom content type
association this list was designated just for announcements.

Site Actions » g

Wersion Hist

i Item Permisg
[e [e ey Edit
Item - | Folder Item Itemn 34 Delete Iem

Announcement

= Create a new news itern, status ar
other short piece of infarmation,

EventCT1 g
= Create a new meeting, deadline ar
ather event, aur

102

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Since content types define the rules and metadata associated with your business content,
routing changes and updates to the content types are inevitable over time and across the
entire SharePoint farm.

This recipe demonstrated how a task commonly known to be time consuming and mainly
performed only during SharePoint solution deployment, can be automated and run anytime a
content type update is required.

Script variables are defined first as in most of our scripts. In this recipe, we define the site
URL where our new list is going to be created: http://intranet.contoso.com. We also
specify the title and the description of our list, which is an announcements list.

Next, we create the announcements list instance and add it to the Quick launch menu.

Each content type inherits from a chosen parent content type. SharePoint 2010 has a variety
of content types available to choose from which serve the purpose of the base type to be
derived from. In our recipe, we use the Event content type and create a new instance of it
called EventCT:

SEventContentType = $RootWeb.AvailableContentTypes ["Event"]

$ContentType = New-Object Microsoft.SharePoint.SPContentType -
ArgumentList @ ($EventContentType, S$RootWeb.ContentTypes, "EventCT")

In the preceding code, when a new content type object is created, we specify parameters
such as:

» Content type parent

» The collection of content types

» The title of out content type

When ready, we add the content type to the collection of available content types on the site.

The copy of the content type we created is no different than its parent, which does not help
anyone yet. Usually, content types have different fields which represent a different type of
business content. Those fields have a variety of types just as SharePoint list fields do. To
demonstrate how a new field can be added to the content type we added a new field called
CTFIeld:

SCTField = $NewCTFields.Add ("CTField", [Microsoft.SharePoint.
SPFieldTypel] : :Boolean, S$false)

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Advanced List and Content Operations in SharePoint using PowerShell

This is how a new field, also known as a site column, is associated or linked to the
content type:

SNewCT.FieldLinks.Add (SCTFieldObject)

Once available on the site, a content type can be associated with lists and libraries on the site.
Without being associated to the list, a content type cannot be used since no instances of it
can be created.

We associate a content type to our announcements list the following way:

$SPList.ContentTypes.Add ($NewCT)
As you have seen in this recipe, once associated, the items representing

our new content type can be created. In our recipe, this means
i that the announcements list can now hold our custom events and

announcements at the same time.

104

www.it-ebooks.info

http://www.it-ebooks.info/

Managing External
Data in SharePoint
and Business
Connectivity Services
using PowerShell

In this chapter, we will cover:

» Importing a custom BCS model to SharePoint

» Exporting a SharePoint BCS model and schema

» Creating instances of external lists with PowerShell
» Managing permissions on an external list

» Throttling items returned with external lists

Introduction

The ability to access external business data into the familiar portal environment is one of the
key features of SharePoint 2010. Business Connectivity Services (BCS) allows developers and
administrators to define how SharePoint connects to external entities and create instances of
lists which are used to interact with the external data.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing External Data in SharePoint and Business Connectivity Services using PowerShell —

When users require access to business data from external systems you can use PowerShell
to import the BCS model. This approach simplifies the required setup involved in manual
configuration across multiple environments.

Alternatively, when troubleshooting an existing environment with existing BCS connections
established, creating a replica of that environment is crucial to be able to reproduce issues
reported by users. In this chapter, we'll take a look at how you can export an already defined
BCS model to be used in your sandbox environment.

When exposing external data to business users, you will require to create instances of external
lists which will be used by your users. In this chapter, we'll take a look at how you can create
an external list connecting to your BCS data using PowerShell. We'll also take a look at how
you can manage permissions on already created external list. Automating this set of tasks
using PowerShell will demonstrate a significant advantage when deploying a new or existing
solution to the target environment.

As your users work with external business data, they will use many of SharePoint's tools to pull
and update external data. Heavy usage may result in spikes in performance of the external
system which can sometimes affect the functionality of your external application. We'll take a
look at how you can throttle the usage of the data coming from an external system.

Importing a custom BCS model to

SharePoint

Business users in many organizations use their company's SharePoint site for collaboration.
Users also like to access data from other external business applications within their
collaboration environment. For example, you may be asked to allow users to access business
performance data from custom a CRM system. This may sound like a complex task, but with
BCS you can create a connection to external data in no time.

In this recipe, we'll learn exactly what's involved in exporting a BCS model, and then create

a PowerShell script which provisions a custom BCS model into your site. Once the model is
provisioned, in the Creating instances of external lists with PowerShell recipe in this chapter,
we'll see how you can provision a list which consumes our external data.

At the end of this recipe, you will be all set with the script allowing you to import custom
SharePoint BCS models.

106

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Getting ready

Assuming you have already set up your virtual development environment as described in
Chapter 1, PowerShell Scripting Methods and Creating Custom Commands, we'll get right
into authoring our script. We'll use PowerGUI to author the script, so ensure you're logged in
with an administrator's permissions on the target Virtual Machine. We'll assume you have a
SharePoint Designer client application installed on your target environment which we'll use to
export our BCS model.

How to do it...

Let's take a look at how you can import a custom BCS model into SharePoint using the
following sequence:

1. Click Start | All Programs | SharePoint | Microsoft SharePoint Designer 2010.
2. Click the Open Site button and provide our test site URL: http://intranet.

contoso.com.

3. From the Site Objects menu on the left of the SharePoint Designer window, select
External Content Types as shown in the following screenshot:

Mavigation <

Site Ohjects ~
fab Gears Project Home

1 Lists and Libraries

Workflowes

Site Pages
Site Assets
Content Types

Site Columns

External Content Types
[rata Sources

Master Pages

Page Layouts

Site Groups

Subsites

All Files

L so @ (i [E @|me E B & @

www.it-ebooks.info

http://www.it-ebooks.info/

Managing External Data in SharePoint and Business Connectivity Services using PowerShell —

4. Select the Supplier Info model in the main window of the application and
click the Manage | Export BDC Model button of the ribbon as shown in the
following screenshot:

|
K B
= 2]
Delete Export BDC
Model
hManage

J External Content Tvpes =

= - ﬁGears Project Home B External Content Types #

Mame - | External Svskem
http:/ /intranet.contoso.com

_| Mew external conkent bvpe AdwventureWorksLT

. Supplier Info SupplyChaina gL
http:/ /intranet.contoso.com/'sites, spZ010pillars,/projects

| Conkoso Irvenbory Conkoso_Inventary

5. Provide the model filename as model1 and chose to save the file to your desktop.

Locate the model1l .bdcm file on your desktop, right-click the file and select Open
with | Notepad.
7. Search for the following declaration in the model1 .bdcm file opened in Notepad:

<Entity Namespace="http://intranet.contoso.com" Version="1.0.0.0"
EstimatedInstanceCount="10000" Name="Supplier Info" DefaultDisplay
Name="Supplier Info">

8. Rename the value of the property called Name and the DefaultDisplayName
property from Supplier Infoto Test Model and save the file.

9. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.

10. In the main script editing window of PowerGUI, add the following script:

Defining script variables
$SiteUrl = "http://intranet.contoso.com"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eqg $null) {

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}
108

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SPSite -ne S$null)

{

Write-Host "Connecting to DBC"
Sbdc = Get-SPBusinessDataCatalogMetadataObject -BdcObjectType
"Catalog" -ServiceContext $SiteUrl

Write-Host "Importing ..."

Import-SPBusinessDataCatalogModel -Identity $bdc -Path ".\
modell.bdcm" -force -ModelsIncluded -PropertiesIncluded -
PermissionsIncluded -Verbose -ErrorAction Stop -ErrorVariable Serr

Write-Host "Imported BDC Model"
}
11. Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to ImportBCSModel .ps1.

12. Open the PowerShell console window and call ImportBCSModel . ps1 using the
following command:

PS C:\Users\Administrator\Desktop> .\ ImportBCSModel.psl

13. As a result, your PowerShell script will create a site structure as shown in the
following screenshot:

8 ndministrator: Windows Powershell

PS5 C:sUserssAdministratorsDesktop? _“ImportBCSModel.ps1l I’
WARNING: More results were found in Get-SPSite but were not returned. Use ’—Limit ALmm
all possibhle results.

Connecting to DBC

Importing ...

UERBOSE: Leaving BeginProcessing HMethod of Import—SPBusinessDataCatalogModel.

UERBOSE: This will import the model from an xml file.

WARNING: Ignoring LobSystem (External System> with Name ’SupplyChainSqQL’ <and its
LobhSystemlnstances (External System Instances)) as it is already loaded in the curren
LWARNING: The MethodInstance of type ’‘Finder' with Mame 'Read List’ does not have a Li
UERBOSE: Leaving ProcessRecord Method of Import—-SPBusinessDataCatalogModel.

UERBOSE: Leaving EndProcessing Method of Import—-SPBusinessDataCatalogModel.

Imported BDC Model

PSS C:sUserssAdministratorsDesktop? _

14. Let's now switch back to our SharePoint Designer application.
15. Press the Refresh button at the top of the SharePoint Designer application window.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing External Data in SharePoint and Business Connectivity Services using PowerShell —

16. Take note of the newly created BCS model called Test Model as defined in our DBCM
file as shown in the following screenshot:

S| External Content Types
Tl Y | |
—J _,/ . uﬂ
External Extermal | Edit External Delete | Export BDoC

Content Type List Content Type haodel

e Edit Manage
Mavigatian < |Z] External Content Types 5
Site Objects Al 4 ~ o Gears Project Home b External Contert Types b

fay Gears Project Home
=| Lists and Libraries
@ ok flows
5 Site Pages

Mame

- | External Syskem

http:/ /intranet.contoso.com

| | Mews external content: type
|| supplier Info

AdventureWorksLT
SupphyChaing g

. Test Model

http:/ /intranet.contoso.com,/'sites,'sp2010pillars/projects,|

|8 site ssets

@ Content Types

D site Columns

|5 External Content Types
| | Data Sources

|E] Master Pages

=5 Page layouts

e Site Groups

e Fryer)

[Al Files

First, we defined the script variables used. In this recipe, the variables only include a site URL.

|| Contoso Inverkory Conkoso_Inventary

Once a PowerShell snap-in has been loaded, we connect to the root site of our SharePoint site
collection to ensure that the site exists.

Next, we use the Get -SPBusinessDataCatalogMetadataObject command to get a hold
of the BCS Metadata Store metadata object.

The BdcObjectType parameter specifies the type of the metadata object to return. The type,
which is Catalog in our case, must be one of the following: Catalog, Model, LobSystem,
LobSystemInstance, Of Entity.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The ServiceContext specifies the service context of the BCS Metadata Store metadata
object, which in our case is http://intranet.contoso.com. The rest of the parameters
are optional.

Next, we execute the Import-SPBusinessDataCatalogModel which imports the model
into SharePoint. The Tdent ity parameter will supply the BCS Metadata Store metadata
object to import to. The Path specifies the path and name where the model is defined. In our
case, the model file is model1 .bdcm.

We also use the following optional parameters:
» Force instructs the command-let to overwrite the BCS Model if the file exists.

» ModelsIncluded specifies that models are included in the imported BCS Model file.
A model contains the base XML metadata for a system.

» PermissionsIncluded specifies that permissions from the BCS Model
are imported.

» PropertiesIncluded indicates that properties from the BCS Model are imported.

The last set of optional parameters specifies that the import transaction should stop if the
import fails and any associated error messages related to the condition should be stored in
the error variable:

-Verbose -ErrorAction Stop -ErrorVariable Serr

This sequence ensures that the model is imported and you get verbose details about the
import process as it progresses.

MSDN with the keyword Remove-SPBusinessDataCatalogModel.

The Exporting SharePoint BCS model and schema and Creating instances of external lists
with PowerShell recipes in this chapter.

[To find out what's involved in removing a data model from the site, reference]
Y

Exporting SharePoint BCS model and

schema

As we've learned from the Importing a custom BCS model to SharePoint recipe, you can
import a SharePoint BCS schema into the farm to be consumed by a custom productivity
application, out-of-the-box data, graph web parts, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing External Data in SharePoint and Business Connectivity Services using PowerShell —

When your solution is in production for some time and you need to troubleshoot a problem,
the first item on the list is to synchronize your testing or development environment with the
configuration in the production environment. External business connectivity models are

no exception. In this recipe, you will see how this process can be radically simplified by
using PowerShell.

The benefit of performing this type of operation using a PowerShell script gives you the
ability to have a defined and traceable set of items to be exported from your environments.
Additionally, by using the PowerShell approach, you will not be required to install any of the
client applications, such as SharePoint Designer, on the server, which is a recommended
strategy for any production server environment.

Getting ready

We'll assume you are already familiar with the concept of BCS in SharePoint and have looked
at importing a BCS model into SharePoint, as discussed in the previous recipe. For this recipe,
we'll use PowerGUI to author our script, which means you will need to be logged in with an
administrator's role on the target Virtual Machine.

How to do it...

Let's take a look at how you can export the BCS model using the following sequence:

1. Click Start | All Programs | Microsoft SharePoint 2010 Products | SharePoint
2010 Central Administration.
2. Click Application Management | Manage service applications.

3. Click Business Data Connectivity Service, as shown in the following screenshot:

Marme

Access Services
Access Services

Application Discovery and Load Balancer Service Application
application Discovery and Load Balancer Service Application |

application Registry Service
application Registry Service

Business Data Connechivity Service

Business Diata Connectivity Service
Excel Services Application

Excel Services Application

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

4. Ensure in your ribbon under View category, you have BDC Models selected from the
drop-down as shown in the following screenshot:

x L’l ‘\@ :ﬁ Qijl BOC Models -

Import Delete Export Set Object Sef Metadata Store Create/ Configure
Permissions Permizsions Upgrade

EDC Models Permissions Profile Pages Wiew

5. At the bottom of the page, you will see the list of the available BDC models. Take
note of modell which we previously imported in Importing a custom BCS model to
SharePoint recipe, as shown in the following screenshot:

Service Application Information

Marne: Business Data Connectivity Service

Search e

BOC Model Mamet

Contosolnventory

rmodell
SharePointDesigner-adventureworksLT2008-administrator-197ccaae-al59-4eld-8508-9688b1b99c3e

SharePointDesigner-AdventureworksLT-administrator-48d7ede3-f335-45892-bed 6-5635af4 9400

[I R B B

SharePointDesigner-SupplyChainsgL-Administrator-00ef4 ce3-6e27-40b0-92d5-fc55dabaa00c

I

Click Start | All Programs | PowerGUI | PowerGUI Script Editor.

In the main script editing window of PowerGUI add the following
script:
Defining script variables

$SiteUrl = "http://intranet.contoso.com"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eqg $null) {

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell™"

}

www.it-ebooks.info

http://www.it-ebooks.info/

Managing External Data in SharePoint and Business Connectivity Services using PowerShell —

$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SPSite -ne S$null)

{

Write-Host "Connecting to BDC"
$Smodel = Get-SPBusinessDataCatalogMetadataObject -BdcObjectType
"Model" -Name "modell" -ServiceContext $SiteUrl

Write-Host "Exporting ..."

Export-SPBusinessDataCatalogModel -Identity S$model -
Path ".\modell.bdcm" -ModelsIncluded -PropertiesIncluded -
PermissionsIncluded -Verbose -ErrorAction Stop -ErrorVariable Serr

Write-Host "Exported BDC Model"

}
7. Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to ExportBCSModel .ps1.

8. Open the PowerShell console window and call ExportBCSModel . ps1 using the
following command:

PS C:\Users\Administrator\Desktop> .\ ExportBCSModel.psl

9. As aresult, your PowerShell script will create a list with results as shown in the
following screenshot:

rator: Windows PowerShell

rator~Desktop> .“ExportBCSModel.psl l’
WARNING: More results were found in Get—SPSite but were not returned. Use ’'-Limit ALL' to retmm
all possible results.
Connecting to BDC
Exporting ...
UERBOSE: Leaving BeginProcessing Method of Export—SPBusinessDataCatalogModel.

UERBOSE: Leaving ProcessRecord Method of Export—SPBusinessDataCatalogModel.
UVERBOSE: Leaving EndProcessing Method of Export—SPBusinessDataCatalogModel.
Exported BDC Model

PS5 C:sUserssAdministratorsDesktop> _

10. On your server desktop, you will now see the exported model file created with the
filename as defined in the script: modell.bdcm.

As in our previous recipe, we started by defining the script variables. In this recipe, we defined
the site URL: http://intranet.contoso.com

Once a PowerShell snap-in has been loaded, we connect to the root site of our SharePoint site
collection to ensure that the site exists.

114

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Next, we use the Get -SPBusinessDataCatalogMetadataObject command to get a hold
of the BCS Metadata Store metadata object:

Smodel = Get-SPBusinessDataCatalogMetadataObject -BdcObjectType
"Model" -Name "modell" -ServiceContext $SiteUrl

The BdcObjectType parameter specifies the type of the metadata object to return. The type,
which is Model in our case, must be one of the following: Catalog, Model, LobSystem,
LobSystemInstance, Of Entity.

We also need to specify the name of the model in the Name parameter. The name of the BDC
model can be extracted from the Central Administration of your site as you've seen in the
step sequence in the How to do it... section.

The ServiceContext specifies the service context of the BCS Metadata Store metadata
object, which in our case is http://intranet.contoso.com. The rest of the parameters
are optional.

Next, we execute Export-SPBusinessDataCatalogModel which exports the model into
SharePoint. The Ident ity parameter will supply the BCS Metadata Store metadata object
to import to. The Path specifies the path and name where the model will be created. In our
case, the model file was model1 .bdcm.

We also use the following optional parameters:
» ModelsIncluded specifies that models are included in the imported BCS Model file.

A model contains the base XML metadata for a system.

» PermissionsIncluded specifies that permissions from the BCS Model are
imported.

» PropertiesIncluded indicates that properties from the BCS Model are imported.

The last set of optional parameters specifies that the export transaction should stop if the
import fails and any associated error messages related to the condition should be stored in
the error variable:

-Verbose -ErrorAction Stop -ErrorVariable Serr

This sequence ensures that the model is imported and you get verbose details about the
import process as it progresses.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing External Data in SharePoint and Business Connectivity Services using PowerShell —

Creating instances of external lists with

PowerShell

We've got the BCS model imported into our SharePoint 2010 environment as demonstrated
in the Importing a custom BCS model to SharePoint recipe. However, the BCS model can only
be used when users interact with the business data the model connects to. One of the most
common containers of the business data is a SharePoint external list.

In this recipe, we'll see how you can automatically provision and configure an external list to
connect to the BCS system, as well as how you can configure some of the parameters of the
data retrieval from the BCS system.

The scenario described in this recipe will help you to provision consistently configured
instances of SharePoint external lists when new external lists functionality are required to be
added to an existing SharePoint solution. As opposed to provisioning external lists manually,
or using a solution package, by using PowerShell, you will be able to provision external lists
without causing environment down time.

Getting ready

In this recipe, we'll assume that you are already familiar working with lists using PowerShell,
as discussed in Chapter 3, Performing Advanced List and Content Operations in SharePoint
using PowerShell. For this recipe, we will use PowerGUI to author the script, which means you
will need to be logged in with an administrator's role on the target Virtual Machine.

How to do it...

Let's take a look at the following sequence to see how you can use PowerShell to provision
external lists into the site:

1. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.

2. Inthe main script editing window of PowerGUI, add the following script:

Defining script variables
$SiteUrl = "http://intranet.contoso.com"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

116

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SPSite -ne S$null)

{

SSPWeb = $SPSite.RootWeb

Write-Host "Creating to BCS data source"

$dataSource = New-Object Microsoft.SharePoint.SPListDataSource

$dataSource.SetProperty ("LobSystemInstance", "SupplyChainSQL")

$dataSource.SetProperty ("EntityNamespace", "http://intranet.
contoso.com")

$dataSource.SetProperty ("Entity", "Test Model")

$datasource.SetProperty ("SpecificFinder", "Read Item");

Write-Host "Creating BCS list instance"

SexternallList = $SPWeb.Lists.Add("Test List Instance","","Lists/
Test List Instance", $dataSource)

Write-Host "List created at:" $SPSite.Url

}

3. Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to ProvisionBCSListInstance.psl.

4. Open the PowerShell console window and call ProvisionBCSListInstance.psl
using the following command:

PS C:\Users\Administrator\Desktop> .\ ProvisionBCSListInstance.psl

5. As aresult, your PowerShell script will execute and return results as shown in the
following screenshot:

B Administrator: Windows Powershell

PS8 C:islUsersSAdministratorsDesktop? .SProvisionBCSListInstance.psl
LARMING: More results were found in Get—5PSite bhut were not returned.
all possible results.

Creating to BCS data source

Creating BCS list instance

List created at: http://intranet.contoso.com
PS8 C:slUsers“AdministratorsDesktop?> _

6. Now, in your browser, let's switch to our SharePoint test site : http://intranet.
contoso.com/.

7. On the quick launch menu of your site, click All Site Content.

Under the Lists section, open Test List Instance.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing External Data in SharePoint and Business Connectivity Services using PowerShell —

9. You will be able to see the external data loaded into the list view similar to the one
shown in the following screenshot:

| = Supplierkey Product Location Tier Assembly Time(M) MaxTime Shipping ID
1 1 shaft Stock Toronto 3 4 g 1
2 2 Warrn Gears Denver 3 65 &0 z2
3 3 Bearings Tuscon 3 16 20 3
Bewvel
Assermbly
4 4 Bewvel Cleveland z 45 50 4
Assembly
5 5 Warm St Louis z 27 40 5

Let's take a look at exactly what happens in the script of this recipe. We start by defining the
script variables. In this recipe, we define the site URL: http://intranet.contoso.com.

Once the SharePoint snap-in is loaded, we create an instance of the BCS new SharePoint data
source as follows:

$dataSource = New-Object Microsoft.SharePoint.SPListDataSource

The preceding command created the instance of the data source object which now needs
the connection information to connect to our BCS data. The connection information is
assigned in a series of properties. The LobSystemInstance property specifies an instance
of the external entity. To retrieve the value of LobSystemInstance for your script, follow
these steps:

1. Click Start | All Programs | Microsoft SharePoint 2010 Products | SharePoint
2010 Central Administration.
2. Click Application Management | Manage service applications.

Click Business Data Connectivity Service from the list of available
service applications.

4. From the list of available BCS external content types, click the link representing a
particular system you would like to connect to, in our example called Test Model.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

After completing the preceding steps, you are provided with the details for the BCS entity as
shown in the following screenshot:

External Content Type Information

hame : Test Model

Display Marne Test Model

Marmespace | http:)fintranet. contoso, com
Wersion 1.0.0.0

External System : SupplyChainsgL

BOZ Model : modell

Crawlable Yes

Default Ackion : Mare

Fields {of default view)

Marme T Type

The value of LobSystemInstance in the script can be extracted from the preceding user
interface as External System.

The next property assigned to the data source is the EntityNamespace, which is a
namespace allowing SharePoint to disambiguate external connections defined.

The value of EntityNamespace can be retrieved from the preceding Central Administration
user interface as well.

Next, the Ent ity parameter is defined as follows:

$dataSource.SetProperty ("Entity", "Test Model")
The Ent ity parameter value is defined as Name in the Central Administration user interface.
Finally, the SpecificFinder parameter in our script code:

Sdatasource.SetProperty ("SpecificFinder", "Read Item")

This value is not in the default user interface of the SharePoint Central Administration. The
SpecificFinder is responsible for retrieving individual item information from the external
system. Although using SharePoint, you can also perform variety of other functions on your
external data, being able to retrieve a single item is a minimum requirement to be able to
create an external data connection.

By default, the SpecificFinder value is Read Item but can be named differently if your
developers choose to name it differently.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing External Data in SharePoint and Business Connectivity Services using PowerShell —

Once we have assigned all of the required values for the external data source, we create an
instance of our external list:

Sexternallist = $SPWeb.Lists.Add("Test List Instance","","Lists/Test
List Instance", $dataSource)

As you can see from the preceding code, the command which creates an instance of the
external list is exactly the same as the one which creates an instance of a native SharePoint
list. By specifying the data source in the Add parameter, SharePoint fills the underlying list
object and related properties with values specific for interaction with external lists.

SharePoint external lists, although created using the same object as a native SharePoint list,
have trimmed down functionality.

If you open an item from the external list instance, you will see that much of the functionality
available in a native list is disabled right from the ribbon user interface, as shown in the
following screenshot:

Account -

==l [z Wersion History W -
= 3 |) "
= & 52 Item Permissions _;& . 7 <
[ey Mewy Wiewy Edit Aitach Alert Workflows Approve/Reject Tlike Tags &
Ttemn » Folder Ttem Ttem)(Delete Them File Me - It Motes
Mew hManage Actions Share & Track okl owes Tags and Motes
Libraries o Supplierkey Product Location Tier &ssembly Time(M) MaxTime Shipping ID
Sz Pames W1 1 Shaft Stack Taoronto 3 4 8 1
Sl DoEUmeHTis 2 2 Waorrm Gears Denver 3 63 6l Z

This difference between external and native SharePoint lists is important to understand from
a PowerShell script authoring perspective. When interacting with external list properties, you
must remember that some of those properties, although available on the list object, will have
no bearing on the state of the object since they are not supported for external lists.

The following is an example of making the external list available on the Quick launch, where
we assume you have an existing external list called Test List Instance available on the root of
the site:

120

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

C £8PList = $&PWebh.Lists["Test List Instance"]
PS GC:sUsers“AdministratorsDesktop? $8PList.OnQuickLaunch
False
PS C:sUserssAdministratorsDesktop? $8PList.OnQuickLaunch = $true
PS C:slUsersSAdministratorsDesktop? %8PList.OnQuickLaunch

:SUserssAdministratorsDesktop? $8PList.Updated)>
PS C:slserssAdministratorsDesktop>

This command works and will make the external list available on the Quick launch.

Here is the output received from a command attempting to enable folder creation for
external list:

PS C:\Users\Administrator\Desktop> $SPList.EnableFolderCreation

False

PS C:\Users\Administrator\Desktop> $SPList.EnableFolderCreation = $true

Exception setting "EnableFolderCreation": "Folders are not allowed for
this list templ

At line:1 char:9
+ $SPList. <<<< EnableFolderCreation = $true
+ CategoryInfo : InvalidOperation: (:) [], RuntimeException

+ FullyQualifiedErrorId : PropertyAssignmentException

Similar output is received when you attempt to enable SharePoint content types on the list of
an external list type:

PS C:\Users\Administrator\Desktop> $SPList.ContentTypesEnabled

False

PS C:\Users\Administrator\Desktop> $SPList.ContentTypesEnabled = $true

Exception setting "ContentTypesEnabled": "This list does not allow
content types"

At line:1 char:9
+ $SPList. <<<< ContentTypesEnabled = S$true
+ CategoryInfo : InvalidOperation: (:) [], RuntimeException

+ FullyQualifiedErrorId : PropertyAssignmentException

Managing permissions on an external list

In the previous recipe, the goal was to demonstrate how you can create an instance of an
external list. This list would be accessible to a set of users defined on the BCS model. In this
recipe, we'll take a look at how you can grant or revoke permissions to your external data for
various users.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing External Data in SharePoint and Business Connectivity Services using PowerShell —

By using PowerShell to grant or revoke permissions in your environment, you will quickly be
able to provision and configure appropriate access to the newly deployed external BCS model
or adjust any changes to an existing system with an ability to trace back the settings.

Getting ready

In this recipe, we'll assume that you have already created an instance of an external list and
are familiar with external list mode concepts, and that you have imported our test BCS model
as discussed in this chapter. For this recipe, we are using PowerGUI to author the script,
which means it is necessary for you to be logged in with an administrator's role on the

target Virtual Machine.

How to do it...

Let's take a look at how you can manage permissions on external lists on your site:
1. Click Start | All Programs | Microsoft SharePoint 2010 Products | SharePoint
2010 Central Administration.
2. Click Application Management | Manage service applications.

3. Click Business Data Connectivity Service from the list of available
service applications.

4. Ensure in your ribbon under View category, you have BDC Models selected from the
drop-down as shown in the following screenshot:

Site Ackions ~ @l Browwse

@ x ﬂb %% gg Qil BDC Models -

Impart Delete Expart Set Object Set Metadata Store Create/ Configure
Permizsions Permizsions Upgrade

BEDC Madels Permissions Profile Pages Wieww

5. In the following screenshot, you will see the list of the available BDC models
that access the context menu of the modell which we have previously imported
in Importing a custom BCS model to SharePoint recipe, as shown in the
following screenshot:

122

www.it-ebooks.info

http://www.it-ebooks.info/

Service Application Information

Marme: Business Data Connectivity Service

Search pe

BDC Madel Marme T

[cContosolnventory

[T [modell -
[chare Delete
Adver Export BDC Model
197co Lo
agaa0 Zet Permissions
View External Cantent Types
[Share P
adrministrator-48d7ede3-f335-4892-bed -
S635af494f00

6. Select Set Permissions from the context menu.

7. From the following Set Object Permissions model window, take note that the

Chapter 4

only user who has access to modell is Brad Sutton. This user has Edit, Execute,
Selectable In Clients, and Set Permissions access on the model, as shown in the

following screenshot:

% Yau can sek permissions on the objects in the BOC Matadata Store,

To add an account, o group, bype or select it below and click. "add'.

Add

8,0

Toremowe an account, or group, select it above and click 'Remove’. — Remove |

Permissions for Brad Sukton:

Edit ¥ =
Execute v
Selectable In Clients v
Set Permissions v

| -

www.it-ebooks.info

http://www.it-ebooks.info/

Managing External Data in SharePoint and Business Connectivity Services using PowerShell —

8.
9.

10.

Close the Set Object Permissions by clicking OK.
Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
In the main script editing window of PowerGUI, add the following script:

Defining script variables
$SiteUrl = "http://intranet.contoso.com"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$.Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SPSite -ne S$Snull)

{

$SSPWeb = $SPSite.RootWeb

Write-Host "Create claims from user names"

SuserClaiml = New-SPClaimsPrincipal -Identity "contoso\
administrator" -IdentityType 1

SuserClaim2 = New-SPClaimsPrincipal -Identity "contoso\adamb" -
IdentityType 1

SuserClaim3 = New-SPClaimsPrincipal -Identity "contoso\brads" -
IdentityType 1

Write-Host "Connecting to BCS model"

$model = Get-SPBusinessDataCatalogMetadataObject -BdcObjectType
"Model" -ServiceContext http://intranet.contoso.com -Name "modell"

Write-Host "Granting access to users"
Grant-SPBusinessDataCatalogMetadataObject -Identity $model -
Principal $SuserClaiml -Right Execute

Grant-SPBusinessDataCatalogMetadataObject -Identity $model -
Principal $userClaim2 -Right Edit

Write-Host "Revoking access to user"

Revoke-SPBusinessDataCatalogMetadataObject -Identity S$model -
Principal $SuserClaim3 -Right Execute

Write-Host "Permissions assigned for BCS model"

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

. Click File | Save to save the script to your development machine's desktop. Set the

filename of the script to SetBCSSecurity.psil.

. Open the PowerShell console window and call SetBCSSecurity.psl using the

following command:
PS C:\Users\Administrator\Desktop> .\ SetBCSSecurity.psl

. As a result, your PowerShell script will set two related lists as shown in the
following screenshot:

& administrator: Windows Powershell =] E3
PS G:N

tor~Desktop?> .“\SetBCSSecurity.psi !

H s were found in Get-SPSite but were not returned. Use *-Limit mm
ALL’ to return all po hle results.
Create claims from user names
Connecting to BCS model

to users

or BCS model
inistratorsDesktop> _

. Now, switch back to SharePoint Central Administration area where we accessed the

BCS Set Object Permissions model window in previous steps.

. Access the Set Permissions context menu option for the modell as we did before.

. Ensure that we now have additional users with various permission access set on the

modell, as shown in the following screenshot:

£| ‘You can set permissions on the objects in the BDC Metadata Store,

Tao add an account, or group, type or select it below and click 'add',

Add

8, 0

Brad Sutton

Contosa Adrinistrator

To remove an account, or group, select it above and click ‘Remove’. | Remove |

Petmissions for Adam Barr:

Edit ™ =
Execute r
Selectable In Clients I
Set Permissions r

|-

www.it-ebooks.info

http://www.it-ebooks.info/

Managing External Data in SharePoint and Business Connectivity Services using PowerShell —

We started by defining the script variables. In this recipe, we define the site URL where our
new list is going to be created: http://intranet.contoso.com.

After SharePoint snap-in has loaded, we created claims for several user accounts we used in
our script.

R The reason we created claims rather than pass Windows user identities is
~ that the following permission management command only accepts user
Q claims. This way, an administrator can assign users from various identity
providers to use the external system.

Here is how the claim was created based on the Windows account from administrator user:

SuserClaiml = New-SPClaimsPrincipal -Identity "contosoladministrator"
-IdentityType 1

Here, the Ident ity parameter specifies the user account name. The IdentityType is
a value representing an enumeration denoting the format of the identity. Our value of 1
specifies that the IdentityType is a Name.

For other types of identity values, search MSDN with a
s keyword IdentityType.

Next, we connected to the model for which we would like to manage the permissions. In our
case, this is the same model we imported in the Importing a custom BCS model to SharePoint
recipe, as shown in the following line of code:

$Smodel = Get-SPBusinessDataCatalogMetadataObject -BdcObjectType
"Model" -ServiceContext http://intranet.contoso.com -Name "modell"

The BdcObjectType parameter specifies the type of the object, in our case it's a Model. The
types of objects include: Catalog, Model, LobSystem, LobSystemInstance, or Entity.

Finally, we called Grant -SPBusinessDataCatalogMetadataObject to grant access for a
specific claim to the model object, as shown in the following code:

Grant-SPBusinessDataCatalogMetadataObject -Identity $model -Principal
SuserClaiml -Right Execute

Here, the Identity parameter passes the model which we granted access to. The
Principal is the claim object we created earlier. The Right parameter determines the
type of rights our user is given. Options include: Al1l, Execute, Edit, SetPermissions,
or SelectableInClients.

126

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The Revoke-SPBusinessDataCatalogMetadataObject command works in the same
way as its Grant counterpart with exactly the same set of parameters. However, in this case,
the identified claim loses right defined in the Right parameter.

Check out some of the additional options available for the
* Revoke-SPBusinessDataCatalogMetadataObject
and Grant-SPBusinessDataCatalogMetadataObject
’ commands by searching MSDN with the keyword Grant -
SPBusinessDataCatalogMetadataObject.

Throttling items returned with external lists

There are many out-of-the-box tools in SharePoint to work with list data, and external lists are
no exception. In fact, since SharePoint 2010, external lists share common implementation
logic with native SharePoint lists, developers can easily support external data in their custom
components. However, there is another side to the popularity of external lists. There are spikes
in performance of the external system which can sometimes affect the functionality of external
applications. In some other cases, you have a powerful data backend environment capable of
supporting many requests from users allowing more users to access bigger data sets.

In this recipe, we'll take a look at how you can throttle the usage of the data coming from an
external system.

The advantage of performing this configuration using a PowerShell is the ability to transfer
your settings between environments as your application goes through its lifecycle.

Getting ready

In this recipe, we'll assume you are already familiar working with external lists using
PowerShell, as discussed in this chapter. For this recipe, we'll use PowerGUI to author the
script, which means it's necessary for you to be logged in with an administrator's role on the
target Virtual Machine.

How to do it...

Let's see what's involved in setting up throttling on items returned in external list:

1. Inyour browser, switch to our SharePoint test site:
http://intranet.contoso.com/.

2. On the Quick launch menu of your site, under the Lists section, locate the list titled
Test List Instance. This list was created in Creating instances of external lists with
PowerShell recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing External Data in SharePoint and Business Connectivity Services using PowerShell —

3. Take note of the items in a list being displayed, as shown in the following screenshot:
| e Supplierkey Product Lacation Tier Assembly Tirme(M) MaxTime Shipping ID
1 1 Shaft Stock Toronto 3 4 g 1
2 2 Woarm Gears Denver 3 65 &0 2
3 3 Bearings Tuscon 3 16 20 3
Bevel
Assermbly
4 4 Bevel Cleveland z 45 50 4
Assembly
5 5 wWarm St. Louis 2 27 40 5
Assembly
& 6 Gasket Lexington z z 5 &
Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
5. In the main script editing window of PowerGUI, add the following script:
Loading Microsoft.SharePoint.PowerShell
$snapin = Get-PSSnapin | Where-Object {$.Name -eq 'Microsoft.
SharePoint .Powershell'}
if ($snapin -eqg $null) {
Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"
Write-Host "Connecting to BCS proxy"
S$bcsProxy = Get-SPServiceApplicationProxy | where {$.GetType().
FullName -eq ('Microsoft.SharePoint.BusinessData.SharedService.' +
'BdcServiceApplicationProxy"') }
Write-Host "Creating maximum items rule"
$SdbRule = Get-SPBusinessDataCatalogThrottleConfig -Scope Database
-ThrottleType Items -ServiceApplicationProxy SbcsProxy
Write-Host "Creating connection timeout rule"
StimeoutRule = Get-SPBusinessDataCatalogThrottleConfig -Scope
Database -ThrottleType Timeout -ServiceApplicationProxy S$bcsProxy
Write-Host "Setting rule variables"
Set-SPBusinessDataCatalogThrottleConfig -Identity $dbRule -Maximum
30 -Default 30
Set-SPBusinessDataCatalogThrottleConfig -Identity S$timeoutRule -
Maximum 10 -Default 10
Write-Host "Rules set on " + S$SbcsProxy.DisplayName
128

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

6. Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to ThrottlingBCS.psl.

7. Open the PowerShell console window and call Thrott1ingBCS.ps1 using the
following command:

PS C:\Users\Administrator\Desktop> .\ ThrottlingBCS.psl

8. As a result, your PowerShell script will execute with results as shown in the
following screenshot:

3 administrator: Windows PowerShell [_ O] =]

PS C=xUserssAdministratorsDesktop?> . “ThrottlingBCS.psl l’
Connecting to BCS proxy [
Creating maximum items rule

Creating connection timeout rule

Setting rule variables

Rulez set on + Business Data Connectivity Service
PS C=xUserssAdministratorsDesktop> _

9. Now, in your browser, let's switch to our SharePoint test site: http://intranet.
contoso.com/.

10. On the Quick launch menu of your site, under the Lists section, locate the list titled
Test List Instance and take note of the message returned in a list view, as shown in
the following screenshot:

termn Account =

J/ #
IlikeIt Tags
Miote

Gears Project Home »

ject Homme all Sites | o

Unable ta display this Web Part. To troubleshoot the problem, open this web page in a Microsoft
SharePoint Foundation-compatible HTML editor such as Microsoft SharePoint Designer. If the problem
Site Pages persists, contact your Web server administrator,

Libraries

Shared Documents

. Correlation ID:aa6le019-ff0Z2-4c82-ab5c-700d021fb391
Data connections

In this recipe, we have set our custom throttling on the number of items which are returned
from an SQL database to a SharePoint external list.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing External Data in SharePoint and Business Connectivity Services using PowerShell —

We start by loading SharePoint snap-in:

Add-PSSnapin "Microsoft.SharePoint.Powershell"

Next, we connect to the BCS connection proxy using the following command:

$bcsProxy = Get-SPServiceApplicationProxy | where {$_.GetType().
FullName -eq ('Microsoft.SharePoint.BusinessData.SharedService.' +

'BdcServiceApplicationProxy') }

The Get-SPServiceApplicationProxy returns an instance of the specified service
application proxy. This means we need to specify the BCS proxy we're interested in. We identify
the proxy by the type: Microsoft.SharePoint.BusinessData.SharedService.

In some cases, you might have more than one connection proxy. In that case, you could use a
name of the proxy to identify the one you're interested in. To find out the name of the proxy:

1. Click Start | All Programs | Microsoft SharePoint 2010 Products | SharePoint

2010 Central Administration.

Click Application Management | Manage service applications.

Locate the Business Connectivity Services proxy with the name you have previously
defined. This name will be the name of your BCS connection proxy.

Alternatively, you can execute the following command from the PowerShell window to list all of

the Service Application proxies and their type:

PS C:\Users\Administrator> Get-SPServiceApplicationProxy | Select

DisplayName, TypeName

As the result, you will receive output similar to the following screenshot:

indows Powershell

DizplayMame

ness Data Connectivity Service
ord Uiewing Serwvice
Word Automation Services
State Service
Access Services
Application Registry Service
Managed Metadata Service
PerformancePoint Service Application

Search Service Application
Project Server Serwvice Application
Web Analytics Service Application

PowerPoint Service Application
User Profile Service Application
Uisio Graphics Serwice

Excel Services Application

Uzage and Health data collection

PSS C:slUserssAdministrator>

Application Discovery and Load Balancer Servic...

PE C:wUsers“Administrator> Get—SPServicefpplicationProxy | Select DisplayMame. TypeName

TypeMame

Business Data Connectivity Service Application
Yord Viewing Sewrvice Application Proxy

Yord Automation Services Proxy

State Service Proxy

Access Services Web Service Application Proxy
Application Registry Proxy

Managed Metadata Service Connection
PerformancePoint Service Application Proxy
Secure Store Service Application Proxy

Search Service Application Proxy

Search Service Application Proxy

Project Server PSI Service Proxy

Ueb Analytics Service Application Proxy
Application Discovery and Load Balancer Servic
PowerPoint Service Application Proxy

User Profile Service Application Proxy

Uiszio Graphics Service Application Proxy
Excel Services Application Web Serwvice Applica
Usage and Health Data Collection Proxy

130

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The preceding result shows the type of the Service Application, and its respective name,
which helps identify the Service Applications you're looking for.

Next, we created a rule which restricts the number of items returned from BCS
service application:

$dbRule = Get-SPBusinessDataCatalogThrottleConfig -Scope Database -
ThrottleType Items -ServiceApplicationProxy S$bcsProxy

The Get-SPBusinessDataCatalogThrottleConfig command supports a variety of
throttling configurations specified by its parameters. The Scope parameter specifies the
scope of the configuration and includes the following acceptable values: Wcf, WebService,
Database, Global, or Custom. The ServiceApplicationProxy specifies the proxy we
have established in a previous command. ThrottleType defines the type of throttle, in our
case, number of items. Other acceptable values for this parameter include: None, Items,
Size, Connections, Orf Timeout.

Other parameters are optional. In our example, we limit the number of items returned from
the BCS proxy connecting to the database.

Next, we created another rule specifying the acceptable timeout on the connection to the
BCS proxy:

$timeoutRule = Get-SPBusinessDataCatalogThrottleConfig -Scope Database -
ThrottleType Timeout -ServiceApplicationProxy S$bcsProxy

Parameters in this example are the same with a different timeout value for the
ThrottleType.

Finally, the Set -SPBusinessDataCatalogThrottleConfig command will specify the
throttling configuration on the rule we defined before. This command accepts the same set
of parameters regardless of the rule. The Default parameter specifies the default setting
for the throttle configuration. The Tdentity parameter specifies the rule we created in a
previous command. The Maximum parameter specifies the maximum value for the defined
configuration rule.

In our recipe example, the following command specifies a maximum of 30 items to be
returned from the BCS connection from the database:

Set-SPBusinessDataCatalogThrottleConfig -Identity $dbRule -Maximum 30 -
Default 30

The setting can be set back by executing the same command with the new Maximum value.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing External Data in SharePoint and Business Connectivity Services using PowerShell —

A similar command was executed to throttle the timeout for the connection.

It's important to understand the difference between the throttling
configuration and configuration in a list view. The throttling configuration, in
this recipe, will apply to any custom, out-of-the-box application, or command
-~ which interacts with the data through BCS, such as list view. For example,
if you have created an external list and specified that only return a few
items based on the filter formula, your list view may still fail to load. In order
to perform the filter, the list view would have still requested all of the list
items. Since the list view goes through a BCS proxy to do its job, it would be
restricted by the throttling configuration specified on the proxy.

132

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint
2010 Metadata and
Social Features Using
PowerShell

In this chapter, we will cover:

» Creating new user profiles

» Adding and configuring new profile properties

» Bulk provisioning data into user profile properties

» Creating, importing, and exporting managed metadata taxonomy terms
» Enabling social rating on lists and libraries

» Bulk tagging content and deleting tags in SharePoint

Introduction

User profiles in SharePoint 2010 allow for an entire new set of functionality. With user
profiles, custom and out-of-the-box components can store user-specific information in a profile
database along with other details about the user. System components can use user profile
information to provide better and more personal experiences to users. In this chapter, we'll
see how you can provision user profiles using PowerShell to prepopulate user information for
your user profiles.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint 2010 Metadata and Social Features Using PowerShell

As you make a full use of SharePoint 2010 user profiles, you will see how extensible user
profile functionality is and how you can take advantage of creating custom profile properties
to store specific information about users in your system. In this chapter, we'll see how you can
create your custom user profile properties and populate them with values.

Managed metadata is new feature in SharePoint 2010 allowing users to store centralized
metadata terms. Since terms can be managed centrally and used anywhere on the site, this
makes them a perfect candidate to hold enterprise-wide metadata. With PowerShell, you will
be able to reliably configure metadata stored on all of your environments without incurring a
significant downtime.

Among other social features in SharePoint 2010, users are now able to rate items in lists and
libraries to help their peers find the most relevant content on the site. However, social rating
feature needs to be enabled manually on each library. With PowerShell, we'll see exactly
what's involved in enabling social rating automatically on libraries within your portal.

Finally, we'll take a look at how you can use PowerShell to perform bulk tagging of the content
on the site. This capability will allow you to mark certain content on the site as expired or
belonging to a particular category making it much easier for users to find in search results and
in document libraries.

Creating new user profiles

Any custom and out-of-the-box feature in SharePoint 2010 is much more successful if it can
provide more relevant and personal information to the user who is using it. For example, if

| am logged in to the corporate intranet in an overseas company branch, | would like to see
personalized, rather than generic information, shown to me in various parts of the site.

User profiles in SharePoint 2010 allow storing personalized of information about the user
which can be retrieved by out-of-the-box and custom features. In this recipe, we'll take a look
at how you can provision new user profiles on the site which are bound to existing Active
Directory user accounts.

At the end of this recipe, you will be all set with the script allowing you to create multiple user
profiles on your SharePoint 2010 system.

Getting ready

Assuming you have already set up your virtual development environment as described in
Chapter 1, PowerShell Scripting Methods and Creating Custom Commands, we'll get right
into authoring our script. We'll also assume your current environment is using Active Directory
where you have a few existing user accounts we'll create user profiles for. Since we'll be using
PowerGUI to author the script, ensure you're logged in with an administrator's permissions on
the target Virtual Machine.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

Let's take a look at how we can create new user profiles with the following sequence:

1.

Create

Chapter 5

Click Start | All Programs | Microsoft SharePoint 2010 Products | SharePoint

2010 Central Administration.

Click Application Management | Manage service applications.

Click User Profile Service Application, as shown in the following screenshot:

Service Applications

2 Account -

8 @
Mews Connect Delete Manage Administrators Properties IE;JT;PIish Permissions
Operations Sharing
Secure Stare Service Secure Staore Service Application Started
Promy
Security Token Service Application Security Token Service Application Started
State Service State Service Started
State Service State Service Proxy Started
Usage and Health data collection Usage and Health Data Collection Started
Service Application
Usage and Health data collection Usage and Health Data Collection Started
Froxy
User Profile Service Application Uszer Profile Service Application Started
User Profile Service Application lglser Profile Service aApplication Started
roxy

4. Select the Manage User Profiles link under the People category.

5.

In the Find profiles textbox, enter a new or existing username provisioned in Active

Directory of your server.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint 2010 Metadata and Social Features Using PowerShell

6. Click the Find button and ensure no profiles have been returned for the user, as
shown in the following screenshot:

Use this page ko manage the user profiles in this User Profile Service Application. From this page vou can also manage a
user's personal site. Learn more about rmanaging profiles.

Total number of profiles: 281

Find prafiles IAr‘n'_\,I'SEkD Find |
=i Mew Profile XDelete Yiew: |Active Profiles ;I W#Manage Sub-types
Account name Freferred name

There are no resulks to display,

7. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
In the main script editing window of PowerGUI, add the following script:

Defining script variables

$SiteUrl = "http://intranet.contoso.com"
SAccountName = "AmySeko"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eqg $null) {

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

Write-Host "Loading user profile assemblies"
[System.Reflection.Assembly] : :LoadWithPartialName ("Microsoft.
Office.Server")
[System.Reflection.Assembly] : :LoadWithPartialName ("Microsoft.
Office.Server.UserProfilesg")

$SPSite = Get-SPSite | Where-Object {$_ .Url -eq $SiteUrl}
if ($SSPSite -ne S$Snull)
{
Write-Host "Loading current server context"
$ServerContext = [Microsoft.Office.Server.ServerContext]::
GetContext ($SPSite)

136

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Write-Host "Creating user profile"
$ProfileManager = New-Object Microsoft.Office.Server.
UserProfiles.UserProfileManager ($ServerContext) ;

SNewProfile = $ProfileManager.CreateUserProfile ($AccountName,
SAccountName) ;

Write-Host "Saving profile changes"
SNewProfile.Commit () ;

Write-Host "User profile provisioned"

}

9. Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to CreateUserProfile.psl.

10. Open the PowerShell console window and call CreateUserProfile.ps1 using the
following command:

PS C:\Users\Administrator\Desktop> .\ CreateUserProfile.psl

11. As a result, your PowerShell script will create a site structure as shown in the
following screenshot:

J!fndministrator: Windows PowerShell !E E

PS C:xlUserzsAdministrator~Desktop> .“CreatelserProfile.p=sl
Loading wuser profile assemblies

Location

True v2.8.58727 C:vUWindowsvassemblynGAC_MSIL~Microsoft.Of fice.Server~14.8.8.8__71e%b

True w2 A.58727 C:xUWindowssassenblynGAC_MEIL~Microsoft.Of fice.Server _UserProfiless14
UARNING: More results were found in Get—5SPSite but wvere not returned. Use ‘-Limit ALL' to
all possible results.

Loading current server context

Creating profile

User profile provisioned

12. Let's now switch to our Manage User Profiles section for User Profile Service
Application.

13. In the Find profiles textbox, enter the same username as in previous steps.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint 2010 Metadata and Social Features Using PowerShell

14. Click the Find button and ensure a new profile is returned for the user, as shown in
the following screenshot:

|Jse this page to manage the user profiles in this User Profile Service Application, From this page vwou can also manage a
user's personal site. Learn more about managing profiles,

Total number of profiles: 25z

Find profiles IAm}fSEkD Find |

EiNew Profile 2K Delete View: |Active Profiles ;I J}Manage Sub-types
[Account name Preferred name

Il contosolarmyseka AmyEeko

15. Access the context menu of the returned user profile and click Edit My Profile option.
Take note of the profile properties as shown in the following screenshot:

Use this page to edit this user profile by changing walues For the Following properties. Properties that are mapped to the
exkernal data source will be overwritten the next time user profiles are imparted,

[d zave and Close Cancel and Go Back

* Indicates a required Fisld
:v-]:J Indicates a field mapped For profile import

:_1:) contosohamyseko
Account name:
First name:
Last name:

& IF\mySeko

)
Name:
B

First, we defined the script variables used. In this recipe, the variables include a site URL:
http://intranet.contoso.comand a username of the Active Directory user we'll be
creating a profile for, as $AccountName.

138

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Once a PowerShell snap-in has been loaded, we load two libraries which facilitate functionality
related to working with user profiles in SharePoint:

[System.Reflection.Assembly] : :LoadWithPartialName ("Microsoft.Office.
Server")

[System.Reflection.Assembly] : :LoadWithPartialName ("Microsoft.Office.
Server.UserProfiles")

Next, we connect to the root site of our SharePoint site collection. The root site collection
object will be used to establish a link to our User Profile Service Application.

The following command will create an object representing a server context:

sServerContext = [Microsoft.Office.Server.ServerContext]::
GetContext ($SPSite)

The server context created will be used next to establish a link to a user profile manager. User
profile manager represents a collection of user profile objects that are used to access user
profile data.

S$ProfileManager = New-Object Microsoft.Office.Server.UserProfiles.User
ProfileManager ($ServerContext) ;

As well noted in MSDN reference on user profiles, the user profile manager
* object instance must be created before accessing or creating user profiles.
%@»\ Full access to everyone's user profile requires Manage User Profiles rights.
’ Full access to one's own profile requires Use Personal Features rights.
Everyone has read access to all profiles.

To create a new user profile, we call the UserProfileManager class' method:

SNewProfile = $ProfileManager.CreateUserProfile ($AccountName,
SAccountName) ;

Here, the CreateUserProfile method has several variations. The variation used in this
recipe accepts two parameters: the account name as the first parameter, and the preferred
name which is viewable by other users in SharePoint.

The account must be created in Active Directory before a user profile can be created for it.

To find out which other methods are available when working with user profiles,
s reference MSDN with the keyword UserProfileManager.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint 2010 Metadata and Social Features Using PowerShell

Adding and configuring new profile

properties

As we've learned from the previous recipe, you can create a SharePoint user profile which can
be consumed by custom components and applications as well as out-of-the-box web parts.

When your developers see the power of using user profiles to store user-specific information
for their applications, there is no doubt you will receive requests to extend user profile
properties to facilitate additional user profile information.

Adding user profile properties manually can result in a disconnect between your staging

and production environments and additional manual steps during disaster recovery. As an
alternative, you may want to choose to provision profile properties using a custom SharePoint
solution, which will require a deployment down time.

Let's take a look at what's involved in provisioning custom user profile properties with
PowerShell which introduces little to no downtime.

Getting ready

In this recipe, we'll assume you are already familiar with the concept of user profile creation

in SharePoint and have looked at provisioning a new user profile into SharePoint using
PowerShell, as discussed in this chapter. For this recipe, we'll be using PowerGUI to author our
script, which means you will need to be logged in with an administrator's role on the target
Virtual Machine.

How to do it...

Let's take a look at how you can add new user profile properties using the following steps:

1. Click Start | All Programs | Microsoft SharePoint 2010 Products | SharePoint
2010 Central Administration.
2. Click Application Management | Manage service applications.

3. Click User Profile Service Application, as shown in the following screenshot:

140

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

- Service Applications
- -
=@ X®= &8 = 9 @
Mew Connect Delete Manage Administrators Properties Publish Permissions
Create Operations Sharing
Secure Store Service Secure Store Service Application Started
Prowy
Security Token Service Application Security Token Service Application Started
State Service State Service Started
State Service State Service Proxy Started
Usage and Health data collection Usage and Health Data Collection Started
Service Application
Usage and Health data collection Usage and Health Data Collection Started
Proxy
User Profile Service Application User Profile Service Application Started
User Profile Service Application tlser Profile Service Application Started
roxy

4. Select the Manage User Properties link under the People category.

5. Take note of the existing list of properties, as shown in the following screenshot:

IJse this page ko add, edit, organize, delete or map user profile properties. Profile properties can be mapped bo Active
Directory or LDAP compliant directory services, Profile properties can also be mapped to Application Entity Fields expol
by Business Dakta Connectivity,

=i'Mew Property E=ibew Section &Manage Sub-types Select a sub-type to filter the list

Property Mame Change Order FProperty Type

= Basic Information Section

Id unique identifier

(] binary

Active Directory Id binary

Account narne Person

First narme string (Single Walue)

Phonetic First Mame string (Single Walue)

Last name string (Single Walue)

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint 2010 Metadata and Social Features Using PowerShell

6. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
7. In the main script editing window of PowerGUI, add the following script:

Defining script variables

$SiteUrl = "http://intranet.contoso.com"
$BuildingNumberPropertyName = "BuildingNumber"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$.Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

Write-Host "Loading user profile assemblies"
[System.Reflection.Assembly] : :LoadWithPartialName ("Microsoft.
Office.Server")
[System.Reflection.Assembly] : :LoadWithPartialName ("Microsoft.
Office.Server.UserProfiles")

$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SSPSite -ne S$Snull)
{
Write-Host "Loading current server context"

sServerContext = [Microsoft.Office.Server.ServerContext]::
GetContext ($SPSite)

Write-Host "Creating user properties"

$ProfileConfigManager = New-Object Microsoft.Office.Server.
UserProfiles.UserProfileConfigManager ($ServerContext)

$ProfileManager = New-Object Microsoft.Office.Server.
UserProfiles.UserProfileManager ($ServerContext)

SPropertyInstance = $ProfileManager.Properties.Create($false);

Write-Host "Setting property rules"

$PropertyInstance.Name = $BuildingNumberPropertyName

$SPropertyInstance.Type = "string"

$PropertyInstance.Length = 50
$PropertyInstance.DisplayName = $BuildingNumberPropertyName
$PropertyInstance.Description = $BuildingNumberPropertyName
$PropertyInstance.IsVisibleOnViewer = S$true
$PropertyInstance.IsSearchable = S$true

142

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Write-Host "Saving property changes"
$PropertyInstance.Commit () ;

Write-Host "User property provisioned"

}

8. Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to CreateUserProperties.psl.

9. Open the PowerShell console window and call CreateUserProperties.psl using
the following command:

PS C:\Users\Administrator\Desktop> .\ CreateUserProperties.psl

10. As a result, your PowerShell script will create a list with results as shown in the
following screenshot:

istrator: Windows Powershell
PE C:xUserssAdministratorsDesktop> .“CreatelserFroperties.psl
Loading user profile assemhlies

Version Location

v2.0.58727 C:sUWindowssaszsembly~GAC_MSIL“Microsoft.0ffice . .Server~14.8.8.8_ 71e?
uw2 A.58727 C:xWindowsvassembhlynGAC_MSILsMicrosoft Office _Server UserProfilessi

LARNING: More results were found in Get—-8PSite but were not returned. Use ’'—Limit ALL’
to return all possible results.

Loading current server context

Creating user properties

Setting property rules

Saving property changes

User property provisioned

PS C:uUserssAdministratorsDesktopd
4

11. Now, switch back to the Central Administration window you had opened before, and
open the Manage User Properties link under the People category.

12. Take note of the newly provisioned property under the Custom Properties category,
as shown in the following screenshot:

= Delegation Section
= Newsfeed Settings Section
Interests string {Multi Walue)
Email Motifications integer
= Custom Properties Section

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint 2010 Metadata and Social Features Using PowerShell
13. Navigate back to the User Profile Service Application main page. This time, select
the Manage User Profiles link under the People category.

14. In the Find profiles textbox, enter a new or existing username provisioned in Active
Directory of your server.

15. Click on the Find button and take note of the newly provisioned property available
under the active user profile:

Share personal and business related interests, We will help you keep in touch
with activities related to these interests through events in vour newsfeed,

Interests:

¥ Matify me when someone leaves a noke on my profile,
Email Notifications: .
¥ Matify me when someone adds me as a collzague,

¥ Send me suggestions For new colleagues and keywords,

Select which e-mail notifications you wank bo receive.

BuildingNumber: Buildinghumber

ld save and Close Cancel and Go Back

As in any previous recipe, we started by defining the script variables. In this recipe, we defined
the site URL: http://intranet.contoso.com and the new property name.

Once a PowerShell snap-in has been loaded, we load SharePoint libraries facilitating work with
user profiles:

[System.Reflection.Assembly] : :LoadWithPartialName ("Microsoft.Office.
Server")

[System.Reflection.Assembly] : :LoadWithPartialName ("Microsoft.Office.
Server.UserProfiles")

Next, we establish the current site context:

sServerContext = [Microsoft.Office.Server.ServerContext]::
GetContext ($SPSite)

Next, we create an instance of the User Profile Manager which stores collections of user
properties and profiles as well as methods to work with properties and profiles. The profile
manager connects to the current site context:

$ProfileManager = New-Object Microsoft.Office.Server.UserProfiles.User
ProfileManager ($ServerContext)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Once connected to the profile manager, we access the Properties collection which has
the Create method. The Create method will create a new property instance which can
be assigned various rules and parameters. The method accepts one parameter specifying
whether the property is a section. In our case, by passing $false, we create the property
instance and not a section:

SPropertyInstance = $ProfileManager.Properties.Create($false);

Next, we assigned the value and rules to the property instance created earlier. Key properties
here are: Name, Type, Length, DisplayName, Description, and IsVisibleOnViewer.
The IsVisibleOnViewer property, although not mandatory, if not set, will not display the
property in user profile property page and in the list of properties in Central Administration.
This can be sometimes handy, since the property will still be available and able to store data
but not displayed for anyone to modify or delete using SharePoint user interface.

To save all of the changes and rules of the newly created property instance we call a
Commit method:

$PropertyInstance.Commit () ;

Now that the transaction is committed, the new property will show in the list of properties in
Central Administration and available through the object model for developers to access.

The Creating new user profiles recipe in this chapter.

Bulk provisioning data into user profile

properties

We've got our user profiles created in the Creating new user profiles recipe. We've also
provisioned additional properties into our SharePoint system in the previous recipe.

In this recipe, we'll see how you can automatically provision custom property values into our
existing and custom properties. This approach will significantly speed up the rollout of any new
values for the applications relying on custom properties.

As an example, if you would like to populate users interests list based on job title to help
your users find colleagues easier, you can use PowerShell to make such a change in no time,
without introducing a significant downtime to your production environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint 2010 Metadata and Social Features Using PowerShell

Getting ready

In this recipe, we'll assume you are already familiar with creating user profiles using
PowerShell, as discussed in the Creating new user profiles recipe. We'll also assume you
have created a few custom properties in your user profile system as discussed in the previous
recipe. For this recipe, we'll use PowerGUI to author the script, which means you will need to
be logged in with an administrator's role on the target Virtual Machine.

How to do it...

Let's see how we can provision user profile property values using the following sequence:

1. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
2. Inthe main script editing window of PowerGUI, add the following script:

Defining script variables

$SiteUrl = "http://intranet.contoso.com"
SProfileSearchTerm = "Human Resources"
$PropertyValue = "35"
$BuildingNumberPropertyName = "BuildingNumber"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
SharePoint.Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

Write-Host "Loading user profile assemblies"

[System.Reflection.Assembly] : :LoadWithPartialName ("Microsoft.
Office.Server")

[System.Reflection.Assembly] : :LoadWithPartialName ("Microsoft.
Office.Server.UserProfiles")

$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SPSite -ne S$null)
{
Write-Host "Loading current server context"

S$ServerContext = [Microsoft.Office.Server.ServerContext]::
GetContext ($SPSite)

Write-Host "Creating user profile"
$ProfileManager = New-Object Microsoft.Office.Server.

146

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

UserProfiles.UserProfileManager ($ServerContext)
SProfiles = $ProfileManager.Search($ProfileSearchTerm)

Write-Host "Profiles found:"
$Profiles | Select DisplayName

Write-Host "Editing profile and saving changes"

$Profiles | ForEach-Object {$_ [$BuildingNumberPropertyName] .
Add ($PropertyValue); $_ .Commit ()}

Write-Host "User profiles updated"

}

3. Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to ProvisioningProfileData.psl.

4. Open the PowerShell console window and call ProvisioningProfileData.psl
using the following command:

PS C:\Users\Administrator\Desktop> .\ ProvisioningProfileData.psl

5. As aresult, your PowerShell script will execute and return results as shown in the
following screenshot:

I ndministrator: Windows PowerShell =]

PS5 G:sUsers~Administrator-Desktop> .“ProvisioningProfileData.psl
Loading user profile assemhlies

Uersion Location

True v2 . 8.58727 C:sHindowssassemblysGAC_MEILNMicrosoft .0ffice.Serversld.
True v2. B.58727 C:sUWindowssassemblynGAC_MEILMMicrosoft .Office.Server. lUsze
UARMING: More wesults were found in Get—S5PSite but were not returned. Use *-Lj
all poszibhle results.

Loading current server context

Creating user profile

Profiles found:

DisplayMame : Amy Alberts

DisplayName : Garth Fort

DisplayName : Ian Tien

Editing profile and saving changes
1

1
1
lUser profiles updated

PSS C:xUsers*Adminisztrator~Desktop>

6. Click Start | All Programs | Microsoft SharePoint 2010 Products | SharePoint
2010 Central Administration.

7. Click Application Management | Manage service applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint 2010 Metadata and Social Features Using PowerShell

8. Click User Profile Service Application, as shown in the following screenshot:

= Account -

Service &pplications

= Fil =
=1 P x g peie E _Qj @
L = =
Mewy Connect Delete Manage Administrators Properties Puablizh Permissions
Create Operations Sharing
Secure Store Service Secure Store Service Application Started
Proxy
Security Token Service Application Security Token Service Application Started
State Service State Service Started
State Service State Service Proxy Started
Usage and Health data callectian Usage and Health Data Collection Started
Service Application
Usage and Health data collection Usage and Health Data Collection Started
Froxy
User Profile Service Application User Profile Service Application Started
User Profile Service Application User Profile Service Application Started
Proxy

9. Select the Manage User Profiles link under the People category.

10. In the Find profiles textbox, enter a property value which is contained in some of
the user profiles. In our case, we'll enter Human Resources, a value for the
Department property.

11. Click the Find button and ensure no profiles have been returned for the user, as
shown in the following screenshot:

Use this page to manage the user profiles in this User Profile Service Application. From this page wou cal

uset's personal sike. Learn rmore about rmanaging profiles,

Total number of profiles: 232

Find prafiles |Human Fesources | Find I

=iNew Profile K Delete View: |.0.ctive Profiles = L#Manage]
[Account name Preferred name

r conkosolanmya amy Alberts

r contosolgarthf Garth Fort

- conkosoliant 1an Tien

148

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

12. Access one of the user profiles by clicking the Edit My Profile option of the profile's
context menu.

13. Scroll to the bottom of the user profile page to find the BuildingNumber property
value set to 35 as specified in our script.

Let's take a look at exactly what happens in the script of this recipe. We start by defining the
script variables. In this recipe, we define the site URL: http://intranet.contoso.com.

$ProfileSearchTerm is used to store the search term we will be searching by in our user
profiles. $PropertyValue will hold a value which will be assigned to our custom property.
$BuildingNumberPropertyName Will hold the value representing a custom property name
we will be saving data into.

Once the SharePoint snap-in is loaded, we load additional assemblies facilitating the work
with SharePoint user profiles, as follows:

[System.Reflection.Assembly] : :LoadWithPartialName ("Microsoft.Office.
Server")
[System.Reflection.Assembly] : :LoadWithPartialName ("Microsoft.Office.
Server.UserProfiles")

Next, we get a hold of the current server context:

ServerContext = [Microsoft.Office.Server.ServerContext]::
GetContext ($SPSite)

Based on the specified server context, we connect to the user profile manager and create an
instance of its object as follows:

ProfileManager = New-Object Microsoft.Office.Server.UserProfiles.UserP
rofileManager ($ServerContext)

We can now search for a user profile with a specified search term. In our recipe, we searched
for the name of the department. The search will search through all of the properties marked
as searchable and return properties which contain the value searched:

Profiles = $ProfileManager.Search($ProfileSearchTerm)

Next, we display the list of the usernames that were found as a part of our query, as shown in
the following code:

Profiles | Select DisplayName

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint 2010 Metadata and Social Features Using PowerShell

Finally, we enumerate through each of the found user profiles and access the
BuildingNumber property. Each item in the array of results is assigned our custom
value using the following command:

$Profiles | ForEach-Object {$_[$BuildingNumberPropertyNa.me] .
Add ($PropertyValue); $.Commit ()}

To verify that the property has been set for each user, access the profile for one of the users
found in our search results, and validate that the profile property value for BuildingNumber is
of the correct value by using the following steps:

1. Ensure you are logged into the User Profile Service Application home page.

2. Select the Manage User Profiles link under the People category.

3. Inthe Find profiles textbox, enter a property value which is contained in some
of the user profiles. In our case, we'll enter Human Resources, a value for the
Department property.

Click the Find button and ensure no profiles have been returned for the user.

5. Access one of the user profiles by clicking Edit My Profile option of the profile's
context menu.

6. Scroll to the bottom of the user profile page to find the BuildingNumber property
value set to 35, as shown below:

|Fishin H |
share personal and business related interests, We will help vou keep in bouch
with activities related to these inkerests through events in vour newsfeed,

Interests:

¥ Motify e when someone leaves a noke on my profile,
Email Notifications: ¥ Motify e when someone adds me as a colleague,

[Zend me suggestions For new colleagues and keywords,

Select which e-mail notifications wou wank ko receive,

ES

BuildingMumber: Buildinghumber

H Save and Close Cancel and Go Back

The Creating new user profiles and Adding and configuring new profile properties recipes in
this chapter.

150

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Creating, importing, and exporting managed

metadata taxonomy terms

Managed metadata is a new feature in SharePoint 2010 which allows users to store
centralized metadata terms. Terms in SharePoint can be managed centrally and used
anywhere on the site allowing your users to hold enterprise-wide metadata.

Once in the system, managed metadata frequently needs to travel between staging,
development, and production environments. With PowerShell, you will be able to reliably
configure metadata stored on all of your environments without incurring a significant downtime.

Currently, there is no alternative out-of-the-box user interface allowing administrators to
export metadata terms, which makes PowerShell a perfect candidate to perform such tasks
automatically, without requiring significant development.

Getting ready

Assuming you have already set up your virtual development environment as described in
Chapter 1, PowerShell Scripting Methods and Creating Custom Commands, we'll get right into
authoring our script. Since we'll be using PowerGUI to author the script, ensure you're logged
in with an administrator's permissions on the target Virtual Machine.

How to do it...

Let's see how you can manage metadata taxonomy terms using the following sequence
of steps:

1. Click Start | All Programs | Microsoft SharePoint 2010 Products | SharePoint
2010 Central Administration.

2. Click Application Management | Manage service applications.

3. Click Managed Metadata Service from the list of available service applications.

4. Take note of the taxonomy tree and existing items in it, we will be adding an
additional node to the tree.

5. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
6. Inthe main script editing window of PowerGUI, add the following script:

Defining script variables
SiteUrl = "http://intranet.contoso.com"

Loading Microsoft.SharePoint.PowerShell
snapin = Get-PSSnapin | Where-Object {$.Name -eq 'Microsoft.
SharePoint .Powershell'}

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint 2010 Metadata and Social Features Using PowerShell

152

if ($snapin -eqg $null)
Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

Write-Host "Connecting to the term store and creating a new group"
$TaxonomySession=Get-SPTaxonomySession -Site $SiteUrl
STermStore=$TaxonomySession.TermStores ["Managed Metadata Service"]
$SGroup=S$TermStore.CreateGroup ("Branch Metadata")
STermStore.CommitAll ()

Write-Host "Creating a term set"
$TermSet=$Group.CreateTermSet ("Branch Departments")
STermStore.CommitAll ()

Write-Host "Creating a term"

SMarketingTerm=$TermSet .CreateTerm("Marketing",1033)
SHRTerm=$TermSet .CreateTerm ("HR",1033)
$SDeliveryTerm=$TermSet.CreateTerm("Delivery",1033)
STermStore.CommitAll ()

Write-Host "Saving structure to file™"
'"Term Set Name",

"Term Set Description",

"LCID", "Available for Tagging",

"Term Description",

"Level 1 Term",

"Level 2 Term",

"Level 3 Term",

"Level 4 Term",

"Level 5 Term",

"Level 6 Term",

"Level 7 Term"' | out-file "BranchMetadata.csv" -Append
$Group.TermSets | ForEach-Object

{*"" + ¢ .Name + '",

"' + $.Description + '",

|l1033ll ,

"' + $.IsAvailableForTagging +

n 1.
rrrrr

$.Terms | ForEach-Object

{',1"1033","TRUE"1,",

+ $_ .Name +

"",,,.,'}} | out-file "BranchMetadata.csv" -Append

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

7. Click File | Save to save the script to your development machine's desktop. Set the

8.

filename of the script to WorkingWithManagedMetadata.ps1.

Open the PowerShell console window and call WorkingWithManagedMetadata.
ps1 using the following command:

8PS C:\Users\Administrator\Desktop> .\ WorkingWithManagedMetadata.

As a result, your PowerShell script will set two related lists as shown in the
following screenshot:

5 ad

strator: Windows Powershell

PS C:slserssAdministratorsDesktop?> -sWorkingWithManagedMetadata.psl
Loading SharePoint Powershell Snapin
Connecting to the term store and creating a new group
Creating a term set

Creating a term

Saving structure to file

PS C:sUserssAdministratorsDesktop> _

M[=1E3

10. Now, switch back to SharePoint Central Administration area displaying the

taxonomy tree and refresh the page.

11. Take note of additional tree branch added to the taxonomy tree called Branch

Metadata, as shown in the following screenshot:

SEARCH

TAXONOMY TERM STORE

IEninsh

4 t’::/ Managed Metadata Service

4 |7 Branch Metadata

<% Branch Departrments
I Delivery
2 HR
I Marketing
- L2 Conteso Electronics Terms

- V Corporate Taxonomy

- _\) System

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint 2010 Metadata and Social Features Using PowerShell

12.

13.

14.

Switch to the Desktop of your server where our script has also created an exported
version of the branch we have seen in the taxonomy tree. The exported filename is
BranchMetadata.csv. It's a comma-separated file describing various part of
the tree.

Now, in SharePoint Central Administration area displaying the taxonomy tree,
ensure the top node called Managed Metadata Service is selected.

In the main area of the page, take note of the link to view the sample format used
which we can import the items into the tree, seen below. This is the same format
used in our PowerShell script to export our custom tree branch.

Managed Metadata Service

Available Service Applications

& site may consume multiple metadata applications, Select the one | Managed Metadata Service
b se in the tree view,

Sample Import

The SharePoint metadata manager can import a kerm set From a Yiew a sample import file
UTF-2 C5Y Format File, Use the sample File as a kemplate For

creating import files, Then impoart the File inko the desired group to

create a new berm set,

15.

In the taxonomy tree, delete the Branch Departments node, as shown in the

following screenshot:

a f?;; Managed Metadata Service
4 |3 Branch Metadata
4 . % Branch Departrnents
Create Term
E'f," Copy Term Set
% Reuse Terms

wd
B Mowe Term Set

" 9 Delete Term Set

A

- L3 Corporate Taxonaommy

3 ._\’; System

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

16. Now, click on Branch Metadata taxonomy group and select the Import Term Set
option, as shown in the following screenshot:

TAXONDOMY TERM STORE

|Eng|ish ;I

4 f?:) Managed Metadata Service

L% Branch Metadata
:2; Mew Terrm Set
Irmport Term Set

P Terms

ny
Delete Group

- L) Systemn

17. In the model window, specify the path to BranchMetadata.csv and click OK to start
importing our term set into the Branch Metadata node.

We started by defining the script variables. In this recipe, we define the site URL which will be
used to establish the service application context: http://intranet.contoso.com.

After SharePoint snap-in has loaded, we connect to the taxonomy service application and
create an object representing the taxonomy instance. The taxonomy session object was
used to connect to the first node of the taxonomy tree of the Term Store, called Managed
Metadata Service, using the following command:

$TaxonomySession.TermStores ["Managed Metadata Service"]

Since taxonomy tree terms cannot just live off the preceding root element, we need to create
a taxonomy group, called Branch Metadata, by using the following command:

$Group=$TermStore.CreateGroup ("Branch Metadata")
The only parameter here is the name of the group.

Before any of the data is persisted in the taxonomy database, we need to call the Commit
command as follows:

$TermStore.CommitAll ()

Once we have the group created, we can go ahead and create a term set in that group.
The term set will contain actual keywords. In our hierarchy, the term set is called Branch
Departments, as shown in the following command:

$TermSet=$Group.CreateTermSet ("Branch Departments")

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint 2010 Metadata and Social Features Using PowerShell

Just as before, we commit changes to the database by calling the Commit command.

You don't need to call the Commit command each time you create an
M element in the tree. Instead, you can create the entire structure and call
Q one commit which commits the entire set to the database. It's really up
to the level of granularity at which you would like to report errors in case
creation of some nodes fail.

Next, we provisioned our nodes to the term set, in our case Marketing, HR, and Delivery
keywords, as shown in the following command:

$MarketingTerm=$TermSet.CreateTerm("Marketing",1033)

The first parameter value is the name of the keyword. The second parameter, 1033, is the
language ID of the language we create a managed taxonomy term for. If you're using a site
targeted for multiple languages and you stored your corporate taxonomy each with the
individual language IDs, your custom and out-of-the-box functionality can retrieve the right
keyword for the right language locale.

For the list of locale IDs, search MSDN with the keyword
i Locale ID.

Now that the structure has been created, we export it to file. The file can then be imported into
another system, if necessary. The target system needs to have a keyword group created, as
the imported file can only be imported on a pre-created group.

To see the details of the keyword file format, search MSDN with the
i keyword Managed metadata input file format.

In essence, the file that has been created will contain the header where the data is added.
Once the header is added, we add all of the nodes representing the hierarchy. Also, additional
configuration options available in the Managed Metadata Service home page in Central
Administration are also available to be configured using the import file.

Since SharePoint provides a user interface to import the metadata tree export, you do not
need to create custom script to import your files on the target system.

156

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Enabling social ratings on lists and libraries

Among other new social features in SharePoint 2010, users are now able to rate items in lists
and libraries to help their peers find the most relevant content on the site.

Unless your SharePoint portal is a brand new implementation, the social rating feature will
need to be enabled manually on each library before users can work with it.

One alternative is for users to enable the feature manually. However, for this to happen, your
users require higher-level access to the site. An alternative is for the administrator to enable
the feature in multiple libraries of the SharePoint user interface, and PowerShell can help with
that. Additionally, during a disaster recovery of your site, it will be much simpler and faster to
restore this configuration rather than leaving it to be manually implemented.

Getting ready

Assuming you have already set up your virtual development environment as described in
Chapter 1, PowerShell Scripting Methods and Creating Custom Commands, we'll get right into
authoring our script. Since we'll be using PowerGUI to author the script, ensure you're logged
in with an administrator's permissions on the target Virtual Machine.

How to do it...

Let's see how we can enable the rating functionality on lists and libraries using the
following sequence:

1. Inyour browser, let's switch to our SharePoint test site: http://intranet.
contoso.com/.

2. On the Quick launch menu of your site, under the Libraries section, locate Shared
Documents. This document library was provisioned to the test site as a part of the
virtual image and it will contain several of the demo files.

3. Take note of the SharePoint rating feature currently not available in a default view
of any item as well as the properties window when you select to view properties of
any file.

4. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.

5. Inthe main script editing window of PowerGUI, add the following script:

Defining script variables

$SiteUrl = "http://intranet.contoso.com"
SListName = "Calendar"

Loading Microsoft.SharePoint.PowerShell

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint 2010 Metadata and Social Features Using PowerShell

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
SharePoint.Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

Write-Host "Loading user profile assemblies"

$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SPSite -ne S$null)
{
SAverageRatingId =
[Guid] ("5al4dlab-1513-48c7-97b3-657a5ba6c742")
SRatingCountId =
[Guid] ("b1996002-9167-45e5-a4df-b2c41c6723c7")
$list = $SPSite.RootWeb.Lists[$ListName]

SAverageField = $list.ParentWeb.AvailableFields [$AverageRatingI
d]
if ($list.Fields.ContainsField($SAverageField.StaticName) -ne
Snull)
{
Slist.Fields.AddFieldAsXml (SAverageField.SchemaXml, S$true,
[Microsoft.SharePoint.SPAddFieldOptions] : :AddFieldToDefaultView)

}
SRatingCountField = $list.ParentWeb.
AvailableFields [$RatingCountId]
if ($list.Fields.ContainsField (SRatingCountField.StaticName)
-ne Snull)

{
$list.Fields.AddFieldAsXml (SRatingCountField.SchemaXml, S$true,
[Microsoft.SharePoint.SPAddFieldOptions] : :AddFieldToDefaultView)

1
$list.Update() ;

Write-Host "Rating enabled on the list"

}

6. Click File | Save to save the script to your development machine's desktop. Set the
file name of the script to EnableSocialRating.psl.

158

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

7. Open the PowerShell console window and call EnableSocialRating.psl using
the following command:

PS C:\Users\Administrator\Desktop> .\ EnableSocialRating.psl

8. As a result, your PowerShell script will execute with results as shown in the
following screenshot:

Loading user profile assemblies

LARNING: More results were found in Get—5PSite but were not returned.
*—Limit ALL’ to veturn all possible results.

Rating_xBB20_ xBPR28_B_xBA2d_5_xBB29_

Number_xAA2A_of _xBP2A_Ratings
RBAting enabled on the list
PS C:\UserssAdministrator\Desktop> _

9. Now, again, in your browser, let's switch back to our SharePoint test site :
http://intranet.contoso.com/.
10. On the Quick launch menu of your site, under the Libraries section, locate Shared

Documents. This document library was provisioned to the test site as a part of the
virtual image and it will contain several of the demo files.

11. Take note of the SharePoint rating feature available in a default view for the list, as
shown in the following screenshot:

r Type Marne Rating (0-5) Murnber of Ratings
E] Achivity_Dwration_Report_2011-05-
05T214823
3 approval - SharePoint 2010

Ifﬂ Contosa's Most Resilient Gear
@EI Gears Sales Histary

@._:l, Longest-Lasting Gear

] M300 Product Infarmation

IEI_H Mew Docurment for Sprockets
—|:§| Mew Product Archive

| Mew Product Archive

I% Project budget workbook

gp 4dd docurnent

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint 2010 Metadata and Social Features Using PowerShell

12. Additionally, the rating control and rating count field are available when item
properties are viewed for an individual item, as shown in the following screenshot:

= ;', wersion Histary g i alert Me @j otk Flowves
~Z .$ tManage Permissions ﬁ Apnprove/Reject
Edit Check -)
Item % Delete Item Out 25 Manage Copies
Manage Actions
Marne Activity_Duration_Report_2011-05-05T214823
Title

Declared Record

Rating {0-5)
Murmber of Ratings]
Approval Status Pending

Conkent Type: Documnenkt

Wersion: 1.0

Created at 5/5/2011 9:43 PM by System Account

Last modified at 5/5§2011 948 PM by Svstem Account

As in most cases, we started our script with configuring the script variables, such as the site
URL where our library is located, as well as the title of the library for which we need to enable
SharePoint rating feature:

$SiteUrl = "http://intranet.contoso.com"
$ListName = "Shared Documents"

We then load the SharePoint snap-in and connect to the site:
Add-PSSnapin "Microsoft.SharePoint.Powershell"

Next, we create two variables which will hold the IDs of two columns representing an Average
Rating and Rating Count respectively, for each item in the library:

SAverageRatingId = [Guid] ("5al4dlab-1513-48c7-97b3-657a5ba6c742")
SRatingCountId = [Guid] ("b1996002-9167-45e5-a4df-b2c41c6723c7")

160

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The IDs referenced are actually SharePoint columns which are already installed in SharePoint
system instance. Those fields, when added to the list, drive the rating functionality for
the library.

We connect to our document library:
$list = $SPSite.RootWeb.Lists [$SListName]

Next, we create actual field objects representing an Average Rating field, the objects are
created using the following command below where we pass already known column IDs:

$AverageField = $list.ParentWeb.AvailableFields[$AverageRatingId]

Before adding those fields to the list, we need to ensure they are not already provisioned to
the list. This is achieved by evaluating the following statement:

Slist.Fields.ContainsField ($SAverageField.StaticName) -ne $null
If the field has not been added to the list, yet we add it using the following command:

$list.Fields.AddFieldAsXml ($SAverageField.SchemaXml, $true, [Microsoft.
SharePoint.SPAddFieldOptions] : :AddFieldToDefaultView)

The AddFieldAsxml method creates a field based on the specified schema, which in our
case is the schema of the field we have already gotten a hold of. The next parameter specifies
if the field will be added to the default view of the list. This option, in most cases, is set to
true because most users want to see the rating of items in the list as they look at the list.
Otherwise, to see the rating for each item, your users would have had to call the item view or
edit form. Finally, the last parameter specifies a list of options that can be applied when a new
field is added to a list.

For more information on the list of available options search MSDN with
i the keyword SPAddFieldOptions.

The same is done for the Rating Count field after which we update the entire list.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint 2010 Metadata and Social Features Using PowerShell

As a result, apart from seeing the rating columns added to the default view, you will also be
able to see the rating setting enabled for the list, as shown in the following screenshot:

R ating sekttings . . -
9 9 Allow iterns in this list to be rated?
Specify whether or not items in this lisk can & res to

be rated.

when you enable ratings, bwa ratings
fields {average rating and number of
ratings) are added to the conkent bypes
available For this lisk, The column "F.ating
(0-5)" is also added to the default view, IF
wou add new content bypes to this lisk
later, and they do not already contain the
ratings fields, you will need to add the
ratings fields to them either marually, or
by returning bo this page and re-enabling
ratings. If wou disable ratings, the rating
fields are remaved From the lisk, buk Ehey
are not remaoved Frarm the content bypes
For this list or From vigws that already
have rating colurins,

| o] 4 | Cancel |

Bulk tagging content and deleting tags in

SharePoint

SharePoint has a variety of features that allow users to find content fast. One of the new
features in SharePoint 2010 is the ability to tag content which improves its visibility in search
results and libraries.

When deciding to add this feature in an incremental upgrade scenario, you might want to
pre-populate content on your site with the appropriate tags reflecting a type of content. For
example, if you'd like to tag all of the content on the product site as the product name, you
will improve the visibility and relevancy of search results returned to users who look for a
product category.

In this recipe, we'll take a look at how you can use PowerShell to bulk tag your content
based on the defined condition. This task will help you with the deployment of new tagging
functionality without consuming significant amounts of time.

162

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Getting ready

Assuming you have already set up your virtual development environment as described in
Chapter 1, PowerShell Scripting Methods and Creating Custom Commands, we'll get right into
authoring our script. We'll also assume you had a chance to learn about metadata taxonomy
as described in the Creating, importing, and exporting managed metadata taxonomy

terms recipe. We'll be using PowerGUI to author the script, so ensure you're logged in with
administrator's permissions on the target Virtual Machine.

How to do it...

The following sequence demonstrates how SharePoint content can be tagged
using PowerShell:

1. Inyour browser, let's switch to our SharePoint test site : http://intranet.
contoso.com/.

2. On the Quick launch menu of your site, under the Libraries section, locate the library
titled Shared Documents. This will already contain a set of demo documents to which
you can add a few files.

3. Select one of the items and see the Tags & Notes ribbon button activate under Tags
and Notes ribbon group, as shown in the following screenshot:

Library T

Documents

S E-mail a Link g
2(' = 33 - % | @ ¥
— G Alert Me .
Edit fanage Copies Workflows Ilike Tags &
Document - - - It Motes

Cpen & Check Qut Share & Track Tags and Motes
the getting started section to share vour site and customize its look.

Shared Documents - ¥

[Type Marne Modified

=) Activity_Duration_Report_2011 5/5/2011 9:45 PM
-05-05T214523

] Approval - SharePoint 2010 4/20/2011 12:27 PM

v | Contoso's Most Resilient Gear 4/20/2011 12:08 PM

I@é Gears Sales History 5/6/2010 3:15 PM
@% Longest-Lasting Gear 4/18/2011 10:23 AM
IE_I] M300 Product Information 4/18/2011 11:03 AM
@P Mew Docurnent for Sprockets 5462010 3:15 FPM
_‘3!—‘ Mew Product Archive 741372011 4:36 PM
IE_lﬂ Mew Product Archive 4/18/2011 10:33 AM
I% Project budget workboalk 741372011 4:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint 2010 Metadata and Social Features Using PowerShell

4. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
5. Inthe main script editing window of PowerGUI, add the following script:

Defining script variables

$SiteUrl = "http://intranet.contoso.com"
S$ListName = "Shared Documents"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$.Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

Write-Host "Loading user profile assemblies"
[System.Reflection.Assembly] : :LoadWithPartialName ("Microsoft.
Office.Server")
[System.Reflection.Assembly] : :LoadWithPartialName ("Microsoft.
Office.Server.UserProfiles")

$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SSPSite -ne S$Snull)
{
Write-Host "Loading current server context"
$ServerContext = [Microsoft.SharePoint.SPServiceContext]::
GetContext ($SPSite)

Write-Host "Connecting to Social Tag Manager"
$SocialTagManager = New-Object Microsoft.Office.Server.
SocialData.SocialTagManager ($ServerContext)

Write-Host "Retrieving a tag term from metadata store"

S$TaxonomySession=Get-SPTaxonomySession -Site $SiteUrl

STermStore=$TaxonomySession.TermStores ["Managed Metadata
Service"]

$TagTerm = $TermStore.Groups ["Branch Metadata"] .TermSets ["Branch
Departments"] .Terms ["Marketing"]

SRootWeb = $SPSite.RootWeb
$SSPList = $RootWeb.Lists[$ListName]
foreach ($SPListItem in $SPList.Items)

{

$FileUrl = SRootWeb.Url +"/"+ $SPListItem.File.Url

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

$Tagged = $SocialTagManager.AddTag($FileUrl, $TagTerm)
Write-Host "Tagged:" $SPListItem.Name -foregroundcolor Green

Write-Host "Content tagging completed"

}

6. Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to TagContent .ps1.

7. Open the PowerShell console window and call TagContent .ps1 using the
following command:
PS C:\Users\Administrator\Desktop> .\ TagContent.psl

8. As a result, your PowerShell script will execute with results as shown in the
following screenshot:

2 Administrator: Windows PowerShell =] E3

PS C:slUsersAdministratorsDesktop?> _STagContent.psl
Loading user profile assemblies

GAC

v2. 858727

v2.B.58727 C:xWindows™assembly~GAC_MEIL“Microsoft.Offi
WARNING: More results were found in Get-5P8ite hut were not retur
all possibhle results.
Loading current server context
Connecting to Social Tag Manager
Retrieving a tag term from metadata store

: Contoso’'s Most Resilient Gear.pptx

: Gears Sales History.xlsx

: Longest—Lasting Gear.pptx

: Mew Document for Sprockets.one

: Project budget workbook.aspx

: Approval — SharePoint 2018.vuwi

: M388 Product Information.docx

: New Product Archive.usd

: New Product Archive.aspx

: Activity Duration_Report_2011-A5-A5T214823 .x1sx

tagging completed

PS5 C:slserssAdministratorsDesktop> _

9. Now, in your browser, let's switch to our SharePoint test site : http://intranet.
contoso.com/.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint 2010 Metadata and Social Features Using PowerShell ——M —

10. On the Quick launch menu of your site, open Shared Documents library, select one
of the items and click Tags & Notes button on the ribbon, the window you'll see will
look similar to the following one:

Shared Documents - Contoso's Most Resilient Gear.pptx
Mote Board
S My Tags
Marketing;
[T Private: Other people cannot see that you tagged this itern. The tag text is Save |
public,

7 Suggested Tags

Marketing

Recent Activities

2 Contoso Adrinistrator tagged 'Marketing' on 7/21/2011

11. Go through a few other items in Tags & Notes and take note of each of those items in
Shared Documents have a Marketing tag on them.

In this recipe, we've looked at how you can tag content in a document library to improve the
relevancy of that content in search results and other content features in SharePoint 2010.

We start by defining our variables used in the script, the URL of the site, and the title of the
library where we tagged all of the items:

$SiteUrl = "http://intranet.contoso.com"
SListName = "Shared Documents"
166

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Once the SharePoint snap-in has been loaded to the environment, we reference two
assemblies which participate in content tagging. Those assemblies are actually User
Profile assemblies, and the following command will load them:

[System.Reflection.Assembly] : :LoadWithPartialName ("Microsoft.Office.
Server")
[System.Reflection.Assembly] : :LoadWithPartialName ("Microsoft.Office.
Server.UserProfiles")

Next, we connect to the URL of the site where our library is defined. To be able to use the
social tagging features, we need to establish the Server Context to which we are going to
connect, as shown in the following command:

sServerContext = [Microsoft.SharePoint.SPServiceContext]::
GetContext ($SPSite)

Next, we create an instance of the Social Tag Manager. This is the object instance which has
access to all of the properties and functionality related to social tagging:

$SocialTagManager = New-Object Microsoft.Office.Server.SocialData.Soci
alTagManager ($ServerContext)

Now that we have a Social Tag Manager, we need one last piece before we can actually start
tagging content: a term to tag the content with.

We've learned all about terms and how to provision them in the Creating,
i importing, and exporting managed metadata taxonomy terms recipe.

The term will represent the keyword which the content, such as a document in a library, will be
tagged with. We connect to the term store, as shown in the following code:

S$TaxonomySession=Get-SPTaxonomySession -Site $SiteUrl
We then get a hold of the root element in the term store:
STermStore=$TaxonomySession.TermStores ["Managed Metadata Service"]

Lastly, we get a hold of the actual term object in the term store, which is the same term we
created in the Creating, importing, and exporting managed metadata taxonomy terms recipe:

$TagTerm = $TermStore.Groups ["Branch Metadata"] .TermSets ["Branch
Departments"] .Terms ["Marketing"]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint 2010 Metadata and Social Features Using PowerShell

Now that we have all of the components required to tag the content, we connect to the
document library on the root web of our site and loop through the item list. In your specific
case, you would apply your own logic as to how you want to tag items and whether those items
are on the same site or if you need to iterate through sites. The source code example for this
chapter will give you general technical implementation.

Once the right content is found, we use the AddTag method of the Social Tag Manager object
instance to tag the URL with the term we loaded before, as shown in the following command:

$Tagged = $SocialTagManager.AddTag($FileUrl, $TagTerm)

Finally, we display the message that the specified content has been tagged. Additional
information is available in the resulting Tagged variable if you need it in your scenario.

The Creating, importing, and exporting managed metadata taxonomy terms recipe
in this chapter.

168

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint
Search and FAST
Search with PowerShell

In this chapter, we will cover:

» Configuring search query suggestions in your search center
» Configuring search best bets

» Configuring visual best bets

» Configuring search audience targeting

>

Configuring search web parts with PowerShell

Introduction

SharePoint FAST Search is all about helping users in your organization get to relevant content
fast. To facilitate this, SharePoint FAST Search comes with a variety of key features, many of
which we will be discussing in detail in this chapter.

We'll start with the search suggestions feature which allows users to select the most common
search suggestions while trying to refine their search query. In this chapter, we'll take a look
at what's involved in configuring search suggestions and how to pre-populate the list of
suggestions for your users when your new search has only just been launched.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Search and FAST Search with PowerShell

Best bets allow users to visually separate regular search results from the results which the
search engine considers to be exactly what the user is searching for. For example, your new
employees may be looking for a collection of company policies and type respective keywords
which search for the type of policy. In this chapter, we'll take a look at how you can configure
search to direct your users to the source where they can find the most up-to-date and relevant
set of policies, rather than let them come to the same source after performing a series of
separate searches.

Similar to the best bets, visual best bets will help your users find the most relevant source of
information they are looking for by using visual cues representing a best bet. We'll take a look
at exactly what's involved in provisioning visual best bets to various environments in your site.

Your users may have various opinions about the performance of your search depending on
their role and the patters in which they search for content. In the recipe of this chapter, we'll
take a look at how you can target different types of content to different type of users by using
the audience targeting feature of FAST Search for SharePoint.

Finally, all of the search configurations and features will come down to a user interface
your users will work with while executing their search queries. In this chapter, we'll take a
look at exactly what's involved in making changes to your search results pages to fit your
organization's needs.

Configuring search query suggestions in

your search center

Many popular Internet search engines allow you to see search queries many other users

have searched for as you start typing your own query. This is a feature your users are already
familiar with, so why not enable the same functionality for your organization's intranet search?
In this recipe, we'll take a look at how you can configure search suggestions to populate new
search queries based on what your users are searching for.

We'll also take a look at how you can pre-populate an initial list of search suggestions. This is
particularly handy when you roll out a new search experience to an existing intranet and would
like to populate the same search suggestions for users to get started with. Since there is no
out-of-the-box SharePoint user interface allowing you to pre-populate your suggested queries
at this time, it makes PowerShell a perfect candidate for the job.

170

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Getting ready

We'll assume you are running your environment with SharePoint Search configured and
working. This is the case for the environment you downloaded from the Microsoft Download
Center as described in Chapter 1, PowerShell Scripting Methods and Creating Custom
Commands. Let's get right into authoring our script PowerShell script using PowerGUI, so
ensure you're logged in with an administrator's permissions on the target Virtual Machine.

How to do it...

Let's take a look at how you can configure search suggestions in our search center using the
following sequence:

1.

Navigate to the root of your SharePoint test site: http://intranet.contoso.
com.

Click Search on the top navigation menu to be taken to the search site.

In the keyword textbox, type software and observe no search suggestions appearing
as you type your keyword, as shown in the following screenshot:

All Sites Feople Reports

Preferences
software] P oy

Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
In the main script editing window of PowerGUI, add the following script:

Defining script variables

$SearchApplication = "FastQuery"
SKeywordl = "Software licences"
SKeyword2 = "Software usage policy"

$Keyword3l "Software support"

Loading Microsoft.SharePoint.PowerShell
$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.

SharePoint .Powershell'}
T}

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Search and FAST Search with PowerShell

172

if ($snapin -eqg $null)
Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

Write-Host "Setting new keyword suggestions™"
New-SPEnterpriseSearchlLanguageResourcePhrase -Language en-us -Type
QuerySuggestionAlwaysSuggest -SearchApplication $SearchApplication
-Name $Keywordl

New-SPEnterpriseSearchlLanguageResourcePhrase -Language en-us -Type
QuerySuggestionAlwaysSuggest -SearchApplication $SearchApplication
-Name $Keyword2

New-SPEnterpriseSearchlLanguageResourcePhrase -Language en-us -Type
QuerySuggestionAlwaysSuggest -SearchApplication $SearchApplication
-Name $Keyword3

Write-Host "Existing keywords:"

Skeywords = Get-SPEnterpriseSearchlLanguageResourcePhrase -Language
en-us -Type QuerySuggestionAlwaysSuggest -SearchApplication
$SearchApplication

S$keywords | Select Phrase

Write-Host "Pushing down query suggestions"
Get-SPTimerJob "Prepare query suggestions" | Start-SPTimerJob

$KeywordToDelete = $keywords | Where-Object {$_ .Phrase -like
"+software lic*"}

Write-Host "Deleting keyword suggestion"
Remove-SPEnterpriseSearchLanguageResourcePhrase -Language
en-us -Type QuerySuggestionBlockList -SearchApplication
$SearchApplication -Identity $KeywordToDelete

Write-Host "Keyword suggestions configured"
Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to SetSearchSuggestions.psl.

Open the PowerShell console window and call SetSearchSuggestions.psl using
the following command:

PS C:\Users\Administrator\Desktop> .\ SetSearchSuggestions.psl

As a result, your PowerShell script will create a site structure as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

rator: Windows PowerShell H[=] E3

PS C:sUserssAdministratorsDesktop? .“SetSearchSuggestions.psl I’
LARNING: More results were found in Get-8P8ite but were not weturned. Use ’'-Limit mm
ALL' to return all possible sults.

Setting new keyword suggestions

Phrase Type Culture Author

licences QuerySuggestionfilvaysSuggest en—Ug CONTOSONAdminister. ..
usage po... QuerySuggestionAluwaysSuggest en—US CONTOSONAdministr. ..
support QuerySuggestionAluvaysSuggest en—Us CONTOSONAdministr. ..
keywords:

Phrase : Software licences

Phrase : Software support

Phrase : Software usage policy

Pushing down query suggestions
Deleting keyword suggestion
HARNING: Extra parameter ignored: *—Searchfipplication’.

Conf irm

Are you re you want to perform this action?

Performing operation "Remove—SPEnterprisefSearchLanguageResourcePhrase™ on Target
"Software licences".

[¥]1 Yes [A] Yes to A1l [N]1 No [L]1 Mo to A1l [S1 Suspend [?7]1 Help

C(default iz "Y'"):y

Keyword suggestions configured

PS C:xUserssAdministratorsDesktop> _

9. Now, let's switch to our SharePoint FAST Search Site:
http://intranet.contoso.com/search.

10. In the Keyword textbox, type software and take note of the search suggestions
appearing as you type, as shown in the following screenshot:

all Sites

softws p

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Search and FAST Search with PowerShell

First, we defined the script variables used. In this recipe, the variables include a Search
application name, Fast Query, and three keywords we have added to the list of search
suggestions, as three variables sKeywordl, $Keyword2, and $Keyword3.

Once a PowerShell snap-in has been loaded, we provision all of our search query suggestions
to the site with the following command:

New-SPEnterpriseSearchlLanguageResourcePhrase -Language en-us -Type
QuerySuggestionAlwaysSuggest -SearchApplication $SearchApplication -Name
$Keywordl

A few of the required parameters for New- SPEnterpriseSearchLanguageResourcePhra
se include:

» Name is the actual term to be added to query suggestions.

» Language specifies the locale for which the keyword is added. This option makes is
possible to add same keyword for various locales in a multilingual environment.

» SearchApplication isthe search application to which the keywords are going to
be mapped.

» Type is the parameter which actually specifies that the keyword we're adding is for
the keyword suggestion list.

For the list of other available options for the type parameter for
the preceding command, search MSDN with the keyword: New-
’ SPEnterpriseSearchLanguageResourcePhrase.

The remaining attributes are optional.

Next, we retrieved the list of existing keywords in our suggestion list collection using the
following command:

Get-SPEnterpriseSearchlLanguageResourcePhrase -Language en-us -Type
QuerySuggestionAlwaysSuggest -SearchApplication $SearchApplication

The parameter list of the Get -SPEnterpriseSearchLanguageResourcePhrase
command includes all of the parameters you're familiar with from the CmdLet we used to
insert keywords.

By default, when new queries are added to the list, the SharePoint 2010 timer job is
responsible for updating those queries on the search sites that use them and runs on a
predefined schedule. This means that if you want to see results right away, you will need to
run a timer job to synchronize search queries on demand.

174

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

To run a timer job synchronizing the suggestion keywords on demand, we run the
following command:

Get-SPTimerJob "Prepare query suggestions" | Start-SPTimerJob

Finally, to demonstrate how you can remove keywords from the suggested keyword list, we run
the following command:

$KeywordToDelete = $keywords | Where-Object {$§ .Phrase -like "*software
lic*w}

Here, we enumerate all of the keywords registered in the system based on the specified
search criteria. Once the keyword has been found, we execute the following command to
remove the keyword from the list of suggested keywords:

Remove-SPEnterpriseSearchLanguageResourcePhrase -Language en-us -Type
QuerySuggestionBlockList -SearchApplication $SearchApplication -Identity
$KeywordToDelete

As before, the parameter list for this command is similar to New-SPEnterpriseSearch
LanguageResourcePhrase, with the exception of the keyword we need to delete rather
than add.

Configuring search best bets

SharePoint search best bets is a feature that has been available in earlier versions of
SharePoint. Best bets are defined based on simple rules where the administrator can choose
which search results should be returned based on the search query your users are searching
for. Many organizations use best bets to clearly define an authoritative source for the most
typical type of content users are searching for. If you define key audiences in your organization
and the type of content they would most likely search for, you can point them to that content
source using a best bet list. This feature can be used in conjunction with SharePoint search
analytics to determine the most common types of search queries that are being performed by
your users. This way, you're not starting from square one when defining your best bets.

As a result of this exercise, many organizations come up with an extensive list of best bets
which can be cumbersome to add using the SharePoint user interface.

Let's take a look at what's involved in provisioning best bets using PowerShell, which can
provision your best bets in a simple transaction with little to no downtime.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Search and FAST Search with PowerShell

Getting ready

We'll assume you are running your environment with SharePoint Search configured and
working. This is the case for the environment you downloaded from the Microsoft Download
Center as described in Chapter 1, PowerShell Scripting Methods and Creating Custom
Commands. Let's get right into authoring our script PowerShell script using PowerGUI, so
ensure you're logged in with an administrator's permissions on the target Virtual Machine.

How to do it...

Using the following sequence, we'll provision best bet terms using our PowerShell script.

1. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
2. Inthe main script editing window of PowerGUI, add the following script:

Defining script variables
[xml] $BestBetsFile = get-content BestBets.xml
$SiteUrl = "http://intranet.contoso.com"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

Loading Microsoft.FASTSearch.PowerShell

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
FASTSearch.PowerShell'}

if ($snapin -eqg $null)

Write-Host "Loading FAST Search Powershell Snapin"
Add-PSSnapin "Microsoft.FASTSearch.PowerShell"

}

Write-Host "Retrieving Search Settings Group"
SFASTSearchSettingGroup = Get-FASTSearchSearchSettingGroup

Write-Host "Provisioning Best Bets with:"
SBestBets = $BestBetsFile.BestBets
if ($BestBets.BestBet.Length -gt 0)

{

foreach (SBestBet in $BestBets.BestBet)

{

176

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Write-Host "Keyword:" S$BestBet.Keyword
Skeyword = $FASTSearchSettingGroup.Keywords.
GetKeyword ($BestBet . Keyword)
if (Skeyword -eq S$null)
{
Skeyword = $FASTSearchSettingGroup.Keywords.
AddKeyword ($BestBet . Keyword)
$BestBetUrl = [Uri] ($BestBet.Url)
SbestBetInstance = Skeyword.AddBestBet ($BestBet.Title,
$BestBet.Description, S$BestBetUrl)
}
Write-Host "Title:" S$BestBet.Title
Write-Host "Description:" $BestBet.Description
Write-Host "Url:" $BestBet.Url
Write-Host "---"

}
}

Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to ProvisionBestBets.psl.

Click File | New in the PowerGUI user interface and add the following XML:

<?xml version="1.0" encoding="utf-8" ?>
<BestBets>
<BestBet>
<Keywords>legal</Keyword>
<Title>Legal Department Home</Title>
<Description>Legal Department Home</Description>
<Urls>http://legal.contoso.com</Url>
</BestBet>
<BestBet>
<Keyword>HR</Keyword>
<Title>HR Department Home</Title>
<Description>HR Department Home</Descriptions>
<Urls>http://hrweb.contoso.com</Url>
</BestBet>
<BestBet>
<Keywords>finance</Keyword>
<Title>Finance Department Home</Title>
<Description>Finance Department Home</Descriptions
<Urls>http://finweb.contoso.com</Url>
</BestBet>
</BestBets>

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Search and FAST Search with PowerShell

5. Click File | Save to save the XML file to your development machine's desktop. Set the
filename of the file to BestBets.xml.

6. Open the PowerShell console window and call ProvisionBestBets.psl using the
following command:

PS C:\Users\Administrator\Desktop> .\ ProvisionBestBets.psl

7. As aresult, your PowerShell script will create a list with results as shown in the
following screenshot:

istrator: Windows PowerShell M=l &3 I

Uferf\ﬂdmln1°tratoP\D9Fktop> .“ProvizionBestBets._.psi l’

01ng Search Settings Group

ioning Best Bets with:
Keyuword: legal
Title: Legal Department Home
Description: Legal Department Home
Url: http:/~/legal.contoso.com
Keyword:= HR
Title: HR Department Home
Description: HR Department Home

: http:/shrweb.contoso.com

Keyword: finance

Title: Finance Department Home

Dezcription: Finance Department Home
= http:-/sfFinweb.contoso.com

PS5 C:sUserssAdministratorsDesktop?> _

8. Now, let's switch to our SharePoint FAST Search Site: http://intranet.
contoso.com/search.

9. Inthe keyword section, enter hr to get a result set similar to the one shown in the
following screenshot:

All Sites

hr p

1-1 of 1 results Sart by IReIevance 'I

178

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

As in any of our previous recipes, we started by defining the script variables. In this recipe, we
defined the filename in the same directory as our script, which will hold the information about
our best bets:

[xml] SBestBetsFile = get-content BestBets.xml

Once a PowerShell snap-in has been loaded, we retrieve FAST for SharePoint Search Setting
group using the following command:

$FASTSearchSettingGroup = Get-FASTSearchSearchSettingGroup

Now that our XML structure representing best bets has been loaded into memory, we can
traverse the XML and build best bets based on the information given to us. First, we retrieve
the root element of the XML file:

$BestBets = $BestBetsFile.BestBets

Next, for each best bet definition, we extract the details to provision the keyword:
foreach ($BestBet in $BestBets.BestBet) { ... }

First, we verified if the keyword has been already created, which might be true:

Skeyword = $FASTSearchSettingGroup.Keywords.GetKeyword ($BestBet.
Keyword)

The only parameter here is the keyword name. If the keyword does not exist, we create it as
shown in the following code:

Skeyword = $FASTSearchSettingGroup.Keywords.AddKeyword ($BestBet.
Keyword)

Having the keyword created, we can now provision a best bet using the following command:

$bestBetInstance = $keyword.AddBestBet ($BestBet.Title, $BestBet.
Description, $BestBetUrl)

In the preceding code, we accept parameters such as the title of the best bet, the description
which is going to be displayed to the user along with the title, and finally, the best bet URL,
which is the target link of the best bet location.

By creating a best bet for the keyword, your users will be able to see an authoritative result
above all of the other results where which best matches the user's search term.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Search and FAST Search with PowerShell

SharePoint 2010 has a user interface where you can see the list of keywords and their best
bets, here is how to find those:

1. While at the root of your SharePoint site: http://intranet.contoso. com, click
Site Actions | Site Settings.
2. From Site Collection Administration group, click FAST Search keywords.

You will be able to see the collection of keywords and access their associated best bets, if any,
using a context menu, as shown in the following screenshot:

& Recycle Bin Search for keywords: |

2l all Site Content

=i add Keyword | 2 Refresh | Restrict to a User Context
= Best Bet Lsage

= Best Beb Suggestions

Keywaords Synonyms Best Bets Misual Best Bets Docurnent Prom
legal 1 0 0
delivery | 0 1 0
_j- keyword Details
1 1] 1]

Delete Keyvward

Edit keyword

Add Visual Best Bet 1 a a
Add Best Bet

add Docurment Promotion

0. I, s %

[n
o

Add Document Dermotion

Configuring visual best bets

Just as we have seen in the previous recipe, you can create a visual best bet to give your
users a visual cue for more visual types of best bets.

1

A use case for using visual best bets would be a SharePoint site where users search for
product keywords, and rather than receiving a textual best bet, they receive a visual version of
a best bet to help them identify whether they have gotten the right search best bet.

Just as in the scenario with textual best bets, in your organization you might face a challenge
with too many best bets needed to be added fast either initially or an on-going basis.

Let's take a look at how you can speed up the process of provisioning new visual best bets
using PowerShell.

180

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Getting ready

We'll assume you are running your environment with SharePoint Search configured and
working. This is the case for the environment you downloaded from the Microsoft Download
Center as described in Chapter 1, PowerShell Scripting Methods and Creating Custom
PowerShell Commands.

We'll also assume you have tried working with textual best bets as previously described in this
chapter. Let's get right into authoring our script PowerShell script using PowerGUI, so ensure
you're logged in with an administrator's permissions on the target Virtual Machine.

How to do it...

The following steps will cover almost all of the configurations on a SharePoint best bet:

1.
2.

Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
In the main script editing window of PowerGUI, add the following script:

Defining script variables
[xml] $BestBetsFile = get-content VisualBestBets.xml

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

Loading Microsoft.FASTSearch.PowerShell

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
FASTSearch.PowerShell'}

if ($snapin -eqg $null)

Write-Host "Loading FAST Search Powershell Snapin"
Add-PSSnapin "Microsoft.FASTSearch.PowerShell"

}

Write-Host "Retrieving Search Settings Group"
SFASTSearchSettingGroup = Get-FASTSearchSearchSettingGroup

Write-Host "Provisioning Best Bets with:"
SBestBets = SBestBetsFile.BestBets
foreach ($BestBet in $BestBets.BestBet)

{

Write-Host "Keyword:" S$BestBet.Keyword

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Search and FAST Search with PowerShell

Skeyword = $FASTSearchSettingGroup.Keywords.GetKeyword ($SBestBet.
Keyword)

if (Skeyword -eq S$null)

{

Skeyword = $FASTSearchSettingGroup.Keywords.

AddKeyword ($BestBet . Keyword)

}

$BestBetUrl = [Uri] ($BestBet.Url)

SVisualBestBet = $keyword.AddFeaturedContent ($BestBet.Title)

SVisualBestBet.Uri = $BestBetUrl

Write-Host "Title:" S$BestBet.Title

Write-Host "Url:" $BestBet.Url

Write-Host "---"

}

3. Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to ProvisionVisualBestBets.psl.

4. Click File | New in the PowerGUI user interface and add the following XML:

<?xml version="1.0" encoding="utf-8" ?>
<BestBets>
<BestBet>
<Keyword>delivery</Keyword>
<Title>Delivery Department Home</Title> <Urlshttp://intranet.
contoso.com/_layouts/images/homepageSamplePhoto.jpg</Url>
</BestBet>
</BestBets>

5. Click File | Save to save the XML file to your development machine's desktop. Set the
filename of the file to VisualBestBets.xml.

6. Open the PowerShell console window and call ProvisionVisualBestBets.psl
using the following command:

PS C:\Users\Administrator\Desktop> .\ ProvisionVisualBestBets.psl

7. As aresult, your PowerShell script will execute and return results as shown in the
following screenshot:

B Administrator: Windows Powershell =]

PS C:sUszers“AdministratorsDesktop?> _“ProvizionUisualBestBets_ps=s1
Retrieving Search Settings Group

Provizioning Best Bets with:

Heyword: delivery

Title: Delivery Department Home
Url: http:-7intranet.contoso.con’/_layouts-images homepageSamplePhoto. jpyg

PS C:slUsers~AdministratorsDesktop> _

182

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6
8. Now, let's switch to our SharePoint FAST Search Site: http://intranet.
contoso.com/search.

9. Inthe keyword section, enter Delivery to get the result set similar to the one in the
following screenshot:

Result Type 1-9 of 10 results (1 duplicates) Sart by IReIevance = B
pel

Any Result Type 5
Microsoft Powe. .

Microsoft word

Site
Any Site I =
intranet _ r ﬁk |~

Authar E Gears Marketing - Project Status.pptx

... Is project on track for delivery as

Any Author expected? What is final date for
) delivery? What are final cost ...
Systermn Account ek Slise Manufacturing rate Delivery Partners,
8 .- - etc, ..
Chris Barry (@ Authors: Erika Cheley Date: 4/21/2010
Erika Cheley Y Size: 159KE

Sangya Singh

zhow more Preview | Wiew In Browser | Duplicates
v

We started by defining the script variables. In this recipe, we defined the filename in the same
directory as our script. This XML file will hold the information about our best bets:

[xml] $SBestBetsFile = get-content VisualBestBets.xml

We then load PowerShell SharePoint snap-in as well as specific snap-in facilitating work with
FAST Search. We used the following commands to load both snap-ins:

Add-PSSnapin "Microsoft.SharePoint.Powershell"
Add-PSSnapin "Microsoft.FASTSearch.PowerShell"

Now that our snap-ins are loaded, we can call the command which will load the FAST settings
into an instance of an object that we'll be interacting with further. We used the following
command to load FAST Search settings group:

SFASTSearchSettingGroup = Get-FASTSearchSearchSettingGroup

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Search and FAST Search with PowerShell

An optional parameter for this command accepts the specific group ID you would like to load.
In our case, we accepted the default version of the command with no parameters.

We continue with getting a hold of the elements in our XML file to process them:
$SBestBets = $BestBetsFile.BestBets

Next, for each best bet definition, we extract the details to provision the keyword:
foreach ($BestBet in $BestBets.BestBet) { ... }

First, we verified if the keyword has already been created. This scenario could happen if
we have an existing keyword and would like to add the visual best bet only. In our case,
we provisioned the keyword if it hasn't been created yet:

Skeyword = $FASTSearchSettingGroup.Keywords.GetKeyword ($BestBet.
Keyword)

The only preceding parameter is the keyword name. The following command created a
keyword which has not been created yet:

Skeyword = $FASTSearchSettingGroup.Keywords.AddKeyword ($BestBet.
Keyword)

Having the keyword created, we can now provision a visual best bet using the following
command:

$VisualBestBet = $keyword.AddFeaturedContent ($BestBet.Title)

In the preceding line, we accept parameters such as the title of the visual best bet and URL.
The URL in this case represents a path to an image which all users have access to. The
following command binds a URL to a visual best bet:

$VisualBestBet.Uri = $BestBetUrl

In addition to verifying the functionality by searching for the keyword on the FAST Search site,
you can use SharePoint administrative user interface using the following steps:

1. While at the root of your SharePoint site: http://intranet.contoso. com, click
Site Actions | Site Settings.
From the Site Collection Administration group, click FAST Search keywords.

You will be able to see the collection of keywords and access their associated visual
best bets, if any, by clicking the Keyword Details context menu option, as shown in
the following screenshot:

184

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

i:—‘ Recycle Bin Search for kewwords: I
2 all site Content _
= 4dd Keyword | 4 refresh | Restrictto a User Context
= Best Bet Lsage

= Besk Bet Suggestions
Keywords Synonyms Best Bets Wisual Best Bets Document Promo

_j keyward Details

u] 1]
¥ Delete Keyword
_j} Edit Keyword
=/ add Wisual Best Bet 1 0 o
= AddBestBet
=/ add Docurnent Promotion 1 0 o

This is where you can also change or delete the visual best bet information, as shown in the
following screenshot:

Keyword .
¥ Edit Keyword

The keyward phiase is the ward or phrase

that users type in the search box, Keyword phrase: *

delivery

‘ou can add synonyms to a keyword, Two-way synonyms:
when users seatch For a keyword, results

From both keyword and synonyms will be One-way synonyms:
displayed in the search result,

Keyword definition:

The keyword definition will be displayed on
the search result page when users search
fFor the keyword.

Best Bets
add Best Bet
Best bets are the recommended resules for
this keyword,
Best bets will be displayed on the search
result page in the arder listed,

visual Best Bet
add Visual Best Bet

wisual best bet is vich content: (like images Title

or html snippets) that will be displayed on Delivery Department Home REmEw Edit
the search result page,

See also

The Configuring search best bets recipe in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Search and FAST Search with PowerShell

Configuring search audience targeting

When it comes to search, some users may be very pleased with how fast they can find
relevant content, while some may have much more difficulty.

In FAST Search for SharePoint, you have the ability to construct an audience profile and target
search results to different groups of audiences depending on who they are.

In the Bulk provisioning data into user profile properties recipe in Chapter 5, Managing
SharePoint 2010 Metadata and Social Features using PowerShell, we looked at how you can
use out-of-the-box and create custom user profile properties containing various information
about the user. In this recipe, we will take a look at how you can construct a custom profile
which will use user profile properties to make up an audience. Using this audience, we can
then target different content than other audiences will receive.

Currently, there is no alternative out-of-the-box SharePoint user interface which allows
administrators to create search audience profiles based on user profile properties. This
makes PowerShell a perfect candidate to perform such tasks automatically without requiring
significant development.

Getting ready

We'll assume you are running your environment with SharePoint Search configured and
working. This is the case for the environment you downloaded from the Microsoft Download
Center as described in Chapter 1, PowerShell Scripting Methods and Creating Custom
Commands.

We'll also assume you are familiar with SharePoint user profile properties as described in
Chapter 5, Managing SharePoint 2010 Metadata and Social Features using PowerShell. Let's
get right into authoring our script PowerShell script using PowerGUI, so ensure you're logged in
with an administrator's permissions on the target Virtual Machine.

How to do it...

The following sequence demonstrates what's involved in targeting your search results to a
particular audience by leveraging FAST Search features:

1. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.

2. Inthe main script editing window of PowerGUI, add the following script:

Defining script variables
$SiteUrl = "http://intranet.contoso.com"
S$DeliveryContext = "Delivery"

Loading Microsoft.SharePoint.PowerShell

186

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
SharePoint.Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

Loading Microsoft.FASTSearch.PowerShell
$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
FASTSearch.PowerShell'}
if ($snapin -eqg $null)
Write-Host "Loading FAST Search Powershell Snapin"
Add-PSSnapin "Microsoft.FASTSearch.PowerShell"
}
Write-Host "Retrieving existing context properties"

ScontextProps = Get-SPEnterpriseSearchExtendedQueryProperty
-SearchApplication "FASTQuery" -Identity
"FASTSearchContextProperties"

Write-Host "Existing content properties"
Write-Host S$contextProps.Value

Write-Host "Setting context properties"

Set-SPEnterpriseSearchExtendedQueryProperty -SearchApplication
"FASTQuery" -Identity "FASTSearchContextProperties" -Value
"Department"

$searchSettingGroup = Get-FASTSearchSearchSettingGroup

Write-Host "Creating a new context"
Scontext = S$searchSettingGroup.Contexts.AddContext ($DeliveryCont
ext)

Write-Host "Retrieving keyword"

Skeyword = S$searchSettingGroup.Keywords.GetKeyword ("delivery™")

$visualBestBet = $keyword.FeaturedContent.GetFeaturedContent ("De
livery Department Home")

Write-Host "Adding context to a keyword"
SvisualBestBet.Contexts.AddContext ($DeliveryContext)

Write-Host "Context properties updated"

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Search and FAST Search with PowerShell

3. Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to CreateUserContext .psl.

4. Open the PowerShell console window and call CreateUserContext .ps1l using the
following command:

PS C:\Users\Administrator\Desktop> .\ CreateUserContext.psl

5. As aresult, your PowerShell script will set two related lists as shown in the
following screenshot:

indows Powershell [_ (O] =]

PS C:sUsepssAdministratorsDesktop?> .“CreatellserContext.psl
Retrieving existing context properties

Existing content properties

Department

Setting context properties

Creating a new context

Retrieving keyword

Adding context to a keyword

SearchSettings {Delivery Department HomeX
Group Microsoft.SharePoint .Search.Extended.Administrati|

pImplWCF
ContextExpression
Description
Mame Delivery
%SstChanged 3/26/2311 9:A1:-31 PHM

Context properties updated

PS C:sUseprssAdministratorsDesktop?> _

6. Now, switch back to the root of your SharePoint site: http://intranet.contoso.
com, click Site Actions | Site Settings.

7. From the Site Collection Administration group, click FAST Search keywords.

From the preceding page, you will be able to see the collection of keywords. Select
the delivery keyword and click the Keyword Details context menu option.

9. Under the Visual Best Bets category, select Edit for the only best bet defined, as
shown in the following screenshot:

Yisual Best Bet
&dd Visual Best Bet

Wisual best bet is rich content (ke images Title

ar bkl snippets) that will be displaved on

Delivery Departrnent Home Remove
the search resulk page. U B

188

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

10. Take note of the User Context category and the Delivery context added to the list, as
shown in the following screenshot:

[Indicates a required tield
Title

Title: *
Enter a Litle for this visual Delivery Department Home
best bk, The title will nok be LALLS
displawyed on the search
results page.
Visual Best Bet
URL: *

Enter a URL For the visual

host bat Ihttp://intranet.-:ontosc-.c:om/_la\,rnuts/images/homepageSampIePhc
est bet,

User Context
User context:

Add one or more user
conkexts for which the
visual best bet should apply,
Leave blark iF the visual Remayve
best bet applies For any

user cantexk,

Delivery add

To creaks a new user
context, go to the user
conkexk page,

Start and End Date))
Start date (leave blank for immmediate start):

In the start date box, bype I :‘ﬁ

the dabe Fhab wopiguant Fhe

We started by defining the script variables. In this recipe, we define the site name of the
context that will be provisioned to the site:

SDeliveryContext = "Delivery"
Next, we load SharePoint and PowerShell snap-ins as follows:

Add-PSSnapin "Microsoft.SharePoint.Powershell"
Add-PSSnapin "Microsoft.FASTSearch.PowerShell"

Next, we call Get -SPEnterpriseSearchExtendedQueryProperty to access context
properties of the FAST Search service application. The following command retrieves the
context based on the parameters passed:

ScontextProps = Get-SPEnterpriseSearchExtendedQueryProperty -
SearchApplication "FASTQuery" -Identity "FASTSearchContextProperties"

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Search and FAST Search with PowerShell

The list of current context properties is then displayed. Next, similar to reading the context
properties, we are going to record new context properties which are going to make up our
context. The following command will erase all of the existing context properties and record
Department as the only property available to build context from:

Set-SPEnterpriseSearchExtendedQueryProperty -SearchApplication
"FASTQuery" -Identity "FASTSearchContextProperties" -Value "Department"

There are many more user profile properties available to build context
_ from. You can even provision your own custom properties and build context
% based on those properties. To learn all about provisioning your custom
S properties and using out-of-the-box user profile properties, please refer to
Chapter 5, Managing SharePoint 2010 Metadata and Social Features using
Powershell.

Now that the property has been added to the site, you can actually see it if you decide to
manually build a user profile context using the following steps:

1. While at the root of your SharePoint site: http://intranet.contoso. com, click
Site Actions | Site Settings.
From the Site Collection Administration group, click FAST Search user context.

Click Add User Context, where you are given an option to create a context
with Department as one of the properties we have added, as shown in the
following screenshot:

Indicates a required field

User context name "
User context narme:

Enter a name For the user conkext, I

Department
Departrnent:

| (0]'4 I Cancel

Next, in our script, we provision the new context using a script with the following command:

$context = $searchSettingGroup.Contexts.AddContext ($DeliveryContext)

190

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Now that the context is ready, we can assign it to one of the keywords we created in the
Configuring visual best bets recipe. We get a hold of the keyword already provisioned on the
site, called delivery, as shown in the following line of code:

Skeyword = $searchSettingGroup.Keywords.GetKeyword("delivery")
We then extract the visual best bet from the keyword:

SvisualBestBet = S$keyword.FeaturedContent.GetFeaturedContent ("Delivery
Department Home")

Having the keyword available, we add newly created context to the best bet, as follows:
SvisualBestBet.Contexts.AddContext ($DeliveryContext)

Using context for keywords, we can target the best bet to members of a particular department
but not another. Every time the user searches with the keyword, their context is evaluated
based on the profile properties for that user. If properties for the user match the context
requested for the keyword, appropriate content will be displayed.

The Bulk provisioning data into user profile properties recipe in Chapter 5, Managing
SharePoint 2010 Metadata and Social Features Using PowerShell and the Configuring Visual
Best Bets recipe in this chapter.

Configuring search web parts automatically

with PowerShell

The effectiveness of configurations described earlier will be put to the test when your users
navigate to the search page and execute their search query. At that moment, SharePoint will
return a result page where your users find all of the features described so far.

SharePoint has a variety of out-of-the-box web parts allowing you to help users navigate
through content on the search results page. In this recipe, we'll take a look at what's
involved in configuring those web parts using PowerShell. The approach described here
will allow you to have a scriptable set of changes that can be applied to any of your
environments, rather than a lengthy list of manual configurations which might need to be
restored during a disaster recovery.

Getting ready

We'll assume you are running an environment with SharePoint Search configured and working.
This is the case for the environment you downloaded from the Microsoft Download Center as
described in Chapter 1, PowerShell Scripting Methods and Creating Custom Commands.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Search and FAST Search with PowerShell

We'll also assume that you are familiar with working with SharePoint pages and web parts
as described in the Bulk provisioning data in to user profile properties recipe in Chapter 5,
Managing SharePoint 2010 Metadata and Social Features Using PowerShell. Let's get right
into authoring our script PowerShell script using PowerGUI, so ensure you're logged in with
an administrator's permissions on the target Virtual Machine.

How to do it...

Let's see how we can configure search web parts on your site using PowerShell.

192

Navigate to the root of your SharePoint test site: http://intranet.contoso.com.
Click Search on the top navigation menu to be taken to the search site.

In the keyword textbox, type test and let SharePoint redirect you to the FAST Search
Center page.

Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
In the main script editing window of PowerGUI, add the following script:

Defining script variables
$SiteUrl = "http://intranet.contoso.com"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$.Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SSPSite -ne S$Snull)
{
Write-Host "Connecting to search site"
$SearchWeb = $SPSite.OpenWeb ("/search")

SpubWeb = [Microsoft.SharePoint.Publishing.PublishingWeb]: :Get
PublishingWeb ($SearchWeb)

Write-Host "Retrieving the search results page"

$resultsPage=$pubWeb.GetPublishingPages () | Where-Object {$_
.Name -eqg "results.aspx"}

SresultsPage.CheckOut ()

Write-Host "Adding a web part to search results page"
SwebPartManager=$SearchWeb.GetLimitedWebPartManager ($SresultsPage
.Url, [System.Web.UI.WebControls.WebParts.PersonalizationScope]::

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Shared)

SwebPart=new-object Microsoft.SharePoint.WebPartPages.
ContentEditorWebPart

SwebPart .ChromeType=[System.Web.UI.WebControls.WebParts.
PartChromeType] : :TitleOnly

SwebPart.Title="Yaroslavs Content Editor Webpart"
SwebPartManager .AddWebPart (SwebPart, "Right", 0);

Write-Host "Modifying properties of search box web part"

$searchResults = $webPartManager.WebParts | Where-Object {$_
.Title -eqg "Search Core Results"}

$searchResults.ResultsPerPage = 25
SwebPartManager.SaveChanges ($searchResults)

Write-Host "Checking in and publishing changes"
SresultsPage.CheckIn ("Checked in Webpart")
SresultsPage.listItem.File.Publish("Published Webpart")
if ($resultsPage.listItem.ParentList.EnableModeration)
{

SmodInformation = $resultsPage.listItem.ModerationInformation

if (SmodInformation.Status -ne [Microsoft.SharePoint.
SPModerationStatusType] : : Approved)

{

SresultsPage.ListItem.File.Approve ("Approved Page")

$SearchWeb.Dispose ()

}

$SPSite.Dispose ()
Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to ConfigureSearchWebParts.psl.

Open the PowerShell console window and call ConfigureSearchWebParts.psl
using the following command:

PS C:\Users\Administrator\Desktop> .\ ConfigureSearchWebParts.psl

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Search and FAST Search with PowerShell

8. As a result, your PowerShell script will execute with results as shown in the
following screenshot:

rator: Windows PowerShell

PS C:sUserssAdministratorsDesktop? .~ConfigureSearchilebParts.psl
WARNING: More results were found in Get—S8P8ite but were not returned.
*-Limit ALL®" to return all possible results.

Connecting to search site

Retrieving the search results page

Adding a web part to search results page
Modifying properties of search box web part
Checking in and publishing changes

PS5 C:sUserssAdministrator~Desktop> _

9. Again, in your browser, let's now switch back to our SharePoint FAST Search site:
http://intranet.contoso.com/search.

10. In the keyword textbox, type test and let SharePoint perform the search again.

11. Take note of SharePoint returning more than 10 default results in the search result
area and an instance of content editor web part on the right-hand side of the page,
as seen in the following screenshot:

1-12 of 12 results Sort by: IReIevance 'I] People Matches

-
% ’ CRM Consultant
CRM Strategy

Page-1 User.msvDGCalloutsap @ 0.0625 Shipping
User.SkinColor @ -2 User.visDGDefaultPos @ PNT{3,6)
User.msvlayoutlncludeSubshapes @ 1
User.wisDGDisplayFormat @ 254 User.wisDGCBYFl @ 1.5

&

User.wvisDGOldColors ¢ 0 Shippingkey @ 1 Product : qum::pm
Destination : Time(D) : 1.5 Border Crossing : BC Location o g i a
Authors: Systemn Account Hisashi Sato Date: 1/15/2010 [FEFEIEE
Size: 1IMB
Content
View In Browser Management
Consultant
Content
% Management
Page-1 User.msvDGCalloutGap @ 0.0625 Shipping Consulting
User.SkinCalor 1 -2 User.visDGDefaultPos @ PNT{3,6)
User.msvlayoutlincludeSubshapes @ 1
User.visDGDisplayFormat @ 254 User.wisDGCBYFl @ 1.5
User.visDGOldColors : 0 ShippingKey : 1 Product :
Destination : Time(D) : 1.5 Border Crossing : BC Location Yaroslavs Content Editar
Authors: Systermn Account Hisashi Sato Date: 1/14/2010
Zize: 1MB Edit this page to modify your

content.

Wiew In Browser

&

test

Authors: Karen Berg Dan Jurnp Date:
12/30/2009 Size: 43KB

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

We started our script with configuring the script variables such as the URL of our root site:
$SiteUrl = "http://intranet.contoso.com"

We then load the SharePoint snap-in and connect to the site:
Add-PSSnapin "Microsoft.SharePoint.Powershell"

Next, we connect to our root site and then establish the connection to our search center:
$SearchWeb = $SPSite.OpenWeb ("/search")

Since FAST Search Center is an instance of the publishing site, we will create an instance
of the publishing web object to be able to get a hold of the pages in the library as well as
modify them:

SpubWeb = [Microsoft.SharePoint.Publishing.PublishingWeb] ::GetPublishi
ngWeb ($SearchWeb)

Next, we connect to the search result page in the pages library using the following command:

$resultsPage=$pubWeb.GetPublishingPages() | Where-Object {$.Name -eq
"results.aspx"}

. In this example, we looked at modifying the search results page, however
~ FAST Search Center has a variety of other pages it uses. To modify those
Q pages, access the Pages library from within FAST Search Center where
you will find the remaining pages and be able to view them.

Before making changes to the page, we need to check it out:

SresultsPage.CheckOut ()

Web parts on the page interact with the user interface by using the controls on the page.
When it comes to interacting with web part using PowerShell, we need to get a hold of the
web part manager object, as follows:

SwebPartManager=$SearchWeb.GetLimitedWebPartManager ($resultsPage.Url,
[System.Web.UI.WebControls.WebParts.PersonalizationScope] : :Shared)

In our example, we added the new content editor web part instance to the right-hand side
of the search results page. This is achieved by creating a new object representing a content
editor web part, as follows:

SwebPart=new-object Microsoft.SharePoint.WebPartPages.
ContentEditorWebPart

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Search and FAST Search with PowerShell

We then assign the chrome of the web part to actually display the title of the web part. Many
web parts on the site do not have their chrome displayed, just the content, such as search box
web part. To control the chrome state for your web part, we use the following command:

$webPart.ChromeType=[System.Web.UI.WebControls.WebParts.PartChromeTypel ::
TitleOnly

Finally, we add the title of the web part:
SwebPart.Title="Yaroslavs Content Editor Webpart"

Now that we're happy with the properties we assigned to our web part, we can add it to the
page's specific zone by using a web part manager command as follows:

$webPartManager .AddWebPart ($webPart, "Right", 0);

Let's now take a look at how we can modify properties of the existing web part, the search
results web part. First, we connect to the web part using web part manager and by specifying
the title of the web part as a parameter:

$searchResults = $SwebPartManager.WebParts | Where-Object {$.Title -eq
"Search Core Results"}

Next, we'll modify one of the web part's properties, the number of search results returned
when a query is executed:

$searchResults.ResultsPerPage = 25

Since the web part is already on the page and we don't want to add it, we just need to
save changes to the web part properties by running the following command on the web
part manager:

$webPartManager.SaveChanges ($searchResults)
When done with the web part configurations, we save the page changes by checking in first:
SresultsPage.CheckIn ("Checked in Webpart")

Since FAST Search Center uses publishing infrastructure, we need to publish our changes
before they are visible to all users. For that we use the following command:

$resultsPage.listItem.File.Publish("Published Webpart")

Since publishing page changes in some cases may have an approval enabled on the library
requiring for the page to be approved before it's seen by everyone, we can run system
approval by using the following command:

$resultsPage.ListItem.File.Approve ("Approved Page")

196

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Finally, we wrap the entire script execution by disposing the instance of the search web and
the root site:

$SearchWeb.Dispose ()

The approach here will allow you to make configuration changes on the existing or new
environment without introducing a downtime to the environment.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint
Site Content in Bulk
using PowerShell

In this chapter, we will cover the following topics:

» Creating basic and complex content types

» Creating and configuring document sets

» Creating and editing publishing pages with PowerShell
» Provisioning web parts in bulk on to SharePoint pages

» Configuring web parts in bulk with PowerShell

» Provisioning list rollups using PowerShell

Introduction

SharePoint content types are used to make it simpler for site managers to standardize
what content and associated metadata gets uploaded to lists and libraries on the site.
In this chapter, we'll take a look at how you can create various content types and assign
them to be used in site containers.

As a subset of more complex content types, a document set will allow your users to store
related items in libraries as a set of documents sharing common metadata. This approach
will allow your users to run business processes on a batch of items in the document set as
well as the whole set. In this chapter, we'll take a look at how you can define a document set
to be used on your site.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Site Content in Bulk using PowerShell

Since users mostly interact with your SharePoint site through pages and views, the ability to
modify SharePoint pages to accommodate business user requirements becomes an important
part of site management. In this chapter, we'll take a look at how you can create and modify
pages and content related to them. We will also take a look at how you can provision simple
out-of-the-box web parts to your SharePoint publishing pages and configure their properties.

In this chapter, we will also take a look at how you can aggregate site content and display the
roll up of that content anywhere else on the site. This approach will become very handy when
enhancements and customizations are added to an existing site.

Creating basic and complex content types

SharePoint lists and libraries can store a variety of content on the site. SharePoint also has a
user interface to customize what information you can collect from users to be attached as an
item metadata.

In the scenario where the entire intranet or the department site within your organization
requires a standard set of metadata to be collected with list and library items, content types
are the easiest approach to implement the requirement.

With content types, you can define the type of business content your users will be interacting
with. Once defined, you can also add a metadata field and any applicable validation to

them just like we did for individual lists in Chapter 3, Performing Advanced List and Content
Operations in SharePoint using PowerShell. Once defined, you can attach the newly created
content type to the library or list of your choice so that newly uploaded or modified content
can conform to the rules you defined on the site.

Getting ready

Considering you have already set up your virtual development environment as described in
Chapter 1, PowerShell Scripting Methods and Creating Custom PowerShell Commands, we'll
get right into authoring our script.

It's assumed you are familiar with how to interact with SharePoint lists and libraries using
PowerShell as described in Chapter 3, Performing Advanced List and Content Operations in
SharePoint using PowerShell.

In this recipe, we'll be using PowerGUI to author the script, which means you will be required
to be logged in with an administrator's role on the target Virtual Machine.

200

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

How to do it...

Let's take a look at how we can provision site content types using PowerShell as follows:

1.
2.

Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
In the main script editing window of PowerGUI, add the following script:

Defining script variables
$SiteUrl = "http://intranet.contoso.com"
SListName = "Shared Documents"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
SharePoint.Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SPSite -ne $null)

{

Write-Host "Connecting to the site" $SiteUrl ",list "
SListName

SRootWeb = $SPSite.RootWeb
$SPList = SRootWeb.Lists[$SListName]

Write-Host "Creating new content type from base type"
$DocumentContentType = SRootWeb.AvailableContentTypes ["Document"

$ContentType = New-Object Microsoft.SharePoint.SPContentType -
ArgumentList @ ($DocumentContentType, $RootWeb.ContentTypes, "Org
Document")

Write-Host "Adding content type to site"
Sct = SRootWeb.ContentTypes.Add ($ContentType)

Write-Host "Creating new fields"
$OrgDocumentContentType = $SRootWeb.ContentTypes [$ContentType.Id]
$OrgFields = $RootWeb.Fields

Schoices = New-Object System.Collections.Specialized.
StringCollection

Schoices.Add ("East")
Schoices.Add ("West")

$0rgDivision = $OrgFields.Add("Division", [Microsoft.SharePoint.
SPFieldType] : :Choice, $false, $false, $choices)

201

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Site Content in Bulk using PowerShell

$OrgBranch = $0rgFields.Add("Branch", [Microsoft.SharePoint.
SPFieldType] : :Text, S$false)

Write-Host "Adding fields to content type"
$O0rgDivisionObject = $OrgFields.GetField ($OrgDivision)
$OrgBranchObject = $OrgFields.GetField ($OrgBranch)

$OrgDocumentContentType.FieldLinks.Add ($OrgDivisionObject)
$OrgDocumentContentType.FieldLinks.Add ($OrgBranchObject)
$OrgDocumentContentType .Update ()

Write-Host "Associating content type to list" SListName
Sassociation = $SPList.ContentTypes.Add ($OrgDocumentContentType)
$SPList.ContentTypesEnabled = Strue

$SPList.Update ()

Write-Host "Content type provisioning complete"

}

$SPSite.Dispose ()
3. Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to CreateAssociateContentType.psl.

4. Open the PowerShell console window and call CreateAssociateContentType.
ps1 using the following command:
PS C:\Users\Administrator\Desktop> .\ CreateAssociateContentType.
psl

5. As a result, your PowerShell script will create a site structure as shown in the
following screenshot:

3 Administrator: Windows PowerShell

PS5 C:islUserssAdministratorsDesktop? .“CreatefAssociateContentType.psl !
WARNING: More results were found in Get—SPS8ite but were not returned. Use *-Limit ALL' tomm
all possihle results.

Connecting to the site http:rs-intranet.contoso.com .list Shared Documents

Creating new content type from bhase type

Adding content type to site

Creating new fields

a

1

Adding fields to content type

Aszsociating content type to list Shared Documents
Content type provisioning complete

PS5 C:xUserzsAdministratorsDesktop> _

6. Now, from your browser, let's switch to our SharePoint Intranet:
http://intranet.contoso.com.

7. From the home page's Quick launch, click the Shared Documents link.

202

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

8. On the ribbon, click the Library tab and select Settings | Library Settings.

9. Take note of the newly associated content type added to the Content Types area of
the library settings, as shown in the following screenshot:

Content Types

This docurment library is configured to allow multiple content types, Use content |
information you want to display about an itemn, in addition to its policies, workflo
The following content types are currently available in this library:

Content Type Wisible on Mew Button Default Conte
Crocurnent « «
Org Docurment by

Add from existing site content types

Zhange new button order and default content type

10. Navigate back to the Shared Documents library from the Quick launch menu on your
site and select any of the existing documents in the library.

11. From the ribbons Documents tab, click Manage | Edit Properties.

12. Take note of how the item now has the Content Type option available, where you can
pick newly provisioned Org Document content type.

13. Pick the Org Document content type and take note of the associated metadata
showing up for the new content type, as shown in the following screenshot:

e

HEB8 0. X

=3 Copy
Sawe | Cancel Paste Delete
Item
Comrmit Clipboard Actions

o Items on this list require content approwal, Your submission will nok appear in public views until approved by
with proper rights. More information on content approval,

Content Type IOrg Diacurment 'I

Create a new docurnent.

Marne * ICDntasn's Most Resilient Gear pptx
Title |

Division m

Branch [

203

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Site Content in Bulk using PowerShell

First, we defined the script variables. In this recipe, the variables include a URL of the
site where the content types are provisioned, http://intranet.contoso.com, and a
document library to which the content type is associated:

SListName = "Shared Documents"

Once a PowerShell snap-in has been loaded, we get a hold of the instance of the current site
and its root web. Since we want our content type to inherit from the parent rather than just
being defined from the scratch, we get a hold of the existing parent content type first, using
the following command:

$DocumentContentType = $RootWeb.AvailableContentTypes["Document"]

Next, we created an instance of a new content type inheriting from our parent content type
and provisioned it to the root site using the following command:

$ContentType = New-Object Microsoft.SharePoint.SPContentType -
ArgumentList @ ($DocumentContentType, $RootWeb.ContentTypes, "Org
Document")

Here, the new object takes the following parameters: the content type representing a parent,
a web to which the new content type will be provisioned to, and the display name for the
content type.

Once our content type object has been created, we add it to the list of existing content types
on the site:

Sct = SRootWeb.ContentTypes.Add ($ContentType)

Since most content types are unique by the fields they are using, we will add some business-
specific fields to our content type. First, we get a hold of the collection of all of the available
fields on the site:

$OrgFields = S$RootWeb.Fields

Next, we create a string collection to hold the values for the choice field we are going to add to
our content type:

Schoices = New-Object System.Collections.Specialized.StringCollection

The field with list of choices was called Division, representing a company division. We
provision the field to the site using the following command:

$0rgDivision = $0OrgFields.Add("Division", [Microsoft.SharePoint.
SPFieldTypel] : :Choice, $false, $false, $choices)

204

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

In the preceding command, the first parameter is the name of the field, followed by the type of
the field, which in our case is choice field. We then specify whether the field will be a required
field, followed by a parameter indicating whether the field name will be truncated to eight
characters. The last parameter specifies the list of choices for the choice field.

Another field we add, representing a company branch, is simpler since it's a text field. We
define the text field using the following command:

$OrgBranch = $0rgFields.Add("Branch", [Microsoft.SharePoint.
SPFieldType] : : Text, $false)

We add both fields to the content type using the following commands:

$OrgDocumentContentType.FieldLinks.Add ($0rgDivisionObject)
$OrgDocumentContentType.FieldLinks.Add ($0rgBranchObject)

The last part is to associate the newly created content type to a library, in our case Shared
Documents. We use the following command to associate the content type to the library:

$association = $SPList.ContentTypes.Add ($0OrgDocumentContentType)

To ensure the content types on the list are enabled, we set the ContentTypesEnabled
property of the list to Strue.

The Creating lists of custom structure recipe in Chapter 3, Performing Advanced List and
Content Operations in SharePoint using PowerShell.

Creating and configuring document sets

SharePoint document set is the new feature allowing users to group documents within their
libraries in order to share common metadata value between the set of document. As an
added benefit, with document sets, your users will be able to run out-of-the- box and custom
workflows on the entire set and individual documents within a set.

The document set functionality in SharePoint is achieved using a concept of content types
where you define your custom document set template in a form of the content type. Once
your content type is defined, you can bind it to a set of desired libraries and let users work
with the set.

Since document set configuration requires quite a few steps to make it available on the

site, we can use PowerShell to script those configuration steps to help us quickly provision
document sets to multiple environments. In the scenario where you have several document
sets to be created and deployed, PowerShell will make it easier to get your site set up without
incurring a significant downtime.

205

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Site Content in Bulk using PowerShell

Getting ready

Considering you have already set up your virtual development environment as described in
Chapter 1, PowerShell Scripting Methods and Creating Custom Commands, we'll get right into
authoring our script.

We'll assume you are also familiar with the concept of content types and how you can use
PowerShell to provision content types to your site as described in the previous recipe.

In this recipe, we'll be using PowerGUI to author the script, which means you will be required
to be logged in with an administrator's role on the target Virtual Machine.

How to do it...

Let's see what's involved in creating documents sets with PowerShell:

1. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
2. Inthe main script editing window of PowerGUI, add the following script:

Defining script variables
$SiteUrl = "http://intranet.contoso.com"
SListName = "Shared Documents"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
SharePoint.Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

Write-Host "Load document management library"

[System.Reflection.Assembly] : :LoadWithPartialName ("Microsoft.
Office.DocumentManagement")

$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SPSite -ne S$null)

{

Write-Host "Connecting to the site" $SiteUrl ",list "
SListName

SRootWeb = $SPSite.RootWeb
$SPList = SRootWeb.Lists[$ListName]

Write-Host "Creating new document set content type"
$DocumentSetContentType = SRootWeb.AvailableContentTypes
["Document Set"]

206

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

SContentType = New-Object Microsoft.SharePoint.SPContentType
-ArgumentList @ ($DocumentSetContentType, S$RootWeb.ContentTypes,
"Org Document Set")

Write-Host "Adding content type to site"
Sct = SRootWeb.ContentTypes.Add ($ContentType)

Write-Host "Configuring document set properties"

$OrgDocumentSetContentType = $RootWeb.ContentTypes [$ContentType.
Id]

$OrgFields = $SRootWeb.Fields

$choices = New-Object System.Collections.Specialized.
StringCollection

Schoices.Add ("East")

Schoices.Add ("West")

$0rgDhivision = $OrgFields.Add("Division", [Microsoft.SharePoint.
SPFieldType] : :Choice, $false, $false, $choices)
$O0rgBranch = $OrgFields.Add("Branch", [Microsoft.SharePoint.

SPFieldType] : : Text, S$false)

Write-Host "Adding fields to content type"
$OrgDivisionObject = $OrgFields.GetField ($OrgDivision)
$OrgBranchObject = $OrgFields.GetField ($OrgBranch)

$OrgDocumentSetContentType.FieldLinks.Add ($OrgDivisionObject)
$OrgDocumentSetContentType.FieldLinks.Add ($OrgBranchObject)
$OrgDocumentSetContentType.Update ()

Write-Host "Associating document set content type to list"
SListName

Sassociation = $SPList.ContentTypes.
Add ($0rgDocumentSetContentType)

$SPList.ContentTypesEnabled = Strue
$SPList.Update ()

Write-Host "Document set configuration complete"

}

$SPSite.Dispose ()
Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to CreateDocumentSet . ps1.

Open the PowerShell console window and call CreateDocumentSet .psl using the
following command:

PS C:\Users\Administrator\Desktop> .\ CreateDocumentSet.psl

207

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Site Content in Bulk using PowerShell

5. As a result, your PowerShell script will create a list with results as shown in the
following screenshot:

nistrator: Windows PowerShell

PS5 C:xUserszvAdministratorsDesktop> .“CreateDocumentSet.psl
Load document management library

Version Location

v2._A.58727 C:sMindowsxassembly~GAC_MEIL~\Microsoft . 0ff ice .DocumentManagement~14.
WARNING: More results were found in Get—S8PSite but were not returned. Use '-Limit
ALL’ to return all possible results.
Connecting to the site http://intranet.contoso.com .list Shared Documents
Creating new document set content type
Adding content type to site
gonfiguring document set properties

1

Adding fields to content type

Azzociating document set content type to lizt Shared Documents
Document set configuration complete

PS C:vlUsers“AdministratorsDesktop> _

6. Now, from your browser, let's switch to our SharePoint Intranet site: http://intranet.
contoso.com/

7. Click Site Actions | Site Settings.
Under Galleries, select Site content types.
9. Locate and click the Org Document Set link.
10. On the document sets settings page click Configure Document Set.

11. Under the Welcome Page Columns group, under the Available columns section,
select both Branch and Division columns and choose Add to add them
to the list of columns visible on the document set home page, as shown in the
following screenshot:

208

www.it-ebooks.info

http://www.it-ebooks.info/

Default Content

Content Type File Name

IF vou want new Document I - l
Sets created From this ZOCUINE N,

Content Type to include

specific items, upload them Add new default content ..,
here and specify their
content type. v #dd the name of the Document Set to each file name

Shared Columns

Shared Column name
Select which column values Bocerien
For the Document: Set should r P
be autarnatically Il Civision
synchronized to all
documents contained in the | Branch
sk,
Welcome Page Columns
Select which columns bo Available columns:
showy on the welcome page
for the Document Set,
Add > |
= Remaove I

Columnns s
page:

Branch
Division

12. Click OK to save changes.

Chapter 7

13. Click the Shared Documents library link from the Quick launch menu on your site.

14. From the ribbon, click the Documents tab, then click the New Document | Org

Document Set, as shown in the following screenshot:

Library Tools

Site Actions «~ Y Browse Dacuments
:a- Check Out
a i

Check In
e Upload M Edit
Document « Document« Folder Document Discard Check

i IE J Document n & Check Out

Create a new document,
@ Org Document
] Create a new document,
Org Document Set
y Create a document setwhen you

weant to manage multiple documents
as a single wark product,

www.it-ebooks.info

209

http://www.it-ebooks.info/

Managing SharePoint Site Content in Bulk using PowerShell

15. Provide the Title and other required metadata for the document set and click OK to
create a new document set.

16. In the Shared Documents library, locate the newly created document set and open it.
Take note of the entered metadata and other document set property values available
on the home page of the set, as shown in the following screenshot:

Library Tools Document Set

Site Actions = @l] 2 Documents Library Manage

@

$ XNy @

Edit Permissions Celete E-majla 5end Capture “ersion 'Workflows

Properties Link To “Wersion History
Actions Share Manage
File_653
=
I.l Branch
Division East

= Wiew all Properties
- Edit Properties

r Type Marne Rating (0-5) Murm

There are no items ta shaw in this view of the "Shared Documents” document: library, To
"Upload”,

Document sets represent complex content types, so their provisioning is similar to
provisioning a content type.

We start by defining our script variables: a URL of the site where the document set is to
be provisioned, http://intranet.contoso.com, and a document library to which the
document set will be associated:

S$ListName = "Shared Documents"

Once a PowerShell snap-in has been loaded, we get a hold of the instance of the current site
and its root web. Our document set will inherit from SharePoint 2010 the base document set
content type. First, we get a hold of the existing parent document set content type, using the
following command:

$DocumentSetContentType = $RootWeb.AvailableContentTypes ["Document Set"]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Next, we create an instance of a new document set content type inheriting from our parent
using the following command:

$ContentType = New-Object Microsoft.SharePoint.SPContentType -
ArgumentList @($DocumentSetContentType, $RootWeb.ContentTypes, "Org
Document Set")

Our new document set object takes the following parameters: parent document set content
type, a web which will hold newly provisioned document set definition, and the display name
of the document set.

Once our document set content type object has been created, we add it to the site:
$ct = SRootWeb.ContentTypes.Add ($ContentType)

Just as in the previous recipe, we create the same set of fields which are used in our
document set content type. In this case, the fields are going to be a company division
and the branch.

We add both fields to the content type using the following commands:

$OrgDocumentSetContentType.FieldLinks.Add ($0rgDivisionObject)
$OrgDocumentSetContentType.FieldLinks.Add ($0rgBranchObject)

$O0rgDocumentSetContentType.Update ()

The last part is to associate the newly created content type to a Shared Documents library.
We use the following command to associate our new document set content type to the library:

$association = $SPList.ContentTypes.Add ($0rgDocumentSetContentType)

Lastly, we enable the content types on the library if they haven't already been enabled by
setting the ContentTypesEnabled property of the library to Strue.

The Creating basic and complex content types recipe in this chapter.

Creating and editing publishing pages

with PowerShell

Just about any SharePoint intranet and extranet site consists of a series of collaboration and
publishing pages which your users interact with the site.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Site Content in Bulk using PowerShell

When it comes to maintaining content on the site, your organization may want to bulk change
the content throughout the site, or migrate existing content to be hosted within SharePoint.

As an example, you may be asked to pre-create a few hundred news article pages where your
users can populate the content for them before the news release section of the site launches.

Whether you have been tasked with this assignment on an existing intranet or the new site,
you can be sure that using PowerShell will minimize the impact on the environment downtime
and you will have a reusable script to perform the deployment to multiple environments.

In this recipe, we will see how you can create a new SharePoint publishing page and edit its
properties. We'll also take a look at how you can automatically approve the page and make it
available for others to see.

Getting ready

Considering you have already set up your virtual development environment as described in
Chapter 1, PowerShell Scripting Methods and Creating Custom Commands, we'll get right into
authoring our script.

In this recipe, we'll be using PowerGUI to author the script, which means you will be required
to be logged in with an administrator's role on the target Virtual Machine.

How to do it...

We'll take a look at how you can create publishing pages using PowerShell.

1. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
2. Inthe main script editing window of PowerGUI, add the following script:

Defining script variables
$SiteUrl = "http://www.contoso.com"
SPressReleaseFileName = "PressRelease"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SSPSite -ne S$Snull)

{

Write-Host "Connecting to root site site"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

$PressReleaseWeb = $SPSite.OpenWeb ("/PressReleases")

SpubWeb = [Microsoft.SharePoint.Publishing.PublishingWeb] ::GetPu
blishingWeb ($PressReleaseWeb)

Write-Host "Retrieving 'Blank Web Part page' page layout"

$pagelayout = $pubWeb.GetAvailablePageLayouts() | Where-Object
{$.Title -eq "Blank Web Part page"}

Write-Host "Creating a new page"
SpageFileName = $PressReleaseFileName+".aspx"

Spage = $pubWeb.GetPublishingPages () .Add ($pageFileName,
$Spagelayout)

Write-Host "Setting new page metadata"

Spage.Title = $PressReleaseFileName

Spageltem = $page.ListItem

Spageltem["Comments"]="New press release"
Spageltem["PublishingContactName"]="Brad"
Spageltem["PublishingContactEmail"]="brads@contoso.com"

Spage.Update ()

Write-Host "Retrieving and updating an existing page"

$existingPage=$pubWeb.GetPublishingPages () | Where-Object {$_
Name -eqg "default.aspx"}

SexistingPage.CheckOut ()

SexistingPageltem = $existingPage.ListItem
SexistingPageItem["Comments"]="Press release landing page"
SexistingPage.Update ()

Write-Host "Checking in and publishing changes"

SexistingPage.CheckIn ("Checked in by PowerShell script")

SexistingPage.listItem.File.Publish("Published by PowerShell
script")

Spage.CheckIn ("Checked in by PowerShell script")

Spage.listItem.File.Publish("Published by PowerShell script")

if ($existingPage.listItem.ParentList.EnableModeration)

{

SmodInformation = $existingPage.listItem.
ModerationInformation

if ($SmodInformation.Status -ne [Microsoft.SharePoint.SPModerat
ionStatusType] : : Approved)

{

SexistingPage.ListItem.File.Approve ("Approved by
PowerShell script")

}

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Site Content in Bulk using PowerShell

}

if ($page.listItem.ParentList.EnableModeration)
{
SmodInformation = $page.listItem.ModerationInformation
if ($SmodInformation.Status -ne [Microsoft.SharePoint.SPModerat
ionStatusType] : : Approved)
{
Spage.ListItem.File.Approve ("Approved by PowerShell
script")
}
}

SPressReleaseWeb.Dispose ()

}

$SPSite.Dispose ()
3. Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to CreatingEditingPages.psl.

4. Open the PowerShell console window and call CreatingEditingPages.psl using
the following command:

PS C:\Users\Administrator\Desktop> .\ CreatingEditingPages.psl

5. As aresult, your PowerShell script will execute and return results as shown in the
following screenshot:

& Administrator: Windows PowerShell

PS8 C:slUsers AdministratorsDesktop? _“CreatingEditingPages.p=s1

WARNIMNG: More results were found in Get-5PSite but were not returned. Use ‘—Limit ALL' tmm
all possihle results.

Connecting to root site site

Retrieving ‘Blank Webh Part page’ page lavout

Checking in and publishing changes
PS C:slUsers“AdministratorsDesktop> _

6. Now, let's switch to our SharePoint Publishing Site: http://www.contoso.com/
7. From the Quick launch of the site, click Press Releases.
8. Click Site Actions | View All Site Content.
9. Under the Document Libraries category, click the Pages library.
214

www.it-ebooks.info

http://www.it-ebooks.info/

10. Take note of the newly created PressRelease page, as shown in the

following screenshot:

chions ~ @Y

E » Pages » Al Documents

2_" default

2_" PressRelease

£ HEW

gr Add new itern

was created by the Publishing feature to store pages that are created in this site.

T Type Marne Madified

7312011 11:07 AM

743172011 11:07 AM

Search this site...
A Modified By Approval 5

Systemn Account Approved

System Account Approved

11. Access the content menu of the page and select View Properties.

12. Take note of a few of the new property values we have assigned in our script,

as shown in the following screenshot:

_

l wersion Histary

G

2 @Manage Permissions

i Alert Me

4 ApprovesReject

Scheduling Start Date
Zcheduling End Date
Contact

Contact E-Mail Address
Contact Mame
Contact Picture
Rollup Immage

Target Audiences
Page Image

Page Content
Summary Links
Summary Links 2

Approval Status

Edit Check

Item % Delete Item out () Warkflows
Manage Actions

Marme PressRelease

Title FressRelease

Cornments Mew press release

Systern Account
brads@contoso.com

Brad

Mo targeting

Approved
approved by PowerShell script

Chapter 7

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Site Content in Bulk using PowerShell

In this recipe, we defined the URL of the site as well as the newly provisioned page name as
our script variables:

$SiteUrl = "http://www.contoso.com"
SPressReleaseFileName = "PressRelease"

Note that in this recipe, we're publishing a site collection with a different URL and not our
collaboration site collection.

Next, we load PowerShell SharePoint snap-in and retrieve the current site collection
object. The demonstration environment you have downloaded in Chapter 1, PowerShell
Scripting Methods and Creating Custom Commands, contains the sub-site under the main
site URL. The sub-site is used for demo press releases and we get a hold of it using the
following command:

$PressReleaseWeb = $SPSite.OpenWeb ("/PressReleases")

We then convert the press release web object to a publishing site object using the
following command:

$SpubWeb = [Microsoft.SharePoint.Publishing.PublishingWeb] ::GetPublishingW
eb ($PressReleaseWeb)

Before we go ahead and create an instance of the page, we got a hold of the page layout
which the page uses. The page layout will drive which web part zones are going to be
displayed on the page. We get the Blank Web Part page page layout:

$pagelayout = $pubWeb.GetAvailablePageLayouts() | Where-Object {$_
.Title -eq "Blank Web Part page"}

Once our filename for the new page has been constructed, we can go ahead and create a new
page object as shown in the following code:

Spage = $pubWeb.GetPublishingPages () .Add ($SpageFileName, $pagelLayout)

Now that the page has been created, we can edit its properties. Have you noticed how we
first got a hold of the ListItem object of the page before editing the properties? We do this
since the page object doesn't have direct access to some of the properties of the page item.
The page is just an item within the page library and in order to access its underlying object
functionality we use the ListItem property and make updates to the underlying object
directly as follows:

Spageltem["PublishingContactEmail"]="brads@contoso.com"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

As a part of this recipe, we also retrieved the existing page in order to demonstrate how you
can modify the existing page on the publishing site. We start by retrieving items in the page
library with the filename. The page filename is default . aspx:

$existingPage=$pubWeb.GetPublishingPages () | Where-Object {$.Name -eq
"default.aspx"}

We then check out the file and make changes to its properties just as in the example with the
newly provisioned page. Once ready, we check in both pages using the following command:

$page.CheckIn("Checked in by PowerShell script")

Since publishing pages require to be published before displayed for everyone else, we publish
the page using the following command:

$page.listItem.File.Publish("Published by PowerShell script")

Most publishing pages require items to be approved before published to the site. We first
check whether the moderation is required for the library using the following command:

$existingPage.listItem.ParentList.EnableModeration

If the moderation is enabled on the library, we verify that the page has not been approved yet.
If the page is pending approval, we approve the item by using the following command:

$existingPage.ListItem.File.Approve ("Approved by PowerShell script")

Since we opened an instance of the Press Release web on the site, we close the object of
both the web and the site to prevent memory leaks.

Provisioning web parts in bulk on to

SharePoint pages

As we have seen in the previous recipe, pages contain web parts and other components which
make up your SharePoint site.

Creating or editing existing pages alone wouldn't add much value if we weren't able to add
new web parts to your pages.

In this recipe, we will take a look at how you can add an out-of-the-box web parts to one of the
existing pages on the site. You can use the same mechanism to add the same web part to
series of pages on the site.

As an alternative, you could navigate to each of the pages and perform the change using
SharePoint user interface, or deploy a custom solution package which would make the
appropriate change.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Site Content in Bulk using PowerShell

However, in both cases, you are either running the risk of user error while processing time
consuming editing of multiple pages, or introducing a downtime while the solution
package deploys.

Let's go ahead and see what's involved in provisioning SharePoint web parts using a
PowerShell script.

This scenario will become particularly handy when a new functionality enclosed in a custom or
out-of-the-box web part needs to be deployed to many pages within existing SharePoint site.

Getting ready

Considering you have already set up your virtual development environment as described in
Chapter 1, PowerShell Scripting Methods and Creating Custom Commands, we'll get right into
authoring our script.

We'll assume you are also familiar with editing SharePoint publishing pages as described in
the previous recipe

In this recipe, we'll be using PowerGUI to author the script, which means you will be required
to be logged in with an administrator's role on the target Virtual Machine.

How to do it...

Let's take a look at what's involved in provisioning web parts on to SharePoint pages
using PowerShell:

1. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
2. Inthe main script editing window of PowerGUI, add the following script:

Defining script variables
$SiteUrl = "http://www.contoso.com"
SPressReleaseFileName = "PressRelease.aspx"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$.Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SSPSite -ne S$Snull)

{

Write-Host "Connecting to root site site"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

$PressReleaseWeb = $SPSite.OpenWeb ("/PressReleases")

SpubWeb = [Microsoft.SharePoint.Publishing.PublishingWeb] ::GetPu
blishingWeb ($PressReleaseWeb)

Write-Host "Retrieving a press release page"

$page=$pubWeb.GetPublishingPages () | Where-Object {$_ .Name -eq
$PressReleaseFileName}

Write-Host "Adding an editor web part to a press release page"

SwebPartManager=$PressReleaseWeb.GetLimitedWebPartManager ($page.
Url, [System.Web.UI.WebControls.WebParts.
PersonalizationScope] : : Shared)

SeditorWebPart=new-object Microsoft.SharePoint.WebPartPages.
ContentEditorWebPart

SeditorWebPart .ChromeType=[System.Web.UI.WebControls.WebParts.
PartChromeType] : :TitleOnly

SeditorWebPart.Title="Press Release Information"
SwebPartManager .AddWebPart (SeditorWebPart, "Right", 0);

Write-Host "Adding an image viewer web part to a press release
page"

$imageWebPart = new-object Microsoft.SharePoint.WebPartPages.
ImageWebPart

$imageWebPart .ChromeType= [System.Web.UI.WebControls.WebParts.
PartChromeType] : : TitleOnly

SimageWebPart.Title="Press Release Info Image"

SwebPartManager .AddWebPart ($imageWebPart, "Footer", 0);

Write-Host "Checking in and publishing changes"
Spage.CheckIn ("Checked in by PowerShell script")
Spage.listItem.File.Publish("Published by PowerShell script")

if ($page.listItem.ParentlList.EnableModeration)
{
SmodInformation = $page.listItem.ModerationInformation

if ($SmodInformation.Status -ne [Microsoft.SharePoint.SPModerat
ionStatusType] : : Approved)

{

Spage.ListItem.File.Approve ("Approved by PowerShell
script")

}
}

SPressReleaseWeb.Dispose ()

}

$SPSite.Dispose ()

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Site Content in Bulk using PowerShell

3. Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to ProvisioningWebParts.psl.

4. Open the PowerShell console window and call ProvisioningWebParts.psl using
the following command:

PS C:\Users\Administrator\Desktop> .\ ProvisioningWebParts.psl

5. As a result, your PowerShell script will set two related lists as shown in the
following screenshot:

istrator: Windows Powershell

PS G:slUsers“AdministratorsDesktop? .SProvisioningWebParts.psl

WARNING: More results were found in Get-SPSite but were not returned. Use '-Limit ALL’
to return all possihle results.

Connecting to root site site

! page layout
Retrieving a press release page
fAdding an editor webh part to a press release page
Adding an image viewer weh part to a press release page
Checking in and publishing changes
PS G:slUsers~Administrator~Desktop> _

6. Now, let's switch to our SharePoint Publishing Site: http: //www.contoso.com/
7. From the Quick launch of the site, click Press Releases.

8. Click Site Actions | View All Site Content.

9. Under the Document Libraries category, click the Pages library.

10. Click the PressRelease page to view it.

11. Take note of the two web parts provisioned to the page, Press Release Info Image
and Press Release Information, as shown in the following screenshot:

Publish Search this site...

Demo = Press Releases = PrezsReleaze

ble, Publication $tart Date: Immediately

Press Release Information
Prezz Releaze Info Image

Edit thiz page to modify your web part
Ta link to an image, open the tool pane and then type a URL in content,
the Image Link text box,

220

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

In this recipe, we defined the URL and the page where the web parts are going to be
provisioned and the name of the page, as our script variables:

$SiteUrl = "http://www.contoso.com"
SPressReleaseFileName = "PressRelease.aspx"

Note that in this recipe, we're using publishing site collection with a different URL and not our
collaboration site collection.

Next, we loaded PowerShell SharePoint snap-in and retrieved the current site collection
object. The demonstration environment you have downloaded in Chapter 1, PowerShell
Scripting Methods and Creating Custom PowerShell Commands, contains the sub-site under
the main site URL. The sub-site is used for demo press releases and we get a hold of it using
the following command:

$PressReleaseWeb = $SPSite.OpenWeb ("/PressReleases")

We then convert the press release web object to a publishing site object using the
following command:

$SpubWeb = [Microsoft.SharePoint.Publishing.PublishingWeb] ::GetPublishingW
eb ($PressReleaseWeb)

Next, we get a hold of the page which will have our new web parts provisioned using a
command as follows:

$page=$pubWeb.GetPublishingPages () | Where-Object {$.Name -eq
$PressReleaseFi1eName}

Note that the page must be checked out before it's edited or any web parts managed on it.

Each SharePoint publishing page contains an instance of the web part manager object
responsible for managing web parts on the page. We get hold of the web part manager using
the following command:

$webPartManager=$PressReleaseWeb.GetLimitedWebPartManager ($page.Url,
[System.Web.UI.WebControls.WebParts.PersonalizationScope] : :Shared)

In the preceding command, we pass in the URL of the page where we connect to the web
part manager as well as the scope of the connection. By connecting to the Shared scope,
we ensure that changes made to web part on the page will be visible to all users of the site.

Next, we create a new instance of the content editor web part object:

$editorWebPart=new-object Microsoft.SharePoint.WebPartPages.
ContentEditorWebPart

221

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Site Content in Bulk using PowerShell

We set some of the basic properties of the web part. More details on setting up properties will
be dedicated in the next recipe. Once finished, we add the web part to the page:

$webPartManager .AddWebPart ($editorWebPart, "Right", 0);

In a similar way, we also add an image viewer web part to the page using the
following command:

$imageWebPart = new-object Microsoft.SharePoint.WebPartPages.ImageWebPart

In the preceding command, the image viewer web part is added to the footer of the page as
you can see in the following command:

$webPartManager .AddWebPart ($imageWebPart, "Footer", 0)

Finally, the page is checked in, published, and approved as described in details in the
previous recipe

The Creating and editing publishing pages with PowerShell recipe in this chapter.

Configuring web parts in bulk with

PowerShell

When working with SharePoint pages and web parts on them, you may often find a need to
modify web part properties for existing or new web parts throughout the site. For example,

a new web part may be required to be deployed to many pages on the site and needs to be
configured with the required parameters. In another scenario, your developers may have
updated the functionality of the web part and now it consumes a new set of properties or
expects different values for its properties. If the modified web part is used on multiple pages
within your site, it may crash or not function properly until valid configuration values are
provisioned on each page which uses it.

In this recipe, we'll take a look at how you can access the web part properties and make
changes to the most common web part properties affecting the web part look and feel as
well as some of the configuration parameters related to web part behavior.

Using this approach, you can make required customizations fast without introducing
significant downtime in your environment. Let's take a look at what's involved in provisioning
web part property changes using PowerShell.

222

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Getting ready

Considering you have already set up your virtual development environment as described in
Chapter 1, PowerShell Scripting Methods and Creating Custom Commands, we'll get right into
authoring our script.

It's assumed you are also familiar with provisioning web parts to SharePoint publishing pages
as described in the previous recipe.

In this recipe we'll be using PowerGUI to author the script, which means you will be required to
be logged in with an administrator's role on the target Virtual Machine.

How to do it...

Let's take a look at what's involved in configuring web part properties on our SharePoint pages
using PowerShell:

1. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
2. Inthe main script editing window of PowerGUI, add the following script:

Defining script variables
$SiteUrl = "http://www.contoso.com"
SPressReleaseFileName = "PressRelease.aspx"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
SharePoint.Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SPSite -ne S$null)
{
Write-Host "Connecting to root site site"
$PressReleaseWeb = $SPSite.OpenWeb ("/PressReleases")

SpubWeb = [Microsoft.SharePoint.Publishing.PublishingWeb] ::GetPu
blishingWeb ($PressReleaseWeb)

Write-Host "Retrieving a press release page"
$page=$pubWeb.GetPublishingPages () | Where-Object {$_ .Name -eq
$PressReleaseFileName}

Write-Host "Configuring an editor web part on a press release
page n
223

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Site Content in Bulk using PowerShell

22

SwebPartManager=$PressReleaseWeb.GetLimitedWebPartManager ($page.
Url, [System.Web.UI.WebControls.WebParts.
PersonalizationScope] : : Shared)

$editorWebPart = $webPartManager.WebParts | Where-Object {$_
Title -eq "Press Release Information"}

$xmlDoc = New-Object System.Xml.XmlDocument

SxmlElement = $xmlDoc.CreateElement ("ContentElement")

$xmlElement . InnerText = "For press release information contact:
Brad Sutton"

SeditorWebPart.Content = $xmlElement

SwebPartManager.SaveChanges ($SeditorWebPart)

Write-Host "Configuring an image viewer web part on a press
release page"

$imageWebPart = $webPartManager.WebParts | Where-Object {$_
Title -eq "Press Release Info Image"}

$imageWebPart.ImageLink = "http://www.contoso.com/
SiteCollectionImages/PR.gif"

$imageWebPart.HorizontalAlignment = "Left"

SimageWebPart.ZoneID = "Header"

SwebPartManager .SaveChanges ($imageWebPart)

Write-Host "Checking in and publishing changes"
Spage.CheckIn ("Checked in by PowerShell script")
Spage.listItem.File.Publish("Published by PowerShell script")

if ($page.listItem.ParentList.EnableModeration)
{
SmodInformation = $page.listItem.ModerationInformation

if ($SmodInformation.Status -ne [Microsoft.SharePoint.SPModerat
ionStatusType] : : Approved)

{

Spage.ListItem.File.Approve ("Approved by PowerShell
script")

}
}

SPressReleaseWeb.Dispose ()

}

$SPSite.Dispose ()
Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to ConfiguringWebParts.psl.

Open the PowerShell console window and call ConfiguringWebParts.psl using
the following command:

PS C:\Users\Administrator\Desktop> .\ ConfiguringWebParts.ps1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

5. As a result, your PowerShell script will execute with results as shown in the
following screenshot:

3 Administrator: Windows PowerShell

PS GC:xUszerssAdministratorsDesktop? -“ConfiguringWebParts.psi

WARNING: More results were found in Get-5PSite but were not returned.
to return all possible results.

Connecting to root site site

Retrieving a press release page

Configuring an editor webh part on a press release page

Configuring an image viewer weh part on a press release page
Checking in and publishing changes
PS5 C:sUserssAdministrator~Desktop> _

6. Now, let's switch to our SharePoint Publishing Site: http://www.contoso.com/
7. From the Quick launch of the site, click Press Releases.

8. Click Site Actions | View All Site Content.

9. Under the Document Libraries category, click the Pages library.

10. Click the PressRelease page to view it.

11. Take note of the two web parts earlier provisioned to the page with a new content
in them as well as one of the web parts in the different zone, as shown in the
following screenshot:

ﬁi{% Adventure Works

ctions ~ @i [E EGWEMN Fage Publish Search this site...
Header Right
Add a web Part Add a Web Part
Press Release Info Image Press Release Information

Fuor press release information
contact: Brad Sutton

225

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Site Content in Bulk using PowerShell

We started by defining the URL and the page where existing web part properties are going to
be changed and saved back to the page name specified:

$SiteUrl = "http://www.contoso.com"
SPressReleaseFileName = "PressRelease.aspx"

Just as before, in this recipe, we're publishing a site collection with a different URL and not our
collaboration site collection.

We loaded PowerShell SharePoint snap-in and retrieved the current site collection object. The
demonstration environment you have downloaded in Chapter 1, PowerShell Scripting Methods
and Creating Custom Commands, contains the sub-site under the main site URL. The sub-site
is used for demo press releases and we get a hold of it using the following command:

$PressReleaseWeb = $SPSite.OpenWeb ("/PressReleases")

Next, we converted the press release web object to a publishing site object using the following
command:

$pubWeb = [Microsoft.SharePoint.Publishing.PublishingWeb] ::GetPublishingW
eb ($PressReleaseWeb)

Next, we get a hold of the page where our existing web parts are defined:

$page=$pubWeb.GetPublishingPages () | Where-Object {$_ .Name -eq
$PressReleaseFileName}

In order to interact with our web parts, we established a connection to web part configuration
manager:

SwebPartManager=$PressReleaseWeb.GetLimitedWebPartManager ($page.Url,
[System.Web.UI.WebControls.WebParts.PersonalizationScope] : :Shared)

We can now connect to a desired web part using a variety of ways, in our case we enumerate
all of the web parts on the page and select the one with the title Press Release
Information, which happens to be our previously provisioned content editor web part:

S$editorWebPart = $SwebPartManager.WebParts | Where-Object {$.Title -eq
"Press Release Information"}

The content editor web part is one of the most common web parts used on SharePoint sites.
The way the content editor web part stores content on the site is by using an XML element
with the content defined as the element node. Therefore, in order to add content to a content
editor web part, we create an XML node and add the content as one of the children on that
node, as follows:

$xmlDoc = New-Object System.Xml.XmlDocument
SxmlElement = $xmlDoc.CreateElement ("ContentElement")

226

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

$xmlElement . InnerText = "For press release information contact:
Brad Sutton"
SeditorWebPart.Content = $xmlElement

To save changes to the page, we call the following command on the web part
configuration manager:

$webPartManager.SaveChanges ($editorWebPart)

Similar to the content editor web part, we get hold of the image viewer web part. This time, we
pass the title of the image viewer web part Press Release Info Image:

$imageWebPart = $webPartManager.WebParts | Where-Object {$_.Title -eq
"Press Release Info Image"}

Naturally, the image viewer web part has a different set of properties, so we get a hold of
each of the properties we need to change such as image link, horizontal alignment of the
image, and zone ID. The Zone 1D, in this case, is available for all of the SharePoint web parts
and allows you to change the zone where the web part has been originally provisioned by
specifying the zone keyword. The zone keyword is defined in the page layout, which is used by
the current page.

Once ready, the web part properties are saved to the page using the following command:
$webPartManager.SaveChanges ($imageWebPart)

Finally, the page is checked in, published, and approved as described in detail in the Creating
and editing publishing pages with PowerShell recipe.

The Creating and editing publishing pages with PowerShell and Provisioning web parts in bulk
on to SharePoint pages recipes in this chapter

Provisioning list rollups using Powershell

Lists and libraries are used everywhere in SharePoint and content from various specific sites
is often required to be rolled up on parent sites or a home page. For example, a company
intranet may have a designated section for company news. Your business users may ask you
to roll up company news to a home page so that everyone can see the latest company news or
the latest company performance. Additionally, you may be asked to filter news items based on
the category of the current news item.

Out-of-the-box SharePoint has a variety of tools you can use to roll up data. One of the tools
we'll use here is Content Query Web Part which allows us to specify the data on the site we'd
like to see and roll it up on the chosen page.

227

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Site Content in Bulk using PowerShell

In this recipe, we'll take a look at what's involved with provisioning an instance of such a web
part using PowerShell.

This approach will come in handy when you need to provision a series of roll ups for each
instance of a page to roll up related items to this page based on the selected criteria.

Getting ready

Considering you have already set up your virtual development environment as described in
Chapter 1, PowerShell Scripting Methods and Creating Custom Commands, we'll get right into
authoring our script.

We'll assume you are also familiar with modifying out-of-the-box web part properties as
described in the previous recipe.

In this recipe, we'll be using PowerGUI to author the script, which means you will be required
to be logged in with an administrator's role on the target Virtual Machine.

How to do it...

Now we'll see how you can provision list rollups to pages on your intranet using PowerShell:

1. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
2. Inthe main script editing window of PowerGUI, add the following script:

Defining script variables
$SiteUrl = "http://www.contoso.com"
SPressReleaselanding = "default.aspx"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$.Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eqg $null) {

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

$SPSite = Get-SPSite | Where-Object {$_ .Url -eq $SiteUrl}

if (SSPSite -ne S$Snull)

{

Write-Host "Connecting to root site site"

$PressReleaseWeb = $SPSite.OpenWeb ("/PressReleases")

SpubWeb = [Microsoft.SharePoint.Publishing.PublishingWeb] ::GetPu
blishingWeb ($PressReleaseWeb)

228

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Write-Host "Retrieving a press release page"

$page=$pubWeb.GetPublishingPages () | Where-Object {$_ .Name -eq
$PressReleaselLanding}

Write-Host "Adding a list roll up to a press release page"

SwebPartManager=$PressReleaseWeb.GetLimitedWebPartManager ($page.
Url, [System.Web.UI.WebControls.WebParts.
PersonalizationScope] : : Shared)

SqueryWebPart = new-object Microsoft.SharePoint.Publishing.
WebControls.ContentByQueryWebPart

SqueryWebPart .ChromeType= [System.Web.UI.WebControls.WebParts.
PartChromeType] : : TitleOnly

SqueryWebPart .WebUrl = "~gsitecollection/PressReleases"
SqueryWebPart.Title="Latest Press Releases"

$queryWebPart.FilterFieldl = "{fa564e0f-0c70-4ab9-b863-
0177e6ddd247}"

SqueryWebPart.FilterOperatorl = "Contains"
SqueryWebPart.FilterDisplayValuel = "press release"
SwebPartManager .AddWebPart (SqueryWebPart, "Right", 1);

Write-Host "Checking in and publishing changes"
Spage.CheckIn ("Checked in by PowerShell script")
Spage.listItem.File.Publish("Published by PowerShell script")

if ($page.listItem.ParentList.EnableModeration)
{
SmodInformation = $page.listItem.ModerationInformation

if ($SmodInformation.Status -ne [Microsoft.SharePoint.SPModerat
ionStatusType] : : Approved)

{

Spage.ListItem.File.Approve ("Approved by PowerShell
script")

}
}

SPressReleaseWeb.Dispose ()

}

$SPSite.Dispose ()
Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to ProvisionListRollup.psl.

Open the PowerShell console window and call ProvisionListRollup.psl using
the following command:

PS C:\Users\Administrator\Desktop> .\ ProvisionListRollup.psl

229

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Site Content in Bulk using PowerShell

5.

As a result, your PowerShell script will execute with results as shown in the
following screenshot:

1 Administrator: Windows PowerShell Hi=]

PS C:sUserssAdministratorsDesktop? .S“ProvisionListRollup.psi

WARNMING: More results were found in Get—-SPSite but were not returnedms
all poszihle results.

Connecting to root site site

Retrieving a press release page

Adding a list roll up to a press release page

Checking in and publiszhing changes

PS C:sUszerssAdministratorsDesktopr _

© ® N O

Next, let's switch to our SharePoint Publishing Site: http://www.contoso.com/
From the Quick launch of the site, click Press Releases.
Click Site Actions | View All Site Content.

Under the Document Libraries category, click the Pages library.

10. Select the PressRelease page and from the ribbon's Documents tab, click Manage |

11.

Edit Properties.

Ensure the value of the Title property includes press release since this is how our
press releases are going to be rolled up, as shown in the following screenshot:

iﬁ 2l Wersion History i Alert he

:-- $ Manage Permissions g] Approve/Feject

Edit Check

Item 3¢ Delete Item DUt (@) Warkflows
Manage Actions

Marme PressRelease

Title press release

Carnrnents Mew press release

Scheduling Start Date

12. Click the Press Releases link from the Quick launch of the site and see the Latest

230

Press Releases web part now rolling up our press release page.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

We started our script with configuring the script variables, such as site URL of our
publishing site:

$SiteUrl = "http://www.contoso.com"

We also define the variable for the filename of the page which will have the rollup defined
on it:

SPressReleaselanding = "default.aspx".

We then load the SharePoint PowerShell snap-in:
Add-PSSnapin "Microsoft.SharePoint.Powershell"

From here, we connect to the press releases site where our rollup is going to be defined:
$PressReleaseWeb = $SPSite.OpenWeb ("/PressReleases")

Since the press release site is a publishing site, we convert our existing site object to
a publishing site object so we can take advantage of specific methods available for
publishing sites:

SpubWeb = [Microsoft.SharePoint.Publishing.PublishingWeb] ::GetPublishi
ngWeb (SPressReleaseWeb)

We got a hold of the page that is going to have a rollup defined on it, which is a default.
aspx, as shown in the following code:

$page=$pubWeb.GetPublishingPages () | Where-Object {$_ .Name -eq
$PressReleaselLanding}

Note that you need to check out the page before we can make any changes on it.

We then connect to the shared view of the page by interfacing with the web part configuration
manager as shown in the following code:

SwebPartManager=$PressReleaseWeb.GetLimitedWebPartManager ($page.Url,
[System.Web.UI.WebControls.WebParts.PersonalizationScope] : : Shared)

To define our rollup, we are using Content Query Web Part, which is an out-of-the-box web
part defined as follows:

SqueryWebPart = new-object Microsoft.SharePoint.Publishing.
WebControls.ContentByQueryWebPart

231

www.it-ebooks.info

http://www.it-ebooks.info/

Managing SharePoint Site Content in Bulk using PowerShell

Apart from some generic properties, such as a title and the chrome of the web part, we define
the following;:

Parameter Description
WebUrl The web from which the rolled up content will come from.
FilterFieldl The field ID used to filter list items on. This property is optional

and is only applicable when you require filtering on the content
being rolled up. In our case, the field ID represents a Title field.
Usually the ID will be given to you by the development team for
fields which are custom.

FilterOperatorl An optional property which participates in a filtering operation
and represents a filter operator. In this case, the value of
Contains specifies value contained in the filter field.

FilterDisplayValuel This property is used in a filtering operation and holds the
value to which the field is to be compared to when filtering is
performed.

When ready, we add a newly configured web part to a page:

SwebPartManager .AddWebPart (SqueryWebPart, "Right", 1);

As you can see, Content Query Web Part contains a number of
. configuration properties which can facilitate effective content roll up. Using
~ information in this recipe, you can apply mechanisms required to configure
Q and provision this web part and its related properties. For more information
on other parameters available in Content Query Web Part, search MSDN
with the key word: ContentByQueryWebPart Members.

Finally, the page is checked in, published, and approved as described in detail in the recipe
Creating and editing publishing pages with PowerShell.

The Provisioning web parts in bulk on to SharePoint pages and Configuring web parts in bulk
with PowerShell recipes in this chapter.

232

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Documents
and Records iIn

SharePoint with
PowerShell

In this chapter, we will cover:

» Provisioning document and records center with PowerShell
» Configuring record routing

» Configuring a common record expiration policy

» Creating a custom expiration policy for the record

» Configuring a content hub for content types used in records center

Introduction

SharePoint record management features facilitate a variety of document management
scenarios far beyond traditional records management. Using some of the features in the
SharePoint 2010 record center site template, you can store documents and manage their
retention and lifecycle based on a variety of metadata driven workflows. In this chapter,
we'll take a look at how you can provision a record center site and configure some of its
most popular features.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Documents and Records in SharePoint with PowerShell

Since each record routed to a record center can be passed through a set of rules before
directed to a final destination library, it's important to understand how you can create

your own routing rules. In this chapter, we'll see how you can use PowerShell to quickly
create the most common metadata-driven routing rules and without a significant downtime
while deploying.

Once in the record center, each document is likely to go through the retention lifecycle. In this
chapter, we'll see how you can create some of the most common retention rules and execute
the most common retention actions based on those rules. This approach will allow your record
center to have a long-term plan as to how the data inside the record repository is going to be
disposed off when applicable. If a few of the most common retention scenarios don't apply to
your particular case, you can always trigger custom retention actions as we do in the recipe of
this chapter.

By using PowerShell for defining your rules, you will be able to reduce the time and manual
errors associated within configuring the retention stages manually using the SharePoint
user interface.

Finally, we'll take a look at one of the new features in SharePoint 2010, the content hub
feature. This feature allows sites to share content type definitions across other sites. With this
approach, you will be able to centrally define the metadata and the content types used on
your site and easily propagate it to the rest of your sites. Using PowerShell, in this scenario,
you will save downtime associated with configuring the content hub functionality using a
solution package.

Provisioning documents and records center

with PowerShell

Just as any other SharePoint site, record center functionality comes with a site template

with a set of features which facilitate various document and record management scenarios.
Typically, in an organization implementing record and document management features, the
configuration involved with how records are stored is sensitive. After all, if important electronic
records, which are trusted to reside in a safe record center environment, are lost, the
organization may find itself vulnerable to regulations.

PowerShell provides an excellent solution allowing record center configuration to be scripted
as a replicable and traceable set of commands to which you can always go back to. If your
organization uses record routing rules based on metadata, as we'll see further, you can
manage to create many of the rules quickly just by scripting them with PowerShell.

Let's take a look at what's involved in using PowerShell to script some of the main
configurations involved in setting up a SharePoint record center.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Getting ready

Considering you have already set up your virtual development environment as described in
Chapter 1, PowerShell Scripting Methods and Creating Custom Commands, you will already
have access to a record center template with all of the features installed. In this recipe, we'll
provision a new instance of a record center site based on the out-of-the-box template.

Since we'll be using PowerGUI in this recipe to author the script, you will require to be logged
in with an administrator's role on the target Virtual Machine.

How to do it...

Let's take a look at how we create a record center site in SharePoint using PowerShell:

1. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
2. Inthe main script editing window of PowerGUI, add the following script:

Defining script variables
$SiteUrl = "http://intranet.contoso.com"
SRecordCenterUrl = "recordscenter"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
SharePoint.Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SPSite -ne $null)
{
SRootWeb = $SPSite.RootWeb
Write-Host "Provisioning records center"

$RecordCenterWeb = New-SPWeb $SiteUrl/S$RecordCenterUrl -Template
"OFFILE#1" -Addtotopnav -Useparenttopnav -Name "Record Center"

Write-Host "Creating record library"

$RecordLibraryTemplate = $RecordCenterWeb.ListTemplates | Where-
Object {$_.Name -eq "Record Library"}

SRecordLibrary = $RecordCenterWeb.Lists.Add("New Records", "New
Records", S$SRecordLibraryTemplate) ;

Write-Host "Records center provisioning complete"
Write-Host "Configuring send-to connection"

235

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Documents and Records in SharePoint with PowerShell

$SendToHost = New-Object Microsoft.SharePoint.SPOfficialFileHost

$SendToHost .OfficialFileName = "My Record Center"

$SubmissionServiceUrl = $SiteUrl + "/" + SRecordCenterUrl + "/ _
vti bin/officialfile.asmx"

$SendToHost .OfficialFileUrl = $SubmissionServiceUrl

$SendToHost . ShowOnSendToMenu = S$Strue

$SendToHost .Explanation = "Send a file to Records Center"

$SPSite.WebApplication.OfficialFileHosts.Add ($SendToHost)

$SPSite.WebApplication.Update ()

Write-Host "Send to configuration complete"

}

$SPSite.Dispose ()

3. Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to SetupRecordCenter.psl.

4. Open the PowerShell console window and call SetupRecordCenter.psl using the
following command:

PS C:\Users\Administrator\Desktop> .\ SetupRecordCenter.psl

5. As a result, your PowerShell script will create a site structure as shown in the
following screenshot:

3 Administrator: Windows Powershell

PS C:slzerz~AdministratorsDezktop?> .“SetupRecordCenter.psl

LARNING: More results were found in Get—-5PSite but were not returned.
'—Limit ALL’ to return all possible results.

Provisioning records center

Creating record library

Records center provisioning complete

Conf iguring send-to connection

Send to configuration complete
PS5 C:slUserzAdministrator Desktop> _

6. Now, from your browser, let's switch to our SharePoint Intranet:
http://intranet.contoso.comn.

7. From the home page's main navigation, click the Record Center link.

On the Quick launch menu, click the All Site Content link. On the resulting page,
take note of the New Records library, as shown in the following screenshot:

236

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Record Center » All Site Content

Displays all sites, lists, and libraries in this site.

FAST Search Center Wiki FAG Wiki Al Sites hd|

Search Record Center

Libraries

G/) Site workflows
Draop Off Library

Record Library

Documnent Libraries

5 Recycle Bin After their properties are
b) uploaded to this library arf
—:n All Site Content 4 Drop Off Library automatically mowved to thi

library or folder according|
created by the owner of t

% Mew Records Mew Records

Upload finished document
library. Docurments added
will automatically be decld
records,

5 Record Library

9. Navigate back to the SharePoint Intranet site.
10. From the Quick launch menu on your site, click the Shared Documents library link.

11. Select any of the documents already provisioned into the library, and from the
context menu of the item select Send To | My Record Center, as shown in the
following screenshot:

_ESt LISt IHStance IEJ Aok ke Duse—dioe Dlocsa-t 20041
yList Wiew Froperties
J L} Edit Properties
IsCUssions Eﬂ Wiew in Browser
Feam Discussion @é Edit in Browser
-) Edit in Microsoft Onefots
0
F4ST Search Center Iéj‘ g Check out
iki 2] Wersion History
] .
gﬂ % Approve/Reject
= j Other Location Compliance Details
i a
3 Recard Center (ECM) (:_/) wiarkflows
B My Record Center alert Me
. . 3
& E-mail a Link Send To
Create Document Worlispace $ Manage Permissions 1

237

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Documents and Records in SharePoint with PowerShell

12. Take note of how the item is now being moved to the drop off library of the
newly created record center site with the resulting message as shown in the
following screenshot:

H Operation Completed Successfully

The file has been sent to the "My Record Center” location successfully,

URL to find ar request access to the docurment in its final location:
http:/fintranet.contoso.comdrecordscenter/DropOfflibrary/Mew Docurment for
Sprockets.one

o] 4 |

13. At this point, you can click the link provided in the window to navigate to the item
which has now been sent to a record center.

First, we defined the script variables. In this recipe, the variables include the URL of the
intranet site and the URL of the records center site about to be provisioned:

$SiteUrl = "http://intranet.contoso.com"
S$RecordCenterUrl = "recordscenter"

Once a PowerShell snap-in has been loaded, we get a hold of the instance of the current

site and its root web. Provisioning of the record center site is no different from provisioning a
SharePoint site of any other site template. The New-SPWeb command accepts the URL of the
site and the template of our records center site as the main parameters as follows:

$RecordCenterWeb = New-SPWeb $SiteUrl/$RecordCenterUrl -Template
"OFFILE#1" -Addtotopnav -Useparenttopnav -Name "Record Center"

Next, we created an instance of a new record library so that incoming records can be

routed to this library and not just dropped off in the default library. We start by enumerating
available templates on the site and picking the record library template, as you can see in the
following command:

$RecordCenterWeb.ListTemplates | Where-Object {$.Name -eq "Record
Library"}

Next, we add the record library to the site by using the template just retrieved:

$RecordCenterWeb.Lists.Add ("New Records", "New Records",
$RecordLibraryTemplate) ;

238

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Now that the record center is created, we need to ensure that our users are able to send files
to it from the Intranet site. SharePoint allows a connection inside the context menu of each
item to be created, allowing user to pick an item and send it to the designated record center.
You can have several connections defined representing several record centers where your
users can drop off items to. SharePoint provides out-of-the-box configuration interface to add
new item to the list of locations in the context menu. In this recipe, we provision the send-to
locations using our script.

We start by creating an object which will represent a connection to a record center. This object
will hold the URL, title, and other information which will help users identify where they send
their files in the records center:

$SendToHost = New-Object Microsoft.SharePoint.SPOfficialFileHost
Once created, we give a name to our connection:
$SendToHost .OfficialFileName = "My Record Center"

Next, we define the web service which is going to handle the submission of items to a web
service. SharePoint has an out-of-the-box web service which has all of the methods to
facilitate submissions of new items to the records center. Next, we define the URL of the web
service relative to the records center site we have provisioned above:

$SubmissionServiceUrl = $SiteUrl + "/" + SRecordCenterUrl + "/ vti
bin/officialfile.asmx"

SsSendToHost .OfficialFileUrl = $SubmissionServiceUrl

The next property will identify whether the connection will be displayed to users as an option
in the context menu of the item on the Intranet site:

$SendToHost . ShowOnSendToMenu = S$true

Finally, we capture the description of the connection for users to be able to identify where they
send their items:

$SendToHost .Explanation = "Send a file to Records Center"

To ensure the connection is actually available for users to use, we need to add it to the
collection of existing connections as follows:

$SPSite.WebApplication.OfficialFileHosts.Add ($SendToHost)

We finalize the addition of our new connection by updating web application settings as shown
in the following code:

$SPSite.WebApplication.Update ()

239

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Documents and Records in SharePoint with PowerShell

See also

The Provisioning site hierarchy automatically during solution deployment recipe in Chapter 2,
Enterprise Content Deployment and Provisioning using PowerShell.

Configuring record routing

Once created, your SharePoint record center site comes with variety of handy document
management features. One of the most commonly used record management features is
routing rules. By using routing rules, you can define which destination library your record will
end up in based on the metadata of the incoming record or document. SharePoint comes
with an out-of-the-box user interface which allows you to define record routing rules. However,
in many cases, organizations have variety of routing rules which are used with different

types of documents routed to different destinations based on the type of document. Some
documents may need dedicated security permissions, others may need a special retention
stages defined. In either case, if you need to define several dozen routing rules, PowerShell is
your easiest rule provisioning option. Not only will you be able to script your configuration for
a disaster-recovery scenario, but also the rule definition is easy when all you need to switch in
your script is a couple of metadata values or the name of the destination library.

Let's take a look at what it takes to create a new record routing rule in SharePoint.

Getting ready

Considering you are using a virtual development environment as described in Chapter 1,
PowerShell Scripting Methods and Creating Custom Commands, you already have a record
center site instance provisioned and ready to use.

We'll assume you are also familiar with general record center concepts as described in
this chapter.

In this recipe, we'll be using PowerGUI to author the script, which means you will be required
to be logged in with an administrator's role on the target Virtual Machine.

How to do it...

Now that we have our record center in place, let's see how we can configure record routing
using a PowerShell script.

1. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.

2. Inthe main script editing window of PowerGUI, add the following script:

Defining script variables
$SiteUrl = "http://intranet.contoso.com"
SRecordCenterUrl = "recordscenter"

240

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SPSite -ne S$null)

{

Write-Host "Connecting to the Records Center at:"
SRecordCenterUrl

SRecordsCenterWeb = $SPSite.OpenWeb ($RecordCenterUrl)

Write-Host "Creating record routing rule"

SRoutingRules = $RecordsCenterWeb.Lists["Content Organizer
Rules"] ;

SRule = $SRoutingRules.Items.Add ()

SRule ["RoutingRuleName"] = "New Library Rule"

SRule["Title"] = "New Library Rule"

SRule ["RoutingEnabled"] = $true

SRule ["RoutingPriority"] = 5

SRule ["RoutingConditionProperties"] = "Title"

SRule ["RoutingRuleExternal"] = S$false

SRule ["RoutingContentType"] = "Document"

SRule ["RoutingTargetLibrary"] = "New Records"

$Rule ["RoutingTargetPath"] = "/recordscenter/New Records"

$Rule ["RoutingTargetPath"] = "/recordscenter/New Records"

SRule ["RoutingConditions"] = '<Conditions><Condition

Column="fa564e0f-0c70-4ab9-b863-0177e6ddd247 | Title|Title"
Operator="Contains" Value="document" /></Conditions>'
SRule.Update ()

Write-Host "Routing rules configuration complete"
SRecordsCenterWeb.Dispose ()

}

$SPSite.Dispose ()

Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to SetupRecordRouting.psl.

241

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Documents and Records in SharePoint with PowerShell

4. Open the PowerShell console window and call SetupRecordRouting.psl using
the following command:

PS C:\Users\Administrator\Desktop> .\ SetupRecordRouting.ps1

5. As aresult, your PowerShell script will execute with an output as shown in the
following screenshot:

I administrator: Windows Powershell =]

PE CosUserssAdministratorsDesktop> .“SetupHecordRouting.psl H
WARMING: More results were found in Get-5PSite but were not returned. Use [
'—Limit ALL’ to return all possible results.

Connecting to the Records Center at: recordscenter

Creating record routing rule

Routing rules configuration complete

PE C:-sUzers AdministratorsDesktopr _

6. Now, from your browser, let's switch to our SharePoint Intranet:
http://intranet.contoso.com/

7. From the home page's Main navigation, click the Record Center link.
Click Site Action | Manage Records Center.

9. Locate the section called Setup Tasks and File Plan Creation on the main page and
click the link titled Step 3: Create content organizer rules.

10. In the Content Organizer Rules list, click on the newly created New Library Rule.

11. Select Edit from the routing rule model dialog and take note of the rule details as
shown in the following screenshot:

242

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Rule Status And Priority *

Specify whether this rule should
run on incoming docurments and
what the rule's priarity is, If &
submission matches mulkiple
rules, the router will choose the
rule with the higher priority,

Submission's Content Type *

By selecting a content bype, wou
are determining the properties
that can be used in the
conditions of this rule, In
addition, submissions that match
this rule will receive the content
type selected here when they
are placed in a target location.

Conditions

In order ko match this rule, a
submission's properties musk
match all the specified property
conditions (e.q. "If Date
Created is before 1/1/2000"),

Target Location *

Specify where ko place content
that matches this rule,

Status:

& Active
Friority: |5 (Medium) 'l

" Inactive (will not run on incaming content)

Content type:

Group: IDocument Content Types ;I

Type: IDocument ;I

Alternate names:

" This content type has alternate names in other sites:

&dd alternate name: I fdd I

Mote: Adding the type "*" will allow docurments of unknown content types to be
organized by this rule.
List of alternate names:

Document
Renmaye I

Froperty-based conditions:

Property: ITitIe 'l

Cperator: |contains all of ;I

Walue: |document

{Add another condition)

Destination:

If’recordscenterﬂ\lew Records

Browse.., I

12.
13.
14.

Navigate back to the SharePoint Intranet site.

From the Quick launch menu on your site, click the Shared Documents library link.
Select any of the documents already provisioned into the library, and from the context

menu of the item, select Edit Properties to specify the Title property of the item to
contain the keyword document.

15.

item, select Send To | My Record Center.

www.it-ebooks.info

Ensure the item is saved with the new metadata, then in the context menu of the

243

http://www.it-ebooks.info/

Managing Documents and Records in SharePoint with PowerShell

16. Observe the document being sent to a record center's New Records library
rather than just a drop off library, as show in the resulting message in the
following screenshot:

H Dperation Completed Successfully

The file has been sent to the "My Record Center” location successfully.
URL to find or request access to the docurnent in its final location:
http:/fintranet.contoso.com/recordscenter/Mew Records/M300 Product
Information.docx

QF.

Without routing rules, record center will drop all of the received records to the drop off library.
In this recipe, we have provisioned routing rules so that records are moved to an appropriate
final destination based on their metadata.

First, we defined the script variables. In this recipe, the variables include the URL of the
intranet site and the URL of the records center site we provisioned in the previous recipe:

$SiteUrl = "http://intranet.contoso.com"
$RecordCenterUrl = "recordscenter"

Once a PowerShell snap-in has been loaded, we get hold of the instance of the current site
and the record center created in it. Provisioning of the record routing rules is no different from
provisioning SharePoint list items.

We start by getting hold of the list which contains all the rules, the list name is Content
Organizer Rules:

SRoutingRules = $RecordsCenterWeb.Lists["Content Organizer Rules"];
Next, we add an instance of an item to it:
SRule = S$RoutingRules.Items.Add()

Then, it's a matter of populating important metadata which determines how the record is
routed in the system. We start by defining the name and the title of the new routing rule:

SRule ["RoutingRuleName"] = "New Library Rule"
SRule ["Title"] = "New Library Rule"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Since some rules might be on hold and not used in the record routing, although defined, we
enable the routing of our newly created rule by specifying the metadata as follows:

SRule ["RoutingEnabled"] = $true

The following routing priority will determine the priority of access to the web service as it's
routing items in a busy record center. The valid property value here is 1 to 10:

SRule ["RoutingPriority"] = 5

Next, we capture the metadata fields which will be used in the rule engine to compare to
values based on which item will be routed to the appropriate library:

SRule ["RoutingConditionProperties"] = "Title"

This value is followed by the parameter which determines whether the rule is going to route
incoming items to external locations or not, in our case, it's false:

SRule ["RoutingRuleExternal"] = $false
Next, we specify the content type to which this rule applies:
SRule ["RoutingContentType"] = "Document"

The target library field is populated next, and will hold the value specifying the destination
library for the record once it passes the rule conditions:

SRule ["RoutingTargetLibrary"] = "New Records"

If the preceding destination path includes folders, the following metadata field will capture
the folder structure to where the record is going to be placed upon successfully passing the
rule logic:

SRule ["RoutingTargetPath"] = "/recordscenter/New Records"

Finally, we define the routing conditions as a CAML rule. In this metadata field, we record the
condition in the following format and specify the Column, Operator, and comparison Value
using which the rule will need to execute:

SRule ["RoutingConditiong"] = '<Conditions><Condition Column="fa564e0f-
0c70-4ab9-b863-0177e6ddd247 |Title|Title" Operator="Contains"
Value="document" /></Conditionss>'

The preceding line of code compares the value in the value parameter to the Column
parameter representing a column. The column here starts with the ID of the field followed by
its internal and display name.

245

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Documents and Records in SharePoint with PowerShell

To find out the ID and the internal name of your fields, navigate to the SharePoint root folder,
as shown in the following screenshot, and open the fields library in the Features folder.
The fieldswss.xml definition will contain most of the out-of-the-box fields and their
respective information, as shown in the following screenshot:

I fields 19 [=] 3

g.: ':;.v ||~ b Server Extensions ~ 14 ~ TEMPLATE ~ FEATURES ~ fields ~ |23 | search fields L)
Organize + 4 0pen * New Folder = v 0 @
[= 7 Eavorites HENT Date modified | Type | Size | |
Bl Desktop 2| Feature 3f26/2010 9:28 FM #ML Document ZKB

4 Downloads]
2l Recent Places = Fieldswss2 3f26/2010 9:28 PM ¥ML Docurnent 1 KB
SharePaint Sites
= fieldswss3 32612010 9:28 PM ¥ML Document 50 KB
=14 Libraries ‘ﬁeldswss—Notepad M=l E3
| Documents File Edit Format Yiew Help
® & Music ReadonTy="TRUE" -
i Type="DateTime" i
E=| Fictures DisplayName="$Resources:core,Modified; "
Videos _StorageTz="TRUE">
8 </Field>
<Field 1p=")
=M Computer Mame="C J/sch . n /sh it A3t
gy] sourcelIb="http://schemas.microsoft. com/sharepoint A
& H : n "
iy Local Disk (C:) staticNames="Created
[#H'® Con WIN-6MSTMEMM: Gr_olup="_H'| dden” d
; | colMame="tp_created"”
[#'¥ D on WIN-6MSTNEMM! Rowordinale"o"
[£ E on WIN-6METHENM: rReadonly="TRUE"
; . . Type="bateTime"
B2 Fon WIN-GMSTRERM: DisplaymMame="$RrResources:core,Created; "
StorageTz="TRUE">
tig </Field>
S Network i-: 1d Tno"fidfsagsa Afnf Gmld dss chlgLt

The Provisioning document and records center with PowerShell recipe in this chapter.

Configuring a common record

expiration policy

Record expiration policies are another handy feature in SharePoint which allow you to define
what is going to happen with your document or record as it goes through its life cycle. Do

you want to delete the record? Notify someone of document expiration? Launch a custom or
out-of-the-box approval process before any action takes place? Those are all choices available
to you when you choose to define expiration policy of the document or record container.

Record expiration policies are so common in document and record management scenarios,
that many libraries in SharePoint typically have several policies defined on a library to capture
variety of document types and scenarios.

246

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

With all of the policies defined in your libraries, it might be challenging to keep track of
how various rules affect each other. Similarly, when you define a set of rules for the library,
you may want to implement the same set for another library on one or more sites. Sounds
complicated, it can be. Let's see how you can use PowerShell and how you can simplify the
policy provisioning process for the library.

Getting ready

Considering you are using a virtual development environment as described in Chapter 1,
PowerShell Scripting Methods and Custom Commands, you already have a record center site
instance provisioned and ready to use.

We'll assume you are also familiar with general record center concepts as described in
this chapter.

In this recipe, we'll be using PowerGUI to author the script, which means you will be required
to be logged in with an administrator's role on the target Virtual Machine.

How to do it...

Let's see how expiration policy is configured for a record library using PowerShell.

1. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
2. Inthe main script editing window of PowerGUI, add the following script:

Defining script variables
$SiteUrl = "http://intranet.contoso.com"
SRecordCenterUrl = "recordscenter"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$.Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eqg $null) {

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

$SPSite = Get-SPSite | Where-Object {$_ .Url -eq $SiteUrl}
if ($SSPSite -ne S$Snull)

{

Write-Host "Connecting to the Records Center at:"
SRecordCenterUrl

SRecordsCenterWeb = $SPSite.OpenWeb ($SRecordCenterUrl)

247

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Documents and Records in SharePoint with PowerShell

Write-Host "Connecting to a record library"

SnewRecords = SRecordsCenterWeb.Lists["New Records"];

Write-Host "Creating new record library policy"

SrecordPolicy = [Microsoft.Office.RecordsManagement.
InformationPolicy.ListPolicySettings] (SnewRecords)

if ($recordPolicy.ListHasPolicy -eq 0)

{

SrecordPolicy.UselistPolicy = Strue
SrecordPolicy.Update ()

}

ScontentType = S$newRecords.ContentTypes ["Document"]

[Microsoft.Office.RecordsManagement . InformationPolicy.Policy] ::
CreatePolicy ($ScontentType, $null)

$newPolicy = [Microsoft.Office.RecordsManagement.
InformationPolicy.Policy] ::GetPolicy ($ScontentType)

SnewPolicy.Items.Add ("Microsoft.Office.RecordsManagement.
PolicyFeatures.Expiration",

'<Schedules nextStagelId="2" default="false"><Schedule
type="Default"><stages /></Schedule>'+

'<Schedule type="Record">"'+

'<stages><data stageId="1">'+

'<formula id="Microsoft.Office.RecordsManagement.PolicyFeatures.
Expiration.Formula.BuiltIn"s>'+

'<number>1l</numbers>"'+

'<property>Created</property>'+

'<propertyId>8c06beca-0777-48f7-91c7-6da68bc07b69</propertyIds>"+

'<period>days</period>"'+

'</formulas>"'+

'<action type="action" id="Microsoft.Office.RecordsManagement.
PolicyFeatures.Expiration.Action.MoveToRecycleBin"/>"'+

'</datas></stages>"'+

'</Schedules>'+

'</Schedules>"')

$newPolicy.Update ()

S$newRecords .Update ()

Write-Host "Routing rules configuration complete"
SRecordsCenterWeb.Dispose ()

}

$SPSite.Dispose ()

3. Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to ProvisionRetentionPolicy.psl.

248

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

4. Open the PowerShell console window and call ProvisionRetentionPolicy.psl
using the following command:

PS C:\Users\Administrator\Desktop> .\ ProvisionRetentionPolicy.psl

5. As aresult, your PowerShell script will execute and return results as shown in the
following screenshot:

B administrator: Windows Powershell M=l E3

PS5 GislUserssAdministratorsDesktop? _SProvisionRetentionPolicy.psl
WARNING: More results were found in Get—SPS8ite but were not returned. U
'—Limit ALL' to return all possible results.

Connecting to the Records Center at: recordscenter

Connecting to a record library

Creating new record library policy

Routing rules configuration complete

PS5 G:islUserssAdministratorsDDesktop> _

6. Now, from your browser, let's switch to our SharePoint Intranet:
http://intranet.contoso.com

7. From the home page's Main navigation, click the Record Center link.

On the Quick launch menu, click the All Site Content link and from the resulting
page click the New Records library.

9. From within the library, in the ribbon, click the Library tab, under the Settings group,
click Library Settings.

10. From within the library settings, in the Permissions and Management category, click
the Information management policy settings link.

11. Take note of the new policy assigned to the Document content type as shown in the
following screenshot:

Content Type Policies

This table shows all the content types for this library, along with the policies and expiration schedules
for each type. To modify the policy for a content type, click its name,

Content Type Palicy Description Retention Policy Defined
Docurnent Custom policy Yes
Folder Mone Mo

*Mote: Since this library is using library and folder retention, all docurments will use those schedules,
Content type retention policies are ignored.

249

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Documents and Records in SharePoint with PowerShell

12. Click the Document content type, and take note of the new policy provisioned for the
content type under the Retention group, as shown in the following screenshot:

Retention .
[Enable Retention
Schedule how content is managed and
disposed by specifying a sequence of
retention skages. IF vou specify mulkiple
stages, each stage will occur one after the

Specify how to manage retention on records:

other in the order they appear on this Bvent Action Recurrence
page: Created + 1 days Move to Recycle Bin - No
Mote: IF the Library and Folder Based add a retention stage for records...

Retention Feature is ackive, lisk
administrators can override content type
policies with their awn retention
schedules, To prewent this, deactivate
the Feature on the site collection,

First, we defined the script variables. In this recipe, the variables include the URL of the
intranet site and the URL of the records center site we provisioned in this chapter:

$SiteUrl = "http://intranet.contoso.com"
$RecordcCenterur]l = "recordscenter"”

Once a PowerShell snap-in has been loaded, we get a hold of the instance of the current site
and the record center created on it.

We access the record library we created in the preceding recipe:
SnewRecords = $RecordsCenterWeb.Lists["New Records"];

Next, retrieve the policies setting on the library in order to turn on policy settings if they have
not been turned on before for an existing library:

SrecordPolicy = [Microsoft.Office.RecordsManagement.InformationPolicy.
ListPolicySettings] ($newRecords)

Since each library may have multiple content types, we can have our retention policy defined
per content type. This allows us to have multiple retention rules per library for a different
content type, as shown in the following code:

ScontentType = S$newRecords.ContentTypes ["Document™"]
Here is how we create a new policy:

[Microsoft.Office.RecordsManagement . InformationPolicy.Policy] : :CreateP
olicy($contentType, S$null)

250

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

In the preceding code, the value of the content type will determine which content type the
policy will be applied to. The actual policy is defined as shown in the following code:

SnewPolicy.Items.Add ("Microsoft.Office.RecordsManagement.
PolicyFeatures.Expiration",

'<Schedules nextStageId="2" default="false"><Schedule
type="Default"><stages /></Schedule>'+

'<Schedule type="Record">'+

'<stages><data stageId="1">'+

'<formula id="Microsoft.Office.RecordsManagement.PolicyFeatures.
Expiration.Formula.BuiltIn">"'+

'<numbers>1l</numbers"'+

'<property>Created</property>"'+

'<propertyId>8c06beca-0777-48£7-91c7-6da68bc07b69</propertyId>'+

'<period>days</period>"'+

'</formula>"'+

'<action type="action" id="Microsoft.Office.RecordsManagement.
PolicyFeatures.Expiration.Action.MoveToRecycleBin"/>"'+

'</datas></stages>"'+

'</Schedule>"'+

'</Schedules>")

Here, <Schedule> is defined for the policy, since each retention policy is activated by the
value of the chosen date time column. The SharePoint timer job dedicated to monitoring
retention in libraries will watch out for the policy definitions and items qualified for retention
action. The schedule in our case is defined explicitly on the record, since we can have records
and documents mixed together in SharePoint 2010.

The <formula> definition accepts the field title and ID as a parameter. This field information
is also compared with the value of how many days from the defined column value it will take
before the retention action takes place.

The <action> node defines the action to be triggered once the record policy conditions are
satisfied. In our case, we move the item to a recycle bin, which is an out-of-the-box condition
with implementation steps sealed in SharePoint as follows:

Microsoft.Office.RecordsManagement.PolicyFeatures.Expiration.Action.
MoveToRecycleBin

When done, we update both the policies and the record library with new changes:

$SnewPolicy.Update ()
$newRecords .Update ()

251

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Documents and Records in SharePoint with PowerShell

See also

The Creating lists of custom structure and list items in them recipe in Chapter 3, Performing
Advanced List and Content Operations in SharePoint using PowerShell.

Creating a custom expiration policy for

the record

In the previous recipe, you've become familiar with how you can provision most common
expiration policies on your libraries with PowerShell. In some cases, more unique scenarios
call for more complex solutions.

In this recipe, we'll take a look at some of the scenarios where you need to use custom action
executed when the trigger for the expiration is set off.

We'll see how you can kick off a custom workflow performing one of the common actions
related to document and record retention. The benefit of using PowerShell in this scenario is
mainly around the flexibility when defining multiple policies on many libraries.

Let's see what is involved in using PowerShell to define custom actions for a retention policy.

Getting ready

Considering you are using a virtual development environment as described in Chapter 1,
PowerShell Scripting Methods and Custom Commands, you already have a record center site
instance provisioned and ready to use.

We'll assume you are also familiar with creating common retention policies as described in
Chapter 8, Managing Documents and Records in SharePoint with Powershell.

In this recipe, we'll be using PowerGUI to author the script, which means you will be required
to be logged in with an administrator's role on the target Virtual Machine.

How to do it...

Next, we see how more complex expiration policy can be created using PowerShell.
1. From your browser, navigate to our SharePoint Intranet: http://intranet.
contoso.com
2. From the home page's main navigation, click the Record Center link.

3. On the Quick launch menu, click the All Site Content link. From the resulting page,
click the New Records library.

252

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

4. From within the library, in the ribbon, click the Library tab, under the Settings group,
click Workflow Settings | Add a Workflow, as shown in the following screenshot:

¥ = [- Current Wiew: .~ E-mail a Link s —|] :
nﬁ ! . L) 57 g0
"-’) fh All Dacuments = i Aert e - = =
Datasheet Create Connect & Customize Setfings
< Wiew | 1) Current Page |5 R5s Feed Export+ Library - -
Manage Wiews Share & Track . @Libram Permissions
I~ Type Marne Madified _ @‘Wnrkflnw settings| .

There are no items to show in this view of the "New Records YWorkflow Settings

) Add aWorkflow
dr add new itermn
Create a Workflow in SharePoint Designer

Create a Reusable Workflow in SharePaoint Designer

5. On the workflow configuration page, leave all of the settings as-is, except Select a
workflow template value set to Approval - SharePoint 2010; set the Name of the
workflow to Approval, as shown in the following screenshot:

Content Type))
Fun on iterns of this type:
Select the bype of items that all -
wou wank this workflow to I ; ; ; —I
fun on, Conkent bype (zelecting a different type will navigate you to

warkflows can only be
associated to a list content
bype, not directly ko the list,

Workflow

Select a workFlow ko add ko Zelect a workflow template:

this document library, IF the Disposition Approval "
workFlow terplate you want Three-state j
does not appear, contack: Collect Signatures - SharePoint 2
yaur administrator to get it Appraval - SharePaint 2010

added o yvour site collection
ar workspace,

Name . .
Type a unique name for this workflow:

Type a name For this |.ﬁ.ppru:|\-'al|
workflow, The name will be

used ko identify this

workFlow to users of this

document: library,

253

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Documents and Records in SharePoint with PowerShell

6. Accept all of the default configuration settings for the approval workflow on the next
page and click Save.

7. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
In the main script editing window of PowerGUI, add the following script:

Defining script variables

$SiteUrl = "http://intranet.contoso.com"
SRecordCenterUrl = "recordscenter"
SWorkflowName = "Approval"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$.Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SSPSite -ne S$Snull)

{

Write-Host "Connecting to the Records Center at:"
SRecordCenterUrl

SRecordsCenterWeb = $SPSite.OpenWeb ($RecordCenterUrl)

Write-Host "Connecting to a record library"

SnewRecords = $RecordsCenterWeb.Lists["New Records"];

sworfklowInstance = $newRecords.WorkflowAssociations | Where-
Object {$_.Name -eq $WorkflowName}

Write-Host "Creating new record library policy"

SrecordPolicy = [Microsoft.Office.RecordsManagement.
InformationPolicy.ListPolicySettings] ($newRecords)

if ($recordPolicy.ListHasPolicy -eq 0)

{

SrecordPolicy.UselListPolicy = S$true
SrecordPolicy.Update ()

}

ScontentType = S$newRecords.ContentTypes ["Document"]

[Microsoft.Office.RecordsManagement.InformationPolicy.Policy] ::
CreatePolicy ($contentType, $null)

SnewPolicy = [Microsoft.Office.RecordsManagement.
InformationPolicy.Policy] ::GetPolicy (ScontentType)

SnewPolicy.Items.Add ("Microsoft.Office.RecordsManagement.
PolicyFeatures.Expiration",

'<Schedules nextStageId="2" default="false"><Schedule

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

type="Default"><stages /></Schedule>'+
'<Schedule type="Record"s>'+
'<stages><data stageId="1">'+
'<formula id="Microsoft.Office.RecordsManagement.PolicyFeatures.
Expiration.Formula.BuiltIn">'+
'<number>1l</numbers>"'+
'<property>Created</property>"'+
'<propertyId>8c06beca-0777-48f7-91c7-6da68bc07b69</propertyIds>"+
'<period>days</period>"'+
'</formulas>"'+
'<action type="workflow" id="'+ SworfklowInstance.ID +'"/>'+
'</data></stages>"'+
'</Schedules>'+
'</Schedules>"')
S$newPolicy.Update ()
S$newRecords .Update ()

Write-Host "Routing rules configuration complete"
SRecordsCenterWeb.Dispose ()

}

$SPSite.Dispose ()

9. Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to ProvisionWorkFlowDrivenRetentionPolicy.psl.

10. Open the PowerShell console window and call
ProvisionWorkFlowDrivenRetentionPolicy.psl usingthe
following command:

PS C:\Users\Administrator\Desktop> .\
ProvisionWorkFlowDrivenRetentionPolicy.psl

11. As a result, your PowerShell script will execute with an output as shown in the
following screenshot:

Administrator: Windows PowerShell _ (O] x|

PS C: \U*et"‘\ﬂdmln1=‘t1-at01-\De"ktup) SProvisionWorkFlowDrivenRetentionPolicy.psl !
'.JHRHIHG More results were found in Get—-8PS8ite bhut were not returned. Use

'—Limit ALL’ to return all possible results.

Connecting to the Records Center at: recordscenter

Connecting to a record library

Creating new record library policy

Routing rulesz configuration complete

PE C:sUsers“AdministratorsDesktop> _

255

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Documents and Records in SharePoint with PowerShell

12. Switch back to the main page of the records center and navigate to the New
Records library.

13. From within the library, in the ribbon, click the Library tab, under the Settings group,
click Library Settings.

14. From within the library settings, in the Permissions and Management category, click
the Information management policy settings link.

15. Click the Document content type to open associated retention policies.

16. Take note of the newly provisioned, workflow-driven retention policy as shown in the
following screenshot:

Retention
[+ Enable Retention
Schedule how content is managed and
disposed by specifying a sequence of
rekention stages, IF vou specify multiple
stages, each stage will occur one after the

Specify how to manage retention on records:

ather in the order they appear on this Event Action Recurrence
page: Created + 1 Start the Approval Mo

Mote: If the Library and Folder Based days workflow

Retention Feature is active, list add a retention stage for records...

administrakors can override content type
policies with their own retention
schedules, To prevent this, deactivate
the Feature on the site collection,

When out-of-the-box retention actions do not satisfy your business requirements, you can
launch an out-of-the-box or custom workflow as a retention action upon successful completion
of all of the retention conditions.

In this recipe, we started with adding an instance of the out-of-the-box approval workflow to
our record library. Although those steps were performed manually, you can automate adding
the workflow to the library as we discussed in Chapter 2, Enterprise Content Deployment and
Provisioning using PowerShell.

Next, we run our script with the following parameters.

We defined the script variables of the Intranet site and the URL of the records center site we
have provisioned in this chapter:

$SiteUrl = "http://intranet.contoso.com"
SRecordCenterUrl = "recordscenter"
256

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

We also capture the name of the workflow instance that has been added to the library:
SWorkflowName = "Approval"

We then connect to the instance of our record center and the New Record library. We grab
the workflow ID of the Approval workflow we previously defined:

sworfklowInstance = $newRecords.WorkflowAssociations | Where-Object
{$.Name -eqg S$WorkflowName}

The preceding step is an important distinction between calling an out-of-the-box retention
action and the one triggered by the workflow.

The next set of steps in the script, up to defining our custom retention formula, is exactly the
same as in case of provisioning an out-of-the-box retention formula.

The difference comes when referencing the retention action for our policy:
'<action type="workflow" id="'+ SworfklowInstance.ID +'"/>'

Here, we defined the type of the action as workflow and id of the action and the workflow ID
we have captured before in the script.

The Configuring a common record expiration policy recipe in this chapter and Using
PowerShell to manage SharePoint custom and out-of-the-box workflows recipe in
Chapter 2, Enterprise Content Deployment and Provisioning using PowerShell.

Configuring content hub for content types

used in records center

The content type hub feature in SharePoint 2010 came as a result of the necessity to share
content type definitions across one or more sites in your SharePoint farm.

After all, as we have seen in Chapter 7, Managing SharePoint Site Content in Bulk using
PowerShell, content types require provisioning of related fields and logic which are used
throughout your site.

If you have several site collections in your farm, which is true even if you're using just a
record center and an intranet, you will need to ensure your content types are all in sync
so that routing rules on the record center site are working in sync with the metadata of
incoming files.

257

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Documents and Records in SharePoint with PowerShell

In this recipe, we'll take a look at how PowerShell can help you with configuring a content type
hub in the scenario where we have an Intranet site and the corporate portal.

Getting ready

Assuming you are already using a virtual development environment as described in Chapter 1,
PowerShell Scripting Methods and Creating Custom Commands, you will have an environment
with multiple sites which can take advantage of content hub capability.

In this recipe, we'll be using PowerGUI to author the script, which means you will be required
to be logged in with an administrator's role on the target Virtual Machine.

How to do it...

Let's take a look at how a content type hub can be configured using a PowerShell script:

1. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
2. Inthe main script editing window of PowerGUI, add the following script:

Defining script variables
$SiteUrl = "http://intranet.contoso.com"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$.Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eqg $null) {

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

$SPSite = Get-SPSite | Where-Object {$_ .Url -eq $SiteUrl}
if ($SSPSite -ne S$Snull)
{
Write-Host "Connecting to intranet"
SRootWeb = $SPSite.RootWeb

Write-Host "Enabling Content Type Hub feature"

#S$ContentTypeHubFeature = Enable-SPFeature "ContentTypeHub" -url
SRootWeb.Url

Write-Host "Setting hub URL for service application"

$managedMetadataSvcApp = Get-SPServiceApplication | Where-Object
{$.TypeName -eq "Managed Metadata Service"}

Set-SPMetadataServiceApplication -Identity
$managedMetadataSvcApp -HubURI $SiteUrl

258

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Write-Host "Enabling publishing of content types"

$managedMetadataProxy = Get-SPServiceApplicationProxy | Where-
Object {$_.TypeName -eq "Managed Metadata Service Connection"}

Set-SPMetadataServiceApplicationProxy -Identity
$managedMetadataProxy -ContentTypeSyndicationEnabled
-ContentTypePushdownEnabled -Confirm:$false

}

$SPSite.Dispose ()

3. Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to SetupContentTypeHub.psl.

4. Open the PowerShell console window and call SetupContentTypeHub.psl using
the following command:

PS C:\Users\Administrator\Desktop> .\ SetupContentTypeHub.psl

5. As a result, your PowerShell script will execute with results as shown in the
following screenshot:

3 administrator: Windows Powershell _ |0 =]

PS C:slUserssAdministratorsDesktop? .sSetupContentTypeHub.psl
LARNING: More results were found in Get—-5PSite but were not

returned. Use '—Limit ALL' to return all possible results.

Connecting to intranet

Enabling Gontent Type Hub feature

Setting hubh URL for service application

Enabling publishing of content types

PS5 C:slUsers“~AdministratorsDesktop?> _

6. Now, let's switch to our SharePoint Intranet: http://intranet.contoso.com/
7. Click Site Action | Site Settings.

8. Under the Galleries category, click the Site content types.

9. Under the Document Content Types category, click Document.

10. On the resulting page, under Settings, click Manage publishing for this
content type.

259

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Documents and Records in SharePoint with PowerShell

11. Ensure that the option for the content type publishing is set to Publish and click OK,
as shown in the following screenshot:

Content Type Publishing

& publish
Malke this content type available far download for all web
Applications {and Site Collections) consurning content
types from this location.

] Unpublish
Make this content type unavailable for download for all
Wweb Applications {and Site Collections) consuming content
types from this location, &ny copies of this content type
being used in other site collections will be unsealed and
made into a local content type,

& Republish
If you have made changes to this content type, the
content type needs to be "republished" befare the changes
are available for download to Web Application consurming
content types from this location.

Publishing History Last successful published date:
The date on which one or more service

applications have successfully

published this content bvpe,

| oK I Cancel

12. In your browser, navigate to another site collection in your farm, in our case
http://www.contoso.com.

13. Click Site Actions | Site Settings.
14. Under Site Collection Administration, select Content type publishing.

15. Take note of how this site collection is now set to automatically receive updates
about content type definition changes from within our Intranet site, as shown in the
following screenshot:

Refresh all Published Content Types -

The next time the cantent type subscriber Refresh all published content types on next update
timer job runs, update all published

content bypes.,

Content type publishing error log
Content type publishing error log
Content bype publishing error log contains
errars that happened during content bvpe
syndication for this site,

Hubs
. o . Managed Metadata Service
These service appllc_atl_ons are D_“bl'Sh'ng http:/fintranet.contasa.com/_layouts/mngctype.aspx
content bypes ko this site collection. In
order to edit content bypes that have .
been published from these lacations ar ko Subscribed Content Type Content Type Group
create and publish & new conkent bype, Mo content types have been subscribed.
select the hub URL, To view the
subscribed content bype on this sike
collection, select the content bype.

Ok

260

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

We started by defining the URL of the site which is going to be our content type hub:

$SiteUrl = "http://intranet.contoso.com"
We loaded PowerShell SharePoint snap-in and retrieved a current site collection object.

The first step is to enable the content type hub feature on the site collection, which is going to
be the hub:

#SContentTypeHubFeature = Enable-SPFeature "ContentTypeHub" -url
SRootWeb.Url

Since the content type hub feature uses Management Metadata Service application,
we need to create a connection to the managed metadata service application to perform
additional configurations related to content type hub functionality:

$managedMetadataSvcApp = Get-SPServiceApplication | Where-Object
{$_.TypeName -eq "Managed Metadata Service"}

Next, with the connection information we have retrieved, we set the value of the content type
hub to the URL of our intranet site:

Set-SPMetadataServiceApplication -Identity S$managedMetadataSvcApp
-HubURI $SiteUrl

The preceding setting will make our intranet site a hub for all of the published content types.

Finally, we need to ensure all of the site collections in the farm will have synchronization set
up to pull the updates to published content type definitions. To ensure that, we connect to the
Managed Metadata Service application proxy:

$managedMetadataProxy = Get-SPServiceApplicationProxy | Where-Object
{$_ .TypeName -eq "Managed Metadata Service Connection"}

Once connected, we enable content type syndication:

Set-SPMetadataServiceApplicationProxy -Identity S$managedMetadataProxy
-ContentTypeSyndicationEnabled -ContentTypePushdownEnabled -
Confirm:s$false

All that is left to do now is to publish content types which you want shared on all the other
site collections. Once the content types are published, they are subject to a scheduled sweep
by the synchronization service job which propagates content type definition changes to
subscribed site collections.

261

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Documents and Records in SharePoint with PowerShell

See also

The Creating basic and complex content types recipe discussed in Chapter 7, Managing
SharePoint Site Content in Bulk using PowerShell.

262

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Web
Application and
Server Administration
in SharePoint with
PowerShell

In this chapter, we will cover:

» Configuring web application settings

» Parsing SharePoint logs using PowerShell

» Managing web application throttling settings
» Configuring sandbox solution policies

» Managing sandbox solutions on SharePoint site collections

Introduction

SharePoint web application administration and configuration involves managing multiple
features and capabilities we have seen in chapters of this book. In this chapter, we'll take a
look at what's involved with managing some of the most common configuration parameters in
your web application and a farm.

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Web Application and Server Administration in SharePoint with PowerShell ——

We'll take a look at how you can troubleshoot issues with your custom and out-of-the-box
functionality by using SharePoint logs and see where PowerShell can help you with getting all
of the relevant information faster.

As your custom and out-of-the-box applications are used, you're likely to face an issue of
managing available server resources effectively. In one of the recipes of this chapter, we'll
take a look at some of the resource-throttling capabilities available in SharePoint, and
how you can use PowerShell to speed up the configuration of such parameters for newly
provisioned farms and environments.

The concept of sandbox solutions is new in SharePoint 2010 and has already gained a lot

of popularity by truly giving SharePoint the ability to host solutions running separately for
different site collections in the farm. As with any other feature, sandbox solutions have a
variety of configuration options which allow you to control various parameters of execution of
solution running in sandbox.

In this chapter, we'll take a look at how you can use PowerShell to configure sandbox solution
policies, as well as manage the availability of sandbox solutions used on site collections in
your farm.

Configuring web application settings

SharePoint has a variety of web application settings and configurations which, in typical
scenarios, administrators interact with as the new site is created or on an on-going basis.

In this recipe, we'll take a look at how you can configure parameters such as SharePoint
recycle bin settings, alert settings, and upload size limits. Also, we'll take a look at how you
can manage whether the content on your site is opened within respective client applications
or using the SharePoint 2010 Office Web Applications feature. We'll also see how you can
create a site collection quota template allowing you to set initial limits for your site collections.
We will then use the quota template on one of the existing site collections.

The benefit of performing the preceding configurations using PowerShell is that it allows you to
script the most common environment configurations as a single set of instructions which can
be used when similar environments are provisioned in your organization. From the disaster
recovery standpoint, configuration scripts similar to the one we use in this recipe, can simplify
recovery operation.

Let's take a look at what's involved in using PowerShell to script some of the most common
configurations for SharePoint web application.

264

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Getting ready

Considering you have already set up your virtual development environment as described in
Chapter 1, PowerShell Scripting Methods and Creating Custom Commands, you already have
installed and configured Office Web Applications feature used in this recipe.

Since, in this recipe, we'll be using PowerGUI to author the script, you will be required to be
logged in with an administrator's role on the target Virtual Machine.

How to do it...

Let's see what's involved in configuring SharePoint web application settings with PowerShell:

1.
2.

Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
In the main script editing window of PowerGUI, add the following script:

Defining script variables
$SiteUrl = "http://intranet.contoso.com"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
SharePoint.Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

Write-Host "Connecting to site"

$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SPSite -ne $null)
{

SwebAppsFeatureId = $(Get-SPFeature -limit all | where {$_
.displayname -eq "OpenInClient"}).Id

Write-Host "Enabling web apps feature"
Enable-SPFeature S$SwebAppsFeatureId -url $SiteUrl

Write-Host "Changing default behavior for each library on web"

$SPSite.RootWeb.Lists | ForEach-Object {$.DefaultItemOpen =
[Microsoft.Sharepoint.DefaultItemOpen] : :PreferClient;

$_ .Update ()

}

Write-Host "Default application configured"

Write-Host "Creating web application quota template"

265

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Web Application and Server Administration in SharePoint with PowerShell ——

266

SQuotaTemplate = New-Object Microsoft.SharePoint.Administration.
SPQuotaTemplate

SQuotaTemplate.Name = "Team Site"
SQuotaTemplate.StorageMaximumLevel = 1048576
SQuotaTemplate.StorageWarninglLevel = 524288

SAdminService = [Microsoft.SharePoint.Administration.
SPWebService] : :ContentService

SAdminService.QuotaTemplates.Add ($QuotaTemplate)
SAdminService.Update ()

Write-Host "Setting web application gquota"
$SPSite.WebApplication.DefaultQuotaTemplate = "Team Site"
$SPSite.WebApplication.Update ()

Write-Host "Updating maximum file size upload limit"
$SPSite.WebApplication.MaximumFileSize = 100
$SPSite.WebApplication.Update ()

Write-Host "Updating recycle bin settings"
$SPSite.WebApplication.RecycleBinEnabled = S$Strue
$SPSite.WebApplication.RecycleBinRetentionPeriod = 15
$SPSite.WebApplication.Update ()

$SPSite.WebApplication.AlertsEnabled = S$true
$SPSite.WebApplication.AlertsMaximum 100

$SPSite.WebApplication.Update ()

Write-Host "Web application configuration complete"

}

$SPSite.Dispose ()
Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to ConfigureWebApplication.psl.

Open the PowerShell console window and call ConfigureWebApplication.psl
using the following command:

PS C:\Users\Administrator\Desktop> .\ ConfigureWebApplication.psl

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

5. As a result, your PowerShell script will execute with the following output, as
seen here:

2 Administrator: Windows PowerShell M=l E3

PS5 C:s\lUserssAdministratorsDesktop? .SConfigurelebfipplication.psl
Connecting to site

WARMING: More results were found in Get—SPSite but were not returned.
*—Limit ALL’ to return all possible results.

Enabling web apps feature

Changing default behavior for each library on web

Default application configured

Creating web application guota template

Setting web application guota

% CislserssAdministratorsDesktop> _

6. Now, from your browser, let's switch to our SharePoint Intranet:
http://intranet.contoso.com

7. On the Quick launch menu, click the Shared Documents link and click any of
the files created in MS Office application, such as MS Word. Observe the client
application attempting to open the file, as shown in the following screenshot:

penvocument |

I r'ou are about to open:
' ' Marme: ...oduct Information. docs
Fram: intranet

Howw would wou like to open this file?
& Read Only
" Edit

|

Some files can harm your computer. IF this information looks suspicious. or
wou do not fully bust the zource, do not open the file.

8. Now, navigate to the SharePoint Central Administration site by clicking Start |
All Programs | Microsoft SharePoint 2010 Products | SharePoint 2010 Central
Administration.

9. Click Application Management | Manage web applications.

267

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Web Application and Server Administration in SharePoint with PowerShell ——

10. Select Intranet web application and from the ribbon click General Settings | General
Settings, as shown in the following screenshot:

Web &pplications

x @ Manage Features Iy,
0 I'J G} \g Managed Paths —Q

Mewy Extend Delete General Authenticatio
- Seftings - !L Service Connections Providers

| Contribute | General Settings

Central Resource Throttling
administration warkflow
application Managemer Cutgoing E-mail

Mobile Account

al Adrninistration v
System Settings

Monitaring SharePaint Designer
Backup and Restore Intranet
Security IT Weh
Upgrade and Migration LCA Web
General Application Internst

Settings

Configuration Wizards

K2 for SharePoint

11. Take note of how the web application settings have changed according to our
configuration in the script, seen in the following screenshot:

Default Quota Template

Select guota template
Select the quota template
used by default for all site
collections, Click Quota

ITeam Site 'I

268

Templates ko define new
quoka kemplates,

Person Name Actions and
Presence Settings

'Wikh additional ackions and
Onling Status enabled,

onling presence information

is displayed next ko member
names and the additional
actions appear when users
right-click on a member

name anywhere on this site,

Alerts
Specify the default settings

for alerts on this Web
application.

RSS Settings

Specify the server-wide
settings for R3S feeds,

Blog API Settings

Choose whether or not to
bl bbc BACE Stiao bl

Storage limit: 1 MB
Murnber of invited users: Mot applicable

Enable additional actions and Online Status for members:
@ ves CNo

Alerts on this server are:
& on O oOff

Maximum number of alerts that a user can create:
N T
' Unlimited number

Enable RES feeds:
®ves O No

Enable Blog APT:
®ves O No

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

In this recipe, we looked at how you can configure web application parameters that affect
features available in the farm.

First, in our script, we defined the script variables. In this recipe, the only variable includes the
URL of our intranet site:

$SiteUrl = "http://intranet.contoso.com"

Once a PowerShell snap-in has been loaded, we get hold of the instance of the current site.
the first feature on the agenda will allow us to change how Microsoft Office documents are
opened when clicked in the document library. With the introduction of Office Web Applications
functionality, the default behavior is to open your office documents right in the browser using
the applicable browser application. To change this behavior, we get a hold of the feature
responsible for methods to open documents:

S$webAppsFeatureId = $(Get-SPFeature -limit all | where {$_.displayname
-eq "OpenInClient"}).Id

We then enable this feature on the site with the following command:
Enable-SPFeature S$webAppsFeatureId -url $SiteUrl

The last step in this configuration is to access the list or library which requires the new
behavior and apply the setting using the following command:
$SPSite.RootWeb.Lists | ForEach-Object {

$.DefaultItemOpen = [Microsoft.Sharepoint.DefaultItemOpen]::
PreferClient;

$.Update()

}

Above, we iterate through the list collection on the site. For each list we change the

default behavior to open items in the client application. An alternate option for opening
application is in the browser by using the following parameter [Microsoft.Sharepoint.
DefaultItemOpen] : :Browser.

Next in our script, we create a quota template for the site collection and assign it to be used
by our site collection. We start with creating new instance of the quota template:

SQuotaTemplate = New-Object Microsoft.SharePoint.Administration.
SPQuotaTemplate

We give it a name, storage maximum, and warning level:

SQuotaTemplate.Name = "Team Site"

SQuotaTemplate.StorageMaximumLevel = 1048576

SQuotaTemplate.StorageWarninglLevel = 524288

269

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Web Application and Server Administration in SharePoint with PowerShell ——

Now that the quota template is created, we connect to the admin service which will help us
with saving our newly created template:

SAdminService = [Microsoft.SharePoint.Administration.SPWebService]::
ContentService

To save the template, we add it to the collection of templates available in our admin
service object:

SAdminService.QuotaTemplates.Add (SQuotaTemplate)
SAdminService.Update ()

Once the quota template is created, we can use it on the site and assign it to other site
collections using the user interface or the script. Here is how we can assign the Team Site
template to our site collection:

$SPSite.WebApplication.DefaultQuotaTemplate = "Team Site"
$SPSite.WebApplication.Update ()

Among other items demonstrated in our script, we change the values for various parameters
in the web application. One of the parameters we change is the maximum file size which is
allowed to be uploaded to the site:

$SPSite.WebApplication.MaximumFileSize = 100
$SPSite.WebApplication.Update ()

In this case, if the file exceeds the maximum capacity, it will not be uploaded to the library and
the user will receive an error message. This is a handy setting but it only can be applied to all
libraries in a particular web application and not to an individual library.

Here is how we specified whether the recycle bin feature is enabled on the site and what the
retention period for deleted items is:

$SPSite.WebApplication.RecycleBinEnabled = $true
$SPSite.WebApplication.RecycleBinRetentionPeriod = 15
$SPSite.WebApplication.Update ()

Lastly, we looked at how you can enable or disable the alerts feature on your web application
and how many alerts can be sent to a user. This configuration is particularly handy if you want
to optimize the usage of your outbound mail infrastructure:

$SPSite.WebApplication.AlertsEnabled = S$true
$SPSite.WebApplication.AlertsMaximum = 100
$SPSite.WebApplication.Update ()

270

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

See also

The Provisioning site hierarchy during solution deployment recipe in Chapter 2, Enterprise
Content Deployment and Provisioning using PowerShell.

Parsing SharePoint logs using PowerShell

SharePoint has a variety of ways to extract information about issues in your farm. One of the
most trusted sources to determine the cause of the particular issue is using Unified Logging
Service (ULS) logs.

If your farm is set to catch detailed errors of multiple features in the system, you might run
into a challenge to find the useful information from your logs purely due to the large volumes
of data collected.

In this recipe, we'll take a look at how you can use PowerShell to extract useful information
about issues happening in the farm.

Getting ready

Considering you are using virtual development environment as described in Chapter 1,
PowerShell Scripting Methods and Creating Custom Commands, you're all set and your farm
is configured to collect log information based on events happening in SharePoint.

In this recipe, we'll be using PowerGUI to author the script, which means you will be required
to be logged in with an administrator's role on the target Virtual Machine.

How to do it...

Using the following steps, we'll take a look at how you can parse SharePoint logs easily
with PowerShell:

1. Navigate to the SharePoint Central Administration site by clicking Start | All
Programs | Microsoft SharePoint 2010 Products | SharePoint 2010 Central
Administration.

2. Click Monitoring on the quick launch of the Central Administration.
3. Under Reporting, select Configure diagnostic logging.

4. In the resulting window, ensure you have ticked a checkbox beside SharePoint
Foundation and SharePoint Server.

5. For Least critical event to report to the event log, select Warning.
6. For Least critical event to report to the trace log, select Medium.

271

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Web Application and Server Administration in SharePoint with PowerShell ——

7. Take note of the Path value for the trace log, as shown in the following screenshot:

® [w SharePoint Server

® [~ SharePoint Server Search
@ [T SQL Server Reporting Services
@ [Yisio Graphics Service

® [~ Web Analytics Services
o[Web Content Management

=N Word Automation Services

Least critical event to report to the event lag

IWarning vl

Least critical event to report to the trace log

IMedium 'I

Event Log Flood
P"’t‘?‘t“’_“ . M Enable Event Log Flood Protection
Enabling this setting allows
detection of repeating

events in the Windows

event lag. When the same
event is being logged
repeatedly, the repeating
events are detected and
suppressed until conditions
return ko normal,

Trace Lo

9 Path
When tratcitl?jg i: enallaledtyou I%CommonProgramFiIes%\MicrosoFt SharedyWeb Server Extensionsy14WL0GC
T:rn“;a?wrjn :’:rc:HEE . Example: Ci\Program Files\Cormman Files\Micrasoft Shared\web Server Ext

Click OK to save your settings.

9. Next, navigate to the following URL in your browser: http://demo2010a:2010/
admin/AddEditTrustedDataSourcelLocations.aspx.

10. As a result, you should receive the following error message, this is expected:

0 Error
An error has occurred on the server.,

Troubleshoak issues with Microsaft SharePoint Foundation,

Correlation ID: 98459ccc-95e6-40e4-9990-6od63bAackak

Date and Time: §/15/2011 10:33:13 PM

+ G0 back to site

272

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

11. Take down the value of Correlation ID which will be used later on.
12. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
13. In the main script editing window of PowerGUI, add the following script:

14.

15.

Defining script variables
SCorrelationID = "98459ccc-95e6-40e4-999c-6c463bbectas™”

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$.Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

Write-Host "Retrieving ULS events by correlation ID"

S$events = Get-SPLogEvent | Where-Object {$_.Correlation -eq
$CorrelationID}

S$events | Select Timestamp, Message

Write-Host "Retrieving ULS events by area and level"

$events = Get-SPLogEvent | Where-Object {$_.Level -eq "Error" -and
{$.Area -eqg "SharePoint Foundation "}}

S$events | Select Timestamp, Message

Write-Host "Retrieving ULS events by event timestamp"

Get-SPLogEvent -StartTime "08/15/2011 22:50:30" -EndTime
"08/15/2011 22:50:35"

Write-Host "Creating new ULS log file"
New-SPLogFile

Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to WorkingWithULSLogs.ps1.

Open the PowerShell console window and call WorkingWithULSLogs.psl using
the following command:

PS C:\Users\Administrator\Desktop> .\ WorkingWithULSLogs.psl

273

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Web Application and Server Administration in SharePoint with PowerShell ——

16. As a result, your PowerShell script will execute with an output as shown in the
following screenshot:

¥ Administrator: Windows PowersShell =] B3

PE C:sUserssAdministratorsDesktop? .“WorkingWithULSLogs.p=sl
Loading SharePoint Powerzhell Snapin
Retrieving ULS events by correlation ID

Timestamp Message

B-15%-2811 1A:33:13 PH Mame =Request (GET:http://dem
Site=r
Leaving Monitored Scope (Req
etrieving ULS events by area and level
etrieving ULS events hy event timestamp

Br15-2811 1A:5A:33 FPH Entering monitored scope (Ti
Br15-2011 1A:5A:33 FPHM Leaving Monitored Scope (Tim
Br15-2011 1A:5A:33 FPM AppllorkerCloser: :CloseSchedu
Br15-2011 1A:5A:34 PM Entering monitored scope (Ti
Br15-2811 1A:5A:34 PM Leaving Monitored Scope (Tim
reating new ULS log file

PE C:xUszerss~Administrator-Desktop>

17. Now, from Windows Explorer on your server, navigate to C: \Program Files\
Common Files\Microsoft Shared\Web Server Extensions\14\LOGS
to ensure a new log file has been created as per our script, as shown in the
following screenshot:

‘?{_}\—, I sofft Shared 5111] j lml I search LOGS

Organize * Include inlibrary « Sharewith * New Folder

_:\Program Fil ommon Files

[=] - Favorites Mame Tvpe I Size
B Desktop || DEMOZ010A-20110815-2256 Text Document 624 KB
& Downloads || DEMOZ0104-20110815-2257 usage US&GE File 0 KE
| Recent Pl
FLErh Fases | | DEMOR010A-20110815-2255 Text Document 170 KB
sharePoint Sites
|| DEMOZ010A-20110815-2225 Text Document 3,198 KB

SharePoint logs provide useful insight a into troubleshooting your farm. In this recipe,
we looked at what your options are in terms of troubleshooting your farm using ULS logs
more efficiently.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

First, we ensured that the logging configuration in your SharePoint farm is enabled and

we have detailed logging in your environment. The selected logging configuration may be
different for your production environment. For our testing purposes, we turned on logging
which produces moderate amounts of error and tracing messages so we have something to
work with.

Next, we hit the URL of the page which, by default, expects parameters which have not been
supplied. The sole purpose of this is to generate and error condition which you can see on the
screen and with our new logging configuration. The error is surely going to generate a trace in
the log.

Next, we execute our PowerShell script where we demonstrate how we can use PowerShell
features to navigate logs more efficiently out of the box.

As always, we defined the script variables. In this recipe, the variables include a correlation
token which represents an identifier which each logged condition generates. In our case, the
identifier is exactly the same value which has been given to us during the error condition from
the page in Central Administration:

SCorrelationID = "98459ccc-95e6-40e4-999c-6c463bbechas™”

Once a PowerShell snap-in has been loaded, we get hold of the list of events which are filtered
by our correlation identifier, by using the following command:

$events = Get-SPLogEvent | Where-Object {$_.Corre1ation -eq
$CorrelationID}

We display only a few of the returned properties, such as a time stamp and a message:

$events | Select Timestamp, Message

Depending on the number of log files you have in your environment, this
M command and any other commands may take some time to execute. This is
Q normal. One way to improve the performance of the log parsing is to delete
unnecessary or old log files we captured during our log configuration earlier
from their default location.

Another example of accessing information from your log is by area and the type of the event.
Here is how we can retrieve all of the Error events which have been generated by SharePoint
Foundation logging system:

Sevents = Get-SPLogEvent | Where-Object {$_.Level -eq "Error" -and {$_
.Area -eqg "SharePoint Foundation "}}
Sevents | Select Timestamp, Message

275

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Web Application and Server Administration in SharePoint with PowerShell ——

Perhaps one of the easiest ways to narrow down events which have happened during the
error condition is using a time stamp. By using a time stamp, you can get a collection of
events which have taken place during your testing and narrow down exactly what caused the
problem. Here is how to retrieve events that have taken place in point in time:

Get-SPLogEvent -StartTime "08/15/2011 22:50:30" -EndTime "08/15/2011
22:50:35"

Finally, the following command is used to cut the current error logging stream and start a new
file where the log is written. This is very handy when all you need to do is take a copy of the file
with recorded error conditions and give it to someone else for remote troubleshooting. Since
log files may be quite large, by starting a new file and capturing events for the interval of time
you're interested in, you can significantly improve your troubleshooting efficiency. Here is how
you instruct PowerShell to start a new log file:

New-SPLogFile

Managing web application throttling

settings

Each SharePoint 2010 web application instance comes with a variety of throttling settings
which allows administrators to control how intensive daily farm operations are allowed to be. If
you realize that certain new functionality in your site is used heavily and takes resources away
from your core business functionality, such as collaboration features, you may choose to use
options in this recipe to get the heavy usage under control.

In particular, this recipe will focus on setting thresholds for rendering list views and items that
can be retrieved from the view. In this scenario, it's important to understand the difference
between the setting of a threshold using the Central Administration option and the individual
option on a view and how it impacts custom components that are being developed on a view.

We'll also take a look at how you can throttle operations related to list lookup retrieval and
cascade actions performed on linked lists. In many scenarios, the handy concept of a lookup
list is used on large data sets and decreases the efficiency of day-to-day user interaction.

Finally, we'll take a look at how you can manage whether user-defined workflows are allowed
on the site. This ensures that if the workflow is defined first it goes through approval before it
can harm data on the site.

By using PowerShell in this recipe, we'll have an understanding on how all of the
configurations here can be scripted to create replicable development, staging, and production
environments in a typical organization.

276

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Getting ready

Considering you are using virtual development environment as described in Chapter 1,
PowerShell Scripting Methods and Custom Commands, you have access to all of the web
application settings for one of the default web applications available in the farm.

In this recipe, we'll be using PowerGUI to author the script, which means you will be required
to be logged in with an administrator's role on the target Virtual Machine.

How to do it...

Let's see what's involved in managing SharePoint throttling settings with PowerShell using the
following steps:

1. Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
2. Inthe main script editing window of PowerGUI, add the following script:

Defining script variables
$SiteUrl = "http://intranet.contoso.com"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
SharePoint.Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

Write-Host "Connecting to site"
$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SPSite -ne $null)
{
Write-Host "Setting the List View Threshold"
$SPSite.WebApplication.MaxItemsPerThrottledOperation = 2000

Write-Host "Setting the List View Threshold for Auditors and
Administrators"

$SPSite.WebApplication.MaxItemsPerThrottledOperationOverride =
5000

Write-Host "Setting the Object Model Override"

$SPSite.WebApplication.AllowOMCodeOverrideThrottleSettings =
Strue

Write-Host "Setting the List View Lookup Threshold"

277

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Web Application and Server Administration in SharePoint with PowerShell ——

SSPSite.WebApplication.MaxQueryLookupFields = 200

Write-Host "Allowing User Defined Workflows"
$SPSite.WebApplication.UserDefinedWorkflowsEnabled = S$true

Write-Host "Setting cascade delete operation item limit"
$SPSite.WebApplication.CascadeDeleteMaximumItemLimit = 20

$SPSite.WebApplication.Update ()

Write-Host "Web application configuration complete"

}

$SPSite.Dispose ()

3. Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to WebApplicationThrottling.psl.

4. Open the PowerShell console window and call WebApplicationThrottling.psl
using the following command:

PS C:\Users\Administrator\Desktop> .\ WebApplicationThrottling.psl

5. As aresult, your PowerShell script will execute and return results as shown in the
following screenshot:

B Administrator: Windows PowerShell =]

PS C:sUsers“AdministratorsDesktop> .“WebApplicationThrottling.psl

Loading SharePoint Powershell Snapin

Connecting to site

LARMING: More results were found in Get—-5PSite but were not returned.

*~Limit ALL’ to return all possible results.
Setting the List Uiew Threshold
i List Uiew Threshold for Auditors and Administrators

Ohject Model OQuerride
List Uiew Lookup Threzhold

Allowing User Defined Yorkflows

Setting cascade delete operation item limit
Web application configuration complete

P& C:sUserssAdninistratorsDesktop> _

6. Now, navigate to the SharePoint Central Administration site by clicking Start |
All Programs | Microsoft SharePoint 2010 Products | SharePoint 2010 Central
Administration.

7. Click Application Management | Manage web applications.

Select Intranet web application and from the ribbon click General Settings |
Resource Throttling, as seen in the following screenshot:

278

www.it-ebooks.info

http://www.it-ebooks.info/

Web Spplications

e X

Mew Extend Delete

Contribute

Central
Administration

Systermn Settings
Monitoring

Backup and Restore
Security

Upgrade and Migration

General Application
Settings

Configuration Wizards

Kz for SharePoint

General Authentication
Setki i

Application Managerer Qutgoing E-mail

@Manage Features

Iy,
@Managed Paths —Q

ings » (gt Service Connections Providers

General Settings

Resource Throttling
okl o

al Adrninistration w4
tMabile Account

SharePoint Designer

Intranet

IT web
LCA Wweb

Internet

9. Take note of what web application settings have changed according to our

configuration in the script, as shown in the following screenshot:

[o]'4 | Cancel

List ¥iew Threshold

Specify the maximum
rirnber of items that a
database operation can
involve at one time,
Operations that exceed this
limit are prohibited.

Object Model Override

IF you choose to allow
object model override, users
ko whomn you grank
sufficient permission can
override the List Yiew
Threshald programmatically
For particular queries,

List Yiew Threshold for
Auditors and
Administrators

Specify the maximum
nurmber of items that an
object model database
query can invalve at one
time for users to whom you
grant sufficient permissions
through Security Palicy,

List Yiew Lookup
Threshold

Specify the masximun
nurnber of Lookup,
PersonjGroup, or warkflow
skatus Figlds that a
database query can involve
at one kime,

List Wiew Threshaold:
2000

Allow object model override:

& ves C No

List Wiew Threshold for auditors and
administrators:

I S000

List Wiew Lookup Threshold:
200

Chapter 9

279

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Web Application and Server Administration in SharePoint with PowerShell ——
10. From the Application Management | Manage web applications screen, select
Intranet web application, and from the ribbon click General Settings | Workflow.

11. Verify the setting for the User-Defined Workflows is set to Enabled, as shown in the
following screenshot:

User-Defined Workflows

Enable user-defined workflows for all sites on this
Users can assemble new web application?
workflows oot of building 0
blocks deploved to the site, Dies @il
These warkFlows cannot add
code. They can only reuse
code already deployed by
the administrator,

Workflow Task E .
Notifications Alert internal users who do not have site access
Set aptions for how users when they are assigned a workflow task?
without access to the site @ves Mo
are notified of pending .)
workFlow kasks. allow external users to participate in workflow by

sending thern a copy of the docurnent?

Cves Mo
0K Cancel

Web application throttling settings give administrators more control over the farm usage.
In some cases, you may want to throttle only high-level areas of your farm that are critical,
in other cases, you may want to lock down your farm or web application on a more
granular level.

In this recipe, we used PowerShell to demonstrate various throttling options available using
the out-of-the-box user interface and through a script.

First, in our script, we defined our script variables. In this recipe, it's the URL of the intranet
site collection for which we modify web application settings:

$SiteUrl = "http://intranet.contoso.com"

Once a PowerShell snap-in has been loaded, we get hold of the instance of the current site to
get access to web application object on it.

First, we set the threshold on how many items are displayed in the view for site collections on
the web application, using the following command:

$SPSite.WebApplication.MaxItemsPerThrottledOperation = 2000

280

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

The important concept to understand here is that this setting is different from the setting for
an individual list view. With the list view limitation, users can still create new views to access
the data they need. In cases where users are willing to wait for slow rendering of the view,
they may not realize they are slowing down the entire web application with a long running
operation. The following setting allows us to configure maximum number of list items allowed
to be retrieved for any new or existing view on the system.

Next is the setting which defines the same list view rendering limit but this time for
administrators and auditors. Since administrators and auditors typically have higher threshold
limits due to the fact that they rarely execute list view operations and normally it is due to
troubleshooting, they get higher priority and less limitations. Here is how this setting is defined
with PowerShell:

$SPSite.WebApplication.MaxItemsPerThrottledOperationOverride = 5000

The next command demonstrates how you can set the last two settings to be overwritten for
custom and out-of-the-box code, such as web parts:

$SPSite.WebApplication.AllowOMCodeOverrideThrottleSettings = S$true

Typically, custom and out-of-the-box components have well thought out logic, Therefore, you
may choose for your custom components to be able to retrieve more items.

Next, we are setting up how many items can be retrieved for a field which looks up values into
another list. Lookup list relationship is a great feature which allows you to maintain two lists
and update values from the parent list by changing referenced items in the child. However, if
the number of items for the field exceeds your desired threshold, the lookup operation may
slow down the execution of the operation.

Here is how we can control this setting:
$SPSite.WebApplication.MaxQueryLookupFields = 200

On a topic of lookup lists, if your lists have referential relationship, in SharePoint 2010,

you can choose to perform a cascade delete operation which will delete any related child
elements when parent item is deleted. Since this lookup and delete operations can take time,
we use the following setting to choose how many items are allowed to be deleted with cascade
delete option:

$SPSite.WebApplication.CascadeDeleteMaximumItemLimit = 20

Another useful setting we've looked at allows you to choose whether user-defined workflows
are allowed on the site. Those include custom workflows created with SharePoint Designer.
Here is the command which allows using of SharePoint designer workflows:

$SPSite.WebApplication.UserDefinedWorkflowsEnabled = $true

281

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Web Application and Server Administration in SharePoint with PowerShell ——

See also

The Throttling items returned with external lists recipe in Chapter 4, Managing External Data
in SharePoint and Business Connectivity Services using PowerShell.

Configuring sandbox solution policies

The SharePoint 2010 sandbox solutions model truly allows for multiple tenants running on
separate site collections to run individual pieces of custom functionality without affecting
other site collections. SharePoint 2010 also has a variety of features you can use to configure
how your sandbox solutions are going to run. Earlier in this chapter, in the Configuring web
application settings recipe, we looked at how you can create custom quota templates which
will be applied to new and existing web applications in your farm. One of the options available
for the quota template is the ability to assign resource points to your sandbox solutions.

As your sandbox solutions become more popular in your environment, you can manage

how many resources you want to allocate for some of the sandbox solutions compared to
others and SharePoint will automatically take care of turning off the solution, if it exceeds its
allocated limits.

If you think your users are not ready for sandbox solution, or you see a potential risk of too
many solutions used, you can turn off the sandbox solution feature altogether.

In this recipe, we'll take a look at how you can configure sandbox solution options using
PowerShell which allows you to script configuration along with other settings as you provision
multiple environments within your organization.

Getting ready

Considering you are using virtual development environment as described in Chapter 1,
PowerShell Scripting Methods and Custom Commands, sandbox solutions should be
configured and enabled in your environment.

We'll also assume you are familiar with Quota template creation for the web application
and have already created a Team site quota template as described in the Configuring web
application settings recipe.

In this recipe, we'll be using PowerGUI to author the script, which means you will be required
to be logged in with an administrator's role on the target Virtual Machine.

How to do it...

Using the following steps, we'll see what it takes to configure SharePoint sandbox solution
policies with PowerShell:

282

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
In the main script editing window of PowerGUI, add the following script:

Defining script variables
$SiteUrl = "http://intranet.contoso.com"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$.Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

Write-Host "Connecting to site"
$SPSite = Get-SPSite | Where-Object {$.Url -eq $SiteUrl}
if ($SSPSite -ne S$Snull)
{
Write-Host "Accessing web application quota template"
SAdminService = [Microsoft.SharePoint.Administration.
SPWebService] : :ContentService
SQuotaTemplate = S$SAdminService.QuotaTemplates["Team Site"]
SQuotaTemplate.UserCodeMaximumLevel = 200
SQuotaTemplate.UserCodeWarningLevel = 100
SAdminService.Update ()

Write-Host "Setting web application gquota"
$SPSite.WebApplication.DefaultQuotaTemplate = "Team Site"
$SPSite.WebApplication.Update ()

Write-Host "Enabling execution of sandbox solutions"
Start-Service -Name SPUserCodeV4

Write-Host "Web application configuration complete"

}

$SPSite.Dispose ()
Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to ConfigureSandbox.ps1.

Open the PowerShell console window and call ConfigureSandbox.ps1 using the
following command:

PS C:\Users\Administrator\Desktop> .\ ConfigureSandbox.psl

283

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Web Application and Server Administration in SharePoint with PowerShell ——

5. As aresult, your PowerShell script will execute with an output as shown in the

28

following screenshot:

*—Limit ALL’ to return all possible results.
Creating web application guota template
Setting web application guota

Enabling execution of sandbox solutions

Weh application configuration complete
PSS C:slUsers~AdministratorsDesktop> _

Now, let's navigate to the SharePoint Central Administration site by clicking Start
| All Programs | Microsoft SharePoint 2010 Products | SharePoint 2010 Central

Administration.

From the Quick launch of Central Administration, click Application Management.

From Site Collections, click Specify quota templates.

From Template Name, select and existing template provisioned nhamed Team Site

and ensure the section Sandboxed Solutions With Code Limits has values as
specified in our script, as shown in the following screenshot:

Template Mame

Edit an exisking quaota
template, or create a new
template, Faor a new
template, wou can start
from a blank template or
miodify an existing kemplate.

Storage Limit ¥alues

Specify whether to limit the
amount of storage available
on a Site Collection, and set
the maximum armount of
storage, and & warning
lesel, Wehen the warning
level or maximum storage
lewel is reached, an e-mail is
sent ko the site
administrator ko infFarm thern
of the issue,

Sandboxed Solutions
With Code Limits
Specifies whether
sandboxed solutions with
code are allowed For this
site collection. When the
warning level is reached, an

¥ Edit an existing template
Template to modify

| Team site

{* Create a new quata ternplate
Template to start from

I[new blank template]

Mew template name:

v

Limit site storage to a maximum of:

| 1000 ME

Il

| 100 MB

Send warning E-mail when Site Collection storage reaches:

Limit maxirmum usage per I
day to:
¥ Send warning &-mail

200 points

when usage per day
reaches:

100 points

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

10. Now, from the home page of your Central Administration, click System Settings |
Manage services on server.

11. Ensure the Microsoft SharePoint Foundation Sandboxed Code Service is started as
specified in our script.

SharePoint sandbox solutions introduce an entirely new set of features along with the
configurations which allow administrators to have a better control over how sandbox solutions
are used on their farm.

We started with defining the script variables for our script which includes the URL of our
intranet site:

$SiteUrl = "http://intranet.contoso.com"

We then connect to the root site of our main site collection to work with its associated web
application. As we have seen in the recipe Managing web application throttling settings, you can
create a quota template where the site which uses the quota template can inherit configurations
from. Here is how we modified our existing quota template with the configuration values for
managing sandbox solution.

We connect to administration service first:

SAdminService = [Microsoft.SharePoint.Administration.SPWebService]::
ContentService

We then get hold of the existing quota template provisioned in the previously referenced
recipe. Our quota template is called Team Site.

We then update the resource points for sandbox solutions. The resource points are calculated
by the amount of resources a particular custom solution is using. When the threshold you
specify is reached, the solution is shut down. Here is how resource points are assigned in

our script:

200
100

SQuotaTemplate.UserCodeMaximumLevel
SQuotaTemplate.UserCodeWarningLevel
SAdminService.Update ()

Just as before, we update the site collection DefaultQuotaTemplate property by specifying
the quota template with the quota template we would like to use:

$SPSite.WebApplication.DefaultQuotaTemplate = "Team Site"
$SPSite.WebApplication.Update ()

285

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Web Application and Server Administration in SharePoint with PowerShell ——

Finally, we ensure that sandbox solutions are enabled on the site by starting up sandbox
service host by using the following command:

Start-Service -Name SPUserCodeV4

Similar to starting the service, you can stop the service, which will disable any sandbox
solutions from being activated or used.

When the sandbox host service is stopped, the user interface involved in interacting with
sandbox solutions is disabled.

The Configuring web application settings and Managing sandbox solutions in SharePoint site
collections recipes in this chapter.

Managing sandbox solutions in SharePoint

site collections

As we've seen in the previous recipe, sandbox solutions give your users the flexibility to run
applications within the scope of their site collection without affecting other site collections.
Depending on the policies you have established, your users may run sandbox applications
which cost significant resources to the system. In this case, you wouldn't want to restrict
resource points for all of the sandbox solutions as we discussed in Configuring sandbox
solution policies, because all of the solutions will be affected. In an organization where

you have just a few site collections, you can instruct your users to avoid using the problem
solution. However, in case you're running multiple site collections and you have many users
allowed to deploy sandbox solutions to their site collections, you can choose to block a
particular sandbox solution from being deployed and used on the farm.

In this recipe, we'll take a look at how PowerShell can help you with blocking a particular
sandbox solution regardless of where on the farm it's deployed or what is the filename
of the solution.

Getting ready

Assuming you are already using virtual development environment as described in Chapter 1,
PowerShell Scripting Methods and Creating Custom Commands, you will have site collections
allowing you to deploy sandbox solutions.

286

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Since in this example we will be using a sample sandbox solution called Solutionl.wsp, we
will assume you will have an existing sandbox solution provided to you with the same name. If
you're familiar with the Visual Studio development environment, this should not be a problem

for you as you can create a new solution in a few minutes. Alternatively, you can download one
of the freely available SharePoint sandbox solutions from http://www. codeplex.com.

In this recipe, we'll be using PowerGUI to author the script, which means you will be required
to be logged in with an administrator's role on the target Virtual Machine.

How to do it...

Next, we see how you can manage sandbox solutions in your site collections using PowerShell:

1.

Ensure you have a sandbox solution file available at the following path:
C:\Users\Administrator\Desktop\

Ensure the solution name is Solutionil.wsp as that's the name assumed further in
the script.

Click Start | All Programs | PowerGUI | PowerGUI Script Editor.
In the main script editing window of PowerGUI, add the following script:

Defining script variables
$SiteUrl = "http://intranet.contoso.com"
$SolutionName = "C:\Users\Administrator\Desktop\Solutionl.wsp"

Loading Microsoft.SharePoint.PowerShell

$snapin = Get-PSSnapin | Where-Object {$_ .Name -eq 'Microsoft.
SharePoint .Powershell'}

if ($snapin -eqg $null)

Write-Host "Loading SharePoint Powershell Snapin"
Add-PSSnapin "Microsoft.SharePoint.Powershell"

}

Write-Host "Connecting to User Solutions Host"
SUserCodeSve = [Microsoft.SharePoint.Administration.
SPUserCodeService] : :Local

Write-Host "Retrieving sandbox solution signature"

$Signature = [Microsoft.SharePoint.Administration.SPUserCodeServic
e] : :GetSolutionSignatureFromFile ($SolutionName)

Write-Host "Creating blocked solution object™"

$BlockedSolution = New-Object Microsoft.SharePoint.UserCode.
SPBlockedSolution -ArgumentList ($SolutionName), ($Signature),
("Solution Blocked")

287

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Web Application and Server Administration in SharePoint with PowerShell ——

Write-Host "Blocking the solution"
SUserCodeSvc.BlockedSolutions.Add ($BlockedSolution)
$UserCodeSvc .Update ()

Write-Host "Solution blocking complete"

5. Click File | Save to save the script to your development machine's desktop. Set the
filename of the script to ManageSandbox . ps1.

6. Open the PowerShell console window and call ManageSandbox . ps1 using the
following command:

PS C:\Users\Administrator\Desktop> .\ ManageSandbox.psl

7. As aresult, your PowerShell script will execute with results as shown in the
following screenshot:

B Administrator: Windows PowerShell H=] B3

PS C:sUserssAdministratorsDesktop?> .sManageSandbox.psl
Connecting to User Solutions Host

Retrieving sandbox solution signature

Creating blocked solution object

Blocking the solution

Solution blocking complete
PS C:xlUserssAdministratorsDesktop> _

8. Now, let's navigate to the SharePoint Central Administration site by clicking Start
| All Programs | Microsoft SharePoint 2010 Products | SharePoint 2010 Central
Administration.

9. From the Quick launch of Central Administration, click System Settings.
10. From the Farm Management, click Manage user solutions.

11. Ensure the solution from your desktop is listed under the Blocked Solutions list, as
shown in the following screenshot:

288

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Solution Restrictions

Wou can block certain
solutions Franm running wikhin
sites in this farm, To block a
solution, use the browse
button ko select and upload
it ¥ou can optionally specify
a message users of the
solution will receive.

Warning: Solution blacking
is petformad based on the
contents of the solution file,
Solution packages that have
the same name but different
contents are treated as
different solutions,

Blocked Solutions:

Solutionl.wsp - I3MIFNjbUAZ3q3gglvEZyehbivt/®fZoW1a]18BGAz+M= - Solution Blocke:

Bemaove |

Add new solution to block:

File: Browse... |
-
Message: Elock |

[

12. Next, let's navigate to our SharePoint Intranet site collection: http://intranet.

contoso.com.

13. Click Site Actions | Site Settings.
14. Under Galleries, click Solutions.
15. From the ribbon, click the Library tab, then click the Upload Solution ribbon button.

16. Upload the solution from the desktop to the solution library.

17. Try activating the solution to see that it's blocked and you cannot activate it, as shown
in the following screenshot:

Upload Browse
Solution Office.com

Solutions

Delete Activate Deactivate Upgrade

Lists

Calendar

[l e Commands
Libraries Your resource quota is 300 server resources, Solutions can con
disabled if your resource usage exceeds your quota,
Site Pages

Shared Documents

Data connections

Current Usage (Today) [
Average Usage (Last 14 days) |

[¥ MName Edit Modified

¥ Solutionl @ wew) 8/17/2011 9:38 FM

289

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Web Application and Server Administration in SharePoint with PowerShell ——

We started by defining the location of our solution to be blocked:
$SolutionName = "C:\Users\Administrator\Desktop\Solutionl.wsp"

We loaded PowerShell SharePoint snap-in used to perform SharePoint related PowerShell
commands.

The first step is to connect to the Sandbox Service Host, which supplies methods and objects
used to work with sandbox solutions:

SUserCodeSvec = [Microsoft.SharePoint.Administration.
SPUserCodeService] : :Local

Next, we need to retrieve the solution hash which will uniquely identify the solution as well as
its integrity. As per TechNet, here is how solution hash helps with identifying the solution:

Each sandboxed solution is identified by a hash result of the solution code. If the solution code is
changed and redeployed, it will be seen as a new sandboxed solution and will be allowed to run
even if the original is still blocked.

The following command is used to extract the hash from the solution we are about to block:

$Signature = [Microsoft.SharePoint.Administration.SPUserCodeService]::
GetSolutionSignatureFromFile ($SolutionName)

The only parameter is the location of the solution.

Next, we need to create an instance of an object which will represent a blocked solution:
$BlockedSolution = New-Object Microsoft.SharePoint.UserCode.
SPBlockedSolution -ArgumentList ($SolutionName), ($Signature),
("Solution Blocked")

The three arguments required to describe our blocked solution include the:

» Path to the solution
» Hash of the solution which we determined earlier
» Message shown to users if the solution is attempted to be activated

Blocking the solution is just a matter of adding our newly created blocked solution object to
the collection of blocked solutions, as follows:

SUserCodeSvce.BlockedSolutions.Add (SBlockedSolution)
Finally, to save all of the changes we perform the update on the Sandbox Code Host:

$UserCodeSvc .Update ()

290

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

There's more

In some cases, you may have solutions which are already added and activated on the system.
In this case, the functionality delivered by the solution will be blocked. For example, if you
have a web part which runs from within a solution. If that solution has just been blocked, the
web part will not function, and if users try to add a new instance of it, they will get an error
message which the administrator has specified when they blocked the solution.

In some cases, the solution which provisions files to the site, such as modules provisioning
master pages or stylesheets, can also be blocked. In this case, the functionality associated
with the solution has already been executed and files have made it into the server. In this
case, when the administrator blocks the solution, the files will not be retracted from the site.

In the event that a blocked sandbox solution has a feature with an event receiver on it, if such
feature has not been activated, when activation is attempted, the user will receive an error
with an error message specified by administrator during solution blocking.

See also

The Configuring sandbox solution policies recipe in this chapter.

291

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Symbols

$AccountName 139
$BuildingNumberPropertyName 149
$false parameter 87
$ProfileSearchTerm 149
$PropertyValue 149
<SiteCollection/> 37

A

Add function 77

Add parameter 120

AddTag method 168

Approvers 88

audience targeting feature, FAST Search 170

BCS model
importing, to SharePoint 106-111
BdcObjectType parameter 110, 115, 126
best bets 170
Branch Departments 155
Branch Metadata 155
BuildingNumber property 150
Business Connectivity Services (BCS) 105

C

CAML query 98

CAML rule 245

CmdLet
creating 22-24
working 25, 26

Index

Collaborative Application Markup Language.
See CAML query 98
Commit command 156
content hub
configuring, for content types 257
Content Query Web Part 227
content type
about 199
basic content type, creating 200-205
complex content type, creating 200-205
content hub used in records set, configuring
257
usage in lists, managing 99-103
ContentTypesEnabled property 211
Createlist.ps1 76
Create method 145
CreatePolicy method 21
CreateUserProfile method 139
CTFleld 103
custom expiration policy
creating, for record 252
custom PowerShell command. See CmdLet
custom structure
list, creating 74-78

D

Default parameter 131
delivery 191
document
provisioning, with PowerShell 234-239
document sets
configuring 205-211
creating 205-211

www.it-ebooks.info

http://www.it-ebooks.info/

E

Entity parameter 119

external libraries
SharePoint 2010 functionality, accessing 17,

20,21

external list
items returned, throttling 127-132
permissions, managing on 121-127
instances, creating with PowerShell 116-121

F

FAST Search 169
features
associating, to existing site templates 56-60
installing, on site 39-45
FilterDisplayValuel parameter 232
FilterField1 parameter 232
FilterOperatorl parameter 232

G

Get-SPBusinessDataCatalogMetadataObject
command 115

Get-SPBusinessDataCatalogThrottleConfig
command 131

Global Assembly Cache (GAC) 26

Grant-SPBusinessDataCatalogMetadataOb-
ject command 127

Identity parameter 111, 126, 131
IdentityType value 126

Indexed property 93

In Place Records Management feature 44
Install-SPFeature command 60
IsVisibleOnViewer property 145

L

libraries 73, 74
list item security
setting 84-88
list relationships
setting 89-93

294

list rollups

provisioning, PowerShell used 227-232
lists

about 73,74

of custom structure, creating 74-78
list views

customizing 94

customizing, steps 95-97

working 97, 98

Managed Metadata Service 155
masterpage

assigning, to SharePoint site 69-71
Maximum parameter 131
metadata taxonomy terms

creating 151-156

exporting 151-156

importing 151-156

Name parameter 115

New-SPEnterpriseSearchLanguageResource-
Phrase keyword 174

New-SPWeb command 238

P

permission levels
creating 46-49
permissions
on external list, managing 121-127
Permissionsincluded 111
PowerGUI 265
PowerGUI tool
about 10, 11
installing, steps 11
used, for script authoring 12-16
working 14, 15
PowerShell
about 7,8
document, provisioning with 234-239
external lists instances, creating 116-121
publishing pages, creating 211-217
publishing pages, editing 211-217

www.it-ebooks.info

http://www.it-ebooks.info/

records center, provisioning with 234-239
search web parts, configuring
191-196
SharePoint list item validation, setting 78-84
used, for managing SharePoint workflow
association 60-65
used, for parsing SharePoint logs 271-276
used, for provisioning list rollups 227-232
PowerShell_Cmdletl class 26
PowerShell ISE tool
about 10, 11
used, for script authoring 12-14
working 14, 15
PowerShell Snap-in
creating 26, 27
creating, steps 28-30
uninstalling, from system 30
working 30
Propertiesincluded 111
publishing pages
creating, with PowerShell 211-217
editing, with PowerShell 211-217

Read role 88
record expiration policy
configuring 246, 247
configuring, steps 247, 249
working 250, 251
record routing
configuring 240-243
working 244, 245
records center
provisioning, with powerShell 234-239
Restrict option 93
Revoke-SPBusinessDataCatalogMetadataOb-
ject command 127
RTM 8

S

sandbox solution policies
about 282
configuring 282-285
working 285

sandbox solutions
managing, on SharePoint site collections
286-291
schema
exporting 111-115
Scope parameter 131
script authoring
PowerGUI used 16, 17
search audience targeting
configuring 186
configuring, steps 186-189
working 189-191
search best bets
configuring 175, 180
configuring, steps 176-178
working 179
search center
search query suggestions, configuring
170-175
search query suggestions
configuring, in search center 170-175
search web parts
configuring, with PowerShell 191-196
security groups
creating 46-49
Set-ExecutionPolicy 10
SharePoint
basic content type, creating 200-205
BCS model, importing 106-111
complex content type, creating 200-205
content, bulk tagging 162-168
content types 199
document sets, configuring 205-211
document sets, creating 205-211
feature 59
sandbox solution policies, configuring
282-285
tags, deleting 162-168
web application settings, configuring 264-270
web application throttling settings, managing
276-281
SharePoint 2010
functionality, accessing with external libraries
17-21
SharePoint BCS model
exporting 111-115

295

www.it-ebooks.info

http://www.it-ebooks.info/

SharePoint libraries

and related functions, accessing 21, 22
SharePoint list item validation

setting, with PowerShell 78-82
SharePoint logs

parsing, PowerShell used 271-276
SharePoint pages

web parts, configuring in bulk 222

web parts, provisioning in bulk 217-222
SharePoint site

masterpage, assigning to 69-71
SharePoint site collections

sandbox solutions, managing on 286-291
SharePoint workflow association

managing, PowerShell used 60-65
site

features, installing 39-45

features, managing 39-45
site hierarchy

provisioning, during solution deployment

34-38

site templates

availability, managing 50-55

features, associating 56-60

managing 50-55
site themes

configuring 65-69
Snap-In item templates 30, 32
social ratings

enabling, on libraries 157-161

enabling, on lists 157-161
solution deployment

site hierarchy, provisioning 34-38
SpecificFinder parameter 119

T

tags, SharePoint
deleting 162-168
Team Site 38

U

Unified Logging Service (ULS) logs 271
user interface artefacts

configuring 65-69
user profiles

about 133

296

CreateUserProfile method 139
creating 134
creating, steps 135-137
UserProfileManager class’ method 139
working 139

user profiles, properties
$BuildingNumberPropertyName 149
$ProfileSearchTerm 149
$PropertyValue 149
adding 140-145
BuildingNumber property 150
bulk provisioning data 145-149
configuring 140-145
Create method 145
IsVisibleOnViewer property 145

\'}

Value parameter 245
Virtual Machine
setting up 8
test script, running 9
working 10
visual best bets
about 170
configuring 180, 181
configuring, steps 181-183
working 183-185
Visual Studio CmdLet 30, 32

w
web application settings
about 264

configuring, steps 265-267
working 269, 270

web application throttling settings
about 276
managing, steps 277-279
working 280, 281

web parts
configuring in bulk, on to SharePoint pages
222
provisioning in bulk, on to SharePoint pages
217-222

WebUrl parameter 232

www.it-ebooks.info

http://www.it-ebooks.info/

enTerprise

professional expertise distilled

PUBLISHING

Thank you for buying
Microsoft SharePoint 2010 and Windows PowerShell 2.0:
Expert Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www . PacktPub . com.

About Packt Enterprise

In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software - software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub. com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

enferprise &

professional expertise distiled

PUBLISHING

Microsoft Exchange 2010
PowerShell Cookbook

ISBN: 978-1-84968-246-6 Paperback: 480 pages
Manage and maintain your Microsoft Exchange 2010

environment with Windows PowerShell 2.0 and the
Exchange Management Shell

1. Step-by-step instructions on how to write scripts
Microsoft Exchange 2010 for nearly every aspect of Exchange 2010

PowerShell Cookbook including the Client Access Server, Mailbox, and
Transport server roles

2. Understand the core concepts of Windows
PowerShell 2.0 that will allow you to write
sophisticated scripts and one-liners used with the
Exchange Management Shell

Mike Pfeiffer

3. Learn how to write scripts and functions, schedule
scripts to run automatically, and generate complex
reports

Microsoft SharePoint 2010
Administration Cookbook
ISBN: 978-1-84968-108-7 Paperback: 288 pages

Over 90 simple but incredibly effective recipes to
administer your Microsoft SharePoint 2010 applications

1. Solutions to the most common problems
encountered while administering SharePoint in
Microsoft SharePoint 2010 book and eBook formats

Administration Cookbook]
2. Upgrade, configure, secure, and back up your

SharePoint applications with ease

Peter Serzo [PACKT] eterprise® 3. Packed with many recipes for improving
- collaboration and content management with
SharePoint

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

enterprise 8

professional expertise distilled

PUBLISHING

Microsoft SharePoint 2010 End User Guide:

Per

Taking the basics to the business with no-coding
solutions for SharePoint 2010

Michael McCabe Peter Ward [PACK

Microsoft SharePoint 2010
End User Guide: Business

Performance Enhancement
ISBN: 978-1-84968-066-0 Paperback: 424 pages

A from-the-trenches tutorial filled with hints, tips, and
real world best partices for applying Sharepoint 2010 to
your business

1. Designed to offer applicable, no-coding solutions
to dramatically enhance the performance of your
business

2. Excel at SharePoint intranet functionality to have
the most impact on you and your team

3. Drastically enhance your End user SharePoint
functionality experience

Microsoft SharePoint 2010
Power User Cookbook

Dr Adrian Colquhoun

Microsoft SharePoint 2010
Power User Cookbook
ISBN: 978-1-84968-288-6 Paperback: 344 pages

Over 70 advanced recipes for expert End Users to unlock
and apply the value of Microsoft SharePoint 2010

1. Discover how to apply SharePoint far beyond basic
functionality

2. Explore the Business Intelligence capabilities of
SharePoint with KPIs and custom dashboards

3. Take a deep dive into document management,
data integration, electronic forms, and workflow
scenarios

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: PowerShell Scripting Methods and Creating Custom Commands
	Introduction
	Setting up your Virtual Machine and running a test script
	Authoring, debugging, and executing script accessing farm settings with PowerGUI and PowerShell ISE
	Accessing advanced SharePoint 2010 functionality with external libraries
	Creating a custom PowerShell command (CmdLet)
	Creating a custom PowerShell Snap-In

	Chapter 2: Enterprise Content Deployment and Provisioning Using PowerShell
	Introduction
	Provisioning site hierarchy during solution deployment
	Installing features on the site and managing existing site features
	Creating permission levels and security groups that use them
	Managing site templates and their availability on sites
	Associating features to existing site templates
	Managing SharePoint workflow association using PowerShell
	Configuring site themes and user interface artifacts

	Chapter 3: Performing Advanced List and Content Operations in SharePoint using PowerShell
	Introduction
	Creating lists of custom structure
	Setting SharePoint list item validation with PowerShell
	Setting list item security
	Setting list relationships
	Customizing list views
	Managing the use of content types in lists

	Chapter 4: Managing External Data in SharePoint and Business Connectivity Services using PowerShell
	Introduction
	Importing a custom BCS model to SharePoint
	Exporting SharePoint BCS model and schema
	Creating instances of external lists with PowerShell
	Managing permissions on an external list
	Throttling items returned with external lists

	Chapter 5: Managing SharePoint 2010 Metadata and Social Features Using PowerShell
	Introduction
	Creating new user profiles
	Adding and configuring new profile properties
	Bulk provisioning data into user profile properties
	Creating, importing, and exporting managed metadata taxonomy terms
	Enabling social ratings on lists and libraries
	Bulk tagging content and deleting tags in SharePoint

	Chapter 6: Managing SharePoint Search and FAST Search with PowerShell
	Introduction
	Configuring search query suggestions in your search center
	Configuring search best bets
	Configuring visual best bets
	Configuring search audience targeting
	Configuring search web parts automatically with PowerShell

	Chapter 7: Managing SharePoint Site Content in Bulk using PowerShell
	Introduction
	Creating basic and complex content types
	Creating and configuring document sets
	Creating and editing publishing pages with PowerShell
	Provisioning web parts in bulk on to SharePoint pages
	Configuring web parts in bulk with PowerShell
	Provisioning list rollups using Powershell

	Chapter 8: Managing Documents and Records in SharePoint with PowerShell
	Introduction
	Provisioning document and records center with PowerShell
	Configuring record routing
	Configuring a common record expiration policy
	Creating a custom expiration policy for the record
	Configuring content hub for content types used in records center

	Chapter 9: Administrating Web Application and Server Administration in SharePoint with PowerShell
	Introduction
	Configuring web application settings
	Parsing SharePoint logs using PowerShell
	Managing web application throttling settings
	Configuring sandbox solution policies
	Managing sandbox solutions on SharePoint site collections

	Index

