
114

Chapter 5

5
Browsing and
Advanced Disk Shares

This chapter continues our discussion of disk shares from the previous chapter.
Here, we will discuss various differences between the Windows and Unix filesys-
tems—and how Samba works to bridge the gap. There are a surprising number of
inconsistencies between a DOS filesystem and a Unix filesystem. In addition, we
will talk briefly about name mangling, file locking, and a relatively new feature for
Samba: opportunistic locking, or oplocks. However, before we move into that ter-
ritory, we should first discuss the somewhat arcane topic of browsing with Samba.

Browsing
Browsing is the ability to examine the servers and shares that are currently avail-
able on your network. On a Windows NT 4.0 or 95/98 client, a user can browse
network servers through the Network Neighborhood folder. By double-clicking
the icon representing the server, the user should be able to see the printer and
disk share resources available on that machine as well. (If you have Windows NT
3.x, you can use the Disk-Connect Network Drive menu in the File Manager to dis-
play the available shares on a server.)

From the Windows command line, you can also use the net view option to see
which servers are currently on the network. Here is an example of the net view
command in action:

C:\>net view
Servers available in workgroup SIMPLE
Server name Remark
--
\\CHIMAERA Windows NT 4.0
\\HYDRA Samba 2.0.4 on (hydra)
\\PHOENIX Windows 98

,ch05.27186 Page 114 Friday, November 19, 1999 3:29 PM

Browsing 115

Preventing Browsing

You can restrict a share from being in a browse list by using the browseable
option. This boolean option prevents a share from being seen in the Network
Neighborhood at all. For example, to prevent the [data] share from the previous
chapter from being visible, we could write:

[data]
path = /home/samba/data
browseable = no
guest ok = yes
comment = Data Drive
volume = Sample-Data-Drive
writeable = yes

Although you typically don’t want to do this to an ordinary disk share, the
browseable option is useful in the event that you need to create a share with con-
tents that you do not want others to see, such as a [netlogin] share for storing
logon scripts for Windows domain control (see Chapter 6, Users, Security, and
Domains for more information on logon scripts).

Another example is the [homes] share. This share is often marked non-browsable
so that a share named [homes] won’t appear when its machine’s resources are
browsed. However, if a user alice logs on and looks at the machine’s shares, an
[alice] share will appear under the machine. What if we wanted to make sure
alice’s share appeared to everyone before she logs in? This could be done with
the global auto services option. This option preloads shares into the browse list
to ensure that they are always visible:

[global]
...
auto services = alice
...

Default Services

In the event that a user cannot successfully connect to a share, you can specify a
default share to which they can connect. Since you do not know who will default
to this share at any time, you will probably want to set the guest ok option to
yes for this share. Specifying a default service can be useful when sending the
utterly befuddled to a directory of help files. For example:

[global]
...
default service = helpshare
...

[helpshare]
path = /home/samba/helpshare/%S
browseable = yes

,ch05.27186 Page 115 Friday, November 19, 1999 3:29 PM

116 Chapter 5: Browsing and Advanced Disk Shares

guest ok = yes
comment = Default Share for Unsuccessful Connections
volume = Sample-Data-Drive
writeable = no

Note that we used the %S variable in the path option. If you use the %S variable, it
will refer to the requested nonexistent share (the original share requested by the
user), not the name of the resulting default share. This allows us to create differ-
ent paths with the names of each server, which can provide more customized help
files for users. In addition, any underscores (_) specified in the requested share
will be converted to slashes (/) when the %S variable is used.

Browsing Elections

As mentioned in Chapter 1, Learning the Samba, one machine in each subnet
always keeps a list of the currently active machines. This list is called the browse
list and the server that maintains it is called the local master browser. As machines
come on and off the network, the local master browser continually updates the
information in the browse list and provides it to any machine that requests it.

A computer becomes a local master browser by holding a browsing election on
the local subnet. Browsing elections can be called at any time. Samba can rig a
browsing election for a variety of outcomes, including always becoming the local
master browser of the subnet or never becoming it. For example, the following
options, which we’ve added to the configuration file from Chapter 4, Disk Shares,
will ensure that Samba always wins the election for local master browser no mat-
ter which machines are also present:

[global]
netbios name = HYDRA
server string = Samba %v on (%L)
workgroup = SIMPLE

Browsing election options
os level = 34
local master = yes

Networking configuration options
hosts allow = 192.168.220. 134.213.233. localhost
hosts deny = 192.168.220.102
interfaces = 192.168.220.100/255.255.255.0 \

134.213.233.110/255.255.255.0

Debug logging information
log level = 2
log file = /var/log/samba.log.%m
max log size = 50
debug timestamp = yes

,ch05.27186 Page 116 Friday, November 19, 1999 3:29 PM

Browsing 117

[data]
path = /home/samba/data
browseable = yes
guest ok = yes
comment = Data Drive
volume = Sample-Data-Drive
writable = yes

However, what if we didn’t always want to win the election? What if we wanted to
yield browsing to a Windows NT Server if present? In order to do that, we need to
learn how browsing elections work. As you already know, each machine that
takes place in the election must broadcast information about itself. This informa-
tion includes the following:

• The version of the election protocol used

• The operating system on the machine

• The amount of time the client has been on the network

• The hostname of the client

Here is how the election is decided. Operating systems are assigned a binary value
according to their version, as shown in Table 5-1.

Following that, each computer on the network is assigned a separate value accord-
ing to its role, as shown in Table 5-2.

Table 5-1 . Operating System Values in an Election

Operating System Value

Windows NT Server 4.0 33

Windows NT Server 3.51 32

Windows NT Workstation 4.0 17

Windows NT Workstation 3.51 16

Windows 98 2

Windows 95 1

Windows 3.1 for Workgroups 1

Table 5-2. Computer Role Settings in an Election

Role Value

Primary Domain Controller 128

WINS Client 32

Preferred Master Browser 8

Active Master Browser 4

Standby Browser 2

Active Backup Browser 1

,ch05.27186 Page 117 Friday, November 19, 1999 3:29 PM

118 Chapter 5: Browsing and Advanced Disk Shares

Elections are decided in the following order:

1. The machine with the highest version of the election protocol will win. (So
far, this is meaningless, as all Windows clients have version 1 of the election
protocol.)

2. The machine with the highest operating system value wins the election.

3. If there is a tie, the machine with the setting of Preferred Master Browser (role
8) wins the election.

4. If there is still a tie, the client who has been online the longest wins the elec-
tion.

5. And finally, if there is still a tie, the client name that comes first alphabetically
wins.

6. The machine that is the “runner-up” can become a backup browser.

As a result, if you want Samba to take the role of a local master browser, but only
if there isn’t a Windows NT Server (4.0 or 3.51) on the network, you could change
the os level parameter in the previous example to:

os level = 31

This will cause Samba to immediately lose the election to a Windows NT 4.0 or
Windows NT 3.5 Server, both of which have a higher operating systems level. On
the other hand, if you wanted to decide the local master browser on the basis of
the network role, such as which machine is the primary domain controller, you
could set the os level to match the highest type of operating system on the net-
work and let the election protocol fall down to the next level.

How can you can tell if a machine is a local master browser? By using the
nbtstat command. Place the NetBIOS name of the machine you wish to check
after the -a option:

C:\>nbtstat -a hydra

 NetBIOS Remote Machine Name Table

 Name Type Status
--
 HYDRA <00> UNIQUE Registered
 HYDRA <03> UNIQUE Registered
 HYDRA <20> UNIQUE Registered
 .._ _MSBROWSE_ _. <01> GROUP Registered
 SIMPLE <00> GROUP Registered
 SIMPLE <1D> UNIQUE Registered
 SIMPLE <1E> GROUP Registered

 MAC Address = 00-00-00-00-00-00

,ch05.27186 Page 118 Friday, November 19, 1999 3:29 PM

Browsing 119

The resource entry that you’re looking for is the .._ _MSBROWSE_ _.<01>. This
indicates that the server is currently acting as the local master browser for the cur-
rent subnet. In addition, if the machine is a Samba server, you can check the
Samba nmbd log file for an entry such as:

nmbd/nmbd_become_lmb.c:become_local_master_stage2(406)

Samba name server HYDRA is now a local master browser for
workgroup SIMPLE on subnet 192.168.220.100

Finally, Windows NT servers serving as primary domain controllers contain a
sneak that allows them to assume the role of the local master browser in certain
conditions; this is called the preferred master browser bit. Earlier, we mentioned
that Samba could set this bit on itself as well. You can enable it with the
preferred master option:

Browsing election options
os level = 33
local master = yes
preferred master = yes

If the preferred master bit is set, the machine will force a browsing election at star-
tup. Of course, this is needed only if you set the os level option to match the
Windows NT machine. We recommend that you don’t use this option if another
machine also has the role of preferred master, such as an NT server.

Domain Master Browser

In the opening chapter, we mentioned that in order for a Windows workgroup or
domain to extend into multiple subnets, one machine would have to take the role
of the domain master browser. The domain master browser propagates browse
lists across each of the subnets in the workgroup. This works because each local
master browser periodically synchronizes its browse list with the domain master
browser. During this synchronization, the local master browser passes on any
server that the domain master browser does not have in its browse list, and vice
versa. In a perfect world, each local master browser would eventually have the
browse list for the entire domain.

Unlike the local master browser, there is no election to determine which machine
assumes the role of the domain master browser. Instead, the administrator has to
set it manually. By Microsoft design, however, the domain master browser and the
primary domain controller (PDC) both register a resource type of <1B>, so the
roles—and the machines—are inseparable.

If you have a Windows NT server on the network acting as a PDC, we recom-
mend that you do not use Samba to become the domain master browser. The
reverse is true as well: if Samba is taking on the responsibilities of a PDC, we

,ch05.27186 Page 119 Friday, November 19, 1999 3:29 PM

120 Chapter 5: Browsing and Advanced Disk Shares

recommend making it the domain master browser as well. Although it is possible
to split the roles with Samba, this is not a good idea. Using two different machines
to serve as the PDC and the domain master browser can cause random errors to
occur on a Windows workgroup.

Samba can assume the role of a domain master browser for all subnets in the
workgroup with the following option:

domain master = yes

You can verify that a Samba machine is in fact the domain master browser by
checking the nmbd log file:

nmbd/nmbd_become_dmb.c:become_domain_master_stage2(118)

Samba name server HYDRA is now a domain master browser for
workgroup SIMPLE on subnet 192.168.220.100

Or you can use the nmblookup command that comes with the Samba distribution
to query for a unique <1B> resource type in the workgroup:

nmblookup SIMPLE#1B
Sending queries to 192.168.220.255
192.168.220.100 SIMPLE<1b>

Multiple subnets

There are three rules that you must remember when creating a workgroup/domain
that spans more than one subnet:

• You must have either a Windows NT or Samba machine acting as a local mas-
ter browser on each subnet in the workgroup/domain. (If you have a domain
master browser in a subnet, a local master browser is not needed.)

• You must have a Windows NT Server or a Samba machine acting as a domain
master browser somewhere in the workgroup.

• Each local master browser must be instructed to synchronize with the domain
master browser.

Samba has a few other features in this arena in the event that you don’t have or
want a domain master browser on your network. Consider the subnets shown in
Figure 5-1.

First, a Samba server that is a local master browser can use the remote announce
configuration option to make sure that computers in different subnets are sent
broadcast announcements about the server. This has the effect of ensuring that the
Samba server appears in the browse lists of foreign subnets. To achieve this, how-
ever, the directed broadcasts must reach the local master browser on the other
subnet. Be aware that many routers do not allow directed broadcasts by default;

,ch05.27186 Page 120 Friday, November 19, 1999 3:29 PM

Browsing 121

you may have to change this setting on the router for the directed broadcasts to
get through to its subnet.

With the remote announce option, list the subnets and the workgroup that should
receive the broadcast. For example, to ensure that machines in the 192.168.221
and 192.168.222 subnets and SIMPLE workgroup are sent broadcast information
from our Samba server, we could specify the following:

Browsing election options
os level = 34
local master = yes
remote announce = 192.168.221.255/SIMPLE \

192.168.222.255/SIMPLE

In addition, you are allowed to specify the exact address to send broadcasts to if
the local master browser on the foreign subnet is guaranteed to always have a
fixed IP address.

A Samba local master browser can synchronize its browse list directly with another
Samba server acting as a local master browser on a different subnet. For example,
let’s assume that Samba is configured as a local master browser, and Samba local
master browsers exist at 192.168.221.130 and 192.168.222.120. We can use the
remote browse sync option to sync directly with the Samba servers, as follows:

Browsing election options
os level = 34

Figure 5-1. Multiple subnets with Samba servers

192.168.221 subnet 192.168.222 subnet

192.168.220 subnet
Samba Server

192.168.220.100
Local master

browser

Workstation
192.168.221.130

Workstation
192.168.221.140

Samba Server
192.168.222.120

Local master
browser

Workstation
192.168.221.140

Workstation
192.168.221.150

Samba Server
192.168.221.130

Local master
browser

,ch05.27186 Page 121 Friday, November 19, 1999 3:29 PM

122 Chapter 5: Browsing and Advanced Disk Shares

local master = yes
remote browse sync = 192.168.221.130 192.168.222.120

In order for this to work, the other Samba machines must also be local master
browsers. You can also use directed broadcasts with this option if you do not
know specific IP addresses of local master browsers.

Browsing Options

Table 5-3 shows 14 options that define how Samba handles browsing tasks. We
recommend the defaults for a site that prefers to be easy on its users with respect
to locating shares and printers.

Table 5-3. Browsing Configuration Options

Option Parameters Function Default Scope

announce as NT or Win95
or WfW

Sets the operating system that
Samba will announce itself as.

NT Global

announce
version

numerical Sets the version of the operating
system that Samba will announce
itself as.

4.2 Global

browseable
(browsable)

boolean Allows share to be displayed in
list of machine resources.

yes Share

browse list boolean If yes, Samba will provide a
browse list on this server.

yes Global

auto
services
(preload)

string (share
list)

Sets a list of shares that will
always appear in the browse list.

None Global

default
service
(default)

string (share
name)

Names a share (service) that will
be provided if the client requests
a share not listed in smb.conf.

None Global

local master boolean If yes, Samba will try to become
a master browser on the local
subnet.

yes Global

lm announce yes or no or
auto

Enables or disables LAN Manager
style host announcements.

auto Global

lm interval numerical Specifies the frequency in sec-
onds that LAN Manager
announcements will be made if
activated.

60 Global

preferred
master
(prefered
master)

boolean If yes, Samba will use the pre-
ferred master browser bit to
attempt to become the local mas-
ter browser.

no Global

domain
master

boolean If yes, Samba will try to become
the main browser master for the
workgroup.

no Global

,ch05.27186 Page 122 Friday, November 19, 1999 3:29 PM

Browsing 123

announce as

This global configuration option specifies the type of operating system that Samba
will announce to other machines on the network. The default value for this option
is NT, which represents a Windows NT operating system. Other possible values are
Win95, which represents a Windows 95 operating system, and WfW for a Windows
for Workgroup operating system. You can override the default value with the
following:

[global]
announce as = Win95

We recommend against changing the default value of this configuration option.

announce version

This global option is frequently used with the announce as configuration option;
it specifies the version of the operating system that Samba will announce to other
machines on the network. The default value of this options is 4.2, which places
itself above the current Windows NT version of 4.0. You can specify a new value
with a global entry such as the following:

[global]
announce version = 4.3

We recommend against changing the default value of this configuration option.

browseable

The browseable option (also spelled browsable) indicates whether the share ref-
erenced should appear in the list of available resources of the machine on which it
resides. This option is always set to yes by default. If you wish to prevent the
share from being seen in a client’s browser, you can reset this option to no.

Note that this does not prevent someone from accessing the share using other
means, such as specifying a UNC location (//server/accounting) in Windows

os level numerical Sets the operating system level of
Samba in an election for local
master browser.

0 Global

remote
browse sync

string (list of
IP addresses)

Lists Samba servers to synchro-
nize browse lists with.

None Global

remote
announce

string (IP
address/
workgroup
pairs)

Lists subnets and workgroups to
send directed broadcast packets
to, allowing Samba to appear to
browse lists.

None Global

Table 5-3. Browsing Configuration Options (continued)

Option Parameters Function Default Scope

,ch05.27186 Page 123 Friday, November 19, 1999 3:29 PM

124 Chapter 5: Browsing and Advanced Disk Shares

Explorer. It only prevents the share from being listed under the machine’s
resources when being browsed.

browse list

You should never need to change this parameter from its default value of yes. If
your Samba server is acting as a local master browser (i.e., it has won the brows-
ing election), you can use the global browse list option to instruct Samba to
provide or withhold its browse list to all clients. By default, Samba always pro-
vides a browse list. You can withhold this information by specifying the following:

[global]
browse list = no

If you disable the browse list, clients cannot browse the names of other machines,
their services, and other domains currently available on the network. Note that this
won’t make any particular machine inaccessible; if someone knows a valid
machine name/address and a share on that machine, they can still connect to it
explicitly using NET USE or by mapping a drive letter to it using Windows
Explorer. It simply prevents information in the browse list from being retrieved by
any client that requests it.

auto services

The global auto services option, which is also called preload, ensures that the
specified shares are always visible in the browse list. One common use for this
option is to advertise specific user or printer shares that are created by the
[homes] or [printers] shares, but are not otherwise browsable.

This option works best with disk shares. If you wish to force each of your system
printers (i.e., those listed in the printer capabilities file) into the browse list using
this option, we recommend using the load printers option instead. Any shares
listed with the auto services option will not be displayed if the browse list
option is set to no.

default service

The global default service option (sometimes called default) names a “last-
ditch” share. If set to an existing share name, and a client requests a nonexistent
disk or printer share, Samba will attempt to connect the user to the share speci-
fied by this option instead. The option is specified as follows:

default service = helpshare

Note that there are no braces surrounding the share name helpshare, even
though the definition of the share later in the Samba configuration file will have

,ch05.27186 Page 124 Friday, November 19, 1999 3:29 PM

Browsing 125

braces. Also, if you use the %S variable in the share specified by this option, it will
represent the requested, nonexistent share, not the default service. Any under-
scores (_) specified in the request share will be converted to slashes (/) when the
variable is used.

local master

This global option specifies whether Samba will attempt to become the local mas-
ter browser for the subnet when it starts up. If this option is set to yes, Samba will
take place in elections. However, setting this option by itself does not guarantee
victory. (Other parameters, such as preferred master and os level help Samba
win browsing elections.) If this option is set to no, Samba will lose all browsing
elections, no matter which values are specified by the other configuration options.
The default value is yes.

lm announce

The global lm announce option tells Samba’s nmbd whether or not to send LAN
Manager host announcements on behalf of the server. These host announcements
may be required by older clients, such as IBM’s OS/2 operating system. This
announcement allows the server to be added to the browse lists of the client. If
activated, Samba will announce itself repetitively at the number of seconds speci-
fied by the lm interval option.

This configuration option takes the standard boolean values, yes and no, which
engage or disengage LAN Manager announcements, respectively. In addition, there
is a third option, auto, which causes nmbd to passively listen for LAN Manager
announcements, but not send any of its own initially. If LAN Manager announce-
ments are detected for another machine on the network, nmbd will start sending
its own LAN Manager announcements to ensure that it is visible. You can specify
the option as follows:

[global]
lm announce = yes

The default value is auto. You probably won’t need to change this value from its
default.

lm interval

This option, which is used in conjunction with lm announce, indicates the num-
ber of seconds nmbd will wait before repeatedly broadcasting LAN Manager-style
announcements. Remember that LAN Manager announcements must be activated
in order for this option to be used. The default value is 60 seconds. If you set this
value to 0, Samba will not send any LAN Manager host announcements, no matter

,ch05.27186 Page 125 Friday, November 19, 1999 3:29 PM

126 Chapter 5: Browsing and Advanced Disk Shares

what the value of the lm announce option. You can reset the value of this option
as follows:

[global]
lm interval = 90

preferred master

The preferred master option requests that Samba set the preferred master bit
when participating in an election. This gives the server a higher preferred status in
the workgroup than other machines at the same operating system level. If you are
configuring your Samba machine to become the local master browser, it is wise to
set the following value:

[global]
preferred master = yes

Otherwise, you should leave it set to its default, no. If Samba is configured as a
preferred master browser, it will force an election when it first comes online.

os level

The global os level option dictates the operating system level at which Samba
will masquerade during a browser election. If you wish to have Samba win an
election and become the master browser, you can set the level above that of the
operating system on your network with the highest current value. The values are
shown in Table 5-1. The default level is 0, which means that Samba will lose all
elections. If you wish Samba to win all elections, you can reset its value as
follows:

os level = 34

This means that the server will vote for itself 34 times each time an election is
called, which ensures a victory.

domain master

If Samba is the primary domain controller for your workgroup or NT domain, it
should also be the domain master browser. The domain master browser is a spe-
cial machine that has the NetBIOS resource type <1B> and is used to propagate
browse lists to and from each of the local master browsers in individual subnets
across the domain. To force Samba to become the domain master browser, set the
following in the [global] section of the smb.conf:

[global]
domain master = yes

If you have a Windows NT server on the network acting as a primary domain con-
troller (PDC), we recommend that you do not use Samba to become the domain

,ch05.27186 Page 126 Friday, November 19, 1999 3:29 PM

Filesystem Differences 127

master browser. The reverse is true as well: if Samba is taking on the responsibili-
ties of a PDC, we recommend making it the domain master browser. Splitting the
PDC and the domain master browser will cause unpredictable errors to occur on
the network.

remote browse sync

The global remote browse sync option specifies that Samba should synchronize
its browse lists with local master browsers in other subnets. However, the synchro-
nization can occur only with other Samba servers, and not with Windows comput-
ers. For example, if your Samba server was a master browser on the subnet 192.
168.235, and Samba local master browsers existed on other subnets at 192.168.234.
92 and 192.168.236.2, you could specify the following:

remote browse sync = 192.168.234.92 192.168.236.2

The Samba server would then directly contact the other machines on the address
list and synchronize browse lists. You can also say:

remote browse sync = 192.168.234.255 192.168.236.255

This forces Samba to broadcast queries to determine the IP addresses of the local
master browser on each subnet, with which it will then synchronize browse lists.
This only works, however, if your router doesn’t block directed broadcast requests
ending in 255.

remote announce

Samba servers are capable of providing browse lists to foreign subnets with the
remote announce option. This is typically sent to the local master browser of the
foreign subnet in question. However, if you do not know the address of the local
master browser, you can do the following:

[global]
 remote announce = 192.168.234.255/ACCOUNTING \

192.168.236.255/ACCOUNTING

With this, Samba will broadcast host announcements to all machines on subnets
192.168.234 and 192.168.236, which will hopefully reach the local master browser
of the subnet. You can also specify exact IP addresses, if they are known.

Filesystem Differences
One of the biggest issues for which Samba has to correct is the difference between
Unix and non-Unix filesystems. This includes items such as handling symbolic
links, hidden files, and dot files. In addition, file permissions can also be a head-
ache if not accounted for properly. This section describes how to use Samba to

,ch05.27186 Page 127 Friday, November 19, 1999 3:29 PM

128 Chapter 5: Browsing and Advanced Disk Shares

make up for some of those annoying differences, and even how to add some new
functionality of its own.

Hiding and Vetoing Files

There are some cases when we need to ensure that a user cannot see or access a
file at all. Other times, we don’t want to keep a user from accessing a file—we just
want to hide it when they view the contents of the directory. On Windows sys-
tems, an attribute of files allows them to be hidden from a folder listing. With
Unix, the traditional way of hiding files in a directory is to precede them with a
dot (.). This prevents items such as configuration files or defaults from being seen
when performing an ordinary ls command. Keeping a user from accessing a file
at all, however, involves working with permissions on files and or directories.

The first option we should discuss is the boolean hide dot files. This option
does exactly what it says. When set to yes, the option treats files beginning with a
period (.) as hidden. If set to no, those files are always shown. The important
thing to remember is that the files are only hidden. If the user has chosen to show
all hidden files while browsing (e.g., using the Folder Options menu item under
the View menu in Windows 98), they will still be able to see the files, as shown in
Figure 5-2.

Instead of simply hiding files beginning with a dot, you can also specify a string
pattern to Samba for files to hide, using the hide files option. For example, let’s
assume that we specified the following in our example [data] share:

[data]
path = /home/samba/data
browseable = yes

Figure 5-2. Hidden files in the [data] share

,ch05.27186 Page 128 Friday, November 19, 1999 3:29 PM

Filesystem Differences 129

guest ok = yes
writeable = yes
case sensitive = no
hide files = /*.java/*README*/

Each entry for this option must begin, end, or be separated from another with a
slash (/) character, even if there is only one pattern listed. This convention allows
spaces to appear in filenames. In this example, the share directory would appear
as shown in Figure 5-3. Again, note that we have set the Windows 98 option to
view hidden files for the window.

If we want to prevent users from seeing files at all, we can instead use the veto
files option. This option, which takes the same syntax as the hide files
option, specifies a list of files that should never be seen by the user. For example,
let’s change the [data] share to the following:

[data]
path = /home/samba/data
browseable = yes
guest ok = yes
writeable = yes
case sensitive = no
veto files = /*.java/*README*/

The syntax of this option is identical to the hide files configuration option: each
entry must begin, end, or be separated from another with a slash (/) character,
even if there is only one pattern listed. By doing so, the files hello.java and
README will simply disappear from the directory, and the user will not be able to
access them through SMB.

There is one other question that we need to address. What happens if the user
tries to delete a directory that contains vetoed files? This is where the delete
veto files option comes in. If this boolean option is set to yes, the user is

Figure 5-3. Hiding files based on filename patterns

,ch05.27186 Page 129 Friday, November 19, 1999 3:29 PM

130 Chapter 5: Browsing and Advanced Disk Shares

allowed to delete both the regular files and the vetoed files in the directory, and
the directory itself will be removed. If the option is set to no, the user will not be
able to delete the vetoed files, and consequently the directory will not be deleted
either. From the user’s perspective, the directory will appear to be empty, but can-
not be removed.

The dont descend directive specifies a list of directories whose contents Samba
should not allow to be visible. Note that we say contents, not the directory itself.
Users will be able to enter a directory marked as such, but they are prohibited
from descending the directory tree any farther—they will always see an empty
folder. For example, let’s use this option with a more basic form of the share that
we defined earlier in the chapter:

[data]
path = /home/samba/data
browseable = yes
guest ok = yes
writeable = yes
case sensitive = no
dont descend = config defaults

In addition, let’s assume that the /home/samba/data directory has the following
contents:

drwxr-xr-x 6 tom users 1024 Jun 13 09:24 .
drwxr-xr-x 8 root root 1024 Jun 10 17:53 ..
-rw-r--r-- 2 tom users 1024 Jun 9 11:43 README
drwxr-xr-x 3 tom users 1024 Jun 13 09:28 config
drwxr-xr-x 3 tom users 1024 Jun 13 09:28 defaults
drwxr-xr-x 3 tom users 1024 Jun 13 09:28 market

If the user then connects to the share, he or she would see the directories shown
in Figure 5-4. However, the contents of the /config and /defaults directories would
appear empty to the user, even if other folders or files existed in them. In addi-
tion, users cannot write any data to the folder (which prevents them from creating
a file or folder with the same name as one that is already there but invisible). If a
user attempts to do so, he or she will receive an “Access Denied” message. dont
descend is an administrative option, not a security option, and is not a substitute
for good file permissions.

Links

DOS and NT filesystems don’t have symbolic links; Windows 95/98/NT systems
approximate this with “shortcuts” instead. Therefore, when a client tries to open a
symbolic link on a Samba server share, Samba attempts to follow the link to find

,ch05.27186 Page 130 Friday, November 19, 1999 3:29 PM

Filesystem Differences 131

the real file and let the client open it, as if he or she were on a Unix machine. If
you don’t want to allow this, set the follow symlinks option:

[data]
path = /home/samba/data
browseable = yes
guest ok = yes
writeable = yes
case sensitive = no
follow symlinks = no

You can test this by creating a directory on the Unix server inside the share as the
user that you are logging in with. Enter the following commands:

% mkdir hello; cd hello
% cat "This is a test" >hello.txt
% ln -s hello.txt "Link to hello"

This results in the two files shown in the window in Figure 5-5. Normally, if you
click on either one, you will receive a file which has the text “This is a test” inside
of it. However, with the follow symlinks option set to no, you should receive
an error similar to the dialog in Figure 5-5 if you click on “Link to hello.”

Figure 5-4. Contents of the [data] share with dont descend

Figure 5-5. An error dialog trying to follow symbolic links when forbidden by Samba

,ch05.27186 Page 131 Friday, November 19, 1999 3:29 PM

132 Chapter 5: Browsing and Advanced Disk Shares

Finally, let’s discuss the wide links option. This option, if set to yes, allows the
client user to follow symbolic links that point outside the shared directory tree,
including files or directories at the other end of the link. For example, let’s assume
that we modified the [data] share as follows:

[data]
path = /home/samba/data
browseable = yes
guest ok = yes
writeable = yes
case sensitive = no
follow symlinks = yes
wide links = yes

As long as the follow symlinks option is enabled, this will cause Samba to fol-
low all symbolic links outside the current share tree. If we create a file outside the
share (for example, in someone’s home directory) and then create a link to it in
the share as follows:

ln -s ~tom/datafile ./datafile

then you will be able to open the file in Tom’s directory as per the target file’s
permissions.

Filesystem Options

Table 5-4 shows a breakdown of the options we discussed earlier. We recom-
mend the defaults for most, except those listed in the following descriptions.

Table 5-4. Filesystem Configuration Options

Option Parameters Function Default Scope

unix
realname

boolean Provides Unix user’s full name
to client.

no Global

dont descend string (list of
directories)

Indicates a list of directories
whose contents Samba should
make invisible to clients.

None Share

follow
symlinks

boolean If set to no, Samba will not
honor symbolic links.

yes Share

getwd cache boolean If set to yes, Samba will use a
cache for getwd() calls.

yes Global

wide links boolean If set to yes, Samba will follow
symbolic links outside the share.

yes Share

hide dot
files

boolean If set to yes, treats Unix hidden
files as hidden files in Windows.

yes Share

hide files string (list of
files)

List of file patterns to treat as
hidden.

None Share

,ch05.27186 Page 132 Friday, November 19, 1999 3:29 PM

Filesystem Differences 133

unix realname

Some programs require a full username in order to operate. For example, a Win-
dows email program often needs to associate a username with a given real name.
If your system password file contains the real names of users in the GCOS field,
the unix realname option instructs Samba to provide this information to clients.
Without it, the name of the user will simply be his or her login ID. For example, if
your Unix password file contains the following line:

rcollins:/KaBfco47Rer5:500:500:Robert Collins:
/home/rcollins:/bin/ksh

And the option in the configuration file is:

[global]
unix realname = yes

then the name Robert Collins will be provided to any client that requests the real
name of user rcollins. You typically don’t need to bother with this option.

dont descend

The dont descend option can be used to specify various directories that should
appear empty to the client. Note that the directory itself will still appear. How-
ever, Samba will not show any of the contents of the directory to the client user.
This is not a good option to use as a security feature (a user could probably find a
way around it); it really is meant only as a convenience to keep client users from
browsing into directories that might have sensitive files. See our example earlier in
this section.

follow symlinks

This option, which is discussed in greater detail earlier, controls whether Samba
will follow a symbolic link in the Unix operating system to the target, or if it
should return an error to the client user. If the option is set to yes, the target of
the link will be interpreted as the file.

veto files string (list of
files)

List of file patterns to never
show.

None Share

delete veto
files

boolean If set to yes, will delete files
matched by veto files when
the directory they reside in is
deleted.

no Share

Table 5-4. Filesystem Configuration Options (continued)

Option Parameters Function Default Scope

,ch05.27186 Page 133 Friday, November 19, 1999 3:29 PM

134 Chapter 5: Browsing and Advanced Disk Shares

getwd cache

This global option specifies whether Samba should use a local cache for the Unix
getwd() (get current working directory) system call. You can override the default
value of yes as follows:

[global]
getwd cache = no

Setting this option to yes can significantly increase the time it takes to resolve the
working directory, especially if the wide links option is set to no. You should
normally not need to alter this option.

wide links

This option specifies whether the client user can follow symbolic links that point
outside the shared directory tree. This includes any files or directories at the other
end of the link, as long as the permissions are correct for the user. The default
value for this option is yes. Note that this option will not be honored if the
follow symlinks options is set to no. Setting this option to no slows smbd
considerably.

hide files

The hide files option provides one or more directory or filename patterns to
Samba. Any file matching this pattern will be treated as a hidden file from the per-
spective of the client. Note that this simply means that the DOS hidden attribute is
set, which may or may not mean that the user can actually see it while browsing.

Each entry in the list must begin, end, or be separated from another entry with a
slash (/) character, even if there is only one pattern listed. This allows spaces to
appear in the list. Asterisks can be used as a wildcard to represent zero or more
characters. Questions marks can be used to represent exactly one character. For
example:

hide files = /.jav*/README.???/

hide dot files

The hide dot files option hides any files on the server that begin with a dot (.)
character, in order to mimic the functionality behind several shell commands that
are present on Unix systems. Like hide files, those files that begin with a dot
have the DOS hidden attribute set, which doesn’t necessarily guarantee that a cli-
ent cannot view them. The default value for this option is yes.

veto files

More stringent than the hidden files state is the state provided by the veto files
configuration option. Samba won’t even admit these files exist. You cannot list or

,ch05.27186 Page 134 Friday, November 19, 1999 3:29 PM

File Permissions and Attributes on MS-DOS and Unix 135

open them from the client. In reality, this isn’t a trustworthy security option. It is
actually a mechanism to keep PC programs from deleting special files, such as
ones used to store the resource fork of a Macintosh file on a Unix filesystem. If
both Windows and Macs are sharing the same files, this can prevent ill-advised
power users from removing files the Mac users need.

The syntax of this option is identical to that of the hide files configuration
option: each entry must begin, end, or be separated from another with a slash (/)
character, even if only one pattern is listed. Asterisks can be used as a wildcard to
represent zero or more characters. Questions marks can be used to represent
exactly one character. For example:

veto files = /*config/*default?/

This option is primarily administrative—not a substitute for good file permissions.

delete veto files

This option tells Samba to delete vetoed files when a user attempts to delete the
directory in which they reside. The default value is no. This means if a user tries to
delete a directory that contains a vetoed file, the file (and the directory) will not be
deleted. Instead, the directory will remain and appear to be empty from the per-
spective of the user. If set to yes, the directory and the vetoed files will be
deleted.

File Permissions and Attributes on
MS-DOS and Unix
DOS was never intended to be a multiuser, networked operating system. Unix, on
the other hand, was designed that way from the start. Consequently, there are
inconsistencies and gaps in coverage between the two filesystems that Samba must
not only be aware of, but also provide solutions for. One of the biggest gaps is
how Unix and DOS handle permissions with files.

Let’s take a look at how Unix assigns permissions. All Unix files have read, write,
and execute bits for three classifications of users: owner, group, and world. These
permissions can be seen at the extreme left-hand side when a ls -al command is
issued in a Unix directory. For example:

-rwxr--r-- 1 tom users 2014 Apr 13 14:11 access.conf

Windows, on the other hand, has four principal bits that it uses with any file: read-
only, system, hidden, and archive. You can view these bits by right-clicking on the

,ch05.27186 Page 135 Friday, November 19, 1999 3:29 PM

136 Chapter 5: Browsing and Advanced Disk Shares

file and choosing the Properties menu item. You should see a dialog similar to
Figure 5-6.*

The definition of each of those bits follows:

Read-only
The file’s contents can be read by a user but cannot be written to.

System
This file has a specific purpose required by the operating system.

Hidden
This file has been marked to be invisible to the user, unless the operating sys-
tems is explicitly set to show it.

Figure 5-6. DOS and Windows file properties

* The system checkbox will probably be greyed for your file. Don’t worry about that—you should still be
able to see when the box is checked and when it isn’t.

,ch05.27186 Page 136 Friday, November 19, 1999 3:29 PM

File Permissions and Attributes on MS-DOS and Unix 137

Archive
This file has been touched since the last DOS backup was performed on it.

Note that there is no bit to specify that a file is executable. DOS and Windows NT
filesystems identify executable files by giving them the extensions .EXE, .COM, .CMD,
or .BAT.

Consequently, there is no use for any of the three Unix executable bits that are
present on a file in a Samba disk share. DOS files, however, have their own
attributes that need to be preserved when they are stored in a Unix environment:
the archive, system, and hidden bits. Samba can preserve these bits by reusing the
executable permission bits of the file on the Unix side—if it is instructed to do so.
Mapping these bits, however, has an unfortunate side-effect: if a Windows user
stores a file in a Samba share, and you view it on Unix with the ls -al com-
mand, some of the executable bits won’t mean what you’d expect them to.

Three Samba options decide whether the bits are mapped: map archive, map
system, and map hidden. These options map the archive, system, and hidden
attributes to the owner, group, and world execute bits of the file, respectively. You
can add these options to the [data] share, setting each of their values as follows:

[data]
path = /home/samba/data
browseable = yes
guest ok = yes
writeable = yes
map archive = yes
map system = yes
map hidden = yes

After that, try creating a file in the share under Unix—such as hello.java—and
change the permissions of the file to 755. With these Samba options set, you
should be able to check the permissions on the Windows side and see that each
of the three values has been checked in the Properties dialog box. What about the
read-only attribute? By default, Samba 2.0 sets this whenever a file does not have
the Unix owner write permission bit set. In other words, you can set this bit by
changing the permissions of the file to 555.

We should warn you that the default value of the map archive option is yes,
while the other two options have a default value of no. This is because many pro-
grams do not work properly if the archive bit is not stored correctly for DOS and
Windows files. The system and hidden attributes, however, are not critical for a
program’s operation and are left to the discretion of the administrator.

Figure 5-7 summarizes the Unix permission bits and illustrates how Samba maps
those bits to DOS attributes. Note that the group read/write and world read/write
bits do not directly translate to a DOS attribute, but they still retain their original
Unix definitions on the Samba server.

,ch05.27186 Page 137 Friday, November 19, 1999 3:29 PM

138 Chapter 5: Browsing and Advanced Disk Shares

Creation masks

Samba has several options to help with file creation masks. File creation masks (or
umasks) help to define the permissions a file or directory will receive at the time it
is created. In Unix, this means that you can control what permissions a file or
directory does not have when it is created. For files accessed from Windows, this
means you can disable the read-only, archive, system, and hidden attributes of a
file as well.

For example, the create mask option will force the permissions of a file created
by a Windows client to be at most 744:

[data]
path = /home/samba/data
browseable = yes
guest ok = yes
writeable = yes
create mask = 744

while the directory mask option shown here will force the permissions of a
newly created directory to be at most 755:

[data]
path = /home/samba/data
browseable = yes
guest ok = yes
writeable = yes
directory mask = 755

Alternatively, you can also force various bits with the force create mode and
force directory mode options. These options will perform a logical OR against
the file and directory creation masks, ensuring that those bits that are specified will
always be set. You would typically set these options globally in order to ensure
that group and world read/write permissions have been set appropriately for new
files or directories in each share.

Figure 5-7. How Samba and Unix view the permissions of a file

Group Write

Unix Permissions

Owner Read

Owner Write

Owner Execute World Read

Group Read Group Execute World Write

World Execute

Read Only Archive? System? Hidden?

r w x r w x r w x

Samba Maps to DOS & Windows Permissions

,ch05.27186 Page 138 Friday, November 19, 1999 3:29 PM

File Permissions and Attributes on MS-DOS and Unix 139

In the same spirit, if you wish to explicitly set the Unix user and group attributes
of a file that is created on the Windows side, you can use the force user and
force group options. For example:

[data]
path = /home/samba/data
browseable = yes
guest ok = yes
writeable = yes

create mask = 744
directory mask = 755
force user = joe
force group = accounting

These options actually assign a static Unix user and group to each connection that
is made to a share. However, this occurs after the client authenticates; it does not
allow free access to a share. These options are frequently used for their side
effects of assigning a specific user and group to each new file or directory that is
created in a share. Use these options with discretion.

Finally, one of the capabilities of Unix that DOS lacks is the ability to delete a
read-only file from a writable directory. In Unix, if a directory is writable, a read-
only file in that directory can still be removed. This could permit you to delete
files in any of your directories, even if the file was left by someone else.

DOS filesystems are not designed for multiple users, and so its designers decided
that read-only means “protected against accidental change, including deletion,”
rather than “protected against some other user on a single-user machine.” So the
designers of DOS prohibited removal of a read-only file. Even today, Windows file
systems exhibit the same behavior.

Normally, this is harmless. Windows programs don’t try to remove read-only files
because they know it’s a bad idea. However, a number of source-code control
programs—which were first written for Unix—run on Windows and require the
ability to delete read-only files. Samba permits this behavior with the delete
readonly option. In order to enable this functionality, set the option to yes:

[data]
path = /home/samba/data
browseable = yes
guest ok = yes
writeable = yes

create mask = 744
directory mask = 755
force user = joe
force group = accounting
delete readonly = yes

,ch05.27186 Page 139 Friday, November 19, 1999 3:29 PM

140 Chapter 5: Browsing and Advanced Disk Shares

File and Directory Permission Options

The options for file and directory permissions are summarized in Table 5-5; each
option is then described in detail.

create mask

The argument for this option is an octal number indicating which permission flags
may be set at file creation by a client in a share. The default is 0755, which means
the Unix owner can at most read, write, and optionally execute his or her own
files, while members of the user’s group and others can only read or execute
them. If you need to change it for non-executable files, we recommend 0644, or
rw-r--r--. Keep in mind that the execute bits may be used by the server to map
certain DOS file attributes, as described earlier. If you’re altering the create mask,
those bits have to be part of the create mask as well.

Table 5-5. File and Directory Permission Options

Option Parameters Function Default Scope

map archive boolean Preserve DOS archive attribute in
user execute bit (0100).

yes Share

map system boolean Preserve DOS system attribute in
group execute bit (0010).

no Share

map hidden boolean Preserve DOS hidden attribute in
world execute bit (0001).

no Share

create mask
(create
mode)

numeric Sets the maximum permissions
for files created by Samba.

0744 Share

directory
mask
(directory
mode)

numeric Sets the maximum permissions
for directories created by Samba.

0755 Share

force create
mode

numeric Forces the specified permissions
(bitwise or) for directories cre-
ated by Samba.

0000 Share

force
directory
mode

numeric Forces the specified permissions
(bitwise or) for directories cre-
ated by Samba.

0000 Share

force group
(group)

string (group
name)

Sets the effective group for a
user accessing this share.

None Share

force user string (user-
name)

Sets the effective username for a
user accessing this share.

None Share

delete
readonly

boolean Allows a user to delete a read-
only file from a writable direc-
tory.

no Share

,ch05.27186 Page 140 Friday, November 19, 1999 3:29 PM

File Permissions and Attributes on MS-DOS and Unix 141

directory mask

The argument for this option is an octal number indicating which permission flags
may be set at directory creation by a client in a share. The default is 0755, which
allows everyone on the Unix side to at most read and traverse the directories, but
allows only you to modify them. We recommend the mask 0750, removing access
by world users.

force create mode

This option sets the permission bits that Samba will force to be set when a file per-
mission change is made. It’s often used to force group permissions, mentioned
previously. It can also be used to preset any of the DOS attributes we mentioned:
archive (0100), system (0010), or hidden (0001). This option always takes effect
after the map archive, map system, map hidden, and create mask options.

Many Windows applications rename their data files to datafile.bak
and create new ones, thus changing their ownership and permis-
sions so that members of the same Unix group can’t edit them. Set-
ting force create mask = 0660 will keep the new file editable
by members of the group.

force directory mode

This option sets the permission bits which Samba will force when a directory per-
mission change is made or a directory is created. It’s often used to force group
permissions, as mentioned previously. This option defaults to 0000, and can be
used just like the force create mode to add group or other permissions if
needed. This option always takes effect after the map archive, map system, map
hidden, and directory mask options.

force group

This option, sometimes called group, assigns a static group ID that will be used
on all connections to a service after the client has successfully authenticated. This
assigns a specific group to each new file or directory created from an SMB client.

force user

The force user option assigns a static user ID that will be used on all connec-
tions to a service after the client has successfully authenticated. This assigns a spe-
cific user to each new file or directory created from an SMB client.

,ch05.27186 Page 141 Friday, November 19, 1999 3:29 PM

142 Chapter 5: Browsing and Advanced Disk Shares

delete readonly

This option allows a user to delete a directory containing a read-only file. By
default, DOS and Windows will not allow such an operation. You probably will
want to leave this option turned off unless a program needs this capability; many
Windows users would be appalled to find that they’d accidentally deleted a file
which they had set read-only. In fact, even the Unix rm command will ask users if
they really want to override the protection and delete read-only files. It’s a good
idea to have Samba be at least as cautious.

map archive

The DOS archive bit is used to flag a file that has been changed since it was last
archived (e.g., backed up with the DOS archive program.) Setting the Samba
option map archive = yes causes the DOS archive flag to be mapped to the Unix
execute-by-owner (0100) bit. It’s best to leave this option on if your Windows
users are doing their own backups, or are using programs that require the archive
bit. Unix lacks the notion of an archive bit entirely. Backup programs typically
keep a file that lists what files were backed up on what date, so comparing file
modification dates serves the same purpose.

Setting this option to yes causes an occasional surprise on Unix when a user
notices that a data file is marked as executable, but rarely causes harm. If a user
tries to run it, he or she will normally get a string of error messages as the shell
tries to execute the first few lines as commands. The reverse is also possible; an
executable Unix program looks like it hasn’t been backed up recently on Win-
dows. But again, this is rare, and is usually harmless.

map system

The DOS system attribute is used to indicate files that are required by the operat-
ing system, and should not be deleted, renamed, or moved without special effort.
Set this option only if you need to store Windows system files on the Unix file
server. Executable Unix programs will appear to be non-removable special Win-
dows files when viewed from Windows clients. This may prove mildly inconve-
nient if you want to move or remove one. For most sites, however, this is fairly
harmless.

map hidden

DOS uses the hidden attribute to indicate that a file should not ordinarily be visi-
ble in directory listings. Unix doesn’t have such a facility; it’s up to individual pro-
grams (notably the shell) to decide what to display and what not to display.
Normally, you won’t have any DOS files that need to be hidden, so the best thing
to do is to leave this option turned off.

,ch05.27186 Page 142 Friday, November 19, 1999 3:29 PM

Name Mangling and Case 143

Setting this option to yes causes the server to map the hidden flag onto the exe-
cutable-by-others bit (0001). This feature can produce a rather startling effect. Any
Unix program that is executable by world seems to vanish when you look for it
from a Windows client. If this option is not set, however, and a Windows user
attempts to mark a file hidden on a Samba share, it will not work—Samba has no
place to store the hidden attribute!

Name Mangling and Case
Back in the days of DOS and Windows 3.1, every filename was limited to eight
upper-case characters, followed by a dot, and three more uppercase characters.
This was known as the 8.3 format, and was a huge nuisance. Windows 95/98,
Windows NT, and Unix have since relaxed this problem by allowing many more
case-sensitive characters to make up a filename. Table 5-6 shows the current nam-
ing state of several popular operating systems.

Samba still has to remain backwards compatible with network clients who store
files only in the 8.3 format, such as Windows for Workgroups. If a user creates a
file on a share called antidisestablishmentarianism.txt, a Windows for Work-
groups client couldn’t tell it apart from another file in the same directory called
antidisease.txt. Like Windows 95/98 and Windows NT, Samba has to employ a
special methodology of translating a long filename to an 8.3 filename in such a
way that similar filenames will not cause collisions. This is called name mangling,
and Samba deals with this in a manner that is similar, but not identical to, Win-
dows 95 and its successors.

The Samba Mangling Operation

Here is how Samba mangles a long filename into an 8.3 filename:

• If the original filename does not begin with a dot, up to the first five alphanu-
meric characters that occur before the last dot (if there is one) are converted

Table 5-6. Operating System Filename Limitations

Operating System File Naming Rules

DOS 6.22 or below Eight characters followed by a dot followed by a three-letter exten-
sion (8.3 format); case insensitive

Windows 3.1 for
Workgroups

Eight characters followed by a dot followed by a three-letter exten-
sion (8.3 format); case insensitive

Windows 95/98 127 characters; case sensitive

Windows NT 127 characters; case sensitive

Unix 255 characters; case sensitive

,ch05.27186 Page 143 Friday, November 19, 1999 3:29 PM

144 Chapter 5: Browsing and Advanced Disk Shares

to uppercase. These characters are used as the first five characters of the 8.3
mangled filename.

• If the original filename begins with a dot, the dot is removed and up to the
first five alphanumeric characters that occur before the last dot (if there is one)
are converted to uppercase. These characters are used as the first five charac-
ters of the 8.3 mangled filename.

• These characters are immediately followed a special mangling character: by
default, a tilde (~), although Samba allows you to change this character.

• The base of the long filename before the last period is hashed into a two-
character code; parts of the name after the last dot may be used if necessary.
This two character code is appended to the 8.3 filename after the mangling
character.

• The first three characters after the last dot (if there is one) of the original file-
name are converted to uppercase and appended onto the mangled name as the
extension. If the original filename began with a dot, three underscores (_ _ _)
are used as the extension instead.

Here are some examples:

virtuosity.dat VIRTU~F1.DAT
.htaccess HTACC~U0._ _ _
hello.java HELLO~1F.JAV
team.config.txt TEAMC~04.TXT
antidisestablishmentarianism.txt ANTID~E3.TXT
antidiseast.txt ANTID~9K.TXT

Using these rules will allow Windows for Workgroups to differentiate the two files
on behalf of the poor individual who is forced to see the network through the
eyes of that operating system. Note that the same long filename should always
hash to the same mangled name with Samba; this doesn’t always happen with
Windows. The downside of this approach is that there can still be collisions; how-
ever, the chances are greatly reduced.

You generally want to use the mangling configuration options with only the old-
est clients. We recommend doing this without disrupting other clients by adding
an include directive to the smb.conf file:

[global]
include = /ucsr/local/samba/lib/smb.conf.%m

This resolves to smb.conf.WfWg when a Window for Workgroups client attaches.
Now you can create a file /usr/local/samba/lib/smb.conf.WfWg which might con-
tain these options:

[global]
case sensitive = no
default case = upper
preserve case = no

,ch05.27186 Page 144 Friday, November 19, 1999 3:29 PM

Name Mangling and Case 145

short preserve case = no
mangle case = yes
mangled names= yes

If you are not using Windows for Workgroups 3.1, then you probably do not need
to change any of these options from their defaults.

Representing and resolving filenames with Samba

Another item that we should point out is that there is a difference between how an
operating system represents a file and how it resolves it. For example, if you’ve
used Windows 95/98/NT, you have likely run across a file called README.TXT.
The file can be represented by the operating system entirely in uppercase letters.
However, if you open an MS-DOS prompt and enter the command edit readme.
txt, the all-caps file is loaded into the editing program, even though you typed
the name in lowercase letters!

This is because the Windows 95/98/NT family of operating systems resolves files
in a case-insensitive manner, even though the files are represented it in a case-
sensitive manner. Unix-based operating systems, on the other hand, always resolve
files in a case-sensitive manner; if you try to edit README.TXT with the command
vi readme.txt, you will likely be editing the empty buffer of a new file.

Here is how Samba handles case: if the preserve case is set to yes, Samba will
always use the case provided by the operating system for representing (not resolv-
ing) filenames. If it is set to no, it will use the case specified by the default case
option. The same is true for short preserve case. If this option is set to yes,
Samba will use the default case of the operating system for representing 8.3
filenames; otherwise it will use the case specified by the default case option.
Finally, Samba will always resolve filenames in its shares based on the value of the
case sensitive option.

Mangling Options

Samba allows you to give it more refined instructions on how it should perform
name mangling, including those controlling the case sensitivity, the character
inserted to form a mangled name, and the ability to manually map filenames from
one format to another. These options are shown in Table 5-7.

Table 5-7. Name Mangling Options

Option Parameters Function Default Scope

case sensitive
(casesignames)

boolean If yes, Samba will treat file-
names as case-sensitive
(Windows doesn’t).

no Share

default case (upper or
lower)

Case to assume as default
(only used when preserve
case is no).

Lower Share

,ch05.27186 Page 145 Friday, November 19, 1999 3:29 PM

146 Chapter 5: Browsing and Advanced Disk Shares

case sensitive

This share-level option, which has the obtuse synonym casesignames, specifies
whether Samba should preserve case when resolving filenames in a specific share.
The default value for this option is no, which is how Windows handles file resolu-
tion. If clients are using an operating system that takes advantage of case-sensitive
filenames, you can set this configuration option to yes as shown here:

[accounting]
case sensitive = yes

Otherwise, we recommend that you leave this option set to its default.

default case

The default case option is used with preserve case. This specifies the default
case (upper or lower) that Samba will use when it creates a file on one of its
shares on behalf of a client. The default case is lower, which means that newly
created files will use the mixed-case names given to them by the client. If you
need to, you can override this global option by specifying the following:

[global]
default case = upper

preserve case boolean If yes, keep the case the
client supplied (i.e., do not
convert to default case).

yes Share

short preserve
case

boolean If yes, preserve case of 8.3-
format names that the client
provides.

yes Share

mangle case boolean Mangle a name if it is
mixed case.

no Share

mangled names boolean Mangles long names into
8.3 DOS format.

yes Share

mangling char string (single
character)

Gives mangling character. ~ Share

mangled stack numerical Number of mangled names
to keep on the local man-
gling stack.

50 Global

mangled map string (list of
patterns)

Allows mapping of filena-
mes from one format into
another.

None Share

Table 5-7. Name Mangling Options (continued)

Option Parameters Function Default Scope

,ch05.27186 Page 146 Friday, November 19, 1999 3:29 PM

Name Mangling and Case 147

If you specify this value, the names of newly created files will be translated into
uppercase, and cannot be overridden in a program. We recommend that you use
the default value unless you are dealing with a Windows for Workgroups or other
8.3 client, in which case it should be upper.

preserve case

This option specifies whether a file created by Samba on behalf of the client is cre-
ated with the case provided by the client operating system, or the case specified
by the default case configuration option above. The default value is yes, which
uses the case provided by the client operating system. If it is set to no, the value of
the default case option is used.

Note that this option does not handle 8.3 file requests sent from the client—see
the short preserve case option below. You may want to set this option to yes
if applications that create files on the Samba server are sensitive to the case used
when creating the file. If you want to force Samba, for example, to mimic the
behavior of a Windows NT filesystem, you can leave this option to its default, yes.

short preserve case

This option specifies whether an 8.3 filename created by Samba on behalf of the
client is created with the default case of the client operating system, or the case
specified by the default case configuration option. The default value is yes,
which uses the case provided by the client operating system. You can let Samba
choose the case through the default case option by setting it as follows:

[global]
short preserve case = no

If you want to force Samba to mimic the behavior of a Windows NT filesystem,
you can leave this option set to its default, yes.

mangled names

This share-level option specifies whether Samba will mangle filenames for 8.3 cli-
ents in that share. If the option is set to no, Samba will not mangle the names and
(depending on the client), they will either be invisible or appear truncated to those
using 8.3 operating systems. The default value is yes. You can override it per
share as follows:

[data]
mangled names = no

,ch05.27186 Page 147 Friday, November 19, 1999 3:29 PM

148 Chapter 5: Browsing and Advanced Disk Shares

mangle case

This option tells Samba whether it should mangle filenames that are not com-
posed entirely of the case specified using the default case configuration option.
The default for this option is no. If you set it to yes, you should be sure that all
clients will be able to handle the mangled filenames that result. You can override
it per share as follows:

[data]
mangle case = yes

We recommend that you leave this option alone unless you have a well-justified
need to change it.

mangling char

This share-level option specifies the mangling character used when Samba man-
gles filenames into the 8.3 format. The default character used is a tilde (~). You
can reset it to whatever character you wish, for instance:

[data]
mangling char = #

mangled stack

Samba maintains a local stack of recently mangled 8.3 filenames; this stack can be
used to reverse map mangled filenames back to their original state. This is often
needed by applications that create and save a file, close it, and need to modify it
later. The default number of long filename/mangled filename pairs stored on this
stack is 50. However, if you want to cut down on the amount of processor time
used to mangle filenames, you can increase the size of the stack to whatever you
wish, at the expense of memory and slightly slower file access.

[global]
mangled stack = 100

mangled map

If the default behavior of name mangling is not sufficient, you can give Samba fur-
ther instructions on how to behave using the mangled map option. This option
allows you to specify mapping patterns that can be used before or even in place
of name mangling performed by Samba. For example:

[data]
mangled map =(*.database *.db) (*.class *.cls)

Here, Samba is instructed to search each file it encounters for characters that
match the first pattern specified in the parenthesis and convert them to the modi-
fied second pattern in the parenthesis for display on an 8.3 client. This is useful in

,ch05.27186 Page 148 Friday, November 19, 1999 3:29 PM

Locks and Oplocks 149

the event that name mangling converts the filename incorrectly or to a format that
the client cannot understand readily. Patterns are separated by whitespaces.

Locks and Oplocks
Concurrent writes to a single file are not desirable in any operating system. To
prevent this, most operating systems use locks to guarantee that only one process
can write to a file at a time. Operating systems traditionally lock entire files,
although newer ones allow a range of bytes within a file to be locked. If another
process attempts to write to a file (or section of one) that is already locked, it will
receive an error from the operating system and will wait until the lock is released.

Samba supports the standard DOS and NT filesystem (deny-mode) locking
requests, which allow only one process to write to an entire file on a server at a
give time, as well as byte-range locking. In addition, Samba supports a new lock-
ing mechanism known in the Windows NT world as opportunistic locking—oplock
for short.

Opportunistic Locking

Opportunistic locking allows a client to notify the Samba server that it will not
only be the exclusive writer of a file, but will also cache its changes to that file on
its own machine (and not on the Samba server) in order to speed up file access
for that client. When Samba knows that a file has been opportunistically locked by
a client, it marks its version as having an opportunistic lock and waits for the cli-
ent to complete work on the file, at which point it expects the client to send the
final changes back to the Samba server for synchronization.

If a second client requests access to that file before the first client has finished
working on it, Samba can send an oplock break request to the first client. This tells
the client to stop caching its changes and return the current state of the file to the
server so that the interrupting client can use it as it sees fit. An opportunistic lock,
however, is not a replacement for a standard deny-mode lock. It is not unheard of
for the interrupting process to be granted an oplock break only to discover that
the original process also has a deny-mode lock on a file as well. Figure 5-8 illus-
trates this opportunistic locking process.

In terms of locks, we highly recommend using the defaults provided by Samba:
standard DOS/Windows deny-mode locks for compatibility and oplocks for the
extra performance that local caching allows. If your operating system can take
advantage of oplocks, it should provide significant performance improvements.
Unless you have a specific reason for changing any of these options, it’s best to
leave them as they are.

,ch05.27186 Page 149 Friday, November 19, 1999 3:29 PM

150 Chapter 5: Browsing and Advanced Disk Shares

Unix and Locking

Windows systems cooperate well to avoid overwriting each other’s changes. But if
a file stored on a Samba system is accessed by a Unix process, this process won’t
know a thing about Windows oplocks and could easily ride roughshod over a
lock. Some Unix systems have been enhanced to understand the Windows
oplocks maintained by Samba. Currently the support exists only in SGI Irix 6.5.2f
and later; Linux and FreeBSD should soon follow.

If you have a system that understands oplocks, set kernel oplocks = yes in the
Samba configuration file. That should eliminate conflicts between Unix processes
and Windows users.

If your system does not support kernel oplocks, you could end up with corrupted
data when somebody runs a Unix process that reads or writes a file that Windows
users also access. However, Samba provides a rough protection mechanism in the
absence of kernel oplocks: the veto oplock files option. If you can anticipate
which Samba files are used by both Windows users and Unix users, set their
names in a veto oplock files option. This will suppress the use of oplocks on
matching filenames, which will supress client caching, and let the Windows and
Unix programs use system locking or update times to detect competition for the
same file. A sample option is:

veto oplock files = /*.dbm/

Figure 5-8. Opportunistic locking

1

2 Granted. Cache
all your changes
to hello.doc locally.

3 I would like to access
hello.doc.

5 Granted.
4

Samba Server

[data]
hello.doc

SMB Client #1
(Windows NT 4.0)

SMB Client #2

Oplock break! Return
all your changes that
you cached to the Samba
server for hello.doc.

I would like an oplock
on hello.doc.

,ch05.27186 Page 150 Friday, November 19, 1999 3:29 PM

Locks and Oplocks 151

This option allows both Unix processes and Windows users to edit files ending in
the suffix .dbm. Note that the syntax of this option is similar to veto files.

Samba’s options for locks and oplocks are given in Table 5-8.

share modes

The most primitive locks available to Samba are deny-mode locks, known as share
modes, which are employed by programs such as text editors to avoid accidental
overwriting of files. For reference, the deny-mode locks are listed in Table 5-9.

Table 5-8. Locks and Oplocks Configuration Options

Option Parameters Function Default Scope

share
modes

boolean If set to yes, turns on support
for DOS-style whole-file locks.

yes Share

locking boolean If yes, turns on byte-range
locks.

yes Share

strict
locking

boolean If yes, denies access to an
entire file if a byte-range lock
exists in it.

no Share

oplocks boolean If yes, turn on local caching of
files on the client for this share.

yes Share

kernel
oplocks

boolean If yes, indicates that the kernel
supports oplocks.

yes Global

fake
oplocks

boolean If yes, tells client the lock was
obtained, but doesn’t actually
lock it.

no Share

blocking
locks

boolean Allows lock requestor to wait
for the lock to be granted.

yes Share

veto
oplock
files

string (list of
filenames)

Does not oplock specified
files.

None Share

lock
directory

string (fully-
qualified
pathname)

Sets the location where various
Samba files, including locks,
are stored.

As specified
in Samba
makefile

Global

Table 5-9. SMB Deny-Mode Locks

Lock Description

DENY_NONE Do not deny any other file requests.

DENY_ALL Deny all open requests on the current file.

DENY_READ Deny any read-only open requests on the current file.

DENY_WRITE Deny any write-only open requests on the current file.

DENY_DOS If opened for reading, others can read but cannot write to the file. If
opened for writing, others cannot open the file at all.

DENY_FCB Obsolete.

,ch05.27186 Page 151 Friday, November 19, 1999 3:29 PM

152 Chapter 5: Browsing and Advanced Disk Shares

The share modes parameter, which enforces the use of these locks, is enabled by
default. To disable it, use the following command:

[accounting]
share modes = no

We highly recommend against disabling the default locking mechanism unless you
have a justifiable reason for doing so. Most Windows and DOS applications rely
on these locking mechanisms in order to work correctly, and will complain bit-
terly if this functionality is taken away.

locking

The locking option can be used to tell Samba to engage or disengage server-side
byte-range locks on behalf of the client. Samba implements byte-range locks on
the server side with normal Unix advisory locks and will consequently prevent
other properly-behaved Unix processes from overwriting a locked byte range.

This option can be specified per share as follows:

[accounting]
locking = yes

If the locking option is set to yes, the requestor will be delayed until the holder
of either type of lock releases it (or crashes). If, however, the option is set to no,
no byte-range locks will be kept for the files, although requests to lock and unlock
files will appear to succeed. The option is set to yes by default; however, you can
turn this option off if you have read-only media.

strict locking

This option checks every file access for a byte-range lock on the range of bytes
being accessed. This is typically not needed if a client adheres to all the locking
mechanisms in place. This option is set to no by default; however, you can reset it
per share as follows:

[accounting]
strict locking = yes

If this option is set to yes, mandatory locks are enforced on any file with byte-
range locks.

blocking locks

Samba also supports blocking locks, a minor variant of range locks. Here, if the
range of bytes is not available, the client specifies an amount of time that it’s will-
ing to wait. The server then caches the lock request, periodically checking to see if
the file is available. If it is, it notifies the client; however, if time expires, Samba
will tell the client that the request has failed. This strategy prevents the client from
continually polling to see if the lock is available.

,ch05.27186 Page 152 Friday, November 19, 1999 3:29 PM

Locks and Oplocks 153

You can disable this option per share as follows:

[accounting]
blocking locks = no

When set to yes, blocking locks will be enforced on the file. If this option is set to
no, Samba behaves as if normal locking mechanisms are in place on the file. The
default is yes.

oplocks

This option enables or disables support for oplocks on the client. The option is
enabled by default. However, you can disable it with the following command:

[data]
oplocks = no

If you are in an extremely unstable network environment or have many clients
that cannot take advantage of opportunistic locking, it may be better to shut this
Samba feature off. Oplocks should be disabled if you are accessing the same files
from both Unix applications (such as vi) and SMB clients (unless you are lucky
enough to have an operating system that supports kernel oplocks as discussed
earlier).

fake oplocks

Before opportunistic locking was available on Samba, the Samba daemons pre-
tended to allow oplocks via the fake oplocks option. If this option was enabled,
all clients were told that the file is available for opportunistic locking, and never
warned of simultaneous access. This option is deprecated now that real oplocks
are available on Samba.

kernel oplocks

If a Unix application separate from Samba tries to update a file that Samba has
oplocked to a Windows client, it will likely succeed (depending on the operating
system) and both Samba and the client will never be aware of it. However, if the
local Unix operating system supports it, Samba can warn it of oplocked files,
which can suspend the Unix process, notify the client via Samba to write its copy
back, and only then allow the open to complete. Essentially, this means that the
operating system kernel on the Samba system has the ability to handle oplocks as
well as Samba.

You can enable this behavior with the kernel oplocks option, as follows:

[global]
kernel oplocks = yes

,ch05.27186 Page 153 Friday, November 19, 1999 3:29 PM

154 Chapter 5: Browsing and Advanced Disk Shares

Samba can automatically detect kernel oplocks and use them if present. At the
time of this writing, this feature is supported only by SGI Irix 6.5.2f and later.
However, Linux and FreeBSD support are expected in the near future. A system
without kernel oplocks will allow the Unix process to update the file, but the cli-
ent programs will notice the change only at a later time, if at all.

veto oplock files

You can provide a list of filenames that are never granted opportunistic locks with
the veto oplock files option. This option can be set either globally or on a per-
share basis. For example:

veto oplock files = /*.bat/*.htm/

The value of this option is a series of patterns. Each pattern entry must begin, end,
or be separated from another with a slash (/) character, even if there is only one
pattern listed. Asterisks can be used as a wildcard to represent zero or more char-
acters. Questions marks can be used to represent exactly one character.

We recommend that you disable oplocks on any files that are meant to be updated
by Unix or are intended to be shared by several processes simultaneously.

lock directory

This option (sometimes called lock dir) specifies the location of a directory
where Samba will store SMB deny-mode lock files. Samba stores other files in this
directory as well, such as browse lists and its shared memory file. If WINS is
enabled, the WINS database is written to this directory as well. The default for this
option is specified in the Samba makefile; it is typically /usr/local/samba/var/locks.
You can override this location as follows:

[global]
lock directory = /usr/local/samba/locks

You typically would not need to override this option, unless you want to move the
lock files to a more standardized location, such as /var/spool/locks.

,ch05.27186 Page 154 Friday, November 19, 1999 3:29 PM

