
295

Appendix A

A
Configuring Samba

with SSL

This appendix describes how to set up Samba to use secure connections between
the Samba server and its clients. The protocol used here is Netscape’s Secure Sock-
ets Layer (SSL). For this example, we will establish a secure connection between a
Samba server and a Windows NT workstation.

Before we begin, we will assume that you are familiar with the fundamentals of
public-key cryptography and X.509 certificates. If not, we highly recommend
Bruce Schneier’s Applied Cryptography, 2nd Edition (Wiley) as the premiere source
for learning the many secret faces of cryptography.

If you would like more information on Samba and SSL, be sure to
look at the document SSLeay.txt in the docs/textdocs directory of the
Samba distribution, which is the basis for this appendix.

About Certificates
Here are a few quick questions and answers from the SSLeay.txt file in the Samba
documentation, regarding the benefits of SSL and certificates. This text was writ-
ten by Christian Starkjohann for the Samba projects.

What is a Certificate?

A certifcate is issued by an issuer, usually a Certification Authority (CA), who con-
firms something by issuing the certificate. The subject of this confirmation depends
on the CA’s policy. CAs for secure web servers (used for shopping malls, etc.) usu-
ally attest only that the given public key belongs the given domain name. Com-

,appa.27695 Page 295 Friday, November 19, 1999 3:30 PM

296 Appendix A: Configuring Samba with SSL

pany-wide CAs might attest that you are an employee of the company, that you
have permissions to use a server, and so on.

What is an X.509 certificate, technically?

Technically, the certificate is a block of data signed by the certificate issuer (the
CA). The relevant fields are:

• Unique identifier (name) of the certificate issuer

• Time range during which the certificate is valid

• Unique identifier (name) of the certified object

• Public key of the certified object

• The issuer’s signature over all the above

If this certificate is to be verified, the verifier must have a table of the names and
public keys of trusted CAs. For simplicity, these tables should list certificates issued
by the respective CAs for themselves (self-signed certificates).

What are the implications of this certificate
structure?

Four implications follow:

• Because the certificate contains the subjects’s public key, the certificate and
the private key together are all that is needed to encrypt and decrypt.

• To verify certificates, you need the certificates of all CAs you trust.

• The simplest form of a dummy-certificate is one that is signed by the subject.

• A CA is needed. The client can’t simply issue local certificates for servers it
trusts because the server determines which certificate it presents.

Requirements
To set up SSL connections, you will need to download two programs in addition
to Samba:

SSLeay
Eric Young’s implementation of the Secure Socket’s Layer (SSL) protocol as a
series of Unix programming libraries

SSL Proxy
A freeware SSL application from Objective Development, which can be used
to proxy a secure link on Unix or Windows NT platforms

,appa.27695 Page 296 Friday, November 19, 1999 3:30 PM

Installing SSLeay 297

These two products assist with the server and client side of the encrypted SSL con-
nection. The SSLeay libraries are compiled and installed directly on the Unix sys-
tem. SSL Proxy, on the other hand, can be downloaded and compiled (or
downloaded in binary format) and located on the client side. If you intend to have
a Windows NT client or a Samba client on the other end of the SSL connection,
you will not require a special setup.

SSL Proxy, however, does not work on Windows 95/98 machines. Therefore, if
you want to have a secure connection between a Samba server and Windows 95/
98 client, you will need to place either a Unix server or a Windows NT machine
on the same subnet with the Windows 9x clients and route all network connec-
tions through the SSL-Proxy-enabled machine. See Figure A-1.

For the purposes of this chapter, we will create a simple SSL connection between
the Samba server and a Windows NT client. This configuration can be used to set
up more complex networks at the administrator’s discretion.

Installing SSLeay
Samba uses the SSLeay package, written by Eric Young, to provide Secure Sockets
Layer support on the server side. Because of U.S. export law, however, the SSLeay
package cannot be shipped with Samba distributions that are based in the United
States. For that reason, the Samba creators decided to leave it as a separate

Figure A-1. Two possible ways of proxying Windows 95/98 clients

Insecure Network

Insecure Network

Samba Server
(with SSL support)

Unix
Server (with
SSL proxy)

Windows
NT 4.0 with
SSL Proxy

Samba Server
(with SSL support)

Windows
98/95
Client

Windows
98/95
Client

Windows
98/95
Client

Windows
98/95
Client

,appa.27695 Page 297 Friday, November 19, 1999 3:30 PM

298 Appendix A: Configuring Samba with SSL

package entirely. You can download the SSLeay distribution from any of the fol-
lowing sites:

• ftp://ftp.psy.uq.oz.au/pub/Crypto/SSL/

• ftp://ftp.uni-mainz.de/pub/internet/security/ssl

• ftp://ftp.cert.dfn.de/pub/tools/crypt/sslapps

• ftp://ftp.funet.fi/pub/crypt/mirrors/ftp.psy.uq.oz.au

• ftp://ftp.sunet.se/ftp/pub/security/tools/crypt/ssleay

The latest version as of this printing is 0.9.0b. Download it to the same server as
the Samba distribution, then uncompress and untar it. You should be left with a
directory entitled SSLeay-0.9.0b. After changing to that directory, you will need to
configure and build the SSL encryption package in the same way that you did with
Samba.

SSLeay uses a Perl-based configure script. This script modifies the Makefile that
constructs the utilities and libraries of the SSLeay package. However, the default
script is hardcoded to find Perl at /usr/local/bin/perl. You may need to change the
configure script to point to the location of the Perl executable file on your Unix
system. For example, you can type the following to locate the Perl executable:

which perl
/usr/bin/perl

Then modify the first line of the configure script to force it to use the correct Perl
executable. For example, on our Red Hat Linux system:

#!/usr/bin/perl
#
see PROBLEMS for instructions on what sort of things to do
when tracking a bug –tjh
...

After that, you need to run the configure script by specifying a target platform for
the distribution. This target platform can be any of the following:

BC-16 BC-32 FreeBSD NetBSD-m86
NetBSD-sparc NetBSD-x86 SINIX-N VC-MSDOS
VC-NT VC-W31-16 VC-W31-32 VC-WIN16
VC-WIN32 aix-cc aix-gcc alpha-cc
alpha-gcc alpha400-cc cc cray-t90-cc
debug debug-irix-cc debug-linux-elf dgux-R3-gcc
dgux-R4-gcc dgux-R4-x86-gcc dist gcc
hpux-cc hpux-gcc hpux-kr-cc irix-cc
irix-gcc linux-aout linux-elf ncr-scde
nextstep purify sco5-cc solaris-sparc-cc
solaris-sparc-gcc solaris-sparc-sc4 solaris-usparc-sc4 solaris-x86-gcc
sunos-cc sunos-gcc unixware-2.0 unixware

,appa.27695 Page 298 Friday, November 19, 1999 3:30 PM

Installing SSLeay 299

For our system, we would enter the following:

./Configure linux-elf
CC =gcc
CFLAG =-DL_ENDIAN -DTERMIO -DBN_ASM -O3 -fomit-frame-pointer
EX_LIBS =
BN_MULW =asm/bn86-elf.o
DES_ENC =asm/dx86-elf.o asm/yx86-elf.o
BF_ENC =asm/bx86-elf.o
CAST_ENC =asm/cx86-elf.o
RC4_ENC =asm/rx86-elf.o
RC5_ENC =asm/r586-elf.o
MD5_OBJ_ASM =asm/mx86-elf.o
SHA1_OBJ_ASM =asm/sx86-elf.o
RMD160_OBJ_ASM=asm/rm86-elf.o
THIRTY_TWO_BIT mode
DES_PTR used
DES_RISC1 used
DES_UNROLL used
BN_LLONG mode
RC4_INDEX mode

After the package has been configured, you can build it by typing make. If the
build did not successfully complete, consult the documentation that comes with
the distribution or the FAQ at http://www.cryptsoft.com/ssleay/ for more informa-
tion on what may have happened. If the build did complete, type make install
to install the libraries on the system. Note that the makefile installs the package in
/usr/local/ssl by default. If you decide to install it in another directory, remember
the directory when configuring Samba to use SSL.

Configuring SSLeay for Your System

The first thing you need to do is to set the PATH environment variable on your sys-
tem to include the /bin directory of the SSL distribution. This can be done with the
following statement:

PATH=$PATH:/usr/local/ssl/bin

That’s the easy part. Following that, you will need to create a random series of
characters that will be used to prime SSLeay’s random number generator. The ran-
dom number generator will be used to create key pairs for both the clients and the
server. You can create this random series by filling a text file of a long series of
random characters. For example, you can use your favorite editor to create a text
file with random characters, or use this command and enter arbitrary characters at
the standard input:

cat >/tmp/private.txt

The Samba documentation recommends that you type characters for longer than a
minute before interrupting the input stream by hitting Control-D. Try not to type

,appa.27695 Page 299 Friday, November 19, 1999 3:30 PM

300 Appendix A: Configuring Samba with SSL

only the characters that are under your fingers on the keyboard; throw in some
symbols and numbers as well. Once you’ve completed the random file, you can
prime the random number generator with the following command:

ssleay genrsa -rand /tmp/private.txt >/dev/null
2451 semi-random bytes loaded
Generating RSA private key, 512 bit long modulus
..+++++
.................................+++++
e is 65537 (0x10001)

You can safely ignore the output of this command. After it has completed, remove
the series of characters used to create the key because this could be used to recre-
ate any private keys that were generated from this random number generator:

rm -f /tmp/private.txt

The result of this command is the hidden file .rnd, which is stored in your home
directory. SSLeay will use this file when creating key pairs in the future.

Configuring Samba to use SSL

At this point, you can compile Samba to use SSL. Recall that in Chapter 2, Install-
ing Samba on a Unix System, we said you have to first run the configure script,
which initializes the makefile, before you compile Samba. In order to use SSL with
Samba, you will need to reconfigure the makefile:

./configure --with-ssl

After that, you can compile Samba with the following commands:

make clean
make all

If you encounter an error that says the smbd executable is missing the file ssl.h,
you probably didn’t install SSLeay in the default directory. Use the configure
option --with-sslinc to point to the base directory of the SSL distribution—in
this case, the directory that contains include/ssl.h.

On the other hand, if you have a clean compile, you’re ready to move on to the
next step: creating certificates.

Becoming a Certificate Authority

The SSL protocol requires the use of X.509 certificates in the protocol handshake
to ensure that either one or both parties involved in the communication are indeed
who they say they are. Certificates in real life, such as those use for SSL connec-
tions on public web sites, can cost in the arena of $300 a year. This is because the
certificate must have a digital signature placed on it by a certificate authority. A

,appa.27695 Page 300 Friday, November 19, 1999 3:30 PM

Installing SSLeay 301

certificate authority is an entity that vouches for the authenticity of a digital certifi-
cate by signing it with its own private key. This way, anyone who wishes to check
the authenticity of the certificate can simply use the certificate authority’s public
key to check the signature.

You are allowed to use a public certificate authority with SSLeay. However, you
don’t have to. Instead, SSLeay will allow you to declare yourself a trusted certifi-
cate authority—specifying which clients you choose to trust and which clients you
do not. In order to do this, you will need to perform several tasks with the SSLeay
distribution.

The first thing you need to do is specify a secure location where the certificates of
the clients and potentially the server will be stored. We have chosen /etc/
certificates as our default. Execute the following commands as root:

cd /etc
mkdir certificates
chmod 700 certificates

Note that we shut out all access to users other than root for this directory. This is
very important.

Next, you need to set up the SSLeay scripts and configuration files to use the cer-
tificates stored in this directory. In order to do this, first modify the CA.sh script
located at /usr/local/ssl/bin/CA.sh to specify the location of the directory you just
created. Find the line that contains the following entry:

CATOP=./demoCA

Then change it to:

CATOP=/etc/certificates

Next, you need to modify the /usr/local/ssl/lib/ssleay.cnf file to specify the same
directory. Find the entry:

[CA_default]
dir = ./demoCA # Where everything is kept

Then change it to:

[CA_default]
dir = /etc/certificates # Where everything is kept

Next, run the certificate authority setup script, CA.sh, in order to create the certifi-
cates. Be sure to do this as the same user that you used to prime the random num-
ber generator above:

/usr/local/ssl/bin/CA.sh -newca
mkdir: cannot make directory '/etc/certificates': File exists
CA certificate filename (or enter to create)

,appa.27695 Page 301 Friday, November 19, 1999 3:30 PM

302 Appendix A: Configuring Samba with SSL

Press the Enter key to create a certificate for the CA. You should then see:

Making CA certificate ...
Using configuration from /usr/local/ssl/lib/ssleay.cnf
Generating a 1024 bit RSA private key
.............................+++++
.....................+++++
writing new private key to /etc/certificates/private/cakey.pem
Enter PEM pass phrase:

Enter a new pass phrase for your certificate. You will need to enter it twice cor-
rectly before SSLeay will accept it:

Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

Be sure to remember this pass phrase. You will need it to sign the client certifi-
cates in the future. Once SSLeay has accepted the pass phrase, it will continue on
with a series of questions for each of the fields in the X509 certificate:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished
Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Fill out the remainder of the fields with information about your organization. For
example, our certificate looks like this:

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:California
Locality Name (eg, city) []:Sebastopol
Organization Name (eg, company) []:O'Reilly
Organizational Unit Name (eg, section) []:Books
Common Name (eg, YOUR name) []:John Doe
Email Address []:doe@ora.com

After that, SSLeay will be configured as a certificate authority and can be used to
sign certificates for client machines that will be connecting to the Samba server.

Creating Certificates for Clients

It’s simple to create a certificate for a client machine. First, you need to generate a
public/private key pair for each entity, create a certificate request file, and then
use SSLeay to sign the file as a trusted authority.

For our example client phoenix, this boils down to three SSLeay commands. The
first generates a key pair for the client and places it in the file phoenix.key. The

,appa.27695 Page 302 Friday, November 19, 1999 3:30 PM

Installing SSLeay 303

private key will be encrypted, in this case using triple DES. Enter a pass phrase
when requested below—you’ll need it for the next step:

ssleay genrsa -des3 1024 >phoenix.key
1112 semi-random bytes loaded
Generating RSA private key, 1024 bit long modulus
..+++++
.............+++++
e is 65537 (0x10001)
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

After that command has completed, type in the following command:

ssleay req -new -key phoenix.key -out phoenix-csr
Enter PEM pass phrase:

Enter the pass phrase for the client certificate you just created (not the certificate
authority). At this point, you will need to answer the questionnaire again, this time
for the client machine. In addition, you must type in a challenge password and an
optional company name—those do not matter here. When the command com-
pletes, you will have a certificate request in the file phoenix-csr.

Then, you must sign the certificate request as the trusted certificate authority. Type
in the following command:

ssleay ca -days 1000 -inflies phoenix-csr >phoenix.pem

This command will prompt you to enter the PEM pass phrase of the certificate
authority. Be sure that you do not enter the PEM pass phrase of the client certifi-
cate that you just created. After entering the correct pass phrase, you should see
the following:

Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows:
...

This will be followed by the information that you just entered for the client certifi-
cate. If there is an error in the fields, the program will notify you. On the other
hand, if everything is fine, SSLeay will confirm that it should sign the certificate
and commit it to the database. This adds a record of the certificate to the /etc/
certificates/newcerts directory.

The operative files at the end of this exercise are the phoenix.key and phoenix.pem
files, which reside in the current directory. These files will be passed off to the cli-
ent with whom the SSL-enabled Samba server will interact, and will be used by
SSL Proxy.

,appa.27695 Page 303 Friday, November 19, 1999 3:30 PM

304 Appendix A: Configuring Samba with SSL

Configuring the Samba Server

The next step is to modify the Samba configuration file to include the following
setup options. These options assume that you created the certificates directory for
the certificate authority at /etc/certificates :

[global]
ssl = yes
ssl server cert = /etc/certificates/cacert.pem
ssl server key = /etc/certificates/private/cakey.pem
ssl CA certDir = /etc/certificates

At this point, you will need to kill the Samba daemons and restart them manually:

nmbd -D
smbd -D
Enter PEM pass phrase:

You will need to enter the PEM pass phrase of the certificate authority to start up
the Samba daemons. Note that this may present a problem in terms of starting the
program using ordinary means. However, you can get around this using advanced
scripting languages, such as Expect or Python.

Testing with smbclient

A good way to test whether Samba is working properly is to use the smbclient
program. On the Samba server, enter the following command, substituting the
appropriate share and user for a connection:

smbclient //hydra/data -U tom

You should see several debugging statements followed by a line indicating the
negotiated cipher, such as:

SSL: negotiated cipher: DES-CBC3-SHA

After that, you can enter your password and connect to the share normally. If this
works, you can be sure that Samba is correctly supporting SSL connections. Now,
on to the client setup.

Setting Up SSL Proxy
The SSL Proxy program is available as a standalone binary or as source code. You
can download it from http://obdev.at/Products/sslproxy.html.

Once it is downloaded, you can configure and compile it like Samba. We will con-
figure it on a Windows NT system. However, setting it up for a Unix system
involves a nearly identical series of steps. Be sure that you are the superuser
(administrator) for the next series of steps.

,appa.27695 Page 304 Friday, November 19, 1999 3:30 PM

Setting Up SSL Proxy 305

If you downloaded the binary for Windows NT, you should have the following
files in a directory:

• cygwinb19.dll

• README.TXT

• sslproxy.exe

• dummyCert.pem

The only one that you will be interested in is the SSL Proxy executable. Copy over
the phoenix.pem and phoenix.key files that you generated earlier for the client to
the same directory as the SSL proxy executable. Make sure that the directory is
secure from the prying eyes of other users.

The next step is to ensure that the Windows NT machine can resolve the NetBIOS
name of the Samba server. This means that you should either have a WINS server
up and running (the Samba server can perform this task with the wins support =
yes option) or have it listed in the appropriate hosts file of the system. See
Chapter 7, Printing and Name Resolution, for more information on WINS server.*

Finally, start up SSL Proxy with the following command. Here, we assume that
hydra is the name of the Samba server:

C:\SSLProxy>sslproxy -l 139 -R hydra -r 139 -n -c phoenix.pem -k phoenix.key

This tells SSL Proxy to listen for connections to port 139 and relay those requests
to port 139 on the NetBIOS machine hydra. It also instructs SSL Proxy to use the
phoenix.pem and phoenix.key files to generate the certificate and keys necessary to
initiate the SSL connection. SSL Proxy responds with:

Enter PEM pass phrase:

Enter the PEM pass phrase of the client keypair that you generated, not the certifi-
cate authority. You should then see the following output:

SSL: No verify locations, trying default
proxy ready, listening for connections

That should take care of the client. You can place this command in a startup
sequence on either Unix or Windows NT if you want this functionality available at
all times. Be sure to set any clients you have connecting to the NT server (includ-
ing the NT server itself) to point to this server instead of the Samba server.

After you’ve completed setting this up, try to connect using clients that proxy
through the NT server. You should find that it works almost transparently.

* If you are running SSL Proxy on a Unix server, you should ensure that the DNS name of the Samba
server can be resolved.

,appa.27695 Page 305 Friday, November 19, 1999 3:30 PM

306 Appendix A: Configuring Samba with SSL

SSL Configuration Options
Table A-1 summarizes the configuration options introduced in the previous sec-
tion for using SSL. Note that all of these options are global in scope; in other
words, they must appear in the [global] section of the configuration file.

Table A-1. SSL Configuration Options

Option Parameters Function Default Scope

ssl boolean Indicates whether SSL mode is
enabled with Samba.

no Global

ssl hosts string (list of
addresses)

Specifies a list of hosts that
must always connect using
SSL.

None Global

ssl hosts
resign

string (list of
addresses)

Specifies a list of hosts that
never connect using SS.

None Global

ssl CA
certDir

string (fully-
qualified
pathname)

Specifies the directory where
the certificates are stored.

None Global

ssl CA
certFile

string (fully-
qualified
pathname)

Specifies a file that contains all
of the certificates for Samba.

None Global

ssl server
cert

string (fully-
qualified
pathname)

Specifies the location of the
server’s certificate.

None Global

ssl server
key

string (fully-
qualified
pathname)

Specifies the location of the
server’s private key.

None Global

ssl client
cert

string (fully-
qualified
pathname)

Specifies the location of the
client’s certificate.

None Global

ssl client
key

string (fully-
qualified
pathname)

Specifies the location of the
client’s private key.

None Global

ssl require
clientcert

boolean Indicates whether Samba
should require each client to
have a certificate.

no Global

ssl require
servercert

boolean Indicates whether the server
itself should have a certificate.

no Global

ssl ciphers String Specifies the cipher suite to
use during protocol negotia-
tion.

None Global

ssl version ssl2or3,
ssl3, or
tls1

Specifies the version of SSL to
use.

ssl2or3 Global

,appa.27695 Page 306 Friday, November 19, 1999 3:30 PM

SSL Configuration Options 307

ssl

This global option configures Samba to use SSL for communication between itself
and clients. The default value of this option is no. You can reset it as follows:

[global]
ssl = yes

Note that in order to use this option, you must have a proxy for Windows 95/98
clients, such as in the model presented earlier in this chapter.

ssl hosts

This option specifies the hosts that will be forced into using SSL. The syntax for
specifying hosts and addresses is the same as the hosts allow and the hosts
deny configuration options. For example:

[global]
ssl = yes
ssl hosts = 192.168.220.

This example specifies that all hosts that fall into the 192.168.220 subnet must use
SSL connections with the client. This type of structure is useful if you know that
various connections will be made by a subnet that lies across an untrusted net-
work, such as the Internet. If neither this option nor the ssl hosts resign option
has been specified, and ssl is set to yes, Samba will allow only SSL connections
from all clients.

ssl hosts resign

This option specifies the hosts that will not be forced into SSL mode. The syntax
for specifying hosts and addresses is the same as the hosts allow and the hosts
deny configuration options. For example:

[global]
ssl = yes
ssl hosts resign = 160.2.310. 160.2.320.

This example specifies that all hosts that fall into the 160.2.310 or 160.2.320 sub-
nets will not use SSL connections with the client. If neither this option nor the ssl
hosts option has been specified, and ssl is set to yes, Samba will allow only SSL
connections from all clients.

ssl
compatibility

boolean Indicates whether compatibil-
ity with other implementations
of SSL should be activated.

no Global

Table A-1. SSL Configuration Options (continued)

Option Parameters Function Default Scope

,appa.27695 Page 307 Friday, November 19, 1999 3:30 PM

308 Appendix A: Configuring Samba with SSL

ssl CA certDir

This option specifies the directory containing the certificate authority’s certificates
that Samba will use to authenticate clients. There must be one file in this directory
for each certificate authority, named as specified earlier in this chapter. Any other
files in this directory are ignored. For example:

[global]
ssl = yes
ssl hosts = 192.168.220.
ssl CA certDir = /usr/local/samba/cert

There is no default for this option. You can alternatively use the option ssl CA
certFile if you wish to place all the certificate authority information in the same
file.

ssl CA certFile

This option specifies a file that contains the certificate authority’s certificates that
Samba will use to authenticate clients. This option differs from ssl CA certDir in
that there is only one file used for all the certificate authorities. An example of its
usage follows:

[global]
ssl = yes
ssl hosts = 192.168.220.
ssl CA certFile = /usr/local/samba/cert/certFile

There is no default for this option. You can also use the option ssl CA certDir if
you wish to have a separate file for each certificate authority that Samba trusts.

ssl server cert

This option specifies the location of the server’s certificate. This option is manda-
tory; the server must have a certificate in order to use SSL. For example:

[global]
ssl = yes
ssl hosts = 192.168.220.
ssl CA certFile = /usr/local/samba/cert/certFile
ssl server cert = /usr/local/samba/private/server.pem

There is no default for this option. Note that the certificate may contain the pri-
vate key for the server.

ssl server key

This option specifies the location of the server’s private key. You should ensure
that the location of the file cannot be accessed by anyone other than root. For
example:

,appa.27695 Page 308 Friday, November 19, 1999 3:30 PM

SSL Configuration Options 309

[global]
ssl = yes
ssl hosts = 192.168.220.
ssl CA certFile = /usr/local/samba/cert/certFile
ssl server key = /usr/local/samba/private/samba.pem

There is no default for this option. Note that the private key may be contained in
the certificate for the server.

ssl client cert

This option specifies the location of the client’s certificate. The certificate may be
requested by the Samba server with the ssl require clientcert option; the
certificate is also used by smbclient. For example:

[global]
 ssl = yes
 ssl hosts = 192.168.220.
 ssl CA certFile = /usr/local/samba/cert/certFile
 ssl server cert = /usr/local/ssl/private/server.pem
 ssl client cert= /usr/local/ssl/private/clientcert.pem

There is no default for this option.

ssl client key

This option specifies the location of the client’s private key. You should ensure
that the location of the file cannot be accessed by anyone other than root. For
example:

[global]
ssl = yes
ssl hosts = 192.168.220.
ssl CA certDir = /usr/local/samba/cert/
ssl server key = /usr/local/ssl/private/samba.pem
ssl client key = /usr/local/ssl/private/clients.pem

There is no default for this option. This option is only needed if the client has a
certificate.

ssl require clientcert

This option specifies whether the client is required to have a certificate. The certifi-
cates listed with either the ssl CA certDir or the ssl CA certFile will be
searched to confirm that the client has a valid certificate and is authorized to con-
nect to the Samba server. The value of this option is a simple boolean. For
example:

[global]
ssl = yes
ssl hosts = 192.168.220.
ssl CA certFile = /usr/local/samba/cert/certFile

,appa.27695 Page 309 Friday, November 19, 1999 3:30 PM

310 Appendix A: Configuring Samba with SSL

ssl require clientcert = yes

We recommend that you require certificates from all clients that could be connect-
ing to the Samba server. The default value for this option is no.

ssl require servercert

This option specifies whether the server is required to have a certificate. Again,
this will be used by the smbclient program. The value of this option is a simple
boolean. For example:

[global]
ssl = yes
ssl hosts = 192.168.220.
ssl CA certFile = /usr/local/samba/cert/certFile
ssl require clientcert = yes
ssl require servercert = yes

Although we recommend that you require certificates from all clients that could be
connecting to the Samba server, a server certificate is not required. It is, however,
recommended. The default value for this option is no.

ssl ciphers

This option sets the ciphers on which SSL will decide during the negotiation phase
of the SSL connection. Samba can use any of the following ciphers:

DEFAULT
DES-CFB-M1
NULL-MD5
RC4-MD5
EXP-RC4-MD5
RC2-CBC-MD5
EXP-RC2-CBC-MD5
IDEA-CBC-MD5
DES-CBC-MD5
DES-CBC-SHA
DES-CBC3-MD5
DES-CBC3-SHA
RC4-64-MD5
NULL

It is best not to set this option unless you are familiar with the SSL protocol and
want to mandate a specific cipher suite.

ssl version

This global option specifies the version of SSL that Samba will use when han-
dling encrypted connections. The default value is ssl2or3, which specifies that
either version 2 or 3 of the SSL protocol can be used, depending on which ver-
sion is negotiated in the handshake between the server and the client. However,

,appa.27695 Page 310 Friday, November 19, 1999 3:30 PM

SSL Configuration Options 311

if you want Samba to use only a specific version of the protocol, you can specify
the following:

[global]
ssl version = ssl3

Again, it is best not to set this option unless you are familiar with the SSL protocol
and want to mandate a specific version.

ssl compatibility

This global option specifies whether Samba should be configured to use other ver-
sions of SSL. However, because no other versions exist at this writing, the issue is
moot and the variable should always be left at the default.

,appa.27695 Page 311 Friday, November 19, 1999 3:30 PM

