
Red Hat Linux - The Complete Reference,
Second Edition
Richard Petersen

McGraw-Hill/Osborne
2600 Tenth Street
Berkeley, California 94710
U.S.A.

To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers, please
contact McGraw-Hill/Osborne at the above address. For information on translations or book
distributors outside the U.S.A., please see the International Contact Information page
immediately following the index of this book.

Red Hat Linux: The Complete Reference, Second Edition

Copyright © 2002 by The McGraw-Hill Companies. All rights reserved. Printed in the United
States of America. Except as permitted under the Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by any means, or stored in a
database or retrieval system, without the prior written permission of the publisher, with the
exception that the program listings may be entered, stored, and executed in a computer
system, but they may not be reproduced for publication.

1234567890 CUS CUS 01987654321

Book p/n 0-07-219179-1, CD 1 p/n: 0-07-219180-5, and CD 2 p/n: 0-07-222386-3
parts of
ISBN 0-07-219178-3

Publisher
Brandon A. Nordin

Vice President & Associate Publisher
Scott Rogers

Acquisitions Editor
Francis Kelly

Project Editors
Mark Karmendy
LeeAnn Pickrell

Acquisitions Coordinator
Alexander Corona

Technical Editor
Dean Henrichsmeyer

Copy Editor
Dennis Weaver

Proofreaders
John Gildersleeve, Paul Tyler

Indexer
Jack Lewis

Computer Designers
Tara A. Davis, Lauren McCarthy

Illustrators
Lyssa Wald, Michael Mueller

Series Design
Peter F. Hancik

This book was composed with Corel VENTURA™ Publisher.

Information has been obtained by McGraw-Hill/Osborne from sources believed to be reliable.
However, because of the possibility of human or mechanical error by our sources, McGraw-
Hill/Osborne, or others, McGraw-Hill/Osborne does not guarantee the accuracy, adequacy, or
completeness of any information and is not responsible for any errors or omissions or the
results obtained from use of such information.

To my sisters-in-law,
Marylou and Valerie

About the Author

Richard Petersen holds an M.L.I.S. in library and information studies. He currently teaches
Unix and C/C++ courses at the University of California, Berkeley.

Acknowledgments

I would like to thank all those at McGraw-Hill/Osborne who made this book a reality,
particularly Francis Kelly, acquisition editor, for his continued encouragement and analysis as
well as management of such a complex project; Dean Henrichsmeyer, the technical editor,
whose analysis and suggestions proved very insightful and helpful; Alexander Corona,
acquisitions coordinator, who provided needed resources and helpful advice; Dennis Weaver,
copy editor, for his excellent job editing as well as insightful comments; and project editors
Mark Karmendy and LeeAnn Pickrell who incorporated the large number of features found in
this book as well as coordinating the intricate task of generating the final version. Thanks also
to Scott Rogers and Jane Brownlow who initiated the project.

Special thanks to Linus Torvalds, the creator of Linux, and to those who continue to develop
Linux as an open, professional, and effective operating system accessible to anyone. Thanks
also to the academic community whose special dedication has developed Unix as a flexible
and versatile operating system. I would also like to thank professors and students at the

University of California, Berkeley, for the experience and support in developing new and
different ways of understanding operating system technologies.

I would also like to thank my parents, George and Cecelia, and my brothers, George, Robert,
and Mark, for their support and encouragement with such a difficult project. Also Valerie and
Marylou and my nieces and nephews, Aleina, Larisa, Justin, Christopher, and Dylan, for their
support and deadline reminders.

About the CD-ROMs

The Linux distribution CD-ROM, Red Hat Linux 7.2, is included in the book, featuring the
2.4 kernel and Gnome 1.4. The Red Hat Linux distribution installs a professional-level and
very stable Linux system with KDE and Gnome GUI interfaces, providing you with all the
advantages of a Unix workstation on your PC, combined with the same ease of use and
versatility found on GUI systems like Windows and Mac/OS. An extensive set of Internet
servers are also included that are automatically installed along with flexible and easy-to-use
system configuration tools. You can find recent information about Red Hat at
www.redhat.com.

The CDs include both Gnome and the K Desktop Environment (KDE) GUI user interfaces,
along with an extensive number of Gnome and KDE applications. Red Hat 7.2 installs both
Gnome and KDE, as well as a comprehensive set of Linux software applications including the
GNU software packages (graphics, communications, publishing, editing, programming,
games), as well as development tools, and Internet servers (ftp, Web, mail, news, and DNS).
It also installs a complete set of Internet clients such as mail, news, FTP, and Web browsers.
There are clients for both the Gnome and KDE desktops, as well as for shell and window
manger interfaces. With your installation, you are entitled to join the Red Hat Network, which
provides you with automatic updates for your installed software and system. Periodically you
can check for updates. The needed software updates will be detected, downloaded, and
installed for you.

The CD-ROM and the Red Hat Web site (www.redhat.com) include extensive
documentation including HOW-TO documents, tutorials in Web page format, and online
manuals. Three very helpful Red Hat guides are the Red Hat Installation Guide, the Red Hat
Getting Started Guide, the Red Hat Linux Reference Guide, and the Red Hat Customization
Guide. All are in Web-page format and can be viewed with any Web browser on any system.
The Red Hat Installation Guide provides a detailed walk-through of the installation procedure
with graphics and helpful suggestions. It is best to check it before you install Red Hat. The
Red Hat Getting Started Guide provides an overview of basic Red Hat operations such as
working with Gnome and basic configuration. The Red Hat Linux Reference Guide covers
administration and configuration tasks in detail. The Red Hat Linux Customization Guide
covers specialize administration tasks, such as DNS, NFS, and Samba configuration, along
with using encryption and the Red Hat Package manager.

For added functionality, you can also download free personal editions of the StarOffice office
suite from www.sun.com and WordPerfect from linux.corel.com. Also, the Java Software
Development Kit is available for free at www.blackdown.org. Databases are available from
their respective Web sites, such as Oracle from www.oracle.com. Numerous applications, in
the easy-to-install RPM package format, are available on the CD-ROM included with this
book, and can also be downloaded from the Red Hat ftp site and its mirror sites,

ftp.redhat.com. You can both download and install these applications using either the Gnome
or KDE file managers. Several popular Internet sites where you can easily obtain Linux
applications are listed here.

Linux Applications Internet Site
Red Hat FTP site ftp.redhat.com (for manual updates

or added software)
Linux Documentation Project www.linuxdoc.org
Java Software Development Kit www.blackdown.org
Window manger and desktop themes www.themes.org
Gnome applications www.gnome.org
KDE applications apps.kde.com
Linux Application in RPM packages www.rpmfind.net
New Linux applications www.freshmeat.net
Linux opensource applications and development sites www.sourceforge.net
Linux applications www.linuxapps.com
WordPerfect linux.corel.com
Linux World www.linuxworld.com
Linux Journal www.linuxjournal.com
Online Linux www.linux.org

Introduction
The Red Hat Linux operating system has become one of the major Linux distributions,
bringing to the PC all the power and flexibility of a Unix workstation as well as a complete
set of Internet applications and a fully functional desktop interface. This book is designed not
only to be a complete reference on Red Hat Linux, but also to provide clear and detailed
explanations of Linux features. No prior knowledge of Unix is assumed; Linux is an operating
system anyone can use.

This book identifies seven major Linux topics: basic setup, environments and applications, the
Internet, servers, administration, and network administration. These topics are integrated into
the different ways Red Hat presents its distribution: as a desktop workstation, network
workstation, server, and development platform. The section on the Red Hat Desktop
workstation covers environments and applications. As a Red Hat network workstation,
Internet applications are added. For Red Hat servers, the configuration and setup of various
Internet servers are discussed. Included also are detailed sections on different system and
network administration topics such as configuring the kernel, accessing files systems, and
setting up firewalls. Though applicable primarily to programmers, the Red Hat development
section introduces you to different development tools, such as compilers, shell scripting, and
GUI construction. This section is available on the Web at www.osborne.com, should you
wish to peruse this topic.

The first two sections of the book are designed to cover tasks you would need to perform to
get your system up and running. They emphasize several of the key strengths provided by Red
Hat Linux such as automatic update procedures, painless software installations, an extensive
suite of software applications along with Red Hat specific configurations for them, and a
collection of easy-to-use administrative tools for networking, user management, and server
control. Red Hat distributions also include the most recent stable Linux software, such as
security applications like Tripwire and IP-Tables, and the newest stable versions of the
Gnome and KDE desktops, including the Nautilus file manager.

After an introduction to the working environment, including both Gnome and KDE desktops,
you learn how to quickly update your system, access CD-ROMs, and set up your printer. The
Red Hat Network makes software updates nearly automatic, letting you update the software
on your system, including applications, all at once, with just a couple of mouse clicks. Internet
access can be set up for modems, DSL, and Ethernet networks with easy-to-use GUI tools that
guide you every step of the way. Security is a primary concern for any networked system.
This section shows you how to implement basic protection methods such as encryption,
intrusion detection, and firewalls. Many people now use Red Hat Linux to set up a home or
local business network. The steps involved to implement a basic network can now be carried
out using simple software tools. All these topics are covered in greater detail later in the book.

Gnome and the K Desktop Environment (KDE) have become standard desktop Graphical
User Interfaces (GUI) for Linux, noted for their power, flexibility, and ease-of-use. These are
complete desktop environments that are more flexible than either Windows or the Mac/OS.
They support standard desktop features such as menus, taskbars, and drag-and-drop
operations. But they also provide virtual desktops, panel applets and menus, and Internet-
capable file managers. Gnome has become a standard GUI interface for Red Hat Linux
systems, though Red Hat also provides full support for KDE, including it in its standard
distribution. You can install both, run applications from one or the other, and easily switch
from one to the other. Both Gnome and KDE were designed with software development in
mind, providing a firm foundation that has encouraged the development of massive numbers
of new applications for these interfaces. They have become integrated components of Linux,
with applications and tools for every kind of task and operation. Instead of treating Gnome
and KDE as separate entities, Gnome and KDE tools and applications are presented
throughout the book. For example, Gnome and KDE mail clients are discussed along with
other mail clients in Chapter 17. Gnome and KDE FTP clients, editors, graphic tools,
administration tools, and others are also handled in their respective chapters (Chapter 5, 15,
16, 29, and 36).

Red Hat Linux is also a fully functional Unix operating system. It has all the standard features
of a powerful Unix system, including a complete set of Unix shells such as BASH, TCSH,
and the Z-shell. Those familiar with the Unix interface can use any of these shells, with the
same Unix commands, filters, and configuration features.

For the Internet, Linux has become a platform for very powerful Internet applications. You
are able not only to use the Internet, but also, with Linux, to become a part of it, creating your
own Web, FTP, and Gopher sites. Other users can access your Linux systems, several at the
same time, using different services. You can also use very powerful Gnome, KDE, and Unix
clients for mail and news. Linux systems are not limited to the Internet. You can use them on
any local intranet, setting up an FTP or Web site for your network. The Red Hat system
provided on the CD-ROMs with this book come equipped with variety of fully functional FTP

and Web servers already installed and ready to use. All you need to do is add the files you
want onto your site.

Red Hat Linux has the same administration features found on standard Unix systems as well
as several user-friendly GUI configuration tools that make any administration task a simple
matter of choosing items on a menu or clicking a checkbox. It has the same multiuser and
multitasking capabilities. You can set up accounts for different users, and each can access
your system at the same time. Each user can have several programs running concurrently.
With Linux you can control access, set up network connections, and install new devices. Red
Hat Linux includes very powerful and easy-to-use, window-based configuration tools for
tasks like configuring your printers and setting up your network connections. It is also
compatible with comprehensive configuration tools like Linuxconf and Webmin.

A wide array of applications operates on Linux. Many personal versions of commercial
applications are available for Linux free of charge, such as WordPerfect and Sybase
databases. You can download them directly from the Internet. Numerous Gnome and KDE
applications are continually released through their respective Web sites. The GNU public
licensed software provides professional-level applications, such as programming development
tools, editors and word processors, as well as numerous specialized applications, such as those
for graphics and sound. A massive amount of software is available at online Linux sites where
you can download applications and then easily install them onto your system.

What many may not realize is that all standard Linux systems support a wide range of
programming languages, allowing users to create their own programs easily. All Red Hat
Linux distributions include a large selection of programming platforms, including support for
numerous kinds of shell programming, a variety of higher level languages like Perl and Gawk,
and extensive GUI programming for desktops like Gnome and KDE. Once Red Hat Linux is
installed, you can start creating your own programs.

Since this book is really six books in one-an Internet book, a Gnome and KDE book, a Server
book, a Networking book, a Programming book, and an Administration book-how you choose
to use it depends upon how you want to use your Red Hat Linux system. Almost all Linux
operations can be carried out using either the Gnome or KDE interface. You need use the
Unix command line interface very little, if at all. You can focus on the Gnome and KDE
chapters and their corresponding tools and applications in the different chapters throughout
the book. On the other hand, if you want to delve deeper into the Unix aspects of Linux, you
can check out the Shell chapters and the corresponding shell-based applications in other
chapters. If you want to use Red Hat Linux only for its Internet services, then concentrate on
the Internet clients and servers, most of which are already installed for you. If you want to use
Linux as a multiuser system servicing many users or integrate it into a local network, you can
use the detailed system, file, and network administration information provided in the
administration chapters. None of these tasks are in any way exclusive. If you are working in a
business environment, you will probably make use of all three aspects. Single users may
concentrate more on the desktops and the Internet features, whereas administrators may make
more use of the Unix features.

Part I provides an introduction to Red Hat Linux along with a listing of Red Hat Linux
resources, including software repositories, documentation sites, newsgroups, and Linux news
and development sites. This part also covers the streamlined installation procedure for Red
Hat, which takes about 30 minutes or less. The Red Hat installation tool provides excellent

commentary, describing each step in detail. In this section, you also learn the essentials of
using both Gnome and KDE, along with the basics of working on the shell command line.

Part II is designed to help you start using Linux quickly. System configuration tasks, such as
mounting CD-ROMs and adding new user accounts, are presented using the easiest methods,
without the complex detail described in the administration chapters. Basic network
configuration tasks are discussed, such as setting up a connection to an Internet Service
Provider (ISP) over a modem and entering ISP network information such as nameserver and
gateway addresses. Then, a brief discussion of network security methods shows you how to
quickly set up simple protection for a single system connected to the Internet, as well as
where to find out more if you have more complex security requirements. Finally, you learn
how to set up a small local network that could even include Windows systems. You see how
each host should be connected and configured, and how to create a gateway, connecting local
hosts to the Internet. You learn to quickly configure and run services, such as the Domain
Name Service, Samba, Sendmail, and a Web site.

Part III of this book deals with Red Hat Linux as a Desktop Workstation. Here you are
introduced to the different kinds of user environments and applications available for Linux,
starting with KDE and Gnome. Different features such as applets, the Panel, and
configuration tools are described in detail. Using either of these interfaces, you can run all
your applications using icons, menus, and windows. Plus, at any time, you can open up a
terminal window through which you can enter standard Linux commands on a command line.
The new Nautilus file manager for Gnome is covered in detail. You can also use the standard
Unix command-line interface to run any of the standard Unix commands. Next, the BASH
shell and its various file, directory, and filter commands are examined. The remaining
chapters in this section discuss the applications available for Linux, beginning with Office
suites such as KOffice and Star Office. KOffice is now distributed as part of KDE and can be
found on most Linux distributions. The different database management systems available are
also discussed along with the Web site locations where you can download them. A variety of
different text editors is also available, including several Gnome and KDE editors, as well as
the Vim (enhanced VI), gvim (graphical Vi), and GNU Emacs editors.

Part IV of this book incorporates the added features of Red Linux as a network workstation.
Here the book discusses in detail the many Internet applications you can use on your Linux
system. Red Hat Linux automatically installs mail, news, FTP, and Web browser applications,
as well as FTP and Web servers. Both KDE and Gnome come with a full set of mail, news,
FTP clients, and Web browsers. These are described in detail along with Netscape
communicator, now an integrated part of all Linux systems. On your CD-ROMs, there are
other mail clients, newsreaders, and Internet tools that you can easily install from your
desktop. In addition, the book describes Internet clients, such as Balsa, that you can download
from Internet sites and install on your system.

Part V discusses Internet servers you can run on Red Hat, including FTP, Web, and DNS
servers. Internet servers have become integrated components of most Linux systems. Both the
standard wu-ftpd FTP server and the newer ProFTPD server with its directive format are
presented. ProFTPD covers features like guest and virtual FTP sites. The Apache Web Server
chapter covers standard configuration directives such as those for automatic indexing as well
as the newer virtual host directives. Apache GUI configuration tools, such as comanche, are
also presented. Configuration files and features for the Domain Name System (DNS) and its
BIND server are examined in detail along with features like virtual domains and IP aliases.

With Linux, you can easily set up your own Domain Name Server for a home or small local
network. Both sendmail and POP mail servers are covered. The INN news server, the Squid
proxy server, and the ht:/DIG and WAIS search servers are also examined.

Part VI discusses system administration topics including user, software, file system, device,
kernel, and X Window administration. These chapters emphasize the use of GUI system
management configuration tools available on Red Hat Linux. There are also detailed
descriptions of the configuration files used in administration tasks and how to make entries in
them. First, basic system administration tasks are covered, such as selecting runlevels,
monitoring your system, and scheduling shutdowns. Then aspects of setting up and
controlling users and groups are discussed. Presentations include both the GUI tools you can
use for these tasks and the underlying configuration files and commands. Software installation
has been simplified with the Package Management System (RPMS). There are GUI tools like
GnomeRPM that you can use to easily install and uninstall software, much as you would with
the Windows Install Wizard. Different file system tasks are covered-mounting file systems,
selecting device names, and accessing Windows files. Device configuration covers topics
such as device files, installing printers, and using the kernel modules to support new devices.
Using, updating, and configuring the Linux kernel with its modules is covered in detail along
with procedures for installing new kernels. X Window system topics cover the XFree86
servers, window manager configuration, X Window system startup methods, such as the
display manger, and X Window system configuration commands.

Part VII covers network administration, dealing with topics such as configuring remote file
system access and setting up firewalls. Most network administration tasks can be performed
using Red Hat GUI configuration tools like netcfg. These are discussed in detail first. Next,
the various network file system interfaces and services, such as NFS for Unix, NIS, and
NetaTALK for AppleTalk networks, are presented. The next chapter on Samba shows how to
access Windows file systems and printers. Then the different aspects of network
administration are discussed, such as network connections and routers, Domain Name
Service, hostname designations, IP virtual hosts, and IP masquerading. Network security
topics cover firewalls and encryption using netfilter (iptables) to protect your system, the
Secure Shell (SSH) to provide secure remote transmissions, and Kerberos to provide secure
authentication (the older ipchains firewall system is also covered).

On the Web at www.osborne.com, you'll find several chapters that discuss basic components
used for development on Red Hat systems, beginning with shell programming for the BASH
shell where you can create complex shell scripts. Compilers, libraries, and programming tools
are then covered, including such topics as the GCC compiler, managing static and shared
libraries, and using development tools like make, the gdb debugger, and CVS revision
manager. Then both the development tools for KDE and Gnome programming are covered,
including KDevelop and Glade. Finally, a brief survey of Perl, Tcl/TK, and Gawk shows you
how to easily construct programs with powerful file-management capabilities, string
manipulation, and control structures, as well as GUI interfaces.

Part I: Introduction
Chapter List
Chapter 1: Introduction to Red Hat Linux
Chapter 2: Installing Red Hat Linux

Chapter 3: Interface Basics

Chapter 1: Introduction to Red Hat Linux
Overview

Linux is an operating system for PC computers and workstations that now features a fully
functional graphical user interface (GUI), just like Windows and the Mac (though more
stable). Linux was developed in the early 1990s by Linus Torvald, along with other
programmers around the world. As an operating system, Linux performs many of the same
functions as UNIX, Mac, Windows, and Windows NT. However, Linux is distinguished by its
power and flexibility. Most PC operating systems, such as Windows, began their development
within the confines of small, restricted personal computers, which have only recently become
more versatile machines. Such operating systems are constantly being upgraded to keep up
with the ever-changing capabilities of PC hardware. Linux, on the other hand, was developed
in a different context. Linux is a PC version of the UNIX operating system that has been used
for decades on mainframes and minicomputers, and is currently the system of choice for
workstations. Linux brings the speed, efficiency, and flexibility of UNIX to your PC, taking
advantage of all the capabilities that personal computers can now provide. Along with its
UNIX capabilities come powerful networking features, including support for Internet,
intranets, Windows, and AppleTalk networking. As a standard, Linux is distributed with fast,
efficient, and stable Internet servers, such as the Web, FTP, and Gopher servers, along with
domain name, proxy, news, mail, and indexing servers. In other words, Linux has everything
you need to set up, support, and maintain a fully functional network.

Now, with both Gnome and K Desktop, Linux also provides GUI interfaces with that same
level of flexibility and power. Unlike Windows and the Mac, you can choose the interface you
want and then customize it further, adding panels, applets, virtual desktops, and menus, all
with full drag-and-drop capabilities and Internet-aware tools. On your desktop, a file manager
window can access any Internet site, enabling you to display Web pages and download files
with a few simple mouse operations. To print a file, simply drag it to a Printer icon.

Linux does all this at a great price. Linux is free, including the network servers and GUI
desktops. Unlike the official UNIX operating system, Linux is distributed freely under a GNU
General Public License as specified by the Free Software Foundation, making it available to
anyone who wants to use it. GNU stands for "Gnu's Not UNIX" and is a project initiated and
managed by the Free Software Foundation to provide free software to users, programmers,
and developers. Linux is copyrighted, and it is not public domain. However, a GNU public
license has much the same effect as being in the public domain. The GNU public license is
designed to ensure Linux remains free and, at the same time, standardized. Only one official
Linux exists. Linux is technically the operating system kernel, the core operations. In addition
Linux is commonly bundled with an extensive set of software available under the GNU public
license, including environments, programming languages, Internet tools, and text editors.
People sometimes have the mistaken impression that Linux is somehow less than a
professional operating system because it is free. Linux is, in fact, a PC and workstation
version of UNIX. Many consider it far more stable and much more powerful than Windows.
This power and stability have made Linux an operating system of choice as a network server.

To appreciate Linux completely, you need to understand the special context in which the
UNIX operating system was developed. UNIX, unlike most other operating systems, was
developed in a research and academic environment. In universities, research laboratories, data
centers, and enterprises, UNIX is the system of choice. Its development paralleled the entire
computer and communications revolution over the past several decades. Computer
professionals often developed new computer technologies on UNIX, such as those developed
for the Internet. Although a sophisticated system, UNIX was designed from the beginning to
be flexible. The UNIX system itself can be easily modified to create different versions. In
fact, many different vendors maintain different official versions of UNIX. IBM, Sun, and
Hewlett-Packard all sell and maintain their own versions of UNIX. The unique demands of
research programs often require that UNIX be tailored to their own special needs. This
inherent flexibility in the UNIX design in no way detracts from its quality. In fact, this
flexibility attests to the ruggedness of UNIX, allowing it to adapt to practically any
environment. This is the context in which Linux was developed. Linux is, in this sense, one
other version of UNIX-a version for the PC. The development of Linux by computer
professionals working in a research-like environment reflects the way UNIX versions have
usually been developed. Linux is publicly licensed and free-and reflects the deep roots UNIX
has in academic institutions, with their sense of public service and support. Linux is a top-rate
operating system accessible to everyone, free of charge.

As a way of introducing Linux, this chapter discusses Linux as an operating system, the
history of Linux and UNIX, the overall design of Linux, and Linux distributions. This chapter
also discusses online resources for documentation, software, and newsgroups, plus Web sites
with the latest news and articles on Linux. Web and FTP site listings are placed in tables at
the end of this chapter for easy reference. Here you can find sites for different distributions,
Linux publications, software repositories, and Linux development, as well as for office suites
and commercial databases.

Red Hat Linux

Red Hat Linux is currently the most popular Linux distribution. As a company, Red Hat
provides software and services to implement and support professional and commercial Linux
systems. Red Hat freely distributes its version of Linux under the GNU Public License. Red
Hat generates income by providing professional-level support, consulting, and training
services. The Red Hat Certified Engineers (RHCE) training and certification program is
designed to provided reliable and highly capable administrators and developers to maintain
and customize professional-level Red Hat systems. Red Hat has forged software alliances
with major companies like Oracle, IBM, and Sun, often bundling applications such as IBM's
DB2 database system with Red Hat Linux. Red Hat also maintains a strong commitment to
open source Linux applications. Red Hat originated the RPM package system used on several
distributions, which automatically installs and removes software packages. Red Hat is also
providing much of the software development for the Gnome desktop, and it is a strong
supporter of KDE. Its distribution includes both Gnome and KDE.

The Red Hat distribution of Linux is available online at numerous FTP sites. It maintains its
own FTP site at ftp.redhat.com, where you can download the entire current release of Red
Hat Linux, as well as updates and third-party software. Red Hat was designed from its
inception to work on numerous hardware platforms. Currently, Red Hat supports Sparc, Intel,
and Alpha platforms. See www.redhat.com for more information, including extensive
documentation such as Red Hat manuals, FAQs, and links to other Linux sites.

If you purchase Red Hat Linux from Red Hat, you are entitled to online support services.
Although Linux is free, Red Hat as a company specializes in support services, providing
customers with its expertise in developing solutions to problems that may arise or using Linux
to perform any of several possible tasks, such as e-commerce or database operations.

Red Hat maintains an extensive library of Linux documentation that is freely accessible online
(see Table 1-1). On its Web page, you can link to its support page, which lists the complete
set of Red Hat manuals, all in Web page format for easy viewing with any Web browser.
These include the Reference Guide, the Getting Started Guide, and the Installation Guide. Tip,
HOW-TO, and FAQ documents are also provided. Of particular note is the Hardware
Compatibility Lists. This documentation lists all the hardware compatible with Red Hat
Linux. For PC users, this includes most hardware, with few exceptions. All the Red Hat
documentation is freely available under the GNU Public License.

Table 1-1: Red Hat Linux Resources
References Description
www.redhat.com Red Hat Web site
www.redhat.com/support Support page for Red Hat Linux, including links

to current online documentation
The Official Red Hat Linux Getting Started
Guide

A getting started guide for first time users

The Official Red Hat Linux Installation
Guide

Detailed installation guide for Red Hat Linux

Red Hat Linux Installation Gotchas Installation troubleshooting
Red Hat Reference Guide The Red Hat Reference
Red Hat Customization Guide Topics covering common customization tasks

and tools, such as server configurations,
GnomeRPM package manager, and Linuxconf
administration tool

Red Hat Linux FAQ Frequently asked questions for Red Hat Linux
Introduction to Linux Frequently asked questions on Linux

Before installing Red Hat Linux on your system, you should check the Installation guide. This
is a lengthy and detailed document that takes you through each step of the process carefully. If
your system is designed for any special tasks, be sure to consult the Customization guide. This
document covers a vriety of topics such as automatic installation on networks using Red Hat
kickstart; network services like Samba, Apache, and FTP; system administration tools; and
software package installation and management.

Red Hat also provides documentation on implementing PPP Internet connections, Samba file
sharing, Apache Web server, firewalls, mail servers, and for the Credit Card Verification
System (CCVS), a Red Hat commercial product.

Operating Systems and Linux

An operating system is a program that manages computer hardware and software for the user.
Operating systems were originally designed to perform repetitive hardware tasks. These tasks
centered around managing files, running programs, and receiving commands from the user.
You interact with an operating system through a user interface. This user interface allows the
operating system to receive and interpret instructions sent by the user. You only need to send
an instruction to the operating system to perform a task, such as reading a file or printing a
document. An operating system's user interface can be as simple as entering commands on a
line or as complex as selecting menus and icons on a desktop.

An operating system also manages software applications. To perform different tasks, such as
editing documents or performing calculations, you need specific software applications. An
editor is an example of a software application that enables you to edit a document, making
changes and adding new text. The editor itself is a program consisting of instructions to be
executed by the computer. To use the program, it must first be loaded into computer memory,
and then its instructions are executed. The operating system controls the loading and
execution of all programs, including any software applications. When you want to use an
editor, simply instruct the operating system to load the editor application and execute it.

File management, program management, and user interaction are traditional features common
to all operating systems. Linux, like all versions of UNIX, adds two more features. Linux is a
multiuser and multitasking system. In a multitasking system, you can ask the system to
perform several tasks at the same time. While one task is being done, you can work on
another. For example, you can edit a file while another file is being printed. You do not have
to wait for the other file to finish printing before you edit. In a multiuser system, several users
can log in to the system at the same time, each interacting with the system through his or her
own terminal.

Operating systems were originally designed to support hardware efficiency. When computers
were first developed, their capabilities were limited and the operating system had to make the
most of them. In this respect, operating systems were designed with the hardware in mind, not
the user. Operating systems tended to be rigid and inflexible, forcing the user to conform to
the demands of hardware efficiency.

Linux, on the other hand, is designed to be flexible, reflecting its UNIX roots. As a version of
UNIX, Linux shares the same flexibility designed for UNIX, a flexibility stemming from
UNIX's research origins. The UNIX operating system was developed by Ken Thompson at
AT&T Bell Laboratories in the late 1960s and early 1970s. The UNIX system incorporated
many new developments in operating system design. Originally, UNIX was designed as an
operating system for researchers. One major goal was to create a system that could support
the researchers' changing demands. To do this, Thompson had to design a system that could
deal with many different kinds of tasks. Flexibility became more important than hardware
efficiency. Like UNIX, Linux has the advantage of being able to deal with the variety of tasks
any user may face.

This flexibility allows Linux to be an operating system that is accessible to the user. The user
is not confined to limited and rigid interactions with the operating system. Instead, the
operating system is thought of as providing a set of highly effective tools available to the user.

This user-oriented philosophy means you can configure and program the system to meet your
specific needs. With Linux, the operating system becomes an operating environment.

History of Linux and UNIX

Since Linux is a version of UNIX, its history naturally begins with UNIX. The story begins in
the late 1960s when a concerted effort to develop new operating system techniques occurred.
In 1968, a consortium of researchers from General Electric, AT&T Bell Laboratories, and the
Massachusetts Institute of Technology carried out a special operating system research project
called MULTICS (MULTiplexed Information Computing System). MULTICS incorporated
many new concepts in multitasking, file management, and user interaction. In 1969, Ken
Thompson, Dennis Ritchie, and the researchers at AT&T Bell Laboratories developed the
UNIX operating system, incorporating many of the features of the MULTICS research
project. They tailored the system for the needs of a research environment, designing it to run
on minicomputers. From its inception, UNIX was an affordable and efficient multiuser and
multitasking operating system.

The UNIX system became popular at Bell Labs as more and more researchers started using
the system. In 1973, Dennis Ritchie collaborated with Ken Thompson to rewrite the
programming code for the UNIX system in the C programming language. Dennis Ritchie, a
fellow researcher at Bell Labs, developed the C programming language as a flexible tool for
program development. One of the advantages of C is it can directly access the hardware
architecture of a computer with a generalized set of programming commands. Up until this
time, an operating system had to be specially rewritten in a hardware-specific assembly
language for each type of computer. The C programming language allowed Dennis Ritchie
and Ken Thompson to write only one version of the UNIX operating system, which could
then be compiled by C compilers on different computers. In effect, the UNIX operating
system became transportable, able to run on a variety of different computers with little or no
reprogramming.

UNIX gradually grew from one person's tailored design to a standard software product
distributed by many different vendors, such as Novell and IBM. Initially, UNIX was treated
as a research product. The first versions of UNIX were distributed free to the computer
science departments of many noted universities. Throughout the 1970s, Bell Labs began
issuing official versions of UNIX and licensing the systems to different users. One of these
users was the Computer Science department of the University of California, Berkeley.
Berkeley added many new features to the system that later became standard. In 1975,
Berkeley released its own version of UNIX, known by its distribution arm, Berkeley Software
Distribution (BSD). This BSD version of UNIX became a major contender to the AT&T Bell
Labs version. Other independently developed versions of UNIX sprouted up. In 1980,
Microsoft developed a PC version of UNIX called Xenix. AT&T developed several research
versions of UNIX and, in 1983, it released the first commercial version, called System 3. This
was later followed by System V, which became a supported commercial software product.
You can find more information on UNIX in UNIX: The Complete Reference, written by the
UNIX experts at AT&T labs, Kenneth Rosen, Doug Host, James Farber, and Richard
Rosinski.

At the same time, the BSD version of UNIX was developing through several releases. In the
late 1970s, BSD UNIX became the basis of a research project by the Department of Defense's
Advanced Research Projects Agency (DARPA). As a result, in 1983, Berkeley released a

powerful version of UNIX called BSD release 4.2. This release included sophisticated file
management as well as networking features based on TCP/IP network protocols-the same
protocols now used for the Internet. BSD release 4.2 was widely distributed and adopted by
many vendors, such as Sun Microsystems.

The proliferation of different versions of UNIX led to a need for a UNIX standard. Software
developers had no way of knowing on what versions of UNIX their programs would actually
run. In the mid-1980s, two competing standards emerged, one based on the AT&T version of
UNIX and the other based on the BSD version. In bookstores today, you can find many
different books on UNIX for one or the other version. Some specify System V UNIX, while
others focus on BSD UNIX.

AT&T moved UNIX to a new organization, called UNIX System Laboratories, which could
focus on developing a standard system, integrating the different major versions of UNIX. In
1991, UNIX System Laboratories developed System V release 4, which incorporated almost
all the features found in System V release 3, BSD release 4.3, SunOS, and Xenix. In response
to System V release 4, several other companies, such as IBM and Hewlett-Packard,
established the Open Software Foundation (OSF) to create their own standard version of
UNIX. Two commercial standard versions of UNIX existed then-the OSF version and System
V release 4. In 1993, AT&T sold off its interest in UNIX to Novell. UNIX Systems
Laboratories became part of Novell's UNIX Systems Group. Novell issued its own versions of
UNIX based on System V release 4, called UNIXWare, designed to interact with Novell's
NetWare system. UNIX Systems Laboratories is currently owned by the Santa Cruz
Operation. With Solaris, Sun has introduced System V release 4 onto its Sun systems. Two
competing GUIs for UNIX, called Motif and OpenLook, have been superseded by a new
desktop standard called the Common Desktop Environment (CDE), which has since been
incorporated into OpenMotif, an open source version of Motif also for use on Linux.

Throughout much of its development, UNIX remained a large and demanding operating
system requiring a workstation or minicomputer to be effective. Several versions of UNIX
were designed primarily for the workstation environment. SunOS was developed for Sun
workstations and AIX was designed for IBM workstations. As personal computers became
more powerful, however, efforts were made to develop a PC version of UNIX. Xenix and
System V/386 are commercial versions of UNIX designed for IBM-compatible PCs. AUX is
a UNIX version that runs on the Macintosh. A testament to UNIX's inherent portability is that
it can be found on almost any type of computer: workstations, minicomputers, and even
supercomputers. This inherent portability made possible an effective PC version of UNIX.

Linux was originally designed specifically for Intel-based personal computers. Linux started
out as a personal project of a computer science student named Linus Torvald at the University
of Helsinki. At that time, students were making use of a program called Minix, which
highlighted different UNIX features. Minix was created by Professor Andrew Tannebaum and
widely distributed over the Internet to students around the world. Linus's intention was to
create an effective PC version of UNIX for Minix users. He called it Linux, and in 1991,
Linus released version 0.11. Linux was widely distributed over the Internet and, in the
following years, other programmers refined and added to it, incorporating most of the
applications and features now found in standard UNIX systems. All the major window
managers have been ported to Linux. Linux has all the Internet utilities, such as FTP file
transfer support, Web browsers, and remote connections with PPP. It also has a full set of
program development utilities, such as C++ compilers and debuggers. Given all its features,

the Linux operating system remains small, stable, and fast. In its simplest format, Linux can
run effectively on only 2MB of memory.

Although Linux has developed in the free and open environment of the Internet, it adheres to
official UNIX standards. Because of the proliferation of UNIX versions in the previous
decades, the Institute of Electrical and Electronics Engineers (IEEE) developed an
independent UNIX standard for the American National Standards Institute (ANSI). This new
ANSI-standard UNIX is called the Portable Operating System Interface for Computer
Environments (POSIX). The standard defines how a UNIX-like system needs to operate,
specifying details such as system calls and interfaces. POSIX defines a universal standard to
which all UNIX versions must adhere. Most popular versions of UNIX are now POSIX-
compliant. Linux was developed from the beginning according to the POSIX standard. Linux
also adheres to the Linux file system standard (FSSTND), which specifies the location of files
and directories in the Linux file structure. See www.pathname.com/fhs for more details.

Linux Overview

Like UNIX, Linux can be generally divided into three major components: the kernel, the
environment, and the file structure. The kernel is the core program that runs programs and
manages hardware devices, such as disks and printers. The environment provides an interface
for the user. It receives commands from the user and sends those commands to the kernel for
execution. The file structure organizes the way files are stored on a storage device, such as a
disk. Files are organized into directories. Each directory may contain any number of
subdirectories, each holding files. Together, the kernel, the environment, and the file structure
form the basic operating system structure. With these three, you can run programs, manage
files, and interact with the system.

An environment provides an interface between the kernel and the user. It can be described as
an interpreter. Such an interface interprets commands entered by the user and sends them to
the kernel. Linux provides several kinds of environments: desktops, window managers, and
command line shells. Each user on a Linux system has his or her own user interface. Users
can tailor their environments to their own special needs, whether they be shells, window
managers, or desktops. In this sense, for the user, the operating system functions more as an
operating environment, which the user can control.

The shell interface is simple and usually consists of a prompt at which you type a command,
and then press ENTER. In a sense, you are typing the command on a line; this line is often
referred to as the command line. You will find that the commands entered on the command
line can become quite complex. Over the years, several different kinds of shells have been
developed and, currently, three major shells exist: Bourne, Korn, and C shell. The Bourne
shell was developed at Bell Labs for System V. The C shell was developed for the BSD
version of UNIX. The Korn shell is a further enhancement of the Bourne shell. Current
versions of UNIX, including Linux, incorporate all three shells, enabling you to choose the
one you prefer. However, Linux uses enhanced or public domain versions of these shells: the
Bourne Again shell, the TC shell, and the Public Domain Korn shell. When you start your
Linux system, you are placed in the Bourne Again shell, an updated version of the Bourne
shell. From there, you can switch to other shells as you choose.

As an alternative to a command line interface, Linux provides both desktops and window
managers. These use GUIs based on the X Window System developed for UNIX by the Open

Group consortium (www.opengroup.org). A window manager is a reduced version of a
integrated desktop, supporting only window operation, but it still enables you to run any
application. A desktop provides a complete GUI, much like Windows and the Mac. You have
windows, icons, and menus, all managed through mouse controls. Currently, two desktops are
freely available and both are included with most distributions of Linux: Gnome and KDE.

In Linux, files are organized into directories, much as they are in Windows. The entire Linux
file system is one large interconnected set of directories, each containing files. Some
directories are standard directories reserved for system use. You can create your own
directories for your own files, as well as easily move files from one directory to another. You
can even move entire directories, and share directories and files with other users on your
system. With Linux, you can also set permissions on directories and files, allowing others to
access them or restricting access to you alone. The directories of each user are, in fact,
ultimately connected to the directories of other users. Directories are organized into a
hierarchical tree structure, beginning with an initial root directory. All other directories are
ultimately derived from this first root directory.

Desktops

With the K Desktop Environment (KDE) and the GNU Network Object Model Environment
(Gnome), Linux now has a completely integrated GUI interface. You can perform all your
Linux operations entirely from either interface. Previously, Linux did support window
managers that provided some GUI functionality, but they were usually restricted to window
operations. KDE and Gnome are fully operational desktops supporting drag-and-drop
operations, enabling you to drag icons to your desktop and to set up your own menus on an
Applications panel. Both rely on an underlying X Window System, which means as long as
they are both installed on your system, applications from one can run on the other desktop.
You can run KDE programs like the KDE mailer or the newsreader on the Gnome desktop.
Gnome applications like the Gftp FTP client can run on the KDE desktop. You can even
switch file managers, running the KDE file manager on Gnome. You lose some desktop
functionality, such as drag-and- drop operations, but the applications run fine. Desktop and
window manager sites are listed in Table 1-2. The Gnome and KDE sites are particularly
helpful for documentation, news, and software you can download for those desktops.

Both desktops can run any X Window System program, as well as any cursor-based program
like Emacs and Vi, which were designed to work in a shell environment. At the same time, a
great many applications are written just for those desktops and included with your
distributions. The K Desktop has a complete set of Internet tools, along with editors and
graphic, multimedia, and system applications. Gnome has slightly fewer applications, but a
great many are currently in the works. Check their Web sites at www.gnome.org and
www.kde.org for new applications. As new versions are released, they include new software.

 Note Ximian currently maintains an enhanced version of Gnome called Ximian Gnome at
www.ximian.com.

Table 1-2: Desktops and Window Managers
URL Internet Site
www.gnome.org Gnome Web site
www.kde.org K Desktop Environment Web site

Table 1-2: Desktops and Window Managers
URL Internet Site
www.x11.org X Window System Web site, with links
www.fvwm.org FVWM window manager
www.windowmaker.org WindowMaker window manager
www.enlightenment.org Enlightenment window manager
www.afterstep.org AfterStep window manager
www.blackbox.org Blackbox window manager
www.lesstif.org Hungry Programmers OSF/Motif
www.themes.org Desktop and Window manager themes, including KDE

and Gnome
www.xfree86.org XFree86, GNU version of the X Window System

provided for Linux
www.themes.org Themes for window mangers and desktops
www.Ximian.com Ximian Gnome
www.openmotif.org OpenMotif, open source version of Motif

Open Source Software

Linux was developed as a cooperative effort over the Internet, so no company or institution
controls Linux. Software developed for Linux reflects this background. Development often
takes place when Linux users decide to work on a project together. When completed, the
software is posted at an Internet site, and any Linux user can then access the site and
download the software. The potential for Linux-based software is explosive. Linux software
development has always operated in an Internet environment and it is global in scope,
enlisting programmers from around the world. The only thing you need to start a Linux-based
software project is a Web site.

Most Linux software is developed as open source software. This means that the source code
for an application is freely distributed along with the application. Programmers over the
Internet can make their own contributions to a software's development, modifying and
correcting the source code. Linux is considered open source. Its source code in included in all
its distributions and is freely available on the Internet. Many major software development
efforts are also open source projects such as the KDE and Gnome desktops along with most of
their applications. Netscape Communicator Web browser package has also become open
source, with all its source code freely available. The OpenOffice office suite supported by Sun
is an open source project based on the former StarOffice office suite. Recently much of the
Tcl/TK development tools have become open source projects. Many of the open source
applications that run on Linux have located their Web sites at Source Forge (sourceforge.net).
Source Forge is a hosting site designed specifically to support open source projects. You can
find more information about the open source movement and recent developments at both
Linuxcare (www.linuxcare.com) and at www.opensource.org. Red Hat also hosts open
source projects at sources.redhat.com.

Open source software is protected by public licenses. These prevent commercial companies
from taking control of open source software by adding a few modifications of their own,
copyrighting those changes, and selling the software as their own product. The most popular
public license is the GNU Public License provided by the Free Software Foundation. This is
the license that Linux is distributed under. The GNU Public License retains copyright, freely
licensing the software with the requirement that the software and any modifications made to it
are always freely available. Other public licenses have also been created to support the
demands of different kinds of open source project. The Lesser GNU Public License (LGPL)
lets commercial applications use GNU licensed software libraries. Netscape made its
Netscape Communicator software available under a Netscape Public License (NPL) that
covers modifications made directly to the Netscape source code. Additions made to Netscape
are covered under the Mozilla Public License. The QT Public License (QPL) lets open source
developers use the QT libraries essential to the KDE desktop. You can find a complete listing
at www.opensource.org.

Linux is currently copyrighted under a GNU public license provided by the Free Software
Foundation, and is often referred to as GNU software (see www.gnu.org). GNU software is
distributed free, provided it is freely distributed to others. GNU software has proven both
reliable and effective. Many of the popular Linux utilities, such as C compilers, shells, and
editors, are all GNU software applications. Installed with your Linux distribution are the GNU
C++ and Lisp compilers, Vi and Emacs editors, BASH and TCSH shells, as well as Tax and
Ghostscript document formatters. In addition there are many open source software projects
that are licensed under the GNU Public License (GPL). Many of these software applications
are available at different Internet sites, and these are listed in Table 1-3. Chapter 4 and
Chapter 31 describe in detail the process of downloading software applications from Internet
sites and installing them on your system.

Under the terms of the GNU General Public License, the original author retains the copyright,
although anyone can modify the software and redistribute it, provided the source code is
included. Also, no restriction exists on selling the software or giving it away free. One
distributor could charge for the software, while another one could provide it free of charge.

Lately, major software companies are also developing Linux versions of their most popular
applications. A Linux version of Sun's Java Software Development Kit (SDK) is also
available through www.blackdown.org. Corel has developed a Linux version of
WordPerfect, while Oracle provides a Linux version of its Oracle database. (At present, no
plans seem in the works for Microsoft applications.) Until recently, however, many of these
lacked a true desktop interface, but this has changed dramatically with the introduction of
KDE and Gnome. These desktops are not merely interfaces: They both provide extensive,
flexible, and powerful development libraries that software developers can use to create almost
any kind of application, which they are.

Linux Software

A great deal of Linux software is currently available from online sources. You can download
applications for desktops, Internet servers, office suites, and programming packages, among
others. Several centralized repositories make it easy to locate an application and find
information about it. Of particular note are sourceforge.net, freshmeat.net, rpmfind.net,
apps.kde.com, and linuxapps.com.

Software packages are distributed either in compressed archives or in RPM packages. RPM
packages are those archived using the Red Hat Package Manager. Compressed archives have
an extension such as .tar.gz or .tar.Z, whereas RPM packages have an .rpm extension. For
Red Hat, downloading the RPM package versions of software from their FTP sites is best.
Whenever possible, you should try to download software from a distribution's FTP site, but
you could also download the source version and compile it directly on your system. This has
become a simple process, almost as simple as installing the compiled versions (see Chapter
4).

Red Hat also has a large number of mirror sites from which you can download their software
packages. Red Hat mirror sites are listed at www.redhat.com/download/mirror.html. Most
Linux Internet sites that provide extensive software archives have mirror sites, such as
www.kernel.org, that hold the new Linux kernels. If you have trouble connecting to a main
FTP site, try one of its mirrors.

The following tables list different sites for Linux software. Repositories and archives for
Linux software are listed in Table 1-3, along with several specialized sites, such as those for
commercial and game software. When downloading software packages, always check to see if
versions are packaged for your particular distribution. For example, Red Hat will use RPM
packages. Many sites provide packages for the different popular distributions, such as Red
Hat, Caldera, and Debian. For others, first check the distribution FTP sites for a particular
package. For example, a Red Hat package version for ProFTPD is located at the
ftp.redhat.com FTP site. rpmfind.net, freshmeat.net, sourceforge.net, and
www.linuxapps.com are also good places for locating RPM packages for particular
distributions.

Table 1-3: Linux Software Archives, Repositories, and Links
URL Internet Site
www.linuxapps.com Linux Software Repository
sourceforge.net Source Forge, open source software

development sites for Linux applications and
software repository

www.happypenguin.org/ Linux Game Tome
www.linuxgames.org Linux games
www.linuxquake.com Quake
http://www.xnet.com/~blatura/linapps.shtml Linux applications and utilities page
freshmeat.net New Linux software
www.linuxlinks.com Linux links
filewatcher.org Linux FTP site watcher
www.linuxdoc.org/links.html Linux links
rpmfind.net RPM package repository
www.gnu.org GNU archive
www.opensound.com Open sound system drivers
www.blackdown.org Web site for Linux Java
www.fokus.gmd.de/linux Woven goods for Linux

Table 1-3: Linux Software Archives, Repositories, and Links
URL Internet Site
metalab.unc.edu Mirror site for Linux software and

distributions
www.linux.com Linux software
sources.redhat.com Open-source software hosted by Red Hat

Linux Office and Database Software

Many professional-level databases and office suites are now available for Linux. These
include Oracle and IBM databases as well as the OpenOffice and K Office office suites. Table
1-4 lists sites for office suites and databases. Many of these sites provide free personal
versions of their software for Linux, and others are entirely free. You can download from
them directly and install on your Linux system.

Table 1-4: Database and Office Software
URL Databases
www.oracle.com Oracle database
www.sybase.com Sybase database
www.software.ibm.com/data/db2/linux IBM database
www.informix.com/linux Informix database
www.cai.com/products/ingres.htm Ingress II
www.softwareag.com Adabas D database
www.mysql.com MySQL database
www.ispras.ru/~kml/gss The GNU SQL database
www.postgresql.org The PostgreSQL database
www.fship.com/free.html Flagship (Interface for xBase

database files)
koffice.kde.org Katabase (KOffice desktop

database)
gaby.netpedia.net Gaby (Gnome desktop personal

database)
Office Software:
koffice.kde.org Koffice
linux.corel.com WordPerfect
www.sun.com/staroffice StarOffice
www.openoffice.org Open Office
www.gnome.org/gw.html Gnome Workshop Project
www.redhat.com Applixware (commercial)

Internet Servers

One of the most important features of Linux, as well as all UNIX systems, is its set of Internet
clients and servers. The Internet was designed and developed on UNIX systems, and Internet
clients and servers, such as those for FTP and the Web, were first implemented on BSD
versions of UNIX. DARPANET, the precursor to the Internet, was set up to link UNIX
systems at different universities across the nation. Linux contains a full set of Internet clients
and servers including mail, news, FTP, and Web, as well as proxy clients and servers. Sites
for Internet server software available for Linux are listed in Table 1-5. Most of these are
already included on the Red Hat CD-ROM included with this book; however, you can obtain
news, documentation, and recent releases directly from the server's Web sites.

Table 1-5: Network Servers and Security
URL Servers
www.apache.org Apache Web server
www.proftpd.org ProFTPD FTP server
www.isc.org Internet Software Consortium: BIND, INN,

and DHCPD
www.sendmail.org Sendmail mail server
www.squid.org Squid proxy server
www.samba.org Samba SMB (Windows network) sever
boombox.micro.umn.edu/pub/gopher Gopher server
www.eudora.com/free/qpop.html Qpopper POP3 mail server
Netfilter.kernelnotes.org IP Tables firewall server
netfilter.kernelnotes.org/ipchains IP Chains firewall server
www.ssh.com Secure Shell encryption
http://web.mit.edu/kerberos/www Kerberos network authentication protocol
www.openssh.com Open Secure Shell (free version of SSH)

Development Resources

Linux has always provided strong support for programming languages and tools. All
distributions include the GNU C and C++ compiler (gcc) with supporting tools like make.
Most distributions come with full development support for the KDE and Gnome desktops,
letting you create your own Gnome and KDE applications. You can also download the Linux
version of the Java Software Development Kit for creating Java programs. Perl and Tcl/TK
versions of Linux are also included with most distributions. You can download current
versions from their Web sites. Table 1-6 lists different sites of interest for Linux
programming.

Table 1-6: Linux Programming
URL Internet Sites
www.linuxprogramming.org Linux programming resources
www.gnu.org Linux compilers and tools (gcc).

Table 1-6: Linux Programming
URL Internet Sites
dev.scriptics.com Tcl Developers Xchange, Tk/Tcl products
java.sun.com Sun Java Web site
www.perl.com Perl Web site with Perl software
www.blackdown.org Sun's Java Software Development Kit for Linux
developer.gnome.org Gnome developers Web site
www.openprojects.nu Open Projects Network
developer.kde.org Developer's library for KDE
www.linuxcare.org Linux open source software support

Online Information Sources

Extensive online resources are available on almost any Linux topic. The tables in this chapter
list sites where you can obtain software, display documentation, and read articles on the latest
developments. Many Linux Web sites provide news, articles, and information about Linux.
Several are based on popular Linux magazines, such as www.linuxjournal.com and
www.linuzgazzette.com. Others operate as Web portals for Linux, such as www.linux.com,
www.linuxworld.org, and www.linux.org. Some specialize in particular areas, such as
linuxheadquarters.org for guides on Linux software and www.linuxgames.com for the
latest games ported for Linux. Currently, many Linux Web sites provide news, information,
and articles on Linux developments, as well as documentation, software links, and other
resources. These are listed in Table 1-7.

Table 1-7: Linux Information and News Sites
URL Internet Site
www.linuxdoc.org Web site for Linux Documentation Project
www.lwn.net Linux Weekly News
www.linux.com Linux.com
www.linuxtoday.com Linux Today
www.linuxplanet.com Linux Planet
www.linuxpower.org Linux Power
www.linuxfocus.org Linux Focus
www.linuxworld.org Linux World
www.linuxmall.com Linux Mall
www.linuxjournal.com Linux Journal
www.linuxgazette.com Linux Gazette
www.linux.magazine.com Linux Magazine
www.linux.org Linux Online
www.li.org Linux International Web site
www.linux.org.uk Linux European Web site

Table 1-7: Linux Information and News Sites
URL Internet Site
linuxheadquarters.com Linux guides and software
slashdot.org Linux forum
webwatcher.org Linux Web site watcher
www.opensource.org Open source Information

Distribution FTP and Web sites, such as www.redhat.com and ftp.redhat.com, provide
extensive Linux documentation and software. The www.gnome.org site holds software and
documentation for the Gnome desktop, while apps.kde.com holds software and
documentation for the KDE desktop. The tables in this chapter list many of the available sites.
You can find other sites through resource pages that hold links to other Web sites-for
example, the Linux Web site on the World Wide Web at www.linuxdoc.org/links.html.

Documentation

Linux documentation has also been developed over the Internet. Much of the documentation
currently available for Linux can be downloaded from Internet FTP sites. A special Linux
project called the Linux Documentation Project (LDP), headed by Matt Welsh, is currently
developing a complete set of Linux manuals. The documentation, at its current level, is
available at the LDP home site at www.linuxdoc.org. Linux documentations provided by the
LDP are listed in Table 1-8, along with their Internet sites.

Table 1-8: Linux Documentation Project
Sites Web Sites
www.linuxdoc.org LDP Web site
ftp.linuxdoc.org LDP FTP site
Guides Document Format
Linux Installation and Getting Started Guide DVI, PostScript, LaTeX, PDF, and

HTML
Linux User's Guide DVI, PostScript, HTML, LaTeX, and

PDF
Linux System Administrator's Guide PostScript, PDF, LaTeX, and HTML
Linux Network Administrator's Guide DVI, PostScript, PDF, and HTML
Linux Programmer's Guide DVI, PostScript, PDF, LaTeX, and

HTML
The Linux Kernel HTML, LaTeX, DVI, and PostScript
Linux Kernel Hacker's Guide DVI, PostScript, and HTML
Linux HOWTOs HTML, PostScript, SGML, and DVI
Linux FAQs HTML, PostScript, and DVI
Linux Man Pages Man page format

An extensive number of mirrors are maintained for the Linux Documentation Project. You
can link to any of them through a variety of sources, such as the LDP home site
www.linuxdoc.org and www.linuxjournal.org. The documentation includes a user's guide,
an introduction, and administration guides. These are available in text, PostScript, or Web
page format. Table 1-8 lists these guides. You can also find briefer explanations, in what are
referred to as HOW-TO documents. HOW-TO documents are available for different subjects,
such as installation, printing, and e-mail. The documents are available at Linux FTP sites,
usually in the directory /pub/Linux/doc/HOW-TO.

Table 1-9: Usenet Newsgroups
Newsgroup Title
comp.os.linux.announce Announcements of Linux developments
comp.os.linux.devlopment.apps For programmers developing Linux applications
comp.os.linux.devlopment.system For programmers working on the Linux

operating system
comp.os.linux.hardware Linux hardware specifications
comp.os.linux.admin System administration questions
comp.os.linux.misc Special questions and issues
comp.os.linux.setup Installation problems
comp.os.linux.answers Answers to command problems
comp.os.linux.help Questions and answers for particular problems
comp.os.linux.networking Linux network questions and issues
linux.dev.group There are an extensive number of development

newsgroups beginning with linux.dev, such as
linux.dev.admin and linux.dev.doc.

You can find a listing of different Linux information sites in the file META-FAQ located at
Linux FTP sites, usually in the directory /pub/Linux/doc. On the same site and directory, you
can also download the Linux Software Map (LSM). This is a listing of most of the software
currently available for Linux.

In addition to FTP sites, Linux Usenet newsgroups are also available. Through your Internet
connection, you can access Linux newsgroups to read the comments of other Linux users and
to post messages of your own. Several Linux newsgroups exist, each beginning with
comp.os.linux. One of particular interest to the beginner is comp.os.linux.help, where you
can post questions. Table 1-9 lists some of the Usenet Linux newsgroups you can check out,
particularly for posting questions.

Most of the standard Linux software and documentation currently available is already
included on your Red Hat CD-ROM. HOW-TO documents are all accessible in HTML
format, so you can view them easily with your Web browser. In the future, though, you may
need to access Linux Internet sites directly for current information and software.

Red Hat Commercial Enhancements

Red Hat offers several commercial products and services for business and e-commerce
solutions. These are bundled products where Red Hat Linux is combined with other
commercial and noncommercial applications to provide solutions for business. Each is
accompanied with extensive support to guarantee effective implementation and ongoing
reliability.

These include the Interchange E-Commerce Platform, the Stronghold Secure server, and the
Credit Card Verification Service (CCVS). The Interchange E-Commerce platform allows you
to manage complex catalogs with multiple vendors. Stronghold is a secure SSL Web server
based on the Apache Web server. CCVS processes online payments. In addition, the Red Hat
High Availability Server allows you to combine servers into clusters, providing balanced and
efficient access to key resources such as servers and shared applications.

Business suite products include full versions of IBM WebSphere Application Server, Lotus
Domino R5 Application Server, and DB2 Universal Database. The combination provides
businesses with collaboration, database, and Web server capabilities.

Other Linux Distributions

Although there is only one standard version of Linux, there are actually several different
releases. Different companies and groups have packaged Linux and Linux software in slightly
different ways. Each company or group then releases the Linux package, usually on a CD-
ROM. Later releases may include updated versions of programs or new software. Some of the
more popular releases, aside from Red Hat, are OpenLinux, SuSE, and Debian. The Linux
kernel is, of course, centrally distributed through www.kernel.org. All distributions use this
same kernel, although it may be configured differently.

Table 1-10 lists the Web sites for several of the more popular Linux distributions. Listed here
also are Linux kernel sites where the newest releases of the official Linux kernel are provided.
These sites have corresponding FTP sites where you can download updates and new releases,
as well as third-party software packaged for these distributions (see Table 1-11). For those not
listed, check their Web sites for FTP locations.

Table 1-10: Linux Distributions and Kernel Sites
URL Internet Site
www.redhat.com Red Hat Linux
www.caldera.com OpenLinux (Caldera)
www.suse.com SuSE Linux
www.debian.org Debian Linux
www.infomagic.com Infomagic
www.linuxppc.com LinuxPPC (Mac PowerPC version)
www.turbolinux.com Turbo Linux
www.slackware.com Slackware Linux Project
www.kernel.org The Linux Kernel

Table 1-10: Linux Distributions and Kernel Sites
URL Internet Site
www.kernelnotes.org Linux Kernel release information
www.linux-mandrake.com Mandrake

Table 1-11: Linux Distribution FTP Sites
URL Internet Site
ftp.redhat.com Red Hat Linux and updates
ftp.redhat.com/contrib Software packaged for Red Hat Linux
ftp.caldera.com OpenLinux (Caldera)
ftp.suse.com SuSE Linux
ftp.debian.org Debian Linux
ftp.linuxppc.com LinuxPPC (Mac PowerPC version)
ftp.turbolinux.com Turbo Linux (Pacific Hi-Tech)

OpenLinux

Caldera OpenLinux is designed for corporate commercial use. OpenLinux Linux system and
software packages include all the GNU software packages, as well as the X Window System
managers, Internet servers, WordPerfect, and the K Desktop. However, it does not presently
include Gnome. It is POSIX compliant, adhering to UNIX standards. Caldera distributes its
OpenLinux system free of charge.

Caldera has organized its OpenLinux distribution into several different packages, each geared
to different markets. These include the eDesktop package, which is designed for basic
workstation operations, and the eServer package, which is designed for Linux servers. The
eDesktop, included with this book, provides workstation software such as the KDE Desktop.
The eServer installs server software such as the mail, FTP, and DNS servers. See the Caldera
Web site at www.caldera.com for more information.

Caldera also offers a line of commercial and proprietary Linux packages. Such proprietary,
licensed software packages are not freely distributable. They include such products as the
Novell NetWare client. Recently Caldera merged with the Santa Cruz operation, which
develops and distributes SCO UNIX.

SuSE

Originally a German language-based distribution, SuSE has become very popular throughout
Europe and is currently one of the fastest growing distributions worldwide. Its current
distribution includes both KDE and Gnome. Its distributions include WordPerfect,
OpenOffice, and KOffice. It also bundles commercial products like AdabasD and the Linux
Office Suite. Currently, it supports only Intel platforms. For more information, see
www.suse.com.

Debian

Debian Linux is an entirely noncommercial project, maintained by hundreds of volunteer
programmers. It does, however, incorporate support for commercial products in its
distribution. Debian currently maintains software associations with Corel and Sun, among
others. Currently it supports Alpha, Intel, Macintosh 68K, and Sparc platforms. For more
information, see www.debian.org. Debian Linux features a sophisticated package
management system and updating tool.

Slackware

Slackware is available from numerous Internet sites, and you can order the CD from Walnut
Creek Software. It includes both Gnome and KDE. The Slackware distribution takes special
care to remain as closely UNIX compliant as possible. Currently, it supports only Intel
platforms. See www.slackware.com for more information.

LinuxPPC

The LinuxPPC distribution provides versions of Linux designed exclusively for use on
PowerPC machines. The distribution will run on any PowerPC machine, including IBM,
Motorola, and Apple systems (including G4 and iMac machines). It provides support for the
USB on Mac systems. Its current distribution includes the Gnome desktop and the
Enlightenment window manager. See www.linuxppc.com for more information.

TurboLinux

TurboLinux provides English, Chinese, and Japanese versions of Linux. It includes several of
its own packages such as TurboPkg for automatically updating applications, the TurboDesk
desktop, and the Cluster Web Server. Like Red Hat, it supports RPM packages. It is currently
widely distributed in East Asia. Currently, TurboLinux supports only the Intel platform, but a
PowerPC version is in development. See www.turbolinux.com for more information.

Mandrake

Mandrake Linux is another popular Linux distribution with many of the same features as Red
Hat. It focuses on providing up-to-date enhancements and an easy-to-use installation and GUI
configuration. You can learn more about Mandrake at www.linux-mandrake.com.

Chapter 2: Installing Red Hat Linux
Overview

This chapter describes the installation procedure for Red Hat Linux. The installation includes
the Linux operating system, a great many Linux applications, and a complete set of network
servers. Different Linux distributions usually have their own installation programs. The Red
Hat installation program is designed to be efficient and brief, while installing as many features
as possible. Certain features, such as Web server support, would ordinarily require specialized

and often complex configuration operations. Red Hat automatically installs and configures
many of these features.

 Note Red Hat provides a detailed installation manual at its Web site. The manual consists of
Web pages you can view using any browser. They include detailed figures and step-by-
step descriptions. Checking this manual before you install is strongly recommended.
This chapter presents all the steps in the installation process but is not as detailed as the
Red Hat manual. On the Red Hat Web site at www.redhat.com, click Support and
choose the link for your version of Red Hat, such as Red Hat Linux 7.1. This presents a
list of links, including the Official Red Hat Linux Installation Guide.

Installing Linux involves several steps. First, you need to determine whether your computer
meets the basic hardware requirements. These days, most Intel-based PC computers do. Red
Hat supports several methods for installing Linux. You can install from a local source such as
a CD-ROM or a hard disk, or from a network or Internet source. For a network or Internet
source, Red Hat supports NFS, FTP, and HTTP installations. With FTP, you can install from
an FTP site. With HTTP, you can install from a Web site. NFS enables you to install over a
local network. For a local source, you can install from a CD-ROM or a hard disk. In addition,
you can start the installation process by booting from your CD-ROM, from a DOS system, or
from boot disks that can then use the CD-ROM or hard disk repository. Red Hat
documentation covers each of these methods in detail. This chapter deals with the installation
using the CD-ROM provided by this book and a boot disk created from a boot image on the
CD-ROM. This is the most common approach.

Once the installation program begins, you simply follow the instructions, screen by screen.
Most of the time, you only need to make simple selections or provide yes and no answers. The
installation program progresses through several phases. First, you create Linux partitions on
your hard drive, and then you install the software packages. After that, you can configure your
network connection, and then your X Window System for graphical user interface support.
Both the X Windows System and network configurations can be performed independently at a
later time.

Once your system is installed, you are ready to start it and log in. Normally you will log in
using a graphical login, selecting the desktop you want, and entering your user name and
password. Alternatively you can log in to a simple command line interface. From the
command line, you can then invoke a desktop such as Gnome that provides you with a full
graphical user interface.

You have the option of installing just the operating system, the system with a standard set of
applications, or all the software available on the CD-ROM. If you choose a standard
installation, you can add the uninstalled software packages later. Chapter 4 and Chapter 19
describe how you can use the GnomeRPM utility or the Red Hat Package Manager to install,
or even uninstall, the software packages.

Hardware, Software, Information Requirements

Before installing Linux, you must ensure that your computer meets certain minimum
hardware requirements. You also need to have certain specific information ready concerning
your monitor, video card, mouse, and CD-ROM drive. All the requirements are presented in
detail in the following sections. Be sure to read them carefully before you begin installation.

During the installation program, you need to provide responses based on the configuration of
your computer.

Hardware Requirements

Listed here are the minimum hardware requirements for installing a standard installation of
the Linux system as provided by the Red Hat CD-ROM included with this book:

• A 32-bit Intel-based personal computer. At least an Intel or compatible 80386, 80486,
or Pentium class microprocessor is required.

• A 3 1/2-inch floppy disk drive (if you have a bootable CD-ROM or other means of
installing Linux, you don't really need a floppy drive, but for this particular
installation, I know it is necessary).

• At least 64MB RAM, though 256MB is recommended.
• At least 2GB free hard disk space; 3 to 6GB or more is recommended. The size

usually increases with each new release. You need at least 3GB to load and make use
of all the software packages on your CD-ROM. The standard installation of basic
software packages takes 2GB, plus 64 to 512MB for swap space depending on the
amount of RAM memory you have. If you have less than 1GB, you can elect to
perform a minimum install, installing only the Linux kernel without most of the
applications. You could later install the applications you want, one at a time.

• A 3 1/2-inch, DOS-formatted, high-density (HD) floppy disk drive, to be used to
create an install disk (if you are installing from a floppy).

• A CD-ROM drive.
• Two empty DOS-formatted, 3 1/2-inch, high-density (HD) floppy disks (for

installation from a floppy).

If you plan to use the X Windows graphical user interface, you will also need

• A video graphics card
• A mouse or other pointing device

Software Requirements

Only a few software requirements exist. If you intend to install using the floppy disks, you
need an operating system from which you can create the disks. The DOS operating system is
required to enable you to prepare your installation disks. Using a DOS system, you can access
the CD-ROM and issue DOS-like commands to create your installation disks. Any type of
DOS will do. You can even use the same commands on OS/2. However, you do not need
DOS to run Linux. Linux is a separate operating system in its own right.

If you want to have Linux share your hard disk with another operating system, like Windows,
you need certain utilities to prepare the hard disk for sharing. This way one part of your hard
disk could be used for Windows and another for Linux. For Windows, you need either the
defrag and fips utilities or disk management software like Partition Magic 4.0. The fips utility
is provided on your CD-ROM. This utility essentially frees space by reducing the size of your
current extended or primary partition. Defrag and fdisk are standard DOS utilities, usually
located in your dos directory. Defrag is used with fips to defragment your hard disk before
fips partitions it. This collects all files currently on the partition into one area, leaving all the
free space grouped in one large chunk. If you are installing on a new empty hard drive and

you want to use part of it for Windows, you can use fdisk to set up your Windows partitions.
All these tasks can also be carried out using GNU Partd and Partition Magic, mentioned
earlier.

Information Requirements

Part of adapting a powerful operating system like Linux to the PC entails making the most
efficient use of the computer hardware at hand. To do so, Linux requires specific information
about the computer components with which it is dealing. For example, special Linux
configuration files are tailored to work with special makes and models of video cards and
monitors. Before installing Linux, you need to have such information on hand. The
information is usually available in the manual that came with your hardware peripherals or
computer.

CD-ROM, Hard Disk, and Mouse Information

For some older SCSI CD-ROM drives, you need the manufacturer's name and model.

Decide how much of your hard drive (in megabytes) you want to dedicate to your Linux
system. If you are sharing with Windows, decide how much you want for Windows and how
much for Linux.

Decide how much space you want for your swap partition. Your swap partition for 7.1 should
be about the same as your RAM memory, but can work with as little as 64 megs. The size of
the swap partition was expanded with the 2.4 kernel. Your swap partition is used by Linux as
an extension of your computer's RAM.

Find the make and model of the mouse you are using. Linux supports serial, USB, PS/2,
IMPS/2, and bus mice. Most mice are supported, including Microsoft, Logitech, and Mouse
Systems.

Know what time zone you are in and to what time zone your hardware clock is set. This can
be either Greenwich mean time (GMT) or your local time zone.

Know which kind of port your mouse is using such as PS/2, USB, or serial port. Most systems
now use a PS/2 port. For a serial port mouse, you will need to know which port it is connected
to: COM1, COM2, or none.

Video and Monitor Information

Although most monitors and video cards are automatically configured during installation, you
might still need to provide the manufacturer's make and model in case the detection is wrong.
Find out the manufacturer for your monitor and its model, such as Iiyama VisionMaster 450
or NEC E500. Do the same for your video card-for example, Matrox Millennium G400 or
ATI XPERT@Play 98 (you can find a complete list of supported cards at www.xfree86.org).
This should be listed on the manuals or registration information provided with your computer.
For some of the most recent monitors and video cards, and some older, uncommon ones, you
may need to provide certain hardware specifications. Having this information on hand, if
possible, is advisable, just in case. At the end of the installation process, you are presented
with lists of video cards and monitors from which to choose your own. These lists are

extensive. In case your card or monitor is not on the list, however, you need to provide certain
hardware information about it. If the configuration should fail, you can always do it later
using an X Window System configuration utility such as Xconfigurator and XF86Setup. Of
particular importance is the monitor information, including the vertical and horizontal refresh
rates.

Video Card Information You should also know the following video card information,
although the chipset is most likely not necessary.

• What is the make and model of your video card?
• What chipset does your video card use?
• How much memory is on your video card?

Monitor Information What is the manufacturer and model of your monitor? Linux supports
an extensive list of monitors, covering almost all current ones. Your monitor will be
automatically detected and selected. Should the detection be wrong, you can find it and select
it from the list. If, however, your monitor is not on this list, you may need to provide the
following information. Be sure this information is correct. Should you enter a horizontal or
vertical refresh rate that is too high, you can seriously damage older monitors. Newer ones
will just shut down. You can choose a generic profile or you can enter information for a
custom profile. To do that, you need the following information:

• The horizontal refresh rate in Hz
• The vertical refresh rate in Hz

Network Configuration Information

Except for deciding your hostname, you do not have to configure your network during
installation. You can put configuration off until a later time and use network configuration
utilities like Linuxconf or netcfg to perform network configuration. If the information is
readily available, however, the installation procedure will automatically configure your
network, placing needed entries in the appropriate configuration files. If you are on a network,
you must obtain most of this information from your network administrator, unless your
network information is automatically provided by a DHCP server on your network. In this
case, you will only need your system's hostname. During the installation process, you will be
given the option of either using DHCP or entering the network information manually.

If you are setting up a network yourself, you have to determine each piece of information. If
you are using a dial-up Internet service provider, you configure your network access using a
PPP dial-up utility, such as kppp or Linuxconf, after you have installed the system. The
installation program will prompt you to enter in these values:

• Decide on a name for your computer (this is called a hostname). Your computer will
be identified by this name on the Internet. Do not use "localhost"; that name is
reserved for special use by your system. The hostname should be a simple alphabetic
word; it can include numbers but not punctuation such as periods and backslashes. A
computer's name is made up of its hostname and domain name, so turtle.mytrek.com
has a host name turtle and a domain name mytrek.com.

• Your domain name.

• The Internet Protocol (IP) address assigned to your machine. Every host on the
Internet is assigned an IP address. This address is a set of four numbers, separated by
periods, which uniquely identifies a single location on the Internet, allowing
information from other locations to reach that computer.

• Your network IP address. This address is usually similar to the IP address, but with
one or more zeros at the end.

• The netmask. This is usually 255.255.255.0 for class C IP addresses. If, however, you
are part of a large network, check with your network administrator.

• The broadcast address for your network, if available. Usually, your broadcast address
is the same as your IP address with the number 255 used for the last number.

• If you have a gateway, you need the gateway IP address for your network.
• The IP address of any name servers your network uses.
• The NIS domain and IP address if your network uses an NIS server.
• Samba server if your network is connected to a Windows network.

Upgrade Information for Currently Installed Linux Systems

If you have a version of Linux already installed and you want to upgrade it you can either
overwrite your current installation, starting new, or update the current one, keeping your
current configuration settings. If you are installing a new system or just overwriting the old
one, you can skip this section.

If you already have installed a previous version of Red Hat Linux (kernel 2.0 and above), you
may have personalized your system with different settings that you would like to keep. If you
choose the Upgrade option, rather than Install, during the installation process, these settings
will be kept. All your previous configuration files are saved in files with a .rpmsave
extension. However, Upgrade only works for Red Hat versions 3.0.3 and up.

For Red Hat versions older than 3.0.3, or for other installed Linux distributions, you should
save your settings first. You may want to back up these settings anyway as a precaution.
These settings are held in configuration files that you can save to a floppy disk and then use
on your new system, in effect retaining your original configuration (if you use mcopy, be sure
to use the -t option). You may want to preserve directories and files of data, such as Web
pages used for a Web site. You may also want to save copies of software packages you have
downloaded. For these and for large directories, using the following tar operation is best.

tar cvMf /dev/fd0 directory-or-package

Make copies of the following configuration files and any other files you want to restore. You
only need to copy the files you want to restore.

Files Description
/etc/X11/XF86Config X Windows configuration file
/etc/lilo.conf Boot manager configuration file
/etc/hosts IP addresses of connected systems
/etc/resolv.conf Domain name server addresses
/etc/fstab File systems mounted on your system
/etc/passwd Names and passwords of all users on your system

Files Description
/home/user Any home directories of users with their files on your system,

where user is the username. (For a large number of files, use
tar cfM/dev/fd0/home/user)

.netscape Each home directory has its own .netscape subdirectory with
Netscape configuration files such as your bookmark entries

Web site pages and FTP files You may want to save any pages used for a Web site or files
on an FTP site you are running. On Red Hat versions, these
are located at /var//httpd/html and /var/ ftpd.

Once you have installed your system, you can mount the floppy disk and use the information
to configure the newly installed versions for your applications. In many cases you may be
able to copy the saved files from the floppy to your system, overwriting those initially set up.
However, new versions of applications may include changes in the format of configuration
files. If the formats have changed, copying old configuration files will not work. In these
cases, though, the new software versions will usually include utilities for converting old
configuration files to new versions. Be sure to check software documentation before you
replace any configuration files. This is particularly true for Internet server configuration files.
For example, to convert from inetd to xinetd configuration files, you use the inetdconvert
program.

If you want to restore the /etc/lilo.conf file from your previous system, you must also install
it, using the following command:

lilo /etc/lilo.conf

To restore archives that you saved on multiple disks using the tar operation, place the first
disk in the floppy drive and use the following command:

tar xvMf /dev/fd0

Opening Disk Space for Linux Partitions for Shared Hard Disks

If you are using an entire hard drive for your Linux system or if you are upgrading a currently
installed Linux system and you want to use the same partitions, you can skip this section and
go on to installing Linux. If, however, your Linux system is going to share a hard drive with
your Windows or DOS system, you need to organize your hard drive so that part of it is used
for DOS and the remaining part is free for Linux installation. How you go about this process
depends on the current state of your hard disk. If you have a new hard disk and you are going
to install both Windows and Linux on it, you need to be sure to install Windows on only part
of the hard drive, leaving the rest free for Linux. This means specifying a size smaller than the
entire hard disk for your Windows partition that you set up during the Windows install
procedure. You could also use fdisk to create partitions manually for Windows that will take
up only a part of the hard disk. If you want to install Linux on a hard disk that already has
Windows installed on its entire area, however, you need to resize your primary or extended
partition, leaving part of the disk free for Linux. The objective in each situation is to free
space for Linux. When you install Linux, you will then partition and format that free space for
use by Linux.

Several different options exist for partitioning your hard drive, depending on whether it
already contains data you need to preserve. A commercial partitioning software such as
Partition Magic and GNU Partd (http://www.gnu.org/software/parted/) can help you do this
easily and safely. Red Hat also has an option whereby Linux can be installed on a current
Windows partition, requiring no partitioning. In all cases you need to make sure that your
hard drive has the available free space for installing your Linux system.

A hard disk is organized into partitions. The partitions are further formatted to the
specifications of a given operating system. When you installed Windows, you first needed to
create a primary partition for it on your hard disk. If you have only one disk on your hard
drive, then you only have a primary partition. To add more partitions, you create an extended
partition and then, within that, logical partitions. For example, if you have C, D, and E disks
on your hard drive, your C disk is your primary partition and the D and E disks are logical
partitions set up within your extended partition. You then used the DOS format operation to
format each partition into a Windows disk, each identified by a letter. For example, you may
have divided your disk into two partitions, one formatted as the C disk and the other as the D
disk. Alternatively, you may have divided your hard disk into just one partition and formatted
it as the C disk. To share your hard drive with Linux, you need to free some space by either
deleting some of those partitions or reducing their size.

First, decide how much space you need for your Linux system. You probably need a
minimum of 3GB, though more is recommended. As stated earlier, the basic set of Linux
software packages takes up 1GB, whereas the entire set of software packages, including all
their source code files, take several GBs. In addition, you need space for a Linux swap
partition used to implement virtual memory-the same size as your RAM is recommended,
though you can get by with as little as 64 megs.

Once you determine the space you need for your Linux system, you can then set about freeing
that space on your hard drive. To see what options are best for you, you should first determine
what your partitions are and their sizes. You can do this with the fdisk utility. To start this
utility, type fdisk at the DOS prompt, and press ENTER.

C:\> fdisk

This brings up the menu of fdisk options. Choose Option 4 to display a list of all your current
partitions and the size of each. Press ESC to leave the fdisk utility. You can use the DOS
defrag and Linux fips or partd utilities to reduce the size of the partitions, creating free space
from unused space on your hard drive. You should still make a backup of your important data
for safety's sake. First, check if you already have enough unused space on your hard drive that
can be used for Linux. If you do not, you must delete some files. When Windows creates and
saves files, it places them in different sectors on your hard disk. Your files are spread out
across your hard disk with a lot of empty space in between. This has the effect of fragmenting
the remaining unused space into smaller sections, separated by files. The defrag utility
performs a defragmentation process that moves all the files into adjoining space on the hard
disk, thereby leaving all the unused space as one large continuous segment. Once you have
defragmented your disk, you can use the fips utility to create free space using part or all of the
unused space. fips is a version of fdisk designed to detect continuous unused space and
remove it from its current Windows partition, opening unpartitioned free space that can then
be used by Linux. All your Windows partitions and drives remain intact with all their data and
programs. They are just smaller.

To run the defrag utility, enter the command defrag. This is a DOS command usually found
in the dos or windows directory. You can also run it from Windows.

C:\> windows\defrag

Defrag displays a screen with colored blocks representing the different sectors on your hard
disk. It carries out an optimization of your hard disk, moving all your used sectors, your data
and programs, together on the hard disk. This may take a few minutes. When it is complete,
you will see the used sectors arranged together on the screen. You can then exit the defrag
utility.

Now you are ready to run the fips utility to free space. fips is located on your Red Hat Linux
CD-ROM, also in the directory named dosutils. Change to your CD-ROM drive and run the
fips utility. In the following example, the CD-ROM drive is drive E:

C:\> e:
E:\> \dosutils\fips

The fips utility displays a screen showing the amount of free space. Use your arrow keys to
make the space smaller if you do not need all your free space for Linux. You should leave
some free space for your Windows programs. Then press ENTER to free the space.

Creating the Red Hat Boot Disks

If your computer is fairly new, it most likely has the ability to boot from your CD-ROM. In
this case, you can just use your CD-ROM as your installation disk, and skip this section (you
may need to configure your BIOS to boot from your CD-ROM). If you cannot boot from your
CD-ROM, you will have to create floppy install disks as described here.

You can install Red Hat using an install disk whose image is located on the Red Hat CD-
ROM. You create the install disk using the MS-DOS program rawrite and an install disk
image. The install disk has to be created on a computer that runs DOS. Install disk images
exist for local installation (boot.img), installing from an network source like a Web site
(netimage.img), and installing with PCMCIA support (pcmcia.img). Begin by first starting
your computer and entering DOS. Then perform the following steps.

Insert the Red Hat CD-ROM into your CD-ROM drive. At your DOS prompt, change to your
CD-ROM drive, using whatever the letter for that drive may be. For example, if your CD-
ROM drive is the E drive, just type e: and press ENTER. Once you have changed to the CD-
ROM drive, you then need to change to the \images directory. The install disk images are
there, boot.img, pcmia.img, and netboot.img. The rawrite command is in the dosutils
directory, \dosutils\rawrite.

To create the install disk, insert a blank floppy disk into your floppy drive. Now start the
rawrite command. The rawrite command will actually write the disk image to your floppy
disk. The rawrite command first prompts you for the name of the disk image file you want to
copy. Enter the full name of the install image file (in this example, boot.img). The command
then asks you to enter the letter of the floppy drive where you put your floppy disk. On many
systems, this is the A drive.

E:\> cd images

E:\col\launch\floppy > e:\dosutils\rawrite
Enter source file name: boot.img
Enter destination drive (A or B) and press ENTER: a

Press ENTER to confirm that you have a blank floppy disk in the drive. rawrite will then
copy the image file to your floppy disk, creating your install disk. When it finishes, remove
your disk from the floppy drive. This is the disk that the installation procedure (described
later) refers to as the install diskette. If you need to create a network boot disk, use
netimage.img instead. For PCMCIA support, use pcmcia.img.

Installing Linux

Installing Linux involves several processes, beginning with creating Linux partitions, and then
loading the Linux software, configuring your X Windows interface, installing the Linux
Loader (LILO) that will boot your system, and creating new user accounts. The installation
program is a screen-based program that takes you through all these processes, step by step, as
one continuous procedure. You can use either your mouse or the keyboard to make selections.
When you finish with a screen, click the Next button at the bottom to move to the next screen.
If you need to move back to the previous screen, click the Back button. You can also use the
TAB, the arrow keys, SPACEBAR, and ENTER to make selections. You have little to do
other than make selections and choose options. Some screens provide a list of options from
which you make a selection. In a few cases, you are asked for information you should already
have if you followed the steps earlier in this chapter. You are now ready to begin installation.
The steps for each part of the procedure are delineated in the following sections. This should
not take more than an hour.

Starting the Installation Program

If you followed the instructions in the first part of the chapter, you have freed space on your
hard drive, and created your install and module disks. Now you are ready to create your Linux
partitions. To do this, you need to boot your computer using the install disk you made earlier.
When you start your computer, the installation program will begin and, during the installation,
you can create your Linux partitions.

You can start the installation using one of several methods. If your computer can boot from
the CD-ROM, you can start the installation directly from the CD-ROM. Just place the Red
Hat CD-ROM in the CD-ROM drive before you start your computer. After turning on your
computer, the installation program will start up.

 Note To boot from a CD-ROM, you may first have to change the boot sequence setting in
your computer's BIOS so that the computer will try to boot first from the CD-ROM.
This requires some technical ability and knowledge of how to set your motherboard's
BIOS configuration.

If you have a DOS system installed on your hard drive, you can start up DOS and then use the
autoboot.bat command in the dosutils directory to start the installation, as shown here. You
have to execute this command from a DOS system, not the Windows DOS window. Only
DOS can be running for this command to work.

e:\dosutils\autoboot.bat

If neither of these options is feasible for you, you can use the install floppy disk (see the
previous section on creating a boot disk). This is perhaps the most fail-safe method of
installing Linux. Insert the Linux install disk into your floppy drive and reboot your computer.
Performing a cold boot is best: turn off the computer completely and then turn it on again with
the install disk in the floppy drive.

The installation program will start, presenting you with an Introduction screen. After a
moment, the following prompt will appear at the bottom of your screen:

boot:

Press ENTER. (If necessary, you can enter boot parameters as described in the Red Hat
manual.) Configuration information will fill your screen as the installation program attempts
to detect your hardware components automatically.

Your system then detects your hardware, providing any configuration specifications that may
be needed. For example, if you have a IDE CD-Write drive, it will be configured
automatically as a SCSI drive so that CD Writing software can use it (see Chapters 4 and 32).
If you are installing from a floppy disk, it will detect your CD-ROM. If for some reason it
cannot do so, your system will ask you to select yours from a list. If you still have difficulty,
you may have to specify the CD-ROM at the boot prompt.

Boot: linux hdx=cdrom

Replace the x with one of the following letters, depending on the interface the unit is
connected to, and whether it is configured as master or a slave: a-First IDE controller master,
b-First IDE controller slave, c-Second IDE controller master, d-Second IDE controller slave.

As an alternative to the CD-ROM installation, you can copy the entire CD-ROM to a
Windows partition (one large enough), and then install using that partition instead of the CD-
ROM. You need to know the device name of the partition and the directory to which you
should copy the CD-ROM files. When asked to choose the installation method, you can select
hard disk. You then have to specify the partition name and the directory.

To perform multiple installations on different systems, Red Hat provides kickstart. With
kickstart, an administrator can create a profile listing all the information needed for each stage
of the installation process. Users can access the profile on a server and use it to automatically
install Red Hat on their system. The profile can also be placed on an install floppy disk and
used in floppy disk installations, providing the same kind of automatic installation. A kickstart
profile is generated automatically when you install. You can edit it with the Kickstart
Configurator to modify entries.

 Note As each screen appears in the installation, default entries will be already selected,
usually by the auto-probing capability of the installation program. Selected entries will
appear highlighted. If these entries are correct, you can simply click the Next button to
accept them and go on to the next screen.

Red Hat Installation

The first screen asks you to select the language you want to use. Click the language you want
and then click the Next button. On the following screen, you will configure your keyboard.

The screen displays lists for selecting your keyboard model, layout, and options. A generic
model works in most cases.

On the next screen, you configure your mouse (see Figure 2-1). The screen lists the different
mouse brands along with specific models. One will already be automatically detected and
selected for you. If the automatic detection is wrong, you can select another. Click a + symbol
to expand a model list. Select your mouse. You can also check a button at the bottom of the
screen to have a two-button mouse emulate a three-button mouse. A generic two-button PS/2
or serial mouse will work if your model is not listed. If you select a serial mouse, you also
must select the port and device to which it is connected.

Figure 2-1: Mouse configuration

Now that the keyboard and mouse are configured, you can begin the installation process. The
next screen displays a Welcome to Red Hat message. Click the Next button to continue.

On the following screen, labeled Install Type, you select whether you want to install a new
system or upgrade a previous one. On the panel labeled Install Type, click the button for
either Install or Upgrade. You use the Upgrade option to upgrade a version of Red Hat (3.0.3
or higher) that is already on your system. All your current configuration files are preserved in
files with a .rpmsave extension. You can use them to restore your system configuration. With
new software versions, configuration files sometimes change format, so be sure to check for
any changes. If you do not have any complex and customized configuration files, it may be
better simply to do a basic install and make what small changes you may need later.

Should you select the Install option, you can then specify a different class of installation. You
can select a workstation installation, a server installation, a laptop installation, or a custom
installation. Most first-time users will want to use a custom installation. The other classes of
installation also perform automatic formatting of your partitions, erasing all current data on
them. Use them only if you are sure of what you are doing. Workstation installations

automatically erase any and all Linux partitions on your computer and use them to install Red
Hat Linux.

 Note Be very careful with the Server installation. The Server installation will erase all
partitions on your computer hard drives, including Windows and OS/2 partitions. The
Server installation is intended for computers that will operate as dedicated servers,
performing only network server tasks. Should you be using Windows on the same
computer that you want to use Linux on, do not select the Server option.

The workstation installations will install all the needed applications for a Linux workstation
with either the Gnome or KDE desktop as your default desktop. Server installation will install
server programs to enable your Linux system to operate as a network server. The custom
installation enables you to choose what software packages you want installed on your system,
letting you select a combination of workstation and server software or to just install
everything.

Partitions

If you choose the Custom install option, an Automatic Partitioning screen is displayed with
three options: Have installer automatically partition for you, manually partition with Disk
Druid, and Manually partition with fdisk [for experts only]. Automatic partitioning can be
used for a hard disk that will only be running Linux and have no customized requirements
such as RAID devices or specialized partitions. Red Hat will detect and set up standard Linux
partitions for you. Disk Druid is an easy-to-use partition manager that employs a graphical
interface, while fdisk is the Linux fdisk utility that uses a simple command line interface. Use
fdisk only if you are familiar with it already.

If you choose the Workstation or Server options, an Automatic Partitioning screen is
displayed with three options: Manually partition with Disk Druid, Manually partition with
fdisk, and Automatically partition and Remove data. If you choose either manual partition
entry, you can control and select the partitions you want set up and formatted. If you choose
the Remove data entry, the Workstation install will erase any current Linux partition on your
system, whereas the Server install will erase all your partitions (including Windows). Should
you want to back out to select a custom installation, you can just click the Back button.

If you choose a Custom installation or the Manual partition in the Automatic Partitioning
screen, the Partitions screen is displayed. Here, you can manually create Linux partitions or
select the one where you want to install Red Hat. The top pane displays a graphics of your
partitions, and the lower pane lists the partitions in a tree format. There is a graphic for each
hard drive on your system, and each partition is displayed proportionally according to the
amount of space it takes up. You can edit a partition by selecting its image and clicking the
Edit button. The buttons above the Partitions pane enables you to create, edit, and delete
partitions. The Partitions screen is actually an interface for the Red Hat Disk Druid program,
used in previous Red Hat installation programs.

You are advised to set up at least two Linux partitions: a swap partition and a root partition.
The root partition is where the Linux system and application files are installed. If you are
sharing a large hard drive with other systems like Windows, you can install the Linux root
partition anywhere on the hard drive.

Except for the swap partition, when setting up a Linux partition you must specify a
mountpoint. A mountpoint is a directory where the files on that partition are connected to the
overall Linux file structure for your system. The mountpoint for your root partition is the root
directory, represented by a single slash, /. The mountpoint for your boot partition is the path
/boot. For a users' partition, it would be /home.

When creating a new partition, you must specify its size, though you can have the partition
automatically expand to the available free space on your hard drive. The size of the swap
partition should be the same size as your RAM memory, with a recommended minimum size
of 64 megs. With 256 megs of RAM, you could use a 256 meg swap partition. If you have a
large amount of RAM, you can make the swap partition the same size. If your disk space is
limited, you should make your swap size at least 64 megs.

Be sure enough space is available for it on your hard drive. If not, you will receive an
Unallocated Requested Partition message. You can free space by deleting unwanted partitions
already set up or edit the new partition's entry and change its requested size. Check the entry
for your hard drive in the Drive Summaries pane to find out how much free space is available
on your hard drive.

To create the new partition, click the Add button to display a dialog box where you can enter
the mountpoint, the size (in megabytes), the file system type, and the hard disk on which you
want to create the partition. For the size, you can select a "Grow to fill disk" option to have
the partition automatically expand to the size of the remaining free space on the disk. You can
have this option selected for more than one partition. In that case, the partition size will be
taken as a required minimum, and the remaining free space will be shared equally among the
partitions. For file system type, select ext3, the Linux native type for standard Linux
partitions, and select the Linux swap type for your swap partition. You can even use Disk
Druid to create DOS partitions. You can also select the hard drive on which to create the
partition. To make any changes later, you can edit a partition by selecting its segment in its
drive graphic displayed on the upper half of the screen. Then click the Edit button.

 Note With Red Hat 7.2, the standard Linux file system type is ext3, which replaces ext2.

If you want to change the size of partition that has been already created, you must first delete
it and then create a new one. Remember, deleting a partition erases all data on it. To delete a
partition, select it and click the Delete button.

You also have the option of creating software RAID disks. First, create partitions and select as
their type Software RAID (see Chapter 32 for more details on RAID). Once you have created
your partitions, you can create a RAID disk. Click the Make RAID button and then select the
previously created partitions that you want to make up the RAID disk. Choose the type of
RAID disk as well.

If you are formatting any old Linux partitions that still have data on them, a dialog will
appear, listing them and asking you to confirm that you want to format them (new Linux
partitions that you create will automatically be formatted). If you already have a Linux system
and have installed Red Hat on it, you will most likely have several Linux partitions already.
Some of these may be used for just the system software, such as the boot and root partitions.
These should be formatted. Others may have extensive user files, such as a /home partition

that normally holds user home directories and all the files they have created. You should not
format such partitions.

Boot Loaders

Once your partitions are prepared, you install a boot loader. You can choose either the LInux
LOader (LILO) or the Grand Unified Boot loader (GRUB). GRUB is now the default boot
loader. You use a boot loader to start Red Hat Linux from your hard drive. You can also use it
to start any other operating system you may have installed on your computer, such as
Windows. You have two choices for where to install the boot loader: the Master Boot Record
(MBR) or the root partition. The recommended place is the MBR.

The Boot Loader Configuration screen lists various boot loader options. Here you can select
where to install boot loader (MBR or root partition), specify a label for the Linux system
(usually linux), decide whether it is to be the default system (if you have more than one
operating system), and specify any kernel parameters your system may require for Linux. At
the top of the screen are options for creating a boot disk selecting either the GRUB or LILO
boot loaders, and not to install a boot loader. GRUB will be selected by default. The boot disk
creation option is also automatically selected for you. You can use the boot disk to start your
Linux system should there ever be a problem starting from your hard drive (for example, if
you reinstall Windows on your hard drive, the boot loader is removed and you will need to
use the boot disk to start Linux so that you can reinstall the boot loader).

The bottom of the screen displays a list of bootable partitions. Selecting one enables you to
enter specific information for the partition in the top pane, such as the label you want to give
to this partition and any kernel parameters required. The root or boot linux partition is usually
given the label "linux"; a Window partition could be given a label like "win."

Network Configuration

The Network Configuration screen displays tabbed panes in the top half for the different
network devices on your computer (see Figure 2-2). Click the tab for the device you want to
configure. For computers already connected to a network with an Ethernet card, the tab is
usually labeled eth0. Such a tab displays a pane with boxes for entering the various IP
addresses for the network accessible through this device. These include the device's IP
address (usually your computer's IP address), the network's address, and the broadcast
address, along with the netmask. You could have a computer with several Ethernet devices,
each connected to a different (or the same) network. If your network supports DHCP, you can
click the DHCP button instead of manually entering in these addresses. DHCP automatically
provides your computer with the needed IP addresses. You can also choose to have the device
activated when your system boots or not.

Figure 2-2: Network configuration

The bottom pane holds boxes for entering the IP addresses for your network's domain name
servers (DNS) and gateway computer, as well as the hostname you want to give to your
system. In the Hostname box, enter the fully qualified domain name for your computer.

Next, the Firewall Configuration screen lets you create basic default levels of network
security. You can choose a high, medium, or low level of security. You can opt to use default
firewall rules or customize your configurations specifying trusted devices and services to
allow, such as Web or FTP connections. On Red Hat 7.2, the Firewall Configuration still
implements older IP-Chains firewall rules. If you plan to use the newer IP-Tables, you will
have to remove this configuration first (see Chapters 6 and 40).

The next screen lets you choose the language you want to use.

On the Time Zone Configuration screen, you have the option of setting the time by using a
map to specify your location or by using Universal Coordinated Time (UTC) entries.

On the Account Configuration screen, you can set the root password for the root account on
your system. This is the account used for system administration operations, such as installing
software and managing users. On this same screen, you can also add ordinary user accounts.
Click the Add button to create the account. A dialog is opened with entries for the user name,
the user's full name, the password, and the password confirmation. Once you have entered in
the information and clicked OK, the new user will be listed. Use the Edit button to change
entries and the Delete button to remove users.

On the Authentication Configuration screen, you can add further levels of security for
passwords. MD5 allows for long passwords up to 256 characters and shadow passwords that
will save password information in a secure file on your system. There are tabbed panels for
enabling different kinds of authentication services along with specifying their servers. There
are panels for NIS, LDAP, Kerberos, and SMB. On the NIS (Network Information Service)

panel, you can enable NIS and enter your NIS domain. On the LDAP panel, you can enable
LDAP (Lightweight Directory Access Protocol) and specify your LDAP server if you have
one; and on the Kerberos panel, you can enable Kerberos authentication. On the SMB panel,
you can specify an SMB server and its workgroup for a Window network.

For custom installations, you are presented with a Package Group Selection screen. Here you
can choose to install whole sets of packages for different categories. For example, you can
install all the packages you would need for the Gnome desktop or the X Window System. To
install all packages, select the Everything entry at the end of the list.

If you want to select individual software packages, click the "Select individual packages"
check box. This will display a new screen with two panes, the left showing an expandable tree
of software categories and the right displaying icons for the individual software packages. To
select a package for installation, double-click it. You can also single-click, and then click the
"Select package for installation" check box below. Whenever you single-click any icon, a
description of the package is displayed on the bottom pane. Many software packages require
that other software packages also be installed. This is called a dependency. Should you not
have these already selected for installation, then an Unresolved Dependencies screen is
displayed showing the packages you need to install. You can then select them for installation.

The Installing Packages screen is then displayed, which shows each package as it is installed
and the progress of the installation. When the installation finishes, the Next button will
become active. You can then move on to the Boot Disk Creation screen. Here, you can create
a boot disk using a standard floppy disk (or you can elect to skip it).

X Window System Configuration

The X Configuration screen (see Figure 2-3) then finishes the configuration of the X Window
System. This enables GUI interfaces, such as Gnome and KDE. X configuration uses the
Xconfigurator utility to detect your video card and monitor automatically.

Figure 2-3: X configuration

On the Monitor Configuration screen, you select your monitor (see Figure 2-4). Initially,
Xconfigurator will automatically probe your monitor and select a make and model from those
listed on the screen. Check to see that the correct monitor is selected. If not, find its entry and

click it. Monitor entries are organized by company in an expanding tree. If you have a
Hewlett-Packard monitor, click the + symbol next to the hp entry to list all the monitors that
Hewlett-Packard makes. Then click your model. When you select a monitor, the horizontal
and vertical boxes at the bottom of the screen will display your monitor's horizontal sync
range and vertical sync range (these values are generally available in the documentation that
accompanies your monitor or from your monitor's vendor or manufacturer).

Figure 2-4: Monitor configuration

If your monitor does not appear on the list, then select a Generic entry (usually Generic
multisync). Xconfigurator will then supply horizontal and vertical frequency values in the
labeled boxes at the bottom of the screen. Check that the correct horizontal and vertical
frequencies are entered. If you enter values that are too high, you could overclock your
monitor and possibly damage or destroy it. Do not select a monitor "similar" to your monitor
unless you are certain the monitor you are selecting does not exceed the capabilities of your
monitor.

On the Customize Graphic Configuration screen, you can set different video card
configuration features such as the amount of video memory or the color depth (see Figure 2-
5). If you know how much video memory is on your video card, you can check for the
appropriate entry for that amount located in the drop-down menu. If an incorrect amount is
selected, you can select the appropriate one.

Figure 2-5: Graphic configuration

You can specify your card's resolution and color depth by selecting the specification you want
from their drop-down menus. Auto-probed entries will already be selected. You can change
them to other entries if you wish. An 800 x 600 resolution is usually used for 15- and 17-inch
monitors, and 1024 x 768 for 19- and 21-inch monitors.

You can also choose to use a graphical login instead of the command line login. The graphical
login check box will already be checked for you. If you choose this option, when you start,
the Gnome Desktop Manager (GDM) will start and display a login screen where you can enter
the user name and password. A Sessions submenu in the Options menu enables you to choose
whether to start KDE, Gnome, or the AnotherLevel window manager. When you log in, your
desktop automatically starts up. When you log out of your desktop, the GDM login window is
redisplayed. Select Shutdown from the Options menu to shut down Linux.

If you do not choose this option, you will start up with the command line interface. Enter the
user name at the login prompt and the password at the password prompt to log in. Use startx
to start Gnome and switchdesk to switch to KDE or AnotherLevel. The logout command logs
out, and CTRL-ALT-DEL will shut down Linux. You can also enter the shutdown or halt
command while logged in to shut down Linux.

To set your default desktop, select either Gnome or KDE from the Default Desktop pop-up
menu.

When you finish, Xconfigurator will generate an X Window System configuration file called
/etc/X11/XF86Config. This is the file the X Window System uses to start up.

If you are having difficulty, you can always click the Skip X Configuration check box to skip
the X Window System configuration and perform it later, after you have installed your
system.

Finishing Installation

Once your boot disk is created, installation is finished. Click the Exit button of the final
screen. Your system will reboot. If you chose GRUB as your boot loader, then a GRUB menu
will be displayed listing Linux and other operating systems you specified such as Windows.

Use the arrow key to move to the Linux entry, if it is not already there, and press ENTER. If
you chose LILO as your boot loader, then a command line boot prompt is displayed. If you set
up Linux as your default operating system, just press ENTER or do nothing. Linux will then
start up. If Linux is not your default, then enter the label you gave it when configuring LILO
(usually "linux"). If you booted from a CD, your CD will be ejected before rebooting. If you
booted directly from the CD-ROM, you may want to change your boot sequence in the BIOS
back to your floppy drive.

When your system restarts, the login prompt or the GDM login screen will appear, depending
upon whether you chose to have the X Window System start up automatically. You can then
log into your Linux system using a login name and a password for any of the users you have
set up. If you log in as the root user, you can perform administrative operations, such as
installing new software or creating more users. To log in as the root user, enter root at the
login prompt and the root user password at the password prompt.

If you are upgrading from a previously installed Red Hat Linux system and used the upgrade
options, you can restore your previous configuration files, which are currently saved on your
new system with the .rpmsave extension to their filenames. If you are upgrading from a
another Linux system and have manually saved configuration files, you can restore them now.
Be sure to save any current configuration files generated by your newly installed software.
Check documentation for any configuration changes. You may not be able to use the old
configuration files as they are.

Should you want copies of your boot disk in case you lose or damage the one you made
during installation, you can create more with the mkbootdisk command. Enter this command
in a terminal window or at the command line, and specify the kernel version number (2.4.7-10
for Red Hat 7.2), as shown here:

mkbootdisk 2.4.7-10

You can also create boot disks from the Gnome desktop using the qmkbootdisk tool,
accessible from the Gnome system menu. This tool also lets you specify different kernels to
boot (see Chapter 34). The current kernel will already be selected.

When you finish, log out of your account using the command logout. You then need to shut
down the entire system. From the GDM login window, select Halt from the Options menu.
From the command line interface, enter the halt command. If the system should freeze on you
for any reason, you can hold down the CTRL and ALT keys and press DEL (CTRL-ALT-
DEL) to safely shut it down. Never just turn it off as you do with DOS.

Should your Linux system fail to boot at any time, you can use the boot disk you created to
perform an emergency boot. You can also use the install disk and, at the boot prompt, enter
boot rw root= with the device name of the root Linux partition. For example, if your root
Linux partition is /dev/hda4, then you would enter boot rw root=/dev/hda4 as shown here:

boot> boot rw root=/dev/hda4

Chapter 3: Interface Basics

Overview

To start using Linux, you must know how to access your Linux system and, once you are on
the system, how to execute commands and run applications. Accessing Linux involves more
than just turning on your computer. Once Linux is running, you have to log into the system
using a predetermined login name and password. Once on the system, you can start executing
commands and running applications. You can then interact with your Linux system using
either a command line interface or a graphical user interface (GUI). The Linux systems use
GUI interfaces like Gnome and KDE with which you can use windows, menus, and icons to
interact with your system. Most distributions, including Red Hat Linux, allow you to use a
graphical login. A simple window appears with menus for selecting login options and text
boxes for entering your user name and password.

Obtaining information quickly about Linux commands and utilities while logged into the
system is easy. Linux has several online utilities that provide information and help. You can
access an online manual that describes each command or obtain help that provides more
detailed explanations of different Linux features. A complete set of manuals provided by the
Linux Documentation Project is on your system and available for you to browse through or
print. Both the Gnome and KDE desktops provide help systems that give you easy access to
desktop, system, and application help files.

 Note To make effective use of your Linux system, you must know how to configure certain
features. Administrative operations such as adding users, specifying network settings,
accessing CD-ROM drives, and installing software can now be performed with user-
friendly system tools as well as the original command line utilities.

This chapter discusses how to access your Linux system, including logging in and out of user
accounts, as well as starting the system and shutting it down. Linux commands and utilities
are also covered, along with basic operations of the Gnome and KDE desktops. The chapter
ends with an explanation of basic system administration operations, such as creating new user
accounts and installing software packages.

User Accounts

You never directly access a Linux system. Instead, Linux sets up an interface called a shell
through which you can interact. A Linux system can actually set up and operate several user
shells at once, accommodating several users simultaneously. In fact, you can have many users
working off the same computer running a Linux system. Each particular user appears to be the
only one working on the system, as if Linux can set up several virtual computers and each
user can then work on his or her own virtual computer. Such virtual computers are actually
individually managed interfaces whereby each user interacts with the Linux system.

These user shells are frequently referred to as accounts. UNIX, which Linux is based on, was
first used on large minicomputers and mainframes that could accommodate hundreds of users
at the same time. Using one of many terminals connected to the computer, users could log
into the UNIX system using their login names and passwords. All of this activity was
managed by system administrators. To gain access to the system, you needed to have a user
account set up for you. This was commonly known as "opening an account." A system
administrator created the account on the UNIX system, assigning a login name and password
for it. You then used your account to log in and use the system.

Each account is identified by a login name with access protected by a password. Of course,
you can access any account if you know its login name and password. On your Linux system,
you can create several accounts, logging into different ones as you choose. Other people can
access your Linux system, making use of login names and passwords you provide for them.
They have their own accounts on your system. Recall that in the previous chapter on installing
Linux, you created a login name and password for yourself. These are what you use to access
Linux regularly. When you created the login name and password, you were actually creating a
new user account for yourself.

 Note You can, in fact, create other new user accounts using special system administration
tools. These tools become available to you when you log in as the root user. The root
user is a special user account reserved for system administration tasks, such as creating
users and installing new software. Basic system administration operations are discussed
briefly in Chapter 5, but they are discussed in detail in Chapters 29-39. For now, you
only need your regular login name and password.

Accessing Your Linux System

To access and use your Linux system, you must carefully follow required startup and
shutdown procedures. You do not simply turn off and turn on your computer. If you have
installed a boot loader, either GRUB or LILO, when you turn on or reset your computer, the
boot loader first decides what operating system to load and run. GRUB will display a menu of
operating systems to choose, whereas LILO will display a command-line prompt, as shown
here:

LILO: linux

If, instead, you wait a moment or press the ENTER key, the boot loader loads the default
operating system. (Recall that earlier you designated a default operating system.) If there is a
Windows system listed, you can choose to run that instead.

You can think of your Linux operating system as operating on two different levels, one
running on top of the other. The first level is when you start your Linux system, and the
system loads and runs. It has control of your computer and all its peripherals. You still are not
able to interact with it, however. After Linux starts, it displays a login prompt, waiting for a
user to come along and log into the system to start using it. To gain access to Linux, you have
to log in first.

You can think of logging in and using Linux as the next level. Now you can issue commands
instructing Linux to perform tasks. You can use utilities and programs such as editors or
compilers, or even games. Depending on a choice you made during installation, however, you
may either be interacting with the system using a simple command line interface or using the
desktop directly. There are both command line login prompts and graphical login windows. In
the case of most Linux distributions such as Red Hat, if you choose to use a graphical
interface at the end of the installation, you are presented with a graphical login window at
which you enter your login and password. If you choose not to use the graphical interface,
you are presented with a simple command line prompt to enter your login name.

Gnome Display Manager: GDM

With the graphical login, your X Window System starts up immediately and displays a login
window with boxes for a user login name and a password. When you enter your login name
and password, and then click the OK or GO button, your default GUI starts up. On Red Hat,
this is usually Gnome.

For Red Hat, graphical logins are handled by the Gnome Display Manager (GDM). The GDM
manages the login interface along with authenticating a user password and login name, and
then starting up a selected desktop. If problems ever occur using the X Window System
display of the GUI interface, you can force a shutdown of the X Window System and the GUI
with the CTRL-ALT-BACKSPACE keys. For GUI logins, it will restart the X Window
System, returning you to the login screen. Also, from the GDM, you can shift to the command
line interface with the CTRL-ALT-F1 keys, and then shift back to the X Window System with
the CTRL-ALT-F7 keys.

When the GDM starts up, it shows a login window with a box for login, as shown in Figure 3-
1. Three menus are at the top of the window, labeled Session, Language, and System. To log
in, enter your login name in the Login box and press ENTER. Then you are prompted to enter
your password. Do so, and then press ENTER. By default, the Gnome desktop is then started
up.

Figure 3-1: The Gnome Display Manager

When you log out from the desktop, you return to the GDM login window. To shut down
your Linux system, click the System menu to display the entries Reboot or Halt. Select Halt to
shut down your system. Alternatively, you can also shut down when you log out from Gnome.
Gnome will display a logout screen with the options to log out, shut down, or reboot. Logout
is the default, but selecting Shutdown will also shut down your system. Selecting reboot will
shut down and restart your system. (You can also open a terminal window and enter the
shutdown, halt, or reboot commands as described in the next section. Halt will log out and
shut down your system.)

From the Session menu, you can select the desktop or window manager you want to start up.
Figure 3-2 shows the default entries for Red Hat's Session menu. Here you can select KDE to
start up the K Desktop instead of Gnome, among others. The Language menu lists a variety of
different languages Red Hat Linux supports. Choose one to change the language interface.

Figure 3-2: GDM Sessions menu

Command Line Interface

For the command line interface, you are initially given a login prompt. The system is now
running and waiting for a user to log in and use it. You can enter your user name and
password to use the system. The login prompt is preceded by the hostname you gave your
system. In this example, the hostname is turtle. When you finish using Linux, you first log
out. Linux then displays exactly the same login prompt, waiting for you or another user to log
in again. This is the equivalent of the login window provided by the GDM. You can then log
into another account.

Red hat Linux release 7.2 (Enigma)
Kernel 2.4.7-10 on i686

turtle login:

If you want to turn off your computer, you must first shut down Linux. If you don't shut down
Linux, you could require Linux to perform a lengthy systems check when it starts up again.
You shut down your system in either of two ways. First, log into an account and then enter the
halt command. This command will log you out and shut down the system.

$ halt

Alternatively, you can use the shutdown command with the -h option. With the -r option, it
shuts down the system and then reboots it. In the next example, the system is shut down after
five minutes. To shut down the system immediately, you can use +0 or the word now (see
Chapter 29 for more details).

shutdown -h now
 Note Shutting down involves a series of important actions, such as unmounting file systems

and shutting down any servers (never simply turn off the computer).

You can also reboot your system from the login prompt. Logging out does not shut down the
system: it is still running and has control of your machine. To shut down and reboot your
system, hold down the CTRL and ALT keys, and then press the DEL key (CTRL-ALT-DEL).
You system will go through the standard shutdown procedure and then reboot your computer.
At this point it is safe to turn off your computer if you wish, or just let the system restart.

When you shut down, you will see several messages as Linux shuts itself down. It is not
finished until you see the "System is halted" message. If you are rebooting, Linux will shut
down and then reboot your system, at which time you can turn it off if you wish. The
following steps include all the startup and shutdown procedures for the command line
interface:

1. Boot your computer.
2. At the boot loader, make sure the "linux" entry is selected and press ENTER. (Or,

press ENTER if Linux is your default.)
3. After a few messages, the login prompt appears, and then you can log into the system

and use it.
4. When you finish working in an account, you can log out. The login prompt then

reappears, and you can log into another account.
5. If you are finished working on Linux and want to shut it down, enter the halt

command while still logged into your account (shutdown -r will reboot).
6. At the login prompt, you can also shut down and reboot the system with CTRL-ALT-

DEL. The system first shuts down and then restarts, at which time you can turn off
your computer or just let the system start up again.

Once you log into an account, you can enter and execute commands. Logging into your Linux
account involves two steps: entering your user name, and then your password. You already
know what the login prompt looks like. Type in the login name for your user account. If you
make a mistake, you can erase characters with the BACKSPACE key. In the next example,
the user enters the user name richlp and is then prompted to enter the password:

Red hat Linux release 7.2 (Enigma)
Kernel 2.4.7-10 on i686

turtle login: richlp
Password:

When you type in your password, it does not appear on the screen. This is to protect your
password from being seen by others. If you enter either the login or password incorrectly, the
system will respond with the error message "Login incorrect" and will ask for your login
name again, starting the login process over. You can then reenter your login name and
password.

Once you enter your user name and password correctly, you are logged into the system. Your
command line prompt is displayed, waiting for you to enter a command. Notice the command
line prompt is a dollar sign ($), not a sharp sign (#). The $ is the prompt for regular users,
whereas the # is the prompt solely for the root user. In this version of Linux, your prompt is
preceded by the hostname and the directory you are in. Both are bounded by a set of brackets.

[turtle /home/richlp]$

To end your session, issue the logout or exit commands. This returns you to the login prompt,
and Linux waits for another user to log in.

[turtle /home/richlp]$ logout

Once logged into the system, you have the option of starting an X Window System GUI, such
as Gnome or KDE, and using it to interact with your Linux system. In Linux, the command
startx starts the X Window System along with a GUI, which then enables you to interact with
the system using windows, menus, and icons. On Red Hat, the startx command starts the
Gnome desktop by default, though you can configure it to start up another desktop such as
KDE or even a window manager. Once you shut down the GUI interface, you will return to
your command line interface, still logged in.

On Red Hat, you can use the switchdesk command, while in your desktop, to switch between
Gnome, KDE, or the FVWM window manager. You make your selection and then quit the
desktop to return to the command line interface. When you start up the GUI again, the
desktop you selected is used.

Gnome Desktop

The Gnome desktop display shown in Figure 3-3 initially displays a panel at the bottom of the
screen, as well as any icons for folders and Web pages initially set up by your distribution.
For Red Hat, you see several Web page icons and a folder for your home directory. The panel
at the bottom of the screen contains icons for starting applications, such as Mozilla (the
Mozilla logo) and the Help system (the question mark logo). You can start applications using
the main menu, which you display by clicking the Gnome icon (the image of a bare footprint),
located on the left side of the panel.

Figure 3-3: Gnome

When you click the folder for your home directory on your desktop or select the File Manager
entry on the main menu, a file manager window opens showing your home directory. You can
display files in your home directory and use the UP ARROW button to move to the parent
directory. Back and Forward buttons move through previously displayed directories. In the
location window, you can enter the pathname for a directory to move directly to it. The file
manager is also Internet-aware. You can use it to access remote FTP directories and to display
or download their files (though it cannot display Web pages).

To move a window, left-click and drag its title bar or right-click its other borders. Each
window supports Maximize, Minimize, and Close buttons, as well as a Stick Pin button.
Double-clicking the title bar will "shade" a window, or rather reduce it to only its title bar;
you can redisplay the window with another double-click. The desktop supports full drag-and-
drop capabilities. You can drag folders, icons, and applications to the desktop or other file
manager windows open to other folders. The move operation is the default drag operation. To

copy files, click and drag, and then press the CTRL key before releasing the mouse button. To
create links, hold down the SHIFT key when you click and drag. In most cases, you would
use links for desktop icons.

The panel also contains a pager for desktop areas, which appears as four squares. Clicking a
square moves you to that area. You can think of the desktop work area as being four times
larger than your monitor screen, and you can use the pager to display different parts. You can
configure your Gnome interface, setting features such as the background, by using the
Preferences window in the Start Here window. Click the image of a compass with a map on
the panel to open the Start Here window (see Figure 3-3). To configure system settings, such
as adding users, installing printers, and setting up network connections, open the System
Settings window in the Start Here window (see Figure 3-4). To execute a command using the
command line interface, open a terminal window by clicking the image of a monitor on the
panel. In that window, at the $ prompt, type in your command.

Figure 3-4: Desktop Switcher

To quit the Gnome desktop, select the logout entry at the bottom of the main menu. If you
entered from a login window, you are then logged out of your account and returned to the
login window. If you started Gnome from the command line, you are returned to the
command line prompt, still logged into your account.

Although Gnome is the default desktop for Red Hat, you can easily switch to the KDE
desktop. Red Hat installs the complete KDE desktop as part of its distribution. If you are
performing a graphical login using the Gnome Desktop Manager, you can use the Session
menu on the Options button to select KDE as the desktop you want to run. If you are logging
into Linux using the command line interface, and then starting the desktop with the startx
command, you can start the Gnome desktop and then use the Desktop Switcher located in the
System directory to select KDE. When you quit Gnome and restart with the startx command,
KDE is used as your desktop instead of Gnome. On KDE, you can then use the Desktop
Switcher located in the Red Hat System menu to switch back to Gnome.

The K Desktop

The KDE Desktop display, shown in Figure 3-5, initially displays a panel at the bottom of the
screen, as well as any icons for folders and Web pages initially set up by your distribution. In
the upper-left corner, you can see a row of icons with labels like Autostart, Trash, and Printer.
When a user starts KDE for the first time, the KDE Setup Wizard is run, displaying a series of

four windows advising you to set up icons for KDE Web pages, as well as CD-ROM and
printer icons. Initially, the KDE Wizard enables you to choose a theme, such as a Windows,
KDE standard, or Mac theme. You can change this later if you want. The next windows ask if
you want to add icons for your CD-ROM and printer, and links to certain Web sites, such as
the KDE Web site.

Figure 3-5: The K desktop

You can start applications using the main menu, which you display by clicking the button in
the panel with the large K on a cogwheel. This button is located on the left side of the panel.
When you click the folder for your home directory on your panel (the icon of a folder with a
house on it) or select the File Manager entry on the main menu, a file manager window opens,
showing your home directory. You can display files in your home directory and use the UP
ARROW button to move to the parent directory. Back and Forward buttons move through
previously displayed directories. In the location window, you can enter the pathname for a
directory to move directly to it. The file manager is also Internet-aware and a fully functional
Web browser. You can use it to access remote Web and FTP sites, displaying Web pages or
downloading files from an FTP site.

To move a window, click and drag its title bar or click and drag its other borders. Each
window supports Stick Pin, Maximize, Minimize, and Close buttons. Double-clicking the title
bar reduces the window to only its title bar (known as shading), which can redisplay with
another double-click. The desktop supports full drag-and-drop capabilities. You can drag
folders, icons, and applications to the desktop or to another file manager window open to
other folders. Clicking the cogwheel in the right corner of a file manager window opens a
duplicate window.

Selection of an icon in a file manager window is different than in other GUIs. To select an
item, CTRL-click instead of making a single left-click. The single left-click is the same as a
double-click on other GUIs, executing the item or opening it with its associated application.
So, if you single-click on a folder icon, you open the folder (as opposed simply to selecting
it). If you single-click a file, you start up the application using that file. To select items, be
sure to CTRL-click them. To unselect a selected item, be sure to CTRL-click again. When
you click and drag a file to the desktop or another file manager window, a pop-up menu
appears, which then enables you to choose whether you want to move, copy, or create a link
for the item.

The panel also contains a pager for virtual desktops. This appears as four squares. Clicking a
square moves you to that desktop. You can think of the virtual desktops as separate desktops,
and you can use the pager to move to the different ones. To execute a command using the
command line interface, open a console window. Click the image of a monitor on the panel.
In that window, at the $ prompt, type in your command. You can modify your KDE interface
at any time using the KDE Control Center. Click the image of a monitor with a circuit board
on the panel or select the KDE Control Center from the main menu.

To quit the KDE desktop, select the Logout entry at the bottom of the main menu. If you
entered from a login window, you are logged out of your account and returned to the login
window. If you started KDE from the command line, you are returned to the command line
prompt, still logged into your account.

Command Line Interface

When using the command line interface, you are given a simple prompt at which you type in
your command. Even with a GUI, you sometimes need to execute commands on a command
line. Linux commands make extensive use of options and arguments. Be careful to place your
arguments and options in their correct order on the command line. The format for a Linux
command is the command name followed by options, and then by arguments, as shown here:

$ command-name options arguments

An option is a one-letter code preceded by a dash, which modifies the type of action the
command takes. Options and arguments may or may not be optional, depending on the
command. For example, the ls command can take an option, -s. The ls command displays a
listing of files in your directory, and the -s option adds the size of each file in blocks. You
enter the command and its option on the command line as follows:

$ ls -s

An argument is data the command may need to execute its task. In many cases, this is a
filename. An argument is entered as a word on the command line after any options. For
example, to display the contents of a file, you can use the more command with the file's name
as its argument. The more command used with the filename mydata would be entered on the
command line as follows:

$ more mydata

The command line is actually a buffer of text you can edit. Before you press ENTER, you can
perform editing commands on the existing text. The editing capabilities provide a way to
correct mistakes you may make when typing in a command and its options. The
BACKSPACE and DEL keys enable you to erase the character you just typed in. With this
character-erasing capability, you can BACKSPACE over the entire line if you want, erasing
what you entered. CTRL-U erases the whole line and enables you to start over again at the
prompt.

 Note You can use the UP ARROW to redisplay your previously executed command. You can
then reexecute that command, or you can edit it and execute the modified command.
This is helpful when you have to repeat certain operations over and over, such as editing

the same file. This is also helpful when you've already executed a command you entered
incorrectly.

Help

A great deal of help is already installed on your system, as well as accessible from online
sources. Both the Gnome and KDE desktops feature Help systems that use a browser-like
interface to display help files. To start KDE Help, click the Book icon in the panel. Here, you
can select from the KDE manual, the Linux Man pages, or the GNU info pages. KDE Help
features browser capabilities, including bookmarks and history lists for documents you view.

To start the Gnome Help browser, click the icon with the question mark (?) in the panel. You
can then choose from the Gnome user guide, Man pages, and info pages (see Figure 3-6). The
Gnome Help browser and KDE Help Center also feature bookmarks and history lists.

Figure 3-6: Gnome Help browser

Both Gnome and KDE, along with other applications, such as Linuxconf, also provide
context-sensitive help. Each KDE and Gnome application features detailed manuals that are
displayed using their respective Help browsers. Also, applications like Linuxconf feature
detailed context-sensitive help. Most panels on Linuxconf have Help buttons that display
detailed explanations for the operations on that panel.

 Note In addition, extensive help is provided online. The Red Hat desktops display Web page
icons for support pages, including online manuals and tutorials.

On your system, the /usr/share/doc directory contains documentation files installed by each
application. Within each directory, you can usually find HOW-TO documents for that
application.

You can also access the online manual for Linux commands from the command line interface
using the man command. Enter man with the command on which you want information.

$ man ls

Pressing either the SPACEBAR or the F key advances you to the next page. Pressing the B
key moves you back a page. When you finish, press the Q key to quit the man utility and to
return to the command line. You activate a search by pressing either the slash (/) or question
mark (?). The / searches forward and the ? searches backward. When you press the /, a line
opens at the bottom of your screen, and you then enter a word to search for. Press ENTER to
activate the search. You can repeat the same search by pressing the N key. You needn't
reenter the pattern.

 Note You can also use either the Gnome or KDE Help system to display Man pages.

Online Documentation

When you start up your browser, a default Web page lists links for documentation both on
your own system and at the Red Hat Web site. To use the Red Hat Web site, you first must be
connected to the Internet. However, your CD-ROM and your system contain extensive
documentation showing you how to use the desktop and take you through a detailed
explanation of Linux applications, including the Vi editor and shell operations. Other
documentation provides detailed tutorials on different Linux topics.

The /usr/share/doc directory contains the online documentation for many Linux applications,
including subdirectories with the names of installed Linux applications that contain
documentation, such as readme files. You can access the complete set of HOW-TO text files
in the /usr/share/doc/HOWTO directory. The HOW-TO series contains detailed
documentation on all Linux topics from hardware installation to network configuration. In
addition, /usr/share/doc/HOWTO/HTML holds documentation in the form of Web pages
you display with a Web browser. You can use the following URL on a Web browser, such as
Netscape, to view the documents:

file:/usr/share/doc/HOWTO/HTML

Online documentation for GNU applications, such as the gcc compiler and the Emacs editor,
also exists. You can access this documentation by entering the command info. This brings up
a special screen listing different GNU applications. The info interface has its own set of
commands. You can learn more about it by entering info info. Typing m opens a line at the
bottom of the screen where you can enter the first few letters of the application. Pressing
ENTER brings up the info file on that application.

 Note You can also display info documents using either the Gnome or KDE Help browser.

Part II: Basic Setup
Chapter List
Chapter 4: System Configuration
Chapter 5: Network Configuration
Chapter 6: Security Configuration
Chapter 7: Setting Up a Local Area Network with Red Hat

Chapter 4: System Configuration

Overview

To make effective use of your Linux system, you must know how to configure certain
features. Administrative operations such as adding users, accessing CD-ROM drives, and
installing software can now be performed with user-friendly system tools. This chapter
discusses basic system administration operations that you need to get your system up and
running, as well as to perform basic maintenance such as adding new users or printers.

There are three basic system configuration tasks that you most likely will have to deal with:
user management, file system access, and printer setup. You can manage users, adding new
ones and removing others. File systems such as floppy disks, CD-ROMs, or other hard drives
can be attached to your system at specific directories. You can also add different kinds of
printers. All of these tasks you were asked to perform during installation. You can make
changes or additions easily using the administration tools described in this chapter.

When logged in as the root user, you can also perform certain configuration operations from
the command line. You can manually access system configuration files, editing them and
making entries yourself. For example, the domain name server entries are kept in the
/etc/resolv.conf file. You can edit this file and type in the addresses.

 Note Configuration tools are only accessible by the root user. You will first need to log in
using root as your user name and providing the root password you specified during
installation.

Configuration operations can be performed either from a GUI interface such as Gnome or
KDE, or they can be performed using a simple shell command line at which you type in
configuration commands. Red Hat also provides a set of cursor-based configuration tools,
referred to as the Text Mode Setup Utility, which can be run from any shell command line.
These tools cover a variety of tasks such as mouse, network, and X Windows System
configuration (network configuration is covered in Chapter 5), and are shown in Table 4-1.

GUI Administration Utilities: Linuxconf and Webmin

On Red Hat, the primary administrative tools are a set of specialized GUI-based
administrative tools developed and supported by Red Hat such as for network configuration
and the Red Hat PPP Dialer for modem configuration. In addition, you can also use third-
party GUI administrative tools such as Linuxconf and Webmin. Both provide comprehensive
administration support covering tasks from users and group management to file systems and
server configuration. Linuxconf was used as the primary administrative tool in Red Hat
releases 6.0-7.0, and is still included with Red Hat 7.1. A full installation of Red Hat Linux
7.1 will install Linuxconf, but a standard installation will not. If you performed a standard
installation, you will have to manually install Linuxconf yourself. You can also download
Linuxconf or Webmin from their Web sites , as listed in Table 4-1. Commercial
administration tools are also available such as Volution from Caldera.

Table 4-1: Red Hat Configuration Tools
Red Hat Administration Tool Description or Site
Linuxconf www.solucorp.qc.ca./linuxconf

Table 4-1: Red Hat Configuration Tools
Red Hat Administration Tool Description or Site
Webmin www.webmin.com
printconf Printer configuration tool
setuptool Text Mode Setup Utility, cursor-based

configuration tool
TimeTool Tool to set the system time and date

Linuxconf

Linuxconf provides an extensive set of configuration options, enabling you to configure
features, such as user accounts and file systems, as well as your Internet servers, dial-up
connections, and LILO. The version included with Red Hat does not provide support for
servers. You can access the main Linuxconf interface with its entire set of configuration
options or use specialized commands that display entries for a particular task, such as
configuring user's accounts or entering your network settings. The specialized commands
include userconf for user accounts, fsconf for file systems, and netconf for networks. In all
cases, you need to log in as the root user.

Linuxconf supports three interfaces: an X Window System interface, a cursor-based interface,
and a Web interface. The X Window System interface runs under Gnome using gnome-
linuxconf to provide Gnome desktop features. You can use the cursor-based interface from a
Linux command line, and you needn't be running a GUI. The interface presents a full-screen
display on which you can use arrow keys, the TAB key, the SPacebar, and the ENTER key to
make selections. With the Web-based interface, you use your Web browser to make selections
(though this is meant for use on local networks). Use the URL for your system with a :98
attached, as in turtle.mytrek.com:98.

 Tip The Gnome interface for Linuxconf is installed by a separate package called the gnome-
linuxconf package. Be sure this is installed to use Linuxconf on Gnome.

Webmin

Webmin is a Web page-based interface that you can run on any Web browser by accessing
port 10000 at localhost http://localhost:10000. The initial Webmin page, shown in Figure 4-
1, will have panels for different kinds of configuration tasks such as system, hardware, and
servers. For basic administration tasks, click the System panel to show icons for different
system administration tasks such as managing users and mounting file systems. With
Webmin, you can perform all the tasks that the Red Hat tools perform.

Figure 4-1: Webmin for Red Hat

For example, on Webmin you can manage users with the Users and Groups page selected
from the System page. Here you can add new users, entering their user names and passwords.
Current users are listed each with the user name as a link you can use to display a page for
editing a user's account.

Configuring Users

Currently, the easiest and most effective way to add new users on Red Hat is to use the Red
Hat User Manager. You can access it from the Gnome Desktop's Start Here window's System-
Settings window. The User Manger window will display panels for listing both users and
groups (see Figure 4-2). A button bar will list various tasks you can perform, including
creating new users or groups, editing current ones (Properties), or deleting a selected user or
group.

Figure 4-2: Linuxconf user account configuration

To create a new user, click on the New button. This opens a window with entries for the user
name, password, login shell, along with options to create a home directory and a new group
for that user. Once you have created a user, you can edit its properties to add or change
features. Select the user's entry and click the Properties button. This displays a window with
tabbed panels for User Data, Account Info, Password Info, and Groups. On the Groups panel,
you can select the groups that the user belongs to, adding or removing group membership.

Alternatively you can use the useradd command to add user accounts and the userdel
command to remove them. The following example adds the user dylan to the system:

$ useradd dylan

One common operation performed from the command line is to change a password. Any user
can change his or her own password with the passwd command. The command prompts you
for your current password. After entering your current password and pressing ENTER, you
are then prompted for your new password. After entering the new password, you are asked to
reenter it. This is to make sure you actually entered the password you intended to enter.
Because password characters are not displayed when you type them, it is easy to make a
mistake and to press a wrong key.

$ passwd
Old password:
New password:
Retype new password:
$
 Tip From the Gnome interface you can also use the Password tool on the System menu to

change your password.

Managing File Systems and CD-ROMs

Files and directories contained on different hardware devices such as floppy disks, CD-
ROMs, and hard disk partitions are called file systems. The Linux partition you used to install
your Linux system on is called the root partition. This is where you mounted the root file
system, the root directory indicated with a single slash, /.The root partition contains the main
file system with a directory tree, starting from the root and spreading out to different system
and user subdirectories. To access files on another file system-say, a CD-ROM disc-you need
to attach that file system to your main system. Attaching a file system is called mounting the
file system. You first set up an empty directory to which you want to mount the file system.

 Note On Red Hat, the /mnt/cdrom directory is already reserved for mounting CD-ROMs, and
the /mnt/floppy directory is reserved for floppy disks. If you have more than one CD-
ROM, numbered directories will be added, for example, /mnt/cdrom1 for the second
CD-ROM.

Managing CD-ROMs

The Red Hat Gnome interface also provides a simple method for mounting and unmounting a
CD-ROM. Simply insert the CD-ROM into your CD-ROM drive; you then see an icon
labeled CD-ROM appear on the Gnome desktop. A CD-ROM is automatically mounted. A
Gnome file manager window also automatically appears, which displays the contents of the
CD-ROM. You can also mount and unmount the CD-ROM using a pop-up menu on the CD-
ROM icon. Right-click it to display a pop-up menu with options to mount and unmount the
CD-ROM along with other options (see Figure 4-3). Selecting Unmount Volume at the
bottom of the pop-up menu will automatically unmount and eject the CD-ROM from your
drive. You can access the CD-ROM you placed in your CD drive by double-clicking the CD-
ROM icon. Your CD-ROM drive remains locked until you select the Unmount entry that is
now displayed on the pop-up menu. If you do not see an icon for your CD-ROM, you must
first make it user-mountable. Use fsconf or Linuxconf to select the local drive and double-
click the CD-ROM entry in the Local volume window. Then, on the Options panel, select the
user-mountable option. Click Act/Changes to register the change. Then right-click the desktop
and select Rescan Desktop Shortcuts from the pop-up menu.

Figure 4-3: Gnome CD-ROM icon

You can also perform simple mount and unmount operations using the Disk Management tool
accessible from the Gnome System menu. This tool will list all the file systems that can be
mounted and will display buttons for mounting or unmounting them.

From any shell command line, you can also easily mount and unmount file systems with the
mount and umount commands. To mount your CD-ROM, you only have to enter the

command mount and the directory /mnt/cdrom. You can then access the contents of the CD-
ROM at the /mnt/cdrom directory.

$ mount /mnt/cdrom

When you finish, unmount the CD-ROM with the umount command.

$ umount /mnt/cdrom
 Note You can also manually mount and unmount floppy disks and hard disk partitions. See

Chapter 32 for a detailed discussion.

Installing IDE CD-R and CD-RW Disks

If your system has a CD write (CD-R) or read/write (CD-RW) drive that uses an IDE
interface, it may have been detected during installation. To support CD-R and CD-RW IDE
drives, a kernel module called ide-scsi has to be loaded. The installation process will detect
your CD-R or CD-RW and configure your system to automatically load the ide-scsi module.
In that case your CD-R or CD-RW drive is ready to use. You can check to see if your CD-R
or CD-RW drive was configured correctly by entering the following command. Information
about your SCSI drives should be displayed.

cdrecord -scanbus

If configured correctly there should be an entry in your /etc/lilo.conf file for an append line
that loads the module for your CD-R or CD-RW device. GRUB will add the argument to the
command executed from its menu, which you can edit if you want.

append="hdc=ide-scsi"
 Note SCSI CD-R and CD-RW drives will be automatically configured during the install

process.

In this case, hdd is the device name for a CD-RW drive. There are four possible IDE devices
on standard PCs, corresponding to the four primary and secondary master and slave IDE
ports. The device name used in Linux depends on what IDE port you connected your CD-
ROM or CD-R/CD-RW drives to. The primary master IDE port is hda and is usually used for
an IDE hard drive. The other IDE ports are usually used for the CD drive. The primary slave
IDE port is hdb, the secondary master is hdc (the most common connection), and the
secondary slave is hdd. The above example is for a CD-R or CD-RW drive connected to the
secondary master IDE port (hdc).

Many systems will have both a CD-R or CD-RW drive and a regular CD-ROM drive. If you
want to copy CD-ROMs directly from the CD-ROM drive to the CD-RW drive, then you
need to configure the CD-ROM drive as a SCSI drive. In the following example, there is an
IDE CD-ROM drive on the secondary slave port (hdd). The /etc/lilo.conf append line would
have to be modified to include the hdd drive.

append="hdc=ide-scsi hdd=ide-scsi"

When you restart, your CD-R and CD-RW-as well as CD-ROMs-should be installed as SCSI
drives and can be used by CD write software like cdrecord and KreateCD. See the "Installing
Software Packages" section later in this chapter for how to download and install KreateCD.

If the cdrecord -scanbus command still does not display any SCSI drives, then your CD-R or
CD-RW drive was not detected and the ide-scsi module was not loaded. In this case, the
entries in the /etc/lilo.conf file would be missing. Your CD-RW and CD-R drives are working
as simple CD-ROMs, with no CD read/write capabilities. You can try to add this line to your
/etc/lilo.conf file and then re-execute LILO with the lilo command (entered at the prompt in a
terminal window).

You can also manually specify the ide-scsi module as a kernel parameter when your system
boots up. GRUB uses this method. At the boot: prompt, enter the following kernel parameter.

boot: linux hdc=ide-scsi

Enter as many CD drive entries as you need. For example, if you need to configure both the
CD-ROM and the CD-RW, you could enter:

boot: linux hdx=ide-scsi hdd=ide-scsi

Your CD drives will be configured only until the system is shut down. The next time you boot
up, you will have to enter the parameters again if you wish to do CD write tasks. Should this
fail, you can manually install the ide-scsi module and change your CD drive device links, as
described in Chapter 33.

Printer Configuration

As part of the installation procedure for Red Hat Linux, you configured a printer connected to
your computer. To change configurations or to add a new printer later, you can use printconf.
You can access printconf on the Gnome System menu. The printconf utility enables you to
select the appropriate driver for your printer, as well as to set print options such as paper size
and print resolutions. You can use printconf to access a printer connected directly to your
local computer or to a printer on a remote system on your network (see Chapter 33).

When you start up printconf, you are presented with a window that lists your installed printers
(see Figure 4-4). To add a new printer, click the New button. To edit an installed printer,
double-click its entry or select it and click the Edit button. Once you have made your changes,
you can click on the Apply button to save your changes and restart the printer daemon. If you
have more than one printer on your system, you can make one the default by selecting it and
then clicking the Default button. The Delete button will remove a printer configuration.

Figure 4-4: printconf

When you select New, a series of dialogs will take you through the process of configuring a
printer, starting with entering the printer name and choosing its type (see Figure 4-5). When

you edit a printer, a different dialog is displayed showing four tabbed panels: Name and
Aliases, Queue Type, Driver, and Driver Options.

Figure 4-5: printconf printer name

On the Queue panel, entries are listed for printer devices with buttons at the bottom for
scanning devices, manually setting up devices, and automatically detecting a device's driver.
The device is the port to which the printer is connected. For the first three parallel ports, these
are lp0, lp1, lp2; for serial ports, these are ttyS0, ttyS1, and ttyS2; and so on (see Figure 4-
6). From a drop-down menu, you can also specify whether the printer is local or remotely
connected through a UNIX, Windows (SMB), or NetWare network.

Figure 4-6: printconf printer queues

For the driver selection you are presented with an expandable tree of printer types. You first
select the manufacturer, such as Cannon or Apple, which then expands to a list of particular
printer models (see Figure 4-7). Click yours.

Figure 4-7: printconf printer queues

For the options selection, you can specify printer features such as paper size and resolution.

Configuration Using Red Hat Setup

Red Hat also provides a Text Mode Setup Utility (setuptool) with which you can configure
different devices and system settings, such as your keyboard, mouse, and time zone. The
setuptool utility is useful if you have changed any of your devices-say, installed a new mouse,
keyboard, or sound card. The setuptool utility is designed to be run from the command line
interface. You start the utility with the command setup, which you enter at a shell command
line. You can also select the Text Mode Tool menu on the Gnome System menu to run
setuptool from within Gnome. The setuptool utility provides a full-screen, cursor-based
interface where you can use arrow, TAB, and ENTER keys to make your selections. Initially,
setuptool displays a menu of configuration tools from which you can choose. Use the arrow
keys to select one, and then press the TAB key to move to the Run Tool and Quit buttons.
Figure 4-8 shows the initial Text Menu Setup Utility menu.

Figure 4-8: Red Hat Setup menu

The setuptool utility is actually an interface for running several configuration tools (see Table
4-2). You can call any of these tools separately using their commands. For example, the
kbdconfig command starts the keyboard configuration utility that enables you to select the
type of keyboard, while the mouseconfig command enables you to select the type of mouse.

Table 4-2: Text Mode Setup Utility
Tools Description
setuptool Red Hat Text Mode Setup Utility interface listing configuration tools

for system and device settings
authconfig Authentication options, such as enabling NIS, shadow passwords, and

MD5 passwords
kbdconfig Selects the keyboard type
mouseconfig Selects the mouse type
ntsysv Selects servers and daemons to start up at boot time
sndconfig Detects and configures your sound card
timeconfig Selects the time zone
Xconfigurator Configures your X Window System for your video card and monitor

With kbdconfig, you can select the type of keyboard you are using. A text-based dialog box
appears with a list of different keyboard types, which should be run from the command line
interface, not a desktop.

With mouseconfig, you can select the type of mouse you are using. A cursor-based dialog box
appears with a list of different mouse device types. Your system is automatically probed for
the type of the mouse connected to your system, and the cursor is positioned at that entry. If
you have a two-button mouse, you can select the three-button emulation option to let a
simultaneous click on both the left and right mouse buttons emulate a third mouse button.
This should be run from the command line interface, not from a desktop.

The ntsysv utility is a simple utility for specifying which servers and services should be
automatically started at boot time (see Chapter 15). The dialog box lists the possible servers
and services from which to choose. Move to the entry you want and use the SPACEBAR to
toggle it on or off. An entry with an asterisk next to it is selected and is started automatically
the next time you boot your system.

The sndconfig utility enables you to select and configure your sound card. It should be run
from the command line interface, not from a desktop. Initially, the sndconfig utility tries to
detect your sound card automatically. If the automatic detection fails, a dialog box appears
with a listing of different sound cards. Select the one on your system. Another dialog box
appears where you need to enter the setting for your sound card. sndconfig then tries to play
sample sound and MIDI files to test the card. As an alternative to sndconfig, you can obtain,
load, and configure sound drivers yourself (see Chapter 33).

Xconfigurator

One important utility is Xconfigurator, the X Window System configuration program. If you
have trouble with your X Window System configuration, you can use this utility to configure
it again. Xconfigurator is also helpful for updating your X Window System if you change
your video card. Simply run Xconfigurator again and select the card. You can run
Xconfigurator by entering the Xconfigurator command on the command line, or by selecting
the X configuration entry in the setuptool utility's menu.

Xconfigurator first probes your system in an attempt to determine what type of video card you
have. Failing that, Xconfigurator presents a list of video cards. Select your video card from
the list and press ENTER. If your video card does not appear on the list, XFree86 may not
support it. If you have technical knowledge about your card, however, you may choose
Unlisted Card and attempt to configure it by matching your card's video chipset with one of
the available X servers.

Once you select your video card, the installation program installs the appropriate XFree86
server, and Xconfigurator presents a list of monitors. If your monitor appears on the list,
select it and press ENTER. If it is not on the list, select Custom. This displays a screen where
you enter the horizontal sync range and vertical sync range of your monitor (these values are
generally available in the documentation that accompanies your monitor or from your
monitor's vendor or manufacturer). Be careful to enter the correct horizontal and vertical
frequencies. If you enter values that are too high, you may overclock your monitor, which
could damage older models. You should not select a monitor similar to your monitor unless
you are certain the monitor you are selecting does not exceed the capabilities of your monitor.

The next screen prompts you for the amount of video memory installed on your video card. If
you are not sure, please consult the documentation accompanying your video card. Choosing
more memory than is available does not damage your video card, but the XFree86 server may
not start correctly if you do.

If the video card you selected has a video clock chip, Xconfigurator presents a list of clock
chips. The recommended choice is No Clockchip Setting because, in most cases, XFree86 can
automatically detect the proper clock chip.

In the next screen, Xconfigurator prompts you to select the video modes you want to use.
These are screen resolutions you may want to use. You can select one or more by moving to it
and pressing the SPACEBAR. Xconfigurator then starts the X Window System and displays a
dialog box asking if you can see it.

 Note Xconfigurator then generates an X Window System configuration file called
/etc/X11/XF86Config. This is the file the X Window System uses to start up.

Updating Red Hat with the Red Hat Network

Updating your Red Hat system has become a very simple procedure, using an automatic
update utility called the Red Hat Update Agent. With the Red Hat Update Agent,
downloading and installing updates can be accomplished with just a few mouse clicks. The
Red Hat Update Agent takes advantage of an update service provided by the Red Hat
Network. Registering with and configuring access to the Red Hat Network is a very simple
procedure.

New versions of distributions are often released every 6 to 12 months. In the meantime, new
updates are continually being prepared for particular software packages. These are posted as
updates you can download from the Red Hat FTP site and install onto your system. These
include new versions of applications, servers, and even the kernel. In the period between
major releases, Red Hat posts RPM package updates for software installed from your CD-
ROM on its Web sites on the Red Hat Errata page at www.redhat.com/support/errata. Here
you will find updates for different Red Hat releases. For the current release, updates are

organized by security advisories, bug fixes, and package enhancement. Such updates may
range from single software packages to whole components-for instance, all the core,
application, and development packages issued when a new release of Gnome, KDE, or
XFree86 is made available.

Red Hat provides the Red Hat Network (RHN) that you can use to update your Red Hat
system securely and automatically. The Red Hat Network provides secure access to officially
certified updates, including bug fixes and security advisories. You can access the RHN either
through a Web browser or with the Red Hat Update Agent installed on your system. This is an
improved version of the Update Agent used in 6.2. With the Red Hat Update Agent, you can
automatically locate, download, and install any updates for your Red Hat system. To use the
Red Hat Network, however, you first must register using the Red Hat Network Registration
client. Once registered, you are then provided with a user name and password with which to
access the Red Hat Network where you can set up access to the Software Manager that will
automatically download your updates through the Red Hat Update client. To start the Red Hat
Network, select its entry in the Gnome System menu.

The first time you use RHN, you will be asked to register. You are asked for your root user
password as an added precaution. You will need to specify a user name and password, along
with any other user information you want to provide. A system profile is then created,
consisting of your hardware specifications and the packages you want to update. Your system
is automatically probed for its hardware configuration. A list of all the RPM packages on your
system is then generated with all entries selected. These will be the packages that the RHN
network will update. You have the option of deselecting those you don't want to update.

You then need set up access by your system to the Software Manager, identifying your
computer by its host name. This enables access to Red Hat updates. Log into the Red Hat
Network using your username and password, and then click the Your Network tab at the top
to display the overview screen for your network. An entry should be there for your registered
system with an upgrade link under the service level. Click the upgrade link (see Figure 4-9).

Figure 4-9: Red Hat network system overview

This displays a screen showing your status and the systems that have been added to the
Software Manager. Initially your system will be in the "no service" box, shown on the left in
Figure 4-10. Click its entry and click the Upgrade >> button to add it to the Software Manager

box on the left. Then click the Update Account button at the bottom. Your Red Hat Update
Agent now has access to the Red Hat Network and its updates. When you return to the
network overview screen, you will see that your system has been activated and the upgrade
link is gone.

Figure 4-10: Red Hat Network Software Manager access

Once you have registered and set up access to the Software Manager, you can access the RNN
automatically with the Red Hat Update Agent (or manually with a Web browser). Once
notified of updates, the Red Hat Update Agent will download and install them for you. To use
the Red Hat Update Agent, you first have to configure it. On the Gnome desktop, select the
Update Agent Configuration entry on the System menu. This displays the Configuration
dialog box, shown in Figure 4-11, with three tabbed panels: General, Retrieval/Installation,
and Package Exceptions. On the General panel you can enable your HTTP proxy server,
should your ISP or local network use one. The Retrieval/Installation panel is where you enter
download instructions and the download directory you want to use. The Package Exceptions
panel holds the names of any packages you do not want to automatically update.

Figure 4-11: Red Hat Update Agent configuration

You are now ready to run the Red Hat Update Agent. Select Update Agent from the Gnome
System menu. The first time you use the agent, you are prompted to install Red Hat GPG key.
Click Yes to install. The Red Hat Update Agent then lists the possible updates it found. You
can select individual packages by clicking the checkboxes nextto them or click the Select All
Packages checkbox to select them all (see Figure 4-12).

Figure 4-12: Red Hat Update Agent package selection

When you click Next, the packages you selected are downloaded. Information for each
package is displayed along with its download progress (See Figure 4-13). Once downloaded,
the packages are installed. That is all there is to it.

Figure 4-13: Red Hat Update Agent software download
 Note Network administrators can use the Red Hat Network to download and install updates to

several Red Hat systems on their network.
 Tip If you installed Ximian Gnome (see Chapter 8), you can use Ximian's Red Carpet update

utility to update Red Hat.

Installing Software Packages

Now that you know how to start Linux and access the root user, you can install any other
software packages you may want. Installing software is an administrative function performed
by the root user. Unless you chose to install all your packages during your installation, only
some of the many applications and utilities available for users on Linux were installed on your
system. Red Hat uses the Red Hat Package Manager (RPM) to organize Linux software into
packages you can automatically install or remove. An RPM software package operates like its
own installation program for a software application. A Linux software application often
consists of several files that must be installed in different directories. The program itself is
most likely placed in a directory called /usr/bin, online manual files go in another directory,
and library files in yet another directory. In addition, the installation may require modification
of certain configuration files on your system. The RPM software packages on your Red Hat
CD-ROM perform all these tasks for you. Also, if you later decide you don't want a specific
application, you can uninstall packages to remove all the files and configuration information
from your system (see Chapter 19 for more details).

The RPM packages on your CD-ROMs represent only a small portion of the software
packages available for Linux. You can download additional software in the form of RPM
packages from distribution sites, such as ftp.redhat.com for Red Hat packages. In addition,
these packages are organized into lib5 and lib6 directories: lib5 refers to the packages using
the older libraries, whereas lib6 refers to those using the new GNU 2.x libraries. For Red Hat
7.0, you should use the lib6 versions, though lib5 versions also work. An extensive repository
for RPM packages is located at http://rpmfind.net/. Packages here are indexed according to
distribution, group, and name. This includes packages for every distribution, including
previous versions of those distributions. You can also locate many of the newest Linux

applications from http://freshmeat.net or www.linuxapps.com. Here, you can link to the
original development sites for these applications and download documentation and the recent
versions. Table 4-3 lists several Linux software sites.

Table 4-3: Linux Software Sites
Internet Site Description
www.linuxapps.com Linux software repository
freshmeat.net New Linux software
rpmfind.net RPM package repository
metalab.unc.edu Mirror site for Linux software and distributions
ftp.redhat.com Red Hat Linux and updates
sourceforge.net Source Forge Opensource software repository and

development site
apps.kde.com KDE software applications
www.gnome.org Gnome software applications

Installing Packages on Red Hat

On Gnome, you can use GnomeRPM to install RPM packages. Select the GnomeRPM entry
in the Gnome main menu under Systems. With GnomeRPM, you can locate packages on your
file system. Choose the packages you want to install. GnomeRPM lists packages already
installed. You can select them to view their details and file list.

Problems can occur if the package requires that another package be installed or updated first.
This is often the case where an application may need an updated version of a shared library.
In this case, you will be notified of the problem and asked if you want to proceed. You can
cancel at that time, and then locate and install any packages that are required first.

Updating Red Hat Manually

Red Hat also posts all updates in its update directory at its FTP site at ftp.redhat.com. You
can simply download updates directly from the FTP site and install them manually. You can
use an FTP client, such as ncftp, to download them all at once, including any subdirectories
(see Chapter 19). Then change to that directory and use the rpm -Uvh command to install the
packages. U will update a previously installed package, v specifies a verbose install, and h
will display hatch symbols across the screen to show the install progress. See the following
section for a more detailed explanation of RPM packages and how they work.

RPM update packages are kept in the Red Hat update site at ftp.redhat.com and its mirror
sites. You can access the site, locate the updates for your distribution version, and then
download them to your system. Then you can install them using an RPM utility, such as
GnomeRPM, or the rpm command using the update option, -U. Perhaps the easiest way to do
this is to use the Gnome file manager to download the files first. First, open a file manager
window and enter the URL for the Red Hat update site in its location box. Then access the
update site. Within that directory, move to the current directory, where you can see a list of
all the updates. Download any new updates or all of them if this is the first update for your
version. To download, open another file manager window and create a new directory to hold

your update. Now open that directory. Then select and drag the update files from the file
manager window for the update site to that new directory. You may not need all the files. In
the case of kernel updates, you only need the kernel file for your processor: i386, i586
(Pentium), or i686 (Pentium II). As files are downloaded, a dialog box displays the filename
and the percentage downloaded.

Once the update is downloaded, you can open a Terminal window and change to that new
directory. You open a Terminal window by clicking the Monitor icon in the panel. Then use
the cd command to change to that directory. If the directory name is redup, you would enter

cd redup

Then issue the rpm command with the Uvh options. You should install any libraries or kernel
updates first, paying attention to any dependency warnings. The * is a special operator that
will match on filenames. For example, *rpm will match on all files ending with "rpm." You
can use this to install selected groups of packages. The following example installs all KDE
packages:

$ rpm -Uvh kde*rpm

You can also open the GnomeRPM utility, and then open the dialog box for installing
packages. From the file manager window displaying the packages, you can drag and drop the
files to the GnomeRPM install dialog box. You may receive error messages noting
dependency requirements. You usually can safely ignore these messages. If you also receive
install conflicts, you may be trying to install two versions of the same package. In that case,
you must install one or the other.

Command Line Installation

If you do not have access to the desktop or you prefer to work from the command line
interface, you can use the rpm command to manage and install software packages. The
command name stands for the Red Hat Package Manager. This is the command that actually
performs installation, removal, and verification of software packages. Each software package
is actually an RPM package, consisting of an archive of software files and information about
how to install those files. Each archive resides as a single file with a name that ends with
.rpm, indicating it is a software package that can be installed by the Red Hat Package
Manager.

You can use the rpm command either to install or uninstall a package. The rpm command
uses a set of options to determine what action to take. Table 4-4 lists the set of rpm options.
The -i option installs the specified software package, and the -U option updates a package.
With an -e option, rpm uninstalls the package. A q placed before an i (-qi) queries the system
to see if a software package is already installed and displays information about the software (-
qpi queries an uninstalled package file). The «-h option provides a complete list of rpm
options. The syntax for the rpm command is as follows (rpm-package-name is the name of
the software package you want to install):

rpm options rpm-package-name

Table 4-4: rpm Options
Option Action

Table 4-4: rpm Options
Option Action
-U Update package
-i Install package
-e Remove package
-qi Display information for an installed package
-ql Display file list for installed package
-qpi Display information from an RPM package file (used for uninstalled

packages)
-qpl Display file list from an RPM package file (used for uninstalled

packages)

The software package name is usually quite lengthy, including information about version and
release date in its name. All end with .rpm. In the next example, the user installs the
linuxconf package using the rpm command. Notice that the full filename is entered. To list
the full name, you can use the ls command with the first few characters and an asterisk, ls
linuxconf*. You can also use the * to match the remainder of the name, as in linuxconf-
1.16*.rpm. In most cases, you are installing packages with the -U option, update. Even if the
package is not already installed, -U still installs it.

$ rpm -Uvh linuxconf-1.21r6-1.i386.rpm

When RPM performs an installation, it first checks for any dependent packages. These are
other software packages with programs the application you are installing needs to use. If other
dependent packages must be installed first, RPM cancels the installation and lists those
packages. You can install those packages and then repeat the installation of the application. In
a few situations, such as a major distribution update where packages may be installed out of
order, installing without dependency checks is all right. For this, you use the «-nodeps option.
This assumes all the needed packages are being installed, though.

To determine if a package is already installed, use the -qi option with rpm. The -q stands for
query. To obtain a list of all the files the package has installed, as well as the directories it
installed to, use the -ql option.

To query package files, add the p option. The -qpi option displays information about a
package, and -qpl lists the files in it. The following example lists all the files in the Linuxconf
package:

$ rpm -qpl linuxconf-1.21r6-1.i386.rpm

To remove a software package from your system, first use rpm -qi to make sure it is actually
installed, and then use the -e option to uninstall it. As with the -qi option, you needn't use the
full name of the installed file. You only need the name of the application. In the next example,
the user removes the xtetris game from the system:

$ rpm -e xtetris

An important update you may need to perform is to update the Xfree86 packages. If you
install a new video card or a monitor, and the current Xfree86 package does not support it,
chances are the new one will. Simply download those packages from the distribution update
sites and install them with the RPM update operation, as shown here:

$ rpm -Uvh --nodeps XFree86*rpm

Installing Source Code Applications

Many programs are available for Red Hat only in source code format. These programs are
stored in a compressed archive that you need to decompress and then extract. The resulting
source code can then be configured, compiled, and installed onto your system. The process
has been simplified to the extent that it involves not much more than installing an RPM
package. The following example shows how to extract, compile, and install the KreateCD
program, a CD writer and ripper.

 Note Be sure that you have installed all Red Hat development packages onto your system.
Development packages contain the key components like the compiler, Gnome and KDE
headers and libraries, and preprocessors. You cannot compile source code software
without them.

1. First, locate the software-in this case, from apps.kde.com-and then download it to
your system. KreateCD is downloaded in a file named kreadcd-1.0.0.tar.gz.

2. Then decompress and extract the file using the tar command with the xvzf options, as
shown here.

tar xvzf kreatcd-1.0.0.tar.gz

3. This will create a directory with the name of the software, in this case kreatcd-1.0.0.
Change to this directory with the cd command.

4. cd kreadcd-1.0.0
5. Now issue the command ./configure. This generates a compiler configuration for your

particular system.

./configure

6. Compile the software with the make command.

make

7. Finally, install the program with the make install command.

make install

That is it. Most KDE and Gnome software will also place an entry for the program in the
appropriate menus; for example, a KreateCD entry will be placed in the KDE Applications
menu. You can then run KreateCD from the menu entry. You could also open a terminal
window and enter the program's name.

 Note You can change your display manager interface using the GDM Configurator accessible
from the Gnome System menu. Here you can change the background image, set up

automatic logins, and elect to display a user face browser to show a selectable image for
each user on your system.

Chapter 5: Network Configuration
Overview

This chapter discusses the network configuration tools available for easily configuring
network connections on Red Hat Linux. Network configuration differs depending on whether
you are connected to a local area network (LAN) with an Ethernet card or you use a dial-up
ISP connection. You had the opportunity to enter your LAN network settings during the
installation process. For a dial-up ISP using a modem, you will have to configure your
network connection using a PPP configuration utility such as the Red Hat PPP Dialer or
KDE's Kppp. Table 5-1 lists the different Red Hat network configuration tools.

On Red Hat Linux, you can configure both LAN and PPP connections using the Red Hat
Network Configuration tool (redhat=config=network). As an alternative to Network
Configuration, you can use Webmin. For PPP connections, you can use RP3, the Red Hat PPP
Dialer, as well as Kppp Network Configuration. The Red Hat PPP Dialer utility provides an
easy-to-use interface with panels for login information, modem configuration, and dial-up
connections. For DSL and ISDN, you can use asdl-config and isdn-config, accessible from the
Internet on the System menu.

Table 5-1: Network Configuration Utilities
Network Configuration Utility Description
redhat=config=network Red Hat Network Configuration, access on System

menu
RP3 Red Hat PPP Dialer, access on Internet menu
Webmin Webmin network configuration, access with browser on

localhost:10000
isdn-config ISDN configuration, access on System menu with

internet-config
adsl-config DSL configuration, access on System menu with

internet-config
adsl-setup DSL configuration (command line interface), part of the

rp-pppoe package (Roaring Penguin Point to Point
Protocol on Ethernet)

Kppp K Desktop PPP configuration and connection, access
through internet-config on System menu

pppd Point to Point Protocol daemon, enter on a command
line

wvdial PPP connection, enter on a command line and use
connection script

LAN

If you are on a network, you can obtain most of your network information from your network
administrator or from your ISP (Internet service provider). You will need the following
information. See Chapter 2 about detailed descriptions for the information you will need for
your LAN configuration.

• The device name for your network interface connection card (NIC) This is
usually an Ethernet card and has the name eth0 or eth1.

• Hostname Your computer will be identified by this name on the Internet. Do not use
"localhost"; that name is reserved for special use by your system. The hostname
should be a simple alphabetic word, which can include numbers but not punctuation
such as periods and backslashes. The hostname includes the name of the host and its
domain. For example, a hostname for a machine could be "turtle," whose domain is
mytrek.com, giving it a hostname of turtle.mytrek.com.

• Domain name This is the name of your network.
• The Internet Protocol (IP) address assigned to your machine Every host on the

Internet is assigned an IP address. This address is a set of four numbers, separated by
periods, which uniquely identifies a single location on the Internet, allowing
information from other locations to reach that computer.

• Your network IP address This address is usually similar to the IP address, but with
one or more zeros at the end.

• The netmask This is usually 255.255.255.0 for most networks. If, however, you are
part of a large network, check with your network administrator or ISP.

• The broadcast address for your network, if available (optional) Usually, your
broadcast address is the same as your IP address with the number 255 added at the
end.

• The IP address of your network's gateway computer This is the computer that
connects your local network to a larger one like the Internet.

• Nameservers The IP address of the name servers your network uses. These enable
the use of URLs.

• NIS domain and IP address for an NIS server Necessary if your network uses an
NIS server (optional).

Red Hat Network Configuration

Red Hat provides an easy-to-use network configuration tool called redhat-config-network. On
the Start Here System-settings window, its icon is labeled Network Configuration, and is
referred here as such in this section. The Network Configuration window consists of four
tabbed panels: Hardware, Devices, Hosts, and DNS (see Figure 5-1). Clicking a tab displays
its panel. Basic configuration of your network requires you to specify the hostname and IP
address of your own system, the IP addresses of your network's name servers and gateway,
the network netmask, and your network devices. Using the Network Configuration tool, you
can easily enter all this information. The DNS panel is where you enter your own system's
hostname and your network's name server addresses. The Hosts panel lists host IP addresses
and their domain names, including those for your own system. On the Devices panel, you add
and configure your network interfaces, such as an Ethernet or PPP interface. The Hardware
panel is where you list your network hardware devices. If you already configured your
network during installation, your entries are already in these panels.

Figure 5-1: Network Configuration Names panel

The Hardware panel list your system's network cards, such as Ethernet network interface
cards (NIC), or any modems you have installed.

The DNS panel has two boxes at the top, labeled Hostname and Domain (see Figure 5-2).
Here, you enter your system's fully qualified domain name and your network's domain name.
For example, turtle.mytrek.com is the fully qualified domain name and mytrek.com is the
domain name. There are boxes for entering the IP addresses for your system's primary,
secondary, and tertiary DNS servers. You can then list search domains, with buttons for
editing, deleting, or changing the priority of a domain to search. Both the search domain and
the name server addresses are saved in the /etc/resolv.conf file. The hostname is saved to
your /etc/HOSTNAME file.

Figure 5-2: Network Configuration DNS panel

The Hosts panel has a single pane with Add, Edit, and Delete buttons (see Figure 5-3). This
panel lists entries that associate hostnames with IP addresses. You can also add aliases
(nicknames). The Hosts panel actually displays the contents of the /etc/hosts file and saves
any entries you make to that file. To add an entry, click the Add button. A window opens with
boxes for the hostname, IP address, and nicknames. When you click OK, the entry is added to
the Hosts list. To edit an entry, click the Edit button and a similar window opens, enabling
you to change any of the fields. To delete an entry, select it and click the Remove button.

Figure 5-3: Network Configuration Hosts panel
 Note If you are having trouble connecting with an Ethernet device, make sure the Hosts panel

lists your hostname and IP address, not just localhost. If your hostname is not there, add
it.

The Devices panel lists configured network devices on your system (see Figure 5-4). Making
entries here performs the same function as ifconfig. An entry shows the device name and its
type. Use the Add, Edit, Copy, and Delete buttons to manage the device entries. When you
add or edit a device, you open a tabbed panel for configuring it, enabling you to specify its IP
address, host name, gateway, and the hardware device it uses. For example, when you
installed Red Hat, any Ethernet network devices you had installed would be listed here.
Editing the device opens a configuration window with three tabbed panels: General,
Protocols, and Hardware Device. The Hardware panel selects a hardware device to use from a
list of installed devices. In the General panel, you can set features such as activation at boot
time or edit the nick name. The Protocols panel will list the protocols used on this device,
usually TCP/IP. Editing the protocol will open a TCP/IP Settings window with tabbed panels
for TCP/IP, Hostname, and Routing. Here you can enter the IP address assigned to the device,
along with its netmask and network gateway (see Figure 5-4). In the Hostname panel, you can
enter the devices hostname. Should you add a new network device, you will need to use the
Device panel and its Protocol and TCP/IP settings windows to assign the device an IP
address, hostname, netmask, and gateway, among other features.

Figure 5-4: Network Configuration Devices

When you finish and are ready to save your configuration, click the Apply button to have your
changes take effect. If you want to abandon the changes you made, you can close without
saving. You can run Network Configuration at any time to make changes in your network
configuration.

You can also use Network Configuration to configure a PPP device for a modem. When you
click Add and select modem as the interface, a Modem Dialup Configuration window opens
with several panels including Provider, Options, and Protocol. Select the Provider panel to
display entries for your ISP's dial-up phone number as well as your login name and password.
On the Options panel, you can set PPP options (see Chapter 36). In the Protocol's TCP/IP

entry, you can elect to have your DNS information, such as your hostname and name servers,
obtained automatically from the provider.

Network Configuration with Linuxconf and Webmin

To configure a LAN connection in Linuxconf, start netconf from a terminal window. This
displays a window with buttons for various network configuration options. Click the Basic
Host Information button to display the host configuration window. In the first Adapter panel,
you can enter the IP address, network device (usually eth0), and the kernel module to use (the
drivers for your Ethernet card) along with other data like the hostname and netmask. Then, in
the Network Configurator window, click the Name Server Specification button to display the
Resolver Configuration window, where you can enter the IP addresses for the domain name
servers on your network (see Figure 5-3). Click the Routers and Gateway button to enter the
IP address for the gateway computer.

To use netconf to configure PPP connections, click the PPP/SLIP/PLIP button on the Network
Configurator window. A window then opens that asks you to choose the type of interface you
want. Select PPP. Then a small window opens displaying a ppp0 entry. Double-click it to
display the PPP interface window with panels for setting your modem connections, the phone
number to dial, and the Expect and Send entries for your login name and password. To
activate a connection, click Connect. You can also use dial-up managers like Kppp and
gnomeppp to set up and manage your PPP connections.

With Webmin, select the Network Configuration page on the Hardware page. From the
Network Configuration page, select the Network Interfaces page to configure your Ethernet
device, entering information like the IP address, the netmask, and the device name (see Figure
5-4). On the Routing and Gateways page, you enter the IP address of your network's gateway,
and on the DNS page you enter your name server addresses. On the Host Address page, you
enter the hostname and IP address for your system along with any others you want.

DSL and ISDN

To connect using DSL you use adsl-config, and for ISDN connections you use isdn-config.
Both can be accessed through internet-config on the System menu. This will open a dialog
box where you can select A-DSL/T-DSL, ISDN, or modem connections. The modem
connection starts up Kppp, which is described in Chapter 36. You can also start them
independently by entering their command in a terminal window.

adsl-config will display a dialog labeled Red Hat Internet Configuration. There will be entries
for entering your login name, password, and the Ethernet interface your DSL modem is
attached to (see Figure 5-5). You will also need to enter the IP addresses for the DNS servers
provided by your ISP. You can also elect to have the connection automatically made up when
your system starts up.

Figure 5-5: adsl-config, configuring DSL connections

adsl-config makes use of the pppoe utility to make your DSL connections. pppoe enables the
use of dynamic IP addresses with an ISP over a DSL connection. Red Hat Linux uses the
Roaring Penguin package of pppoe commands (rp-pppoe). As an alternative to adsl-config,
you can use the adsl-setup command to configure your DSL connection. adsl has a command
line interface and can be run at any shell prompt. As with adsl-config, you are prompted to
enter your user name, password, Ethernet card, and domain name server addresses. You can
also specify basic firewall security levels. You can then establish your DSL connection with
the adsl-start command, and disconnect with the adsl-stop command.

isdn-config will display a dialog labeled Red Hat ISDN config and showing four panes
labeled Dial, Provider, Hardware, and About (see Figure 5-6). On the Dial pane you can make
a connection to a selected ISP. On the Provider pane you enter information about your ISP.
You use the Hardware pane to configure your ISDN modem.

Figure 5-6: isdn-config, configuring ISDN connections

The Red Hat PPP Dialer

If you have a dial-up connection to an Internet service provider (ISP), you need to configure a
PPP interface. Almost all ISPs currently use PPP connections. You can easily set up a PPP
connection using the Red Hat PPP Dialer (rp3). Select its entry in the Internet submenu on the
Gnome desktop. If you do not have any Internet connections set up already, the Add New
Internet Connection dialog box starts up (to add a new connection, you can click the New
button on the Red Hat Dialup Configuration Tool window, opened from its entry on the
Gnome Internet menu). If you have not yet configured your modem, the dialer automatically
attempts to detect your modem and to provide information, such as the speed and serial device
it uses. You see a screen displaying this information, along with the sound level, which you
can adjust (see Figure 5-7).

Figure 5-7: Red Hat PPP Dialer modem configuration

Next, you are asked to enter the name you want to use to identify this connection on your
system, the account name (see Figure 5-8). You also enter the phone number used to dial your
ISP.

Figure 5-8: Red Hat PPP Dialer name and phone number

You then enter the user name for your ISP account, along with its password (see Figure 5-9).

Figure 5-9: Red Hat PPP Dialer user name and password

When you finish, the final screen appears listing the account name, user name, and phone
number, as shown in Figure 5-10.

Figure 5-10: Red Hat PPP Dialer final setup screen

Each time you want to connect, select the Red Hat PPP Dialer entry from the Gnome Internet
menu. This displays a Choose window listing all your network connections, including any
you created with the Red Hat PPP Dialer (see Figure 5-11). Double-click the account name
you set up for your PPP connection. In Figure 5-11, the account name used for the PPP
connection is myisp, which also shows an Ethernet connection (eth0) and the localhost
connection.

Figure 5-11: Red Hat PPP Dialer

You are then prompted as to whether you want to start up the connection. Click the Yes
button. A window appears that monitors the connection, showing a graph indicating the
current activity on it (See Figure 5-12). You can minimize the monitor, docking it to the
Gnome panel. Right-clicking the Monitor icon displays a menu with entries for starting,
stopping, and configuring the connections, along with the connection properties. The
Properties dialog box enables you to set such features as calculating the time and the cost of a
connected session. The monitor is actually part of the Red Hat Network Monitor tool. You
can select this tool independently on the Gnome Internet menu and display monitors for all
your network connections.

Figure 5-12: Red Hat Network Monitor tool

You can also place the network monitor for your PPP connection on the Gnome panel. Here it
is displayed in a smaller size as a Gnome applet. To start your PPP connection, you only need
to double-click the PPP network monitor. Right-clicking the monitor image displays a menu
with options for starting and configuring your connection. To add a monitor to the Gnome
panel, use the Panel menu on the Gnome Main menu. In the Panel menu, select Add Applet,
and then the Network submenu, and, from there, select the RH PPP Dialer entry. This displays
a list of all the network connections on your system. Select the one you want placed on the
panel. The monitor bears the name you have to the PPP connection. In Figure 5-13, the PPP
network monitor has the name myisp. You can place any of your network monitors on the
Gnome panel. Figure 5-13 shows a monitor for both the Ethernet and PPP connections.

Figure 5-13: Red Hat network monitors on the panel

To change your setting or to add a new connection, use the Red Hat PPP Dialer Configuration
tool. On the Gnome Internet menu, select the Dialup Configuration Tool entry to start up the
Configuration tool. It then displays a window with two tabbed panels: one listing your
accounts and the other for your modem configuration. Buttons on the right side of the
Accounts panel enable you to add new connections or to edit current ones (see Figure 5-14).

Figure 5-14: Red Hat PPP Dialer Configuration tool

The Edit button opens a window with panels for modifying connection and modem
information (see Figure 5-15). On the Account Info panel, you can change your login name
(user name), password, and phone number for your ISP. On the Advanced panel, you can
enter information such as the IP address of your ISP's domain name servers.

Figure 5-15: Editing a PPP connection

The Red Hat PPP Dialer uses the wvdial utility to perform the connection operations. You can
find the configuration information for your connections in the /etc/wvdial.conf file. You can,
if you choose, edit this file directly to configure your PPP connections.

Command Line PPP Access: wvdial

If, for some reason, you have been unable to set up your X Window System, you may have to
set up such a network connection from the command line interface instead of a desktop. The
following discussion shows how to make such a connection using wvdial. wvdial is the
standard dialer used on Red Hat systems.

For a dial-up PPP connection you can use the wvdial dialer, the same dialer used for the Red
Hat PPP Dialer. wvdial is an intelligent dialer, which not only dials up an ISP service but also
performs login operations, supplying your user name and password. wvdial first loads its
configuration from the /etc/wvdial.conf file. In here, you can place modem and account
information, including modem speed and serial device, as well as ISP phone number, user
name, and password. The wvdial.conf file is organized into sections, beginning with a section
label enclosed in brackets. A section holds variables for different parameters that are assigned
values, such as username = chris. The default section holds default values inherited by other
sections, so you needn't repeat them. Table 5-2 lists the wvdial variables.

Table 5-2: wvdial Variables
Variable Description
Inherits Explicitly inherit from the specified section. By default, sections

inherit from the [Dialer Defaults] section.
Modem The device wvdial should use as your modem. The default is

/dev/modem.
Baud The speed at which wvdial communicates with your modem. The

default is 57,600 baud.
Init1 ... Init9 Specifies the initialization strings to be used by your modem.

wvdial can use up to 9. The default is "ATZ" for Init1.
Phone The phone number you want wvdial to dial.
Area Code Specifies the area code, if any.
Dial Prefix Specifies any needed dialing prefix-for example, 70 to disable call

waiting or 9 for an outside line.
Dial Command Specifies the dial operation. The default is "ATDT".
Login Specifies the user name you use at your ISP.
Login Prompt If your ISP has an unusual login prompt, you can specify it here.
Password Specifies the password you use at your ISP.
Password Prompt If your ISP has an unusual password prompt, you can specify it

here.
PPPD PATH If pppd is installed on your Linux system somewhere other than

/usr/sbin/pppd, you need to specify its location with this option.
Force Address Specifies a static IP address to use (for ISPs that provide static IP

addresses to users).
Remote Name For PAP or CHAP authentication, you may have to change this to

your ISP's authentication name. The default value is *.
Carrier Check Setting this option to No disables the carrier check by your

Table 5-2: wvdial Variables
Variable Description

modem. Used for a modem that reports its carrier line is always
down.

Stupid Mode In Stupid Mode, wvduak does not attempt to interpret any
prompts from the terminal server and starts pppd after the modem
connects.

New PPPD Enable this option for use with pppd version 2.3.0 or newer.
Instructs pppd to look for a required file /etc/ppp/peers/wvdial.

Default Reply Specifies the default response for prompts that wvdial does not
recognize. The default is ppp.

Auto Reconnect If enabled, wvdial attempts to reestablish a connection
automatically if you are randomly disconnected by the other side.
This option is on by default.

You can use the wvdialconf utility to create a default wvdial.conf file for you automatically.
wvdialconf will detect your modem and set default values for basic features. You can then
edit the wvdial.conf file and modify the Phone, Username, and Password entries with your
ISP dial-up information. Remove the preceding ; to unquote the entry. Any line beginning
with a ; is ignored as a comment.

$ wvdialconf

You can also create a named dialer, such as myisp in the following example. This is helpful if
you have different ISPs you log into. The following example shows the /etc/wvdial.conf file:

/etc/wvdial.conf

[Modem0]
Modem = /dev/ttyS0
Baud = 57600
Init1 = ATZ
SetVolume = 0
Dial Command = ATDT

[Dialer Defaults]
Modem = /dev/ttyS0
Baud = 57600
Init1 = ATZ
SetVolume = 0
Dial Command = ATDT

[Dialer myisp]
Username = chris
Password = mypassword
Modem = /dev/ttyS0
Phone = 555-5555
Area Code = 555
Baud = 57600
Stupid mode = 0

To start wvdial, enter the command wvdial, which then reads the connection configuration
information from the /etc/wvdial.conf file. wvdial then dials the ISP and initiates the PPP
connection, providing your user name and password when requested.

$ wvdial

You can set up connection configurations for any number of connections in the
/etc/wvdial.conf file. To select one, enter its label as an argument to the wvdial command, as
shown here:

$ wvdial myisp

Modem Setup

If you have a modem connected to your PC, it is connected to one of four communications
ports. The PC names for these ports are COM1, COM2, COM3, and COM4. These ports can
also be used for other serial devices, such as a serial mouse (though not for PS/2 mice).
Usually, a serial mouse is connected to COM1 and a modem is connected to COM2, though
in many cases your modem may be connected to COM4. Find out which ports your modem
and mouse are connected to, because you must know this to access your modem. On the PC,
COM1 and COM3 share the same access point to your computer; the same is true of COM2
and COM4. For this reason, if you have a serial mouse connected to COM1, you should not
have your modem on COM3. You could find your mouse cutting out whenever you use your
modem. If your mouse is on COM1, your modem should either be on COM2 or COM4.

In Linux, you use the serial communication ports for your modem. Serial ports begin with the
name /dev/ttyS, with an attached number from 0 to 3. (Notice the numbering begins from 0,
not 1.) The first port, COM1, is /dev/ttyS0, and /dev/ttyS1 is the second port. The third and
fourth ports are /dev/ttyS2 and /dev/ttyS3. In many Linux communication programs, you
need to know the port for your modem, which is either /dev/ttyS1 for COM2 or /dev/ttyS3
for COM4.

Some communication programs try to access the modem port using only the name
/dev/modem. This is meant to be an alias, another name, for whatever your modem port
actually is. If your system has not already set up this alias, you can easily create this alias
using the ln -s command or the modemtool utility on Red Hat. modemtool has a GUI interface
and is run on an X Window System desktop, such as Gnome or KDE. It displays four entries,
one for each serial port. Click the one that applies to your system.

You can also create an alias on the command line using the ln command. The following
example creates an alias called modem for the COM2 port, /dev/ttyS1. If your modem port is
/dev/ttyS3, use that instead. (You must be logged in as a root user to execute this command.)
The following example sets up the /dev/modem alias for the second serial port, /dev/ ttyS1:

ln -s /dev/Stty1 /dev/modem

Your /dev/mouse alias should already be set up for the port it uses. For a serial mouse, this is
usually the COM1 port, /dev/ ttyS0. If the alias is not set up or if you need to change it, you
can use the ln -s command. The following example sets up the /dev/mouse alias for the first
serial port, /dev/ ttyS0.

ln -s /dev/ttyS0 /dev/mouse

Chapter 6: Security Configuration
Overview

Once you have installed your Linux system, you should carry out some basic security
measures to protect your system from outside attacks. Systems connected to the Internet are
open to attempts by outside users to gain unauthorized access. This usually takes the
following forms:

• Trying to break into the system
• Having broken in, changing or replacing system files with hacked or corrupt versions
• Attempting to intercept communications from remote users
• Changing or replacing messages sent to or from users
• Pretending to be a valid user

Firewalls, intrusion protection, encryption, data integrity, and authentication are ways of
protecting against such attacks (see Chapter 40 also).

• A firewall prevents any direct unauthorized attempts at access.
• Intrusion protection checks the state of your system files to see if they have been

tampered with by someone who has broken in.
• Encryption protects transmissions by authorized remote users, providing privacy.
• Integrity checks like modification digests guarantee that messages and data have not

been intercepted and changed or substituted en route.
• Authentication methods such as digital signatures can verify that the user claiming to

send a message or access your system is actually that person.

You can use encryption, integrity checks, and authentication to protect both messages you
send as e-mail or files you attach. The GNU Privacy Guard encryption package lets you
encrypt your e-mail messages or files you want to send, as well as letting you sign them with
an encrypted digital signature authenticating that the message was sent by you. The digital
signature also includes encrypted modification digest information that provides an integrity
check, allowing the recipient to verify that the message received is the original and not one
that has been changed or substituted.

You will also need to check the integrity of your system to make sure that it has not already
been broken into. With the Tripwire intrusion detection software, you can take a snapshot of
your system, taking note of different features for critical files like size and permissions of
configuration files. Later, you can check the current state of those critical files with your
previous snapshot version to see if they have changed in any way. If they have, it may be
evidence that an intruder has entered your system and is changing files.

A good foundation for your network security is to set up a Linux system to operate as a
firewall for your network, protecting it from unauthorized access. You can use a firewall to
implement either packet filtering or proxies. Packet filtering is simply the process of deciding
whether a packet received by the firewall host should be passed on into the local network. It
checks the address of the packet and sends the packet on, if it's allowed. The firewall package

currently in use for Red Hat is Netfilter (iptables). Older releases of Red Hat (kernel 2.2 and
below) use an earlier version called ipchains. To implement a firewall, you simply provide a
series of rules to govern what kind of access you want to allow on your system. If that system
is also a gateway for a private network, the system's firewall capability can effectively protect
the network from outside attacks.

Another way to protect access to your system is to provide secure user authentication with
encrypted passwords, a Lightweight Directory Access Protocol (LDAP) service, and
Pluggable Authentication Modules (PAM). These are discussed in detail in Chapter 30. User
authentication can further be controlled for certain services by Kerberos servers, discussed in
Chapter 40.

To protect remote connections from hosts outside your network, transmissions can be
encrypted. For Linux systems, you can use the Secure Shell (SSH) suite of programs to
encrypt any transmissions, preventing them from being read by anyone else. If you don't use
SSH, it is best to avoid the standard remote communications tools such as telnet and rcp (see
Chapter 21) for remote access over an unprotected networks like the Internet. Outside users
may also try to gain unauthorized access through any Internet services you may be hosting,
such as a Web site. In such a case, you can set up a proxy to protect your site from attack. For
Linux systems, use Squid proxy software to set up a proxy to protect your Web server (see
Chapter 27).

This chapter will show you some simple steps you can take to provide a basic level of
security. The GNU Privacy Guard encryption and Tripwire intrusion detection software are
covered in detail. Netfilter, Squid, and SSH are covered briefly (see Chapters 27 and 40 for a
more detailed analysis of these applications). Table 6-1 lists security applications used on Red
Hat systems.

 Note Numerous older security applications are also available for Linux such as COPS
(Computer Oracle and Password System) to check password security; Tiger, which
scans your system for unusual or unprotected files; and SATAN (Security
Administration Tool for Analyzing Networks), which checks your system for security
holes. Crack is a newer password auditing tool that you can use to check how well your
password security performs under dictionary attacks.

GNU Privacy Guard: Encryption and Authentication

To protect messages that you send by e-mail, Red Hat provides GNU Privacy Guard (GnuPG)
encryption and authentication. GnuPG is GNU open source software that works much like
Pretty Good Privacy (pgp) encryption. With GnuPG, you can both encrypt your messages and
digitally sign them-protecting the message and authenticating that it is from you. Currently,
KMail and exmh both support GnuPG encryption and authentication. On KMail, you can
select the encryption to use on the Security panel in the Options window.

Table 6-1: Security Applications
Applications Description
GNU Privacy Guard (GPG) Encryption and digital signatures (Chapter 6)
Tripwire Intrusion detection (Chapter 6)

Table 6-1: Security Applications
Applications Description
Netfilter (iptables and lokkit) Firewall packet filtering (Chapter 40)
Squid Web proxy server (Chapter 27)
SSH Secure Shell encryption and authentication for

remote access (Chapter 40)
Kerberos User authentication for access to services (Chapter

40)
Pluggable Authorization Modules (PAM) Authentication management and configuration

(Chapter 30)
Shadow passwords Password encryption (Chapter 30)
Lightweight Directory Access Protocol
(LDAP)

User management and authorization (Chapter 30)

Public-Key Encryption and Digital Signatures

GnuPG makes use of public-key cryptography to encrypt data. Public-key encryption uses
two keys to encrypt and decrypt a message, a private key and a public key. The private key
you always keep and use to decrypt messages you have received. The public key you make
available to those you send messages to. They then use your public key to encrypt any
message they want to send to you. The private key decrypts messages, and the public key
encrypts them. Each user has private and public keys. Reciprocally, if you want to send
messages to another user, you would first obtain the user's public key and use it to encrypt the
message you want to send to the user. The user then decrypts the messages with his or her
own private key. In other words, your public key is used by others to encrypt the messages
you receive, and you use other user's public keys to send messages to them. Each user on your
Red Hat system can have their own public and private keys. They will use the gpg program to
generate them and keep their private key in their own directory.

A digital signature is used to both authenticate a message and provide a integrity check.
Authentication guarantees that the message has not been modified-that it is the original
message sent by you-and the integrity check verifies that it has not been changed. Though
usually combined with encrypted messages to provide a greater level of security, digital
signatures can also be used for messages that can be sent in the clear. For example, you would
want to know if a public notice of upgrades of a Red Hat release was actually sent by Red
Hat, and not by someone trying to spread confusion. Such a message still needs to be
authenticated, checked to see if it was actually sent by the sender or, if sent by the original
sender, was not somehow changed en route. Verification like this protects against
modification or substitution of the message by someone pretending to be the sender.

Digitally signing a message involves generating a checksum value from the contents of the
message using an encryption algorithm such as the MD5 modification digest algorithm. This
is a unique value that accurately represents the size and contents of your message. Any
changes to the message of any kind would generate a different value. Such a value provides a
way to check the integrity of the data. The MD5 value is then itself encrypted with your
private key. When the user receives your message, they decrypt your digital signature with
your public key. The user then generates an MD5 value of the message received and

compares it with the MD5 value you sent. If they are the same, the message is authenticated-it
is the original message sent by you, not a false one sent by a user pretending to be you. The
user can use GnuPG to decrypt and check digital signatures.

Normally, digital signatures are combined with encryption to provide a more secure level of
transmission. The message would be encrypted with the recipient's public key, and the digital
signature encrypted with your private key. The user would decrypt both the message (with
their own private key) and then the signature (with your public key). They would then
compare the signature with one the user generates from the message to authenticate it. When
GnuPG decodes a message, it will also decode and check a digital signature automatically.
Figure 6-1 shows the process for encrypting and digitally signing a message.

Figure 6-1: Public-key encryption and digital signatures

GPG operations are carried out with the gpg command, which uses both commands and
option to perform tasks. Commonly used commands and options are listed in Table 6-2. Some
commands and options have a short form that use only one dash. Normally two are used.

GnuPG Setup:gpg

Before you can use GnuPG on Red Hat, you will have generate your private and public keys
(see the Red Hat Customization Guide for details). On the command line (terminal window)
enter the gpg command with the --gen-key command. The gpg program will then prompt with
different options for creating your private and public keys. You can check the gpg Man page
for information on using the gpg program.

gpg --gen-key

You are first asked to select the kind of key you want. Normally, you would just select the
default entry, which you can do by just pressing the ENTER key. Then you choose the key
size, usually the default 1024. You then specify how long the key is to be valid-usually there
is no expiration. You will then be asked to enter a user ID, comment, and e-mail address.
Press ENTER to then be prompted for each in turn. These elements identify the key, any of
which can be used as the key's name. You use the key name when performing certain GPG
tasks like signing a key or creating a revocation certificate. For example, the following
elements create a key for the user richlp with the comment "author" and the e-mail address
richlp@turtle.mytrek.com.

Table 6-2: GPG Commands and Options
GPG Commands Description
-s, --sign Signs a document, creating a signature. May be

combined with --encrypt.
--clearsign Creates a clear text signature.
-b, --detach-sign Creates a detached signature.
-e, --encrypt Encrypts data. May be combined with --sign.
--decrypt [file] Decrypts file (or stdin if no file is specified) and writes

it to stdout (or the file specified with --output). If the
decrypted file is signed, the signature is verified.

--verify [[sigfile] [signed-files]] Verifies a signed file. The signature can either be
contained with the file or be a separate detached
signature file.

--list-keys [names] Lists all keys from the keyrings or those specified.
--list-public-keys [names] Lists all keys from the public keyrings or those

specified.
--list-secret-keys [names] Lists your private (secret) keys.
--list-sigs [names] Lists your keys along with any signatures they have.
--check-sigs [names] Lists keys and their signatures and verifies the

signatures.
--fingerprint [names] Lists fingerprints for specified keys.
--gen-key Generates a new set of private and public keys.
--edit-key name Edits your keys. Use commands to perform most key

operations such as sign to sign a key or password to
change your passphrase.

--sign-key name Signs a public key with your private key. Same as sign
in --edit-key.

--delete-key name Removes a public key from the public keyring.
--delete-secret-key name Removes private and public key from both the secret

and public keyrings.
--gen-revoke Generates a revocation certificate for your own key.
--export [names] Exports a specified key from your keyring. With no

arguments, exports all keys.
--send-keys [names] Exports and sends specified keys to a keyserver. The

option --keyserver must be used to give the name of
this keyserver.

--import [files] Imports keys contained in files into your public
keyring.

-a, --armor Creates ASCII armored output, ASCII version of
encrypted data.

-o, --output file Writes output to a specified file.
--default-key name Specifies the default private key to use for signatures.

Table 6-2: GPG Commands and Options
GPG Commands Description
--keyserver site The keyserver to look up public keys not on your

keyring. Can also specify the site to send your public
key to. host -l pgp.net | grep www.keys will list the
keyservers.

-r, --recipient names Encrypts data for the specified user, using that user's
public key.

--default-recipient names Specifies the default recipient to use for encrypting
data.

Richard Petersen (author) <richlp@turtle.mytrek.com>

You can use any unique part of a key's identity to reference that key. For example, the string
"Richard" would reference the above key, provided there are no other keys that have the
string "Richard" in them. "richlp" would also reference the key, as would "author". Where a
string matches more than one key, all the matched ones would be referenced.

gpg will then ask you to enter a passphrase, used to protect your private key. Be sure to use a
real phrase, including spaces, not just a password. gpg then generates your public and private
keys and places them in the .gnupg directory. The private key is kept in a file called the
secring.gpg in your .gnupg directory. The public key is placed in the pubring.gpg file, to
which you can add the public keys of other users. You can list these keys with the --list-keys
command.

In case you later need to change your keys, you can create a revocation certificate to notify
others that the public key is no longer valid. For example, if you forget your password or
someone else discovers it, you can use the revocation certificate to tell others that your public
key should no longer be used. In the next example, the user creates a revocation certificate for
the key richlp and places it in the file myrevoke.asc:

gpg --output myrevoke.asc --gen-revoke richlp

For other users to decrypt your messages, you have to make your public key available to
them. They, in turn, have to send you their public keys so that you can decrypt any messages
you receive from them. In effect, enabling encrypted communications between users involves
all of them exchanging their public keys. The public keys then have to be verified and signed
by each user that receives them. The public keys can then be trusted to safely decrypt
messages.

If you are sending messages to just a few users, you can manually e-mail them your public
key. For general public use, you can post your public key on a key server, which anyone can
then download and use to decrypt any message they receive from you. The OpenPGP Public
Keyserver is located at www.keyserver.net. You can send directly to the key server with the -
keyserver option and --send-key command. The send-key command takes as its argument
your e-mail address. You only need to send to one keyserver, as it will share your key with
other key servers automatically.

gpg --keyserver search.keyserver.net --send-key chris@turtle.mytrek.com

If you want to send your key directly to another user, you will should generate an armored
text version of the key that you can then e-mail. You do this with the --armor and --export
options, using the --output option to specify a file to place the key in. The --armor option
will generate an ASCII text version of the encrypted file so that it can be e-mailed directly,
instead of as an attached binary. Files that hold an ASCII encoded version of the encryption
normally have the extension .asc, by convention. Binary encrypted files normally use the
extension .gpg. You can then e-mail the file to users to whom you want to send encrypted
messages.

gpg --armor --export richlp@turtle.mytrek.com --output richlp.asc
mail -s 'mypubkey' george@rabbit.mytrek.com < richlp.asc

Many companies and institutions post their public key files on their Web sites where they can
be downloaded and used to verify encrypted software downloads or official announcements.

 Note Some commands and options for GPG have both a long and short form. For example the
--armour command can be written as -a, --output as -o, --sign as -s, and --encrypt as -
e. Most others, like --export, have no short form.

To decode messages from other users, you will need to have their public keys. They can either
send them to you or you can download them from a key server. Save the message or Web
page containing the public key to a file. You will then need to import, verify, and sign the
key. Use the file you received to import the public key to your pubring file. In the following
example, the user imports george's public key, which he has received as the file
georgekey.asc.

gpg --import georgekey.asc

You should, for example, download the Red Hat public key, currently located at
http://www.redhat.com/about/contact.html. Click on the Public Encryption Key link. From
there you can access a page that displays just the public key. You can then save this page as a
file and use that file to import the Red Hat public key to your keyring. In the following
example, the user saved the page showing just the Red Hat public key as myredhat.asc, and
then imported that file:

gpg --import myredhat.asc
 Note You can remove any key, including your own private key, with the --delete-key and --

delete-secret-key commands.

To manually check that a public key file was not modified in transit, you can check its
fingerprint. This is a hash value generated from the contents of the key, much like a
modification digest. Using the --fingerprint option you can generate a hash value from the
key you installed, then contact the sender and ask them what the hash value should really be.
If they are not the same, you know the key was tampered with in transit.

gpg --fingerprint george@rabbit

You do not have to check the fingerprint to have GPG operate. This is just an advisable
precaution you can perform on your own. The point is that you need to be confident that the
key you received is valid. Normally you can accept most keys from public servers or known
sites like Red Hat as valid, although it is easy to check their posted fingerprints. Once assured

of the key's validity, you can then sign it with your private key. Signing a key notifies GPG
that you officially accept the key.

To sign a key you use the gpg command with the --sign-key command and the key's name.

gpg --sign-key george@rabbit

Alternatively, you can edit the key with the --edit-key command to start an interactive session
in which you can enter the command sign to sign the key and save to save the change.
Signing a key involves accessing your private key, so you will be prompted for your
passphrase. Once finished, leave the interactive session with the quit command.

Normally, you would want to post a version of your public key that has been signed by one or
more users. You can do the same for other users. Signing a public key provides a way to
vouch for the validity of a key. It indicates that someone has already checked it out. Many
different users could sign the same public key. For a key that you have received from another
user, and that you have verified, you can sign and then return the signed version to that user.
Once you have signed the key, you can generate a file containing the signed public version.
You can then send this file to the user.

gpg -a --export george@rabbit --output georgesig.asc

The user would then import the signed key and then export it to a key server.

 Tip Should you want to start over from scratch, you can just erase your .gnupg directory,
although this is a drastic measure-you lose any keys you have collected.

Using GnuPG

GnuPG encryption is currently supported on Red Hat by KMail and exmh mail clients. You
can also use the GNU Privacy Assistant (GPA), a GUI front end, to manage gpg tasks. You
can also use the gpg command to manually encode and decode messages, including digital
signatures if you wish. As you perform GPG tasks you will need to reference the keys you
have using their key names. Bear in mind that you only need a unique identifying substring to
select the key you want. GPG performs a pattern search on the string you specify as the key
name in any given command. If the string matches more than one key, all those matching will
be selected. In the following example, the Sendmail string selects matches on the identities of
two keys.

gpg --list-keys "Sendmail"
pub 1024R/CC374F2D 2000-12-14
 Sendmail Signing Key/2001 <sendmail@Sendmail.ORG>
pub 1024R/E35C5635 1999-12-13
 Sendmail Signing Key/2000 <sendmail@Sendmail.ORG>

gpg provides several options for managing secure messages. The e option encrypts messages,
the a option generates an armored text version, and the s option adds a digital signature. You
will need to specify the recipient's public key, which you should already have imported into
your pubring file. It is this key that is used to encrypt the message. The recipient will then be
able to decode the message with their private key. Use the --recipient or -r options to specify
the name of the recipient key. You can use any unique substring in the user's public key name.

The e-mail address usually suffices. You use the d option to decode received messages. In the
following example, the user encrypts (e) and signs (s) a file generated in armored text format
(a). The -r option indicates the recipient for the message (whose public key is used to enrypt
the message).

gpg e -s -a -o myfile.asc -r george@rabbit.mytrek.com myfile
mail george@rabbit.mytrek.com < myrile.asc

You can leave out the ASCII armour option if you want to send or transfer the file as a binary
attachment. Without --armour or -a options, gpg generates an encoded binary file, not an
encoded text file. A binary file can only be transmitted through e-mail as an attachment. As
noted previously, ASCII armour versions usually have an extension of .asc, whereas binary
version use .gpg.

When the other user receives the file, they can save it to a file named something like
myfile.asc, and then decode the file with the -d option. The -o option will specify a file to
save the decoded version in. GPG will automatically determine if it is a binary file or an
ASCII armour version.

gpg -d -o myfile.txt myfile.asc

To check the digital signature of the file, you use the gpg command with the --verify option.
This assumes that the sender has signed the file:

gpg --verify myfile.asc

However, you will need to have the signer's public key to decode and check the digital
signature. If you do not, you will receive a message saying that the public key was not found.
In this case, you will first have to obtain the signer's public key. You could access a key
server that you think may have the public key, or request the public key directly from a Web
site or from the signer. Then import the key as described previously.

You do not have to encrypt a file to sign it. A digital signature is a separate component. You
can either combine the signature with a given file, or generate one separately. To combine a
signature with a file you generate a new version that incorporates both. Use the --sign or -s
commands to generate a version of the document that includes the digital signature. In the
following example, the mydoc file is digitally signed with mydoc.gpg file containing both the
original file and the signature.

gpg -o mydoc.gpg --sign mydoc

If, instead, you want to just generate a separate signature file, you use the --detach-sig
command. The signature file usually has an extension like .sig. This has the advantage of not
having to generate a complete copy of the original file. That file remains untouched. In the
following example, the user creates a signature file called mydoc2.sig for the mydoc2 file.

gpg -o mydoc2.sig --detach-sig mydoc2

To verify the file using a detached signature, the recipient user specifies both the signature file
and the original file.

gpg --verify mydoc2.sig mydoc2

You could also generate a clear sign signature to be used in text files. A clear sign signature is
a text version of the signature that can be attached to a text file. The text file can be further
edited by any text editor. Use the --clearsign option to create a clear signature. The following
example creates a clear signed version of a text file called mynotice.txt.

gpg -o mysignotice.txt --clearsign mynotice.txt
 Note Numerous GUI front ends and filters are available for GnuPG at www.gnupg.org. GPA

(GNU Privacy Assistant) provides a Gnome-based front end to easily encrypt and
decrypt files. You can select files to encode, choose the recipients (public keys to use),
and add a digital signature if you wish. You can also use GPA to decode encoded files
you receive. You can also manage your collection of public keys, the keys on your
keyring file.

 Tip Steganography is another form encryption that hides data in other kinds of objects such as
images. You can use JPEG Hide and Seek software (JPHS) to encode and retrieve data in
a JPEG image (jphide and jpseek). See linux01.gwdg.de/~alatham/stego.html for more
details.

Checking Software Package Digital Signatures

One very effective use for digital signatures is to verify that a software package has not been
tampered with. It is feasible that a software package could be intercepted in transmission and
some of its system-level files changed or substituted. Software packages distributed by Red
Hat, as well as those by reputable GNU and Linux projects, are digitally signed. The signature
provides modification digest information with which to check the integrity of the package.
The digital signature may be included with the package file or posted as a separate file. You
use the gpg command with the --verify option to check the digital signature for a file.

First, however, you will need to make sure that you have the signer's public key. The digital
signature was encrypted with the software distributor's private key. That distributor is the
signer. Once you have that signer's public key, you can check any data you receive from
them. In the case of a software distributor, once you have their public key, you can check any
software they distribute. To obtain the public key, you can check a key server or, more likely,
check their Web site. You can download the Red Hat public key from the Red Hat Web site at
http://www.redhat.com/about/contact.html, as noted previously. Once you have
downloaded the public key, you can add to your keyring with the -import option, specifying
the name you gave to the downloaded key file (in this case, myredhat.asc):

gpg --import redhat.asc
gpg: key CBA29BF9: public key imported
gpg: Total number processed: 1
gpg: imported: 1 (RSA: 1)

To download from a key server instead, you use the --keyserver option and the keyserver
name.

You can use the --fingerprint option to check a key's validity if you wish. If you are
confident that the key is valid, you can then sign it with the -sign-key command. In the
following example, the user signs the Red Hat key, using the string "Red Hat" in the key's

name to reference it. The user is also asked to enter his or her passphrase to allow use of his or
her private key to sign the Red Hat public key.

gpg --sign-key "Red Hat"
pub 1024R/CBA29BF9 created: 1996-02-20 expires: never trust: -/q
(1). Red Hat Software, Inc. <redhat@redhat.com>
pub 1024R/CBA29BF9 created: 1996-02-20 expires: never trust: -/q
 Fingerprint: 6D 9C BA DF D9 60 52 06 23 46 75 4E 73 4C FB 50
 Red Hat Software, Inc. <redhat@redhat.com>

Are you really sure that you want to sign this key
with your key: "Richard Petersen (author) <richlp@turtle.mytrek.com>"
Really sign? yes
You need a passphrase to unlock the secret key for
user: "Richard Petersen (author) <richlp@turtle.mytrek.com>"
1024-bit DSA key, ID 73F0A73C, created 2001-09-26
Enter passphrase:

Once you have the public key, you can check any RPM software packages for Red Hat with
the rpm command and -K option. The following example checks the validity of the xcdroast
and balsa software packages:

rpm -K xcdroast-0.98alpha9-1.i386.rpm
xcdroast-0.98alpha9-1.i386.rpm: md5 OK
rpm -K balsa-1.1.7-1.i386.rpm
balsa-1.1.7-1.i386.rpm: md5 OK

Many software packages in the form of compressed archives, .tar.gz or tar.bz2, will provide
signatures in separate files that end with either the .asc or .sig extension. To check these, you
use the gpg command with the --verify option. For example, the most recent Sendmail
package is distributed in the form of a compressed archive, .tar.gz. Its digital signature is
provided in a separate .sig file. First, you would download and install the public key for
sendmail software obtained from the Sendmail Web site.

gpg --import sendmail.asc

You should then sign the Sendmail public key that you just imported. In this example, the e-
mail address was used for the key name.

gpg --sign-key sendmail@Sendmail.ORG

You could also check the fingerprint of the key for added verification.

You would then download both the compressed archive and the digital signature files.
Decompress the .gz file to the .tar file with gunzip. Then, with the gpg command and the --
verify option, use the digital signature in the .sig file to check the authenticity and integrity of
the software compressed archive.

gpg --verify sendmail.8.12.0.tar.sig sendmail.8.12.0.tar
gpg: Signature made Fri 07 Sep 2001 07:21:30 PM PDT using RSA key ID
CC374F2D
gpg: Good signature from "Sendmail Signing Key/2001
<sendmail@Sendmail.ORG>"

You could also just specify the signature file and gpg will automatically search for and select
a file of the same name, but without the .sig or .asc extension.

gpg --verify sendmail.8.12.0.tar.sig

In the future, when you download any software from the Sendmail site that uses this key, you
just have to perform the --verify operation. Bear in mind though that different software
packages from the same site may use different keys. You would have to make sure that you
have imported and signed the appropriate key for the software you are checking.

Intrusion Detection: Tripwire

When someone breaks into a system, they will usually try to gain control by making their own
changes to system administration files such as password files. They could create their own
user and password information, allowing them access at any time, or simply change the root
user password. They could also replace entire programs, such as the login program, with their
own version. One method of detecting such actions is to use an integrity checking tool like
Tripwire to detect any changes to system administration files. An integrity checking tool
works by first creating a database of unique identifiers for each file or program to be checked.
These can include features such as permissions and file size, but also, more importantly,
checksum numbers generated by encryption algorithms from the file's contents. For example,
in Tripwire, the default identifiers are checksum numbers created by algorithms like the MD5
modification digest algorithm and Snefru (Xerox secure hash algorithm). An encrypted value
that provides such a unique identification of a file is known as a signature. In effect, a
signature provides an accurate snapshot of the contents of a file. Files and programs are then
periodically checked by generating their identifiers again and matching them with those in the
database. Tripwire will generate signatures of the current files and programs and match them
against the values previously generated for its database. Any differences are noted as changes
to the file, and Tripwire then notifies you of the changes.

 Note AIDE (Advanced Intrusion Detection Environment) is an alternative to Tripwire. It
provides easy configuration and detailed reporting.

The Linux version of Tripwire is freely available as an open source product distributed under
the GPL license. Tripwire also provides commercial versions for other operating systems.
You can find out more about Tripwire at www.tripwire.com, and download the most recent
release from www.tripwire.org. Tripwire is included with Red Hat and is discussed in the
Red Hat Reference Manual. Detailed documentation is provided in a series of Man pages.
tripwire discusses the tripwire command and its options. twpolicy describes in detail how
Tripwire rules and directives work in the twpol.txt file. twconfig covers the configuration
variables set in twcfg.txt. twfiles lists the different directories that Tripwire uses such as the
/var/lib/tripwire/report directory that holds Tripwire check results. twadmin describes the
usage of the twadmin command to create and display the policy (tw.pol) and configuration
(tw.cfg) files.

 Note Tripwire is not included in the Publisher's Edition. You can download it from the Red
Hat FTP site.

You should install Tripwire when your system is in a secure state-as in not connected to any
network. On Red Hat, Tripwire is installed as part of the standard installation. However, you

should remain disconnected from a network after the installation while you configure and
initialize Tripwire. Using Tripwire is a continual process of checking the Tripwire database
for changes, making any configuration or policy changes that may be needed, and
reinitializing the Tripwire database to reflect valid changes. The commands and files used in
the Red Hat installation of Tripwire are listed in Table 6-3.

 Note You can also check your log files for any suspicious activity. See Chapter 28 for a
discussion on system logs. /var/log/messages in particular is helpful in checking for
critical events such as user logins, FTP connections, and superuser logins.

Tripwire Configuration

To first use Tripwire, you will have to generate a configuration file and a policy file. These
files are generated by the twinstall.sh script. If you just want to use the standard
configuration, you can generate the files immediately by running the twinstall.sh script.

If you want to customize your configuration and policy files, you will have to first modify
their editable versions in the /etc/tripwire directory. There are two versions of these files.
One is a .txt file that you can edit to customize your configuration, and the other will be
generated by twinstall.sh script using the .txt file. The configuration file will specify the
Tripwire application directories and files, such as the directory where the Tripwire database is
placed and reports are stored. twcfg.txt is the editable version of the configuration file. This
file will already include the standard administrative files. You can edit this file to add any
files of your own. The policy file holds the files, programs, and directories that you want
Tripwire to check. The twpol.txt file is its editable version. You can edit this file to add or
change policies to fit your system's particular needs. Once you have made the changes you
want to the twcfg.txt and twpol.txt files, you can then use the twinstall.sh script to generate
the tw.cfg and tw.pol files. These are the actually configuration and policy files that Tripwire
uses, and, for security reasons, should never be touched.

Table 6-3: Tripwire Commands and Files
Commands and Files Description
tripwire Initialize and perform integrity checking.
twadmin Administer Tripwire configuration and policy files, as well as

Tripwire encryption keys.
twprint Print and display Tripwire database and reports.
siggen Generate new passphrases.
twinstall.sh Generate keys and encrypted configuration and policy files.
/etc/tripwire/tw.cfg Encrypted Tripwire configuration file.
/etc/tripwire/tw.pol Encrypted Tripwire policy file.
/etc/tripwire/twcfg.txt Plain text Tripwire configuration file.
/etc/tripwire/twpol.txt Plain text Tripwire policy file.
/var/lib/tripwire/report Holds Tripwire reports.
/var/lib/tripwire Holds Tripwire databases.

The Tripwire policy file holds rules used to determine what files and programs to monitor and
how they are checked. Rules consist of an object and a property mask. An object is either a
directory or file and its entry in the rule consists of the full pathname for that file or directory.
The property mask is a list of the object's properties to be checked, such as the size,
permissions, or a checksum value like MD5. The object and property mask are separated by a
-> symbol, and the entire rule is terminated by a semicolon. You can only have one rule per
object. The property mask is a series of single-character codes denoting different file and
directory features, such as p for permissions, s for size, t for type, and M for MD5 value. You
can specify whether a property is to be checked or not with the + and - signs. +p says to check
an object's permissions, -p says not to. See the Man page for twpolicy for a complete listing
of the property codes. In the next example, the /chris/myfile object will have its permissions
and size checked:

/chris/myfile -> +ps;

Tripwire also defines several built-in variables that hold standard property sets for different
types of objects. For example, ReadOnly lists standard properties for a file or directory that
should have read-only access. The Dynamic built-in is used for monitoring files that tend to
change. It will check properties like permissions and users that tend not to change, ignoring
those like size and MD5 values that do. IgnoreAll will simply check to see if a file exists or
not, ignoring all other properties. IgnoreNone will apply all properties to a file. This can be
used for providing a high level of security.

/usr/bin -> ReadOnly;
/usr/sbin/slogin -> IgnoreNone
/usr/chris/mydoc -> Dynamic

You can further qualify rules with attributes such as severity to indicate the severity of a
violation or emailto, in which you can specify an e-mail address to which a message is to be
sent in case of a violation. Attributes are entered within parentheses following the rule.
Separate several attributes with commas.

/chris/myfile -> +ps (emailto = chris@turtle.mytrek.com);
/usr/bin -> ReadOnly (severity = 70, emailto = admin@turtle.mytrek.com);

You can also group rules together and apply the same attributes to them all. In this case, the
rules are encased in braces and the attributes are listed in preceding parentheses. With this
feature, you can avoid having to repeat attributes for several files. Also, you can easily add an
attribute for several files at once. In the following example, the /chris/myfile and
/chris/myproject directories are both assigned attributes for an e-mail address and a severity
level:

 (
 severity = 70,
 emailto = chris@turtle.mytrek.com
)
 {
 /chris/myfile -> +ps;
 /chris/myproject -> +sM;
 }

There are four attributes: rulename, emailto, severity, and recurse. The rulename attribute
is often used to group rules under a title that will then be used in the Tripwire reports to list

any violations in that group. The recurse attribute specifies if property checks for a directory
are also applied to its subdirectories. The default is true, and a false value will not check any
files in the directory. In the following example, rulename gives the name Chris Important
Files to the rules listed in the previous example. Be sure to separate attributes with commas.
Also the files and subdirectories in the /chris/myproject directory are not checked.

(
 rulename = "Chris Important Files",
 severity = 70,
 emailto = chris@turtle.mytrek.com
)
 {
 /chris/myfile -> +ps;
 /chris/myproject -> +sM (recurse = false);
 }

Tripwire also supports directives in which you can define variables or rules for certain hosts
or file systems, as well as global variables. This allows an administrator to create a single
policy file to be used on different hosts (see the twpolicy Man page for more details). A
directive begins with @@section. On a standard Red Hat policy file, you will have a directive
for the global variables, GLOBALS, and one for the Linux file system, FS. The GLOBALS
section defines locations of Tripwire files and directories. On Red Hat, the FS section sets the
variables used for different property sets, such as SEC_INVARIANT that is assigned the
properties +tpug to check type, permissions, user, and group. This is used for files and
directories that should not be changed. You will find the following entry in the Red Hat
twpol.txt file:

SEC_INVARIANT = +tpug ;

A variable is evaluated by encasing it with parentheses and preceding it with the $ operator.
$(SEC_INVARIANT) would be use as the property mask in different rules. The following
example says that the /home directory itself should never be changed (those under it can,
recurse = 0):

/home -> $(SEC_INVARIANT) (recurse = 0) ;

On Red Hat, even the built-in variables are also assigned to variables, some with certain
qualifications. In the following example, the properties for ReadOnly are assigned to the
SEC_BIN variable:

SEC_BIN = $(ReadOnly) ; # Binaries that should not change

The most widely used variable is SEC_CRIT, which is set to all the properties with
IgnoreNone, with the SHa (S) and Havel (H) checksum values and the timestamp (a) property
removed:

SEC_CRIT = $(IgnoreNone)-SHa ; # Critical files that cannot change

Dynamic is used for configuration files, and Growing for log files, as shown here:

SEC_CONFIG = $(Dynamic) ; # Config files
SEC_LOG = $(Growing) ; # Files that grow

In addition, variables are set for security values. These include SIG_MED, SIG_LOW, and
SIG_HIGH for noncritical, moderately critical, and severely critical violations. The following
example is a segment of the Red Hat twpol.txt file, showing the rules for kernel
administrative programs:

################################## #

Kernel Administration Programs # #

##################################

(
 rulename = "Kernel Administration Programs",
 severity = $(SIG_HI)
)
{
 /sbin/adjtimex -> $(SEC_CRIT) ;
 /sbin/ctrlaltdel -> $(SEC_CRIT) ;
 /sbin/depmod -> $(SEC_CRIT) ;
 /sbin/insmod -> $(SEC_CRIT) ;
 /sbin/insmod.static -> $(SEC_CRIT) ;
 /sbin/insmod_ksymoops_clean -> $(SEC_CRIT) ;
 /sbin/klogd -> $(SEC_CRIT) ;
 /sbin/ldconfig -> $(SEC_CRIT) ;
 /sbin/minilogd -> $(SEC_CRIT) ;
 /sbin/modinfo -> $(SEC_CRIT) ;
 /sbin/sysctl -> $(SEC_CRIT) ;
}

E-mail entries are not included in the Red Hat attributes for different rule groups. If you want
Tripwire to notify you by e-mail when a certain violation occurs, you will have to edit the
twpol.txt file and insert emailto attributes into the attribute list for those rule groups. For
example, for the previous example you could have Tripwire notify the admin user when a
kernel program is violated. Be sure to place a comma at the end of the preceding attribute-in
this case, the severity attribute:

(
 rulename = "Kernel Administration Programs",
 severity = $(SIG_HI),
 emailto=admin@turtle.mytrek.com
)

The Tripwire configuration file, twcfg.txt, is already set up for a Red Hat Linux installation.
It will contain a number of Tripwire variables that you can modify should you wish. The
DBFILE variable holds the directory that contains the database file. REPORTFILE specifies
the directory where reports are stored. POLFILE contains the policy file. SITEKEYFILE and
LOCALKEYFILE specify the location of your local and site key files.

The twinstall.sh script will create digitally signed configuration and policy files. To do this, it
will prompt you for local and site passphrases. The passphrases are passwords you will need
to create a Tripwire database and to access Tripwire reports. You are then prompted to enter
the site and local passphrases to generate the configuration and policy files:

/etc/tripwire/twinstall.sh

twinstall.sh actually runs a siggen command to create your passphrases and then the
twadmin command to create your policy and configuration files. If you later want to change
the configuration or policy files, you can run twadmin directly, without changing your
passphrases. If you want to just change your passphrases, you can run the siggen command.
To replace both files and both passphrases, you can just run twinstall.sh again.

Should you later want to make changes to the Tripwire configuration file, you can edit the
/etc/tripwire/twcfg.txt file and use it with the twadmin command to create a new signed
tw.cfg file, as shown here:

twadmin --create-cfgfile /etc/tripwire/twcfg.txt

Creating a new policy file is more complicated and is covered in the policy update section.

Using Tripwire

Once the configuration and policy files have been created, you can create the database of
signatures for your monitored files and programs by invoking Tripwire with the --init option.
You will initially be prompted to enter your local passphrase, which you specified when you
ran twinstall.sh:

tripwire --init

The Tripwire datebase is kept in /var/lib/tripwire and given the name of the host with the
extension .twd. For example, the Tripwire database for turtle.mytrek.com will be
/var/lib/tripwire/turtle.mytrek.com.twd.

 Note It is recommended, for strong security, to place the Tripwire database on read-only
media, like a floppy disk or CD-ROM. You can reconfigure specifying a new Tripwire
database directory, or use the -d option to manually specify the location of the Tripwire
database with your Tripwire commands.

Now that your database is created, you can use Tripwire to periodically check the integrity of
your system. You can do this manually with the --check option. You could also set up
Tripwire --check commands as cron jobs to be run automatically at specified times. Red Hat
will place a Tripwire --check command in the /etc/cron.daily file and will run Tripwire daily:

tripwire --check

Tripwire will check all the files listed in your policy file and generate a report. Tripwire
reports are placed in files bearing as their name the hostname, date, and time of the report,
with the extension .twr. For example, the report generated on August 12, 2001 at 10:29:54
will have the name 20010812-102954.twr. These files are kept in the
/var/lib/tripwire/report directory. The report will list any violations, noting a severity level
and indicating whether files were added, removed, or modified.

 Note If you performed a standard install, you will notice many error messages for missing
files. Red Hat assumes a full installation and has set the Tripwire policy file to check for
all Red Hat software files. Many of these will be in the Root Config Files rule and in the
System Boot Changes rule (daemons). You will have to edit the twpol.txt file to remove
these entries, and then generate a new policy and database file (see policy update

section).

To view reports, you use the twprint command with the --print-report option. You will have
to specify the file you want with the -r option as well. The report is displayed on the standard
input, scrolling across your screen. You can redirect it to a file to save it, or pipe it to the
more or less commands to view it screen by screen. The following example opens the
20010812-102954.twr report, piping the output to the more command:

twprint --print-report -r /var/lib/tripwire/report/20010812-102954.twr |
more

You can also use twprint to query the database for information about particular files. Use the
--print-dbfile option and the filename:

twprint --print-dbfile /etc/passwd

As your system changes with files being modified, your Tripwire database can become
outdated. You can update the Tripwire database to incorporate those reported violations as
correct entries by using the --update option. You will have to specify the particular report file
that holds the errors reports for the valid data.

tripwire --update -r /var/lib/tripwire/report/20010812-102954.twr

Tripwire will first open the file in an editor with those selected as updates to be incorporated
having an [x] in front of their entries (unselected ones will have empty brackets, []). Should
you notice any valid violations that are marked for update, you can deselect them by
removing the preceding x. When finished, save and quit the file with the Editor's save
command (the EDITOR variable in the twcfg.txt file determines what editor to use-Vi by
default). You are then prompted to enter a local passphrase for your local key.

 Note To control the monitoring of files that no longer exist or are newly installed on your
system, you will have to change the policy file (see the next section). The update
procedure only deals with modification or feature changes.

Changing Policies

As your system changes over time, you may want to add or remove files that you want to have
monitored by Tripwire. The situation becomes aggravated as you install and remove software,
adding files not covered by Tripwire and removing those that no longer exist. Tripwire will
report any removed files as violations. You can easily add or remove files that Tripwire
monitors by inserting or deleting entries in the Tripwire policy file. You can also change the
level of checking for different files. You do not edit the Tripwire policy file directly. Instead
you edit the text version, /etc/tripwire/twpol.txt. If you are removing missing file entries, it
is advisable to just comment them out. If you later install the software for them, you will just
have to remove the comment. For example, to remove the entries for innd (the INN news
server) and for tux (the Tux Web server), just insert a # symbol before their entry as shown
here:

/var/lock/subsys/innd -> $(SEC_CONFIG) ;
/var/lock/subsys/tux -> $(SEC_CONFIG) ;

Once you have made your changes, you issue the following command to generate a new
signed tw.pol policy file that Tripwire will actually use. Be sure to specify the text version
you are using.

twadmin --create-polfile /etc/tripwire/twpol.txt

You will then be prompted to enter the site key. A new tw.pol file is then generated. You will
then have to regenerate a new version of the Tripwire database. First remove the old one, and
then initialize a new one:

rm /var/lib/tripwire/turtle.mytrek.com.twd
tripwire --init

Alternatively, you can combine the process by using the tripwire command with the --
update-policy option to create your policy and update your database:

tripwire --update-policy /etc/tripwire/twpol.txt

Setting Up a Simple Firewall with lokkit

The process of setting up and maintaining a firewall can be complex. To simplify the process,
you can use a firewall configuration tool, such as lokkit. lokkit provides a configuration
interface for maintaining simple firewall rules. With lokkit, you can select the level of firewall
protection as High, Medium, or None (see Figure 6-2). You can run lokkit by entering the
command lokkit at a command line or in a terminal window. See Chapters 7 and 40 for
detailed information on setting up a firewall.

Figure 6-2: lokkit
 Tip You can also run gnome-lokkit, which will prompt you for different settings using

Gnome dialog boxes.

An advanced option lets you select different services to be allowed such as mail, the secure
shell, FTP, the Web server, and the FTP server (see Figure 6-3). For any service that is not
listed, you can enter its name and the protocol it uses manually, such as imap:tcp for the
IMAP mail service using the TCP protocol.

Figure 6-3: lokkit advanced options

lokkit uses the older IP Chains firewalling rules and places them in the
/etc/sysconfig/ipchains file.

Should you want to remove your firewall, you can use lokkit and select the No Firewall
option. lokkit is also used by the installation program to set up your firewall, enabling
ipchains.

 Note lokkit only supports the older IP Chains, not the newer IP Tables. If you want to use IP
Tables, you first have to remove the /etc/sysconfig/ipchains file and then use the
Service Configuration tool, chkconfig, or setup to remove ipchains as a startup service.
You can then set up iptables as a startup service and create an /etc/sysconfig/iptables
file for its rules (see Chapter 40).

If you need more refined firewall protection than lokkit can provide, you can use the packet-
filtering program iptables in which you can manually list your firewall rules. With the
iptables command, you can enter rules with which you can control access to your system.
iptables has been developed by the Netfilter Project at netfilter.samba.org. The iptables
program is the successor to ipchains, used on older versions of Linux. See Chapter 40 for a
detailed description of iptables.

Proxies (Squid)

Squid is a proxy-caching server for Web clients, designed to speed Internet access. It
implements a proxy-caching service for Web clients that caches Web pages as users make
requests and provides security controls for Web site access. Squid is supported and distributed
under a GNU Public License by the National Laboratory for Applied Network Research
(NLANR) at the University of California, San Diego. The work is based on the Harvest
Project. You can obtain current source code versions and online documentation from the
Squid home page at http://squid.nlanr.net and the Squid FTP site at ftp.nlanr.net.

 Tip You can also configure Squid using Linuxconf or Webmin. In Webmin, select the Squid
Proxy Server from the Servers page.

To configure Squid to provide security to your Web server, you first define access control
lists (ACL) using the acl command, in which you create a label for the systems on which you
are setting controls. You then use commands such as http_access to define these controls.
You can define a system, or a group of systems, according to several acl options, such as the

source IP address, the domain name, or even the time and date. For example, the src option is
used to define a system or group of systems with a certain source address. To define a mylan
acl entry for systems in a local network with the addresses 192.168.1.0 through
192.168.1.255, use the following ACL definition:

acl mylan src 192.168.1.0/255.255.255.0

Once these are defined, you can use an ACL definition in a Squid option to specify a control
you want to place on those systems. For example, to allow access by the mylan group of local
systems to the Web through the proxy, use an http_access option with the allow action
specifying mylan as the acl definition to use, as shown here:

http_access allow mylan

By defining ACLs and using them in Squid options, you can tailor your Web site with the
kind of security you want. See Chapter 18 for a more detailed discussion of Squid.

Secure Shell (SSH)

Although a firewall can protect a network from attempts to break in to it from the outside, the
problem of securing legitimate communications to the network from outside sources still
exists. A particular problem is one of users who want to connect to your network remotely.
Such connections could be monitored, and information such as passwords and user IDs used
when the user logs into your network could be copied and used later to break in. One solution
is to use SSH for remote logins and other kinds of remote connections such as FTP transfers.
SSH encrypts any communications between the remote user and a system on your network.

SSH was originally designed to replace remote access operations, such as rlogin, rcp, and
telnet (see Chapter 18) as well as FTP. The ssh-clients package contains corresponding SSH
clients to replace these applications. With slogin or ssh, you can log in from a remote host to
execute commands and run applications, much as you can with rlogin and rsh. With scp, you
can copy files between the remote host and a network host, just as with rcp. With sftp you can
transfer FTP files secured by encryption.

Unlike PGP, SSH uses public key encryption for the authentication process only. Once
authenticated, participants agree on a common cipher to use to encrypt transmission.
Authentication will verify the identity of the participants. Each user who intends to use SSH
to access a remote account first needs to create the public and private keys along with a
passphrase to use for the authentication process. A user then sends his or her public key to the
remote account they want to access and installs the public key on that account. When the user
attempts to access the remote account, that account can then use the user's public key to
authenticate that the user is who he or she claims to be. The process assumes that the remote
account has set up its own SSH private and public key. For the user to access the remote
account, he or she will have know the remote account's SSH passphrase. SSH is often used in
situations where a user has two or more accounts located on different systems and wants to be
able to securely access them from each other. In that case the user already has access to each
account and can install SSH on each, giving each its own private and public keys along with
their passphrases.

You create a SSH public and private keys and select a passphrase, with the ssh-keygen
command. The ssh-keygen command prompts you for a passphrase, which it will use as a
kind of password to protect your private key. The passphrase should be several words long.
The ssh-keygen command generates the public key and places it in your .ssh/identity.pub
file; it places the private key in the .ssh/identity file. If you need to change your passphrase,
you can do so with the ssh-keygen command and the -p option. Each user will have his or her
own SSH configuration directory, called .ssh, located in their own home directory. The public
and private keys, as well as SSH configuration files, are placed here.

 Note The .ssh/identity file name is used in SSH version 1, still distributed by default in Red
Hat 7.2. SSH version 2 uses a different file name, .ssh/id_dsa. The authorized keys file
is also slightly different, .ssh/authorized_keys2.

A public key is used to identify a user and its host. You use the public key on a remote system
to allow that user access. The public key is placed in the remote user account's
.ssh/authorized_keys file. Recall that the public key is held in the .ssh/identity.pub file. If a
user wants to log in remotely from a local account to an account on a remote system, he or she
would first place their public key in the .ssh/authorized_keys file in the account on the
remote system they wants to access. If the user larisa on turtle.mytrek.com wants to access
the aleina account on rabbit.mytrek.com, larisa's public key from
/home/larisa/.ssh/identity.pub first must be placed in aleina's authorized_keys file,
/home/aleina/.ssh/authorized_keys.

With ssh, you can log in from a local site to a remote host on your network and then send
commands to be executed on that host. ssh is also capable of supporting X Window System
connections. This feature is automatically enabled if you make an ssh connection from an X
Window System environment, such as Gnome or KDE. A connection is set up for you
between the local X server and the remote X server. The remote host sets up a dummy X
server and sends any X Window System data through it to your local system to be processed
by your own local X server.

To log in with SSH, you enter the ssh command with the address of the remote host, followed
by an -l option and the login name (username) of the remote account you are logging into.
You will then be prompted for the remote account's SSH passphrase. The following example
logs into the aleina user account on the rabbit.mytrek.com host:

ssh rabbit.mytrek.com -l aleina

You use scp to copy files from one host to another on a network. Designed to replace rcp, scp
actually uses ssh to transfer data and employs the same authentication and encryption. If
authentication requires it, scp requests a password or passphrase. Directories and files on
remote hosts are specified using the username and the host address before the filename or
directory. The username specifies the remote user account that scp is accessing, and the host
is the remote system where that account is located. You separate the user from the host
address with an at sign (@), and you separate the host address from the file or directory name
with a colon (:). The following example copies the file party from a user's current directory
to the user aleina's birthday directory, located on the rabbit.mytrek.com host:

scp party aleina@rabbit.mytrek.com:/birthday/party

Of particular interest is the -r option, which enables you to copy whole directories. In the next
example, the user copies the entire reports directory to the user justin's projects directory:

scp -r reports justin@rabbit.mytrek.com:/projects

Chapter 7: Setting Up a Local Area
Network with Red Hat
Overview

Creating a local network of your own involves just a few simple steps. You can set up a Red
Hat system to server as the main server for your own local area network (LAN), providing
services like e-mail, a Web site, or shared printers. You can even connect different types of
systems such as those running Windows or the Mac OS. You can also configure you system
to serve as a gateway to the Internet, through which all your other systems will connect. In
fact, you could have one Internet connection on your gateway that each host on your network
could use. A few security precautions allow your system to work as firewall, protecting your
local hosts from outside attacks. You could also set up a very simple configuration to provide
Web access only. This chapter will cover the basic procedures for setting up such a network.
Later chapters in this book will cover these topics in detail.

Your local area network consists of a collection of host systems connected to the main host
running Red Hat Linux. This main host will be referred to as the gateway. The steps for
setting up a local network involve the following:

• Setting up and configuring the Ethernet cards on each system. Your Red Hat gateway
should have two Ethernet cards.

• Setting up a proxy server to provide direct Web access (DNS not required).
• Setting up your DNS server on the Red Hat gateway.
• Configuring your DNS server to allow all other local hosts to access the Internet.
• Setting up firewall protection.
• Enabling e-mail services.
• Setting up local host access to the Internet through DNS (proxy server not required).
• Sharing printers with Windows hosts.
• Setting up a local Web site.

Along with setting up your connections, you will have to run at least one service on the main
gateway computer you set up for your network. You can start and stop a service with the
service command, and have the service automatically started with the Text Mode Setup
utility. For a simple network, you should have the DNS and Network services running. If you
have Windows systems on your network and you want to share printers with them, you will
need the Samba service. The Network, Squid, Sendmail, DNS, and Samba may have to be
restarted as you configure them. You will have to know the names used for the DNS,
Sendmail, Squid, and Samba server programs to restart them with the service tool. They are
shown here. In addition, you will have to add a firewall rule to enable your local hosts to
access the Internet through your firewall.

Service Name Service Program

Service Name Service Program
Domain Name Service (DNS) named
Samba smb
Network connections network
Firewall iptables
Squid squid
Sendmail sendmail

You use the start, stop, and restart arguments to start, stop, and restart a service. To restart
the DNS service you would use the following:

service named restart

To have a service start automatically, select the Text Mode Setup Tool from the Gnome
System menu, then use the arrow keys to move down to the System Services entry and press
ENTER. This will list the different service programs such as smb and named. To start the
DNS service automatically, use the arrow keys to move to the named entry and press the
SPACEBAR to select it (some services may already be selected). Use the TAB key to move
to the OK button and press ENTER.

Physical Configuration

To set up the physical connections between different computers on your system, you will need
to install an Ethernet device on each. Some computers, such as Mac systems, may have this
device built-in. Many computers may already have an Ethernet card installed. Most Ethernet
configurations use lightweight cables to connect computers, though there are some that are
wireless. The computers on a network are referred to as hosts. To connect several hosts
together on a network, you will need Ethernet cables for each and a hub that will connect
them all together. To connect up a host, connect one end of the cable to its Ethernet card and
the other to the hub. A hub will have several plugs, one for each host on your network. For a
larger network, you can connect several hubs together.

In the configuration described here, the host running a Red Hat Linux system will be used as
the main server and gateway for the local network. Here, you will install various servers like
the DNS and Web servers. This host also will function to connect all the local hosts to the
Internet (or a larger network). To do this effectively, this gateway/server host will need an
Ethernet card and an Internet connection device such as a modem, DSL (digital subscriber
line) modem, or another Ethernet card. The type of device you use depends on the type of
service that your Internet service provider (ISP) gives you. Some provide only modem
connections in which you dial in to connect to the Internet (AOL connections do not work for
a LAN). Those that provide DSL connections will use a special DSL modem to allow you
connect to the Internet. Both connect to a phone outlet. Cable modems, however, work like
Ethernet networks. You need a second Ethernet network card that you connect to the cable
modem. This is also the case if you are connecting directly to a larger Ethernet network. The
examples in this chapter use a second Ethernet connection.

 Note Another kind of network configuration uses a coaxial cable (thin Ethernet cable) to
which hosts connect directly instead of to a hub.

When you start up your Red Hat system, Red Hat will automatically detect your Internet
connection device and install the appropriate module for it. For some older Ethernet cards,
you may have to perform special configuration tasks, such as making entries in
/etc/modules.conf with certain parameters (see "Ethernet Parameters" in the Red Hat
Reference Guide).

Web Access with Squid

If you want only to provide your hosts Internet Web access, you can do so by just running the
Squid server on your gateway host. You will not have to set up and run a DNS server. Squid
is a proxy server and can handle the Internet connection between a browser and Internet sites
directly. You only have to configure the network connections for each host, providing their IP
address. Squid is included with the basic installation.

 Note Squid also provides extensive security options, making it advisable to control Web
access through a proxy server like Squid.

Once it is installed on the gateway host, you then have to configure Squid to allow access by
hosts on your network. Edit the /etc/squid/squid.conf file and place the following entries in
the security section.

acl mylan src 192.168.0.0/255.255.255.0
http_access allow mylan

The squid.conf file is a very large file with default settings commented in detail. An easy way
to make your entries is to search for the corresponding localhost entries and add your network
ones below them. The acl entry for localhost will begin with "acl localhost". The one for
access will begin with "http_access allow localhost". Squid configuration is discussed in
detail in Chapter 27. You can also use Linuxconf or Webmin to configure Squid.

Once it is configured, you can run Squid with the service command.

service squid start

Use chkconfig to have it start automatically when you boot.

chkconfig --level 35 squid on

When configuring a Web browser, select the Proxy option and enter for the proxy server, the
IP address of the gateway running Squid and port 3128. On Netscape select the Proxy entry
under Advanced in the Options panel, and then view the manual proxy connections. For
example, using the sample network described in this chapter, the Squid proxy server would be
running on 192.168.0.1 and use port 3128. So the entry used in Web browsers would be the
following for the different servers:

192.168.0.1

And then use 3128 for the port:

3128

Now any user on your network with a correctly configured browser can access the Web.

DNS Setup

Now that your local network is physically set up, your Red Hat gateway/server needs to run
certain services to allow your hosts to communicate over the network. You first have to
configure and run a Domain Name Service (DNS), which will allow all the hosts on your
local network to identify each other using a hostname. This involves several steps:

1. Decide on the IP addresses to assign to each local host. Use 192.168.1 as the network
address.

2. Decide on the domain name for your local network.
3. Decide on the hostname for each host on your network.
4. Each host has to be configured with its IP address and domain name address.
5. On the Red Hat gateway/server, configure a DNS server listing each host's IP address

and hostname.
6. Start the DNS service.

All hosts on the Internet are identified by their IP addresses. When you send a message to a
host on the Internet, you must provide its IP address. Using a sequence of four numbers of an
IP address, however, can be difficult. They are hard to remember, and it's easy to make
mistakes when typing them. To make identifying a computer on the Internet easier, the
Domain Name Service (DNS) was implemented. The DNS establishes a fully qualified
domain name address for each IP address. The fully qualified domain name consists of the
name of the host and the network (domain) that it belongs to. Whenever you use that name, it
is automatically converted to an IP address, which is then used to identify that Internet host.
The fully qualified domain name is far easier to use than its corresponding IP address. For
example, the name www.linux.org has an IP address of 198.182.196.56. A DNS server will
translate www.linux.org into its IP address, 198.182.196.56.

In Figure 7-1 the user at rabbit.mytrek.com wants to connect to the remote host
lizard.mytrek.com. rabbit.mytrek.com first sends a request to the network's DNS server-in
this case, turtle.mytrek.com-to look up the name lizard.mytrek.com and find its IP address.
It then returns the IP address for lizard.mytrek.com, 192.168.0.3, to the requesting host,
rabbit.mytrek.com. With the IP address, the user at rabbit.mytrek.com can then connect to
lizard.mytrek.com.

Figure 7-1: DNS server operation

You can then set up domain name services for your network by running a DNS server on one
of the machines. This machine becomes your network's DNS server. You can then give your
machines fully qualified domain names and configure your DNS server to translate the names
to their corresponding IP addresses. As shown in Figure 7-2, for example, you could give the
machine 192.168.0.1 the name turtle.mytrek.com, and the machine 192.168.0.2 the name
rabbit.mytrek.com. You can also implement Internet services on your network such as FTP,
Web, and mail services by setting up servers for them on your machines. You can then
configure your DNS server to let users access those services using fully qualified domain
names. For example, for mytrek.com network, the Web server could be accessed using the
name www.mytrek.com.

Figure 7-2: DNS server and network
 Note Instead of a Domain Name Service, you could have the /etc/hosts files in each machine

contain the entire list of IP addresses and domain names for all the machines in your
network. But, for any changes, you would have to update each machine's /etc/hosts file.

IP Addresses

Most networks, including the Internet, use a set of network protocols called TCP/IP, which
stands for Transmission Control Protocol/Internet Protocol. On a TCP/IP network such as the
Internet, each computer is given a unique address called an IP address. The IP address is used
to identify and locate a particular host-a computer connected to the network. It consists of a
number, usually four sets of three numbers separated by periods. An example of an IP address
is 192.168.0.1.

You will have to assign an IP address to each host on your network. The IP address consists
of a number composed of four segments separated by periods. Depending on the type of
network, several of the first segments are used for the network address and several of the last
segments are used for the host address. For a small local network, the first three segments are
the computer's network address and the last segment is the computer's host ID (as used in
these examples). For example, in the address 192.168.0.2, 192.168.0 is the network address
and 2 is the computer's host ID within that network. Together, they make up an IP address
with which the computer can be addressed from anywhere on the Internet. IP addresses,
though, are difficult to remember and easy to get wrong.

To set up a DNS server for a local area network (LAN) whose hosts are not directly connected
to the Internet, you would use a special set of IP numbers reserved for such non-Internet
networks (also known as private networks or intranets). This is especially true if you are
implementing IP masquerading, where only a gateway machine has an Internet address, and
the others make use of that one address to connect to the Internet. For a small network (254
hosts or less), these are numbers that have the special network number 192.168.0, as used in
these examples. If you are setting up a LAN, such as a small business or home network, you
are free to use these numbers for your local machines. For a local network, assign IP
addresses starting from 192.168.0.1. The host segment can range from 1 to 254, where 255 is
used for the broadcast address. If you have three hosts on your home network, you can give
them the addresses 192.168.0.1, 192.168.0.2, and 192.168.0.3.

The network address for such a network would be the first three segments of the IP address,
192.168.0. The network netmask would cover those first three segments, using the number
255.255.255.0. The network netmask is used to determine the host and network parts of an IP
address. The broadcast address is used to allow an administrator to contact all hosts at once.
You would then use these three IP addresses when configuring a host.

Network IP address 192.168.0.0
Network netmask 255.255.255.0
Host IP addresses From 192.168.0.1 to 192.168.0.254
Broadcast address 192.168.0.255

In the sample network used in these examples, there are three hosts, each with its own IP
addresses and hostnames listed here. The network address, netmask, and broadcast address are
the same as those listed above:

192.168.0.1
192.168.0.2
192.168.0.3

Figure 7-3 shows the format of the sample network with their Ethernet connections and IP
addresses, along with their hostnames.

Figure 7-3: Sample local network Ethernet connections, IP addresses, and hostnames

IP Addresses for the Gateway

Though it may look like a single IP address is assigned to an entire computer, it is important
to realize that this is not actually the case. An IP address is really assigned to a network device
such as an Ethernet card or DSL modem. Ordinary computers on a network will have only
one network device, giving them only one IP address. However, a gateway computer will
normally have at least two network devices, each with its own IP address. The device used for
the local network will have the IP address you decided to give it. The device used for the
Internet connection will have an IP address assigned to it by your ISP. For example, in the
sample network used in these examples, the computer used as the gateway will have two
Ethernet cards, one for the local network and one for the Internet. Each will have its own IP
address. The Ethernet card used for the local network will have the address 192.168.0.1, and
the one used for the Internet connection will have the address 10.0.0.1 assigned by the ISP (a
fabricated address used for this example):

10.0.0.1

Along with its IP address, each device will have its own hostname, as described in the next
section. The Ethernet card for the local network will have the hostname you decided to give it,
and the Ethernet card connected to the Internet will have a hostname assigned to it by your
ISP. The hostnames used in these examples are turtle.mytrek.com for the local Ethernet card
and myhost.my-internet-isp.com.

The Internet connection device on the gateway will either use a static or dynamic IP address.
A static IP address, such as those used for cable and DSL modems, will remain the same. This
is the IP address you would assign to your Internet network device. The sample network
described here uses a static address, 10.0.0.1. If your Internet connection device is a modem
(in some cases, also DSL), your IP address is dynamic. Your ISP assigns you a different one
each time you connect from a pool it keeps on hand. Since your Internet IP address keeps
changing, you do not know what it will be any given time you connect. For this situation,
when you have to reference the Internet IP address in your configurations, you reference the
Internet network device instead.

Domain Name

Next you will have to decide on a domain name for your local network. The domain name is
the name used to identify your network. It will be translated into the network part of the IP
address, the first three segments. The domain name can be any name you want to give it. The
extension is used to denote the type of domain:

domain-name.extension

The following is the domain name for a local network called mytrek:

mytrek.com

Hostnames will be attached to the front of the domain name to provide a complete domain
name address for a particular host computer. This is referred to as the Fully Qualified Domain
Name (FQDN), but actually references a particular host.

Hostnames

For the hosts on your local network, you need to create your own hostnames. The hostname
itself can be any name you choose. The term "hostname" is also used to refer to the fully
qualified domain name, also referred to as the full hostname. This consists of the hostname
attached to the domain name. On a large network such as the Internet, the host is referenced
with its fully qualified domain name. The full hostname consists of the hostname, the name
you gave to your computer; a domain name, the name that identifies your network; and an
extension that identifies the type of network you are on. Here is the syntax for the fully
qualified domain name:

host-name.domain-name.extension

In the following example, the fully qualified domain name references a computer called turtle
on a network referred to as mytrek. It is part of a commercial venture, as indicated by the
extension com:

turtle.mytrek.com

For hosts within a local network, hosts can reference each other using just their hostname,
without the domain name or extension:

turtle
 Note For hosts connected directly to the Internet, their domain name and IP addresses are

officially registered with an Internet domain name registry like the American Registry
for Internet Number (ARIN) so that each computer on the Internet can have a unique
name. This is handled by your ISP, who will then give your computer a unique
hostname with the ISP's domain name.

Configuring Hosts

For each host on your network, you will have to enter network configuration information such
as the IP address and hostname that you decided to give this host. Other information like the
netmask and the host that will run the local network's DNS server will also be needed.

The sample network described here uses three hosts in the domain mytrek.com with the IP
addresses shown here:

turtle.mytrek.com 192.168.0.1
rabbit.mytrek.com 192.168.0.1
lizard.mytrek.com 192.168.0.1

In addition, the gateway, turtle.mytrek.com, will have another Ethernet card that functions as
the Internet connection device. It will have the hostname and IP address shown here:

myhost.my-internet-isp.com 10.0.0.1

Linux Hosts

To configure any Linux hosts on your network, you just follow the network configuration
instructions in Chapter 5. For Red Hat systems, you can use netcfg, the network configuration

tool. Be sure to specify that the system holding your Internet connection is specified as your
gateway. For example, the rabbit.mytrek.com host has to have its DNS name and its IP
address (192.168.0.2) entered in its /etc/hosts file. You do this on netcfg using the Hosts
panel and entering the DNS name and the IP address. You also have to specify the interface
used and its IP address. On netcfg, you do this by clicking on the Interface panel and entering
the Ethernet card device name (eth0) and its IP address. The gateway it will use is
turtle.mytrek.com at 192.168.0.1. On netcfg, you do this by clicking on the Routing panel
and entering the IP address of the gateway in the Default Gateway box. The gateway
computer will have a slightly different configuration in that you will also have to add Internet
connection information. With netcfg, on the Names panel you add the DNS name and IP
address given by your ISP for your host. On the Interface panel, add the network device used
for the Internet connection, giving its device name and IP address assigned by the ISP. In this
example, it is the second Ethernet card, eth1, with the IP address 10.0.0.1. If you are using a
dial-up modem and your ISP provides you with a dynamic IP address, you simply specify the
Internet device, such as ppp0, instead of the IP address. On the Routing panel, you enter the
gateway used by the ISP in the Default Gateway box-in this example, it is 10.0.24.1. Do not
use the gateway for your local network. Also, be sure to click the check box labeled Network
Packet Forwarding to enable your local hosts to access the Internet.

The DNS servers also have to be specified in the /etc/resolv.conf file. You can do this with
netcfg on the Names panel. In this example, the DNS server for the local network hosts would
be 192.168.0.1, turtle.mytrek.com. The gateway host with the Internet connection would
also have any DNS servers provided by the ISP. So the /etc/resolve.conf file on
turtle.mytrek.com will list itself (192.168.0.1), the DNS server for the local network, and
any DNS servers provided by the ISP it is connected to. You will see later that the local host
can connect through the gateway host to access the Internet and use the ISP DNS servers as if
they were the gateway host.

 Note You can also list the ISP DNS servers on your local hosts.

Windows Hosts

To configure a Windows host, you need to access the TCP/IP panel that controls its Ethernet
card. On Windows 95/98/ME, double-click on the Network icon in the Control Panel window.
If there is already a TCP/IP entry for your Ethernet card, click on it. If not, you need to add
one by selecting the Ethernet card entry and clicking on the Add button. Click on Protocol to
open the Select Network Protocol window, then click Microsoft and double-click TCP/IP. A
TCP/IP entry for the Ethernet card will appear.

Double-clicking on the TCP/IP entry opens a TCP/IP Properties window with several panels.
Click on IP Address and enter the address you decided to give this host, along with the
network mask, 255.255.255.0. Click the DNS Configuration tab and enter the IP address of
the DNS server-in this example, it is 192.168.0.1. Click the Gateway tab and enter the IP
address for the Linux gateway host-in this example, it is 192.168.0.1.

On Windows 2000, NT, and XP, you select Network and Dialup connections from the
Settings menu. This folder will list network connection icons for all of your network
connection devices such as Ethernet cards or modems. A local area connection icon will be
listed for the Ethernet card connected to your local network. Double-click on it to open a
status window, and then click on the Properties button to open the Local Area Connection

Properties window. Click on Internet Protocols in the Components list and click the Properties
button. In the Internet Properties window, you can enter the IP addresses for the host address,
netmask (subnet mask), default gateway, and DNS server. In the sample network, assuming
that lizard is a Windows system, you would enter 192.168.0.3 for the IP address,
255.255.255.0 for the netmask, 192.168.0.1 for the default gateway, and 192.168.0.1 for the
DNS server.

To set the computer host and domain name, click on System in the Control Panels and select
the Network Identification panel. Click the Properties button to enter the hostname and the
domain name.

Checking IP Configurations

Once you have set up your connections and configured all your hosts, you can see if the
physical and host configurations are working by trying to contact them with the ping
command. From a host computer, use the ping command with the IP address of other hosts to
see if they can be accessed. If an IP address is not found, that host is either not connected, its
connection device is not working, or its network configuration is faulty. If the connection
device is not working, it may require a different driver or certain parameters specified.

ping 192.168.0.2

If you need to make changes, you can just restart the network service to have them take effect.

service network restart

Configuring the DNS Server

To configure the DNS server, you will have to enter the IP addresses and hostnames for your
different hosts in the DNS configuration file. You can do so easily with the Bind
Configuration tool. Bind is the kind of DNS software used on most networks. Select bindconf
from the Gnome System menu. You will need to create two zone configurations: a forward
master zone and a reverse master zone.

 Note Any computer on the Internet can maintain a file that manually associates IP addresses
with domain names. On Linux systems, this file is called the /etc/hosts file. Here, you
can enter the IP addresses and domain names of computers you commonly access.
Using this method, however, each computer needs a complete listing of all other
computers on the Internet, and that listing must be updated constantly.

Your forward master zone is where you enter your main DNS configuration entries for the
host domain names and their IP addresses. Click the Add button and select Forward Master
Zone. You will initially be asked to enter a domain name. Enter the domain name you decided
on for your local network, such as mytrek.com, as shown here:

A window then opens labeled Master Zone with several entries for your DNS server (see
Figure 7-4). Default settings based on the domain name you previously entered have already
been entered for you. The Name box will hold the domain name you just specified.
File_Name is the name for the master zone file and will be the name of the domain along with
the extension .zone. The e-mail address is the address of the person managing the DNS
server, by default set to the root user. Feel free to change this to another user's address. The
Primary Name Server entry will have an @ as its default. The @ symbol merely represents
the name of the DNS server. The Serial Number field will have an initial value of 1. It will
increment automatically whenever you make changes to the configuration files. The Time
Settings button opens a dialog box where you can set refresh, retry, and expiration dates. You
can leave these as they are. These, as well as the other settings, are covered in detail in
Chapter 25.

Figure 7-4: bindconf Master Zone screen

In the Records section of the Master Zone window, you add and edit the host and domain
entries. A domain entry will already be added for you. It will bear the name of your domain.
You will have to edit this entry to specify the host running the DNS server. If your network
has a mail server, as discussed in Chapter 26, then you would enter that here also. The host
running the DNS server is referred to as the name server. Usually these are the same. Select
the entry and click the Edit button. This opens a window with two sections, one for the name
servers and one for the mail servers (larger networks could have several mail servers and
slave name servers). Figure 7-5 shows the domain window with two entries added for the
name server and the mail server. For a small network, you would not normally have a mail

server. Each host would operate as its own mail server and does not need to be specified in the
DNS configuration. Larger networks that have centralized mail service operations would
make use of DNS mail entries to configure mail delivery on their network (see Chapter 26 for
more details).

Figure 7-5: Domain window

Click the Add button in the name server section to open a window where you enter the
hostname of the name server, as shown next. Be sure to add a period at the end of the name
server's hostname. In this example, it is turtle.mytrek.com.

Should you have a network with its own centralized mail server, like large networks may
have, you can add it now. A small network like a home network would not normally have
such a server. Click the Add button in the mail server section to open a window where you
enter both the host running the mail server and the priority of the mail server. For a single
mail server, just set the priority to 0, as shown here:

Once you have added the name and any mail servers, click OK to return to the Master Zone
window.

You now need to add entries for the different hosts on your system, providing both their
hostname and IP address. To add an entry, you click the Add button. This opens a window
with boxes for entering the hostname and its IP address, as shown next. For the hostname, you
do not have to include the domain name. That will be automatically added for you. You will
see the domain name listed next to the entry box. The host rabbit is added for the
mytrek.com domain with the IP address 192.168.0.2.

 Note If you want to set up a Web site on the gateway host, you should add an alias for it,

where the alias uses the host name www. When adding the alias, select Alias from the
pop-up menu labeled Add Resource Record.

A completed example of a master zone configuration is shown in Figure 7-6. The domain is
mytrek.com and there are three hosts: turtle, rabbit, and lizard. Press OK to finish your
master zone configuration.

Figure 7-6: Master zone example

You then have to create a reverse master zone. Click the Add button and select Reverse
Master Zone (see the next illustration). In the Zone Type window that first appears, click on
the Reverse Master Zone check box. The entry box on this window will then be labeled IP
Address (first three octets). Here, enter the network part of your host IP address. This is the
first three numbers for the IP addresses you are using for the hosts on your system. For
example, the IP address for turtle.mytrek.com is 192.168.0.1, so the network part is
192.168.0. The network part will be the same for all your hosts.

A Reverse Master Zone window will then open up with the IP address and the File Name
already filled in for you (see Figure 7-7). You then need to add entries for all the hosts on
your network. In the Reverse Address Table section, click the Add button to open a window
where you enter the IP address and hostname for the host. In the IP Address box, enter just the
host part of the host's IP address. This will be a single number, usually starting from 1. For
example, for the IP address 192.168.0.2, you would just enter 2. In the Full Host Name box,
you enter the full hostname of the host, including an ending period. For the rabbit host you
would enter

rabbit.mytrek.com.

Figure 7-7: Reverse master zone

In the next illustration, the information for the turtle.mytrek.com host is entered. For the IP
address, 1 is added, giving an IP address of 192.168.0.1. For the full hostname, the domain
name and an ending period are entered, turtle.mytrek.com.

You then need to add an entry for the DNS server. In the Name Server section click the Add
button. Then enter the name of the host that will run your DNS server. Be sure to include a
trailing period. In this example, the name server host is

turtle.mytrek.com.

A completed example of a reverse master zone is shown in Figure 7-7.

To save your bindconf configuration, select the Apply entry to generate the DNS server
configuration files. You can then quit.

Starting the DNS Service

To manually start your DNS service, use the service command and the service name named
with the start option. named is the name of the DNS server used on Linux:

service named start

When checking for errors or making changes, you can restart the DNS service with the
restart option:

service named restart

You can check to see if your DNS server is working by trying to access a particular host using
its hostname. Use the ping command with the hostname to see if you can make contact. The
following command checks to see if the rabbit host is running:

ping rabbit

You can also add the domain name:

ping turtle.mytrek.com

Logged into the gateway, you can ping your Internet connection to see if it is working:

ping myhost.my-internet-isp.com

Once everything is working, you can have the DNS service started automatically whenever
you start your system. Use the Text Mode Setup Text tool on the Gnome System menu and
select System Services. Then, move to the named entry and press the SPACEBAR. Tab to the

Quit button and press ENTER. Alternatively, you can use chkconfig with the --level 35 and
on options:

chkconfig --level 35 named on

Setting Up Your Firewall

To set up your firewall, run lokkit on the gateway host, as described in Chapter 6. However,
be sure that lokkit has not been run on any of the other local hosts, or that any of the local
hosts have any kind of firewall running. You can use lokkit to remove the firewall, if
necessary. The firewall should only run on the gateway. Furthermore, the gateway will have
two network connections, one for the local network and an Internet connection device for the
Internet. Make sure that the firewall is applied to the device used for the Internet device, not
for your local network. On lokkit you do this by making the local network device a trusted
device. Select the Customize button and then, in the list of trusted devices, TAB to the device
used for your local network and press the SPACEBAR. An x will appear. Make sure that the
firewall network device is left blank.

In the network example used here, the firewall is run on the eth0 network device (the first
Ethernet card), which functions as the gateway. The local network is connected through the
eth1 network device (the second Ethernet card). In Figure 7-8, the eth1 device is trusted and
the eth0 device is not, making it the firewall device.

Figure 7-8: lokkit trusted devices
 Note lokkit uses the older IP-Chains firewall rules. If you want to use the newer IP Tables

rules, you will need to manually enter rules and install them on your system. See
Chapter 40 for more details.

If you are creating a strong firewall, but still want to run a service like a Web server, allow
users to perform FTP file transfers on the Internet, or allow remote encrypted connections
such as SSH, you will have to specify them in the lokkit customization window. Figure 7-8
shows Web, FTP, SSH, and mail communications permitted.

Setting Up E-mail Services

There are several ways to enable e-mail services on your network. You can set up your
network in one of two ways: have a central server that handles e-mail for all the users on your
network, or have each host handle its own user's independently. An independent setup is the
easier and is described here. Central servers are examined in Chapter 26. Internet mail setup

also varies depending on whether you have a stand-alone system, a small network with one
connection, or a larger network with its own official domain address (see Chapter 26). All
setups entail configuring the Sendmail server. Sendmail is an e-mail server used to send and
deliver mail on a network. Sendmail is provided with your Red Hat distribution.

Configuring Sendmail involves manually editing the /etc/mail/sendmail.mc file and making
changes. This is a text file that can be edited using any text editor like emacs, vi, or any of the
Gnome or KDE text editors. Be sure to make a backup copy of the file first. Once you have
made your changes and saved your file, you then have to install them in Sendmail with the
following m4 operation to generate a /etc/sendmail.cf file. The /etc/sendmail.cf file is the
actual Sendmail configuration file.

m4 /etc/mail/sendmail.mc > /etc/sendmail.cf

You then need to restart Sendmail to have the changes take effect.

service sendmail restart

Local Network Connections

For messages sent between hosts on your network, you only need to run the Sendmail server
on each, making a few changes to their Sendmail configurations. The Sendmail server on one
of your hosts can be configured to handle the task of relaying messages between hosts. Using
the network example described earlier, the hosts turtle, rabbit, and lizard will be running their
own Sendmail servers. The Sendmail server on the turtle host will be configured to relay
messages between all the hosts, itself included.

On each host on your network, edit the /etc/mail/sendmail.mc file and make the following
change. Comment out the DAEMON_OPTIONS line in the default Red Hat sendmail.mc
file by placing a dnl word in front of it, as shown here. Removing this feature will allow you
to receive messages over your local network. This entry is restricting Sendmail to the
localhost (127.0.0.1):

dnl DAEMON_OPTIONS(`Port=smtp,Addr=127.0.0.1, Name=MTA')dnl

In the sendmail.mc file located on the host that you want to have handle the relaying of
messages, you need to also add the following line.

FEATURE(relay_entire_domain)dnl

Run the m4 operation to install the changed configuration and then restart the server with the
service operation, as described earlier.

You can now e-mail messages from one user to another across your network. For example,
george@turtle.mytrek.com can now email a message to larisa@rabbit.mytrek.com. The
local Sendmail servers will take care of sending and delivering mail to users both within their
hosts and those located on other network hosts.

Internet Connections

To send mail to and from the Internet, you should make use of the e-mail services provided by
your ISP. This can vary depending upon the kind of service you have. For a small network,
like a home network, you may have only one Internet connection. In this case, your ISP
normally provides e-mail services for you such as a number of mailboxes for designated
users. If you have a larger network, your ISP may have set up a separate official domain for
you and is relaying mail to your network. In this case you can set up your own mail server to
handle Internet mail. This is discussed in Chapter 26.

To make use of the mail services that your ISP provides, you can use a mail client like those
described in Chapter 17. For a basic Internet connection, ISPs will normally provide you with
an e-mail address, along with the choice of several other addresses. You could assign these to
different users on your network. Your ISP will be operating an smtp and POP or IMAP mail
server to handle mail for their users. Your users could then access their mail on these servers
directly. Mail clients like Netscape, Mozilla, and Kmail let you specify a remote smtp or POP
server. The smtp server is used to send mail out, and the POP and IMAP servers are used to
receive mail. As also discussed in Chapter 17, you can also arrange to have mail delivered
directly to a user account on one of your hosts, using fetchmail.

Using your own Sendmail servers to handle Internet mail is a much more complicated process
and is described in detail in Chapter 26.

Internet Access by Local Hosts

You can configure your network so that hosts on your local network can access the Internet,
using your gateway host's Internet connection. In this scheme, the host will pretend to be the
gateway host, using its Internet connection as if it were its own. This way, you only need one
Internet connection for all the hosts on your network. The method is called IP masquerading,
and it works by the local hosts pretending to have the IP address of the gateway. In effect, all
your local hosts share the same Internet IP address. First, make sure that iptables is enabled on
your system. You can use the System services list in the Text Mode Setup utility to select
iptables for automatic startup.

 Tip If you only want to provide Web access to users on your network, you just need to
configure and run the Squid proxy server on your gateway. You do not need DNS or IP
masquerading implemented.

 Note Be sure that a firewall program is not also running on any of your local hosts. This can
happen if you ran lokkit on any of your local hosts. Run lokkit again on the local host
and select No Firewall. This will shut off the firewall on that host.

IP masquerading is implemented as part of the IP-Chains or IP-Tables firewall programs,
depending on the one you are using. If you set up your firewall with lokkit, you are using IP-
Chains. To implement IP masquerading, you need to add a new rule to the collection of rules
already set up by lokkit. To do so, you need only enter a simple rule on the command line
using the ipchains command, as shown here. The -o option is used to specify the device you
are using for your Internet connection. The first Ethernet device, eth0, is used in this example.
If you are using a modem, the device would be ppp0 for the first modem device. IP
masquerading with iptables is described in detail in Chapter 40.

ipchains -A forward -i eth0 -j MASQ

You then use the iptables service script with the save option to save your new rule, along with
the ones already set up by lokkit:

service ipchains save

The rules will be placed in the /etc/sysconfig/ipchains file, which will be read whenever you
start up your system. Bear in mind that if you run lokkit again, it will overwrite this file. You
will have to enter the iptables masquerading command again and save your rules to enable IP
masquerading.

Also, check to see if IP forwarding is turned on. You can do this with netcfg on the gateway
host. Click the Routing panel and then click the check box at the top labeled Network Packet
Forwarding. This sets the value of the /proc/sys/net/ipv4/ip_forward file to 1, turning on IP
forwarding. You can do this manually instead if you want with the following command.

echo 1 > /proc/sys/net/ipv4/ip_forward

If you are using IP Tables, you follow much the same procedure, except that you do not use
lokkit and you use iptables commands to implement firewall rules. The rule to add
masquerading with IP Tables for a first Ethernet device (eth0) is as follows:

iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

Rules will be saved using the service command with the iptables option, instead of ipchains.
They will be saved to the /etc/sysconfig/iptables file.

service iptables save

Using Remote Printers

Once you have set up your network, you can use any Linux host to access printers connected
to other hosts on the network, whether they be Linux, Windows, or Novell systems. The
Linux host to which a printer is connected will first have to install that printer with printconf,
as described in Chapter 4. Another Linux host can then access that printer by installing it as a
remote printer. Once installed, the Linux host can print directly to that remote printer. For
example, if an Epson printer is connected and installed on the turtle.mytrek.com host, the
rabbit.mytrek.com host can install it as a remote printer, giving it a name of its own. Users
on the rabbit.mytrek.com host can then print directly to the Epson printer connected on the
turtle host. In fact, you could have all your printers connected to a single host and have all
your other hosts print through it.

You use the printconf tool to install a remote printer. Select Printer Configuration from the
Gnome system menu and click the New button. A series of dialogs will be displayed for
entering the printer name, the type of remote printer, the printer's remote queue name, and the
remote host the printer is connected to. For other Linux systems, entries are displayed for both
the hostname and the IP address for the remote host (see Figure 7-9). Be sure to also enter the
device driver and name information as described in Chapter 4.

Figure 7-9: Remote Linux printer

The method works similarly with both Windows and Netware systems. However, to access
Windows systems, you have to set up and run Samba. Samba will interface a Linux network
with a Window network, allowing access to devices on Windows hosts like printers, CD-
ROMs, and file systems. Samba is described in detail in Chapter 37.

To access a printer attached to a Windows system from a Linux host, you use the printconf
tool on that Linux host to configure the printer as a remote Windows printer. In the printconf
tool, select Queue and then select Windows Printer from the pop-up menu. Five entries are
displayed. In the Share box, you enter the name of the Windows host, preceded by //, then
followed by the name of the printer on that host, separated by a single slash. For example, the
share name for a printer called myepson on the host lizard is

//lizard/myepson

Then enter the IP address of the Windows host. The workgroup is the workgroup that the
Windows host belongs to. Though you can create passwords for each user, a simple approach
is to just specify a guest user with no password. Be sure to set appropriate share and password
permissions on the Windows host. Figure 7-10 shows remote Windows printer entries.

Figure 7-10: Remote Windows printer

If you want to allow Windows hosts to access a printer attached to a Linux system, you have
to configure the printer in Samba. You need to first enable the use of swat with the following
command:

chkconfig swat on

Then select Samba Configuration on the Gnome System menu. This opens a Web page on
your browser with Samba buttons across the top. Click on the Printers button to display a page
with buttons for selecting your printer. From the pop-up menu, select your printer, then click
the Choose Printer button. Though you can set allowed users, a simple approach is to allow
guest users to log in as the nobody user. To allow guest users, select Yes for "guest ok". Once
you have made your changes, click on the Commit Changes button. Figure 7-11 shows a
Samba printer page, where the printer myepson has been selected and guest access is allowed.

Figure 7-11: Samba printers

Once you have made changes, you can have them take effect by restarting Samba with the
following command:

service smb restart
 Note Macintosh printers on Macintosh systems are connected using a different network

protocol called NetaTalk (see Chapter 32).

Setting Up a Web Server

For a standard installation, Red Hat installs the Apache Web server. Any user on your
network can access the Web server using the name of the host it is running on. For this
example, the Web server is running on the gateway host, turtle.mytrek.com. Normally, an
alias is set up that is used for the hostname, such as www.mytrek.com. Entering this address
in a Web browser will display the main document page of the Apache Web server. Web pages
for your site are kept in /var/www/html. You can add your own pages here, building your
Web site. The Apache manual will already be there.

Part III: Red Hat Desktop Workstation
Chapter List
Chapter 8: Gnome
Chapter 9: The K Desktop Environment: KDE
Chapter 10: Window Managers
Chapter 11: The Shell
Chapter 12: The Linux File Structure
Chapter 13: Shell Configuration
Chapter 14: Office Applications
Chapter 15: Database Management Systems, Graphics Tools, and Multimedia
Chapter 16: Editors

Chapter 8: Gnome
Overview

The GNU Network Object Model Environment, also known as Gnome, is a powerful and
easy-to-use environment consisting primarily of a panel, a desktop, and a set of GUI tools
with which program interfaces can be constructed. Gnome is designed to provide a flexible
platform for the development of powerful applications. Currently, Gnome is strongly
supported by Red Hat and is its primary GUI interface, though Gnome is also provided by
most other distributions. Gnome is completely free under the GNU Public License. You can
obtain the source directly, as well as documentation and other Gnome software, from the
Gnome Web site at www.gnome.org. Several companies have joined together to form the
Gnome Foundation, an organization dedicated to coordinating the development of Gnome and
Gnome software applications. These include such companies as Sun, IBM, and Hewlett-
Packard as well as Linux distributors like Red Hat, Caldera, and TurboLinux along with
Gnome developers such as Ximian. Modeled on the Apache Foundation, which developed the
Apache Web server, the Gnome Foundation will provide direction to Gnome development as
well as organizational financial, and legal support. Recently Sun announced that it was
adopting Gnome as the desktop interface for its Solaris operating system, replacing the Motif-
based Common Desktop Environment (CDE).

The core components of the Gnome desktop consist of a panel for starting programs and
desktop functionality. Other components normally found in a desktop, such as a file manager,
Web browser, and window manager, are provided by Gnome-compliant applications. Gnome
provides libraries of Gnome GUI tools that developers can use to create Gnome applications.
Programs that use buttons, menus, and windows that adhere to a Gnome standard can be said
to be Gnome-compliant. For a file manager, the Gnome desktop currently uses a Gnome
version of Midnight Commander-and will soon replace it with Nautilus. The Gnome desktop
does not have its own window manager as KDE does. The Gnome desktop uses any Gnome-
compliant window manager. Currently, the Sawfish window manager is the one bundled with
the Gnome distributions.

Integrated into Gnome is support for component model interfaces, allowing software
components to interconnect regardless of the computer language in which they are
implemented or the kind of machine on which they are running. The standard used in Gnome

for such interfaces is the Common Object Request Broker Architecture (CORBA), developed
by the Object Model Group for use on Unix systems. Gnome uses the ORBit implementation
of CORBA. With such a framework, Gnome applications and clients can directly
communicate with each other, enabling you to use components of one application in another.
With Gnome 2.0, Gnome will officially adopt GConf and its libraries as the underlying
method for configuring Gnome and its applications. GConf can configure independently
coordinating programs such as those that make up the Nautilus file manager.

You can find out more about Gnome at its Web site at www.gnome.org. This site not only
provides a detailed software map of current Gnome projects with links to their development
sites, it also maintains extensive mailing lists for Gnome projects to which you can subscribe.
The Web site provides online documentation, such as the Gnome User's Guide and FAQs. If
you want to develop Gnome programs, check the Gnome developer's Web site at
developer.gnome.org. The site provides tutorials, programming guides, and development
tools. Here you can find the complete API reference manual online, as well as extensive
support tools such as tutorials and Interactive Development Environments (IDE). The site also
includes detailed online documentation for the GTK+ library, Gnome widgets, and the Gnome
desktop.

A new file manager for the Gnome desktop, called Nautilus, has been released (originally
developed by Eazel). With Gnome 1.4, Nautilus officially replaces the GNU Midnight
Commander file manager now used on Gnome desktop. Nautilus is designed to operate as a
desktop shell that can support numerous components, letting you operate a Web browser
within it or decompress files. Nautilus development is now being carried on independently.
You can download Nautilus source from the Gnome CVS depository or from
www.ximian.com. You can find out more about nautilus from the Nautilus User's Manual
that is part of the Gnome 1.4 User's Guide at www.gnome.org.

 Note An enhanced version of Gnome known as Ximian Gnome can be downloaded from
Ximian at www.ximian.com. There are versions for most distributions, including Red
Hat.

GTK+

GTK+ is the widget set used for Gnome applications. Its look and feel was originally derived
from Motif. The widget set is designed from the ground up for power and flexibility. For
example, buttons can have labels, images, or any combination thereof. Objects can be
dynamically queried and modified at runtime. It also includes a theme engine that enables
users to change the look and feel of applications using these widgets. At the same time, the
GTK+ widget set remains small and efficient.

The GTK+ widget set is entirely free under the Library General Public License (LGPL). The
LGPL enables developers to use the widget set with proprietary, as well as free, software
(GPL would restrict it to just free software). The widget set also features an extensive set of
programming language bindings, including C++, Perl, Python, Pascal, Objective C, Guile, and
Ada. Internalization is fully supported, permitting GTK+-based applications to be used with
other character sets, such as those in Asian languages. The drag-and-drop functionality
supports both Xdnd and Motif protocols, allowing drag-and-drop operations with other widget
sets that support these protocols, such as Qt and Motif.

The Gnome Interface

The Gnome interface consists of the panel and a desktop, as shown in Figure 8-1. The panel
appears as a long bar across the bottom of the screen. It holds menus, programs, and applets.
An applet is a small program designed to be run within the panel. On the panel is a button
with a large bare foot imprint on it. This is the Gnome applications menu, the main menu. The
menu operates like the Start menu in Windows, listing entries for applications you can run on
your desktop. You can display panels horizontally or vertically, and have them automatically
hide to show you a full screen.

Figure 8-1: Gnome

The remainder of the screen is the desktop. Here, you can place directories, files, or programs.
You can create them on the desktop directly or drag them from a file manager window. A
click-and-drag operation with the middle mouse button enables you to create links on the
desktop to installed programs. Initially, the desktop only holds an icon for your home
directory. Clicking it opens a file manager window to that directory. A right- click anywhere
on the desktop displays a desktop menu (see Table 8-1) with which you can open new
windows, create new folders, and mount floppy disks and CD-ROMs.

Table 8-1: The Gnome 1.4 Desktop Menu (Nautilus)
Menu Item Description
New Window Starts a new Nautilus file manager window on your desktop,

showing your home directory.
New Terminal Launches a new Gnome terminal window that navigates to the

desktop directory.
New Folder Creates a new directory on your desktop.
Clean Up by Name Arranges your desktop icons.
Disks Displays submenu that lists floppy and CD-ROM devices that you

Table 8-1: The Gnome 1.4 Desktop Menu (Nautilus)
Menu Item Description

can select to mount. Mounted disks will appear as CD-ROM or
floppy icons on your desktop, which you can use to access them or
unmount later.

Change Desktop
Background

Opens Gnome Control Center with the Background caplet selected
to let you select a new background for your desktop.

From a user's point of view, you can think of the Gnome interface as having four components:
the desktop, the panel, the main menu, and the file manager. In its standard default
configuration, the Gnome desktop displays a Folder icon for your home directory in the
upper-left corner. Some distributions may include other icons, such as links to the Gnome
Web site or to the Linux Documentation site. Initially, a file manager window opens on the
desktop, displaying your home directory. The panel has several default icons: The main menu
(Bare Foot), a screen lock feature (a padlock), the terminal program (Monitor), the Gnome
Help System (Question Mark), the Start Here window (Pocket compass), the Gnome pager
(Squares), and a clock. Red Hat 7.2 includes Mozilla.

To start a program, you can select its entry in the main menu, click its application launcher
button in the panel (if there is one), double-click its icon in either the desktop or the file
manager window, drag a data file to its icon, or select the Run Program entry in the main
menu. This opens a small window where you can type in the program name.

When you first start Gnome, the Start Here window is displayed. From here, you can access
your favorite Web sites and files (Favorites), select and run applications (Programs),
customize your Gnome desktop (Preferences), and perform administrative tasks for both your
system and your servers (Server Configuration and System Settings). Double-clicking an icon
opens a window listing icons for sub-windows or tools. In effect, the Start Here window is
mimicking the Main menu; you can select and run applications from the Start Here's Program
window, just as you can from the Main menu's Program menu. The Preferences window lists
Gnome configuration tools (capplets) for setting up your Gnome preferences. In effect, it
replaces the Gnome Control Center window used in previous versions. See the Gnome
Configuration section for more details. If you need to configure administrative tasks, such as
setting up network connections or managing servers, you can choose the Server Configuration
or System Settings windows. Most of those tools are accessible only by the root user.

To quit Gnome, you select the Logout entry in the main menu or click the terminal icon
displaying the moon (on Ximian Gnome you choose the Logout entry in the Menu panel's
System menu). You can also add a Logout button to the panel, which you could use instead.
To add the Logout button, right-click the panel and select the Add Logout Button entry. A
Logout button then appears in the panel. When you log out, the Logout dialog box is
displayed. You have three options. The first option, Logout, quits Gnome, returning you to the
login window (or command line shell still logged into your Linux account, if you started
Gnome with startx). The second option, Halt, not only quits Gnome, but also shuts down
your entire system. The third option, the Reboot entry, shuts down and reboots your system.
The Logout entry is selected by default. Halt and Reboot are only available to the root user. If
normal users execute them, they are prompted to enter the root user password to shut down.
You can also elect to retain your desktop by clicking the "Save current setup" check box. This
reopens any programs or directories still open when you logged out. Gnome-compliant

window managers also quit when you log out of Gnome. You then must separately quit a
window manager that is not Gnome-compliant after logging out of Gnome.

The Gnome Help system, shown in Figure 8-2, provides a browser-like interface for
displaying the Gnome user's manual, Man pages, and info documents. It features a toolbar
that enables you to move through the list of previously viewed documents. You can even
bookmark specific items. A Web page interface enables you to use links to connect to
different documents. You can easily move the manual or the list of Man pages and info
documents. You can place entries in the location box to access specific documents directly.
Special URL-like protocols are supported for the different types of documents: ghelp: for
Gnome help, man: for man pages, and info: for the info documents.

Figure 8-2: The Gnome Help system

The Gnome Desktop

The Gnome desktop provides you with all the capabilities of GUI-based operating systems
(see Figure 8-3). You can drag files, applications, and directories to the desktop, and then
back to Gnome-compliant applications. If the desktop stops functioning, you can restart it by
starting the Gnome file manager (Nautilus). The desktop is actually a backend process in the
Gnome file manager. But you needn't have the file manager open to use the desktop. The
Gnome 1.4 desktop with Nautilus is described in this section.

Figure 8-3: The Gnome 1.4 desktop

Although the Gnome desktop supports drag-and-drop operations, these work only for
applications that are Gnome-compliant. You can drag any items from a Gnome-compliant
application to your desktop, and vice versa. Any icon for an item that you drag from a file
manager window to the desktop also appears on the desktop. However, the default drag-and-
drop operation is a move operation. If you select a file in your file manager window and drag
it to the desktop, you are actually moving the file from its current directory to the Gnome
desktop directory, which is located in your home directory and holds all items on the desktop
(notice this is a dot file). For Gnome 1.2, the desktop directory is .gnome-desktop. In the case
of dragging directory folders to the desktop, the entire directory and its subdirectories would
be copied to the Gnome desktop directory.

In most cases, you only want to create on the desktop another way to access a file without
moving it from its original directory. You can do this by creating a link or a program
launcher, instead of moving the file. To create a link, click and drag the file while holding
down the SHIFT key. A copy of the icon then appears with a small arrow in the right corner
indicating it is a link. You can then click this link to start the program, open the file, or open
the directory, depending on what kind of file you linked to.

You can then use that icon to access the item directly. This is often used for starting common
programs. For example, you can SHIFT-click and drag the Netscape icon to the desktop to
create a Link icon for Netscape. Double-clicking the icon starts Netscape. You can do the
same with files. In this case, their respective program is started. If the item is a directory, the
file manager starts up opened to that directory. If you want to have an application placed on
your desktop that is not Gnome-compliant, you can manually place a link in your home
directory's Gnome desktop directory.

You can also copy a file to your desktop by clicking-and-dragging it from a file manager
window to your desktop, and then pressing the CTRL key before you release the left mouse
button. You will see the small arrow in the upper right-hand corner of the copied icon change
to a + symbol, indicating that your are creating a copy instead of a link.

As an alternative to the desktop, you can drag any program, file, or directory to the panel; a
launcher applet is then automatically created for it on the panel. The item is not moved or
copied. You can also right-click anywhere on the empty desktop to display a menu. You will

notice entries for a New Folder. Remember, this entry creates a new directory on your
desktop, specifically in the Gnome desktop directory. The entries for this menu are listed in
Table 8-1.

The desktop also displays icons for any drives you have mounted, such as a CD-ROM or
floppy drives, provided they are user mountable. Nautilus automatically mounts CD-ROMs
when you insert them into your CD-ROM drive, displaying the CD-ROM icon and opening a
Nautilus window displaying the CD-ROM's contents.

You can manually mount a CD-ROM or floppy disk by right-clicking anywhere on the
desktop to display the desktop menu and then selecting the CD-ROM or Floppy entry in the
Disks menu. An icon for that device will appear with the name of the CD-ROM or floppy
disk. You can then access the disk in the CD-ROM drive either by double-clicking it or right-
clicking and selecting the Open entry. A file manager window opens to display the contents of
the CD-ROM disk. To unmount a CD-ROM, right-click the CD-ROM icon and select the
Unmount entry. The CD-ROM disk is automatically ejected. The same procedure works for
floppy disks, using the Floppy Disk icon. Be sure you don't remove a mounted floppy disk
until you have first unmounted it, selecting the Unmount entry in the pop-up menu.

Usually a window manager extends a desktop into several areas that appear as different
screens. Gnome's drag-and-drop operation works on desktop areas provided by a Gnome-
compliant window manager. Gnome does not directly manage desktop areas, though you can
use the Gnome pager to move to them. You use the window manager configuration tool to
configure them-in this case Sawfish, which is the default window manager for Gnome used in
Red Hat. In addition, most window managers, including Sawfish, also support virtual
desktops. Instead of being extensions of the same desktop area, virtual desktops are separate
entities. The Gnome pager on the Panel supports virtual desktops, creating icons for each in
the panel, along with task buttons for any applications open on them. You can use the Gnome
pager to move to different virtual desktops and their areas.

Window Managers

Gnome works with any window manager. However, desktop functionality, such as drag-and-
drop capabilities and the Gnome pager, only work with window managers that are Gnome-
compliant. The current release of Gnome uses the Sawfish window manager. Its is completely
Gnome-compliant and is designed to integrate with the Gnome desktop without any
duplication of functionality. However, other window managers such as Enlightenment,
FVWM, IceWin, and Window Maker can also be used. Check a window manager's
documentation to see it is Gnome-compliant.

Sawfish employs much the same window operations as used on other window managers. You
can resize a window by clicking any of its sides or corners and dragging. You can move the
window with a click-and-drag operation on its title bar. You can also right-click and drag any
border to move the window, as well as ALT-click anywhere on the window. The upper-right
corner lists the Maximize, Minimize, and Close buttons. If the Gnome pager is running in
your panel, then Minimize creates a button for the window in the panel that you can click to
restore it. If the Gnome pager is not present, the window will iconify, minimizing to an icon
on the desktop. You can right-click on the title bar of a window to display a window menu
with entries for window operations. These include a desktop entry to move the window to

another desktop area and the Stick option, which displays the window no matter to what
desktop area you move.

You can also access the Sawfish desktop menu. To display the menu, middle-click anywhere
on the desktop (hold both mouse buttons down at the same time for a two- button mouse). A
pop-up menu then appears with submenus for Gnome, user, and other applications, as well as
the Desktop, Themes, and Sawfish configurations. You can use this menu to start any
application, if you want. With the desktop menus, you move to different desktop areas and
virtual desktops. The Themes menu enables you to choose different Sawfish themes (these are
separate from KDE themes). Sawfish also has extensive configuration options, discussed in a
later section.

If you have several window managers installed on your system, you can change from one to
the other using the Window Manager capplet. Capplet is the term used for a control applet, a
module used to configure your desktop. Select the entry in the main menu to start the Window
Manager Settings menu, or select its icon in the Desktop window, which you open from
Preferences in the Start Here window. A panel is displayed listing your window managers. To
add others to the list, click the Add button on the right side of the panel. This opens a window
that prompts you to enter an identifying name for the window manager, the command that
starts the window manager, and any configuration tool it may use. If the window manager is
Gnome-compliant, you can click the button Window Manager Is Session Managed. Once you
finish making your entries and click OK, the new window manager appears in the list on the
Window Manager panel. Select it and click Try to run that window manager. If you want to
run the window manager's configuration tool, click the Run Configuration Tool button.

The Gnome (1.4) File Manager: Nautilus

With Gnome 1.4, the file manager for Gnome was changed from Gnome Midnight
Commander (GMC) to Nautilus (Red Hat 7.1 still uses GMC). Nautilus supports the standard
features for copying, removing, and deleting items as well as setting permissions and
displaying items just as GMC does. Nautilus also provides enhancements such as zooming
capabilities, user levels, and theme support. You can enlarge or reduce the size of your file
icons, select from novice, intermediate, or expert levels of use, and customize the look and
feel of Nautilus with different themes. Nautilus also lets you set up customized views of file
listings, enabling you to display images for directory icons and run component applications
within the file manager window. For example, a directory of MP3 files could have an album
cover for its directory icon and run a component MP3 player within the file manager window
to play a file.

Nautilus was designed as a desktop shell in which different components can be employed to
add functionality. For example, within Nautilus, a Web browser can be executed to provide
Web browser capabilities within a Nautilus file manager window. Nautilus is not only a file
manager, but also a desktop shell based on a component architecture. Different components,
such as a Web browser, compression commands, or an image viewer, can be used to add
capabilities to this desktop shell.

 Note Earlier versions of Linux, including Red Hat 7.1, still use Gnome 1.2 with the Gnome
Midnight Commander (GMC) file manager, but are compatible with Gnome 1.4 and
Nautilus.

The standard Nautilus window displays a menu bar and toolbar of file manager commands
along with a Location box at the top (see Figure 8-4). The rest of the window is divided into
two panes. The left pane is a sidebar used to display information about the current working
directory. The right pane is the main panel that displays the list of files and subdirectories in
the current working directory. A status bar at the bottom of the window displays information
about a selected file or directory.

Figure 8-4: Nautilus file manager

With the preferences menu, you can set your level of expertise: advanced, intermediate, or
beginner. The different levels allow for simpler methods of managing files. If you only need
the basic file management capabilities, you can choose beginner, leaving advanced and
intermediate for the more complex tasks. Next to the Location box is an element for zooming
in and out the view of the files. Click the + button to zoom in and the - button to zoom out.
Next to the zoom element is a drop-down menu for selecting the different views for your files
such as icons, small icons, or details.

The sidebar has five different tabbed views for displaying additional information about files
and directories: Tree, History, News, Help, and Notes. The Tree view will display a tree-
based hierarchical view of the directories and files on your system, highlighting the one you
have currently selected. You can use this tree to move to other directories and files. The tree
maps all the directories on your system, starting from the root directory. You can expand or
shrink any directory by clicking the + or - symbol before its name. Select a directory by
clicking the directory name. The contents of that directory are then displayed in the main
panel. The History tab shows previous files or directories you have accessed, handy for
moving back an forth between directories or files. The Help tab provides access to
documentation such as Gnome manuals, info pages, and Man documentation. On the Notes
tab, you can enter notes about your current working directory. The News tab will display
breaking news from sites you have selected. Click the Select Site button to display a list of
news sites such as CNN, Gnome News, or Linux Today. URLs for different stories will
appear in the sidebar when the News panel is selected.

You can view a directory's contents as icons, as a detailed list, as music, or as a custom
(other) view. You select the different options from the pop-up menu located on the right side
of the Location bar. The List view provides the name, permissions, size, date, owner, and
group. For a custom view, you can select the informational fields you want displayed for your

files. In the List views, buttons are displayed for each field across the top of the main panel.
You can use these buttons to sort the lists according to that field. For example, to sort the files
by date, click the Date button; to sort by size, click the Size button.

In the Icon view you can sort icons, change their sizes, and even preview their contents
without opening them. To sort items in the Icon view, select the Lay Out Items entry in the
View menu, and then select a layout option. To change an icon's size, select Stretch Icon.
Handles will appear on the icon image. Click and drag the handles to change its size. To
restore the icon, select Restore Icon's Original Size in the Edit menu. Certain types of files
have their icons display previews of their contents. Image files will have their icon display a
small version of the image. A music file like an MP3 file will start playing when the mouse
pointer moves over its icon. A text file will display in its icon the first few words of its text.

The music view lets you treat directories of MP3 files as if they were your own digital music
albums. When you select the music view, only MP3 files are displayed. Clicking on a file
starts the music player, which will automatically play from track to track. You can even select
a cover image for your music directory icon.

You can click anywhere on the main panel to display a pop-up menu with entries for
managing and arranging your file manager icon (see Table 8-2). To create a new folder, select
New Folder, and to open a new file manager window, select New Window. The Lay Out
Items entry displays a submenu with entries for sorting your icons by name, size, type, date,
or even emblem. The Manually entry lets you move icons wherever you want on the main
panel. The Clean up by Name entry will display your icons alphabetically. The Zoom in entry
will enlarge your view of the window, making icons bigger, and Zoom out will reduce your
view, making them smaller. Normal Size restores them to the standard size. Reset
Background lets you change the background used on the File Manager window, useful for
music folders where you display your favorite album cover. You can also cut, copy, or paste
files to let you more easily move or copy them between folders.

Table 8-2: Nautilus File Manager Menu
Menu Item Description
New Window Open a file or directory in a separate window.
New Folder Create a new subdirectory in the directory.
Lay Out Items Displays a submenu to arrange files by name, size, type, date,

or emblems.
Clean Up by Name Orders files alphabetically.
Cut, Copy, Paste Cuts, copies, and pastes files to let you more easily move or

copy them between folders.
Zoom in Close-up view of icons, making them appear larger.
Zoom out Distant view of icons, making them appear smaller.
Normal Size Restores view of icons to standard size.
Reset Background Sets the background image for the file manager main panel.
 Note The Lay Out Item submenu is not provided in the Nautilus pop-up menu when the main

panel displays files in the list mode.

The Nautilus file manager operates similarly to a Web browser. It maintains a list of
previously viewed directories; you can move back and forth through that list using the toolbar
buttons. The LEFT ARROW button moves you to the previously displayed directory, and the
RIGHT ARROW button moves you to the next displayed directory. The UP ARROW button
moves you to the parent directory, and the Home button moves you to your home directory.
To use a pathname to go directly to a given directory, you can type the pathname in the
Location box and press ENTER.

To search for files or directories, click the Find icon on the toolbar if there is one (see
following Note). Depending on the expertise level you set, Nautilus can perform simple or
complex searches (simple for beginners and complex for advanced and intermediate). The
Location box is replaced by the Find box, where you can enter the pattern you want to search
for. Then click on the Find Them button to the right. Complex searches let you specify
different attributes such as type, owner, or even file contents. For complex searches, two pop-
up menus are added with which you can further refine your search. These menus specify
criteria such as searches by name, content, file type, size, date modified, and owner. Nautilus
searches make use of a search daemon called Medusa that creates an index of all your files,
enabling very fast searches. Medusa even indexes the contents of your file, supporting text
searches of file contents. (For Medusa to work, the crond daemon must be running.)

 Note Red Hat 7.2 with version 1.0 for Nautilus does not include support for Find operations.
A Find icon is not displayed. If you are using Ximian Gnome, you can use a Find utility
located on the System menu in the Menu panel. It has many of the same features as the
Nautilus Find operation.

To open a subdirectory, you can double-click its icon or single-click the icon and select Open
from the File menu. If you want to open a separate Nautilus window for that directory, right-
click the directory's icon and select Open in a New Window.

As a Gnome-compliant file manager, Nautilus supports GUI drag-and-drop operations for
copying and moving files. To move a file or directory, click and drag from one directory to
another as you would on Windows or Mac interfaces. The move operation is the default drag-
and-drop operation in Gnome. To copy a file, click and drag with the right mouse button (not
the left) and select Copy Here from the pop-up menu. You can also click and drag normally
and then press the CTRL key before you lift up on the left mouse button.

 Note If you move a file to a directory on another partition (file system), it will be copied
instead of moved.

You can also perform remove, duplicate, and link creation operations on a file by right-
clicking its icon and selecting the action you want from the pop-up menu that appears (see
Table 8-3). For example, to remove an item, right-click it and select the Move to Trash entry
from the pop-up menu. This places it in the Trash directory where you can later delete it by
selecting Empty Trash from the Nautilus File menu. To create a copy of a file, you can select
Duplicate from the pop-up menu to create a duplicate version in the same directory. The name
of the copy will begin with the term "Duplicate". To create a link, right-click the file and
select Create Link from the pop-up menu. This creates a new link file that begins with the
term "Link" (see Figure 8-5 for an example of the Duplicate, Link, and Rename operations).

Figure 8-5: Nautilus duplicate, link, and rename operations

Table 8-3: The Nautilus File Pop-Up Menu
Menu Item Description
Open Open the file with its associated application. Directories are

opened in the file manager.
Open in a New Window Open a file or directory in a separate window.
Open With Select an application with which to open this file. A

submenu of possible applications is displayed.
Show Properties Display the Properties dialog box for this file. There are

three panels: Statistics, Options, and Permissions.
Move to Trash Move a file to the Trash directory, where you can later

delete it.
Duplicate Create a duplicate copy of the file in the same directory.
Make Link Create a link to that file in the same directory.
Rename Rename the file.
Stretch Icon Change the size of a selected icon.
Remove Custom Image Remove a custom image you selected for the icon.
Restore Icon's Original Size A selected icon you enlarged earlier is restored to its

standard size.

To rename a file you can either right-click on the file's icon and select the Rename entry from
the pop-up menu or slowly click on the name of the file shown below its icon. The name of
the icon will be highlighted in a black background, encased in a small text box. You can then
click on the name and delete the old name, typing a new one. You can also rename a file by
entering a new name in its Properties dialog box. Use a right-click and select Show Properties
from the pop-up menu to display the Properties dialog box. On the General tab, you can
change the name of the file.

File operations can be performed on a selected group of files and directories. You can select a
group of items in several ways. You can click the first item and then hold down the SHIFT
key while clicking the last item. You can also click and drag the mouse across items you want
to select. To select separated items, hold the CTRL key down as you click the individual
icons. If you want to select all the items in the directory, choose the Select All entry in the
Edit menu. You can also select files based on pattern matches on the filenames. Choose the

Select Files entry in the Edit menu. You can then enter a pattern using Linux file-matching
wildcard symbols such as * (See Chapter 11). For example, the pattern *.c would select all C
source code files (those ending with the extension ".c"). You can then click and drag a set of
items at once. This enables you to copy, move, or even delete several files at once. To move
files between directories, open two file manager windows to the respective directories. Then
click and drag the items from one window to the other.

You can start any application in the file manager by double-clicking either the application
itself or a data file used for that application. If a file does not have an associated application,
you can right-click the file and select the Open With entry. A submenu displays a list of
possible applications. If your application is not listed, you can select Other application to open
a dialog box where you can choose the application with which you want to open this file. You
can also use a text viewer to display the bare contents of a file within the file manager
window. Drag-and-drop operations are also supported for applications. You can drag a data
file to its associated application icon (say, one on the desktop); the application then starts up
using that data file.

With the Properties dialog box, you can view detailed information on a file and set options
and permissions (see Figure 8-6). A Properties box has three panels: Basic, Emblems, and
Permissions. The Basic panel shows detailed information such as type, size, location, and date
modified. The type is a MIME type, indicating the type of application associated with it. The
file's icon is displayed at the top with a text box showing the file's name. You can edit the
filename in this text box, changing that name. A button at the bottom labeled Select Custom
Icon will open a dialog box showing available icons you can use. You can select the one you
want from that window. The Remove Custom Icon button will restore the default icon image.
The Emblems panel enables you set the emblem you want displayed for this file, displaying
all the emblems available. The Permissions panel shows the read, write, and execute
permissions for user, group, and other, as set for this file. You can change any of the
permissions here, provided the file belongs to you. The panel will also show the file's owner
and its group. The group name expands to a pop-up menu listing different groups, allowing
you to select one to change the file's group.

Figure 8-6: File properties on Nautilus

You can set preferences for your Nautilus file manager in the Preferences dialog box. Access
this dialog box by selecting the Edit Preferences item in the Preferences menu. The
Preferences dialog box shows a main panel with a sidebar with several configuration entries,
including Appearance, Windows & Desktop, Icon & List Views, Sidebar panels, Search,
Navigation, and Speed tradeoffs (see Figure 8-7). You use these dialog boxes to set the
default display properties for your Nautilus file manager. For example, Windows & Desktop
allows you to select which bars to display by default, such as the sidebar or the toolbar.
Appearance lets you select the style you want to use. For the Sidebar panel, you can select
which tab to display, such as history or tree. On the Search menu, you can specify the default
Web search site to use.

Figure 8-7: Nautilus Preferences dialog box

Nautilus as a Web Browser

Nautilus is also an operational Web browser (see Figure 8-8). You can use the Location box
to access any Web or FTP site. Just enter the URL for the Web site in the Location box and
press ENTER (you do not need to specify www or http://). However, Nautilus is not a fully
functional Web browser. When you access a page, it will display buttons in the sidebar to
open the page using one of several Web browsers installed on your system, such as Netscape,
Mozilla, or Lynx. The Go menu and History tab in the sidebar maintain a history list of Web
sites you have previously accessed. You can also right-click on the Back and Forward buttons
to display this history list. To clear the history list, select Forget History in the Go menu.
Nautilus also supports Bookmarks, which can be displayed and edited using the Bookmarks
menu. Clicking on the Web Search icon will open the page of your favorite Web search
engine, such as Yahoo or Google.

Figure 8-8: Nautilus as a Web browser
 Note Nautilus is also Internet-aware. You can use the Location box to access an FTP site and

display the directories on that remote site, and then drag and drop files to another file
manager window to download them to your system. Be sure to include the FTP protocol
specification, ftp://.

The Gnome Panel

The panel is the center of the Gnome interface (see Figure 8-9). Through it you can start your
applications, run applets, and access desktop areas. You can think of the Gnome panel as a
type of tool you can use on your desktop. You can have several Gnome panels displayed on
your desktop, each with applets and menus you have placed in them. In this respect, Gnome is
flexible, enabling you to configure your panels any way you want. You can customize a panel
to fit your own needs, holding applets and menus of your own selection. You may add new
panels, add applications to the panel, and add various applets.

Figure 8-9: The Gnome panel

You can hide the panel at any time by clicking either of the Hide buttons located on each end
of the panel. The Hide buttons are thin buttons showing a small arrow. This is the direction in
which the panel will hide. To redisplay the panel, move your mouse off the screen in that
direction at the bottom of the screen. If you want the panel to automatically hide when you are

not using it, select the Auto-Hide option in the panel configuration window. Moving the
mouse to the bottom of the screen redisplays the panel. You can also move the panel to
another edge of the screen by clicking and dragging on either end of the panel with your
middle mouse button (both buttons simultaneously for two-button mice).

To add a new panel, select the Create Panel entry in the Panel menu. You can then select the
panel type, choosing from a menu, edge, floating, sliding, or aligned panel. The default is an
edge panel. An edge panel is displayed across one of the edges of the screen. Your original
panel is an edge panel. A menu panel is a panel implemented as a menu bar across the top of
the desktop with menus for Programs, Favorites, Settings, and Desktop. It can hold any
objects that a standard panel can hold. A floating panel is one that you can position anywhere
on the desktop. A sliding panel is sized to the number of items in the panel and can be placed
anywhere on the edge of the desktop. An aligned panel is a smaller panel also sized to the
number of items on it and is positioned in the center of the edge of a desktop. You can change
a panel's type at any time by right-clicking the panel and selecting the alternate configuration.
Figure 8-10 shows examples for the different types of Gnome panels.

Figure 8-10: Gnome panel types

A panel can contain several different types of objects. These include menus, launchers,
applets, drawers, and special objects. The main menu is an example of a panel menu. You can
create your own, or even drag submenus down to the panel from the main menu. Launchers
are buttons used to start an application or execute a command. The Netscape icon is an
example of a launcher button. You can drag any application entry in the main menu to the
panel and create a launcher for it on the panel. An applet is a small application designed to run
within the panel. The Gnome Desk Guide showing the different desktops is an example of a
Gnome applet. A drawer is an extension of the panel that can be open or closed. You can
think of a drawer as a shrinkable part of the panel. You can add anything to it that you can to
a regular panel, including applets, menus, and even other drawers. Special objects are used for
special tasks not supported by other panel objects. For example, the Logout and Lock buttons
are special objects.

Adding Applications and Applets

Adding applications to a panel is easy. For an application already in the main menu, you only
need to go to its entry and right-click it. Then select the Add This Launcher To Panel entry.

An application launcher for that application is then automatically added to the panel. Suppose
you use gEdit frequently and want to add its icon to the panel, instead of having to go through
the main menu all the time. Right-click the gEdit menu entry and select the Add This
Launcher To Panel option. The gEdit icon now appears in your panel.

To add an application icon not in the Main menu, first right-click the panel to display the pop-
up menu and select the Add New Launcher entry. This opens the Create Launcher Applet
window for entering properties for the applications launcher. You are prompted for the
application name, the command that invokes it, and its type. To select an icon for your
launcher, click the Icon button. This opens the Icon Picker window, listing icons from which
you can choose.

You can also group applications under a Drawer icon. Clicking the Drawer icon displays a list
of the different application icons you can then select. To add a drawer to your panel, right-
click the panel and select the Add Drawer entry. If you want to add a whole menu of
applications on the main menu to your panel, right-click the menu title displayed at the top of
the menu and select the Add This As Drawer To Panel entry. The entire menu appears as a
drawer on your panel, holding icons instead of menu entries (see Figure 8-11). For example,
suppose you want to place the Internet applications menu on your panel. Right-click the
Internet item and select Add This As Drawer To Panel. A drawer appears on your panel
labeled "Internet", and clicking it displays a pop-up list of icons for all the Internet
applications.

Figure 8-11: Gnome panel drawers and menus

A menu differs from a drawer in that a drawer holds application icons instead of menu
entries. You can add menus to your panel, much as you add drawers. To add a submenu in the
main menu to your panel, right-click the menu title and select the Add This As Menu To
Panel entry. The menu title appears in the panel; you can click it to display the menu entries.

You can also add directory folders to a panel. Click and drag the Folder icon from the file
manager window to your panel. Whenever you click this Folder button, a file manager
window opens, displaying that directory. You already have a Folder button for your home
directory. You can add directory folders to any drawer on your panel.

Moving and Removing Panel Objects

To move any object on the panel, even the Menu icon, just drag it with the middle mouse
button. You can also right-click on it and choose Move Applet to let you move the applet.
You can move it either to a different place on the same panel or to a different panel. When
moving objects, you can have them either push over, switch with, or jump over other objects
that they run into on the panel. To push over an object, you hold the SHIFT key down while
moving the object. To switch with an object, you hold down the CTRL key; and to jump over
an object, you hold down the ALT key.

To remove an object from the panel, right-click on it to display a pop-up menu for it and then
and choose the Remove From Panel entry.

Main Menu

You open the main menu by clicking its button on the panel. The Main Menu button is a
stylized picture of a bare foot. It is initially located on the left side of your panel, the lower
left-hand corner of your screen. You only need to single-click the Main Menu button. You
needn't keep holding your mouse button down. The menu pops up much like the Start menu in
Windows.

You can configure menus using the Menu Properties dialog box. To change the properties for
a menu on the panel, including the main menu, right-click its icon in the panel and select the
Properties entry. This displays the Menu Properties dialog box, which has two sections: Menu
Type and Main Menu. In the Main Menu section, you can set properties for that main menu.
Several possible submenus can be displayed on the main menu, either directly or in other
submenus. You can choose from the System, Applets, Favorites, KDE, and distribution
menus. You can place these menus on the main menu or make them submenus. Distribution
menus are those used for a specific distribution like Red Hat that are not specifically Gnome
applications. KDE is used for KDE applications, if the KDE desktop is also installed on your
system.

You can customize the main menu, adding your own entries, with the Menu Editor. To start
the Menu Editor, select the Menu Editor entry in the Setting submenu located in the main
menu. The Menu Editor is divided into two panes, the left being a tree view of the main menu.
You can expand or shrink any of the submenus. The right pane holds configuration
information for a selected entry. There are two panels: basic and advanced. The basic panel
displays the name, command, and application type, as well as the icon. You can click the icon
to change it. You can also change the Name, Command, or Type fields.

To add a new application, click the New Item button on the toolbar. The new item is placed in
the currently selected menu. Enter the name, command, and type information, and then select
an icon. Then click the Save button to add the entry to the menu. You can move the menu
item in the menu by clicking the Up or Down Arrow button in the toolbar, or by dragging it

with the mouse. If you are a user, remember you can only add entries to the User menu, not to
the Systems menu.

An easier way to add an application is to use the drag-and-drop method. Locate the
application you want to add with the file manager, and then drag and drop its icon to the
appropriate menu in the Menu Editor. The entry is made automatically, using configuration
information provided for that application by the file manager.

Panel Configuration

You use the Global Panel Configuration dialog box to configure properties for all Gnome
panels. Either right-click the panel and select Global Properties or select Global Properties in
the Panel submenu in the main menu to display this dialog window. The Global Panel
Configuration dialog box has six tabbed panels: Animation, Launcher Icon, Drawer Icon,
Menu Icon, Logout Icon, and Miscellaneous. With the Animation panel, you can enable panel
animations, setting various options for them. The various icon panels enable you to select the
images you want to use to denote active or inactive elements, among other features, such as
border and depth. On the Miscellaneous panel, you set certain options such as allowing pop-
up menus on the desktop, prompting before logout, or keeping panels below windows.

To configure individual panels, you use the Panel Properties dialog box. To display this
dialog box, you right-click the particular panel and select the This Panel Properties entry in
the pop-up menu, or select This Panel Properties in the main menu's Panel menu. For
individual panels, you can set features for edge panel configuration and the background. The
Panel Properties dialog box includes a tabbed panel for each. On the edge panel, you can
choose options for positioning an edge panel and for minimizing it, including the Auto-Hide
feature. The Hide Buttons feature enables you to hide the panel yourself.

On the Background panel, you can change the background image used for the panel. You can
select an image, have it scaled to fit the panel, and select a background color. For an image,
you can also drag and drop an image file from the file manager to the panel, and that image
then becomes the background image for the panel.

Special Panel Objects

Special panel objects perform operations not supported by other panel objects. Currently these
include the Lock, Logout, and Run buttons, as well as swallowed applications and the status
dock. The Lock button shows a padlock and will lock your desktop, running the screensaver
in its place. To access your desktop, click on it and then at the password prompt, enter your
user password. The Logout button shows a monitor with a half- moon. Clicking it will display
the Logout dialog box and you can then log out. It is the same as selecting Logout from the
main menu. The Run button shows a hand on a terminal window. It opens the Run dialog box,
which allows you to enter or select an application to run.

Any application can be run as applets on the panel. This process is referred to as swallowing
the application. In effect, instead of being run in a Gnome window, the application is run as
an applet on the panel. To swallow an application, you first start the application and take note
of its window title. Then, in the Create Swallowed Application dialog box, enter the title of
the application to swallow. You can further specify the applet's dimensions. If you want start

the application directly as an applet, you can specify its program name in the Command
window.

The status dock is designed to hold status docklets. A status docklet provides current status
information on an application. KDE applications that support status docklets can use the
Gnome status dock, when run under Gnome.

Gnome Applets

As previously stated, applets are small programs that perform tasks within the panel. To add
an applet, right-click the panel and select Add to Panel, and then Applets from the pop-up
menu. This, in turn, displays other pop-up menus listing categories of applets with further
listings of available applets. Select the one you want. For example, to add the clock to your
panel, select Clock from the Utility menu. To remove an applet, right-click it and select the
Remove From Panel entry. You can also select the Applets menu in the Main menu and select
and applet to add to your panel.

Gnome features a number of helpful applets, such as a CPU monitor and a mail checker.
Some applets monitor your system, such as the Battery Monitor, which checks the battery in
laptops; and CPU/MEM Usage, which shows a graph indicating your current CPU and
memory use; as well as separate applets for CPU and memory load: CPULoad and MemLoad.
The Mixer applet displays a small scroll bar for adjusting sound levels. The CD player
displays a small CD interface for playing music CDs.

For network tasks, there are MailCheck, Modem Lights, and Web Control applets. MailCheck
checks for received mail. To configure MailCheck, right-click it and select the Properties
entry. You can set the frequency of checks, as well as specify a more sophisticated mail
checker to run, such as fetchmail. The Modem Lights feature monitors your modem
connection. You can configure it to monitor a PPP connection to an ISP over a modem. Web
Control enables you to start your Web browser with a specified URL.

Several helpful utility applets provide added functionality to your desktop. The Clock applet
can display time in a 12- or 24-hour format. Right-click the Clock applet and select the
Properties entry to change its setup. You use the Printer applet to print your files. To print a
file, drag its icon to the Printer applet. To configure the Printer applet, right- click it and select
Properties. Here, you can specify the printer name and the printer command to use-helpful if
you have more than one printer. The Drive Mount applet enables you to mount a drive using a
single click. You can create a Drive Mount applet for each device you have, such as a floppy
drive and a CD-ROM. To mount a file system, all you have to do is click the appropriate
Drive Mount icon in the panel. To specify the file systems to mount, use the applet's Drive
Mount Settings dialog box.

Gnome Desk Guide

The Gnome Desk Guide, shown next, appears in the panel and shows a view of your virtual
desktops along with their desktop areas. Virtual desktops and their desktop areas are defined
in the window manager. Desk Guide lets you easily move from one to another with the click
of a mouse. The Gnome Desk Guide is a panel applet that works only in the panel.

 Note If the Desk Guide is not already active, you can activate the Gnome Desk Guide by

right-clicking the panel and selecting Add New Applet from the pop-up menu. This, in
turn, displays other pop-up menus listing categories of applets and their listings of
available applets. Select the Utility category and, in that menu, select Desk Guide.

The Desk Guide shows your entire virtual desktop as separate rectangles within a box. Each
rectangle in turn is cut into small adjoining squares to show the desktop areas for each virtual
desktop. Open windows show up as small colored rectangles in these squares. You can move
any window from one virtual desktop or area to another by clicking and dragging its image in
the Desk Guide with your middle mouse button. If you click the small arrow to the right of the
Desktop view, the task list window opens, listing all the tasks (windows) currently open and
running. (If the arrow is not displayed, open the Desk Guide properties and select Show
Tacklist Arrow.) You can select a task to move to its window and the desktop it is currently
positioned in. The previous illustration shows a simple Desk View applet displaying two
virtual desktops, each with four desktop areas. The next illustration shows a more complex
Desktop view with four virtual desktops each with four desktop areas.

 Note Various window managers use different terms to describe virtual desktops and their

desktop areas. Enlightenment uses the terms "desktops" and "screens," whereas Sawfish
uses "workspaces" that are then divided into "columns" and "rows." Desk Guide
officially calls them "desktops" and "viewports."

To configure the Desk Guide, right-click it and select Properties to display the Properties
dialog box. Here, you can choose from panels to configure the display, tasks, geometry, and
advanced features like window manager options. You can set the size of the Desk Guide to
extend beyond the height of the panel, elect to display any virtual desktop names, or even
show hidden tasks. Remember, the window manager you are using may also have a pager you
can use that may operate much like the Desk Guide. Check your window manager
documentation on how to activate it.

Gnome Tasklist

The Tasklist shows currently opened applications. The Tasklist arranges tasks currently
running in a series of buttons, one for each window. A task can be any open application,
usually denoted by a window displayed on the screen. These can include applications such as
a Web browser or a file manager window displaying a directory. You can move from one task
to another by clicking on its button, in effect moving from one window to another. When you
minimize a window, you can later restore it by clicking on its entry in the Tasklist. The next
illustration shows a tasklist displaying buttons for several different kinds of windowed
applications.

A right-click on a window's Tasklist entry opens a menu that lets you iconify or restore,
shade, stick, or close the window. The iconify operation will reduce the window to its Tasklist
entry. A right-click on the entry will display the menu with a Restore option instead of an
iconify one, which you can then use to redisplay the window. The Shade entry will reduce the
window to its title bar and the Stick entry will display the window in any desktop you move
to. The Kill entry will close the window, ending its application.

To configure the Tasklist, you right-click on it and select the Properties entry. Here, you can
set features such as the size of the tasklist, the number of rows, whether to display mini-icons,
and the tasks to show.

Quicklaunch

You can use the Quicklaunch applet in the panel to start programs. The Quicklaunch applet
holds a collection of small icons for application launchers. Click them to launch your
application. The Quicklaunch applet can use only launchers that are already set up either on
the main menu or on your desktop. To add a launcher to Quicklaunch, drag and drop the
launcher to the Quicklaunch applet in the panel. A small icon is then created for it in the
Quicklaunch applet. For main menu items, click an item and drag it to the Quicklaunch
applet. Right-click a particular application's icon and select Properties to configure that
launcher.

Gnome Configuration

You can configure different parts of your Gnome Interface using tools called capplets. Think
of capplets as modules or plug-ins that can be added to enable you to configure various
applications. Capplets exist for the core set of Gnome applications, as well as for other
applications for which developers may have written capplets. To access capplets on Red Hat
7.2, you use the Start Here window and open the preferences window. This window will
display icons for each category of capplets supported by the control center. Selecting one will
open a window displaying icons for individual capplets. Double-clicking on a particular icon
will open its caplet window. You can have several open at once (see Figure 8-12). You can
also select a capplet from the Settings menu on the Gnome main menu.

Figure 8-12: The Gnome Control Center Desktop capplets

 Tip It is possible to also open the Control Center window listing all capplets using an
expandable tree. To do so, you need to enter the gnomecc command in a terminal
window.

Your Gnome system provides several desktop capplets you can use to configure your desktop:
Background, Screensaver, Theme Selector, and Window Manager. You use the Background
capplet to select a background color or image, the Screensaver capplet to select the
screensaver images and wait time, the Theme selector to choose a theme, and the Window
Manager capplet to choose the window manager you want to use.

On the Gnome Default Editor entry, you choose an editor as your default editor for Gnome,
the editor the Gnome file manager uses to open text files. The Gnome File Types capplet
enables you to specify Multipurpose Internet Mail Extensions (MIME) type entries for your
system, associating given MIME types with certain applications. Notice that basic MIME type
entries are already present. You can edit an entry and change its associated application. Also
listed are Multimedia and Peripheral capplets. For the sound configuration, you can select
sound files to play for events in different Gnome applications. For your keyboard, you can set
the repeat sensitivity and click sound. You can configure mouse buttons for your right or left
hand, and adjust the mouse motion. With the Session Manager capplet, you can configure
certain Gnome session features, specifying non-Gnome programs to start up and whether you
want a logout prompt.

Several User Interface capplets enable you to configure different interface components, such
as menus, toolbars, and status bars. There are capplets for setting these features for
applications, dialog boxes, and the Multiple Document Interface (MDI). You can specify
whether toolbars and menus can be detached, whether they have relief borders, and whether
they include icons. For dialog boxes, you can set features such as the arrangement of buttons
or the position of the dialog box on the screen when it appears. The default MDI used for
Gnome is modal. You can choose two other interfaces: toplevel and notebook.

Gnome sets up several configuration files and directories in your home directory. The .gnome
directory holds configuration files for different desktop components, such as gmc for the file
manager, panel for the panels, and gmenu for the main menu. .gtkrc holds configuration
directives for the GTK+ widgets. The .gnome-desktop directory holds all the items you
placed on your desktop.

Gnome Directories and Files

Most distributions install Gnome binaries in the /usr/bin directory on your system. Gnome
libraries are located in the /usr/lib directory. Gnome also has its own include directories with
header files for use in compiling and developing Gnome applications, /usr/ include/libgnome
and /usr/include/libgnomeui (see Table 8-5). The directories located in /usr/share/gnome
contain files used to configure your Gnome environment.

Table 8-5: Gnome Configuration Directories
System Gnome Directories Contents
/usr/bin Gnome programs
/usr/lib Gnome libraries

Table 8-5: Gnome Configuration Directories
System Gnome Directories Contents
/usr/include/libgnome Header files for use in compiling and developing

Gnome applications
/usr/include/libgnomeui Header files for use in compiling and developing

Gnome user interface components
/usr/share/gnome/apps Files used by Gnome applications
/usr/share/gnome/help Files used by Gnome Help system
/usr/share/doc/gnome* Documentation for various Gnome packages,

including libraries
/etc/X11/gdm/gnomerc Gnome configuration file invoked with the

Gnome Display Manager (GDM)
/etc/gconf GConf configuration Files
User Gnome Directories Contents
.gnome Holds configuration files for the user's Gnome

desktop and Gnome applications. Includes
configuration files for the panel, Control Center,
background, GnomeRPM, MIME types, and
sessions

.gnome-desktop Directory where files, directories, and links you
place on the desktop will reside

.gnome-help-browser Contains Gnome Help System configuration
files, including history and bookmark files set up
by the user

.gnome_private The user private Gnome directory

.gtkrc GTK+ configuration file

.gconf GConf configuration database

.gconfd GConf gconfd daemon management files

.nautilus Configuration files for the Nautilus file manager
(Gnome 1.4)

Gnome sets up several hidden directories for each user in their home directory that begin with
.gnome and include a preceding period in the name. .gnome holds files used to configure a
user's Gnome desktop and applications. Configuration files for the panel, Control Center,
GnomeRPM, MIME types, and sessions, among others, are located here. The files Gnome,
GnomeHelp, Background, and Terminal all hold Gnome configuration commands for how
to display and use these components. For example, Gnome holds general display features for
the desktop, while GnomeHelp specifies the history and bookmark files for the help system.
Configuration files for particular Gnome applications are kept in the subdirectory apps. On
Red Hat, the redhat-apps directory holds .desktop files containing Gnome instructions on
how to handle different Red Hat utilities, such as netcfg. .gnome-desktop holds any files,
folders, or links the user has dragged to the desktop. .gnome-help-browser holds the
bookmark and history files for the Gnome Help system. These are the bookmarks and
the list of previous documents the user consulted with the Gnome Help browser. .gtckrc is the

user configuration file for the GTK+ libraries, which contains current desktop configuration
directives for resources such as key bindings, colors, and window styles.

With Gnome 2.0, Gnome will officially implement GConf to provide underlying
configuration support. GConf corresponds to the registry use on Windows systems. GConf
consists of a series of libraries used to implement a configuration database for a Gnome
desktop. This standardized configuration database allows for consistent interactions between
Gnome applications. Gnome applications that are built from a variety of other programs, as
Nautilus is, can use GConf to configure all those programs according to a single standard,
maintaining configurations in a single database. Currently Red Hat implements the GConf
database as XML files in the user's .gconf directory. Database interaction and access is carried
out by the GConf daemon, gconfd.

Sawfish Window Manager

Sawfish is a fully Gnome-compliant window manager. It is designed to perform window
managing tasks only and does not include features like application docks found on other
window managers like Afterstep. This minimal approach to window management means that
Sawfish does not duplicate Gnome desktop features as other window managers do (such as
Enlightenment). At the same time, Sawfish is designed to be extensible, providing a Lisp-
based set of commands you can use to fully configure all aspects of window management.
Sawfish can be fully configured within Gnome using the Gnome Control Center sawfish
capplet. First select Sawfish in Start Here's preferences window. This runs the Sawfish
configuration program, displaying the Sawfish configuration window shown in Figure 8-13.
You can find out more about Sawfish and obtain current versions from its Web site at
www.sawfish.org or sawmill.sourceforge.net (Sawfish was originally named sawmill, so
many of its Internet sites still bear that name). The site also provides detailed documentation
of Sawfish commands and features. If you download the source code and want to compile it
for use on Gnome, be sure to include the --enable-capplet option to add it in the Gnome
Control Center.

Figure 8-13: Sawfish configuration

The Sawfish Configuration window displays a list of configuration topics on the left and the
panel for the selected topic on the right. Basic options set window displays, enabling you to
select resize and move methods. With the Desktops option, you can create virtual desktops

and specify the number of desktop areas for each one. On the panel are two configuration
tools. The left one, labeled Size Of Virtual Screen, is used to determine the number of desktop
areas. The right one, labeled Separate Desktops, is used to specify the number of virtual
desktops. Recall, however, that the Gnome desktop is only supported on the first virtual
desktop, not on any others. This means drag-and-drop operations do not work on the other
virtual desktops. They do, however, work on any of the desktop areas on that first virtual
desktop. The Gnome pager supports all the virtual desktops, displaying rectangles for each in
the panel. Other topics cover features such as sounds, special effects, window focus, keyboard
shortcuts, and backgrounds. You can set different backgrounds for each virtual desktop.

The Themes panel enables you to use a Sawfish theme, from which there are many to choose.
Enlightenment is known for its magnificent themes. See sawmill.themes.org for themes you
can download. To make a theme available, place it in your home directory's .sawfish/themes
directory. Make sure that file has a .sawfishtheme extension. Sawfish maintains its own
configuration directory, called .sawfish, in your home directory. It contains subdirectories for
themes, backgrounds, and windows.

Gnome Themes

You can display your Gnome desktop using different themes that change the appearance of
desktop objects such as windows, buttons, and scroll bars. Gnome functionality is not affected
in any way. You can choose from a variety of themes. Many are posted on the Internet at
gtk.themes.org. Technically, these are referred to as GTK themes, which allows the GTK
widget set to change their look and feel.

To select a theme, use the Gnome Control Center and select Themes in the Desktop listing.
You can select a theme from the Available Themes list on the Configuration panel. The Auto
Preview button enables you to see an example of the theme. To use the theme, click Try. To
install a theme you have downloaded from the Internet, click the Install New Theme button
and locate the theme file. The theme is then installed on your system, and an entry for it
appears in the Available Themes list.

The Ximian Gnome

Currently Ximian is developing software for Gnome, which is distributed under the GNU
License, making it available to everyone free of charge. Ximian is an active member of the
Gnome Foundation. Ximian is working to make the Gnome an effective and user-friendly
desktop, adding enhancements such as improved desktop utilities and office applications.
They currently provide an improved version of Gnome known as Ximian Gnome (see Figure
8-14) and are planning to offer a full suite of office applications. Currently, they offer a full-
featured mail client called Evolution and a spreadsheet called Gnumeric. Evolution is a fully
loaded communications application that includes a mail client, address book, calendar, and
contact manager (still under development). Their next project is a full-featured word
processor. You can obtain more information about Ximian from its Web site at
www.ximian.com.

Figure 8-14: Ximian Gnome

Ximian Gnome is an enhancement of Gnome that is fully compatible with all Gnome
software. You first need to have Gnome installed on your system, and then you can download
and install Ximian Gnome. You can download Ximian Gnome from its Web site at
www.ximian.com, selecting the version for your particular Linux distribution.

Ximian Gnome displays a Menu panel at the top where you can access programs and perform
tasks like logging out and locking your screen. A taskbar at the bottom of the screen shows
currently running programs and windows. The Ximian Gnome interface is shown in Figure 8-
14. However, there are several others that you can choose from. When you first run Ximian,
you have the opportunity to customize your desktop, and you can choose from several
arrangements, including a CDE panel or a traditional Gnome panel. In the Login window, you
also have the option of logging into a traditional Gnome interface, labeled Gnome.

Updating Gnome

Currently, new versions of Gnome are being released frequently, sometimes every few
months. Gnome releases are designed to enable users to upgrade their older versions easily.
Be sure to obtain the release for your particular distributions (though you can install from the
source code if you want). For Red Hat, you can use the Red Hat update agent to update any
Gnome updates located on the Red Hat FTP site automatically. If you are using Ximian
Gnome, you can use the Ximian red carpet update utility to automatically update Gnome.

 Note The Gnome Web site (www.gnome.org) provides a link to Ximian at
www.ximian.com, where you can download the Ximian version of Gnome for different
distributions. Ximian versions tend to be more current.

Packages tailored for various distributions can also be downloaded from the Gnome FTP site
at ftp.gnome.org. To manually download the update files and install them yourself, you first
log in as the root user and then create a directory to hold the Gnome files. Then connect to an
FTP site such as the Gnome FTP site at ftp.gnome.org or the updates directory for the Red
Hat distributions located at ftp.redhat.com. You can use a Web browser, such as Netscape,
but using an FTP client such as nctp, ftp, gFTP, or even the Gnome file manager (Nautilus or
GMC) is preferable. Download the files for the new version to your new directory. For Red
Hat, these are a series of RPM package files. To download using the Gnome file manager,

enter the FTP URL in a file manager window's Location box to access the site. Move to the
directory holding the Gnome files. Then select the files and drag and drop them to another file
manager window that is open to the local directory in which you want them placed. The files
are downloaded for you. To download using the ftp client, be sure to turn off prompts with
the prompt command and use mget * to download all the files at once.

Once the RPM packages are downloaded, you can use the rpm command with the -Uvh
option to install them or the GnomeRPM utility. Be sure to read any installation instructions
first. These can be found in readme or install files. You may have to install some packages
before others. The GnomeRPM utility will tell you if a certain package requires that other
packages be installed first. It will list these other packages as dependencies, meaning that the
package you want to install is dependent on them and needs to have these other packages
already installed.

To install a particular Gnome RPM package manually, use the rpm command with the -Uvh
options or an RPM package utility like GnomeRPM (see Chapter 31). This example installs
the games package:

rpm -Uvh gnome-games-1.2.4-6.i386.rpm

Many of the most recent updates are provided in the form of source files that you can
download and compile. These are usually packages in compressed archives with .tar.gz
extensions. At ftp.gnome.org, these are currently located in pub/Gnome/stable/ sources.
Check the Gnome Web site for announcements. For example, a new version of the Gnome
core programs could be:

ftp.gnome.org/pub/GNOME/stable/sources/gnome-core/gnome-core-1.4.0.4.tar.gz

Once you download the archive, use the tar command with the xvzf options to decompress
and extract it. In the directory generated, use the ./configure, make, and make install
commands to configure, create, and install the programs.

tar xvzf gnome-core-1.4.0.4.tar.gz

Chapter 9: The K Desktop Environment:
KDE
Overview

The K Desktop Environment (KDE) is a network transparent desktop that includes the
standard desktop features, such as a window manager and a file manager, as well as an
extensive set of applications that cover most Linux tasks. KDE is an Internet-aware system
that includes a full set of integrated network/Internet applications, including a mailer, a
newsreader, and a Web browser. The file manager doubles as a Web and FTP client, enabling
you to access Internet sites directly from your desktop. KDE aims to provide a level of
desktop functionality and ease of use found in MAC/OS and Windows systems, combined
with the power and flexibility of the Unix operating system.

 Note KDE version 2.2 has superseded the earlier 1.1 version of KDE. This chapter describes
version 2.2. There are many similarities with version 1.1; however, users familiar with
the old KDE will find some important changes, such as a new file manager and control
center.

The KDE desktop is developed and distributed by the KDE Project, which is a large open
group of hundreds of programmers around the world. KDE is entirely free and open software
provided under a GNU Public License and is available free of charge along with its source
code. KDE development is managed by a core group: the KDE Core Team. Anyone can
apply, though membership is based on merit.

 Note KDE applications are developed using several supporting KDE technologies. These
include KIO, which offers seamless and modular access of files and directories across a
network. For interprocess communication, KDE uses the Desktop Communications
Protocol (DCOP). KParts is the KDE component object model used to embed an
application within another, such as a spreadsheet within a word processor. The XML
GUI uses XML to generate and place GUI objects such as menus and toolbars. KHTML
is an HTML 4.0 rendering and drawing engine.

Numerous applications written specifically for KDE are easily accessible from the desktop.
These include editors, photo and paint image applications, spreadsheets, and office
applications. Such applications usually have the letter K as part of their name-for example,
KWord or KMail. A variety of tools are provided with the KDE desktop. These include
calculators, console windows, notepads, and even software package managers. On a system
administration level, KDE provides several tools for configuring your system. With KUser,
you can manage user accounts, adding new ones or removing old ones. kppp enables you to
connect easily to remote networks with Point-to-Point Protocol (PPP) protocols using a
modem. Practically all your Linux tasks can be performed from the KDE desktop. KDE
applications also feature a built-in Help application. Choosing the Contents entry in the Help
menu starts the KDE Help viewer, which provides a Web page-like interface with links for
navigating through the Help documents. KDE version 2.2 includes support for an office
application suite called KOffice, based on KDE's KParts technology. KOffice includes a
presentation application, a spreadsheet, an illustrator, and a word processor, among other
components (see Chapter 14 for more details). In addition, an Interactive Development
Environment (IDE), called KDevelop, is also available to help programmers create KDE-
based software.

KDE was initiated by Matthias Ettrich in October 1996, and it has an extensive list of
sponsors, including SuSE, Caldera, Red Hat, O'Reilly, DLD, Delix, Live, Linux Verband, and
others. KDE is designed to run on any Unix implementation, including Linux, Solaris, HP-
UX, and FreeBSD. The official KDE Web site is www.kde.org, which provides news
updates, download links, and documentation. KDE software packages can be downloaded
from the KDE FTP site at ftp.kde.org and its mirror sites. Several KDE mailing lists are
available for users and developers, including announcements, administration, and other topics.
See the KDE Web site to subscribe. A great many software applications are currently
available for KDE at apps.kde.com. Development support and documentation can be
obtained at developer.kde.org. Various KDE Web sites are listed in Table 9-1.

Table 9-1: KDE Web Sites

Web Site Description
www.kde.org KDE Web site
ftp.kde.org KDE FTP site
apps.kde.com KDE software repository
developer.kde.org KDE developer site
www.trolltech.com Site for Qt libraries
koffice.kde.org KOffice office suite
kde.themes.org KDE desktop themes
lists.kde.org KDE mailing lists

Qt and Harmony

KDE uses as its library of GUI tools the Qt library, developed and supported by Troll Tech
(www.trolltech.com). Qt is considered one of the best GUI libraries available for Unix/Linux
systems. Using Qt has the advantage of relying on a commercially developed and supported
GUI library. Also, using the Qt libraries drastically reduced the development time for KDE.
Troll Tech provides the Qt libraries as open-source software that is freely distributable.
Certain restrictions exist, however: Qt-based (KDE) applications must be free and open
sourced, with no modifications made to the Qt libraries. If you develop an application with the
Qt libraries and want to sell it, then you have to buy a license from Troll Tech. In other words,
the Qt library is free for free applications, but not for commercial ones.

The Harmony Project is currently developing a free alternative to the Qt libraries. Harmony
will include all Qt functionality, as well as added features such as multithreading and
theming. It will be entirely compatible with any KDE applications developed using Qt
libraries. Harmony will be provided under the GNU Library Public License (LGPL). See
www.gnu.org/software/harmony for more information.

KDE Desktop

One of KDE's aims is to provide users with a consistent integrated desktop, where all
applications use GUI interfaces (see Figure 9-1). To this end, KDE provides its own window
manager (kwm), file manager (Konqueror), program manager, and desktop panel (Kicker).
You can run any other X Window System-compliant application, such as Netscape, in KDE,
as well as any Gnome application. In turn, you can also run any KDE application, including
the Konqueror file manager, with any other Linux window manager, including Blackbox,
Afterstep, and even Enlightenment. You can even run KDE applications in Gnome.

Figure 9-1: The KDE desktop

When you start KDE on Red Hat, the KDE panel is displayed at the bottom of the screen.
Located on the panel are icons for menus and programs, as well as buttons for different
desktop screens. The button for the K Menu shows a large K on a cog wheel with a small
arrow at the top indicating it is a menu. This button is known as the Application Starter. Click
this button to display the menu listing all the applications you can run. The K Menu operates
somewhat like the Start menu in Windows. The standard KDE applications installed with the
KDE can be accessed through this menu. You can find entries for different categories such as
Internet, Systems, Multimedia, and Utilities. These submenus list KDE applications you can
use. For example, to start the KDE mailer, select the Mail Client entry in the Internet
submenu. To quit KDE, you can select the Logout entry in the K Menu. You can also right-
click anywhere on the desktop and select the Logout entry from the pop-up menu. You can
also click the Logout icon on the KDE panel located below the Lock icon. If you leave any
KDE or X11 applications or windows open when you quit, they are automatically restored
when you start up again. Should you just want to lock your desktop, you can click the Lock
icon and your screen saver will appear. To access your desktop, click on the screen and a box
appears prompting you for your login password. When you enter the password, your desktop
reappears.

 Note You can display a menu for desktop operations across the top of the desktop screen by
selecting "Enable Desktop Menu" on the Desktop pop-up menu displayed when you
right-click on the desktop. You can use this menu to create new shortcuts called desktop
files for applications and devices, as well as for accessing open windows or changing to
different virtual desktops. You can bring up the same set of menus by clicking anywhere
on the desktop background.

A row of icons are displayed along the left side. These include a home directory folder icon,
the Trash icon, a Printer icon, and floppy and CD-ROM icons. The Trash icon operates like
the Recycle Bin in Windows or the trash can on the Mac. Drag items to it to hold them for
deletion. To print a document you can drag it to the Printer icon. You can use the floppy and
CD-ROM icons to mount, unmount, and display the contents of CD-ROMs and floppy disks.

 Tip When you use KDE the first time, you are asked to personalize your desktop using
KPersonalizer. To change your settings, you can run this program again by selecting
Desktop Settings Wizard on the System menu. With KPersonalizer, you can select the

kind of desktop style you want to use, changing the appearance of your windows and
menus.

The KDE panel displayed across the bottom of the screen initially shows small buttons for the
Application Starter, the window list, your home directory, the Help center, a terminal
window, and buttons for virtual desktops, among others. The Window List icon looks like
several grouped windows. It displays a list of all open windows and the desktop they are on.
The Home Directory icon shows a folder with a house. Click it to open a file manager
window showing your home directory. The Help Viewer icon is an image of a book. The
Terminal Window icon is a picture of two computer monitors. Click this to open a terminal
window where you can enter Linux shell commands.

The desktop supports drag-and-drop operations. For example, to print a document, drag it to
the Printer icon. You can place any directories on the desktop by simply dragging them from a
file manager window to the desktop. With KDE 2.2, the desktop also supports copy-and-paste
operations, holding text you copied from one application in a desktop clipboard that you can
then use to paste to another application. For example, you can copy a Web address from a
Web page and then paste it into an e-mail message or a word processing document. This
feature is supported by the Klipper utility located on the panel.

You can create new directories on the desktop by right-clicking anywhere on the desktop and
selecting Create New and then Directory from the pop-up menu. All items that appear on the
desktop are located in the Desktop directory in your home directory. There you can find the
Trash directory, along with any others you place on the desktop. To configure your desktop,
either click the Desktop icon located on the right of your panel or right-click the desktop and
select the Display Properties entry. This displays a window with several tabbed panels for
different desktop settings, such as the background or style.

Desktop Files

On the KDE 2.2 desktop, special files called desktop files are used to manage a variety of
tasks, including device management, Internet connections, program management, and
document types. You create a desktop file by right-clicking the desktop and then selecting
Create New. From this menu, you choose the type of desktop file you want to create.

The Directory entry lets you create a link to a directory on your system. The CD-ROM and
Floppy Device entries each create a desktop file that can mount CD-ROMs or floppy disks on
your system. The Text File and HTML File entries are used to reference text files and Web
pages on your system. The Link to Application entry is for launching applications. The Link
to Location (URL) entry holds a URL address that you can use to access a Web or FTP site.
The Application and Device entries are covered in the Applications section.

Given a desktop file that holds an Internet URL address, you can access that site directly by
simply clicking the Desktop icon on the desktop. You can also place the desktop file on your
desktop or put it in your panel, where it is easily accessible. You can configure the file to
display any icon you choose. In effect, you can have an icon on your desktop you can click to
immediately access a Web site. When you click the URL desktop file, the file manager starts
up in its Web browser mode and will access that address, displaying the Web page. For FTP
sites, it performs an anonymous login and displays the remote directory. The Red Hat icon
labeled www.redhat.com in Figure 9-1 is an example of such a desktop file.

To create a URL desktop file, right-click the desktop and select the Create New menu, and
then the Link to Location (URL) entry. A window appears that displays a box that prompts
you to enter the URL name. Enter the URL address. You can later edit the desktop file by
right-clicking on it and selecting Properties. A desktop dialog box for URL access is then
displayed. This dialog box has three tabbed panels: General, Permissions, and URL (see
Figure 9-2). On the General panel is the name of your desktop file. It will have as its name the
URL address that you entered. You can change this to a more descriptive name if you wish.
On the URL panel, you will see a box labeled URL with a URL you entered already in it. You
can change it if you want. For example, for KDE themes, the URL would be
http://kde.themes.org. Be sure to include the protocol, such as http:// or ftp://. An Icon
button on this panel shows the icon that will be displayed for this desktop file on your
desktop. The default is a Web World icon. You can change it if you want by clicking the Icon
button to open a window that lists icons you can choose from. Click OK when you are
finished. The desktop file then appears on your desktop with that icon. Click it to access the
Web site. An alternative and easier way to create a URL desktop file is simply to drag a URL
from a Web page displayed on the file manager to your desktop. A desktop file is
automatically generated with that URL. To change the default icon used, you can right-click
the file and choose Properties to display the desktop dialog box. Click the Icon button to
choose a new icon.

Figure 9-2: The desktop dialog box

KDE Windows

A KDE window has the same functionality you find in other window managers and desktops.
You can resize the window by clicking and dragging any of its corners or sides. A click-and-
drag operation on a side extends the window in that dimension, whereas a corner extends both
height and width at the same time. Notice that the corners are slightly enhanced. The top of
the window has a title bar showing the name of the window, the program name in the case of
applications, and the current directory name for the file manager windows. The active window
has the title bar highlighted. To move the window, click this title bar and drag it where you
want. Right-clicking the window title bar displays a drop-down menu with entries for window
operations, such as closing or resizing the window. Within the window, menus, icons, and
toolbars for the particular application are displayed. Here is an example of a KDE window.

Opened windows are also shown as buttons on the KDE taskbar located on the panel. The
taskbar shows the different programs you are running or windows you have open. This is
essentially a docking mechanism that enables you to change to a window or application just
by clicking its button. When you minimize (iconify) a window, it is reduced to its taskbar
button. You can then restore the window by clicking its taskbar button.

KDE supports numerous different themes, each displaying window elements in different
ways. The default KDE window theme for KDE 2.2 installed with Red Hat 7.2 is shown in

these examples (the earlier version of KDE (1.0) uses a slightly different window theme). In
the default KDE 2.2 window on Red Hat, there are two buttons to the left of the title bar at the
top of the window. The leftmost button is used to display the window menu and shows an
icon representing the type of window open. The button next to it is a Stick Pin button. The
Stick Pin button is used to have a window appear on all your virtual desktops, no matter to
which one you change. In effect, the window sticks on the screen when you change to another
virtual desktop. When active, it appears as a stick pin pressed into the desktop. When inactive,
it shows a stick pin on its side.

To the right of the title bar are three small buttons for iconifying, maximizing, or closing the
window. The button with a square maximizes the window, letting the window take up the
entire screen. Clicking the Maximize button with the middle or right mouse button maximizes
vertically or horizontally. The rightmost button showing an x is used to close the window.

The button with the Dot icon is used to iconify the icon. When you click it, the window is no
longer displayed on the desktop, but its button entry remains in the taskbar on the panel.

Click that button to redisplay the window. You can also reduce a window to its title bar by
double-clicking the title bar. To restore the window, double-click the title bar again.

Application windows may also display a Help Notes button, shown next to the iconify button
and displaying a question mark. Clicking this button changes your cursor to a question mark.
You can then move the cursor to an item such as an icon on a toolbar, then click it to display a
small help note explaining what the item does. Clicking a Forward button in the file manager
taskbar will show a note explaining that this button performs a browser forward operation.

 Tip When a window is not active, its contrast is reduced to make it easier for you to notice the
active window.

As a multitasking operating system, Linux enables you to run several applications at the same
time. This means you can have several applications open and running on your desktop, each
with its own window. You can switch between them by moving from one window to another.
When an application is open, a button for it is placed in the taskbar at the top of the desktop.
You can switch to that application at any time by clicking its taskbar button. From the
keyboard, you can use the ALT-TAB key combination to display a list of current applications.
Holding down the ALT key and sequentially pressing TAB moves you through the list. You
can hide an application at any time by clicking its window's Minimize button. The taskbar
button entry for it remains. Click this to restore the application. Table 9-2 shows the KDE
keyboard shortcuts.

Table 9-2: KDE Keyboard Shortcuts
Keys Effect
ALT-ESC or CTRL-ESC Current session manager with Logout button
ALT-TAB and ALT-SHIFT-TAB Traverse the windows of the current desktop
CTRL-TAB and CTRL-SHIFT-TAB Traverse the virtual desktops

Table 9-2: KDE Keyboard Shortcuts
Keys Effect
ALT-F2 Open small command line window
ALT-F3 Window operation menu
ALT-F4 Close window
CTRL-F[1…8] Switch to a particular virtual desktop
CTRL-ALT-ESC Force shutdown of X Windows

Virtual Desktops: The KDE Desktop Pager

KDE, like most Linux window managers, supports virtual desktops. In effect, this extends the
desktop area on which you can work. You could have Netscape running on one desktop and
be using a text editor in another. KDE can support up to 16 virtual desktops, though the
default is four. Your virtual desktops can be displayed and accessed using the KDE Desktop
Pager located on the panel. The KDE Desktop Pager represents your virtual desktops as
miniature screens showing small squares for each desktop. By default there are four squares,
numbered 1, 2, 3, and 4.

You can have up to 16. To move from one desktop to another, click the square for the
destination desktop. Clicking 3 displays the third desktop, and clicking 1 moves you back to
the first desktop.

Normally, when you open an application on a particular desktop, it appears only in that
desktop. When you move to another desktop, the application disappears from your screen.
Moving back again shows the application. For example, if you open KMail on the third
desktop, and then move to the second desktop, KMail disappears from your screen. Moving
back to the third desktop causes KMail to appear again. Selecting the taskbar button for an
application also switches you to the desktop on which the application is open. In the example,
clicking the KMail taskbar button switches to the third desktop. You can also use the Window
list menu in the panel to display a listing of all open windows in each desktop. Selecting a
window entry moves to that desktop. If you want an application to appear on all desktops, no
matter which one you move to, click its window's Stick Pin button.

If you want to move a window to a different desktop, first open the window's menu by right-
clicking the window's title bar. Then, select the To Desktop entry, which lists the available
desktops. Choose the one you want. You can also right-click the window's title bar to display
the window's menu.

You can also configure KDE so that, if you move the mouse over the edge of a desktop
screen, it automatically moves to the adjoining desktop. You need to imagine the desktops
arranged in a four-square configuration, with two top desktops next to each other and two
desktops below them. You enable this feature by selecting the Active Desktop Borders entry
in the Desktop panel in the KDE Control Center.

To change the number of virtual desktops, you use the KPanel configuration window. From
the K Menu, select Panel and then Configure. On the KPanel configuration window, select the
Desktop panel. You then see entries for the current desktops. The visible bar controls the
number of desktops. Slide this to the right to add more and to the left to reduce the number.
The width bar controls the width of the desktop buttons on the panel. You can change any of
the desktop names by clicking a name and entering a new one.

You can also configure desktop features, such as color background, for each virtual desktop.
In the K Menu, select Settings and then Desktop. From this menu, you can choose various
features to change. Selecting Background displays a Display Settings window. A list of virtual
desktops is then shown. Select the one whose background you want to change, and then you
can choose from colors and wallpaper. You can select wallpaper from a preselected list or
choose your own.

KDE Panel: Kicker

The KDE panel (Kicker) is located at the bottom of the screen.

Through it, you can access most KDE functions. The panel includes icons for menus,
directory windows, specific programs, and virtual desktops. At the left end of the panel is an
icon with a large K on a cog wheel, known as the K button. This is the button for the KDE
Application Starter that opens the K Menu. Click this button to display the menu of
applications you run (you can also open the K Menu with the ALT-F1 key). From the KDE
menu, you can access numerous submenus for different kinds of applications. The menu also
includes certain key items such as Logout, to log out out of KDE; Lock Screen, to lock your
desktop; Configure Panel, to access your Kicker panel configuration options; Run, to run
programs from a command line; Quick Browser, to quickly browse your home, KDE, or root
directories; and Recent Documents, which lists your recently opened documents.

To add an application to the panel, select the Add entry in the Configure Panel submenu
located in the K Menu. You can also right-click anywhere on the panel and select Add from
the pop-up menu. The Add menu displays the kind of objects you can add, such as buttons,
applets, extensions, and windows. For KDE applications, select the Buttons entry. This lists
all installed KDE applications. To add a button for an application to the panel, click the
application entry. You can also drag applications from a file manager window or from the K
menu, to the panel directly and have them automatically placed in the panel. The panel only
displays desktop files. When you drag and drop a file to the panel, a desktop file for it is
automatically generated. Kicker also supports numerous applets and several extensions.
Applets are designed to run as icons in the panel. These include a clock, pager, and system
monitor. Extensions add components to your desktop. For example, the Kasbar extension sets
up its own panel and lists icons for each window you open. You can easily move from one
window to another by clicking their corresponding icon in the Kasbar extension panel.

To configure the panel position and behavior, right-click the panel and select the Preferences
entry. This displays a Panel Configuration dialog box with several tabbed panels: Position,
Hiding, Look and Feel, Menus, Buttons, and Applets. The Position panel enables you to
specify the edges of the screen where you want your panel and taskbar displayed. You can
also enlarge or reduce it in size. On the Look and Feel panel, you can set a background theme.

The Menus panel lets you control the size of your menus as well as whether to display
recently opened documents as menu items. On the Buttons page, you can have panel buttons
display their background tiles, making each button more distinctive. The Applets panel lets
you load only trusted applets or all available applets. Below each panel are buttons that you
can use to restore the panel to its original settings (Default) or to its previous settings (Reset).
You activate your settings either immediately with the Apply button or when you close the
configuration window (OK).

You can add or remove menu items in your K Menu using the Edit Menus program. Right-
click its K icon and select Configure. This launches the Edit Menus window, displaying two
panes. The right pane shows the menu entries, and the left shows information about a selected
entry. The right pane has two tabbed panels: General and Advanced. The General pane fields
are where the features such as application program, the menu item name, and the icon used
are specified. You can edit any of these entries. You can also specify if you want the program
opened in a terminal window. On the Advanced panel you can select a keyboard shortcut for
the program. To create a new menu entry, you select New in the File menu. You can also
move, copy, and delete menu entries.

KDE Themes

For your desktop, you can select a variety of different themes. A theme changes the look and
feel of your desktop, affecting the appearance of GUI elements, such as scroll bars, buttons,
and icons. For example, you use the Mac OS theme to make your K Desktop look like a
Macintosh. Themes for the K Desktop can be downloaded from the kde.themes.org Web site.
Information and links for themes for different window managers can be found at
www.themes.org. You can use the KthemeMgr program to install and change your themes.

The KDE Help System

The KDE Help viewer provides a browser-like interface for accessing and displaying both
KDE Help files and Linux Man and info files. You can start the Help system either by
selecting its entry in the K Menu, clicking on the Help icon in the Panel (life-preserver), or by
right-clicking the desktop and selecting the Help entry (see Figure 9-3). The Help window is
divided into two frames. The left frame of the Help screen holds two tabbed panels, one
listing contents and the other providing a search engine. The left frame displays currently
selected documents. A help tree on the content's panel lets you choose the kind of Help
documents you want to access. Here you can choose manuals, Man pages, or info documents.
The Help Center includes a detailed user manual, a FAQ, and KDE Web site access.

Figure 9-3: The KDE Help Center

You can also use a URL format to access Man and info pages, info: and man:. For example,
man:cp displays the Man page for the cp command. A navigation toolbar enables you to
move through previously viewed documents. KDE Help documents use an HTML format
with links you can click to access other documents. The Back and Forward commands move
you through the list of previously viewed documents. The KDE Help system provides an
effective search tool for searching for patterns in Help documents, including Man and info
pages. Select the Search entry to display a page where you can enter your pattern. You can
also click the small icon in the toolbar of a page with a spyglass.

Applications

You can start an application in KDE in several ways. If an entry for it is in the K Menu, you
can select that entry to start the application. Some applications also have buttons on the KDE
panel you can click to start them. The panel already holds several of the commonly used
programs, such as the Kate text editor and KMail. You can also use the file manager to locate
a file using that application or the application program itself. Clicking its icon starts the
application. Or, you can open a shell window and enter the name of the application at the shell
prompt and press ENTER to start an application. You can also use the ALT-F2 key to open a
small window consisting of a box to enter a single command. You can use the UP ARROW
and DOWN ARROW keys to display previous commands, and the RIGHT ARROW and
LEFT ARROW keys or the BACKSPACE key to edit any of them. Press ENTER to execute a
command.

 Note You can create a desktop file on your desktop for any application already on your KDE
menu by simply clicking and dragging its menu entry to the desktop. Select Copy and a
desktop file for that application is created for you on your desktop, showing its icon.

You can also access applications directly from your desktop. To access an application from
the desktop, either create a desktop file or a standard link file that can link to the original
application program. With a desktop file, you can choose your own icon and specify a tooltip
comment. You can also use a desktop file to start a shell-based application running in its own
terminal window. A standard link, on the other hand, is a simple reference to the original
program file. Using a link starts the program up directly with no arguments. To create a
standard link file, locate the application on your file system, usually in the /bin, /usr/bin, or
/usr/sbin directories. Then, click and drag the application icon to your desktop. In the pop-up
menu, select Link. The link has the same icon as the original application. Whenever you then

click that icon, you can select Start from the pop-up menu to start the application. You can
also use this method to run an application program you have created yourself, locating it in
your own directory and creating a link for it on your desktop.

To create a new desktop file for an application, right-click anywhere on the empty desktop,
select Create New from the pop-up menu, and then choose "Link to application." Enter the
name for the program and a desktop file for it appears on the desktop with that name. A
Properties dialog box then opens with four panels: General, Permissions, Execute, and
Application. The General panel displays the name of the link. To specify the application the
desktop file runs, go to the Execute panel and either enter the application's program name in
the Execute box or click Browse to select it (see Figure 9-4). If this is a shell program, you
can elect to run it from within a terminal window. To select an icon image for the desktop file,
click the Cog icon. The Select Icon window is displayed, listing icons from which you can
choose. To run a shell-based program such as Pine or Vi, click the "Run in terminal" check
box and specify any terminal options. Certain KDE programs can minimize to a small icon,
which can be displayed in the panel while they are running. This is referred to as swallowing
on the panel. Enter the name of the program in the Execute box.

Figure 9-4: KDE Application Desktop dialog box

On the Permissions panel, be sure to set execute permissions so that the program can be run.
You can set permissions for yourself, for your group, or for any user on the system. In the
Application panel, you can specify the type of documents to be associated with this
application. The bottom of the panel shows two lists. The left list is for MIME types you want
associated with this program, and the right list is the listing of available MIME types from
which to choose (see Figure 9-5). To add a MIME type, select an entry in the right list and
click the Left Arrow button. Use the Right Arrow button to remove a MIME type. On the
panel, you also specify the comment, the file manager program name, and the name in your
language. The comment is the Help note that appears when you pass your mouse over the
icon. For the file manager program name, enter the name followed by a semicolon. This is the
name used for the link, if you use the file manager to display it. Desktop files needn't reside
on the desktop. You can place them in any directory and access them through the file
manager. You can later make changes to a desktop file by right-clicking its icon and selecting
Properties from the pop-up menu. This again displays the dialog box for this file. You can
change its icon and even the application it runs. You can download other icons from
icons.themes.org.

Figure 9-5: KDE Application Desktop MIME type entries

You can have KDE automatically display selected directories or start certain applications
whenever it starts up. To do so, place links for these windows and applications in the
AutoStart directory located in your .kde directory. To place a link for a directory in the
AutoStart folder, first locate the Directory icon using the file manager. Then, click and drag
the icon to the AutoStart folder. From the pop-up menu that appears, select Link (do not select
Copy or Move). Whenever you start KDE, that directory is displayed in a file manager
window. You can do the same for applications and files. Locate the application with the file
manager and click and drag it to the AutoStart folder, selecting Link. For a file, do the same.
Whenever KDE starts, those applications automatically start. For files, the application
associated with a file starts using that file. For example, to start KMail automatically, click
and drag its icon to the AutoStart folder, selecting Link.

Mounting CD-ROMs and Floppy Disks from the Desktop

Red Hat created desktop icons for your CD-ROMs and floppies when it installed KDE.
Floppy and CD-ROM icons are displayed on the left side of your KDE desktop. To access a
CD-ROM disk, place the CD-ROM disk in your CD-ROM drive and click the CD-ROM icon.
The file manager window then opens, displaying the contents of the CD-ROM's top-level
directory. You can also right-click the icon to display a pop-up menu with an entry to mount
or unmount the disk. When the CD-ROM holds a mounted CD disk, the CD-ROM icon
displays a small red rectangle on its image. Unlike on Windows systems, the CD-ROM disk
remains locked in the CD-ROM drive until you unlock it. To unmount the CD, right-click the
CD-ROM's icon and select Unmount from the pop-up menu. You can then open the CD-ROM
drive and remove the CD.

To access a floppy disk, you can perform a similar operation using the Floppy Disk icon.
Place the floppy disk in the disk drive and click the Floppy Disk icon. This displays a file
manager window with the contents for the floppy disk. Or, you can right-click the icon to
display a pop-up menu with an entry to mount the disk. Once it is mounted, you can access it,
copying files to and from the disk. Be careful not to remove the disk unless you first unmount
it. To unmount the disk, right-click its icon and select Unmount from the icon's pop-up menu.
You can perform one added operation with floppy disks. If you put in a blank disk, you can
format it. You can choose from several file system formats, including MS-DOS. To format a
standard Linux file system, select the ext2 entry.

A desktop file you use for your CD-ROM is a special kind of desktop file designed for file
system devices. Should you add a new CD-ROM or floppy drive, you can create a new
desktop file for it to enable you to access the drive from your desktop. To create one, first
right-click anywhere on the desktop, select New, and then select either CD-ROM Device for a
CD-ROM drive or Floppy Device for a floppy drive. This opens a Properties window with
tabs for General, Permissions, and Device. In the General tab you can set the name for the
device icon that will appear on the desktop as well as choose the icon you want to show for a
mounted CD-ROM or floppy disk (a default is already provided). On the Device panel, you
select the actual device, its mount point on your file system, and the type of file system it will
mount, as well as the icon used to indicate when it is unmounted (see Figure 9-6). On the
Permissions panel, you can also indicate the permissions that have been set to allow access to
the device. See the chapter on file administration, Chapter 32, for a discussion on devices and
file systems. The desktop file does not perform the necessary system administration
operations that enable access to the CD-ROM by ordinary users. Normally, only the systems
administrator (root user) can mount or unmount CD-ROMs and floppy disks. You also must
make sure an entry is in the /etc/fstab file for the CD-ROM or floppy drive. If not, you have
to add one. Such operations are fairly easy to perform using the file system management tools
provided by Linuxconf and fsconf. Check Chapter 4 and Chapter 32 for the procedures to use.

Figure 9-6: The Desktop dialog box for CD-ROM devices

KDE File Manager and Internet Client: Konqueror

The KDE file manager is a multifunctional utility with which you can manage files, start
programs, browse the Web, and download files from remote sites (see Figure 9-7).
Traditionally, the term "file manager" was used to refer to managing files on a local hard disk.
The KDE file manager extends its functionality well beyond this traditional function because
it is Internet capable, seamlessly displaying remote file systems as if they were your own, as
well as viewing Web pages with browser capabilities. It is capable of displaying a multitude
of different kinds of files, including image, postscript, and text files. KOffice applications can

be run within the Konqueror window. With KDE 2.2, the original KDE file manager, kfm,
was replaced by a new file manager called Konqueror.

Figure 9-7: The KDE file manager

A KDE file manager window consists of a menu bar, a navigation toolbar, a location field, a
status bar, and a sidebar that provides different views of user resources, such as a tree view of
file and directory icons for your home directory. When you first display the file manager
window, it displays the file and subdirectory icons for your home directory. Files and
directories are automatically refreshed. So, if you add or remove directories, you do not have
to manually refresh the file manager window. It automatically updates for you, showing added
files or eliminating deleted ones. The files listed in a directory can be viewed in several
different ways. You can view files and directories as icons, small icons, or in a detailed
listing. The detailed listing provides permissions, owner, group, and size information.
Permissions are the permissions controlling access to this file (see Chapter 12). Configuration
files are not usually displayed. These are files beginning with a period and are often referred
to as dot files. To have the file manager display these files, select Show Dot Files from the
View menu.

The sidebar lists different resources that a user can access with Konqueror. The sidebar has
both a classic and extended version. You can select which one to use from the Window menu.
In the classic version, resources such as file manager history, bookmarks, and your home
directory are listed in an expandable tree. Click an entry to expand it. Double-click to access it
with Konqueror. For example, to move to a subdirectory, expand your home directory entry
and then double-click the subdirectory you want. Konqueror will now display that
subdirectory. To go to a previously bookmarked directory or Web page, find its entry in the
Bookmarks listing and select it.

The extended sidebar features a vertical button bar for displaying items such as your file
manager history, home directory, bookmarks, and network resources. The History button lists
the network resources and directories you have accessed, including Web pages. The Network
button will list network resources you have access to, such as FTP and Web sites. The Folder
button will display your system's root directory. If Multiple Views are enabled, you can
display several of these at once, just by clicking the ones you want. If Multiple Views are not
enabled, then the previous listing is replaced by the selected one. Turn off a display by
clicking its button again. The last button is a Classic Sidebar button which will display all of
the resources in an expandable tree, like the classic sidebar does.

To configure the extended sidebar, click on its Configure button in the Sidebar Button bar.
Select the multiple views entry to allow the display of several resource listings at once, each
in their separate sub-sidebar. You can also add a new resource listing, choosing from a
bookmark, history, or directory type. A button will appear for the new listing. You can right-
click the button to select a new icon for it or select a URL, either a directory pathname or a
network address. To remove a button and its listing, right-click on it and select the Remove
entry.

To search for files, select the Find entry in the Tools menu or click on the Looking Glass icon.
This opens a pane within the file manager window in which you can search for filenames
using wildcard matching symbols, such as *. Click the Find button to run the search and on
the Stop button to stop it (see Figure 9-8). The search results are displayed in a pane in the
lower half of the file manager window. You can click a file and have it open with its
appropriate application. Text files are displayed by the Kate text editor. Images are displayed
by KView, and postscript files by KGhostview. Applications are run. The search program also
enables you to save your search results for later reference. You can even select files from the
search and add them to an archive.

Figure 9-8: The KDE Search tool

You can open a file either by clicking it or by selecting it, and then choosing the Open entry
in the File menu. A single-click, not a double-click, opens the file. If you want to select the
file or directory, you need to hold down the CTRL key while you click it. A selection is
performed with a CTRL-click. If the file is a program, that program starts up. If it is a data
file, such as a text file, then the associated application is run using that data file. For example,
if you click a text file, the Kate application starts displaying that file. If Konqueror cannot
determine the application to use, it opens a dialog box prompting you to enter the application
name. You can click the Browse button on this box to use a directory tree to locate the
application program you want.

The file manager can also extract tar archives and install RPM packages. An archive is a file
ending in .tar.gz, .tar, or .tgz. Clicking the archive lists the files in it. You can extract a
particular file simply by dragging it out the window. Clicking a text file in the archive
displays it with Kate, while clicking an image file displays it with KView. Selecting an RPM
package opens it with the kpackage utility, which you can then use to install the package.

Moving Through the File System

A single-click on a directory icon moves to that directory and displays its file and
subdirectory icons. Unlike other interfaces, KDE does not use double-clicking to open a
directory. To move back up to the parent directory, you click the Up Arrow button located on
the left end of the navigation toolbar. A single-click on a directory icon moves you down the
directory tree, one directory at a time. By clicking the Up Arrow button, you move up the tree.
To move directly to a specific directory, you can enter its pathname in the Location box
located just above the pane that displays the file and directory icons. Figure 9-9 shows the
KDE file manager window displaying the current directory. You can also use several
keyboard shortcuts to perform such operations, as listed in Table 9-3.

Figure 9-9: File manager as Web browser

Table 9-3: KDE File Manager Keyboard Shortcuts
Keys Description
ALT-LEFT ARROW Back in History
ALT-RIGHT ARROW Forward in History
ALT-UP ARROW One directory up
ENTER Open a file/directory
ESC Open a pop-up menu for the current file
LEFT/RIGHT/UP/DOWN ARROWS Move among the icons
SPACEBAR Select/unselect file
PAGE UP Scroll up fast
PAGE DOWN Scroll down fast
RIGHT ARROW Scroll right (on Web pages)
LEFT ARROW Scroll left (on Web pages)
UP ARROW Scroll up (on Web pages)
DOWN ARROW Scroll down (on Web pages)
CTRL-C Copy selected file to Clipboard
CTRL-V Paste files from Clipboard to current directory
CTRL-S Select files by pattern

Table 9-3: KDE File Manager Keyboard Shortcuts
Keys Description
CTRL-T Open a terminal in the current directory
CTRL-L Open new location
CTRL-F Find files
CTRL-W Close window

Like a Web browser, the file manager remembers the previous directories it has displayed.
You can use the Back and Forward Arrow buttons to move through this list of prior
directories. For example, a user could use the Location field to move to the ~/birthday
directory and use it again to move to the ~/reports directory. Clicking the Back Arrow button
displays the ~/birthday directory (the ~ represents the user's home directory). Then, clicking
the Forward Arrow button moves it back to the ~/reports directory. You can move directly to
your home directory by clicking the Home button. This has the same effect as the cd
command in the shell. If you know you want to access particular directories again, you can
bookmark them, much as you do a Web page. Just open the directory and select the Add
Bookmarks entry in the Bookmark menu. An entry for that directory is then placed in the file
manager's Bookmark menu. To move to the directory again, select its entry in the Bookmark
menu. This is helpful for directories you might use frequently or for directories you must
access with lengthy or complex pathnames. Bookmarks also apply to individual files and
applications. You can even bookmark desktop icons. To bookmark a file, first select a file and
then choose the Add Bookmarks entry in the Bookmark menu. Later, selecting that bookmark
opens that file. You can do the same thing with applications, where selecting the application's
bookmark starts the application. Each bookmark is a file placed in your
.kde2/share/apps/konqueror/bookmarks directory (kfm instead of Konqueror if you are
upgrading from KDE 1.0). You can go to this directory and change the names of any of the
files, and they then appear as changed on your Bookmark menu. To change their names, right-
click the file and select Properties from the pop-up menu. In the dialog box displayed, you see
the filename is the full pathname on the General tab. You can replace the pathname with one
of your own choosing. This bookmark would then appear as myreport. The pathname used to
access the file is actually on the URL panel.

To help you navigate from one directory to another, you can use the Location field or the
directory tree. In the Location field, you can enter the pathname of a directory, if you know it,
and press ENTER. The file manager then displays that directory. The directory tree provides a
tree listing all directories on your system and in your home directory. You can activate the
directory tree by selecting the Show Tree entry in the View menu. The directory tree has three
main entries: Root, My Home, and Desktop. The Root entry displays the directories starting
from the system root directory, the My Home entry displays directories starting from your
home directory, and the Desktop entry displays the files and links on your desktop. Click a
side triangle to expand a directory entry, and click a down triangle of an expanded directory
entry to hide it.

Internet Access

The KDE file manager doubles as a Web browser and an FTP client. It includes a box for
entering either a pathname for a local file or a URL for a Web page on the Internet or your
intranet. A navigation toolbar can be used to display previous Web pages or previous

directories. The Home button will always return you to your home directory. When accessing
a Web page, the page is displayed as on any Web browser. With the navigation toolbar, you
can move back and forth through the list of previously displayed pages in that session. This
feature is particularly convenient for displaying local Web pages, such as documentation in
HTML format. Most Linux distributions provide extensive documentation in the form of Web
pages you can easily access and display using a KDE file manager window. Figure 9-9,
shown previously, shows the KDE file manager window, operating as a Web browser and
displaying a Web page.

The KDE file manager also operates as an FTP client. When you access an FTP site, you
navigate the remote directories as you would your own. The operations to download a file are
the same as copying a file on your local system. Just select the file's icon or entry in the file
manager window and drag it to a window showing the local directory to which you want it
downloaded. Then, select the Copy entry from the pop-up menu that appears.

By default, KDE attempts an anonymous login. If you want to perform a nonanonymous login
as a particular user, add the user name with an @ symbol before the FTP address. You are
then prompted for the user password. For example, the following entry logs in to the
ftp.mygames.com server as the user chris:

ftp://chris@ftp.mygames.com

Copy, Move, Delete, and Archive Operations

To perform an operation on a file or directory, you first have to select it. In KDE, to select a
file or directory, you hold the CTRL key down, while clicking the file's icon or listing. To
select more than one file, continually hold the CTRL key down while you click the files you
want. Or, you can use the keyboard arrow keys to move from one file icon to another and then
use the SPACEBAR to select the file you want.

To copy and move files, you can use the standard drag-and-drop method with your mouse. To
copy a file, you locate it by using the file manager. Open another file manager window to the
directory to which you want the file copied. Then, click and drag the File icon to that window
(be sure to keep holding down the mouse button). A pop-up menu appears with selections for
Move, Copy, or Link. Choose Copy. To move a file to another directory, follow the same
procedure, but select Move from the pop-up menu. To copy or move a directory, use the same
procedure as for files. All the directory's files and subdirectories are also copied or moved.

You can also move or copy files using the Copy and Paste commands. First, use a CTRL-
click to select a file or directory (hold the CTRL key down while clicking the File icon).
Either select the Copy entry from the Edit menu or click the Copy button in the navigation
bar. Change to the directory to which you want to copy the selected file. Then, either select
Paste from the Edit menu or click the Paste button. Follow the same procedure for moving
files, using the Move entry from the Edit menu or the Move button in the navigation toolbar.
Most of the basic file manager operations can be selected from a pop-up menu displayed
whenever you right-click a file or directory. Here, you can find entries for copying, moving,
and deleting the file, as well as navigating to a different directory.

Distinguishing between a copy of a file or directory and a link is important. A copy creates a
duplicate, whereas a link is just another name for the same item. Links are used extensively as

ways of providing different access points to the same document. If you want to access a file
using an icon on your desktop, creating a link on the desktop (rather than a copy) is best. With
a copy, you have two different documents, whereas with a link you are accessing and
changing the same document. To create a link on your desktop, click and drag the File icon
from the directory window to the desktop and select Link from the pop-up menu. Clicking the
link brings up the original document. Deleting the link only removes the link, not the original
document. You can create links for directories or applications using the same procedure. You
can also place links in a directory: click and drag the files to which you want to link into that
directory and select Link from the pop-up menu.

You delete a file by removing it immediately or placing it in a Trash folder to delete later. To
delete a file, select it and then choose the Delete entry in the Edit menu. You can also right-
click the icon and select Delete. To place a file in the Trash folder, click and drag it to the
Trash icon on your desktop or select Move to Trash from the Edit menu. You can later open
the Trash folder and delete the files. To delete all the files in the Trash folder, right-click the
Trash icon and select Empty Trash Bin from the pop-up menu. To restore any files in the
Trash bin, open the Trash bin and drag them out of the Trash folder.

Each file or directory has properties associated with it that include permissions, the filename,
and its directory. To display the Properties window for a given file, right-click the file's icon
and select the Properties entry. On the General panel, you see the name of the file displayed.
To change the file's name, replace the name there with a new one. Permissions are set on the
Permissions panel. Here, you can set read, write, and execute permissions for user, group, or
other access to the file. See Chapter 12 for a discussion of permissions. The Group entry
enables you to change the group for a file.

.directory

KDE automatically searches for and reads an existing .directory file located in a directory. A
.directory file holds KDE configuration information used to determine how the directory is
displayed. You can create such a file in a directory and place a setting in it to set display
features, such as the icon to use to display the directory folder.

KDE Configuration: KDE Control Center

With the KDE Control Center, you can configure your desktop and system, changing the way
it is displayed and the features it supports (see Figure 9-10). You can open the Control Center
directly to a selected component by selecting its entry in the K Menu Settings menu. The
Settings menu displays a submenu listing the configuration categories. Select a category, and
then select the component you want. For example, to configure your screen saver, select the
screen saver config entry in the Desktop menu located in the Settings menu. The Control
Center can be directly started by either clicking the Control Center icon in the panel or
selecting Control Center from the K Menu.

Figure 9-10: KDE Control Center

The Control Center window is divided into two panes. The left pane shows a tree view of all
the components you can configure and the right pane displays the dialog windows for a
selected component. On the left pane, components are arranged into categories whose titles
you can expand or shrink. The Applications heading holds entries for configuring the KDE
file manager's Web browser features, as well as its file management operations. Under
Desktop, you can set different features for displaying and controlling your desktop. For
example, the Background entry enables you to select a different background color or image
for each one of your virtual desktops. Other desktop entries enable you to configure
components such as the screen saver, the language used, and the window style. Some entries
enable you to configure your mouse, key mappings, network connections, sound events, and
window components. You can change key bindings for any of the window operations or
standard operations, such as cut and paste. You can also change any of the specialized key
mappings, such as the ALT-TAB key, that moves through your open applications, CTRL-
TAB, which moves through your virtual desktops, or ALT-F2, which displays a dialog box
for executing commands. Configuration components are actually modules. In future releases,
more modules will be included as more applications and tools are added to the K Desktop.
See the Help viewer for a current listing of K Desktop configuration modules.

.kde/share/config

Your .kde directory holds files and directories used to maintain your KDE desktop. The
.desktops directory holds KDE desktop files whose icons are displayed on the desktop.
Configuration files are located in the .kde/share/config directory. Here, you can find the
general KDE configuration file kfmrc, as well as configuration files for different KDE
components. krootwmrc holds configuration commands for your root window, kwmrc for
the window manager, ksoundrc for sound, and kcmpanelrc for your panel. You can place
configuration directives directly in any of these files-for example, to have the left mouse
button display the Application Starter on the desktop, place the following lines in your
krootwmrc file:

[MouseButtons]
 Left=Menu

MIME Types and Associated Applications

As you install new kinds of programs, they may use files of a certain type. In that case, you
will need to register the type with KDE so that it can be associated with a given application or
group of applications. For example, the MIME type for GIF images is image/gif, which is
associated with image-viewing programs. You use the KDE Control Center to set up a new
MIME type or to change MIME type associations with applications. Select the File
Association entry under File Browsing. This will list MIME types and their associated
filename extensions. Select an entry to edit it, where you can change the applications
associated with it. KDE saves its MIME type information in a separate file called mimelnk in
the KDE configuration directory.

To change the associated application for a particular file, you find the application with the file
manager and then right-click it and select Edit File Type. This displays a window with two
panels: General and Embedded. On the General menu, you can add an extension by clicking
the Add button and entering the extension for the file type, using a * to match the prefix. For
example, *.gif would match any file ending with .gif. In the Application Preference Order
section, use the Add button to select the application you want associated with the file. You
can have several applications for a single file, changing the preference order for them as you
wish. Click the Apply button to save your changes.

KDE Directories and Files

On Red Hat, KDE is installed in the standard system directories with some variations, such as
/usr/bin for KDE program files, /usr/lib/kde2, which holds KDE libraries, and
/usr/include/kde, which contains KDE header files used in application development. (On
other distributions, KDE may be installed in the /opt/kde2 directory.)

The directories located in /usr/share contain files used to configure your KDE environment.
The /usr/share/mimelnk directory maps its files to the Applications Launcher menu. Its
directories and subdirectories appear as menu items and submenus on the K Menu. Their
contents consist of desktop files having the extension .desktop, one for each menu entry. The
/usr/share/apps file contains files and directories set up by KDE applications.
/usr/share/mimelnk holds MIME type definitions. /usr/share/config contains the
configuration files for particular KDE applications. For example, kfmrc holds configuration
entries for displaying and using the Konqueror file manager. These are the system-wide
defaults that can be overridden by users' own configurations in their own .kde/share/config
directories. /usr/share/icons holds the default icons used on your KDE desktop and by KDE
applications. The /usr/share directory also holds files for other configuration elements such
as wallpaper, toolbars, and languages.

In the user's home directory, the .kde directory holds a user's own KDE configuration for the
desktop and its applications. The .kde/share directory holds user versions of the /usr/share
directories, specifying user configurations for menus, icons, MIME types, sounds, and
applications. .kde/share/config holds configuration files with users' own configuration
specifications for their use of KDE applications. For example, kmailrc holds display
configurations the user set up for KMail. .kde/share/icons holds the icons for a user's
particular themes, and /.kde/share/sounds holds sound files. .kde/share/mimelnk holds the
desktop files for the menu entries in the Personal section of the Applications Launcher menu

added by the user. In a user's home directory, the .kderc file contains current desktop
configuration directives for resources such as key bindings, colors, and window styles.

Each user has a Desktop directory that holds KDE link files for all icons and folders on the
user's desktop (see Table 9-4). These include the Trash folders and the CD-ROM and home
directory links.

Table 9-4: KDE Installation Directories
System KDE Directories Description
/usr/bin KDE programs
/usr/lib/kde KDE libraries
/usr/include/kde Header files for use in compiling and developing KDE

applications
/usr/share/config KDE desktop and application configuration files
/usr/share/mimelnk Desktop files used to build the K Menu
/usr/share/apps Files used by KDE applications
/usr/share/icons Icons used in KDE desktop and applications
/usr/share/sounds Sounds used in KDE desktop and applications
/usr/share/doc KDE Help system
KDEDIR System variable that holds KDE directory (used on other

distributions)
User KDE Directories Description
.kde/AutoStart Applications automatically started up with KDE
.kde/share/config User KDE desktop and application configuration files for

user-specified features
.kde/share/mimelnk Desktop files used to build the user's personal menu

entries on the KDE K Menu
.kde/share/apps Directories and files used by KDE applications
.kde/share/icons Icons used in the user's KDE desktop and applications,

such as the ones for the user-specified theme
.kde/share/sounds Sounds used in KDE desktop and applications
.kderc User configurations directives for desktop resources
Desktop Holds desktop files for icons and folders displayed on the

user's KDE desktop
Desktop/Trash Trash folder for files marked for deletion

System Configuration Using KDE

You can obtain full access to the system administration tools with KDE through the root
desktop. Log in as the root user and start KDE. On Red Hat, the kontrol-panel window, shown
in Figure 9-11, lists icons for all system configuration utilities. An icon for the Control Panel
window will be displayed in the upper-left corner of the root user desktop. You can also find
system tools in the System menu in the K Menu.

Figure 9-11: kontrol-panel window

Some of these administration tools are KDE applications, designed to work on the KDE
desktop, though they will work on any X interface. For example, kuser provides a KDE
interface for managing users on your system. You can add or remove users, or set permissions
for current ones. The K Desktop provides two utilities for viewing and managing your
processes: the KDE Task Manager (KTop) and the KDE Process Manager (kpm). The SysV
Init Editor is a version of the System V Init Manager (see Chapter 23). You can use the SysV
Init Editor to start and stop servers and to determine at what runlevel they will start. See the
chapters on system administration, Chapters 28-34, for a more detailed discussion on
administration tasks. With kppp, you can connect to the Internet using a modem. Use kppp to
connect to an Internet service provider (ISP) that supports the PPP protocols. kppp is
discussed in more detail in the chapter on network administration, Chapter 36. kpackage
enables you to manage the RPM packages you have installed. You can use it to install new
packages, see the ones that are installed, and easily display information about each package.
With kpackage, you can list the files in a particular package and display the release
information. You can even display text files, such as README and configuration files. This
is an easy way to find out exactly where an application's program and configuration files are
installed on your system.

Updating KDE

Currently, new versions of KDE are being released frequently, sometimes every few months.
KDE releases are designed to enable users to upgrade their older versions easily. If you are a
registered Red Hat customer you can use the Red Hat update utility described in Chapter 3 to
update KDE automatically. Alternatively, you can download new Red Hat KDE packages
from the Red Hat FTP site and install them manually as described here. The most recent
(though untested) versions will be in the rawhide directory. Tested versions will be in the
updates directory. Packages tailored for various distributions can be downloaded through the
KDE Web site at www.kde.org or directly from the KDE FTP site at ftp.kde.org and its
mirror sites in the stable directory. RPM packages for Red Hat distributions can be obtained
from ftp.redhat.com.

First, log in as the root user, and then create a directory to hold the KDE files. Then connect
to an FTP site. You can use a Web browser such as Netscape, but using an FTP client such as
ftp, NcFTP, or even the KDE file manager is preferable. Download the files for the new
version to your new directory. For Red Hat, these are a series of RPM package files. To
download using ftp, be sure to turn off prompts with the prompt command and use mget * to

download all the files at once. With the KDE file manager, select the files and drag them to a
window open to the local directory and select Copy from the pop-up menu. Install Qt, the
KDE libraries and support packages, and then the KDE base packages, followed by the
remaining packages. Use the option -Uvh to upgrade the packages as shown here:

rpm -Uvh kdebase-2.2-12.i386.rpm

To install a particular KDE RPM package manually, you use the rpm command with the -
Uvh options. This example installs the kdenetwork package:

rpm -Uvh kdenetwork-2.2.7.i386.rpm

Chapter 10: Window Managers
Overview

Unlike PC-based GUIs such as Windows or the Mac OS, Linux and Unix systems divide the
GUI into three separate components: the X Window System, window managers, and
program/file managers. The X Window System, also known as X and X11, is an underlying
standardized graphic utility that provides basic graphic operations such as opening windows
or displaying images. A window manager handles windowing operations such as resizing and
moving windows. Window managers vary in the way windows are displayed, using different
borders and window menus. All, however, use the same underlying X graphic utility. A file
manager handles file operations using icons and menus, and a program manager runs
programs, often allowing you to select commonly used ones from a taskbar. Unlike window
managers, file and program managers can vary greatly in their capabilities. In most cases,
different file and program managers can run on the same window manager.

All Linux and Unix systems use the same standard underlying X graphics utility. This means,
in most cases, that an X Window System-based program can run on any of the window
managers and desktops. X Window System-based software is often found at Linux or Unix
FTP sites in directories labeled X11. You can download these packages and run them on any
window manager running on your Linux system. Some may already be in the form of Linux
binaries that you can download, install, and run directly. Netscape is an example. Others will
be in the form of source code that can easily be configured, compiled, and installed on your
system with a few simple commands. Some applications, such as Motif applications, may
require special libraries.

With a window manager, you can think of a window as taking the place of a command line.
Operations you perform through the window are interpreted and sent to the Linux system for
execution. Window managers operate off the underlying X Window System, which actually
provides the basic window operations that allow you to open, move, and close windows as
well as display menus and select icons. FVWM2 and AfterStep manage these operations, each
in its own way, providing their own unique interfaces. The advantage of such a design is that
different window managers can operate on the same Linux system. In this sense, Linux is not
tied to one type of graphical user interface (GUI). On the same Linux system, one user may be
using the FVWM2 window manager, another may be using the Xview window manager, and
still another the Enlightenment window manager, all at the same time. You can find out
detailed information about different window managers available for Linux from the X11 Web

site at www.xwinman.org. The site provides reviews, screenshots, and links to home sites, as
well as a comparison table listing the features available for the different window managers.

Window, File, and Program Managers

With a window manager, you can use your mouse to perform windowing operations such as
opening, closing, resizing, and moving windows. Several window managers are available for
Linux (see Table 10-1). Some of the more popular ones are Sawfish, Enlightenment, Window
Maker, AfterStep, and the Free Virtual Window Manager 2.0 (FVWM2). FVWM2 is
traditionally used as the default backup window manager on most Linux systems. Window
Maker and AfterStep are originally based on the NeXTSTEP interface used for the NeXT
operating system. Enlightenment and Sawfish are the default window managers for Gnome by
several distributions. Red Hat currently includes Enlightenment, Sawfish, and FVWM2. On
Red Hat systems, Sawfish is used as the default window manager for Gnome and FVWM2 for
a standard X Window System environment.

Window managers operate through the underlying X graphics utility. The X Window System
actually provides the basic operations that allow you to open, move, and close windows as
well as display menus and select icons. Window managers manage these operations each in
their own way, providing different interfaces from which to choose. All window managers, no
matter how different they may appear, use X Window System tools. In this sense, Linux is not
tied to one type of graphical user interface. You can find out more about the X Window
System at www.x.org.

Window managers originally provided only very basic window management operations such
as opening, closing, and resizing of windows. Their features have been enhanced in the more
sophisticated window managers such as Window Maker and Enlightenment to include support
for virtual desktops, docking panels, and themes that let users change the look and feel of
their desktop. However, to work with files and customize applications, you need to use file
and program managers. With a file manager, you can copy, move, or erase files within
different directory windows. With a program manager, you can execute commands and run
programs using taskbars and program icons. A desktop program will combine the capabilities
of window, file, and program managers, providing a desktop metaphor with icons and menus
to run programs and access files. Gnome and the K Desktop are two such desktop programs.

Several window managers have been enhanced to include many of the features of a desktop.
The window managers included with many Linux distributions have program management
capabilities in addition to window handling. FVWM2 and AfterStep have a taskbar and a
workplace menu that you can use to access all your X programs. With either the menu or the
taskbar, you can run any X program directly from FVWM2. Window Maker provides a
NeXTSTEP interface that features a docking panel for your applications with drag-and-drop
support. You can drag a file to the application icon to start it with that file.

Using just a window manager, you can run any X program. Window managers have their own
workspace menu and taskbar. You can also run any X program from an Xterm terminal
window. There you can type the name of an X application; when you press ENTER, the X
application will start up with its own window. It is best to invoke an X application as a
background process by adding an ampersand (&) after the command. A separate window will
open for the X application that you can work in.

Window Managers

Instead of the command line interface, you can use an X window manager and file manager,
which will allow you to interact with your Linux system using windows, buttons, and menus.
Window managers provide basic window management operations such as opening, closing,
and resizing windows, and file managers allow you to manage and run programs using icons
and menus. The X Window System supports a variety of window managers. See Table 10-1
for a listing of window managers and desktops along with their Web sites where you can
obtain more information. You can also download current versions from these Web sites.

Windows and Icons

You run applications, display information, or list files in windows. A window is made up of
several basic components. The outer border contains resize controls. Also, various buttons
enable you to control the size of a window or close the window. Inside the outer border are
the main components of the window: the title bar, which displays the name of the window;
the menu, through which you can issue commands; and the window pane, which displays the
contents of a window. You can change a window's size and shape using buttons and resize
areas. The resize areas are the corner borders of the window. Click and hold a resize area and
move the mouse to make the window larger or smaller in both height and width. You can
make the window fill the whole screen using a maximize operation. Most window managers
include a small button in the upper-right corner that you can click to maximize the window.
To reduce the window to its original size, just click the Maximize button again. If you want to
reduce the window to an icon, click the Minimize button. It's the small square with a dot in
the center next to the Maximize button. Once you have reduced the window to an icon, you
can reopen it later by double-clicking that icon.

Applications that have been designed as X programs will have their own menus, buttons, and
even icons within their windows. You execute commands in such X applications using menus
and icons. If you are running an application such as an editor, the contents of the window will
be data that the menus operate on. If you are using the file manager, the contents will be icons
representing files and directories. Some windows, such as terminal windows, may not have
menus.

You can have several windows open at the same time. However, only one of those windows
will be active. On some window managers, just moving your mouse pointer to a particular
window makes it the active window, rendering all others inactive. You will need to click the
title bars of others. Most window managers let the user configure the method for making the
window active.

Themes

Many window managers, such as Enlightenment, Sawfish, Window Maker, AfterStep,
Blackbox, and FVWM2, support themes. Themes change the look and feel for widgets on
your desktop, providing different background images, animation, and sound events. With
themes, users with the same window manager may have desktops that appear radically
different. The underlying functionality of the window manager does not change. You can
easily download themes from Web sites and install them on your window manager. New ones
are constantly being added. Information and links to window manager theme sites can be
found at themes.org.

Workspace Menu

Most window managers provide a menu through which you can start applications, perform
window configurations, and exit the window manager. Window managers give this menu
different names. Enlightenment calls it the applications menu, Window Maker refers to it as
the root-window menu, and FVWM2 calls it the workplace menu. In this chapter, it is referred
to as the workspace menu. This menu is usually a pop-up menu that you can display by
clicking anywhere on the desktop. The mouse button you use differs with window managers.
Enlightenment and Sawfish use a middle-click, whereas Window Maker uses a right-click,
and FVWM2 uses a left-click. Many of the entries on this workspace menu lead to submenus
that in turn may have their own submenus. For example, applications will bring up a submenu
listing categories for all your X programs. Selecting the graphics item will bring up a list of
all the X graphic programs on your system. If you choose Xpaint, the Xpaint program will
then start up. On some window managers you will find entries for window configuration and
themes. Here will be items and submenus for configuring your window manager. For
example, both AfterStep and Enlightenment have menus for changing your theme (see
Figures 10-3 and 10-4 for examples of workspace menus).

Desktop Areas and Virtual Desktops

Initially, you may find desktop areas disconcerting-they provide a kind of built-in
enlargement feature. You will discover that the area displayed on your screen may be only
part of the desktop. Moving your mouse pointer to the edge of your screen moves the screen
over the hidden portions of the desktop. You will also notice a small square located on your
desktop or in your window manager's icon bar, taskbar, or panel. This is called the pager, and
you use it to view different areas of your virtual desktop. The pager will display a rectangle
for every active virtual desktop. Some window managers such as FVWM2 will display only
two, others such as AfterStep will have four, and others such as FVWM will start out with
only one.

Each desktop rectangle will be divided into smaller squares called desktop areas. You can
think of each desktop area as a separate extension of your desktop. It's as if you have a very
large desk, only part of which is shown on the screen. The active part of the desktop is shown
in the pager as a highlighted square, usually in white. This is the area of the desktop currently
displayed by your screen. A desktop can have as many as 25 squares, though the default is
usually 4. You can click one of the squares in the rectangle to move to that part of your desk.
You could place different windows in different parts of your desk and then move to each part
when you want to use its windows. In this way, everything you want on your desktop does not
have to be displayed on your screen at once, cluttering it up. If you are working on the
desktop and everything suddenly disappears, it may be that you accidentally clicked one of
the other squares. Certain items will always be displayed on your screen, no matter what part
of the virtual desktop you display. These are called "sticky" items. The pager is one, along
with taskbars or panels. For example, the taskbars, icon bars, and pager will always show up
on your screen no matter what part of the virtual desktop you are viewing. Windows by
default are not sticky, though you can make them sticky.

Most window managers also support virtual desktops. A desktop includes all the desktop
areas, along with the items displayed on them such as icons, menus, and windows. Window
managers such as Enlightenment, Sawfish, AfterStep, and FVWM2 allow you to use several
virtual desktops. Unlike desktop areas, which just extend a desktop, virtual desktops are

separate entities. Most pagers will display the different virtual desktops as separate rectangles,
each subdivided into its respective desktop areas. To move to a virtual desktop, you click its
rectangle. In some window managers, such as Window Maker, you select the desktop from a
list. Window managers will provide entries on their main menus for selecting virtual desktops
and even moving windows from one desktop to another. Use a window manager's
configuration program or configuration files to specify the number of virtual desktops you
want. For example, on Sawfish you can choose the number of virtual desktops and then add as
many virtual areas as you want to each, extending the area as rows and columns. Only one
virtual desktop can be active at any one time.

Chapter 11: The Shell
Overview

The shell is a command interpreter that provides a line-oriented interactive and noninteractive
interface between the user and the operating system. You enter commands on a command
line, they are interpreted by the shell, and then sent as instructions to the operating system.
You can also place commands in a script file to be consecutively executed much like a
program (see Chapter 40). This interpretive capability of the shell provides for many
sophisticated features. For example, the shell has a set of wildcard characters that can
generate filenames. The shell can redirect input and output, as well as run operations in the
background, freeing you to perform other tasks.

Several different types of shells have been developed for Linux: the Bourne Again shell
(BASH), the Public Domain Korn shell (PDKSH), the TCSH shell, and the Z shell. All shells
are available for your use, although the BASH shell is the default. You only need one type of
shell to do your work. Red Hat Linux includes all the major shells, although it installs and
uses the BASH shell as the default. If you use the Red Hat Linux command line shell, you
will be using the BASH shell unless you specify another. This chapter discusses the BASH
shell that shares many of the same features as other shells.

 Note You can find out more about the BASH shell at www.gnu.org/software/bash. A
detailed online manual is available on your Linux system using the man command with
the bash keyword.

The Command Line

The Linux command line interface consists of a single line into which you enter commands
with any of their options and arguments. Red Hat Linux installs with the BASH shell. From
Gnome or KDE you can access the command line interface by opening a terminal window.
Should you start Linux with the command line interface, you will be presented with a BASH
shell command line when you log in.

By default, The BASH shell has a dollar ($) sign prompt, but Linux has several other types of
shells, each with its own prompt. A shell prompt, such as the one shown here, marks the
beginning of the command line:

$

The prompt designates the beginning of the command line. You are now ready to enter a
command and its arguments at the prompt. In the next example, the user enters the date
command, which displays the date. The user types the command on the first line, and then
presses ENTER to execute the command.

$ date
Sun July 8 10:30:21 PST 2000

The command line interface is the primary interface for the shell, which interprets the
commands you enter and sends them to the system. The shell follows a special syntax for
interpreting the command line. The first word entered on a command line must be the name of
a command. The next words are options and arguments for the command. Each word on the
command line must be separated from the others by one or more spaces or tabs.

$ Command Options Arguments

An option is a one-letter code preceded by a dash that modifies the type of action the
command takes. One example of a command that has options is the ls command. The ls
command, with no options, displays a list of all the files in your current directory. It merely
lists the name of each file with no other information.

With a -l option, the ls command modifies its task by displaying a line of information about
each file, listing such data as its size and the date and time it was last modified. In the next
example, the user enters the ls command followed by a -l option. The dash before the -l option
is required. Linux uses it to distinguish an option from an argument.

$ ls -l

Another option, -a, lists all the files in your directory, including what are known as hidden
files. Hidden files are often configuration files and they always have names beginning with a
period. For this reason, hidden files are often referred to as dot files. In most cases, you can
also combine options. You do so by preceding the options with an initial dash and then listing
the options you want. The options -al, for example, list information about all the files in your
directory, including any hidden files.

$ ls -al
 Note Another option for the ls command is -F. With this option, the ls command displays

directory names with a preceding slash, so you can easily identify them.

Most commands are designed to take arguments. An argument is a word you type in on the
command line after any options. Many file management commands take filenames as their
arguments. For example, if you only wanted the information displayed for a particular file,
you could add that file's name after the -l option:

$ ls -l mydata

The shell you will start working in is the BASH shell, your default shell. This shell has
special command line editing capabilities that you may find helpful as you learn Linux. You
can easily modify commands you have entered before executing them, moving anywhere on
the command line and inserting or deleting characters. This is particularly helpful for complex
commands. You can use the CTRL-F or RIGHT ARROW keys to move forward a character,

or the CTRL-B or LEFT ARROW keys to move back a character. CTRL-D or DEL deletes
the character the cursor is on, and CTRL-H or BACKSPACE deletes the character before the
cursor. To add text, you use the arrow keys to move the cursor to where you want to insert
text and type in the new characters. At any time, you can press ENTER to execute the
command. For example, if you make a spelling mistake when entering a command, rather
than reentering the entire command, you can use the editing operations to correct the mistake.

 Note The editing capabilities of the BASH shell command line are provided by Readline.
Readline supports numerous editing operations. You can even bind a key to a selected
editing operation. You can find out more about Readline in the BASH shell reference
manual at www.gnu.org/manual/bash.

You can also use the UP ARROW key to redisplay your previously executed command. You
can then reexecute that command or edit it and execute the modified command. You'll find
this capability helpful when you have to repeat certain operations over and over, such as
editing the same file.

 Note The capability to redisplay a previous command is helpful when you've already
executed a command you had entered incorrectly. In this case, you would be presented
with an error message and a new, empty command line. By pressing the UP ARROW
key, you can redisplay your previous command, make corrections to it, and then execute
it again. This way, you would not have to enter the whole command again.

The BASH shell keeps a list, called a history list, of your previously entered commands. You
can display each command, in turn, on your command line by pressing the UP ARROW key.
The DOWN ARROW key moves you down the list. You can modify and execute any of these
previous commands when you display them on your command line. This history feature is
discussed in more detail in Chapter 15.

 Note Some commands can be complex and take some time to execute. When you mistakenly
execute the wrong command, you can interrupt and stop such commands with the
interrupt keys-CTRL-C or DEL.

You can enter a command on several lines by typing a backslash just before you press
ENTER. The backslash "escapes" the ENTER key, effectively continuing the same command
line to the next line. In the next example, the cp command is entered on three lines. The first
two lines end in a backslash, effectively making all three lines one command line.

$ cp -i \
mydata \
newdata

Wildcards and Filename Arguments: *, ?, []

Filenames are the most common arguments used in a command. Often you may know only
part of the filename, or you may want to reference several filenames that have the same
extension or begin with the same characters. The shell provides a set of special characters
called wildcards that search out, match, and generate a list of filenames. The wildcard
characters are the asterisk, the question mark, and brackets (*, ?, []). Given a partial filename,
the shell uses these matching operators to search for files and generate a list of filenames
found. The shell replaces the partial filename argument with the list of matched filenames.

This list of filenames can then become the arguments for commands such as ls, which can
operate on many files. Table 11-1 lists the shell's wildcard characters.

Table 11-1: Shell Symbols
Common Shell Symbols Execution
ENTER Execute a command line.
; Separate commands on the same command line.
`command` Execute a command.
[] Match on a class of possible characters in filenames.
\ Quote the following character. Used to quote special

characters.
| Pipe the standard output of one command as input for

another command.
& Execute a command in the background.
! History command.
Wildcard Symbols Execution
* Match on any set of characters in filenames.
? Match on any single character in filenames.
Redirection Symbols Execution
> Redirect the standard output to a file or device, creating the

file if it does not exist and overwriting the file if it does
exist.

>! The exclamation point forces the overwriting of a file if it
already exits. This overrides the noclobber option.

< Redirect the standard input from a file or device to a
program.

<< Redirect the standard output to a file or device, appending
the output to the end of the file.

Standard Error
Redirection Symbols

Execution

2 Redirect the standard error to a file or device.
2 Redirect and append the standard error to a file or device.
2&1 Redirect the standard error to the standard output.
& Redirect the standard error to a file or device.
|& Pipe the standard error as input to another command.

The asterisk, *, references files beginning or ending with a specific set of characters. You
place the asterisk before or after a set of characters that form a pattern to be searched for in
filenames. If the asterisk is placed before the pattern, filenames that end in that pattern are
searched for. If the asterisk is placed after the pattern, filenames that begin with that pattern
are searched for. Any matching filename is copied into a list of filenames generated by this
operation. In the next example, all filenames beginning with the pattern "doc" are searched for

and a list generated. Then all filenames ending with the pattern "day" are searched for and a
list is generated. The last example shows how the * can be used in any combination of
characters.

$ ls
doc1 doc2 document docs mydoc monday tuesday
$ ls doc*
doc1 doc2 document docs
$ ls *day
monday tuesday
$ ls m*d*
monday
$

Filenames often include an extension specified with a period and followed by a string
denoting the file type such as .c for C files, .cpp for C++ files, or even .jpg for JPEG image
files. The extension has no special status and is only part of the characters making up the
filename. Using the asterisk makes it easy to select files with a given extension. In the next
example, the asterisk is used to list only those files with a .c extension. The asterisk placed
before the .c constitutes the argument for ls.

$ ls *.c
calc.c main.c

You can use * with the rm command to erase several files at once. The asterisk first selects a
list of files with a given extension, or beginning or ending with a given set of characters, and
then it presents this list of files to the rm command to be erased. In the next example, the rm
command erases all files beginning with the pattern "doc":

$ rm doc*

The asterisk by itself matches all files. If you use a single asterisk as the argument for an rm
command, all your files will be erased. In the next example, the ls * command lists all files,
and the rm * command erases all files:

$ ls *
doc1 doc2 document docs mydoc myletter yourletter
$ rm *
$ ls
$

Use the * wildcard character carefully and sparingly with the rm command. The combination
can be dangerous. A misplaced * in an rm command without the -i option could easily erase
all your files. The first command in the next example erases only those files with a .c
extension. The second command, however, erases all files. Notice the space between the
asterisk and the period in the second command. A space in a command line functions as a
delimiter, separating arguments. The asterisk is considered one argument, and the .c another
argument. The asterisk by itself matches all files and, when used as an argument with the rm
command, instructs rm to erase all your files.

$ rm *.c
$ rm * .c

The question mark, ?, matches only a single incomplete character in filenames. Suppose you
want to match the files doc1 and docA, but not document. Whereas the asterisk will match
filenames of any length, the question mark limits the match to just one extra character. The
next example matches files that begin with the word "doc" followed by a single differing
letter:

$ ls
doc1 docA document
$ ls doc?
doc1 docA

Whereas the * and ? wildcard characters specify incomplete portions of a filename, the
brackets, [], enable you to specify a set of valid characters to search for. Any character placed
within the brackets will be matched in the filename. Suppose you want to list files beginning
with "doc", but only ending in 1 or A. You are not interested in filenames ending in 2 or B, or
any other character. Here is how it's done:

$ ls
doc1 doc2 doc3 docA docB docD document
$ ls doc[1A]
doc1 docA

You can also specify a set of characters as a range, rather than listing them one by one. A dash
placed between the upper and lower bounds of a set of characters selects all characters within
that range. The range is usually determined by the character set in use. In an ASCII character
set, the range "a-g" will select all lowercase alphabetic characters from a through g, inclusive.
In the next example, files beginning with the pattern "doc" and ending in characters 1 through
3 are selected. Then, those ending in characters B through E are matched.

$ ls doc[1-3]
doc1 doc2 doc3
$ ls doc[B-E]
docB docD

You can combine the brackets with other wildcard characters to form flexible matching
operators. Suppose you only want to list filenames ending in either a .c or .o extension, but no
other extension. You can use a combination of the asterisk and brackets: * [co]. The asterisk
matches all filenames, and the brackets match only filenames with extension .c or .o.

$ ls *.[co]
main.c main.o calc.c

At times, a wildcard character is actually part of a filename. In these cases, you need to quote
the character by preceding it with a backslash to reference the file. In the next example, the
user needs to reference a file that ends with the ? character, answers?. The ? is, however, a
wildcard character and would match any filename beginning with "answers" that has one or
more characters. In this case, the user quotes the ? with a preceding backslash to reference the
filename.

$ ls answers\?
answers?

Standard Input/Output and Redirection

When UNIX was designed, a decision was made to distinguish between the physical
implementation and the logical organization of a file. Physically, UNIX files are accessed in
randomly arranged blocks. Logically, all files are organized as a continuous stream of bytes.
Linux, as a version of UNIX, has this same organization. Aside from special system calls, the
user never references the physical structure of a file. To the user, all files have the same
organization-a byte stream. Any file can be easily copied or appended to another because all
files are organized in the same way. In this sense, only one standard type of file exists in
Linux, the byte-stream file. Linux makes no implementational distinction between a character
file and a record file, or a text file and a binary file.

This logical file organization extends to input and output operations. The data in input and
output operations is organized like a file. Data input at the keyboard is placed in a data stream
arranged as a continuous set of bytes. Data output from a command or program is also placed
in a data stream and arranged as a continuous set of bytes. This input data stream is referred to
in Linux as the standard input, while the output data stream is called the standard output.
There is also a separate output data stream reserved solely for error messages, called the
standard error (see the section on the standard error later in this chapter).

Because the standard input and standard output have the same organization as that of a file,
they can easily interact with files. Linux has a redirection capability that lets you easily move
data in and out of files. You can redirect the standard output so that, instead of displaying the
output on a screen, you can save it in a file. You can also redirect the standard input away
from the keyboard to a file, so that input is read from a file instead of from your keyboard.

When a Linux command is executed that produces output, this output is placed in the standard
output data stream. The default destination for the standard output data stream is a device-in
this case, the screen. Devices, such as the keyboard and screen, are treated as files. They
receive and send out streams of bytes with the same organization as that of a byte-stream file.
The screen is a device that displays a continuous stream of bytes. By default, the standard
output will send its data to the screen device, which will then display the data.

For example, the ls command generates a list of all filenames and outputs this list to the
standard output. Next, this stream of bytes in the standard output is directed to the screen
device. The list of filenames is then printed on the screen. The cat command also sends output
to the standard output. The contents of a file are copied to the standard output whose default
destination is the screen. The contents of the file are then displayed on the screen.

Redirecting the Standard Output: > and >>

Suppose that instead of displaying a list of files on the screen, you would like to save this list
in a file. In other words, you would like to direct the standard output to a file rather than the
screen. To do this, you place the output redirection operator, > (greater-than sign), and the
name of a file on the command line after the Linux command. Table 11-2 lists the different
ways you can use the redirection operators. In the next example, the output of the cat
command is redirected from the screen device to a file:

Table 11-2: The Shell Operations

Command Execution
ENTER Execute a command line.
; Separate commands on the same command line.
command\

opts args

Enter backslash before carriage return to continue entering a
command on the next line.

`command` Execute a command.
BACKSPACE
CTRL-H

Erase the previous character.

CTRL-U Erase the command line and start over.
CTRL-C Interrupt and stop a command execution.
Special Characters
for Filename Generation

Execution

* Match on any set of characters.
? Match on any single characters.
[] Match on a class of possible characters.
\ Quote the following character. Used to quote special characters.
Redirection Execution
command filename Redirect the standard output to a file or device, creating the file if

it does not exist and overwriting the file if it does exist.
command filename Redirect the standard input from a file or device to a program.
command filename Redirect the standard output to a file or device, appending the

output to the end of the file.
command ! filename In the C shell and the Korn shell, the exclamation point forces

the overwriting of a file if it already exits. This overrides the
noclobber option.

command 2 filename Redirect the standard error to a file or device in the Bourne shell.
command 2 filename Redirect and append the standard error to a file or device in the

Bourne shell.
command 2&1 Redirect the standard error to the standard output in the Bourne

shell.
command & filename Redirect the standard error to a file or device in the C shell.
Pipes Execution
command | command Pipe the standard output of one command as input for another

command.
command |& command Pipe the standard error as input to another command in the C

shell.
Background Jobs Execution
& Execute a command in the background.
fg %jobnum Bring a command in the background to the foreground or resume

an interrupted program.

Table 11-2: The Shell Operations
Command Execution
bg Place a command in the foreground into the background.
CTRL-Z Interrupt and stop the currently running program. The program

remains stopped and waiting in the background for you to
resume it.

notify %jobnum Notify you when a job ends.
kill %jobnum
kill proccessnum

Cancel and end a job running in the background.

jobs List all background jobs. The jobs command is not available in
the Bourne shell, unless it is using the jsh shell.

ps List all currently running processes including background jobs.
at time date Execute commands at a specified time and date. The time can be

entered with hours and minutes and qualified as A.M. or P.M.
$ cat myletter > newletter

The redirection operation creates the new destination file. If the file already exists, it will be
overwritten with the data in the standard output. You can set the noclobber feature to prevent
overwriting an existing file with the redirection operation. In this case, the redirection
operation on an existing file will fail. You can overcome the noclobber feature by placing an
exclamation point after the redirection operator. You can place the noclobber command in a
shell configuration file to make it an automatic default operation (see Chapter 13). The next
example sets the noclobber feature for the BASH shell and then forces the overwriting of the
oldletter file if it already exists:

$ set -o noclobber
$ cat myletter >! oldletter

Although the redirection operator and the filename are placed after the command, the
redirection operation is not executed after the command. In fact, it is executed before the
command. The redirection operation creates the file and sets up the redirection before it
receives any data from the standard output. If the file already exists, it will be destroyed and
replaced by a file of the same name. In effect, the command generating the output is executed
only after the redirected file has been created.

In the next example, the output of the ls command is redirected from the screen device to a
file. First the ls command lists files and, in the next command, ls redirects its file list to the
listf file. Then the cat command displays the list of files saved in listf. Notice the list of files
in listf includes the listf filename. The list of filenames generated by the ls command includes
the name of the file created by the redirection operation- in this case, listf. The listf file is first
created by the redirection operation, and then the ls command lists it along with other files.
This file list output by ls is then redirected to the listf file, instead of being printed on the
screen.

$ ls
mydata intro preface
$ ls > listf
$ cat listf
mydata intro listf preface

Errors occur when you try to use the same filename for both an input file for the command
and the redirected destination file. In this case, because the redirection operation is executed
first, the input file, because it exists, is destroyed and replaced by a file of the same name.
When the command is executed, it finds an input file that is empty.

In the cat command shown next, the file myletter is the name for both the destination file for
redirected output and the input file for the cat operation. As shown in the next example, the
redirection operation is executed first, destroying the myletter file and replacing it with a new
and empty myletter file. Then the cat operation is executed and attempts to read all the data
in the myletter file. However, nothing new is now in the myletter file.

$ cat myletter > myletter

You can also append the standard output to an existing file using the >> redirection operator.
Instead of overwriting the file, the data in the standard output is added at the end of the file. In
the next example, the myletter and oldletter files are appended to the alletters file. The
alletters file will then contain the contents of both myletter and oldletter.

$ cat myletter >> alletters
$ cat oldletter >> alletters

The Standard Input

Many Linux commands can receive data from the standard input. The standard input itself
receives data from a device or a file. The default device for the standard input is the keyboard.
Characters typed into the keyboard are placed in the standard input, which is then directed to
the Linux command. The cat command without a filename argument reads data from standard
input. When you type in data on the keyboard, each character will be placed in the standard
input and directed to the cat command. The cat command then sends the character to the
standard output-the screen device-which displays the character on the screen.

If you combine the cat command with redirection, you have an easy way of saving what you
have typed to a file. As shown in the next example, the output of the cat operation is
redirected to the mydat file. The mydat file will now contain all the data typed in at the
keyboard. The cat command, in this case, still has no file arguments. It will receive its data
from the standard input, the keyboard device. The redirection operator redirects the output of
the cat command to the file mydat. The cat command has no direct contact with any files; it
is simply receiving input from the standard input and sending output to the standard output.

$ cat > mydat
This is a new line
for the cat
command
^D
$

Just as with the standard output, you can also redirect the standard input. The standard input
may be received from a file rather than the keyboard. The operator for redirecting the standard
input is the less-than sign, <. In the next example, the standard input is redirected to receive
input from the myletter file, rather than the keyboard device. The contents of myletter are
read into the standard input by the redirection operation. Then the cat command reads the
standard input and displays the contents of myletter.

$ cat < myletter
hello Christopher
How are you today
$

You can combine the redirection operations for both standard input and standard output. In
the next example, the cat command has no filename arguments. Without filename arguments,
the cat command receives input from the standard input and sends output to the standard
output. However, the standard input has been redirected to receive its data from a file, while
the standard output has been redirected to place its data in a file.

$ cat < myletter > newletter

Pipes: |

You may find yourself in situations in which you need to send data from one command to
another. In other words, you may want to send the standard output of a command to another
command, not to a destination file. Suppose you want to send a list of your filenames to the
printer to be printed. You need two commands to do this: the ls command to generate a list of
filenames and the lpr command to send the list to the printer. In effect, you need to take the
output of the ls command and use it as input for the lpr command. You can think of the data
as flowing from one command to another. To form such a connection in Linux, you use what
is called a pipe. The pipe operator, |, (vertical bar character) placed between two commands
forms a connection between them. The standard output of one command becomes the
standard input for the other. The pipe operation receives output from the command placed
before the pipe and sends this data as input to the command placed after the pipe. As shown in
the next example, you can connect the ls command and the lpr command with a pipe. The list
of filenames output by the ls command is piped into the lpr command.

$ ls | lpr

You can combine the pipe operation with other shell features, such as wildcard characters, to
perform specialized operations. The next example prints only files with a .c extension. The ls
command is used with the asterisk and ".c" to generate a list of filenames with the .c
extension. Then this list is piped to the lpr command.

$ ls *.c | lpr

In the previous example, a list of filenames was used as input, but what is important to note is
pipes operate on the standard output of a command, whatever that might be. The contents of
whole files or even several files can be piped from one command to another. In the next
example, the cat command reads and outputs the contents of the mydata file, which are then
piped to the lpr command:

$ cat mydata | lpr

Linux has many commands that generate modified output. For example, the sort command
takes the contents of a file and generates a version with each line sorted in alphabetic order.
The sort command works best with files that are lists of items. Commands such as sort that
output a modified version of its input are referred to as filters. Filters are often used with
pipes. In the next example, a sorted version of mylist is generated and piped into the more

command for display on the screen. Note that the original file, mylist, has not been changed
and is not itself sorted. Only the output of sort in the standard output is sorted.

$ sort mylist | more

You can, of course, combine several commands, connecting each pair with a pipe. The output
of one command can be piped into another command, which, in turn, can pipe its output into
still another command. Suppose you have a file with a list of items you want to print both
numbered and in alphabetical order. To print the numbered and sorted list, you can first
generate a sorted version with the sort command and then pipe that output to the cat
command. The cat command with the -n option then takes as its input the sorted list and
generates as its output a numbered, sorted list. The numbered, sorted list can then be piped to
the lpr command for printing. The next example shows the command:

$ sort mylist | cat -n | lpr

The standard input piped into a command can be more carefully controlled with the standard
input argument, -. When you use the dash as an argument for a command, it represents the
standard input. Suppose you want to print a file with the name of its directory at the top. The
pwd command outputs a directory name, and the cat command outputs the contents of a file.
In this case, the cat command needs to take as its input both the file and the standard input
piped in from the pwd command. The cat command will have two arguments: the standard
input as represented by the dash and the filename of the file to be printed.

In the next example, the pwd command generates the directory name and pipes it into the cat
command. For the cat command, this piped-in standard input now contains the directory
name. As represented by the dash, the standard input is the first argument to the cat
command. The cat command copies the directory name and the contents of the mylist file to
the standard output, which is then piped to the lpr command for printing. If you want to print
the directory name at the end of the file instead, simply make the dash the last argument and
the filename the first argument, as in cat mylist -.

$ pwd | cat - mylist | lpr

Redirecting and Piping the Standard Error: >&, 2>

When you execute commands, an error could possibly occur. You may give the wrong
number of arguments, or some kind of system error could take place. When an error occurs,
the system issues an error message. Usually such error messages are displayed on the screen,
along with the standard output. Linux distinguishes between standard output and error
messages, however. Error messages are placed in yet another standard byte stream called the
standard error. In the next example, the cat command is given as its argument the name of a
file that does not exist, myintro. In this case, the cat command simply issues an error:

$ cat myintro
cat : myintro not found
$

Because error messages are in a separate data stream from the standard output, error messages
still appear on the screen for you to see even if you have redirected the standard output to a
file. In the next example, the standard output of the cat command is redirected to the file

mydata. However, the standard error, containing the error messages, is still directed to the
screen.

$ cat myintro > mydata
cat : myintro not found
$

You can redirect the standard error as you can the standard output. This means you can save
your error messages in a file for future reference. This is helpful if you need a record of the
error messages. Like the standard output, the standard error has the screen device for its
default destination. However, you can redirect the standard error to any file or device you
choose using special redirection operators. In this case, the error messages will not be
displayed on the screen.

Redirection of the standard error relies on a special feature of shell redirection. You can
reference all the standard byte streams in redirection operations with numbers. The numbers
0, 1, and 2 reference the standard input, standard output, and standard error, respectively. By
default, an output redirection, >, operates on the standard output, 1. You can modify the
output redirection to operate on the standard error, however, by preceding the output
redirection operator with the number 2. In the next example, the cat command again will
generate an error. The error message is redirected to the standard byte stream represented by
the number 2, the standard error.

$ cat nodata 2> myerrors
$ cat myerrors
cat : nodata not found
$

You can also append the standard error to a file by using the number 2 and the redirection
append operator, >>. In the next example, the user appends the standard error to the myerrors
file, which then functions as a log of errors:

$ cat nodata 2>> myerrors

Shell Variables

You define variables within a shell, and such variables are known-logically enough- as shell
variables. Many different shells exist. Some utilities, such as the mailx utility, have their own
shells with their own shell variables. You can also create your own shell using what are called
shell scripts. You have a user shell that becomes active as soon as you log in. This is often
referred to as the login shell. Special system variables are defined within this login shell. Shell
variables can also be used to define a shell's environment, as described in Chapter 13.

 Note Shell variables exist as long as your shell is active-that is, until you exit the shell. For
example, logging out will exit the login shell. When you log in again, any variables you
may need in your login shell must be defined once again.

Definition and Evaluation of Variables: =, $, set, unset

You define a variable in a shell when you first use the variable's name. A variable's name may
be any set of alphabetic characters, including the underscore. The name may also include a
number, but the number cannot be the first character in the name. A name may not have any

other type of character, such as an exclamation point, an ampersand, or even a space. Such
symbols are reserved by the shell for its own use. Also, a name may not include more than
one word. The shell uses spaces on the command line to distinguish different components of a
command such as options, arguments, and the name of the command.

You assign a value to a variable with the assignment operator, =. You type in the variable
name, the assignment operator, and then the value assigned. Do not place any spaces around
the assignment operator. The assignment operation poet = Virgil, for example, will fail. (The
C shell has a slightly different type of assignment operation that is described in the section on
C shell variables later in this chapter.) You can assign any set of characters to a variable. In
the next example, the variable poet is assigned the string Virgil:

$ poet=Virgil

Once you have assigned a value to a variable, you can then use the variable name to reference
the value. Often you use the values of variables as arguments for a command. You can
reference the value of a variable using the variable name preceded by the $ operator. The
dollar sign is a special operator that uses the variable name to reference a variable's value, in
effect evaluating the variable. Evaluation retrieves a variable's value, usually a set of
characters. This set of characters then replaces the variable name on the command line.
Wherever a $ is placed before the variable name, the variable name is replaced with the value
of the variable. In the next example, the shell variable poet is evaluated and its contents,
Virgil, are then used as the argument for an echo command. The echo command simply
echoes or prints a set of characters to the screen.

$ echo $poet
Virgil

You must be careful to distinguish between the evaluation of a variable and its name alone. If
you leave out the $ operator before the variable name, all you have is the variable name itself.
In the next example, the $ operator is absent from the variable name. In this case, the echo
command has as its argument the word "poet", and so prints out "poet":

$ echo poet
poet

The contents of a variable are often used as command arguments. A common command
argument is a directory path name. It can be tedious to retype a directory path that is being
used over and over again. If you assign the directory path name to a variable, you can simply
use the evaluated variable in its place. The directory path you assign to the variable is
retrieved when the variable is evaluated with the $ operator. The next example assigns a
directory path name to a variable and then uses the evaluated variable in a copy command.
The evaluation of ldir (which is $ldir) results in the path name /home/chris/letters. The copy
command evaluates to cp myletter /home/ chris/letters.

$ ldir=/home/chris/letters
$ cp myletter $ldir

You can obtain a list of all the defined variables with the set command. The next example
uses the set command to display a list of all defined variables and their values:

$ set

poet Virgil
ldir /home/chris/letters
$

If you decide you do not want a certain variable, you can remove it with the unset command.
The unset command undefines a variable. The next example undefines the variable poet.
Then the user executes the set command to list all defined variables. Notice that poet is
missing.

$ unset poet
$ set
ldir /home/chris/letters
$

Shell Scripts: User-Defined Commands

You can place shell commands within a file and then have the shell read and execute the
commands in the file. In this sense, the file functions as a shell program, executing shell
commands as if they were statements in a program. A file that contains shell commands is
called a shell script.

You enter shell commands into a script file using a standard text editor such as the Vi editor.
The sh or . command used with the script's filename will read the script file and execute the
commands. In the next example, the text file called lsc contains an ls command that displays
only files with the extension .c:

lsc

ls *.c

$ sh lsc
main.c calc.c
$. lsc
main.c calc.c

You can dispense with the sh and . commands by setting the executable permission of a script
file. When the script file is first created by your text editor, it is only given read and write
permission. The chmod command with the +x option will give the script file executable
permission. (Permissions are discussed in Chapter 13.) Once it is executable, entering the
name of the script file at the shell prompt and pressing ENTER will execute the script file and
the shell commands in it. In effect, the script's filename becomes a new shell command. In
this way, you can use shell scripts to design and create your own Linux commands. You only
need to set the permission once. In the next example, the lsc file's executable permission for
the owner is set to on. Then the lsc shell script is directly executed like any Linux command.

$ chmod u+x lsc
$ lsc
main.c calc.c

You may have to specify that the script you are using is in your current working directory.
You do this by prefixing the script name with a period and slash combination, ./, as in ./lsc.
The period is a special character representing the name of your current working directory. The

slash is a directory path name separator, as explained more fully in Chapter 12. The following
example would show how you would execute the hello script:

$./lsc
main.c calc.c

Just as any Linux command can take arguments, so also can a shell script. Arguments on the
command line are referenced sequentially starting with 1. An argument is referenced using the
$ operator and the number of its position. The first argument is referenced with $1, the second
with $2, and so on. In the next example, the lsext script prints out files with a specified
extension. The first argument is the extension. The script is then executed with the argument c
(of course, the executable permission must have been set).

lsext

ls *.$1

$ lsext c
main.c calc.c

In the next example, the commands to print out a file with line numbers have been placed in
an executable file called lpnum, which takes a filename as its argument. The cat command
with the -n option first outputs the contents of the file with line numbers. Then this output is
piped into the lp command, which prints it. The command to print out the line numbers is
executed in the background.

lpnum

cat -n $1 | lp &

$ lpnum mydata

You may need to reference more than one argument at a time. The number of arguments used
may vary. In lpnum, you may want to print out three files at one time and five files at some
other time. The $ operator with the asterisk, $*, references all the arguments on the command
line. Using $* enables you to create scripts that take a varying number of arguments. In the
next example, lpnum is rewritten using $* so it can take a different number of arguments
each time you use it:

lpnum

cat -n $* | lp &

$ lpnum mydata preface

Jobs: Background, Kills, and Interruptions

In Linux, you have control not only over a command's input and output, but also over its
execution. You can run a job in the background while you execute other commands. You can

also cancel commands before they have finished executing. You can even interrupt a
command, starting it again later from where you left off. Background operations are
particularly useful for long jobs. Instead of waiting at the terminal until a command has
finished execution, you can place it in the background. You can then continue executing other
Linux commands. You can, for example, edit a file while other files are printing.

Canceling a background command can often save you a lot of unnecessary expense. If, say,
you execute a command to print all your files and then realize you have some large files you
do not want to print, you can reference that execution of the print command and cancel it.
Interrupting commands is rarely used, and sometimes it is unintentionally executed. You can,
if you want, interrupt an editing session to send mail and then return to your editing session,
continuing from where you left off. The background commands, as well as commands to
cancel and interrupt jobs, are listed in Table 11-2.

In Linux, a command is considered a process-a task to be performed. A Linux system can
execute several processes at the same time, just as Linux can handle several users at the same
time. Commands to examine and control processes exist, though they are often reserved for
system administration operations. Processes actually include not only the commands a user
executes, but also all the tasks the system must perform to keep Linux running.

The commands that users execute are often called jobs to distinguish them from system
processes. When the user executes a command, it becomes a job to be performed by the
system. The shell provides a set of job control operations that enable the user to control the
execution of these jobs. You can place a job in the background, cancel a job, or interrupt one.

You execute a command in the background by placing an ampersand on the command line at
the end of the command. When you do so, a user job number and a system process number
are displayed. The user job number, placed in brackets, is the number by which the user
references the job. The system process number is the number by which the system identifies
the job. In the next example, the command to print the file mydata is placed in the
background:

$ lpr mydata &
[1] 534
$

You can place more than one command in the background. Each is classified as a job and
given a name and a job number. The command jobs lists the jobs being run in the
background. Each entry in the list consists of the job number in brackets, whether it is stopped
or running, and the name of the job. The + sign indicates the job currently being processed,
and the - sign indicates the next job to be executed. In the next example, two commands have
been placed in the background. The jobs command then lists those jobs, showing which one is
currently being executed.

$ lpr intro &
[1] 547
$ cat *.c > myprogs &
[2] 548
$ jobs
[1] + Running lpr intro
[2] - Running cat *.c > myprogs
$

If you wish, you can place several commands at once in the background by entering the
commands on the command line, separated by an ampersand, &. In this case, the & both
separates commands on the command line and executes them in the background. In the next
example, the first command, to sort and redirect all files with a .l extension, is placed in the
background. On the same command line, the second command, to print all files with a .c
extension, is also placed in the background. Notice the two commands each end with &. The
jobs command then lists the sort and lpr commands as separate operations.

$ sort *.l > ldocs &; lpr *.c &
[1] 534
[2] 567
$ jobs
[1] + Running sort *.l > ldocs
[2] - Running lpr
$

After you execute any command in Linux, the system tells you what background jobs, if you
have any running, have been completed so far. The system does not interrupt any operation,
such as editing, to notify you about a completed job. If you want to be notified immediately
when a certain job ends, no matter what you are doing on the system, you can use the notify
command to instruct the system to tell you. The notify command takes a job number as its
argument. When that job is finished, the system interrupts what you are doing to notify you
the job has ended. The next example tells the system to notify the user when job 2 has
finished:

$ notify %2

You can bring a job out of the background with the foreground command, fg. If only one job
is in the background, the fg command alone will bring it to the foreground. If more than one
job is in the background, you must use the job's number with the command. You place the job
number after the fg command, preceded with a percent sign. A bg command also places a job
in the background. This command is usually used for interrupted jobs. In the next example,
the second job is brought back into the foreground. You may not immediately receive a
prompt again because the second command is now in the foreground and executing. When the
command is finished executing, the prompt appears and you can execute another command.

$ fg %2
cat *.c > myprogs
$

If you want to stop a job running in the background, you can force it to end with the kill
command. The kill command takes as its argument either the user job number or the system
process number. The user job number must be preceded by a percent sign, %. You can find
out the job number from the jobs command. In the next example, the jobs command lists the
background jobs; then job 2 is canceled:

$ jobs
[1] + Running lpr intro
[2] - Running cat *.c > myprogs
$ kill %2
$

You can also cancel a job using the system process number, which you can obtain with the ps
command. The ps command displays a great deal more information than the jobs command
does. It is discussed in detail in Chapter 29 on systems administration. The next example lists
the processes a user is running. The PID is the system process number, also known as the
process ID. TTY is the terminal identifier. The time is how long the process has taken so far.
COMMAND is the name of the process.

$ ps
PID TTY TIME COMMAND
523 tty24 0:05 sh
567 tty24 0:01 lpr
570 tty24 0:00 ps

You can then reference the system process number in a kill command. Use the process
number without any preceding percent sign. The next example kills process 567:

$ kill 567

You can suspend a job and stop it with the CTRL-Z keys. This places the job to the side until
it is restarted. The job is not ended; it merely remains suspended until you want to continue.
When you're ready, you can continue with the job in either the foreground or the background
using the fg or bg command. The fg command restarts a suspended job in the foreground. The
bg command places the suspended job in the background.

At times, you may need to place a currently running job in the foreground into the
background. However, you cannot move a currently running job directly into the background.
You first need to suspend it with CTRL-Z, and then place it in the background with the bg
command. In the next example, the current command to list and redirect .c files is first
suspended with a CTRL-Z. Then that job is placed in the background.

$ cat *.c > myprogs
^Z
$ bg

Filters and Regular Expressions

Filters are commands that read data, perform operations on that data, and then send the results
to the standard output. Filters generate different kinds of output, depending on their task.
Some filters only generate information about the input, other filters output selected parts of
the input, and still other filters output an entire version of the input, but in a modified way.
Some filters are limited to one of these, while others have options that specify one or the
other. You can think of a filter as operating on a stream of data- receiving data and generating
modified output. As data is passed through the filter, it is analyzed, screened, or modified.

The data stream input to a filter consists of a sequence of bytes that can be received from files,
devices, or the output of other commands or filters. The filter operates on the data stream, but
it does not modify the source of the data. If a filter receives input from a file, the file itself is
not modified. Only its data is read and fed into the filter.

The output of a filter is usually sent to the standard output. It can then be redirected to another
file or device, or piped as input to another utility or filter. All the features of redirection and

pipes apply to filters. Often data is read by one filter and its modified output piped into
another filter.

 Note Data could easily undergo several modifications as it is passed from one filter to
another. However, it is always important to realize the original source of the data is
never changed.

Many utilities and filters use patterns to locate and select specific text in your file. Sometimes,
you may need to use patterns in a more flexible and powerful way, searching for several
different variations on a given pattern. You can include a set of special characters in your
pattern to enable a flexible search. A pattern that contains such special characters is called a
regular expression. Regular expressions can be used in most filters and utilities that employ
pattern searches such as Ed, sed, awk, grep, and egrep.

 Tip Although many of the special characters used for regular expressions are similar to the
shell wildcard characters, they are used in a different way. Shell wildcard characters
operate on filenames. Regular expressions search text.

In Linux, as in UNIX, text files are organized into a series of lines. For this reason, many
editors and filters are designed to operate on a text file line by line. The first UNIX editor, Ed,
is a line editor whose commands reference and operate on a text file one line at a time. Other
editing utilities and filters operate on text much the same way as the Ed line editor. In fact, the
Ed editor and other editing filters use the same set of core line editing commands. The editing
filters such as sed and diff use those same line editing commands to edit filter input. An edit
filter receives lines of text as its input and performs line editing operations on them,
outputting a modified version of the text. Three major edit filters exist: tr, which translates
characters; diff, which outputs editing information about two files; and sed, which performs
line editing operations on the input. Table 11-4 lists the different editing filters.

Using Redirection and Pipes with Filters

Filters send their output to the standard output and so, by default, display their output on the
screen. The simplest filters merely output the contents of files. You have already seen the cat
commands. What you may not have realized is that cat is a filter. It receives lines of data and
outputs a version of that data. The cat filter receives input and copies it out to the standard
output, which, by default, is displayed on the screen. Commonly used filters are listed in
Tables 11-3 and 11-4.

Table 11-3: Filters
Command Execution
cat filenames Displays a file. It can take filenames for its arguments. It

outputs the contents of those files directly to the standard
output, which, by default, is the screen.

tee filename Copies the standard input to a file while sending it on to the
standard output. It is usually used with another filter and
enables you to save output to a file while sending the output on
to another filter or utility.

head filename Displays the first few lines of a file. The default is ten lines,

Table 11-3: Filters
Command Execution

but you can specify the number of lines.
tail filename Displays the last lines in a file. The default is ten lines, but you

can specify the number of lines $ tail filenames.
wc filename Counts the number of lines, words, and characters in a file and

outputs only that number.
 c Counts the number of characters in a file.
 l Counts the number of lines in a file.
 w Counts the number of words in a file.
spell filename Checks the spelling of each word in a file and outputs only the

misspelled words.
sort filename Outputs a sorted version of a file.
cmp filename filename Compares two files, character by character, checking for

differences. Stops at the first difference it finds and outputs the
character position and line number.

comm. filename filename Compares two files, line by line, and outputs both files
according to lines that are similar and different for each.

grep pattern filenames Searches files for a pattern and lists any matched lines.
 i Ignores uppercase and lowercase differences.
 c Only outputs a number-the count of the lines with the pattern.
 l Displays the names of the files that contain the matching

pattern.
 n Outputs the line number along with the text of those lines with

the matching pattern.
 v Outputs all those lines that do not contain the matching pattern.
fgrep patterns file-list Searches files in the file list for several patterns at the same

time. Executes much faster than either grep or egrep;
however, fgrep cannot interpret special characters and cannot
search for regular expressions.

egrep pattern file-list Searches files in the file list for the occurrence of a pattern.
Like fgrep, it can read patterns from a file. Like grep, it can
use regular expressions, interpreting special characters.
However, unlike grep, it can also interpret extended special
characters such as ?, |, and +.

pr Outputs a paginated version of the input, adding headers, page
numbers, and any other specified format.

cpio
generated-filenames |
cpio -o archive-file
cpio -i filenames archive-file

Copies files to an archive and extracts files from an archive.
Has two modes of operation: one using the -o option to copy
files to an archive and the other using the -i option to extract
files from an archive. When copying files to an archive, you
need first to generate the list of filenames using a command
such as ls or find.

Table 11-4: Edit Filters
Command Execution
sed editing-command file-list Outputs an edited form of its input. sed takes as an

argument an editing command and a file list. The editing
command is executed on input read from files in the file list.
sed then outputs an edited version of the files. The editing
commands are line editing commands similar to those used
for the Ed line editor.

 n With this option, sed does not output lines automatically.
This option is usually used with the p command to output
only selected lines.

 f filename With this option, sed reads editing commands filename.
Line Commands (You need to quote any newline characters if you are

entering more than one line)
 a Appends text after a line.
 i Inserts text before a line.
 c Changes text.
 d Deletes lines.
 p Prints lines.
 w Writes lines to a file.
 r Reads lines from a file.
 q Quits the sed editor before all lines are processed.
 n Skips processing to next line.
 s/pattern/replacement/ Substitutes matched pattern with replacement text.
 g s/pat/rep/g Global substitution on a line.
 p s/pat/rep/p Outputs the modified line.
 w s/pat/rep/w fname Writes the modified line to a file.
/pattern/ A line can be located and referenced by a pattern.
diff filename filename Compares two files and outputs the lines that are different as

well as the editing changes needed to make the first file the
same as the second file.

f1-linenum a f2-line1, f2-line2 Appends lines from file2 to after f1-linenum in file1.
f1-line1, f1-line2 d f1-linenum Deletes the lines in file1.
f1-line1, f1-line2 c
f2-line1, f2-line2

Replaces lines in file1 with lines in file2.

 b Ignores any trailing or duplicate blank.
 c Outputs a context for differing lines. Three lines above and

below are displayed.
 e Outputs a list of Ed editing commands that, when executed,

change the first file into an exact copy of the second file.
tr first-character-list Outputs a version of the input in which characters in the first

Table 11-4: Edit Filters
Command Execution
second-character-list character list that occur in the input are replaced in the

output by corresponding characters in the second character
list.

You can save the output of a filter in a file or send it to a printer. To do so, you need to use
redirection or pipes. To save the output of a filter to a file, you redirect it to a file using the
redirection operation, >. To send output to the printer, you pipe the output to the lpr utility,
which then prints it. In the next command, the cat command pipes its output to the lpr
command, which then prints it.

$ cat complist | lpr

Other commands for displaying files, such as more, may seem to operate like a filter, but they
are not filters. You need to distinguish between filters and device-oriented utilities, such as
lpr and more. Filters send their output to the standard output. A device-oriented utility such
as lpr, though it receives input from the standard input, sends its output to a device. In the
case of lpr, the device is a printer; for more, the device is the terminal. Such device-oriented
utilities may receive their input from a filter, but they can only output to their device.

All filters accept input from the standard input. In fact, the output of one filter can be piped as
the input for another filter. Many filters also accept input directly from files, however. Such
filters can take filenames as their arguments and read data directly from those files. The cat
and sort filters operate in this way. They can receive input from the standard input or use
filename arguments to read data directly from files.

One of the more powerful features of cat is it can combine the contents of several files into
one output stream. This output can then be piped into a utility or even another filter, allowing
the utility or filter to operate on the combined contents of files as one data stream. For
example, if you want to view the contents of several files at once, screen by screen, you must
first combine them with the cat filter and then pipe the combined data into the more filter.
The more command is, then, receiving its input from the standard input. In the following set
of examples, the cat filter copies the contents of preface and intro into a combined output. In
the first example, this output is piped into the more command. The more filter then enables
you to view the combined text, screen by screen. In the second, the output is piped to the
printer using the lpr command and, in the third, the output is redirected to a file called
frontdata.

$ cat preface intro | more
$ cat preface intro | lpr
$ cat preface intro > frontdata

Types of Filter Output: wc, spell, and sort

The output of a filter may be a modified copy of the input, selected parts of the input, or
simply some information about the input. Some filters are limited to one of these, while others
have options that specify one or the other. The wc, spell, and sort filters illustrate all three
kinds of output. The wc filter merely prints counts of the number of lines, words, and
characters in a file. The spell filter selects misspelled words and outputs only those words.

The sort filter outputs a complete version of the input, but in sorted order. These three filters
are listed in Table 11-3, along with their more commonly used options.

The wc filter takes as its input a data stream, which is usually data read from a file. It then
counts the number of lines, words, and characters (including the newline character, found at
the end of a line) in the file and simply outputs these counts. In the next example, the wc
command is used to find the number of lines, words, and characters in the preface file:

$ wc preface
6 27 142 preface

The spell filter checks the spelling of words in its input and outputs only the misspelled.

$ spell foodlistsp
soop
vegetebels

Using redirection, you can save those words in a file. With a pipe, you can print them. In the
next example, the user saves the misspelled words to a file called misspell:

$ spell foodlistsp > misspell

You can pipe the output of one filter into another filter, in effect, applying the capabilities of
several filters to your data. For example, suppose you only want to know how many words are
misspelled. You could pipe the output of the spell filter into the wc filter, which would count
the number of misspelled words. In the next example, the words in the foodlistsp file are
spell-checked, and the list of misspelled words is piped to the wc filter. The wc filter, with its
-w option, then counts those words and outputs the count.

$ spell preface | wc -w
2

The sort filter outputs a sorted version of a file. sort is a useful utility with many different
sorting options. These options are primarily designed to operate on files arranged in a
database format. In fact, sort can be thought of as a powerful data manipulation tool,
arranging records in a database-like file. This chapter examines how sort can be used to
alphabetize a simple list of words. The sort filter sorts, character by character, on a line. If the
first character in two lines is the same, sort will sort on the next character in each line. You
can, of course, save the sorted version in a file or send it to the printer. In the next example,
the user saves the sorted output in a file called slist:

$ sort foodlist > slist

Searching Files: grep and fgrep

The grep and fgrep filters search the contents of files for a pattern. They then inform you
what file the pattern was found in and print the lines in which it occurred in each file.
Preceding each line is the name of the file in which the line is located. grep can search for
only one pattern, whereas fgrep can search for more than one pattern at a time. The grep and
fgrep filters, along with their options, are described in Table 11-3.

The grep filter takes two types of arguments. The first argument is the pattern to be searched
for; the second argument is a list of filenames, which are the files to be searched. You enter
the filenames on the command line after the pattern. You can also use special characters, such
as the asterisk, to generate a file list.

$ grep pattern filenames-list

In the next example, the grep command searches the lines in the preface file for the pattern
"stream":

$ cat preface
A text file in Unix
consists of a stream of
characters. An editor can
be used to create such
text files, changing or
adding to the character
data in the file.
$ grep stream preface
 consists of a stream of

If you want to include more than one word in the pattern search, you enclose the words within
single quotation marks. This is to quote the spaces between the words in the pattern.
Otherwise, the shell would interpret the space as a delimiter or argument on the command
line, and grep would try to interpret words in the pattern as part of the file list. In the next
example, grep searches for the pattern "text file":

$ grep 'text file' preface
A text file in Unix
text files, changing or

If you use more than one file in the file list, grep will output the name of the file before the
matching line. In the next example, two files, preface and intro, are searched for the pattern
"data". Before each occurrence, the filename is output.

$ grep data preface intro
 preface: data in the file.
 intro: new data

As mentioned earlier, you can also use shell wildcard characters to generate a list of files to be
searched. In the next example, the asterisk wildcard character is used to generate a list of all
files in your directory. This is a simple way of searching all of a directory's files for a pattern.

$ grep data *

The special characters are often useful for searching a selected set of files. For example, if
you want to search all your C program source code files for a particular pattern, you can
specify the set of source code files with *.c. Suppose you have an unintended infinite loop in
your program and you need to locate all instances of iterations. The next example searches
only those files with a .c extension for the pattern "while" and displays the lines of code that
perform iterations:

$ grep while *.c

Regular Expressions

Regular expressions enable you to match possible variations on a pattern, as well as patterns
located at different points in the text. You can search for patterns in your text that have
different ending or beginning letters, or you can match text at the beginning or end of a line.
The regular expression special characters are the circumflex, dollar sign, asterisk, period, and
brackets: ^, $, *, ., []. The circumflex and dollar sign match on the beginning and end of a
line. The asterisk matches repeated characters, the period matches single characters, and the
brackets match on classes of characters. See Table 11-5 for a listing of the regular expression
special characters.

Table 11-5: Regular Expression Special Characters
Character Match Operation
^ Start of a line References the beginning of a line
$ End of a line References the end of a line
. Any character Matches on any one possible character in a pattern
* Repeated

characters
Matches on repeated characters in a pattern

[] Classes Matches on classes of characters (a set of characters) in
the pattern

 Note Regular expressions are used extensively in many Linux filters and applications to
perform searches and matching operations. The Vi and Emacs editors and the sed, diff,
grep, and gawk filters all use regular expressions.

To match on patterns at the beginning of a line, you enter the ^ followed immediately by a
pattern. The ^ special character makes the beginning of the line an actual part of the pattern to
be searched. In the next example, ^consists matches on the line beginning with the pattern
"consists":

^consists
consists of a stream of

The next example uses the $ special character to match patterns at the end of a line:

such$
 be used to create such

The period is a special character that matches any one character. Any character will match a
period in your pattern. The pattern b.d will find a pattern consisting of three letters. The first
letter will be b, the third letter will be d, and the second letter can be any character. It will
match on "bid", "bad", "bed", "b+d", or "b d", for example. Notice the space is a valid
character (so is a tab).

For the period special character to have much effect, you should provide it with a context-a
beginning and ending pattern. The pattern b.d provides a context consisting of the preceding b
and the following d. If you specified b. without a d, then any pattern beginning with b and
having at least one more character would match. The pattern would match on "bid", "bath",
"bedroom", and "bump", as well as "submit", "habit", and "harbor".

The asterisk special character, *, matches on zero or more consecutive instances of a
character. The character matched is the one placed before the asterisk in the pattern. You can
think of the asterisk as an operator that takes the preceding character as its operand. The
asterisk will search for any repeated instances of this character. Here is the syntax of the
asterisk special character:

c* matches on zero or more repeated occurrences of whatever
 the character c is:
c cc ccc cccc and so on.

The asterisk comes in handy when you need to replace several consecutive instances of the
same character. The next example matches on a pattern beginning with b and followed by
consecutive instances of the character o. This regular expression will match on "boooo", "bo",
"boo", and "b".

bo*
 book
 born
 booom
 zoom no match

The .* pattern used by itself will match on any character in the line; in fact, it selects the entire
line. If you have a context for .*, you can match different segments of the line. A pattern
placed before the .* special characters will match the remainder of the line from the
occurrence of the pattern. A pattern placed after the .* will match the beginning of the line up
until the pattern. The .* placed between patterns will match any intervening text between
those patterns on the line. In the next example, the pattern .*and matches everything in the
line from the beginning up to and including the letters "and". Then the pattern and.* matches
everything in the line from and including the letters "and" to the end of the line. Finally, the
pattern /o.*F/ matches all the text between and including the letters o and F.

.*and Hello to you and to them Farewell

and.* Hello to you and to them Farewell

o.*F Hello to you and to them Farewell
 Note Because the * special character matches zero or more instances of the character, you can

provide a context with zero intervening characters. For example, the pattern I.*t
matches on "It" as well as "Intelligent".

Suppose instead of matching on a specific character or allowing a match on any character,
you need to match only on a selected set of characters. For example, you might want to match
on words ending with an A or H, as in "seriesA" and "seriesH", but not "seriesB" or "seriesK".
If you used a period, you would match on all instances. Instead, you need to specify that A
and H are the only possible matches. You can do so with the brackets special characters.

You use the brackets special characters to match on a set of possible characters. The
characters in the set are placed within brackets and listed next to each other. Their order of
listing does not matter. You can think of this set of possible characters as defining a class of
characters, and characters that fall into this class are matched. You may notice the brackets
operate much like the shell brackets. In the next example, the user searches for a pattern

beginning with "doc" and ending with either the letters a, g, or N. It will match on "doca",
"docg", or "docN", but not on "docP".

doc[agN]
 List of documents
 doca docb
 docg docN docP

The brackets special characters are particularly useful for matching on various suffixes or
prefixes for a pattern. For example, suppose you need to match on filenames that begin with
the pattern "week" and have several different suffixes, as in week1, week2, and so on. To
match on just those files with suffixes 2, 4, and 5, you enclose those characters within
brackets. In the next example, notice the pattern week[245] matches on week2 and week4,
but not on week1:

week[245]
 week2 weather
 reports on week4
 week1 reports no match

The brackets special characters are also useful for matching on a pattern that begins in either
uppercase or lowercase. Linux distinguishes between uppercase and lowercase characters.
The pattern "computer" is different from the pattern "Computer"; "computer" would not
match on the version beginning with an uppercase C. To match on both patterns, you need to
use the brackets special characters to specify both c and C as possible first characters in the
pattern. Place the uppercase and lowercase versions of the same character within brackets at
the beginning of the pattern. For example, the pattern [Cc]omputer searches for the pattern
"computer" beginning with either an uppercase C or a lowercase c.

You can specify a range of characters within the brackets with the dash. Characters are ranged
according to the character set being used. In the ASCII character set, lowercase letters are
grouped together. Specifying a range with [a-z] selects all the lowercase letters. In the first
example, shown next, any lowercase letter will match the pattern. More than one range can be
specified by separating the ranges with a comma. The ranges [A-Za-z] select all alphabetic
letters, both uppercase and lowercase.

doc[a-z] doca docg docN docP
doc[A-Za-z] doca docg docN docP

Although shell file matching characters enable you to match on filenames, regular expressions
enable you to match on data within files. Using grep with regular expressions, you can locate
files and the lines in them that match a specified pattern. You can use special characters in a
grep pattern, making the pattern a regular expression. grep regular expressions use the *, .,
and [] special characters, as well as the ^ and $ special characters.

Suppose you want to use the long-form output of ls to display just your directories. One way
to do this is to generate a list of all directories in the long form and pipe this list to grep,
which can then pick out the directory entries. You can do this by using the ^ special character
to specify the beginning of a line. Remember, in the long-form output of ls, the first character
indicates the file type. A d represents a directory, an l represents a symbolic link, and an a
represents a regular file. Using the pattern '^d', grep will match only on those lines beginning
with a d.

$ ls -l | grep '^d'
drwxr-x--- 2 chris 512 Feb 10 04:30 reports
drwxr-x--- 2 chris 512 Jan 6 01:20 letters

If you only want to list those files that have symbolic links, you can use the pattern ^l:

$ ls -l | grep '^l'
lrw-rw-r-- 1 chris group 4 Feb 14 10:30 lunch

Be sure to distinguish between the shell wildcard character and special characters used in the
pattern. When you include special characters in your grep pattern, you need to quote the
pattern. Notice regular-expression special characters and shell wildcard characters use the
same symbols: the asterisk, period, and brackets. If you do not, then any special characters in
the pattern will be interpreted by the shell as shell wildcard characters. Without quotes, an
asterisk would be used to generate filenames rather than being evaluated by grep to search for
repeated characters. Quoting the pattern guarantees that grep will evaluate the special
characters as part of a regular expression. In the next example, the asterisk special character is
used in the pattern as a regular expression and in the filename list as a shell wildcard character
to generate filenames. In this case, all files in the current directory will be searched for
patterns with zero or more s's after "report":

$ grep 'reports*' *
mydata: The report was sitting on his desk.
weather: The weather reports were totally accurate.

The brackets match on either a set of characters, a range of characters, or a nonmatch of those
characters. For example, the pattern doc[abc] matches on the patterns "doca", "docb", and
"docc", but not on "docd". The same pattern can be specified with a range: doc[a-c].
However, the pattern doc[^ab] will match on any pattern beginning with "doc" but not ending
in a or b. Thus, "docc" will be retrieved, but not "doca" or "docb". In the next example, the
user finds all lines that reference "doca", "docb", or "docc":

$ grep 'doc[abc]' myletter
File letter doca and docb.
We need to redo docc.

Certain Linux utilities, such as egrep and awk, can make use of an extended set of special
characters in their patterns. These special characters are |, (), +, and ?, and are listed in Table
11-6.

Table 11-6: Full Regular Expression Special Characters
Character Execution
pattern|pattern Logical OR for searching for alternative patterns
(pattern) Parentheses for grouping patterns
char+ Searches for one or more repetitions of the previous character
char? Searches for zero or one instance of the previous character

The + and ? are variations on the * special character, whereas | and () provide new
capabilities. Patterns that can use such special characters are referred to as full regular

expressions. The Ed and Ex standard line editors do not have these extended special
characters. Only egrep, which is discussed here, and awk have extended special characters.

The + sign matches one or more instances of a character. For example, t+ matches at least one
or more t's, just as tt* does. t+ matches on "sitting" or "biting", but not "ziing". The ? matches
zero or one instance of a character. For example, t? matches on one t or no t's, but not "tt".
The expression it?i matches on "ziing" and "biting", but not "sitting". With the + special
character, the regular expression an+e matches on one or more instances of n preceded by a
and followed by e. The "ane" is matched in "anew", and "anne" is matched on "canned".

The | and () special characters operate on pattern segments, rather than just characters. The |
is a logical OR special character that specifies alternative search patterns within a single
regular expression. Although part of the same regular expression, the patterns are searched for
as separate patterns. The search pattern create|stream searches for either the pattern "create"
or "stream".

create|stream
 consists of a stream of
 be used to create such

The egrep command combines the capabilities of grep and fgrep. Like fgrep, it can search
for several patterns at the same time. Like grep, it can evaluate special characters in its
patterns and search for regular expressions. Unlike grep, however, it can evaluate extended
special characters, such as the logical OR operator, |. In this respect, egrep is the most
powerful of the three search filters.

To search for several patterns at once, you can either enter them on the command line
separated by a newline character as fgrep does, or you can use the logical OR special
character in a pattern to specify alternative patterns to be searched for in a file. The patterns
are actually part of the same regular expression, but they are searched for as separate patterns.
The pattern create|stream egrep will search for either the pattern "create" or the pattern
"stream".

$ egrep 'create|stream' preface
consists of a stream of
 be used to create such

Chapter 12: The Linux File Structure
Overview

In Linux, all files are organized into directories that, in turn, are hierarchically connected to
each other in one overall file structure. A file is referenced not just according to its name, but
also according to its place in this file structure. You can create as many new directories as you
want, adding more directories to the file structure. The Linux file commands can perform
sophisticated operations, such as moving or copying whole directories along with their
subdirectories. You can use file operations such as find, cp, mv, and ln to locate files and
copy, move, or link them from one directory to another. Desktop file managers, such as
konqueror, Nautilus, and Midnight Commander used on the KDE and Gnome desktops,
provide a graphical user interface to perform the same operations using icons, windows, and

menus (See Chapters 9 and 10). This chapter will focus on the commands you use in the shell
command line to manage files, such as cp and mv. However, whether you use the command
line or a GUI file manager, the underlying file structure is the same.

Together, these features make up the Linux file structure. This chapter first examines different
types of files, as well as file classes. Then, the chapter examines the overall Linux file
structure and how directories and files can be referenced using pathnames and the working
directory. The last part of the chapter discusses the different file operations such as copying,
moving, and linking files, as well as file permissions. The organization of the Linux file
structure into its various system and network administration directories is discussed in detail
in Chapter 32.

Linux Files

You can name a file using any alphabetic characters, underscores, and numbers. You can also
include periods and commas. Except in certain special cases, you should never begin a
filename with a period. Other characters, such as slashes, question marks, or asterisks, are
reserved for use as special characters by the system and should not be part of a filename.
Filenames can be as long as 256 characters.

You can include an extension as part of a filename. A period is used to distinguish the
filename proper from the extension. Extensions can be useful for categorizing your files. You
are probably familiar with certain standard extensions that have been adopted by convention.
For example, C source code files always have an extension of .c. Files that contain compiled
object code have a .o extension. You can, of course, make up your own file extensions. The
following examples are all valid Linux filenames:

preface
chapter2
9700info
New_Revisions
calc.c
intro.bk1

Special initialization files are also used to hold shell configuration commands. These are the
hidden, or dot, files referred to in Chapter 5 that begin with a period. Dot files used by
commands and applications have predetermined names. Recall that when you use ls to display
your filenames, the dot files will not be displayed. To include the dot files, you need to use ls
with the -a option. Dot files are discussed in more detail in the chapter on shell configuration,
Chapter 13.

As shown in Figure 12-1, the ls -l command displays detailed information about a file. First
the permissions are displayed, followed by the number of links, the owner of the file, the
name of the group the user belongs to, the file size in bytes, the date and time the file was last
modified, and the name of the file. Permissions indicate who can access the file: the user,
members of a group, or all other users. Permissions are discussed in detail later in this chapter.
The group name indicates the group permitted to access the file object. In Figure 12-1, the file
type for mydata is that of an ordinary file. Only one link exists, indicating the file has no
other names and no other links. The owner's name is chris, the same as the login name, and
the group name is weather. Other users probably also belong to the weather group. The size

of the file is 207 bytes, and it was last modified on February 20 at 11:55 A.M. The name of
the file is mydata.

Figure 12-1: File information displayed using the -l option for the ls command

If you want to display this detailed information for all the files in a directory, simply use the ls
-l command without an argument.

$ ls -l
-rw-r--r-- 1 chris weather 207 Feb 20 11:55 mydata
-rw-rw-r-- 1 chris weather 568 Feb 14 10:30 today
-rw-rw-r-- 1 chris weather 308 Feb 17 12:40 monday

All files in Linux have one physical format-a byte stream. A byte stream is just a sequence of
bytes. This allows Linux to apply the file concept to every data component in the system.
Directories are classified as files, as are devices. Treating everything as a file allows Linux to
organize and exchange data more easily. The data in a file can be sent directly to a device
such as a screen because a device interfaces with the system using the same byte-stream file
format as regular files.

This same file format is used to implement other operating system components. The interface
to a device, such as the screen or keyboard, is designated as a file. Other components, such as
directories, are themselves byte-stream files, but they have a special internal organization. A
directory file contains information about a directory, organized in a special directory format.
Because these different components are treated as files, they can be said to constitute different
file types. A character device is one file type. A directory is another file type. The number of
these file types may vary according to your specific implementation of Linux. Five common
types of files exist, however: ordinary files, directory files, first-in first-out pipes, character
device files, and block device files. Although you may rarely reference a file's type, it can be
useful when searching for directories or devices. Later in the chapter, you see how to use the
file type in a search criterion with the find command to search specifically for directory or
device names.

Although all ordinary files have a byte-stream format, they may be used in different ways.
The most significant difference is between binary and text files. Compiled programs are
examples of binary files. However, even text files can be classified according to their different
uses. You can have files that contain C programming source code or shell commands, or even
a file that is empty. The file could be an executable program or a directory file. The Linux file
command helps you determine for what a file is used. It examines the first few lines of a file
and tries to determine a classification for it. The file command looks for special keywords or
special numbers in those first few lines, but it is not always accurate. In the next example, the
file command examines the contents of two files and determines a classification for them:

$ file monday reports
monday: text-
reports: directory

If you need to examine the entire file byte by byte, you can do so with the od (octal dump)
command. The od command performs a dump of a file. By default, it prints every byte in its
octal representation. However, you can also specify a character, decimal, or hexadecimal
representation. The od command is helpful when you need to detect any special character in
your file, or if you want to display a binary file. If you perform a character dump, then certain
nonprinting characters will be represented in a character notation. For example, the carriage
return is represented by a \n. Both the file and od commands, with their options, are listed in
Table 12-1.

Table 12-1: Commonfile andod Options
Commands Execution
file Examines the first few lines of a file to determine a classification
-f filename Reads the list of filenames to be examined from a file
od Prints the contents of a file byte by byte in either octal, character,

decimal, or hexadecimal; octal is the default
-c Outputs character form of byte values; nonprinting characters have a

corresponding character representation
-d Outputs decimal form of byte values
-x Outputs hexadecimal form of byte values
-o Outputs octal form of byte values

The File Structure

Linux organizes files into a hierarchically connected set of directories. Each directory may
contain either files or other directories. In this respect, directories perform two important
functions. A directory holds files, much like files held in a file drawer, and a directory
connects to other directories, much like a branch in a tree is connected to other branches. With
respect to files, directories appear to operate like file drawers, with each drawer holding
several files. To access files, you open a file drawer. Unlike file drawers, however, directories
can contain not only files, but other directories as well. In this way, a directory can connect to
another directory.

Because of the similarities to a tree, such a structure is often referred to as a tree structure.
This structure could more accurately be thought of as an upside-down bush rather than a tree,
however, because no trunk exists. The tree is represented upside down, with the root at the
top. Extending down from the root are the branches. Each branch grows out of only one
branch, but it can have many lower branches. In this respect, it can be said to have a parent-
child structure. In the same way, each directory is itself a subdirectory of one other directory.
Each directory may contain many subdirectories, but is itself the child of only one parent
directory.

The Linux file structure branches into several directories beginning with a root directory, /.
Within the root directory several system directories contain files and programs that are
features of the Linux system. The root directory also contains a directory called home that

contains the home directories of all the users in the system. Each user's home directory, in
turn, contains the directories the user has made for his or her use. Each of these could also
contain directories. Such nested directories would branch out from the user's home directory,
as shown in Figure 12-2.

Figure 12-2: The Linux file structure beginning at the root directory
 Note The user's home directory can be any directory, though it is usually the directory that

bears the user's login name. This directory is located in the directory named /home on
your Linux system. For example, a user named dylan will have a home directory called
dylan located in the system's /home directory. The user's home directory is a
subdirectory of the directory called /home on your system.

Home Directories

When you log into the system, you are placed within your home directory. The name given to
this directory by the system is the same as your login name. Any files you create when you
first log in are organized within your home directory. Within your home directory, however,
you can create more directories. You can then change to these directories and store files in
them. The same is true for other users on the system. Each user has his or her own home
directory, identified by the appropriate login name. Users, in turn, can create their own
directories.

You can access a directory either through its name or by making it the default directory. Each
directory is given a name when it is created. You can use this name in file operations to access
files in that directory. You can also make the directory your default directory. If you do not
use any directory names in a file operation, the default directory will be accessed. The default
directory is referred to as the working directory. In this sense, the working directory is the one
from which you are currently working.

When you log in, the working directory is your home directory, usually having the same name
as your login name. You can change the working directory by using the cd command to
designate another directory as the working directory. As the working directory is changed,
you can move from one directory to another. Another way to think of a directory is as a
corridor. In such a corridor, there are doors with names on them. Some doors lead to rooms;
others lead to other corridors. The doors that open to rooms are like files in a directory. The
doors that lead to other corridors are like other directories. Moving from one corridor to the
next corridor is like changing the working directory. Moving through several corridors is like
moving through several directories.

Pathnames

The name you give to a directory or file when you create it is not its full name. The full name
of a directory is its pathname. The hierarchically nested relationship among directories forms
paths, and these paths can be used to identify and reference any directory or file
unambiguously. In Figure 12-3, a path exists from the root directory, /, through the home
directory to the robert directory. Another path exists from the root directory through the
home and chris directories to the reports directory. Although parts of each path may at first
be shared, at some point they differ. Both the directories robert and reports share the two
directories, root and home. Then they differ. In the home directory, robert ends with robert,
but the directory chris then leads to reports. In this way, each directory in the file structure
can be said to have its own unique path. The actual name by which the system identifies a
directory always begins with the root directory and consists of all directories nested above
that directory.

Figure 12-3: Directory pathnames

In Linux, you write a pathname by listing each directory in the path separated by a forward
slash. A slash preceding the first directory in the path represents the root. The pathname for
the robert directory is /home/robert. The pathname for the reports directory is
/home/chris/reports. Pathnames also apply to files. When you create a file within a directory,
you give the file a name. The actual name by which the system identifies the file, however, is
the filename combined with the path of directories from the root tothe file's directory. In
Figure 12-4, the path for the weather file consists of the root, home, and chris directories and
the filename weather. The pathname for weather is /home/ chris/ weather (the root
directory is represented by the first slash).

Figure 12-4: Pathname for Weather: /home/chris/weather

Pathnames may be absolute or relative. An absolute pathname is the complete pathname of a
file or directory beginning with the root directory. A relative pathname begins from your

working directory; it is the path of a file relative to your working directory. The working
directory is the one you are currently operating in. Using the directory structure described in
Figure 12-4, if chris is your working directory, the relative pathname for the file monday is
reports/monday. The absolute pathname for monday is /home/chris/ reports/monday.

The absolute pathname from the root to your home directory could be especially complex and,
at times, even subject to change by the system administrator. To make it easier to reference,
you can use a special character, the tilde ~, which represents the absolute pathname of your
home directory. In the next example, from the thankyou directory, the user references the
weather file in the home directory by placing a tilde and slash before weather:

$ pwd
/home/chris/letters/thankyou
$ cat ~/weather
raining and warm
$

You must specify the rest of the path from your home directory. In the next example, the user
references the monday file in the reports directory. The tilde represents the path to the user's
home directory, /home/chris, and then the rest of the path to the monday file is specified.

$ cat ~/reports/monday

System Directories

The root directory that begins the Linux file structure contains several system directories. The
system directories contain files and programs used to run and maintain the system. Many
contain other subdirectories with programs for executing specific features of Linux. For
example, the directory /usr/bin contains the various Linux commands that users execute, such
as cp and mv. The directory /bin holds interfaces with different system devices, such as the
printer or the terminal. Table 12-2 lists the basic system directories.

Table 12-2: Standard System Directories in Linux
Directory Function
/ Begins the file system structure, called the root
/home Contains users' home directories
/bin Holds all the standard commands and utility programs
/usr Holds those files and commands used by the system; this

directory breaks down into several subdirectories
/usr/bin Holds user-oriented commands and utility programs
/usr/sbin Holds system administration commands
/usr/lib Holds libraries for programming languages
/usr/share/doc Holds Linux documentation
/usr/share/man Holds the online manual Man files
/usr/spool Holds spooled files, such as those generated for printing jobs and

network transfers
/sbin Holds system administration commands for booting the system

Table 12-2: Standard System Directories in Linux
Directory Function
/var Holds files that vary, such as mailbox files
/dev Holds file interfaces for devices such as the terminals and

printers
/etc Holds system configuration files and any other system files
 Note The overall organization of the Linux file structure for system directories and other

useful directories such as those used for the kernel and X Window System are discussed
in detail in Chapter 32.

Listing, Displaying, and Printing Files: ls, cat, more, and lpr

One of the primary functions of an operating system is the management of files. You may
need to perform certain basic output operations on your files, such as displaying them on your
screen or printing them. The Linux system provides a set of commands that perform basic
file-management operations, such as listing, displaying, and printing files, as well as copying,
renaming, and erasing files. These commands are usually made up of abbreviated versions of
words. For example, the ls command is a shortened form of "list" and lists the files in your
directory. The lpr command is an abbreviated form of "line print" and will print a file. The
cat and more commands display the contents of a file on the screen. Table 12-3 lists these
commands with their different options. When you log in to your Linux system, you may want
a list of the files in your home directory. The ls command, which outputs a list of your file and
directory names, is useful for this. The ls command has many possible options for displaying
filenames according to specific features. These are discussed in more detail at the end of the
chapter.

Table 12-3: Listing, Displaying, and Printing Files
Command or Option Execution
ls This command lists file and directory names:

$ ls filenames
cat This filter can be used to display a file. It can take filenames

for its arguments. It outputs the contents of those files directly
to the standard output, which, by default, is directed to the
screen:
$ cat filenames

more This utility displays a file screen by screen. It can take
filenames for its arguments. It outputs the contents of those
files to the screen, one screen at a time:
$ more filenames

more Options
+num Begins displaying the file at page num.
more Commands
Numf Skips forward num number of screens.
Numb Skips backward num number of screens.
d Displays half a screen.

Table 12-3: Listing, Displaying, and Printing Files
Command or Option Execution
h Lists all more commands.
q Quits more utility.
lpr Sends a file to the line printer to be printed; a list of files may

be used as arguments:
$ lpr filenames

lpr Options
-P printer-name Selects a specific printer.
lpq Lists the print queue for printing jobs.
lprm Removes a printing job from the printing queue.

Displaying Files: cat and more

You may also need to look at the contents of a file. The cat and more commands display the
contents of a file on the screen. "cat" stands for concatenate. The cat command is complex
and versatile, as described in Chapter 11. Here it is used in a limited way, displaying the text
of a file on the screen:

$ cat mydata
computers

The cat command outputs the entire text of a file to the screen at once. This presents a
problem when the file is large because its text quickly speeds past on the screen. The more
command is designed to overcome this limitation by displaying one screen of text at a time.
You can then move forward or backward in the text at your leisure. You invoke the more
command by entering the command name followed by the name of the file you want to view.

$ more mydata

When more invokes a file, the first screen of text is displayed. To continue to the next screen,
you press the F key or the SPACEBAR. To move back in the text, you press the B key. You
can quit at any time by pressing the Q key.

Printing Files: lpr, lpq, and lprm

With the printer commands like lpr and lprm, you can perform printing operations like
printing files or canceling print jobs (see Table 12-3). When you need to print files, use the
lpr command to send files to the printer connected to your system. In the next example, the
user prints the mydata file:

$ lpr mydata

If you want to print several files at once, you can specify more than one file on the command
line after the lpr command. In the next example, the user prints out both the mydata and
preface files:

$ lpr mydata preface

Printing jobs are placed in a queue and printed one at a time in the background. You can
continue with other work as your files print. You can see the position of a particular printing
job at any given time with the lpq command. lpq gives the owner of the printing job (the
login name of the user who sent the job), the print job ID, the size in bytes, and the temporary
file in which it is currently held. In this example, the owner is chris and the print ID is 00015:

$ lpq
Owner ID Chars Filename
chris 00015 360 /usr/lpd/cfa00015

If you need to cancel an unwanted printing job, you can do so with the lprm command. lprm
takes as its argument either the ID number of the printing job or the owner's name. lprm then
removes the print job from the print queue. For this task, lpq is helpful, for it provides you
with the ID number and owner of the printing job you need to use with lprm. In the next
example, the print job 15 is canceled:

$ lprm 00015

You can have several printers connected to your Linux system. One of these will be
designated the default printer, and lpr prints to this printer unless another printer is specified.
With lpr, you can specify the particular printer on which you want your file printed. Each
printer on your system will have its own name. You can specify which printer to use with the
-P option followed by that printer's name. In the next example, the file mydata is printed on
the evans1 printer:

$ lpr -Pevans1 mydata

Managing Directories: mkdir, rmdir, ls, cd, and pwd

You can create and remove your own directories, as well as change your working directory,
with the mkdir, rmdir, and cd commands. Each of these commands can take as its argument
the pathname for a directory. The pwd command displays the absolute pathname of your
working directory. In addition to these commands, the special characters represented by a
single dot, a double dot, and a tilde can be used to reference the working directory, the parent
of the working directory, and the home directory, respectively. Taken together, these
commands enable you to manage your directories. You can create nested directories, move
from one directory to another, and use pathnames to reference any of your directories. Those
commands commonly used to manage directories are listed in Table 12-4.

Table 12-4: Directory Commands
Command Execution
mkdir Creates a directory:

$ mkdir reports
rmdir Erases a directory:

$ rmdir letters
ls -F Lists directory name with a preceding slash:

$ ls -F
today /reports /letters

ls -R Lists working directory as well as all subdirectories.

Table 12-4: Directory Commands
Command Execution
cd directory name Changes to the specified directory, making it the working

directory. cd without a directory name changes back to the home
directory:
$ cd reports
$ cd

pwd Displays the pathname of the working directory:
$ pwd
/home/chris/reports

directory name/filename A slash is used in pathnames to separate each directory name. In
the case of pathnames for files, a slash separates the preceding
directory names from the filename:
$ cd /home/chris/reports
$ cat /home/chris/reports/mydata

.. References the parent directory. You can use it as an argument or
as part of a pathname:
$ cd ..
$ mv ../larisa oldletters

. References the working directory. You can use it as an argument
or as part of a pathname:
$ ls .
$ mv ../aleina .

~/pathname The tilde is a special character that represents the pathname for
the home directory. It is useful when you need to use an absolute
pathname for a file or directory:
$ cp monday ~/today
$ mv tuesday ~/weather

You create and remove directories with the mkdir and rmdir commands. In either case, you
can also use pathnames for the directories. In the next example, the user creates the directory
reports. Then, the user creates the directory letters using a pathname.

$ mkdir reports
$ mkdir /home/chris/letters

You can remove a directory with the rmdir command followed by the directory name. In the
next example, the user removes the directory reports with the rmdir command. Then, the
directory letters is removed using its pathname.

$ rmdir reports
$ rmdir /home/chris/letters

You have seen how to use the ls command to list the files and directories within your working
directory. To distinguish between file and directory names, however, you need to use the ls
command with the -F option. A slash is then placed after each directory name in the list.

$ ls
weather reports letters

$ ls -F
weather reports/ letters/

The ls command also takes as an argument any directory name or directory pathname. This
enables you to list the files in any directory without first having to change to that directory. In
the next example, the ls command takes as its argument the name of a directory, reports.
Then the ls command is executed again, only this time the absolute pathname of reports is
used.

$ ls reports
monday tuesday
$ ls /home/chris/reports
monday tuesday
$

Within each directory, you can create still other directories; in effect, nesting directories.
Using the cd command, you can change from one directory to another. No indicator tells you
what directory you are currently in, however. To find out what directory you have changed to,
use the pwd command to display the name of your current working directory. The pwd
command displays more than just the name of the directory-it displays the full pathname, as
shown in the next example. The pathname displayed here consists of the user's home
directory, dylan, and the directory it is a part of, the directory called home, and directory that
home is part of, /, the root directory. Each directory name is separated by a slash. The root
directory is represented by a beginning slash.

$ pwd
/home/dylan

As you already know, you can change directories with the cd command. Changing to a
directory makes that directory the working directory, which is your default directory.

 Note File commands, such as ls and cp, unless specifically told otherwise, operate on files in
your working directory.

When you log into the system, your working directory is your home directory. When a user
account is created, the system also creates a home directory for that user. When you log in,
you are always placed in your home directory. The cd command enables you to make another
directory the working directory. In a sense, you can move from your home directory into
another directory. This other directory then becomes the default directory for any commands
and any new files created. For example, the ls command now lists files in this new working
directory.

The cd command takes as its argument the name of the directory to which you want to
change. The name of the directory can be the name of a subdirectory in your working
directory or the full pathname of any directory on the system. If you want to change back to
your home directory, you only need to enter the cd command by itself, without a filename
argument.

$ pwd
/home/dylan
$ cd props
$ pwd
/home/dylan/props

$ cd /home/chris/letters
$ pwd
/home/chris/letters
$

You can use a double dot, .., to represent a directory's parent. This literally represents the
pathname of the parent directory. You can use the double dot symbol with the cd command to
move back up to the parent directory, making the parent directory the current directory. In the
next example, the user moves to the letters directory and then changes back to the home
directory:

$ cd letters
$ pwd
/home/chris/letters
$ cd ..
$ pwd
/home/chris

A directory always has a parent (except, of course, for the root). For example, in the previous
listing, the parent for thankyou is the letters directory. When a directory is created, two
entries are made: one represented with a dot, ., and the other represented by a double dot, .. .
The dot represents the pathnames of the directory, and the double dot represents the pathname
of its parent directory. The double dot, used as an argument in a command, references a parent
directory. The single dot references the directory itself. In the next example, the user changes
to the letters directory. The ls command is used with the . argument to list the files in the
letters directory. Then, the ls command is used with the .. argument to list the files in the
parent directory of letters, the chris directory.

$ cd letters
$ ls .
thankyou
$ ls ..
weather letters
$

You can use the single dot to reference your working directory, instead of using its pathname.
For example, to copy a file to the working directory retaining the same name, the dot can be
used in place of the working directory's pathname. In this sense, the dot is another name for
the working directory. In the next example, the user copies the weather file from the chris
directory to the reports directory. The reports directory is the working directory and can be
represented with the single dot.

$ cd reports
$ cp /home/chris/weather .

The .. symbol is often used to reference files in the parent directory. In the next example, the
cat command displays the weather file in the parent directory. The pathname for the file is
the .. symbol followed by a slash and the filename.

$ cat ../weather
raining and warm
 Note You can use the cd command with the .. symbol to step back through successive parent

directories of the directory tree from a lower directory.

File and Directory Operations: find, cp, mv, rm, and ln

As you create more and more files, you may want to back them up, change their names, erase
some of them, or even give them added names. Linux provides you with several file
commands that enable you to search for files, copy files, rename files, or remove files (see
Tables 12-5 and 12-6). If you have a large number of files, you can also search them to locate
a specific one. The commands are shortened forms of full words, consisting of only two
characters. The cp command stands for "copy" and copies a file, mv stands for "move" and
renames or moves a file, rm stands for "remove" and erases a file, and ln stands for "link" and
adds another name for a file. One exception to this rule is the find command, which performs
searches of your filenames to find a file.

Table 12-5: Thefind Command
Command or Option Execution
find Searches directories for files based on search criteria. This

command has several options that specify the type of criteria
and actions to be taken.

-name pattern Searches for files with the pattern in the name.
-group name Searches for files belonging to this group name.
-size numc Searches for files with the size num in blocks. If c is added

after num, then the size in bytes (characters) is searched for.
-mtime num Searches for files last modified num days ago.
-newer pattern Searches for files modified after the one matched by

pattern.
-print Outputs the result of the search to the standard output. The

result is usually a list of filenames, including their full
pathnames.

-type filetype Searches for files with the specified file type.
 b Block device file.
 c Character device file.
 d Directory file.
 f Ordinary (regular) file.
 p Named pipes (fifo).
 l Symbolic links.

Table 12-6: File Operations
Command Execution
cp filename filename Copies a file. cp takes two arguments: the original file and

the name of the new copy. You can use pathnames for the
files to copy across directories:
$ cp today reports/monday

cp -r dirname dirname Copies a subdirectory from one directory to another. The
copied directory includes all its own subdirectories:
$ cp -r letters/thankyou oldletters

Table 12-6: File Operations
Command Execution
mv filename filename Moves (renames) a file. mv takes two arguments: the first

is the file to be moved. The second argument can be the
new filename or the pathname of a directory. If it is the
name of a directory, then the file is literally moved to that
directory, changing the file's pathname:
$ mv today /home/chris/reports

mv dirname dirname Moves directories. In this case, the first and last arguments
are directories:
$ mv letters/thankyou oldletters

ln filename filename Creates added names for files referred to as links. A link
can be created in one directory that references a file in
another directory:
$ ln today reports/monday

rm filenames Removes (erases) a file. Can take any number of filenames
as its arguments. Literally removes links to a file. If a file
has more than one link, you need to remove all of them to
erase a file:
$rm today weather weekend

Searching Directories: find

Once you have a large number of files in many different directories, you may need to search
them to locate a specific file, or files, of a certain type. The find command enables you to
perform such a search. The find command takes as its arguments directory names followed by
several possible options that specify the type of search and the criteria for the search. find
then searches within the directories listed and their subdirectories for files that meet these
criteria. The find command can search for a file based on its name, type, owner, and even the
time of the last update.

$ find directory-list -option criteria

The -name option has as its criteria a pattern and instructs find to search for the filename that
matches that pattern. To search for a file by name, you use the find command with the
directory name followed by the -name option and the name of the file.

$ find directory-list -name filename

The find command also has options that merely perform actions, such as outputting the results
of a search. If you want find to display the filenames it has found, you simply include the -
print option on the command line along with any other options. The -print option instructs
find to output to the standard output the names of all the files it locates. In the next example,
the user searches for all the files in the reports directory with the name monday. Once
located, the file, with its relative pathname, is printed.

$ find reports -name monday -print
reports/monday

The find command prints out the filenames using the directory name specified in the directory
list. If you specify an absolute pathname, the absolute path of the found directories will be
output. If you specify a relative pathname, only the relative pathname is output. In the
previous example, the user specified a relative pathname, reports, in the directory list.
Located filenames were output beginning with this relative pathname. In the next example,
the user specifies an absolute pathname in the directory list. Located filenames are then output
using this absolute pathname.

$ find /home/chris -name monday -print
/home/chris/reports/monday

If you want to search your working directory, you can use the dot in the directory pathname to
represent your working directory. The double dot would represent the parent directory. The
next example searches all files and subdirectories in the working directory, using the dot to
represent the working directory. If you are located in your home directory, this is a convenient
way to search through all your own directories. Notice the located filenames are output
beginning with a dot.

$ find . -name weather -print
./weather

You can use shell wildcard characters as part of the pattern criteria for searching files. The
special character must be quoted, however, to avoid evaluation by the shell. In the next
example, all files with the .c extension in the programs directory are searched for:

$ find programs -name '*.c' -print

You can also use the find command to locate other directories. In Linux, a directory is
officially classified as a special type of file. Although all files have a byte-stream format,
some files, such as directories, are used in special ways. In this sense, a file can be said to
have a file type. The find command has an option called -type that searches for a file of a
given type. The -type option takes a one-character modifier that represents the file type. The
modifier that represents a directory is a d. In the next example, both the directory name and
the directory file type are used to search for the directory called thankyou:

$ find /home/chris -name thankyou -type d -print
/home/chris/letters/thankyou
$

File types are not so much different types of files as they are the file format applied to other
components of the operating system, such as devices. In this sense, a device is treated as a
type of file, and you can use find to search for devices and directories, as well as ordinary
files. Table 12-5 lists the different types available for the find command's -type option.

Moving and Copying Files

To make a copy of a file, you simply give cp two filenames as its arguments (see Table 12-6).
The first filename is the name of the file to be copied-the one that already exists. This is often
referred to as the source file. The second filename is the name you want for the copy. This
will be a new file containing a copy of all the data in the source file. This second argument is
often referred to as the destination file. The syntax for the cp command follows:

$ cp source-file destination-file

In the next example, the user copies a file called proposal to a new file called oldprop:

$ cp proposal oldprop

When the user lists the files in that directory, the new copy will be among them.

$ ls
proposal oldprop

You could unintentionally destroy another file with the cp command. The cp command
generates a copy by first creating a file and then copying data into it. If another file has the
same name as the destination file, then that file is destroyed and a new file with that name is
created. In a sense, the original file is overwritten with the new copy. In the next example, the
proposal file is overwritten by the newprop file. The proposal file already exists.

$ cp newprop proposal

Most Linux distributions configure your system to detect this overwrite condition. If not, you
can use the cp command with the -i (for interactive) option to detect it. With this option, cp
first checks to see if the file already exists. If it does, you are then asked if you want to
overwrite the existing file. If you enter y, the existing file is destroyed and a new one created
as the copy. If you enter anything else, this is taken as a negative answer and the cp command
is interrupted, preserving the original file.

$ cp -i newprop proposal
Overwrite proposal? n
$

To copy a file from your working directory to another directory, you only need to use that
directory name as the second argument in the cp command. The name of the new copy will be
the same as the original, but the copy will be placed in a different directory. Files in different
directories can have the same names. Because files are in different directories, they are
registered as different files.

$ cp filenames directory-name

The cp command can take a list of several filenames for its arguments, so you can copy more
than one file at a time to a directory. Simply specify the filenames on the command line,
entering the directory name as the last argument. All the files are then copied to the specified
directory. In the next example, the user copies both the files preface and doc1 to the props
directory. Notice props is the last argument.

$ cp preface doc1 props

You can use any of the wildcard characters to generate a list of filenames to use with cp or
mv. For example, suppose you need to copy all your C source code files to a given directory.
Instead of listing each one individually on the command line, you could use a * character with
the .c extension to match on and generate a list of C source code files (all files with a .c
extension). In the next example, the user copies all source code files in the current directory to
the sourcebks directory:

$ cp *.c sourcebks

If you want to copy all the files in a given directory to another directory, you could use * to
match on and generate a list of all those files in a cp command. In the next example, the user
copies all the files in the props directory to the oldprop directory. Notice the use of a props
pathname preceding the * special characters. In this context, props is a pathname that will be
appended before each file in the list that * generates.

$ cp props/* oldprop

You can, of course, use any of the other special characters, such as ., ?, or []. In the next
example, the user copies both source code and object code files (.c and .o) to the projbk
directory:

$ cp *.[oc] projbk

When you copy a file, you may want to give the copy a different name than the original. To
do so, place the new filename after the directory name, separated by a slash.

$ cp filename directory-name/new-filename

In the next example, the file newprop is copied to the directory props and the copy is given
the name version1. The user then changes to the props directory and lists the files. Only one
file exists, which is called version1.

$ cp newprop props/version1
$ cd props
$ ls
version1

You can use the mv command either to rename a file or to move a file from one directory to
another. When using mv to rename a file, you simply use the new filename as the second
argument. The first argument is the current name of the file you are renaming.

$ mv original-filename new-filename

In the next example, the proposal file is renamed with the name version1:

$ mv proposal version1

As with cp, it is easy for mv to erase a file accidentally. When renaming a file, you might
accidentally choose a filename already used by another file. In this case, that other file will be
erased. The mv command also has an -i option that checks first to see if a file by that name
already exists. If it does, then you are asked first if you want to overwrite it. In the next
example, a file already exists with the name version1. The overwrite condition is detected and
you are asked whether you want to overwrite that file.

$ ls
proposal version1
$ mv -i version1 proposal
Overwrite proposal? n
$

You can move a file from one directory to another by using the directory name as the second
argument in the mv command. In this case, you can think of the mv command as simply
moving a file from one directory to another, rather than renaming the file. After you move the
file, it will have the same name as it had in its original directory unless you specify otherwise.

$ mv filename directory-name

If you want to rename a file when you move it, you can specify the new name of the file after
the directory name. The directory name and the new filename are separated by a forward
slash. In the next example, the file newprop is moved to the directory props and renamed as
version1:

$ mv newprops props/version1
$ cd props
$ ls
version1

You can also use any of the special characters described in Chapter 5 to generate a list of
filenames to use with mv. In the next example, the user moves all source code files in the
current directory to the newproj directory:

$ mv *.c newproj

If you want to move all the files in a given directory to another directory, you can use * to
match on and generate a list of all those files. In the next example, the user moves all the files
in the reports directory to the repbks directory:

$ mv reports/* repbks

Moving and Copying Directories

You can also copy or move whole directories at once. Both cp and mv can take as their first
argument a directory name, enabling you to copy or move subdirectories from one directory
into another (see Table 12-6). The first argument is the name of the directory to be moved or
copied, while the second argument is the name of the directory within which it is to be placed.
The same pathname structure used for files applies to moving or copying directories.

You can just as easily copy subdirectories from one directory to another. To copy a directory,
the cp command requires you to use the -r option. The -r option stands for "recursive." It
directs the cp command to copy a directory, as well as any subdirectories it may contain. In
other words, the entire directory subtree, from that directory on, will be copied. In the next
example, the thankyou directory is copied to the oldletters directory. Now two thankyou
subdirectories exist, one in letters and one in oldletters.

$ cp -r letters/thankyou oldletters
$ ls -F letters
/thankyou
$ ls -F oldletters
/thankyou

Erasing a File: the rm Command

As you use Linux, you will find the number of files you use increases rapidly. Generating
files in Linux is easy. Applications such as editors, and commands such as cp, easily create
files. Eventually, many of these files may become outdated and useless. You can then remove
them with the rm command. In the next example, the user erases the file oldprop:

$ rm oldprop

The rm command can take any number of arguments, enabling you to list several filenames
and erase them all at the same time. You just list them on the command line after you type
rm.

$ rm proposal version1 version2

Be careful when using the rm command, because it is irrevocable. Once a file is removed, it
cannot be restored (there is no undo). Suppose, for example, you enter the rm command by
accident while meaning to enter some other command, such as cp or mv. By the time you
press ENTER and realize your mistake, it is too late. The files are gone. To protect against
this kind of situation, you can use the rm command's -i option to confirm you want to erase a
file. With the -i option, you are prompted separately for each file and asked whether to
remove it. If you enter y, the file will be removed. If you enter anything else, the file is not
removed. In the next example, the rm command is instructed to erase the files proposal and
oldprop. The rm command then asks for confirmation for each file. The user decides to
remove oldprop, but not proposal.

$ rm -i proposal oldprop
Remove proposal? n
Remove oldprop? y
$

To remove a directory and all its subdirectories you use the rm command with the -r option.
This is a very powerful command and could easily be used to erase all your files. The
following example deletes the reports directory and all its subdirectories:

rm -r reports

Be careful of using the asterisk matching character, as described in Chapter 11. The following
command will erase every file in your current working directory.

rm *
 Note This is a very powerful operation, capable of erasing large segments of your file

systems. Use with caution.

Links: the ln Command

You can give a file more than one name using the ln command. You might want to reference
a file using different filenames to access it from different directories. The added names are
often referred to as links.

The ln command takes two arguments: the name of the original file and the new, added
filename. The ls operation lists both filenames, but only one physical file will exist.

$ ln original-file-name added-file-name

In the next example, the today file is given the additional name weather. It is just another
name for the today file.

$ ls
today
$ ln today weather
$ ls
today weather

You can give the same file several names by using the ln command on the same file many
times. In the next example, the file today is given both the name weather and weekend:

$ ln today weather
$ ln today weekend
$ ls
today weather weekend

You can use the ls command with the -l option to find if a file has several links. ls with -l lists
several pieces of information, such as permissions, the number of links a file has, its size, and
the date it was last modified. In this line of information, the first number, which precedes the
user's login name, specifies the number of links a file has. The number before the date is the
size of the file. The date is the last time a file was modified. In the next example, the user lists
the full information for both today and weather. Notice the number of links in both files is
two. Furthermore, the size and date are the same. This suggests both files are actually
different names for the same file.

$ ls -l today weather
-rw-rw-r-- 2 chris group 563 Feb 14 10:30 today
-rw-rw-r-- 2 chris group 563 Feb 14 10:30 weather

This still does not tell you specifically what filenames are linked. You can be somewhat sure
if two files have exactly the same number of links, sizes, and modification dates, as in the
case of the files today and weather. To be certain, however, you can use the ls command
with the -i option. With the -i option, the ls command lists the filename and its inode number.
An inode number is a unique number used by the system to identify a specific file. If two
filenames have the same inode number, they reference exactly the same file. They are two
names for the same file. In the next example, the user lists today, weather, and larisa. Notice
that today and weather have the same inode number.

$ ls -i today weather larisa
1234 today 1234 weather 3976 larisa

The added names, or links, created with ln are often used to reference the same file from
different directories. A file in one directory can be linked to and accessed from another
directory. Suppose you need to reference a file in the home directory from within another
directory. You can set up a link from that directory to the file in the home directory. This link
is actually another name for the file. Because the link is in another directory, it can have the
same name as the original file.

To link a file in the home directory to another directory, use the name of that directory as the
second argument in the ln command.

$ ln filename directory-name

In the next example, the file today in the chris directory is linked to the reports directory.
The ls command lists the today file in both the chris directory and the reports directory. In
fact, only one copy of the today file exists, the original file in the home directory.

$ ln today reports
$ ls
today reports
$ ls reports
today
$

Just as with the cp and mv commands, you can give another name to the link. Simply place
the new name after the directory name, separated by a slash. In the next example, the file
today is linked to the reports directory with the name wednesday. Only one actual file still
exists, the original file called today in the chris directory. However, today is now linked to
the directory reports with the name wednesday. In this sense, today has been given another
name. In the reports directory, the today file goes by the name wednesday.

$ ln today reports/wednesday
$ ls
today reports
$ ls reports
wednesday
$

You can easily link a file in any directory to a file in another directory by referencing the files
with their pathnames. In the next example, the file monday in the reports directory is linked
to the directory chris. Notice the second argument is an absolute pathname.

$ ln monday /home/chris

To erase a file, you need to remove all its links. The name of a file is actually considered a
link to that file-hence the command rm that removes the link to the file. If you have several
links to the file and remove only one of them, the others stay in place and you can reference
the file through them. The same is true even if you remove the original link-the original name
of the file. Any added links will work just as well. In the next example, the today file is
removed with the rm command. However, a link to that same file exists, called weather. The
file can then be referenced under the name weather.

$ ln today weather
$ rm today
$ cat weather
The storm broke today
and the sun came out.
$

Symbolic Links and Hard Links

Linux supports what are known as symbolic links. Links, as they have been described so far,
are called hard links. Although hard links will suffice for most of your needs, they suffer from
one major limitation. A hard link may in some situations fail when you try to link to a file on
some other user's directory. This is because the Linux file structure can be physically
segmented into what are called file systems. A file system can be made up of any physical
memory device or devices, from a floppy disk to a bank of hard disks. Although the files and
directories in all file systems are attached to the same overall directory tree, each file system
physically manages its own files and directories. This means a file in one file system cannot
be linked by a hard link to a file in another file system. If you try to link to a file on another
user's directory that is located on another file system, your hard link will fail. Another
consideration is that there are security issues with hard links, where a hard link could be used
to access a secure area.

To overcome this restriction, you use symbolic links. A symbolic link holds the pathname of
the file to which it is linking. It is not a direct hard link but, rather, information on how to
locate a specific file. Instead of registering another name for the same file as a hard link does,
a symbolic link can be thought of as another symbol that represents the file's pathname. A
symbolic link is another way of writing the file's pathname.

You create a symbolic link using the ln command with the -s option. In the next example, the
user creates a link called lunch to the file /home/george/veglist:

$ ln -s lunch /home/george/veglist

If you list the full information about a symbolic link and its file, you will find the information
displayed is different. In the next example, the user lists the full information for both lunch
and /home/george/veglist using the ls command with the -l option. The first character in the
line specifies the file type. Symbolic links have their own file type represented by a l. The file
type for lunch is l, indicating it is a symbolic link, not an ordinary file. The number after the
term "group" is the size of the file. Notice the sizes differ. The size of the lunch file is only 4
bytes. This is because lunch is only a symbolic link-a file that holds the pathname of another
file-and a pathname takes up only a few bytes. It is not a direct hard link to the veglist file.

$ ls lunch /home/george/veglist
lrw-rw-r-- 1 chris group 4 Feb 14 10:30 lunch
-rw-rw-r-- 1 george group 793 Feb 14 10:30 veglist

To erase a file, you need to remove only its hard links. If any symbolic links are left over,
they will be unable to access the file. In this case, a symbolic link would hold the pathname of
a file that no longer exists.

Unlike hard links, you can use symbolic links to create links to directories. In effect, you can
create another name with which you can reference a directory. If you use a symbolic link for a
directory name, however, remember the pwd command always displays the actual directory
name, not the symbolic name. In the next example, the user links the directory thankyou with
the symbolic link gifts. When the user uses gifts in the cd command, the user is actually
changed to the thankyou directory. pwd displays the pathname for the thankyou directory.

$ ln -s /home/chris/letters/thankyou gifts

$ cd gifts
$ pwd
/home/chris/letters/thankyou
$

If you want to display the name of the symbolic link, you can access it in the cwd variable.
The cwd variable is a special system variable that holds the name of a directory's symbolic
link, if one exists. Variables such as cwd are discussed in Chapter 13. You display the
contents of cwd with the command echo $cwd.

$ pwd
/home/chris/letters/thankyou
$ echo $cwd
/home/chris/gifts

File and Directory Permissions: chmod

Each file and directory in Linux contains a set of permissions that determine who can access
them and how. You set these permissions to limit access in one of three ways: You can
restrict access to yourself alone, you can allow users in a predesignated group to have access,
or you can permit anyone on your system to have access; and, you can control how a given
file or directory is accessed. A file and directory may have read, write, and execute
permissions. When a file is created, it is automatically given read and write permissions for
the owner, enabling you to display and modify the file. You may change these permissions to
any combination you want. A file could have read-only permission, preventing any
modifications. A file could also have execute permission, allowing it to be executed as a
program.

Three different categories of users can have access to a file or directory: the owner, the group,
or others. The owner is the user who created the file. Any file you create, you own. You can
also permit your group to have access to a file. Often, users are collected into groups. For
example, all the users for a given class or project could be formed into a group by the system
administrator. A user can give access to a file to other members of the group. Finally, you can
also open up access to a file to all other users on the system. In this case, every user on your
system could have access to one of your files or directories. In this sense, every other user on
the system makes up the "others" category.

Each category has its own set of read, write, and execute permissions. The first set controls
the user's own access to his or her files-the owner access. The second set controls the access
of the group to a user's files. The third set controls the access of all other users to the user's
files. The three sets of read, write, and execute permissions for the three categories-owner,
group, and other-make a total of nine types of permissions.

As you saw in the previous section, the ls command with the -l option displays detailed
information about the file, including the permissions. In the next example, the first set of
characters on the left is a list of the permissions set for the mydata file:

$ ls -l mydata
-rw-r--r-- 1 chris weather 207 Feb 20 11:55 mydata

An empty permission is represented by a dash, -. The read permission is represented by r,
write by w, and execute by x. Notice there are ten positions. The first character indicates the

file type. In a general sense, a directory can be considered a type of file. If the first character
is a dash, a file is being listed. If it is d, information about a directory is being displayed.

The next nine characters are arranged according to the different user categories. The first set
of three characters is the owner's set of permissions for the file. The second set of three
characters is the group's set of permissions for the file. The last set of three characters is the
other users' set of permissions for the file. In Figure 12-5, the mydata file has the read and
write permissions set for the owner category, the read permission only set for the group
category, and the read permission set for the other users category. This means, although
anyone in the group or any other user on the system can read the file, only the owner can
modify it.

Figure 12-5: File permissions

You use the chmod command to change different permission configurations. chmod takes
two lists as its arguments: permission changes and filenames. You can specify the list of
permissions in two different ways. One way uses permission symbols and is referred to as the
symbolic method. The other uses what is known as a "binary mask" and is referred to as either
the absolute or the relative method. Of the two, the symbolic method is the more intuitive and
will be presented first. Table 12-7 lists options for the chmod command.

Table 12-7: File and Directory Permission Operations
Command or Option Execution
chmod Changes the permission of a file or directory.
Options
>+ Adds a permission.
>- Removes a permission.
>= Assigns entire set of permissions.
>r Sets read permission for a file or directory. A file can be

displayed or printed. A directory can have the list of its files
displayed.

>w Sets write permission for a file or directory. A file can be edited
or erased. A directory can be removed.

>x Sets execute permission for a file or directory. If the file is a
shell script, it can be executed as a program. A directory can be
changed to and entered.

>u Sets permissions for the user who created and owns the file or

Table 12-7: File and Directory Permission Operations
Command or Option Execution

directory.
>g Sets permissions for group access to a file or directory.
>o Sets permissions for access to a file or directory by all other

users on the system.
>a Sets permissions for access by the user, group, and all other

users.
>s Sets User ID and Group ID permission; program owned by

owner and group.
>t Sets sticky bit permission; program remains in memory.
chgrp groupname
filenames

Changes the group for a file or files.

chown user-name
filenames

Changes the owner of a file or files.

ls -l filename Lists a filename with its permissions displayed.
ls -ld directory Lists a directory name with its permissions displayed.
ls -l Lists all files in a directory with its permissions displayed.

Setting Permissions: Permission Symbols

As you might have guessed, the symbolic method of setting permissions uses the characters r,
w, and x for read, write, and execute, respectively. Any of these permissions can be added or
removed. The symbol to add a permission is the plus sign, +. The symbol to remove a
permission is the minus sign, -. In the next example, the chmod command adds the execute
permission and removes the write permission for the mydata file. The read permission is not
changed.

$ chmod +x-w mydata

Permission symbols also specify each user category. The owner, group, and others categories
are represented by the u, g, and o characters, respectively. Notice the owner category is
represented by a u and can be thought of as the user. The symbol for a category is placed
before the read, write, and execute permissions. If no category symbol is used, all categories
are assumed, and the permissions specified are set for the user, group, and others. In the next
example, the first chmod command sets the permissions for the group to read and write. The
second chmod command sets permissions for other users to read. Notice no spaces are
between the permission specifications and the category. The permissions list is simply one
long phrase, with no spaces.

$ chmod g+rw mydata
$ chmod o+r mydata

A user may remove permissions as well as add them. In the next example, the read permission
is set for other users, but the write and execute permissions are removed:

$ chmod o+r-wx mydata

Another permission symbol exists, a, which represents all the categories. The a symbol is the
default. In the next example, both commands are equivalent. The read permission is explicitly
set with the a symbol denoting all types of users: other, group, and user.

$ chmod a+r mydata
$ chmod +r mydata

One of the most common permission operations is setting a file's executable permission. This
is often done in the case of shell program files, which are discussed in Chapters 12 and 16.
The executable permission indicates a file contains executable instructions and can be directly
run by the system. In the next example, the file lsc has its executable permission set and then
executed:

$ chmod u+x lsc
$ lsc
main.c lib.c
$

In addition to the read/write/execute permissions, you can also set ownership permissions for
executable programs. Normally, the user who runs a program owns it while it is running, even
though the program file itself may be owned by another user. The Set User ID permission
allows the original owner of the program to own it always, even while another user is running
the program. For example, most software on the system is owned by the root user, but is run
by ordinary users. Some such software may have to modify files owned by the root. In this
case, the ordinary user would need to run that program with the root retaining ownership so
the program could have the permissions to change those root-owned files. The Group ID
permission works the same way, except for groups. Programs owned by a group retain
ownership, even when run by users from another group. The program can then change the
owner group's files. There is a potential security risk involved in that you are essentially
giving a user some limited root-level access.

To add both the User ID and Group ID permissions to a file, you use the s option. The
following example adds the User ID permission to the pppd program, which is owned by the
root user. When an ordinary user runs pppd, the root user retains ownership, allowing the
pppd program to change root-owned files.

chmod +s /usr/sbin/pppd

The Set User ID and Set Group ID permissions show up as an s in the execute position of the
owner and group segments. Set User ID and Group ID are essentially variations of the execute
permission, x. Read, write, and User ID permission would be rws instead of just rwx.

ls -l /usr/sbin/pppd
-rwsr-sr-x 1 root root 84604 Aug 14 1996 /usr/sbin/pppd

One other special permission provides efficient use of programs. The sticky bit instructs the
system to keep a program in memory (on a swap device) after it finishes execution. This is
useful for small programs used frequently by many users. The sticky bit permission is t. The
sticky bit shows up as a t in the execute position of the other permissions. A program with
read and execute permission with the sticky bit would have its permissions displayed as r-t.

chmod +t /usr/X11R6/bin/xtetris

ls -l /usr/X11R6/bin/xtetris
-rwxr-xr-t 1 root root 27428 Nov 19 1996 /usr/X11R6/bin/xtetris

Absolute Permissions: Binary Masks

Instead of permission symbols, many users find it more convenient to use the absolute
method. The absolute method changes all the permissions at once, instead of specifying one
or the other. It uses a binary mask that references all the permissions in each category. The
three categories, each with three permissions, conform to an octal binary format. Octal
numbers have a base 8 structure. When translated into a binary number, each octal digit
becomes three binary digits. A binary number is a set of 1 and 0 digits. Three octal digits in a
number translate into three sets of three binary digits, which is nine altogether-and the exact
number of permissions for a file.

You can use the octal digits as a mask to set the different file permissions. Each octal digit
applies to one of the user categories. You can think of the digits matching up with the
permission categories from left to right, beginning with the owner category. The first octal
digit applies to the owner category, the second to the group, and the third to the others
category.

The actual octal digit you choose determines the read, write, and execute permissions for each
category. At this point, you need to know how octal digits translate into their binary
equivalents. The following table shows how the different octal digits, 0-7, translate into their
three-digit binary equivalents. You can think of the octal digit first being translated into its
binary form, and then each of those three binary digits being used to set the read, write, and
execute permissions. Each binary digit is then matched up with a corresponding permission,
again moving from left to right. If a binary digit is 0, the permission is turned off. If the binary
digit is 1, the permission is turned on. The first binary digit sets the read permission on or off,
the second sets the write permission, and the third sets the execute permission. For example,
an octal digit 6 translates into the binary digits 110. This would set the read and write
permission on, but set the execute permission off.

Octal Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

When dealing with a binary mask, you need to specify three digits for all three categories, as
well as their permissions. This makes a binary mask less versatile than the permission
symbols. To set the owner execute permission on and the write permission off for the mydata
file, as well as retain the read permission, you need to use the octal digit 5 (101). At the same
time, you need to specify the digits for group and other users access. If these categories are to

retain read access, you need the octal number 4 for each (100). This gives you three octal
digits, 544, which translate into the binary digits 101 100 100.

$ chmod 544 mydata

One of the most common uses of the binary mask is to set the execute permission. As you
learned in Chapter 11, you can create files that contain Linux commands; these files are called
shell scripts. To have the commands in a shell script executed, you must first indicate the file
is executable-that it contains commands the system can execute. You can do this in several
ways, one of which is to set the executable permission on the shell script file. Suppose you
just completed a shell script file and you need to give it executable permission to run it. You
also want to retain read and write permission, but deny any access by the group or other users.
The octal digit 7 (111) will set all three permissions, including execute (you can also add 4-
read, 2-write, and 1-execute to get 7). Using 0 for the group and other users denies them
access. This gives you the digits 700, which are equivalent to the binary digits 111 000 000.
In the next example, the owner permission for the myprog file is set to include execute
permission:

$ chmod 700 myprog

If you want others to be able to execute and read the file, but not change it, you can set the
read and execute permissions and turn off the write permission with the digit 5 (101). In this
case, you would use the octal digits 755, having the binary equivalent of 111 101 101.

$ chmod 755 myprog

A simple way to calculate the octal number makes use of the fact that any number used for
permissions will be a combination derived from adding in decimal terms the numbers 4, 2,
and 1. Use 4 for read permission, 2 for write, and 1 for execute. The read, write, execute
permission is simply the addition of 4 + 2 + 1 to get 7. The read and execute permission adds
4 and 1, to get 5. You can use this method to calculate the octal number for each category. To
get 755, you would add 4 + 2 + 1 for the user read, write, and execute permission, 4 + 1 for
the group read and execute permission, and 4 + 1 again for the other read and execute
permission.

For the ownership and sticky bit permissions, you add another octal number to the beginning
of the octal digits. The octal digit for User ID permission is 4 (100); for Group ID, it is 2
(010); and for the sticky bit, it is 1 (001). The following example sets the User ID permission
to the pppd program, along with read and execute permissions for the owner, group, and
others:

chmod 4555 /usr/sbin/pppd

The following example sets the sticky bit for the xtetris program:

chmod 1755 /usr/X11R6/bin/xtetris

The next example would set both the sticky bit and the User ID permission on the xman
program. The permission 5755 has the binary equivalent of 101 111 101 101.

chmod 5755 /usr/X11R6/bin/xman

ls -l /usr/X11R6/bin/xman
-rwsr-xr-t 1 root root 44364 Mar 26 04:28 /usr/X11R6/bin/xman

Directory Permissions

You can also set permissions on directories. The read permission set on a directory allows the
list of files in a directory to be displayed. The execute permission enables a user to change to
that directory. The write permission enables a user to create and remove his or her files in that
directory. If you allow other users to have write permission on a directory, they can add their
own files to it. When you create a directory, it is automatically given read, write, and execute
permission for the owner. You may list the files in that directory, change to it, and create files
in it.

Like files, directories have sets of permissions for the owner, the group, and all other users.
Often, you may want to allow other users to change to and list the files in one of your
directories, but not let them add their own files to it. In this case, you would set read and
execute permissions on the directory, but not write permission. This would allow other users
to change to the directory and list the files in it, but not to create new files or to copy any of
their files into it. The next example sets read and execute permission for the group for the
thankyou directory, but removes the write permission. Members of the group may enter the
thankyou directory and list the files there, but they may not create new ones.

$ chmod g+rx-w letters/thankyou

Just as with files, you can also use octal digits to set a directory permission. To set the same
permissions as in the previous example, you would use the octal digits 750, which have the
binary equivalents of 111 101 000.

$ chmod 750 letters/thankyou

As you know, the ls command with the -l option will list all files in a directory. To list only
the information about the directory itself, add a d modifier. In the next example, ls -ld
displays information about the thankyou directory. Notice the first character in the
permissions list is d, indicating it is a directory.

$ ls -ld thankyou
drwxr-x--- 2 chris 512 Feb 10 04:30 thankyou

If you have files you want other users to have access to, you not only need to set permissions
for that file, you also must make sure the permissions are set for the directory in which the file
is located. Another user, in order to access your file, must first access the file's directory. The
same applies to parents of directories. Although a directory may give permission to others to
access it, if its parent directory denies access, the directory cannot be reached. In this respect,
you must pay close attention to your directory tree. To provide access to a directory, all other
directories above it in the directory tree must also be accessible to other users.

Changing a File's Owner or Group: chown and chgrp

Although other users may be able to access a file, only the owner can change its permissions.
If, however, you want to give some other user control over one of your file's permissions, you
can change the owner of the file from yourself to the other user. The chown command

transfers control over a file to another user. This command takes as its first argument the
name of the other user. Following the user name, you can list the files you are giving up. In
the next example, the user gives control of the mydata file to Robert:

$ chown robert mydata
$ ls -l mydata
-rw-r--r-- 1 robert weather 207 Feb 20 11:55 mydata

You can also, if you wish, change the group for a file, using the chgrp command. chgrp takes
as its first argument the name of the new group for a file or files. Following the new group
name, you list the files you want changed to that group. In the next example, the user changes
the group name for today and weekend to the forecast group. The ls -l command then
reflects the group change.

$ chgrp forecast today weekend
$ ls -l
-rw-r--r-- 1 chris weather 207 Feb 20 11:55 mydata
-rw-rw-r-- 1 chris forecast 568 Feb 14 10:30 today
-rw-rw-r-- 1 chris forecast 308 Feb 17 12:40 weekend

You can combine the chgrp operation in the chown command by attaching a group to the
new owner with a colon.

Chapter 13: Shell Configuration
Overview

Four different major shells are commonly used on Linux systems: the Bourne Again shell
(BASH), the Public Domain Korn shell (PDKSH), the TCSH shell, and the Z shell. The
BASH shell is an advanced version of the Bourne shell, which includes most of the advanced
features developed for the Korn shell and the C shell. TCSH is an enhanced version of the C
shell, originally developed for BSD versions of UNIX. PDKSH is a subset of the UNIX Korn
shell, whereas the Z shell is an enhanced version of the Korn shell. Although their UNIX
counterparts differ greatly, the Linux shells share many of the same features. In UNIX, the
Bourne shell lacks many capabilities found in the other UNIX shells. In Linux, however, the
BASH shell incorporates all the advanced features of the Korn shell and C shell, as well as the
TCSH shell. All four shells are available for your use, though the BASH shell is the default.

So far, all examples in this book have used the BASH shell. You log into your default shell,
but you can change to another shell by entering its name. tcsh invokes the TCSH shell, bash
the BASH shell, ksh the PDKSH shell, and zsh the Z shell. You can leave a shell with the
CTRL-D or exit command. You only need one type of shell to do your work. This chapter
describes common features of the BASH shell, such as history and aliases, as well as how to
configure the shell to your own needs using shell variables and initialization files. The other
shells share many of the same features, and use similar variables and initialization files.

Command and Filename Completion

The BASH command line has a built-in feature that performs command and filename
completion. If you enter an incomplete pattern as a command or filename argument, you can

then press the TAB key to activate the command and filename completion feature, which
completes the pattern. If more than one command or file has the same prefix, the shell simply
beeps and waits for you to add enough characters to select a unique command or filename. In
the next example, the user issues a cat command with an incomplete filename. When you
press the TAB key, the system searches for a match and, when it finds one, fills in the
filename. The user can then press ENTER to execute the command.

$ cat pre tab
$ cat preface

The shell can also perform filename completion to list the partially matching files in your
current directory. If you press ESC followed by a question mark, ESC-?, or press the TAB
key again, the shell lists all filenames matching the incomplete pattern. In the next example,
the ESC-? after the incomplete filename generates a list of possible filenames. The shell then
redraws the command line, and you can type in the complete name of the file you want, or
type in distinguishing characters and press the TAB key to have the filename completed.

$ ls
document docudrama
$ cat doc escape ?
document
docudrama
$ cat docudrama

Command Line Editing

The BASH shell has built-in command line editing capabilities that enable you to easily
modify commands you have entered before executing them. If you make a spelling mistake
when entering a command, rather than reentering the entire command, you can use the editing
operations to correct the mistake before executing the command. This is most helpful for
commands that use arguments with lengthy pathnames. The command line editing operations
are implemented by Readline, which uses a subset of the Emacs editing commands (see Table
13-1). You can use CTRL-F or the RIGHT ARROW key to move forward a character, and the
CTRL-B or the LEFT ARROW key to move back a character. CTRL-D or DEL deletes the
character the cursor is on. To add text, you move the cursor to where you want to insert text
and type in the new characters. At any time, you can press ENTER to execute the command.

Table 13-1: Command Line Editing, History Commands, and History Event References
Command Line Editing Description
CTRL-B or LEFT ARROW Moves left one character (backward to the previous

character)
CTRL-F or RIGHT ARROW Moves right one character (forward to the next character)
CTRL-A Moves to the beginning of a line
CTRL-E Moves to the end of a line
ESC-F Moves forward one word
ESC-B Moves backward one word
DEL Deletes the character the cursor is on
BACKSPACE or CTRL-H Deletes the character before the cursor

Table 13-1: Command Line Editing, History Commands, and History Event References
Command Line Editing Description
CTRL-D Deletes the character the cursor is on
CTRL-K Removes (kills) the remainder of a line
History Commands
CTRL-N or DOWN ARROW Moves down to the next event in the history list
CTRL-P or UP ARROW Moves up to the previous event in the history list
ESC- Moves to the beginning of the history event list
ESC- Moves to the end of the history event list
ESC-TAB History of event matching and completion
fc event-reference Edits an event with the standard editor and then executes it

 options
 -l List recent history events;
 same as history command
 -e editor
 event-reference Invokes a specified editor
 to edit a specific event

History Event References
!event num References an event with an event number
!characters References an event with beginning characters
!?pattern? References an event with a pattern in the event
!-event num References an event with an offset from the first event
!num-num References a range of events
 Note As described in the next section, you can also use the command line editing operations

to modify history events-previous commands you have entered.

History

In the BASH shell, the history utility keeps a record of the most recent commands you have
executed. The commands are numbered starting at 1, and a limit exists to the number of
commands remembered-the default is 500. The history utility is a kind of short-term memory,
keeping track of the most recent commands you have executed. To see the set of your most
recent commands, type history on the command line and press ENTER. A list of your most
recent commands is then displayed, preceded by a number.

$ history
1 cp mydata today
2 vi mydata
3 mv mydata reports
4 cd reports
5 ls

Each of these commands is technically referred to as an "event." An event describes an action
that has been taken-a command that has been executed. The events are numbered according to
their sequence of execution. The most recent event has the highest number. Each of these
events can be identified by its number or beginning characters in the command.

The history utility enables you to reference a former event, placing it on your command line
and enabling you to execute it. The easiest way to do this is to use the UP ARROW and
DOWN ARROW keys to place history events on your command line, one at a time. You
needn't display the list first with history. Pressing the UP ARROW key once places the last
history event on your command line. Pressing it again places the next history event on your
command line. Pressing the DOWN ARROW key places the previous event on the command
line.

The BASH shell also has a history event completion operation invoked by the ESC-TAB
command. Much like standard command line completion, you enter part of the history event
you want. Then you press ESC, followed by TAB. The event that matches the text you have
entered is then located and used to complete your command line entry.

 Note If more than one history event matches what you have entered, you will hear a beep, and
you can then enter more characters to help uniquely identify the event you want.

You can edit the event displayed on your command line using the command line editing
operations. The LEFT ARROW and RIGHT ARROW keys move you along the command
line. You can insert text wherever you stop your cursor. With BACKSPACE and DEL, you
can delete characters. Once the event is displayed on your command line, you can press
ENTER to execute it.

You can also reference and execute history events using the ! history command. The ! is
followed by a reference that identifies the command. The reference can be either the number
of the event or a beginning set of characters in the event. In the next example, the third
command in the history list is referenced first by number and then by the beginning
characters:

$!3
mv mydata reports
$!mv
mv mydata reports

You can also reference an event using an offset from the end of the list. A negative number
will offset from the end of the list to that event, thereby referencing it. In the next example,
the fourth command, cd mydata, is referenced using a negative offset, and then executed.
Remember that you are offsetting from the end of the list-in this case, event 5, up toward the
beginning of the list, event 1. An offset of 4 beginning from event 5 places you at event 2.

$!-4
vi mydata

If no event reference is used, then the last event is assumed. In the next example, the
command ! by itself executes the last command the user executed-in this case, ls:

$!
ls
mydata today reports

History Event Editing

You can also edit any event in the history list before you execute it. In the BASH shell, you
can do this two ways. You can use the command line editor capability to reference and edit
any event in the history list. You can also use a history fc command option to reference an
event and edit it with the full Vi editor. Each approach involves two different editing
capabilities. The first is limited to the commands in the command line editor, which edits only
a single line with a subset of Emacs commands. At the same time, however, it enables you to
reference events easily in the history list. The second approach invokes the standard Vi editor
with all its features, but only for a specified history event.

With the command line editor, not only can you edit the current command, but you can also
move to a previous event in the history list to edit and execute it. The CTRL-P command then
moves you up to the prior event in the list. The CTRL-N command moves you down the list.
The ESC-< command moves you to the top of the list, and the ESC-> command moves you to
the bottom. You can even use a pattern to search for a given event. The slash followed by a
pattern searches backward in the list, and the question mark followed by a pattern searches
forward in the list. The n command repeats the search.

Once you locate the event you want to edit, you use the Emacs command line editing
commands to edit the line. CTRL-D deletes a character. CTRL-F or the RIGHT ARROW
moves you forward a character, and CTRL-B or the LEFT ARROW moves you back a
character. To add text, you position your cursor and type in the characters you want. Table 13-
1 lists the different commands for referencing the history list.

If you want to edit an event using a standard editor instead, you need to reference the event
using the fc command and a specific event reference, such as an event number. The editor
used is the one specified by the shell in the EDITOR variable. This serves as the default
editor for the fc command. You can assign to the EDITOR variable a different editor if you
wish, such as emacs instead of vi. The next example will edit the fourth event, cd reports,
with the standard editor and then execute the edited event:

$ fc 4

You can select more than one command at a time to be edited and executed by referencing a
range of commands. You select a range of commands by indicating an identifier for the first
command followed by an identifier for the last command in the range. An identifier can be the
command number or the beginning characters in the command. In the next example, the range
of commands 2-4 are edited and executed, first using event numbers and then using beginning
characters in those events:

$ fc 2 4
$ fc vi c

fc uses the default editor specified in the FCEDIT special variable. Usually, this is the Vi
editor. If you want to use the Emacs editor instead, you use the -e option and the term emacs
when you invoke fc. The next example will edit the fourth event, cd reports, with the Emacs
editor and then execute the edited event:

$ fc -e emacs 4

Configuring History: HISTFILE and HISTSAVE

The number of events saved by your system is kept in a special system variable called
HISTSIZE. By default, this is usually set to 500. You can change this to another number by
simply assigning a new value to HISTSIZE. In the next example, the user changes the
number of history events saved to 10 by resetting the HISTSIZE variable:

$ HISTSIZE=10

The actual history events are saved in a file whose name is held in a special variable called
HISTFILE. By default, this file is the .bash_history file. You can change the file in which
history events are saved, however, by assigning its name to the HISTFILE variable. In the
next example, the value of HISTFILE is displayed. Then a new filename is assigned to it,
newhist. History events are then saved in the newhist file.

$ echo $HISTFILE
.bash_history
$ HISTFILE="newhist"
$ echo $HISTFILE
newhist

Aliases

You use the alias command to create another name for a command. The alias command
operates like a macro that expands to the command it represents. The alias does not literally
replace the name of the command; it simply gives another name to that command. An alias
command begins with the keyword alias and the new name for the command, followed by an
equal sign and the command the alias will reference.

 Note No spaces can be around the equal sign used in the alias command.

In the next example, list becomes another name for the ls command:

$ alias list=ls
$ ls
mydata today
$ list
mydata today
$

You can also use an alias to substitute for a command and its option, but you need to enclose
both the command and the option within single quotes. Any command you alias that contains
spaces must be enclosed in single quotes. In the next example, the alias lss references the ls
command with its -s option, and the alias lsa references the ls command with the -F option. ls
with the -s option lists files and their sizes in blocks, and the ls with the -F option places a
slash after directory names. Notice single quotes enclose the command and its option.

$ alias lss='ls -s'
$ lss
mydata 14 today 6 reports 1
$ alias lsa='ls -F'
$ lsa
mydata today reports/

$

You may often use an alias to include a command name with an argument. If you execute a
command that has an argument with a complex combination of special characters on a regular
basis, you may want to alias it. For example, suppose you often list just your source code and
object code files-those files ending in either a .c or .o. You would need to use as an argument
for ls a combination of special characters such as *.[co]. Instead, you could alias ls with the
*.[co] argument, giving it a simple name. In the next example, the user creates an alias called
lsc for the command ls*.[co]:

$ alias lsc='ls *.[co]'
$ lsc
main.c main.o lib.c lib.o

You can also use the name of a command as an alias. This can be helpful in cases where you
should only use a command with a specific option. In the case of the rm, cp, and mv
commands, the -i option should always be used to ensure an existing file is not overwritten.
Instead of constantly being careful to use the -i option each time you use one of these
commands, the command name can be aliased to include the option. In the next example, the
rm, cp, and mv commands have been aliased to include the -i option:

$ alias rm='rm -i'
$ alias mv='mv -i'
$ alias cp='cp -i'

The alias command by itself provides a list of all aliases that have been defined, showing the
commands they represent. You can remove an alias by using the unalias command. In the
next example, the user lists the current aliases and then removes the lsa alias:

$ alias
lsa=ls -F
list=ls
rm=rm -i
$ unalias lsa

Controlling Shell Operations

The BASH shell has several features that enable you to control the way different shell
operations work. For example, setting the noclobber feature prevents redirection from
overwriting files. You can turn these features on and off like a toggle, using the set command.
The set command takes two arguments: an option specifying on or off and the name of the
feature. To set a feature on, you use the -o option, and to set it off, you use the +o option.
Here is the basic form:

$ set -o feature turn the feature on
$ set +o feature turn the feature off

Three of the most common features are described here: ignoreeof, noclobber, and noglob.
Table 13-2 lists these different features, as well as the set command. Setting ignoreeof
enables a feature that prevents you from logging out of the user shell with a CTRL-D. CTRL-
D is used not only to log out of the user shell, but also to end user input entered directly into
the standard input. CTRL-D is used often for the Mail program or for utilities such as cat. You
could easily enter an extra CTRL-D in such circumstances and accidentally log yourself out.

The ignoreeof feature prevents such accidental logouts. In the next example, the ignoreeof
feature is turned on using the set command with the -o option. The user can now only log out
by entering the logout command.

$ set -o ignoreeof
$ ctrl-d
Use exit to logout
$

Setting noclobber enables a feature that safeguards existing files from redirected output. With
the noclobber feature, if you redirect output to a file that already exists, the file will not be
overwritten with the standard output. The original file is preserved. Situations may occur in
which you use, as the name for a file to hold the redirected output, a name you have already
given to an existing file. The noclobber feature prevents you from accidentally overwriting
your original file. In the next example, the user sets the noclobber feature on and then tries to
overwrite an existing file, myfile, using redirection. The system returns an error message.

$ set -o noclobber
$ cat preface > myfile
myfile: file exists
$

At times, you may want to overwrite a file with redirected output. In this case, you can place
an exclamation point after the redirection operator. This will override the noclobber feature,
replacing the contents of the file with the standard output.

$ cat preface >! myfile

Setting noglob enables a feature that disables special characters in the user shell. The
characters *, ?, [], and ~ will no longer expand to matched filenames. This feature is helpful if
you have special characters as part of the name of a file. In the next example, the user needs to
reference a file that ends with the ? character, answers?. First, the user turns off special
characters using the noglob feature. Now the question mark on the command line is taken as
part of the filename, not as a special character, and the user can reference the answers? file.

$ set -o noglob
$ ls answers?
answers?

Environment Variables and Subshells: export

When you log into your account, Linux generates your user shell. Within this shell, you can
issue commands and declare variables. You can also create and execute shell scripts. When
you execute a shell script, however, the system generates a subshell. You then have two
shells, the one you logged into and the one generated for the script. Within the script shell,
you could execute another shell script, which would have its own shell. When a script has
finished execution, its shell terminates and you return to the shell from which it was executed.
In this sense, you can have many shells, each nested within the other. Variables you define
within a shell are local to it. If you define a variable in a shell script, then, when the script is
run, the variable is defined with that script's shell and is local to it. No other shell can
reference that variable. In a sense, the variable is hidden within its shell.

You can define environment variables in all types of shells including the BASH, the Z shell,
and the TCSH shell. The strategy used to implement environment variables in the BASH
shell, however, is different from that of the TCSH shell. In the BASH shell, environment
variables are exported. That is to say, a copy of an environment variable is made in each
subshell. For example, if the EDITOR variable is exported, a copy is automatically defined in
each subshell for you. In the TCSH shell, on the other hand, an environment variable is
defined only once and can be directly referenced by any subshell.

In the BASH shell, an environment variable can be thought of as a regular variable with added
capabilities. To make an environment variable, you apply the export command to a variable
you have already defined. The export command instructs the system to define a copy of that
variable for each new shell generated. Each new shell will have its own copy of the
environment variable. This process is called exporting variables. Thinking of exported
environment variables as global variables is a mistake. A new shell can never reference a
variable outside of itself. Instead, a copy of the variable with its value is generated for the new
shell.

 Note You can think of exported variables as exporting their values to a shell, not to
themselves. For those familiar with programming structures, exported variables can be
thought of as a form of "call by value."

Configuring Your Shell with Special Shell Variables

When you log into your account, the system generates a shell for you. This shell is referred to
as either your login shell or your user shell. When you execute scripts, you are generating
subshells of your user shell. You can define variables within your user shell, and you can also
define environment variables that can be referenced by any subshells you generate. Linux sets
up special shell variables you can use to configure your user shell. Many of these special shell
variables are defined by the system when you log in, but you define others yourself. See Table
13-2 for a list of the commonly used ones.

Table 13-2: BASH Shell Special Variables and Features
BASH Shell Special
Variables

Description

HOME Pathname for user's home directory
LOGNAME Login name
USER Login name
SHELL Pathname of program for type of shell you are using
BASH_ENV Holds name of BASH initialization script executed whenever

a BASH shell script is run or BASH shell entered. Usually
$HOME/.bashrc

PATH List of pathnames for directories searched for executable
commands

PS1 Primary shell prompt
PS2 Secondary shell prompt
IFS Interfield delimiter symbol

Table 13-2: BASH Shell Special Variables and Features
BASH Shell Special
Variables

Description

MAIL Name of mail file checked by mail utility for received
messages

MAILCHECK Interval for checking for received mail
MAILPATH List of mail files to be check by mail for received messages
TERM Terminal name
CDPATH Pathnames for directories searched by cd command for

subdirectories
EXINIT Initialization commands for Ex/Vi editor
BASH Shell Features
$ set -+o feature Bash shell features are turned on and off with the set

command; -o sets a feature on and +o turns it off:
$ set -o noclobber set noclobber on
$ set +o noclobber set noclobber off

ignoreeof Disabled CTRL-D logout
noclobber Does not overwrite files through redirection
noglob Disables special characters used for filename expansion:

*, ?, ~, and []

A reserved set of keywords is used for the names of these special variables. You should not
use these keywords as the names of any of your own variable names. The special shell
variables are all specified in uppercase letters, making them easy to identify. Shell feature
variables are in lowercase letters. For example, the keyword HOME is used by the system to
define the HOME variable. HOME is a special environment variable that holds the pathname
of the user's home directory. On the other hand, the keyword noclobber, covered earlier in the
chapter, is used to set the noclobber feature on or off.

Common Special Variables

Many of the special variables automatically defined and assigned initial values by the system
when you log in can be changed, if you wish. Some special variables exist whose values
should not be changed, however. For example, the HOME variable holds the pathname for
your home directory. Commands, such as cd, reference the pathname in the HOME special
variable to locate your home directory. Some of the more common of these special variables
are described in this section. Other special variables are defined by the system and given an
initial value that you are free to change. To do this, you redefine them and assign a new value.
For example, the PATH variable is defined by the system and given an initial value; it
contains the pathnames of directories where commands are located. Whenever you execute a
command, the shell searches for it in these directories. You can add a new directory to be
searched by redefining the PATH variable yourself, so it will include the new directory's
pathname. Still other special variables exist that the system does not define. These are usually
optional features, such as the EXINIT variable that enables you to set options for the Vi
editor. Each time you log in, you must define and assign a value to such variables.

 Note You can obtain a listing of the currently defined special variables using the env
command. The env command operates like the set command, but it only lists special
variables.

You can automatically define special variables using special shell scripts called initialization
files. An initialization file is a specially named shell script executed whenever you enter a
certain shell. You can edit the initialization file and place in it definitions and assignments for
special variables. When you enter the shell, the initialization file will execute these definitions
and assignments, effectively initializing special variables with your own values. For example,
the BASH shell's .bash_profile file is an initialization file executed every time you log in. It
contains definitions and assignments of special variables. However, the .bash_profile file is
basically only a shell script, which you can edit with any text editor such as the Vi editor,
changing, if you wish, the values assigned to special variables.

In the BASH shell, all the special variables are designed to be environment variables. When
you define or redefine a special variable, you also need to export it to make it an environment
variable. This means any change you make to a special variable must be accompanied by an
export command. You shall see that at the end of the login initialization file, .bash_profile,
there is usually an export command for all the special variables defined in it.

The HOME variable contains the pathname of your home directory. Your home directory is
determined by the system administrator when your account is created. The pathname for your
home directory is automatically read into your HOME variable when you log in. In the next
example, the echo command displays the contents of the HOME variable:

$ echo $HOME
/home/chris

The HOME variable is often used when you need to specify the absolute pathname of your
home directory. In the next example, the absolute pathname of reports is specified using
HOME for the home directory's path:

$ ls $HOME/reports

Some of the more common special variables are SHELL, PATH, PS1, PS2, and MAIL. The
SHELL variable holds the pathname of the program for the type of shell you log into. The
PATH variable lists the different directories to be searched for a Linux command. The PS1
and PS2 variables hold the prompt symbols. The MAIL variable holds the pathname of your
mailbox file. You can modify the values for any of them to customize your shell.

The PATH variable contains a series of directory paths separated by colons. Each time a
command is executed, the paths listed in the PATH variable are searched one by one for that
command. For example, the cp command resides on the system in the directory /usr/bin. This
directory path is one of the directories listed in the PATH variable. Each time you execute the
cp command, this path is searched and the cp command located. The system defines and
assigns PATH an initial set of pathnames. In Linux, the initial pathnames are /usr/bin and
usr/sbin.

The shell can execute any executable file, including programs and scripts you have created.
For this reason, the PATH variable can also reference your working directory; so if you want
to execute one of your own scripts or programs in your working directory, the shell can locate

it. No spaces can be between the pathnames in the string. A colon with no pathname specified
references your working directory. Usually, a single colon is placed at the end of the
pathnames as an empty entry specifying your working directory. For example, the pathname
/usr/bin:/usr/sbin: references three directories: /usr/bin, /usr/sbin, and your current working
directory.

$ echo $PATH
/usr/bin:/usr/sbin:

You can add any new directory path you want to the PATH variable. This can be useful if
you have created several of your own Linux commands using shell scripts. You could place
these new shell script commands in a directory you created and then add that directory to the
PATH list. Then, no matter what directory you are in, you can execute one of your shell
scripts. The PATH variable will contain the directory for that script, so that directory will be
searched each time you issue a command.

You add a directory to the PATH variable with a variable assignment. You can execute this
assignment directly in your shell. In the next example, the user chris adds a new directory,
called mybin, to the PATH. Although you could carefully type in the complete pathnames
listed in PATH for the assignment, you can also use an evaluation of PATH, $PATH, in their
place. In this example, an evaluation of HOME is also used to designate the user's home
directory in the new directory's pathname. Notice the empty entry between two colons, which
specifies the working directory.

$ PATH=$PATH:$HOME/mybin:
$ export PATH
$ echo $PATH
/usr/bin:/usr/sbin::/home/chris/mybin

If you add a directory to PATH yourself while you are logged in, the directory would be
added only for the duration of your login session. When you log back in, the login
initialization file, .bash_profile, would again initialize your PATH with its original set of
directories. The .bash_profile file is described in detail a bit later in this chapter. To add a
new directory to your PATH permanently, you need to edit your .bash_profile file and find
the assignment for the PATH variable. Then, you simply insert the directory, preceded by a
colon, into the set of pathnames assigned to PATH.

The BASH_ENV variable holds the name of the BASH shell initialization file to be executed
whenever a BASH shell is generated. For example, when a BASH shell script is executed, the
BASH_ENV variable is checked and the name of the script that it holds is executed before
the shell script. On Red Hat Linux, the BASH_ENV variable holds $HOME/.bashrc. This is
the .bashrc file in the user's home directory. The .bashrc file is discussed later in this chapter.
You could specify a different file if you wish, using that instead of the .bashrc file for BASH
shell scripts.

The PS1 and PS2 variables contain the primary and secondary prompt symbols, respectively.
The primary prompt symbol for the BASH shell is a dollar sign, $. You can change the
prompt symbol by assigning a new set of characters to the PS1 variable. In the next example,
the shell prompt is changed to the -> symbol:

$ PS1="->"
-> export PS1

->

You can change the prompt to be any set of characters, including a string, as shown in the
next example:

$ PS1="Please enter a command: "
Please enter a command: export PS1
Please enter a command: ls
mydata /reports
Please enter a command:

The PS2 variable holds the secondary prompt symbol, which is used for commands that take
several lines to complete. The default secondary prompt is >. The added command lines begin
with the secondary prompt instead of the primary prompt. You can change the secondary
prompt just as easily as the primary prompt, as shown here:

$ PS2="@"

Like the TCSH shell, the BASH shell provides you with a predefined set of codes you can use
to configure your prompt. With them you can make the time, your user name, or your
directory pathname a part of your prompt. You can even have your prompt display the history
event number of the current command you are about to enter. Each code is preceded by a \
symbol. \w represents the current working directory, \t the time, and \u your user name. \! will
display the next history event number. In the next example, the user adds the current working
directory to the prompt:

$ PS1="\w $"
/home/dylan $

The codes must be included within a quoted string. If no quotes exist, the code characters are
not evaluated and are themselves used as the prompt. PS1=\w sets the prompt to the
characters \w, not the working directory. The next example incorporates both the time and the
history event number with a new prompt:

$ PS1="\t \! ->"

The following table lists the codes for configuring your prompt:

Prompt Codes Description
\! Current history number.
\$ Use $ as prompt for all users except the root user, which has

the # as its prompt.
\d Current date.
\s Shell currently active.
\t Time of day.
\u User name.
\w Current working directory.

If CDPATH is undefined, then when the cd command is given a directory name as its
argument, it searches only the current working directory for that name. If CDPATH is
defined, however, cd also searches the directories listed in CDPATH for that directory name.
If the directory name is found, cd changes to that directory. This is helpful if you are working
on a project in which you constantly must change to directories in another part of the file
system. To change to a directory that has a pathname very different from the one you are in,
you would need to know the full pathname of that directory. Instead, you could simply place
the pathname of that directory's parent in CDPATH. Then, cd automatically searches the
parent directory, finding the name of the directory you want.

 Note Notice that you assign to CDPATH the pathname of the parent of the directory you
want to change to, not the pathname of the directory itself.

Using the HOME variable to specify the user's home directory part of the path in any new
pathname added to CDPATH is advisable. This is because the pathname for your home
directory could possibly be changed by the system administrator during a reorganization of
the file system. HOME will always hold the current pathname of the user's home directory. In
the next example, the pathname /home/chris/letters is specified with $HOME/letters:

$ CDPATH=$CDPATH:$HOME/letters
$ export CDPATH
$ echo $CDPATH
:/home/chris/letters

Several shell special variables are used to set values used by network applications, such as
Web browsers or newsreaders. NNTPSERVER is used to set the value of a remote news
server accessible on your network. If you are using an ISP, the ISP usually provides a news
server you can access with your newsreader applications. However, you first have to provide
your newsreaders with the Internet address of the news server. This is the role of the
NNTPSERVER. News servers on the Internet usually use the NNTP protocol.
NNTPSERVER should hold the address of such a news server. For many ISPs, the news
server address is a domain name that begins with nntp. The following example assigns the
news server address nntp.myservice.com to the NNTPSERVER special variables.
Newsreader applications automatically obtain the news server address from NNTPSERVER.
Usually, this assignment is placed in the shell initialization file, .bash_profile, so it is
automatically set each time a user logs in.

NNTPSERVER=nntp.myservice.com
export NNTPSERVER

Other special variables are used for specific applications. The KDEDIR variable holds the
pathname for the KDE Desktop program files. This is usually /opt/kde but, at the time of
installation, you can choose to install KDE in a different directory and then change the value
of KDEDIR accordingly.

export KDEDIR=/opt/kde

Configuring Your Login Shell: .bash_profile

The .bash_profile file is the BASH shell's login initialization file, which can also be named
.profile. It is a script file that is automatically executed whenever a user logs in. The file

contains shell commands that define special environment variables used to manage your shell.
They may be either redefinitions of system-defined special variables or definitions of user-
defined special variables. For example, when you log in, your user shell needs to know what
directories hold Linux commands. It will reference the PATH variable to find the pathnames
for these directories. However, first, the PATH variable must be assigned those pathnames. In
the .bash_profile file, an assignment operation does just this. Because it is in the
.bash_profile file, the assignment is executed automatically when the user logs in.

Special variables also need to be exported, using the export command, to make them
accessible to any subshells you may enter. You can export several variables in one export
command by listing them as arguments. Usually, at the end of the .bash_profile file is an
export command with a list of all the variables defined in the file. If a variable is missing
from this list, you may be unable to access it. Notice the export command at the end of the
.profile file in the example described next. You can also combine the assignment and export
command into one operation as show here for NNTPSERVER:

export NNTPSERVER=nntp.myservice.com

A copy of the standard .bash_profile file provided for you when your account is created is
listed in the next example. Notice how PATH is assigned, as is the value of $HOME. Both
PATH and HOME are system special variables the system has already defined. PATH holds
the pathnames of directories searched for any command you enter, and HOME holds the
pathname of your home directory. The assignment PATH=$PATH:$HOME/ bin has the
effect of redefining PATH to include your bin directory within your home directory. So, your
bin directory will also be searched for any commands, including ones you create yourself,
such as scripts or programs. Notice PATH is then exported, so it can be accessed by any
subshells. Should you want to have your home directory searched also, you can use any text
editor to modify this line in your .bash_profile file to
PATH=$PATH:$HOME/bin:$HOME, adding :$HOME at the end. In fact, you can change
this entry to add as many directories as you want searched.

.bash_profile

.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

User specific environment and startup programs

PATH=$PATH:$HOME/bin
BASH_ENV=$HOME/.bashrc
USERNAME=""

export USERNAME BASH_ENV PATH

Your Linux system also has its own profile file that it executes whenever any user logs in.
This system initialization file is simply called profile and is found in the /etc directory,

/etc/profile. This file contains special variable definitions the system needs to provide for
each user. A copy of the system's .profile file follows. Notice how PATH is redefined to
include the /usr/X11R6/bin directory. This is the directory that holds the X Windows
commands you execute when using the desktop. Also, includes the pathname for the KDE
Desktop programs, /opt/kde/bin. HISTSIZE is also redefined to include a larger number of
history events. An entry has been added here for the NNTPSERVER variable. Normally, a
news server address is a value that needs to be set for all users. Such assignments should be
made in the system's /etc/profile file by the system administrator, rather than in each
individual user's own .bash_profile file. The /etc/profile file also executes any scripts in the
directory /etc/profile.d. This design allows for a more modular structure. Rather than make
entries by editing the /etc/profile file, you can just add a script to profile.d directory. The
scripts for the BASH shell have the extension .sh. For example, the kde.sh script in the
profile.d directory checks for a definition of the KDEDIR variable and makes one if none is
in effect.

/etc/profile

/etc/profile

System wide environment and startup programs
Functions and aliases go in /etc/bashrc
if [`id -u` = 0] && ! echo $PATH | /bin/grep -q "/sbin" ; then
 PATH=/sbin:$PATH
fi
if [`id -u` = 0] && ! echo $PATH | /bin/grep -q "/usr/local/sbin" ; then
 PATH=/usr/local/sbin:$PATH
fi
if ! echo $PATH | /bin/grep -q "/usr/X11R6/bin" ; then
 PATH="$PATH:/usr/X11R6/bin"

fi PS1="[\u@\h \W]\\$ "

USER=`id -un`
LOGNAME=$USER
MAIL="/var/spool/mail/$USER"

HOSTNAME=`/bin/hostname`
HISTSIZE=1000
NNTPSERVER=nntp.myservice.com

if [-z "$INPUTRC" -a ! -f "$HOME/.inputrc"]; then
 INPUTRC=/etc/inputrc
fi

export PATH PS1 HOSTNAME HISTSIZE MAIL NNTPSERVER

for i in /etc/profile.d/*.sh ; do
 if [-x $i]; then
 .$i
 fi
done

unset i

Your .bash_profile initialization file is a text file that can be edited by a text editor, like any
other text file. You can easily add new directories to your PATH by editing .bash_profile
and using editing commands to insert a new directory pathname in the list of directory
pathnames assigned to the PATH variable. You can even add new variable definitions. If you
do so, however, be sure to include the new variable's name in the export command's
argument list. For example, if your .bash_profile file does not have any definition of the
EXINIT variable, you can edit the file and add a new line that assigns a value to EXINIT.
The definition EXINIT='set nu ai' will configure the Vi editor with line numbering and
indentation. You then need to add EXINIT to the export command's argument list. When the
.bash_profile file executes again, the EXINIT variable will be set to the command set nu ai.
When the Vi editor is invoked, the command in the EXINIT variable will be executed, setting
the line number and auto-indent options automatically.

In the following example, the user's .bash_profile has been modified to include definitions of
EXINIT and redefinitions of PATH, CDPATH, PS1, and HISTSIZE. The PATH variable
has $HOME: added to its value. $HOME is a variable that evaluates to the user's home
directory, and the ending colon specifies the current working directory, enabling you to
execute commands that may be located in either the home directory or the working directory.
The redefinition of HISTSIZE reduces the number of history events saved, from 1,000
defined in the system's .profile file to 30. The redefinition of the PS1 special variable changes
the prompt to include the pathname of the current working directory. Any changes you make
to special variables within your .bash_profile file override those made earlier by the system's
.profile file. All these special variables are then exported with the export command.

.bash_profile

.bash_profile

Get the aliases and functions
if [-f ~/.bashrc];
 then
 .~/.bashrc
fi
User-specific environment and startup programs
PATH=/usr/local/sbin:/usr/sbin:/sbin:$PATH:$HOME/bin:$HOME:
BASH_ENV=$HOME/.bashrc
USERNAME=""
CDPATH=$CDPATH:$HOME/bin:$HOME
HISTSIZE=30
NNTPSERVER=nntp.myserver.com
EXINIT='set nu ai'
PS1="\w \$"
export USERNAME BASH_ENV PATH CDPATH HISTSIZE EXINIT PS1

Although .bash_profile is executed each time you log in, it is not automatically reexecuted
after you make changes to it. The .bash_profile file is an initialization file that is only
executed whenever you log in. If you want to take advantage of any changes you make to it
without having to log out and log in again, you can reexecute .bash_profile with the dot (.)
command. The .bash_profile file is a shell script and, like any shell script, can be executed
with the . command.

$. .bash_profile

Alternatively, you can use the source command to execute the .bash_profile initialization
file, or any initialization file such as .login used in the TCSH shell, or .bashrc.

$ source .bash_profile

Configuring the BASH Shell: .bashrc

The .bashrc file is a configuration file executed each time you enter the BASH shell or
generate any subshells. If the BASH shell is your login shell, .bashrc is executed along with
your .bash_login file when you log in. If you enter the BASH shell from another shell, the
.bashrc file is automatically executed, and the variable and alias definitions it contains will be
defined. If you enter a different type of shell, the configuration file for that shell will be
executed instead. For example, if you were to enter the TCSH shell with the tcsh command,
the .tcshrc configuration file is executed instead of .bashrc.

The .bashrc shell configuration file is actually executed each time you generate a BASH
shell, such as when you run a shell script. In other words, each time a subshell is created, the
.bashrc file is executed. This has the effect of exporting any local variables or aliases you
have defined in the .bashrc shell initialization file. The .bashrc file usually contains the
definition of aliases and any feature variables used to turn on shell features. Aliases and
feature variables are locally defined within the shell. But the .bashrc file defines them in
every shell. For this reason, the .bashrc file usually holds such aliases as those defined for the
rm, cp, and mv commands. The next example is a .bashrc file with many of the standard
definitions:

.bashrc

Source global definitions

if [-f /etc/bashrc];
 then
 . /etc/bashrc
fi
set -o ignoreeof
set -o noclobber
alias rm 'rm -i'
alias mv 'mv -i'
alias cp 'cp -i'

Linux systems usually contain a system .bashrc file executed for all users. This may contain
certain global aliases and features needed by all users whenever they enter a BASH shell. This
is located in the /etc directory, /etc/.bashrc. A user's own .bashrc file, located in the home
directory, contains commands to execute this system .bashrc file. The ./ etc/bashrc command
in the previous example of .bashrc does just that. You can add any commands or definitions
of your own to your .bashrc file. If you have made changes to .bashrc and you want them to
take effect during your current login session, you need to reexecute the file with either the . or
the source command.

 $. .bashrc

The BASH Shell Logout File: .bash_logout

The .bash_logout file is also a configuration file, which is executed when the user logs out. It
is designed to perform any operations you want done whenever you log out. Instead of
variable definitions, the .bash_logout file usually contains shell commands that form a kind
of shutdown procedure-actions you always want taken before you log out. One common
logout command is to clear the screen and then issue a farewell message.

As with .bash_profile, you can add your own shell commands to .bash_logout. In fact, the
.bash_logout file is not automatically set up for you when your account is first created. You
need to create it yourself, using the Vi or Emacs editor. You could then add a farewell
message or other operations. In the next example, the user has a clear and an echo command
in the .bash_logout file. When the user logs out, the clear command clears the screen, and
then the echo command displays the message "Good-bye for now."

.bash_logout

 # ~/.bash_logout

clear
echo "Good-bye for now"

Other Initialization and Configuration Files

Each type of shell has is its own set of initialization and configuration files. The TCSH shell
used .login, .tcshrc, .logout files in place of .bash_profile, .bashrc, and .bash_logout. The Z
shell has several initialization files: .zshenv, .zlogin, .zprofile, .zschrc, and .zlogout. See
Table 13-3 for a listing. Check the Man pages for each shell to see how they are usually
configured. When you install a shell, default versions of these files are automatically placed in
the users' home directories. Except for the TCSH shell, all shells use much the same syntax
for variable definitions and assigning values (TCSH uses a slightly different syntax, described
in its Man pages).

Table 13-3: Shell Configuration Files
BASH Shell Function
.bash_profile Login initialization file
.bashrc BASH shell configuration file
.bash_logout Logout name
TCSH Shell
.login Login initialization file
.tcshrc TCSH shell configuration file
.logout Logout file
Z-shell
.zshenv Shell login file (first read)

Table 13-3: Shell Configuration Files
BASH Shell Function
.zprofile Login initialization file
.zlogin Shell login file
.zshrc Z shell shell configuration file
.zlogout Logout file
PDKSH Shell
.profile Login initialization file
.kshrc PDKSH shell configuration file

Configuration Directories and Files

Applications often install configuration files in a user's home directory that contain specific
configuration information, which tailors the application to the needs of that particular user.
This may take the form of a single configuration file that begins with a period, or a directory
that contains several configuration files. The directory name will also begin with a period. For
example, Netscape installs a directory called .netscape in the user's home directory that
contains configuration files. On the other hand, the Mail application uses a single file called
.mailrc to hold alias and feature settings set up by the user. Most single configuration files
end in the letters rc. ftp uses a file called .netrc. Most newsreaders use a file called .newsrc.
Entries in configuration files are usually set by the application, though you can usually make
entries directly by editing the file. Applications have their own set of special variables to
which you can define and assign values. Of particular interest is the .wm_style file that holds
the name of the Window manager the user wants to use. You can edit and change the name
there to that of another window manager to start up a new one. You can list the configuration
files in your home directory with the ls -a command.

Chapter 14: Office Applications
Overview

A variety of office suites is now available for Linux including professional-level word
processors, presentation managers, drawing tools, and spreadsheets. The freely available
versions are described in this chapter. Currently, you can download personal (noncommercial)
versions for both WordPerfect and StarOffice from the Internet for free. KOffice is an entirely
free office suite for use with KDE. The Gnome Office is integrating Gnome applications into
a productivity suite that will be freely available. Ximian is developing a professional-level
office suite for Gnome. In addition, Sun has initiated the development of an open source
Office suite using StarOffice code. The applications are known as OpenOffice and will
provide Office applications integrated with Gnome. You can also purchase commercial office
suites such as Applixware from Red Hat and Corel Office from Corel. Applixware includes a
word processor, a spreadsheet, a presentation graphics tool, a drawing tool, an e-mail client,
and an object-oriented application builder. Table 14-1 lists freely available Linux Office
projects. Red Hat now includes AbiWord, a professional-level word processor.

Table 14-1: Linux Office Projects

Web Site Description
koffice.kde.org KOffice Suite, for KDE
www.gnome.org/gnome-office Gnome Office, for Gnome
www.sun.com/staroffice Star Office Suite
www.openoffice.org OpenOffice open source office suite based on

Star Office
www.ximian.com Ximian Gnome desktop and office Applications
linux.corel.com WordPerfect word processor

Accessibility to Microsoft Office

One of the primary concerns for new Linux users is what kind of access they would have to
their Microsoft Office files, particularly Word files. The Linux operating system and many
applications for it are designed to provide seamless access to MS Office files. The Intel
version of Linux can directly mount and access any Windows partition and its files. The
major Linux Office suites, including WordPerfect, KOffice, and particularly Star Office, all
read and manage any Microsoft Office files. In addition, these office suites are fast
approaching the same level of support for office tasks as found in Microsoft Office.

 Note If you want to use any Windows application on Linux, one important alternative is the
VMware virtual platform technology, a commercial package. With Vmware, you can
run any Windows application directly on your Linux system. For more information,
check the VMware Web site at www.vmware.com. The Wine project has also
developed a Windows 3.1 and Win32 interface that works on X running on Unix and
Linux systems. Check www.winehq.com for more details.

KOffice

KOffice is an integrated office suite for the KDE (K Desktop Environment) consisting of
several office applications, including a word processor, a spreadsheet, and graphic
applications. All applications are written for the KOM component model, which allows
components from any one application to be used in another. This means you can embed a
spreadsheet from KSpread or a drawing from Kontour in a KWord document. You can obtain
more information about KOffice from the KOffice Web site at koffice.kde.org.

Currently, KOffice includes KSpread, KPresenter, Kontour, KFormula, KWord, Kugar,
Kivio, and Krayon (see Table 14-2). KSpread is a spreadsheet, KPresenter is a presentation
application, Kontour is a vector drawing program, KWord is a Publisher-like word processor,
KCharts generate charts and diagrams, KFormula is a formula editor, and Krayon is a bitmap
image editor. Kugar is a report generator, and Kivio creates flow charts.

Table 14-2: KOffice Applications
Application Description
KSpread Spreadsheet
KPresenter Presentation program
Kontour Vector drawing program

Table 14-2: KOffice Applications
Application Description
KWord Word processor (desktop publisher)
KFormula Mathematical formula editor
KChart Tool for drawing charts and diagrams
Kugar Report generator
Krayon An image manipulation program
Kivio Flow chart generator and editor (similar to Vivio)
 Note The publisher's edition of Red Hat does not contain KOffice. You can download a Red

Hat RPM package version from the Red Hat FTP site at ftp.redhat.com, and install it
on your system.

Embedded components support real-time updates. For example, if you use KChart to generate
a chart in a KWord document using data in a KSpread spreadsheet and then change the
selected data in the spreadsheet, the KChart automatically updates the chart in the KWord
document. In effect, you are creating a compound document-one made up of several
applications. This capability is implemented by the KDE component model known as KParts.
KParts replaces K Object Model/OpenParts (KOM/OP) component model used in KDE
version 1.0, which was based directly on CORBA. Like KOM/OP, KParts provides
communication between distributed objects. In this respect, you can think of an application
working also as server, providing to other applications the services it specializes in. A word
processor, specializing in services like paragraph formatting or spell checking, could provide
these services to all KOffice applications. In that way, other applications do not need to have
their own text formatting functions written into it.

KParts is implemented with DCOP, the Desktop Communications Protocol. This is a very
simple, small, and fast IPC/RPC mechanism for InterProcess Communication (IPC) and is
based on the X Window System's ICE (Inter-client Exchange) protocol. KDE applications
now use DCOP libraries to manage their communications with each other. DCOP makes
development of KOffice applications much easier and more stable.

With KOffice, you create one kind of document rather than separate ones for different
applications. The different applications become views of this document, adding their
components to it. KWord sets up the publishing and word processing components, Kontour
adds drawing components, while KSpread adds spreadsheet components. You use the
appropriate application to view the different components in the single document. This means
you can have separate windows open at the same time for different components of the
document.

KSpread is the spreadsheet application, which incorporates the basic operations found in most
spreadsheets, with formulas similar to those used in Excel (see Figure 14-1). You can extend
KSpread capabilities with Python scripts. It supports features such as embedded buttons for
customized functions, automatic completion for cell contents, and formatting options such as
backgrounds, borders, and font styles. To generate a diagram using selected cells, select the
Insert Diagram entry from the KSpread menu. This starts up KDiagram, which you then use
to create the diagram-which is then embedded in the spreadsheet. You can also embed
pictures or formulas using Krayon, Kontour, or KFormula.

Figure 14-1: KSpread, KOffice spreadsheet

With KChart, you can create different kinds of charts, such as bar graphs, pie charts, and line
graphs, as well as create diagrams (see Figure 14-2). To generate a chart, you can use data in
KSpread to enter your data.

Figure 14-2: KChart, KOffice graphs

With KPresenter, you can create presentations consisting of text and graphics modeled using
different fonts, orientations, and attributes such as colors (see Figure 14-3). You can add such
elements as speech bubbles, arrows, and clip art, as well as embed any KOffice component.
KPresenter supports standard editing operations such as shading, rotating, and coloring
objects, as well as cut-and-paste and undo/redo capabilities. You can generate templates from
a KPresenter document, in effect enabling you to use a document's configuration to create
other documents. With KPresenter, you can also create special effects such as simple
animation.

Figure 14-3: KPresenter, KOffice presentation application

Kontour is a vector-based graphics program, much like Adobe Illustrator and Corel Draw (see
Figure 14-4). It supports the standard graphic operations such as rotating, scaling, and
aligning objects. Kontour also includes text formatting capabilities such as alignment to
irregular boundaries. You can create complex illustrations using layers, using a layer manager
to control the layers. Kontour also supports a number of import and export filters for image
files of different types like .jpeg, .gif, and .eps.

Figure 14-4: Kontour, KOffice illustration application

KWord can best be described as a desktop publisher, with many of the features found in
publishing applications like Microsoft Publisher and FrameMaker (see Figure 14-5). Although
it is also a fully functional word processor, KWord is not page-based like Word or
WordPerfect. Instead, text is set up in frames that are placed on the page like objects. Frames,
like objects in a drawing program, can be moved, resized, and even reoriented. You can
organize frames into a frame set, having text flow from one to the other. Formatting can be
applied to a frame set, changing features in all the frames belonging to it at once. The default
frame set up for you when you first create a document is the same size as the page. This gives
you the effect of a page-based word processor, enabling you to work as if you were using a
standard word processor. You can, of course, change the size of your frame and add new
ones, if you want.

Figure 14-5: KWord, KOffice word processor and publisher

You can also insert images, illustrations, tables, and other KOffice components such as
diagrams and spreadsheets. You can set up a frame to contain an image and place it on top of
a text frame, configuring the text frame to flow its text around it.

KWord uses templates to set up a document. You have two different sets of templates from
which to choose: one for desktop publishing (DTP) and the other for standard word
processing (word processing). The desktop publishing templates enable you to move frames
freely, whereas in the word processing templates, the frames are fixed to the size of the page.

KWord supports the standard word processing features for formatting paragraphs, text, and
document elements, such as headers and footers, as well as lists and multiple columns. You
can also define your own paragraph layouts, specifying features such as indentation, fonts,
borders, and alignment. Layouts are the same as styles used in other word processors. Tables
are implemented as frames, where each cell is its own frame.

KFormula is a formula editor used to generate mathematical formulas. Although KFormula
does not have the power of TeX, you can use it to create fairly complex formulas. It supports
standard components like roots, integral, and fractions, as well as fonts for Greek symbols.

Kivio is a flowchart application similar to Vivio. Kivio has the ability to generate flowcharts
using scriptable objects. Given a network, Kivio can generate a flow chart for it. With Java
header files it can generate a flow chart of Java objects. Krayon (formerly KImageShop) is an
image editor, much like PhotoShop.

Kugar is a business-quality report generator based on XML that can embed reports in KOffice
applications and even be displayed on Konqueror. Kugar supports page features like
numbering, dates, headers, and footers; numeric operations like sums, averages, and currency
formats; and word processing features like fonts, colors, and text formatting.

Gnome Office, OpenOffice, and Ximian

Office applications for Gnome have been developed independently, such as the Gnumeric
spreadsheet. Currently, Gnome Office is an attempt to integrate the various office applications
into a productivity suite. Although most are still under development, some have working
stable versions you can download and install. You can find out more from the Gnome Office
at www.gnome.org/gnome-office. Here, you can link to download pages for current versions
and view screen shots. A current listing is shown in Table 14-3. All implement the CORBA
model for embedding components, ensuring drag-and-drop capability throughout the Gnome
interface. All are based on a set of Gnome technologies, including Bonobo, Gnome-Print, and
XML. Bonobo is the Gnome architecture for supporting compound documents and reusable
software components. Gnome-Print is the Gnome printing architecture designed to support
graphics applications as well as work easily with any printing resource. XML is used as the
native file format to support the easy exchange of data between Gnome applications.

Table 14-3: Gnome Office
Application Description
Achtung Presentation manager
AbiWord Cross-platform word processor
Balsa E-mail client
Gfax Send and receive faxes
Galeon Web browser

Table 14-3: Gnome Office
Application Description
Gnumeric Spreadsheet
GnuCash Personal finance manager
Dia Diagram and flow chart editor
Evolution E-mail and calendar
Eye of Gnome Image viewer
GIMP GNU image manipulation program
Gnome-DB Database connectivity
Gnumeric Spreadsheet
Gnome Personal Information
Manager

Calendar/organizer and an address book

Gnumeric Spreadsheet
Guppi Plotting and graphing program
Sketch Vector drawing package
Toutdoux Project manager

Currently, Gnome Office includes AbiWord, Gnumeric, GIMP, Dia, Eye of Gnome, Gnome-
PIM, and Gnome-DB. AbiWord is a word processor, Gnumeric is a spreadsheet, the GIMP is
the Gnome image editing application, Dia is a diagram composer, Eye of Gnome is an image
viewer, the Gnome Personal Information Manager (Gnome-PIM) is a personal information
manager, and Gnome-DB provides database connectivity (see Table 14-3).

The Gnumeric is the Gnome spreadsheet, a professional-level program meant to replace
commercial spreadsheets (see Figure 14-6). Like Gnome, Gnumeric is freely available under
the GNU Public License. Gnumeric is included with the Gnome release, and you will find it
installed with Gnome on the Red Hat and SuSE distributions. Its development is currently
managed by Ximian. You can download current versions from www.ximian.com or
www.gnome.org/projects/gnumeric. Gnumeric supports standard GUI spreadsheet features,
including autofilling and cell formatting, and it provides an extensive number of formats. It
supports drag-and-drop operations, enabling you to select and then move or copy cells to
another location. Gnumeric also supports plug-ins, making it possible to extend and customize
its capabilities easily.

Figure 14-6: Gnumeric, Gnome spreadsheet

AbiWord is an open source word processor that supports such features as unlimited undo
operations and Word97 imports. It is part of a set of desktop productivity applications being
developed by the AbiSource project (www.abisource.com).

The GIMP is the GNU image manipulation program that supports operations such as photo
retouching, image composition, and image authoring (see the section on graphics). You can
obtain more information from www.gimp.org.

Dia is a drawing program designed to create diagrams (see Figure 14-7). You can select
different kinds of diagrams to create, such as database, circuit object, flow chart, and network
diagrams. You can easily create elements along with lines and arcs with different types of
endpoints such as arrows or diamonds. Data can be saved in XML format, making it easily
transportable to other applications.

Figure 14-7: Dia, Gnome diagrams

The Eye of Gnome (EOG) is an image viewer that can also function as an image cataloging
program. It is designed to be both fast and provide high-quality image displays.

Gnome Personal Information Manager (Gnome-PIM) is a personal information manager that
currently includes both a calendar (see Figure 14-8) and an address book. Gnome-PIM is
included with the current distribution of Gnome. You can obtain updates from
www.gnome.org/gnome-office.

Figure 14-8: Gnome PIM calendar

Gnome-DB is a suite of libraries and applications that allow easy access to different database
systems. It provides an API which databases can plug into. These backend connections are
based on CORBA. Through this API, Gnome applications can then access a database. You
can find out more about Gnome-DB at www.gnome.org/gnome-db.

Ximian is a Gnome project designed to provide a professional-level desktop for Gnome that
will include a full range of office applications. You can find out more about Ximian at
www.ximian.com. Ximian currently provides an enhanced version of the Gnome desktop
called Ximian Gnome. It also supports development of the Gnumeric spreadsheet. Its first
office application is a contact, calendar, and mail client application called Evolution (see
Chapter 17). You can download Evolution from the Ximian Web site, but it currently requires
the Ximian Gnome desktop to run. Their next project is a word processor.

The OpenOffice Suite of applications currently covers several core applications used in
StarOffice. StarOffice code has been released as an open source project called
OpenOffice.org, at www.openoffice.org. The open source versions of StarOffice applications,
known as Open Office, are being integrated with Gnome. This, in effect, creates a Gnome
OpenOffice. The applications currently under development are listed in Table 14-4. Figure
14-9 shows the four applications.

Table 14-4: Gnome Open Office
Application Description
OpenCalc OpenOffice spreadsheet
OpenDraw OpenOffice drawing application
OpenWriter OpenOffice word processor
Impress OpenOffice presentation manager

Figure 14-9: OpenOffice.org

Like StarOffice, OpenOffice is an integrated suite of applications. Initially the suite opens
with the OpenWriter window. You can select New from the file menu and then select a
different application (see Figure 14-9). The application will open in a separate window.
OpenOffice is still very much in development, but holds the promise of providing
professional-level office applications integrated into the Gnome desktop.

WordPerfect

The personal version of Corel's WordPerfect word processor is now available for Linux and is
free (it is included with OpenLinux). The personal version is a fully functional word
processor. However, it does not currently support TrueType fonts and it does not allow you to
import other objects, such as images. You can download WordPerfect from the Corel Web
site at linux.corel.com. WordPerfect is more than just a word processor. You can use it to
create drawings, spreadsheets, and charts, as well as to edit and publish Web pages.

When you first start WordPerfect, a small window is displayed with the WordPerfect logo and
four menus: Program, Preferences, Window, and Help. From the Program menu, you can
select WordPerfect. In the Preferences menu, you can open a window with icons for
configuring your printer, selecting fonts, choosing colors, and selecting conversion filters. The
Window menu moves you to different open windows.

WordPerfect provides many of the standard word processing features, including cut-and-paste
operations, font and paragraph styles, and document formatting. The extensive features for
WordPerfect are indicated by its set of toolbars. WordPerfect includes such editing features as
Grammar-As-You-Go, which checks and highlights suspicious phrases and offers
suggestions. With Spell-As-You-Go, words are identified that might be misspelled as you
type them. Corel Versions keeps track of document revisions for workgroup collaboration.

WordPerfect includes a chart and drawing tool for creating figures. You can perform drawing
operations such as sizing and rotating images, as well as contouring text over image shapes.
The drawing tool supports features such as gradients, patterns, and groupings. You can create
a variety of different charts, including 3-D, area, and line charts. WordPerfect supports a
number of spreadsheet functions with which you can create tables with spreadsheet cells. You
can use such data to generate charts.

You can also use WordPerfect as a Web page editor and publisher, adding or changing HTML
components. Use WordPerfect to create your HTML document with hyperlinks and
bookmarks, and then place them on your Web site. Any text beginning with an Internet
protocol, such as www, ftp, and http, is automatically set up as a hyperlink. You can also
save Web pages as WordPerfect documents for easy editing.

 Note WordPerfect supports an extensive number of file formats, including Microsoft Word
files. With WordPerfect, you can effectively edit your Word files.

WordPerfect also has its own file manager. You can use the file manager to locate and open
files, but it also performs other operations. You can create directories and modify file
permissions, as well as move and copy files.

StarOffice

StarOffice is a fully integrated and Microsoft Office-compatible suite of office applications
developed and supported by Sun Microsystems. It includes Web-enabled word processing,
spreadsheet, presentation, e-mail, news, chart, and graphic applications (See Table 14-5).
Versions of StarOffice exist for Linux, Windows, Mac, Solaris, and OS/2. With StarOffice,
you can access Microsoft Office (including 2000) files and data to create spreadsheets,
presentations, and word processing documents. You can save StarOffice documents in
Microsoft formats or as HTML files that you can post on Web sites.

Table 14-5: StarOffice Applications
Application Description
StarDesktop Main desktop window for StarOffice applications
StarWriter Word processor
StarImpress Presentation manager
StarDraw Drawing tool
StarChart Chart and graph creator
StarMail E-mail client
StarDiscussion Newsgroup client
StarMath Mathematical formulas
StarImage Image editor
StarCalc Spreadsheet
StarSchedule Schedule manager
StarBase Relational database

StarOffice is free for all noncommercial, private users, as well as students. You can download
a free copy of StarOffice from the Sun Web site at www.sun.com/products/staroffice. The
package is about 65 megabytes. The Web site also contains information such as online
manuals and FAQs.

 Note Development for StarOffice is being carried out as an open source project called
openoffice.org. The core code for StarOffice is now open source, and anyone can

download and use it. See the OpenOffice.org Web site at www.openoffice.org for more
information. The code developed in the openoffice.org project will then be incorporated
into future releases of StarOffice. Currently the word processor, presentation manager,
drawing tool, chart tool, and spreadsheet are under open source development at
openoffice.org.

StarOffice describes itself as implementing a task-oriented approach to office projects. You
can complete an entire project using a variety of different tools in just one place, StarOffice.
In addition, StarOffice applications are fully Internet-aware, enabling you to connect directly
to Web sites and access information from your word processor, spreadsheet, or presenter.

When you start up StarOffice, you are presented with the StarOffice desktop window. From
here, you can create documents and access other StarOffice applications. The left pane in this
window is the Explorer. This is a tree menu that lists the different resources you can use, such
as an address book, a gallery of clip art, and FTP server URLs. The main window of the
StarOffice desktop shows icons for applications you can use, your StarOffice documents, and
other tools.

You use StarOffice by creating projects. In a particular project, you can place resources such
as images, Internet links, and e-mail messages, or office documents such as spreadsheets and
word processing documents. To create a new document, click the New button in the bottom
status bar and select the application you want to use from the pop-up menu. You can create
spreadsheets, word processing documents, presentation files, mail messages, charts, images,
mathematical formulas, and even Web pages (see Table 14-4). You can also create frame sets
for use in Web page frames. Initially, windows are attached (docked) to the desktop window.
You can unattach them to their own floating windows by double-clicking the gray area
between them.

StarOffice has its own mail and news clients. With StarMail, you can define mail accounts
and access your e-mail, as well as compose and send messages. With StarDiscussion, you can
access newsgroups, saving articles and posting your own. You can set up icons and entries for
mail accounts and newsgroups on your desktop and Explorer window.

The StarWriter word processor supports standard word processing features, such as cut and
paste, spell checker, and text formatting, as well as paragraph styles. You can also insert
objects in your text, such as images, diagrams, or text frames. Text can be configured to flow
around them. A text frame can be further edited to create banner-like text, coloring, blending,
and shaping text. The Navigator enables you to move through the document by page or by
object, such as from one image to another.

You can open and save documents in the MS Office, WordPerfect, Lotus 1-2-3, and AmiPro
formats. This means you can effectively edit MS Word documents with StarOffice. StarWriter
also functions as a Web browser-capable of displaying HTML pages-and supports Java,
JavaScript, Navigator, and Explorer plug-ins. At the same time, you can edit a Web page,
turning StarWriter into a Web page editor.

You can embed objects within documents, such as using StarChart to create a bar chart using
data in the spreadsheet. With StarMath, you can create formulas that you can then embed in a
text document.

With the presentation manager (StarImpress), you can create images for presentations, such as
circles, rectangles, and connecting elements like arrows, as well as vector-based illustrations.
StarImpress supports advanced features like morphing objects, grouping objects, and defining
gradients. You can also create animation effects and use layers to generate complex images.
Any components from other StarOffice applications can be embedded in a presentation
document. You can also import Microsoft PowerPoint files and save presentation files as
HTML files. An AutoPilot Wizard for StarImpress walks you through the steps for creating a
presentation.

StarDraw is a sophisticated drawing tool that includes 3-D modeling tools. You can create
simple or complex images, including animation text aligned on curves. You can use it to
create buttons and icons for your Web page.

StarSchedule provides scheduling and task management that can be used to coordinate efforts
by a group of users. You can use it to track events and to-do lists, connecting automatically to
the address book. StarSchedule includes a reminder system to display pop-up alerts and to
send e-mail reminders. The StarSchedule server operates independently from StarOffice to
provide scheduling services to any client on your network. StarBase is a relational database,
somewhat like MS Access, which supports drag-and-drop operations for importing data to
your StarOffice applications.

Chapter 15: Database Management
Systems, Graphics Tools, and Multimedia
Overview

A variety of database management systems is now available for Linux including high-
powered, commercial-level database management systems, such as Oracle, IBM, and Sybase.
Most of the database management systems available for Linux are designed to support large
relational databases. For small personal databases, you can use the desktop database
management systems being developed for KDE and Gnome such as Gaby (see Chapter 20). In
addition, some software is available for databases accessed with the Xbase database
programming language. These are smaller databases using formats originally developed for
dBase on the PC. Various database management systems available to run under Linux are
listed in Table 15-1.

Table 15-1: Database Management Systems for Linux
System Site
Oracle Oracle database www.oracle.com
Sybase Sybase database www.sybase.com
DB2 IBM database www.software.ibm.com/data/db2/linux
Informix Informix database www.informix.com/linux
Adabas D Adabas D database www.adabas.com
MySQL MySQL database www.mysql.com
GNU SQL The GNU SQL database www.ispras.ru/~kml/gss

Table 15-1: Database Management Systems for Linux
System Site
PostgreSQL The PostgreSQL database www.postgresql.org
Flagship Interface for Xbase database files www.fship.com/free.html
Gaby Gnome desktop personal database gaby.sourceforge.net.

You can also use a wide range of graphics tools, ranging from simple image viewers like
KImage to sophisticated image manipulation programs like the GIMP. You also have newer
graphics tools for Gnome and KDE desktops, as well as the older X Window System, from
which to choose. Graphics tools available for use under Linux are listed in Table 15-2.

Table 15-2: Graphics Tools for Linux
KDE Description
Kview Simple image viewer for GIF and JPEG image files
Ksnapshot Screen grabber
Kfourier Image processing tool that uses the Fourier transform
KuickShow Image browser and viewer
Kshow Simple image viewer
Kpaint Paint program
Krayon Image editor
Gnome
Gqview Image viewer
ImageShaker Digital image processing
GIMP GNU Image Manipulation Program
Electric Eyes Image viewer
GPhoto Digital Camera application
X Window System
xv Screen grabber and image conversion
Xpaint Paint program
Xfig Drawing program
Xmorph Morphs images
Xfractals Generates fractal images

There is also strong support for multimedia tasks from video and DVD to sound and music
editing (see Table 15-3).

Table 15-3: Multimedia Applications
Application Description
GTV Gnome MPEG video player
Xine Multimedia player for video, DVD, and audio

Table 15-3: Multimedia Applications
Application Description
Gnome-tv TV tuner
aKtion KDE video player
kscd Music CD player
Knapster2 Napster-like MP3 download utility
XMMS MP3 and CD Player
Xplaycd Music CD player
Xanim Animation and video player
mpg123 Command line MP3 player
RealPlayer RealMedia and RealAudio streaming media (www.real.com)
KreateCD KDE CD writing interface for cdrecord, mkisofs, and cdda2wav
CD-Rchive KDE CD burner and ripper
Noatun KDE multimedia player

Database Management Systems

Database software can be generally organized into three categories: SQL, Xbase, and desktop
databases. SQL-based databases are professional-level relational databases whose files are
managed by a central database server program. Applications that use the database do not
access the files directly. Instead, they send requests to the database server, which then
performs the actual access. SQL is the query language used on these industrial-strength
databases.

The Xbase language is an enhanced version of the dBase programming language used to
access database files whose formats were originally developed for dBase on the PC. With
Xbase, database management systems can directly access the database files. Xbase is used
mainly for smaller personal databases, with database files often located on a user's own
system.

Desktop databases are being developed for both Gnome and KDE. Currently, these are
personal databases designed for individual users. Gaby is meant to be used for a user's
personal records and is designed with a plug-in structure that can easily extend its capabilities.

SQL Databases (RDMS)

SQL databases are relational database management systems (RDMSs) designed for extensive
database management tasks. Many of the major SQL databases now have Linux versions,
including Oracle, Informix, Sybase, and IBM (but not, of course, Microsoft). These are
commercial and professional database management systems of the highest order. Linux has
proved itself capable of supporting complex and demanding database management tasks. In
addition, many free SQL databases are available for Linux that offer much the same
functionality. Most commercial databases also provide free personal versions, as do Oracle,
Adabas D, and MySQL.

PostgreSQL

PostgreSQL is based on the POSTGRES database management system, though it uses SQL as
its query language. POSTGRES is a next-generation research prototype developed at the
University of California, Berkeley. Linux versions of PostgreSQL are included in Red Hat,
Debian, and Slackware distributions. Your Red Hat Linux CD-ROM includes PostgreSQL.
Updates can be obtained from the Red Hat update site at ftp.redhat.com or by using the Red
Hat Network to update your system. You can also download current versions from the
PostgreSQL Web site at www.postgresql.org. Development is being managed by a team of
developers over the Internet. Red Hat now offers a version of Linux with PostgresSQL, called
the Red Hat Database, that is optimized for database operations.

PostgresSQL is often used to provide database support for Internet servers with heavy demand
such as Web servers. With a few simple commands you can create relational database tables.
Use the createuser command to create a PostgresSQL user that you can then log into the
server with. You can then create a database with the createdb command and construct
relational tables using the create table directive. With an insert command you can add records
and then view them with the select command. Access to the server by remote users is
controlled by entries in the pg_hba.conf file located in PostgresSQL directory, usually
/var/lib/pgsql.

Oracle

Oracle offers a fully functional version of its Oracle8i (soon to be superseded by Oracle9i)
database management system for Linux, as well as the Oracle Application Server. You can
download trial versions from the Oracle Web site at www.oracle.com. Oracle8i is a
professional database for large databases specifically designed for Internet e-business tasks.
Expect to use a gigabyte of memory just to install it. The Oracle Application Server provides
support for real-time and commerce applications on the Web. As Linux is a fully functional
version of Unix, Oracle is particularly effective on it. Oracle was originally designed to
operate on Unix, and Linux is a far better platform for it than other PC operating systems.

Oracle offers extensive documentation for its Linux version that you can download from its
Documentation page, to which you can link from the Support pages on its Web site. The
documentation available includes an installation guide, an administrator's reference, and
release notes, as well as the generic documentation. You can find specific information on
installing and configuring Oracle for Linux in the Oracle Database HOW-TO.

Informix

Informix offers an integrated platform of Internet-based applications called Informix Internet
Foundation.2000 on Linux. These include the Informix Dynamic Server, their database server.
Informix Dynamic Server features Dynamic Scalable Architecture, making it capable of
effectively using any hardware setup. Informix only provides commercial products. No free
versions exist, though the company currently provides special promotions for Linux products.
You can find out more about Informix at www.informix.com/linux.

Informix strongly supports Linux development of its Informix line. It provides developer
support through its Informix Developer Network (www.informix.com/idn). Informix has a

close working relationship with Red Hat and plans to provide joint technical support for their
products.

Sybase

For Linux, Sybase offers the Sybase Adaptive Server Enterprise server (see
www.sybase.com). You can currently download the Adaptive Server Enterprise server from
the Web page www.sybase.com/products/linux/. The Sybase Enterprise database features
data integration that coordinates all information resources on a network. SQL Anywhere is a
database system designed for smaller databases, though with the same level of complexity
found in larger databases.

DB2

IBM provides a Linux version of its DB2 Universal Database software. You can download it
free from the IBM DB2 Web page for Linux, www.software.ibm.com/ data/db2/linux/. DB2
Universal Database for Linux includes Internet functionality along with support for Java and
Perl. With the Web Control Center, administrators can maintain databases from a Web
browser. DB2 features scalability to expand the database easily, support for Binary Large
Objects, and cost-based optimization for fast access. DB2 is still very much a mainframe
database, though IBM is currently working on refining its Unix/Linux version.

Adabas D

Adabas D is an intermediate relational database, not quite as powerful or as large as Oracle,
which is meant for use on smaller networks of personal databases. It still provides the
flexibility and power found in all relational databases. Adabas D provides a personal version
for Linux free. For commercial uses, you have to purchase a copy. You can also check the
Adabas D Web site at www.adabas.com.

MySQL

MySQL is a true multiuser, multithreaded SQL database server, supported by MySQL AB.
MySQL is an open source product available free under the GPL license. You can download a
copy from its Web site at www.mysql.com. The site also includes detailed documentation,
including manuals and FAQs. RPM packages for Red Hat are included on Red Hat releases.

MySQL is structured on a client/server model with a server daemon (mysqld) filling requests
from client programs. MySQL is designed for speed, reliability, and ease of use. It is meant to
be a fast database management system for large databases and, at the same time, reliable with
intensive use.

GNU SQL

GNU SQL is the GNU relational database developed by a group at the Institute for System
Programming of the Russian Academy of Sciences and supported by the GNU organization. It
is a portable multiuser database management system with a client/server structure that
supports SQL. The server processes requests and performs basic administrative operations,
such as unloading parts of the database used infrequently. The clients can reside on any

computer of a local network. GNU SQL uses a dialect of SQL based on the SQL-89 standard
and is designed for use on a Unix-like environment. You can download the database software
from the GNU FTP site at ftp.gnu.org. For more information, contact the GNU SQL Web site
at www.ispras.ru/~kml/gss.

Xbase Databases

Databases accessed with Xbase are smaller in scale, designed for small networks or for
personal use. Many are originally PC database programs, such as dBaseIII, Clipper, FoxPro,
and Quicksilver. Currently, only Flagship provides an interface for accessing Xbase database
files, although the Harmony project is currently developing a Clipper clone that may run on
Linux systems.

Flagship is a compiler with which you can create interfaces for querying Xbase database files.
The interfaces support menus and dialog boxes, and they have function calls that execute
certain database queries. Flagship can compile dBaseIII+ code and up. It is compatible with
dBase and Clipper and can access most Xbase file formats, such as .dbf, .dbt, .fmt, and .frm.
One of Flagship's key features is that its interfaces can be attached to a Web page, enabling
users to update databases. Flagship is commercial software, though you can download a free
personal version from its Web site at www.fship.com/free.html.

Desktop Database

Both Gnome and KDE also have database management applications that take advantage of
their respective desktops. KDE has several front-end interfaces for standard databases.
Gnome's Gaby takes advantage of the interface to display and search user databases.

KDE: Rekall

KDE provides several front-end interface applications for many of the popular databases used
on Linux. MySQL Navigator, VMySQL, and SqlGui are front ends for the MySQL database.
KSql, KPGsql, and KPSql are front ends for Postgresql; KOra is a front end for Oracle.

Rekall is a database interface designed by TheKompany.com for KDE that uses KDE-DB to
enable you to create simple databases that can be implemented on high-powered systems like
MySQL, Postgresql, and Oracle. With Rekall, you can design a personal database much like
you would with db2 or MS Access, and then use the KDE-DB layer to implement this
database on a complex system. This gives you the simplicity of a personal database combined
with features of a fully functional RDMS database, providing capabilities like multiuser
access. You can find out more about Rekall at www.theKompany.com.

In addition, several specialized database management systems are available. Kaspaliste and
KBiblio are powerful bibliographic database systems, and Kmp3DB and MP3Organizer let
you index and search MP3 files.

Gaby

Gaby is a small personal database manager using GTK+ and Gnome. It provides access to
user databases, such as those for addresses, books, and even photos. Gaby's plug-in design
makes it easily extensible. You can find out more about Gaby at gaby.sourceforge.net. Its

interface has the same browser-like tools found in most Gnome applications. You can
download the current version of Gaby from the Gnome software map at www.gnome.org.

Graphics Tools

Gnome, KDE, and the X Window System support an impressive number of graphics tools,
including image viewers, window grabbers, image editors, and paint tools. On the KDE and
Gnome desktops, these tools can be found under either a Graphics submenu or the Utilities
menu.

KDE Graphics Tools

The kview program is a simple image viewer for GIF and JPEG image files. The ksnapshot
program is a simple screen grabber for KDE, which currently supports only a few image
formats. The kfourier program is an image-processing tool that uses the Fourier transform to
apply several filters to an image at once. The kshow program is a simple image viewer. The
kuickShow program is an easy-to-use, comfortable image browser and viewer, based on
imlib. The kpaint program is a simple paint program with brushes, shapes, and color effects.
Krayon is a professional image paint and editing application that is part of KOffice 2.1
(formerly KImageShop).

Gnome Graphics Tools

ImageShaker is a digital image-processing tool that includes an extensive set of graphics
filters, such as alpha blending and median. It uses a stream-like approach that allows batch
processing.

Electric Eyes is a simple image viewer. Right-click its window to display a pop-up menu with
options. You can load images and also move back and forth through previously viewed ones.
You can even make an image your background.

GQview is a simple image viewer supporting features like click file viewing, thumbnail
preview, zoom, drag and drop, and external editor support, as well as slideshow and full-
screen options. Multiple files can selected for moving, copying, deleting, renaming, or
dragging. See gqview.sourceforge.net for more information.

The GIMP is the GNU Image Manipulation Program, a sophisticated image application much
like Adobe Photoshop. You can use GIMP for such tasks as photo retouching, image
composition, and image authoring. It supports features like layers, channels, blends, and
gradients. GIMP makes particular use of the GTK+ widget set. You can find out more about
the GIMP from its Web site at www.gimp.org. You can also download the newest versions
from here. GIMP is freely distributed under the GNU Public License.

The gPhoto program is a digital camera tool that can load, select, and edit photos from a
digital camera connected to your system. With gPhoto, you can generate thumbnail images to
let you select and organize your photos. You can also process photos, changing their
orientation.

X Graphic

The xv program is a screen capture and image-editing program. After displaying the main
screen, right-click it to display its control screen. Use the Grab button to scan a window or a
section you select with a drag operation using your middle mouse button. Once you have
scanned a window or screen section, you can crop it with a drag operation with your left
mouse key and then use crop to reduce it to that selected section. With xv, you can also
convert an image file from one format to another. Just load the image and then save it as
another file using a different image format.

The xpaint program is a painting program, much like MacPaint. You can load paint pictures
or photographs, and then create shapes, add text, and add colors. You can use brush tools with
various sizes and colors. The xfig program is a drawing program, and xmorph enables you to
morph images, changing their shapes.

Multimedia

Many applications are available for both video and sound, including sound editors, MP3
players, and video players (see Table 15-3). Linux sound applications include mixers, digital
audio tools, CD audio writers, MP3 players, and network audio support. The Linux Midi and
Sound pages currently at www.xdt.com/ar/linux-snd hold links to Web and FTP sites for
many of these applications. Many sound applications are currently under development for
Gnome, including sound editors, MP3 players, and audio players. Check the software map at
www.gnome.org for current releases. A variety of applications is available for KDE,
including a media player (kaimain), a mixer (kmix), an MP3 player (KJukeBoxMgr), a CD
player (kscd), and even a Napster-like MP3 download utility (KNapster2). Check
apps.kde.com for recent additions. Several X Window System-based mulitimedia
applications are installed with most distributions such as Red Hat. These include XMMS, an
MP3 and CD player, Xplaycd, a CD music player, and Xanim, an animation and video player.
Several are included in standard Red Hat installations, and RPM packages for most can be
obtained from Red Hat (ftp.redhat.com). The Open Sound System (OSS) site provides an
extensive listing of available multimedia software at www.opensound.com/ossapps.html.
Here you can find digital audio players, mixers, MP3 and MPEG players, and even speech
tools. You can also download a copy of RealPlayer, the Internet streaming media player, from
www.real.com. Be sure to choose RealPlayer for Unix, and select as your OS, Linux 2.x (libc
i386) RPM.

 Note Several CD Write programs that can be used for CD Music and MP3 writing (burners
and rippers) are available from apps.kde.com. These include KreateCD, CD-Rchive,
and KOnCD (Gnome software is under development). All use mkisofs, cdrecord, and
cdda2wav CD writing programs, which are installed by Red Hat. You can download,
compile, and install them on Red Hat. Make sure that any CD-R, CD-RW, and CD-
ROM drives that are IDE drives are installed as SCSI drives (see Chapter 4).

Several projects are under way to provide TV, video, and DVD support for Linux (see Table
15-4). The site linuxtv.org provides detailed links to DVD, digital video broadcasting (DVB),
and multicasting. The site also provides downloads of many Linux video applications. For
DVD, the Linux Video and DVD Project (LiViD) at www.linuxvideo.org supports the
development of MPEG 2 (DVD) software. LiViD DVD and multimedia players are currently
under development. Information about recent efforts to develop Linux DVD can be had at

www.opendvd.org. Xine is a multipurpose video player for Linux/Unix systems that can play
video, DVD, and audio disks. See xine.sourgeforge.net for more information.

Table 15-4: Linux Multimedia Projects
Projects Description
Linux MIDI and Sound
Pages

Information and links to Linux Sound projects and site:
www.xdt.com/ar/linux-snd

Advanced Linux Sound
Architecture (ALSA)

The Advanced Linux Sound Architecture project (ALSA) is
developed on Linux under the GPL:
www.alsa-project.org

Open Sound System Open Sound System. Extensive software links
www.opensound.com

linuxtv.org Links to Video, TV, and DVD sites
LiViD The Linux Video and DVD Project

www.linuxvideo.org
LinuxDVD The LinuxDVD Project

linuxdvd.corepower.com
GATOS The Gneral ATI TV and Overlay Software

www.linuxvideo.org/gatos
Xine Xine Video player

xine.sourceforge.net

For KDE, several video applications are available or currently under development, including
video players (aKtion and Noatun). Check apps.kde.com for downloads. Currently available
or under development for Gnome are TV tuners (Gnomevision and Gnome-tv), a video player
(Gnome-Video), and a video editor (trinity). Red Hat currently installs GTV, an MPEG
viewer. Check www.gnome.org.

Chapter 16: Editors
Overview

Red Hat Linux includes several text editors. These range from simple text editors for simple
notes to editors with more complex features such as spell-checkers, buffers, or pattern
matching. All generate character text files and can be used to edit any Linux text files. Text
editors are often used in system administration tasks to change or add entries in Linux
configuration files found in the /etc directory or a user's initialization or application dot files
located in a user's home directory. You can use any text editor to work on source code files
for any of the programming languages or shell program scripts.

 Note Red Hat now includes a very easy-to-use GUI-based text editor called Nedit. You can
access it on both Gnome and KDE desktops.

Traditionally, most Linux distributions, including Red Hat, install the cursor-based editors
Vim and Emacs. Vim is an enhanced version of the Vi text editor used on the Unix system.
These editors use simple, cursor-based operations to give you a full-screen format. You can

start these editors from the shell command line without any kind of X Window System
support. In this mode, their cursor-based operations do not have the ease of use normally
found in window-based editors. There are no menus, scroll bars, or mouse-click features.
However, the K Desktop and Gnome do support powerful GUI text editors with all these
features. These editors operate much more like those found on Mac and Windows systems.
They have full mouse support, scroll bars, and menus. You may find them much easier to use
than the Vi and Emacs editors. These editors operate from their respective desktops, requiring
you first have either KDE or Gnome installed, though the editors can run on either desktop.
Vi and Emacs, on the other hand, have powerful editing features that have been refined over
the years. Emacs, in particular, is extensible to a full-development environment for
programming new applications. Newer versions of Emacs, such as GNU Emacs and XEmacs,
provide X Window System support with mouse, menu, and window operations. They can run
on any window manager or desktop. In addition, the gvim version of the Vim editor also
provides basic window operations. Table 16-1 lists several GUI based editors for Linux.

Figure 16-1: The gedit Gnome editor
 Note Red Hat Linux includes in its distribution two fully functional word processors, KWord

and Abiword. You can find out more on Abiword at www.abiword.com.

Gnome Editor: gedit

gedit is a basic text editor for the Gnome desktop (see Figure 16-1). It provides full mouse
support, implementing standard GUI operations, such as cut-and-paste to move text, and
click-and-drag to select text. It supports standard text editing operations such as Find and
Replace. You can use gedit to create and modify your text files, including as configuration
files. gedit also provides more advanced features such as print preview and configurable
levels of undo/redo operations, and can read data from pipes. It features a plug-in menu that
provides added functionality, and it includes plug-ins for spell-checking, encryption, e-mail,
and text-based Web page display.

Table 16-1: Desktop Editors
The K Desktop Description
KEdit Text editor
Kate Text and program editor, default for desktop
KJots Notebook editor
KWord Desktop publisher, part of KOffice
Gnome
gedit Text editor
Abiword Word processor

Table 16-1: Desktop Editors
The K Desktop Description
X Windows
GNU Emacs Emacs editor with X Window System support
XEmacs X Window System version of Emacs editor
gvim Vim version with X Window System support
WordPerfect Word processor that can edit text files
Abiword Word processor
Nedit GUI-based text editor

K Desktop Editors: KEdit, Kate, Kjots, and KWord

All the K Desktop editors provide full mouse support, implementing standard GUI operations,
such as cut-and-paste to move text, and click-and-drag to select text. KEdit is a simple text
editor meant for editing simple text files such as configuration files. A toolbar of buttons at
the top of the KEdit window enables you to execute common editing commands easily using
just a mouse click. With KEdit, you can also mail files you are editing over a network. The
entry for KEdit in the K menu is listed simply as Text Editor. You can start up KEdit by
entering the kedit command in a terminal window. The KOffice Office Suite also includes a
word processor called KWord, which is a high-powered word processor you can also use as a
simple editor.

A more advanced editor is Kate, with such features as spell checking, font selection, and
highlighting (see Figure 16-2). Most commands can be selected using menus. A toolbar of
icons for common operations is displayed across the top of the Kate window. A sidebar
displays panels for a file selector and file list. With the file selector you can navigate through
the file system, selecting files to work on. Kate also supports multiple views of a document,
letting you display segments in their own windows, vertically or horizontally. You can also
open several documents at the same time, moving between them with a file list.

Figure 16-2: Kate KDE editor

Kate is designed to be a program editor for editing software programming/ development-
related source code files. Although Kate does not have all the features of Emacs or Vi, it can
handle most major tasks. Kate can format the syntax for different programming languages,
such as C, Perl, Java, and XML. In addition, Kate also has the capability to access and edit
files on an FTP or Web site.

The editor KJots is designed to enable you to jot down notes in a notebook. It organizes notes
you write into notebooks, called simply books. You can select the one you want to view or
add to from the Books menu. To start KJots, select its entry in the Utilities menu or enter the
kjots command in a terminal window.

Part IV: Red Hat Network Workstation
Chapter List
Chapter 17: Mail Clients
Chapter 18: Usenet and Newsreaders
Chapter 19: FTP Clients
Chapter 20: The World Wide Web and Java
Chapter 21: Network Tools

Chapter 17: Mail Clients
Overview

Your Linux system has electronic mail clients that enable you to send messages to other users
on your system or other systems, such as those on the Internet. You can send and receive
messages in a variety of ways, depending on the type of mail client you use. Although all
electronic mail utilities perform the same basic tasks of receiving and sending messages, they
tend to have different interfaces. Some mail clients operate on a desktop, such as KDE or
Gnome. Others run on any X Windows window managers. Several popular mail clients were
designed to use a screen-based interface and can run from only the command line. Other
traditional mail clients were developed for just the command line interface, which requires
you to type your commands. Most mail clients described here are included in standard Linux
distributions and come in a standard RPM package for easy installation. For Web-based
Internet mail services, such as Hotmail, Lycos, and Yahoo, you use a Web browser instead of
a mail client to access mail accounts provided by those services. Table 17-1 lists several
popular Linux mail clients.

Table 17-1: Linux Mail Clients
Mail Client Description
KMail The K Desktop mail client
Evolution Ximian Gnome mail client
Balsa, Gmail, GNOMail, etc. Gnome mail clients (see Table 17-2)
Mozilla Mail Web browser-based mail client
Netscape Web browser-based mail client
exmh X Windows Mail Hander mail client
GNUEmacs and XEmacs Emacs mail clients
Pine Mail client and newsreader
Mutt Screen-based mail client
Elm Screen-based mail client

Table 17-1: Linux Mail Clients
Mail Client Description
Mail Original Unix-based command line mail client
nmh New Mail Handler command line mail client

Table 17-2: Gnome Mail Clients
Application Description
Balsa Balsa is an e-mail client for GNOME that supports POP3, IMAP, local

folders, and multithreading.
Evolution Evolution is a Ximian integrated mail client, calendar, and contact

manager.
Eucalyptus Eucalyptus is an advanced MIME-compliant e-mail application.
Glacier Glacier is an e-mail client for Gnome that supports mime parsing.
Gmail Gmail is an experimental folder-based e-mail system (using mysql).
GnoMail GnoMail is a mail user agent that uses the gnome-mailer interface.
LinPopUp LinPopUp is an X Window graphical port of WinPopUp, running over

Samba.
Mahogany Mahogany is a cross-platform e-mail application.
N-tool N-tool is a GUI mail tool that supports the Japanese language (ISO-

2022-JP).
Pygmy Pygmy is a Gnome mail client written in the Python programming

language.
Spruce Spruce is an e-mail client with support for multiple accounts.
Grin Grin is a mail client with news reading features.
MMC MMC is a Gnome mail client.
CSC Mail CSC Mail is a mail client with support for multiple POP3 accounts and

messaging.
Sonicmail Sonicmail is a Gnome POP3 mail notifier applet.

Mail is transported to and from destinations using mail transport agents. Sendmail and Smail
send and receive mail from destinations on the Internet or at other sites on a network (see
Chapter 27). To send mail over the Internet, they use the Simple Mail Transport Protocol
(SMTP). Most Linux distributions, including Red Hat, automatically install and configure
Sendmail for you. On starting up your system, you can send and receive messages over the
Internet.

Local and Internet Addresses

Each user on a Linux system has a mail address, and whenever you send mail, you are
required to provide the address of the user to whom you are sending the message. For users on
your local Linux system, addresses can consist of only the user's login name. When sending
messages to users on other systems, however, you need to know not only the login name, but
also the address of the system they are on. Internet addresses require the system address to be
uniquely identified.

Most systems have Internet addresses you can use to send mail. Internet addresses use a form
of addressing called domain addressing. A system is assigned a domain name, which when
combined with the system name, gives the system a unique address. This domain name is
separated from the system name by a period and may be further qualified by additional
domain names. Here is the syntax for domain addresses:

login-name@system-name.domain-name

Systems that are part of a local network are often given the same domain name. The domain
name for both the garnet and violet systems at UC Berkeley is berkeley.edu. To send a
message to chris on the garnet system, you simply include the domain name:

chris@garnet.berkeley.edu.

In the next example, a message is sent to chris, located on the garnet system, using domain
addressing:

$ mail chris@garnet.berkeley.edu < mydata

Early domain names reflect that the Internet was first developed in the United States. They
qualify Internet addresses by category, such as commercial, military, or educational systems.
The domain name .com indicates a commercial organization, whereas .edu is used for
educational institutions. As the Internet developed into a global network, a set of international
domain names was established. These domain names indicate the country in which a system is
located-for example, .fr represents France, .jp represents Japan, and .us represents the United
States.

Signature Files: .signature

You can end your e-mail message with the same standard signature information, such as your
name, Internet address or addresses, or farewell phrase. Having your signature information
automatically added to your messages is helpful. To do so, you need to create a signature file
in your home directory and enter your signature information in it. A signature file is a
standard text file you can edit using any text editor. Mail clients such as KMail enable you to
specify a file to function as your signature file. Others, such as Mail, expect the signature file
to be named .signature.

MIME

MIME (the term stands for Multipurpose Internet Mail Extensions) is used to enable mail
clients to send and receive multimedia files and files using different character sets such as
those for different languages. Multimedia files can be images, sound, or even video. Mail
clients that support MIME can send binary files automatically as attachments to messages.
MIME-capable mail clients maintain a file called mailcap that maps different types of MIME
messages to applications on your system that can view or display them. For example, an
image file will be mapped to an application that can display images. Your mail clients can
then run that program to display the image message. A sound file will be mapped to an
application that can play sound files on your speakers. Most mail clients have MIME
capabilities built in and use their own version of the mailcap file. Others, like Elm, use a
program called metamail that adds Pine support. MIME is not only used in mail clients. As

noted in Chapters 8 and 9, both the KDE and Gnome file managers use MIME to map a file to
a particular application so that you can launch the application directly from the file.

Applications are associated with binary files by means of the mailcap and mime.types files.
The mime.types file defines different MIME types, associating a MIME type with a certain
application. The mailcap file then associates each MIME type with a specified application.
Your system maintains its own MIME types file, usually /etc/mime.types.

Entries in the MIME types file associate a MIME type and possible subtype of an application
with a set of possible file extensions used for files that run on a given kind of application. The
MIME type is usually further qualified by a subtype, separated from the major type by a slash.
For example, a MIME type image can have several subtypes such as jpeg, gif, or tiff. A
sample MIME type entry defining a MIME type for JPEG files is shown here. The MIME
type is image/jpeg, and the list of possible file extensions is "jpeg jpg jpe."

image/jpeg jpep jpg jpe

The applications specified will depend on those available on your particular system. The
MIME type is separated from the application with a semicolon. In many cases, X Window
System-based programs are specified. Comments are indicated with a #. A * used in a MIME
subtype references all subtypes. The entry image/* would be used for an application that can
run all types of image files. A formatting code, %s, is used to reference the attachment file
that will be run on this application. Sample mailcap entries are shown here. The first
associates all image files with the xv image viewer. The next two associate video and video
MPEG files with the xanim application.

image/*; xv %s
video/*; xanim %s
video/mpeg; xanim %s

You can also create and edit MIME types on the Gnome and KDE desktops. For Gnome, use
the Gnome Control Center's MIME types capplet. This capplet will list the MIME types
defined for your system along with their associated filename extensions. Edit an entry to
change the application and icon associated with that MIME type, that type of file. On KDE,
use the KDE Control Center's File Association entry under File Browsing. This will list
MIME types and their associated filename extensions. Select an entry to edit it and change the
applications associated with it. KDE saves its MIME type information in a separate file called
mimelnk in the KDE configuration directory.

Though you can create your own MIME types, a standard set already is in use. The types text,
image, audio, video, application, multipart, and message, along with their subtypes, have
already been defined for your system. You will find that commonly used file extensions such
as .tif and .jpg for TIFF and JPEG image files are already associated with a MIME type and
an application. Though you can easily change the associated application, it is best to keep the
MIME types already installed. The current official MIME types are listed at the IANA Web
site (www.iana.org) under the name Media Types, provided as part of their Assignment
Services. You can access the media-types file directly on their FTP site at:

ftp.iana.org/in-notes/iana/assignments/media-types/

The K Desktop Mail Client: KMail

The K Desktop mail client, KMail, provides a full-featured GUI interface for composing,
sending, and receiving mail messages. The KMail window displays three panes for folders,
headers, and messages, as shown in Figure 17-1. The upper-left pane displays your mail
folders. You have an inbox folder for received mail, an outbox folder for mail you have
composed but have not sent yet, and a sent-mail folder for messages you have previously sent.
You can create your own mail folders and save selected messages in them, if you wish. The
top-right pane displays mail headers for the currently selected mail folder. You can use the
scroll bar to the right to move through the list of headers. The headers are segmented
according to fields, beginning with sender and subject. A color code is used to indicate read
and unread messages. New messages are listed in red. Read messages are in green. A bullet
symbol also appears at the beginning of unread message headers. To display a message, click
its header. The message is then displayed in the large pane below the header list. You can also
send and receive attachments, including binary files. Pictures and movies that are received are
displayed using the appropriate K Desktop utility. If you right-click the message, a pop-up
menu displays options for actions you may want to perform on it. You can move or copy it to
another folder, or simply delete it. You can also compose a reply or forward the message. For
secure access, Kmail now supports SSL, provided OpenSSL is installed. It also supports
IMAP in addition to POP and SMTP protocols.

Figure 17-1: The K Desktop mail program

The menus in the menu bar at the top of the window contain the commands and options you
can use for managing your mail. An icon bar for commonly used mail commands is displayed
below the menu bar. To get new mail, click the icon showing a page with a question mark (?).
To print a message, click the Printer icon. To save a message, click the Disk icon. To check
your mail, click the Check Mail icon. If you hold the mouse over an icon, a short description
of its function is displayed. The icon of an open book opens the KMail address book. Here,
you can enter a list of e-mail addresses. Also, right-clicking a displayed message gives you
the option of automatically adding its e-mail address to your address book. You can use the
Help button or the Help menu to obtain more detailed descriptions of the different KMail
features. The Help button opens the KMail Handbook, which provides easy reference to
different operations.

You click the Blank Page icon to compose and send a new message. If you want to compose a
reply, select the header of the message you want to reply to, and then click the icon showing a
page with a single curved arrow. A message window opens with the To entry already filled
with the sender's address, the From entry with your address, and the Subject line with the
sender's subject with a preceding RE:. To forward a message, select the message's header and
click the icon showing a page with two curved arrows.

When you compose a message, a new window opens with entries for the e-mail address,
Carbon-copy (CC), and Subject. A button with three dots is placed next to address entries like
From and CC. Clicking one of these buttons invokes your K address book, from which you
can select an e-mail address. You enter the message in the body of the window. You can use
any of the standard mouse-based editing capabilities to cut, copy, paste, and select text. All
commands available to you for composing messages are listed in the menus in the menu bar at
the top of the window. A button bar of commonly used functions is displayed just below the
menu bar. To send the message, click the Envelope button. To attach a file, you can select the
Attach entry in the Attach menu or click the Paper Clip button. This menu also has entries for
inserting the text of files into the message or appending a signature file. Other composition
features, such as the spell-checker and encryption, are also supported. The standard message
window does not display all the header entries unless you select All from the View menu.
You can also individually select the fields you want displayed. The Options menu enables you
to mark a message as urgent or request a delivery confirmation.

To set up KMail for use with your mail accounts, you must enter account information. Select
the Configure entry in the Settings menu. Several panels are available on the Settings
window, which you can display by clicking their icons in the left column (see Figure 17-2).
For accounts, you select the Network panel. Two sections are on this panel: one for sending
mail and one for receiving mail. In the sending-mail section, enter the SMTP server you use.
If you have an ISP or you are on a LAN, enter the server name for your network. The default
is the Sendmail utility on your own Linux system. In the receiving mail section, you can add
any mail accounts you may have. You may have more than one mail account on mail servers
maintained by your ISP or LAN. A configure window is displayed where you can enter login,
password, and host information. The host is the name of the POP or IMAP server this
particular account uses.

Figure 17-2: Kmail configuration

Gnome Mail Clients: Balsa, Evolution, Gmail, Mahogany, and Others

Currently, several Gnome-based mail clients are under development, many of which you can
currently use (see Table 17-2). These include Balsa, Mahogany, Gmail, GnoMail, Eucalyptus,
Glacier, Pygmy, Spruce, and N-tool (Balsa, Evolution, and Mahogany are discussed further).
Check the Gnome Web site for more mail clients as they come out. Many are based on the
Gnome mail client libraries (camel) currently under development, which provides support for
standard mail operations. Balsa is a Gnome mail client with extensive features, though it can
operate under any window manager, including KDE, as long as Gnome is installed on your
system. Evolution is an integrated mail client, calendar, and contact manager from Ximian.
The Mahogany mail client is a Gnome mail client that also has versions for other platforms.
Gmail is meant to be a light and fast e-mail client, supporting basic mail operations, such as
forwarding, replies, and mailboxes. GnoMail is yet another Gnome mail client that also uses
the Gnome mailer libraries. Glacier is a GNU mail client with extensive MIME support.
Eucalyptus is a MIME-compliant mail client that supports unlimited folders, addresses, filters,
and multiple POP servers. Eucalyptus was previously implemented on the Amiga. Pygmy is a
simple GNOME mail client written in the Python programming language that supports
attachments and MIME message. The N-tool is a Gnome mail client with Japanese language
support, providing standard features, including mailboxes and full MIME support. Spruce is a
Gnome e-mail client with support for multiple accounts. LinPopUp is a port of WinPopUp
that operates on Samba-connected networks and can send messages to users on Windows
machines running WinPopUp.

Evolution

Evolution is an integrated mail client, calendar, and address book, currently being developed
by Ximian. The Evolution mailer is a powerful tool with support for numerous protocols
(SMTP, POP, and IMAP), multiple mail accounts, and encryption. With Evolution, you can
create multiple mail accounts on different servers, including those that use different protocols
such as POP or IMAP. You can also decrypt PGP or GPG-encrypted messages.

The Evolution mailer provides a simple GUI interface, with a toolbar for commonly used
commands and a sidebar for shortcuts (see Figure 17-3). A menu of Evolution commands
allows access to other operations. The main panel is divided into two panes, one for listing the
mail headers and the other for displaying the currently selected message. You can click any
header title to sort your headers by that category. Evolution also supports the use of virtual
folders. These are folders created by the user to hold mail that meets specified criteria.
Incoming mail can be automatically distributed to their particular virtual folder.

Figure 17-3: Evolution

To create a message, click the Compose icon. This opens a window divided into two sections,
one for header information and one for inputting the message. For the headers, you can enter
your address, subject, and copy information. You can also use the Evolution address book to
automatically enter addresses. You can then use standard GUI editing methods to enter your
text. For your message, you can include standard text, images, and HTML (Web page) data.
Plug-in Bonobo components will allow you to also include complex data such as audio, video,
and PDF data. All such data will be displayed within the message window.

To attach files, click the Attach button on the toolbar. The file selected will show up in a
separate pane at the bottom of the window. When you are ready to send your message, click
the Send button.

Balsa

Balsa provides a full-featured GUI interface for composing, sending, and receiving mail
messages. The Balsa window displays three panes for folders, headers, and messages, as
shown in Figure 17-4. The left-side pane displays your mail folders. You initially have three
folders: an inbox folder for received mail, an outbox folder for mail you have composed but
have not sent yet, and a trash folder for messages you have deleted. You can also create your
own mail folders in which you can store particular messages. To place a message in a folder
you have created, click and drag the message header for that message to the folder.

Figure 17-4: Balsa

The right side of the Balsa window consists of two panes. The top-right pane lists the message
headers for the currently selected folder. Message headers are displayed showing the subject,
sender, and date. An Envelope icon indicates an unread message, and a Trash Can icon
indicates a message to be deleted. Headers are segmented into fields with buttons for the
fields shown at the top of the pane. You can click these buttons to sort headers by different
fields, such as subject or sender. To display a message, you click it. It is then displayed in the
pane below the message headers. You can click the Right and Left Arrow icons in the icon
bar to move through the header list.

To display message headers for a particular folder, you first must open that folder. Double-
clicking the folder's icon both opens the folder and selects it, with its headers displayed. You
can also single-click the folder's icon and select Open from the Mailbox menu. This opens the
folder and displays a button for it in the bar separating the folder pane from the right-side
panes. You can open several folders at once. Each will have its own button in the bar. To have
an open folder's message headers display, you can click its button in this middle bar. To close
a folder, select it and then choose the Close entry on the Mailbox menu.

You can access commands for managing your mail through the menus on the menu bar
located at the top of the Balsa window. An icon bar for commonly used mail commands is
displayed below the menu bar. To retrieve new messages, click the Check icon or select the
Get New Mail item in the File menu. To print a message, click its header and then the Printer
icon. To delete a message, select its header and click the Delete icon. The icons featuring
envelopes are different forms of message composition: one for new messages, one for replies,
and one for forwarding messages. Balsa also supports filters for automatically performing
operations on received mail. You can create a filter that matches a specified string in a header
field and then automatically perform an operation on that message. For example, you could
have any message from a certain person automatically deleted or messages on a certain
subject automatically printed.

To compose a message, click the Compose icon or select the New item on the Message menu.
A new message window opens with entries for the To, From, Subject, and Carbon copy
header fields. If you select the Reply or Forward icons, the To, From, and Subject fields are
already filled in with your address and the sender's address, and the sender's subject with a
preceding Re: for replies and Fwd: for forwards. Fields that use addresses have a small
Address Book button at the end of their fields. You can click this button to use the address
book to enter an address for a field. Enter the message in the body of the window. The

standard GUI editing operations are supported, enabling you to use your mouse to select, cut,
copy, and move text. To send the message, click the Send icon in the icon bar or select the
Send entry in the File menu. Icons also exist for operations such as selecting attachments or
printing the message. Attachments added to a message are displayed in a pane just below the
icon bar.

You can configure Balsa to access any number of mail accounts. Select the Preferences entry
to bring up a window with panels for configuring Balsa. The Mail Servers panel shows three
sections: one for remote mailbox servers, another for local mail, and the last for outgoing
mail. In the remote mailbox servers section, you can add the server information for your
network. Clicking the Add button opens a mailbox configurator window where you can enter
your account's username and password, as well as the server name for that mailbox server.
The mailbox name is any name you want to use to identify this mail service.

The Mahogany mail client window uses a format similar to Balsa. Three panes are there: a left
pane for listing folders, and two other panes on the right side for headers and message text.
The headers pane has buttons for sorting headers by different fields, such as subject or sender.
Mail operations can be performed using the menus or the button bar at the top of the window.
To compose a message, you can click the Envelope button. This opens a window with entries
for From, To, and Subject header fields. Mouse-based editing operations, such as cut and
paste, are currently not supported, though you can invoke an external editor. A menu bar and
an icon bar at the top of the window list the different message operations you can perform,
such as the spell-checking and printing.

X Window Mail Clients: Mozilla, Netscape, and exmh

Although many of the newer mail clients are being designed for either Gnome or the K
Desktop, several mail clients were developed for use on the X Window System and operate
under any window manager or desktop. They do not require either Gnome or the K Desktop.
Netscape Messenger, Mozilla mail, and exmh are three of the more popular mail clients. The
Emacs mail clients are integrated into the Emacs environment, of which the Emacs editor is
the primary application. They are, however, fully functional mail clients. The GNU Emacs
mail client can operate either with X Windows capabilities or with a screen-based interface
like Pine. The XEmacs mail client operates solely as an X Windows application.

Mozilla Mail and Netscape Messenger

Mozilla is an open source version of Netscape based on Netscape 5.0. It will eventually
replace Netscape as the primary Web browser on Red Hat distributions. To use the Mozilla
mail client, you have simply select it in the Tasks menu of the Mozilla Web browser or from
the Internet menu on the Gnome program menu. When you first start Mozilla, you are
prompted to enter new account information. You can add and edit accounts later by selecting
the Mail/News Account Settings entry in the Edit menu. This opens a dialog with a button for
adding new accounts if you wish.

Mozilla mail will display a window with two panes and a sidebar (see Figure 17-5). The upper
one lists headers of received messages and the lower one displays messages. The header
information includes the sender, subject, date, priority, and size. Buttons for each across the
top of the pane can be used to sort the headers by those categories. To display a message,
click its header. The sidebar displays entries for different mail and newsgroup accounts you

have set up. You can click the one you want to check. The icon bar displays icons for several
common mail operations, such as getting, creating, deleting, or forwarding messages. Click on
the GetMail icon to retrieve mail from your mail server.

Figure 17-5: Mozilla Mail

To send a message, click the New Msg icon. This opens a window that displays two basic
sections. The top section displays entry boxes for header information and attachments. The
address box features a drop-down menu for selecting which address field you want to fill.
Entries exist for the To, Cc, Bcc, Reply To, Newsgroup, and Followups fields. The
attachments box to the right lists files attached to this message. Use the Attachments icon in
the icon bar to add attachments. For the text section, an editing toolbar provide icons for a
wide range of formatting tasks such as selecting fonts, changing sizes, editing lists, and
selecting text colors. Mozilla supports standard GUI editing operations including cut and
paste. There are minimize bars on the left of the header, toolbar, editing toolbar, and menu
that allow you to minimize them. When you are finished composing your message, click on
the Send icon in the toolbar to send it.

Netscape Communicator includes a mail client called Messenger. To use the mail client, you
have to select the mail window item in Navigator's window menu or select the Messenger
icon in the Communicator window. Account information, such as your mail server, username,
and password, must be entered in the Mail panel in the Preferences window, accessible from
the Edit menu. Received messages are displayed in the Messenger window. The window is
divided into two panes, the upper one listing headers of received messages and the lower one
for displaying messages. To display a message, click its header. The icon bar displays icons
for several common mail operations, such as sending, deleting, or forwarding messages. A
sidebar will list your mail and newsgroup accounts, letting you choose among them. To
compose a message, click the New Message icon. Messenger supports a wide range of
composition features, such HTML addresses, fonts, formatting, and spell-checker. It supports
standard GUI editing operations including cut and paste, though you use the ALT key instead
of the CTRL key for keyboard equivalents.

exmh

The exmh program is an X Windows version of the nmh mail client, described later in this
chapter. It displays a window with two panes (see Figure 17-6). The upper pane lists the

headers for received mail, and the lower pane displays a selected message. Above each pane
is a button bar for various nmh commands (these are the same as the commands for the nmh
mail client). To check for new mail, you press the Inc button on the top pane. Headers for
unread messages are colored blue, and the selected header is displayed in red. You can add
new mailbox folders by pressing the New button.

Figure 17-6: exmh

To read a message, click its header, which is displayed in the lower pane. Buttons for
managing a message are listed across the top of that pane. Long messages are displayed
screen by screen, and you can see the next screen by clicking the More button. The Next and
Previous buttons move you directly to the next or previous message. Comp, Reply, and
Forward all open a new message window for composing and sending a message. Comp is for
new messages, and Reply and Forward include your address, the sender's, and the current
message's subject.

To compose a new message, click the Comp button in the lower pane. Header fields and their
titles are listed from the top. Click next to a header title and enter its value. For example, to
enter a value for the To field, click after "To" and type the address you want. A line below the
header separates the header from the text of the message. Click below this line and enter your
message. You can change any of the header fields and the text of your message at any time.
Click the Send button to send the message.

The Emacs Mail Client: GNU Emacs and XEmacs

The GNU version of Emacs includes a mail client along with other components, such as a
newsreader and editor. GNU Emacs is included on Red Hat distributions. Check the Emacs
Web site at www.emacs.org for more information. When you start up GNU Emacs, menu
buttons are displayed across the top of the screen. If you are running Emacs in an X Windows
environment, you have full GUI capabilities and can select menus using your mouse. To
access the Emacs mail client, select from the mail entries in the Tools menu. To compose and
send messages, just select the Send Mail item in the Tools menu. This opens a screen with

prompts for To: and Subject: header entries (see Figure 17-7). You then type the message
below them, using any of the Emacs editing capabilities. On the menu bar, a new menu is
added labeled Mail. When you are ready to send the mail, choose the Send Mail entry in this
menu. To read mail, select the Read Mail item in the Tools menu, which displays the first
mail message received. Use entries in the Move menu to move to the next message or back to
a previous one, and use entries in the Delete menu to remove a message. The Mail menu lists
entries for message operations, such as sending replies or forwarding the message. GNU
Emacs is a working environment within which you can perform a variety of tasks, with each
task having its own buffer. When you read mail, a buffer is opened to hold the header list, and
when you read a message, another buffer will hold the contents. When you compose a
message, yet another buffer holds the text you wrote. The buffers you have opened for mail,
news, or editing notes or files are listed in the Buffers menu. You can use this menu to switch
among them.

Figure 17-7: Emacs mail client

XEmacs is another version of Emacs designed to operate solely with a GUI interface. The
Internet applications, which you can easily access from the main XEmacs button bar, include
a Web browser, a mail utility, and a newsreader. Clicking the Mail button brings up another
window that lists received messages and also enables you to compose new ones. You can
compose, reply, or print messages using buttons on the side of the window. To display a
message, click its header and press the SPACEBAR. You can display the headers by choosing
the Display item in the Folder menu. When composing a message, you have full use of the
Emacs editor with all its features, including the spell-checker and search/replace. A new
window is opened that prompts you for the address and subject. When you finish editing your
message, choose Send and Exit in the Mail menu located at the end of the menu bar.

Screen-Based Mail Clients

You can invoke several powerful mail clients on the command line that provide a full-screen,
cursor-based interface. Menus are displayed on the screen whose entries you can select using
your keyboard. Basic cursor movement is supported with arrow keys. Pine and Mutt are both
mail clients that provide a screen-based interface. Although screen-based, the mail clients are
very powerful. Pine, in particular, has an extensive set of features and options.

Pine

Pine stands for "Program for Internet News and Email." It features full MIME support,
enabling you to send messages, documents, and pictures easily. Pine has an extensive list of
options, and it has flexible Internet connection capabilities, letting you receive both mail and

Usenet news. Pine also enables you to maintain an address book where you can place
frequently used e-mail addresses. You can find more information about Pine, including
documentation and recent versions, from the Pine Information Center Web site at
www.washington.edu/pine. The Pine newsgroup is comp.mail.pine, where you can post
questions.

Pine runs from the command line using a simple cursor-based interface. Enter the pine
command to start Pine. Pine supports full-screen cursor controls. It displays a menu whose
items you can select by moving the cursor with the arrow keys to the entry of your choice and
pressing ENTER. Each item is labeled with a capital letter, which you use to select it. The O
command brings up a list of other Pine commands you can use.

To send a message, select the Compose Message item. This brings up a screen where you can
enter your message. You are first taken through the different entries for the header, which
prompts you for an e-mail address and subject. You can even attach files. Then, you type in
the text of the message. A set of commands listed at the bottom of the screen specifies
different tasks. You can read a file with CTRL-R and cancel the message with CTRL-C. Use
CTRL-X to send the message.

Pine organizes both sent and received messages into folders that you select using the Folder
List entry on the main menu. The different available folders are listed from left to right. Three
folders are automatically set up for you: INBOX, sent-mail, and saved-messages. The INBOX
folder holds mail you have received but have not yet read. Sent mail is for messages you have
sent to others, while saved messages are messages you have read and want to keep. Use the
LEFT and RIGHT ARROW keys to select the one you want and then press ENTER. Selecting
the INBOX folder will list the messages you have received, as shown in Figure 17-8. Headers
for received messages are then displayed, and you can choose a specific header to view your
message. The folder you select becomes your default folder. You can return to it by selecting
the Folder Index entry in the main menu.

Figure 17-8: Selecting messages in Pine

Mutt

Mutt incorporates many of the features of both Elm and Pine. It has an easy-to-use screen-
based interface similar to Elm. Like Pine, Mutt has an extensive set of features, such as
MIME support. You can find more information about Mutt from the Mutt Web page at
www.mutt.org. Here, you can download recent versions of Mutt and access online manuals
and help resources. On most distributions, the Mutt manual is located in the /usr/doc

directory under Mutt. The Mutt newsgroup is comp.mail.mutt, where you can post queries
and discuss recent Mutt developments.

Mutt screens have both an index mode and a pager mode. The index mode is used to display
and manage message header lists, while the pager mode is used to display and compose
messages. Mutt screens support ANSI escape sequences for color coding, displaying
commands, prompts, and selected entries in different colors. You invoke Mutt with the
command mutt entered on a Linux shell command line. Mutt displays a list of common
commands across the top of the screen. Pressing the single key listed before the command
executes that command. For example, pressing q quits Mutt, s saves the current message, and
r enables you to send a reply to a message. Press the ? key to obtain a complete listing of
Mutt commands.

To compose a new message, press m. On the bottom line, you are then sequentially prompted
to enter the address of the person to whom you are sending a message, the subject line, and a
carbon copy list. Then you are placed in the standard editor, usually Vi or Emacs, and you can
use the editor to enter your message. If you are using Vi, you first have to press the a or i
command before you can enter text (see Chapter 16). After entering your text, you press ESC
to return to the Vi command mode. When you finish entering your message, you save and exit
Vi with the ZZ command. After editing the message, Mutt displays the header and a list of
possible commands at the top of the screen. You can then edit the message or any of the
header fields again. With the a command, you can add attachments to the message, and with
the q command you can cancel the message. Press the y command to send the message.

Headers listing received messages are shown in the main screen upon starting Mutt. You can
use the arrow keys to move from one to the next. The selected header is highlighted. Press the
ENTER key to display the contents of the message, as shown in Figure 17-9. This opens
another screen showing the header fields and the text of the message. Long messages are
displayed screen by screen. You can use the PAGE UP or SPACEBAR keys to move to the
next screen, and the PAGE DOWN or - keys to move back to the previous screen. The
commands for operations you can perform on the message are listed across the top of the
screen. With the r command, you can compose and send a reply to the message, while the d
command deletes the message. Once you examine your message, you can use the i command
to return to the main screen.

Figure 17-9: Reading Mutt messages
 Note Another favorite mail client is Elm. Elm has a screen-oriented, user-friendly interface

that makes mail tasks easy to execute. However, Elm has been deprecated in Red Hat
7.1 and may be dropped from future releases.

Command Line Mail Clients

Several mail clients use a simple command line interface. They can be run without any other
kind of support, such as X Windows, desktops, or cursor support. They are simple and easy to
use but include an extensive set of features and options. Two of the more widely used mail
clients of this type are Mail and Mail Handler (nmh). Mail is the mailx mail client that was
developed for the Unix system. It is considered a kind of default mail client that can be found
on all Unix and Linux systems.

 Note You can also use the Emacs mail client from the command line, as described in the
previous section.

Mail

What is known now as the mail utility was originally created for BSD Unix and called,
simply, mail. Later versions of Unix System V adopted the BSD mail utility and renamed it
mailx. Now, it is simply referred to as Mail. Mail functions as a de facto default mail client on
Unix and Linux systems. All systems have the mail client called Mail, whereas they may not
have other mail clients.

To send a message with Mail, type mail along with the address of the person to whom you are
sending the message. Press ENTER and you are prompted for a subject. Enter the subject of
the message and press ENTER again. At this point, you are placed in input mode. Anything
typed in is taken as the contents of the message. Pressing ENTER adds a new line to the text.
When you finish typing your message, press CTRL-D on a line of its own to end the message.
You will then be prompted to enter a user to whom to send a carbon copy of the message
(Cc:). If you do not want to sent a carbon copy, just press ENTER. You will then see EOT
(end-of-transmission) displayed after you press CTRL-D. In the next example, the user sends
a message to another user whose address is robert. The subject of the message is Birthday.
After typing in the text of the message, the user presses CTRL-D, and then presses ENTER to
skip the carbon copy prompt.

$ mail robert
Subject: Birthday
 Your present is in the mail
 really.

^D
Cc: ENTER

EOT
$

The Mail utility receives input from the standard input. By default, the standard input is taken
from what the user enters on the keyboard. With redirection, however, you can use the
contents of a file as the message for the Mail program. In the next example, the file mydata is
redirected as input for the Mail utility and sent to robert.

$ mail robert < mydata

You can send a message to several users at the same time by listing those users' addresses as
arguments on the command line following the mail command. In the next example, the user
sends the same message to both chris and aleina.

$ mail chris aleina

You may also want to save a copy of the message you are sending for yourself. You can copy
a mail message to a file in your account by specifying a filename on the command line after
the addresses. The filename must be a relative or full pathname, containing a slash. A
pathname identifies an argument as a filename to which Mail saves a copy of the message
being sent. In the next example, the user saves a copy of the message to a file called
birthnote. A relative pathname is used, with the period denoting the current working
directory: ./birthnote.

$ mail robert ./birthnote

To receive mail, you enter only the mail command and press ENTER. This invokes a Mail
shell with its own prompt and mail commands. A list of message headers is displayed. Header
information is arranged into fields beginning with the status of the message and the message
number. The status of a message is indicated by a single uppercase letter, usually N for new or
U for unread. A message number, used for easy reference to your messages, follows the status
field. The next field is the address of the sender, followed by the date and time the message
was received, and then the number of lines and characters in the message. The last field
contains the subject the sender gave for the message. After the headers, the Mail shell displays
its prompt, a question mark, ?. At the Mail prompt, you enter commands that operate on the
messages. The commonly used Mail commands are listed in Table 17-3. An example of a
Mail header and a prompt follows:

$ mail
Mail version 8.1 6/6/93. Type ? for help.
"/var/spool/mail/larisa": 3 messages 2 unread
 1 chris@turtle.mytrek. Thu Jun 7 14:17 22/554 "trip"
>U 2 aleina@turtle.mytrek Thu Jun 7 14:18 22/525 "party"
 U 3 dylan@turtle.mytrek. Thu Jun 7 14:18 22/528 "newsletter"
& q

Table 17-3: Mail Commands
Status Code Description
N Newly received messages
U Previously unread messages
R Reads messages in the current session
P Preserved messages, read in the previous session and kept in

incoming mailbox
D Deleted messages; messages marked for deletion
O Old messages
* Messages you saved to another mailbox file
Display Message Description
h Redisplay the message headers
z+ z- If header list takes up more than one screen, scrolls header list

Table 17-3: Mail Commands
Status Code Description

forward and backward
t message-list Displays a message referenced by the message list; if no message

list is used, the current message is displayed
p message-list Displays a message referenced by the message list; if no message

list is used, the current message is displayed
n or + Displays next message
- Displays previous message
top message-list Displays the top few lines of a message referenced by the

message list; if no message list is used, the current message is
displayed

Message List Description
message-number References message with message number
num1-num2 References a range of messages beginning with num1 and ending

with num2
. Current message
^ First message
$ Last message
* All the messages waiting in the mailbox
/pattern All messages with pattern in the subject field
Address All messages sent from the user with address
:c All messages of the type indicated by c; message types are as

follows:
n Newly received messages
o Old messages previously received
r Read messages
u Unread messages
d Deleted messages

Deleting and
Restoring Messages

Description

d message-list Deletes a message referenced by the indicated message list from
your mailbox

u message-list Undeletes a message referenced by the indicated message list
that has been previously deleted

q Quits the Mail utility and saves any read messages in the mbox
file

x Quits the Mail utility and does not erase any messages you
deleted; this is equivalent to executing a u command on all
deleted messages before quitting

pre message-list Preserves messages in your waiting mailbox even if you have
already read them

Table 17-3: Mail Commands
Status Code Description
Sending and
Editing Messages

Description

r Sends a reply to all persons who received a message
R Sends a reply to the person who sent you a message
m address Sends a message to someone while in the Mail utility
v message-list Edits a message with the Vi editor
Saving Messages Description
s message-list filename Saves a message referenced by the message list in a file,

including the header of the message
S message-list Saves a message referenced by the message list in a file named

for the sender of the message
w message-list filename Saves a message referenced by the message list in a file without

the header; only the text of the message is saved
folder mailbox-filename Switches to another mailbox file
% Represents the name of incoming mailbox file:

folder % switches to incoming mailbox file
Represents name of previously accessed mailbox file:

folder # switches to previous mailbox file
& Represents name of mailbox file used to save your read

messages automatically; usually called mbox:
folder & switches to mbox file

General Command Description
? Displays a list of all the Mail commands
! command Executes a user shell command from within the Mail shell

Mail references messages either through a message list or through the current message marker
(>). The greater-than sign (>) is placed before a message considered the current message. The
current message is referenced by default when no message number is included with a Mail
command. You can also reference messages using a message list consisting of several
message numbers. Given the messages in the previous example, you can reference all three
messages with 1-3. The ^ references the first message; for example, ^-3 specifies the range of
messages from the first message to the third message. The $ references the last message. The
period, ., references the current message. And the asterisk, *, references all messages. Simply
entering the number of the message by itself will display that message. The message is then
output screen by screen. Press the SPACEBAR or the ENTER key to continue to the next
screen.

You use the R and r commands to reply to a message you have received. The R command
entered with a message number generates a header for sending a message and then places you
into the input mode to type in the message. The q command quits Mail. When you quit,
messages you have already read are placed in a file called mbox in your home directory.
Instead of saving messages in the mbox file, you can use the s command to save a message

explicitly to a file of your choice. The s command, however, saves a message with its header,
in effect creating another mailbox file. You can then later access a mailbox file either by
invoking the Mail utility with the -f option and the mailbox filename or, if you are already
using Mail, by executing the folder command that switches to a specified mailbox file. For
example, the command mail -f family_msgs accesses the mailbox file family_msgs. Each
message in the family_msgs mailbox file is then displayed in a message list.

Mail has its own initialization file, called .mailrc, that is executed each time Mail is invoked,
for either sending or receiving messages. Within it, you can define Mail options and create
Mail aliases. You can set options that add different features to mail, such as changing the
prompt or saving copies of messages you send. To define an alias, you enter the keyword
alias, followed by the alias you have chosen and then the list of addresses it represents. In the
next example, the alias myclass is defined in the .mailrc file.

.mailrc

alias myclass chris dylan aleina justin larisa

In the next example, the contents of the file homework are sent to all the users whose
addresses are aliased by myclass.

$ mail myclass < homework

The New Mail Handler Utility: nmh

The Mail Handler mail client, commonly known as nmh, takes a different approach to
managing mail than most other mail clients. nmh consists of a set of commands you execute
within your user shell, just as you would execute any other Unix command. No special mail
shell exists, as there is for Mail. One nmh command sends a message, another displays your
incoming messages, and still another saves a message. The nmh commands and their options
are listed in Table 17-4. A set of environment variables provides a context for the nmh
commands you execute, such as keeping track of the current messages or mail folders.

Table 17-4: nmh Commands
Command Description
inc Places received mail in your incoming mailbox and displays

message headers
show num Displays current message or specified messages
prev Displays the previous message
next Displays the next message
scan Redisplays message headers
Mhl Displays formatted listing of messages
folders Lists all mail folders
forw Forwards a message
repl Replies to a message

Table 17-4: nmh Commands
Command Description
send Resends a message or sends a file as a message
pick Selects messages by specified criteria and assigns them a

sequence
folder Changes to another mailbox file (folder)
 Note Instead of working from a command line interface, you can use xmh or exmh, which

provides an X Windows interface for accessing nmh messages.

To send a message using nmh, you first need to compose the message using the comp
command, and then send the message with the send command. To compose a message, type
in the word comp on the command line by itself and press ENTER. With nmh, you are placed
in an input mode for the default editor used for nmh (usually the Vi editor). Fields at the top
of the screen show prompts for the address, carbon copy, and subject. Below the dotted line,
you enter your message. You can use your arrow keys to move from one field to another.
Once you type the contents of the message, save and quit the editor as you normally would
(ESC-SHIFT-ZZ for Vi). At the What now? prompt, you can send the message, edit it, save
it to a file, display it again, or quit without sending the message. The send command sends the
message. Pressing ENTER at the What now? prompt displays a list of commands you can
enter. In the next example, the user composes a message for another user whose address is
robert.

$ comp
To: robert
cc:
Subject: Birthday

Your present is in the mail
really.

What now? send
$

To read your mail with nmh, you first need to store newly received mail into a designated
nmh mailbox file with the inc command. The inc command displays a list of headers for each
mail message in your incoming mailbox. An nmh message header consists only of the
message number, the month and year, the address of the sender, and the beginning of the
message text.

 $ inc
 1+ 06/07 Christopher Peter trip<<Are you ready for the trip? chris >>
 2 06/07 Aleina Petersen party<<its on for tomorrow night. Aleina >>
 3 06/07 Dylan Petersen newsletter<<Did you write your article yet? Dyla
 $

If you want to redisplay the headers, you need to use another nmh command called scan.

 $ scan
 1+ 06/07 Christopher Peter trip<<Are you ready chris >>
 2 06/07 Aleina Petersen party<<its on for Aleina >>
 3 06/07 Dylan Petersen newsletter<<Did you Dylan >>
 $

You use the show, next, and prev commands to display a message. The show command
displays the current message, the next command displays the message after the current one,
and the prev command displays the message before the current one. Initially, the current
message is the first of the newly received messages. If you want to display a particular
message, you can use the show command with the number of the message. show 2 displays
message 2. You can also reference several messages at once by listing their message numbers.
The command show 1 3 displays messages 1 and 3. You can also designate a range of
messages by specifying the first message number in the range, and the last number, separated
by a minus sign. show 1-3 displays messages 1, 2, and 3.

 $ show
 $ next

To print a message, you first output it with show, and then pipe the output to a printer. You
save a message to a text file in much the same way. First you output the message using the
show command, and then you redirect that output to a file.

 $ show | lpr
 $ show > myfile

You reply to the current message using the repl command. You need to know either the
message number or the address and subject of the message to reply to it. You delete the
current message using the rmm command. To delete a specific message, use the message
number with rmm. rmm 2 deletes the second message. You can create your own mailbox files
for nmh using the folder command. nmh mailbox files are commonly referred to as folders.
To create a new folder, enter the folder command followed by the name of your folder
preceded by a + sign. The + sign identifies an argument as a folder name.

 $ repl 2
 $ rmm 2
 $ folder +mybox

Notifications of Received Mail

As your mail messages are received, they are automatically placed in your mailbox file, but
you are not automatically notified when you receive a message. To find out if you have any
messages waiting, either you can use a mail client to retrieve messages or you can use a mail
monitor tool to tell you if you have any mail waiting. There are also a number of mail
monitors available for use on Gnome. Several operate as applets on the Gnome panel. On the
Red Hat Gnome desktop, there are two mail monitors you can choose from: the Mail Check
and the Clock and Mail Notify monitors. Both are applets that run inside a Gnome panel. The
Mail Check applet will display a mail envelope when mail arrives, and the Clock and Mail
Notify applet displays a small envelope and the number of messages received below the time.
Both are shown next, with Clock and Mail Notify on the left and Mail Check on the right.
Other applets like Sonicmail will notify you of any POP3 mail arrivals. PyBiff performs much
the same kind of mail monitoring as Korn. gbox_applet will monitor mailboxes, assigning
priorities to each. GMailWatch is a mail monitor applet that will display a summary of
incoming mail.

The Red Hat KDE Desktop has a mail monitor utility called Korn that works in much the
same way. Korn shows an empty inbox tray when there is no mail and a tray with slanted
letters in it when mail arrives. If old mail is still in your mailbox, letters are displayed in a
neat square. You can set these icons as any image you want. You can also specify the mail
client to use and the polling interval for checking for new mail. If you have several mail
accounts, you can set up a Korn profile for each one. Different icons can appear for each
account, telling you when mail arrives in one of them.

If you are just using a window manager, such as fvwm2 or Enlightenment, you can use the
xbiff utility to perform the same function. xbiff displays an icon of a mailbox, which has a
flag on it, on your desktop. When mail arrives, the flag goes up. xbiff can also beep or
produce some other sound, if you prefer.

For command line interfaces you can use the biff utility. The biff utility notifies you
immediately when a message is received. This is helpful when you are expecting a message
and want to know as soon as it arrives. biff automatically displays the header and beginning
lines of messages as they are received. To turn on biff, you enter biff y on the command line.
To turn it off, you enter biff n. To find out if biff is turned on, enter biff alone.

You can temporarily block biff by using the mesg n command to prevent any message
displays on your screen. mesg n not only stops any Write and Talk messages, it also stops biff
and Notify messages. Later, you can unblock biff with a mesg y command. A mesg n
command comes in handy if you don't want to be disturbed while working on some project.

Accessing Mail on Remote POP Mail Servers

Most newer mail clients are equipped to access mail accounts on remote servers. For such
mail clients, you can specify a separate mail account with its own mailbox. For example, if
you are using an ISP, most likely you will use that ISP's mail server to receive mail. You will
have set up a mail account with a username and password for accessing your mail. Your e-
mail address is usually your username and the ISP's domain name. For example, a username
of larisa for an ISP domain named mynet.com would have the address larisa@mynet.com.
The username would be larisa. The address of the actual mail server could be something like
mail.mynet.com. The user larisa would log into the mail.mynet.com server using the
username larisa and password to access mail sent to the address larisa@mynet.com. Newer
mail clients, such as KMail, Balsa, and Netscape, enable you to set up a mailbox for such an
account and access your ISP's mail server to check for and download received mail. You must
specify what protocol a mail server uses. This is usually the Post Office Protocol (POP). This
procedure is used for any remote mail server. Using a mail server address, you can access
your account with your username and password.

Instead of creating separate mailboxes in different mail clients, you can arrange to have mail
from different accounts sent directly to the inbox maintained by your Linux system for your
Linux account. All your mail, whether from other users on your Linux system or from ISP
mail servers, will appear in your local inbox. Such a feature is helpful if you are using a mail
client, such as Elm or Mail, that does not have the capability to access mail on your ISP's mail
server. You can implement such a feature with Fetchmail. Fetchmail checks for mail on
remote mail servers and downloads it to your local inbox, where it appears as newly received
mail.

To use Fetchmail, you have to know a remote mail server's Internet address and mail protocol.
Most remote mail servers use the POP3 protocol, but others may use the IMAP, ETRM, or
POP2 protocols. Enter fetchmail on the command line with the mail server address and any
needed options. The mail protocol is indicated with the -p option and the mail server type,
usually POP3. If your e-mail username is different from your Linux login name, you use the -
u option and the e-mail name. Once you execute the fetchmail command, you are prompted
for a password. The syntax for the fetchmail command for a POP3 mail server follows:

fetchmail -p POP3 -u username mail-server

To use Fetchmail, connect to your ISP and then enter the fetchmail commands with the
options and the POP server name on the command line. You will see messages telling you if
mail is there and, if so, how many messages are being downloaded. You can then use a mail
client to read the messages from your inbox. You can run Fetchmail in daemon mode to have
it automatically check for mail. You have to include an option specifying the interval in
seconds for checking mail.

fetchmail -d 1200

You can specify options such as the server type, username, and password in a .fetchmailrc
file in your home directory. You can also have entries for other mail servers and accounts you
may have. Instead of entering options directly into the .fetchmailrc file, you can use the
fetchmailconf program. fetchmailconf provides a GUI interface for selecting Fetchmail
options and entering mail account information. fetchmailconf runs only under X Windows
and requires that python and Tk be installed (Red Hat 7.1 does not install fetchmailconf as
part of the standard install-you will have to install it manually). It displays windows for
adding news servers, configuring a mail server, and configuring a user account on a particular
mail server. The expert version displays the same kind of windows, but with many more
options. Initially, fetchmailconf displays a window with buttons for choosing a novice or
expert version (see Figure 17-10). Choosing the novice version displays a window with an
entry labeled "New Server." Type the address of your mail server in the adjoining box and
press ENTER. The server address then appears in a list below. To configure that server, click
the server name and then the Edit button at the bottom of the window. A new window opens
with entries such as user accounts and server protocols. You can add as many user accounts as
you may have on that server. You can then further configure an individual account by
selecting the username and clicking the Edit button. This opens another window for user
account options. You can specify a password and specify any corresponding local users for
which you want mail for this account downloaded.

Figure 17-10: fetchmailconf

Once it is configured, you can enter fetchmail with no arguments; it will read entries from
your .fetchmailrc file. Accounts you have specified are checked, and any new mail is placed
in your inbox. If you want Fetchmail to check automatically for new mail periodically, you
can activate its daemon mode. To do so, place a daemon entry in the .fetchmailrc file. The
following entry activates the Fetchmail daemon mode, checking for mail every 1,200 seconds:

Set daemon 1200

You can also make entries directly in the .fetchmailrc file. An entry in the .fetchmailrc file
for a particular mail account consists of several fields and their values: poll, protocol,
username, and password. Poll is used to specify the mail server name, and protocol, the type
of protocol used. Notice you can also specify your password, instead of having to enter it each
time Fetchmail accesses the mail server. The syntax for an entry follows:

poll SERVERNAME protocol PROTOCOL username NAME password PASSWORD

You can use abbreviations for certain field names if you want: proto for protocol, user for
username, and pass for password. An example follows for a POP3 server and an account with
the username chris and the password mypass:

poll popd.mynet.com proto pop3 user chris password mypass

You can specify a default entry for any of these fields and not have to repeat them for each
account entry. The default must be placed before the mail server entries. The following
example sets the default protocol to POP3 and the username to chris:

defaults protocol pop3 user chris

This next example would reference the chris account with the password newpass on the
popd.train.com mail server using the POP3 protocol. The missing fields are filled in by
default.

poll popd.train.com password newpass

Fetchmail enables you to download messages to a specific user on your local system. In fact,
you can access several accounts on the remote system and have them downloaded to specific
users on the your local system. This is useful when running Fetchmail in daemon mode.

Essentially, Fetchmail is transferring mail from one set of remote accounts to corresponding
ones on your local system. You could even have Fetchmail download from one remote
account to several local ones, sending copies of the same mail to each. This is helpful if you
are using several accounts on your Linux system, or if a group of users is using an account on
the remote server for group mail. Local users are specified with the keyword is or to followed
by the usernames, terminating with the keyword here. The following examples show different
ways of specifying local users. The last entry will send all mail retrieved from the
mynewsletter account to the users larisa, aleina, and dylan.

poll popd.mynet.com proto pop3 user chris password mypass is chris here
poll popd.othernet.com proto pop3 user neil password mypass is chris here
poll popd.mynet.com proto pop3 user cece password mypass to cecelia
grannycece here
poll popd.mynet.com proto pop3 user mynewsletter password mypass to larisa
aleina dylan here
 Note Fetchmail also supports a multidrop mailbox feature. You can have several users' mail

sent to one mailbox on the mail server, and then download it from there to the inboxes
for their Linux accounts.

Chapter 18: Usenet and Newsreaders
Overview

Usenet is an open mail system on which users post news and opinions. It operates like a
system-wide mailbox that any user on your Linux system can read or send messages to. Users'
messages are incorporated into Usenet files, which are distributed to any system signed up to
receive them. Each system that receives Usenet files is referred to as a site. Certain sites
perform organizational and distribution operations for Usenet, receiving messages from other
sites and organizing them into Usenet files, which are then broadcast to many other sites.
Such sites are called backbone sites, and they operate like publishers, receiving articles and
organizing them into different groups.

To access Usenet news, you need access to a news server. A news server receives the daily
Usenet newsfeeds and makes them accessible to other systems. Your network may have a
system that operates as a news server. If you are using an Internet service provider (ISP), a
news server is probably maintained for your use. To read Usenet articles, you use a
newsreader-a client program that connects to a news server and accesses the articles. On the
Internet and in TCP/IP networks, news servers communicate with newsreaders using the
Network News Transfer Protocol (NNTP) and are often referred to as NNTP news servers.
Or, you could also create your own news server on your Linux system to run a local Usenet
news service or to download and maintain the full set of Usenet articles. Several Linux
programs, called news transport agents, can be used to create such a server. This chapter
focuses on the variety of news readers available for the Linux platform. The configuration
administration and architecture of the NNTP server are covered in Chapter 27.

Usenet News

Usenet files were originally designed to function like journals. Messages contained in the files
are referred to as articles. A user could write an article, post it in Usenet, and have it
immediately distributed to other systems around the world. Someone could then read the

article on Usenet, instead of waiting for a journal publication. Usenet files themselves were
organized as journal publications. Because journals are designed to address specific groups,
Usenet files were organized according to groups called newsgroups. When a user posts an
article, it is assigned to a specific newsgroup. If another user wants to read that article, he or
she looks at the articles in that newsgroup. You can think of each newsgroup as a constantly
updated magazine. For example, to read articles on computer science, you would access the
Usenet newsgroup on computer science. More recently, Usenet files have also been used as
bulletin boards on which people carry on debates. Again, such files are classified into
newsgroups, though their articles read more like conversations than journal articles. You can
also create articles of your own, which you can then add to a newsgroup for others to read.
Adding an article to a newsgroup is called posting the article.

Each newsgroup has its own name, which is often segmented to classify newsgroups. Usually,
the names are divided into three segments: a general topic, a subtopic, and a specific topic.
The segments are delimited by periods. For example, you may have several newsgroups
dealing with the general topic rec, which stands for recreation. Of those, some newsgroups
may deal with only the subtopic food. Again, of those, a group may only discuss a specific
topic, such as recipes. In this case, the newsgroup name would be rec.food.recipes.

Many of the bulletin board groups are designed for discussion only, lacking any journal-like
articles. A good number of these begin with either alt or talk as their general topic. For
example, talk.food.chocolate may contain conversations about how wonderful or awful
chocolate is perceived, while alt.food.chocolate may contain informal speculations about the
importance of chocolate to the basic structure of civilization as we know it. Here are some
examples of Usenet newsgroup names:

comp.ai.neural-nets
comp.lang.pascal
sci.physics.fusion
rec.arts.movies
rec.food.recipes
talk.politics.theory

Linux has newsgroups on various topics. Some are for discussion, and others are sources of
information about recent developments. On some, you can ask for help for specific problems.
A selection of some of the popular Linux newsgroups is provided here:

Newsgroup Topic
comp.os.linux.announce Announcements of Linux developments
comp.os.linux.admin System administration questions
comp.os.linux.misc Special questions and issues
comp.os.linux.setup Installation problems
comp.os.linux.help Questions and answers for particular problems
linux.help Obtain help for Linux problems

Numerous Red Hat-specific newsgroups are also available, some of which are listed here:

Newsgroup Topic

Newsgroup Topic
linux.redhat Red hat Linux topics
linux.redhat.development Application development issues on Red Hat Linux
linux.redhat.install Red Hat installation questions
linux.redhat.misc Miscellaneous questions
linux.redhat.rpm Discuss problems with the Red Hat Package Manager

(RPM)
redhat.config Red Hat configuration questions
redhat.networking.general Red Hat networking problems
redhat.security.general Security issues with Red Hat
redhat.kernel.general Working with the Red Hat Linux kernel

You read Usenet articles with a newsreader, such as KNode, Pan, Pine, Mozilla, Netscape,
trn, or tin, which enables you first to select a specific newsgroup and then read the articles in
it. A newsreader operates like a user interface, enabling you to browse through and select
available articles for reading, saving, or printing. Most newsreaders employ a sophisticated
retrieval feature called threads that pulls together articles on the same discussion or topic.
Newsreaders are designed to operate using certain kinds of interfaces. For example, KNode is
a KDE newsreader that has a KDE interface and is designed for the KDE desktop. Pan has a
Gnome interface and is designed to operate on the Gnome desktop. Pine is a cursor-based
newsreader, meaning that it provides a full-screen interface that you can work with using a
simple screen-based cursor that you can move with arrow keys. It does not support a mouse or
any other GUI feature. trn uses a simple command line interface with limited cursor support.
Most commands you type in and press ENTER to execute. Several popular newsreaders are
listed in Table 18-1.

Table 18-1: Linux Newsreaders
Newsreader Description
Pan Gnome Desktop newsreader
KNode KDE Desktop newsreader
Mozilla Web utility with newsreader capabilities (X Windows based)
Netscape Web utility with newsreader capabilities (X Windows based)
Pine Mail client with newsreader capabilities (cursor based)
Slrn Newsreader (cursor based)
Emacs Emacs editor, mail client, and newsreader (cursor based)
trn Newsreader (command line interface)
tin Newsreader (command line interface)
 Note Numerous newsreaders currently are under development for both Gnome and KDE. You

can check for KDE newsreaders on the software list on the K Desktop Web site at
apps.kde.com. For Gnome newsreaders, check Internet tools on the software map on
the Gnome Web site at www.gnome.org. The Mozilla newsreader is integrated into the
Mozilla Web browser and is available from www.mozilla.org.

Most newsreaders can read Usenet news provided on remote news servers that use the NNTP.
Many such remote news servers are available through the Internet. Desktop newsreaders, such
as KNode and Pan, have you specify the Internet address for the remote news server in their
own configuration settings. Several shell-based newsreaders, however, such as trn, tin, and
Pine, obtain the news server's Internet address from the NNTPSERVER shell variable.
Before you can connect to a remote news server with such newsreaders, you first have to
assign the Internet address of the news server to the NNTPSERVER shell variable, and then
export that variable. You can place the assignment and export of NNTPSERVER in a login
initialization file, such as .bash_profile, so it is performed automatically whenever you log in.
Administrators could place this entry in the /etc/profile file for a news server available to all
users on the system.

$ NNTPSERVER=news.servdomain.com
$ export NNTPSERVER

Chapter 19: FTP Clients
Overview

The Internet is a network of computers around the world you can access with an Internet
address and a set of Internet tools. Many computers on the Internet are configured to operate
as servers, providing information to anyone who requests it. The information is contained in
files you can access and copy. Each server, often referred to as a site, has its own Internet
address by which it can be located. Linux provides a set of Internet tools you can use to access
sites on the Internet, and then locate and download information from them. These tools are
known as clients. A client application, such as an FTP or a Web client, can communicate with
a corresponding server application running on a remote system. An FTP client can
communicate with an FTP server program on another system. The server lets the client access
certain specified resources on its system and lets an FTP client transfer certain files. Several
popular FTP clients are shown in Table 19-1.

Table 19-1: Linux FTP Clients
FTP Client Description
Konquerer The K Desktop file manager
Nautilus and GNU Midnight Commander The Gnome file managers
gFTP Gnome FTP client
NcFTP Screen based FTP client
ftp Command line FTP client

To access Internet sites, your computer must be connected to the Internet. You may be part of
a network already connected to the Internet. If you have a stand-alone computer, such as a
personal computer, you can obtain an Internet connection from an Internet service provider
(ISP). Once you have an Internet address of your own, you can configure your Linux system
to connect to the Internet and use various Internet tools to access different sites. Chapter 36
describes how to configure your Linux system to make such a connection.

The primary tools for accessing Internet sites are FTP clients and Web browsers. With FTP
clients, you can connect to a corresponding FTP site and download files from it. FTP clients
are commonly used to download software from FTP sites that operate as software
repositories. Most Linux software applications can be downloaded to your Linux system from
such sites. A distribution site like ftp.redhat.com is an example of one such FTP site, holding
an extensive set of packaged Linux applications you can download using an FTP client and
then easily install on your system. In the last few years, the Web browsers have become the
primary tool for accessing information on the Internet. Most of the tasks you perform on the
Internet may be done easily with a Web browser. You only need to use an FTP client to
download or upload files from or to a specific FTP site.

Other Internet tools are also available for your use, such as telnet and IRC clients. The telnet
protocol enables you to log into an account directly on another system. IRC clients set up chat
rooms through which you can communicate with other users over the Internet. Web clients are
discussed in the next chapter, and telnet and IRC clients are discussed in Chapter 21.

Internet Addresses

The Internet uses a set of network protocols called TCP/IP, which stands for Transmission
Control Protocol/Internet Protocol. In a TCP/IP network, messages are broken into small
components called datagrams, which are then transmitted through various interlocking routes
and delivered to their destination computers. Once received, the datagrams are reassembled
into the original message. Datagrams are also referred to as packets. Sending messages as
small components has proved far more reliable and faster than sending them as one large
bulky transmission. With small components, if one is lost or damaged, only that component
has to be resent, whereas if any part of a large transmission is corrupted or lost, the entire
message must be resent.

On a TCP/IP network such as the Internet, each computer is given a unique address called an
IP address. The IP address is used to identify and locate a particular host-a computer
connected to the network. It consists of a number, usually four sets of three numbers separated
by periods. An example of an IP address is 192.168.187.4. IP addressing is described in detail
in Chapter 39. Non-Internet machines use a gateway to connect to the Internet (see Chapters
25 and 39).

All hosts on the Internet are identified by their IP addresses. When you send a message to a
host on the Internet, you must provide its IP address. Using a sequence of four numbers of an
IP address, however, can be difficult. They are hard to remember, and it's easy to make
mistakes when typing them. To make identifying a computer on the Internet easier, the
Domain Name Service (DNS) was implemented. The DNS establishes a domain name address
for each IP address. The domain name address is a series of names separated by periods.
Whenever you use a domain name address, it is automatically converted to an IP address,
which is then used to identify that Internet host. The domain name address is far easier to use
than its corresponding IP address.

A domain name address needs to be registered with an Internet domain name registry like the
American Registry for Internet Number (ARIN) so that each computer on the Internet can
have a unique name (see www.iana.org for more information). Creating a name follows
specified naming conventions. The domain name address consists of the hostname, the name
you gave to your computer; a domain name, the name that identifies your network; and an

extension that identifies the type of network you are on. Here is the syntax for domain
addresses:

host-name.domain-name.extension

In the following example, the domain address references a computer called metalab on a
network referred to as unc. It is part of an educational institution, as indicated by the
extension edu.

metalab.unc.edu

With the whois command, you can obtain information for domain name servers about
different networks and hosts connected to the Internet. Enter whois and the domain name
address of the host or network, and whois displays information about the host, such as the
street address and phone number, as well as contact persons.

$ whois domain-address

Network File Transfer: FTP

You can use File Transfer Protocol (FTP) clients to transfer extremely large files directly
from one site to another. FTP can handle both text and binary files. This is one of the TCP/IP
protocols, and it operates on systems connected to networks that use the TCP/IP protocols,
such as the Internet. FTP performs a remote login to another account on another system
connected to you on a network, such as the Internet. Once logged into that other system, you
can transfer files to and from it. To log in, you need to know the login name and password for
the account on the remote system. For example, if you have accounts at two different sites on
the Internet, you can use FTP to transfer files from one to the other. Many sites on the Internet
allow public access using FTP, however. Many sites serve as depositories for large files
anyone can access and download. Such sites are often referred to as FTP sites, and in many
cases, their Internet address begins with the word ftp, such as ftp.gnome.org or
ftp.redhat.com. Others begin with other names, such as metalab.unc.edu. These public sites
allow anonymous FTP login from any user. For the login name, you use the word
"anonymous," and for the password you use your Internet address. You can then transfer files
from that site to your own system.

You can perform FTP operations using any one of a number of FTP client programs. For
Linux systems, you can choose from several FTP clients. Many now operate using GUI
interfaces such as Gnome. Some, such as Netscape, have limited capabilities, whereas others,
such as NcFTP, include an extensive set of enhancements. The original FTP client is just as
effective, though not as easy to use. It operates using a simple command line interface and
requires no GUI or cursor support, as do other clients.

Online FTP Resources

The Internet has a great many sites open to public access. They contain files anyone can
obtain using file transfer programs, such as NcFTP. Unless you already know where a file is
located, however, finding it can be difficult. To search for files on FTP sites, you can use
search engines provided by Web sites, such as Yahoo!, Excite, Alta Vista, Google, or Lycos.
For Linux software, you can check sites such as freshmeat.net, sourceforge.net,

rpmfind.net, apps.kde.com, and www.linuxapps.com. These sites usually search for both
Web pages and FTP files.

 Note Linux tools like Ganesha and Karchie will search FTP sites for requested software.

Web Browser-Based FTP: Netscape

You access an FTP site and download files from it with any Web browser. A Web browser is
effective for checking out an FTP site to see what files are listed there. When you access an
FTP site with a Web browser, the entire list of files in a directory is listed as a Web page. You
can move to a subdirectory by clicking its entry. Click the double periond entry (..)at the top
of the page to move back up to the parent directory. With Mozilla or Netscape Navigator, you
can easily browse through an FTP site to download files. To download a file with Mozilla,
hold down the SHIFT key and then double-click the file (for Netscape, hold the SHIFT key
down and single-click). This will start the transfer operation. This opens a box for selecting
your local directory and the name for the file (see Figure 19-1). The default name is the same
as on the remote system. Mozilla and Netscape Navigator have some important limitations.
You cannot upload a file, and you cannot download more than one file at a time. They are
useful for locating individual files, though not for downloading a large set of files, as is
usually required for a system update.

Figure 19-1: Mozilla FTP file transfer

The K Desktop File Manager: Konqueror

On the K Desktop, the desktop file manager (Konqueror) has a built-in FTP capability, as
shown in Figure 19-2. The FTP operation has been seamlessly integrated into standard
desktop file operations. Downloading files from an FTP site is as simple as copying files by
dragging them from one directory window to another, but one of the directories happens to be
located on a remote FTP site. On the K Desktop, you can use a file manager window to access
a remote FTP site. Files in the remote directory are listed just as your local files are. To
download files from an FTP site, you open a window to access that site, entering the URL for
the FTP site in the window's location box. Open the directory you want, and then open
another window for the local directory to which you want the remote files copied. In the
window showing the FTP files, select the ones you want to download. Then, simply click and

drag those files to the window for the local directory. A pop-up menu appears with choices for
Copy, Link, or Move. Select Copy. The selected files are then downloaded. Another window
then opens, showing the download progress and displaying the name of each file in turn, and a
bar indicating the percentage downloaded so far.

Figure 19-2: The K Desktop file manager (Konqueror) performing FTP operations

Gnome FTP: GNU Midnight Commander, gFTP, Nautilus

The easiest way to download files is to use the built-in FTP capabilities of the Gnome file
manager, Midnight Commander. You can also use several Gnome-based FTP clients that
offer more features, including gFTP. Check the Gnome Web site at www.gnome.org for
more. gFTP is included with the current Gnome release.

Gnome File Manager

On Gnome, the desktop file managers-GNU Midnight Commander and Nautilus- have a built-
in FTP capability much like the KDE file manager. The FTP operation has been seamlessly
integrated into standard desktop file operations. Downloading files from an FTP site is as
simple as dragging files from one directory window to another, where one of the directories
happens to be located on a remote FTP site. Use the Gnome file manager to access a remote
FTP site, listing files in the remote directory, just as local files are. Just enter the FTP URL
following the prefix ftp:// and press ENTER. The top directory of the remote FTP site will be
displayed. Simply use the file manager to progress through the remote FTP site's directory
tree until you find the file you want. Then open another window for the local directory to
which you want the remote files copied. In the window showing the FTP files, select those
you want to download. Then use a CTRL-click and drag those files to the window for the
local directory. A CTRL-click performs a copy operation, not a move. As files are
downloaded, a dialog window appears showing the progress (see Figure 19-3).

Figure 19-3: Gnome Nautilus file manager performing FTP transfers
 Note Nautilus will replace Midnight Commander in Gnome 1.4 and later versions of Red Hat.

gFTP

The gFTP program is a simpler Gnome FTP client designed to let you make standard FTP file
transfers. It has an interface similar to WS_FTP used on Windows (see Figure 19-4). The
gFTP window consists of several panes. The top-left pane lists files in your local directory,
and the top-right pane lists your remote directory. Subdirectories have folder icons preceding
their names. The parent directory can be referenced by the double period entry (..)with an up
arrow at the top of each list. Double-click a directory entry to access it. The pathnames for all
directories are displayed in boxes above each pane. You can enter a new pathname for a
different directory to change to it, if you want.

Figure 19-4: The gFTP Gnome FTP client

Two buttons between the panes are used for transferring files. The Left Arrow button, <-,
downloads selected files in the remote directory, and the Right Arrow button, ->, uploads files
from the local directory. To download a file, click it in the right-side pane and then click the
Left Arrow button, <-. When the file is downloaded, its name appears in the left-side pane,
your local directory. Menus across the top of the window can be used to manage your
transfers. A connection manager enables you to enter login information about a specific site.
You can specify whether to perform an anonymous login or to provide a user name and
password. Click the Connect button to connect to that site. A drop-down menu for sites
enables you to choose the site you want.

NcFTP

The NcFTP program, shown in Figure 19-5, has a screen-based interface that can be run from
any shell command line. It does not use a desktop interface. FTP operations are executed
using commands you enter at a prompt. Options and bookmarks can be selected using cursor-
based menus. To start up NcFTP, you enter the ncftp command on the command line. If you
are working in a window manager, such as KDE, Gnome, or FVWM, open a shell terminal
window and enter the command at its prompt. The main NcFTP screen consists of an input
line at the bottom of the screen with a status line above it. The remainder of the screen is used
to display commands and responses from remote systems. For example, when you download
files, a message specifying the files to be downloaded is displayed in the status line. NcFTP
lets you set preferences for different features, such as anonymous login, progress meters, or a
download directory. Enter the pref command to open the preferences screen. From there, you
can select and modify the listed preferences.

Figure 19-5: NcFTP

To connect to an FTP site, you enter the open command on the input line, followed by the
site's address. The address can be either an IP address or a domain name, such as
ftp.gnome.org. If you don't supply an address, then a list of your bookmarked sites is
displayed, and you can choose one from there. By default, NcFTP attempts an anonymous
login, using the term "anonymous" as your user name and your e-mail address as the
password. When you successfully connect, the status bar displays the remote site's name on
the left and the remote directory name on the right.

open ftp.gnome.org

If you want to log into a specific account on a remote site, have yourself prompted for the user
name and password by using the -u option with the open command. The open command
remembers the last kind of login you performed for a specific site and repeats it. If you want
to change back to an anonymous login from a user login, you use the -a option with the open
command. For busy sites, you may be unable to connect on the first try and you must repeat
the open process. NcFTP has a redial capability you turn on with the -r option. The -d option
sets the delay for the next attempt, and the -g option sets the maximum number of connection
attempts. With the lookup command, you can obtain the IP and domain name addresses for an
FTP site. The lookup command takes as an argument either the IP or domain name address
and then displays both. This is useful for finding a site's IP address. With the -v option, more
information, such as aliases, is retrieved. The NcFTP open options are shown in Table 19-2.

Table 19-2: NcFTP Open Options
Option Description
-a Connect anonymously
-u Connect with user name and password prompts
-p num Use specified port number when connecting
-r Redial until connected
-d num Set delay (num) in number of seconds for redial option
-g num Specify the maximum number of redials

Once connected, you enter commands on the input line to perform FTP operations such as
displaying file lists, changing directories, or downloading files. With the ls command, you can
list the contents of the current remote directory. Use the cd command to change to another
remote directory. The dir command displays a detailed listing of files. With the page
command, you view the contents of a remote file, a screen at a time. To download files, you
use the get command, and to upload files, you use the put command. During a download, a
progress meter above the status bar displays how much of the file has been downloaded so far.
The get command has several features described in more detail in the following section.
When you finish, you can disconnect from the site with the close command. You can then use
open to connect to another site, or quit the NcFTP program with the quit command. The help
command lists all NcFTP commands. You can use the help command followed by the name
of a command to display specific information on it.

The NcFTP program supports several commands that operate on your local system. These are
usually standard FTP command names preceded by an l. lcd changes your local working
directory, lls lists the contents of your local directory, lpage displays the contents of a local
file a screen at a time, and lpwd displays the local directory's full pathname. For any other
local commands or scripts you need to execute, use the shell escape command, !. Simply
precede the shell command or script with an !.

The NcFTP program also provides commands for managing files and directories on your
remote site, provided you have the permission to do so. You can use mkdir to create a remote
directory, and rmdir to remove one. Use the rm command to erase remote files. With the
rename command, you can change their names. The NcFTP commands are listed in Table
19-3.

Table 19-3: NcFTP Commands
Command Description
help [command] Lists names of NcFTP commands
cd [directory] Changes the working directory on the remote host
create [filename] Creates an empty file on the remote host, enabling you to use

the filename as a message
debug Turns debugging on or off
version Displays version information
dir Displays a detailed directory listing
echo Displays a string, useful for macros
get Downloads files from a remote host to your working

directory
lcd [directory] Changes the local working directory
lls Lists files in your local working directory
lookup host Looks up entries for remote hosts
lpage filename Displays contents of local file, a page at time
lpwd Displays the local current working directory
mkdir directory name Creates a directory on the remote host
mode mode Specifies transfer mode (b for block mode, s for stream

mode)
open [option] hostname Connects to a remote host. If no hostname is specified, the

bookmark editor displays a host list from which you can
choose one (-a forces anonymous login, -u forces user login,
-r redials automatically, -d specifies time delay before redial-
used with -r; and -g specifies the maximum number of
redials-used with -r)

page filename Displays the contents of a remote file
pdir Same as dir, but outputs to your pager, enabling you to

display a remote file list a page at a time. Used for command
line interface

pls Same as ls, but outputs to your pager. Used for command line
interface

redir Redisplays the last directory listing
predir Redisplays the last directory listing and outputs to pager if

working in command line interface
put filename Uploads a file to a remote host
pwd Displays the remote current working directory
rename orig-name new-name Changes the name of a remote file
quit Quits NcFTP
quote Sends an FTP protocol command to the remote server
rhelp [command] Sends a help request to the remote host

Table 19-3: NcFTP Commands
Command Description
rm filenames Erases remote files
rmdir directories Removes remote directories
site command Executes site-specific commands
type type Changes transfer type (ASCII, binary, image)
! command Escapes to the shell and executes the following shell

command or script

The NcFTP program also has a colon mode of operation that enables you to issue a single
ncftp command to download a file. Enter the ncftp command, followed by a URL, for the file
you want. You can enter the command on the shell command line or place it within a script.
For example, the following command downloads the readme file on the Red Hat FTP site:

$ ncftp ftp.redhat.com/pub/README

In the colon mode, the -c option sends the file to the standard output and the -m option pipes
it to your pager, usually the more program.

$ ncftp -c ftp.redhat.com/pub/README > ~/redhatinfo/readme
$ ncftp -m ftp.redhat.com/pub/README

NcFTP Download Features

The NcFTP get command differs significantly from the original FTP client's get command.
Whereas the original FTP client uses two commands, get and mget, to perform download
operations, NcFTP uses only the get command. However, the NcFTP get command combines
the capabilities of both mget and get into the get command, as well as adding several new
features. Table 19-4 lists the various get command options. By default, the NcFTP get
command performs wildcard matching for filenames. If you enter only part of a filename, the
get command tries to download all files beginning with that name. You can turn off wildcard
matching with the -G option, in which case you must enter the full names of the files you
want. The following example downloads all files with names beginning with "Xfree86" and is
similar to using mget Xfree86* in the original FTP:

Table 19-4: NcFTP get Options
Command Description
-G Turn wildcard matching for filenames on or off
-R directory Download a directory and all its subdirectories (recursive)
-f filenames Force the download of all specified files, even if older or the

same as local ones
-C Force resumption of a download from where it was

interrupted
-z remote-file local-file Rename a remote file on your local system
-n num Download files no older than the specified number of days
get Xfree86

The get command checks to see if you already have a file you are trying to download. If so, it
skips the download. The get command also checks if the file you already have is a newer
version, in which case it also skips the download. This is a helpful feature for easily
maintaining upgrade files. You can simply access the update directory on the remote site, and
then use the get command with the * to download to the directory you are using to keep your
upgrade file. Only newer versions or newly added upgrade files are downloaded, instead of
the entire set. If you want to download a file, even though you have it already, you can force
the download with the -f option. For example, to download upgrades for Red Hat manually,
you can connect to the Red Hat upgrade directory in the Red Hat FTP site and then issue the
following get command:

get *
 Note If you were interrupted during a download, you can restart the download from where

you left off. This feature is built into NcFTP. (On other FTP programs, it can be invoked
with the reget command.) NcFTP checks to see if you have already started to download
a file and then continues from where you left off.

Certain features require you to enter an option on the command line after the get command.
For example, adding the -R command specifies a recursive capability, enabling you to
download and create subdirectories and their files. This command is particularly helpful in
downloading upgrade directories, such as Red Hat's, which contain several subdirectories.
The following example downloads the i386 directory and all its subdirectories:

get -R i386

If you want to give a file a different name on your local system, use the -z option. Enter the
local filename you want after the remote filename. The following example downloads the
readme file and renames it calinfo. If you did not use the -z option, then both names would
be taken as files to be downloaded, instead of only the first.

get -z readme calinfo

To obtain recent files only, you can use the -n option, which takes as its argument a number
of days. Files older than the specified number of days are not retrieved. The following
example downloads files posted within the last 30 days:

get -n 30 *

Bookmarks and Macros

When you disconnect (close) from a site, NcFTP automatically saves information about it.
This includes the site address, the directory you were in, and the login information. This
information is placed in a file called bookmarks in your .ncftp directory. The site
information is given a bookmark name you can use to access the site easily again. The
bookmark name is usually the key name in the site's address. You can use this name to
connect to the site. For example, ftp.redhat.com could be named redhat. You could then
connect to it with the command

open redhat

You can edit your bookmark entries using the bookmark editor. Enter the command
bookmarks to bring up the editor. Remote systems you have accessed are listed on the right
side of the screen. Bookmark commands are listed on the left. You can change the bookmark
name or edit login information, such as the user name or password, the remote directory, or
the transfer mode.

The NcFTP program supports macros for simple operations. You create macros by entering
macro definitions in the macros file located in your .ncftp directory. Initially, no such file will
exist, so you have to create one using any text editor. The macros file is a simple text file you
can edit with any text editor. The syntax for a macro definition follows:

macro macro-name
 ftp-commands
end

A macro executes NcFTP commands. Remember, however, the ! is an NcFTP command that
enables you to execute any Linux command or script. With a preceding ! you can define an
NcFTP macro that executes any shell command or any script you have written. A simple
example of a macro is

macro ascii
 type ascii
end

Macros support parameters similar to those used by shell programs. Arguments entered after a
macro name can be referenced in the macro using a $ sign and the number of the argument in
the argument list. $1 references the first argument, $2 the second, and so on. $* is a special
parameter that references all arguments, and $@ references all arguments, encasing each in
double quotes.

macro cdls
 cd $1
 ls
end

The NcFTP program also supports a limited number of event macros. These are macros
executed when a certain event is detected, such as when the program starts or shuts down. For
example, a macro defined with the name .start.ncftp has its commands executed every time
you start NcFTP; .quit.ncftp executes its commands when you quit. Site-specific macros also
execute whenever it is necessary to access or disconnect from certain sites. These macros
begin with either the open or close event, followed by the site's bookmark. For example, a
macro defined with the name .open.redhat would execute its commands whenever you
connected to the Red Hat site. A macro named .open.any has its commands executed
whenever you connect to any site, and one named .close.any executes whenever you
disconnect from a site.

ftp

The name ftp designates the original FTP client used on Unix and Linux systems. ftp uses a
command line interface, and it has an extensive set of commands and options you can use to
manage your FTP transfers. You start the ftp client by entering the command ftp at a shell
prompt. If you have a specific site you want to connect to, you can include the name of that

site on the command line after the ftp keyword. Otherwise, you need to connect to the remote
system with the ftp command open. You are then prompted for the name of the remote
system with the prompt "(to)". Upon entering the remote system name, ftp connects you to
the system and then prompts you for a login name. The prompt for the login name consists of
the word "Name" and, in parentheses, the system name and your local login name. Sometimes
the login name on the remote system is the same as the login name on your own system. If the
names are the same, press ENTER at the prompt. If they are different, enter the remote
system's login name. After entering the login name, you are prompted for the password. In the
next example, the user connects to the remote system garnet and logs into the robert
account:

$ ftp
ftp> open
(to) garnet
Connected to garnet.berkeley.edu.
220 garnet.berkeley.edu FTP server ready.
Name (garnet.berkeley.edu:root): robert
password required
Password:
user robert logged in
ftp>

Once logged in, you can execute Linux commands on either the remote system or your local
system. You execute a command on your local system in ftp by preceding the command with
an exclamation point. Any Linux commands without an exclamation point are executed on the
remote system. One exception exists to this rule. Whereas you can change directories on the
remote system with the cd command, to change directories on your local system, you need to
use a special ftp command called lcd (local cd). In the next example, the first command lists
files in the remote system, while the second command lists files in the local system:

ftp> ls
ftp> !ls

The ftp program provides a basic set of commands for managing files and directories on your
remote site, provided you have the permission to do so (see Table 19-5). You can use mkdir
to create a remote directory, and rmdir to remove one. Use the delete command to erase a
remote file. With the rename command, you can change the names of files. You close your
connection to a system with the close command. You can then open another connection if you
want. To end the ftp session, use the quit or bye command.

Table 19-5: ftp Client Commands
Command Effect
ftp Invokes ftp program
open site-address Opens a connection to another system
close Closes connection to a system
quit or bye Ends ftp session
ls Lists the contents of a directory
dir Lists the contents of a directory in long form
get filename Sends file from remote system to local system

Table 19-5: ftp Client Commands
Command Effect
put filename Sends file from local system to remote system
mget regular-expression Enables you to download several files at once from a remote

system; you can use special characters to specify the files;
you are prompted one by one, in turn, for each file transfer

mput regular-expression Enables you to send several files at once to a remote system;
you can use special characters to specify the files; you are
prompted one by one for each file to be transferred

runique Toggles storing of files with unique filenames. If a file
already exists with the same filename on the local system, a
new filename is generated

reget filename Resumes transfer of an interrupted file from where you left
off

binary Transfers files in binary mode
ascii Transfers files in ASCII mode
cd directory Changes directories on the remote system
lcd directory Changes directories on the local system
help or ? Lists ftp commands
mkdir directory Creates a directory on the remote system
rmdir Deletes a remote directory
delete file name Deletes a file on the remote system
mdelete file-list Deletes several remote files at once
rename Renames a file on a remote system
hash Displays progressive hash signs during download
status Displays current status of ftp
ftp> close
ftp> bye
Good-bye
$

File Transfer

To transfer files to and from the remote system, use the get and put commands. The get
command receives files from the remote system to your local system, and the put command
sends files from your local system to the remote system. In a sense, your local system gets
files from the remote and puts files to the remote. In the next example, the file weather is sent
from the local system to the remote system using the put command:

ftp> put weather
PORT command successful.
ASCII data connection
ASCII Transfer complete.
ftp>

If a download is ever interrupted, you can resume the download with reget. This is helpful for
an extremely large file. The download resumes from where it left off, so the whole file needn't
be downloaded again. Also, be sure to download binary files in binary mode. For most FTP
sites, the binary mode is the default, but some sites might have ASCII (text) as the default.
The command ascii sets the character mode, and the command binary sets the binary mode.
Most software packages available at Internet sites are archived and compressed files, which
are binary files. In the next example, the transfer mode is set to binary, and the archived
software package mydata.tar.gz is sent from the remote system to your local system using
the get command:

ftp> binary
ftp> get mydata.tar.gz
PORT command successful.
Binary data connection
Binary Transfer complete.
ftp>

You may often want to send several files, specifying their names with wildcard characters.
The put and get commands, however, operate only on a single file and do not work with
special characters. To transfer several files at a time, you have to use two other commands,
mput and mget. When you use mput or mget, you are prompted for a file list. You can then
either enter the list of files or a file-list specification using special characters. For example, *.c
specifies all the files with a .c extension, and * specifies all files in the current directory. In
the case of mget, each file is sent, one by one, from the remote system to your local system.
Each time, you are prompted with the name of the file being sent. You can type y to send the
file or n to cancel the transmission. You are then prompted for the next file. The mput
command works in the same way, but it sends files from your local system to the remote
system. In the next example, all files with a .c extension are sent to your local system using
mget:

ftp> mget
(remote-files) *.c
mget calc.c? y
PORT command successful
ASCII data connection
ASCII transfer complete
mget main.c? y
PORT command successful
ASCII data connection
ASCII transfer complete
ftp>

Answering the prompt for each file can be a tedious prospect if you plan to download a large
number of files, such as those for a system update. In this case, you can turn off the prompt
with the prompt command, which toggles the interactive mode on and off. The mget
operation then downloads all files it matches, one after the other.

ftp> prompt
Interactive mode off.
ftp> mget
(remote-files) *.c
 PORT command successful
ASCII data connection
ASCII transfer complete
PORT command successful

ASCII data connection
ASCII transfer complete
ftp>
 Note To access a public FTP site, you have to perform an anonymous login. Instead of a login

name, you enter the keyword anonymous (or ftp). Then, for the password, you enter
your Internet address. Once the ftp prompt is displayed, you are ready to transfer files.
You may need to change to the appropriate directory first or set the transfer mode to
binary.

Automatic Login and Macros: .netrc

The ftp client has an automatic login capability and support for macros. Both are entered in a
user's ftp configuration file called .netrc. Each time you connect to a site, the .netrc file is
checked for connection information, such as a login name and password. In this way, you
needn't enter a login name and password each time you connect to a site. This feature is
particularly useful for anonymous logins. Instead of your having to enter the user name
"anonymous" and your e-mail address as your password, they can be automatically read from
the .netrc file. You can even make anonymous login information your default so that, unless
otherwise specified, an anonymous login is attempted for any FTP site to which you try to
connect. If you have sites you must log into, you can specify them in the .netrc file and, when
you connect, either automatically log in with your user name and password for that site or be
prompted for them.

Entries in the .netrc file have the following syntax. An entry for a site begins with the term
"machine," followed by the network or Internet address, and then the login and password
information.

 machine system-address login remote-login-name password password

The following example shows an entry for logging into the dylan account on the
turtle.trek.com system:

 machine golf.mygames.com login dylan password legogolf

For a site you would anonymously log into, you enter the word "anonymous" for the login
name and your e-mail address for the password.

 machine ftp.redhat.com login anonymous password dylan@turtle.trek.com

In most cases, you are using ftp to access anonymous FTP sites. Instead of trying to make an
entry for each one, you can make a default entry for anonymous FTP login. When you
connect to a site, ftp looks for a machine entry for it in the .netrc file. If none exists, then ftp
looks for a default entry and uses that. A default entry begins with the term "default" with no
network address. To make anonymous logins your default, enter anonymous and your e-mail
address as your login and password.

 default login anonymous password
dylan@turtle.trek.com

A sample .netrc file with a machine definiton and a default entry is shown here.

.netrc

machine golf.mygames.com login dylan password legogolf
default login anonymous password dylan@turtle.trek.com

You can also define macros in your .netrc file. With a macro, you can execute several ftp
operations at once using only the macro name. Macros remain in effect during a connection.
When you close a connection, the macros are undefined. Although a macro can be defined on
your ftp command line, defining them in .netrc entries makes more sense. This way, you
needn't redefine them again. They are read automatically from the .netrc file and defined for
you. You can place macro definitions within a particular machine entry in the .netrc file or in
the default entry. Macros defined in machine entries are defined only when you connect to
that site. Macros in the default entry are defined whenever you make a connection to any site.

The syntax for a macro definition follows. It begins with the keyword macdef, followed by
the macro name you want to give it, and ends with an empty line. ftp macros can take
arguments, referenced within the macro with $n, where $1 references the first argument, and
$2 the second, and so on. If you need to use a $ character in a macro, you have to quote it
using the backslash, \$.

macdef macro-name
ftp commands
empty-line

The redupd macro, defined next, changes to a directory where it then downloads Red Hat
updates for the current release. It also changes to a local directory where the update files are
to be placed. The prompt command turns off the download prompts for each file. The mget
command then downloads the files. The macro assumes you are connected to the Red Hat
FTP site.

defmac redupd
cd pub/redhat/current
lcd /root/redupdate
prompt
mget *

A sample .netrc file follows with macros defined for both specific and default entries. An
empty line is placed after each macro definition. You can define several macros for a machine
or the default entry. The macro definitions following a machine entry up to the next machine
entry are automatically defined for that machine connection.

.netrc

machine updates.redhat.com login anonymous password
dylan@turtle.trek.com
define a macro for downloading updated from the Red Hat site
defmac redupd
cd pub/redhat/current
lcd /root/redupdate
prompt
mget *

default login anonymous password dylan@turtle.trek.com

defmac lls
!ls

Chapter 20: The World Wide Web and Java
Overview

The World Wide Web (WWW, or the Web) is a hypertext database of different types of
information, distributed across many different sites on the Internet. A hypertext database
consists of items linked to other items, which, in turn, may be linked to yet other items, and so
on. Upon retrieving an item, you can use that item to retrieve any related items. For example,
you could retrieve an article on the Amazon rain forest and then use it to retrieve a map or a
picture of the rain forest. In this respect, a hypertext database is like a web of interconnected
data you can trace from one data item to another. Information is displayed in pages known as
Web pages. On a Web page, certain keywords are highlighted that form links to other Web
pages or to items, such as pictures, articles, or files.

The Web links data across different sites on the Internet throughout the world. The Web
originated in Europe at CERN research laboratories, and CERN remains the original Web
server. An Internet site that operates as a Web server is known as a Web site. Such Web sites
are often dedicated to specialized topics or institutions-for example, the Smithsonian Web site
or the NASA Web site. These Web sites usually have an Internet address that begins with
"www", as in www.redhat.com, the Web site for Red Hat, Inc. Once connected to a Web site,
you can use hypertext links to move from one Web page to another.

To access the Web, you use a client program called a browser. You can choose from many
different Web browsers. Browsers are available for use on Unix, Windows, the Mac, and
Linux. Certain browsers, such as Netscape and Mozilla, have versions that operate on all such
systems. On your Linux system, you can choose from several Web browsers, including
Netscape Navigator. Navigator is available as part of all Linux distributions. Netscape and
Mozilla are X Windows-based browsers that provide full picture, sound, and video display
capabilities. Most distributions also include the Lynx browser, a line-mode browser that
displays only lines of text. The K Desktop incorporates Web browser capabilities into its file
manager, letting a directory window operate as a Web browser. Gnome-based browsers, such
as Express and Mnemonic, are also designed to be easily enhanced.

URL Addresses

An Internet resource is accessed using a Universal Resource Locator (URL). A URL is
composed of three elements: the transfer protocol, the hostname, and the pathname. The
transfer protocol and the hostname are separated by a colon and two slashes, ://. The
pathname always begins with a single slash.

transfer-protocol://host-name/path-name

The transfer protocol is usually HTTP (Hypertext Transfer Protocol), indicating a Web page.
Other possible values for transfer protocols are gopher, ftp, and file. As their names suggest,

gopher and ftp initiate Gopher and FTP sessions, whereas file displays a local file on your
own system, such as a text or an HTML file. Table 20-1 lists the various transfer protocols.

Table 20-1: Web Protocols
Protocol Description
http Hypertext Transfer Protocol for Web site access
gopher Access Gopher site
ftp File Transfer Protocol for anonymous FTP connections
telnet Makes a telnet connection
wais Access WAIS site
news Reading Usenet news; uses Net News Transfer Protocol (NNTP)

The hostname is the computer on which a particular Web site is located. You can think of this
as the address of the Web site. By convention, most hostnames begin with www. In the next
example, the URL locates a Web page called guides.html on the www.kernel.org Web site in
the LDP directory:

http://www.kernel.org/LDP/guides.html

If you do not want to access a particular Web page, you can leave the file reference out, and
then you automatically access the Web site's home page. To access a Web site directly, use its
hostname. If no home page is specified for a Web site, the file index.html in the top directory
is often used as the home page. In the next example, the user brings up the Red Hat home
page:

http://www.redhat.com/

The pathname specifies the directory where the resource can be found on the host system, as
well as the name of the resource's file. For example, /pub/Linux/newdat.html references an
HTML document called newdat located in the /pub/Linux directory. As you move to other
Web pages on a site, you may move more deeply into the directory tree. In the following
example, the user accesses the FAQ.html document in the directory
support/docs/faqs/rhl_general_faq/FAQ.html/:

http://
http://www.redhat.com/support/docs/faqs/rhl_general_faq/FAQ.html

As just explained, if you specify a directory pathname without a particular Web page file, the
Web site looks for a file called index.html in that directory. An index.html file in a directory
operates as the default Web page for that directory. In the next example, the index.html Web
page in the /apps/support directory is displayed:

http://www.redhat.com/apps/support/index.html

You can use this technique to access local Web pages on your system. For example, once
installed, the demo Web pages for Java are located in /usr/local/java/. Because this is on your
local system, you needn't include a hostname. An index.html page in the /usr/ local/java/
directory is automatically displayed when you specify the directory path. You can do the same

for your system documentation, which, on most distributions, is in Web page format located
in the /usr/doc/HTML/ldp directory.

file:/usr/local/java
file:/usr/doc/HTML/ldp

Table 20-2: Web File Types
File Type Description
.html Web page document formatted using HTML, the Hypertext

Markup Language
Graphics Files
.gif Graphics, using GIF compression
.jpeg Graphics, using JPEG compression
Sound Files
.au Sun (UNIX) sound file
.wav Microsoft Windows sound file
.aiff Macintosh sound file
Video Files
.QT QuickTime video file, multiplatform
.mpeg Video file
.avi Microsoft Windows video file

If you reference a directory that has no index.html file, the Web server creates one for you,
and your browser then displays it (see Chapter 25). This index simply lists the different files
and directories in that directory. You can click an entry to display a file or to move to another
directory. The first entry is a special entry for the parent directory.

The resource file's extension indicates the type of action to be taken on it. A picture has a .gif
or .jpeg extension and is converted for display. A sound file has a .au or .wav extension and
is played. The following URL references a .gif file. Instead of displaying a Web page, your
browser invokes a graphics viewer to display the picture. Table 20-2 provides a list of the
different file extensions.

http://www.train.com/engine/engine1.gif

Web Pages

A Web page is a specially formatted document that can be displayed by any Web browser.
You can think of a Web page as a word processing document that can display both text and
graphics. Within the Web page, links can be embedded that call up other Internet resources.
An Internet resource can be a graphic, a file, a telnet connection, or even another Web page.
The Web page acts as an interface for accessing different Internet tools, such as FTP to
download files or telnet to connect to an online catalog or other remote service.

Web pages display both text and graphics. Text is formatted with paragraphs and can be
organized with different headings. Graphics of various sizes may be placed anywhere in the
page. Throughout the page there are usually links you can use to call up other Internet

resources. Each link is associated with a particular Internet resource. One link may reference a
picture; another, a file. Others may reference other Web pages or even other Web sites. These
links are specially highlighted text or graphics that usually appear in a different color from the
rest of the text. Whereas ordinary text may be black, text used for links might be green, blue,
or red. You select a particular link by moving your mouse pointer to that text or picture, and
then clicking it. The Internet resource associated with that link is then called up. If the
resource is a picture, the picture is displayed. If it is another Web page, that Web page is
displayed. If the Internet resource is on another Web site, that site is accessed. The color of a
link indicates its status and the particular Web browser you are using. Both Mozilla and
Netscape browsers by default use blue for links you have not yet accessed. Both use the color
purple for links you have already accessed. All these colors can be overridden by a particular
Web page.

Your Web browser keeps a list of the different Web pages you access for each session. You
can move back and forth easily in that list. Having called up another Web page, you can use
your browser to move back to the previous one. Web browsers construct their lists according
to the sequence in which you displayed your Web pages. They keep track of the Web pages
you are accessing, whatever they may be. On many Web sites, however, several Web pages
are meant to be connected in a particular order, like chapters in a book. Such pages usually
have buttons displayed at the bottom of the page that reference the next and previous pages in
the sequence. Clicking Next displays the next Web page for this site. The Home button
returns you to the first page for this sequence.

Web Browsers

Most Web browsers are designed to access several different kinds of information. Web
browsers can access a Web page on a remote Web site or a file on your own system. Some
browsers can also access a remote news server or an FTP site. The type of information for a
site is specified by the keyword http for Web sites, nntp for news servers, ftp for FTP sites,
and file for files on your own system.

To access a Web site, you enter http:// followed by the Internet address of the Web site. If
you know a particular Web page you want to access on that Web site, you can add the
pathname for that page, attaching it to the Internet address. Then simply press ENTER. The
browser connects you to that Web site and display its home page or the page you specified.

You can just as easily use a Web browser to display Web pages on your own system by
entering the term file followed by a colon, file:, with the pathname of the Web page you want
to display. You do not specify an Internet site. Remember, all Web pages usually have the
extension .html. Links within a Web page on your own system can connect you to other Web
pages on your system or to Web pages on remote systems. When you first start a Web
browser, your browser displays a local Web page on your own system. The default page on
Red Hat is a local page with links to the Red Hat Web site where you can obtain online
support. If you want, you can create your own Web pages, with their own links, and make one
of them your default Web page.

Web pages on a Web site often contain links to other Web pages, some on the same site and
others at other Web sites. Through these links, you can move from one page to another. As
you move from Web page to Web page using the links or buttons, your browser displays the
URL for the current page. Your browser keeps a list of the different Web pages you have

accessed in a given session. Most browsers have buttons that enable you to move back and
forth through this list. You can move to the Web page you displayed before the current one
and then move back further to the previous one. You can move forward again to the next
page, and so on.

To get to a particular page, you may have moved through a series of pages, using links in each
to finally reach the Web page you want. To access any Web page, all you need is its URL
address. If you want to access a particular page again, you can enter its URL address and
move directly to it, without moving through the intervening pages as you did the first time.
Instead of writing down the URL addresses and entering them yourself, most Web browsers
can keep bookmarks-a list of favorite Web pages you want to access directly. When you are
displaying a Web page you want to access later, instruct your browser to place it on the
Bookmarks list. The Web page is usually listed in the Bookmarks list by its title, not its URL.
To access that Web page later, select the entry in the Bookmark list.

Most Web browsers can also access FTP and Gopher sites. You may find using a Web
browser to access an FTP site with anonymous access is easier than using an FTP client.
Directories and files are automatically listed, and selecting a file or directory is only a matter
of clicking its name. First enter ftp:// and then the Internet address of the FTP site. The
contents of a directory are then displayed, listing files and subdirectories. To move to another
directory, just click it. To download a file, click its name. You see an entry listed as double
periods (..), representing the parent directory. You can move down the file structure from one
subdirectory to another and move back up one directory at a time by selecting double periods
(..). To leave the FTP site, return to your own home page. You can also use your browser to
access Gopher sites. Enter gopher:// followed by the Internet address of the Gopher site. Your
Web browser then displays the main Gopher menu for that site, and you can move from one
Gopher menu to the next.

Most browsers can connect to your news server to access specified newsgroups or articles.
This is a local operation, accessing the news server to which you are already connected. You
enter nntp followed by a colon and the newsgroup or news article. Some browsers, such as
Netscape, have an added newsreader browser that allows them to access any remote news
servers.

As noted previously, several popular browsers are available for Linux. Three distinctive ones
are described here: Netscape Navigator, Konqueror, and Lynx. Netscape is an X Windows-
based Web browser capable of displaying graphics, video, and sound, as well as operating as
a newsreader and mailer. Konqueror is the K Desktop file manager. KDE has integrated full
Web-browsing capability into the Konqueror file manager, letting you seamlessly access the
Web and your file system with the same application. Lynx and Links are command line-based
browsers with no graphics capabilities but in every other respect are fully functional Web
browsers.

Netscape Navigator and Mozilla

Hypertext databases are designed to access any kind of data, whether it is text, graphics,
sound, or even video. Whether you can actually access such data depends to a large extent on
the type of browser you use. Mozilla is a browser based on the Netscape core source code
known as mozilla. In 1998, Netscape made this source code freely available under the
Netscape Public License (NPL). The Mozilla Project based at www.mozilla.org is developing

a commercial-level browser based on mozilla source code. Mozilla is developed on an open
source model much like Linux, KDE, and Gnome. Developers can submit modifications and
additions over the Internet to the Mozilla Web site. Mozilla releases are referred to as
Milestones. Mozilla is currently released under both the NPL license for modifications of
mozilla code and the MPL license (Mozilla Public License) for new additions. In future
releases, Red Hat will use Mozilla as its primary browser, in place of Netscape.

Mozilla is an X Windows application you operate from your desktop. Red Hat has a Mozilla
entry in the desktop's Internet menu. Mozilla displays an area at the top of the screen for
entering a URL address and a series of buttons for various Web page operations. Drop-down
menus provide access to Mozilla features. To access a Web site, you enter its address in the
URL area and press ENTER. The icon bar across the top of the browser holds buttons for
moving from one page to another and performing other operations (see Figure 20-1).

Figure 20-1: Mozilla Web browser

Mozilla refers to the URLs of Web pages you want to keep in a hotlist as bookmarks, marking
pages you want to access directly. The Bookmarks menu enables you add your favorite Web
pages to a hotlist. You can then view your bookmarks and select one to view. You can also
edit your list of bookmarks, adding new ones or removing old ones. History is a list of
previous URLs you have accessed. If you want to return to a Web page you did not save as a
bookmark, you can find it in the History list. Additionally, you can use Mozilla to receive and
send mail, as well as to access Usenet newsgroups.

The Options menu in Mozilla enables you to set several different kinds of preferences for
your browser. You can set preferences for mail and news, the network, and security, as well
as general preferences. In general preferences, you can determine your home page and how
you want the toolbar displayed. In the Mail/News Account Settings, you can enter the mail
and news servers you use on the Internet. Mozilla can be set to access any number of news
servers you subscribe to that use the NNTP transfer protocols. You can switch from one news
server to another if you want.

If you are on a network that connects to the Internet through a firewall, you must use the
Proxies screen to enter the address of your network's firewall gateway computer. A firewall is
a computer that operates as a controlled gateway to the Internet for your network. Several
types of firewalls exist. One of the most restrictive uses programs called proxies, which
receive Internet requests from users and then make those requests on their behalf. There is no
direct connection to the Internet. From the Options menu, select Network and then choose the
Proxies screen. Here, enter the IP address of your network's firewall gateway computer.

Through the Mail item in the Tasks menu, you can open a fully functional mail client with
which you can send and receive messages over the Internet. The News item, also in the Tasks
menu, opens a fully functional newsreader with which you can read and post articles in
Usenet newsgroups. In this respect, your Mozilla is more than just a Web browser. It is also a
mail program and a newsreader.

One of the more popular Web browsers is Netscape Navigator. Versions of Netscape operate
on different graphical user interfaces such as X Windows, Microsoft Windows, and the
Macintosh. Using X Windows, the Netscape browser can display graphics, sound, video, and
Java-based programs (you learn about Java a little later in the chapter). You can obtain more
information about Netscape on its Web site: www.netscape.com. Netscape Navigator is now
included with Red Hat Linux 7.1, but will be replaced in future releases with Mozilla. You
can obtain more recent versions from the Red Hat distribution FTP site at ftp.redhat.com.

K Desktop File Manager: Konqueror

If you are using the K Desktop, then you can use a file manager window as a Web browser, as
shown in Figure 20-2. The K Desktop's file manager is automatically configured to act as a
Web browser. It can display Web pages, including graphics and links. The K Desktop's file
manager supports standard Web page operation, such as moving forward and backward
through accessed pages. Clicking a link accesses and displays the Web page referenced. In
this respect, the Web becomes seamlessly integrated into the K Desktop.

Figure 20-2: The K Desktop file manager as a Web browser

Gnome Web Browsers: Nautilus, Galeon, Express, and Mnemonic

The new Gnome file manager, Nautilus, used in Gnome 1.4, is a functional Web browser, just
like Konqueror (see Figure 8-11 in Chapter 8). In the Nautilus location box you can enter a

Web address and Nautilus will access and display that Web page. The file manager Forward
and Backward buttons, as well as bookmarks, help you navigate through previously viewed
pages. However, it is not a fully functional Web browser. Nautilus will display icons in its
sidebar for dedicated Web browsers installed on your system. Click on one to start using that
Web browser instead of Nautilus.

 Note Midnight Commander, the Gnome 1.2 file manager used in Red Hat 7.1, does not have
Web browser capability.

Several other Gnome-based Web browsers are also available. Galeon, Express, and
Mnemonic support standard Web operations. Galeon is a Gnome Web browser designed to be
fast with a very light interface. It supports drag-and-drop operations, multiple selections, and
bookmark imports. It is based on Gecko (the mozilla rendering engine). You can find out
more about Galeon at galeon.sourceforge.net. Express is designed to rely on plug-ins for
Web features. This way, the browser can be made as complex or simple as you want. All
major operations, such as viewers and protocols, are handled as plug-ins. This design allows
new features to be easily added in this way. Mnemonic is an extensible and modular Web
browser.

Lynx: Line-Mode Browser

Lynx is a line-mode browser you can use without X Windows. A Web page is displayed as
text only (see Figure 20-3). A text page can contain links to other Internet resources, but does
not display any graphics, video, or sound. Except for the display limitations, Lynx is a fully
functional Web browser. You can use Lynx to download files or to make telnet connections.
All information on the Web is still accessible to you. Because it does not require much of the
overhead that graphics-based browsers need, Lynx can operate much faster, quickly
displaying Web page text. To start the Lynx browser, you enter lynx on the command line and
press ENTER.

Figure 20-3: Lynx Web browser

The links are displayed in bold and dispersed throughout the text of the Web page. A selected
link is highlighted in reverse video with a shaded rectangle around the link text. The first link
is automatically selected. You can then move sequentially from one link to the next on a page
by pressing the DOWN ARROW key. The UP ARROW key moves you back to a previous
link. To choose a link, first highlight it and then press either ENTER or the RIGHT ARROW
key. If you want to go to a specific site, press G. This opens a line at the bottom of the screen
with the prompt URL to open:. There, you can enter the URL for the site you want. Pressing
M returns you to your home page. The text of a Web page is displayed one screen at a time.

To move to the next screen of text, you can either press SPACEBAR or PAGE DOWN.
PAGE UP displays the previous screen of text. Pressing DOWN ARROW and UP ARROW
moves to the next or previous links in the text, displaying the full screen of text around the
link. To display a description of the current Web page with its URL, press the = key.

 Note Another useful text-based browser shipped with Red Hat Linux is links. links provides
frame and table support.

Lynx uses a set of one-letter commands to perform various browser functions. By pressing the
? key at any time, you can display a list of these commands. For example, pressing the D key
downloads a file. The H key brings up a help menu. To search the text of your current Web
page, press the / key. This opens a line at the bottom of the screen where you enter your
search pattern. Lynx then highlights the next instance of that pattern in the text. If you press
N, Lynx displays the next instance. The \ key toggles you between a source and a rendered
version of the current Web page, showing you the HTML tags or the formatted text.

Java for Linux: Blackdown

To develop Java applications, use Java tools, and run many Java products, you must install the
Java 2 Software Development Kit (SDK) and the Java 2 Runtime Environment (JRE) on your
system. Together they make up the Java 2 Platform, Standard Edition (J2SE). Sun currently
supports and distributes Linux versions of these products. You can download them from Sun
at java.sun.com/j2se/1.3 and install them on your system. You can even select an RPM
package version for easy installation on Red Hat. The current version of the J2SE is known as
Java version 1.3. An earlier version, 1.2, will not work on Red Hat 7.0, though 1.3 will work
on 7.1.

Though Sun supports Linux versions of Java, more thorough and effective Linux ports of Java
can be obtained from the Blackdown project at www.blackdown.org. The Blackdown project
has ported the J2SE, including versions 1.3 of the SDK and JRE. They have also ported
previous versions of Java, including 1.1 and 1.2. More information and documentation are
also available at this Blackdown Web site. The SDK and JRE 1.3 are usually available in the
form of compressed archives, .tar.bz2. You use the b2unzip command to decompress the file
and the tar xvf command to extract it. Extraction should be done in the /usr/local file. Follow
the instructions in the INSTALL file to install the software.

Numerous additional Java-based products and tools are currently adaptable for Linux. Tools
include Java 3D, Java Media Framework (JMF), and Java Advanced Imaging (JAI), all
Blackdown projects (see Table 20-3). Many of the products run directly as provided by Sun.
These include the HotJava Web browser and the Java Web server. You can download several
directly from the Sun Java Web site at java.sun.com.

Table 20-3: Blackdown Java Packages and Java Web Applications
Application Description
Java 2 Software Development
Kit (SDK) 1.3

A Java development environment with a compiler,
interpreters, debugger, and more. Part of the Java 2
Platform. Download the Linux port from
www.blackdown.org.

Java 2 Runtime Environment 1.3 A Java Runtime Environment used to run Java applets. Part

Table 20-3: Blackdown Java Packages and Java Web Applications
Application Description
(J2RE) of the Java 2 Platform. Download the Linux port from

www.blackdown.org.
Java 2 Platform SE (J2SE) for
Linux

Java 2 Platform, Standard Edition, which includes Java 2
SDK and RE. Download the Linux port from
www.blackdown.org.

Java 3D for Linux Sun's 3D Application Program Interface for 3D Java
programs. Download the Linux port from
www.blackdown.org.

Java Media Framework (JMF)
for Linux

Enable audio and video to be added to Java. Download the
Linux port from www.blackdown.org.

Java Advanced Imaging (JAI)
for Linux

Java Advanced Imaging API. Download the Linux port
from www.blackdown.org.

Java 1.1 Development Kit (JDK)
and Java 1.1 Runtime
Environment (JRE)

The older Java 1.1 development environment with a
compiler, interpreters, debugger, and more. Download the
Linux port for your distribution's update through
www.blackdown.org.

HotJava browser Sun's HTML 3.2- and JDK 1.1-compliant Web browser.
Download the Linux version from java.sun.com.

Java Web Server A Web server implemented with Java. Available at Java
Web site at java.sun.com.

 Note See java.sun.com/products for an extensive listing of Java applications.

The Java 2 Software Development Kit: SDK

The Java Software Development Kit (SDK) provides tools for creating and debugging your
own Java applets and provides support for Java applications, such as the HotJava browser.
The kit includes demonstration applets with source code. You can obtain detailed
documentation about the SDK from the Sun Web site at java.sun.com. Two major releases of
the SDK are currently available-1.2, 1.3.x-with corresponding versions for the Java 2 Runtime
Environment (J2RE) for 1.2 and 1.3. JAVA SDK adds capabilities for security, Swing, and
running Java enhancements, such as Java3D and Java Sound.

 Note Red Hat 7.1 still uses JRE 1.1, an earlier version of the J2RE that is compatible with
older browsers.

SDK includes standard features found in the JDK features for internationalization, signed
applets, JAR file format, AWT (window toolkit) enhancements, JavaBeans component model,
networking enhancements, a math package for large numbers, database connectivity (JDBC),
Object Serialization, and Inner Classes. Java applications include a Java compiler, javac; a
Java debugger, jdb; and an applet viewer, appletviewer. In addition, the SDK offers the Java
Naming and Directory Interface (JNDI), integrated Swing, Java 2d, network and security
enhancements, and CORBA. With SDK, you can run the Blackdown port of Java 3D, Java
Advanced Imaging, Java Media Framework, and Java Sound. Detailed descriptions of these
features can be found in the SDK documentation.

Java Applets

You create a Java applet much as you would create a program using a standard programming
language. You first use a text editor to create the source code, which is saved in a file with a
.java extension. Then you can use the javac compiler to compile the source code file,
generating a Java applet. This applet file has the extension .class. For example, the JDK demo
directory includes the Java source code for a Blink applet called Blink.java. You can go to
that directory and then compile the Blink.java file, generating a Blink.class file. The
example1.html file in that directory runs the Blink.class applet. Start your browser and
access this file to run the Blink applet.

javac Blink.java

An applet is called within a Web page using the <applet> HTML tag. This tag can contain
several attributes, one of which is required: code. You assign to code the name of the
compiled applet. You can use several optional attributes to set features, such as the region
used to display the applet and its alignment. You can even access applets on a remote Web
site. In the following example, the applet called Blink.class is displayed in a box on the Web
browser that has a height of 140 pixels and a width of 100 pixels, and is aligned in the center.

<applet code="Blink.class" width=100 height=140
align=center></applet>

To invoke the debugger, use the appletviewer command with the -debug option and the
name of the HTML file that runs the applet.

appletviewer -debug mypage.html

Numerous Interface Development Environments (IDE) applications are available for
composing Java applets and applications. Although most are commercial, some provide free
shareware versions. An IDE provides a GUI interface for constructing Java applets. You can
link to and download several IDE applications through the Blackdown Web page.

Web Search Utilities

To search for files on FTP sites, you can use search engines provided by Web sites, such as
Yahoo!, Excite, Google, Alta Vista, or Lycos. These usually search for both Web pages and
FTP files. To find a particular Web page you want on the Internet, you can use any number of
online search sites such as Google, Yahoo!, Excite, Alta Vista, or Lycos. You can use their
Web sites or perform searches from any number of Web portals, such as Netscape or Linux
online. Web searches have become a standard service of most Web sites. Searches carried out
on documents within a Web site may use local search indexes set up and maintained by
indexing programs like ht:/Dig and WAIS. Sites using ht:/Dig use a standard Web page search
interface, where WAIS provides its own specialized client programs like swais and xwais.
WAIS is an older indexing program currently being supplanted by newer search applications
like ht:/Dig. You can still obtain a free version of WAIS, called freeWAIS, from
ftp.cnidr.org.

Creating Your Own Web Site

To create your own Web site, you need access to a Web server. Red Hat automatically installs
the Apache Web server on its Linux systems. You can also rent Web page space on a remote
server-a service many ISPs provide, some free. On Red Hat systems, the directory set up by
your Apache Web server for your Web site pages is /var/httpd/html. Other servers provide
you with a directory for your home page. Place the Web pages you create in that directory.
You place your home page here. You can make other subdirectories with their own Web
pages to which these can link. Web pages are not difficult to create. Links from one page to
another move users through your Web site. You can even create links to Web pages or
resources on other sites. Many excellent texts are available on Web page creation and
management.

Web Page Composers

Web pages are created using HTML, the Hypertext Markup Language, which is a subset of
Standard Generalized Markup Language (SGML). Creating an HTML document is a matter
of inserting HTML tags in a text file. In this respect, creating a Web page is as simple as using
a tag-based word processor. You use the HTML tags to format text for display as a Web page.
The Web page itself is a text file you can create using any text editor, such as Vi. If you are
familiar with tag-based word processing on Unix systems, you will find it conceptually
similar to nroff. Some HTML tags indicate headings, lists, and paragraphs, as well as links to
reference Web resources.

Instead of manually entering HTML code, you can use Web page composers. A Web page
composer provides a graphical interface for constructing Web pages. The Linux version of
WordPerfect can automatically generate a Web page from a WordPerfect document. You can
create Web pages using all the word processing features of WordPerfect and Star Office.
Special Web page creation programs, such as Netscape Composer, also can easily help you
create complex Web pages without ever having to type any HTML tags explicitly. Remember,
though, no matter what tool you use to create your Web page, the Web page itself will be an
HTML document.

 Note Many of the standard editors for the K Desktop and Gnome include Web page
construction features. Many enable you to insert links or format headings. For example,
the kedit program supports basic text-based Web page components. You can add
headings, links, or lines, but not graphics.

Common Gateway Interfaces

A Common Gateway Interface (CGI) script is a program a Web server at a Web site can use
to interact with Web browsers. When a browser displays a Web page at a particular Web site,
the Web page may call up CGI programs to provide you with certain real- time information or
to receive information from you. For example, a Web page may execute the server's date
command to display the current date whenever the Web page is accessed.

A CGI script can be a Linux shell script, a Perl script, a Tcl/Tk program, or a program
developed using a programming language such as C. Two special HTML operations are also
considered CGI scripts: query text and forms. Both receive and process interactive responses
from particular users. You have seen how a user can use a browser to display Web pages at a

given Web site. In effect, the user is receiving information in the form of Web pages from the
Web site. A user can also, to a limited extent, send information back to the Web site. This is
usually information specifically prompted for in a Web page displayed by your browser. The
Web server then receives and processes that information using the CGI programs.

A form is a Web page that holds several input fields of various types. These can be input
boxes for entering text or check boxes and radio buttons that users simply click. The text
boxes can be structured, allowing a certain number of characters to be entered, as in a phone
number. They can also be unstructured, enabling users to type in sentences as they would for
a comment. Forms are referred to as form-based queries. After entering information into a
form, the user sends it back to the server by clicking a Submit button. The server receives the
form and, along with it, instructions to run a specific CGI program to process the form.

Chapter 21: Network Tools
Overview

You can use a variety of network tools to perform tasks such as obtaining information about
other systems on your network, accessing other systems, and communicating directly with
other users. Network information can be obtained using utilities such as ping, finger, and host.
Talk, ICQ, and IRC clients enable you to communicate directly with other users on your
network. telnet performs a remote login to an account you may have on another system
connected on your network. Each has a corresponding K Desktop or Gnome version. These
provide a GUI interface, so you no longer have to use the shell command line to run these
tools. In addition, your network may make use of older remote access commands. These are
useful for smaller networks and enable you to access remote systems directly to copy files or
execute commands.

Network Information: ping, finger, and host

You can use the ping, finger, traceroute, and host commands to find out status information
about systems and users on your network. ping is used to check if a remote system is up and
running. You use finger to find out information about other users on your network, seeing if
they are logged in or if they have received mail. host displays address information about a
system on your network, giving you a system's IP and domain name addresses. traceroute
can be used to track the sequence of computer networks and systems your message passed
through on its way to you. Table 21-1 lists various network information tools.

Table 21-1: Network Tools
Network Information Tool Description
ping Detects whether a system is connected to the network.
finger Obtains information about users on the network.
who Checks what users are currently online.
host Obtains network address information about a remote host.
traceroute Tracks the sequence of computer networks and hosts your

message passes through.

Table 21-1: Network Tools
Network Information Tool Description
knu The KDE Network utilities featuring finger, ping, traceroute,

and host commands.
Gnetutil The Gnome Network utilities featuring finger, ping,

traceroute, and host commands.
gfinger Gnome finger client.
KFinger Kde finger utility.
gHostLookup Gnome utility to find IP addresses for hostnames.
Gwhois Obtains information about networks, hosts, and users.

On the Gnome desktop, the Gnetutil utility provides a Gnome interface for entering the ping,
finger, and host commands. On the K Desktop, you can use the KDE network utilities (knu)
to issue ping , finger, traceroute, and host commands. Select the appropriate tabbed panel.
For the Ping panel, enter the address of the remote system at the box labeled Host and click
Go. The results are displayed in the pane below, as shown in Figure 21-1. Neither utility is
installed on Red Hat 7.1, though you can obtain packages from apps.kde.org and
www.gnome.org.

Figure 21-1: K Desktop network utilities (knu) showing ping

ping

The ping command detects whether a system is up and running. ping takes as its argument the
name of the system you want to check. If the system you want to check is down, ping issues a
timeout message indicating a connection could not be made. The next example checks to see
if www.redhat.com is up and connected to the network:

$ ping www.redhat.com
PING www.portal.redhat.com (206.132.41.231): 56 data bytes
64 bytes from 206.132.41.231: icmp_seq=0 ttl=248 time=24.0 ms
64 bytes from 206.132.41.231: icmp_seq=1 ttl=248 time=124.5 ms
64 bytes from 206.132.41.231: icmp_seq=2 ttl=248 time=77.9 ms
64 bytes from 206.132.41.231: icmp_seq=3 ttl=248 time=220.1 ms
64 bytes from 206.132.41.231: icmp_seq=4 ttl=248 time=14.9 ms

--- www.portal.redhat.com ping statistics ---
6 packets transmitted, 5 packets received, 16% packet loss
round-trip min/avg/max = 14.9/92.2/220.1 ms

You can also use ping with an IP address instead of a domain name. With an IP address, ping
can try to detect the remote system directly without having to go through a domain name
server to translate the domain name to an IP address. This can be helpful for situations where
your network's domain name server may be temporarily down and you want to check if a
particular remote host on your network is connected. In the next example, the user checks the
Red Hat site using its IP address:

$ ping 206.132.41.231
PING 206.132.41.231 (206.132.41.231): 56 data bytes
64 bytes from 206.132.41.231: icmp_seq=0 ttl=248 time=16.6 ms
64 bytes from 206.132.41.231: icmp_seq=1 ttl=248 time=65.1 ms
64 bytes from 206.132.41.231: icmp_seq=2 ttl=248 time=70.1 ms
64 bytes from 206.132.41.231: icmp_seq=3 ttl=248 time=336.6 ms
64 bytes from 206.132.41.231: icmp_seq=4 ttl=248 time=53.6 ms
64 bytes from 206.132.41.231: icmp_seq=5 ttl=248 time=42.1 ms

--- 206.132.41.231 ping statistics ---
6 packets transmitted, 6 packets received, 0% packet loss
round-trip min/avg/max = 16.6/97.3/336.6 ms
 Note ping operation could also fail if ping access is denied by a network's firewall. See

Chapter 39 for more details.

finger and who

You can use the finger command to obtain information about other users on your network and
the who command to see what users are currently online on your system. The who command
lists all users currently connected along with when, how long, and where they logged in. It has
several options for specifying the level of detail. who is meant to operate on a local system or
network. finger operates on large networks, including the Internet. finger checks to see when
a user last logged in, the type of shell that he or she is using, the pathname of the home
directory, and whether any mail has been received. finger then checks for a .plan file in a
user's home directory that may contain information about the user. The .plan file is a file you
create yourself on your own home directory. You can place information you want made
publicly available into the .plan file. You can enter the command finger on the command line
with the login name of the user you want to check.

On the Gnome desktop you can use the gfinger utility to issue finger commands, and in the K
Desktop you can use the KDE network utilities (knu). Click the Finger panel and enter the
address of the host you want to check. On the K Desktop, the KFinger tool also provides a
GUI for easily sending finger queries. It features entries for users and remote servers. You can
search for users on specific remote systems.

host

With the host command, you can find network address information about a remote system
connected to your network. This information usually consists of a system's IP address, domain
name address, domain name nicknames, and mail server. This information is obtained from
your network's domain name server. For the Internet, this includes all systems you can
connect to over the Internet.

The host command is an effective way to determine a remote site's IP address or URL. If you
have only the IP address of a site, you can use host to find out its domain name. For network

administration, an IP address can be helpful for making your own domain name entries in
your /etc/host file. That way, you needn't rely on a remote domain name server (DNS) for
locating a site. On the K Desktop, you can use the KDE network utilities for running host
commands. Click the Host resolution panel and enter the address of the host you want to
check. On Gnome, you can use the gHostLookup utility.

$ host www.gnome.org
www.gnome.org is a nickname for gnome.labs.redhat.com
gnome.labs.redhat.com has address 199.183.24.235
gnome.labs.redhat.com mail is handled (pri=10) by mail.redhat.com

$ host 199.183.24.235
235.24.183.199.IN-ADDR.ARPA domain name pointer
gnome.labs.redhat.com

The Gwhois program is a Gnome-based client that displays information about hosts obtained
from NIC network services. Gwhois provides an X Windows interface with a list of NIC
servers from which to choose. gHostLookup is a simple Gnome application that returns a
machine's IP address when you give it the hostname.

Part V: Red Hat Servers
Chapter List
Chapter 22: Server Management
Chapter 23: FTP Servers
Chapter 24: Red Hat Web Servers: Apache and Tux
Chapter 25: Domain Name Service
Chapter 26: Mail Servers: SMTP, POP, and IMAP
Chapter 27: News, Proxy, and Search Servers

Chapter 22: Server Management
Overview

Reflecting the close relationship between Unix and the development of the Internet, Linux is
particularly good at providing Internet services, such as the Web, FTP, and e-mail. In the case
of the Web, instead of only accessing other sites, you can set up your own Linux system as a
Web site. Other people can then access your system using Web pages you created or
download files you provide for them. A system that operates this way is called a server and is
known by the service it provides. You can set up your system to be a Web server or an FTP
server, connecting it to the Internet and turning it into a site others can access. A single Linux
system can provide several different services. Your Linux system can be a Web server and an
FTP server, as well as a mail and news server, all at the same time. One user could download
files using your FTP services, while another reads your Web pages. All you have to do is
install and run the appropriate server software for each service. Each one operates as a
continually running daemon looking for requests for its particular services from remote users.
A daemon is any program that continually runs, checking for certain requests and performing
appropriate actions.

When you install Linux, you have the option of installing several Internet servers, including
Web and FTP servers. Linux was designed with Internet servers in mind. For many Linux
distributions, a standard install installs these servers automatically and configures them for
you (check to make sure the servers are included). Every time you start your system, you also
start the Web and FTP server daemons. Then, to turn your Linux system into a Web server, all
you have to do is create Web pages. For an FTP server, you only have to place the files you
want to make available in the FTP directories.

You can operate your Linux system as a server on the Internet or an intranet (local area
network), or you can set it up to service only the users on your own system. To operate
servers as Internet servers, you must obtain a connection to the Internet and provide access to
your system for remote users. Access is usually a matter of enabling anonymous logins to
directories reserved for server resources. Linux systems are usually already configured to
enable such access for Web and FTP users. Connections to the Internet that can accommodate
server activity can be difficult to find. You may need a dedicated connection, or you may
need to use a connection set up by an Internet service provider (ISP). You are no longer
connecting only yourself to the Internet, but you are allowing many other users to make what
could be a great many connections to you through the Internet. This will involve security risks
to your system, and precautions should be taken to protect it (see Chapter 39). If you only
want to provide the services to a local area network (LAN), you don't need a special
connection. Also, you can provide these services to users by allowing them to connect over a
modem and to log in directly. Users could dial into your system and use your Web pages or
use FTP to download files. Furthermore, users with accounts on your own machine can also
make use of the servers. In whatever situation you want to use these services, you need the
appropriate server software installed and running. This chapter examines how servers are
started and stopped on your system, as well as different ways of accessing the servers.

 Note Linuxconf provides added modules on its Web site that you can use to configure most
Internet servers, including the Apache Web server, the BIND domain name server, the
Washington University FTP server, and the Sendmail mail server.

Starting Servers: Standalone and xinetd

A server is a daemon that runs concurrently with your other programs, continuously looking
for a request for its services, either from other users on your system or from remote users
connecting to your system through a network. When it receives a request from a user, a server
starts up a session to provide its services. For example, if users want to download a file from
your system, they can use their own FTP client to request that your FTP server start a session
for them. In the session, they can access and download files from your system. Your server
needs to be running for a user to access its services. For example, if you set up a Web site on
your system with HTML files, you must have the httpd Web server program running before
users can access your Web site and display those files. See Chapters 23 and 24 on how to
install FTP and Web servers.

You can start a server in several ways. One way is to do it manually from the command line
by entering the name of the server program and its arguments. When you press ENTER, the
server starts, although your command line prompt reappears. The server runs concurrently as
you perform other tasks. To see if your server is running, you can enter the following
command to list all currently running processes. You should see a process for the server

program you started. To refine the list, you can add a grep operation with a pattern for the
server name you want. The second command lists the process for the Web server.

ps -aux
ps -aux | grep 'httpd'

On Red Hat Linux systems, you use special startup scripts to start and stop your server
manually. These scripts are located in the /etc/rc.d/init.d directory and have the same name as
the server programs. For example, the /etc/rc.d/init.d/httpd script with the start option starts
the Web server. Using this script with the stop option stops it. Instead of using the complete
pathname for the script, you can use the service command and the script name. The following
commands are equivalent.

/etc/rc.d/init.d/httpd stop
service httpd stop/

Instead of manually executing all the server programs each time you boot your system, you
can have your system automatically start the servers for you. You can do this in two ways,
depending on how you want to use a server. You can have a server running continuously from
the time you start your system until you shut it down, or you can have the server start only
when it receives a request from a user for its services. If a server is being used frequently, you
may want to have it running all the time. If it is used rarely, you may only want the server to
start when it receives a request. For example, if you are running a Web site, your Web server
is receiving requests all the time from remote hosts on the Internet. For an FTP site, however,
you may receive requests infrequently, in which case you may want to have the FTP server
start only when it receives a request. Of course, certain FTP sites receive frequent requests,
which would warrant a continuously running FTP server.

A server that starts automatically and runs continuously is referred to as a standalone server.
Red Hat uses the SysV Init procedure to start servers automatically whenever your system
boots. This procedure uses special startup scripts for the servers located in the /etc/rc.d/init.d
directory. Most Linux systems configure the Web server to start automatically and to run
continuously by default. A script for it called httpd is in the /etc/rc.d/init.d directory.

To start the server only when a request for its services is received, you configure it using the
xinetd daemon. If you add, change, or delete server entries in the /etc/xinetd files, you will
have to restart the xinetd daemon for these changes to take effect. On Red Hat, you can restart
the xinetd daemon using the /etc/rc.d/init.d/xinetd script with the restart argument, as
shown here:

/etc/rc.d/init.d/xinetd restart

You can also use the xinetd script to start and stop the xinetd daemon. Stopping effectively
shuts down all the servers that the xinetd daemon manages (those listed in the
/etc/xinetd.conf file or xinetd.d directory).

service xinetd stop
service xinetd start

You can also directly restart the xinetd by sending its process a SIGHP signal, forcing it to
restart. To do this, you use the kill command with the -HUP option and the process ID of the

xinetd daemon. You can find the process ID using the ps -aux command to list all processes
and then use grep to locate the xinetd entry as shown here. The process ID will also be held
in the /var/run/xinetd.pid file.

ps -aux | grep sinetd
kill -HUP xinetd-process-id
 Note Versions prior to 7.0 and other Linux systems used the inetd daemon (the term stands

for the Internet Services Daemon) instead of xinetd. xinetd is meant to be the enhanced
replacement for inetd. If you are upgrading from inetd, you can use the inetdconvert
command to convert inetd entries into xinetd configurations.

Service Management Tools: ntsysv and serviceconf, chkconfig, and
System V Init

On Red Hat, the System V Init Editor, the Red Hat Setup ntsysv utility, and the chkconfig
command provide simple interfaces you can use to choose what servers you want started up
and how you want them to run. You use these tools to control any daemon you want started
up, including system services such as cron, the print server, and remote file servers for Samba
and NFS; authentication servers for Kerberos; and, of course, Internet servers for FTP or
HTTP. Such daemons are referred to as services, and you should think of these tools as
managing these services. Any of these services can be set up to start or start at different
runlevels.

These tools manage services that are started up by scripts in the /etc/rc.d/init.d directory. If
you add a new service, both the chkconfig and System V Init Editor can manage it. As
described in the following section, services are started up at specific runlevels using startup
links in various runlevel directories. These links are connected to the startup scripts in the
init.d directory. Runlevel directories are numbered from 0 to 6 in the /etc/rc.d directory (e.g.,
/etc/rc.d/rc3.d for runlevel 3 and /etc/rc.d/rc5.d for runlevel 5). Removing a service from a
runlevel only removes its link in the corresponding runlevel rc.d directory. It does not touch
the startup script in the init.d directory. Having a server start at a specified runlevel puts the
link back in that runlevel directory. For example, if you specify that httpd is no longer to start
at runlevel 3, then the S85httpd startup link in the rc3.d directory is deleted. Having httpd
start at runlevel 5 re-creates the S85htppd link in the rc5.d directory. See the later section on
SysV Init scripts for more details, and Chapter 28 for more information on runlevels.

 Note You can also control the startup of a server using Linuxconf or Webmin. On Linuxconf,
the Control Service Activity panel, located in the Control Panel list, lists various
services available on your system. On Webmin, the Bootup and Shutdown page,
accessed from the System page, lists the daemons and servers that you can have
automatically start when the system boots.

ntsysv

With the Red Hat ntsysv and serviceconf utilities, you can simply select from a list of
commonly used services you want to run when your system boots up (see Figure 22-1). The
utility serviceconf also lets you start, stop, and restart a server, much like the service
command. You can also set startup runlevels, just as you can with chkconfig. Both netsysv
and serviceconf will display a list of your installed servers. You can access ntsysv from the
Text Mode Setup menu by selecting Services (see Chapter 30). It can run on any command

line interface. You can access serviceconf from the System Settings window within the Start
Here window on the Gnome desktop. It will be labeled Service Configuration.

Figure 22-1: Service Configuration (serviceconf)

chkconfig

With the chkconfig command you can specify the service you want start and the level you
want to start it at. Unlike other service management tools, chkconfig works equally well on
standalone and xinetd services. Although standalone services can be run at any runlevel, you
can also turn xinetd services on or off for the runlevels that xinetd runs in. Table 22-1 lists the
different chkconfig options.

You use the on option to have a service started at certain runlevels, and the off option to not
have it started. You can specify the runlevel to use with the --level option. If no level is
specified, then chkconfig will use any chkconfig default information in a service's init.d
startup script. Red Hat installs its services with chkconfig default information already entered
(should this be missing, chkconfig will use runlevels 3, 4, and 5). The following example will
have the Web server (httpd) started at runlevel 5.

chkconfig --level 5 httpd on

The off option will actually configure a service to shut down if it enters a specified runlevel.
This example will shut down the Web sever if runlevel 3 is entered. If it is not running, it
remains shut down:

chkconfig --level 3 httpd off

Table 22-1: chkconfig Options
Option Description
--level runlevel Specifies a runlevel to turn on, off, or reset a service.
--list service Lists startup information for services at different runlevels. xinetd

services are just on or off. With no argument, all services are
listed, including xinetd services.

--add service Adds a service, creating links in default specified runlevels (or all
if none specified).

--del service Deletes all links for the service (startup and shutdown) in all
runlevel directories.

Table 22-1: chkconfig Options
Option Description
service on Turns a service on, creating a startup link in the specified or

default runlevel directories.
service off Turns a service off, creating shutdown links in specified or default

directories
service reset Resets a service startup information, creating default links as

specified in the chkconfig entry in the service's init.d startup
script.

The reset option will restore a service to its chkconfig default options as specified in the
service's init.d startup script:

chkconfig wu-ftpd reset

To see just the startup information for a service, you use just the service name with the --list
option:

chkconfig --list httpd
httpd 0:off 1:off 2:off 3:on 4:off 5:on 6:off

Unlike the System V Init Editor and ntsysv, chkconfig also has the ability to have xinetd
services enabled or disabled. Simply enter the xinetd service with either an on or off option.
The service will be started up or shut down and its xinetd configuration script in the
/etc/xinetd.d directory will have its disable line edited accordingly. For example, to start
swat, the Samba configuration server, which runs on xinetd, you simply enter:

chkconfig swat on
chkconfig --list swat
 swat on

The swat configuration file for xinetd, /etc/xinetd.d/swat, will have its disable line edited to
"no," as shown here:

disable=no

Should you want to shut down the swat server, you can use the off option. This will change
the disable line in /etc/xinetd.d/swat to read disable=yes.

chkconfig swat off

The same procedure works for other xinetd services such as wu-ftpd, the FTP server, and
finger.

Should you want a service removed entirely from the entire startup and shutdown process in
all runlevels, you can use the --del option. This removes all startup and shutdown links in all
the runlevel directories.

chkconfig --del httpd

You can also have services added to management by chkconfig with the --add option.
chkconfig will create startup links for it in the appropriate startup directories, /etc/rc.d/rcn.d.
If you have previously removed all links for a service, you can restore them with the --add
option:

chkconfig --add httpd

To see a list of services managed by https, you use the --list option. A sampling of services
managed by chkconfig are shown here. The on and off status of the service is shown at each
runlevel. xinted services and their status are also shown:

chkconfig -list
dhcpd 0:off 1:off 2:off 3:off 4:off 5:off
6:off
httpd 0:off 1:off 2:off 3:off 4:off 5:off
6:off
named 0:off 1:off 2:off 3:off 4:off 5:off
6:off
tux 0:off 1:off 2:off 3:off 4:off 5:off
6:off
kudzu 0:off 1:off 2:off 3:on 4:on 5:on
6:off
innd 0:off 1:off 2:off 3:off 4:off 5:off
6:off
lpd 0:off 1:off 2:on 3:on 4:on 5:on
6:off
nfs 0:off 1:off 2:off 3:off 4:off 5:off
6:off
smb 0:off 1:off 2:off 3:off 4:off 5:off
6:off
crond 0:off 1:off 2:on 3:on 4:on 5:on
6:off
xinetd 0:off 1:off 2:off 3:on 4:on 5:on
6:off
xinetd based services:
 time: off
 finger: off
 pop3s: off
 swat: on
 wu-ftpd: off

chkconfig works by creating startup and shutdown links in the appropriate runlevel directories
in the /etc/rc.d directory. For example, when chkconfig added the httpd service at runlevel 5,
it created a link in the /etc/rc.d/rc5.d directory to the startup script httpd in the
/etc/rc.d/init.d directory. When it turned off the Web service from runlevel 3, it created a
shutdown link in the /etc/rc.d/rc3.d directory to use the script httpd in the /etc/rc.d/initd
directory to make sure the Web service is not started. In the following example, the user turns
on the Web service (httpd) on runlevel 3, creating the startup link in rc5.d, S85httpd, and then
turns off the Web service on runlevel 3, creating a shutdown link in rc3.d, K15httpd.

chkconfig --level 5 httpd on
ls /etc/rc.d/rc3.d/*httpd
 /etc/rc.d/rc3.d/K15httpd
chkconfig -level 3 httpd off
ls /etc/rc.d/rc3.d/*httpd
 /etc/rc.d/rc3.d/K15httpd

Default runlevel information should be placed in the startup scripts that are to be managed by
chkconfig. Red Hat has already placed this information in the startup scripts for the services
that are installed with its distribution. You can edit these scripts to change the default
information if you wish. This information is entered as a line beginning with a # sign and
followed by the chkconfig keyword and a colon. Then you list the default runlevels that the
service should start up on, along with the start and stop priorities. The following entry lists
runlevels 3 and 5 with a start priority of 85 and a stop of 15:

chkconfig: 35 85 15

Now when a user turns on the httpd service with no level option specified, chkconfig will start
up httpd at runlevels 3, 4, and 5:

chkconfig httpd on

A description line should also be added that chkconfig can use to describe the service. With
the description you enter a short description of the service, using the \ symbol before a
newline to use more than one line:

description: Apache is a World Wide Web server. It is used to serve \
HTML files and CGI.

System V Init Editor

The System V Init Editor is accessible on Red Hat from the KDE desktop's system menu. It
features a GUI interface to enable you to manage any daemons on your system easily-Internet
servers as well as system daemons, such as print servers. The Init Editor window is divided
into three major panes. To the left is a scroll window labeled "available" that lists all the
daemons available for use on your system. These include the daemons for Internet servers,
such as httpd. To the right, taking up most of the window, are an upper pane and a lower
pane. The upper pane has scroll windows, one for each runlevel. These list the daemons
currently configured to run in their respective runlevels. The lower pane also holds scroll
windows, one for each runlevel. These are daemons that will be shut down if you switch to
that respective runlevel. System administrators can switch from one level to another. All the
servers that start up under normal processing are listed in the start runlevel 5 (graphical login)
and runlevel 3 (command line) scroll windows. Figure 22-2 shows the System V Init Editor.

Figure 22-2: The System V Init Editor
 Note The publisher's edition of Red Hat Linux does not include KDE System V Init Editor.

Instead you can run an older version called System V Runlevel Editor, accessible from
the Control Panel. It operates much the same as the System V Init Editor, with few
differences.

You can easily configure a server to start automatically when you boot at a certain runlevel.
Your system operates at certain runlevels, each specified by a given number, such as the
standard multiuser level (runlevel 3), a graphical login level (runlevel 5), and an
administrative level (runlevel 1). See Chapter 28 for a discussion of runlevels. To have a
server start at a given runlevel, click and drag its entry in the available scroll window to the
scroll window for the runlevel you want it to start at. For example, if you use a graphical
login, your runlevel when you start up is 5. To have the Web server, httpd, start up
automatically whenever you boot your system, check to see if it is in the runlevel 5 startup
scroll window. If not, then click and drag the httpd entry in the available window to the
runlevel 5 startup window. Select a position in that window where there appear to be available
numbers, such as between 15 or 17, or at the end of the scroll window. An httpd entry will
then appear in the scroll window. If you do not want to have the service started up
automatically, you can remove it from its startup scroll window by clicking on it and selecting
Cut from the pop-up menu. So, to remove httpd from the runlevel 5 startup window, click on
its entry in that window and select Cut.

To start or stop a server manually, click its entry in the available scroll window. A Properties
window appears where you can select whether you want to start, stop, or restart the server. Do
the same procedure to start the server, clicking the Start button. An Edit button will open the
server's startup script in an editor and let you modify it directly. Figure 22-3 shows the
System V Init Editor httpd Properties windows.

Figure 22-3: The System V Init Editor httpd Properties window

Servers that operate under xinetd are not listed by the System V Init Editor. The FTP wu-ftpd
server is usually installed to run under xinetd, so you won't find entries for them here. The
System V Editor reads its list of servers from the server scripts in the /etc/rc.d/init.d
directory. If you add a new script, you can have the System V Editor rescan that directory and
then see it appear in the available list. Removing a server from a runlevel window only
removes its link in the corresponding runlevel rc.d directory. It does not touch the startup
script in the init.d directory. Adding in the server to the start runlevel window puts the link
back in that runlevel directory. Adding a server to a stop window adds a K link in the
corresponding rc.d directory, which stops a server when the system switches to that runlevel.
For example, if you remove httpd from the runlevel 3 start window, then the S85httpd link in
the rc3.d directory is deleted. Adding httpd back to the runlevel 3 start window re-creates the
S85htppd link in the rc3.d directory. Adding httpd to the runlevel 2 stop directory would
create a K85httpd link in the rc2.d directory, shutting down the server when switching to
runlevel 2.

SysV Init: init.d Scripts

The startup and shutdown of server daemons is managed using special startup scripts located
in the /etc/rc.d/init.d directory. These scripts often have the same name as the server's
program. For example, for the /usr/sbin/httpd Web server program, a corresponding script is
called /etc/rc.d/init.d/httpd. This script actually starts and stops the Web server. This method
of using init.d startup scripts to start servers is called SysV Init, after the method used in
UNIX System V.

 Note If you change the configuration of a server, you may need to start and stop it several
times as you refine the configuration. Several servers provide special management tools
that enable you to perform this task easily. The apachectl utility enables you to start and
stop the Apache Web server easily. It is functionally equivalent to using the
/tec/rc.d/init.d/httpd script to start and stop the server. For the domain name server, the
ndc utility enables you to start and stop the named server. It is, however, advisable not
to mix the use of init.d scripts and the management tools.

The startup scripts in the /etc/rc.d/init.d directory can be executed automatically whenever
you boot your system. Be careful when accessing these scripts, however. These start essential
programs, such as your network interface and your printer daemon. These init scripts are
accessed from links in subdirectories set up for each possible runlevel. In the /etc/rc.d
directory is a set of subdirectories whose names have the format rcN.d, where N is a number
referring to a runlevel. The rc script detects the runlevel in which the system was started, and

then executes only the startup scripts specified in the subdirectory for that runlevel. The two
runlevels most commonly used are 3, the multiuser level, and 5, the graphical login. When
you start your system, the rc script executes the startup scripts specified in the rc3.d
directory, if you are performing a command line login, and rc5.d if you are using a graphical
login. The rc3.d and rc5.d directories hold symbolic links to certain startup scripts in the
/etc/rc.d/init.d directory. So, the httpd script in the /etc/rc.d/init.d directory is actually called
through a symbolic link in the rc3.d or the rc5.d directory. The symbolic link for the
/etc/rc.d/httpd script in the rc3.d directory is S85httpd. The S prefixing the link stands for
"startup" and calls the corresponding init.d script with the start option. The number indicates
the order in which startup scripts are run, lower ones first. S85httpd invokes
/etc/rc.d/init.d/httpd with the option start. The numbers in these links are simply there for
ordering purposes. If you change the name of the link to start with a K, then the script is
invoked with the stop option, stopping it. Such links are used in the runlevels 0 and 6
directories, rc6.d and rc0.d. Runlevel 0 halts the system and runlevel 6 reboots it. You can
use the runlevel command to find out what runlevel you are currently operating at (see
Chapter 28 for more details on runlevels). A listing of runlevels is shown here:

Runlevel rc.d Directory Description
0 rc0.d Halt (shut down) the system
1 rc1.d Single-user mode (no networking, limited capabilities)
2 rc2.d Multiuser mode with no NFS support (limited

capabilities)
3 rc3.d Multiuser mode (full operational mode)
5 rc5.d Multiuser mode with graphical login (full operation mode

with graphical login added)
6 rc6.d Reboot system

Most server software using RPM Red Hat packages will automatically install the startup
scripts and create the needed links in the appropriate rcN.d directories. Startup scripts,
though, can be used for any program you may want run when your system starts up. To have
such a program start automatically, you first create a startup script for it in the /etc/rc.d/init.d
directory, and then create symbolic links to that script in the /etc/rc.d/rc3.d and
/etc/rc.d/rc5.d directories. A shutdown link (K) should also be placed in the rc6.d directory
used for runlevel 6 (reboot).

A simplified version of the startup script httpd used on Red Hat systems is shown here. You
can see the different options listed under the case statement: start, stop, status, restart, and
reload. If no option is provided (*), then the script use syntax is displayed. The httpd script
first executes a script to define functions used in these startup scripts. The daemon function
with httpd actually executes the /usr/sbin/httpd server program.

echo -n "Starting httpd: "
 daemon httpd
 echo
 touch /var/lock/subsys/httpd

The killproc function shuts down the daemon. The lock file and the process ID file
(httpd.pid) are then deleted.

 killproc httpd
 echo
 rm -f /var/lock/subsys/httpd
 rm -f /var/run/httpd.pid

The daemon, killproc, and status scripts are shell scripts defined in the functions script also
located in the inet.d directory. The functions script is executed at the beginning of each
startup script to activate these functions. A list of these functions is provided in Table 22-2.

. /etc/rc.d/init.d/functions

The beginning of the startup script holds tags used to configure the server. These tags, which
begin with an initial #, are used to provide runtime information about the service to your
system. The tags are listed in Table 22-2 along with the startup functions. You enter a tag with
a preceding # symbol, the tag name with a colon, and then the tag arguments. For example,
the processname tag will specify the name of the program being executed, in this example
httpd.

Table 22-2: System V init Script Functions and Tags
Init Script Function Description
daemon [+/-nicelevel]
program [arguments] [&]

Starts a daemon, if it is not already running.

killproc program [signal] Sends a signal to the program; by default it sends a
SIGTERM, and if the process doesn't stop, it sends a
SIGKILL. It will also remove any PID files, if it can.

pidofproc program Used by another function, it determines the PID of a
program.

status program Displays status information.
Init Script Tag Description
chkconfig: startlevellist
startpriority endpriority

Required. Specifies the default start levels for this service as
well as start and end priorities.

description [ln]: description
of service

Required. The description of the service, continued with '\'
characters. Use an initial # for any added lines. With the ln
option, you can specify the language the description is
written in.

autoreload: true Optional. If this line exists, the daemon checks its
configuration files and reloads them automatically when they
change.

processname: program Optional, multiple entries allowed. Name of the program or
daemon started in the script.

config: configuration-file Optional, multiple entries allowed. Specify a configuration
file used by the server.

pidfile: pid-file Optional, multiple entries allowed. Specifies the PID file.
probe: true Optional, used in place of autoreload, processname, config,

and pidfile entries to automatically probe and start the
service.

processname: httpd

If your script starts more than one daemon, you should have a processname entry for each.
For example, the Samba service starts up both the smdb and nmdb daemons.

processname: smdb
processname: nmdb

The end of the tag section is indicated by an empty line. After this line, any lines beginning
with a # are treated as comments. The chkconfig line will list the default runlevels that the
service should start up on, along with the start and stop priorities. The following entry lists
runlevels 3, 4, and 5 with a start priority of 85 and a stop of 15.

chkconfig: 345 85 15

With the description you enter a short description of the service, using the \ symbol before a
newline to use more than one line. pidfile indicates the file where the server's process ID is
held. With config tags, you specify the configuration files the server may use. In the case of
the Apache Web server, there may be three configuration files:

config: /etc/httpd/conf/access.conf
config: /etc/httpd/conf/httpd.conf
config: /etc/httpd/conf/srm.conf

As an example, a simplified version of the Web server startup script is shown here. Most
scripts are much more complicated, particularly when determining any arguments or variables
a server may need to specify when it starts up. It has the same name as the Web server
daemon, httpd.

/etc/rc.d/init.d/httpd

#!/bin/sh

Startup script for the Apache Web Server

chkconfig: 35 85 15
description: Apache is a World Wide Web server. It is used to serve \
HTML files and CGI.
processname: httpd
pidfile: /var/run/httpd.pid
config: /etc/httpd/conf/access.conf
config: /etc/httpd/conf/httpd.conf
config: /etc/httpd/conf/srm.conf

Source function library.
. /etc/rc.d/init.d/functions

See how we were called.
case "$1" in
 start)
 echo -n "Starting httpd: "
 daemon httpd
 echo
 touch /var/lock/subsys/httpd
 ;;
 stop)
 killproc httpd

 echo
 rm -f /var/lock/subsys/httpd
 rm -f /var/run/httpd.pid
 ;;
 status)
 status httpd
 ;;
 restart)
 $0 stop
 $0 start
 ;;
 reload)
 echo -n "Reloading httpd: "
 killproc httpd -HUP
 echo
 ;;
 *)
 echo "Usage: $0 {start|stop|restart|reload|status}"
 exit 1
 esac

exit 0

The RPM packaged versions for an Internet server include the startup script for that server.
Installing the RPM package installs the script in the /etc/rc.d/init.d directory and creates its
appropriate links in the runlevel directories, such as /etc/rc.h/rc3.d. If you decide, instead, to
create the server using its source code files, you can then manually install the startup script. If
no startup script exists, you first make a copy of the httpd script-renaming it-and then edit the
copy to replace all references to httpd with the name of the server daemon program. Then,
place the copy of the script in the /etc/rc.d/ init.d directory and make a symbolic link to it the
/etc/rc.d/rc3.d directory. Or you could use the System V Init Editor to create the link in the
/etc/rc.d/rc3.d directory. Have the editor scan the init.d directory by selecting Re-scan from
the File menu, click the entry in the Available listing, click the Add button, and then select the
Runlevel and Start options in the Add window. When you start your system now, the new
server is automatically started up, running concurrently and waiting for requests.

Extended Internet Services Daemon (xinetd)

If your system averages only a few requests for a specific service, you don't need the server
for that service running all the time. You only need it when a remote user is accessing its
service. The Extended Internet Services Daemon (xinetd) manages Internet servers, invoking
them only when your system receives a request for their services. xinetd checks continuously
for any requests by remote users for a particular Internet service; when it receives a request, it
then starts the appropriate server daemon.

The xinetd program is designed to be a replacement for inetd, providing security
enhancements, logging support, and even user notifications. For example, with xinetd you
can send banner notices to users when they are not able to access a service, telling them why.
xinetd security capabilities can be used to prevent denial-of-service attacks, limiting remote
hosts' simultaneous connections or restricting the rate of incoming connections. xinetd also
incorporates TCP, providing TCP security without the need to invoke the tcpd daemon.

Furthermore, you do not have to have a service listed in the /etc/services file. xinetd can be
set up to start any kind of special-purpose server. The Red Hat Linux versions 7.0 and up use
xinetd. Many older Linux systems may still be using inetd.

You can start, stop, and restart xinetd using its startup script in the /etc/rc.d/init.d directory,
as shown here:

/etc/rc.d/init.d/xinetd stop
/etc/rc.d/init.d/xinetd start
/etc/rc.d/init.d/xinetd restart

On Red Hat, you can also turn on and off particular xinetd services with chkconfig, as
described earlier. Use the on and off options to enable or disable a service. chkconfig will edit
the disable option for the service, changing its value to "yes" for off and "no" for on. For
example, to enable the swat server, you could enter:

chkconfig swat on

The xinetd.conf file is the configuration file for xinetd. Entries in it define different servers to
be activated when requested along with any options and security precautions. An entry
consists of a block of attributes defined for different features, such as the name of the server
program, the protocol used, and security restrictions. Each block for an Internet service such
as a server is preceded by the keyword service and the name by which you want to identify
the service. A pair of braces encloses the block of attributes. Each attribute entry begins with
the attribute name followed by an assignment operator such as = and then the value or values
assigned. A special block specified by the keyword default contains default attributes for
services. The syntax is shown here:

service <service_name>
{
<attribute> <assign_op> <value> <value> ...
 ...
}

Most attributes take a single value for which you use the standard assignment operator, =.
Some attributes can take a list of values. You can assign values with the = operator, but you
can also add or remove items from these lists with the =+ and =- operators. Use the =+ to add
values and =- to remove values. You often use the =+ and =- operators to add values to
attributes that may have an initial value assigned in the default block.

Attributes are listed in Table 22-3. Certain attributes are required for a service. These include
socket_type and wait. socket_type can be stream for stream-based service, dgram for
datagram-based service, raw for service that requires direct access, and seqpacket service for
sequential datagram transmission. The wait attribute can have a yes or no value to specify if
the server is single-threaded (yes) or multithreaded (no). If yes, then xinetd will wait, calling
the server initially and letting that server handle further requests until the server stops. If the
value is no (multithreaded), xinetd will continue to handle new requests for the server,
generating new server processes to handle them. For a standard Internet service, you would
also need to provide the user (user ID for the service), the server (name of the server
program), and the protocol (protocol used by the server). With server_arguments, you can
also list any arguments you want passed to the server program (this does not include the

server name as with tcpd). If protocol is not defined, the default protocol for the service is
used.

service ftp
{
 socket_type = stream
 wait = no
 user = root
 protocol = ftp
 server = /usr/sbin/in.ftpd
 server_args = -l -a
 disable = yes
}

Services can be turned on and off with the disable attribute. In the previous example, the
disable attribute has turned off the FTP service, keeping the FTP server shut down. To enable
a service, you would set the disable attribute to no, as shown here:

 disable = no

You then have to restart xinetd to start the service.

/etc/rc.d/init.d/xinetd restart
 Note Red Hat currently disables all the services it initially set up when it installed xinetd. To

enable a particular service you will have to set its disable attribute to no.

To enable management by chkconfig, a commented default and description entry need to
placed before each service segment. Where separate files are used, these are placed at the
head of each file. Red Hat already provides these for the services it installs with its
distribution such as wu-fptd and swat. A default entry can be either on or off. For example,
the chkconfig default and description entries for the ftp service are shown here:

default: on
description: The wu-ftpd FTP server serves FTP connections. It \
uses normal, unencrypted usernames and passwords for \
authentication.

Red Hat will indicate whether a service is set on or off by default. Should you want to turn on
a service that is off by default, you will have to set its disable attribute to no, and restart
xinetd. The Red Hat entry for the wu-ftpd FTP server is shown here. An initial comment tells
us that it is on by default, but then the disable attribute turns it off.

default: on
description: The wu-ftpd FTP server serves FTP connections. It \
uses normal, unencrypted usernames and passwords for \
authentication.
service ftp
{
 socket_type = stream
 wait = no
 user = root
 server = /usr/sbin/in.ftpd
 server_args = -l -a
 log_on_success += DURATION USERID
 log_on_failure += USERID

 nice = 10
 disable = yes
}

You can further add a variety of other attributes such as logging information about
connections and server priority (nice). In the following example, the log_on_success attribute
will log the duration (DURATION) and the user ID (USERID) for connections to a service,
log_on_failure will log the users that failed to connect, and nice will set the priority of the
service to 10.

log_on_success += DURATION USERID
log_on_failure += USERID
nice = 10

The default attributes defined in the defaults block often set global attributes such as default
logging activity and security restrictions. log_type specifies where logging information is to
be sent, such as to a specific file (FILE) or to the system logger (SYSLOG). log_on_success
will specify information to be logged when connections are made, and log_on_failure will
specify information to be logged when they fail.

log_type = SYSLOG authpriv
log_on_success = HOST PID
log_on_failure = HOST RECORD

For security restrictions, you can use only_from to restrict access by certain remote hosts.
no_access denies access by the listed hosts, but no others. These controls take as their values
IP addresses. You can list individual IP addresses, or a range of IP addresses, or a network
using the network address. The instances attributes will limit the number of server processes
that can be active at once for a particular service. The following examples restrict access to a
local network 192.168.1.0 and the localhost, deny access from 192.168.1.15, and use the
instances attribute to limit the number of server processes at one time to 60.

only_from = 192.168.1.0
only_from = localhost
no_access = 192.168.1.15
instances = 60

A sample default block is shown here:

defaults
{
 instances = 60
 log_type = FILE /var/log/servicelog
 log_on_success = HOST PID
 log_on_failure = HOST RECORD
 only_from = 192.168.1.0
 only_from = localhost
 no_access = 192.168.1.15
}

The xinetd program also provides several internal services including time, services, servers,
and xadmin. The services service provides a list of currently active services, and servers
provides information about servers. xadmin provides xinetd administrative support.

Instead of having one large xinetd.conf file, you can split it into several configuration files,
one for each service. You do this by creating an xinetd.conf file with an includedir attribute
that specifies a directory to hold the different service configuration files. In the following
example, the xinetd.d directory will hold xinetd configuration files for services like wu-ftpd.
Red Hat 7.0 uses just such an implementation. This approach has the advantage of letting you
add services by just creating a new configuration file for it. Modifying a service only involves
editing its configuration file, not an entire xinetd.conf file.

includedir /etc/xinetd.d

The following example shows the xinetd.conf file used for Red Hat Linux.

xinetd.conf

Simple configuration file for xinetd

Some defaults, and include /etc/xinetd.d/

defaults
{
 instances = 60
 log_type = SYSLOG authpriv
 log_on_success = HOST PID
 log_on_failure = HOST
}

includedir /etc/xinetd.d

A few of the files in the xinetd.d directory are shown here. Notice that some are disabled by
default, whereas others are not.

finger

default: on
description: The finger server answers finger requests. Finger is \
a protocol that allows remote users to see information such \
as login name and last login time for local users.
service finger
{
 socket_type = stream
 wait = no
 user = nobody
 server = /usr/sbin/in.fingerd
 disable = yes
}

swat

default: off
description: SWAT is the Samba Web Admin Tool. Use swat \
to configure your Samba server. To use SWAT, \

connect to port 901 with your favorite web browser.
service swat
{
 port = 901
 socket_type = stream
 wait = no
 only_from = localhost
 user = root
 server = /usr/sbin/swat
 log_on_failure += USERID
 disable = yes
}

telnet

default: on
description: The telnet server serves telnet sessions; it uses \
unencrypted username/password pairs for authentication.
service telnet
{
 flags = REUSE
 socket_type = stream
 wait = no
 user = root
 server = /usr/sbin/in.telnetd
 log_on_failure += USERID
 disable = yes
}

wu-ftpd

default: on
description: The wu-ftpd FTP server serves FTP connections. It \
uses normal, unencrypted usernames and passwords for authentication.
service ftp
{
 socket_type = stream
 wait = no
 user = root
 server = /usr/sbin/in.ftpd
 server_args = -l -a
 log_on_success += DURATION USERID
 log_on_failure += USERID
 nice = 10
 disable = yes
}

TCP Wrappers

TCP wrappers add another level of security to xinetd-managed servers. In effect, the server is
wrapped with an intervening level of security, monitoring connections and controlling access.
A server connection made through xinetd is monitored verifying remote user identities and
checking to make sure they are making valid requests. Connections are logged with the

syslogd daemon (Chapter 29) and may be found in syslogd files such as /var/log/secure.
With TCP wrappers, you can also restrict access to your system by remote hosts. Lists of
hosts are kept in the hosts.allow and hosts.deny files. Entries in these files have the format
service:hostname:domain. The domain is optional. For the service, you can specify a
particular service, such as FTP, or you can enter ALL for all services. For the hostname, you
can specify a particular host or use a wildcard to match several hosts. For example, ALL will
match on all hosts. Table 22-4 lists the available wildcards you can use. In the following
example, the first entry allows access by all hosts to the Web service, http. The second entry
allows access to all services by the pango1.train.com host. The third and fourth entries allow
rabbit.trek.com and sparrow.com FTP access.

Table 22-3: xinetd Attributes
Attribute Description
id Identifies a service. By default, the service ID is the same as the

service name.
type Type of service: RPC, INTERNAL (provided by xinetd),

UNLISTED (not listed in a standard system file).
flags Possible flags include REUSE, INTERCEPT, NORETRY, IDONLY,

NAMEINARGS (allows use of tcpd), NODELAY, DISABLE
(disable the service). See the xinetd.conf Man page for more details.

disable Specify "yes" to disable the service.
socket_type Specify stream for a stream-based service, dgram for a datagram-

based service, raw for a service that requires direct access to IP, and
the seqpacket service for reliable sequential datagram transmission.

protocol Specify a protocol for the service. The protocol must exist in
/etc/protocols. If this attribute is not defined, the default protocol
employed by the service will be used.

wait Specifies whether the service is single-threaded or multithreaded (yes
or no). If yes, the service is single-threaded, which means that xinetd
will start the server and then stop handling requests for the service
until the server stops. If no, the service is multithreaded and xinetd
will continue to handle new requests for it.

user Specifies the user ID (UID) for the server process. The user name
must exist in /etc/passwd.

group Specifies the GID for the server process. The group name must exist
in /etc/group.

instances Specifies the number of server processes that can be simultaneously
active for a service.

nice Specifies the server priority.
server Specifies the program to execute for this service.
server_args Lists the arguments passed to the server. This does not include the

server name.
only_from Controls the remote hosts to which the particular service is available.

Its value is a list of IP addresses. With no value, service is denied to
all.

Table 22-3: xinetd Attributes
Attribute Description
no_access Controls the remote hosts to which the particular service is

unavailable.
access_times Specifies the time intervals when the service is available. An interval

has the form hour:min-hour:min.
log_type Specifies where the output of the service log is sent, either syslog

facility (SYSLOG) or a file (FILE).
log_on_success Specifies the information that is logged when a server starts and

stops. Information you can specify includes PID (server process ID),
HOST (the remote host address), USERID (the remote user), EXIT
(exit status and termination signal), and DURATION (duration of a
service session).

log_on_failure Specifies the information that is logged when a server cannot be
started. Information you can specify includes HOST (the remote host
address), USERID (user ID of the remote user), ATTEMPT (logs a
failed attempt), RECORD (records information from the remote host
to allow monitoring of attempts to access the server).

rpc_version Specifies the RPC version for an RPC service.
rpc_number Specifies the number for an UNLISTED RPC service.
env Defines environment variables for a service.
passenv The list of environment variables from xinetd's environment that will

be passed to the server.
port Specifies the service port.
redirect Allows a TCP service to be redirected to another host.
bind Allows a service to be bound to a specific interface on the machine.
interface Synonym for bind.
banner The name of a file to be displayed for a remote host when a

connection to that service is established.
banner_success The name of a file to be displayed at the remote host when a

connection to that service is granted.
banner_fail Takes the name of a file to be displayed at the remote host when a

connection to that service is denied.
groups Allows access to groups the service has access to (yes or no).
enabled Specifies the list of service names to enable.
include Inserts the contents of a specified file as part of the configuration file.
includedir Takes a directory name in the form of "includedir /etc/xinetd.d".

Every file inside that directory will be read sequentially as an xinetd
configuration file, combining to form the xinetd configuration.

http:ALL
ALL:pango1.train.com
ftp:rabbit.trek.com
ftp:sparrow.com

The hosts.allow file holds hosts to which you allow access. If you want to allow access to all
but a few specific hosts, you can specify ALL for a service in the hosts.allow file, but list the
ones you are denying access to in the hosts.deny file. Using IP addresses instead of
hostnames is more secure because hostnames can be compromised through the DNS records
by spoofing attacks where an attacker pretends to be another host.

Table 22-4: TCP Wrapper Wildcards
Wildcard Description
ALL Matches all hosts.
LOCAL Matches any host specified with just a host name without a domain

name. Used to match on hosts in the local domain.
UNKNOWN Matches any user or host whose name or address is unknown.
KNOWN Matches any user or host whose name or address is known.
PARANOID Matches any host whose host name does not match its IP address.
EXCEPT An operator that lets you provide exceptions to matches. It takes the

form of list1 EXCEPT list2 where those hosts matched in list1 that
are also matched in list2 are excluded.

When xinetd receives a request for an FTP service, a TCP wrapper monitors the connection
and starts up the in.ftpd server program. By default, all requests are allowed. To allow all
requests specifically for the FTP service, you would enter the following in your
/etc/hosts.allow file. The entry ALL:ALL opens your system to all hosts for all services.

ftp:ALL
 Note Originally, TCP Wrappers were managed by the tcpd daemon. However, xinetd has

since integrated support for TCP Wrappers into its own program. You can explicitly
invoke the tcpd daemon to handle services if you wish. The tcpd Man pages (man
tcpd) provide more detailed information about tcpd.

Chapter 23: FTP Servers
Overview

The File Transfer Protocol (FTP) is designed to transfer large files across a network from one
system to another. Like most Internet operations, FTP works on a client/server model. FTP
client programs can enable users to transfer files to and from a remote system running an FTP
server program. Chapter 19 discusses FTP clients. Any Linux system can operate as an FTP
server. It only has to run the server software-an FTP daemon with the appropriate
configuration. Transfers are made between user accounts on client and server systems. A user
on the remote system has to log in to an account on a server and can then transfer files to and
from that account's directories only. A special kind of user account, named ftp, allows any
user to log in to it with the username "anonymous." This account has its own set of directories
and files that are considered public, available to anyone on the network who wants to
download them. The numerous FTP sites on the Internet are FTP servers supporting FTP user
accounts with anonymous login. Any Linux system can be configured to support anonymous

FTP access, turning them into network FTP sites. Such sites can work on an intranet or on the
Internet.

 Note On Red Hat, the configuration files for anonymous FTP are in packages beginning with
the term anonftp. Installing this package sets up your FTP directories and configures
the FTP account.

FTP Daemons

FTP server software consists of an FTP daemon and configuration files. The daemon is a
program that continuously checks for FTP requests from remote users. When a request is
received, it manages a login, sets up the connection to the requested user account, and
executes any FTP commands the remote user sends. For anonymous FTP access, the FTP
daemon allows the remote user to log in to the FTP account using anonymous or ftp as the
username. The user then has access to the directories and files set up for the FTP account. As
a further security measure, however, the daemon changes the root directory for that session to
be the FTP home directory. This hides the rest of the system from the remote user. Normally,
any user on a system can move around to any directories open to him or her. A user logging in
with anonymous FTP can only see the FTP home directory and its subdirectories. The
remainder of the system is hidden from that user. This effect is achieved by the chroot
operation (discussed later) that literally changes the system root directory for that user to that
of the FTP directory. By default, the FTP server also requires a user be using a valid shell. It
checks for a list of valid shells in the /etc/shells file. Most daemons have options for turning
off this feature.

Several FTP server daemons are available for use on Linux systems. Most Linux distributions
come with the Washington University FTP server called wu-ftpd. You can download RPM
package updates for particular distributions from their FTP sites, such as ftp.redhat.com. The
software package usually begins with the term wu-ftpd. You can obtain the original
compressed archive from the Washington University archive at
http://wuarchive.wustl.edu/packages/wuarchive-ftpd.

ProFTPD is a newer and popular FTP daemon based on an Apache Web server design. It
features simplified configuration and support for virtual FTP hosts. Although it is not
currently included with most distributions, you can download RPM packages from Red Hat.
Check the contrib directories. The package begins with the term proftpd. The compressed
archive of the most up-to-date version, along with documentation, is available at the ProFTPD
Web site at www.proftpd.net. Another FTP daemon, ncftpd, is a commercial product
produced by the same programmers who did the ncftp FTP client. ncftpd is free for academic
use and features a reduced fee for small networks. Check www.ncftpd.org for more
information.

 Note Several security-based FTP servers are also available, including SSLftp and SSH sftp.
SSLftp uses SSL (secure socket layer) to encrypt and authenticate transmissions, as well
as MD5 digests to check the integrity of transmitted files. SSH sftp is an FTP server is
now part of the Open SSH package, using SSH encryption and authentication to
establish secure FTP connections.

Red Hat currently installs the wu-ftpd server and the anon anonymous FTP package during
installation. At that time, an ftp directory along with several subdirectories are created where

you can place files for FTP access. The directories have already been configured to control
access by remote users, restricting use to only the ftp directories and any subdirectories. The
ftp directory is placed in different directories by different distributions. On Red Hat, the ftp
directory is placed in the /var directory, /var/ftp. Place the files you want to allow access to
in the ftp/pub directory. For example, on Red Hat this would be at /var/ftp/pub. You can
also create subdirectories and place files there. Once connected to a network, a remote user
can connect to your system and download files you placed in ftp/pub or any of its
subdirectories. The anon FTP package implements a default configuration for those
directories and their files. You can change these if you want. If you are installing an FTP
server yourself, you need to know the procedures detailed in the following sections to install
an FTP server and create its data directories.

The anon FTP package does not create a directory where users can upload files to the FTP
site. Such a directory is usually named the incoming directory located at ftp/pub/incoming. If
you want such as directory, you will have to create it, make it part of the ftp group, and then
set its permissions to allow users write access.

chgrp ftp /var/ftp/pub/incoming
chmod g+w /var/ftp/pub/incoming

Anonymous FTP: anon

An anonymous FTP site is essentially a special kind of user on your system with publicly
accessible directories and files in its home directory. Anyone can log in to this account and
access its files. Because anyone can log in to an anonymous FTP account, you must be careful
to restrict a remote FTP user to only the files on that anonymous FTP directory. Normally, a
user's files are interconnected to the entire file structure of your system. Normal users have
write access that lets them create or delete files and directories. The anonymous FTP files and
directories can be configured in such a way that the rest of the file system is hidden from
them, and remote users are given only read access. In ProFTPD, this is achieved through
configuration directives placed in its configuration file. An older approach used by wu-ftpd
and implemented by the anon package involves having copies of certain system
configuration, command, and libraries files placed within subdirectories of the FTP home
directory. Restrictions placed on those sudirectories then control access by other users. Within
the FTP home directory, you then have a publicly accessible directory that holds the files you
want to make available to remote users. This directory usually has the name pub, for public.

An FTP site is made up of an FTP user account, an FTP home directory, and certain copies of
system directories containing selected configuration and support files. Newer FTP daemons,
such as ProFTPD, do not need the system directories and support files. Most distributions,
including Red Hat, have already set up an FTP user account when you installed your system.
On Red Hat, you can use the anon RPM package to set up the home directory and the copies
of the system directories. If you do not have access to the anon package, you may have to
create these system directories yourself.

The FTP User Account: Anonymous

To allow anonymous FTP access by other users to your system, you must have a user account
named FTP. Red Hat has already created this account for you. If your system does not have
such an account, you will have to create one. You can then place restrictions on the FTP

account to keep any remote FTP users from accessing any other part of your system. You
must also modify the entry for this account in your /etc/passwd file to prevent normal user
access to it. The following is the entry you find in your /etc/passwd file on Red Hat systems
that sets up an FTP login as an anonymous user:

ftp:*:14:50:FTP User:/var/ftp:

The asterisk in the password field blocks the account, which prevents any other users from
gaining access to it, thereby gaining control over its files or access to other parts of your
system. The user ID, 14, is a unique ID. The comment field is FTP User. The login directory
is /var/ftp. When FTP users log in to your system, this is the directory in which they are
placed. If a home directory has not been set up, create one and then change its ownership to
the FTP user with the chown command.

The group ID is the ID of the ftp group, which is set up only for anonymous FTP users. You
can set up restrictions on the ftp group, thereby restricting any anonymous FTP users. Here is
the entry for the ftp group you find in the /etc/group file. If your system does not have one,
you should add it.

ftp::50:

Anonymous FTP Server Directories

As previously noted, on Red Hat the FTP home directory is named ftp and is placed in the
/var directory. When users log in anonymously, they are placed in this directory. An
important part of protecting your system is preventing remote users from using any
commands or programs not in the restricted directories. For example, you would not let a user
use your ls command to list filenames because ls is located in your /bin directory. At the same
time, you want to let the FTP user list filenames using an ls command. Newer FTP daemons
like ProFTPD solve this problem by creating secure access to needed system commands and
files, while restricting remote users to only the FTP site's directories. Another more traditional
solution, used by wu-ftpd, is to create copies of certain system directories and files needed by
remote users and to place them in the ftp directory where users can access them. A bin
directory is placed in the ftp directory and remote users are restricted to it, instead of the
system's bin directory. Whenever they use the ls command, remote users are using the one in
ftp/bin, not the one you use in /bin.

On Red Hat, the anon RPM package will set up these copies of system directories and files.
Otherwise, you may have to create these directories and support files yourself. On Red Hat,
the anon package installs etc, bin, and lib directories in the /var/ftp directory. These contain
localized versions of system files needed to let an FTP client execute certain FTP commands,
such as listing files or changing directories. The ftp/etc directory contains versions of the
password and group configuration files, the ftp/bin directory contains copies of shell and
compression commands, and the ftp/lib directory holds copies of system libraries. The
directories set up by the anon package are shown here:

ftp
ftp/bin
ftp/etc
ftp/lib
ftp/pub

The ftp/etc directory holds a version of your passwd and group files specially configured for
FTP access. Again, the idea is to prevent any access to the original files in the /etc directory
by FTP users. The ftp/etc/passwd file should not include any entries for regular users on your
system. All entries should have their passwords set to * to block access. The group file
should not include any user groups, and all passwords should be set to *.

ftp/etc/passwd
root:*:0:0:::
bin:*:1:1:::
operator:*:11:0:::
ftp:*:14:50:::
nobody:*:99:99:::

ftp/etc/group
root::0:
bin::1:
daemon::2:
sys::3:
adm::4:
ftp::50:

If, for some reason, you do not have access to the anon package, you can set up the
anonymous FTP directories yourself. Again, remember, if you are using ProFTPD, you do not
need any of these files, except for an FTP home directory. You must use the chmod command
to change the access permissions for the directories so remote users cannot access the rest of
your system. Create an ftp directory and use the chmod command with the permission 555 to
turn off write access: chmod 555 ftp. Next, make a new bin directory in the ftp directory, and
then make a copy of the ls command and place it in ftp/bin. Do this for any commands you
want to make available to FTP users. Then create an ftp/etc directory to hold a copy of your
passwd and group files. Again, the idea is to prevent any access to the original files in the
/etc directory by FTP users. The ftp/etc/passwd file should be edited to remove any entries
for regular users on your system. All other entries should have their passwords set to * to
block access. For the group file, remove all user groups and set all passwords to *. Create an
ftp/lib directory, and then make copies of the libraries you need to run the commands you
placed in the bin directory.

Anonymous FTP Files

A directory named pub, located in the FTP home directory, usually holds the files you are
making available for downloading by remote FTP users. When FTP users log in, they are
placed in the FTP home directory (/var/ftp on Red Hat), and they can then change to the pub
directory to start accessing those files (/var/ftp/pub on Red Hat). Within the pub directory,
you can add as many files and directories as you want. You can even designate some
directories as upload directories, enabling FTP users to transfer files to your system.

 Note In each subdirectory set up under the pub directory to hold FTP files, you should create
a Readme file and an index file as a courtesy to FTP users. The Readme file contains a
brief description of the kind of files held in this directory. The index file contains a
listing of the files and a description of what each one holds.

Permissions

Technically, any remote FTP user gaining access to your system is considered a user and,
unless restricted, could access other parts of your file system, create directories and files, or
delete the ones already there. Permissions can be used to restrict remote users to simple read
access, and the rest of your file system can be hidden from the FTP directories. The anon
package and the ProFTPD daemon already implement these restrictions. If you are manually
creating your anonymous FTP files, you must be sure to set the permission correctly to restrict
access.

Normally, a Linux file structure interconnects all the directories and files on its system.
Except where prevented by permissions set on a directory or file, any user can access any
directory or file on your system. Technically, any remote FTP user gaining anonymous access
is an anonymous user and, as a user, could theoretically access an unrestricted directory or file
on your system. To restrict FTP users to the FTP home directory, such as ftp, and its
subdirectories, the rest of the file structure must be hidden from them. In effect, the FTP home
directory should appear to be the root directory as far as FTP users are concerned. On Red
Hat, the FTP home directory ftp would appear to the remote FTP user as the root directory.
The real root directory, /, and the rest of the directory structure remain hidden. The FTP
daemon attains this effect by using the chroot command to make the FTP home directory
appear as a root directory, with the FTP user as the argument. When a remote FTP user issues
a cd / command to change to the root, they always change to the FTP home directory, not the
system's root directory. For example, on Red Hat, the cd / command would change to ftp.

As a further restriction, all the directories that hold commands in the FTP home directory, as
well as the commands themselves, should be owned by the root, not by the FTP user. In other
words, no FTP user should have any control over these directories. The root has to own the
FTP home directory's bin and etc subdirectories and all the files they contain (/var/ftp/bin
and /var/ftp/etc on Red Hat). The anon package already has set the ownership of these
directories to the root. If you need to set them manually, you can use the chown command.
The following example changes the ownership of the /var/ftp/bin directory to the root:

chown root /var/ftp/bin

Permissions for the FTP directories should be set to allow access for FTP users. You recall
that three sets of permissions exist-read, write, and execute for the owner, the group, and
others. To allow access by FTP users, the group and other permissions for directories should
be set to both read and execute. The execute permission allows FTP users to access that
directory, and the read permission allows listing the contents of the directory. Directories
should not allow write permission by FTP users. You don't want them to be able to delete
your directories or make new ones. For example, the FTP bin directory needs both read and
execute permissions because FTP users have to access and execute its commands. This is
particularly true for directories, such as pub, which hold the files for downloading. It must
have both read and execute permissions set.

You, as the owner of the directories, may need write permission to add new files or
subdirectories. Of course, you only need this when you are making changes. To add further
security, you could set these directories at just read and execute, even for the owner when you
are not making changes. You can set all permissions to read and execute with the chmod
command and the number 555 followed by the directory name. This sets the owner, group,

and other permissions to read and execute. The permissions currently in place for the FTP
directories set up by the anon package are designated by the number 755, giving the owner
write permission.

chmod 555 /var/ftp/bin

Permissions for files within the FTP bin directory and other special FTP directories can be
more restrictive. Some files only need to be read, while others must be execute. Files in the
FTP bin or lib directories only have to be execute. These could have their permissions set to
555. Files in the FTP etc directory such as passwd and group should have their permissions
set to 111. They only have to be read. You always use the chmod command to set
permissions for files, as shown in the following example. The adnon package sets these
permissions at read and execute, 555.

chmod 111 /var/ftp/etc/passwd

FTP Server Tools

Both the wu-ftpd and ProFTPD daemons provide a set of FTP tools you can use to manage
your FTP server. With the ftpshut command, you can smoothly shut down a running server,
warning users of the shutdown well before it happens. ftpwho can tell you who is currently
connected and what they are doing. ftpcount can give you the number of connections
currently in effect. Although each daemon has its own set of tools, they perform the same
action with much the same set of options. Tools provided by both ProFTPD and wu-ftpd have
the same name and options, though ProFTPD provides more information on virtual hosts and
has some added options.

ftpshut

With the ftpshut command, you can have the FTP server shut down at a given time, rather
than suddenly shutting it down by killing its process. This gives you the chance to warn users
the server is shutting down and not to start any long downloads. ftpshut takes several options
for specifying the time and including a warning message. ftpshut takes as its arguments the
time until the shutdown, followed by the warning message you want sent to users. The time
can be a word such as "now" that effects an immediate shutdown, a + sign with the number of
minutes remaining, or a specific time of day indicated by an HHMM format, where HH is the
hour in a 24-hour cycle and MM is the minute. The following example shuts down the FTP
server in ten minutes, issuing a warning to users:

ftpshut +10 "Shutdown in ten minutes"

Shutdown disables new FTP access ten minutes before a scheduled shutdown, though this can
be changed using the -l option with the number of minutes you want. Five minutes before a
scheduled shutdown, all current connections are disconnected. You can adjust the time with
the -d options. The warning message is formatted at 75 characters, and you can use special
formatting symbols for in-place substitutions of certain values in the warning message, such
as the shutdown time. These symbols are called magic cookies. For example, %s is the
shutdown time, %r is the time when new connections are refused, %d is the time when
current connections are cut, %M is the maximum number of users, and %L is the local
hostname.

ftpwho and ftpcount

With the ftpwho command, you can find out who is currently connected to your FTP server.
ftpwho shows the current process information for each user. The output displays five fields:
the process ID, the tty connection, the status of the connection, the amount of CPU time used
so far for the process, and the connection details. The status of the connection is R for
running, S for sleeping, and Z for crashed. The connection details include the Internet address
from where the connection is made, the user making the connection, and the task currently
being performed, such as downloading a file. The field begins with the name of the FTP
daemon, usually ftpd, followed by the different segments separated by colons.

ftpcount displays the number of users connected to your FTP server, broken down according
to the classes specified in your .ftpaccess file. Along with the number of users, it shows the
maximum number allowed to connect.

The Washington University FTP daemon: wu-ftpd

The Washington University FTP daemon is currently the most widely used FTP server on
Linux systems. It is the FTP server installed by most Linux distributions. The name of the
Washington University FTP daemon is wu-ftpd. The wu-ftpd options are shown in Table 23-
1. wu-ftpd must be running to allow FTP access by remote users. As with other servers, you
can start the FTP server at boot time, through xinetd when a request is received, or directly
from the command line. By default, the wu-ftpd server is installed to run using xinetd. The
use of xinetd for the servers is described in detail in the previous chapter. The command
name for the FTP server invoked by xinetd is in.ftpd. This is a link to the wu-ftpd command.
xinetd will run a file called wu-ftpd located in the /etc/xinetd.d directory. A copy of the
script is shown here.

wu-ftpd

default: on
description: The wu-ftpd FTP server serves FTP connections. It uses \
normal, unencrypted usernames and passwords for authentication.
service ftp
{
 socket_type = stream
 wait = no
 user = root
 server = /usr/sbin/in.ftpd
 server_args = -l -a
 log_on_success += DURATION USERID
 log_on_failure += USERID
 nice = 10
 disable = yes
}

Initially, the server will be turned off. You can turn it on with the chkconfig command and
the on argument, as shown here. Use the off argument to disable the server.

chkconfig wu-ftpd on

Restart xinetd with the service command to restart the wu-ftpd server, should you make
configuration changes.

service xinetd restart

If you want to run your server continually (like a Web server), you have to configure it to start
up initially with your system. On Red Hat, this means creating an init script for it in the
/etc/rc.d/init.d directory, so it starts when you boot your system. You can also start the FTP
server directly from the command line by entering the wu-ftpd command with any options or
arguments. The wu-ftpd server can be called with several options. Usually, it is called with
the -l option that allows logins. The -t and -T options set timeouts for users, cutting off those
that have no activity after a certain period of time. The -d option displays debugging
information, and -u sets the umask value for uploaded files.

Table 23-1: wu-ftpd Options
Option Effect
-d Writes debugging information to the syslog
-l Logs each FTP session in the syslog
-tseconds Sets the inactivity timeout period to specified seconds (default is 15

minutes)
-Tseconds The maximum timeout period allowed when timeout is set by user

(default is two hours)
-a Enables use of the ftpaccess configuration file
-A Disables use of the ftpaccess configuration file
-L Logs commands sent to the ftpd server to the syslog
-I Logs files received by ftpd to xferlog
-o Logs files transmitted by ftpd to the syslog

Configuring the wu-ftpd Server with kwuftpd

Red Hat 7.1 includes a GUI wu-ftpd configuration tool for the KDE desktop called kwuftpd.
Though still under development, current versions can be used to configure your ftpaccess file
easily. On Red Hat, you can access kwuftpd from the KDE desktop. Kwuftpd presents a set of
tabbed panels for tasks like controlling users and uploads, specifying server directories, and
setting up virtual hosts. Figure 23-1 shows the Security panel where you can specify files that
can't be accessed, control access to basic commands by real, guest, and anonymous users, and
specify the allowable number of failed logins.

Figure 23-1: kwuftpd

With kwuftpd, you can also set up virtual hosts. On the Virtual Hosts panel, shown in Figure
23-2, you can specify the virtual host information such as the hostname, root directory, and
log file. Click on the Add button to create a Virtual Host entry, then enter its information. You
can also control access by real users.

Figure 23-2: Virtual hosts with kwuftpd
 Note You can also use Linuxconf and Webmin to configure the wu-ftpd server. Linuxconf

requires that you load its wu-ftpd module.

wu-ftpd Server Configuration Files

You can use numerous configuration options to tailor your FTP server to your site's particular
needs. wu-ftpd makes use of several configuration files located in the system's /etc directory.
All begin with the pattern ftp. The primary configuration file is named ftpaccess. Here, you
provide basic server information and access for specified directories. The ftphosts, ftpusers,
and ftpgroups control access by systems, particular users, and groups. ftpconversions
specifies how archive and compression operations are to be performed on files before or after
they are transferred. xferlog is the log file that stores a running log of all transactions
performed by the server.

ftpaccess

The ftpaccess file determines capabilities users have after they gain access to your FTP site.
Access, information, permissions, logging, and several miscellaneous capabilities can be

designated. You can have entries that create aliases for certain directories, display a message
when FTP users log in, or prevent anonymous users from deleting files. A loginfails entry
determines the number of login tries a user can make before being cut off, and the email entry
specifies the e-mail address of the FTP administrator. The Man page for ftpaccess lists the
possible entries. The ftpaccess file with the configuration used on Red Hat systems is shown
in this section. For commonly used ftpaccess entries, see Table 23-2. For more detailed
information, check the ftpaccess Man page and wu-ftpd documentation.

In the ftpaccess file, you set capabilities for different types of users, called classes. Three
different types of users exist: anonymous, guest, and real. Anonymous users are any users
using the anonymous login name. Guest users are those given special guest access with
guestgroup or guestuser options. A real user is one who has an account on the system and is
using an FTP connection to access it. You can define your own class using the class option. In
the ftpaccess file shown here, a class called all is created that consists of all users of the
anonymous, guest, and real types.

The message entry specifies a file with the message to be displayed and when that message is
to appear. You can have one message appear when users log in and other messages displayed
when users enter certain directories. For example, the following entry will display the
message in the /welcome.msg file when a user logs in:

message /welcome.msg login

Table 23-2: /etc/ftpaccess wu-ftpd Configuration File
Access Capabilities Description
autogroup group classglob
[classglob...]

This allows access to a group's read-only files and directories
by particular classes of anonymous users. group is a valid
group from /etc/group.

class class typelist addrglob
[addrglob...]

Defines class of users, with source addresses of the form
addrglob. typelist is a comma-separated list of the user types:
anonymous, guest, and real.

deny host-addrglob
message_file

Always deny access to host(s) matching host-addrglob.
message_file is displayed.

guestgroup groupname [
groupname...]

Allow guest access by a real user, where the user is a member
of the specified group. A password entry for the guest user
specifies a home directory within the FTP site directories.

guestuser usrname [
userpname...]

Allow guest access by a real user.

limit class n times
message_file

Limit class to n users at times-times, displaying message_file
if access is denied.

noretrieve file-list Deny retrieval ability of these files.
loginfails number After number login failures, terminate the FTP connection.

Default value is 5.
Private yes|no The user becomes a member of the group specified in the

group access file ftpgroups.
Informational Capabilities
banner file The banner is displayed before login. File requires full

Table 23-2: /etc/ftpaccess wu-ftpd Configuration File
Access Capabilities Description

pathname.
email email-address Defines the e-mail address of the FTP manager.
message file
{ when { class ...}}

FTP displays the contents of the file at login time or upon
changing directories. The when parameter may be LOGIN or
CWD=dir; dir specifies the directory that displays the
message when entered. Magic cookies can be in the message
file that cause the FTP server to replace the cookie with a
specified text string, such as the date or the username.

readme file
{ when { class}}

The user is notified at login time or upon using a change
working directory command (cd) that file exists and was
modified on such and such date.

Logging Capabilities Description
log commands typelist Enables logging of individual commands by users.
log transfers typelist
directions

Enables logging of file transfers. directions is a comma-
separated list of the terms "inbound" and "outbound," and logs
transfers for files sent to the server and sent from the server.

Miscellaneous Capabilities
alias string dir Defines an alias, string, for a directory.
cdpath dir Defines an entry in cdpath. This defines a search path used

when changing directories.
compress yes|no classglob [
classglob
tar yes|no classglob
[classglob...]...]

Enables compress or tar capabilities for any class matching
of classglob. The actual conversions are defined in the
external file ftconversion.

shutdown path If the file pointed to by path exists, the server checks the file
regularly to see if the server is going to be shut down.

virtual address
root|banner|logfile path

Enables the virtual FTP server capabilities. Specify the root,
banner, and logfile files.

virtual address
hostname|email string

Specify the hostname and e-mail for the virtual host.

virtual address allow user-
list

List users allowed access to the virtual host.

virtual address deny user-list List users denied access to the virtual host.
virtual address private Deny access by anonymous users
virtual address
password path

Use a different password file for the virtual host.

virtual address
shadow path

Use a different shadow password file for the virtual host.

Permission Capabilities Allows or disallows the ability to perform the specified
function. By default, all users are allowed.

chmod yes | no typelist Allow or disallow changing file permissions.

Table 23-2: /etc/ftpaccess wu-ftpd Configuration File
Access Capabilities Description
delete yes | no typelist Allow or disallow deleting files, rm.
Permission Capabilities Description
overwrite yes |
no typelist

Allow or disallow modifying files.

rename yes | no typelist Allow or disallow renaming files, mv.
umask yes | no typelist Allow or disallow file creation permissions.
passwd-check none | trivial |
rfc822
(enforce | warn)

Define the level and enforcement of password checking done
by the server for anonymous FTP. rfc822 requires an e-mail
address in a valid e-mail address format.

path-filter typelist mesg
allowed_charset { disallowed
regexp...}

For users in typelist, path-filter defines regular expressions
that control what a filename can or cannot be. Multiple
disallowed regexps may occur.

upload root-dir dirglob
yes|no owner group mode
["dirs"|"nodirs"]

Define a directory with dirglob, which permits or denies
uploads.

To set permissions, you use the command followed by a yes or a no and then a list of the user
types or classes. An example of the ftpaccess file on Red Hat systems is shown here. In this
example, all users can perform tar and compress operations, but anonymous and guest users
are prohibited from using chmod, delete, overwrite, and rename operations. They also
cannot erase files, modify them, or change their names or permissions.

/etc/ftpaccess

define the class of users
class all real,guest,anonymous *
Email address of FTP managerm
email root@localhost
Allow only 5 login failures per connection
loginfails 5
Login and change directory README files
readme README* login
readme README* cwd=*
Login and change directory message files
message /welcome.msg login
message .message cwd=*

Set permissions
Allow access to compress and tar operations.
compress yes all
tar yes all
Deny access by guests and anonymous users to commands
chmod no guest,anonymous
delete no guest,anonymous
overwrite no guest,anonymous
rename no guest,anonymous

Log file transfers, shutdown notice, password email address
log transfers anonymous,real inbound,outbound

shutdown /etc/shutmsg
passwd-check rfc822 warn

You can further modify your ftpaccess file to control access to particular users or groups of
users by defining a class for them and placing restrictions on that class. For example, you
could define a class for connections from a particular host as shown here:

class manycons 192.168.1.55 *

Then apply controls such as limiting the number of connections from that host to five. This
would be helpful for cases where you know many users from a particular host are trying to
use your FTP site.

limit manycons 5 Any

If you want to allow users to upload files to a specific directory, you will need to specify that
directory with an upload entry. For the upload entry, you need to specify the root directory of
the FTP site (root directory for the ftp user), the directory to which files can be uploaded,
whether uploads are permitted (yes|no), and the owner, group, and the file permissions for the
files in that directory. The dirs and nodirs options will allow and disallow the user from
creating subdirectories in that upload directory. In the next example, the
/var/ftp/pub/incoming directory is the directory to which users can upload copies (/var/ftp is
the FTP root directory). Any files in that directory will be owned by the ftp user, which is part
of the ftp group, and will have the permissions 0666 (read/write access). Users are also not
allowed to create subdirectories.

upload /var/ftp /pub/incoming yes ftp ftp 066 nodirs

The wu-ftpd server also supports virtual hosts. These are FTP sites that have different
addresses but use the same server. To enable wu-ftpd to service a virtual host, you need to
specify information about its root directory, its hostname, and user access. You specify this
information with the virtual command using different options. The first argument is usually
the IP address of the virtual FTP server. Then, different options let you specify certain
information. With the root option you can specify the server's root directory. The banner,
password, and logfile options specify the banner, password, and log files. With the hostname
and email options, you give the virtual host's hostname and the e-mail address for its
administrator. The deny and allow options let you list read and guest users that can or cannot
have access to the virtual server. The private option denies access to anonymous users.

In the following example, a virtual FTP server called ftp.mypics.com is created whose IP
address is at 10.0.0.1. This virtual server has a root directory at /var/ftp/mypics and uses the
log file at /var/log/syslog. The administrator's e-mail address is aleina@turtle.mytrek.com.

virtual 10.0.0.1 hostname ftp.mypics.com
virtual 10.0.0.1 root /var/ftp/mypics
virtual 10.0.0.1 logfile /var/ftp/syslog
virtual 10.0.0.1 email aleina@turtle.mytrek.com

ftphosts

You use the ftphosts file to allow or deny access by other host computers to your FTP site.
When the remote system accesses your system, it does so by logging in as a registered user.
Access is made through a user account already set up on your system. You allow the remote
host to log in as a certain specific user or deny access as a certain user. You could use this
kind of control to allow or deny anonymous access to the FTP user by a remote host.

The file ftphosts has two kinds of entries: one for allowing access and the other for denying
access. Entries to allow access begin with the keyword allow, then the user account on your
system to which the host is allowed access, followed by the address of the remote host. The
address can be a pattern that can be used to match several hosts. You can use any of the
filename generation symbols (see Chapter 9). Entries to deny access begin with the keyword
deny, then the user account on your system to which the host is denied access, followed by
the address of the remote host. The terms deny and allow can be misleading. allow is a much
more restrictive control, whereas deny is a much more open control. allow only allows access
from the remote host to the specified account. No other access is permitted. You could use
allow to permit a remote host anonymous access only. deny, on the other hand, only denies
access to the specified account. You could use deny to deny anonymous access by a certain
system, but not any direct FTP access from one user to another.

ftpusers and ftpgroups

The ftpusers files list users that cannot access the FTP service. For example, the root user
should not be accessible through an FTP connection, even if you knew the password. This file
will initially hold a listing of all your system users such as root, mail, and bin. ftpgroups is a
group access file that allows FTP users to become members of specified groups on your
system. This file lists special group passwords. For these to work, the Private entry must be
set to yes in the ftpaccess file.

ftpconversions

The ftpconversions file holds possible FTP conversions for compression and archive
operations. It operates as an FTP conversions database, listing all possible conversions. A
default ftpconversions file is included with the installation package that already has entries
for the most common conversion operations. Each line in the file is a record of eight fields,
with the fields separated by colons. The fields are Strip Prefix and Postfix, Addon Prefix and
Postfix, External Command, Types, Options, and Description. The Prefix and Postfix fields
refer to changes made to the filename after the specified action is performed. The Strip
Postfix removes a specified suffix from a filename, and the Add Postfix adds a suffix. For
example, a gzipped compressed file has a suffix of .gz. If the command is to compress a file
with gzip, then the Add Postfix entry should have the .gz placed in it. When the file is
compressed, .gz is added to the end. If you were decompressing a file with gunzip, then you
would want to remove the .gz suffix. For this, you would place .gz in the Strip Postfix field.
The Strip and Add Prefix fields perform the same kind of action, but for prefixes.

The external command is the command you would use to convert the file. You can list
command options after the command. The filename you are operating on is specified with
%s, usually placed after any options. For example, you would use the tar command to extract
a .tar archived file and gunzip to decompress a .gz file. The Type field lists the type of files

that can be operated on by the command. These can be regular files, character files, or
directories, as indicated by the entries T_REG, T_ASCII, and T_DIR. You can specify more
than one entry by placing a | between them. The Options field specifies the type of operation
the command performs. Currently, options exist for compression, decompression, and use of
the tar command: O_COMPRESS, O_UNCOMPRESS, and O_TAR. You can list more
than one by separating them with a | symbol. The description provides some documentation as
to what the conversion operation does. Here is the ftpconversion file used on Red Hat
systems:

:.Z: : :/bin/compress -d -c %s:T_REG|T_ASCII:O_UNCOMPRESS:UNCOMPRESS
: : :.Z:/bin/compress -c %s:T_REG:O_COMPRESS:COMPRESS
:.gz: : :/bin/gzip -cd %s:T_REG|T_ASCII:O_UNCOMPRESS:GUNZIP
: : :.gz:/bin/gzip -9 -c %s:T_REG:O_COMPRESS:GZIP
: : :.tar:/bin/tar -c -f - %s:T_REG|T_DIR:O_TAR:TAR
: : :.tar.Z:/bin/tar -c -Z -f -
 %s:T_REG|T_DIR:O_COMPRESS|O_TAR:TAR+COMPRESS
: : :.tar.gz:/bin/tar -c -z -f -
 %s:T_REG|T_DIR:O_COMPRESS|O_TAR:TAR+GZIP

FTP log file: xferlog

This file contains log information about connections and tasks performed by your FTP server.
On Red Hat systems, this file is found in the /var/log directory. On other systems, this file
may be on the /usr/adm directory. The file is made up of server entries, one on each line. The
entry is divided into several fields separated by spaces. The fields are current-time, transfer-
time, remote-host, file-size, filename, transfer-type, special- action-flag, direction, access-
mode, username, service-name, authentication-method, and authenticated-user-id. The
transfer-time is the time in seconds for the transfer. The remote-host is the address of the
remote system making the connection, and username is the name of the user on that system.
The transfer-type is either an a for ASCII or b for binary. The access-mode is the method by
which the user logged in: a for anonymous, g for guest, and r for a real login (to another
account on your system). The direction is either o for outgoing or i for incoming. The
following example shows the file mydoc transferred by user larisa. The entry first shows the
time, the FTP server host, and the size of the file along with the filename. The file transfer
was binary, outgoing, and made by an anonymous user (b o a). The user's name (password)
and the service used, ftp, are also shown.

Sun Oct 29 11:15:40 2000 1 turtle.mytrek.com 55945
/var/ftp/pub/mydoc b o a larisa@turtle.mytrek.com ftp 0 * c

Professional FTP Daemon: ProFTPD

ProFTPD is based on the same design as the Apache Web server, implementing a similar
simplified configuration structure and supporting such flexible features as virtual hosting.
ProFTPD RPM packages are available from Red Hat and from www.proftpd.net. Unlike
other FTP daemons, you do not need to set up special subdirectories of system files in the
FTP home directory. No special bin or etc files are needed. You can also set up ProFTPD to
alternate automatically between xinetd startups or as a standalone server constantly running,
depending on the system load.

ProFTPD's tools operate in the same way as the wu-ftpd tools. ftpshut shuts down the system
at specified times with warnings. With ProFTPD, you can shut down a virtual host while the

main server continues to run. ftpwho displays a list of all remote users currently connected,
broken down according to virtual hosts and servers. ftpcount shows the number of current
connections by server and virtual hosts. See the previous section on FTP tools for more
information.

install and startup

If you install ProFTPD using distribution RPM packages such as the one for Red Hat, the
required configuration entries are made in your proftpd.conf files. If you installed from
compiled source code, you may have to modify the entries in the default proftpd.conf file
provided. Make sure the FTP user and group specified in the proftpd.conf file actually exist.

You can download ProFTPD from the ProFTPD Web site at www.proftpd.net. The RPM
package version will contain three packages: a core application, a standalone version, and an
inetd version that will run on xinetd. Download and install the core package first. Then,
depending on whether you want to run ProFTPD as a standalone or inetd process, install
either the inetd or the standalone package.

proftpd-core-1.2.0pre10-1.i686.rpm
proftpd-inetd-1.2.0pre10-1.i686.rpm
proftpd-standalone-1.2.0pre10-1.i686.rpm

You can run ProFTPD either as a standalone process or from xinetd. Make sure the
appropriate entry is made in the ServerType directive in your proftpd.conf file. The
standalone RPM package will install proftpd to run as a standalone server, setting the
ServerType to standalone. proftpd options are listed in Table 23-3. On Red Hat systems, a
startup script named proftpd is placed in the /etc/rc.d/inet.d directory that starts up the
daemon when you boot your system. A standalone process is continually running. You can
start, stop, and restart the server using the service command, as shown here:

service proftpd restart

To set the runlevels at which it will start automatically, you can use chkconfig, Sys V
Runlevel Editor, or Sys V Init Editor tools. The following command sets proftpd to run
automatically from runlevels 3 and 5:

chkconfig --level 35 proftpd on

Table 23-3: ProFTPD Daemon Startup Options
Option Description
-h,--help Use description, including options.
-n,--nodaemon Runs the proftpd process in standalone mode (must also specify

standalone as ServerType in the configuration file).
-v,--version Display ProFTPD version number.
-d, --debug debuglevel Sets proftpd's internal debug level (1-5).
-c,--config config-file Specifies alternate configuration file.
-p,--persistent 0|1 Disables (0) or enables (1) the default persistent password support,

which is determined at configure time for each platform (see
PersistentPasswd directive).

Table 23-3: ProFTPD Daemon Startup Options
Option Description
-l,--list Lists all modules compiled into proftpd.

The following command would disable proftpd:

chkconfig --del proftpd

If you want to run proftpd as an xinetd process, you first must change the ServerType to
inetd and disable the proftpd startup script in the /etc/rc.d/inet.d directory. To run ProFTPD
from xinetd, make sure to create an appropriate file for it in the /etc/xinetd.d directory.
Currently, the proftpd inetd RPM package implements an in.proftpd link to the proftpd
daemon. Use this link to invoke ProFTPD in the ProFTPD xinetd file. A simple ProFTPD
xinetd file, named proftpd, would look like this:

service proftp
{
 socket_type = stream
 wait = no
 user = root
 server = /usr/sbin/in.proftpd
 disable = no
}

Use the chkconfig command with the off and on arguments to disable or enable proftpd
running under xinetd.

chkconfig proftpd on

proftpd.config and .ftpaccess

ProFTPD uses only one configuration file, named proftpd.conf, located in the /etc directory.
Configuration entries take the form of directives. This format is purposely modeled on
Apache configuration directives. With the directives, you can enter basic configuration
information, such as your server name, or perform more complex operations, such as
implementing virtual FTP hosts. The design is flexible enough to enable you to define
configuration features for particular directories, users, or groups.

To configure a particular directory, you can use an .ftpaccess file with configuration options
placed within that directory. These .ftpaccess options take precedence over those in the
proftpd.conf directory. .fptaccess files are designed to operate like .htaccess files in the
Apache Web server that configure particular Web site directories. You can find a complete
listing of ProFTPD configuration parameters at the ProFTPD Web site (www.proftpd.net)
and in the ProFTPD documentation installed in /usr/doc as part of the ProFTPD software
package. Several of the more commonly used parameters are listed in Table 23-4. When
creating a new configuration, you should make a copy of the proftpd.conf configuration file
and modify it. Then you can test its syntax using the proftpd command with the -c option and
the name of the file.

Table 23-4: ProFTPD Configuration Directives, proftpd.conf

Directive Description
AccessGrantMsg message Response message sent to an FTP client indicating the user

has logged in or anonymous access has been granted. The
magic cookie '%u' is replaced with the username specified
by the client.Default: Dependent on login typeContext:
server config, VirtualHost, Anonymous, Global

Allow ["from"]
"all"|"none"|host|
network[,host|
network[,...]]

Used inside a Limit context to specify explicitly which hosts
and/or networks have access to the commands or operations
being limited. Used with Order and Deny to create access
control rules.
Default: Allow from all
Context: Limit

AllowAll Allows access to a Directory, Anonymous or Limit block
Default: Default is to implicitly AllowAll, but not explicitly
Context: Directory, Anonymous,
Limit, .ftpaccess

AllowFilter regular-expression Allows the configuration of a regular expression that must
be matched for all commands sent to ProFTPD.
Default: None
Context: server config, VirtualHost,
Anonymous, Global

AllowForeignAddress on|off Allows clients to transmit foreign data connection addresses
that do not match the client's address.
Default: AllowForeignAddress off
Context: server config, VirtualHost,
Anonymous, Global

AllowGroup group-expression List of groups allowed in a Limit block.
Default: None
Context: Limit

AllowUser user-expression Users allowed access.
Default: None
Context: Limit

AnonRequirePassword on|off Requires anonymous logins to enter a valid password that
must match the password of the user that the anonymous
daemon runs as. This is used to create guest accounts that
function like anonymous logins but require a valid
password.
Default: AnonRequirePassword off
Context: Anonymous

Anonymous root-directory Create an anonymous FTP login, terminated by a matching
/Anonymous directive. The root directory parameter is the
directory proftpd first moves to and then chroot to, hiding
the rest of the file system.
Default: None
Context: server config,VirtualHost

AuthGroupFile path Alternate group's file with the same format as the system
/etc/group file.

Table 23-4: ProFTPD Configuration Directives, proftpd.conf
Directive Description

Default: None
Context: server config, VirtualHost, Global

AuthUserFile path Alternate passwd file with the same format as the system
/etc/passwd file.
Default: None
Context: server config,VirtualHost, Global

Bind address Allows additional IP addresses to be bound to a main or
VirtualHost configuration. Multiple Bind directives can be
used to bind multiple addresses.
Default: None
Context: server config, VirtualHost

DefaultRoot directory [group-
expression]

Default root directory assigned to user on login.
The group-expression argument restricts the DefaultRoot
directive to a group or set of groups.
Default: DefaultRoot /Context: server config, VirtualHost,
Global

Deny ["from"]
"all"|"none"|host|
network[,host|
network[,...]]

List of hosts and networks explicitly denied access to
a given Limit context block. all indicates all hosts are
denied access, and none indicates no hosts are explicitly
denied.
Default: None
Context: Limit

DenyAll Deny access to a directory, anonymous FTP, or
Limit block.
Default: None
Context: Directory, Anonymous,
Limit, .ftpaccess

DenyFilter regular-expression Specifies a regular expression, which must not match any
command.
Default: None
Context: server config, VirtualHost,
Anonymous, Global

DenyUser user-expression Users denied access within a Limit block.
Default: None
Context: Limit

Directory pathname Directory-specific configuration. Used to create a block of
directives that apply to the specified directory and its
subdirectories.
Default: None
Context: server config, VirtualHost,
Anonymous, Global

DisplayFirstChdir filename Specifies the text file displayed to a user the first time
he or she changes into a given directory during an
FTP session.

Table 23-4: ProFTPD Configuration Directives, proftpd.conf
Directive Description

Default: None
Context: server config, VirtualHost, Anonymous, Directory,
Global

DisplayLogin filename Specifies the text file displayed to a user who logs in.
Default: None
Context: server config, VirtualHost,
Anonymous, Global

Global Global configuration block is used to create a set of
configuration directives applied universally to both the main
server configuration and all VirtualHost configurations.
Default: None
Context: server config, VirtualHost

Limit command|command-
group [command2 ..]

Access restrictions on FTP commands, within a given
context. The command-group refers to groupings of
commands as defined in the ProFTPD documentation.
Default: None
Context: server config, VirtualHost, Directory, Anonymous,
Global,
.ftpaccess

LsDefaultOptions "options
string"

Default options for directory listings (as in the ls command).
Default: None
Context: server config, VirtualHost, Global

MaxClients number|
none message

Maximum number of connected clients allowed.
The message specified is displayed when a client is refused
connection.
Default: MaxClients none
Context: server config, Anonymous,
VirtualHost, Global

MaxLoginAttempts number Maximum number of times a client may attempt to log in to
the server during a given connection.
Default: MaxLoginAttempts 3
Context: server config, VirtualHost, Global

Order allow,deny|deny,allow Configures the order that Allow and Deny directives are
checked inside of a Limit block.
Default: Order allow, deny
Context: Limit

PersistentPasswd on|off When on, proftpd, during login, opens the system-wide
/etc/passwd, /etc/group files, accessing them even during a
chroot operation that changes the
root directory.
Default: Platform dependent
Context: server config

RequireValidShell
on|off

Allow or deny logins not listed in /etc/shells. By default,
proftpd disallows logins if the user's default shell is not

Table 23-4: ProFTPD Configuration Directives, proftpd.conf
Directive Description

listed in /etc/shells.
Default: RequireValidShell on
Context: server config, VirtualHost,
Anonymous, Global

ScoreboardPath path Directory that holds proftpd runtime Scoreboard files.
Default: ScoreboardPath /var/run
Context: server config

ServerAdmin "admin-email-
address"

E-mail address of the server or virtual host administrator.
Default: ServerAdmin root@[ServerName]
Context: server config, VirtualHost

ServerType type-identifier The server daemon's operating mode, either inetd
or standalone.
Default: ServerType standalone
Context: server config

TimeoutIdle seconds Maximum number of seconds proftpd allows clients to stay
connected without any activity.
Default: TimeoutIdle 600
Context: server config

Umask octal-mask Permissions applied to newly created file and directory
within a given context.
Default: None
Context: server config, Anonymous, VirtualHost, Directory,
Global, .ftpaccess

User userid The user the proftpd daemon runs as.
Default: None
Context: server config, VirtualHost,
Anonymous, Global

UserAlias login-user userid Maps a login name used by a client to a user ID on the
server. A client logging in as login-user is actually logged in
as user ID.

Often used inside an Anonymous block to allow specified
login-names to perform an anonymous login.
Default: None
Context: server config, VirtualHost,
Anonymous, Global

VirtualHost address Configuration directives that apply to a particular hostname
or IP address. Often used with virtual servers that run on the
same physical machine. The block is terminated with a
/VirtualHost directive. By using the Port directive inside a
VirtualHost block, creating a virtual server that uses the
same address as the master server, but that listens on a
separate TCP port, is possible.
Default: None
Context: server config

proftpd -c newfile.conf

Different kinds of directives exist. Many set values, such as MaxClients, which set the
maximum number of clients, or NameServer, which sets the name of the FTP server. Others
create blocks that can hold directives that apply to specific FTP server components. Block
directives are entered in pairs: a beginning directive and a terminating directive. The
terminating directive defines the end of the block and consists of the same name, beginning
with a slash. Block directives take an argument that specifies the particular object to which
the directives will apply. For the Directory block directive, you must specify a directory name
to which it will apply. The <Directory mydir> block directive creates a block whose directives
within it apply to the mydir directory. The block is terminated by a </Directory> directive.
<Anonymous ftp-dir> configures the anonymous service for your FTP server. You need to
specify the directory on your system used for your anonymous FTP service, such as /var/ftp.
The block is terminated with the </Anonymous> directive. The <VirtualHost hostaddress>
block directive is used to configure a specific virtual FTP server and must include the IP or
the domain name address used for that server. </VirtualHost> is its terminating directive. Any
Directives you place within this block are applied to that virtual FTP server. The <Limit
permission> directive specifies the kind of access you want to limit. It takes as its argument
one of several keywords indicating the kind of permission to be controlled: WRITE for write
access, READ for read access, STOR for transfer access (uploading), and LOGIN to control
user login.

A sample of the standard proftpd.conf file installed as part of the ProFTPD software package
is shown here. Notice the default ServerType is standalone. If you want to use xinetd to run
your server, you must change this entry to inetd. Detailed examples of proftpd.conf files,
showing various anonymous FTP and virtual host configurations, can be found with the
ProFTPD documentation, located in /usr/doc, and on the ProFPTD Web site at
www.proftpd.net.

This is a basic ProFTPD configuration file (rename it to
'proftpd.conf' for actual use. It establishes a single server
and a single anonymous login. It assumes that you have a user/group
"nobody" and "ftp" for normal operation and anon.

ServerName "ProFTPD Default Installation"
ServerType standalone
DefaultServer on

Port 21 is the standard FTP port.
Port 21
Umask 022
MaxInstances 30

Set the user and group that the server normally runs at.
User nobody
Group nobody

Normally, we want files to be overwriteable.
<Directory /*>
 AllowOverwrite on
</Directory>

A basic anonymous configuration, with one incoming directory.
<Anonymous ~ftp>
 User ftp

 Group ftp
 RequireValidShell off
 MaxClients 10
 # We want clients to be able to login with "anonymous" as well as "ftp"
 UserAlias anonymous ftp

 # We want 'welcome.msg' displayed at login, and '.message' displayed
 # in each newly chdired directory.
 DisplayLogin welcome.msg
 DisplayFirstChdir .message

 # Limit WRITE everywhere in the anonymous chroot except incoming
 <Directory *>
 <Limit WRITE>
 DenyAll
 </Limit>
 </Directory>

 <Directory incoming>
 <Limit WRITE>
 AllowAll
 </Limit>
 <Limit READ>
 DenyAll
 </Limit>
 </Directory>

</Anonymous>

Anonymous Access

You use the Anonymous configuration directive to create an anonymous configuration block
in which you can place directives that configure your anonymous FTP service. The directive
includes the directory on your system used for the anonymous FTP service. The ProFTPD
daemon executes a chroot operation on this directory, making it the root directory for the
remote user accessing the service. By default, anonymous logins are supported, expecting
users to enter their e-mail address as a password. You can modify an anonymous
configuration to construct more controlled anonymous services, such as guest logins and
required passwords.

 Note For ProFTPD, your anonymous FTP directory does not require any system files. Before
ProFTPD executes a chroot operation, hiding the rest of the system from the directory,
it accesses and keeps open any needed system files outside the directory.

The following example shows a standard anonymous FTP configuration. The initial
Anonymous directive specifies /var/ftp as the anonymous FTP home directory. The User
directive specifies the user that the Anonymous FTP daemon will run as, and Group indicates
its group. In both cases, FTP, the standard username, is used on most systems for anonymous
FTP. A Directory directive with the * file matching character then defines a Directory block
that applies to all directories and files in /var/ftp. The * symbol matches on all filenames and
directories. Within the Directory directive is a Limit directive that you use to place controls
on a directory. The directive takes several arguments including READ for read access and
WRITE for write access. In this example, the Limit directive places restrictions on the write
capabilities of users. Within the Limit directive, the DenyAll directive denies write
permission, preventing users from creating or deleting files and effectively giving them only

read access. A second Directory directive creates an exception to this rule for the incoming
directory. An incoming directory is usually set up on FTP sites to let users upload files. For
this directory, the first Limit directive prevents both READ and WRITE access by users with
its DenyAll directive, effectively preventing users from deleting or reading files here. The
second Limit directive lets users upload files, however, permitting transfers only (STOR)
with the AllowAll directive.

One important directive for anonymous FTP configurations is the RequireValidShell. By
default, the FTP daemon first checks to see if the remote user is attempting to log in using a
valid shell, such as the BASH shell or the C shell. The FTP daemon obtains the list of valid
shells from the /etc/shells file. If the remote user does not have a valid shell, a connection is
denied. You can turn off the check using the RequireValidShell directive and the off option.
The remote user can then log in using any kind of shell.

<Anonymous /var/ftp>
 User ftp
 Group ftp
 UserAlias anonymous ftp
 RequireValidShell off
 <Directory *>
 <Limit WRITE>
 DenyAll
 </Limit>
 </Directory>
 # The only command allowed in incoming is STOR
 # (transfer file from client to server)
 <Directory incoming>
 <Limit READ WRITE>
 DenyAll
 </Limit>
 <Limit STOR>
 AllowAll
 </Limit>
 </Directory>
 </Anonymous>

Recall that FTP was originally designed to let a remote user connect to an account of his or
her own on the system. Users can log in to different accounts on your system using the FTP
service. Anonymous users are restricted to the anonymous user account. However, you can
create other users and their home directories that also function as anonymous FTP accounts
with the same restrictions. Such accounts are known as guest accounts. Remote users are
required to know the username and, usually, the password. Once connected, they only have
read access to that account's files; the rest of the file system is hidden from them. In effect,
you are creating a separate anonymous FTP site at the same location with more restricted
access.

To create a guest account, first create a user and the home directory for it. You then create an
Anonymous block in the proftpd.conf file for that account. The Anonymous directive
includes the home directory of the guest user you create. You can specify this directory with a
~ for the path and the directory name, usually the same as the username. Within the
Anonymous block, you use the User and Group directives to specify the user and group name
for the user account. Set the AnonRequirePassword directive to on if you want remote users
to provide a password. A UserAlias directive defines aliases for the username. A remote user
can use either the alias or the original username to log in. You then enter the remaining

directives for controlling access to the files and directories in the account's home directory.
An example showing the initial directives is listed here. The User directive specifies the user
as myproject. The home directory is ~myproject, which usually evaluates to
/var/myproject. The UserAlias lets remote users log in either with the name myproject or
mydesert.

<Anonymous ~myproject>
 User myproject
 Group other
 UserAlias mydesert myproject
 AnonRequirePassword on
 <Directory *>

You could just as easily create an account that requires no password, letting users enter their
e-mail addresses instead. The following example configures an anonymous user named
mypics. A password isn't required and neither is a valid shell. The remote user still needs to
know the username, in this case mypics.

<Anonymous /var/mypics>
 AnonRequirePassword off
 User mypics
 Group nobody
 RequireValidShell off
 <Directory *>

The following example provides a more generic kind of guest login. The username is guest
with the home directory located at ~guest. Remote users are required to know the password
for the guest account. The first Limit directive lets all users log in. The second Limit directive
allows write access from users on a specific network, as indicated by the network IP address,
and denies write access by any others.

<Anonymous ~guest>
 User guest
 Group nobody
 AnonRequirePassword on

 <Limit LOGIN>
 AllowAll
 </Limit>

 # Deny write access from all except trusted hosts.
 <Limit WRITE>
 Order allow,deny
 Allow from 10.0.0.
 Deny from all
 </Limit>

</Anonymous>

Virtual FTP Servers

The ProFTPD daemon can manage more than one FTP site at once. Using a VirtualHost
directive in the proftpd.conf file, you can create an independent set of directives that
configure a separate FTP server. The VirtualHost directive is usually used to configure virtual
servers as FTP sites. You can configure your system to support more than one IP address. The

extra IP addresses can be used for virtual servers, not independent machines. You can use
such an extra IP address to set up a virtual FTP server, giving you another FTP site on the
same system. This added server would use the extra IP address as its own. Remote users could
access it using that IP address, instead of the system's main IP address. Because such an FTP
server is not running independently on a separate machine but is, instead, on the same
machine, it is known as a virtual FTP server or virtual host. This feature lets you run what
appears to others as several different FTP servers on one machine. When a remote user uses
the virtual FTP server's IP address to access it, the ProFTPD daemon detects that request and
operates as the FTP service for that site. ProFTPD can handle a great many virtual FTP sites
at the same time on a single machine.

 Note Given its configuration capabilities, you can also tailor any of the virtual FTP sites to
specific roles, such as a guest site, an anonymous site for a particular group, or an
anonymous site for a particular user.

You configure a virtual FTP server by entering a <VirtualHost> directive for it in your
proftpd.conf file. Such an entry begins with the VirtualHost directive and the IP address, and
ends with a terminating VirtualHost directive, </VirtualHost>. Any directives placed within
these are applied to the virtual host. For anonymous or guest sites, add Anonymous and Guest
directives. You can even add Directory directives for specific directories. With the Port
directive on a standalone configuration, you can create a virtual host that operates on the same
system but connects on a different port.

<VirtualHost 10.0.0.1>
 ServerName "My virtual FTP server"
</VirtualHost>

Xinetd and standalone configurations handle virtual hosts differently. Xinetd detects a request
for a virtual host, and then hands it off to an FTP daemon. The FTP daemon then examines
the address and port specified in the request and processes the request for the appropriate
virtual host. In the standalone configuration, the FTP daemon continually listens for requests
on all specified ports and generates child processes to handle ones for different virtual hosts as
they come in. In the standalone configuration, ProFTPD can support a great many virtual
hosts at the same time.

The following example shows a sample configuration of a virtual FTP host. The VirtualHost
directives use domain name addresses for their arguments. When a domain name address is
used, it must be associated with an IP address in the network's domain name server. The IP
address, in turn, has to reference the machine on which the ProFTPD daemon is running. On
the ftp.mypics.com virtual FTP server, an anonymous guest account named robpics is
configured that requires a password to log in. An anonymous FTP account is also configured
that uses the home directory /var/ftp/virtual/pics.

<VirtualHost ftp.mypics.com>

 ServerName "Mypics FTP Server"
 MaxClients 10
 MaxLoginAttempts 1
 DeferWelcome on
 <Anonymous ~robpics>
 User robpics
 Group robpics

 AnonRequirePassword on

 <Anonymous /var/ftp/virtual/pics>
 User ftp
 Group ftp
 UserAlias anonymous ftp
 </Anonymous>
</VirtualHost>

Chapter 24: Red Hat Web Servers: Apache
and Tux
Red Hat provides several Web servers for use on your system. The primary Web server is
Apache, which has almost become the standard Web server for Linux. It is a very powerful,
stable, and fairly easy to configure system. Tux is smaller, but very fast, and can handle Web
data that does not change with great efficiency. Red Hat provides default configurations for
the Web servers, making them usable as soon as they are installed.

Tux

Tux is a static content Web server designed to be run very fast from within the Linux kernel.
In effect it runs in kernel space, making response times much faster than standard user-space
Web servers like Apache. As a kernel-space server, Tux can handle static content such as
images very efficiently. At the same time it can coordinate with a user-space Web server, like
Apache, to provide the dynamic content, like CGI programs. Tux can even make use of a
cache to hold previously generated dynamic content, using it as if it were static. The ability to
coordinate with a user-space Web server lets you use Tux as your primary Web server.
Anything that Tux cannot handle, it will pass off to the user-space Web server.

 Note Tux is freely distributed under the GNU Public License and is included with Red Hat
distributions.

The Tux configuration file is located in /proc/sys/net/tux. Here you enter parameters such as
serverport, max_doc_size, and logfile (check the Tux reference manual at
www.redhat.com/support/manuals for a detailed listings). Red Hat defaults are already
entered. serverport, clientport, and documentroot are required parameters that must be set.
serverport is the port Tux will use-80 if it is the primary Web server. clientport is the port
used by the user-space Web server Tux coordinates with, like Apache. documentroot specifies
the root directory for your Web documents (/var/www/html on Red Hat).

Ideally, Tux is run as the primary Web server and Apache as the secondary Web server. To
configure Apache to run with Tux, the port entry in the Apache httpd.conf file needs to be
changed from 80 to 8080.

Port 8080

You can start, stop, and restart the server with the /etc/rd.d/init.d/tux command. Several
parameters like DOCROOT can be specified as arguments to this tux command. You can
enter them in the /etc/sysconfig/tux file.

 Note You can also run Tux as an FTP server. In the /proc/sys/net/tux directory, you change
the contents of the files serverport to 21, application_protocol to 1, and nonagle to 0,
and then restart Tux. Use the generatetuxlist command in the document root directory
to generate FTP directory listings.

Apache Web Server

The Apache Web server is a full-featured free HTTP (Web) server developed and maintained
by the Apache Server Project. The aim of the project is to provide a reliable, efficient, and
easily extensible Web server, with free open-source code. The server software includes the
server daemon, configuration files, management tools, and documentation. The Apache
Server Project is maintained by a core group of volunteer programmers and supported by a
great many contributors worldwide. The Apache Server Project is one of several projects
currently supported by the Apache Software Foundation (formerly known as the Apache
Group). This nonprofit organization provides financial, legal, and organizational support for
various Apache open-source software projects, including the Apache HTTPD Server, Java
Apache, Jakarta, and XML-Apache. The Web site for the Apache Software Foundation is at
www.apache.org. Table 24-1 lists various Apache-related Web sites.

Apache was originally based on the NCSA Web server developed at the National Center for
Supercomputing Applications, University of Illinois, Urbana- Champaign. Apache has since
emerged as a server in its own right and has become one of the most popular Web servers in
use. Although originally developed for Linux and Unix systems, Apache has become a cross-
platform application with Windows and OS2 versions. Apache provides online support and
documentation for its Web server at httpd.apache.org. An HTML-based manual is also
provided with the server installation. You can use the Apache configuration tool, installed
with Red Hat, to help configure your Apache server easily. It operates on any X Windows
window manager, including Gnome and KDE. In addition, you can use the Comanche
configuration tool. Webmin and Linuxconf also provide Apache configuration support.

Table 24-1: Apache-Related Web Sites
Web Site Description
www.apache.org Apache Software Foundation
httpd.apache.org Apache HTTP Server Project
java.apache.org Java Apache Project
jakarta.apache.org Jakarta Apache Project
gui.apache.org Apache GUI Project
www.comanche.org Comanche (Configuration Manager for Apache)
www.apache-ssl.org Apache-SSL server (Secure Socket Layer)
www.openssl.org OpenSSL project
www.modssl.org The SSL module (mod_ssl) project to add SSL encryption to

an Apache Web server

Other Web servers available for Linux include the Red Hat Secure Server
(www.redhat.com), Apache-SSL (www.apache-ssl.org), Stronghold (www.c2.net), and
Netscape Enterprise Server (home.netscape.com). Apache-SSL is an encrypting Web server

based on Apache and OpenSSL (www.openssl.org). Stronghold is a commercial version of
the Apache Web server featuring improved security and administration tools. You can also
use the original NCSA Web server, though it is no longer supported (hoohoo.ncsa.uiuc.edu).
AOLserver is America Online's Web server that is now available under the GPL license
(www.aolserver.com).

Java: Jakarta and Apache-Java

The Java Apache Project develops open-source Java software and has its Web site located at
java.apache.org. Currently, the Java Apache Project supports numerous projects, including
JServ, JSSI, JMeter, and mod_java, among others. The Apache JServ Project has developed a
Java servlet engine compliant with the JavaSoft Java Servlet API's 2.0 specification. The
Apache JSSI project has developed a Java servlet for dynamic servlet output from HTML
files through the <SERVLET> tag as designated by the JavaSoft Java Web Server. JMeter is a
Java desktop application to test performance of server resources, such as servlets and CGI
scripts. The MOD_JAVA project has developed a mod_java extension module for Apache
Web servers that allows Apache modules to be written in Java instead of in C. It functions
much like mod_perl (which allows modules to be written in Perl).

Jakarta is an Apache project to develop server-side Java capabilities on Linux. Jakarta's main
product, called Tomcat, is an open-source implementation of the Java Servlet 2.2 and
JavaServer Pages 1.1 specifications. Tomcat is designed for use in Apache servers. The
Jakarta Web site is at jakarta.apache.org.

Linux Distribution Apache Installations

Red Hat provides you with the option of installing the Apache Web server during your initial
installation of your Linux system. All the necessary directories and configuration files are
automatically generated for you. Then, whenever you run Linux, your system is already a
fully functional Web site. Every time you start your system, the Web server will also start up,
running continuously. On Red Hat systems, the directory reserved for your Web site data files
is /var/www/html. Place your Web pages in this directory or in any subdirectories. Your
system is already configured to operate as a Web server. All you need to do is perform any
needed network server configurations, and then designate the files and directories open to
remote users. You needn't do anything else. Once your Web site is connected to a network,
remote users can access it.

The Web server installed on Red Hat systems sets up your Web site in the /var/www
directory. It also sets up several directories for managing the site. The /var/www/cgi-bin
directory holds the CGI scripts, and /var/www/html/manual holds the Apache manual in
HTML format. You can use your browser to examine it. Your Web pages are to be placed in
the /var/www/html directory. Place your Web site home page there. Your configuration files
are located in a different directory, /etc/httpd/conf. Table 24-2 lists the various Apache Web
server directories and configuration files.

Table 24-2: Apache Web Server Files and Directories (RPM Installation)
Web Site Directories Description
/var/www Directory for Apache Web site files on your Red Hat

system

Table 24-2: Apache Web Server Files and Directories (RPM Installation)
Web Site Directories Description
/var/www/html Web site Web files
/var/www/cgi-bin CGI program files
/var/www/html/manual Apache Web server manual
Configuration Files
.htaccess Directory-based configuration files. An .htaccess file

holds directives to control access to files within the
directory in which it is located

/etc/httpd/conf Directory for Apache Web server configuration files
/etc/httpd/conf/httpd.conf Apache Web server configuration file
Startup Scripts
/etc/rc.d/init.d/httpd Startup script for Web server daemon
/etc/rc.d/rc3.d/S85httpd Link in runlevel 3 directory (/etc/rc3.d) to the httpd

startup script in the /etc/rc.d/init.d directory
Application Files
/usr/sbin Location of the Apache Web server program file and

utilities
/usr/share/doc/ Apache Web server documentation
/var/log/http Location of Apache log files

To upgrade your Apache server, either use the Red Hat upgrade tool, or look for recent
Apache update files at your Linux distribution's FTP sites. There, you can download RPM
packages containing the latest version of the Apache Web server, specially configured for
your Linux distribution. Then use the rpm command with the -Uvh options to install the
upgrade (the -U option specifies an upgrade option).

rpm -Uvh apache-1.3.12-20.i386.rpm
rpm -Uvh apache-docs-1.3.12-20.i386.rpm

Alternatively, you can download the source code version for the latest Apache Web server
directly from Apache and compile it on your system. You must decompress the file and
extract the archive. Many of the same directories are created, with added ones for the source
code. The server package includes installation instructions for creating your server directories
and compiling your software. Make sure the configuration files are set up and installed.

 Note If you are installing Apache from the source code, notice that versions of the
configuration files ending with the extension .conf-dist are provided. You have to make
copies of these configuration files with the same prefix, but only with the extension
.conf to set up a default configuration. The Web server reads configuration information
only from files with a .conf extension.

Apache Web Server 2.0

Red Hat 7.1 still uses Apache version 1.3, which is described here. Recently Apache released
2.0, which is designed to be less dependent on Linux/Unix systems. Most directives and
features for Apache 1.3 still work on Apache 2.0. However, Apache 2.0 has introduced a new
architecture that uses Multi-Processing Modules (MPMs), which are designed to customize
Apache to different operating systems. A Linux system would use the threaded MPM,
whereas Windows would use the mpm_winnt MPM. To maintain compatibility with Apache
1.3 configurations, you would use the prefork MPM.

Apache 2.0 has adopted a much more modular architecture than 1.3. Many directives that
once resided in the Apache core are now placed in respective modules and MPMs. With this
modular design, several directives have been dropped, such as ServerType. Such directives
deprecated in Apache 2.0 are noted in Table 24-3.

Table 24-3: Apache Modules (Apache 2.0)
Module Description
mod_access Accesses control based on client hostname or IP address
mod_actions Executes CGI scripts based on media type or request method
mod_alias Maps different parts of the host file system in the document tree,

and URL redirection
mod_asi Sends files that contain their own HTTP headers
mod_auth User authentication using text files
mod_auth_anon Anonymous user access to authenticated areas
mod_auth_db User authentication using Berkeley DB files
mod_auth_dbm User authentication using DBM files
mod_auth_digest MD5 authentication
mod_autoindex Automatic directory listings
mod_cern_meta Support for HTTP header metafiles
mod_cgi Invokes CGI scripts
mod_cgid Invokes CGI scripts using an external daemon
mod_charset_lite Configures character set translation
mod_dav Class 1,2 WebDAV HTTP extensions
mod_dir Basic directory handling
mod_env Passes environments to CGI scripts
mod_example Demonstrates Apache API
mod_expires Applies Expires: headers to resources
mod_ext_filter Filters output with external programs
mod_file_cache Caches files in memory for faster serving
mod_headers Adds arbitrary HTTP headers to resources
mod_imap The image-map file handler
mod_include Server-parsed documents

Table 24-3: Apache Modules (Apache 2.0)
Module Description
mod_info Server configuration information
mod_isapi Windows ISAPI Extension support
mod_log_config User-configurable logging replacement for mod_log_common
mod_mime Determines document types using file extensions
mod_mime_magic Determines document types using "magic numbers"
mod_negotiation Content negotiation
mod_proxy Caches proxy abilities
mod_rewrite Powerful URI-to-filename mapping using regular expressions
mod_setenvif Sets environment variables based on client information
mod_so Support for loading modules at runtime
mod_spelling Automatically corrects minor typos in URLs
mod_status Server status display
mod_unique_id Generates unique request identifier for every request
mod_userdir User home directories
mod_usertrack User tracking using Cookies (replacement for mod_cookies.c)
mod_vhost_alias Support for dynamically configured mass virtual hosting
 Note A selected MPM is usually integrated into Apache when it is compiled. Future Red Hat

distributions of Apache should use the Linux/Unix default MPM, which is named
"threaded."

Starting and Stopping the Web Server

On most systems, Apache is installed as a stand-alone server, continually running. As noted in
Chapter 22, in the discussion of init scripts, your system automatically starts up the Web
server daemon, invoking it whenever you start your system. On Red Hat systems, a startup
script for the Web server called httpd is in the /etc/rc.d/init.d directory. Symbolic links
through which this script is run are located in corresponding runlevel directories. You will
usually find the S85httpd link to /etc/rc.d/init.d/httpd in the runlevel 3 and 5 directories,
/etc/rc.d/rc3.d and /etc/rc.d/rc5.d. You can use the chkconfig command or the System V Init
Editor to set the runlevels at which the httpd server will start, creating links in appropriate
runlevel directories. The following command will set up the Web server (httpd) to start up at
runlevels 3 and 5 (see Chapter 22 for more details on runlevels).

chkconfig --level 35 httpd on

You can also use service command to start and stop the httpd server manually. This may be
helpful when you are testing or modifying your server. The httpd script with the start option
starts the server, the stop option stops it, and restart will restart it. Simply killing the Web
process directly is not advisable.

service httpd restart

Apache also provides a control tool called apachectl (Apache control) for managing your
Web server. With apachectl, you can start, stop, and restart the server from the command
line. apachectl takes several arguments: start to start the server, stop to stop it, restart to
shut down and restart the server, and graceful to shut down and restart gracefully. In addition,
you can use apachectl to check the syntax of your configuration files with the config
argument. You can also use apachectl as a system startup file for your server in the /etc/rc.d
directory.

Remember, httpd is a script that calls the actual httpd daemon. You could call the daemon
directly using its full pathname. This daemon has several options. The -d option enables you
to specify a directory for the httpd program if it is different from the default directory. With
the -f option, you can specify a configuration file different from httpd.conf. The -v option
displays the version.

/usr/sbin/httpd -v

To check your Web server, start your Web browser and enter the Internet domain name
address of your system. For the system turtle.mytrek.com, the user enters
http://turtle.mytrek.com. This should display the home page you placed in your Web root
directory. A simple way to do this is to use Lynx, the command line Web browser. Start Lynx,
and then press g to open a line where you can enter a URL for your own system. Then Lynx
displays your Web site's home page. Be sure to place an index.html file in the
/var/www/html directory first.

Once you have your server running, you can check its performance with the ab benchmarking
tool, also provided by Apache. ab shows you how many requests at a time your server can
handle. Options include -v, which enables you to control the level of detail displayed, -n,
which specifies the number of requests to handle (default is 1), and -t, which specifies a time
limit.

 Note Currently there is no support for running Apache under xinetd. In Apache 2.0, such
support is determined by choosing an MPM designed to run on xinetd. Currently there
are none.

Apache Configuration and Directives

Configuration directives are placed in the httpd.conf configuration file. An documented
version of the httpd.conf configuration file for Red Hat is installed automatically in
/etc/httpd. It is strongly recommended that you consult this file on your system. It contains
detailed documentation and default entries for Apache directives.

Any of the directives in the main configuration files can be overridden on a per-directory
basis using an .htaccess file located within a directory. Although originally designed only for
access directives, the .htaccess file can also hold any resource directives, enabling you to
tailor how Web pages are displayed in a particular directory. You can configure access to
.htaccess files in the httpd.conf file.

 Note With Apache version 1.3.4, all configuration directives are placed in one file, the
httpd.conf file. Older versions used two other files, the srm.conf and access.conf files.
The srm.conf file handled document specifications, configuring file types and locations.

The access.conf file was designed to hold directives that control access to Web site
directories and files. Though you will still find these files on current Apache versions,
they will be empty.

Apache configuration operations take the form of directives entered into the Apache
configuration files. With these directives, you can enter basic configuration information, such
as your server name, or perform more complex operations, such as implementing virtual
hosts. The design is flexible enough to enable you to define configuration features for
particular directories and different virtual hosts. Apache has a variety of different directives
performing operations as diverse as controlling directory access, assigning file icon formats,
and creating log files. Most directives set values such as DirectoryRoot, which holds the root
directory for the server's Web pages, or Port, which holds the port on the system that the
server listens on for requests. Table 24-3 provides a listing of the more commonly used
Apache directives. The syntax for a simple directive is shown here.

directive option option …

Certain directives create blocks able to hold directives that apply to specific server
components (also referred to as sectional directives). For example, the Directory directive is
used to define a block within which you place directives that apply only to a particular
directory. Block directives are entered in pairs: a beginning directive and a terminating
directive. The terminating directive defines the end of the block and consists of the same
name beginning with a slash. Block directives take an argument that specifies the particular
object to which the directives apply. For the Directory block directive, you must specify a
directory name to which it will apply. The <Directory mydir> block directive creates a block
whose directives within it apply to the mydir directory. The block is terminated by a
</Directory> directive. The <VirtualHost hostaddress> block directive is used to configure
a specific virtual Web server and must include the IP or domain name address used for that
server. </VirtualHost> is its terminating directive. Any directives you place within this block
are applied to that virtual Web server. The <Limit method> directive specifies the kind of
access method, such as GET or POST, you want to limit. The access control directives located
within the block list the controls you are placing on those methods. The syntax for a block
directive is as follows:

<block-directive option … >
 directive option …
 directive option …
</block-directive>

Usually, directives are placed in one of the main configuration files. Directory directives in
those files can be used to configure a particular directory. However, Apache also makes use of
directory-based configuration files. Any directory may have its own .htaccess file that holds
directives to configure only that directory. If your site has many directories, or if any
directories have special configuration needs, you can place their configuration directives in
their .htaccess files, instead of filling the main configuration file with specific Directory
directives for each one. You can control what directives in an .htaccess file take precedence
over those in the main configuration files. If your site allows user- or client-controlled
directories, you may want to carefully monitor or disable the use of .htaccess files in them. (It
is possible for directives in an .htaccess file to override those in the standard configuration
files unless disabled with AllowOverride directives.)

Much of the power and flexibility of the Apache Web server comes from its use of modules to
extend its capabilities. Apache is implemented with a core set of directives. Modules can be
created that hold definitions of other directives. They can be loaded into Apache, enabling
you to use those directives for your server. A standard set of modules is included with the
Apache distribution, though you can download others and even create your own. For example,
the mod_autoindex module holds the directives for automatically indexing directories (as
described in the following section). The mod_mime module holds the MIME type and handler
directives. Modules are loaded with the LoadModule directive. On Red Hat Linux, you can
find LoadModule directives in the httpd.conf configuration file for most of the standard
modules.

LoadModule mime_module modules/mod_mime.so

The apxs application provided with the Apache package can be used to build Apache
extension modules. With the apxs application, you can compile Apache module source code
in C and create dynamically shared objects that can be loaded with the LoadModule
directive. The apxs application requires that the mod_so module be part of your Apache
application. It includes extensive options such as -n to specify the module name, -a to add an
entry for it in the httpd.conf file, and -i to install the module on your Web server.

You can find a complete listing of Apache Web configuration directives at the Apache Web
site, httpd.apache.org, and in the Apache manual located in your site's Web site root
directory. On Red Hat systems, this is located at /var/www/manual. Many of the more
commonly used directives are listed in Table 24-4.

Table 24-4: Apache Log Field Specifiers
Format Specifier Description
%a Remote IP address
%A Local IP address
%b Bytes sent, excluding HTTP headers
%{variable}e: The contents of the environment variable
%f Filename
%h Remote host
%l Remote logname (from identd, if supplied)
%m The request method
%P The process ID of the child that serviced the request
%r First line of request
%s Status
%t Time, in Common Log Format time format (standard English

format)
%u Remote user (from auth; may be bogus if return status (%s) is

401)
%U The URL path requested
%v The canonical ServerName of the server serving the request

Server Configuration

Certain directives are used to configure your server's overall operations. These directives are
placed in the httpd.conf configuration file. Some require pathnames, whereas others only
need to be turned on or off with the keywords on and off. Apache provides a default
httpd.conf configuration file. The httpd.conf file already contains these directives. Some are
commented out with a preceding # symbol. You can activate a directive by removing its #
sign. Many of the entries are preceded by comments explaining their purpose. The following
is an example of the ServerAdmin directive used to set the address where users can send mail
for administrative issues. You replace the you@your.address entry with the address you want
to use to receive system administration mail. On Red Hat systems, this is set to
root@localhost.

ServerAdmin: Your address, where problems should be e-mailed.
ServerAdmin you@your.address

Some directives require specific information about your system. For example, ServerName
holds the hostname for your Web server. Specifying a hostname is important to avoid
unnecessary DNS lookup failures that can hang your server. Notice the entry is commented
with a preceding #. Simply remove the # and type your Web server's hostname in place of
new.host.name.

ServerName allows you to set a hostname which is sent
back to clients for your server if it's different than the
one the program would get (i.e. use
"www" instead of the host's real name).

#ServerName localhost

On Red Hat systems, entries have already been made for the standard Web server installation
using /var/www as your Web site directory. You can tailor your Web site to your own needs
by changing the appropriate directives. The DocumentRoot directive determines the home
directory for your Web pages. The ServerRoot directive specifies where your Web server
configuration, error, and log files are kept.

DocumentRoot /var/www/html
ServerRoot /etc/httpd

The MaxClients directive sets the maximum number of clients that can connect to your
server at the same time.

MaxClients 150

Directory-Level Configuration: .htaccess and <Directory>

One of the most flexible aspects of Apache is its ability to configure individual directories.
With the Directory directive, you can define a block of directives that apply only to a
particular directory. Such a directive can be placed in the httpd.conf or access.conf
configuration file. You can also use an .htaccess file within a particular directory to hold
configuration directives. Those directives are then applied only to that directory. The name
".htaccess" is actually set with the AccessFileName directive. You can change this if you
want.

AccessFileName .htaccess

A Directory block begins with a <Directory pathname> directive, where pathname is the
directory to be configured. The ending directive uses the same <> symbols, but with a slash
preceding the term "Directory": </Directory>. Directives placed within this block apply only
to the specified directory. The following example denies access to only the mypics directory
by requests from www.myvids.com.

<Directory /var/www/html/mypics>
 Order Deny,Allow
 Deny from www.myvids.com
</Directory>

With the Options directive, you can enable certain features in a directory, such as the use of
symbolic links, automatic indexing, execution of CGI scripts, and content negotiation. The
default is the All option, which turns on all features except content negotiation (Multiviews).
The following example enables automatic indexing (Indexes), symbolic links
(FollowSymLinks), and content negotiation (Multiviews).

Options Indexes FollowSymLinks Multiviews

Configurations made by directives in main configuration files or in upper-level directories are
inherited by lower-level directories. Directives for a particular directory held in .htaccess files
and Directory blocks can be allowed to override those configurations. This capability can be
controlled by the AllowOverride directive. With the "all" argument, .htaccess files can
override any previous configurations. The "none" argument disallows overrides, effectively
disabling the .htaccess file. You can further control the override of specific groups of
directives. AuthConfig enables use of authorization directives, FileInfo is for type directives,
Indexes is for indexing directives, Limit is for access control directives, and Options is for the
options directive.

AllowOverride all

Access Control

With access control directives, such as allow and deny, you can control access to your Web
site by remote users and hosts. The allow directive followed by a list of hostnames restricts
access to only those hosts. The deny directive with a list of hostnames denies access by those
systems. The argument "all" applies the directive to all hosts. The order directive specifies in
what order the access control directives are to be applied. Other access control directives,
such as require, can establish authentication controls, requiring users to log in. The access
control directives can be used globally to control access to the entire site or placed within
Directory directives to control access to individual directives. In the following example, all
users are allowed access:

order allow,deny
allow from all

You can further qualify access control directives by limiting them to certain HTML access
methods. HTML access methods are ways a browser interacts with your Web site. For
example, a browser could get information from a page (GET) or send information through it
(POST). You can control such access methods using the <Limit> directive. Limit takes as its

argument a list of access methods to be controlled. The directive then pairs with a </Limit>
directive to define a Limit block within which you can place access control directives. These
directives only apply to the specified access methods. You can place such Limit blocks with a
Directory block to set up controls of access methods for a specific directory. On the Red Hat
distribution, the following Directory block in the /etc/config/httpd.conf file controls access
methods for your Web site's home directory, /var/www/html.

This should be changed to whatever you set DocumentRoot to.
<Directory /var/www/html>
Options Indexes FollowSymLinks
AllowOverride All
<Limit GET>
order allow,deny
allow from all
</Limit>
</Directory>

Controls are inherited from upper-level directories to lower-level ones. If you want to control
access strictly on a per-directory basis to your entire Web site, you can use the following entry
to deny access to all users. Then, in individual directories, you can allow access to certain
users, groups, or hosts.

<Directory /var/www/html>
 Order Deny,Allow
 Deny from All
 </Directory>

URL Pathnames

Certain directives can modify or complete pathname segments of a URL used to access your
site. The pathname segment of the URL specifies a particular directory or Web page on your
site. Directives enable you to alias or redirect pathnames, as well as to select a default Web
page. With the Alias directive, you can let users access resources located in other parts of
your system, on other file systems, or on other Web sites. An alias can use a URL for sites on
the Internet, instead of a pathname for a directory on your system. With the Redirect
directive, you can redirect a user to another site.

Alias /mytrain /home/dylan/trainproj
Redirect /mycars http://www.myautos.com/mycars

If Apache is given only a directory to access, rather than a specific Web page, it looks for an
index Web page located in that directory and displays it. The possible names for a default
Web page are listed by the DirectoryIndex directive. The name usually used is index.html,
but you can add others. The standard names are shown here. When Apache is given only a
Web directory to access, it looks for and displays the index.html Web page located in it.

DirectoryIndex index.html index.shtml index.cgi

Apache also enables a user to maintain Web pages located in a special subdirectory in the
user's home directory, rather than in the main Web site directory. Using a ~ followed by the
user name accesses this directory. The name of this directory is specified with the UserDir
directive. The default name is public_html, as shown here. The site

turtle.mytrek.com/~dylan accesses the directory
turtle.mytrek.com/home/dylan/public_html on the host turtle.mytrek.com.

UserDir public_html

MIME Types

When a browser accesses Web pages on a Web site, it is often accessing many different kinds
of objects, including HTML files, picture or sound files, and script files. To display these
objects correctly, the browser must have some indication of what kind of objects they are. A
JPEG picture file is handled differently from a simple text file. The server provides this type
information in the form of MIME types (see Chapter 14). MIME types are the same types
used for sending attached files through Internet mailers, such as Pine. Each kind of object is
associated with a given MIME type. Provided with the MIME type, the browser can correctly
handle and display the object.

The MIME protocol associates a certain type with files of a given extension. For example,
files with a .jpg extension would have the MIME type image/jpeg. The TypesConfig
directive holds the location of the mime.types file, which lists all the MIME types and their
associated file extensions. DefaultType is the default MIME type for any file whose type
cannot be determined. AddType enables you to modify the mime.type types list without
editing the MIME file.

TypesConfig /etc/mime.types
DefaultType text/plain

Other type directives are used to specify actions to be taken on certain documents.
AddEncoding lets browsers decompress compressed files on the fly. AddHandler maps file
extensions to actions, and AddLanguage enables you to specify the language for a document.
The following example marks filenames with the .gz extension as gzip-encoded files and files
with the .fr extension as French language files:

AddEncoding x-gzip gz
AddLanguage fr .fr

A Web server can display and execute many different types of files and programs. Not all
Web browsers are able to display all those files, though. Older browsers are the most limited.
Some browsers, such as Lynx, are not designed to display even simple graphics. To allow a
Web browser to display a page, the server negotiates with it to determine the type of files it
can handle. To enable such negotiation, you need to enable the multiviews option.

Option multiviews

CGI Files

Common Gateway Interface (CGI) files are programs that can be executed by Web browsers
accessing your site. CGI files are usually initiated by Web pages that execute the program as
part of the content they display. Traditionally, CGI programs were placed in a directory called
cgi-bin and could only be executed if they resided in such a special directory. Usually, only
one cgi-bin directory exists per Web site. Red Hat systems set up a cgi-bin directory in the
/var/www directory, /var/www/cgi-bin. Here, you place any CGI programs that can be

executed on your Web site. The ScriptAlias directive specifies an alias for your cgi-bin
directory. Any Web pages or browsers can use the alias to reference this directory.

ScriptAlias /cgi-bin/ /var/www/cgi-bin/

If you want to execute CGI programs that reside anywhere on your Web site, you can specify
that files with a .cgi extension are treated as executable CGI programs. You do this with the
AddHandler directive. This directive applies certain handlers to files of a given type. The
handler directive to do this is included in the default httpd.conf file, provided with the
Apache source code files, though commented out. You can remove the comment symbol (#)
to enable it.

AddHandler cgi-script cgi

Automatic Directory Indexing

When given a URL for a directory instead of an HTML file, and when no default Web page is
in the directory, Apache creates a page on the fly and displays it. This is usually only a listing
of the different files in the directory. In effect, Apache indexes the items in the directory for
you. You can set several options for generating and displaying such an index. If
FancyIndexing is turned on, then Web page items are displayed with icons and column
headers that can be used to sort the listing.

FancyIndexing on

Icon directives tells Apache what icon to display for a certain type of file. The
AddIconByType and AddIconByEncoding directives use MIME-type information to
determine the file's type and then associate the specified image with it. AddIcon uses the file's
extension to determine its type. In the next example, the text.gif image is displayed for text
files with the extension .txt. You can also use AddIcon to associate an image with a
particular file. The DefaultIcon directive specifies the image used for files of undetermined
type.

AddIcon /icons/text.gif .txt
DefaultIcon /icons/unknown.gif
AddIconByType (VID,/icons/movie.gif) video/*

With the AddDescription directive, you can add a short descriptive phrase to the filename
entry. The description can be applied to an individual file or to filenames of a certain pattern.

AddDescription "Reunion pictures" /var/www/html/reunion.html

Within a directory, you can place special files that can be used to display certain text both
before and after the generated listing. The HeaderName directive is used to set the name of
the file whose text is inserted before the listing. The ReadmeName directive sets the name of
the file whose text is placed at the end of the listing. You can use these directives in an
.htaccess files or a <Directory> block to select particular files within a directory. The
ReadmeName directive is usually set to README, and HeaderName to HEADER. In that
case, Apache searches for files named HEADER and README in the directory.

HeaderName HEADER
ReadmeName README

With the IndexOptions directive, you can set different options for displaying a generated
index. Options exist for setting the height and width of icons and filenames. The
IconsAreLinks option makes icons part of filename anchors. The ScanHTMLTitles option
reads the titles in HTML documents and uses those to display entries in the index listing
instead of filenames. Various options exist for suppressing different index display features
such as sorting, descriptions, and header/readme inserts. You can set options for individual
directories using a Directory block or an .htaccess file. Normally, options set in higher-level
directories are inherited by lower-level ones. If you use an IndexOption directive to set any
new option, however, all previously inherited options are cleared. If you want to keep the
inherited options, you can set options using the plus (+) or minus (-) symbols. These add or
remove options. If you were also to set an option without the + or - symbols, though, all
inherited options would be cleared.

IndexOptions IconsAreLinks FancyIndexing
IndexOptions +ScanHTMLTitles

Authentication

Your Web server can also control access on a per-user or per-group basis to particular
directories on your Web site. You can require various levels for authentication. Access can be
limited to particular users and require passwords, or expanded to allow members of a group
access. You can dispense with passwords altogether or set up an anonymous type of access, as
used with FTP.

To apply authentication directives to a certain directory, you place those directives within
either a Directory block or the directory's .htaccess file. You use the require directive to
determine what users can access the directory. You can list particular users or groups. The
AuthName directive provides the authentication realm to the user, the name used to identify
the particular set of resources accessed by this authentication process. The AuthType
directive specifies the type of authentication, such as basic or digest. A require directive
requires also AuthType, AuthName, and directives specifying the locations of group and
user authentication files. In the following example, only the users george, robert, and mark are
allowed access to the newpics directory:

<Directory /var/www/html/newpics
AuthType Basic
AuthName Newpics
AuthUserFile /web/users
AuthGroupFile /web/groups
<Limit GET POST>
 require users george robert mark
</Limit>
</Directory>

The next example allows group access by administrators to the CGI directory:

<Directory /var/www/html/cgi-bin
AuthType Basic
AuthName CGI
AuthGroupFile /web/groups
<Limit GET POST>
 require groups admin
</Limit>
</Directory>

To set up anonymous access for a directory, place the Anonymous directive with the user
anonymous as its argument in the directory's Directory block or .htaccess file. You can also
use the Anonymous directive to provide access to particular users without requiring
passwords from them.

Apache maintains its own user and group authentication files specifying what users and
groups are allowed to which directories. These files are normally simple flat files, such as
your system's password and group files. They can become large, however, possibly slowing
down authentication lookups. As an alternative, many sites have used database management
files in place of these flat files. Database methods are then used to access the files, providing a
faster response time. Apache has directives for specifying the authentication files, depending
on the type of file you are using. The AuthUserfile and AuthGroupFile directives are used
to specify the location of authentication files that have a standard flat file format. The
AuthDBUserFile and AuthDBGroupFile directives are used for DB database files, and the
AuthDBMGUserFIle and AuthDBMGGroupFile are used for DBMG database files.

The programs htdigest, htpasswd, and dbmmanage are tools provided with the Apache
software package for creating and maintaining user authentication files, which are user
password files listing users who have access to specific directories or resources on your Web
site. htdigest and htpasswd manage a simple flat file of user authentication records, whereas
dbmmanage uses a more complex database management format. If your user list is extensive,
you may want to use a database file for fast lookups. htdigest takes as its arguments the
authentication file, the realm, and the username, creating or updating the user entry. htpasswd
can also employ encryption on the password. dbmmanage has an extensive set of options to
add, delete, and update user entries. A variety of different database formats are used to set up
such files. Three common ones are Berkeley DB2, NDBM, and GNU GBDM. dbmmanage
looks for the system libraries for these formats in that order. Be careful to be consistent in
using the same format for your authentication files.

Log Files

Apache maintains logs of all requests by users to your Web site. By default, these logs include
records using the Common Log Format (CLF). The record for each request takes up a line
composed of several fields: host, identity check, authenticated user (for logins), the date, the
request line submitted by the client, the status sent to the client, and the size of the object sent
in bytes. Using the LogFormat and CustomLog directives, you can customize your log
record to add more fields with varying levels of detail. These directives use a format string
consisting of field specifiers to determine the fields to record in a log record. You add
whatever fields you want, and in any order. A field specifier consists of a percent (%) symbol
followed by an identifying character. For example, %h is the field specifier for a remote host,
%b for the size in bytes, and %s for the status. See the documentation for the
mod_log_config module for a complete listing. Table 24-3 lists several of the commonly used
ones. You should quote fields whose contents may take up more than one word. The quotes
themselves must be quoted with a backslash to be included in the format string. The following
example is the Common Log Format implemented as a FormatLog directive:

FormatLog "%h %l %u %t \"%r\" %s %b"

Instead of maintaining one large log file, you can create several log files using the
CustomLog or TransferLog directive. This is helpful for virtual hosts where you may want

to maintain a separate log file for each host. You use the FormatLog directive to define a
default format for log records. TransferLog then uses this default as its format when creating
a new log file. CustomLog combines both operations, enabling you to create a new file and to
define a format for it.

FormatLog "%h %l %u %t \"%r\" %s %b"
Create a new log file called myprojlog using the FormatLog format
TransferLog myprojlog
Create a new log file called mypicslog using its own format
CustomLog mypicslog "%h %l %u %t \"%r\" %s %b"

Certain field specifiers in the log format can be qualified to record specific information. The
%i specifier records header lines in requests the server receives. The reference for the specific
header line to record is placed within braces between the % and the field specifier. For
example, User-agent is the header line that indicates the browser software used in the request.
To record User-agent header information, use the conversion specifier %{User-agent}i.

To maintain compatibility with NCSA servers, Apache originally implemented AgentLog and
RefererLog directives to record User-agent and Referer headers. These have since been
replaced by qualified %i field specifiers used for the LogFormat and CustomLog directives.
A Referer header records link information from clients, detecting who may have links to your
site. The following is an NCSA-compliant log format:

"%h %l %u %t \"%r\" %s %b\"%{Referer}i\" \"%{User-agent}i\"".

Apache provides two utilities for processing and managing log files. logresolve resolves IP
addresses in your log file to host names. rotatelogs rotates log files without having to kill the
server. You can specify the rotation time.

Virtual Hosting on Apache

Virtual hosting allows the Apache Web server to host multiple Web sites as part of its own. In
effect, the server can act as several servers, each hosted Web site appearing separate to
outside users. Apache supports both IP address and name-based virtual hosting. IP address
virtual hosts use valid registered IP addresses, whereas name-based virtual hosts use fully
qualified domain addresses. These domain addresses are provided by the host header from the
requesting browser. The server can then determine the correct virtual host to use on the basis
of the domain name alone. Note that SSL servers require IP virtual hosting. See
httpd.apache.org for more information.

IP Address Virtual Hosts

In the IP address virtual hosting method, your server must have a different IP address for each
virtual host. The IP address you use is already set up to reference your system. Network
system administration operations can set up your machine to support several IP addresses.
Your machine could have separate physical network connections for each one, or a particular
connection could be configured to listen for several IP addresses at once. In effect, any of the
IP addresses can access your system.

You can configure Apache to run a separate daemon for each virtual host, separately listening
for each IP address, or you can have a single daemon running that listens for requests for all

the virtual hosts. To set up a single daemon to manage all virtual hosts, use VirtualHost
directives. To set up a separate daemon for each host, also use the Listen directive.

A VirtualHost directive block must be set up for each virtual host. Within each VirtualHost
block, you place the appropriate directives for accessing a host. You should have
ServerAdmin, ServerName, DocumentRoot, and TransferLog directives specifying the
particular values for that host. You can use any directive within a VirtualHost block, except
for ServerType (1.3), StartServers, MaxSpareServers, MinSpareServers,
MaxRequestsPerChild, Listen, PidFile, TypesConfig, ServerRoot, and NameVirtualHost.

Although you can use domain names for the address in the VirtualHost directive, using the
actual IP address is preferable. This way, you are not dependent on your domain name service
to make the correct domain name associations. Be sure to leave an IP address for your main
server. If you use all the available IP addresses for your machine for virtual hosts, you can no
longer access your main server. You could, of course, reconfigure your main server as a
virtual host. The following example shows two IP-based virtual hosts blocks: one using an IP
address, and the other a domain name that associates with an IP address:

<VirtualHost 192.168.1.23>
 ServerAdmin webmaster@mail.mypics.com
 DocumentRoot /groups/mypics/html
 ServerName www.mypics.com
 ErrorLog /groups/mypics/logs/error_log

</VirtualHost>

<VirtualHost www.myproj.org>
 ServerAdmin webmaster@mail.myproj.org
 DocumentRoot /groups/myproj/html
 ServerName www.myproj.org
 ErrorLog /groups/myproj/logs/error_log

</VirtualHost>

Name-Based Virtual Hosts

With IP-based virtual hosting, you are limited to the number of IP addresses your system
supports. With name-based virtual hosting, you can support any number of virtual hosts using
no additional IP addresses. With only a single IP address for your machine, you can still
support an unlimited number of virtual hosts. Such a capability is made possible by the
HTTP/1.1 protocol, which lets a server identify the name by which it is being accessed. This
method requires the client, the remote user, to use a browser that supports the HTTP/1.1
protocol, as current browsers do (though older ones may not). A browser using such a
protocol can send a host header specifying the particular host to use on a machine.

To implement name-based virtual hosting, use a VirtualHost directive for each host and a
NameVirtualHost directive to specify the IP address you want to use for the virtual hosts. If
your system has only one IP address, you need to use that address. Within the VirtualHost
directives, you use the ServerName directive to specify the domain name you want to use for
that host. Using ServerName to specify the domain name is important to avoid a DNS
lookup. A DNS lookup failure disables the virtual host. The VirtualHost directives each take
the same IP address specified in the NameVirtualHost directive as their argument. You use
Apache directives within the VirtualHost blocks to configure each host separately. Name-

based virtual hosting uses the domain name address specified in a host header to determine
the virtual host to use. If no such information exists, the first host is used as the default. The
following example implements two name-based virtual hosts. Here, www.mypics.com and
www.myproj.org are implemented as name-based virtual hosts instead of IP-based hosts:

ServerName turtle.mytrek.com

NameVirtualHost 192.168.1.5

<VirtualHost 192.168.1.5>
 ServerName www.mypics.com
 ServerAdmin webmaster@mail.mypics.com
 DocumentRoot /var/www/mypics/html
 ErrorLog /var/www/mypics/logs/error_log
 ...
</VirtualHost>

<VirtualHost 192.168.1.5>
 ServerName www.myproj.org
 ServerAdmin webmaster@mail.myproj.org
 DocumentRoot /var/www/myproj/html
 ErrorLog /var/www/myproj/logs/error_log
 ...
</VirtualHost>

If your system has only one IP address, implementing virtual hosts prevents access to your
main server with that address. You could no longer use your main server as a Web server
directly; you could only use it indirectly to manage your virtual host. You could configure a
virtual host to manage your main server's Web pages. You would then use your main server to
support a set of virtual hosts that would function as Web sites, rather than the main server
operating as one site directly. If your machine has two or more IP addresses, you can use one
for the main server and the other for your virtual hosts. You can even mix IP-based virtual
hosts and name-based virtual hosts on your server. You can also use separate IP addresses to
support different sets of virtual hosts. You can further have several domain addresses access
the same virtual host. To do so, place a ServerAlias directive listing the domain names within
the selected VirtualHost block.

ServerAlias www.mypics.com www.greatpics.com

Requests sent to the IP address used for your virtual hosts have to match one of the configured
virtual domain names. To catch requests that do not match one of these virtual hosts, you can
set up a default virtual host using _default_:*. Unmatched requests are then handled by this
virtual host.

<VirtualHost _default_:*>

Dynamic Virtual Hosting

If you have implemented many virtual hosts on your server that have basically the same
configuration, you can use a technique called dynamic virtual hosting to have these virtual
hosts generated dynamically. The code for implementing your virtual hosts becomes much
smaller, and as a result, your server accesses them faster. Adding yet more virtual hosts
becomes a simple matter of creating appropriate directories and adding entries for them in the
DNS server.

To make dynamic virtual hosting work, the server uses commands in the mod_vhost_alias
module (supported in Apache version 1.3.6 and up) to rewrite both the server name and the
document root to those of the appropriate virtual server (for older Apache versions before
1.3.6, you use the mod_rewrite module). Dynamic virtual hosting can be either name-based or
IP-based. In either case, you have to set the UseCanonicalName directive in such a way as to
allow the server to use the virtual host name instead of the server's own name. For name-
based hosting, you simply turn off UseCanonicalName. This allows your server to obtain the
hostname from the host header of the user request. For IP-based hosting, you set the
UseCanonicalName directive to DNS. This allows the server to look up the host in the DNS
server.

UseCanonicalName Off
UseCanonicalName DNS

You then have to enable the server to locate the different document root directories and CGI
bin directories for your various virtual hosts. You use the VirtualDocumentRoot directive to
specify the template for virtual hosts' directories. For example, if you place the different host
directories in the /var/www/hosts directory, then you could set the VirtualDocumentRoot
directive accordingly.

VirtualDocumentRoot /var/www/hosts/%0/html

The %0 will be replaced with the virtual host's name when that virtual host is accessed. It is
important that you create the dynamic virtual host's directory using that host's name. For
example, for a dynamic virtual host called www.mygolf.org, you would create a directory
named /var/www/hosts/www.mygolf.org. Then create subdirectories for the document root
and CGI programs as in /var/www/hosts/www.mygolf.org/html. For the CGI directory, use
the VirtualScriptAlias directive to specify the CGI subdirectory you use.

VirtualScriptAlias /var/www/hosts/%0/cgi-bin

A simple example of name-based dynamic virtual hosting directives follows:

UseCanonicalName Off
VirtualDocumentRoot /var/www/hosts/%0/html
VirtualScriptAlias /var/www/hosts/%0/cgi-bin

If a request was made for www.mygolf.com/html/mypage, that would evaluate to

/var/www/hosts/www.mygolf.com/html/mypage

The mod_vhots_alias module supports various interpolated strings, each beginning with a %
symbol and followed by a number. As you have seen, %0 references the entire Web address.
%1 references only the first segment, %2 references the second, %-1 references the last part,
and %2+ references from the second part on. For example, if you only want to use the second
part of a Web address for the directory name, you would use the following directives:

VirtualDocumentRoot /var/www/hosts/%2/html
VirtualScriptAlias /var/www/hosts/%2/cgi-bin

In this case, a request made for www.mygolf.com/html/mypage would use only the second
part of the Web address. This would be "mygolf" in www.mygolf.com, and would evaluate to

/var/www/hosts/mygolf/html/mypage

If you used %2+ instead, as in /var/www/hosts/%2/html, then the request for
www.mygolf.com/html/mypage would evaluate to

/var/www/hosts/mygolf.com/html/mypage

The same method works for IP addresses, where %1 references the first IP address segment,
%2 references the second, and so on.

A simple example of dynamic virtual hosting is shown here:

UseCanonicalName Off

NameVirtualHost 192.168.1.5

<VirtualHost 192.168.1.5>
 ServerName www.mygolf.com
 ServerAdmin webmaster@mail.mygolf.com
 VirtualDocumentRoot /var/www/hosts/%0/html
 VirtualScriptAlias /var/www/hosts/%0/cgi-bin
 ...
</VirtualHost>

To implement IP-based dynamic virtual hosting instead, set the UseCanonicalName to DNS
instead of Off.

UseCanonicalName DNS
VirtualDocumentRoot /var/www/hosts/%0/html
VirtualScriptAlias /var/www/hosts/%0/cgi-bin

One drawback of dynamic virtual hosting is that you can only set up one log for all your
hosts. However, you can create your own shell program to simply cut out the entries for the
different hosts in that log.

LogFormat "%V %h %l %u %t \"%r\" %s %b" vcommon
CustomLog logs/access_log vcommon

Implementing IP-based dynamic virtual hosting in the standard way as shown previously will
slow down the process, as your server will have to perform a DNS lookup to discover the
name of your server using its IP address. You can avoid this step by simply using the IP
address for your virtual host's directory. So, for IP virtual host 192.198.1.6, you would create
a directory /var/www/hosts/192.198.1.6, with an html subdirectory for that host's document
root. You would use the VirtualDocumentRootIP and VirtualScriptAliasIP directives to
use IP addresses as directory names. Now the IP address can be mapped directly to the
document root directory name, no longer requiring a DNS lookup. Also be sure to include the
IP address in your log, %A.

UseCanonicalName DNS
LogFormat "%A %h %l %u %t \"%r\" %s %b" vcommon
CustomLog logs/access_log vcommon

VirtualDocumentRootIP /var/www/hosts/%0/html
VirtualScriptAliasIP /var/www/hosts/%0/cgi-bin

You can mix these commands in with other virtual host entries as you need them. For
example, to specify the document root directory for a nondynamic name-based virtual host,
you could simply use the VirtualDocumentRoot directive. In other words, you can simply
use the same directories for both dynamic and nondynamic virtual hosts. You could still
specify other directories for different nondynamic virtual hosts as you wish. In the following
example, the www.mypics.com name-based virtual host uses the dynamic virtual host
directive VirtualDocumentRoot to set its document root directory. It now uses
/var/www/www.mypics.com/html as its document root directory. The CGI directory,
however, is set as a nondynamic directory, /var/www/mypics/cgi-bin.

UseCanonicalName Off

NameVirtualHost 192.168.1.5

<VirtualHost 192.168.1.5>
 ServerName www.mypics.com
 ServerAdmin webmaster@mail.mypics.com
 VirtualDocumentRoot /var/www/%0/html
 ScriptAlias /var/www/mypics/cgi-bin
 ...
</VirtualHost>

Server-Side Includes

Server-side includes (SSIs) are designed to provide a much more refined control of your Web
site content, namely the Web pages themselves. Server-side includes are Apache directives
placed within particular Web pages as part of the page's HTML code. You can configure your
Apache Web server to look for SSI directives in particular Web pages and execute them. First,
you have to use the Options directive with the includes option to allow SSI directives.

Options Includes

You need to instruct the server to parse particular Web pages. The easiest way to enable
parsing is to instruct Apache to parse HTML files with specified extensions. Usually, the
extension .shtml is used for Web pages that have SSI directories. In fact, in the default
Apache configuration files, you can find the following entry to enable parsing for SSI
directives in HTML files. The AddType directive here adds the .shtml type as an HTML type
of file, and the AddHandler directive specifies that .shtml files are to be parsed (server-
parsed).

To use server-parsed HTML files
AddType text/html .shtml
AddHandler server-parsed .shtml

Instead of creating a separate type of file, you can use the XBitHack directive to have Apache
parse any executable file for SSI directives. In other words, any file with execute permission
(see Chapter 9) will be parsed for SSI directives.

SSI directives operate much like statements in a programming language. You can define
variables, create loops, and use tests to select alternate directives. An SSI directive consists of
an element followed by attributes that can be assigned values. The syntax for a SSI directive
is shown here:

<!--#element attribute=value … -->

You can think of an element as operating much like a command in a programming language
and attributes as its arguments. For example, to assign a value to a variable, you use the set
element with the variable assignment as its attribute. The if directive displays any following
text on the given Web page. The if directive takes as its attribute expr, which is assigned the
expression to test. The test is able to compare two strings using standard comparison operators
like <=, !=, or =. Variables used in the test are evaluated with the $ operator.

<!--#set myvar="Goodbye" -->
<!--#if expr="$myvar = Hello" -->

Other helpful SSI elements are exec, which executes CGI programs, or shell commands,
which read the contents of a file into the Web page and also execute CGI files. The echo
element displays values such as the date, the document's name, and the page's URL. With the
config element, you can configure certain values, such as the date or file size.

Apache GUI Configuration Tools

Red Hat 7.1 provides a GUI configuration tool called the Apache Configuration Tool,
accessible from the Gnome and KDE desktops. Also available is Comanche, a popular
Apache configuration tool that you download from the Internet.

 Note The Apache GUI Project (gui.apache.org) provides a set of GUI tools for configuring
and managing your Apache Web server. Its currently active projects are Comanche and
TkApache. In the Linuxconf utility, you can also configure your Apache Web server.
Webmin provides a very complete Apache Web server module.

Apache Configuration Tool

The Apache Configuration Tool opens with a window displaying panels for Main, Virtual
Hosts, Server, and Performance Tuning. In each of these you will see buttons to open up
dialog boxes where you can enter default settings. You will also be able to enter settings for
particular items like virtual hosts and particular directories. For example, in the Virtual Hosts
panel you can enter in default settings for all virtual hosts, as well as add and edit particular
virtual hosts. Click the Help button to display a Web page-based reference manual that details
how to use each panel. On the Main panel, you enter your Web server address, the
Webmaster's e-mail address, and the ports the Web server will be listening on (see Figure 24-
1).

Figure 24-1: Apache Configuration Tool

On the Virtual Hosts panel, be sure to click the Edit Default Settings button to set the default
settings for pages searches, error codes, log files, and directories. To add a virtual host, click
on the Add button to open a window where you can enter host information such as the virtual
hostname and IP address (see Figure 24-2). On the sidebar, you can select different
configuration panels for the virtual host, such as log files and directory controls.

Figure 24-2: Virtual Host configuration

On the server panel, you set administrative settings such as the Apache server's user ID and
the process ID file. The Performance Tuning panel lets you set different usage limits such as
the maximum number of requests and the number of requests per connection (see Figure 24-
3).

Figure 24-3: Performance Tuning panel

When the Apache Configuration Tool saves its settings, it will overwrite the Apache
configuration file, /etc/httpd/conf/httpd.conf. It is advisable that you first make a backup
copy of your httpd.conf file in case you want to restore the original settings created by Red
Hat for Apache. If you have already manually edited this file, you will receive a warning, and
the Apache Configuration Tool will make a backup copy in /etc/httpd/conf/httpd.conf.bak.

Comanche

Comanche (Configuration Manager for Apache) is an easy-to-use, full-featured Apache
configuration utility that runs on any X Windows window manager. You can download the
current version and documentation from the Comanche Web site at www.comanche.org.
Comanche uses a simple, directory tree-like structure to enable you to access and configure
your main Web server, and any virtual server you have set up. Currently, Comanche can only
configure the server on your local machine, but in the future it may be able to configure
remote servers.

When you first start the program, a window is displayed where you select the kind of Apache
installation you have. For Red Hat, select the Red Hat Linux in the "Use the one bundled with
my system" entry (see Figure 24-4).

Figure 24-4: Comanche server information

The main Comanche window has a sidebar that shows a tree of Apache servers, and the main
panel shows the items in the selected entry in the tree (see Figure 24-5). The main tree entry
will display the Apache Web server and under it, the Red Hat Apache server. Here you will
find entries for Server Management and the Default Web server, the primary Web server. To
perform actions on any of these entries, select the entry and then select the list of actions on
the main panel. The Server Management entry displays a list of items to start, stop, restart,
and query the server status, as well as to save your configuration. Any changes you make with
Comanche are not made in your Apache configuration files until you explicitly save the
configuration. Be sure to save before you quit. When you save your configuration, this
version overwrites your httpd.conf file.

Figure 24-5: The Comanche Apache configuration tool

To configure your Default Web server, click on it and then select the default configuration
entry on the mail panel. This opens a dialog box like that shown in Figure 24-5. If you
double-click the Default Web server icon, the tree expands to list server locations. These are
the root directory, your Web server home directory, the CGI program directory, and the
documentation directory. To create new directories, right-click the Web server entry and
select the New item in the menu that pops up.

Initially, only one server is listed, labeled Default Web Server. If you add virtual hosts, they
are listed at the same level. To create a virtual host, right-click the Apache Server entry and
then select New on the pop-up menu. This activates a drop-down menu with a Virtual Host
entry. Select the Virtual Host entry to create your virtual host.

To configure a directory, right-click its entry and select the Properties item from the pop-up
menu displayed. This opens a new window for configuring your selection, similar to the one
shown in Figure 24-5. The window is divided into sidebar and main panel: The sidebar shows
a tree of configuration items and the main panel displays the configuration dialog windows
for these items. For example, by selecting the Basic configuration entry, you can display text
boxes for entering items such as the document root directory and the name of your server.
Other entries let you set server options, proxy settings, and indexing formats.

Web Server Security-SSL

Web server security deals with two different tasks: protecting your Web server from
unauthorized access, and providing security for transactions carried out between a Web
browser client and your Web server. To protect your server from unauthorized access, you use

a proxy server such as Squid. Squid is a GNU proxy server often used with Apache on Linux
systems. (See Chapter 28 for a detailed explanation of the Squid server.) Apache itself has
several modules that provide security capabilities. These include mod_access for mandatory
controls; mod_auth, mod_auth_db, mod_auth_digest, and mod_auth_dbm, which provide
authentication support; and mod_auth_anon for anonymous FTP-like logging (see previous
sections on access control and authentication).

To secure transmissions, you need to perform three tasks. You have to verify identities, check
the integrity of the data, and insure the privacy of the transmission. To verify the identities of
the hosts participating in the transmission, you perform authentication procedures. To check
the integrity of the data you add digital signatures containing a digest value for the data. The
digest value is a value that uniquely represents the data. Finally, to secure the privacy of the
transmission, you encrypt it. Transactions between a browser and your server can then be
encrypted, with the browser and your server alone able to decrypt the transmissions. The
protocol most often used to implement secure transmissions with Linux Apache Web servers
is the Secure Sockets Layer (SSL) protocol, which was originally developed by Netscape for
secure transactions on the Web.

Like the Secure Shell (SSH) described in Chapter 40 and GPG discussed in Chapter 6, SSL
uses a form of public- and private-key encryption for authentication. Data is encrypted with
the public key but can only be decrypted with the private key. Once authenticated, an agreed-
upon cipher is used to encrypt the data. Digital signatures encrypt an MD5 digest value for
data to ensure integrity. Authentication is carried out with the use of certificate authority.
Certificates identify the different parties in a secure transmission, verifying that they are who
they say they are. A Web server will have a certificate verifying its identity, verifying that it is
the server it claims to be. The browser contacting the server will also have a certificate
identifying who it is. These certificates are, in turn, both signed by a certificate authority,
verifying that they are valid certificates. A certificate authority is an independent entity that
both parties trust.

A certificate contains the public key of the particular server or browser it is given to, along
with the digital signature of the certificate authority and identity information such as the name
of the user or company running the server or browser. The effectiveness of a certificate
depends directly on the reliability of the certificate authority issuing it. To run a secure Web
server on the Internet, you should obtain a certificate from a noted certificate authority such as
Verisign. A commercial vendor such as Stronghold can do this for you. Many established
companies may already maintain their own certificate authority, securing transmissions within
their company networks. An SSL session is set up using a handshake sequence in which the
server and browser are authenticated by exchanging certificates, a cipher is agreed upon to
encrypt the transmissions, and the kind of digest integrity check is chosen. There is also a
choice in the kind of public key encryption used for authentication, either RSA or DSA. For
each session a unique session key is set up that the browser and server use.

A free version of SSL called OpenSSL is available for use with Apache (see
www.openssl.org). It is based on SSLeay from Eric A. Young and Tim J. Hudson. However,
U.S. government restrictions prevent the Apache Web server from being freely distributed
with SSL capabilities built-in. You have to separately obtain SSL and update your Apache
server to incorporate this capability.

The U.S. government maintains export restrictions on encryption technology over 40 bits.
SSL, however, supports a number of ciphers using 168-, 128-, and 40-bit keys (128 is
considered secure, and so by comparison the exportable 40-bit versions are useless). This
means that if Apache included SSL, it could not be distributed outside the U.S. Outside the
U.S., however, there are projects that do distribute SSL for Apache using OpenSSL. These are
free for noncommercial use in the U.S., though export restrictions apply. The Apache-SSL
project freely distributes Apache with SSL built-in, apache+ssl. You can download this from
their Web site at www.apache-ssl.org (though there are restrictions on exporting encryption
technology, there is none on importing it). In addition, the mod_ssl project provides an SSL
module with patches that you can use to update your Apache Web server to incorporate SSL
(www.modsll.org). mod_ssl is free for both commercial and noncommercial use under an
Apache style license.

Red Hat includes the mod_ssl module with its distribution in the mod_ssl package.

rpm -i mod_ssl-2.8.1-5.i386.rpm

The mod_ssl implementation of SSL provides an alternate access to your Web server using a
different port (443) and a different protocol, https. In effect, you have both an SSL server and
a nonsecure version. To access the secure SSL version you use the protocol https instead of
http for the Web server's URL address. For example, to access the SSL version for the Web
server running at www.mytrek.com, you would use the protocol https in its URL, as shown
here.

https://www.mytrek.com

You can configure mod_ssl using a number of configuration directives in the Apache
configuration file, smb.conf. On Red Hat, the default configuration file installed with Apache
contains a section for the SSL directives along with detailed comments. Check the online
documentation for mod_ssl at www.modssl.org for a detailed reference listing all the
directives. There are global, server-based, and directory-based directives available.

In the Red Hat smb.conf file, the inclusion of SSL directives is controlled by IfDefine blocks
enabled by the HAVE_SSL flag. For example, the following code will load the SSL module.

<IfDefine HAVE_SSL>
LoadModule ssl_module modules/libssl.so
</IfDefine>

The SSL version for your Apache Web server is set up in the smb.conf file as a virtual host.
The SSL directives are enabled by an ifDefine block using the HAVE_SSL flag. Several
default directives are implemented such as the location of SSL key directories and the port
that the SSL version of the server will listen on (443). Others are commented out. You can
enable them by removing the preceding # symbol, setting your own options. Several of the
directives are shown here.

<IfDefine HAVE_SSL>
SSL Virtual Host Context

Apache will only listen on port 80 by default. Defining the
 virtual server
(below) won't make it automatically listen on the virtual server's port.

Listen 443

<VirtualHost _default_:443>

General setup for the virtual host
DocumentRoot "/var/www/html"

SSL Engine Switch:
Enable/Disable SSL for this virtual host.
SSLEngine on
#SSLCipherSuite
ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP:+eNULL

Server Certificate:
SSLCertificateFile /etc/httpd/conf/ssl.crt/server.crt
#SSLCertificateFile /etc/httpd/conf/ssl.crt/server-dsa.crt

Server Private Key:
SSLCertificateKeyFile /etc/httpd/conf/ssl.key/server.key

Certificate Authority (CA):
#SSLCACertificatePath /etc/httpd/conf/ssl.crt
#SSLCACertificateFile /etc/httpd/conf/ssl.crt/ca-bundle.crt

In the /etc/httpd/conf directory, mod_ssl will set up several SSL directories that will contain
SSL authentication and encryption keys and data. The ssl.crt directory will hold certificates
for the server. The ssl.key directory holds the public and private keys used in authentication
encryption. Revocation lists for revoking expired certificates are kept in ssl.crl. The ssl.csr
directory holds the certificate signing request used to request an official certificate from a
certificate authority. ssl.prm holds parameter files used by the DSA key encryption method.
Check the README files in each directory for details on the SSL files they contain.

The mod_ssl installation will provide you with a demonstration certificate called snakeoil that
you can use to test your SSL configuration. When you have an official certificate, you can
install it with the make certificate command within the ssl.crt directory. This will overwrite
the server.crt server certificate file.

Chapter 25: Domain Name Service
Overview

The Domain Name Service (DNS) is an Internet service that converts domain names into their
corresponding IP addresses. As you may recall, all computers connected to the Internet are
addressed using an Internet Protocol (IP) address. The IP address may be implemented in
either the newer IPV6 (Internet Protocol Version 6) format or on the older and more common
IPV4 (Internet Protocol Version 4) format. Since most systems still use the IPV4 addressing,
that format will be used in these examples. In the older IPV4 format, the IP address consists
of a number composed of four segments separated by periods. Depending on the type of
network, several of the first segments are used for the network address and several of the last
segments are used for the host address. In a standard class C network used in smaller
networks, the first three segments are the computer's network address, and the last segment is
the computer's host ID (as used in these examples). For example, in the address 192.168.1.2,
192.168.1 is the network address and 2 is the computer's host ID within that network.

Together, they make up an IP address with which the computer can be addressed from
anywhere on the Internet. IP addresses, though, are difficult to remember and easy to get
wrong.

As a normal user on a network might have to access many different hosts, keeping track of the
IP addresses needed quickly became a problem. It was much easier to label hosts with names
and use the names to access them. Names were associated with IP addresses. When a user
used a name to access a host, the corresponding IP address was looked up first and then used
to provide access.

IP addresses were associated with corresponding names, called fully qualified domain names.
A fully qualified domain name is composed of three or more segments: The first segment is
the name to identify the host, and the remaining segments are for the network in which the
host is located. The network segments of a fully qualified domain name are usually referred to
simply as the domain name, while the host part is referred to as the hostname (though this is
also used to refer to the complete fully qualified domain name). In effect, subnets are referred
to as domains. The fully qualified domain name, www.linux.org, has an IP address
198.182.196.56, where 198.182.196 is the network address and 56 is the host ID. Computers
can be accessed only with an IP address. So, a fully qualified domain name must first be
translated into its corresponding IP address to be of any use. The parts of the IP address that
make up the domain name and the hosts can vary. See Chapter 38 for a detailed discussion of
IP addresses, including network classes and Classless Interdomain Routing (CIDR).

Any computer on the Internet can maintain a file that manually associates IP addresses with
domain names. On Linux and Unix systems, this file is called the /etc/hosts file. Here, you
can enter the IP addresses and domain names of computers you commonly access. Using this
method, however, each computer needs a complete listing of all other computers on the
Internet, and that listing must be updated constantly. Early on, this became clearly impractical
for the Internet, though it is still feasible for small isolated networks. The Domain Name
Service has been implemented to deal with the task of translating the domain name of any
computer on the Internet to its IP address. The task is carried out by interconnecting servers
that manage the Domain Name Service (also referred to either as DNS servers or as name
servers). These DNS servers keep lists of fully qualified domain names and their IP addresses,
matching one up with the other. This service that they provide to a network is referred to as
the Domain Name Service. The Internet is composed of many connected subnets called
domains, each with its own Domain Name Service (DNS) servers that keep track of all the
fully qualified domain names and IP addresses for all the computers on its network. DNS
servers are hierarchically linked to root servers, which, in turn, connect to other root servers
and the DNS servers on their subnets throughout the Internet. The section of a network for
which a given DNS server is responsible is called a zone. Although a zone may correspond to
a domain, many zones may, in fact, be within a domain, each with its own name server. This
is true for large domains where too many systems exist for one name server to manage.

When a user enters a fully qualified domain name to access a remote host, a resolver program
queries the local network's DNS server requesting the corresponding IP address for that
remote host. With the IP address the user can then access the remote host. In Figure 25-1, the
user at rabbit.mytrek.com wants to connect to the remote host lizard. mytrek.com.
rabbit.mytrek.com first sends a request to the network's DNS server-in this case,
turtle.mytrek.com-to look up the name lizard.mytrek.com and find its IP address. It then
returns the IP address for lizard.mytrek.com, 192.168.1.3, to the requesting host,

rabbit.mytrek.com. With the IP address, the user at rabbit.mytrek.com can then connect to
lizard.mytrek.com.

Figure 25-1: DNS server operation

The names of the DNS servers that service a host's network are kept in the host's
/etc/resolv.conf file. When setting up an Internet connection, the name servers provided by
your Internet service provider (ISP) were placed in this file. These name servers resolve any
fully qualified domain names that you use when you access different Internet sites. For
example, when you enter a Web site name in your browser, the name is looked up by the
name servers, and the name's associated IP address is then used to access the site.

Local Area Network Addressing

If you are setting up a DNS server for a local area network (LAN) that is not connected to the
Internet, you should use a special set of IP numbers reserved for such non-Internet networks
(also known as private networks or intranets). This is especially true if you are implementing
IP masquerading, where only a gateway machine has an Internet address, and the others make
use of that one address to connect to the Internet. For a class C network (254 hosts or less),
these are numbers that have the special network number 192.168, as used in these examples.
If you are setting up a LAN, such as a small business or home network, you are free to use
these numbers for your local machines. You can set up a private network, such as an intranet,
using network cards such as Ethernet cards and Ethernet hubs, and then configure your
machines with IP addresses starting from 192.168.1.1. The host segment can range from 1 to
254, where 255 is used for the broadcast address. If you have three machines on your home
network, you can give them the addresses 192.168.1.1, 192.168.1.2, and 192.168.1.3. You can
then set up domain name services for your network by running a DNS server on one of the
machines. This machine becomes your network's DNS server. You can then give your
machines fully qualified domain names and configure your DNS server to translate the names
to their corresponding IP addresses. As shown in Figure 25-2, for example, you could give the
machine 192.168.1.1 the name turtle.mytrek.com, and the machine 192.168.1.2 the name
rabbit.mytrek.com. You can also implement Internet services on your network such as FTP,
Web, and mail services by setting up servers for them on your machines. You can then
configure your DNS server to let users access those services using fully qualified domain
names. For example, for the mytrek.com network, the Web server could be accessed using
the name www.mytrek.com. Instead of a Domain Name Service, you could have the
/etc/hosts files in each machine contain the entire list of IP addresses and domain names for
all the machines in your network. But, for any changes, you would have to update each
machine's /etc/hosts file.

Figure 25-2: DNS server and network

Numbers are also reserved for class A and class B non-Internet local networks. Table 25-1
lists these addresses. The possible addresses available span from 0 to 255 in the host segment
of the address. For example, class B network addresses range from 172.16.0.0 to
172.16.255.255, giving you a total of 65,534 possible hosts. The class C network ranges from
192.168.0.0 to 192.168.255.255, giving you 254 possible subnetworks, each with 254
possible hosts. The number 127.0.0.0 is reserved for a system's loopback interface, which
allows it to communicate with itself, as it enables users on the same system to send messages
to each other.

These numbers were originally designed for class-based addressing. However, they can just as
easily be used for Classless Interdomain Routing (CIDR) addressing, where you can create
subnetworks with a smaller number of hosts. For example, the 254 hosts addressed in a class
C network could be split into two subnetworks, each with 125 hosts. See Chapter 39 for more
details.

Table 25-1: Non-Internet Private Network IP Addresses
Address Network
10.0.0.0 Class A network
172.16.0.0 to 172.31.255.255 Class B network
192.168.0.0 Class C network
127.0.0.0 Loopback network (for system self-communication)

BIND

The DNS server software currently in use on Linux systems is Berkeley Internet Name
Domain (BIND). BIND was originally developed at the University of California, Berkeley,
and is currently maintained and supported by the Internet Software Consortium (ISC). You
can obtain BIND information and current software releases from its Web site at www.isc.org.
Web page documentation and manuals are included with the software package. RPM
packages are available at the Red Hat FTP site. The BIND directory in /usr/share/doc
contains extensive documentation, including Web page manuals and examples. The Linux

HOW-TO for the Domain Name Service, DNS-HOWTO, provides detailed examples.
Documentation, news, and DNS tools can be obtained from the DNS Resource Directory
(DNSRD) at www.dns.net/dnsrd. The site includes extensive links and online
documentation, including the BIND Operations Guide (BOG). See Table 25-2 for a list of
DNS resources.

 Note Several alternative DNS servers are now available. These include djbdns, noted for its
security features; CustomDNS, a dynamic server implemented in Java
(customdns.sourceforge.net); and Yaku-NS, an embedded server. djbdns
(dgbdns.org), written by D. J. Bernstein, is designed specifically with security in mind,
providing a set of small server daemons, each performing specialized tasks. In
particular, djbdns separates the name server, caching server, and zone transfer tasks into
separate programs. tinydns implements the authoritative name server for a network,
whereas dnscache implements a caching server that will resolve requests form DNS
clients like Web browsers. In effect, dnscache operates as the name server that your
applications will use to resolve addresses. dnscache will then query tinydns to resolve
addresses on your local network. Zone transfers are handled separately by axfrdns and
asfget.

Currently ISC has contracted with two companies, Nominum and Mind, to provide BIND
support. Nominum is an ISC support partner and has taken an active role in BIND
development. At its Web site at www.nominum.com, you can find BIND documentation,
including the BIND 9 Administrator's Reference. Nominum, like many commercial
companies that support open source software, provides professional consultant and support
services, while freely contributing to open source development. Mind provides consulting
services for the European market.

Table 25-2: BIND Resources
Web site Resource
www.isc.org Internet Software Consortium
www.dns.net/dnsrd DNS Resource Directory
www.nominum.com Nominum, BIND support and consulting
mind.be Mind, BIND support and consulting for Europe

The BIND DNS server software consists of a name server daemon called named, several
sample configuration files, and resolver libraries. As of 1998, a new version of BIND,
beginning with the series number 8.x, implemented a new configuration file using a new
syntax. Recently version 9.0 was released, adding new security features. Older versions,
which begin with the number 4.x, use a different configuration file with an older syntax. Red
Hat currently installs the newer 9.x version of BIND.

The name of the BIND name server daemon is named. To operate your machine as a name
server, simply run the named daemon with the appropriate configuration. The named
daemon listens for resolution requests and provides the correct IP address for the requested
host name. You can use the Name Daemon Controller, rndc, utility provided with BIND to
start, stop, restart, and check the status of the server as you test its configuration. rndc with the
stop command stops named and, with the start command, starts it again, reading your
named.conf file. rndc with the help command provides a list of all rndc commands. Once

your name server is running, you can test it using the dig or nslookup utilities, which queries a
name server, providing information about hosts and domains. If you start dig with no
arguments, it enters an interactive mode where you can issue different dig commands to refine
your queries. Numerous other DNS tools are also available, such as nslint and host. Check the
DNS Resource Directory at www.dns.net/dnsrd for a listing. Table 25-3 lists several DNS
administrative tools.

Table 25-3: BIND Diagnostic and Administration Tools
Tool Description
dig domain Domain Information Groper, tool to obtain information on a

DNS server. Preferred over nslookup.
host hostname Simple lookup of hosts.
nslookup domain Tool to query DNS servers for information about domains and

hosts.
rndc command Remote Name Daemon Controller is an administrative tool for

managing a DNS server (version 9.x).
ndc Name Daemon Controller (version 8.x).

On Red Hat systems, the named daemon is started using a startup script in the /etc/rc.d/init.d
directory called named. You can use this script to start, stop, and restart the daemon using the
stop, start, and restart arguments. You can invoke the script with the service command, as
shown here.

service named restart

On Red Hat systems, named runs as a standalone daemon, starting up when the system boots
and constantly runs. If you don't want named to start up automatically, you can use the
System V Runlevel Editor or Setup to change its status.

Domain Name Service Configuration

You configure a DNS server using a configuration file, several zone files, and a cache file.
The part of a network for which the name server is responsible is called a zone. A zone is not
the same as a domain, because in a large domain you could have several zones, each with its
own name server. You could also have one name server service several zones. In this case,
each zone has its own zone file. The zone files hold resource records that provide hostname
and IP address associations for computers on the network for which the DNS server is
responsible. Zone files exist for the server's network and the local machine. Zone entries are
defined in the named.conf file. Here, you place zone entries for your master, slave, and
forward DNS servers. The most commonly used zone types are described here:

• Master zone This is the primary zone file for a network. It holds the mappings from
domain names to IP addresses for all the hosts on the network.

• Slave zone These are references to other DNS servers for your network. Your
network can have a master DNS server and several slave DNS servers to help carry the
workload. A slave DNS server automatically copies its configuration files, including
all zone files, from the master DNS server. Any changes to the master configuration
files trigger an automatic download of these files to the slave servers. In effect, you

only have to manage the configuration files for the master DNS server, as they are
automatically copied to the slave servers.

• Forward zone The forward zone lists name servers outside your network that should
be searched if your network's name server fails to resolve an address.

• IN-ADDR.ARPA zone DNS can also provide reverse resolutions, where an IP
address is used to determine the associated domain name address. Such lookups are
provided by IN-ADDR.ARPA zone files. Each master zone file usually has a
corresponding IN-ADDR.ARPA zone file to provide reverse resolution for that zone.
For each master zone entry, a corresponding reverse mapping zone entry named IN-
ADDR.ARPA also exists, as well as one for the localhost. This entry performs reverse
mapping from an IP address to its domain name. The name of the zone entry uses the
domain IP address, which is the IP address with segments listed starting from the host,
instead of the network. So, for the IP address 192.168.1.4 where 4 is the host address,
the corresponding domain IP address is 4.1.168.192, listing the segments in reverse
order. The reverse mapping for the localhost is 0.0.127.

• Hint zone A hint zone specifies the root name servers and is denoted by a period
(.).A DNS server is normally connected to a larger network, such as the Internet,
which has its own DNS servers. DNS servers are connected this way hierarchically,
with each server having its root servers to which it can send resolution queries. The
root servers are designated in the hint zone.

 Note On Red Hat you can use bindconf, the BIND Configuration Tool, to configure a
DNS server for a simple local network. bindconf provides a Gnome interface for
setting up the master, slave, forward, and IN-ADDR.ARPA zones you would
need for a server. Be aware though that it will overwrite your /etc/named.conf
file. bindconf can be accessed from the Gnome System menu.

DNS Servers

There are several kinds of DNS server, each designed to perform a different type of task under
the Domain Name Service. The basic kind of DNS server is the master server. Each network
must have at least one master server that is responsible for resolving names on the network.
Large networks may need several DNS servers. Some of these can be slave servers that can be
updated directly from a master server. Others may be alternative master servers that hosts in a
network can use. Both are commonly referred to as secondary servers. For DNS requests a
DNS server cannot resolve, the request can be forwarded to specific DNS servers outside the
network, say on the Internet. DNS servers in a network can be set up to perform this task and
are referred to as forwarder servers. To help bear the workload, local DNS servers can be set
up within a network that operate as caching servers. Such a server merely collects DNS
lookups from previous requests it sent to the main DNS server. Any repeated requests can
then be answered by the caching server.

A server that can answer DNS queries for a given zone with authority is known as an
authoritative server. An authoritative server holds the DNS configuration records for hosts in
a zone that will associate each host's DNS name with an IP address. For example, a master
server is an authoritative server. So are slave and stealth servers (see the list that follows). A
caching server is not authoritative. It only holds whatever associations it picked up from other
servers and cannot guarantee that the associations are valid.

• Master server This is the primary DNS server for a zone.

• Slave server A DNS server that receives zone information from the master server.
• Forwarder server A server that forwards unresolved DNS requests to outside DNS

servers. Can be used to keep other servers on a local network hidden from the Internet.
• Caching only server Caches DNS information it receives from DNS servers and

uses it to resolve local requests.
• Stealth server A DNS server for a zone not listed as a name server by the master

DNS server.

 Note As an alternative to making entries in the configuration files manually, you can
configure DNS with Linuxconf or Webmin.

named.conf

The configuration file for the named daemon is named.conf, located in the /etc directory. It
uses a flexible syntax similar to C programs. The format enables easy configuration of
selected zones, enabling features such as access control lists and categorized logging. The
named.conf file consists of BIND configuration commands with attached blocks within
which specific options are listed. A configuration command is followed by arguments and a
block that is delimited with braces. Within the block are lines of option and feature entries.
Each entry is terminated with a semicolon. Comments can use the C, C++, or Shell/Perl
syntax: enclosing /* */, preceding //, or preceding #. The following example shows a zone
statement followed by the zone name and a block of options that begin with an opening brace,
{. Each option entry ends with a semicolon. The entire block ends with a closing brace, also
followed by a semicolon. The format for a named.conf entry is show here, along with the
different kinds of comments allowed. Table 25-4 lists several commonly used options.

// comments
/* comments */
comments

statements {
 options and features; //comments
};

The following example shows a simple caching server entry.

// a caching only nameserver config
//
zone "." {
 type hint;
 file "named.ca";
 };

Table 25-4: Zone Options
Option Description
type Specifies a zone type.
file Specifies the zone file for the zone.
directory Specifies a directory for zone files.
forwarders Lists hosts for DNS servers where requests are to be

forwarded.
masters Lists hosts for DNS master servers for a slave server.

Table 25-4: Zone Options
Option Description
notify Allows master servers to notify their slave servers when the

master zone data changes and updates are needed.
allow-transfer Specifies which hosts are allowed to receive zone transfers.
allow-query Specifies hosts that are allowed make queries.
allow-recursion Specifies hosts that are allowed to perform recursive queries

on the server.
 Note The named.conf file is a new feature implemented with BIND version 8.x and 9.x. The

older BIND 4.x versions use a file called named.boot. This file is no longer used by
version 8.x. The syntaxes used in these configuration files differ radically. If you
upgrade to 8.x, you can use the named-bootconf.pl Perl script provided with the BIND
software to convert your named.boot file to a named.conf file.

The zone statement is used to specify the domains the name server will service. You enter the
keyword zone, followed by the name of the domain placed within double quotes. Do not place
a period at the end of the domain name. In the following example, a period is within the
domain name, but not at the end, "mytrek.com"; this differs from the zone file, which
requires a period at the end of a complete domain name.

After the zone name, you can specify the class in, which stands for Internet. You can also
leave it out, in which case in is assumed (there are only a few other esoteric classes that are
rarely used). Within the zone block, you can place several options (see Table 25-4). Two
essential options are type and file. The type option is used to specify the zone's type. The file
option is used to specify the name of the zone file to be used for this zone. You can choose
from several types of zones: master, slave, stub, forward, and hint. Master specifies that the
zone holds master information and is authorized to act on it. A master server was called a
primary server in the older 4.x BIND configuration. Slave indicates that the zone needs to
update its data periodically from a specified master name server. You use this entry if your
name server is operating as a secondary server for another primary (master) DNS server. A
stub zone only copies other name server entries, instead of the entire zone. A forward zone
directs all queries to name servers specified in a forwarders statement. A hint zone specifies
the set of root name servers used by all Internet DNS servers. You can also specify several
options that can override any global options set with the options statement. Table 25-5 lists
the BIND zone types. The following example shows a simple zone statement for the
mytrek.com domain. Its class is Internet, "in," and its type is master. The name of its zone
file is usually the same as the zone name, in this case, "mytrek.com".

zone "mytrek.com" in {
 type master;
 file "mytrek.com";
 };

Table 25-5: DNS BIND Zone Types
Type Description
master Primary DNS zone
slave Slave DNS server. Controlled by a master DNS server
hint Set of root DNS Internet servers

Table 25-5: DNS BIND Zone Types
Type Description
forward Forwards any queries in it to other servers
stub Like a slave zone, but only holds names of DNS servers

Other statements, such as acl, server, options, and logging, enable you to configure different
features for your name server (see Table 25-6). The server statement defines the
characteristics to be associated with a remote name server, such as the transfer method and
key ID for transaction security. The control statement defines special control channels. The
key statement defines a key ID to be used in a server statement that associates an
authentication method with a particular name server (see DNSSEC). The logging statement is
used to configure logging options for the name server, such as the maximum size of the log
file and a severity level for messages. Table 25-6 lists the BIND statements.

Table 25-6: BIND Configuration Statements
Statement Description
/* comment */ BIND comment in C syntax.
// comment BIND comment in C++ syntax.
comment BIND comment in Unix shell and Perl syntax.
acl Defines a named IP address matching list.
include Includes a file, interpreting it as part of the named.conf file.
key Specifies key information for use in authentication and authorization.
logging Specifies what the server logs and where the log messages are sent.
>Option Global server configuration options and defaults for other statements.
controls Declares control channels to be used by the ndc utility.
server Sets certain configuration options for the specified server basis.
sortlists Gives preference to specified networks based on a queries source.
trusted-keys Defines DNSSEC keys preconfigured into the server and implicitly

trusted.
zone Defines a zone.
view Defines a view.

The options statement defines global options and can be used only once in the configuration
file. An extensive number of options cover such components as forwarding, name checking,
directory path names, access control, and zone transfers, among others (see Table 25-7). A
complete listing can be found in the BIND documentation. A critically important option found
in most configuration files is the directory option, which holds the location of the name
server's zone and cache files on your system. The following example is taken from the Red
Hat /etc/named.conf file. This example specifies the zone files are located in the /var/named
directory. In this directory, you can find your zone files, including those used for your local
system.

options {
 directory "/var/named";

 forwarders { 192.168.1.34;
 192.168.1.47;
 };
 };

Table 25-7: options Options
Option Description
sortlist Gives preference to specified networks based on a queries

source.
directory Specifies a directory for zone files.
forwarders Lists hosts for DNS servers where requests are to be

forwarded.
allow-transfer Specifies which hosts are allowed to receive zone transfers.
allow-query Specifies hosts that are allowed make queries.
allow-recursion Specifies hosts that are allowed to perform recursive

queries on the server.
notify Allows master servers to notify their slave servers when the

master zone data changes and updates are needed.
blackhole Option to eliminate denial response by allow-query.

Another commonly used global option is the forwarders option. With the forwarders option,
you can list several DNS servers to which queries can be forwarded if they cannot be resolved
by the local DNS server. This is helpful for local networks that may need to use a DNS server
connected to the Internet. The forwarders option can also be placed in forward zone entries.

With the notify option turned on, the master zone DNS servers send messages to any slave
DNS servers whenever their configuration has changed. The slave servers can then perform
zone transfers in which they download the changed configuration files. Slave servers always
use the DNS configuration files copied from their master DNS servers. notify takes one
argument, yes or no, where yes is the default. With the no argument, you can have the master
server not send out any messages to the slave servers, in effect preventing any zone transfers.

The sortlists statement lets you specify preferences to be used when a query returns multiple
responses. For example, you could give preference to your localhost network or to a private
local network such a 192.168.1.0.

The following example is a simple named.conf file based on the example provided in the
BIND documentation. This example shows samples of several of the configuration
statements. The file begins with comments using C++ syntax, //. The options statement has a
directory entry that sets the directory for the zone and cache files to /var/named. Here, you
find your zone files, such as named.local and reverse mapping files, along with the cache file,
named.ca. The first zone statement (.) defines a hint zone specifying the root name servers.
The cache file listing these servers is named.ca. The second zone statement defines a zone for
the mytrek.com domain. Its type is master, and its zone file is named "mytrek.com". The
next zone is used for reverse IP mapping of the previous zone. Its name is made up of a
reverse listing of the mytrek.com domain's IP address with the term IN-ADDR.ARPA
appended. The domain address for mytrek.com is 192.168.1, so the reverse is 1.168.192. The
IN-ADDR.ARPA domain is a special domain that supports gateway location and Internet
address to host mapping. The last zone statement defines a reverse mapping zone for the

loopback interface, the method used by the system to address itself and enable communication
between local users on the system. The zone file used for this local zone is named.local.

named.conf

//
// A simple BIND 9 configuration
//

logging {
 category cname { null; };
 };

options {
 directory "/var/named";
 };

zone "." {
 type hint;
 file "named.ca";
 };

zone "mytrek.com" {
 type master;
 file "mytrek.com";
 };
zone "1.168.192.IN-ADDR.ARPA" {
 type master;
 file "192.168.1";
 };

zone "0.0.127.IN-ADDR.ARPA" {
 type master;
 file "named.local";
 };

When BIND is initially installed, it creates a default configuration for what is known as a
caching only server. A caching only server copies queries made by users and saves them in a
cache, for use later if the queries are repeated. This can save DNS lookup response times. The
cache is held in memory and only lasts as long as named runs. The following example is the
named.conf file initially installed for a caching only server. Only the local and cache zones
are defined.

named.conf (caching only server)

// generated by named-bootconf.pl

options {
 directory "/var/named";
 };

//
// a caching only nameserver config
//
zone "." {

 type hint;
 file "named.ca";
 };

zone "0.0.127.IN-ADDR.ARPA" {
 type master;
 file "named.local";
 };

Resource Records

Your name server holds domain name information about the hosts on your network in
resource records placed in zone and reverse mapping files. Resource records are used to
associate IP addresses with fully qualified domain names. You need a record for every
computer in the zone that the name server services. A record takes up one line, though you
can use parentheses to use several lines for a record, as is usually the case with SOA records.
A resource record uses the Standard Resource Record Format as shown here:

name [<ttl>] [<class>] <type> <rdata> [<comment>]

Here, name is the name for this record. It can be a domain name for a fully qualified domain
name. If you only specify the hostname, the default domain is appended. If no name entry
exists, the last specific name is used. If the @ symbol is used, the name server's domain name
is used. ttl (time to live) is an optional entry that specifies how long the record is to be cached,
and class is the class of the record. The class used in most resource record entries is IN, for
Internet. By default, it is the same as that specified for the domain in the named.conf file.
type is the type of the record. rdata is the resource record data. The following is an example
of a resource record entry. The name is rabbit.mytrek.com, the class is Internet (IN), the
type is a host address record (A), and the data is the IP address 192.168.1.2.

rabbit.mytrek.com. IN A 192.168.1.2

Table 25-8: Domain Name Service Resource Record Types
Type Description
A Host address, maps host name to IP address
A6 An IPv6 Host address
NS Authoritative name server for this zone
CNAME Canonical name, used to define an alias for a hostname
SOA Start of Authority, starts DNS entries in zone file, specifies name server

for domain, and other features like server contact and serial number
WKS Well-known service description
PTR Pointer record, for performing reverse domain name lookups, maps IP

address to hostname
RP Text string that contains contact information about a host
HINFO Host information
MINFO Mailbox or mail list information
MX Mail exchanger, informs remote site of your zone's mail server
TXT Text strings, usually information about a host

Table 25-8: Domain Name Service Resource Record Types
Type Description
KEY Domain private key
SIG Resource record signature
NXT Next resource record

Different types of resource records exist for different kinds of hosts and name server
operations (see Table 25-8 for a listing of resource record types). A, NS, MX, PTR, and
CNAME are the types commonly used. A is used for host address records that match domain
names with IP addresses. NS is used to reference a name server. MX specifies the host
address of the mail server that services this zone. The name server has mail messages sent to
that host. The PTR type is used for records that point to other resource records and is used for
reverse mapping. CNAME is used to identify an alias for a host on your system.

Start of Authority: SOA

A zone and reverse mapping files always begin with a special resource record called the Start
of Authority (SOA) record. This record specifies that all the following records are
authoritative for this domain. It also holds information about the name server's domain, which
is to be given to other name servers. An SOA record has the same format as other resource
records, though its data segment is arranged differently. The format for an SOA record
follows:

name {ttl} class SOA Origin Person-in-charge (
 Serial number
 Refresh
 Retry
 Expire
 Minimum)

Each zone has its own SOA record. The SOA begins with the zone name specified in the
named.conf zone entry. This is usually a domain name. An @ symbol is usually used for the
name and acts like a macro expanding to the domain name. The class is usually the Internet
class, IN. SOA is the type. Origin is the machine that is the origin of the records, usually the
machine running your name server daemon. The person-in-charge is the e-mail address for
the person managing the name server (use dots, not @, for the e-mail address, as this symbol
is used for the domain name). Several configuration entries are placed in a block delimited
with braces. The first is the serial number. You change the serial number when you add or
change records, so that it is updated by other servers. The serial number can be any number,
as long as it is incremented each time a change is made to any record in the zone. A common
practice is to use the year-month-day number for the serial number, where number is the
number of changes in that day. For example, 1999120403 would be the year 1999, December
4, for the third change. Be sure to update it when making changes.

Refresh specifies the time interval for refreshing SOA information. Retry is the frequency for
trying to contact an authoritative server. Expire is the length of time a secondary name server
keeps information about a zone without updating it. Minimum is the length of time records in
a zone live. The times are specified in the number of seconds.

The following example shows an SOA record. The machine running the name server is
turtle.mytrek.com, and the e-mail address of the person responsible for the server is
hostmaster.turtle.mytrek.com. Notice the periods at the end of these names. For names with
no periods, the domain name is appended. turtle would be the same as turtle.mytrek.com.
When entering full hostnames, be sure to add the period so that the domain is not appended.

@ IN SOA turtle.mytrek.com. hostmaster.turtle.mytrek.com. (
 1997022700 ; Serial
 28800 ; Refresh
 14400 ; Retry
 3600000 ; Expire
 86400) ; Minimum

Name Server: NS

The name server record specifies the name of the name server for this zone. It has a resource
record type of NS. If you have more than one name server, list them in NS records. These
records usually follow the SOA record. As they usually apply to the same domain as the SOA
record, their name field is often left blank to inherit the server's domain name specified by the
@ symbol in the previous SOA record.

 IN NS turtle.mytrek.com.

You can, if you wish, enter the domain name explicitly as shown here:

mytrek.com. IN NS turtle.mytrek.com.

Address Record: A and A6

Resource records of type A are address records that associate a fully qualified domain name
with an IP address. Often, only their hostname is specified. Any domain names without a
terminating period automatically have the domain appended to it. Given the domain
mytrek.com, the turtle name in the following example is expanded to turtle.mytrek.com:

rabbit.mytrek.com. IN A 192.168.1.2
turtle IN A 192.168.1.1

BIND versions 8.2.2 and 9.1 support IPv6 addresses. IPv6 IP addresses have a very different
format from that of the IPv4 addresses commonly used (see Chapter 38). Instead of the
numerals arranged in four segments, IPv6 uses hexadecimal numbers arranged in seven
segments. Though BIND checks for both IPv4 and IPv6 addresses, currently you should
always use a system's IPv4 address if it has one. In the following example, divit.mygolf.com
is associated with its IPv6 address.

divit.mygolf.com IN A6 3ffe:8050:201:1860:1::3

BIND also supports IPv6 resolution features such as A6 chains, which allows you to specify
part of the address as a network domain name. This would be the name of a network through
which the host connects to the Internet. The network domain name is then used to complete
the address.

divit.mygolf.com IN A6 0:0:0:0:1::3mytrek.com.

Mail Exchanger: MX

The Mail Exchanger record, MX, specifies the mail server that is used for this zone or for a
particular host. The mail exchanger is the server to which mail for the host is sent. In the
following example, the mail server is specified as turtle.mytrek.com. Any mail sent to the
address for any machines in that zone will be sent to the mail server, which in turn will send it
to the specific machines. For example, mail sent to a user on rabbit.mytrek.com will first be
sent to turtle.mytrek.com, which will then send it on to rabbit.mytrek.com. In the following
example, the host 192.168.1.1 (turtle.mytrek.com) is defined as the mail server for the
mytrek.com domain:

mytrek.com. IN MX 10 192.168.1.1

You could also inherit the domain name from the SOA record, leaving the domain name entry
blank.

 IN MX 10 192.168.1.1

An MX record recognizes an additional field that specifies the ranking for a mail exchanger.
If your zone has several mail servers, you can assign them different rankings in their MX
records. The smaller number has a higher ranking. This way, if mail cannot reach the first
mail server, it can be routed to an alternate server to reach the host. In the following example,
mail for hosts on the mytrek.com domain is first routed to the mail server at 192.168.1.1
(turtle.mytrek.com), and if that fails, it is routed to the mail server at 192.168.1.1
(rabbit.mytrek.com).

mytrek.com. IN MX 10 turtle.mytrek.com
 IN MX 20 rabbit.mytrek.com

You can also specify a mail server for a particular host. In the following example, the mail
server for lizard.mytrek.com is specified as rabbit.mytrek.com:

lizard.mytrek.com. IN A 192.168.1.3
 IN MX 10 rabbit.mytrek.com.

Aliases: CNAME

Resource records of type CNAME are used to specify alias names for a host in the zone.
Aliases are often used for machines running several different types of servers, such as both
Web and FTP servers. They are also used to locate a host when it changes its name. The old
name becomes an alias for the new name. In the following example, ftp.mytrek.com is an
alias for a machine actually called turtle.mytrek.com:

ftp.mytrek.com. IN CNAME turtle.mytrek.com.

The term CNAME stands for canonical name. The canonical name is the actual name of the
host. In the example above the canonical name is turtle.mytrek.com. The alias, also know as
the CNAME, is ftp.mytrek.com. In a CNAME entry, the alias points to the canonical name.
Aliases cannot be used for NS (name server) or MX (mail server) entries.

A more stable way to implement aliases is simply to create another address record for it. You
can have as many hostnames for the same IP address as you want, provided they are certified.
For example, to make www.mytrek.com an alias for turtle.mytrek.com, you only have to
add another address record for it, giving it the same IP address as turtle.mytrek.com.

turtle.mytrek.com. IN A 192.168.1.1
www.mytrek.com. IN A 192.168.1.1

Pointer Record: PTR

A PTR record is used to perform reverse mapping from an IP address to a host. PTR records
are used in the reverse mapping files. The name entry holds a reversed IP address and the data
entry holds the name of the host. The following example maps the IP address 192.168.1.1 to
turtle.mytrek.com:

1.1.168.192 IN PTR turtle.mytrek.com.

In a PTR record you can specify just that last number segment of the address (the host
address), and let DNS fill in the domain part of the address. In the next example, 1 has the
domain address, 1.168.192, automatically added to give 1.1.168.192:

1 IN PTR turtle.mytrek.com.

Host Information: HINFO, RP, MINFO, and TXT

The HINFO, RP, MINFO, and TXT records are used to provide information about the host.
The RP record enables you to specify the person responsible for a certain host. The HINFO
record provides basic hardware and operating system identification. The TXT record is used
to enter any text you want. MINFO provides a host's mail and mailbox information. These are
used sparingly as they may give too much information out about the server.

Zone Files

A DNS server uses several zone files covering different components of the DNS. Each zone
uses two zone files: the principal zone file and a reverse mapping zone file. The zone file
contains the resource records for hosts in the zone. A reverse mapping file contains records
that provide reverse mapping of your domain name entries, enabling you to map from IP
addresses to domain names. The name of the file used for the zone file can be any name. The
name of the file is specified in the zone statement's file entry in the named.conf file. If your
server supports several zones, you may want to use a name that denotes the specific zone.
Most systems use the domain name as the name of the zone file. For example, the zone
mytrek.com would have a zone file also called mytrek.com. These could be placed in a
subdirectory called zones or master. The zone file used in the following example is called
mytrek.com. The reverse mapping file can also be any name, though it is usually the reverse
IP address domain specified in its corresponding zone file. For example, in the case of
mytrek.com zone file, the reverse mapping file might be called 192.168.1, the IP address of
the mytrek.com domain defined in the mytrek.com zone file. This file would contain reverse
mapping of all the host addresses in the domain, allowing their hostname addresses to be
mapped to their corresponding IP addresses. In addition, BIND sets up a cache file and a
reverse mapping file for the localhost. The cache file holds the resource records for the root
name servers to which your name server connects. The cache file can be any name, although

it is usually called named.ca. The localhost reverse mapping file holds reverse IP resource
records for the local loopback interface, localhost. Although localhost can be any name, it
usually has the name named.local.

Zone Files for Internet Zones

A zone file holds resource records that follow a certain format. The file begins with general
directives to define default domains or to include other resource record files. These are
followed by a single SOA, name server, and domain resource records, and then resource
records for the different hosts. Comments begin with a semicolon and can be placed
throughout the file. The @ symbol operates like a special macro, representing the domain
name of the zone to which the records apply. The @ symbol is used in the first field of a
resource or SOA record as the zone's domain name. Multiple names can be specified using the
* matching character. The first field in a resource record is the name of the domain to which it
applies. If the name is left blank, the next previous explicit name entry in another resource
record is automatically used. This way, you can list several entries that apply to the same host
without having to repeat the host name. Any host or domain name used throughout this file
that is not terminated with a period has the zone's domain appended to it. For example, if the
zone's domain is mytrek.com and a resource record has only the name rabbit with no trailing
period, the zone's domain is automatically appended to it, giving you rabbit.mytrek.com. Be
sure to include the trailing period whenever you enter the complete fully qualified domain
name as in turtle.mytrek.com.. You can also use several directives to set global attributes.
$ORIGIN sets a default domain name to append to address names that do not end in a period.
$INCLUDE includes a file. $GENERATE can generate records whose domain or IP
addresses differ only by an iterated number.

A zone file begins with an SOA record specifying the machine the name server is running on,
among other specifications. The @ symbol is used for the name of the SOA record, denoting
the zone's domain name. After the SOA, the name server resource records (NS) are listed. Just
below the name server records are resource records for the domain itself. Resource records for
host addresses (A), aliases (CNAME), and mail exchangers (MX) follow. The following
example shows a sample zone file, which begins with an SOA record and is followed by an
NS record, resource records for the domain, and then resource records for individual hosts:

; Authoritative data for turle.mytrek.com
;
@ IN SOA turtle.mytrek.com. hostmaster.turtle.mytrek.com.(
 93071200 ; Serial number
 10800 ; Refresh 3 hours
 3600 ; Retry 1 hour
 3600000 ; Expire 1000 hours
 86400) ; Minimum 24 hours

 IN NS turtle.mytrek.com.
 IN A 192.168.1.1
 IN MX 10 turtle.mytrek.com.
 IN MX 15 rabbit.mytrek.com.

turtle IN A 192.168.1.1
 IN HINFO PC-686 LINUX
gopher IN CNAME turtle.mytrek.com.
ftp IN CNAME turtle.mytrek.com.
www IN A 192.168.1.1

rabbit IN A 192.168.1.2

lizard IN A 192.168.1.3
 IN HINFO MAC MACOS
localhost IN A 127.0.0.1

The first two lines are comments about the server for which this zone file is used. Notice that
the first two lines begin with a semicolon. The class for each of the resource records in this
file is IN, indicating these are Internet records. The SOA record begins with an @ symbol that
stands for the zone's domain. In this example, it is mytrek.com. Any host or domain name
used throughout this file that is not terminated with a period has this domain appended to it.
For example, in the following resource record, turtle has no period, so it automatically
expands to turtle.mytrek.com. The same happens for rabbit and lizard. These are read as
rabbit.mytrek.com and lizard.mytrek.com. Also, in the SOA, notice that the e-mail address
for host master uses a period instead of an @ symbol; @ is a special symbol in zone files and
cannot be used for any other purpose.

The next resource record specifies the name server for this zone. Here, it is mytrek.com.
Notice the name for this resource record is blank. If the name is blank, a resource record
inherits the name from the previous record. In this case, the NS record inherits the value of @
in the SOA record, its previous record. This is the zone's domain and the NS record specifies
turtle.mytrek.com is the name server for this zone.

 IN NS turtle.mytrek.com.

Here, the domain name is inherited. The entry can be read as the following. Notice the trailing
period at the end of the domain name.

 mytrek.com. IN NS turtle.mytrek.com.

The following address records set up an address for the domain itself. This is often the same
as the name server, in this case 192.168.1.1 (the IP address of turtle.mytrek.com). This
enables users to reference the domain itself, rather than a particular host in it. A mail
exchanger record follows that routes mail for the domain to the name server. Users can send
mail to the mytrek.com domain, and it will be routed to turtle.mytrek.com.

 IN A 192.168.1.1

Here the domain name is inherited. The entry can be read as the following.

 mytrek.com. IN A 192.168.1.1

The next records are mail exchanger records (MX) listing turtle.mytrek.com and
fast.mytrek.com as holding the mail servers for this zone. You can have more than one mail
exchanger record for host. More than one host may exist through which mail can be routed.
These can be listed in mail exchanger records for which you can set priority rankings (smaller
number ranks higher). In this example, if turtle.mytrek.com cannot be reached, its mail is
routed through rabbit.mytrek.com, which has been set up also to handle mail for the
mytrek.com domain.

 IN MX 100 turtle.mytrek.com.
 IN MX 150 rabbit.mytrek.com.

Again the domain name is inherited. The entries can be read as the following.

mytrek.com. IN MX 100 turtle.mytrek.com.
mytrek.com. IN MX 150 rabbit.mytrek.com.

The following resource record is an address record (A) that associates an IP address with the
fully qualified domain name turtle.mytrek.com. The resource record name only holds turtle
with no trailing period, so it is automatically expanded to turtle.mytrek.com. This record
provides the IP address to which turtle.mytrek.com can be mapped.

turtle IN A 192.168.1.1

Several resource records immediately follow that have blank names. These inherit their names
from the preceding full record-in this case, turtle.mytrek.com. In effect, these records also
apply to that host. Using blank names is an easy way to list additional resource records for the
same host (notice that an apparent indent occurs). The first record is an information record,
providing the hardware and operating system for the machine.

 IN HINFO PC-686 LINUX

If you are using the same machine to run several different servers, such as Web, FTP, and
Gopher servers, you may want to assign aliases to these servers to make accessing them easier
for users. Instead of using the actual domain name, such as turtle.mytrek.com, to access the
Web server running on it, users may find using the following is easier: for the Web server,
www.mytrek.com; for the Gopher server, gopher.mytrek.com; and for the FTP server,
ftp.mytrek.com. In the DNS, you can implement such a feature using alias records. In the
example zone file, two CNAME alias records exist for the turtle.mytrek.com machine: FTP
and Gopher. The next record implements an alias for www using another address record for
the same machine. None of the name entries end in a period, so they are appended
automatically with the domain name mytrek.com. www.mytrek.com, ftp.mytrek.com, and
gopher.mytrek.com are all aliases for turtle.mytrek.com. Users entering those URLs
automatically access the respective servers on the turtle.mytrek.com machine.

Address and main exchanger records are then listed for the two other machines in this zone:
rabbit.mytrek.com and lizard.mytrek.com. You could add HINFO, TXT, MINFO, or alias
records for these entries. The file ends with an entry for localhost, the special loopback
interface that allows your system to address itself.

Reverse Mapping File

Reverse name lookups are enabled using a reverse mapping file. Reverse mapping files map
fully qualified domain names to IP addresses. This reverse lookup capability is unnecessary,
but it is convenient to have. With reverse mapping, when users access remote hosts, their
domain name address can be used to identify their own host, instead of only the IP address.
The name of the file can be anything you want. On most current distributions, it is the zone's
domain address (the network part of a zone's IP address). For example, the reverse mapping
file for a zone with the IP address of 192.168.1.1 is 192.168.1. Its full pathname would be
something like /var/named/192.168.1. On some systems using older implementations of
BIND, the reverse mapping filename may consist of the root name of the zone file with the
extension .rev. For example, if the zone file is called mytrek.com, the reverse mapping file
would be called something like mytrek.rev. The zone entry for a reverse mapping in the

named.conf file uses a special domain name consisting of the IP address in reverse, with an
IN-ADDR.ARPA extension. This reverse IP address becomes the zone domain referenced by
the @ symbol in the reverse mapping file. For example, the reverse mapping zone name for a
domain with the IP address of 192.168.43 would be 43.168.192.IN-ADDR.ARPA. In the
following example, the reverse domain name for the domain address 192.168.1 is
1.168.192.IN-ADDR.ARPA:

zone "1.168.192.IN-ADDR.ARPA" in {
 type master;
 file "192.168.1";
 };

A reverse mapping file begins with an SOA record, which is the same as that used in a
forward mapping file. Resource records for each machine defined in the forward mapping file
then follow. These resource records are PTR records that point to hosts in the zone. These
must be actual hosts, not aliases defined with CNAME records. Records for reverse mapping
begin with a reversed IP address. Each segment in the IP address is sequentially reversed.
Each segment begins with the host ID, followed by reversed network numbers. If you list only
the host ID with no trailing period, the zone domain is automatically attached. In the case of a
reverse mapping file, the zone domain as specified in the zone statement is the domain IP
address backward. The 1 expands to 1.1.168.192. In the following example, turtle and lizard
inherit the domain IP address, whereas rabbit has its explicitly entered:

; reverse mapping of domain names 1.168.192.IN-ADDR.ARPA
;
@ IN SOA turtle.mytrek.com. hostmaster.turtle.mytrek.com.(
 92050300 ; Serial (yymmddxx format)
 10800 ; Refresh 3hHours
 3600 ; Retry 1 hour
 3600000 ; Expire 1000 hours
 86400) ; Minimum 24 hours

@ IN NS turtle.mytrek.com.
1 IN PTR turtle.mytrek.com.
2.1.168.192 IN PTR rabbit.mytrek.com.
3 IN PTR lizard.mytrek.com.

Localhost Reverse Mapping

A localhost reverse mapping file implements reverse mapping for the local loopback interface
known as localhost, whose network address is 127.0.0.1. This file can be any name. On most
systems, localhost is given the name named.local. On other systems, localhost may use the
network part of the IP address, 127.0.0. This file allows mapping the domain name localhost
to the localhost IP address, which is always 127.0.0.1 on every machine. The address
127.0.0.1 is a special address that functions as the local address for your machine. It allows a
machine to address itself. In the zone statement for this file, the name of the zone is
0.0.127.IN-ADDR.ARPA. The domain part of the IP address is entered in reverse order, with
IN-ADDR.ARPA appended to it, 0.0.127.IN- ADDR.ARPA. The named.conf entry is
shown here:

zone "0.0.127.IN-ADDR.ARPA" {
 type master;
 file "named.local";
 };

The name of the file used for the localhost reverse mapping file is usually named.local,
though it can be any name. The NS record specifies the name server localhost should use.
This file has a PTR record that maps the IP address to the localhost. The 1 used as the name
expands to append the zone domain-in this case, giving you 1.0.0.127, a reverse IP address.
The contents of the named.local file are shown here. Notice the trailing periods for localhost.

@ IN SOA localhost. root.localhost. (
 1997022700 ; Serial
 28800 ; Refresh
 14400 ; Retry
 3600000 ; Expire
 86400) ; Minimum

 IN NS turtle.mytrek.com.
1 IN PTR localhost.

Subdomains and Slaves

Adding a subdomain to a DNS server is a simple matter of creating an additional master entry
in the named.conf file, and then placing name server and authority entries for that subdomain
in your primary DNS server's zone file. The subdomain, in turn, has its own zone file with its
SOA record and entries listing hosts, which are part of its subdomain, including any of its
own mail and news servers.

The name for the subdomain could be a different name altogether or a name with the same
suffix as the primary domain. In the following example, the subdomain is called
beach.mytrek.com. It could just as easily be called mybeach.com. The name server to that
domain is on the host crab.beach.mytrek.com, in this example. Its IP address is
192.168.1.33 and its zone file is beach.mytrek.com. The beach.mytrek.com zone file holds
DNS entries for all the hosts being serviced by this name server. The following example
shows zone entries for its named.conf:

zone "beach.mytrek.com" {
 type master;
 file "beach.mytrek.com";
 };

zone "1.168.192.IN-ADDR.ARPA" {
 type master;
 file "192.168.1";
 };

On the primary DNS server, in the example turtle.mytrek.com, you would place entries in
the master zone file to identify the subdomain server's host and designate it as a name server.
Such entries are also known as glue records. In this example, you would place the following
entries in the mytrek.com zone file on turtle.mytrek.com:

beach.mytrek.com. IN NS beach.mytrek.com.
beach.mytrek.com. IN A 192.168.1.33.

URL references to hosts serviced by beach.mytrek.com can now be reached from any host
serviced by mytrek.com, which does not need to maintain any information about the
beach.mytrek.com hosts. It simply refers such URL references to the beach.mytrek.com
name server.

A slave DNS server is tied directly to a master DNS server and periodically receives DNS
information from it. You use a master DNS server to configure its slave DNS servers
automatically. Any changes you make to the master server are automatically transferred to its
slave servers. This transfer of information is called a zone transfer. Zone transfers are
automatically initiated whenever the slave zone's refresh time is reached or the slave server
receives a notify message from the master. The refresh time is the second argument in the
zone's SOA entry. A notify message is automatically sent by the master whenever changes are
made to the master zone's configuration files and the named daemon is restarted. In effect,
slave zones are automatically configured by the master zone, receiving the master zone's zone
files and making them their own.

Using the previous examples, suppose you want to set up a slave server on
rabbit.mytrek.com. Zone entries, as shown in the following example, are set up in the
named.conf configuration file for the slave DNS server on rabbit.mytrek.com. The slave
server is operating in the same domain as the master, and so it has the same zone name,
mytrek.com. Its SOA file is named slave.mytrek.com. The term "slave" in the filename is
merely a convention that helps identify it as a slave server configuration file. The masters
statement lists its master DNS server-in this case, 192.168.1.1. Whenever the slave needs to
make a zone transfer, it transfers data from that master DNS server. The entry for the reverse
mapping file for this slave server lists its reverse mapping file as slave.192.168.1.

zone "mytrek.com" {
 type slave;
 file "slave.mytrek.com";
 masters { 192.168.1.1;
 };

zone "1.168.192.IN-ADDR.ARPA" {
 type slave;
 file "slave.192.168.1";
 masters { 192.168.1.1;
 };

On the master DNS server, the master SOA zone file has entries in it to identify the host that
holds the slave DNS server and to designate it as a DNS server. In this example, you would
place the following in the mytrek.com zone file:

 IN NS 192.168.1.2

You would also place an entry for this name server in the mytrek.com reverse mapping file:

 IN NS 192.168.1.2

The master DNS server can control which slave servers can transfer zone information from it
using the allow-transfer statement. Place the statement with the list of IP addresses for the
slave servers for which you want to allow access. Also, the master DNS server should be sure
the notify option is not disabled. The notify option is disabled by a "notify no" statement in
the options or zone named.conf entries. Simply erase the "no" argument to enable notify.

With BIND versions 8.2.2 and 9.0, BIND now supports Incremental Zone Transfers (IXFR).
Previously the all zone data would be replaced in an update, rather than simply editing in
changes such as the addition of a few resource records. With Incremental Zone Transfers, a

database of changes is maintained by the master zone. Then only the changes are transferred
to the slave zone, which uses this information to update its own zone files. To implement
Incremental Zone Transfers, you have to turn on the maintain- ixfr-base option in the options
section.

maintain-ixfr-base yes;

You can then use the ixfr-base option in a zone section to specify a particular database file to
hold changes.

ixfr-base "db.mytrek.com.ixfr";

IP Virtual Domains

IP-based virtual hosting allows more than one IP address to be used for a single machine. If a
machine has two registered IP addresses, either one can be used to address the machine. If
you want to treat the extra IP address as another host in your domain, you need only create an
address record for it in your domain's zone file. The domain name for the host would be the
same as your domain name. If you want to use a different domain name for the extra IP,
however, you have to set up a virtual domain for it. This entails creating a new zone statement
for it with its own zone file. For example, if the extra IP address is 192.168.1.42 and you want
to give it the domain name sail.com, you must create a new zone statement for it in your
named.conf file with a new zone file. The zone statement would look something like this.
The zone file is called sail.com.

zone "sail.com" in {
 type master;
 file "sail.com";
 };

In the "sail.com" file, the name server name is turtle.mytrek.com and the e-mail address is
hostmaster@turtle.mytrek.com. In the name server (NS) record, the name server is
turtle.mytrek.com. This is the same machine using the original address that the name server
is running as. turtle.mytrek.com is also the host that handles mail addressed to sail.com
(MX). An address record then associates the extra IP address 192.168.1.42 with the sail.com
domain name. A virtual host on this domain is then defined as jib.sail.com. Also, www and
ftp aliases are created for that host, creating www.sail.com and ftp.sail.com virtual hosts.

; Authoritative data for sail.com
;
@ IN SOA turtle.mytrek.com. hostmaster.turtle.mytrek.com. (
 93071200 ; Serial (yymmddxx)
 10800 ; Refresh 3 hours
 3600 ; Retry 1 hour
 3600000 ; Expire 1000 hours
 86400) ; Minimum 24 hours

 IN NS turtle.mytrek.com.
 IN MX 10 turtle.mytrek.com.
 IN A 192.168.1.42 ;address of the sail.com domain

jib IN A 192.168.1.42
www IN A jib.sail.com.
ftp IN CNAME jib.sail.com.

In your reverse mapping file (/var/named/1.168.192), add PTR records for any virtual
domains.

42.1.168.192 IN PTR sail.com.
42.1.168.192 IN PTR jib.sail.com.

You also have to configure your network connection to listen for both IP addresses on your
machine (see Chapter 28).

Cache File

The cache file is used to connect the DNS server to root servers on the Internet. The file can
be any name. On many systems, the cache file is called named.ca. Other systems may call the
cache file named.cache or roots.hints. The cache file is usually a standard file installed by
your BIND software, which lists resource records for designated root servers for the Internet.
You can obtain a current version of the named.ca file from the rs.internic.net FTP site. The
following example shows sample entries taken from the named.ca file:

; formerly NS.INTERNIC.NET
;
. 3600000 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4
;
; formerly NS1.ISI.EDU
;
. 3600000 NS B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET. 3600000 A 128.9.0.107

If you are creating an isolated intranet, you need to create your own root DNS server until you
connect to the Internet. In effect, you are creating a fake root server. This can be another
server on your system pretending to be the root or the same name server.

DNS Security: Access Control Lists and DNSSEC

DNS security currently allows you to control specific access by hosts to the DNS server, as
well as providing encrypted communications between servers. With access control lists, you
can determine who will have access to your DNS server. The DNS Security Extensions
(DNSSEC), included with BIND 9.x, provide private/public key encrypted authentication and
transmissions.

Access Control Lists

To control access by other hosts, you use access control lists, implemented with the acl
statement. allow and deny options with access control host lists enable you to deny or allow
access by specified hosts to the name server. With allow-query you can restrict queries to
specified hosts or networks. Normally this will result in a response saying that access is
denied. You can further eliminate this response by using the blackhole option in the options
statement.

You define an acl list with the acl statement followed by the label you want to give the list
and then the list of addresses. Addresses can be IP addresses, network addresses, or a range of

addresses based on CNDR notation. You can also use an acl list defined earlier. The following
example defines an acl list called mynet:

acl mynet { 192.168.1.1; 192.168.1.2; };

If you are specifying a range, like a network, you also add exceptions to the list by preceding
such addresses with an !. In the following example, the mynetx acl lists all those in the
192.168.1.0 network, except for 192.168.1.3:

acl myexceptions {192.168.1.0; !192.168.1.3; };

Four default acl lists are already defined for you. You can use them wherever an option uses a
list of addresses as an argument. These are any for all hosts, none for no hosts, localhost for
all local IP addresses, and localnet for all hosts on local networks served by the DNS server.

Once a list is defined, you can then use it with the allow-query, allow-transfer, allow-
recursion, and blackhole options in a zone statement to control access to a zone. allow-
query specifies hosts that can query the DNS server. allow-transfer is used for master/slave
zones, designating whether update transfers are allowed. allow-recursion specifies those
hosts that can perform recursive queries on the server. The blackhole option will deny contact
from any hosts in its list, without sending a denial response. In the next example, an acl list of
mynet is created. Then in the mytrek.com zone, only these hosts are allowed to query the
server. As the server has no slave DNS serves, zone transfers are disabled entirely. The
blackhole option denies access from the myrejects list, without sending any rejection notice.

acl mynet { 192.168.1.0; };
acl myrejects { 10.0.0.44; 10.0.0.93; };

zone "mytrek.com" {
 type master;
 file "mytrek.com";
 allow-query { mynet; };
 allow-recursion { mynet; };
 allow-transfer { none; };
 blackhole {myrejects};
 };

DNSSEC

DNSSEC provides both DNS encrypted authentication. With DNSSEC, you can create a
signed zone that is securely identified with an encrypted signature. This form of security is
used primarily to secure the connections between master and slave DNS servers, so that a
master server transfers update records only to authorized slave servers and does so with a
secure encrypted communication. Two servers that establish such a secure connection do so
using a pair of public and private keys. In effect, you have a parent zone that can securely
authenticate child zones, using encrypted transmissions. This involves creating zone keys for
each child, and having those keys used by the parent zone to authenticate the child zones.

You generate a zone key using the dnssec-keygen command. A zone key will require the
name ZONE (-n) and the name of the zone's domain name. The following example creates a
zone key for the mytrek.com zone.

dnssec-keygen -n ZONE mytrek.com.

You can further designate an encryption algorithm (-a) and key size (-b). Use the -h option to
obtain a listing of the dnssec-keygen options. The following example creates a zone key
using a 768-bit key and the DSA encryption algorithm:

dnssec-keygen -a DSA -b 768 -n ZONE mytrek.com.

dnssec-keygen will create public and private keys, each in corresponding files with the
suffixes .private and .key. The private key is used to generate signatures for the zone, and the
public key is used to verify the signatures. You add the public key to the DNS configuration
file, named.conf, using the $INCLUDE statement to include the .key file.

In the named.conf file, you then use three DNSSEC DNS resource records to implement
secure communications for a given zone: KEY, SIG, and NXT. In these records you use the
signed keys for the zones you have already generated. The KEY record holds public keys
associated with zones, hosts, or users. The SIG record stores digital signatures and expiration
dates for a set of resource records. The NXT record is used to determine that a resource record
for a domain does not exist. In addition, several utilities let you manage DNS encryption.
With the dnskeygen utility, you generated the public and private keys used for encryption.
dnssigner signs a zone using the zone's private key, setting up authentication.

To secure a DNS zone with DNSSEC, you first use dnskeygen to create public and private
keys for the DNS zone. Then use dnssinger to create an authentication key. In the DNS zone
file, you enter a KEY resource record in which you include the public key. The public key
will appear as a lengthy string of random characters. For the KEY record, you enter in the
domain name followed by the KEY and then the public key.

mytrek.com. KEY 0x4101 3 3 (
AvqyXgKk/uguxkJF/hbRpYzxZFG3x8EfNX389l7GX6w7rlLy
BJ14TqvrDvXr84XsShg+OFcUJafNr84U4ER2dg6NrlRAmZA1
jFfV0UpWDWcHBR2jJnvgV9zJB2ULMGJheDHeyztM1KGd2oGk
Aensm74NlfUqKzy/3KZ9KnQmEpj/EEBr48vAsgAT9kMjN+V3
NgAwfoqgS0dwj5OiRJoIR4+cdRt+s32OUKsclAODFZTdtxRn
vXF3qYV0S8oewMbEwh3trXi1c7nDMQC3RmoY8RVGt5U6LMAQ
KITDyHU3VmRJ36vn77QqSzbeUPz8zEnbpik8kHPykJZFkcyj
jZoHT1xkJ1tk)

For authentication, you can sign particular resource records for a given domain or host. Enter
the domain or host followed by the term "SIG" and then the resource record's signature.

mytrek.com. SIG KEY 3 86400 19990321010705 19990218010705 4932 com. (
Am3tWJzEDzfU1xwg7hzkiJ0+8UQaPtlJhUpQx1snKpDUqZxm
igMZEVk=)

The NXT record lets you negatively answer queries.

mytrek.com. NXT ftp.mytrek.com. A NS SOA MX SIG KEY NXT

To set up secure communications between a parent (master) and child (slave) DNS server, the
public key then needs to be sent to the parent zone. There, the key can be signed by the
parent. As you may have more than one zone key, you create a keyset using the dnssec-
makekeyset command. This generates a file with the extension .keyset, which is then sent to
the parent. The parent zone then uses the dnssec- signkey command to sign a child's keyset.
This generates a file with the prefix signedkey-. This is sent back to the child and now

contains both the child's keyset and the parent's signatures. Once the child has the signedkey-
files, the dnssec- signedzone command can be used to sign the zone. The dnssec-signedzone
command will generate a file with the extension .signed. This file is then included in the
named.conf file with the INCLUDE operation. The trusted-keys statement needs to list the
public key for the parent zone.

 Note TSIG (Transmission SIGnatures) also provide secure DNS communications, but they
use a shared private key instead of a private/public key pair. They are usually used for
communications between two local DNS servers.

Split DNS: Views

BIND 9.x allows you to divide DNS space into internal and external views. This organization
into separate views is referred to as split DNS. Such a configuration is helpful to manage a
local network that is connected to a larger network, such as the Internet. You internal view
would include DNS information on hosts in the local network, whereas an external view
would show only that part of the DNS space that is accessible to other networks. DNS views
are often used when you have a local network that you want to protect from a larger network
such as the Internet. In effect, you protect DNS information for hosts on a local network from
a larger external network such as the Internet.

To implement a split DNS space, you need to set up different DNS servers for the internal and
external views. The internal DNS servers will hold DNS information about local hosts. The
external DNS server maintains connections to the Internet through a gateway and manages
DNS information about any local hosts that allow external access such as FTP or Web sites.
The gateways and Internet-accessible sites make up the external view of hosts on the network.
The internal servers handle all queries to the local hosts or subdomains. Queries to external
hosts such as Internet sites are sent to the external servers, which then forward them on to the
Internet. Queries sent to those local hosts that operate external servers such as Internet FTP
and Web sites are sent to the external DNS servers for processing. Mail sent to local hosts
from the Internet are handled first by the external servers, which then forward them on to the
internal servers. With a Split DNS configuration, local hosts can access other local hosts,
Internet sites, and local hosts maintaining Internet servers. Internet users, on the other hand,
can only access those hosts open to the Internet (served by external servers), such as those
with Internet servers like FTP and HTTP. Internet users can, however, send mail messages to
any of the local hosts, internal and external.

You can also use DNS views to manage connections between a private network that may use
only one Internet address to connect its hosts to the Internet. In this case, the internal view
holds the private addresses (192.168…) and the external view connects a gateway host with
an Internet address to the Internet. This adds another level of security, providing a result
similar to IP masquerading (see Chapter 38).

DNS views are configured with the allow statements such as allow-query and allow-
transfer. With these statements you can specify the hosts that a zone can send and receive
queries and transfers from. For example, the internal zone could accept queries from other
local hosts, but not from local hosts with external access such as Internet servers. The local
Internet servers, though, can accept queries from the local hosts. All Internet queries are
forwarded to the gateway. In the external configuration, the local Internet servers can accept

queries from anywhere. The gateways receive queries from both the local hosts and the local
Internet servers.

In the following example, a network of three internal hosts and one external host is set up into
a split view. There are two DNS servers: one for the internal network and one for external
access, based on the external host. In reality these make up one network, but they are split into
two views. The internal view is known as mygolf.com and the external as greatgolf.com. In
each configuration, the internal hosts are designated in an acl list labeled internals, and the
external host is designated in an acl list labeled externals. Should you want to designate an
entire IP address range as internal, you could simply use the network address, as in
192.168.1.0/24. In the options section, allow-query, allow-recursion, and allow-transfers
restrict access within the network.

The following example shows only the configuration entries needed to implement an internal
view. In the mygolf.com zone, queries and transfers are allowed only among internal hosts.
The global allow-recursion option allows recursion among internals.

Internal DNS server

acl internals { 192.168.1.1; 192.168.1.2; 192.168.1.3; };
acl externals {10.0.0.1;};
options {
 forward only;
 forwarders {10.0.0.1;}; // forward to external servers
 allow-transfer { none; }; // allow-transfer to no one by
default
 allow-query { internals; externals; };// restrict query access
 allow-recursion { internals; }; // restrict recursion to
internals
 }
zone "mygolf.com" {
 type master;
 file "mygolf";
 forwarders { };
 allow-query { internals; };
 allow-transfer { internals; }
 };

In the configuration for the external DNS server, the same acl lists are set up for internals and
externals. In the options statement, recursion is now allowed for both externals and internals.
In the mygolf.com zone, queries are allowed from anywhere, and recursion is allowed for
externals and internals. Transfers are not allowed at all.

External DNS server

acl internals { 192.168.1.1; 192.168.1.2; 192.168.1.3; };
acl externals {10.0.0.1;};
options {
 allow-transfer { none; }; // allow-transfer to no one
 allow-query { internals; externals; };// restrict query
access

 allow-recursion { internals; externals }; // restrict
recursion
 };

zone "greatgolf.com" {
 type master;
 file "greatgolf";
 allow-query { any; };
 allow-transfer { internals; externals; };
};

Chapter 26: Mail Servers: SMTP, POP, and
IMAP
Overview

Mail servers provide Internet users with electronic mail services. They have their own TCP/IP
protocols such as Simple Mail Transfer Protocol (SMTP), the Post Office Protocol (POP), and
the Internet Mail Access Protocol (IMAP). Messages are sent across the Internet through mail
servers that service local domains. A domain can be seen as a subnet of the larger Internet,
with its own server to handle mail messages sent from or received for users on that subnet.
When a user mails a message, it is first sent from his or her host system to the mail server.
The mail server then sends the message to another mail server on the Internet, the one
servicing the subnet on which the recipient user is located. The receiving mail server then
sends the message to the recipient's host system.

At each stage, a different type of operation takes place using different agents (programs). A
mail user agent (MUA) is a mail client program, such as mail or Elm. With a MUA, a user
composes a mail message and sends it. Then, a mail transport agent (MTA) transports the
messages over the Internet. MTAs are mail servers that use the Simple Mail Transfer Protocol
(SMTP) to send messages across the Internet from one mail server to another, transporting
them from one subnet to another. On Linux and Unix systems, the commonly used MTA is
Sendmail, a mail server daemon that constantly checks for incoming messages from other
mail servers and sends outgoing messages to appropriate servers. Incoming messages received
by a mail server are then distributed to a user with mail delivery agents (MDAs). Most Linux
systems use procmail as their MDA, taking messages received by the mail server and
delivering them to user accounts (see www.procmail.org for more information).

Most Linux distributions automatically install and configure Sendmail for you. On starting
your system, you can send and receive messages between local users using Sendmail. You
can also set up your Linux system to run a POP server. POP servers hold user's mail until they
log in to access their messages, instead of having mail sent to their hosts directly.

Messages sent within a single standalone system require a loopback interface. Most Linux
distributions do this automatically for you during the installation process. A loopback
interface enables your system to address itself, allowing it to send and receive mail to and
from itself. A loopback interface uses the hostname localhost and a special IP address
reserved for use by local systems, 127.0.0.1. You can examine your /etc/hosts file to see if
your loopback interface has been configured as the localhost. You see "127.0.0.1 localhost"
listed as the first entry. If, for some reason, no entry exists for "localhost," you may have to

create a loopback interface yourself using the ifconfig and route commands as shown here (lo
is the term for loopback):

ifconfig lo 127.0.0.1
route add -net 127.0.0.0

Received Mail: MX Records

As noted in Chapter 17, a mail address consists of a user name and a host address. The host
address takes the form of a fully qualified domain name, listing the host name and the domain
name, separated by periods. Most usage of a host name, such as FTP connections, translate
the hostname into an IP address and use the IP address to locate the host system. Mail
messages operate nearly the same way. However, they make use of the Domain Name Service
to determine which host to actually send a message to. The host specified in the mail address
may not be the host to which delivery should actually be made. Different networks will often
specify a mail server to which mail for the hosts in a network should be delivered. For
example, mail addressed to the rabbit.mytrek.com host may actually be delivered to the
turtle.mytrek.com host. turtle.mytrek.com may be running a POP mail server that users on
rabbit.mytrek.com could access to read their mail.

Such mail servers are associated with different hosts by mail exchange records, known as MX
records, in a network's DNS configuration (see Chapter 25). When mail is received in a
network, the network's DNS configuration is first checked for MX records to determine if the
mail is to be delivered to a host different from that in the mail message address. For example,
the following MX record says that any mail for the rabbit.mytrek.com host is to be delivered
to the turtle.mytrek.com host. turtle.mytrek.com is the mail exchanger for
rabbit.mytrek.com.

rabbit.mytrek.com. IN MX 0 turtle.mytrek.com.

A host could have several mail exchangers, each with a different priority. If one is down, the
one with next highest priority will be accessed. Such a design provides for more robust mail
delivery, letting a few well-maintained servers handle received mail, instead of each host on
its own.

Mail exchange records are also used for mail addresses for which there are no hosts. For
example, you could designate virtual hosts or use the domain name as an address. To use a
domain name, you would have an MX record with the domain name mapped to a mail server
on the network. Mail addressed to the domain name would be sent to the mail server. For
example, with the following MX record, mail sent to mytrek.com would be delivered to
turtle.mytrek.com, which would be running a mail server like Sendmail:

mytrek.com. IN MX 0 turtle.mytrek.com.

Mail addressed to george@mytrek.com would be sent to george@turtle.mytrek.com.

 Note MX records are not only used for mail coming in, but also for mail going out. An MX
record can specify a mail server to use for relaying mail from a given host out to a larger
network.

MX records come into play with certain Sendmail configurations such as masquerading or
centralized mail services. MX records are not required. If you have a standalone system or a
small network with only a few hosts, you may want mail received directly by different hosts.

 Tip To further secure your e-mail transmissions, you can encrypt them using the Secure
Sockets Layer (SSL). With the sslwrap service, POP3, IMAP, and SMTP service can be
encrypted with SSL. sslwrap requires that you have installed OpenSSL or ssleay. See
www.rickk.com/sslwrap.

Sendmail

Sendmail operates as a server to both receive and send mail messages. Sendmail listens for
any mail messages received from other hosts and addressed to users on the network hosts it
serves. At the same time, Sendmail handles messages users are sending out to remote users,
determining to what hosts to send them. You can learn more about Sendmail at
www.sendmail.org and www.sendmail.net, including online documentation and current
software packages. The Sendmail newsgroup is comp.mail.sendmail. You can also obtain a
commercial version from www.sendmail.com.

The domain name server for your network designates the host that runs the Sendmail server.
This is your mail host. Messages are sent to this host, whose Sendmail server then sends the
message to the appropriate user and its host. In your domain name server configuration file,
the mail host entry is specified with an MX entry. To print the mail queue of messages for
future delivery, you can use mailq (or sendmail -v -q). This runs Sendmail with instructions
to print the mail queue.

The Sendmail software package contains several utilities for managing your Sendmail server
(see Table 26-1). These include mailq, which displays the queue of outgoing messages;
mailstats, which shows statistics on mail server use; hoststat, which provides the stats of
remote hosts that have connected with the mail server; and praliases, which prints out the mail
aliases listed in the /etc/aliases file. Some, like mailq and hoststat, simply invoke Sendmail
with certain options. Others, like mailstats and praliases, are separate programs.

Table 26-1: Sendmail Tools
Tool Description
hoststat Display status of hosts recently in contact with the mail server

(Sendmail).
mailq Display list of outgoing messages (Sendmail).
newaliases Generates database version of aliases file (Sendmail).
purgestat Clears status information (Sendmail).
mailstats Displays mail server statistics.
makemap Generates database version of table files. With no argument, it

regenerates all database files.
praliases Print the aliases file.
smrsh A security tool that restricts programs that Sendmail can run to a

secure directory.

Sendmail now maintains all configuration and database files in the /etc/mail directory. Here
you will find the Sendmail macro configuration file, sendmail.mc, as well as several database
files (see Table 26-2). Many have changed their names with the release of Sendmail 8.10. For
example, the help file is now /etc/mail/helpfile instead of /etc/sendmail.ht. Specialized files
provide support for certain features such as access, which lets you control access by different
hosts and networks to your mail server. virtusertable lets you designate virtual hosts. These
files have both a text and database version. The database version ends with the extension .db
and is the file actually used by Sendmail. You would make your entries in the text version and
then effect the changes by generating a corresponding database version. Database versions are
generated using the makemap command with the hash option and a redirection operation for
the text and database file. For example, to deny access to a particular host, you would place
the appropriate entry for it in the /etc/mail/access file, editing the file using any text word
processor. Then, to generate the /etc/mail/access.db version of the access file, you would
change to the /etc/mail directory and use the following command:

cd /etc/mail
makemap hash access < access

To regenerate all the database files, just use the make command in the /etc/mail directory:

make

Table 26-2: Sendmail Files and Directories
File Description
/etc/sendmail.cf Sendmail configuration file (on other systems, this is at

/etc/mail/sendmail.cf).
/etc/mail/sendmail.mc Sendmail M4 macro configuration file.
/etc/aliases Sendmail aliases file for mailing lists.
/etc/aliases.db Sendmail aliases database file generated by the newaliases

command using the aliases file.
/etc/mail/access Sendmail access text file. Access control for screening or

relaying messages from different hosts, networks, or users.
Used to generate the access.db file.

/etc/mail/access.db Sendmail access database file. Generated from the access
text file.

/etc/mail/local-host-names Sendmail local hosts file for multiple hosts using the same
mail server (formerly sendmail.cw).

/etc/mail/trusted-users Sendmail trusted users file (formerly sendmail.ct).
/etc/mail/error-header Sendmail error header file (formerly sendmail.oE).
/etc/mail/helpfile Sendmail help file (formerly sendmail.ht).
/etc/mail/statistics Sendmail statistics file (formerly sendmail.st).
/etc/mail/virtusertable Sendmail virtual user table text file-maps user virtual

domain addresses, allowing virtual domains to be hosted on
one system. Make entries in this file and then use it to
generate the virtusertable.db file.

/etc/mail/virtusertable.db Sendmail virtual user table database generated from the
virtusertable file.

Table 26-2: Sendmail Files and Directories
File Description
/etc/mail/mailertable Sendmail mailer table text file, used to override routing for

your domains.
/etc/mail/mailertable.db Sendmail mailer table database file, generated from the

mailertable file.
/etc/mail/userdb Sendmail user database file.
/etc/mail/domaintable Sendmail domaintable file, maps a domain name to

another domain name.
/etc/mail/domaintable.db Sendmail domaintable database file, generated from the

domaintable file.
/var/spool/mail Incoming mail.
/var/spool/mqueue Outgoing mail.
/var/spool/maillog Mail log file.

Certain files and directories are used to manage the mail received and sent. On Red Hat,
incoming mail is kept in the /var/spool/mail directory and outgoing messages are held in the
/var/spool/mqueue directory, with subdirectories for different users. Monitoring and error
messages are logged in the /var/log/maillog file.

 Note Red Hat still places the Sendmail configuration file, sendmail.cf in the /etc directory
instead of the /etc/mail directory.

 Note If your mail sever services several hosts, you will need to enter them in the
/etc/mail/local-host-names file.

Aliases and LDAP

With Sendmail 8.10, Sendmail can now support the Lightweight Directory Access Protocol
(LDAP). LDAP enables the use of a separate server to manage Sendmail queries about user
mail addresses. Instead of maintaining aliases and virtualusertable files on different servers,
LDAP support allows Sendmail to simply use one centralized LDAP server to locate
recipients. Mail addresses are simply looked up in the LDAP server, instead of having to
search several aliases and virtualusertable files on different servers. LDAP also provides
secure authentication of users, allowing controlled access to mail accounts. The following
example enables LDAP support on Sendmail in the sendmail.mc file:

FEATURE(`ldap_routing')dnl
LDAPROUTE_DOMAIN(`mytrek.com')dnl

Alternatively, Sendmail still supports the use of aliases, either for sent or received mail. It
checks an aliases database file called aliases.db that holds alias names and their associated e-
mail addresses. This is often used for administrator mail, where mail may be sent to the
system's root user and then redirected to the mail address of the actual system administrator.
You can also alias host addresses, enabling you to address hosts on your network using only
their aliases. Alias entries are kept in the /etc/aliases file. This file consists of one-line alias
records associating aliases with user addresses. You can edit this file to add new entries or to

change old ones. They are then stored for lookup in the aliases.db file using the command
newaliases, which runs Sendmail with instructions to update the aliases.db file.

Aliases allow you to give different names for an e-mail address or collection of e-mail
addresses. One of its most useful features is to create a mailing list of users. Mail addresses to
an alias will be sent to the user or list of users associated with the alias. An alias entry consists
of an alias name terminated by a colon and followed by a user name or comma-separated list
of users. For example, to alias filmcritic with the user george@rabbit.mytrek.com, you
would use the following entry:

filmcritic: george@rabbit.mytrek.com

To alias singers with the local users aleina and larisa, you would use

singers: aleina, larisa

You can also use aliases as the target addresses, in which case they will expand to their
respective user addresses. For example, the performers alias will expand through the
filmcritic and singers aliases to the users george@rabbit.mytrek.com, aleina, and larisa.

performers: filmcritic, singers

Once you have made your entries in the /etc/mail/aliases file, you need to generate a database
version using the newaliases command:

newaliases

Sendmail Configuration

The main Sendmail configuration file is sendmail.cf, located in the /etc directory. This file
consists of a sometimes lengthy list of mail definitions that set general options, designate
MTAs, and define the address rewrite rules. A series of options set features, such as
maximum size of mail messages or the name of host files. The MTAs are those mailers
through which Sendmail routes messages. The rewrite rules "rewrite" a mail address to route
through the appropriate Internet connections to its destination (these rules can be complex).
Check the Sendmail HOW-TO and the online documentation for a detailed explanation.

The sendmail.cf definitions can be complex and confusing. To simplify the configuration
process, Sendmail supports the use of macros you can use to generate the sendmail.cf file
using the m4 preprocessor (this requires installation of the sendmail-cf package). Macros are
placed in the /etc/mail/sendmail.mc file. Here, you can use macros to designate the
definitions and features you want for Sendmail, and then the macros are used to generate the
appropriate definitions and rewrite rules in the sendmail.cf file. As part of the Sendmail
package, several specialized versions of the sendmail.mc file are made available in the
/usr/share/sendmail-cf directory. These begin with a system name and have the suffix .mc.
On Red Hat systems, a specialized Red Hat version is already installed as your
/etc/mail/sendmail.mc file.

Once you configure your sendmail.mc file, you use the following command to generate a
sendmail.cf file (be sure first to back up your original sendmail.cf file). You can rename the

sendmail.mc file to reflect the specific configuration. You can have as many different .mc
files as you want and use them to implement different configurations.

m4 sendmail.mc > /etc/sendmail.cf

You then will need to restart the Sendmail server to make the configuration effective:

service sendmail restart
 Note You can also perform basic Sendmail configuration using Linuxconf and Webmin.

In the sendmail.mc file, you configure different aspects of Sendmail using either a define
command to set the value of Sendmail variables or a Sendmail macro that has already been
defined to set a particular Sendmail feature. For example, to assign the PROCMAIL_PATH
variable to the directory /usr/bin/procmail, you would use the following:

define('PROCMAIL_MAILER_PATH','/usr/bin/procmail')

Similarly, if there are variables that you do not want defined, you can remove them with the
undefine command:

undefine('UUCP_RELAY')

To specify the type of operating system that your Sendmail server is running on, you would
use the OSTYPE Sendmail macro. The following example specifies the Linux operating
system:

OSTYPE('linux')

The MAILER macro specifies the mail delivery agents (MDAs) to be used. You may have
more than one. Usually, you will need a mail delivery agent such as procmail for delivering
mail to hosts on your network. In addition, Sendmail in effect operates as an MDA to receive
messages from hosts in its local network, which it will then send out to the larger network.

MAILER(procmail)
MAILER(smtp)

Sendmail also supports an extensive number of features that you need to explicitly turn on.
You can do this with the Sendmail FEATURE macro. See Table 26-3 for a list of Sendmail
features. The following example turns on the redirect feature, which is used to inform a sender
that a recipient is now at a different address:

FEATURE(redirect)

Table 26-3: Sendmail Features
Feature Description
use_cw_file Checks for hosts served by the mail server /etc/mail/local-

host-names file.
use_ct_file Reads a list of users from the /etc/trusted-users file.

These users are trusted users that can change the sender
name for their messages.

redirect Rejects all mail addressed to "address.REDIRECT"

Table 26-3: Sendmail Features
Feature Description

providing forwarding address is placed in the /etc/aliases
file.

nouucp Does nothing special with UUCP addresses.
nocanonify Don't pass addresses for canonification.
mailertable Use a mailer table file, /etc/mail/mailtertable, to override

routing for particular domains.
domaintable Uses a domain table file, /etc/mail/domaintable, to map

one domain to another. Useful if you change your domain
name.

uucpdomain Domain feature for UUCP hosts.
always_add_domain Adds the local host domain to local mail on your system

(those for which you would only need a user name).
allmasquerade Causes recipient addresses to also masquerade as being

from the masquerade host.
masquerade_entire_domain Masquerades all hosts within the domain specified in

MASQUERADE_AS.
masquerade_envelope Masquerade envelope sender and recipient along with

headers.
virtusertable For virtual hosts; maps virtual addresses to real addresses.
nullclient Turns a Sendmail server into a null client, which simply

forwards mail messages to a central mail server for
processing.

local_lmtp Uses an LMTP-capable local mailer.
local_procmail Uses procmail as the local mailer.
smrsh Uses the Sendmail Restricted SHell (smrsh) for mailing.
promiscuous_relay Allows you to relay mail, allowing mail to be received

from outside your domain and sent on to hosts outside
your domain.

relay_entire_domain Allows any host in your domain to relay mail (default
limits this to hosts in the access database).

relay_hosts_only Checks for relay permission for particular hosts instead of
domains.

accept_unqualified_senders Allows sender e-mail address to be single user names
instead of just fully qualified names that include domain
names.

accept_unresolvable_domains Allows Sendmail to accept unresolvable domain names.
Useful for those users in a local network blocked by a
firewall from the full DNS namespace. By default,
Sendmail requires domains in addresses to be resolvable
with DNS.

access_db Accept or reject mail from domains and hosts in the access

Table 26-3: Sendmail Features
Feature Description

database.
blacklist_recipients Blocks mail to certain users, such as those that should

never receive mail-like the users nobody, host, and yp.
rbl Rejects hosts in the Realtime Blackhole List. Managed by

MAPS (Mail Abuse Prevention System LLC) and
designed to limit transport of unwanted mass e-
mail.maps.vix.com/rbl/

ldap_routing Enables LDAP use.

In addition, you can set certain configuration options. These are variables beginning with the
prefix "conf" that you can set and assign values to using the define command. There are an
extensive number of configuration options, most of which you will not need to change. Table
26-4 lists several of the commonly used ones. The following example defines the
confAUTO_REBUILD configuration option, which will automatically rebuild the aliases
database if needed.

define(`confAUTO_REBUILD')

Table 26-4: Sendmail Configuration Options
Options Description
confMAILER_NAME The sender name used for internally generated

outgoing messages.
confDOMAIN_NAME Your domain name. Used only if your system cannot

determine your local domain name.
confCF_VERSION Appended to the configuration version name.
confCW_FILE File that holds alternate hostnames for server.
confCT_FILE File that holds trusted users.
confCR_FILE File that holds relay domains.
confUSERDB_SPEC Specifies the user database.
confALIAS_WAIT Time to wait to rebuild aliases database.
confMIN_FREE_BLOCKS Minimum number of free blocks needed on file

system for Sendmail to accept new mail.
confMAX_MESSAGE_SIZE The maximum size of messages that will be accepted

(in bytes).
confDELIVERY_MODE Default delivery mode.
confAUTO_REBUILD Automatically rebuilds alias file if needed.
confERROR_MODE Error message mode.
confERROR_MESSAGE Error message header/file.
confBIND_OPTS Default options for DNS resolver.
confLOG_LEVEL Set the Sendmail log level.
confTO_CONNECT The timeout waiting for an initial connect to

Table 26-4: Sendmail Configuration Options
Options Description

complete.
confME_TOO Includes sender in group expansions.
confTO_INITIAL The timeout waiting for a response on the initial

connect.
confTO_IDENT The timeout waiting for a response to an IDENT

query.
confTO_QUEUERETURN The timeout before a message is returned as

undeliverable.
confTRY_NULL_MX_LIST If the server is the best MX for a host and hasn't

made other arrangements, try connecting to the host
directly.

confDEF_USER_ID Default user ID.
confDOUBLE_BOUNCE_ADDRESS If an error occurs when sending an error message,

send that "double bounce" error message to this
address.

confDONT_PROBE_INTERFACES If set, Sendmail will not insert the names and
addresses of any local interfaces into the list of
known "equivalent" addresses.

confMAX_RCPTS_PER_MESSAGE Allow no more than the specified number of
recipients in an SMTP envelope.

Certain macros and types of macros need to be placed in the sendmail.mc file in a particular
sequence as shown here. Notice that MAILER is toward the end and OSTYPE at the
beginning. Local macro definitions (define) and FEATURE entries follow the OSTYPE and
DOMAIN entries.

VERSIONID
OSTYPE
DOMAIN
define
FEATURE
local macro definitions
MAILER
LOCAL_RULE_*
LOCAL_RULESETS

The local macro and configuration option definitions that affect a particular feature need to be
entered before the FEATURE entry. For example, the redirect feature uses the aliases file.
Any local definition of the aliases file needs to be entered before the redirect feature.

define('ALIAS_FILE','/etc/aliases')
FEATURE(redirect)

You need to be careful how you enter comments into a sendmail.mc file. This file is read as a
stream of macros, ignoring all white spaces including newlines. There are no special comment
characters that are looked for. Instead, you have to simulate comment indicators using the dnl

or divert commands. The dnl command instructs that all characters following that dnl
command up to and including the next newline are to be ignored. If you place a dnl command
at the beginning of a text line in the sendmain.mc file, it has the effect of turning that line
into a comment, ignoring everything on that line-including its newline. Even empty lines will
require a dnl entry to ignore the newline character:

dnl you will have to /etc/sendmail.cf by running this the m4
dnl macro config through preprocessor:
dnl

Alternatively you can use the divert command. The divert command will ignore all data until
another divert command is reached:

divert(-1)
 This is the macro config file used to generate
 the /etc/sendmail.cf file. If you modify the file regenerate
 you will have to regenerate /etc/sendmail.cf by running the m4
 macro
divert(0)

For Sendmail to work at all, it only requires that the OSTYPE and MAILERS macros, and
any needed features and options, be defined. A very simple Sendmail file is shown here.

mysendmail.mc

dnl My sendmail.mc file
OSTYPE(`linux')
define(`PROCMAIL_MAILER_PATH',`/usr/bin/procmail')
FEATURE(redirect)
MAILER(procmail)
MAILER(smtp)

A sendmail.mc file usually contains many more entries, particularly for parameters and
features. The default Red Hat sendmail.mc file is shown here.

/etc/sendmail.mc

divert(-1)
dnl This is the sendmail macro config file. If you make changes to this
file,
dnl you need the sendmail-cf rpm installed and then have to generate a
dnl new /etc/sendmail.cf by running the following command:
dnl
dnl m4 /etc/mail/sendmail.mc > /etc/sendmail.cf
dnl
include(`/usr/share/sendmail-cf/m4/cf.m4')
VERSIONID(`linux setup for Red Hat Linux')dnl
OSTYPE(`linux')
define(`confDEF_USER_ID',``8:12'')dnl
undefine(`UUCP_RELAY')dnl
undefine(`BITNET_RELAY')dnl
define(`confAUTO_REBUILD')dnl
define(`confTO_CONNECT', `1m')dnl

define(`confTRY_NULL_MX_LIST',true)dnl
define(`confDONT_PROBE_INTERFACES',true)dnl
define(`PROCMAIL_MAILER_PATH',`/usr/bin/procmail')dnl
define(`ALIAS_FILE', `/etc/aliases')dnl
define(`STATUS_FILE', `/var/log/sendmail.st')dnl
define(`UUCP_MAILER_MAX', `2000000')dnl
define(`confUSERDB_SPEC', `/etc/mail/userdb.db')dnl
define(`confPRIVACY_FLAGS', `authwarnings,novrfy,noexpn,restrictqrun')dnl
define(`confAUTH_OPTIONS', `A')dnl
dnl TRUST_AUTH_MECH(`DIGEST-MD5 CRAM-MD5 LOGIN PLAIN')dnl
dnl define(`confAUTH_MECHANISMS', `DIGEST-MD5 CRAM-MD5 LOGIN PLAIN')dnl
dnl define(`confTO_QUEUEWARN', `4h')dnl
dnl define(`confTO_QUEUERETURN', `5d')dnl
dnl define(`confQUEUE_LA', `12')dnl
dnl define(`confREFUSE_LA', `18')dnl
dnl FEATURE(delay_checks)dnl
FEATURE(`no_default_msa',`dnl')dnl
FEATURE(`smrsh',`/usr/sbin/smrsh')dnl
FEATURE(`mailertable',`hash -o /etc/mail/mailertable')dnl
FEATURE(`virtusertable',`hash -o /etc/mail/virtusertable')dnl
FEATURE(redirect)dnl
FEATURE(always_add_domain)dnl
FEATURE(use_cw_file)dnl
FEATURE(use_ct_file)dnl
FEATURE(local_procmail)dnl
FEATURE(`access_db')dnl
FEATURE(`blacklist_recipients')dnl
EXPOSED_USER(`root')dnl
dnl This changes sendmail to only listen on the loopback device 127.0.0.1
dnl and not on any other network devices. Comment this out if you want
dnl to accept email over the network.
DAEMON_OPTIONS(`Port=smtp,Addr=127.0.0.1, Name=MTA')dnl
dnl We strongly recommend to comment this one out if you want to protect
dnl yourself from spam. However, the laptop and users on computers that do
dnl not have 24x7 DNS do need this.
FEATURE(`accept_unresolvable_domains')dnl
MAILER(smtp)dnl
MAILER(procmail)dnl

Sendmail Masquerading

For a mail server that is relaying messages from localhosts to the Internet, you may want to
masquerade the source of the messages. In large networks that have their own mail servers
connected to the Internet, Sendmail masquerading can make messages sent by localhosts
appear to be sent by the mail server. Their host address will be replaced by the mail server's
address. Returned mail can then be sent to the mail server and held in POP or IMAP server
mailboxes that can be later accessed by users on the localhosts. Also, entries in the server's
virtualusertable could forward mail to corresponding users in localhosts.

Masquerading is often used to masque localhosts with a domain name. Any subdomains can
also be masqueraded. This method can be applied to situations where an ISP or your network
administrator have assigned your network its own domain name. You can then masque all
mail messages as coming from your domain name instead of from particular hosts or from
subdomains you may have. For example, if a network's official domain name is mytrek.com,
then all messages from the hosts in the mytrek.com network such as rabbit.mytrek.com and

turtle.mytrek.com, could be masqueraded to appear as just coming from mytrek.com.
Should the mytrek.com network have a subnetwork whose domain is mybeach.com, then
any messages from mybeach.com could also be masqueraded as coming from mytrek.com.

You could also use masquerading to allow you to use your own Sendmail server to send mail
through an ISP that has not given you your own domain. This is the case for many standalone
Internet connections where the ISP connects just one host to the Internet, making it part of its
own ISP domain. In this case you would masquerade your local domain as that of the ISP's
mail domain. Any mail from hosts in mytrek.com would be masqueraded as coming from
myisp.com. The users sending mail would have to correspond to user mail accounts already
set up for you by your ISP. Received mail would still be handled by the ISP mail servers. On
the other hand, it is just as easy to use the ISP's mail servers for sending mail (provided they
are up and running).

Masquerading is turned on with the MASQUERADE_AS command. This takes as its
argument the name you want to masquerade your mail as. Normally, the name used is just the
domain name, without the mail host. In the following example, the mail is masqueraded as
simply mytrek.com. Mail sent from a localhost like turtle.mytrek.com will appear to be sent
by just mytrek.com:

MASQUERADE_AS('mytrek.com')dnl

You will also have to specify the hosts and domains on your local network that your sendmail
server should masquerade. If you have decided to masquerade all the hosts in your local
network, you just need to set the masquerade_entire_domain feature, as in:

FEATURE('masquerade_entire_domain')dnl

If, instead, you want to masquerade particular hosts or your domain has several subdomains
that you want masqueraded, you list them in the MASQUERADE_DOMAIN entry. You can
list either particular hosts or entire domains. For example, given a local network with the
localhosts turtle.mytrek.com and rabbit.mytrek.com you can list them with the
MASQUERADE_DOMAIN to have them masqueraded. The domain they are masqueraded
as is specified in the MASQUERADE_AS entry.

MASQUERADE_DOMAIN('turtle.mytrek.com rabbit.mytrek.com')dnl

If you want to masquerade all the hosts in your local network, you can simply list your local
network's domain name. Should your local network also support several subdomains, you can
list those as well to masquerade them. For example, to masquerade all the hosts in the
mybeach.com domain, you would use the following entry.

MASQUERADE_DOMAIN('mytrek.com mybeach.com')dnl

If you have a long list of domains or hosts, or you want to be able to easily change those that
should be masqueraded, you can place them in a file to be read by Sendmail. Specify the file
with the MASQUERADE_DOMAIN_FILE command:

MASQUERADE_DOMAIN_FILE('mydomains')dnl

If you just want to masquerade all the hosts in your local domain, you use the
masquerade_entire_domain feature:

FEATURE(masquerade_entire_domain)dnl

A common configuration for a local network would specify the domain name in the
MASQUERADE_AS entry and in the MASQUERADE_DOMAIN entry. Using the example
myisp.com for the domain, the entries would look like this:

MASQUERADE_AS('mytrek.com')dnl
FEATURE(masquerade_entire_domain)dnl

If you wanted to masquerade as an ISP's mail domain, you would use the ISP's domain in the
MASQUERADE_AS entry as shown here.

MASQUERADE_AS('myisp.com')dnl
MASQUERADE_DOMAIN('mytrek.com')dnl

You can use the EXPOSED_USER feature to override masquerading for certain users. The
following example exposes the user root in turtle.mytrek.com, allowing mail to be
addressed using the turtle hosts, as in admin@turtle.mytrek.com, instead of
admin@mytrek.com:

EXPOSED_USER('root)dnl

When mail is received from the outside bearing just the address mytrek.com, your network
needs to know what host to send it to. This is the host designated as the mail server for the
mytrek.com network. This information is provided by a mail exchange record (MX) in your
DNS configuration that will specify that mail sent to mytrek.com will be handled by the mail
server-in this case, turtle.mytrek.com:

mytrek.com. IN MX 0 turtle.mytrek.com.

You further have to be sure that MX relaying is enabled with the relay_based_on_MX
feature:

FEATURE(relay_based_on_MX)dnl

All messages will appear to originate from the mail server's host. For example, if your
Sendmail mail server is running on turtle.mytrek.com, then mail sent from a localhost called
rabbit.mytrek.com will appear to have been sent from turtle.mytrek.com.

To further masquerade envelopes as well as headers, you add the masquerade_envelope
feature:

FEATURE(masquerade_envelope)dnl

You can also masquerade recipient addresses, so that mail sent to users on your localhost will
be sent instead to the masqueraded address. Use the allmasquerade feature to enable
recipient masquerading:

FEATURE(allmasquerade)dnl

Configuring Mail Servers and Mail Clients

Sendmail can be used as either a mail server, handling mail for various hosts on a network, or
as a mail client, managing mail for local users on a particular host. In a simple network
configuration, you would have each host running Sendmail in a client configuration, and one
host operating as a mail server, relaying mail for the network hosts. For a local network
connected to the Internet, your localhosts would run Sendmail in a client configuration, and
your gateway would run Sendmail in a server configuration (though the mail server would not
have to necessarily run on the gateway). The mail server would relay messages from the local
network hosts out to the Internet. The mail server could also be used to block unwanted access
from outside hosts, such as those sending spam mail. A basic client or server Sendmail
configuration involves just a few features in the /etc/mail/sendmail.mc file. The default Red
Hat configuration listed in the previous section only allows use on a single host, managing
messages between users on that host. To enable client and server use, you will need to make
changes to the /etc/mail/sendmail.mc file.

Using Sendmail for a Local Network

Red Hat initially configures Sendmail to work only on the system it is running on, localhost.
To use Sendmail to send messages to other hosts on a local network, you need to change and
add settings in the sendmail.mc and /etc/mail/access files. A simple network configuration
would have Sendmail running on each host, handling both mail sent between users on that
host and to send and receive mail to and from users on other hosts. For each Sendmail server
configuration, you would make the changes described in Chapter 7.

Alternatively, you could set up a central mail server to handle all the mail on your network.
Mail clients on various hosts could send their messages to the central mail server which would
then relay them out to the larger network or Internet. Mail could then be received at the
central mail server, where clients could later retrieve it. There are several ways to set up a
central mail server. One of the simplest is to run a central mail server on your gateway host,
and then have nullclient versions of the Sendmail server running on localhosts. Any mail sent
from localhosts would be automatically forwarded to the central mail server. Received mail
could only be delivered to the central server, usually to a POP or IMAP server also running on
the central server's host. Users could then access the POP server to retrieve their mail.

For a centralized configuration, it would make sense to treat users as having their network
domain as their address, rather than separate hosts in their network. So the user cece on
rabbit.mytrek.com would have the mail address cece@mytrek.com, not
cece@rabbit.mytrek.com. Users could have the same name as those on their respective
hosts, but corresponding users would be set up on the gateway host to handle received mail
managed by the POP or IMAP servers.

An effective simple mail server would involve several components:

• A central mail server running on the gateway host
• Each client running Sendmail as a nullclient
• Masquerade all mail to use the domain address only, not host addresses
• A POP or IMAP server running on the gateway host to handle received mail

Sendmail nullclient Configuration

The nullclient version of Sendmail is a stripped down configuration that simply forwards all
mail to the central server. It will not relay mail, nor will it deliver any mail locally. To
configure a Sendmail client, you first need to comment out the DAEMON_OPTIONS line in
the default Red Hat sendmail.mc file by placing a dnl word in front of it, as shown here.
Removing this feature will allow you to receive messages over your local network. This entry
is restricting Sendmail to the localhost (127.0.0.1):

dnl DAEMON_OPTIONS(`Port=smtp,Addr=127.0.0.1, Name=MTA')dnl

In your network, you will want your Sendmail clients to relay their messages through a
central mail server, not to operate as servers themselves. You do this by specifying that they
are null clients, as well as listing the mail server operating as the mail hub for their network.
To configure Sendmail as a null client, you use the nullclient feature. Then define the
MAIL_HUB feature to list the mail server for the network. In this example, the Sendmail
mail server is running on turtle.mytrek.com.

FEATURE('nullclient')dnl
define('MAIL_HUB', 'turtle.mytrek.com')dnl

You could also specify the hub with the nullclient feature.

FEATURE('nullclient', 'turtle.mytrek.com')dnl

Once you have made your changes on a host, restart Sendmail on it:

service sendmail restart

Sendmail Server Configuration

To configure Sendmail as a server, you need to allow it to accept and relay messages for hosts
in your local domain. You do this by adding the feature relay_entire_domain:

FEATURE(relay_entire_domain)dnl

Should your local network also specify mail exchange servers where mail is to be sent and
received for certain hosts, then you also have to add the relay_based_on_MX feature:

FEATURE(relay_based_on_MX)dnl

This feature is needed should your DNS configuration include any MX entries specifying mail
exchange servers for different hosts or subnetworks.

Be sure to also comment out the DAEMON_OPTIONS line as you did for the client
configuration:

dnl DAEMON_OPTIONS(`Port=smtp,Addr=127.0.0.1, Name=MTA')dnl

The Red Hat default configuration enables the access_db feature, which restricts access only
to those hosts or networks listed in the /etc/mail/access file. The relay_entire_domain

feature will override the list of hosts in the access file and allow all hosts on your local
network to access the mail server. However, should you want more refined control, you could
use the access database instead of the relay_entire_domain feature to limit access to certain
hosts or subdomains.

These changes are enough to configure a mail server. However, if you also want to masquerad
your mail, you will have to add masquerading options in the server's sendmail.mc file. These
are similar to those described earlier in the Sendmail masquerading section. To masquerade
all outgoing mail, giving it your domain address, you use the MASQUERADE_AS entry and
the masquerade_entire_domain feature:

FEATURE(masquerade_entire_domain)dnl
MASQUERADE_AS('mytrek.com')dnl

In addition, your mail server host has to be configured to accept mail whose messages have
just that domain address (not a host address). In this example, the host running the mail server
is turtle.mytrek.com. This host needs to also be configured to accept mail meant for
mytrek.com, not just turtle.mytrek.com. You can do this by adding mytrek.com to the
/etc/mail/local-host-names file. This makes mytrek.coman alias for turtle.mytrek.com.
Once you have made all your changes, be sure torestart Sendmail:

service sendmail restart

Receiving Centralized Mail

In a centralized setup, one of the hosts operates as a mail hub in which all mail is delivered to
the mail server on that hub. A POP server could also be running on that hub that users could
use to access their mail. MX records in the local network's DNS configuration would direct all
mail meant for different hosts to the mail hub.

Masquerading would establish a single domain name for all the users on your network,
regardless of their hosts. Mail could be sent to just the mail hub and users would access their
mail through a POP server. An MX record would direct mail for the masquerade domain to
the mail hub.

For example, as noted previously, all users on the mytrek.com network would use an address
with the domain name mytrek.com, as in chris@mytrek.com. The hostname would be left
out. Masquerading would masquerade any mail sent from chris@rabbit.mytrek.com as
chris@mytrek.com. Received mail would be addressed to chris@mytrek.com, which would
be directed to an MX mail server, a mail hub, turtle.mytrek.com. The MX record would look
like this:

mytrek.com. IN MX 0 turtle.mytrek.com.

A corresponding account for each user on all the hosts through the network would be set up at
turtle.mytrek.com. A POP server on that mail hub could then be used by users to access their
mail. With this kind of configuration, e-mail can become network- based instead of host-
based. In effect, mail appears to be sent and received directly by all users on the network,
instead of through their respective hosts.

Configuring a Workstation with Direct ISP Connection

If you are running a Linux system that is not part of a network, but does have a direct
connection to the Internet through an ISP (Internet service provider), then you could simply
use the ISP mail servers for sending and receiving mail. Normally, you would have an SMTP
mail server for outgoing mail and a POP server for incoming mail. However, you could also
configure Sendmail to interface with your ISP.

Be sure to first comment out the DAEMON_ONLY option as shown in the previous sections.

Normally, your ISP will provide a mail server that will handle mail for its hosts. To make use
of the ISP mail server, you can define it with the SMART_HOST option. Mail will be sent
through the ISP mail server. SMART_HOST has the format type:hostname, where the type is
the kind of mail server used, usually SMTP. The default is relay. Define the SMART_HOST
option to use your ISP to send and receive mail:

define ('SMART_HOST', 'smtp:mail.my-isp.com')dnl

The SMART_HOST option is used to indicate a specific remote mail server that you want to
have handle the relaying of your network messages. It can be an ISP mail server, as well as
any mail server in a larger network.

For a dial-up connection over a modem, you can use various configuration options to control
your connection. The confMESSAGE_TIMEOUT option lets you control how long mail can
remain on the output queue, letting you keep mail until you are ready to dial in and send it.
Setting the confDELIVERY_MODE option to queueonly lets you send mail when you are
ready.

The Mailer Table

The mailer table lets you route messages addressed to a specified host or domain to a
particular mail server. You can use the mailer table to have mail addressed to a virtual domain
routed to the mail server for your network. To reference an entire domain, prefix the domain
name with a period. The host to which the mail is routed is prefixed by the mailer used,
usually smtp for Sendmail. The following entry will route mail addressed to .mybeach.com
to the mail server turtle.mytrek.com:

.mybeach.com smtp:turtle.mytrek.com

Entries are placed in the /etc/mail/mailertable file. Once you have made your entries,
generate the mailertable.db database file with the make command:

make mailertable

Virtual Hosting: Virtual User Table

As seen in Chapter 25, you can define virtual domains for your network. These virtual
domains are mapped to one or more real domains by your DNS server. However, you could
receive messages with mail addresses for users on your virtual domains. In this case, you
would need to map these addresses to users on your real domain so that the mail could be

delivered to an existing location. This mapping is carried out by the virtual user table called
/etc/mail/virtusertable. The virtual user table lets you map mail addresses for virtual
domains to users on real domains.

Within a virtual domain, you will have virtual hosts, which will operate off of real hosts on
your network. For example, you may have two DNS names for the same host, one real and
one virtual. Then, your host operating as your mail server may also have a virtual hostname
by which it can be referenced. Such alternate names should be entered in the local-hostname
file. A mail server supporting a virtual domain will have an alternate name consisting of the
virtual domain name.

Virtual domains are designated in your DNS configuration, as discussed in Chapter 25. For
such a virtual domain, you will need an MX record to specify which real mail server will
handle mail for that virtual domain. Make sure there is an MX record connecting your mail
server with your virtual host in the DNS zone file for your network. In the following example,
the virtual domain mybeach.com will have its mail handled by the mail server
turtle.mytrek.com:

mybeach.com. IN MX 10 turtle.mytrek.com.

Once your mail server for the virtual domain and any alternate names the server may have are
specified, you then need to configure your virtual user table. The virtual user table file is
specified in the sendmail.mc configuration file with the following entry:

FEATURE(`virtusertable', `dbm /etc/mail/virtusertable')dnl

In the /etc/mail directory you will find two versions of the virtusertable file, virtusertable
and virtusertable.db. The virtusertable file is an editable text version where you enter your
virtual host information. The virtusertable.db file is a database version of the text file that
can be read by Sendmail. You first edit the virtusertable file, making your entries. Then you
use it to generate the virtusertable.db version that can be used by Sendmail:

make virtusertable

An entry in the virtusertable file consists of a virtual address followed by the real address it
is mapped to. In the following example, the users dylan and christopher at the virtual domain
mybeach.com are mapped to their actual users on real hosts. dylan@mybeach.com is
mapped to dylan@turtle.mytrek.com, and christopher@mybeach.com is mapped to
chris@rabbit.mytrek.com:

dylan@mybeach.com dylan@turtle.mytrek.com
christopher@mybeach.com chris@rabbit.mytrek.com

You can also map all the addresses for a virtual domain to one real user, as shown here. All
the mail to users with the virtual address mytrains.com will be sent to the user
trainmail@turtle.mytrek.com:

@mytrains.com trainmail@turtle.mytrek.com

Once you have made your entries, build a virtusertable.db database file with the make
command and the virtusertable option, as shown here:

make virtusertable

Security

Sendmail provides you with the capability of screening out messages from specific domain,
host, IP, and user addresses. Rules to perform such screening are kept in the /etc/mail/access
file. You can edit this file and add your own rules. A rule consists of an address followed by
an action to take. The actions supported are listed in Table 26-5. For example, to remove all
messages from the myanoyingad.com domain, you would enter

spamjunk.com DISCARD

Table 26-5: Access Actions
Action Description
OK Accept message even if other rules would reject (exception to the rules).
DISCARD Discard the message completely.
REJECT Reject the message, sending a rejection notice to the sender.
RELAY Relay messages for specified domain.
SMTP-code
message

Code and message to be sent to sender.

The next example rejects any message from larisa@turtle.mycar.com and sends a notice of
the rejection:

larisa@turtle.mycar.com REJECT

You can also specify an error message to return, as shown here:

cecelia@rabbit.mytrek.com ERROR:"Retired yesterday"

To send an error message to spammers, you could include a message as shown here. The first
number is an error code.

cyberspammer.com ERROR:"550 We don't accept mail from spammers"

An /etc/mail/access file with the previous entries would look like the following:

spamjunk.com DISCARD
larisa@turtle.mycar.com REJECT
cecelia@rabbit.mytrek.com ERROR:"Retired yesterday"
cyberspammer.com ERROR:"550 Mail from spammers not accepted"

Sendmail actually reads the access rules from a database file called access.db, also located in
the /etc/mail directory. To implement your rules, you have to regenerate the access.db file
using the access file. You can do this with the make command using access as the argument,
as shown here:

make access

Sendmail then has to be restarted to read the new access.db file.

The use of the access file is enabled in the sendmail.mc file with the access_db feature:

FEATURE('access_db')dnl

The access file will deny mail received from the listed addresses. However, you can also
reject any mail sent to them. You can also reject received mail for certain hosts on your
network. You do this by enabling the blacklist_recipients option in the sendmail.mc file.
This option governs recipients, whereas access normally governs senders. Those addresses
listed will not be able to receive any mail. This feature is also used for certain administrative
users that should never receive mail such as nobody (the guest user) or ftp (the FTP user):

FEATURE('blacklist_recipients')dnl

The following example will not allow mail to be sent to cyberspammer.com (a recipient),
nor can mail be received for justin@lizard.mytrek.com,
secretproject@rabbit.mytrek.com, or mysurfboard.com:

mysurfboard.com ERROR:"Domain does not exist"
justin@lizard.mytrek.com "Moved to Hawaii"
secretproject@rabbit.mytrek.com REJECT
cyberspammer.com REJECT

The Red Hat version of smb.conf configures Sendmail to user access_db. Access is granted
only to users on the localhost. If your system is being used as a mail server for a network, and
you have not enabled the relay_entire_domain feature, you will need to allow access by
other hosts on your network. In the access file, you can place a RELAY rule for your
network. The RELAY rule will let other hosts use your mail server to send messages out to
other hosts. This is normally done for a gateway host that needs to relay messages from a
local network out to the Internet. The following example allows access from the mytrekl.com
network:

mytrek.com RELAY

For a specific host, place an entry for it in the access file as shown here:

rabbit.mytrek.com RELAY

A public list of known spammers is maintained in the Realtime Blackhole List (RBL) by the
Mail Abuse Prevention System (MAPS project). Sendmail will automatically check this list
for spammers if you use the rbl option:

FEATURE('rbl')dnl

To further secure Sendmail, you should disable the use of VRFY. This option allows remote
users to try to verify the existence of a user address. This can be used to guess valid users on
your system. This option is disabled with the noverify feature:

FEATURE('noverify')dnl

Another potential security breach is the EXPN option, which expands mailing lists and aliases
to their actual addresses. Use the noexpn feature to turn it off:

FEATURE('noexpn')dnl

By default, Sendmail will refuse mail from any domain that cannot be resolved. You can
override this restriction with the accept_unresolvable_domains feature. Sendmail will also
reject mail whose addresses do not have fully qualified domain names, host and domain. You
can override this feature with accept_unqualified_senders.

Sendmail Configuration Operators: sendmail.cf

It is not advisable that you modify the sendmail.cf file directly. However, it may be helpful to
know how it is set up. This section describes the type of entries you will find there. Table 26-
6 lists the basic Sendmail configuration operators found in the sendmail.cf file. These
operators consist of a single uppercase character, some with no spaces separating their
arguments. The D operator defines macros. These are often used for specific information,
such as the name of a host. The macro name usually consists of one character. Uppercase
macro names are reserved for use by Sendmail, whereas lowercase macro names are used for
user-defined macros. The following example defines a macro called T for turtle.mytrek.com.
You can then reference the macro anywhere in other operations by preceding it with a $, as in
$T. To have a macro name longer than one character, encase the name within braces, as
shown here for rabbit. To evaluate the rabbit macro use ${rabbit}:

DTturtle.mytrek.com
D{rabbit}rabbit.mytrek.com

Table 26-6: Sendmail Configuration Operators
Operators Action
D Define a macro.
C Define a class.
F Define a class read from a file.
H Define mail header.
O Set an option.
P Set message priority.
V Specify version level of sendmail.cf file.
K Specify key file.
M Specify mailer.
S Label and start a ruleset.
R Define a rule.
Comment.

Much of the sendmail.cf file consists of options that are specified by the O operator followed
by the option and its arguments. For example, the following entries determine the location of
the alias file and the maximum size of a message:

O AliasFile=/etc/aliases
O HelpFile=/usr/lib/sendmail.hf
O MaxMessageSize=1000000

The H operator is used to define mail headers. The P operator is used to define the priority of
mail messages based on keywords, such as the term "bulk" in the mail header. The K operator
specifies the location of key database files, such as the aliases databases. The C operator is
used to define a class, such as a collection of hosts, while the F operator is used to define a
class from names read from a file:

file containing names of hosts for which we receive email
Fw/etc/sendmail.cw

The M operator is used to define the mailers used by Sendmail. The S and R operators are
used to define rulesets and rewriting rules. Rulesets and rewriting rules are used to determine
how a message is to be routed and, if necessary, to rewrite its address so Sendmail's MTAs
can handle it. You can think of rulesets as functions in a program, which are called as needed
to work on message addresses-and can themselves call yet other rulesets. A ruleset consists of
a set of rules, much like a function consists of a set of programming statements. Each ruleset
is labeled with a number defined by an initial S operator. The rules making up the ruleset are
then defined by R operators. Sendmail uses the rulesets first to format an address into a
standard form. Then, for messages being sent, it determines the MTA to use. Special rules
called rewriting rules can rewrite the address into a form that can be better handled by the
MTA. Rewriting rules consist of a left-hand and a right-hand pattern. An address that matches
the pattern on the left-hand side is rewritten in the format of the pattern on the right-hand side.

POP Servers

The Post Office Protocol (POP) allows a remote server to hold mail for users who can then
fetch their mail from it when they are ready. Unlike Sendmail and procmail, which deliver
mail messages directly to a user account on a Linux system, the POP protocol holds mail until
a user accesses his or her account on the POP server. The POP server then transfers any
received messages to the user's local mailbox. Servers are often used by ISPs to provide
Internet mail services for users. Instead of sending mail directly to a user's machine, the mail
resides in the POP server until it's retrieved.

You can access the POP server from different hosts; however, when you do, all the messages
are transferred to that host. They are not kept on the POP server (though you can set an option
to keep them). The POP server simply forwards your messages on the requesting host. When
you access your messages from a certain computer, they will be transferred to that computer
and erased from the POP server. If you access your POP server again from a different
computer, those previous messages will be gone.

The POP protocol provides a set of commands you can use to directly test a POP server. You
can access the POP server on port 110 using telnet and then enter a series of POP commands
to check the server's performance. The following example connects to the turtle.mytrek.com
POP server using telnet on port 110:

telnet turtle.mytrek.com 110

You can then log in to an account using the USER and PASSWORD commands. The LIST
command will list messages and the RETR command will display a message. Use DELE to
delete a message. Use the QUIT command to end the session.

 Note The current version of the POP protocol is known as POP3, whereas POP2 is an earlier
one that still may be in use in some places.

Washington POP Server

Red Hat Linux includes in its distribution the University of Washington POP server
(ftp.cac.washington.edu/imap), which is part of the University of Washington's imap RPM
package. Simply install the package, which is already done as part of the standard install (both
POP2 and POP3 servers are installed). The server daemons are called ipop2d and ipop3d.
Your Linux system then runs as a POP2 and POP3 server for your network. These servers are
run through xinetd. The POP3 server uses the ipop3 file in the /etc/xinetd.d shown here:

default: off
description: The POP3 service allows remote users to access their mail \
using POP3 client such as Netscape Communicator, Mutt, \
or fetchmail.
service pop3
{
 disable = no
 socket_type = stream
 wait = no
 user = root
 server = /usr/sbin/ipop3d
 log_on_success += USERID
 log_on_failure += USERID
}

The following command would turn the server on.

chkconfig ipop3 on

Once you have installed a POP server, you add accounts to it by simply adding standard user
accounts on the host it is running on. You would not need to set up a home directory for them,
though. Users then access their account using a user name and password set up on the POP
server's host. For example, to set up a POP user account for a POP server running on the host
turtle.mytrek.com, you log in as root on turtle.mytrek.com and create a new user as you
normally would for that host. To create a POP user account for larisa, just create a larisa user
on the turtle.mytrek.com host.

Both the POP and IMAP Washington servers support Open SSL authentication and
encryption. The SSL enabled versions of the POP and IMAP servers have the names pop3s
and imaps. Use chkconfig to turn them on or off.

chkconfig pop3s on

You also have to have appropriate SSL POP and IMAP certificates installed in the ssl/certs
directory under the names ipap3d.pem and imapd.pem.

Qpopper

Qpopper is the current version of the Berkeley POP server (popper). Qpopper is supported by
Qualcomm, makers of Eudora e-mail software. The Qpopper Web page is
www.eudora.com/free/qpop.html. You can obtain a current source code version from

ftp.qualcomm.com/eudora/servers/unix. RPM package versions are located at distribution
sites such as ftp.redhat.com for Red Hat and are included in the Red Hat distribution.

Once you have installed Qpopper and have the POP server running, you can add user
accounts. Then users on remote systems can access the POP server using various mail clients
or fetchmail. fetchmail, as described in Chapter 17, will fetch mail from a user account and
place it in the mailbox on their localhost. The following example fetches mail from a POP
server running on turtle.mytrek.com:

fetchmail -p POP3 -u chris turtle.mytrek.com

You can install Qpopper software on your Linux system and have it operate as a POP server
for your network. It consists of both the qpopper daemon and the popauth program, which
manages an authentication database with password encryption for secure user access. popauth
creates a database file called /etc/pop.auth. To add a user, enter the popauth command with
the options -user and user name. You are then prompted for a password with which the user
can access his or her POP account.

If you download the source code version, you use the ./configure, make, and make install
sequence to configure, compile, and install the server. For the configure stage, you may need
to enter several options to make Qpopper compatible with your system. For example, if your
system uses shadow passwords (as most do), you will need to use the -enable-specialauth
option. The -enable-apop option enables the use of the APOP (Authenticated POP) extension
to provide encryption that is managed by the popauth command:

./configure -- enable-specialauth -enable-apop

Qpopper is usually run through xinetd. You would create a popper file in the /etc/xinetd.d
directory similar to that shown here:

service pop-3
{
 socket_type = stream
 wait = no
 user = root
 server = /usr/bin/popper
 disable = no
}

You can turn the server on or off with the chkconfig command:

chkconfig pop-3 on

Be sure that the pop-3 service is listed in /etc/services along with its port, 110:

pop-3 110/tcp

IMAP

The Internet Mail Access Protocol (IMAP) allows a remote server to hold mail for users who
can then log in to access their mail. Unlike the POP servers, IMAP servers retain user mail
messages. Users can even save their mail on the IMAP mail server. This has the advantage of

keeping a user's mail in one centralized location accessible anywhere on the network. Users
can log in to the mail server from any host on the network and read, send, and save their mail.
This interactive connection requires more connect time than the POP protocol and is best
suited to an Ethernet LAN where users are always connected, rather than dial-up access
through a modem.

Unlike POP, IMAP allows users to set up multiple folders on their mail server in which they
can organize their mail. IMAP also supports the use of shared folders to which several users
can access mail on a given topic.

The Washington University IMAP server is available as an RPM software package, beginning
with the name "imap." The name of the server daemon is imapd. The server is run through
xinetd, and has a file called imap in the /etc/xinetd.d directory. You would then turn it on or
off with the chkconfig command:

default: off
description: The IMAP service allows remote\
users to access their mail using \
an IMAP client such as Mutt, Pine, \
fetchmail, or Netscape Communicator.
service imap
{
 socket_type = stream
 wait = no
 user = root
 server = /usr/sbin/imapd
 log_on_success += DURATION USERID
 log_on_failure += USERID
 disable = no
}

The Washington IMAP server also supports SSL as described earlier for the POP server. Also
IMAP supports both APOP and CRAM-MD5 authentication methods. These methods use
MD checksum values rather than plain text passwords to authenticate users. The sever,
however, needs to know the plaintext version of passwords. These are stored in the /etc/cram-
md5.pwd file. Entries consist of a user name followed by the user's password, separated by a
tab. The existence of this file will enable CRAM-MD5 authentication procedures.

Chapter 27: News, Proxy, and Search
Servers
Overview

News servers provide Internet users with Usenet news services. They have their own TCP/IP
protocol, Network News Transfer Protocol (NNTP). In addition, servers exist that provide
better access to Internet resources. Proxy servers speed Web access by maintaining current
copies of commonly accessed Web pages, speeding access times by eliminating the need to
access the original site constantly. They also perform security functions, protecting servers
from unauthorized access. The search and indexing server ht:/Dig enables document searches
of Web and FTP sites. With it, you can index documents and carry out complex search
requests. Table 27-1 lists different news, proxy, and search servers.

News Servers: INN

The InterNetNews (INN) news server accesses Usenet newsfeeds, providing news clients on
your network with the full range of newsgroups and their articles. Newsgroup articles are
transferred using the NNTP, and servers that support this protocol are known as NNTP
servers. INN was written by Rich Salz, and is currently maintained and supported by the
Internet Software Consortium (ISC). You can download current versions from its Web site at
www.isc.org. INN is also included with most Linux distributions, including Red Hat. The
documentation directory for INN in /usr/share/doc contains extensive samples. The primary
program for INN is the innd daemon.

Various INN configuration files can be found in /etc/news, including inn.conf, storage.conf,
readers.conf, and incoming.conf (see Table 27-2). inn.conf sets options for INN, and the
incoming.conf file holds the hosts from which you receive newsfeeds. Place entries for
remote hosts in the readers.conf file to allow them access to your news server. Actual
newsfeeds are managed in directories in the /var/spool/news directory. Here you will find
directories like article that holds newsgroup articles, outgoing for articles being posted by
your users to newsgroups, and overview, which holds summary information about articles.
Correct configuration of INN can be a complex and time-consuming process, so be sure to
consult references and online resources, such as the documents. When you change
configurations, be sure to restart the INN server. An innd script is in the /etc/rc.d/init.d
directory, which has arguments similar to the Web httpd script. You can use start, restart,
and stop arguments with the innd script to start, restart, and stop the INN server.

Table 27-1: News, Proxy, and Search Servers
Web Site Description
www.isc.org InterNetNews news server, INN
www.leafnode.org Leafnode news server
squid.nlanr.net Squid proxy server
www.htdig.org ht://Dig search and indexing server
 Tip There is a Man page for each configuration file in INN, providing detailed information on

how to configure their features.

On Red Hat, a basic inn.conf file is already set up for you with default settings. Several of the
initial parameters you will have to set yourself, such as domain, which holds the domain
name for your server; pathhost, in which you specify the name for your newsreader as you
want it to appear in the Path header field for news articles you post; and server, in which you
specify your newsreader's IP or fully qualified domain name address, like
mynews.mytrek.com. Different Path options have already been set up for you defining the
location of different INN directories, such as patharticles set to /var/spool/news articles that
holds your newsgroup articles, and pathetc set to /etc/news for your configuration files.

Table 27-2: INN Configuration Files
File Description
inn.conf General INN configuration file.
incoming.conf Specify hosts from which newsfeeds are received.

Table 27-2: INN Configuration Files
File Description
cycbuff.conf Configures buffers used in cnfs storage format.
storage.conf Define storage classes. These consist of a storage method and the

newsgroups that use it. Storage methods are the storage formats:
tradspool, timehash, timecaf, and cnfs. An additional method,
trash, throws out the articles.

expire.ctl Sets the expiration policy for articles on the news server.
readers.conf Designates hosts whose users can access the news server with

newsreaders.
ovdb.conf Configures ovdb storage method for overviews.
newsfeeds Defines how your news server feeds articles to other news servers.
moderated Moderated newsgroups.
cleanfeed.conf Configures cleanfeed spam blocking utility.
innfeed.conf Configures newsfeed processes for innfeed.
innreport.conf Configures innreport utility for generating log-based reports.
buffindexed.conf Configures overview buffer for buffindexed method.

Storage formats for the vast number of news articles that are often downloaded and accessed
is a central concern for a full-scale news server like INN. INN lets you choose among four
possible storage formats: tradspool, timehash, timecaf, and cnfs. tadspool is the traditional
method where articles are arranged in a simple directory structure according to their
newsgroups. This is known to be very time-consuming to access and store. timehash stores
articles in directories organized by the time they were received, making it easier to remove
outdated articles. timecaf is similar to timehash, but articles received at a given time are
placed in the same file, making access much faster. cnfs stores articles into buffer files that
have already been set up. When a buffer file becomes full, the older articles are overwritten
by new ones as they come in. This is an extremely fast method since no new files are created.
There is no need for setting maximum article limits, but there is also no control on how long
an article is retained. In the storage.conf file, storage formats are assigned as storage methods
to different newsgroups.

INN also supports overviews. These are summaries of articles that readers can check, instead
of having to download the entire article to see what it is. Overviews have their own storage
methods: tradindexed, buffindexed, and ovdb. You specify the one you want to use in the
ovmethod feature in inn.conf. tradindexed is fast for readers, but difficult for the server to
generate. buffindexed is fast for news servers, but slow for readers. ovdb uses Berkeley DB
database files and is very fast for both, but uses more disk space. If you choose ovdb, you can
set configuration parameters for it in ovdb.conf.

Red Hat has already created a news user with a newsgroup for use by your INN daemon and
has set up the news directories in /var/spool/news. INN software also installs cron scripts,
which are used to update your news server, removing old articles and fetching new ones.
These are usually placed in the /etc/cron.daily directory, though they may reside anywhere.
inn-cron-expire removes old articles and inn-cron-rnews retrieves new ones. inn-cron-
nntpsend sends articles posted from your system to other news servers.

INN also includes several support programs to provide maintenance and crash recovery, and
perform statistical analysis on server performance and usage. cleanfeed implements spam
protection and innreport generates INN reports based on logs. INN also features a very strong
filter system for screening unwanted articles.

Leafnode News Server

Leafnode is a NTTP news server designed for small networks that may have slow connections
to the Internet. You can obtain the Leafnode software package along with documentation
from its Web site at www.leafnode.org. You can also download it from software repositories
like freshmeat.net or linuxapps.com. Along with the Leafnode NNTP server, the software
package includes several utilities such as Fetchnews, Texpire, and Newsq. Fetchnews
retrieves and sends articles to your upstream news servers. Texpire deletes old news, and
Newsq shows articles waiting to be sent out.

Leafnode is tailored to very low usage requirements. Only newsgroups that users on your
local network have accessed within the last week are actually downloaded. Newsgroups not
accessed in over a week are no longer downloaded. Its usage levels are comparable to a news
client, accessing only the news that users on your network want. For a small network, this
means having the advantages of a news service with few of the disadvantages. Much less disk
space is used and less time is needed to download newsfeeds.

 Note Slrnpull is a simple single-user version of Leafnode that can be used only with the slrn
newsreader. With it, you can use to automatically download articles in specified
newsgroups from your network's news server and view them offline (see Chapter 18).

Configuring Leafnode is a relatively simple process. You need to enter news server
information in the Leafnode configuration file and make sure that there is a file for Leafnode
in the xinetd.d directory so that users on your network can access it. The Leafnode
configuration file is /etc/leafnode/config. You can edit this file directly or use one of several
GUI Leafnode configuration utilities such as Keafnode or leafwa. Keafnode is a KDE
program that provides a simple dialog box to configure your Leafnode servers, expire
messages in selected newsgroups, and control download operations. leafwa provides a Web-
page-based interface letting you configure Leafnode using any Web browser.

You can think of Leafnode as more of a news client that provides news server services to a
small local network. It assumes that you already have a connection to a larger network such as
the Internet and to an NNTP news server on that network. You then configure Leafnode to
download newsgroup articles from that NNTP news server. In the Leafnode configuration
file, you need to specify the name of that NNTP news server in the server entry, as shown
here:

server = mynewsever.mynet.com

If you have access to other news servers, you can list them in the supplement entry:

supplement = myothernewserver.mynet.com

If you need a username and password to access the news server, you can list them in
username and password entries following the server entry:

username = mylogin
password = mypassword

In the configuration file, you can also specify a default expiration time for unread newsgroup
articles:

expire = 20

The Leafnode server does not perform the task of downloading articles. For this task, use
Fetchnews. Fetchnews will download articles for specified newsgroups from the NNTP news
server and send posted articles to it submitted by users on your local network. Similarly, you
use the Texpire application to expire articles that have been previously downloaded. You can
further automate these operations by scheduling them in a Leafnode crontab file,
leafnode.crontab.

To allow users on your network to access the Leafnode server set up for them, you place a file
for it in the xinetd.d directory that would call /user/local/sbin/leafnode.

Squid Proxy-Caching Server

Squid is a proxy-caching server for Web clients, designed to speed Internet access and provide
security controls for Web servers. It implements a proxy-caching service for Web clients that
caches Web pages as users make requests. Copies of Web pages accessed by users are kept in
the Squid cache and, as requests are made, Squid checks to see if it has a current copy. If
Squid does have a current copy, it returns the copy from its cache instead of querying the
original site. In this way, Web browsers can then use the local Squid cache as a proxy HTTP
server. Squid currently handles Web pages supporting the HTTP, FTP, Gopher, SSL, and
WAIS protocols (Squid cannot be used with FTP clients). Replacement algorithms
periodically replace old objects in the cache.

As a proxy, Squid does more that just cache Web objects. It operates as an intermediary
between the Web browsers (clients) and the servers they access. Instead of connections being
made directly to the server, a client connects to the proxy server. The proxy then relays
requests to the Web server. This is useful for situations where a Web server is placed behind a
firewall server, protecting it from outside access. The proxy is accessible on the firewall,
which can then transfer requests and responses back and forth between the client and the Web
server. The design is often used to allow Web servers to operate on protected local networks
and still be accessible on the Internet. You can also use a Squid proxy to provide Web access
to the Internet by local hosts. Instead of using a gateway providing complete access to the
Internet, local hosts could use a proxy to allow them just Web access (see Chapter 7). You
could also combine the two, allowing gateway access, but using the proxy server to provide
more control for Web access. In addition, the caching capabilities of Squid would provide
local hosts with faster Web access.

Technically, you could use a proxy server to simply manage traffic between a Web server and
the clients that want to communicate with it without doing caching at all. Squid combines
both capabilities as a proxy-caching server.

Squid also provides security capabilities that let you exercise control over hosts accessing
your Web server. You can deny access by certain hosts and allow access by others. Squid also

supports the use of encrypted protocols such as SSL (see Chapter 39). Encrypted
communications are tunneled through (passed through without reading) the Squid server
directly to the Web server.

Squid is supported and distributed under a GNU Public License by the National Laboratory
for Applied Network Research (NLANR) at the University of California, San Diego. The
work is based on the Harvest Project to create a Web indexing system that included a high-
performance cache daemon called cached. You can obtain current source code versions and
online documentation from the Squid home page at http://squid.nlanr.net and the Squid FTP
site at ftp.nlanr.net. The Squid software package consists of the Squid server, a domain name
lookup program called dnsserver, an FTP client called ftpget, and a cache manager script
called cachemgr.cgi. The dnsserver resolves IP addresses from domain names, and the ftpget
program is an FTP client Squid uses to retrieve files from FTP servers. cachemgr.cgi lets you
view statistics for the Squid server as it runs.

On Red Hat, you can start, stop, and restart the squid server using the squid service script, as
shown here:

service squid restart

Configuring Client Browsers

For users on a host to access the Web through a proxy, they need to specify their proxy server
in their Web browser configuration. For this you will need the IP address of the host running
the Squid proxy server as well as the port it is using. Proxies usually make use of port 3128.
To configure use of a proxy server running on the local sample network described in Chapter
7, you would enter the following. The proxy server is running on turtle.mytrek.com
(192.168.0.1) and using port 3128.

192.168.0.1 3128

On Mozilla and Netscape, the user on the sample local network would first select the Proxy
panel located in Preferences under the Edit menu. Then, in the Manual proxy configuration's
View panel, enter the previous information. You will see entries for FTP, Gopher, HTTP,
Security, and WAIS proxies. For standard Web access, enter the IP address in the FTP,
Gopher, and Web boxes. For their port boxes, enter 3128.

For Konqueror on the KDE Desktop, select the Proxies panel on the Settings window. Here,
you can enter the proxy server address and port numbers.

If your local host is using Internet Explorer (such as a Windows system does), you would set
the proxy entries in the Local Area Network settings accessible from the Internet Options
window.

On Linux or Unix systems, local hosts can set the http_proxy, gopher_proxy, and ftp_proxy
shell variables to configure access by Linux-supported Web browsers such as lynx. You can
place these definitions in your .bash_profile or /etc/profile files to have them automatically
defined whenever you log in.

http_proxy=192.168.0.1:3128
ftp proxy=192.168.0.1:3128

gopher_proxy=192.168.0.1:3128
export http_proxy ftp_proxy gopher_proxy

Before a client on a local host could use the proxy server, access permission would have to be
given to them in the server's squid.conf file, described in the following section on security.
Access can be provided to an entire network easily. For the sample network used here, you
would have to place the following entries in the squid.conf file. These are explained in detail
in the following sections.

acl mylan src 192.168.0.0/255.255.255.0
http_access allow mylan
 Tip Web clients that need to access your Squid server will need to know the server's address

and the port for Squid's HTTP services, by default 3128.

squid.conf

The Squid configuration file is squid.conf, located in the /etc/squid directory. In the
/etc/squid/squid.conf file, you set general options like ports used, security options controlling
access to the server, and cache options for configuring caching operations. You can use a
backup version called /etc/squid/squid.conf.default to restore your original defaults. The
default version of squid.conf provided with Squid software includes detailed explanations of
all standard entries, along with commented default entries. Entries consist of tags that specify
different attributes. For example, maximum_object_size and maximum_object set limits on
objects transferred.

maximum_object_size 4096 KB

As a proxy, squid will use certain ports for specific services, such as port 3128 for HTTP
services like Web browsers. Default port numbers are already set for squid. Should you need
to use other ports, you can set them in the /etc/squid/squid.conf file. The following entry
shows how you would set the Web browser port:

http_port 3128
 Note Squid uses the Simple Network Management Protocol (SNMP) to provide status

information and statistics to SNMP agents managing your network. You can control
SNMP with the snmp access and port configurations in the squid.conf file.

Security

Squid can use its role as an intermediary between Web clients and a Web server to implement
access controls, determining who can access the Web server and how. Squid does this by
checking access control lists (ACLs) of hosts and domains that have had controls placed on
them. When it finds a Web client from one of those hosts attempting to connect to the Web
server, it executes the control. Squid supports a number of controls with which it can deny or
allow access to the Web server by the remote host's Web client (see Table 27-3). In effect,
Squid sets up a firewall just for the Web server.

Table 27-3: Squid ACL Options
Option Description
src ip-address/netmask Client's IP address

Table 27-3: Squid ACL Options
Option Description
src addr1-addr2/netmask Range of addresses
dst ip-address/netmask Destination IP address
myip ip-address/netmask Local socket IP address
srcdomain domain Reverse lookup, client IP
dstdomain domain Destination server from URL; for dstdomain and

dstdom_regex, a reverse lookup is tried if an IP-
based URL is used

srcdom_regex [-i] expression Regular expression matching client name
dstdom_regex [-i] expression Regular expression matching destination
time [day-abbrevs] [h1:m1-h2:m2] Time as specified by day, hour, and minutes. Day

abbreviations: S - Sunday, M - Monday, T -
Tuesday, W - Wednesday, H - Thursday, F - Friday,
A - Saturday

url_regex [-i] expression Regular expression matching on whole URL
urlpath_regex [-i] expression Regular expression matching on URL path
port ports Specify a port or range of ports
proto protocol Specify a protocol, such as HTTP or FTP
method method Specify methods, such as GET and POST
browser [-i] regexp Pattern match on user-agent header
ident username String match on ident output
src_as number Used for routing of requests to specific caches
dst_as number Used for routing of requests to specific caches
proxy_auth username List of valid usernames
snmp_community string A community string to limit access to your SNMP

agent

The first step in configuring Squid security is to create ACLs. These lists are lists of hosts and
domains for which you want to set up control. You define ACLs using the acl command, in
which you create a label for the systems on which you are setting controls. You then use
commands, such as http_access, to define these controls. You can define a system, or a group
of systems, based on several acl options, such as the source IP address, the domain name, or
even the time and date (refer back to Table 27-2). For example, the src option is used to
define a system or group of systems with a certain source address. To define a mylan acl
entry for systems in a local network with the addresses 192.168.0.0 through 192.168.0.255,
use the following ACL definition:

acl mylan src 192.168.0.0/255.255.255.0

Once defined, an ACL definition can be used in a Squid option to specify a control you want
to place on those systems. For example, to allow access by the mylan group of local systems

to the Web through the proxy, use an http_access option with the allow action specifying
mylan as the acl definition to use, as shown here:

http_access allow mylan

By defining ACLs and using them in Squid options, you can tailor your Web site with the
kind of security you want. The following example allows access to the Web through the proxy
by only the mylan group of local systems, denying access to all others. Two acl entries are set
up: one for the local system and one for all others. http_access options first allow access to
the local system, and then deny access to all others.

acl mylan src 192.168.0.0/255.255.255.0
acl all src 0.0.0.0/0.0.0.0
http_access allow mylan
http_access deny all

The default entries that you will find in your squid.conf file, along with an entry for the
mylan sample network, are shown here. You will find these entries in the ACCESS
CONTROLS section of the squid.conf file.

acl all src 0.0.0.0/0.0.0.0
acl manager proto cache_object
acl localhost src 127.0.0.1/255.255.255.255
acl mylan src 192.168.0.0/255.255.255.0
acl SSL_ports port 443 563

The order of the http_access options is important. Squid starts from the first and works its
way down, stopping at the first http_access option with an ACL entry that matches. In the
previous example, local systems that match the first http_access command are allowed,
whereas others fall through to the second http_access command and are denied.

For systems using the proxy, you can also control what sites they can access. For a destination
address, you create an acl entry with the dst qualifier. The dst qualifier takes as its argument
the site address. Then you can create an http_access option to control access to that address.
The following example denies access by anyone using the proxy to the destination site
rabbit.mytrek.com. If you have a local network accessing the Web through the proxy, you
can use such commands to restrict access to certain sites.

acl myrabbit dst rabbit.mytrek.com
http_access deny myrabbit

The http_access entries already defined in the squid.conf file, along with an entry for the
mylan network, are shown here. Access to outside users is denied, whereas access by hosts on
the local network and the localhost (squid server host) is allowed.

http_access allow localhost
http_access allow mylan
http_access deny all

You can also qualify addresses by domain. Often, Web sites can be referenced using only the
domain. For example, a site called www.mybeach.com can be referenced using just the
domain mybeach.com. To create an acl entry to reference a domain, use either the
dstdomain or srcdomain options for destination and source domains, respectively.

Remember, such a reference refers to all hosts in that domain. An acl entry with the
dstdomain option for mybeach.com restricts access to www.mybeach.com,
ftp.mybeach.com, surf.mybeach.com, and so on. The following example restrictsaccess to
the www.mybeach.com site along with all other .mybeach.com sites and any hosts in the
mybeach.com domain:

acl thebeach dstdomain .mybeach.com
http_access deny thebeach

You can list several domains or addresses in an acl entry to reference them as a group, but
you cannot have one domain that is a subdomain of another. For example, if
mybeachblanket.com is a subdomain of mybeach.com, you cannot list both in the same acl
list. The following example restricts access to both mybeach.com and mysurf.com:

acl beaches dstdomain .mybeach.com .mysurf.com
http_access deny beaches

An acl entry can also use a pattern to specify certain addresses and domains. In the following
example, the access is denied to any URL with the pattern "chocolate", and allows access
from all others:

acl Choc1 url_regex chocolate
http_access deny Choc1
http_access allow all

Squid also supports ident and proxy authentication methods to control user access. The
following example only allows the users dylan and chris to use the Squid cache:

ident_lookup on
acl goodusers user chris dylan
http_access allow goodusers
http_access deny all

Caches

Squid uses the Internet Cache Protocol (ICP) to communicate with other Web caches. Using
the ICP protocols, your Squid cache can connect to other Squid caches or other cache servers,
such as Microsoft proxy server, Netscape proxy server, and Novell BorderManager. This way,
if your network's Squid cache does not have a copy of a requested Web page, it can contact
another cache to see if it is there instead of accessing the original site. You can configure
Squid to connect to other Squid caches by connecting it to a cache hierarchy. Squid supports a
hierarchy of caches denoted by the terms child, sibling, and parent. Sibling and child caches
are accessible on the same level and are automatically queried whenever a request cannot be
located in your own Squid's cache. If these queries fail, a parent cache is queried, which then
searches its own child and sibling caches-or its own parent cache, if needed-and so on. Use
cache_host to set up parent and sibling hierarchical connections:

cache_host sd.cache.nlanr.net parent 3128 3130

You can set up a cache hierarchy to connect to the main NLANR server by registering your
cache using the following entries in your squid.conf file:

cache_announce 24
announce_to sd.cache.nlanr.net:3131

Squid keeps several logs. access.log holds requests sent to your proxy, cache.log holds Squid
server messages such as errors and startup messages, and store.log holds information about
the Squid cache such as objects added or removed. You can use the cache manager
(cachemgr.cgi) to manage the cache and view statistics on the cache manager as it runs. To
run the cache manager, use your browser to execute the cachemgr.cgi script (this script
should be placed in your Web server's cgi-bin directory). You can also monitor Squid using
the Multi Router Traffic utility.

Dig Server

Dig, known officially as ht:/Dig, is a Web indexing and search system designed for small
networks or intranets. Dig is not considered a replacement for full-scale Internet search
systems, such as Lycos, Infoseek, or Alta Vista. Unlike Web server-based search engines, Dig
can span several Web servers at a site. Dig was developed at San Diego State University and
is distributed free under the GNU Public License. You can obtain information and
documentation at www.htdig.org, and you can download software packages-including RPM
packages-from ftp.htdig.org.

Dig supports simple and complex searches, including complex Boolean and fuzzy search
methods. Fuzzy searching supports a number of search algorithms, including exact, soundex,
and synonyms. Searches can be carried out on both text and HTML documents. HTML
documents can have keywords placed in them for more accurate retrieval, and you can also
use HTML templates to control how results are displayed.

Searches can be constrained by authentication requirements, location, and search depth. To
protect documents in restricted directories, Dig can be informed to request a specific
username and password. You can also restrict a search to retrieve documents in a certain
URL, to search subsections of the database, or to retrieve only documents that are a specified
number of links away.

All the ht:/Dig programs use the same configuration file, htdig.conf, located in the /etc/htdig
directory. The configuration file consists of attribute entries, each beginning with the attribute
line and followed by the value after a colon. Each program takes only the attributes it needs:

max_head_length: 10000

You can specify attributes such as allow_virtual_hosts, which index virtual hosts (see
Chapter 25) as separate servers, and search_algorithm, which specifies the search algorithms
to use for searches.

Dig consist of five programs: htdig, htmerge, htfuzzy, htnotify, and htsearch. htdig, htmerge,
and htfuzzy generate the index, while htsearch performs the actual searches. First, htdig
gathers information on your database, searching all URL connections in your domain and
associating Web pages with terms. The htmerge program uses this information to create a
searchable database, merging the information from any previously generated database.
htfuzzy creates indexes to allow searches using fuzzy algorithms, such as soundex and
synonyms. Once the database is created, users can use Web pages that invoke htsearch to

search this index. Results are listed on a Web page. You can use META tags in your HTML
documents to enter specific htdig keywords, exclude a document from indexing, or provide
notification information such as an e-mail address and an expiration date. htnotify uses the e-
mail and expiration date to notify Web page authors when their pages are out-of-date.

htsearch is a CGI program that expects to be invoked by an HTML form, and it accepts both
the GET and POST methods of passing data. The htsearch program can accept a search
request from any form containing the required configuration values. Values include search
features such as config (configuration file), method (search method), and sort (sort criteria).
For the Web page form that invokes htsearch, you can use the default page provided by htdig
or create your own. Output is formatted using templates you can modify. Several sample files
are included with the htdig software: rundig is a sample script for creating a database,
searchform.html is a sample HTML document that contains a search form for submitting
htdig searches, header.html is a sample header for search headers, and footer.html is for
search footers.

Part VI: System Administration
Chapter List
Chapter 28: Basic System Administration
Chapter 29: Configuration Tools and Boot Management
Chapter 30: Managing Users
Chapter 31: Software Management
Chapter 32: File System Administration
Chapter 33: Devices and Printers
Chapter 34: Kernel Administration
Chapter 35: The X Window System and XFree86

Chapter 28: Basic System Administration
Overview

Linux is designed to serve many users at the same time, as well as to provide an interface
among the users and the computer with its storage media, such as hard disks and tapes. Users
have their own shells through which they interact with the operating system, but you may
need to configure the operating system itself in different ways. You may need to add new
users, printers, and even file systems. Such operations come under the heading of system
administration. The person who performs such actions is referred to as either a system
administrator or a superuser. In this sense, two types of interaction with Linux exist: regular
users' interaction and the superuser, who performs system administration tasks. The chapters
in the "Administration" section cover operations such as changing system runlevels,
managing users, and configuring printers and compiling the kernel. You perform most of
these tasks, such as adding a new printer or mounting a file system, rarely. Other tasks, such
as adding users, you perform on a regular basis. Basic system administration covers topics
such as system access by superusers, selecting the run level to start, system configuration
files, and performance monitoring. These are discussed in detail in this chapter.

System Management: Superuser

To perform system administration operations, you must first have the correct password that
enables you to log in as the root user, making you the superuser. Because a superuser has the
power to change almost anything on the system, such a password is usually a carefully
guarded secret given only to those whose job is to manage the system. With the correct
password, you can log into the system as a system administrator and configure the system in
different ways. You can start up and shut down the system, as well as change to a different
operating mode, such as a single-user mode. You can also add or remove users, add or remove
whole file systems, back up and restore files, and even designate the system's name. To
become a superuser, you log into the root user account. This is a special account reserved for
system management operations with unrestricted access to all components of your Linux
operating system. When you log into the system as the root user, you are placed in a shell
from which you can issue administrative Linux commands. The prompt for this shell is a
sharp sign, #. In the next example, the user logs into the system as the root user. The password
is, of course, not displayed.

login: root
password:

As the root user, you can use the passwd command to change the password for the root login,
as well as for any other user on the system.

passwd root
New password:
Re-enter new password:

While you are logged into a regular user account, it may be necessary for you to log into the
root and become a superuser. Ordinarily, you would have to log out of your user account first,
and then log into the root. Instead, you can use the su command (switch user) to log in
directly to the root while remaining logged into your user account. A CTRL-D or exit
command returns you to your own login. When logged in as the root, you can use su to log in
as any user, without providing the password. In the next example, the user is logged in
already. The su command then logs the user into the root, making the user a superuser. Some
basic superuser commands are shown in Table 28-1.

$ pwd
/home/chris
$su
 password:
cd
pwd
/root
exit
$

Table 28-1: Basic System Administration
Command Description
su root Logs a superuser into the root from a user login; the

superuser returns to the original login with a CTRL-D.

Table 28-1: Basic System Administration
Command Description
passwd login-name Sets a new password for the login name.
crontab options file-name With file-name as an argument, installs crontab entries

in the file to a crontab file; these entries are operations
executed at specified times:
-e Edits the crontab file
-l Lists the contents of the crontab file
-r Deletes the crontab file

telinit runelevl Changes the system runlevels (see Table 28-2).
lilo options Config-file Reinstalls the Linux Loader (LILO).
shutdown options time Shuts down the system; similar to CTRL-ALT-DEL.
date Sets the date and time for the system.
TimeTool GUI tool to set system time and date.
Kcron KDE cron management tool.
 Note For security reasons, Linux distributions do not allow the use of su in a telnet session to

access the root user.

System Configuration

Although many different specialized components go into making up a system, such as servers,
users, and devices, some operations apply to the system in general. These include setting the
system date and time, specifying shutdown procedures, and determining the services to start
up and run whenever the system boots. In addition, you can use numerous performance
analysis tools to control processes and check on resource use.

System Time and Date

You can use several different tools to set the system time and date, depending on the
distribution you use. On all distributions, you can set the system time and date using the shell
date command. Most users prefer to use a configuration tool. On Red Hat, you can also use
the Control Panel Time tool. Recall that you set the time and date when you first installed
your system. You should not need to do so again. If you entered the time incorrectly or moved
to a different time zone, though, you could use this utility to change your time.

You can use the date command on your root user command line to set the date and time for
the system. As an argument to date, you list (with no delimiters) the month, day, time, and
year. In the next example, the date is set to 2:59 P.M., March 6, 2000 (03 for March, 06 for
the day, 1459 for the time, and 00 for the year 2000):

date 0306145900
Mon Mar 6 02:59:27 PST 2000

You can also use the Red Hat Date and Time Properties utility to change the time, date, and
time zone. Select it on the System Settings window accessible from the Start Here window.
There are two panels, one for the date and time and one for the time zone. Use the calendar to
select the year, month, and date. Then use the Time boxes to set the hour, minute, and second.

The Network Time Protocol is also supported, allowing your date and time to be set by a
remote server. The Time Zone panel shows a map with locations. Select one nearest you to set
your time zone.

 Note You can also set the time and date with the Date & Time tool in the KDE Control

Center (system). You can also change the time and date on Webmin or Linuxconf,
should you have them installed.

Scheduling Tasks: crontab

Although it is not a system file, a crontab file is helpful in maintaining your system. A
crontab file lists actions to take at a certain time. The cron daemon constantly checks the
user's crontab file to see if it is time to take these actions. Any user can set up a crontab file of
his or her own. The root user can set up a crontab file to take system administrative actions,
such as backing up files at a certain time each week or month.

A crontab entry has six fields: the first five are used to specify the time for an action, while
the last field is the action itself. The first field specifies minutes (0-59), the second field
specifies the hour (0-23), the third field specifies the day of the month (1-31), the fourth field
specifies the month of the year (1-12), and the fifth field specifies the day of the week (0-6),
starting with 0 as Sunday. In each of the time fields, you can specify a range, a set of values,
or use the asterisk to indicate all values. For example, 1-5 for the day-of-week field specifies
Monday through Friday. In the hour field, 8, 12, 17 would specify 8 A.M., 12 noon, and 5
P.M. An * in the month-of-year field indicates every month. The following example backs up
the projects directory at 2:00 A.M. every weekday:

0 2 * * 1-5 tar cf /home/chris/backp /home/chris/projects

You use the crontab command to install your entries into a crontab file. To do this, you first
create a text file and type your crontab entries. Save this file with any name you want, such as
mycronfile. Then, to install these entries, enter crontab and the name of the text file. The
crontab command takes the contents of the text file and creates a crontab file in the
/var/spool/cron directory, adding the name of the user who issued the command. In the next
example, the root user installs the contents of the mycronfile as the root's crontab file. This
creates a file called /var/spool/cron/root. If a user named justin installed a crontab file, it
would create a file called /var/spool/cron/justin. You can control use of the crontab

command by regular users with the /etc/cron.allow file. Only users with their names in this
file can create crontab files of their own.

crontab mycronfile

Never try to edit your crontab file directly. Instead, use the crontab command with the -e
option. This opens your crontab file in the /var/spool/cron directory with the standard text
editor, such as Vi. crontab uses the default editor as specified by the EDITOR shell
environment variable. To use a different editor for crontab, change the default editor by
assigning the editor's program name to the EDITOR variable and exporting that variable.
Running crontab with the -l option displays the contents of your crontab file, and the -r
option deletes the entire file. Invoking crontab with another text file of crontab entries
overwrites your current crontab file, replacing it with the contents of the text file.

To more easily manage and create cron jobs, you can use the Kcron utility, accessible on the
KDE desktop. When you use Kron as the root user, it will list all the users on your system,
and allow you to create and manage jobs for them (see Figure 28-1). These include the system
cron jobs as specified in the system crontab file. For each user you can specify the jobs to be
performed as well as any variables you want to set for those jobs. Each user entry has two
folders, one for cron jobs, named Tasks, and the other for the jobs' variables, named
Variables. You can add entries to either. The Edit menu will list operations you can perform
on jobs such as disabling them, running them immediately, modifying their times, or deleting
them altogether. When you create or modify a job, the Edit Task dialog box opens up where
you can select the months, days, hours, and minutes when to run a job. You also select the
program to run along with its arguments. Once you have made your changes, you select Save
from the File menu to save them to your crontab file. Individual users can also run Kcron to
manage their own cron jobs. In this case, Kcron will only show a single Tasks and Variables
folder, where the user can enter his or her jobs and variables.

Figure 28-1: Kcron
 Note You can also schedule tasks with crontab using Webmin. On Webmin, select the

Scheduled Cron Jobs icon on the System panel. This opens a page listing the scheduled
jobs in your crontab file where you can create and edit cron jobs.

System Runlevels: telinit and shutdown

Your Linux system can run in different states, depending on the capabilities you want to give
it. For example, you can run your system in an administrative state, keeping user access

shutdown. Normal full operations are activated by simply running your system at a certain
state. These states (also known as modes) are referred to as runlevels, the level of support at
which you are running your system. Your Linux system has several runlevels, numbered from
0 to 6. When you power up your system, you enter the default runlevel. You can then change
to other runlevels with the telinit command. Runlevels 0, 1, and 6 are special runlevels that
perform certain functions. Runlevel 0 is the power-down state and is invoked by the halt
command. The command telinit 0 shuts down your system. Runlevel 6 is the reboot state-it
shuts down the system and reboots. Runlevel 1 is the single-user state, allowing access only to
the superuser, and does not run any network services. This enables you, as administrator, to
perform administrative actions without interference from others. Other runlevels reflect how
you want the system to be used. Runlevel 2 is a partial multiuser state, allowing access by
many users, but without network services like NFS or xinetd. It is useful for a system that is
not part of a network. Both runlevel 3 and runlevel 5 run a fully operational Linux system,
with multiuser support and remote file sharing access. They differ in terms of the interface
they use. Runlevel 3 starts up your system with the command line interface (also known as the
text mode interface). Runlevel 5 starts up your system with an X session, running the X
Window System server and invoking a graphical login, using display managers, such as gdm
or xdm. If you choose to use graphical logins during installation, this will be your default
runlevel. The runlevels are listed in Table 28-2.

Table 28-2: System Runlevels (states)
State Description
telinit runlevel Changes the system runlevel; you can use it to power up or power

down a system, or allow multiuser or single-user access; the telinit
command takes as its argument a number representing a system
state. telinit is a link to init which performs the state change
operation.

System Runlevel (state)
0 Halt (do not set the default to this); this shuts down the system

completely.
1 Administrative single-user mode; denies other users access to the

system, but allows root access to the entire multiuser file system.
Startup scripts are not run. (Use s or S to enter single user mode
with startup scripts run).

2 Multiuser, without network services like NFS, xinetd, and NIS (the
same as 3, but you do not have networking).

3 Full multiuser mode with login to command line interface; allows
remote file sharing with other systems on your network. Also
referred to as the text mode state.

4 Unused.
5 Full multiuser mode that starts up in an X session, initiating a

graphical login; allows remote file sharing with other systems on
your network (same as 3, but with graphical login).

6 Reboots; shuts down and restarts the system (do not set the default
to this).

Changing runlevels can be helpful should you have problems at a particular runlevel. For
example, if your video card is not installed properly, then any attempt to start up in runlevel 5
will likely crash your system because at this level your graphical interface starts immediately.
Instead, you would want to use the command line interface, runlevel 3, to first fix your video
card installation.

 Note You can use the single user runlevel (1) as a recovery mode state, allowing you to start
up your system without running startup scripts for services like DNS. This is helpful
should your system hang when trying to start such services. Networking will be disabled
as well as any multiuser access. Also you can use linux -s at the LILO prompt to enter
runlevel 1. Should you want to enter the single-user state (runlevel 1) and also run the
startup scripts, you can use the special s or S runlevels.

When your system starts up, it uses the default runlevel as specified in the default init entry in
the /etc/inittab file. For example, if your default init runlevel is 5 (the graphical login), the
default init entry in the /etc/inittab file would be

init:5:default

You can change the default runlevel by editing the /etc/inittab file and changing the init
default entry. Editing the /etc/inittab file can be dangerous. You should do this with great
care. As an example, if the default runlevel is 3 (command line), the entry for your default
runlevel in the /etc/inittab file should look like the following:

id:3:initdefault:

You can change the 3 to a 5 to change your default runlevel from the command line interface
(3) to the graphical login (5). Change only this number and nothing else.

id:5:initdefault:

Should your /etc/inittab file become corrupted, you can reboot and enter linux single at the
boot prompt to start up your system, bypassing the inittab file. You can then edit the file to
fix it.

No matter what runlevel you start in, you can change from one runlevel to another with the
telinit command. If your default runlevel is 3, you power up in runlevel 3, but you can change
to, say, runlevel 5 with telinit 5. In the next example, the telinit command changes to runlevel
1, the administrative state:

telinit 1

telinit is really a link to the init command. It is the init command that performs that actual
startup operation and is automatically invoked when your system starts up. Though you could
use init to also change runlevels, it is best to use telinit. When invoked as telinit, init
functions to merely change runlevels.

 Tip You can use Linuxconf or Webmin to change the default startup runlevel between the
graphical loginrunlevel (5) and a command line runlevel (text mode) (3).

Use the runlevel command to see what state you are currently running in. It will list the
previous state followed by the current one. If you have not changed states, the previous state
will be listed as N, indicating no previous state. This is the case for the state you boot up in. In
the next example, the system is running in state 3, with no previous state change.

runlevel
N 3

Although you can power down the system with the telinit command and the 0 state, you can
also use the shutdown command. The shutdown command has a time argument that gives
users on the system a warning before you power down. You can specify an exact time to shut
down or a period of minutes from the current time. The exact time is specified by hh:mm for
the hour and minutes. The period of time is indicated by a + and the number of minutes. The
shutdown command takes several options with which you can specify how you want your
system shut down. The -h option, which stands for halt, simply shuts down the system,
whereas the -r option shuts down the system and then reboots it. In the next example, the
system is shut down after ten minutes. The shutdown options are listed in Table 28-3.

shutdown -h +10

Table 28-3: System Shutdown Options
Command Description
shutdown [-rkhncft]
time [warning-message]

Shuts the system down after the specified time period,
issuing warnings to users; you can specify a warning
message of your own after the time argument; if neither -h
nor -r is specified to shut down the system, the system sets
to the administrative mode, runlevel state 1.

Argument
Time Has two possible formats: it can be an absolute time in the

format hh:mm, with hh as the hour (one or two digits) and
mm as the minute (in two digits); it can also be in the
format +m, with m as the number of minutes to wait; the
word now is an alias for +0.

Option
-t sec Tells init to wait sec seconds for the interval between

sending processes the warning and the kill signals, before
changing to another runlevel.

-k Doesn't actually shut down; only sends the warning
messages to everybody.

-r Reboots after shutdown, runlevel state 6.
-h Halts after shutdown, runlevel state 0.
-n Doesn't call init to do the shutdown; you do it yourself.
-f Does a fast reboot.
-c Cancels an already running shutdown; no time argument.

To shut down the system immediately, you can use +0 or the word now. The following
example has the same effect as the CTRL-ALT-DEL method of shutting down your system,
as described in Chapter 3. It shuts down the system immediately, and then reboots.

shutdown -r now

With the shutdown command, you can include a warning message to be sent to all users
currently logged in, giving them time to finish what they are doing before you shut them
down.

shutdown -h +5 "System needs a rest"

If you do not specify either the -h or the -r options, the shutdown command shuts down the
multiuser mode and shifts you to an administrative single-user mode. In effect, your system
state changes from 3 (multiuser state) to 1 (administrative single-user state). Only the root
user is active, allowing the root user to perform any necessary system administrative
operations with which other users might interfere.

 Note You can also shut down your system from the Gnome or KDE desktops.

System Directories and Files

Your Linux system is organized into directories whose files are used for different system
functions. Directories with "bin" in the name are used to hold programs. The /bin directory
holds basic user programs, such as login, shells (bash, tcsh, and zsh), and file commands (cp,
mv, rm, ln, and so on). The /sbin directory holds specialized system programs for such tasks
as file system management (fsck, fdisk, mkfs) and system operations like shutdown and
startup (lilo, init). The /usr/bin directory holds program files designed for user tasks. The
/usr/sbin directory holds user-related system operation, such as useradd to add new users.
The /lib directory holds all the libraries your system makes use of, including the main Linux
library, libc, and subdirectories such as modules, which holds all the current kernel modules.

ls /
bin boot dev etc home lib lost+found mnt proc root sbin tmp usr var

The /etc directory holds your system, network, server, and application configuration files.
Here you can find the fstab file listing your file systems, the hosts file with IP addresses for
hosts on your system, and lilo.conf for the boot systems provided by LILO. This directory
includes various subdirectories, such as apache for the Apache Web server configuration files
and X11 for the X Window System and window manager configuration files.

The /mnt directory is usually used for mount points for your CD-ROM, floppy, or Zip drives.
These are file systems you may be changing frequently, unlike partitions on fixed disks. The
/home directory holds user home directories. When a user account is set up, a home directory
for it is set up here, usually with the same name as the user. On many systems, the /home
directory also holds server data directories, such as /home/httpd for the Apache Web server
Web site files or /home/ftpd for your FTP site files. The /var directory holds subdirectories
for tasks whose files change frequently, such as lock files, log files, or printer spool files. Red
Hat currently places its server data directories in the /var directory. The /tmp directory is
simply a directory to hold any temporary files programs may need to perform a particular
task.

The /usr/src directory holds source files; in particular, /usr/src/linux holds the kernel source
files you use to update the kernel. Data that is meant to be shared by different applications is
kept in the /usr/share directory. For example, the /usr/share/doc directory holds
documentation that is usually installed with different applications. Here, you can also find
HOW-TO documents. The /usr /local directory is used for programs meant to be used only on
this particular system. The /usr/opt directory is where optional packages are installed.

ls /usr
X11R6 bin cgi-bin dict doc etc games include info lib libexec local
man sbin share src tmp

Standard system directories and configuration files are shown in Tables 28-4 and 28-5. See
Chapter 36 for network configuration files.

Table 28-4: System Directories
Directory Description
/bin System-related programs
/sbin System programs for specialized tasks
/lib System libraries
/etc Configuration files for system and network services and applications
/home The location of user home directories and server data directories, such as

Web and FTP site files
/mnt The location where CD-ROM and floppy disk files systems are mounted
/var The location of system directories whose files continually change, such

as logs, printer spool files, and lock files
/usr User-related programs and files. Includes several key subdirectories,

such as /usr/bin, /usr/X11, and /usr/doc
/usr/bin Programs for users
/usr/X11 X Window System configuration files
/usr/share Shared files
/usr/share/doc Documentation for applications
/tmp Directory for system temporary files

Table 28-5: Configuration Files
File Description
/etc/inittab Sets the default state, as well as terminal connections
/etc/passwd Contains user password and login configurations
/etc/shadow Contains user-encrypted passwords
/etc/group Contains a list of groups with configurations for each
/etc/fstab Automatically mounts file systems when you start your system
/etc/lilo.conf The LILO configuration file for your system
/etc/conf.modules Modules on your system to be automatically loaded
/etc/printcap Contains a list of each printer and its specifications

Table 28-5: Configuration Files
File Description
/etc/termcap Contains a list of terminal type specifications for terminals that

could be connected to the system
/etc/gettydefs Contains configuration information on terminals connected to the

system
/etc/skel Directory that holds the versions of initialization files, such as

.bash_profile, which are copied to new users' home directories
/etc/ttys List of terminal types and the terminal devices to which they

correspond
/etc/services Services run on the system and the ports they use
/etc/profile Default shell configuration file for users
/etc/shells Shells installed on the system that users can use
/etc/motd System administrator's message of the day

System Startup Files: /etc/rc.d and /etc/sysconfig

Each time you start your system, it reads a series of startup commands from system
initialization files located in your /etc/rc.d directory. These initialization files are organized
according to different tasks. Some are located in the /etc/rc.d directory itself, while others are
located in a subdirectory called init.d. You should not have to change any of these files. The
organization of system initialization files varies among Linux distributions. The Red Hat
organization is described here. Some of the files you find in /etc/rc.d are listed in Table 28-6.

Table 28-6: System Startup Files
File Description
/etc/sysconfig Directory on Red Hat Linux that holds system configuration

files and directories.
/etc/rc.d Directory that holds system startup and shutdown files.
/etc/rc.d/rc.sysinit Initialization file for your system.
/etc/rc.d/rc.local Initialization file for your own commands; you can freely edit

this file to add your own startup commands; this is the last
startup file executed.

/etc/rc.d/rc.modules Loads kernel modules (not implemented by default on Red Hat
Linux).

/etc/rc.d/init.d Directory that holds many of the daemons, servers, and scripts
such as httpd for Web servers and networks to start up network
connections.

/etc/rc.d/rcnum.d Directories for different runlevels where num is the runlevel.
The directories hold links to scripts in the /etc/rc.d/init.d
directory.

/etc/rc.d/init.d/halt Operations performed each time you shut down the system,
such as unmounting file systems; called rc.halt in other
distributions.

Table 28-6: System Startup Files
File Description
/etc/rc.d/init.d/lpd Start up and shut down the lpd daemon.
/etc/rc.d/init.d/inet Operations to start up or shut down the inetd daemon.
/etc/rc.d/init.d/network Operations to start up or shut down your network connections.
/etc/rc.d/init.d/httpd Operations to start up or shut down your Web server daemon,

httpd.

The /etc/rc.d/rc.sysinit file holds the commands for initializing your system, including the
mounting of your file systems. Kernel modules for specialized features or devices can be
loaded in an rc.modules file. The /etc/rc.d/rc.local file is the last initialization file executed.
You can place commands of your own here. If you look at this file, you see the message
displayed for you every time you start the system. You can change that message if you want.
When you shut down your system, the halt file, which contains the commands to do this, is
called. The files in init.d are then called to shut down daemons, and the file systems are
unmounted. In the current distribution of Red Hat, halt is located in the init.d directory. For
other distributions, it may be called rc.halt and located in the /etc/rc.d directory.

The /etc/rc.d/init.d directory is designed primarily to hold scripts that both start up and shut
down different specialized daemons. Network and printer daemons are started up here. You
also find files here to start font servers and Web site daemons. These files perform double
duty, starting a daemon when the system starts up and shutting down the daemon when the
system shuts down. The files in init.d are designed in a way to make it easy to write scripts
for starting up and shutting down specialized applications. It uses functions defined in the
functions file, as do many of the other init.d files. Many of these files are set up for you
automatically. You needn't change them. If you do change them, be sure you know how these
files work first. Chapter 22 describes this process in detail.

When your system starts up, several programs are automatically started and run continuously
to provide services such as Web site operations. Depending on what kind of services you want
your system to provide, you can add or remove items in a list of services to be automatically
started. In the installation process, you could determine what services those would be. For
example, the Web server is run automatically when your system starts up. If you are not
running a Web site, you would have no need, as yet, for the Web server. You could have the
service not started, removing an extra task the system does not need to perform. Several of the
servers and daemons perform necessary tasks. The sendmail server enables you to send
messages across networks, while the lpd server performs printing operations.

When your system starts up, it uses links in special runlevel directories in the /etc/rc.d/
directory to run the startup scripts in the /etc/rc.d/init.d directory. A runlevel directory bears
the number of its runlevel, as in /etc/rc.d/rc3.d for runlevel 3, and /etc/rc.d/rc5.d for runlevel
5. To have a service not start up, remove its link from that runlevel directory. You can use any
of these scripts to start and stop a daemon manually at any time by using the stop argument to
stop it, the start argument to start it again, and the restart argument to restart the daemon.

Most administration tools provide interfaces displaying a simple list of services from which
you can select the ones you want to start up. On the Red Hat Setup menu, select System
Services and then choose from the list of servers and daemons provided. Toggle an entry on

or off with the SPACEBAR. On Linuxconf, the Control Service Activity panel lists different
daemons and servers that you can have start by just clicking a check box. On Webmin, select
Bootup and Shutdown on the System panel to display a list of available services that you can
then configure to start up.

In addition, you can use a KDE System V Init Editor (ksysv) (see Chapter 22) to determine
which servers and daemons are to start and stop at what runlevel. ksysv provides an easy-to-
use GUI interface for managing the servers and daemons in your /etc/rc.d/init.d directory.
You can stop, start, and assign servers to different runlevels. ksysv is easier to use because it
supports drag-and-drop operations. To assign a server to a particular runlevel, drag its entry
from the Services box to the appropriate Runlevel box. To remove it from a particular
runlevel, drag its entry out of that Runlevel box to the Trash icon. To start and stop a daemon
manually, right-click it and select either the Stop or Start entry from the pop-up menu.

 Note From the Red Hat Control Panel, you can also run the System V Runlevel Editor, which
operates similarly to the KDE System V Init Editor.

On Red Hat systems, configuration and startup information is also kept in the /etc/sysconfig
directory. Here you will find files containing definitions of system variables used to configure
devices such as your keyboard and mouse. These entries were defined for you when you
configured your devices during installation. You will also find network definitions as well as
scripts for starting and stopping your network connections. A sample of the keyboard file is
shown here.

/etc/sysconfig/keyboard

KEYBOARDTYPE="pc"
KEYTABLE="us"

Several of these files are generated by Red Hat configuration tools such as mouseconfig or
netconfig (see Chapter 29 for the specific files these tools control). For example,
mouseconfig will generate configuration variables for the mouse device name, type, and
certain features, placing them in the /etc/sysconfig/mouse file, shown here:

FULLNAME="Generic - 3 Button Mouse (USB)"
MOUSETYPE="imps2"
XEMU3="no"
XMOUSETYPE="IMPS/2"

Other files like hwconf will list all your hardware devices, defining configuration variables
such as its class (video, CD-ROM, hard drive, etc.) the bus it uses (PCI, IDE, etc.), its device
name (such as hdd or st0), the drivers it uses, and a description of the device. A CD-ROM
entry is shown here:

class: CDROM
bus: IDE
detached: 0
device: hdd
driver: ignore
desc: "TOSHIBA DVD-ROM SD-M1402"

Several directories are included, such as network-scripts, which list several startup scripts for
network connections-such as ifup-ppp, which starts up PPP connections.

System Logs: /var/log and syslogd

Various system logs kept for tasks performed on your system are kept in the /var/log
directory. Here you can find logs for mail, news, and all other system operations. The
/var/log/messages file is a log of all system tasks not covered by other logs. This usually
includes startup tasks, such as loading drivers and mounting file systems. If a driver for a card
failed to install at startup, you find an error message for it here. Logins are also logged in this
file, showing you who attempted to log into what account. The /var/log/maillog file logs mail
message transmissions and news transfers.

Logs are managed by the syslogd daemon. This daemon will manage all the logs on your
system as well as coordinating with any the logging operations of other systems on your
network. Configuration information for syslogd is held in the /etc/syslog.conf file. This file
contains the names and locations for your system log files. Here you find entries for
/var/log/messages and /var/log/maillog, among others. An entry consists of two fields: a
selector and an action. The selector is the kind of service to be logged, such as mail or news,
and the action is the location where messages are to be placed. The action is usually a log file,
but it can also be a remote host or a pipe to another program. The kind of service is referred to
as a facility. syslogd has several terms it uses to specify certain kinds of service (see Table
28-7). A facility can be further qualified by a priority. A priority specifies the kind of message
generated by the facility. syslogd uses several designated terms to indicate different priorities.
A sector is constructed from both the facility and priority, separated by a period. For example,
to save error messages generated by mail systems, you use a sector consisting of the mail
facility and the err priority, as shown here:

mail.err

Table 28-7: Syslogd Facilities, Priorities, and Operators
Facility Description
auth-priv Security/authorization messages (private)
cron Clock daemon (cron and at) messages
daemon Other system daemon messages
kern Kernel messages
lpr Line printer subsystem messages
mail Mail subsystem messages
mark Internal use only
news Usenet news subsystem messages
syslog Syslog internal messages
user Generic user-level messages
uucp UUCP subsystem messages
local0 through local7 Reserved for local use
Priority
debug 7, Debugging messages, lowest priority

Table 28-7: Syslogd Facilities, Priorities, and Operators
Facility Description
info 6, Informational messages
notice 5, Notifications, normal, but significant, condition
warning 4, Warnings
err 3, Error messages
crit 2, Critical conditions
alert 1, Alerts, action must be taken immediately
emerg 0, Emergency messages, system is unusable, highest priority
Operator
* Matches all facilities or priorities in a sector
= Restrict to a specified priority
! Exclude specified priority and higher ones
Operator
/ A file to save messages to
@@ A host to send messages to
| FIFO pipe to send messages to

To save these messages to the /var/log/maillog file, you specify that file as the action, giving
you the following entry:

mail.err /var/log/maillog

syslogd also supports the use of * as a matching character to match either all the facilities or
priorities in a sector. cron.* would match on all cron messages no matter what the priority,
*.err would match on error messages from all the facilities, and *.* would match on all
messages. The following example saves all mail messages to the /var/log/maillog file and all
critical messages to the /var/log/mycritical file:

mail.* /var/log/maillog
*.crit /var/log/mycritical

When you specify a priority for a facility, that will in fact include all the messages with a
higher priority. So the err priority also includes the crit, alret, and emerg priorities. If you
just want to select the message for a specific priority, you qualify the priority with the =
operator. For example, mail.=err will select only error messages, not crit, alert, and emerg
messages. You can also restrict priorities with the ! operator. This will eliminate messages
with the specified priority and higher. For example, mail.!crit will exclude crit messages and
the higher alert and emerg messages. To specifically exclude all the messages for an entire
facility, you use the none priority. mail.none excludes all mail messages. This is usually used
when you are defining several sectors in the same entry.

You can list several priorities or facilities in a given sector by separating them with commas.
You can also have several sectors in the same entry by separating them with semicolons. The
first example saves to the /var/log/messages file all messages with info priority, excluding all

mail, news, and authentication messages (authpriv). The second saves all crit messages and
higher for the uucp and news facilities to the /var/log/spooler file:

*.info;mail.none;news.none;authpriv.none /var/log/messages
uucp,news.crit /var/log/spooler

For the action field, you can specify files, remote systems, users, or pipes. An action entry for
a file must always begin with a / and specify its full path name, such as /var/log/messages. To
log messages to a remote host, you simply specify the hostname preceded by an @ sign. The
following example saves all kernel messages on rabbit.trek.com:

kern.* @rabbit.trek.com

For users, you just list the login names of the users you want to receive the messages. The
following example will send critical news messages to the consoles for the users chris and
aleina:

news.=crit chris,aleina

You can also output messages to a named pipe (FIFO). The pipe entry for the action field
begins with a |. The following example pipes kernel debug messages to the name pipe
|/usr/adm/debug:

kern.=debug |/usr/adm/debug

Whenever you make changes to the syslog.conf file, you need to restart the syslogd daemon
using the following command:

/etc/rc.d/init.d/syslog restart

The default /etc/syslog.conf file for Red Hat systems is shown here. Messages are logged to
various files in the /var/log directory.

/etc/syslog.conf

Log all kernel messages to the console.
Logging much else clutters up the screen.
#kern.* /dev/console

Log anything (except mail) of level info or higher.
Don't log private authentication messages!
*.info;mail.none;news.none;authpriv.none /var/log/messages

The authpriv file has restricted access.
authpriv.* /var/log/secure

Log all the mail messages in one place.
mail.* /var/log/maillog

Everybody gets emergency messages, plus log them on another
machine.
*.emerg *

Save mail and news errors of level err and higher in a
special file.

uucp,news.crit /var/log/spooler

Save boot messages also to boot.log
local7.* /var/log/boot.log

INN

news.=crit /var/log/news/news.crit
news.=err /var/log/news/news.err
news.notice /var/log/news/news.notice

Performance Analysis Tools and Processes

Each task performed on your system is treated by Linux as a process, and is assigned a
number and a name. You can examine these processes and even stop them. From the
command line, you can use the ps command to list processes. With the -aux command, you
can list all processes. Piping the output to a grep command with a pattern enables you to
search for a particular process. The following command lists all X Window System processes:

ps -aux | grep 'X'

A number of utilities on your system provide detailed information on your processes, as well
as other system information such as CPU and disk use (see Table 28-8). Although these tools
were designed to be used on a shell command line, displaying output in text lines, several now
have KDE and Gnome versions that provide a GUI interface for displaying results and
managing processes. The vmstat command outputs a detailed listing indicating the
performance of different system components, including CPU, memory, I/O, and swap
operations. A report is issued as a line with fields for the different components. If you provide
a time period as an argument, it repeats at the specified interval-usually a few seconds. The
top command provides a listing of the processes on your system that are the most CPU
intensive, showing what processes are using most of your resources. The listing is in real time
and updated every few seconds. Commands are provided for changing a process's status, such
as its priority (see Figure 28-2).

Figure 28-2: The top command

The free command lists the amount of free RAM memory on your system, showing how
much is used and how much is free, as well as what is used for buffers and swap memory.
Xload is an X Window System tool showing the load, CPU, and memory. iostat will display
your disk usage, and sar will show system activity information (see Table 28-8).

Table 28-8: Performance Tools
Performance Tool Description

Table 28-8: Performance Tools
Performance Tool Description
vmstat Performance of system components
top Listing of most CPU intensive processes
free Listing for free RAM memory
sar System activity information
iostat Disk usage
Xload View of system load
Gtop Gnome System Manager
Kpm KDE Process Manager

On the Gnome System Manager (GTop), you can also sort the processes according to their
fields by clicking the field's button at the top of the process list. If you right-click an entry, a
pop-up menu displays with actions you can perform on it (see Figure 28-3). System statistic
summary graphs are displayed at the top of the window showing the CPU load, memory use,
and disk use. You can add more graphs or change their display features, such as the colors
used. The GTop window displays three tabbed panels for detailed reports showing processes,
memory use, and file system use. You can add more, showing customized reports such as
only the user processes. Process lists can be further refined to show user, system, or all
processes. To configure Gtop, you select the Preferences entry in the Settings menu. This
displays a menu with tabbed panels for specifying the update frequency for different statistics,
determining the summaries you want displayed and what process fields to show. You can find
the Gnome System Manager in the Utilities menu.

Figure 28-3: Gnome system monitor

The K Desktop provides the KDE Process Manager (kpm) for viewing and managing your
processes (see in Figure 28-4). You can sort the processes according to their fields by clicking
the field's button at the top of the process list. If you select a process, you can then choose to
perform several different actions on it, such as ending it (killing the process) or suspending it
(putting it to sleep). A right-click on a process entry displays a pop-up menu with the different

actions you can take. You can further refine your process list by choosing to view only your
own processes, system processes, or all processes.

Figure 28-4: The KDE Process Manager

Chapter 29: Configuration Tools and Boot
Management
Overview

Although system administration can become complex, basic administration tasks such as
configuring devices and setting up your network are easy to perform, particularly if you use a
configuration tool such as the Text Mode Setup utility. Red Hat provides several specialized
older tools such as netcfg for network configuration and TimeTool for setting the system date
and time. Most of the older Red Hat administration tools can be accessed through entries on
the Gnome desktop system menu. The KDE desktop also includes administrative tools such as
Kuser to manage users and the Boot Manager to select operating systems to start up. These
tools have been discussed as their topics have been covered in various chapters. This chapter
will cover the Red Hat Text Mode Setup Utility and the Linux boot management utilities
known as the Linux Loader (LILO) and the Grand Unified Bootloader (GRUB).

 Tip In addition to those tools already provided with Red Hat, you can also download and
install comprehensive administrative tools like Linuxconf or Webmin. These tools will
perform almost all administrative tasks, eliminating the need to go hunting around for
tools to perform different tasks.

All administrative tools are operated as front ends for making entries in Linux configuration
files. You can edit these files and make entries directly, if you want. The underlying
administration tasks are the same.

With Linux, you also have the ability to load up different versions of the Linux kernel as well
as different operating systems that you have installed on your system. The task of selecting
and starting up an operating system or kernel is managed by a boot management utility called
the Linux Loader, also known simply as LILO. LILOis a versatile tool, letting you load
operating systems that share the same disk drive, as well as letting you choose from different
Linux kernels that may be installed on the same Linux system.

Red Hat Text Mode Setup Utility

Red Hat provides the Text Mode Setup utility (Setuptool) with which you can configure
different devices and system settings, such as your keyboard, mouse, and time zone. It has a
cursor-based interface that you run from the command line, using arrow keys, the
SPACEBAR, and the ENTER key to make choices. Setuptool is useful if you have changed
any of your devices-say, installed a new mouse, keyboard, or sound card. Start the Setuptool
utility with the command setup, which you enter at a shell command line. On the desktop,
you can open a terminal window and enter the command, or select the Text Mode Setup menu
entry in the Gnome system menu. A menu of configuration choices is displayed. The utility
will run within a terminal window, as if you were running it from the command line. Use the
arrow keys to select one, and then press the TAB key to move to the Run Tool and Quit
buttons. Figure 29-1 shows the initial Setup menu.

Figure 29-1: Red Hat Text Mode Setup utility

The Setuptool utility is actually an interface for running several configuration tools (see Table
29-1). You can call any of these tools separately using their commands. For example, the
kbdconfig command starts the keyboard configuration utility that enables you to select the
type of keyboard, while the mouseconfig command enables you to select the type of mouse.
These tools will generate configuration files defining variables for use in enabling devices and
services. Most are found in the /etc/sysconfig directory. For example, mouseconfig defines
configuration variables that it then saves to the /etc/sysconfig/mouse file.

Table 29-1: Setup Tools
Tool Configuration File Description
setup Red Hat Setuptool interface listing

configuration tools for system and
device setting.

authconfig /etc/sysconfig/authconfig
/etd/sysconfig/network

Authentication options, such as enabling
NIS, shadow passwords, and MD5
passwords.

lokkit /etc/sysconfig/ipchains Selects the level of firewall protection:
High, Medium, and None. gnome-
lokkit runs a Gnome interface.

kbdconfig /etc/sysconfig/keyboard Selects the keyboard type.
mouseconfig /etc/sysconfig/mouse Selects the mouse type.

Table 29-1: Setup Tools
Tool Configuration File Description
netconfig /etc/sysconfig/network

/etc/sysconfig/network-
scripts/ifcfg-ethN

Sets your LAN network settings.

ntsysv /etc/sysconfig/auth Selects servers and daemons to start up
at boot time.

sndconfig /etc/sysconfig/soundcard Detects and configures your sound card.
timeconfig /etc/sysconfig/clock

/etc/sysconfig/localtime
Selects the time zone.

Xconfigurator /etc/X11/XF86Config Configures your X Window System for
your video card and monitor.

authconfig is used to enable authentication services such as NIS, Kerberos, and LDAP. It
displays a dialog box for enabling the Network Information Service (NIS), password
encryption, and LDAP support. You find an entry for NIS, and entries for the shadow and
MD5 password security methods. authconfig places its configuration information in several
files. The etc/sysconfig/authconfig file specifies whether certain authentication services are
enabled. It will further configure configuration files for the services selected, such as
/etc/krb5.conf for Kerberos authentication and /etc/yp.conf for NIS support, as well as
/etc/openldap/ldap.conf for LDAP authentication.

With lokkit, you can select the level of firewall protection at High, Medium, or None. An
advanced option lets you select different services to be allowed such as mail, the secure shell,
FTP, the Web server, and the FTP server. You can also run gnome-lokkit, which will prompt
you for different settings using Gnome dialog boxes. Lokkit currently provides firewall rules
only for the older IP-Chains firewall service. It does not support the newer IP-Tables. lokkit
places its IP-Chains firewalling rules in the /etc/sysconfig/ipchains file.

With kbdconfig, you can select the type of keyboard you are using. A cursor-based dialog
box appears with a list of different keyboard types. kbdconfig places its configuration
information in the etc/sysconfig/keyboard file.

With mouseconfig, you can select the type of mouse you are using. A cursor-based dialog
box appears with a list of different mouse device types. Your system is automatically probed
for the type of mouse connected to your system, and the cursor is positioned at that entry. If
you have a two-button mouse, you can select the three-button emulation option to let a
simultaneous click on both the left and the right mouse buttons emulate a third mouse button.
kbdconfig places its configuration information in the etc/sysconfig/mouse file. It will also set
the /dev/mouse symbolic link to the mouse device file.

With netconfig, you can enter the LAN setting for your network connections. This tool will
not help for modem connections. Here you can enter basic LAN settings like your IP address,
gateway address, netmask, and DNS server addresses. netconfig places its network
configuration information like the hostname and gateway in the etc/sysconfig/network file.
Specific Ethernet device configurations, which would include your IP address and netmask,
are place in the appropriate Ethernet device configuration file in the /etc/sysconfig/network-
scripts directory. For example, the IP address and netmask used for the eth0 Ethernet device

can be found in /etc/sysconfig/network-scripts/ifcfg-eth0. Local host settings are in
/etc/sysconfig/network-scripts/ifcfg-lo.

The ntsysv utility is a simple utility for specifying which servers and services should be
automatically started at boot time (see Chapter 15). The dialog box lists the possible servers
and services to choose from. Move to the entry you want and use the SPACEBAR to toggle it
on or off. An entry with an asterisk next to it is selected and is started automatically the next
time you boot your system. ntsysv uses chkconfig to make its changes to the startup services.

The sndconfig utility enables you to select and configure your sound card. It initially tries to
detect your sound card automatically. If the automatic detection fails, a dialog box appears
with a listing of different sound cards. Select the one on your system. Another dialog box
appears where you need to enter the setting for your sound card. sndconfig then tries to play
sample sound and MIDI files to test the card. As an alternative to sndconfig, you can obtain,
load, and configure sound drivers yourself. sndconfig places its configuration information in
the etc/sysconfig/soundcard file. It will also store the appropriate module specification in the
/etc/modules.conf file, as well as the /etc/isapnp.conf file if needed.

You can use the simple timeconfig utility to specify your system's time zone. This is useful if
your system has moved to a different time zone. timeconfig places its configuration
information in the etc/sysconfig/clock and /etc/localtime files.

One important utility is the X Window System setup provided by Xconfigurator. If you have
trouble with your X Window System configuration and can no longer start up your graphical
interface, you can use the Xconfigurator command to configure it from the command line.
You could switch to or start up in runlevel 3, the text mode, and then run Xconfigurator
entirely from the command line, without ever having to run the X Window System.
Xconfigurator is also helpful for updating X Windows if you change your video card. Run
Xconfigurator again and select the card. When you download a new version of XFree86, the
packages includes a compatible version of Xconfigurator. Xconfigurator will generate the X
Window System /etc/X11/XF86Config configuration file and use the specifications in
/etc/sysconfig/mouse to configure your X Window System mouse.

LILO

If you have installed two or more operating systems on your computer's hard disks, you need
to use a boot manager to enable you to choose the one you want to use whenever your
computer starts up. Most Linux distributions provide the Linux Loader (LILO) as its boot
manager, which you can install as part of the installation process.

You can modify your LILO configuration either by using an administration tool like Boot
Manger (LILO-config), or by editing the /etc/lilo.conf configuration file directly. If it is
installed, you can access Boot Manager on the KDE desktop Control Center, under the
System entry. The Boot Manager will display the four panels: General Options, Operating
Systems, Expert, and About. The General panel lets you set basic options such as the drive for
the boot record. On the Operating System panel you create the entries for different operating
systems on your computer (see Figure 29-2). For Linux systems, you can specify the root
partition and the Linux kernel, as well as a label. The Expert panel lets you edit the lilo.conf
file directly, letting you type in options and add stanzas.

Figure 29-2: Boot Manager (KDE Control Center, System)
 Note You can also configure LILO with Webmin and Linuxconf, or with the KDE Klilo2

tool.

You can directly modify your LILO configuration by editing the /etc/lilo.conf configuration
file and executing the command lilo. If you examine your /etc/lilo.conf file, you find it
organized into different segments called stanzas, one for each operating system that LILO is
to start up. If your Linux system shares your computer with a Windows system, you should
see two stanzas listed in your /etc/lilo.conf file: one for Linux and one for Windows. Each
stanza indicates the hard disk partition on which the respective operating system is located. It
also includes an entry for the label. This is the name you enter at the LILO prompt to start that
operating system.

Entries in the lilo.conf file consist of options to which you assign values with the = operator
(see Table 29-2). At the beginning of the file, you enter global options. The entries you need
will already be generated for you if you have already set up LILO during installation. An
example of a Linux global entry follows. To set the timeout period when LILO waits for you
to make an entry before starting the default, you create a timeout entry and assign to it the
number of seconds you want to wait.

timeout = 200

Since LILO is invoking your Linux system, you can specify any options you would normally
pass to that system in the lilo.conf file. You do this with the append option. In effect, such
options are appended to those you may enter manually at the boot prompt. Instead of
manually entering the same options at the boot prompt, you can specify them in the lilo.conf
file with the append option. You have already seen how this is done for IDE CD-R and CD-
RW devices in Chapter 4. The following example configures the IDE CD-RW drive on the
Secondary IDE master connection (hdc) as a SCSI device by loading the ide-scsi module for
it.

append="hdc=ide-scsi"

Another useful global entry is default, with which you can set the default operating system to
start. It takes as its argument the label for the stanza. In the following example, the stanza
labeled win will be executed by default, in this case, starting Windows:

default = win

Then you start a Linux stanza with an image or other option. You use the image option for
Linux boot images files, and the other option for other operating systems like Windows. The
next example starts a stanza for Linux loading a Linux 2.4.2-2:

image = /boot/vmlinuz-2.4.2-2

You can then enter options for a stanza, such as its label and the partition that holds its root
device:

label = linux
root = /dev/hda4

The other option will start a stanza for a non-linux system. It is used in the following example
to reference a Windows operating system located on the first hard drive partition.

 other = /dev/hda1

One helpful option is password, where you can restrict access to a particular boot image file
or operating system with a specified password. When the user selects that image or operating
system, they are prompted for the password.

password = mypassword

Certain options are designed to be used only in the stanzas, and of those, some are to be used
only for Linux image files or for other operating systems. For example, table, label,
password, and restricted are used only for a particular stanza. They are not global options.
The append, literal, read-only, and read-write options are to be used only in stanzas for
Linux kernel images. The append and literal options are used to pass kernel image arguments
to the kernel.

A stanza continues until another image or other option is reached, starting a new stanza. You
can, if you want, make changes directly to the /etc/lilo.conf file using a text editor. Whenever
you make a change, you must execute the lilo command to have it take effect. Type lilo and
press ENTER.

lilo

This command will read the /etc/lilo.conf and generate a corresponding boot record it will
then write to your system's boot sector.

In the following lilo.conf example, the boot device is the hard drive labeled /dev/hda. This is
the first IDE hard drive on a PC system. The timeout period where LILO waits for a user to
enter a system's label is 200 seconds. The message it displays before the prompt is located in
the file /boot/message. The user will be prompted (prompt) to enter a label. The default
operating system (default) that will be started if the user does not enter one is the one labeled
win-in this case Windows. The VGA mode (vga) that LILO will use is normal. The map
(map) is located in the /boot/map file, and the /boot/boot.p is the file used as the new boot
sector (install). The first stanza is a Linux image file (image) named /boot/vmlinuz-2.4.2-2.
It is labeled "linux", and the root partition (root) for this Linux system is at /dev/hda4, the
fourth partition on the first IDE hard drive. The Linux image will first be mounted as read
only, and then later mounted as read/write. The second stanza denotes that there is another
operating system (other) on the first partition in the first IDE hard drive. It is labeled "win".
The partition table (table) for this operating system is on the first IDE hard drive.

/etc/lilo.conf

general section
boot = /dev/hda
wait 20 seconds (200 10ths) for user to select the entry to load
timeout = 200
message = /boot/message
prompt
 # default entry
default = win
vga = normal
 map=/boot/map
install=/boot/boot.b

image = /boot/vmlinuz-2.4.2-2
label = linux
 root = /dev/hda4
 read-only

other = /dev/hda1
label = win
 table=/dev/hda

Unless specified by the default entry, the default operating system LILO boots is the one
whose segment is the first listed in the lilo.conf file. Because the Linux stanza is the first
listed, this is the one LILO boots if you don't enter anything at the LILO prompt. If you want
to have your Windows system be the default, you can use lilo with the -D option to reset the
default, or you can edit the lilo.conf file to assign a value to default. You could also use a text
editor to place the Windows stanza first, before the Linux stanza. Be sure to execute lilo to
have the change take effect. The next time you start your system, you could press ENTER at
the LILO prompt to have Windows loaded, instead of typing win.

lilo -D win

You can set a number of LILO options using either command line options or making entries
in the lilo.conf file. These options are listed in Table 29-2.

Table 29-2: LILO Options for the Command Line and lilo.conf Entries
Command Line
Option

lilo.conf Option Description

-u Uninstall LILO, by copying the saved boot
sector back.

-V Print version number.
-t Test only. Do not actually write a new boot

sector or map file. Use together with -v to
learn what LILO is about to do.

-I label Display label and pathname of running
kernel. Label is held in BOOT_IMAGE
shell variable.

Global Option

Table 29-2: LILO Options for the Command Line and lilo.conf Entries
Command Line
Option

lilo.conf Option Description

-b bootdev boot=bootdev Boot device.
-c compact Enable map compaction. Speed up booting.
-d dsec delay=dsec Timeout delay to wait for you to enter the

label of an operating system at the LILO
prompt when you boot up.

-D label default=label Use the kernel with the specified label,
instead of the first one in the list, as the
default kernel to boot.

-i bootsector install=bootsector File to be used as the new boot sector.
-f file disktab=file Disk geometry parameter file.
-l linear Generate linear sector addresses, instead of

sector/head/cylinder addresses (for large
hard disks. This option can cause a conflict
with compact.)

-m mapfile map=mapfile Use specified map file instead of the
default.

 message=message-file Specify the message to be displayed before
the LILO prompt.

 prompt Displays the lilo: prompt. If timeout is not
specified, the automatic reboots are
disabled.

 timeout=dsec Timeout delay to wait for you to enter the
label of an operating system at the LILO
prompt when you boot up.

-p fix fix-table Fix corrupt partition tables.
-P ignore ignore-table Ignore corrupt partition tables.
-s file backup=file Alternate save file for the boot sector.
-S file force-backup=file Allow overwriting of existing save file.
 vga=mode VGA text mode that LILO uses.
Stanza Option
 image=Linux-kernel Pathname for boot image of a Linux

kernel.
 other=os-boot-image Pathname for boot image of a non-Linux

operating system.
 alias=name Another name for the kernel image or

operating system label.
 table=device Drive that holds the partition table.
 password=password Protect access to an OS or kernel image

with a password, as specified.

Table 29-2: LILO Options for the Command Line and lilo.conf Entries
Command Line
Option

lilo.conf Option Description

 restricted User must enter a password if any
command line parameters are passed to the
kernel image.

-v verbose=level Increase verbosity.
Linux Image Stanza
Option

 root=path Partition for the kernel root.
 append=string Arguments to append to arguments

specified for the invocation of the kernel
image. Used to add needed hardware
specifications for a kernel image.

 literal=string Arguments to replace the arguments
specified for the invocation of the kernel
image.

 read-only Boot Linux kernel as read-only (system
startup remounts as read/write).

 read-write Mount the root system as read/write.

If you are booting an operating system from a location other than the first hard disk, you need
to include a loader line for the chain.b file in its stanza.

loader=/boot/chain.b

Linuxconf and Webmin

Linuxconf and Webmin are two popular comprehensive administration tools that let you
perform almost all your administrative tasks. This has the advantage of having to use only one
software program to manage your system. Neither are currently installed with Red Hat,
though you can download and install Red Hat versions for their Web sites.

Linuxconf is a comprehensive configuration tool for almost all your administrative tasks,
including user and file system management, as well as network services. Linuxconf is
designed to work on any Linux distribution and is currently compatible with Caldera, Red
Hat, SuSe, Slackware, and Debian. Both compressed archive and RPM versions of the
software are provided. You can download the current version from the Linuxconf Web site at
www.solucorp.qc.ca/linuxconf. Here, you can also find documentation and links to any
added packages.

Webmin is a Web-based interface for Unix and Linux system administration tasks. You can
use any Web browser that supports tables and forms to access Webmin and perform extensive
administrative operations. Webmin itself is composed of a simple Web server with CGI Perl
programs with which you can directly update system configuration files such as /etc/passwd.
Webmin is available free of charge under the BSD license. You can find out more about
Webmin at www.webmin.com.

Webmin is an extensible application designed to be enhanced by modules that any users can
write and plug into their versions. A number of standard modules are provided with Webmin
that cover areas such as user account setup, LILO modification, and server configuration.
Numerous third-party modules are under development. You can access them at
www.thirdpartymodules.com/webmin.

Grand Unified Bootloader (GRUB)

The Grand Unified Bootloader (GRUB) is a multiboot boot loader that operates similar to
LILO. With Red Hat 7.2, it is now the default boot loader used on Red Hat systems. GRUB
offers extensive compatibility with a variety of operating system. Users can select operating
systems to run from a menu interface displayed when a system boots up. Use arrow keys to
move to an entry and press ENTER. Press e to edit a command, letting you change kernel
arguments or specify a different kernel. The c command places you in a command line
interface, similar to LILO. Provided your system bios supports very large drives, GRUB can
boot from anywhere on them. Use info grub to list detailed documentation.

GRUB configuration is held in the /etc/grub.conf file. You only need to make your entries,
and GRUB will automatically read them when you reboot. There are several options you can
set such as the timeout period and the background image to use. You can specify a system to
boot by creating a title entry for it, beginning with the term title. You then have to specify
where the operating system kernel or program is located, which hard drive and what partition
on that hard drive. This information is listed in parenthesis following the root option.
Numbering starts from 0, not 1, and hard drives are indicated with an hd prefix. So
root(hd0,2) references the first hard drive (hda) and the third partition on that hard drive
(hda3). For Linux systems, you will also have to use the kernel option to indicate the kernel
program to run, using the full path name and any options the kernel may need. The Ram disk
is indicated by the initrd option.

title Red Hat Linux (2.4.7-10)
 root (hd0,2)
 kernel /boot/vmlinuz-2.4.7-10 ro root=/dev/hda3
 initrd /boot/initrd-2.4.7-10.img

For another operating system such as Windows, you would use the root option to specify
where Windows is installed. Use the imakeative and chainloader+1 options to allow GRUB
to access it. Windows systems will all want to boot from the first partition on the first disk.
This becomes a problem if you want to install several versions of Windows on different
partitions or install Windows on a partition other than the first one. GRUB lets you work
around this by letting you hide other partitions inline and then unhiding the one you want,
making it appear to be the first partition. Use the rootnoverify command to allow the system
to boot. In this example, the first partition is hidden, and the second is unhidden. This assumes
there is a Windows system on the second partition on the first hard drive (hd0,1). Now that
the first partition is hidden, the second one appears as the first partition.

hide (hd0,0)
unhide (hd0,1)
rootnoverify (hd0,1)

A sample grub.conf file follows with entries for both Linux and Windows. Notice that kernel
parameters are listed in the kernel option as arguments to the kernel.

/etc/grub.conf

grub.conf generated by anaconda

#boot=/dev/hda
default=0
timeout=30
splashimage=(hd0,2)/boot/grub/splash.xpm.gz
title Red Hat Linux (2.4.7-10)
 root (hd0,2)
 kernel /boot/vmlinuz-2.4.7-10 ro root=/dev/hda3 hdc=ide-scsi
 initrd /boot/initrd-2.4.7-10.img
title Windows XP
 root (hd0,0)
 imakeactive
 chainloader +1

Chapter 30: Managing Users
Overview

Linux is designed to serve many users at the same time, as well as provide an interface
between the users and the computer with its storage media, such as hard disks and tapes.
Users have their own shells through which they interact with the operating system. As a
system administrator, you can manage user logins on your system. You can add or remove
users, as well as add and remove groups. You also have access to system initialization files
you can use to configure all user shells. And you have control over the default initialization
files copied into an account when it is first created. With them, you can decide how accounts
should initially be configured.

 Note Every file is owned by a user, even those that are used by services like FTP. In such a
case, a special user is created for just that service. For example, for FTP there will be a
user named ftp that will own FTP files.

You can find out which users are currently logged in with the who command. Add the -u
option to display information about each connected user, such as from where they have
logged in and how long they have been inactive. The command displays the login name, the
login port, the date and time of login, the length of inactivity (if still active), and the process
ID for the login shell. For example:

who -u
root console Oct 12 10:34 . 1219
valerie tty1 Oct 12 22:18 10 1492

Any utility to add a user, such as Red Hat User Manager, makes use of certain default files,
called configuration files, and directories to set up the new account. A set of path names is
used to locate these default files or to know where to create certain user directories. For
example, /etc/skel holds initialization files for a new user. /etc/password is the file that holds
user passwords. A new user's home directory is placed in the /home directory. Certain files
provide added security such as /etc/shadow, which encrypts password entries. A list of the
pathnames follows:

Directory Description
/home Location of the user's own home directory.
/etc/skel Holds the default initialization files for the login shell, such as

.bash_profile, .bashrc, and .bash_logout. Includes manu user
setup directories and files such as .kde for KDE and Desktop
for Gnome.

/etc/shells Holds the login shells, such as BASH or TCSH.
/etc/passwd Holds the password for a user.
/etc/group Holds the group to which the user belongs.
/etc/shadow Encrypted password file.
/etc/gshadow Encrypted password file for groups.
/etc/login.defs Default login definitions for users.

The Password Files

When you add a user, an entry for that user is made in the /etc/passwd file, commonly known
as the password file. Each entry takes up one line that has several fields separated by colons.
The fields are as follows:

Field Description
Username Login name of the user
Password Encrypted password for the user's account
User ID Unique number assigned by the system
Group ID Number used to identify the group to which the user belongs
Comment Any user information, such as the user's full name
Home directory The user's home directory
Login shell Shell to run when the user logs in; this is the default shell, usually

/bin/bash

The following is an example of a /etc/passwd entry. The entry for chris has an * in its
Password field, indicating a password has not yet been created for this user. For such entries,
you must use passwd to create a password. Notice also, user IDs in this particular system start
at 500 and increment by one.

dylan:YOTPd3Pyy9hAc:500:500:User:/home/dylan:/bin/bash
chris:*:501:501:User:/home/chris:/bin/bash

The /etc/passwd file is a text file you can edit using a text editor. You can change fields in
entries and even add new entries. The only field you cannot effectively change is the
password, which must be encrypted. To change the Password field, you should always use the
passwd command.

Although you can make entries directly to the /etc/passwd file, an easier and safer way is to
use the userconf, adduser, and useradd utilities. These programs not only make entries in the

/etc/passwd file, but they also create the home directory for the user and install initialization
files in the user's home directory.

The /etc/passwd file is a simple text file and is vulnerable to security breaches. If anyone
gains access to the /etc/password file, they might be able to decipher or brute force crack the
passwords. On most Linux distributions , the shadow suite of applications implements a
greater level of security. These include versions of useradd, groupadd, and their
corresponding update and delete programs. Most other user configuration tools support
shadow security measures. With shadow security, passwords are no longer kept in the
/etc/password file. Instead, passwords are kept in a separate file called /etc/shadow and are
heavily encrypted. Access is restricted to the root user. A corresponding password file, called
/etc/gshadow, is also maintained for groups that require passwords. As part of the standard
installation for Red Hat, shadow passwords were implemented by default. You can manually
specify whether you want to use shadow passwords with the authconfig tool in the Text Mode
Setup utility.

 Note authconfig is a text mode tool that you can use to enable and configure various
authentication tools such as NIS and LDAP servers, as well as enabling shadow
passwords, LDAP, and Kerberos authentication. On Red Hat, authconfig will generate
the /etc/pam.d/system-auth configuration file use for system services.

Managing User Environments: /etc/skel and /etc/login.defs

Each time a user logs in, two profile scripts are executed. A system profile script is the same
for every user, and each user has the .bash_profile script in his or her home directory. The
system profile script is located in the /etc directory and named profile with no preceding
period. As a superuser, you can edit the profile script and put in any commands you want
executed for each user when he or she logs in. For example, you may want to define a default
path for commands, in case the user has not done so. Or, you may want to notify the user of
recent system news or account charges.

When you first add a user to the system, you must provide the user with a skeleton version of
their login, shell, and logout initialization files. For the BASH shell, this would be a
.bash_profile .bashrc and .bash_logout files. The useradd command and other user
management tools like User Manager add this file automatically, copying any files in the
directory /etc/skel to the user's new home directory. The /etc/skel directory contains a
skeleton initialization file for .bash_profile, .bashrc, and .bash_logout files or, if you are
using the TCSH shell as your login shell, .login, .tcshrc, and .logout files. The /etc/skel
directory also contains default files and directories for your desktops. These include a
.screenrc file for the X Window System, a .kde directory for the KDE desktop, and a
Desktop directory that contains default configuration files for the Gnome desktop.

As a superuser, you can configure the .bash_profile or .bashrc files in the /etc/skel any way
you want. Usually, basic system variable assignments are included that define pathnames for
commands and command aliases. On Red Hat, the PATH and BASH_ENV variables are
defined in .bash_profile. Once users have their own .bash_profile or .bashrc files, they can
redefine variables or add new commands as they choose. The .bashrc file will also run the
/etc/bashrc to implement any global definitions such as the PS1 and TERM variables. The
/etc/bashrc file also executes any specialized initialization file in the /etc/profile.d directory

such as those used for KDE and Gnome. The .bash_ profile file runs the .bashrc file, and
through it, the /etc/bashrc file, implementing global definitions.

System-wide values used by user and group creation utilities like useradd and usergroup are
kept in the /etc/login.defs file. Here you will find the range of possible user and group IDs
listed. UID_MIN holds the minimum number, and UID_MAX the maximum number for user
IDs. Various password options control password controls- such as PASS_MIN_LEN, which
determines the minimum number of characters allowable in a password. Options such as
CREATE_HOME can be set to tell useradd to create home directories for new accounts by
default.

login.defs

REQUIRED
Directory where mailboxes reside, _or_ name of file, relative to the
home directory. If you _do_ define both, MAIL_DIR takes precedence.
QMAIL_DIR is for Qmail

#QMAIL_DIR Maildir
MAIL_DIR /var/spool/mail
#MAIL_FILE .mail

Password aging controls:
PASS_MAX_DAYS Maximum number of days a password may be used.
PASS_MIN_DAYS Minimum number of days allowed between password changes.
PASS_MIN_LEN Minimum acceptable password length.
PASS_WARN_AGE Number of days warning given before a password expires.
PASS_MAX_DAYS 99999
PASS_MIN_DAYS 0
PASS_MIN_LEN 5
PASS_WARN_AGE 7

Min/max values for automatic uid selection in useradd
UID_MIN 500
UID_MAX 60000

Min/max values for automatic gid selection in groupadd
GID_MIN 500
GID_MAX 60000

If defined, this command is run when removing a user.
#USERDEL_CMD /usr/sbin/userdel_local

If useradd should create home directories for users by default
On RH systems, we do.
CREATE_HOME yes

Login Access

You can control user login access to your system with the /etc/login.access file. The file
consists of entries listing users, whether they are allowed access, and from where they can
access the system. A record in this file consists of three colon-delimited fields: a plus (+) or
minus (-) sign indicating whether users are allowed access, user login names allowed access,
and the remote system (host) or terminal (tty device) from which they are trying to log in. The

following enables the user dylan to access the system from the rabbit.mytrek.com remote
system:

+:dylan:rabbit.mytrek.com

You can list more than one user or location. You can also use the ALL option in place of
either users or locations to allow access by all users and locations. The ALL option can be
qualified with the EXCEPT option to allow access by all users except certain specified ones.
The following entry allows any user to log into the system using the console, except for the
users larisa and aleina:

+:ALL EXCEPT larisa aleina:console

Other access control files are used to control access for specific services such as the
hosts.deny and hosts.allows files used with tcpd daemon for xinetd-supported servers.

Controlling Access to Directories and Files

Recall from Chapter 12 that you can control access to your files and directories by user,
group, or others. This is a capability given to any user for their own files and directories.
Access in each of these categories can be controlled according to write, read, and execute
permissions. Write access lets users modify a file, read access lets them display it, and
execute access (used for programs) lets them run it. For directories, write access lets them
delete it, read access will list its contents, and execute access will let users change to that
directory. You could allow anyone on the system to read one of your files by assigning a read
access to its other permission. Chapter 12 describes how you can use the chmod command to
set permissions, using the u for user, g for group, and o for other, as well as r for read, w for
write, and x for execute. The following command provides read and write group permissions
for the file ourdraft1:

chmod g+rx ourdraft1

On Gnome, you can set a directory or file permission using its Permissions panel in its
Properties window (see Figure 30-1). Right-click on the file or directory entry in the file
manager window and select Properties. Then select the Permissions panel. Here you will find
a table of boxes with columns for Read, Write, and Execute along with rows for Owner,
Group, and Other. Check the appropriate box for the permission you want. Normally, the
Read and Write boxes for user permission will already be set. You can specify the group you
want access provided to from the Group drop-down menu. This displays the groups a user
belongs to.

Figure 30-1: File and directory permissions on Gnome

In addition to the read/write/execute permissions, you can manually set ownership
permissions for executable programs. Normally, the user who runs a program owns it while it
is running, even though the program file itself may be owned by another user. The set user ID
permission allows the original owner of the program to own it always, even while another
user is running the program. For example, most software on the system is owned by the root
user, but is run by ordinary users. Some such software may have to modify files owned by the
root. In this case, the ordinary user would need to run that program with the root retaining
ownership so the program could have the permissions to change those root-owned files. The
group ID permission works the same way, except for groups. Programs owned by a group
retain ownership even when run by users from another group. The program can then change
the owner group's files.

To add both the user ID and group ID permissions to a file, you use the s option. The
following example adds the user ID permission to the pppd program, which is owned by the
root user. When an ordinary user runs pppd, the root user retains ownership, allowing the
pppd program to change root-owned files.

chmod +s /usr/sbin/pppd
 Note Where a program is owned by the root, setting the user ID permission will give the user

the ability to execute the program with root permissions. This can be a serious security
risk for any program that could effect changes-such as rm, which removes files.

Red Hat User Manger

Most administration tools let you easily add, remove, or change users. For Red Hat
distributions, it is recommended that you use the Red Hat User Manager to manage user
accounts. You can access the Red Hat User Manager from the System Settings window in the
Start Here window. It will be labeled User Manager. You can also access it from the Gnome
System menu.

The User Manger window will display panels for listing both users and groups (see Figure 30-
2). You use the User Manager to manage your groups, as well as users. Click the appropriate
tab to display either users or groups. Within the User and Group panels, field labels are
displayed at the top for User Name, Group, the user's Full Name, Login Shell, and Home
Directory. A button bar will list various tasks you can perform, including creating new users
or groups, editing current ones (Properties), or deleting a selected user or group. The number
of users and groups on a system can be extensive. The User Manager provides an easy-to-use

search tool. In the box labeled Filter By, you can enter a search string. Then, when you click
the Apply Filter button, only those matching users or groups are listed.

Figure 30-2: Linuxconf user accounts

To create a new user, click the New User button. This opens a window with entries for the
user name, password, login shell, along with options to create a home directory and a new
group for that user. Once you have created a user, you can edit its properties to add or change
features. Select the user's entry and click the Properties button. This displays a window with
tabbed panels for User Data, Account Info, Password Info, and Groups (see Figure 30-3). You
can change basic features such as the password and login shell in the User Data panel.
Account Info lets you lock an account and set an expiration date for it. Password Info will let
you set password expiration limits to force a user to change the password or to render the
account inactive after a certain time. On the Groups panel, you can select the groups that the
user belongs to, adding or removing group membership.

Figure 30-3: Linuxconf user information
 Note You can also manage users with Linuxconf, as was done in older versions of Red Hat.

Managing Users with Webmin

To manage users with Webmin, select the Users and Groups entry in the System panel. This
displays a listing of all your users and groups. To create a new user, click on the Create a New
User link below the list of users. The Create User page displays segments for User Details,
Password Options, and Group Memberships. For User Details, you enter the Username (login
name), the Real Name, the Shell (login shell), the Home Directory, and the Password (See
Figure 30-4). For the shell entry, you can choose the shell you want from a drop-down menu.
For the home directory, you can type in the directory name or click on the button next to the

entry box labeled with three dots. This opens a file manager interface where you can click to
the directory and file you want.

Figure 30-4: Webmin user details

For the password options, you can specify the period when the user needs to change the
password and even set an expiration date. For group membership, you can select the primary
(default) group (usually users) and add any secondary groups.

Once a group is created, an entry for it will appear in the Users and Groups page. The user
name will appear as a link. To make any changes or to delete the group, simply click on its
name. The Edit User page will appear with entries for changing the password, changing
secondary groups, or deleting the user.

Managing Users with kuser

The K Desktop also provides a simple user management utility called kuser that works much
like Linuxconf (see Figure 30-5). You can use it to manage both users and groups. The
window is divided into two panes: one for users and the other for groups. Add, Edit, and
Delete icons easily enable you to add new users, change their configuration, or remove them.
When you add a new user, a new window opens with entries such as the shell and home
directory. To add the password, click Password and enter the password in the window
displayed.

Figure 30-5: kuser

Adding and Removing Users with useradd, usermod, and userdel

Red Hat also provides the useradd, usermod, and userdel commands to manage user
accounts. All these commands take in all their information as options on the command line. If
an option is not specified, they use predetermined default values. With the useradd
command, you enter values as options on the command line, such as the name of a user to
create a user account. It then creates a new login and directory of that name using all the
default features for a new account.

useradd chris

The useradd utility will first check the /etc/login.defs file for default values for creating a new
account. For those defaults not defined in /etc/login.defs file, useradd supplies its own. You
can display these defaults using the useradd command with the -D option. The default values
include the group name, the user ID, the home directory, the skel directory, and the login
shell. Values the user enters on the command line will override corresponding defaults. The
group name is the name of the group in which the new account is placed. By default, this is
other, which means the new account belongs to no group. The user ID is a number identifying
the user account. This starts at 500 on Red Hat with the first account and increments
automatically for each new account. The skel directory is the system directory that holds
copies of initialization files. These initialization files are copied into the user's new home
directory when it is created. The login shell is the pathname for the particular shell the user
plans to use.

The useradd command has options that correspond to each default value. Table 30-1 holds a
list of all the options you can use with the useradd command. You can use specific values in
place of any of these defaults when creating a particular account. The login is inaccessible
until you do. In the next example, the group name for the chris account is set to intro1 and
the user ID is set to 578:

useradd chris -g intro1 -u 578

Table 30-1: User and Group Management Commands
Command Description

Table 30-1: User and Group Management Commands
Command Description
useradd username options Adds new users to the system.
usermod username options Modifies a user's features.
userdel -r username Removes a user from the system.
useradd, usermod
Options
-c str Adds a comment to the user's entry in the system

password file: /etc/passwd.
-d dir Sets the home directory of the new user.
-D Displays defaults for all settings. Can also be used to

reset default settings for the home directory(-b), group (-
g), shell(-s), expiration date (-e), and password
expirations (-f).

-e mm/dd/yy Set an expiration date for the account (None, by default).
Specify by month/day/year.

-f days Sets the number of days an account remains active after
its password expires.

-g group Sets a group.
-G group Sets additional groups.
-m Create user's home directory if it does not exist.
-m -k skl-dir Sets the skeleton directory that holds skeleton files, such

as .profile files, which are copied to the user's home
directory automatically when it is created; the default is
/etc/skel.

-M Does not create user's home directory.
-n Turns off the Red Hat-specific default procedure whereby

a new group is created with the same name as a new
account's user name. For example, a new user, dylan,
would have as its group, dylan.

-p password Supply an encrypted password (crypt or MD5). With no
argument, the account is immediately disabled.

-r A Red Hat-specific option that will create a system
account (one whose user ID is lower than the minimum
set in logon.defs). No home directory is created unless
specified by -m.

-s shell Sets the login shell of the new user. This is the /bin/bash
by default, the BASH shell.

-u userid Sets the user ID of the new user; the default is the
increment of the highest number used so far.

Group Management
Commands

Table 30-1: User and Group Management Commands
Command Description
groupadd groupname options Creates a new group.
Group Management Commands
groupdel groupname options Removes a group.
groupmod groupname options Modifies a group.
useradd, usermod
Options
-g gid Change a group ID.
-n groupname Change a group name.
-f In Red Hat, detects if group already exists.
-r In Red Hat, creates a system group, one lower than the

group minimum specified in login.defs.

Once you add a new user login, you need to give the new login a password. Password entries
are placed in the /etc/passwd and /etc/shadow files. Use the passwd command to create a
new password for the user, as shown here. The password you enter will not appear on your
screen. You will be prompted to repeat the password. A message will then be issued
indicating that the password was successfully changed.

passwd chris
Changing password for user chris
New UNIX password:
Retype new UNIX password:
passwd: all authentication tokens updated successfully

The usermod command enables you to change the values for any of these features. You can
change the home directory or the user ID. You can even change the user name for the account.

When you want to remove a user from the system, you can use the userdel command to
delete the user's login. In the next example, the user chris is removed from the system:

userdel -r chris
 Note You can also add a new user to the system with the adduser utility. The Red Hat version

of adduser takes as its argument the user name for the account you are creating. adduser
has options similar to useradd.

Managing Groups

You can manage groups using either shell commands or window utilities like Linuxconf. The
system file that holds group entries is called /etc/group. The file consists of group records,
with one record per line and its fields separated by colons. A group record has four fields: a
group name, a password, its ID, and the users who are part of this group. The Password field
can be left blank. The fields for a group record are as follows:

Group name Name of the group; must be unique

Group name Name of the group; must be unique
Password Usually an asterisk to allow anyone to join the group; a password can

be added to control access
Group ID Number assigned by the system to identify this group
Users List of users that belong to the group

Here is an example of an entry in an /etc/group file. The group is called engines, there is no
password, the group ID is 100, and the users who are part of this group are chris, robert,
valerie, and aleina.

engines::100:chris,robert,valerie,aleina

As in the case of the /etc/passwd file, you can edit the /etc/group file directly using a text
editor, unless you have implemented shadow security. Instead of using either Linuxconf or
groupdel, you could simply delete the entry for that group in the /etc/group file. This can be
risky, however, if you make accidental changes. If you have implemented shadow security
measures, then group entries are kept in an encrypted /etc/gshadow file. You cannot edit this
file. Changes can only be made through a utility like groupmod.

As for users, you can also create a home directory for a group. Several administration utilities
like Linuxconf support this feature. To do so manually, you simply create a directory for the
group in the /home directory and change its group to that of the group, along with allowing
access by any member of the group. The following example creates a directory called engines
and changes its group to that of the engines group:

mkdir /home/engines
chgrp engines /home/engines

Then the read, write, and execute permissions for the group level should be set:

chmod g+rwx /home/engines

Any member of the engines group can now access the /home/engines directory and any
shared files placed therein. This directory becomes a shared directory for the group. You can,
in fact, use the same procedure to make other shared directories at any location on the file
system.

Files within the shared directory should also have their permissions set to allow access by
other users in the group. When a user places a file in a shared directory, permissions on that
file need to be changed to allow other members of the group to access it. A read permission
will let others display it, write lets them change it, and execute lets then run it (used for scripts
and programs). The following example first changes the group for the mymodel file to
engines. Then it copies the mymodel file to the /home/engines directory and then sets the
group read and write permission for the engines group.

$ chgrp engines mymodel
$ cp mymodel /home/engines
$ chmod g+rw /home/engines/mymodel

Managing Groups with the Red Hat User Manager

You can add, remove, and modify any groups easily with the Red Hat User Manager. First
access the Red Hat User Manager by clicking the User Manager icon in the System Settings
window, listed on the Start Here window. Then click on the tabbed panel labeled Groups in
the Red Hat User Manager window. All your current groups will be listed. There will be two
fields for each entry, the Group Name and the Group Members (see Figure 30-6).

Figure 30-6: The Linuxconf Group panel

To add a group, just click the New Group button. This opens a small window where you can
enter the group name. When you click the Refresh button, the new group will be listed in the
User Manager's Group listing. To add users as members of the group, select the group's entry
and click the Properties button. This opens a window with tabbed panels for both the Group
Data and the Group Users. The Groups Users panel will list all current users with checkboxes
beside their name (see Figure 30-7). Click the checkboxes for the user you want to add to the
group. Should you want to remove a user as a member of the group, click its checkbox to
remove its checkmark. Click Apply to apply your changes.

Figure 30-7: Linuxconf Group Specification panel

Should you want to remove a group, just select its entry in the User Manger's Group panel and
then click the Delete button.

 Note You can also mange groups with Linuxconf.

Be sure to check the permissions and group ownership for any group directory that you create.
The group permissions need to be set to read, write, and execute for full access. The read
permission will let users list files in the directory, the write will let users add and remove files,
and the execute permission lets users change to that directory. As the root user, you can use
chmod to set these permissions:

chmod 775 /home/golphpros

Then, to change the group ownership, you use chgrp, as shown here:

chgrp golphpros /home/golphpros

In Gnome, you can check and change permission with the Gnome file manager by right-
clicking on the directory name and selecting Properties. Then select the Permissions panel.
For full access, make sure the row of Group Permission buttons is selected. Also, select the
group from the list of groups in the Group drop-down menu-in this example, golphpros.

Managing Groups Using Webmin

To manage groups in Webmin, you select the Users and Groups entry in the Systems panel to
display the Users and Groups page. Move down to the group listings. Here, groups are listed
with their names functioning as links to an Edit Group page for that group. In the Edit Group
page, you can add a password, change the ID, or add new users to the group. To create a
group, click on the Create New Group link following the Group list on the Users and Groups
page. This opens a Create Group page where you can add a group name, add a password, and
add users to the group. The group ID is provided for you, which you can then change if you
wish. When you add users to a group, a new window opens up with two panes, one listing all
users and the other for the users you have selected for this group. Each user name is a link.
Clicking on a user name in the All Users lists adds it to the Selected Users list. Clicking on a
name in the Selected Users list removes it from that list. When you click the OK button, the
names you have selected will appear in the Members box on the Create Group page.

Managing Groups Using groupadd, groupmod, and groupdel

You can also manage groups with the groupadd, groupmod, and groupdel commands. With
the groupadd command, you can create new groups. When you add a group to the system,
the system places the group's name in the /etc/group file and gives it a group ID number. If
shadow security is in place, then changes are made to the /etc/gshadow file. The groupadd
command only creates the group category. Users are individually added to the group. In the
next example, the groupadd command creates the engines group:

groupadd engines

You can delete a group with the groupdel command. In the next example, the engines group
is deleted:

groupdel engines

You can change the name of a group or its ID using the groupmod command. Enter
groupmod -g with the new ID number and the group name. To change the name of a group,
you use the -n option. Enter groupmod -n with the new name of the group, followed by the
current name. In the next example, the engines group has its name changed to trains:

groupmod -n trains engines

Disk Quotas

With disk quotas, you can control how much disk space a particular user makes use of on
your system. On your Linux system, unused disk space is held as a common resource that
each user can access as they need it. As a user creates more files, they take the space they
need from the pool of available disk space. In this sense, all the users are sharing this one
resource of unused disk space. However, if one user were to use up all the remaining disk
space, then none of the other users would be able to create files or even run programs. To
counter this problem, you can create disk quotas on particular users, limiting the amount of
available disk space they can use.

 Note On Linuxconf, you can enable disk quotas and set general controls. To enable quotas for
a disk, first select the disk in the Access Local Drive panel under File Systems in the
Config panel. Then click the disk's Options panel and click on the User Quota Enabled
and Group Quota Enabled check boxes. Once you accept and activate the changes, you
can then access the Set Quota Defaults panel under File systems. Here, you can set user
and group defaults for disk space and file limits as well as grace periods.

Quotas are enabled using the quotacheck and quotaon programs. On Red Hat, they are
executed in the /etc/rc.d/rc.sysinit script, which is run whenever you start up your system.
Each partition then needs to be mounted with the quota options, usrquota or grpquota.
usrquota enables quota controls and users, and grpquota works for groups. These options
are usually placed in the mount entry in the /etc/fstab file for a particular partition. For
example, to mount the /dev/hda6 hard disk partition mounted to the /home directory with
support for user and group quotas, you would require a mount entry like the following:

/dev/hda6 /home ext2 defaults,usrquota,grpquota 1 1

You also need to create quota.user and quota.group files for each partition for which you
enable quotas. These are the quota databases used to hold the quota information for each user
and group. You can create these files by running the quotacheck command with the -a option
or the device name of the file system where you want to enable quotas.

The limit you set for a quota can be hard or soft. A hard limit will deny a user the ability to
exceed his or her quota, whereas a soft limit will just issue a warning. For the soft limit, you
can designate a grace period during which time the user has the chance to reduce his or her
disk space below the limit. If the disk space still exceeds the limit after the grace period
expires, then the user can be denied access to his or her account.

You can set disk quotas using the edquota command or the User Account panels in
Linuxconf. On Linuxconf, select a user from the User Accounts listing and then select that
user's Disk Quota panel. Here, you can enter the hard and soft limits along with the grace

period. You can also select a default for these limits. The default is set using the Set Quota
Defaults panel in the File System menu. There are entries for both group and user soft and
hard defaults. Linuxconf will allow you to place limits on both the disk size and the number
of files.

The edquota command is run from the command line. With it you can access the quota record
for a particular user and group, which is maintained in the disk quota database. You can also
set default quotas that will be applied to any user or group on the file system for which quotas
have not been set. edquota will open the record in your default editor, and you can use your
editor to make any changes. To open the record for a particular user, use the -u option and the
user name as an argument for edquota (see Table 30-2). The following example opens the
disk quota record for the user larisa:

edquota -u larisa

Table 30-2: The options edquota and quota
edquota Description
-u Edit the user quota. This is the default.
-g Edit the group quota.
-p Duplicate the quotas of the prototypical user specified for each

user specified. This is the normal mechanism used to initialize
quotas for groups of users.

-t Edit the soft time limits for each file system.
quota Description
-g Print group quotas for the group of which the user is a member.
-u Print the user's quota.
-v Will display quotas on file systems where no storage is allocated.
-q Print information on file systems where usage is over quota.

The quota record begins with the hard disk device name and the blocks of memory and inodes
in use. The Limits segments have parameters for soft and hard limits. If these entries are 0,
there are no limits in place. You can set both hard and soft limits, using the hard limit as a
firm restriction. Blocks in Linux are currently about 1,000 bytes. The inodes are used by files
to hold information about the memory blocks making up a file. To set the time limit for a soft
limit, you use the edquota command with the -t option. The following example displays the
quota record for larisa:

Quotas for user larisa:
/dev/hda3: blocks in use: 9000, limits (soft = 40000, hard = 60000)
 inodes in use: 321, limits (soft = 0, hard = 0)

These records are maintained in the quota database for that partition. Each partition that has
quotas enabled will have its own quota database. You can check the validity of your quota
database with the quotacheck command. You can turn quotas on an off using the quotaon
and quotaoff commands. When you start up your system, quotacheck is run to check the
quota databases and then quotaon is run to turn on quotas.

As the system administrator, you can use the repquota command to generate a summary of
memory usage, checking to see what users are approaching or exceeding quota limits.
Individual users can use the quota command to check their memory use and how much disk
space they have left in their quota (see Table 30-2).

Lightweight Directory Access Protocol

The Lightweight Directory Access Protocol (LDAP) is designed to implement network-
accessible directories of users, providing information about them such as their e-mail address
or phone numbers. Such directories can also be used for authentication purposes, identifying
that a certain user belongs to a specified network. You can find out more information on
LDAP at www.ldapman.org. You can think of an LDAP directory as an Internet-accessible
phone book, where anyone can look you up to find your e-mail address or other information.
In fact, it may be more accurate to refer to such directories as databases. They are databases of
user information, accessible over networks like the Internet. Normally, the users on a local
network are spread across several different systems. Ordinarily, to obtain information about a
user, you would have to know what system the user is on and then query that system. With
LDAP, user information for all users on a network is kept in the LDAP server. You only have
to query the network's LDAP server to obtain information about a user. For example,
Sendmail can use LDAP to look up user addresses.

With LDAP, you can also more carefully control the kind of information given and to whom.
Using a PAM module (pam_ldap), LDAP can perform user authentication tasks, providing
centralized authentication for users. Login operations that users perform for different services
such as mail POP server, system login, and Samba logins can all be carried out through LDAP
using a single PAM secured user ID and password.

 Note On Red Hat, you can use the GQ (Gnome) and kldap (KDE) clients to query LDAP
servers.

LDAP directories are implemented as clients and servers, where you use an LDAP client to
access an LDAP server that manages the LDAP database. Red Hat uses OpenLDAP, an open
source version of LDAP (you can find out more about OpenLDAP at www.openldap.org).
This package includes an LDAP server (slapd), an LDAP replication server (slurpd), an
LDAP client, and tools. slurpd is used to update other LDAP servers on your network, should
you have more than one. Once the LDAP server is installed, you can start, stop, and restart the
LDAP server with the ldap startup script.

service ldaprestart

An entry in an LDAP database will consist of a name (known as a distinguished name)
followed by a set of attributes and their values. For example, a name could be a user name and
the attribute would be the user's e-mail address, the address being the attribute's value.
Allowable attributes are determined by object class sets defined in the /etc/openldap/schema
directory. To actually make entries in the LDAP database, you use the ldapadd and
ldapmodify utilities. With ldapdelete, you can remove entries. Once you have created an
LDAP database, you can then query it, through the LDAP server, with ldapsearch. You can
also create a text file of LDAP entries using an LDAP Data Interchange Format (LDIF)
format. Such text files can then be read in all at once to the LDAP database using the slapadd
utility.

 Note You can enable and designate LDAP servers with the authconfig tool. You can also use
the LDAP Browser/Editor or the Gnome Directory Administrator to manage and edit
LDAP directories.

All LDAP configuration files are kept in the /etc/openldap directory. These include
sldap.conf, the LDAP server configuration file, and ldap, the LDAP clients and tools
configuration file. In the sldap.conf file, the suffix entry should be changed to your own
network's domain address. This is the network that will be serviced by the LDAP server. You
will have to perform the same task for the ldap.conf file, to enable use of your LDAP clients
and tools like ldapadd. For LDAP authentication, you will to make the same modifications for
nss_ldap and pam_ldap files. To use LDAP for authentication, you will need to configure
PAM to use it, as well as migrate authentication files to the LDAP format. The
/usr/share/openldap/migration directory holds scripts you can use to translate the old files
into LDAP versions.

Pluggable Authentication Modules (PAM)

Pluggable Authentication Modules (PAM) is an authentication service that lets a system
determine the method of authentication to be performed for users. In a Linux system,
authentication has traditionally been performed by looking up passwords. When a user logs
in, the login process will look up his or her password in the password file. With PAM, users'
requests for authentication are directed to PAM, which in turn will use a specified method to
authenticate the user. This could be a simple password lookup or a request to an LDAP server.
But it is PAM that provides authentication, not a direct password lookup by the user or
application. In this respect, authentication becomes centralized and controlled by a specific
service, PAM. The actual authentication procedures can be dynamically configured by the
system administrator. Authentication is carried out by modules that can vary according to the
kind of authentication needed. An administrator can add or replace modules by simply
changing the PAM configuration files. See the PAM Web site at
www.kernel.org/pub/linux/libs/pam for more information and a listing of PAM modules.
On Red Hat, PAM modules are located in the /lib/security directory.

On Red Hat, PAM uses different configuration files for different services that would request
authentication. Such configuration files are kept in the /etc/pam.d directory. For example,
you have a configuration file for logging into your system (/etc/pam. d/login), one for the
graphical login (/etc/pam.d/gdm), and one for access your Samba server
(/etc/pam.d/samba). A default PAM configuration file, called /etc/pam.d/other, is invoked if
no services file is present. On Red Hat, the system-auth file contains standard authentication
modules for system services generated by authconfig and is invoked in many of the other
configuration files.

A PAM configuration file contains a list of modules to be used for the authentication. They
have the following format:

module-type control-flag module-path module-arguments

The module-path is the module to be run, and module-arguments are the parameters you want
passed to that module. Though there are a few generic arguments, most modules have their
own. The module-type refers to different groups of authentication management: account,
authentication, session, and password. The account management performs account

verification, checking such account aspects as whether the user has access, or whether the
password has expired. Authentication (auth) verifies who the user is, usually through a
password confirmation. Password management performs authentication updates such as
password changes. Session management refers to tasks performed before a service is accessed
and before it is left. These include tasks like initiating a log of a user's activity or mounting
and unmounting home directories.

 Note As an alternative to the /etc/pam.d directory, you could create one configuration file
called the /etc/pam.conf file. Entries in this file have a service field, which refers to the
application that the module is used for. If the /etc/pam.d directory exits, as it does in
Red Hat, /etc/pam.conf is automatically ignored.

The control-flag field indicates how PAM will respond if the module fails. The control can be
a simple directive or a more complicated response that can specify return codes like open_err
with actions to take. The simple directives are requisite, required, sufficient, and optional.
The requisite directive will end the authentication process immediately if the module fails to
authenticate. The required directive will only end the authentication after the remaining
modules are run. The sufficient directive indicates that success of this module is enough to
provide authentication unless a previous required module has failed. The optional directive
indicates the module's success is not needed unless it is the only authentication module for its
service. If you specify return codes, you can refine the conditions for authentication failure or
success. Return codes can be given values such as die or ok. The open_err return code could
be given the action die, which would stop all authentication and return failure.

The /etc/pam.d/ftpwu configuration file for the FTP server is shown here.

ftpwu

#%PAM-1.0
auth required /lib/security/pam_listfile.so item=user
 sense=deny file=/etc/ftpusers onerr=succeed
auth required /lib/security/pam_stack.so service=system-auth
auth required /lib/security/pam_shells.so
account required /lib/security/pam_stack.so service=system-auth
session required /lib/security/pam_stack.so service=system-auth

Chapter 31: Software Management
Overview

Installing or updating software packages has always been a simple process in Linux due to the
widespread use of the Red Hat Package Manager. Instead of using a standard tar archive,
software is packaged in a special archive for use with the Red Hat Package Manager. These
archives have become known as RPMs, where RPM stands for Red Hat Package Manager.
An RPM archive contains all the program files, configuration files, data files, and even
documentation that constitute a software application. With one simple operation, the Red Hat
Package Manager installs all these for you from an RPM software package. You can even
create your own RPM packages. You can use any of several RPM window-based utilities to
manage your RPM packages, installing new ones or uninstalling ones you have. These
utilities provide an easy-to-use interface for managing your packages, enabling you to obtain

detailed information on a package easily, including a complete listing of the files it installs.
Also, as part of their administration tools, distributions like Red Hat also provide software
management for packages on their CD-ROMs.

 Note The Red Hat Update Agent, through the Red Hat Network, will automatically download
and update any Red Hat RPM packages for you that are installed on your system and are
part of the Red Hat distribution.

You can also download source code versions of applications, and then compile and install
them on your system. Where this process once was complex, it has been significantly
streamlined with the addition of configure scripts. Most current source code, including GNU
software, is distributed with a configure script. The configure script automatically detects
your system configuration and generates a Makefile with which a binary file is created
compatible to your system. With three simple commands, you can compile and install
complex source code on any system.

Extensive online sources exist for downloading Linux software. Sites are available for
particular kinds of applications, such as Gnome and KDE, as well as for particular
distributions, such as Red Hat. As you have seen, the Red Hat Network can automatically
download and update software installed from RPM packages that make up the Red Hat
distribution (see Chapter 4). Some sites are repositories for RPM packages, such as
rpmfind.net, while others like freshmeat.net refer you to original development sites where
you can download software packages. The freshmeat.net and www.linuxapps.com sites are
useful for finding out about new available software. Many of the open source Linux projects
can now be found at sourceforge.net. Here you will find detailed documentation and recent
versions of software packages. For applications designed for the Gnome desktop, you can
check www.gnome.org, you can find KDE applications at apps.kde.com. For particular
database and office applications, you can download software packages directly from the
company's Web site, such as www.sun.com for the StarOffice office suite and
www.oracle.com for the Oracle database (see Chapters 22 and 23). For RPM packages ,
which are not part of a Red Hat distribution, you can check the contrib and powertools
directories on the Red Hat FTP site (ftp.redhat.com). Here, you can find Red Hat RPM
packages for applications, such as ProFTPD and htDig. Table 31-1 lists several popular Linux
software sites.

Table 31-1: Linux Software Sites
FTP and Web Sites Applications
ftp.redhat.com Software packaged in RPM packages for

Red Hat. Check the contrib and powertools
directories for contributed software.

freshmeat.net Linux software, includes RPMs.
linuxapps.com Linux software, includes RPMs.
rpmfind.net RPM package repository.
www.sourceforge.net Linux open source software projects.
www.gnome.org Gnome software, includes RPMs.
apps.kde.com KDE software, includes RPMs.
http://home.xnet.com/~blatura/linapps.shtml Linux applications and utilities page.

Table 31-1: Linux Software Sites
FTP and Web Sites Applications
www.filewatcher.org Linux FTP site watcher.
www.gnu.org GNU archive.
www.ximian.com Ximian Gnome, office applications for

Gnome.
koffice.kde.com The KDE KOffice suite of office

applications.
www.xdt.com/ar/linux-snd Linux MIDI and sound pages.
www.linuxvideo.org The Linux Video and DVD Project, LiViD.
www.opensound.com Open Sound System drivers.
metalab.unc.edu Extensive Linux archive (formerly

sunsite.unc.edu).
happypenguin.org Linux Game Tome.
www.linuxgames.com Linux games.
www.linuxquake.com Quake.
 Note Red Hat provides many RPM packaged applications as part of its Power Tools

collection. Check the powertools directory for your release, or download the powertools
disk image.

The software packages on RPM sites like Red Hat and rpmfind.net will have the file
extension .rpm. RPM packages that contain source code have an extension .src.rpm. Other
packages such as those in the form of source code that you will need to compile come in a
variety of compressed archives. These will commonly have the extensions .tar.gz or tar.bz2.
They are explained in detail later in the chapter. Table 31-2 lists several common file
extensions that you will find for the great variety of Linux software packages available to you.
See Chapter 32 for more details on archives and compression.

Table 31-2: Linux Software Package File Extensions
Extension File
.rpm Software package created with the Red Hat Software Package

Manager (RPM).
.src.rpm Software packages that are source code versions of applications,

created with the Red Hat Software Package Manager (RPM).
.gz gzip compressed file (use gnunzip to decompress, also z option with

tar, as in xvzf).
.bz2 bzip2 compressed file (use bunzip2 to decompress, also j option

with tar, as in xvjf).
.tar A tar archive file, use tar with xvf to extract.
.tar.gz gzip compressed tar archive file. Can use z option with tar, tar xvzf

archive.
.tar.bz2 bzip2 compressed tar archive file. Can use j option with tar, tar

xvjf archive.

Table 31-2: Linux Software Package File Extensions
Extension File
tar.tz tar archive file compressed with the compress command.
tar.Z File compressed with the compress command (use the decompress

command to decompress).
.deb Debian Linux package.

Red Hat Package Manager (RPM)

Several Linux distributions, including Red Hat, OpenLinux, and SuSE, use RPM to organize
Linux software into packages you can automatically install or remove. An RPM software
package operates as its own installation program for a software application. A Linux software
application often consists of several files that need to be installed in different directories. The
program itself is most likely placed in a directory called /usr/bin, online manual files go in
another directory, and library files in yet another directory. In addition, the installation may
require modification of certain configuration files on your system. The RPM software
package performs all these tasks for you. Also, if you later decide you don't want a specific
application, you can uninstall packages to remove all the files and configuration information
from your system. RPM works similarly to the Windows Install Wizard, automatically
installing software, including configuration, documentation, image, sample, and program
files, along with any other files an application may use. All are installed in their appropriate
directories on your system. RPM maintains a database of installed software, keeping track of
all the files installed. This enables you to use RPM also to uninstall software, automatically
removing all files that are part of the application.

To install and uninstall RPM packages, you can use the rpm command on a shell command
line or any available RPM window-based program, such as Kpackage or GnomeRPM.
Although you should download RPM packages from your particular distribution, numerous
RPM software packages are designed to run on any Linux system. Many of these are located
at distribution contrib directories. You can learn more about RPM at its Web site at
www.rpm.org. The site contains up-to-date versions for RPM, documentation, and RPM
support programs, such as rpm2html and rpm2cpio. rpm2html takes a directory containing
RPM packages and generates Web pages listing those packages as links that can be used to
download them. rpm2cpio is Perl script to extract RPMs. You can obtain further
documentation from the RPM Documentation Project site at www.rpmdp.org.

The RPM packages on your CD-ROMs only represent a small portion of the software
packages available for Linux. You can download additional software in the form of RPM
packages from distribution contribution locations, such as the contrib directory in the Red
Hat FTP site at ftp.redhat.com. In addition, these packages are organized into lib5 and lib6
directories. lib5 refers to the packages using the older libraries, whereas lib6 refers to those
using the current GNU 2.x libraries. For Red Hat 6.0 and later, you should use the lib6
versions-though many packages still use the lib5 versions, which also work.

An extensive repository for RPM packages is also located at http://rpmfind.net/linux/RPM.
Packages here are indexed according to distribution, group, and name. It includes packages
for every distribution, including Red Hat. From http://rpmfind.net, you can download the
rpmfind command that enables you to search for RPM packages, either on your local system

or on the RPM repository at rpmfind.net. You can even use rpmfind to download and
update packages. rpmfind detects your system's distribution and lists RPM packages for it.
Search results also tell you on what other packages a given RPM can depend. With the --
appropos option, you can use more general terms to locate a package, instead of filename
patterns. With the --upgrade option, you can download and install newer versions of installed
packages. The rpmfind command also sets up a .rpmfind configuration file, where you can
specify such features as a download directory, the remote servers to search, and the location
of local RPM packages on your system.

 Note RPM packages with the term noarch are used for architecture-independent packages.
This means that they are designed to install on any Linux distribution. Packages without
noarch may be distribution dependent, with some designed to install on Red Hat and
others for distributions like Caldera and Debian.

Your Red Hat distribution CD-ROM included with this book contains an extensive set of
applications located in an RPMS directory on the CD-ROM, RedHat/RPMS. You can install
or uninstall any of these packages using an rpm command, a GUI RPM utility, or the GMC
Gnome desktop. To install a software package from your CD-ROM using the rpm command,
it is easier to move first to the RPMS directory and then install the package you want. Be sure
to mount the CD-ROM first before you try to access it.

You can download additional RPM packages not located on your CD-ROM from the Red Hat
FTP site at ftp.redhat.com. Web sites for the particular software you want may also have
RPM packages already set up for you for Red Hat. For example, you can obtain the ProFTPD
RPM package for Red Hat from ftp.redhat.com, and the current Red Hat or Linuxconf RPM
packages from the Linuxconf Web site (see Chapter 30). You could place these packages in a
directory on your system, and then use either rpm or a GUI RPM utility such as GnomeRPM
to install it. Normally, you should always try to use the version of the RPM package set up for
your distribution. In many cases, attempting to install an RPM package meant for a different
distribution may fail. Popular RPM package managers are listed here:

Kpackage K Desktop RPM package manager
GnomeRPM GnomeRPM package manager
rpm The shell command to manage RPM packages

The K Desktop Package Manager: kpackage

The KDE desktop provides a powerful and easy-to-use RPM package manager called
Kpackage (see Figure 31-1). You run Kpackage under any window manager or desktop
(including Gnome), as long as you have installed the K Desktop on your system. You can
start Kpackage by selecting its entry in the K menu Utility menu or by entering the kpackage
command in a terminal window.

Figure 31-1: The KDE Kpackage RPM package manager

The right side of Kpackage contains two tabbed panels: one for Properties and the other for
the File List. The Properties panel displays information about the software in the currently
selected RPM package, including the version number and the authors. The File List panel lists
all the files contained in the software package, including README files. If you are using
Kpackage on the K Desktop, you can click any text file in the File List, and it is displayed by
the text editor. This is a convenient way to read installation files, such as README or install
files. To uninstall a package, select it and click Uninstall.

The list of installed packages is often extensive. To locate a particular package, select the Find
entry in the File menu. If the Substring check box is selected, you can use a pattern to search
for your package instead of a complete name. The Package list in the left pane moves to the
first package found, highlighting it. If you use a pattern and more choices exist, you can move
to the next one by selecting the Find menu item again. The Kpackage application also enables
you to search for a particular file in a package. Select the Find File entry in the File menu and
enter the name of the file to locate. You have to use the full pathname for the file. Patterns are
not supported.

You can also use Kpackage to install RPM packages. You must know where on the system
the packages are located. For example, on Red Hat systems, they are in the RedHat/RPMS
directory. If you mounted the CD-ROM at /mnt/cdrom, the full pathname should be
/mnt/cdrom/RedHat/RPMS. Packages you download from FTP sites would be in whatever
directory you downloaded them to-say, /root/download. To install a package, select Open
from the File menu. This opens a File Browser dialog box where you can move to the
directory you want and select the RPM package. An Installation dialog box is displayed with
options that include updating and testing the package. You select Update for packages that are
updated versions of ones already installed. With the Test option, you can test an installation
without actually having to install it.

GnomeRPM

Although not written by Red Hat, GnomeRPM provides an effective and easy-to-use interface
for managing RPM packages on your Gnome desktop. It runs on any window manager,
provided Gnome is installed on your system. As Figure 31-2 shows, the GnomeRPM window
displays two panes, the left one showing a tree listing categories of different installed RPM

packages. Expand a category to display the packages in the right pane. You can query a
package by selecting it and clicking the Uninstall icon in the icon bar, or by right-clicking it
and selecting Uninstall from the pop-up menu. You can use the same method for querying
packages and for displaying information and file listings. You can select several packages at
once from different categories by CTRL-clicking their icons. A selected package darkens.
When you select uninstall, all those packages are uninstalled. CTRL-click the package again
to deselect it. Click Unselect to deselect all the packages you selected. The number of selected
packages is shown in the lower-left corner of the window. The GnomeRPM package also
features a find utility, which you can use to locate RPM packages easily. In the find window,
you can then query or uninstall the package.

Figure 31-2: The GnomeRPM main window

To install new packages with GnomeRPM, click the Install icon. This opens a window that
displays the selected packages to install. You then click Add to open a window for locating
packages on your system. You can add as many windows as you want to the list. Click Install
to install the packages. To upgrade a package that is already installed, click Upgrade and
follow the same procedure.

GnomeRPM supports drag-and-drop operations from the Gnome desktop and file manager.
You can drag one or more RPM packages from a file manager window to the GnomeRPM
install dialog window. You can then install or query selected packages. GnomeRPM also
enables you to browse through packages available with the rpmfind.net system. Click the
Web Find button. The listing of packages is then downloaded and displayed in the tree menu.
Use the tree menu to navigate to the package you want.

KDE and Gnome File Managers

On Gnome, you can install RPM packages directly from the GMC file manager, without
starting up a special utility such as GnomeRPM (Nautilus does not yet support this feature).
Use the GMC file manager window to access the directory with your package, such as your
distribution CD-ROM. Then right-click the package name or icon. In the pop-up menu, you
can select the Install option to install the package, or Update to update it. You can also simply
just double-click the package. The Gnome file manager automatically detects that it is an
RPM package, checks to see if it is installed, and then installs it for you. It will also perform a
dependency check to see if there are any conflicts or needed libraries. If there are any

problems, it will halt the installation and display any conflict or dependency warnings. You
can use this same method for FTP sites. The Gnome file manager is Internet-aware. You can
enter a URL for an FTP site in its Location box to access the site. Be sure to include the FTP
protocol in the URL, ftp://. When you locate the package, right-click it and select Install or
Update. The file is downloaded and then automatically installed on your system.

 Note On Gnome, if you just want to find out what a package is, along with a list of files in
that package, you can right-click on the package and select the Show Info entry. A
window opens up displaying a description of the software and a list of all the files in the
package. There are also buttons to let you install or upgrade the software.

Problems can arise either if the application you want to install is already installed or if it
requires that other application be installed first (upgrades are considered new software and are
not considered a problem). In this case a window titled "Installation Problems" will appear
asking you "Do you want to ignore these problems". The window will display a list of
problems encountered, such as the software is already installed or it requires other software
packages to be installed first. You should cancel the install operation by clicking on the NO
button, or, if the NO button is selected, press ENTER. You do not want to ignore the
problems. Clicking YES instead will force the installation of the software anyway, which may
overwrite previous configuration files or let you try to run the application without required
supporting software such as needed libraries.

The KDE file manager also enables you to install RPM packages, though it uses Kpackage to
perform the actual installation. Locate an RPM file on your system using the file manager,
and then single-click its icon or name. This automatically opens Kpackage with the RPM
package loaded, which is then displayed on a window with panels for the package information
and the list of files in it. At the bottom of the panels is an Install button. Click it to install the
package. Because the KDE file manager is Internet-aware, you can use this same method both
to download and install RPM packages from FTP sites. Locate the FTP site with the file
manager (enter its URL in the Location box), and then locate your package. Once your
package is listed in the file manager window, click it. The package is then automatically
downloaded and Kpackage starts up, showing the package. Click the Install button to install it.

Updating Software

As noted in Chapter 4, you can update your Red Hat system automatically using the Red Hat
Update Agent. You can also download packages using an FTP client, Web browser, or the
Gnome or KDE file managers, and then use the rpm command to install the software. Also,
you can use Kpackage or Gnome RPM to access the distribution FTP sites directly, download
the package, and automatically install it on your system. Just enter the FTP URL for the site in
the Location box.

For the rpm command, you use the -U option to upgrade packages. In the following example,
the rpm command with the -Uvh option installs an upgrade for Linuxconf:

$ rpm -Uvh linuxconf-1.25r7-1.i386.rpm

Webmin and Linuxconf

With either Webmin or Linuxconf, you can also manage software installations. For Webmin,
select the Software Packages icon in the System page. From the Software Packages page, you
can then view installed packages or install new ones, as well as search for packages. Clicking
an entry for an installed package will display a page showing package information as well as a
button for uninstalling the package. You can install new packages from your local system or
from remote FTP sites.

The recent version of Linuxconf also provides software management modules. On the Control
tab open the Package Management (RPM) entry to list several installation tasks. You can
install just one package or several packages in a specified directory. You can also browse
uninstalled packages, selecting the one you want. You will have to specify the directory in
which they are located. Use the Browse Installed Packages entry to list all your installed
packages by category. Here you can obtain information about a package, as well as uninstall
it.

Command Line Installation: rpm

If you do not have access to the desktop or you prefer to work from the command line
interface, you can use the rpm command to manage and install software packages. rpm is the
command that actually performs installation, removal, and queries of software packages. In
fact, GnomeRPM and Kpackage use the rpm command to install and remove packages. An
RPM package is an archive of software files that include information about how to install
those files. The filenames for RPM packages end with .rpm, indicating software packages
that can be installed by the Red Hat Package Manager.

With the rpm command, you can maintain packages, query them, build your own, and verify
the ones you have. Maintaining packages involves installing new ones, upgrading to new
versions, and uninstalling packages. The rpm command uses a set of options to determine
what action to take. In addition, certain tasks, such as installing or querying packages, have
their own options that further qualify the kind of action they take. For example, the -q option
queries a package, but when combined with the -l option it lists all the files in that package.
Table 31-3 lists the set of rpm options.

Table 31-3: Red Hat Package Manager (RPM) Options
Mode of Operation Effect
rpm -ioptions package-file Installs a package; the complete name of the package file is

required.
rpm -eoptions package-name Uninstalls (erases) a package; you only need the name of the

package, often one word.
rpm -qoptions package-name Queries a package; an option can be a package name or a

further option and package name, or an option applied to all
packages.

rpm -Uoptions package-name Upgrade; same as install, but any previous version is
removed.

rpm -bOoptions package-
specifications

Builds your own RPM package.

Table 31-3: Red Hat Package Manager (RPM) Options
Mode of Operation Effect
rpm -Foptions package-name Upgrade, but only if package is currently installed.
rpm -verifyoptions Verifies a package is correctly installed; uses same options as

query; you can use -V or -y in place of -verify.
--nodeps Installs without doing any dependency checks.
--force Forces installation despite conflicts.
--percent Displays percentage of package during installation.
--test Tests installation; does not install, only checks for conflicts.
-h Displays # symbols as package is installed.
--excludedocs Excludes documentation files.
Uninstall Option (to be used with -e)
--test Tests uninstall; does not remove, only checks for what is to

be removed.
--nodeps Uninstalls without checking for dependencies.
--allmatches Removes all versions of package.
Query Option (to be used with -q)
package-name Queries package.
-qa Queries all packages.
-qf filename Queries package that owns filename.
-qR List packages on which this package depends.
-qp package-name Queries an uninstalled package.
-qi Displays all package information.
-ql Lists files in package.
-qd Lists only documentation files in package.
Query Options (to be used with -q)
-qc Lists only configuration files in package.
-q --dump Lists only files with complete details.
General Options (to be used with any option)
-vv Debug; displays descriptions of all actions taken.
--quit Displays only error messages.
--version Displays rpm version number.
--help Displays detailed use message.
--rootdirectory Uses directory as top-level directory for all operations

(instead of root).
--dbpathdirectory Uses RPM database in the specified directory.
--dbpath cmd Pipes output of RPM to the command cmd.
--rebuilddb Rebuilds the RPM database; can use with -root and -dbpath

options.

Table 31-3: Red Hat Package Manager (RPM) Options
Mode of Operation Effect
--initdb Builds a new RPM database; -root and -dbpath options.
Other Sources of Information
RPM-HOWTO More detailed information, particularly on how to build your

own RPM packages.
man rpm Detailed list of options.
www.rpm.org RPM Web site with latest RPM software.
www.rpmdp.org RPM Documentation Project.

You use the -i option to install a new software package and the -U option to update a currently
installed package with a newer version. With a -e option, rpm uninstalls the package. The -q
option tells you if a package is already installed, and the -qa option displays a list of all
installed packages. Piping this output to a pager utility, such as more, is best.

rpm -qa | more

In the next example, the user checks to see if mozilla is already installed on the system.
Notice the full filename of the RPM archive is unnecessary. If the package is installed, your
system has already registered its name and where it is located.

rpm -q mozilla
Mozilla-0.7015
 Note Keep in mind the distinction between the installed software package name and the

package filename. The filename will end in a .rpm extension and can only be queried
with a p option.

You can combine the q options with the i or l option to display information about the
package. The options -qi display information about the software, such as the version number
or author (-qpi queries an uninstalled package file). The option -ql displays a listing of all the
files in the software package. The --h option provides a complete list of rpm options.
Common query options are shown here.

-q application Checks to see if an application is installed.
-qa application Lists all installed RPM applications.
-qf filename Queries application that owns filename.
-qR application List applications on which this application depends.
-qi application Displays all application information.
-ql application Lists files in application.
-qd application Lists only documentation files in application.
-qc application Lists only configuration files in application.

If you want to query an RPM package file, a file ending with .rpm, you use the same query
options, but with the p option added, as shown here:

-qpi RPM-file Displays all package information in the RPM package.
-qpl RPM-file Lists files in the RPM package.
-qpd RPM-file Lists only documentation files in the RPM package.
-qpc RPM-file Lists only configuration files in the RPM package.
-qpR RPM-file List packages on which this RPM package depends.

If your RPM query outputs a long list of data, like an extensive list of files, you can pipe the
output to the more command to look at it screen by screen, or even redirect the output to a
file.

rpm -ql mozilla | more
rpm -qpl openmotif-2.1.30-1_ICS.386.rpm > mytemp

The syntax for the rpm command is as follows (rpm-package-name is the name of the
software package you want to install):

rpm options rpm-package-name
 Note The software package filename is usually lengthy, including information about version

and release in its name. All end with .rpm.

If you are installing from a CD-ROM, you can change to the CD-ROM's RedHat/RPMS
directory, which holds the RPM packages. An ls command lists all the software packages. If
you know how the name of a package begins, you should include that with the ls command
and an attached *. The list of packages is extensive and does not all fit on one screen. This is
helpful for displaying the detailed name of the package. The following example lists most X
Window System packages:

ls x*

You use the -i option to install new packages and the -U option to update currently installed
packages with new versions. If you try to use the -i option to install a newer version of an
installed package, you receive an error saying the package is already installed. In the next
example, the user first installs a new package with the -i option, and then updates a package
with the -U option. Including the -v and -h options is customary. Here, -v is the verbose
option that displays all files as they are installed, and -h displays a cross-hatch symbol
periodically to show RPM is still working.

In the following example, the user installs the software package for the XV screen capture
program available from Red Hat powertools directory or from rpmfind.net. Notice the full
filename is entered. To list the full name, you can use the ls command with the first few
characters and an asterisk, ls htdig*. The h option displays # symbols as the installation takes
place. The rpm command with the -q option is then used to check that the software was
installed. For installed packages only, the software name needs to be used-in this case, xv-
3.10a-23.

 [root@turtle mypackages]# ls xv*
xv-3.10a-23.i386.rpm
[root@turtle mypackages]# rpm -ivh xv-3.10a-23.i386.rpm
xv-3.10a-23 ##
[root@turtle mypackages]# rpm -q xv

xv-3.10a-23

To display information about the installed package, use -qi, and -ql displays a listing of the
files a given RPM package contains.

rpm -qi xv
rpm -ql xv

To display information taken directly from an RPM package, you add the p qualifier to the q
options. The -qpi combination displays information about a specific package, and -qpl
displays a listing of the files a given RPM package contains. In this case, you must specify the
entire filename of the RPM package. You can avoid having to enter the entire name simply by
entering a unique part of the name and using the * filename matching character to generate
the rest.

[root@turtle mypackages]# ls proftp*
proftpd-core-1.2.0pre10-1.i386.rpm
[root@turtle mypackages]# rpm -qp proftpd-core-1.2.0pre10-1.i386.rpm
proftpd-1.2.0pre3-2
[root@turtle mypackages]# rpm -qpi proftpd-core-1.2*.rpm
Name : proftpd Relocations: (not relocateable)
Version : 1.2.0pre10 Vendor: (none)
…………………………………………………
[root@turtle mypackages]# rpm -qpl proftpd*
/etc/logrotate.d/proftpd
/etc/pam.d/ftp
/etc/proftpd.conf
……………………………………………

Remember, if you are installing an upgrade, you need to use the -U option instead of the -i
option. If you try to use -i to upgrade a package, you receive an error saying the package is
already installed.

rpm -Uvh mozilla-0.7-15.i386.rpm

If you receive an error stating dependency conflicts exist, the package may require other
packages or their updated versions to be installed first. In some cases, you may have to install
with the no dependency check options, --nodeps (notice the two dashes before the option). In
some rare cases, installation instructions for a particular package may require you to use --
nodeps. Another risky option is the --force option. This forces installation, overwriting any
current files. This is a brute-force approach that should be used with care, only as a last resort.

If you are worried that a software package will install on your system incorrectly, you can use
the test option(--test) in the debut mode (vv) to see exactly what actions RPM will take.

rpm -ivv --test xv-3.10a-23.i386.rpm
 Note A few RPM packages, like those for OpenOffice, are designed only to extract a

subdirectory of install binaries with its own install program. For example, OpenOffice
uses its own installation program called setup in its subdirectory. Use ./setup to run it.

To remove a software package from your system, first use rpm -q to make sure it is actually
installed. Then, use the -e option to uninstall it. You needn't use the full name of the installed

file. You only need the name of the application. For example, if you decide you do not need
XV, you can remove it using the -e option and the software name, as shown here:

rpm -e xv

If direct conflicts occur with another software package, you may have to uninstall the other
package first. This is the case with wu-ftpd and ProFTP on many distributions. Man
distributions currently install wu-ftpd as the default FTP server. You must first uninstall the
wu-ftpd with the -e option before you can install ProFTP. However, when you try to do this,
you receive a dependency error. You can overcome this error by using the --nodeps option.
Once wu-ftpd is removed, you can install ProFTP.

[root@turtle mypackages]# rpm -e --nodeps wu-ftpd
[root@turtle mypackages]# rpm -ivh proftpd-core-1.2*rpm
proftpd ###
[root@turtle mypackages]# rpm -q proftpd
proftpd-core-1.2.0pre3-10

You can use the verify option (-V) to check to see if any problems occurred with the
installation. RPM compares the current attributes of installed files with information about
them placed in the RPM database when the package was installed. If no discrepancies exist,
RPM outputs nothing. Otherwise, RPM outputs a sequence of eight characters, one for each
attribute, for each file in the package that fails. Those that do not differ have a period. Those
that do differ have a corresponding character code, as shown here:

5 MD5 checksum
S File size
L Symbolic link
T File modification time
D Device
U User
G Group
M Mode (includes permissions and file types)

The following example verifies the proftpd package:

[root@turtle mypackages]# rpm -V proftpd

To compare the installed files directly with the files in an RPM package file, you use the -Vp
option, much like the -qp option. To check all packages, use the -Va option as shown here:

rpm -Va

If you want to verify a package, but only know the name of a file in it, you can combine
verify with the -f option. The following example verifies the RPM package containing the ftp
command:

rpm -Vf /bin/ftp

A complete description of rpm and its capabilities is provided in the online manual.

man rpm

RPM maintains a record of the packages it has installed in its RPM database. You may, at
times, have to rebuild this database to ensure RPM has current information on what is
installed and what is not. Use the --rebuilddb options to rebuild your database file.

rpm --rebuilddb

To create a new RPM database, use the --initdb option. This can be combined with --dbpath
to specify a location for the new database.

Installing Software from Red Hat RPM Source Code Files: SRPMS

Red Hat and several other distributors also make available source code versions of their
binary RPM packaged software. The source code is packaged into RPM packages that will be
automatically installed into designated directories where you can easily compile and install
the software. Such packages are called SRPMs and have the added suffix src. Such files end
in the suffix .src.rpm. Source code versions for packages in the Red Hat distribution are
located on Red Hat releases in the SRPMS directory. Many online sites like rpmfind.net will
also list SRPM packages. Source code versions have the advantage of letting you to make
your own modifications to the source code, allowing you to generate your own customized
versions of RPM packaged software. You still use the rpm command with the -i option to
install source code packages. In the following example, the user installs the source code for
xpuzzles:

rpm -i xpuzzles-5.5.2-4.src.rpm

Red Hat SRPM files are installed in various subdirectories in the /usr/src/redhat directory.
When Red Hat SRPMs are installed, a spec file placed in the /usr/src/redhat/ SPECS
directory and the compressed archive of the source code files is placed in the
/usr/src/redhat/SOURCES directory. For xpuzzles, a spec file called xpuzzles.spec was
placed in /usr/src/redhat/SPECS, and a compressed archive called xpuzzles-5.5.2.tar.gz was
placed in the /usr/src/rehat/SOURCES directory (spec files are discussed in more detail in
the following section on building RPM packages).

You now need to build the source code files, extracting them and running any patches on
them that may be included with the package. You do this with a single rpm command run on
the SPEC file using the -bp option. Change to the /usr/src/redhat/SPECS directory and use
the rpm command again, this time with the -bp option, to generate the source code files.

cd /usr/src/redhat/SPECS
rpm -bp xpuzzles.spec

The resulting source code files are placed in their own subdirectory with the package's name
in the /usr/src/redhat/BUILD directory. For xpuzzles, the xpuzzle source code is placed in
/usr/src/redhat/BUILD/xpuzzles-5.5.2 directory. In this subdirectory you can then modify
the source code, as well as compile and install the application. Check the README and
INSTALL files for details.

Installing Software from Compressed Archives: .tar.gz

Linux software applications in the form of source code are available at different sites on the
Internet. You can download any of this software and install it on your system. You download
software using an FTP client as described in Chapter 12. Recent and older software is usually
downloaded in the form of a compressed archive file. Applications will always be
downloadable as compressed archives, should they not have an RPM version. This is
particularly true for the recent versions of Gnome or KDE packages. RPM packages are only
intermittently generated. A compressed archive is an archive file created with tar, and then
compressed with gzip. To install such a file, you must first decompress it with the gunzip
utility, and then use tar to extract the files and directories making up the software package.
Instead of the gunzip utility, you could also use gzip -d. The next example decompresses the
htdig-3.1.5.tar.gz file, replacing it with a decompressed version called htdig-3.1.5.tar:

$ ls
 htdig-3.1.5.tar.gz
$ gunzip htdig-3.1.5.tar.gz
$ ls
htdig-3.1.5.tar.gz

First, use tar with the t option to check the contents of the archive. If the first entry is a
directory, then that directory is created and the extracted files are placed in it. If the first entry
is not a directory, you should first create one and then copy the archive file to it. Then extract
the archive within that directory. If no directory exists as the first entry, files are extracted to
the current directory. You must create a directory yourself to hold these files.

$ tar tvf htdig-3.1.5.tar

Now you are ready to extract the files from the tar archive. You use tar with the x option to
extract files, the v option to display the pathnames of files as they are extracted, and the f
option, followed by the name of the archive file:

$ tar xvf htdig-3.1.5.tar

You can combine the decompressing and unpacking operation into one tar command by
adding a z option to the option list, xzvf. The following command both decompresses and
unpacks the archive:

$ tar xzvf htdig-3.1.5.tar.gz

The extraction process will create a subdirectory consisting of the name and release of the
software. In the previous example, the extraction created a subdirectory called htdig-3.1.5.
You can then change to that directory to access the software files.

$ cd htdig-3.1.5

Installation of your software may differ for each package. Instructions are usually provided
along with an installation program. See the following section on compiling software for
information on how to create and install the application on your system.

Downloading Compressed Archives from Online Sites

Many software packages under development or designed for cross-platform implementation
may not be in an RPM format. Instead, they may be archived and compressed (see Chapter
32). The filenames for these files end with the extensions .tar.gz, .tar.bz2, or .tar.Z. The
different extensions indicate different decompression methods using different commands:
gunzip for gz, bunzip2 for bz2, and decompress for Z. In fact, most software with an RPM
format also has a corresponding .tar.gz format. After you download such a package, you must
first decompress it, and then unpack it with the tar command. For the .gz files, you use
gunzip, and for .bz2 files you can use bunzip2. The compressed archives could hold either
source code that you then need to compile, or, as is the case with Java packages, binaries that
are ready to run.

You can download compressed archives from many different sites, including those mentioned
previously. Downloads can be accomplished with FTP clients like ncftp and Gftp, or with any
Web browser like mozilla. Once downloaded, any file that ends with a .Z , bz2, .zip, or .gz is
a compressed file that must be decompressed. In the following example, the gunzip command
is used to decompress the CD-Rchive CD writer downloaded from apps.kde.com.

gunzip cdrchive-1.2.2.tar.gz

For files ending with bz2 you would use the bunzip2 command. The following example
decompresses the Java 2 SDK downloaded through www.blackdown.org:

bunzip2 j2sdk-1.3.0-FCS-linux-i386.tar.bz2

If the file then ends with .tar, it is an archived file that must be unpacked using the tar
command. Before you unpack the archive, move it to the directory where you want it. Source
code you intend to compile is usually placed in the /usr/local/src directory. Packages that
hold binary programs ready to run, like Java, are meant to be extracted in certain directories.
Usually this is the /usr/local directory. Most archives, when they unpack, create a
subdirectory they named with the application name and its release, placing all those files or
directories making up the software package into that subdirectory. For example, the file
cdrchive-1.2.2.tar unpacks to a subdirectory called cdrchive-1.2.2. In certain cases, the
software package that contain precompiled binaries is designed to unpack directly into the
system subdirectory where it will be used. For example, it is recommended that j2sdk-1.3.0-
FCS-linux-i386.tar be unpacked in the /usr/local directory where it will create a subdirectory
called j2sdk-1.3.0. The /usr/local/j2sdk-1.3.0/bin directory will hold the Java binary
programs. To check if an archive unpacks to a directory, use tar with the t option to list its
contents and to see if the names are prefixed by a directory. If so, that directory is created and
the extracted files are placed in it. If no directory name exists, create one and then copy the
archive file to it. Then extract the archive within that directory.

tar tf j2sdk-1.3.0-FCS-linux-i386.tar

Now you are ready to extract the files from the tar archive (see Chapter 32). You use tar with
the x option to extract files, the v option to display the pathnames of files as they are
extracted, and the f option, followed by the name of the archive file:

tar xvf j2sdk-1.3.0-FCS-linux-i386.tar

This will create a subdirectory called j2sdk-1.3.0. You can change to this subdirectory and
examine its files, such as the README and INSTALL files.

cd j2sdk-1.3.0

The tar utility provides decompression options you can use to have tar first decompress a file
for you, invoking the specified decompression utility. The z options will automatically invoke
gunzip to unpack a .gz file, and the j option will unpack a .bz2 file. Use the Z options for .Z
files. The next example shows how you can combine decompression and extraction in one
step:

tar xvjf j2sdk-1.3.0-FCS-linux-i386.tar.bz2
tar xvzf cdrchive-1.2.2.tar.gz

Installation of your software may differ for each package. Instructions are usually provided,
along with an installation program. Downloaded software usually includes README files or
other documentation. Be sure to consult them.

Compiling Software

Some software may be in the form of source code that you need to compile before you can
install it. This is particularly true of programs designed for cross-platform implementations.
Programs designed to run on various Unix systems, such as Sun, as well as on Linux, may be
distributed as source code that is downloaded and compiled in those different systems.
Compiling such software has been greatly simplified in recent years by the use of
configuration scripts that automatically detect a given system's configuration and compile the
program accordingly. For example, the name of the C compiler on a system could be gcc or
cc. Configurations scripts detect which is present and use it to compile the program.

First, change to the directory where the software's source code has been extracted to.

cd /usr/local/src/cdrchive-1.2.2

Before you compile software, read the README or INSTALL files included with it. These
give you detailed instructions on how to compile and install this particular program. If the
software used configuration scripts, then compiling and installing usually involves only the
following three simple commands:

./configure
make
make install
 Note Be sure to remember to place the period and slash before the configure command. ./

references a command in the current working directory, rather than another Linux
command.

The ./configure command performs configuration detection. The make command performs
the actual compiling, using a Makefile script generated by the ./configure operation. The
make install command installs the program on your system, placing the executable program
in a directory, such as /usr/local/bin, and any configuration files in /etc. Any shared libraries
it created may go into /usr/local/lib.

Certain software may have specific options set up for the ./configure operation. To find out
what these are, you use the ./configure command with the --help option.

./configure --help

A useful common option is the -prefix option, which lets you specify the install directory.

./configure -prefix=/usr/bin

If you are compiling an X-, Gnome-, or KDE-based program, be sure their development
libraries have been installed. For X applications, be sure the xmkmf program is also installed.
If you chose a standard install when you installed your distribution system, these most likely
were not installed. For distributions using RPM packages, these come in the form of a set of
development RPM packages, usually having the word "development" or "develop" in their
name. You need to install them using either RPM, kpackage, or GnomeRPM. Gnome, in
particular, has an extensive set of RPM packages for development libraries. Many X
applications may need special shared libraries. For example, some applications may need the
xforms library or the qt library. Some of these you need to obtain from online sites.

Some older X applications use xmkmf directly instead of a configure script to generate the
needed Makefile. In this case, enter the command xmkmf in place of ./configure. Be sure to
consult the INSTALL and README files for the software. Usually, you only need to issue
the following commands within the directory that contains the source code files for the
software:

xmkmf
make
make install

If no configure script exists and the program does not use xmkmf, you may have to enter the
make command, followed by a make install operation. Check the README or INSTALL
files for details.

make
make install

Be sure to check the documentation for such software to see if any changes must be made to
the Makefile. Only a few changes may be necessary, but more detailed changes require an
understanding of C programming and how make works with it. If you successfully configure
the Makefile, you may only have to enter the make and make install operations. One
possible problem is locating the development libraries for C and X Windows. X Windows
libraries are in the /usr/X11R6/lib directory. Standard C libraries are located in the /usr/lib
directory. You can set the PATH variable to hold the pathnames for any special libraries as
described in the next section.

Once you have compiled and installed your application, and have checked that it is working
properly, you can remove the source code directory that was created when you extracted the
software. You can keep the archive file (tar) in case you need to extract the software again.
Use rm with the -rf options so all subdirectories will be deleted and you do not have to
confirm each deletion.

rm -rf cdrchive.1.2.2

Command and Program Directories: PATH

Programs and commands are usually installed in several standard system directories, such as
/bin, /usr/bin, /usr/X11R6/bin, or /usr/local/bin. Some packages place their commands in
subdirectories, however, which they create within one of these standard directories or in an
entirely separate directory. In such cases, you may be unable to run those commands because
your system may be unable to locate them in the new subdirectory. Your system maintains a
set of directories that search for commands each time you execute one. This set of directories
is kept in a system variable called PATH that is created when you start your system. If a
command is in a directory that is not in this list, your system will be unable to locate and run
it. To use such commands, you first need to add the new directory to the set of directories in
the PATH variable.

 Note On Red Hat systems, the PATH variable is originally assigned in the /etc/rc.d/rc.sysinit
file, and further added to by different services that start up when the system boots. You
could edit /etc/rc.d/rc.sysinit file directly, but you would have to be very careful not to
change anything else. A safer approach is to add a PATH definition in the /etc/profile
file.

To add a directory, you would add a PATH entry to the /etc/profile file, which is run
whenever users log in to their accounts. Carefully edit the /etc/profile file using a text editor,
such as kedit, gedit, Emacs, or Vi (you may want to make a backup copy first with the cp
command). You add a line that begins with PATH, followed by an = sign, and the term
$PATH, followed by a colon, and then the directory to be added. The $ before PATH is
critically important. If you add more than one directory, be sure a colon separates them. You
should also have a colon at the end. For example, if you install the Java 2 SDK, the Java
commands are installed in a subdirectory called j2sdk-1.3.0/bin in the /usr/local directory.
The full pathname for this directory is /usr/local/j2sdk-1.3.0/bin. You need to add this
directory to the list of directories assigned to PATH in the /etc/profile file. The following
example shows the PATH variable with its list of directories and the /usr/local/j2sdk-
1.3.0/bin directory added. Notice the $ before PATH after the = sign, PATH=$PATH.

PATH=$PATH:/usr/local/j2sdk-1.3.0/bin

The /etc/profile script is a system script executed for each user when the user logs in.
Individual users can customize their PATH variables by placing a PATH assignment in either
their .bashrc or .bash_profile files. In this way, users can access commands and programs
they create or install for their own use in their own user directories (see Chapter 13 for more
details). On Red Hat, user .bash_profile files will already contain the following PATH
definition. Notice the use of $PATH, which keeps all the directories already added to the
PATH in previous startup scripts like /etc/profile and /etc/rc.d/ rc.sysinit.

PATH=$PATH:$HOME/bin

The following entry in the . bash_profile file adds a user's newbin directory to the PATH
variable. Notice both the colon placed before the new directory and the use of the $HOME
variable to specify the pathname for the user's home directory.

PATH=$PATH:$HOME/bin/:$HOME/newbin

In the .bash_profile file for the root user, the PATH definition also includes sbin directories.
The sbin directories hold system administration programs that the root user would need to
have access to. The root user PATH is shown here:

PATH=/usr/local/sbin:/usr/sbin:/sbin:$PATH:$HOME/bin

Packaging Your Software: Building RPMs

Once you finish developing your software, you may then want to distribute it to others.
Ordinarily, you would pack your program into a tar archive file. People would then download
the file and unpack it. You would have to include detailed instructions on how to install it and
where to place any supporting documentation and libraries. Any number of variations might
stop installation of a program.

The RPM is designed to automate these tasks. RPM automatically installs software on a
system in the designated directories, along with any documentation, libraries, or support
programs. It has complex and powerful capabilities, and can handle the most complex
programs. Simple examples of its use are provided here.

 Note The Autoconf program is used to configure the source code for an application
automatically to a given system.

Creating RPM Packages

The package creation process is designed to take the program through several stages, starting
with unpacking it from an archive, and then compiling its source code, and, finally, generating
the RPM package. You can skip any of these stages, up to the last one. If your software is
already unpacked, you can start with compiling it. If your software is compiled, you can start
with installation. If it is already installed, you can go directly to creating the RPM package.

RPM makes use of three components to build packages: the build tree, the rpmrc
configuration files, and an rpm spec script. The build tree is a set of special instructions used
to carry out the different stages of the packaging process. The rpm spec script contains
instructions for creating the package, as well as the list of files to be placed in it. The rpmrc
files are used to set configuration features for RPM. The /usr/lib/rpm/ rpmrc file holds the
default options for your system and is always read. You can also set up a /etc/rpmrc file for
global options you want to set for your system. Entries here will override those in the
/usr/lib/rpm/rpmrc file. You can also set up a local .rpmrc file in your home directory,
which will override both of these. To obtain a listing of the /usr/lib/rpm/rpmrc file, enter

$ rpm --showrc

The build tree directories, listed in the following table, are used to hold the different files
generated at each stage of the packaging process. The SOURCES directory holds the
compressed archive. The BUILD directory holds the source code unpacked from that archive.
The RPMS directory is where the RPM package containing the executable binary program is
placed, and SRPMS is where the RPM package containing the source code is placed. If you
are creating a package from software stored in a compressed archive, such as a tar.gz file, you
first must copy that file to the build tree's SOURCES directory.

Directory Name Description
BUILD The directory where RPM does all its building
SOURCES The directory where you should put your original source archive files

and your patches
SPECS The directory where all spec files should go
RPMS The directory where RPM puts all binary RPMs when built
SRPMS The directory where all source RPMs are put

The following example copies the compressed archive for the bookrec software to the
SOURCES directory:

cp bookrec-1.0.tar.gz /usr/src/redhat/SOURCES

The topdir: entry in an rpmrc file, like /usr/lib/rpm/rpmrc, specifies the location of the
build tree directories. In this file, you can find an entry for topdir:. Currently, the Red Hat
system has already set this directory to /usr/src/redhat. You can find the SOURCES,
BUILD, RPMS, and SRPMS directories here. You can specify a different directory for these
subdirectories by placing the entry for topdir: in the /etc/rpmrc file.

topdir: /usr/src/redhat

A sample of the default values set by /usr/lib/rpm/rpmrc is shown here:

Default values, often overridden in /etc/rpmrc
dbpath: /var/lib/rpm
topdir: /usr/src/redhat
tmppath: /var/tmp
cpiobin: cpio
defaultdocdir: /usr/doc

By default, RPM is designed to work with source code placed in a directory consisting of its
name and a release number, separated by a hyphen. For example, a program with the name
bookrec and release 1.0 should have its source-code files in a directory called bookrec-1.0. If
RPM needs to compile the software, it expects to find the source code in that directory within
the BUILD directory, BUILD/bookrec-1.0. The same name and release number also must be
specified in the spec file.

RPM Spec File

To create a package, first create an rpm spec file for it. The rpm spec file specifies the files to
be included, any actions to build the software, and information about the package. The spec
file is designed to take the program through several stages, starting with unpacking it from an
archive, compiling its source code, and generating the RPM package. In the spec file are
segments for the different stages and special RPM macros that perform actions at these stages.
These are listed here:

File Segment or Macro Description
%description A detailed description of the software.

File Segment or Macro Description
%prep The prep stage for archives and patches.
%setup The prep macro for unpacking archives.A -n name option resets

the name of the build directory.
%patch The prep macro for updating patches.
%build The build stage for compiling software.
%install The install stage for installing software.
%files The files stage that lists the files to be included in the package.A -

f filename option specifies a file that contains a list of files to be
included in the package.

%config file-list A file macro that lists configuration files to be placed in the /etc
directory.

%doc file-list A file macro that lists documentation files to be placed in the
/usr/doc directory with the subdirectory of the name-version-
release.

%dir directory-list The specification of a directory to be included as being owned by
a package. (A directory in a file list refers to all files in it, not only
the directory.)

%pre A macro to do preinstall scripts.
%preun A macro to do preuninstall scripts.
%post A macro to do postinstall scripts.
%postun A macro to do postuninstall scripts.

A spec file is divided into five basic segments: header, prep, build, install, and files. These
segments are separated in the file by empty lines. The header segment contains several lines
of information, each preceded by a tag and a semicolon. For example, the following tag is
used for a short description of the software:

Summary: bookrec program to manage book records

The name, version, and release tags are used to build the name of the RPM package. The
name, version, and release are separated with hyphens. For example, the name bookrec with
the version 1.0 and release 2 has the following name:

bookrec-1.0-2

The Group entry is a list of categories for the software and is used by the RPM package
management utilities like GnomeRPM and Linuxconf to place the software in the correct
category folder. The Source entry is the compressed archive where the software is stored on
your system. Description is a detailed description of the software.

Following the header are the three stages for creating and installing the software on your
system, indicated by the %prep, %build, and %install rpm macros. You can skip any of
these stages, say, if the software is already installed. You can also leave any of them out of the
spec file or comment them out with a preceding #. The spec file is capable of taking a

compressed archive, unpacking it, compiling the source code files, and then installing the
program on your system. Then the installed files can be used to create the RPM package.

The %prep macro begins the prep segment of the spec file. The prep segment's task is to
generate the software's source code. This usually means unpacking archives, but it may also
have to update the software with patches. The tasks themselves can be performed by shell
scripts you write. Special macros can also automatically perform these tasks. The %setup
macro can decompress and unpack an archive in the SOURCES directory, placing the source
code files in the BUILD directory. The %patch macro applies any patches.

The %build segment contains the instructions for compiling the software. Usually, this is a
simple make command, depending on the complexity of your program. The %install
segment contains the instructions for installing the program. You can use simple shell
commands to copy the files or, as in the bookspec example that follows, the install command
that installs files on systems. This could also be the make install command, if your Makefile
has the commands to install your program.

%build
make RPM_OPT_FLAGS="$RPM_OPT_FLAGS"

%install
install -s -m 755 -o 0 -g 0 bookrec /usr/bin/bookrec
install -m 644 -o 0 -g 0 bookrec.1 /usr/man/man1

The %files segment contains the list of files you want placed in the RPM package. Following
the %files macro, you list the different files, including their full pathnames. The macro
%config can be used to list configuration files. Any files listed here are placed in the /etc
directory. The %doc macro is used for documentation, such as README files. These are
placed in the /usr/doc directory under a subdirectory consisting of the software's name,
version, and release number. In the bookspec example shown here, the readme file is placed
in the /usr/doc/bookrec-1.0-2 directory:

bookspec

Summary: bookrec program to manage book records
Name: bookrec
Version: 1.0
Release: 2
Copyright: GPL
Group: Applications/Database
Source: /root/rpmc/bookrec-1.0.tar.gz
%description
This program manages book records by title, providing
price information

%prep
%setup

%build
make RPM_OPT_FLAGS="$RPM_OPT_FLAGS"

%install
install -s -m 755 -o 0 -g 0 bookrec /usr/bin/bookrec
install -m 644 -o 0 -g 0 bookrec.1 /usr/man/man1

%files
%doc README

/usr/bin/bookrec
/usr/man/man1/bookrec.1

RPM Build Operation

To create an RPM software package, you use the rpm build options (listed in Table 31-4) with
the rpm command, followed by the name of a spec file. The -bl option checks to see if all the
files used for the software are present. The -bb option builds only the binary package,
whereas -ba builds both binary and source packages. They expect to find the compressed
archive for the software in the build tree's SOURCES directory. The -ba and -bb options
execute every stage specified in the rpm spec script, starting from the prep stage, to
unpacking an archive, and then compiling the program, followed by installation on the
system, and then creation of the package. The completed RPM package for executable
binaries is placed in a subdirectory of the build tree's RPMS directory. This subdirectory has
a name representing the current platform. For a PC, this is i386, and the package is placed in
the RPMS/i386 subdirectory. The source-code package is placed directly in the SRPMS
directory.

Table 31-4: The RPM Build Options
Option Description
-ba Create both the executable binary and source code packages.

Perform all stages in the spec file: prep, build, install, and create
the packages.

-bb Create only the executable binary package. Perform all stages in
the spec file: prep, build, install, and create the package.

-bp Run only the prep stage from the spec file (%prep).
-bl Do a "list check." The %files section from the spec file is

macro-expanded, and checks are made to ensure the files exist.
-bc Do both the prep and build stages, unpacking and compiling the

software (%prep and %build).
-bi Do the prep, build, and install stages, unpacking, compiling, and

installing the software (%prep, %build, and %install).
--short-circuit Skip to specified stage, not executing any previous stages. Only

valid with -bc and -bi.
--clean Remove the build tree after the packages are made.
--test Do not execute any build stages. Used to test spec files.
--recompile
source_package_file

RPM installs the source code package and performs a prep,
compile, and install.

--rebuild
source_package_file

RPM first installs the named source package and does a prep,
compile, and install, and then rebuilds a new binary package.

--showrc List the configuration variables for the /usr/lib/rpm/rpmrc file.

The following program generates both a binary and a software package, placing them in the
build tree's RPMS/i386 and SRPMS directories. The name of the spec file in this example is
bookspec.

rpm -ba bookspec

An executable binary package has a name consisting of the software name, the version
number, the release number, the platform name (i386), and the term "rpm". The name,
version, and release are separated by hyphens, whereas the release, platform name, and the
rpm term are separated by periods. The name of the binary package generated by the previous
example, using the bookspec spec script, generates the following name:

bookrec-1.0-2.i386.rpm

The source code package has the same name, but with the term "src" in place of the platform
name:

bookrec-1.0-2.src.rpm

Chapter 32: File System Administration
Overview

Files reside on physical storage devices such as hard drives, CD-ROMs, or floppy disks. The
files on each storage device are organized into a file system. The storage devices on your
Linux system are treated as a collection of file systems that you can manage. When you want
to add a new storage device, you will need to format it as a file system and then attach it to
your Linux file structure. Hard drives can be divided into separate storage devices called
partitions, each of which would have its own file system. You can perform administrative
tasks on your file systems, such as backing them up, attaching or detaching them from your
file structure, formatting new devices or erasing old ones, and checking a file system for
problems. This chapter discusses how you can manage file systems on your storage devices
such as CD-ROMs, floppy disks, and hard disk partitions.

To access files on a device, you attach its file system to a specified directory. This is called
mounting the file system. For example, to access files on a floppy disk, you first mount its file
system to a particular directory. With Linux, you can mount a number of different types of
file systems. You can even access a Windows hard drive partition or tape drive, as well as file
systems on a remote server (see Chapter 37).

Archives are used to back up files or to combine them into a package, which can then be
transferred as one file over the Internet or posted on an FTP site for easy downloading. The
standard archive utility used on Linux and Unix systems is tar, for which several GUI front
ends exist. You have several compression programs to choose from, including GNU zip
(gzip), Zip, bzip, and compress.

Local File Systems

Your Linux system is capable of handling any number of storage devices that may be
connected to it. You can configure your system to access multiple hard drives, partitions on a
hard drive, CD-ROM disks, floppy disks, and even tapes. You can elect to attach these storage
components manually or have them automatically mount when you boot. For example, the
main partition holding your Linux system programs is automatically attached whenever you
boot, whereas a floppy disk must be manually attached when you put one in your floppy
drive. You can configure this access to different storage devices either by manually editing
configuration files, such as /etc/fstab, or by using a file system configuration tool such as the
Linuxconf's fsconf. You can use administration tools such as Linuxconf or Webmin to
configure the file system.

File Systems

Although all the files in your Linux system are connected into one overall directory tree, the
files themselves reside on storage devices such as hard drives or CD-ROMs. The Linux files
on a particular storage device are organized into what is referred to as a file system. Your
Linux directory tree may encompass several file systems, each on different storage devices.
On a hard drive with several partitions, you would have a file system for each partition. The
files themselves are organized into one seamless tree of directories, beginning from the root
directory. Although the root may be located in a file system on a hard drive partition, a
pathname leads directly to files located on the file system for your CD-ROM.

The files in a file system remain separate from your directory tree until you specifically
connect them to it. A file system has its files organized into its own directory tree. You can
think of this as a subtree that must be attached to the main directory tree. For example, a
floppy disk with Linux files has its own tree of directories. You need to attach this subtree to
the main tree on your hard drive partition. Until they are attached, you cannot access the files
on your floppy disk.

Attaching a file system on a storage device to your main directory tree is called mounting the
device. The mount operation attaches the directory tree on the storage device to a directory
you specify. You can then change to that directory and access those files. The directory in the
file structure to which the new file system is attached is referred to as the mountpoint. For
example, to access files on a CD-ROM, first you have to mount the CD-ROM.

Currently, Linux systems have several ways to mount a file system. You can use Linuxconf to
select and mount a file system easily. If you are using either Gnome or the K Desktop, you
can use special desktop icons to mount a file system. From a shell command line, you can use
the mount command. Mounting file systems can only be done as the root user. This is a
system administration task and cannot be performed by a regular user. To mount a file system,
be sure to log in as the root user (or use the su operation). As the root user, you can, however,
make a particular device like a CD-ROM user mountable. In this way, any user could put in a
CD-ROM and mount it. You could do the same for a floppy drive.

 Tip On Gnome you can use the Disk Management tool on the System menu to mount and
unmount file systems, including floppy disks and CD-ROMs. On KDE you can use the
KDiskFree utility, which also lists your mountable file as well as their disk usage.

For a file system to be accessible, it must be mounted. Even the file system on your hard disk
partition must be mounted with a mount command. When you install your Linux system and
create the Linux partition on your hard drive, however, your system is automatically
configured to mount your main file system whenever it starts. Floppy disks and CD-ROMs
must be explicitly mounted. Remember, when you mount a CD-ROM or floppy disk, you
cannot then simply remove it to put in another one. You first have to unmount it. In fact, the
CD-ROM drive remains locked until you unmount it. Once you unmount a CD-ROM, you
can then take it out and put in another one, which you then must mount before you can access
it. When changing several CD-ROMs or floppy disks, you are continually mounting and
unmounting them.

The file systems on each storage device are formatted to take up a specified amount of space.
For example, you may have formatted your hard drive partition to take up 3GB. Files installed
or created on that file system take up part of the space, while the remainder is available for
new files and directories. To find out how much space you have free on a file system, you can
use the df command or, on Gnome, you can use either the Gnome System Monitor (see Figure
32-1) or the Gnome Disk Free utility. For the Gnome System Manger, click the Filesystems
tab to display a bar graph of the free space on your file systems. Gnome DiskFree displays a
list of meters showing how much space is used on each partition and how much space you
have left. KDiskFree, a KDE utility, provides similar information.

Figure 32-1: Gnome System Monitor, Filesystems tab

The df command lists all your file systems by their device names, how much memory they
take up, and the percentage of the memory used, as well as where they are mounted. With the
-h option, it displays information in a more readable format. The df command is also a safe
way to obtain a listing of all your partitions, instead of using fdisk. df only shows mounted
partitions, however, whereas fdisk shows all partitions.

$ df
Filesystem 1024-blocks Used Available Capacity Mounted on
/dev/hda3 297635 169499 112764 60% /
/dev/hda1 205380 182320 23060 89% /mnt/dos
/dev/hdc 637986 637986 0 100% /mnt/cdrom
 Note In earlier Red Hat versions, fsck was also used to recover file systems after disk crashes

or reset-button reboots. With release 7.2, Red Hat introduced journaling capabilities

with the ext3 file system. Journaling provides for fast and effective recovery in case of
disk crashes, instead of using fsck or e2fsck.

You can also use df to tell you to what file system a given directory belongs. Enter df with the
directory name or df. for the current directory.

$ df .
Filesystem 1024-blocks Used Available Capacity Mounted on
/dev/hda3 297635 169499 112764 60% /

To make sure nothing is wrong with a given file system, you can use the fsck command to
check it. However, be sure that the file system is unmounted. fsck should not be used on a
mounted file system. To use fsck, enter fsck and the device name that references the file
system. fsck is run automatically on all your file systems when you boot up your system, so
your file systems are continually checked. Table 32-1 lists the fsck options. The following
examples check the disk in the floppy drive and the primary hard drive:

fsck /dev/fd0
fsck /dev/hda1

Table 32-1: Thefsck Options for Checking and Repairing File Systems
Option Description
file-system Specifies the file system to be checked. Use file system's device

name, such as /dev/hda3.
-A Checks all file systems listed in /etc/fstab file.
-V Verbose mode. List actions that fsck takes.
-t file-system-type Specifies the type of file system to be checked.
-a Automatically repairs any problems.
-l Lists the names of all files in the file system.
-r Asks for confirmation before repairing file system.
-s Lists superblock before checking file system.
 Note Instead of using fsck, you can use fse2ck to check standard Linux partitions (ext2).

Filesystem Hierarchy Standard

Linux organizes its files and directories into one overall interconnected tree, beginning from
the root directory and extending down to system and user directories (see Chapter 11). The
organization and layout for the system directories is determined by the Filesystem Hierarchy
Standard (FHS). The FHS provides a standardized layout that all Linux distributions should
following setting up their system directories. For example, there must be an /etc directory to
hold configuration files and a /dev directory for device files. You can find out more about
FHS, including the official documentation, at www.pathname.com/fhs. The current release is
FHS 2.1, which is the successor to FSSTND 1.2, a precursor to FHS. Linux distributions,
developers, and administrators all follow the FHS to provide a consistent organization to the
Linux file system.

Linux uses a number of specifically named directories for specialized administration tasks.
All these directories are directories at the very top level of your main Linux file system, the
file system root directory represented by a single slash, /. For example, the /dev directory

holds device files, the /etc directory holds configuration files, and the /home directory holds
the user home directories and all their user files. You only have access to these directories and
files as the system administrator. You need to log in as the root user, placing you in a special
root user administrative directory called /root. From here, you can access any directory on the
Linux file system, both administrative and user.

The directories held in the root directory, /, are listed in Table 32-2, along with other useful
subdirectories. Ones that you may commonly access as an administrator are the /etc directory
that holds configuration files, the /dev directory that holds device files, and the /var directory
that holds server data files for DNS, Web, mail, and FTP servers along with system logs and
scheduled tasks. For managing different versions of the kernel, you may need to access the
/boot and /lib/modules directories. The /boot directory will hold the kernel image files for
any new kernels you install, and the /lib/modules directory will hold modules for your
different kernels.

Table 32-2: Linux File System Directories
Directory Function
/ Begins the file system structure-called the root.
/boot Holds the kernel image files and modules loaded when your system

boots up.
/home Contains users' home directories.
/sbin Holds administration level commands and any used by the root user.
/dev Holds file interfaces for devices such as the terminal and printer.
/etc Holds system configuration files and any other system files.
/etc/opt Holds system configuration files for applications in /opt.
/etc/X11 Holds system configuration files for the X Window System and its

applications.
/bin Holds the essential user commands and utility programs.
/lib Holds essential shared libraries and kernel modules.
/lib/modules Holds the kernel modules.
/mnt Used to hold directories for mounting file systems like CD-ROMs or

floppy disks that are mounted only temporarily.
/opt Holds added software applications (for example, KDE on some

distributions).
/proc Process directory, a memory-resident directory containing files used

to provide information about the system.
/tmp Holds temporary files.
/usr Holds those files and commands used by the system; this directory

breaks down into several subdirectories.
/var Holds files that vary, such as mailbox files. On Red Hat, these also

hold Web and FTP server data files.

The /usr directory contains a multitude of important subdirectories used to support users,
providing applications, libraries, and documentation (see Table 32-3). /usr/bin holds

numerous user-accessible applications and utilities. /usr/sbin hold user-accessible
administrative utilities. The /usr/share directory holds architecture-independent data that
includes an extensive number of subdirectories, including those for the documentation such as
Man, info, and doc files.

Table 32-3: /usr Directories
Directory Description
/usr/bin Holds most user commands and utility programs.
/usr/sbin Holds nonessential administrative applications.
/usr/lib Holds libraries for applications, programming languages, desktops,

etc.
/usr/games Games and educational programs.
/usr/include C programming language header files (.h).
/usr/doc Holds Linux documentation.
/usr/local Directory for locally installed software.
/usr/share Architecture independent data such as documentation like Man and

info pages.
/usr/src Holds source code, including the kernel source codes.
/usr/X11R6 X Window System-based applications and libraries.

The /var directories are designed to hold data that changes with the normal operation of the
Linux system (see Table 32-4). For example, spool files for documents that you are printing
are kept here. A spool file is created as a temporary printing file and is removed after printing.
Other files, like system log files, are changed constantly.

Table 32-4: /var Directories
Directory Description
/var/account Processes accounting logs.
/var/cache Application cache data for Man pages, Web proxy data, fonts, or

application-specific data.
/var/crash System crash dumps.
/var/games Varying games data.
/var/lib Holds state information for particular applications.
/var/local Used for data that changes for programs installed in /usr/local.
/var/lock Holds lock files that indicate when a particular program or file is in

use.
/var/log Holds log files such as /var/log/messages that contain all kernel

and system program messages.
/var/mail User mailbox files.
/var/opt Variable data for applications installed in /opt.
/var/run Information about system's running processes.
/var/spool Holds application's spool data such as that for mail, news, and

Table 32-4: /var Directories
Directory Description

printer queues as well as cron and at jobs.
/var/tmp Holds temporary files that should be preserved between system

reboots.
/var/yp Network Information Service (NIS) data files.

The /proc file system is a special file system that is generated in system memory (see Table
32-5). It does not exist on any disk. /proc contains files that provide important information
about the state of your system. For example, /proc/cpuinfo holds information about your
computer's CPU processor. /proc/devices will list those devices currently configured to run
with your kernel. /proc/filesystems will list the file systems. /proc files are really interfaces
to the kernel, obtaining information from the kernel about your system.

Table 32-5: /proc Directories and Files
File Description
/proc/num There is a directory for each process labeled by its number. /proc/1

is the directory for process 1.
/proc/cpuinfo Contains information about the CPU, such as its type, make, model,

and performance.
/proc/devices List of the device drivers configured for the currently running

kernel.
/proc/dma Displays the DMA channels currently used.
/proc/filesystems File systems configured into the kernel.
/proc/interrupts Displays the interrupts in use.
/proc/ioports Shows the I/O ports in use.
/proc/kcore Holds an image of the physical memory of the system.
/proc/kmsg Messages generated by the kernel.
/proc/ksyms Symbol table for the kernel.
/proc/loadavg The system "load average."
/proc/meminfo Memory usage.
/proc/modules Lists the kernel modules currently loaded.
/proc/net Status information about network protocols.
/proc/stat System operating statistics, such as page fault occurrences.
/proc/uptime The time the system has been up.
/proc/version The kernel version.

Device Files: /dev

To mount a file system, you have to specify its device name. The interfaces to devices that
may be attached to your system are provided by special files known as device files. The
names of these device files are the device names. Device files are located in the /dev

directories and usually have abbreviated names ending with the number of the device. For
example, fd0 may reference the first floppy drive attached to your system. On Linux systems
operating on PCs, the IDE hard disk partitions have a prefix of hd, followed by an alphabetic
character that labels the hard drive, and then a number for the partition. For example, hda2
references the second partition on the first IDE hard drive. The prefix sd references SCSI hard
drives, so sda3 would reference the second partition on the first SCSI hard drive. In most
cases, you can use the man command with a prefix to obtain more detailed information about
this kind of device. For example, man sd displays the Man pages for SCSI devices. A
complete listing of all device names can be found in the devices file located in the
linux/doc/device-list directory at the www.kernel.org Web site. Table 32-6 lists several of
the commonly used device names.

Table 32-6: Device Name Prefixes
Device Name Description
hd IDE hard drives 1-4 are primary partitions, and 5 and up are logical

partitions
sd SCSI hard drives
scd SCSI CD-ROM drives (used on Red Hat)
sr SCSI CD-ROM drives (alternative prefix name, may be used on other

distributions)
fd Floppy disks
st SCSI tape drives
nst SCSI tape drives, no rewind
ht IDE tape drives
tty Terminals
lp Printer ports
pty Pseudoterminals (used for remote logins)
js Analog joy sticks
midi Midi ports
ttyS Serial ports
md RAID devices
rd/cndn Directory that holds RAID devices is rd. cn is the RAID controller

and dn is the RAID disk for that controller
cdrom Link to your CD-ROM device file
cdwriter Link to your CD-R or CD-RW device file
modem Link to your modem device file
floppy Link to your floppy device file
tape Link to your tape device file
scanner Link to your scanner device file

The device name for your floppy drive is fd0 and is located in the directory /dev. /dev/fd0
references your floppy drive. Notice the numeral 0 after fd. If you have more than one floppy
drive, they are represented by fd1, fd2, and so on.

IDE hard drives use the prefix hd, while SCSI hard drives use the prefix sd. RAID devices,
on the other hand, will use the prefix md. The prefix for a hard disk is followed by an
alphabetic character that labels the hard drive and a number for the partition. For example,
hda2 references the second partition on the first IDE hard drive, where the first hard drive is
referenced with the character "a", as in hda. The device sdb3 refers to the third partition on
the second SCSI hard drive (sdb). RAID devices, however, are numbered from 0, like floppy
drives. Device md0 references the first RAID device and md1, the second. To find the device
name, you can use df to display your hard partitions or examine the /etc/fstab file.

The device name for your CD-ROM drive varies depending on the type of CD-ROM you
have. The device name for an IDE CD-ROM has the same prefix as an IDE hard disk
partition, hd, and is identified by a following character that distinguishes it from other IDE
devices. For example, an IDE CD-ROM connected to your secondary IDE port may have the
name hdc. An IDE CD-ROM connected as a slave to the secondary port may have the name
hdd. The actual name is determined when the CD-ROM is installed, as happened when you
installed your Linux system. SCSI CD-ROM drives use a different nomenclature for their
device names. They begin with scd for SCSI drive and are followed by a distinguishing
number. For example, the name of an SCSI CD-ROM could be scd0 or scd1. The name of
your CD-ROM was determined when you installed your system. You can find out what it is
either by examining the /etc/fstab file or using Linuxconf on your root user desktop.

Mount Configuration: /etc/fstab

Although you can mount a file system directly with only a mount command, you can simplify
the process by placing mount information in the /etc/fstab configuration file. Using entries in
this file, you can have certain file systems automatically mounted whenever your system
boots. For others, you can specify configuration information, such as mountpoints and access
permissions, which can be automatically used whenever you mount a file system. You needn't
enter this information as arguments to a mount command as you otherwise must. This feature
is what allows mount utilities on Gnome, KDE, and Linuxconf to enable you to mount a file
system simply by clicking a button. All the mount information is already in the /etc/fstab file.
For example, when adding a new hard disk partition to your Linux system, you most likely
want to have it automatically mounted on startup, and then unmounted when you shut down.
Otherwise, you must mount and unmount the partition explicitly each time you boot up and
shut down your system. To have Linux automatically mount the file system on your new hard
disk partition, you only need to add its name to the fstab file. You can do this by directly and
carefully editing the /etc/fstab file to type in a new entry, or you can use Linuxconf as
described in the next section.

An entry in an fstab file contains several fields, each separated by a space or tab. These are
described in Red Hat as the device, mountpoint, file system type, options, dump, and fsck
fields, arranged in the sequence shown here:

<device> <mountpoint> <filesystemtype> <options> <dump> <fsck>

The first field is the name of the file system to be mounted. This usually begins with /dev,
such as /dev/hda3 for the third hard disk partition. The next field is the directory in your file
structure where you want the file system on this device to be attached. The third field is the
type of file system being mounted. Table 32-7 provides a list of all the different types you can
mount. The type for a standard Linux hard disk partition is ext2. The next example shows an
entry for the main Linux hard disk partition. This entry is mounted at the root directory, /, and
has a file type of ext2.

Table 32-7: File System Types
Type Description
auto Attempt to automatically detect the file system type
minux Minux file systems (filenames are limited to 30 characters)
ext Earlier version of Linux file system, no longer in use
ext2 Standard Linux file system supporting large filenames and file sizes;

does not include journaling
ext3 Standard Linux file system supporting large filenames and file sizes;

includes journaling
xiaf Xiaf file system
msdos File system for MS-DOS partitions (16-bit)
vfat File system for Windows 95, 98, and Millennium partitions (32-bit)
ntfs NT and Windows 2000 file systems
hpfs File system for OS/2 high-performance partitions
proc Used by operating system for processes
nfs NFS file system for mounting partitions from remote systems
umsdos UMS-DOS file system
swap Linux swap partition or swap file
sysv UNIX System V file systems
iso9660 File system for mounting CD-ROM
/dev/hda3 / ext2 defaults 0 1

The type of file system on a floppy drive could vary, often depending on the type floppy you
are trying to mount. For example, you may want to read a Windows formatted floppy disk at
one time and a Linux formatted floppy disk at another time. For this reason, the file system
type specified for the floppy device is auto. With this option, the type of file system formatted
on the floppy disk will be automatically detected and the appropriate file system type used.

/dev/fd0 /mnt/floppy auto defaults,noauto 0 0

The field after the file system type lists the different options for mounting the file system. You
can specify a default set of options by simply entering defaults. You can list specific options
next to each other separated by a comma (no spaces). The defaults option specifies that a
device is read/write (rw), asynchronous (async), a block device (dev), cannot be mounted by
ordinary users (user) , and that programs can be executed on it (exec). By contrast, a CD-
ROM only has a few options listed for it: ro and noauto. ro specifies this is read-only; and
noauto specifies this is not automatically mounted. The noauto option is used with both CD-

ROMs and floppy drives, so they won't automatically mount because you do not know if you
have anything in them when you start up. At the same time, the entries for both the CD-ROM
and the floppy drive specify where they are to be mounted when you decide to mount them.
Table 32-8 lists the options for mounting a file system. The floppy drive entry also has all the
default options of the hard disk partitions, with the exception that it is not automatically
mounted (not mountable with the -a option). An example of CD-ROM and floppy drive
entries follows. Notice the type for a CD-ROM file system is different from a hard disk
partition, iso9660.

/dev/hdc /mnt/cdrom iso9660 ro,noauto 0 0
/dev/fd0 /mnt/floppy auto defaults,noauto 0 0

Table 32-8: Mount Options for File Systems:-o and /etc/fstab
Option Description
async All I/O to the file system should be done asynchronously.
auto Can be mounted with the -a option. A mount -a command executed

when the system boots, in effect, mounts file systems automatically.
defaults Use default options: rw, suid, dev, exec, auto, nouser, and async.
dev Interpret character or block special devices on the file system.
noauto Can only be mounted explicitly. The -a option does not cause the file

system to be mounted.
exec Permit execution of binaries.
nouser Forbid an ordinary (that is, nonroot) user to mount the file system.
remount Attempt to remount an already mounted file system. This is commonly

used to change the mount flags for a file system, especially to make a
read-only file system writable.

ro Mount the file system read-only.
rw Mount the file system read/write.
suid Allow set-user-identifier or set-group-identifier bits to take effect.
sync All I/O to the file system should be done synchronously.
user Enable an ordinary user to mount the file system. Ordinary users

always have the following options activated: noexec, nosuid, and
nodev.

nodev Do not interpret character or block special devices on the file system.
nosuid Do not allow set-user-identifier or set-group-identifier bits to take

effect.

The last two fields consist of an integer value. The first one is used by the dump command to
determine if a file system needs to be dumped, backing up the file system. The last one is used
by fsck to see if a file system should be checked at reboot and in what order. If the field has a
value of 1, it indicates a boot partition, and 2 indicates other partitions. The 0 value means the
fsck needn't check the file system.

A copy of an /etc/fstab file is shown here. Notice the first line is comment. All comment lines
begin with a #. The entry for the /proc file system is a special entry used by your Linux
operating system for managing its processes, and it is not an actual device. To make an entry

in the /etc/fstab file, you can either edit the /etc/fstab file directly or use Linuxconf, which
prompts you for information and then makes the correct entries into your /etc/fstab file. You
can use the /etc/fstab example here as a guide to show how your entries should look. The
/proc and swap partition entries are particularly critical.

/etc/fstab

<device> <mountpoint> <filesystemtype> <options> <dump><fsck>
/dev/hda3 / ext3 defaults 0 1
/dev/hdc /mnt/cdrom iso9660 ro,noauto 0 0
/dev/fd0 /mnt/floppy auto defaults,
 noauto 0
/proc /proc proc defaults
/dev/hda2 none swap sw
/dev/hda1 /mnt/windows vfat defaults 0 0

You can mount either MS-DOS or Windows 95 partitions used by your MS-DOS or Windows
operating system onto your Linux file structure, just as you would mount any Linux file
system. You only have to specify the file type of vfat for Windows 95 and msdos for MS-
DOS. You may find it convenient to have your Windows partitions automatically mounted
when you start up your Linux system (the same is true for MS-DOS partitions). To do this,
you need to put an entry for your Windows partitions in your /etc/fstab file and give it the
defaults option or be sure to include an auto option. You make an entry for each Windows
partition you want to mount, and then specify the device name for that partition followed by
the directory in which you want to mount it. The /mnt/windows directory would be a logical
choice (be sure the windows directory has already been created in /mnt). For the file system
type, enter vfat. The next example shows a standard MS-DOS partition entry for an /etc/fstab
file. Notice the last entry in the /etc/fstab file example was an entry for mounting a Windows
partition.

/dev/hda1 /mnt/windows vfat defaults 0 0

If your /etc/fstab file ever becomes corrupt-say, a line gets deleted accidentally or changed-
then your system will boot into a maintenance mode, giving you read-only access to your
partitions. To gain read/write access so you can fix your /etc/fstab file, you have to remount
your main partition. The following command performs such an operation:

mount -n -o remount,rw /

File systems listed in the /etc/fstab file are automatically mounted whenever you boot, unless
this feature is explicitly turned off with the noauto option. Notice the CD-ROM and floppy
disks have a noauto option. Also, if you issue a mount -a command, all the file systems
without a noauto option are mounted. If you would want to make the CD-ROM user
mountable, add the user option.

/dev/hdc /mnt/cdrom iso9660 ro,noauto,user 0 0
 Note The "automatic" mounting of file systems from /etc/fstab is actually implemented by

executing a mount -a command in the /etc/rc.d/rc.sysinit file that is run whenever you
boot. The mount -a command will mount any file system listed in your /etc/fstab file
that does not have a noauto option. The umount -a option will unmount the file

systems in /etc/fstab (which is executed when you shut down your system).

Installing IDE CD-R and CD-RW Devices

Linux CD Writing applications all treat CD-R and CD-RW drives as if they were SCSI drives.
This means that IDE CD-R and CD-RW drives have to emulate SCSI drives for them to be
recognized and used by CD Writing software. Even if you want to use an IDE CD-ROM in a
CD writing application, say as just the reader to copy a CD disk, that IDE CD-ROM drive
would still have to emulate a SCSI CD-ROM drive. Only SCSI drives (CD-R, CD-RW, or
CD-ROM) are recognized by Linux CD Writers. For example, if you have a regular IDE CD-
ROM and you want to use it in Linux CD-write software to copy CDs (ripping), then you still
have to have that IDE CD-ROM emulate an SCSI CD-ROM. Check the CD-Writing HOWTO
at www.linuxdoc.org for more details. A brief description is shown here.

 Note SCSI emulation for IDE devices is implemented in the kernel as "SCSI Emulation
Support" in the "IDE, ATA, and ATAPI Block Devices entry," located in the "ATA/
IDE/MFM/RLL Support" window opened from the main kernel configuration menu.
Normally it is compiled as a module.

IDE CD drives (CD-R, CD-RW, and CD-ROM) will be recognized as IDE devices during
installation and installed as such. However, when you start up your system, you need to
instruct the Linux kernel to have the IDE CD drives emulate SCSI CD drives. This means that
a CD-R drive that would be normally recognized as a /dev/hdc drive would have to be
recognized as a /dev/scd0 device, the first SCSI CD-ROM drive. You do this by loading the
ide-scsi module, which allows an IDE CD drive to emulate an SCSI CD drive.

You can implement SCSI emulation for IDE CD drives in one of two ways: either by loading
the ide-scsi module as a kernel parameter, or specifying the module in the /etc/modules.conf
file. You will also have to indicate the IDE drives that will be emulated. If the ide-scsi module
is compiled into the kernel (not as a separate module), then you have to load it as a kernel
parameter. An ide-scsi module can be loaded either way.

IDE SCSI Emulation in Kernel Parameters

To create a kernel parameter, you can either manually enter the ide-scsi parameter at the boot
prompt or place it in the boot loader file (/etc/lilo.conf) file to have it automatically entered.
The parameter is read when the kernel boots. List each IDE CD-R or CD-RW that needs to
emulate a SCSI CD-R or CD-RW as using the ide-scsi module. You assign the ide-scsi
module to the device name of the IDE CD drive to be emulated. The following example
would load the ide-scsi module to have the master IDE drive on the secondary IDE
connection (hdc) emulate a SCSI drive.

hdc=ide-scsi

The following example shows how two IDE CD drives are specified at the Linux boot
prompt.

boot: linux hdc=ide-scsi hdd=ide-scsi

For the /etc/lilo.conf file, you assign these parameters to an append command in the image
segment for the Linux kernel. The append command is assigned a string listing the
parameters for that kernel image. Be sure to enclose the string in double quotes. The
following example shows the kernel paramater that configures the hdc IDE drive to emulate a
SCSI drive, enabling it to operate as a CD-R or CD-RW drive. Arguments like this are used
by GRUB in its grub.conf file.

append="hdc=ide-scsi"

For two IDE CD drives, you would use both parameters in the same string.

append="hdc=ide-scsi hdd=ide-scsi"

Be sure to execute the lilo command to effect the changes you make to /etc/lilo.conf.

IDE SCSI Emulation in /etc/modules.conf

If you are not using LILO or, for some reason, do not want to modify the /etc/lilo.conf file,
you can instead configure the /etc/modules.conf file to load and implement the SCSI
emulation for your IDE CD drives. This involves entering several module configuration
commands in the /etc/modules.conf file. When your system starts up, it will load the modules
as specified in that file.

Initially, your IDE CD drives will be recognized and configured as IDE CD-ROMs by the
ide-cd module. You will need to specify options for the ide-cd module to ignore the IDE CD-
R and CD-RW drives, as well as any CD-ROM drives you want to use in CD Writing
applications. You do this with the options command and the ignore option. The following
example instructs ide-cd to ignore an IDE CD-R that has been installed as an IDE CD-ROM
at /dev/hdc, the secondary IDE master.

options ide-cd ignore=hdc

You then have to enter alias commands to identify the scd SCSI drives as using the SCSI CD
module, sr_mod. The following example aliases the /dev/scd0 device as using the sr_mod
SCSI CD module.

alias scd0 sr_mod

There are also several pre-install commands that will load the ide-scsi module and that
provide the SCSI emulation, as well as govern the sequence in which SCSI (sg and sr_mod)
an IDE CD (ide-cd) modules are loaded.

pre-install sg modprobe ide-scsi # load ide-scsi before sg
pre-install sr_mod modprobe ide-scsi # load ide-scsi before sr_mod
pre-install ide-scsi modprobe ide-cd # load ide-cd before ide-scsi

The following example shows the lines to add to the /etc/modules.conf file to have two IDE
CD drives (hdc and hddd) emulate SCSI CD drives (scd0 and scd1). Notice the double quotes
around the ide-cd options on the first line.

options ide-cd "ignore=hdc ignore=hdd"
alias scd0 sr_mod

alias scd1 sr_mod
pre-install sg modprobe ide-scsi
pre-install sr_mod modprobe ide-scsi
pre-install ide-scsi modprobe ide-cd

Once you have installed your SCSI emulation, you should check that your IDE drives are
being recognized as SCSI drives. To do this, you run the cdrecord program with the -scanbus
option. The following example shows two IDE CD drives now emulating SCSI CD drives.
One is a Plextor IDE CD-RW drive (scd0) and the other is a Toshiba DVD-ROM drive
(scd1).

cdrecord -scanbus
Cdrecord 1.9 (i686-pc-linux-gnu) Copyright (C) 1995-2000 Jörg Schilling
Linux sg driver version: 3.1.17
Using libscg version 'schily-0.1'
scsibus0:
 0,0,0 0) 'PLEXTOR ' 'CD-R PX-W1210A' '1.02' Removable CD-ROM
 0,1,0 1) 'TOSHIBA ' 'DVD-ROM SD-M1402' '1010' Removable CD-ROM
 0,2,0 2) *
 0,3,0 3) *
 0,4,0 4) *
 0,5,0 5) *
 0,6,0 6) *
 0,7,0 7) *

You then need to change the device links for any IDE CD drives already installed. Your
Linux CD Writing software and your /etc/fstab entries are designed to reference /etc/cdrom
links. Originally these were set up to link to your IDE device files, such as /dev/hdc. You
now have to change them to reference the SCSI CD device files, like /dev/scd0. For example,
if you have two IDE CD drives, then you will have two device links called /etc/cdrom and
/etc/cdrom1. If both IDE CD drives are now emulating SCSI drives, you have to change both
the cdrom and cdrom1 links. You can place these rm and ln commands in the /etc/rc.d/rc.local
file to have them automatically implemented when your system starts up.

1. First, erase the IDE CD-ROM links in the /dev directory. These are currently pointing
to the IDE CD-ROM devices like hdc or hdb.

2. rm -f /dev/cdrom
rm -f /dev/cdrom1

3. Then create them again to point to the corresponding SCSI devices for these drives.
Use the ln command with the -s option to create symbolic links. These devices begin
with the prefix scd (SCSI CD) and are numbered from 0, beginning with scd0, scd1,
and so on.

4. ln -s /dev/scd0 /dev/cdrom
ln -s /dev/scd1 /dev/cdrom1

5. As the links are specified in the /etc/fstab file, you can now mount and access the
drives just using their mount point.

mount /mnt/cdrom

6. Finally, in the CD-ROM entry for your CD-R or CD-RW drive in the /etc/fstab file,
you would specify the rw (read/write) option instead of the ro (read-only) option. In
this example, /dev/cdrom links to /dev/scd0, which is a Plextor IDE CD-RW drive.

/dev/cdrom /mnt/cdrom iso9660 noauto,owner,kudzu,rw 0 0

Linuxconf Configuration for Local File Systems

Unless you are familiar with the fstab file, using Linuxconf to add and edit entries is easier-
instead of editing entries directly. Linuxconf is available on Red Hat systems and can be
installed on any major distribution. With Linuxconf, you can choose many of the
configuration options using drop-down menus and check boxes. Once you finish making your
entries, you can have Linuxconf generate a new /etc/fstab file incorporating your changes.

You can start Linuxconf from a window manager, a desktop, or a shell command line. The
figures here show Linuxconf panels as they are displayed in Gnome. Other desktops and
window managers show the same display. A Linuxconf shell command shows cursor-based
lists and boxes. To access the Linuxconf file system configuration panels, you can select its
entry in the main Linuxconf interface, or you can use the fsconf command to invoke a
specialized window showing only file system options. Using the main Linuxconf interface,
you select the Access local drive entry in the file systems list under the Config heading. This
displays the information about the different file systems accessible on your local system. The
source is the device name for the storage device. The name begins with /dev, the directory
where device files are kept. For example, the name given to the first partition on the first hard
drive is hda1. Its device filename is /dev/hda1. On most Linux distributions, a CD-DROM is
given the device name /dev/cdrom. Names for additional CD-ROMS vary, depending on
whether they are SCSI or IDE devices. On PCs, a second IDE CD-ROM could have the name
/dev/hdd. The mountpoint and file system type are shown along with the size, partition type,
and whether it is mounted. Figure 32-2 shows the Linuxconf Access local drive panel.

Figure 32-2: Linuxconf file system configuration

To add a new entry, click the Add button. This displays panels for file system information and
options. The Base tab prompts you to enter the file system's device name, its file system type,
and its mountpoint, as shown in Figure 32-3. The box labeled Partition is where you enter the
file system's device name. This box holds a drop-down menu listing the different hard disk
partitions on your hard drive. If you are making an entry for one of those partitions, you can
select it from there. If you are making an entry for a CD-ROM or floppy drive, you must enter
the name yourself. The Type box is where you enter the file system type. The box contains a
drop-down menu that lists the different file system types from which you can choose. Select
the type from this menu. See Table 32-7 for a listing of file system types supported. The
Mountpoint box is where you enter the mountpoint-the directory on your main file system
where you attach this file system. For example, a floppy disk is usually attached to the
/mnt/floppy directory. When you mount a floppy disk, you find its files in that directory. The
directory can actually be any directory on your file system. If the directory does not exist,

then Linuxconf asks to create it for you. Figure 32-3 shows an example of the Base tab for a
Linux partition. The device name in this example is /dev/hda2, the file system type is ext3
(standard for Linux), and the mountpoint is / (this is the root directory). If you were mounting
a windows file system, you would use the vfat type, and for DOS partitions you would use
msdos.

Figure 32-3: Linuxconf Local Volume Base tab for adding or editing file systems

The Options tab lists different mount options in the form of check boxes. You can select
options, such as whether you don't want the file system automatically mounted at boot, or if
you want to let normal users mount it.

If your Linux system shares a hard drive with a Windows system, you may want to add mount
entries for the Windows partition. This way, those partitions would be accessible by your
Linux system. Linux can access any file on an Windows partition, though it cannot run its
programs. For example, files could be downloaded by your Linux system and saved directly
on a Windows partition. To create a mount entry for a Windows partition, you would enter its
hard disk partition name in the Partition box, and enter vfat for its file system type.

When you finish, click the Accept button. This returns you to the Local volume panel and you
then see the new entry displayed. Linuxconf does not actually implement these changes on
your system until you click the Act/Changes entry in the Linuxconf File menu. When you do
this, Linuxconf generates a new /etc/fstab file, replacing the previous one.

If you create an MS-DOS partition, you may want to control access to it. As a single- user
system, MS-DOS does not implement any of the user access controls found on a multiuser
system like Linux. For this reason, MS-DOS systems are mounted by default with global
access, allowing any user on your Linux system full read and write access to the partition. If
you want to control access, say to a particular user, you need to specify the controls you want
on the MS-DOS Options panel. Here you will find entries for the user and the group, and the
default permissions for that user and group. This way you can limit access to a single user or
to users belonging to a particular group. DOS and Linux implement files differently,
particularly in the way the end-of-file indicator is represented. When copying a Linux text file
to DOS directory, a DOS end-of-file character should be inserted in it so that it can be read in
DOS. Normally the translation setting is auto, which will translate text files but not binary
ones, such as programs or archives (text will translate all files and binary will translate none).

You can change any of the current entries by simply double-clicking its entry. This displays
the Volume specification panel for that entry. You can then change any of the options or the
base configuration. For example, to use a different mountpoint, type in a new directory in the
Mountpoint box. If you want to delete the entry, click the DEL button.

Webmin Configuration for Local File Systems

To use Webmin to administer your file system, you first select Disk and Network Filesystems
on the System panel. This opens a page listing all the file systems listed in your fstab file. The
first column lists their mountpoints, and these are links to pages where you can configure
individual entries. To change any of the entries, you can click on their mountpoint directory to
open an Edit Mount page. Here, you can set the mountpoint directory, the device mounted,
and the different mountpoint options.

If you want to add a new file system, you first select the file system type from the pop-up
menu at the bottom of the page. This menu will have as its default Linux Native Filesystem.
Once you have selected the file system type, click on the Add Mount button next to it. This
opens a page where you can enter the directory for the mountpoint, the device to be mounted,
and the mount options.

Mounting File Systems Using Linuxconf, Webmin, KDE, and Gnome

Once you enter a new file system configuration and activate the changes to implement it on
your system, you can then actually mount the file system. By default, file systems are
mounted automatically-though certain file systems, such as CD-ROMs and floppy disks, are
normally mounted manually.

Both the Gnome and K Desktop provide easy-to-use desktop icons for mounting and
unmounting your file systems. Normally, these are used for manually mounted devices, such
as CD-ROMs, tapes, and floppy disks. Hard disk partitions are usually mounted automatically
at boot time. If a CD-ROM or floppy device can be mounted with the user option, then
normal users on your system can also have CD-ROM and floppy icons for mounting and
unmounting CD-ROMs and floppy disks.

On Gnome 1.2, an icon is automatically generated for your CD-ROM devices when you first
insert a CD-ROM disk. On Gnome 1.4, you select the CD-ROM to mount from the Desktop
menu Disks submenu (right-click anywhere on the desktop). Right-clicking the icon displays
a menu from which you can select an entry to mount or unmount the CD-ROM. For a floppy
disk, you right-click on the Floppy drive icon and select Mount to mount the floppy. Be sure
to unmount it before you remove the floppy disk. You can also install a Mount applet in a
Gnome panel that enables you to mount a floppy, CD-ROM, or partition by simply clicking
its Panel icon (See Chapter 8 for more details).

On the K Desktop, KDE desktop files and their icons for your CD-ROM and floppy devices
were created for you when KDE was installed. Should you want to add a new CD-ROM or
floppy drive, right-click the desktop and select the entry either for the CD-ROM or floppy
device from the Create New entry in the pop-up menu. Enter a name for the desktop file in the
General panel. In the Device panel, enter the device name, mountpoint, and file system type.
You can also select a mount and unmount icon.

To mount a file system manually with Linuxconf, select Control Configured Local Drives in
the Mount/Unmount File Systems list in the Control Panel. This displays a listing of your
local file systems. When you click an entry, you are then asked if you want to mount the file
system. You can also use this panel to unmount a file system. If a file system is already
mounted, clicking it displays a dialog box asking if you want to unmount the file system.
Remember, when you mount a CD-ROM or floppy disk, you cannot then simply remove it to
put in another one. You first have to unmount the CD or floppy disk before you can take it out
and put in another one.

Using the Access local drive configuration panel to mount a file system is also possible. Click
the Mount button in a file system's Volume Specification panel. An Unmount button also
unmounts it. You can use this method when checking to see if a new system mounts correctly.

With Webmin, you first display the Disk and Network Filesystems page (accessible from the
System panel). Click on the mount directory for the file system you want to mount, and then
select Mount in the Edit Mount page and save the changes.

The mount and umount Commands

You can also mount or unmount any file system using the mount and umount commands.
You enter these commands on a shell command line. In a window manager or desktop, you
can open a terminal window and enter the command there, or you can simply use your login
shell. The mount operations discussed in the previous sections use the mount command to
mount a file system. Normally, mounting file systems can only be done as the root user
(unless the device is user mountable). This is a system administration task and cannot be
performed by a regular user. To mount a file system, be sure to log in as the root user. Table
32-9 lists the different options for the mount command.

Table 32-9: Themount Command
Mount Option Description
-f Fakes the mounting of a file system. You use it to check if a file

system can be mounted.
-v Verbose mode. Mount displays descriptions of the actions it is taking.

Use with -f to check for any problems mounting a file system, -fv.
-w Mount the file system with read and write permission.
-r Mount the file system with only read permission.
-n Mount the file system without placing an entry for it in the mstab

file.
-t type Specify the type of file system to be mounted. See Table 32-7 for

valid file system types.
-a Mount all file systems listed in /etc/fstab.
-o option-list Mount the file system using a list of options. This is a comma-

separated list of options following -o. See Table 32-8 for a list of the
options and the Man pages for mount.

The mount command takes two arguments: the storage device through which Linux accesses
the file system, and the directory in the file structure to which the new file system is attached.

The mountpoint is the directory on your main directory tree where you want the files on the
storage device attached. The device is a special device file that connects your system to the
hardware device. The syntax for the mount command is as follows:

mount device mountpoint

Device files are located in the /dev directories and usually have abbreviated names ending
with the number of the device. For example, fd0 may reference the first floppy drive attached
to your system. On Linux systems operating on PCs, the hard disk partitions have a prefix of
hd, followed by an alphabetic character that labels the hard drive, and then a number for the
partition. For example, hda2 references the second partition on the first hard drive. In most
cases, you can use the man command with a prefix to obtain more detailed information about
that kind of device. For example, man sd displays the Man pages for SCSI devices. The
following example mounts a floppy disk in the first floppy drive device (fd0) to the /mydir
directory. The mountpoint directory needs to be empty. If you already have a file system
mounted there, you will receive a message that another file system is already mounted there
and that the directory is busy. If you mount a file system to a directory that already has files
and subdirectories in it, those will be bypassed, giving you access only to the files in the
mounted file system. Unmounting the file system restores access to the original directory
files.

mount /dev/fd0 /mydir

For any partition with an entry in the /etc/fstab file, you can mount it using only the mount
directory specified in its fstab entry. You needn't enter the device filename. The mount
command looks up the entry for it in the fstab file, using the directory to identify the entry
and, in that way, find the device name. For example, to unmount the /dev/hda1 DOS partition
in the previous example, the mount command only needs to know the directory it is mounted
to-in this case, /mnt/dos.

mount /mnt/dos

If you want to replace one mounted file system with another, you must first explicitly
unmount the one already mounted. Say you have mounted a floppy disk, and now you want to
take it out and put in a new one. You must unmount that floppy disk before you can put in and
mount the new one. You unmount a file system with the umount command. The umount
command can take as its argument either a device name or the directory where it was
mounted. Here is the syntax:

umount device-or-mountpoint

The following example unmounts the floppy disk mounted to the /mydir directory:

umount /dev/fd0

Using the example where the device was mounted on the /mydir directory, you could use that
directory to unmount the file system:

umount /mydir

One important constraint occurs on the umount command. You can never unmount a file
system in which you are currently working. If you change to a directory within a file system
that you then try to unmount, you receive an error message saying the file system is busy. For
example, suppose you mount the Red Hat CD-ROM on the /mnt/ cdrom directory and then
change to that /mnt/cdrom directory. If you decide to change CD-ROMs, you first have to
unmount the current one with the umount command. This will fail because you are currently
in the directory in which it is mounted. You first have to leave that directory before you can
unmount the CD-ROM.

mount /dev/hdc /mnt/cdrom
cd /mnt/cdrom
umount /mnt/cdrom
umount: /dev/hdd: device is busy
cd /root
umount /mnt/cdrom

If other users are using a file system you are trying to unmount, you can use the lsof or the
fuser commands to find out who they are.

If you are unsure of the type of file system that the floppy disk holds, then you can mount it
specifying the auto file system type with the -t option. Given the auto file system type,
mount will attempt to automatically detect the type of file system on the floppy disk.

mount -t auto /dev/fd0 /mydir

Mounting Floppy Disks

To access a file on a floppy disk, you first have to mount that disk onto your Linux system.
The device name for your floppy drive is fd0, and it is located in the directory /dev. Entering
/dev/fd0 references your floppy drive. Notice the number 0 after fd. If you have additional
floppy drives, they are represented by fd1, fd2, and so on. You can mount to any directory
you want. Red Hat creates a convenient directory to use for floppy disks, /mnt/floppy. The
following example mounts the floppy disk in your floppy drive to the /mnt/floppy directory:

mount /dev/fd0 /mnt/floppy

Remember, you are mounting a particular floppy disk, not the floppy drive. You cannot
simply remove the floppy disk and put in another one. The mount command has attached
those files to your main directory tree, and your system expects to find those files on a floppy
disk in your floppy drive. If you take out the disk and put another one in, you get an error
message when you try to access it.

To change disks, you must first unmount the floppy disk already in your disk drive; then, after
putting in the new disk, you must explicitly mount that new disk. To do this, use the umount
command. Notice no n is in the umount command.

umount /dev/fd0

For the umount operation, you can specify either the directory it is mounted on or the
/dev/fd0 device.

umount /mnt/floppy

You can now remove the floppy disk, put in the new one, and then mount it.

mount /mnt/floppy

When you shut down your system, any disk you have mounted is automatically unmounted.
You do not have to unmount it explicitly.

Mounting CD-ROMs

You can also mount CD-ROM disks to your Linux system using the mount command. On
Red Hat, the directory /mnt/cdrom has been reserved for CD-ROM file systems. You see an
entry for this in the /etc/fstab file. With such an entry, to mount a CD-ROM, all you have to
do is enter the command mount and the directory /mnt/cdrom. You needn't specify the
device name. Once mounted, you can access the CD-ROM through the /mnt/cdrom directory.

mount /mnt/cdrom

As with floppy disks, remember you are mounting a particular CD-ROM, not the CD-ROM
drive. You cannot just remove the CD-ROM and put in a new one. The mount command has
attached those files to your main directory tree, and your system expects to find them on a
disc in your CD-ROM drive. To change discs, you must first unmount the CD-ROM already
in your CD-ROM drive with the umount command. Your CD-ROM drive will not open until
you issue this command. Then, after putting in the new disc, you must explicitly mount that
new CD-ROM. You can then remove the CD-ROM and put in the new one. Then, issue a
mount command to mount it.

umount /mnt/cdrom

If you want to mount a CD-ROM to another directory, you have to include the device name in
the mount command. The following example mounts the disc in your CD-ROM drive to the
/mydir directory. The particular device name for the CD-ROM in this example is /dev/hdc.

mount /dev/hdc /mydir

To change discs, you have to unmount the CD-ROM already in your CD-ROM drive, and
then, after putting in the new disc, you must explicitly mount that new CD-ROM.

umount /mydir

You can now remove the CD-ROM and put in the new one. Then, issue a mount command to
mount it.

mount /dev/hdc /mydir

Mounting Hard Drive Partitions: Linux and Windows

You can mount either Linux or Windows hard drive partitions with the mount command.
However, it is much more practical to have them mounted automatically using the /etc/ fstab
file as described in the next section. The Linux hard disk partitions you created during
installation are already automatically mounted for you. To mount a Linux hard disk partition,
enter the mount command with the device name of the partition and the directory to which

you want to mount it. IDE hard drives use the prefix hd, and SCSI hard drives use the prefix
sd. The next example mounts the Linux hard disk partition on /dev/hda4 to the directory
/mnt/mydata:

mount -t ext3 /dev/hda4 /mnt/mydata

You can also mount a Windows partition and directly access the files on it. As with a Linux
partition, you use the mount command, but you also have to specify the file system type as
Windows. For that, use the -t option, and then type vfat (msdos for MS-DOS). In the next
example, the user mounts the Windows hard disk partition /dev/hda1 to the Linux file
structure at directory /mnt/windows. The /mnt/windows directory is a common designation
for Windows file systems, though you can mount it in any directory (/mnt/dos for MS-DOS).
If you have several Windows partitions, you could create a Windows directory and then
subdirectory for each drive using the drive's label for letter, such as /mnt/Windows/a or
/mnt/Windows/mystuff. Be sure you have already created the directory.

mount -t vfat /dev/hda1 /mnt/windows

Formatting File Systems: mkfs, mke2fs, mkswap, and fdisk

If you want to mount a new partition from either a new hard drive or your current drive, you
must first create that partition using the Linux fdisk and format it with mkfs. Once it is created
and formatted, you can then mount it on your system. If you need to create a swap partition,
you use mkswap. To format Linux ext3 partitions, you can use mke2fs instead of mkfs. And
for DOS partitions, you can use mkdosfs. mke2fs has its own set of options geared to
technical aspects such as block and fragment sizes. To format standard Linux partitions, it is
advisable to simply use mke2fs. The mkisofs tool will create a CD image. This is used
primarily for creating CDs. Linux formatting and partition tools are listed in Table 32-10.

Table 32-10: Linux Partition and Formatting Tools
Tool Description
fdisk Create and delete partitions.
cfdisk Screen-based interface for fdisk.
mkfs Format a partition or floppy disk using specified filesystem type. Front

end to format utilities.
mke2fs Format an ext2 Linux partition.
mke2fs -j Format an ext3 Linux partition.
mkswap Format a swap partition.
mkdosfs Format a DOS partition.
mkisofs Create an ISO CD-ROM disk image.
kfloppy KDE utility to format a floppy disk.

To start fdisk, enter fdisk on the command line. This brings up an interactive program you
can use to create your Linux partition. Be careful using Linux fdisk. It can literally erase your
entire hard disk if you are not careful. The Linux fdisk operates much as described in the
installation process discussed in Chapter 2. The command n creates a new partition, and the

command t enables you to set its type to that of a Linux type, 83. Table 32-11 lists the fdisk
commands.

Table 32-11: The fdisk Commands
Command Description
a Sets and unsets the bootable flag for a partition.
c Sets and unsets the DOS compatibility flag.
d Deletes a partition.
l List partition types.
m Displays a listing of fdisk commands.
n Creates a new partition.
p Prints the partition table, listing all the partitions on your disk.
q Quits without saving changes. Use this to abort an fdisk session if you

made a mistake.
y Select the file system type for a partition.
v Verify the partition table.
w Write partition table to disk and exit. At this point, the changes are

made irrevocably.
x Display a listing of advanced fdisk commands. With these, you can set

the number of cylinders, sectors, and heads; print raw data; and change
the location of data in the partition table.

Hard disk partitions are named with hd (IDE drive) or sd (SCSI drives), followed by an
alphabetic letter indicating the hard drive, and then a number for the partition on the hard
drive. They can belong to any operating system, such as MS-DOS, OS/2, or Windows NT, as
well as Linux. The first partition created is called hda1-the first partition on the first IDE hard
drive, a. If you add another partition, it will have the name hda2. If you add a new IDE hard
drive, its first partition will have the name hdb1.

Once you create your partition, you have to format it. For this, use the mkfs command and the
name of the hard disk partition. A hard disk partition is a device with its own device name in
the /dev directory. You must specify its full pathname with the mkfs command. For example,
the second partition on the first hard drive has the device name /dev/hda4. You can now
mount your new hard disk partition, attaching it to your file structure. The next example
formats that partition:

mkfs -t ext3 /dev/hda4

mkfs is a front end that calls other tools to perform the actual formatting operation. For
example, to format a Linux partition, mkfs uses mke2fs -j. For a windows or DOS partition, it
uses mkdosfs. To create an ext2 Linux partition, you could just as easily use mke2fs with the -
j option, and not have to specify a type, as shown here (without the -j option it creates an ext2
file system)

mke2fs -j /dev/hda4

To format a floppy disk, use the mkfs command. This creates a Linux file system on that disk.
Be sure to specify the ext3 file system type with the -t ext3 option (see Table 32-12). Once it
is formatted, you can then mount that file system. The mkfs command takes as its arguments
the device name and the number of memory blocks on the disk (see Table 32-12). At 1,000
bytes per block, 1,400 formats a 1.44MB disk. You do not first mount the blank disk; you
simply put it in your floppy drive and enter the mkfs command with its arguments. The next
example formats a 1.44MB floppy disk:

mkfs -t ext3 /dev/fd0 1400

With mke2fs, you could use:

mke2fs -j /dev/fd0 1400

Table 32-12: The mkfs Options
Option Description
Blocks Number of blocks for the file system. There are 1,440 blocks for

a 1.44MB floppy disk.
-t file-system-type Specify the type of file system to format. The default is the

standard Linux file system type, ext3.
fs -options Options for the type of file system specified.
-V Verbose mode. Displays description of each action mkfs takes.
-v Instructs the file system builder program that mkfs invokes to

show actions it takes.
-c Checks a partition for bad blocks before formatting it (may take

some time).
-l file-name Reads a list of bad blocks.

If you have the K Desktop installed, you can use the kfloppy utility to format your floppy
disks. kfloppy enables you to choose an MS-DOS or Linux file system type. For MS-DOS
disks, you can choose a quick or full format.

If you want to create a swap partition, you first use fdisk to create the partition if it does not
already exist, and then you use the mkswap command to format it as a swap partition.
mkswap will format the entire partition unless otherwise instructed. It takes as its argument
the device name for the swap partition.

mkswap /dev/hda5
 Note During installation, Red Hat will recognize the IDE CD-R and CD-RW drives you have

installed on your system, and will include the ide-scsi kernel parameter automatically as
part of either your LILO or Grub boot loader configurations. You will not need to
perform any of the specific configuration tasks described in this section.

Configuring RAID devices

Redundant array of independent devices (RAID) is method of storing data across several disks
to provide greater efficiency and redundancy. In effect, you can have several hard disks
treated as just one hard disk by your operating system. RAID then efficiently stores and
retrieves data across all these disks, instead of having the operating system separately access

each one as a separate file system. Lower-level details of storage and retrieval are removed
from concern of the operating system. This allows greater flexibility in adding or removing
hard disks, as well as implementing redundancy in the storage system to provide greater
reliability. With RAID, you can have several hard disks that are treated as one virtual disk,
where some of the disks are used as real-time mirrors, duplicating data.

RAID can be implemented on a hardware or software level. On a hardware level, you can
have hard disks connected to a RAID hardware controller, usually a special PC card. Your
operating system then accesses storage through the RAID hardware controller. Alternatively,
you can implement RAID as a software controller, letting a software RAID controller
program manage access to hard disks treated as RAID devices. The software version lets you
use IDE hard disks as RAID disks. Linux uses the MD driver, supported in the 2.4 kernel, to
implement a software RAID controller.

 Note Before you can use RAID on your system, make sure it is implemented on your kernel.
If not, you will have to reconfigure and install a new version of the kernel (see Chapter
34). Check the Multi-Driver Support component in your kernel configuration. You can
specify support of any or all of the RAID levels.

RAID can be implemented at different levels depending on whether you want efficiency,
redundancy, or reconstruction capability. For efficiency, RAID stores data using disk
stripping, where data is organized into standardized strips that can be stored across the RAID
drives for faster access (level 0). Redundancy is implemented with mirroring. With mirroring,
the same data is written to each RAID drive (level 1). Each disk has a complete copy of all the
data written, so that if one or more fails, the others still have your data. Redundancy can be
very inefficient and take up a great deal of storage. It is usually implemented on RAID arrays
of only two disk drives, where one is used as a real time backup. As an alternative, data can
be reconstructed using parity information in case of a hard drive crash. Parity information is
saved instead of full duplication of the data (level 5). Parity information takes up the space
equivalent of one drive, leaving most of the space on the RAID drives free for storage. On
Red Hat, RAID supports three levels as well as a simple linear implementation (see Table 32-
13).

Table 32-13: RAID Levels Supported on Red Hat
RAID Level Description
0 Implements disk stripping across drives with no redundancy.
1 Implements a high level of redundancy. Each drive is treated as a

mirror for all data.
5 Implements a data reconstruction capability using parity information

distributed across all drives. The parity information takes up the
equivalent of one drive.

linear Simply treats RAID hard drives as one virtual drive with no stripping,
mirroring, or parity reconstruction.

 Note You can create and format RAID drives on Red Hat during installation. At that time you
can use either fdisk or Disk Druid to create your RAID partitions and devices. Consult
the Red Hat Customization Guide for details. Select the custom configuration for
creating your partitions. You can then use Disk Druid (recommended) or fdisk to create
RAID partitions.

This section will discuss Linux software RAID devices as they are implemented using Red
Hat RAID tools (see Table 32-14). A RAID device is called an md device because it uses the
MD driver. These devices are already defined on your Red Hat Linux system in the /etc/dev
directory, starting with md0. /dev/md0 is the first RAID device, and /dev/md1 is the second,
and so on. Each RAID device, in turn, will use hard disk partitions, where each partition
contains an entire hard disk. These partitions are usually referred to as RAID disks, whereas a
RAID device is an array of the RAID disks its uses.

Table 32-14: Red Hat RAID Tools
Tool Description
mkraid Creates (configures) a RAID devices from a set of block devices,

initializing them
raidstart Activates RAID devices
raid0start Activates older non-persistent linear and RAID 0 RAID devices
raidstop Turns off a RAID device, un-configuring it
 Note The term device can be confusing as it is also used to refer to the particular hard disk

partitions, also devices, that make up a RAID device. In fact, a RAID device is an array
of hard disk partitions, with each partition taking up an entire hard disk. You can think
of a RAID device as consisting of a set (array) of hard disks (devices). So you have the
RAID device, which is an array of hard disk devices.

If you created your RAID devices and their partitions during the Red Hat installation process,
you should already have working RAID devices. Your RAID devices will be configured in
the /etc/raidtab file, and the status of your RAID devices will be listed in the /proc/mdstat
file. You can manually start or stop your RAID devices with the raidstart and raidstop
commands. The -a option will operate on all of them, although you can specify particular
devices if you want.

Creating and installing a new RAID device involves the following steps:

• Make sure that your kernel supports the kind of RAID device you are creating.
• If you have not already done so, create the RAID disks (partitions) you will use for

your RAID device.
• Configure your RAID device (/dev/mdn) in the /etc/raidtab file, specifying the RAID

disks to use.
• Create your RAID device with mkraid.
• Activate the RAID device with raidstart.
• Create a file system on the RAID device (mke2fs), and then mount it.

To add new RAID devices or to create them in the first place, you will need to manually
create the hard disk partitions they will use and then configure RAID devices to use those
partitions. To create a hard disk partition for use in a RAID array, you use fdisk and specify
fd as the file system type. You invoke fdisk with the device name of the hard disk you want to
create the partition on. Be sure to specify fd as the partition type. The following example will
invoke fdisk for the hard disk /dev/hdb (the second hard disk on the primary IDE
connection).

fdisk /dev/hdb

Although technically partitions, these hard disk devices are referred to as disks in RAID
configuration documentation and files, so that is how they will be referred to from this point
on.

Once you have your disks, you then need to configure RAID devices to use them. RAID
devices are configured in the /etc/raidtab file. Here you create a raiddev entry for each
RAID device and specify which disks they will use. readdev specifies the name of the RAID
device you are configuring, such as /dev/md0 for the first RAID device.

raiddev /dev/md0

You then specify the level for the RAID device such as 0, 4, or 5 (raidlevel). Next, you add
any options you may need, along with the list of disks making up the RAID array. A disk is
defined with the device entry, and its position in the RAID array with the raid-disk option.
The configuration directives and options are listed in Table 32-15. A sample entry for the
/etc/raidtab file is shown here:

 raiddev /dev/md0
 raid-level 5
 nr-raid-disks 3
 nr-spare-disks 1
 persistent-superblock 1
 chunk-size 4
 parity-algorithm left-symmetric

 device /dev/hdb1
 raid-disk 0
 device /dev/hdc1
 raid-disk 1
 device /dev/hdd1
 raid-disk 0

Table 32-15: raidtab Options
Directives and Options Description
raiddev device Starts a configuration section for a particular RAID

device.
raid-level num The RAID level for the RAID device, such as 0, 1, 4, 5,

and -1 (linear).
device disk-device The disk device (partition) to be added to the RAID array.

The number of device entries specified for a RAID device
must match that specified by nr-raid-disk.

nr-raid-disks count Number of raid devices in an array. Each RAID device
section must have this directive. Maximum limit is 12
(256 experimental).

nr-spare-disks count Number of spare devices in the array. Used only for RAID
4 and RAID 5. Kernel must be configured to and allow the
automatic addition of new RAID disks as needed. Can add
and remove spare disks with raidhotadd and
raidhotremove.

persistent-superblock 0/1 Specifies whether newly created RAID arrays should use a
persistent superblock. Used to help the kernel safely detect

Table 32-15: raidtab Options
Directives and Options Description

the RAID array. RAID array information is kept in a
superblock on each RAID member.

chunk-size size Sets the stripe size to size bytes, in powers of 2.
device devpath Adds the most recently devined device to the list of

devices that make up the RAID system.
raid-disk index Inserts the most recently devined RAID device at the

specified position in the RAID array.
spare-disk index Inserts the most recently devined RAID device as a spare

device at the specified position in the RAID array.
parity-disk index The most recently devined device is used as the parity

device, placing it at the end of the RAID array.
parity-algorithm algoritm For RAID 5 devices, specifies the parity algorithm to use:

left-asymmetric, right-asymmetric, left-symmetric, or
right-symmetric.

failed-disk index The most recently defined device is added to a RAID
array as a failed device at the specified position.

The previous example configures the RAID device /dev/md0 as a RAID 5 (raid-level 5)
device. There are three disks (partitions) that make up this RAID array, /dev/hdb1,
/dev/hdc1, and /dev/hdd1, of which /dev/hdb1 is the first and /dev/hdc1 is the second. There
is one spare disk, /dev/hdd1. There are three RAID disks altogether (nr-raid-disks) and one
spare partition (nr-spare-disks). The RAID file system uses persistent super blocks
(persistent-superblock) to hold file system configuration information. The parity-algorithm
option is used for RAID 5 devices to specify the type of parity algorithm to use for parity
restoration-in this example, left-symmetric. Red Hat also provides a set of RAID tools for
creating and maintaining RAID partitions and devices.

Once you have configured your RAID devices in the /etc/raidtab file, you then use the
mkraid command to create your RAID devices. mkraid takes as its argument the name of the
RAID device, such as /dev/md0 for the first RAID device. It then locates its entry in the
/etc/raidtab file and uses that configuration information to create the RAID file system on
that device. You can specify an alternative configuration file with the -c options, if you wish.
mkraid operates as a kind of mkfs command for the RAID device, initializing the partitions
and creating the RAID file systems. Any data on the partitions making up the RAID array will
be erased.

mkraid /dev/md0

Once you have created your RAID devices, you can then activate them with the raidstart
command. raidstart makes your RAID file system accessible. raidstart takes as its argument
the name of the RAID device you want to start. The -a option will activate all RAID devices.

raidstart /dev/md0

Once they are activated, you can then create file systems on the RAID devices and mount
those file systems. The following example creates a standard Linux file system on the
/dev/md0 device.

mke2fs /dev/md0

The user then creates a directory called /myraid and mounts the RAID device there.

mkdir /myraid
mount /dev/md0 /myraid

Should you plan to use your RAID device for maintaining your user directories and files, you
would mount the RAID device as your /home partition. Such a mount point might normally
be used if you created your RAID devices when you installed your system. To transfer your
current home directories to a RAID device, first back them up on another partition, and then
mount your RAID device, copying your home directories to it.

If you decide to change your RAID configuration or add new devices, you first have to
deactivate your currently active RAID devices. To deactivate a RAID device you use the
raidstop command. Be sure to close any open files and unmount any file systems on the
device first.

umount /dev/md0
raidstop /dev/md0

The raidhotadd and raidhotremove commands are used to add and remove partitions from
an active RAID array. You use raidhotadd to add a spare partition and raidhotremove to
remove any partitions that have failed.

 Note raidstop, raidhotadd, and raidhotremove are simply links to the raidstart command.
They run the raidstart command with certain options.

Backup and Restore File Systems: dump and restore

You can back up and restore your system with the dump and restore utilities. dump can back
up your entire system or perform incremental backups, saving only those files that have
changed since the last backup. dump supports several options for managing the backup
operation, such as specifying the size and length of storage media (see Table 32-16).

Table 32-16: dump Options
Option Description
-0-9 Specify the dump level. A dump level 0 is a full backup, copying the

entire file system (see also the -h option). dump level numbers above
0 perform incremental backups, copying all new or modified files
new in the file system since the last backup at a lower level. The
default level is 9.

-B records Lets you specify the number of blocks in a volume, overriding the
end-of-media detection or length and density calculations that dump
normally uses for multivolume dumps.

Table 32-16: dump Options
Option Description
-a Lets dump bypass any tape length calculations and write until an end-

of-media indication is detected. Recommended for most modern tape
drives, and is the default.

-b blocksize Lets you specify the number of kilobytes per dump record. With this
option, you can create larger blocks, speeding up backups.

-d density Specify the density for a tape in bits per inch (default is 1,600 BPI).
-h level Files that are tagged with a user's "nodump"' flag will not be backed

up at or above this specified level. The default is 1, which will not
back up the tagged files in incremental backups.

-f file/device Backs up the file system to the specified file or device. This can be a
file or tape drive. You can specify multiple filenames, separated by
commas. A remote device or file can be referenced with a preceding
hostname, hostname:file.

-k Use Kerberos authentication to talk to remote tape servers.
-M Implements a multivolume backup, where the file written to is treated

as a prefix and the suffix consisting of a numbered sequence from
001 is used for each succeeding file, file001, file 002, etc. Useful
when backup files need to be greater than the Linux ext3 2GB file
size limit.

-n Notify operators should a backup need operator attention.
-s feet Specify the length of a tape in feet. dump will prompt for a new tape

when the length is reached.
-S Estimate the amount of space needed to perform a backup.
-u Write an entry for a successful update in the /etc/dumpdates file.
-W Detects and displays the file systems that need to be backed up. This

information is taken from the /etc/dumpdates and /etc/fstab files.
-w Detects and displays the file systems that need to be backed up based

only on information in /etc/fstab.

The dump utility uses dump levels to determine to what degree you want your system backed
up. A dump level of 0 will copy file systems in their entirety. The remaining dump levels
perform incremental backups, only backing up files and directories that have been created or
modified since the last lower-level backup. A dump level of 1 will only back up files that
have changed since the last level 0 backup. The dump level 2, in turn, will only back up files
that have changed since the last level 1 backup (or 0 if there is no level 1), and so on up to
dump level 9. You could run an initial complete backup at dump level 0 to back up your entire
system, and then run incremental backups at certain later dates, having to back up only the
changes since the full backup.

Using dump levels, you can devise certain strategies for backup of a file system. It is
important to keep in mind that an incremental backup is run on changes from the last lower-
level backup. For example, if the last backup was 6 and the next backup was 8, then the level
8 would back up everything from the level 6 backup. The sequence of the backups is

important. If there were three backups with levels 3, then 6, and then 5, the level 5 backup
would take everything from the level 3 backup, not stopping at level 6. Level 3 is the next-
lower-level backup for level 5, in this case. This can make for some complex incremental
backup strategies. For example, If you want each succeeding incremental backup to include
all the changes from the preceding incremental backups, you could run the backups in
descending dump level order. Given a backup sequence of 7, 6, and 5, with 0 as the initial full
backup, then 6 would include all the changes to 7, because its next lower level is 0. Then, 5
would include all the changes for 7 and 6, also because its next lower level is 0, making all the
changes since the level 0 full backup. A simpler way to implement this is to make the
incremental levels all the same. Given an initial level of 0, and then two backups both with
level 1, the last level 1 would include all the changes from the backup with level 0, since level
0 is the next lower level-not the previous level 1 backup.

Backups are recorded in the /etc/dumpdates file. This file will list all the previous backups
specifying the file system they were performed on, the dates they were performed, and the
dump level used. You can use this information to restore files from a specified backup. Recall
that the /etc/fstab file records the dump level as well as the recommended backup frequency
for each file system. With the -W option, dump will analyze both the /etc/dumpdates and
/etc/fstab files to determine which file systems need to be backed up. The dump command
with -w option just uses /etc/fstab to report the file systems ready for backup.

The dump command takes as its arguments the dump level, the device it is storing the backup
on, and the device name of the file system that is being backed up. If the storage medium
(such as a tape) is too small to accommodate the backup, dump will pause and let you insert
another. dump supports backups on multiple volumes. The u options will record the backup in
the /etc/dumpdates file. In the following example, an entire backup (dump level 0) is
performed on the file system on the /dev/hda3 hard disk partition. The backup is stored on a
tape device, /dev/tape.

dump -0u -f /dev/tape /dev/hda5
 Note You can use the mt command to control your tape device. mt has options to rewind,

erase, and position the tape. The rmt command controls a remote tape device.

The storage device can be another hard disk partition, but it is usually a tape device. When
you installed your system, Red Hat most likely detected the device and set up /dev/tape as a
link to it (just as it did with your CD-ROMs). If the link was not set up, you would have to
create it yourself or use the device name directly. Tape devices can have different device
names, depending on the model or interface. SCSI tape devices are labeled with the prefix st,
with a number attached for the particular device. st0 is the first SCSI tape device. To use it in
the dump command, just specify its name.

dump -0u -f /dev/st0 /dev/hda5

Should you need to back up to a device located on another system on your network, you
would have to specify that hostname for the system and the name of its device. The hostname
is entered before the device name and delimited with a colon. In the following example, the
user backs up file system /dev/hda5 to the SCSI tape device with the name /dev/st1 on the
rabbit.mytrek.com system:

dump -0u -f rabbit.mytrek.com:/dev/st0 /dev/hda5

The dump command works on one file system at a time. If your system has more than one
file system, you will need to issue a separate dump command for each.

 Note You can use the system cron utility to schedule backups using dump at specified times.

You use the restore command to either restore an entire file system or to just retrieve
particular files. restore will extract files or directories from a backup archive and copy them to
the current working directory. Make sure you are in the directory you want the files restored
to when you run restore. restore will also generate any subdirectories as needed. restore has
several options for managing the restore operation (see Table 32-17).

Table 32-17: restore Options
Option Description
-C Lets you check a backup by comparing files on a file system with

those in a backup.
-I The interactive mode for restoring particular files and directories in a

backup. A shell interface is generated where the user can use
commands to specify files and directories to restore (see Table 32-18).

-R Will instruct restore to request a tape that is part of a multivolume
backup, from which to continue the restore operation. Helpful when
multivolume restore operations are interrupted.

-r Restore a file system. Make sure that a newly formatted partition has
been mounted and that you have changed to its top directory.

-t List the contents of a backup, or specified files in it.
-x Will extract specified files or directories from a backup. A directory is

restored with all its subdirectories. If no file or directory is specified,
then the entire file system is restored.

-f file/device Restores the backup on the specified file or device. Specify a
hostname for remote devices.

-k Use Kerberos authentication for remote devices.
-h Extracts only the specified directories, without their subdirectories.
-M Restores from multivolume backups where the file is treated as a

prefix and the suffix is a numbered sequence, file001, file002.
-N Displays the names of files and directories, does not extract them.
-T directory Specifies a directory to use for the storage of temporary files. The

default value is /tmp.
-v The verbose mode, where each file and its file type that restore

operates on is displayed.
-y By default, restore will query the operator to continue if an error

occurs, such as bad blocks. This option suppresses that query, allowing
restore to automatically continue.

To recover individual files and directories, you run restore in an interactive mode using the (-
i) option. This will generate a shell with all the directories and files on the tape, letting you
select the ones you want to restore. When you are finished, restore will then retrieve from a

backup only those files you selected. This shell has its own set of commands that you can use
to select and extract files and directories (see Table 32-18). The following command will
generate an interactive interface listing all the directories and files backed up on the tape in
the /dev/tape device:

restore -ivf /dev/tape

Table 32-18: Restore Interactive Mode Shell Commands
Command Description
add [arg] Add files or directories to the list of files to be extracted. Such

tagged files display a * before their names when listed with ls. All
subdirectories of a tagged directory are also extracted.

cd arg Changes the current working directory.
delete [arg] Deletes a file or directory from the extraction list. All subdirectories

for deleted directories will also be removed.
extract Extracts files and directories on the extraction list.
help Display a list of available commands.
ls [arg] Lists the contents of the current working directory or a specified

directory.
pwd Displays the full pathname of the current working directory.
quit Exits the restore interactive mode shell. The quit command does not

perform any extraction, even if the extraction list still has items in it.
setmodes Sets the owner, modes, and times for all files and directories in the

extraction list. Used to clean up an interrupted restore.
verbose In the verbose mode, each file is listed as it is extracted. Also, the ls

command lists the inode numbers for files and directories.

This command will generate a shell encompassing the entire directory structure of the backup.
You are given a shell prompt and you can use the cd command to move to different
directories and the ls command to list files and subdirectories. You use the add command to
tag a file or directory for extraction. Should you later decide not to extract it, you can use the
delete command to remove from the tagged list. Once you have selected all the items you
want, you enter the extract command to retrieve them from the backup archive. To quit the
restore shell, you enter quit. The help command will list the restore shell commands.

Should you need to restore an entire file system, you would use restore with the -r option.
You can restore the file system to any blank formatted hard disk partition of adequate size,
including the file system's original partition. If may be advisable, if possible, to restore the file
system on another partition and check the results.

Restoring an entire file system involves setting up a formatted partition, mounting it to your
system, and then changing to its top directory to run the restore command. First you should
use mkfs to format the partition to where you are restoring the file system, and then mount it
onto your system. Then you use restore with the -r option and the -f option to specify the
device holding the file system's backup. In the next example, the user formats the /dev/hda5
partition, and then restores on that partition, the file system backup, currently on a tape in the
/dev/tape device.

mkfs /dev/hda5
mount /dev/hda5 /mystuff
cd /mystuff
restore -rf /dev/tape

To restore from a backup device located on another system on your network, you would have
to specify that hostname for the system and the name of its device. The hostname is entered
before the device name and delimited with a colon. In the following example, the user restores
a file system from the backup on the tape device with the name /dev/tape on the
rabbit.mytrek.com system:

restore -rf rabbit.mytrek.com:/dev/tape

The mtools Utilities: msdos

Your Linux system provides a set of utilities, known as mtools, that enable you to access a
floppy disk formatted for MS-DOS easily (see Table 32-19). The mcopy command enables
you to copy files to and from an MS-DOS floppy disk in your floppy drive. No special
operations, such as mounting, are required. With mtools, you needn't mount an MS-DOS
partition to access it. For an MS-DOS floppy disk, place the disk in your floppy drive, and
you can then use mtool commands to access those files. For example, to copy a file from an
MS-DOS floppy disk to your Linux system, use the mcopy command. You specify the MS-
DOS disk with a: for the A drive. Unlike normal DOS pathnames, pathnames used with mtool
commands use forward slashes instead of backslashes. The directory docs on the A drive
would be referenced by the pathname a:/docs, not a:\docs. Unlike MS-DOS, which defaults
the second argument to the current directory, you always need to supply the second argument
for mcopy. The next example copies the file mydata to the MS-DOS disk, and then copies
the preface file from the disk to the current Linux directory. Notice that, unlike DOS, mtools
uses forward slashes instead of backward slashes.

$ mcopy mydata a:
$ mcopy a:/preface.

Table 32-19: The mtools Access Commands
Command Execution
mcopy filename filename Copies a file to and from an MS-DOS disk or your Linux

system. The following copies a file from an MS-DOS
floppy disk to your Linux system:mcopy a:/filename
directory-or-filename The following copies a file from
Linux for an MS-DOS floppy disk in your floppy
drive:mcopy filename a:/filename.

mcd directory-name Changes directory on your MS-DOS file system.
mdir Lists the files on an MS-DOS disk in your floppy drive.
mattrib Change the attribute of an MS-DOS file.
mdel filename Delete an MS-DOS file.
mformat Adds an MS-DOS file system to a floppy disk.
mlabel Makes a volume label.
mmd directory-name Makes an MS-DOS directory.
mrd directory-name Removes an MS-DOS directory.

Table 32-19: The mtools Access Commands
Command Execution
mread filename filename Low-level read (copy) of an MS-DOS file to Unix.
mren filename filename Renames an MS-DOS file.
mtype filename Displays contents of an MS-DOS file.
mwrite filename filename Low-level write (copy) a Unix file to MS-DOS.

You can use the mdir command to list files on your MS-DOS disk, and you can use the mcd
command to change directories on it. The next example lists the files on the MS-DOS disk in
your floppy drive, and then changes to the docs directory on that drive:

$ mdir a:
$ mcd a:/docs

Most of the standard MS-DOS commands are available as mtool operations. You can create
MS-DOS directories with mmd and erase MS-DOS files with mdel. A list of mtool
commands is provided in Table 32-19. For example, to display a file on drive b: on an MS-
DOS 5 1/4-inch floppy drive, use mtype and the name of the file preceded by b:/.

$ mtype b:/readme

Access to MS-DOS partitions is configured by the /etc/mtools.conf file. This file lists several
different default MS-DOS partitions and disk drives. Each drive or partition is identified with
a particular device name. Entries for your floppy drives are already entered, using the device
names /dev/fd0 and /dev/fd1 for the first and second floppy drives. An entry in the
/etc/mtools.conf file takes the form of the drive label followed by the term "file" and the
equal sign, and then the device name of the drive or partition you want identified with this
label. The device name is encased in quotes. For example, assuming the first hard disk
partition is an MS-DOS partition and has the device name of /dev/hda1, the following entry
would identify this as the c: drive on an MS-DOS system:

drive c: file="/dev/hda1"

You must have the correct device name for your partition. These device names are listed in
the /etc/fstab file and can also be viewed with the Linuxconf local drive access panel on your
root user desktop. If you have an SCSI hard disk, the hard disk partition has the form of sd,
followed by a character for the hard drive and a number for the partition in it. For example,
sda1 refers to the first partition on the SCSI hard drive. IDE hard drives have the form of hd,
also followed by a character and a partition number-hda1 refers to the first partition on an
IDE hard drive.

On most distributions, a default /etc/mtools.conf file is installed for you (see the following
/etc/mtools.conf example). This file has commented entries for the c: drive: one for an SCSI
hard disk partition and one for an IDE partition. Both are commented out with a preceding #.
If you have an IDE hard drive (as most users do), you need to remove the preceding # symbol
from the entry for the IDE hard disks partition and leave the preceding # symbol in front of
the entry for the SCSI partition. Also, if your MS-DOS partition on your IDE hard drive is not
the first partition, you must change the device name. For example, if the MS-DOS partition is
the second partition, the device name will be /dev/hda2. If you have several MS-DOS

partitions, you can add entries for each one, assigning a different label to each. The following
example assigns the d: label to the fourth hard disk partition on an IDE drive:

drive d: file="/dev/hda4"
/etc/mtools.conf

Linux floppy drives
drive a: file="/dev/fd0" exclusive 1.44m
drive b: file="/dev/fd1" exclusive 1.44m
First SCSI hard disk partition
#drive c: file="/dev/sda1"
First IDE hard disk partition
drive c: file="/dev/hda1"
drive d: file="/dev/hda5"
#dosemu floppy image
drive m: file="/var/lib/dosemu/diskimage"
#dosemu hdimage
drive n: file="/var/lib/dosemu/diskimage" offset=3840
#Atari ramdisk image
drive o: file="/tmp/atari_rd" offset=136
mtools_lower_case=1

Once the DOS hard disk partitions are referenced, you can then use their drive letters to copy
files to and from them to your Linux partitions. The following command copies the file
mydoc.html to the c: partition in the directory webstuff and renames it mydoc.htm. Notice
the use of forward slashes instead of backward slashes.

$ mcopy mypage.html c:/webstuff/mypag.htm

Because of the differences in the way DOS and Linux handle newlines in text files, you
should use the -t option whenever copying a DOS text file to a Linux partition. The following
command copies the mydoc.txt file from the c:/project directory to the /newdocs directory:

$ mcopy -t c:/project/mydoc.txt /newdocs

Archive Files and Devices: tar

The tar utility creates archives for files and directories. With tar, you can archive specific
files, update them in the archive, and add new files as you want to that archive. You can even
archive entire directories with all their files and subdirectories, all of which can be restored
from the archive. The tar utility was originally designed to create archives on tapes. The term
"tar" stands for tape archive. You can create archives on any device, such as a floppy disk, or
you can create an archive file to hold the archive. The tar utility is ideal for making backups
of your files or combining several files into a single file for transmission across a network.

 Note As an alternative to tar you can use pax. pax is designed to work with different kinds of
Unix archive formats such as cpio, bcpio, and tar. You can extract, list, and create
archives. pax is helpful if you are handling archives created on Unix systems that are
using different archive formats.

On Linux, tar is often used to create archives on devices or files. You can direct tar to archive
files to a specific device or a file by using the f option with the name of the device or file. The
syntax for the tar command using the f option is shown in the next example. The device or
filename is often referred to as the archive name. When creating a file for a tar archive, the
filename is usually given the extension .tar. This is a convention only, and is not required.
You can list as many filenames as you want. If a directory name is specified, then all its
subdirectories are included in the archive.

$ tar optionsf archive-name.tar directory-and-file-names

To create an archive, use the c option. Combined with the f option, c creates an archive on a
file or device. You enter this option before and right next to the f option. Notice no preceding
dash is before a tar option. Table 32-20 lists the different options you can use with tar. In the
next example, the directory mydir and all its subdirectories are saved in the file myarch.tar.
In this example, the mydir directory holds two files, mymeeting and party, as well as a
directory called reports that has three files: weather, monday, and friday.

Table 32-20: File Backups: tar
Command Execution
tar options files Backs up files to tape, device, or archive file.
tar optionsf
archive_name filelist

Backs up files to a specific file or device specified as
archive_name. filelist; can be filenames or directories.

Option
c Creates a new archive.
t Lists the names of files in an archive.
r Appends files to an archive.
U Updates an archive with new and changed files; adds only those

files modified since they were archived or files not already
present in the archive.

w Waits for a confirmation from the user before archiving each file;
enables you to update an archive selectively.

x Extracts files from an archive.
m When extracting a file from an archive, no new timestamp is

assigned.
M Creates a multiple-volume archive that may be stored on several

floppy disks.
f archive-name Saves the tape archive to the file archive name, instead of to the

default tape device; when given an archive name, the f option
saves the tar archive in a file of that name.

f device-name Saves a tar archive to a device such as a floppy disk or tape.
/dev/fd0 is the device name for your floppy disk; the default
device is held in /etc/default/tar-file.

v Displays each filename as it is archived.
z Compresses or decompresses archived files using gzip.

Table 32-20: File Backups: tar
Command Execution
j Compresses or decompresses archived files using bzip2.
$ tar cvf myarch.tar mydir
mydir/
mydir/reports/
mydir/reports/weather
mydir/reports/monday
mydir/reports/friday
mydir/mymeeting
mydir/party

The user can later extract the directories from the tape using the x option. The xf option
extracts files from an archive file or device. The tar extraction operation generates all
subdirectories. In the next example, the xf option directs tar to extract all the files and
subdirectories from the tar file myarch.tar:

$ tar xvf myarch.tar
mydir/
mydir/reports/
mydir/reports/weather
mydir/reports/monday
mydir/reports/friday
mydir/mymeeting
mydir/party

You use the r option to add files to an already created archive. The r option appends the files
to the archive. In the next example, the user appends the files in the letters directory to the
myarch.tar archive. Here, the directory mydocs and its files are added to the myarch.tar
archive:

$ tar rvf myarch.tar mydocs
mydocs/
mydocs/doc1

If you change any of the files in your directories you previously archived, you can use the u
option to instruct tar to update the archive with any modified files. The tar command
compares the time of the last update for each archived file with those in the user's directory
and copies into the archive any files that have been changed since they were last archived.
Any newly created files in these directories are also added to the archive. In the next example,
the user updates the myarch.tar file with any recently modified or newly created files in the
mydir directory. In this case, the gifts file was added to the mydir directory.

tar uvf myarch.tar mydir
mydir/
mydir/gifts

If you need to see what files are stored in an archive, you can use the tar command with the t
option. The next example lists all the files stored in the myarch.tar archive:

tar tvf myarch.tar
drwxr-xr-x root/root 0 2000-10-24 21:38:18 mydir/
drwxr-xr-x root/root 0 2000-10-24 21:38:51 mydir/reports/
-rw-r--r-- root/root 22 2000-10-24 21:38:40 mydir/reports/weather

-rw-r--r-- root/root 22 2000-10-24 21:38:45 mydir/reports/monday
-rw-r--r-- root/root 22 2000-10-24 21:38:51 mydir/reports/friday
-rw-r--r-- root/root 22 2000-10-24 21:38:18 mydir/mymeeting
-rw-r--r-- root/root 22 2000-10-24 21:36:42 mydir/party
drwxr-xr-x root/root 0 2000-10-24 21:48:45 mydocs/
-rw-r--r-- root/root 22 2000-10-24 21:48:45 mydocs/doc1
drwxr-xr-x root/root 0 2000-10-24 21:54:03 mydir/
-rw-r--r-- root/root 22 2000-10-24 21:54:03 mydir/gifts

To back up the files to a specific device, specify the device as the archive. For a floppy disk,
you can specify the floppy drive. Be sure to use a blank floppy disk. Any data previously
placed on it will be erased by this operation. In the next example, the user creates an archive
on the floppy disk in the /dev/fd0 device and copies into it all the files in the mydir directory:

$ tar cf /dev/fd0 mydir

To extract the backed-up files on the disk in the device, use the xf option:

$ tar xf /dev/fd0

If the files you are archiving take up more space than would be available on a device such as a
floppy disk, you can create a tar archive that uses multiple labels. The M option instructs tar
to prompt you for a new storage component when the current one is filled. When archiving to
a floppy drive with the M option, tar prompts you to put in a new floppy disk when one
becomes full. You can then save your tar archive on several floppy disks.

$ tar cMf /dev/fd0 mydir

To unpack the multiple-disk archive, place the first one in the floppy drive and then issue the
following tar command using both the x and M options. You are then prompted to put in the
other floppy disks as they are needed.

$ tar xMf /dev/fd0

The tar operation does not perform compression on archived files. If you want to compress
the archived files, you can instruct tar to invoke the gzip utility to compress them. With the
lowercase z option, tar first uses gzip to compress files before archiving them. The same z
option invokes gzip to decompress them when extracting files.

$ tar czf myarch.tar.gz mydir

Remember, a difference exists between compressing individual files in an archive and
compressing the entire archive as a whole. Often, an archive is created for transferring several
files at once as one tar file. To shorten transmission time, the archive should be as small as
possible. You can use the compression utility gzip on the archive tar file to compress it,
reducing its size, and then send the compressed version. The person receiving it can
decompress it, restoring the tar file. Using gzip on a tar file often results in a file with the
extension .tar.gz. The extension .gz is added to a compressed gzip file. The next example
creates a compressed version of myarch.tar using the same name with the extension .gz:

$ gzip myarch.tar
$ ls
$ myarch.tar.gz

If you have a default device specified, such as a tape, and you want to create an archive on it,
you can simply use tar without the f option and a device or filename. This can be helpful for
making backups of your files. The name of the default device is held in a file called
/etc/default/tar. The syntax for the tar command using the default tape device is shown in
the following example. If a directory name is specified, all its subdirectories are included in
the archive.

$ tar option directory-and-file-names

In the next example, the directory mydir and all its subdirectories are saved on a tape in the
default tape device:

$ tar c mydir

In this example, the mydir directory and all its files and subdirectories are extracted from the
default tape device and placed in the user's working directory:

$ tar x mydir
 Note There are other archive programs you can use such as cpio and shar. However, tar is the

one most commonly used for archiving application software.

Midnight Commander (Gnome) and konqueror (KDE)

Both file managers in Gnome and the K Desktop have the capability to display the contents of
a tar archive file automatically. The contents are displayed as though they were files in a
directory. You can list the files as icons or with details, sorting them by name, type, or other
fields. You can even display the contents of files. Clicking a text file opens it with a text
editor, and an image is displayed with an image viewer. If the file manager cannot determine
what program to use to display the file, it prompts you to select an application. Both file
managers can perform the same kind operation on archives residing on remote file systems,
such as tar archives on FTP sites. You can obtain a listing of their contents and even read their
readme files. The Midnight Commander file manager (Gnome) can also extract an archive.
Right-click the Archive icon and select Extract.

Desktop Archivers: guiTAR, gnochive, LnxZip, Ark, KArchive, and Xtar

Several desktop applications provide a GUI interface for creating and extracting archives.
These archivers provide simple methods for managing archives, enabling you to select files
and set options easily. The guiTAR archiver is Gnome-based. When creating an archive, you
can choose from several compression methods, including tar, rar, and zip. You can open an
archive with a drag-and-drop operation, dragging an archive file from the file manager
window to the guiTAR window (see Figure 32-4). Files listed in an archive can be sorted by
different fields by clicking the buttons across the top of the list. gnochive is a Gnome front
end for Linux archive tools. LnxZip is another Gnome front end for Linux archive tools like
zip, gzip, tar, arj, and bzip2. LnxZip has the added capability of generating RPM packages.

Figure 32-4: The guiTAR Gnome archiver

Ark and KArchive are K Desktop archivers. With Ark, to open a new archive, you enter a
name with the .tar.gz extension. Once an archive is open, you can add to it by dragging files
from a file manager window to the Ark window. To extract an archive, first open it and then
select Extract. KArchiver lets you create archives by simply dragging files to the KArchive
icon. With KArchiver, you can also search for archives and convert between gzip and bzip2
versions. You can specify a root directory or create a tape profile listing specific files and
directories. The Xtar archiver is an X Window System application that can run on any file
manager and provides much the same functionality as the other archivers. Once you select the
tar archive to open, all the files making up the tar archive are then listed in the main window.
With Xtar, you have the option of either unpacking the entire tar archive or only a few files
within it. Options also has a View item for displaying short text files, such as a readme file.

File Compression: gzip, bzip2, and zip

Several reasons exist for reducing the size of a file. The two most common are to save space
or, if you are transferring the file across a network, to save transmission time. You can
effectively reduce a file size by creating a compressed copy of it. Anytime you need the file
again, you decompress it. Compression is used in combination with archiving to enable you to
compress whole directories and their files at once. Decompression generates a copy of the
archive file, which can then be extracted, generating a copy of those files and directories.

Several compression utilities are available for use on Linux and Unix systems. Most software
for Linux systems use the GNU gzip and gunzip utilities. The gzip utility compresses files and
gunzip decompresses them. To compress a file, enter the command gzip and the filename.
This replaces the file with a compressed version of it, with the extension .gz.

$ gzip mydata
$ ls
mydata.gz

To decompress a gzip file, use either gzip with the -d option or the command gunzip. These
commands decompress a compressed file with the .gz extension and replace it with a
decompressed version with the same root name, but without the .gz extension. When you use
gunzip, you needn't even type in the .gz extension. gunzip and gzip -d assume it. Table 32-21
lists the different gzip options.

$ gunzip mydata.gz
$ ls
mydata

Suppose you want to display or print the contents of a compressed file without first having to
decompress it. The command zcat generates a decompressed version of a file and sends it to
the standard output. You can then redirect this output to a printer or display a utility such as
more. The original file remains in its compressed state.

$ zcat mydata.gz | more

You can also compress archived tar files. This results in files with the extensions .tar.gz.
Compressed archived files are often used for transmitting extremely large files across
networks.

$ gzip myarch.tar
$ ls
myarch.tar.gz

You can compress tar file members individually using the tar z option that invokes gzip.
With the z option, tar invokes gzip to compress a file before placing it in an archive. Archives
with members compressed with the z option, however, can neither be updated nor added to.
All members must be compressed and all must be added at the same time.

Table 32-21: The gzip Options
Option Execution
-c Sends compressed version of file to standard output; each file listed is

separately compressed: gzip -c mydata preface myfiles.gz
-d Decompresses a compressed file; or, you can use gunzip: gzip -d

myfiles.gz gunzip myfiles.gz
-h Displays help listing.
-l file-list Displays compressed and uncompressed size of each file listed: gzip -l

myfiles.gz.
-r directory-name Recursively searches for specified directories and compresses all the

files in them; the search begins from the current working directory;
when used with gunzip, compressed files of a specified directory are
uncompressed.

-v file-list For each compressed or decompressed file, displays its name and the
percentage of its reduction in size.

-num Determines the speed and size of the compression; the range is from -1
to -9. A lower number gives greater speed but less compression,
resulting in a larger file that compresses and decompresses quickly; -1
gives the quickest compression, but with the largest size; -9 results in a
very small file that takes longer to compress and decompress. The
default is –6.

You can also use the compress and uncompress commands to create compressed files. They
generate a file that has a .Z extension and use a different compression format than gzip. The
compress and uncompress commands are not that widely used, but you may run across .Z
files occasionally. You can use the uncompress command to decompress a .Z file. The gzip
utility is the standard GNU compression utility and should be used instead of compress.

Another popular compression utility is bzip2. It compresses files using the Burrows-Wheeler
block-sorting text compression algorithm and Huffman coding. The command line options are
similar to gzip by design, but they are not exactly the same. See the bzip2 Man page for a
complete listing. You compress files using the bzip2 command and decompress with
bunzip2. The bzip2 command creates files with the extension .bz2. You can use bzcat to
output compressed data to the standard output. The bzip2 command compresses files in block
and enables you to specify their size (larger blocks give you greater compression). As with
gzip, you can use bzip2 to compress tar archive files. The following example compresses the
mydata file into a bzip compressed file with the extension .bz2:

$ bzip2 mydata
$ ls
mydata.bz2

To decompress, use the bunzip2 command on a bzip file.

$ bunzip2 mydata.bz2

Zip is a compression and archive utility modeled on PKZIP, which was used originally on
DOS systems. Zip is a cross-platform utility used on Windows, Mac, MSDOS, OS/2, Unix,
and Linux systems. Zip commands can work with archives created by PKZIP and PKZIP
programs and can use Zip archives. You compress a file using the zip command. This creates
a Zip file with the .zip extension. If no files are listed, zip outputs the compressed data to the
standard output. You can also use the - argument to have zip read from the standard input. To
compress a directory, you include the -r option. The first example archives and compresses a
file:

$ zip mydata
$ ls
mydata.zip

The next example archives and compresses the reports directory:

$ zip -r reports

A full set of archive operations is supported. With the -f option, you can update a particular
file in the zip archive with a newer version. The -u option replaces or adds files, and the -d
option deletes files from the zip archive. Options also exist for encrypting files and DOS-to-
Unix end-of-line translations, and including hidden files.

To decompress and extract the Zip file, you use the unzip command.

$ unzip mydata.zip

Journaling

With release 7.2, Red Hat introduced journaling capabilities with the ext3 file system.
Journaling provides for fast and effective recovery in case of disk crashes, instead of using
fsck or e2fsck. With journaling a log is kept of all file system actions. These are placed in a
journal file. In the event of a crash, Linux only needs to read the journal file to restore the
system to its previous state. Files that were in the process of writing to the disk, can be
restored to their original state. Journaling also avoids lengthy fsck checks on reboot that occur

when your system suddenly looses power or if it freezes and has to be restarted physically.
Your system just reads its journal files to restore the file system, instead of manually checking
each file and directory with fsck.

Journaling is implemented automatically with ext3. The ext3 file system is also fully
compatible with the earlier ext2 version it replaces. To create an ext3 file system you use the
mk2fs command with the –j option. You can even upgrade ext2 file systems to ext3 versions
automatically, with no loss of data or change in partitions. This upgrade just adds a journal
file to an ext2 file system and enables journaling on it, using the tune2fs command. Be sure to
change the ext2 file type to ext3 in any corresponding /etc/fstab entries. The following
example converts the ext2 file system on /dev/hda3 to an ext3 file system by adding a journal
file (-j).

tune2fs –j /dev/hda3

The ext3 filesystem has three journalling modes of operation: ordered, journal, and writeback.
The ordered mode is the default, guaranteeing the integrity of files written recently. The
writeback mode works faster, but performs less logging and may result in corrupt data in the
case of crash. The journal mode is the slowest, but copies all data to the journal, allowing for
complete recovery. You set the mode with the data option in either the mount command or
fstab entry, as in data=journal.

There are other kind of journaling file systems you can use on Linux. These include ReiserFS,
JFS, and XFS. ReiserFS is named after Hans Reiser and provides a completely reworked file
system structure based on journaling (www.reiserfs.org). JFS is the IBM version of a
journaling file system, designed for use on servers providing high throughput such as
ebusiness enterprise servers (oss.software.ibm.com/ developerworks/opensource/jfs/). It is
free distributed under the GNU public license. XFS is another high performance journaling
system developed by Silicon Graphics (oss.sgi.com/projects/xfs/). XFS is compatible with
RAID and NFS file systems.

Though journaling is often used to recover from disk crashes, a journal-based file system can
do much more. The ext3, JFS, and XFS file systems only provide the logging operations used
in recovery, whereas ReiserFS uses journaling techniques to completely rework file system
operations. In ReiserFS journaling is used to read and write data, abandoning the block
structure used in traditional Unix and Linux systems. This gives it the capability to access a
large number of small files very quickly, as well as use only the amount of disk space they
would need. However, efficiency is not that much better with larger files.

Chapter 33: Devices and Printers
Overview

All devices, such as printers, terminals, and CD-ROMs, are connected to your Linux
operating system through special files called device files. Such a file contains all the
information your operating system needs to control the specified device. This design
introduces great flexibility. The operating system is independent of the specific details for
managing a particular device; the specifics are all handled by the device file. The operating

system simply informs the device what task it is to perform, and the device file tells it how. If
you change devices, you only have to change the device file, not the whole system.

To install a device on your Linux system, you need a device file for it, software configuration
such as provided by a configuration tool, and kernel support—usually supplied by a module
or already built into the kernel. An extensive number of device files are already set up for
different kinds of devices. You usually only need to choose one of these. For kernel support,
you may have to load a kernel module or recompile the kernel, both simple procedures. In
most cases, support is already built into the kernel. Configuration of your device may be
provided by desktop configuration tools such as the Gnome Control Center, system
configuration tools such as Linuxconf, or a module configuration interface such as that
provided for sound modules by sndconfig.

Device Files

The name of a device file is designed to reflect the task of the device. Printer device files
begin with lp for "line print." Because you could have more than one printer connected to
your system, the particular printer device files are distinguished by two or more numbers or
letters following the prefix lp, such as lp0, lp1, lp2. The same is true for terminal device files.
They begin with the prefix tty, for "teletype," and are further distinguished by numbers or
letters such as tty0, tty1, ttyS0, and so on. You can obtain a complete listing of the current
device filenames and the devices for which they are used from the kernel.org Web site at
http://www.kernel.org/pub/linux/docs/device-list/devices.txt.

All of these filenames will be implemented as device files in your /dev directory. Here you
can find printer, CD-ROM, hard drive, SCSI, and sound device files, along with many others.
Certain link files bear common device names that are often linked to the actual device file
used. For example, a /dev/cdrom symbolic link links to the actual device used for your CD-
ROM. If your CD-ROM is an IDE device, it may use the device file hdc. In this case,
/dev/cdrom would be a link to /dev/hdc. In effect, /dev/cdrom is another name for /dev/hdc.
You can use /dev/cdrom to reference your CD-ROM's device file, instead of /dev/hdc. A
/dev/modem link file also exists for your modem. If your modem is connected to the second
serial port, its device file would be /dev/ttyS1. In this case, /dev/modem would be a link to
that device file. Applications can then use /dev/modem to access your modem, instead of
having to know the actual device file used. A listing of commonly used device links is shown
in Table 33-1.

Table 33-1: Device Links
Link Description
/dev/mouse Current mouse device
/dev/tape Current tape device
/dev/cdrom Current CD-ROM device
/dev/cdwriter Current CD-writer device
/dev/scanner Current scanner device
/dev/modem Current dial-out device, modem port
/dev/root Current root file system
/dev/swap Current swap device

 Note You will notice that there are no entries for the Ethernet devices in the /dev file, such as
eth0 or eth1. That is because these are really aliases for kernel modules defined in the
/etc/modules.conf file. They are not device files.

Two types of devices are implemented in Linux: block and character. A block device, such as
a hard disk, transmits data a block at a time. A character device, such as a printer or modem,
transmits data one character at a time, or rather as a continuous stream of data, not as separate
blocks. Device driver files for character devices have a c as the first character in the
permissions segment displayed by the ls command. Device driver files for block devices have
a b. In the next example, lp0 (the printer) is a character device and hda1 (the hard disk) is a
block device:

ls -l hda1 lp0
brw-rw---- 1 root disk 3, 1 Sep 7 1994 hda1
crw-r----- 1 root daemon 6, 0 Dec 31 1979 lp0

Although most distributions include an extensive set of device files already set up for you,
you can create your own. You use the mknod command to create a device file, either a
character or block type. The mknod command has the following syntax:

mknod options device device-type major-num minor-num

The device type can be either b, c, p, or u. As already mentioned, the b indicates a block
device, and c is for a character device. The u is for an unbuffered character device, and the p
is for a FIFO device. Devices of the same type often have the same name; for example, serial
interfaces all have the name: ttyS. Devices of the same type are then uniquely identified by a
number attached to the name. This number has two components: the major number and the
minor number. Devices may further have the same major number, but if so, the minor number
is always different. This major and minor structure is designed to deal with situations in
which several devices may be dependent on one larger device, such as several modems
connected to the same I/O card. All would have the same major number that would reference
the card, but each modem would have a unique minor number. Both the minor and major
numbers are required for block and character devices (b, c, and u). They are not used for FIFO
devices, however.

For example, Linux systems usually provide device files for three parallel ports (lp0–2). If
you need more, you can use the mknod command to create a new one. Printer devices are
character devices and must be owned by the root and daemon. The permissions for printer
devices are read and write for the owner and the group, 660 (see Chapter 12 for a discussion
of file permissions). The major device number is set to 6, while the minor device number is
set to the port number of the printer, such as 0 for LPT1 and 1 for LPT2. Once the device is
created, you use chown to change its ownership to root.daemon. In the next example, a
parallel printer device is made on a fourth parallel port, /dev/lp3. The -m option specifies the
permissions—in this case, 660. The device is a character device, as indicated by the c
argument following the device name. The major number is 6, and the minor number is 3. If
you were making a device at /dev/lp4, the major number would still be 6, but the minor
number would be 4. Once the device is made, the chown command then changes the
ownership of the parallel printer device to root.daemon. Be sure to check if a spool directory
has been created for your device. If not, you need to make one.

mknod -m 660 /dev/lp3 c 6 3

chown root.daemon /dev/lp3

Valid device names along with their major and minor numbers are listed in the devices.txt file
located in the documentation directory for the kernel source code, /usr/src/linux. When
creating a device, you use the major and minor numbers as well as the device name prefix for
the particular kind of device you are creating. Most of these devices are already created for
you and are listed in the /etc/dev directory.

Device Information: /proc

The /proc file system (see Chapter 32) maintains special information files for your devices.
The /proc/devices file lists all your installed character and block devices along with their
major numbers. IRQs, DMAs, and I/O ports currently used for devices are listed in the
interrupts, dma, and ioports files, respectively. Certain files list information covering
several devices, such as pci, which lists all your PCI devices, and sound, which lists all your
sound devices. The sound file will list detailed information about your sound card. Several
subdirectories, such as net, ide, and scsi, contain information files for different devices. Table
33-2 lists several device-related /proc files (see Chapter 32 for other entries).

Table 33-2: /Proc Device Information Files
File Description
/proc/devices List of the device drivers configured for the currently

running kernel
/proc/dma Displays the DMA channels currently used
/proc/interrupts Displays the IRQs (interrupts) in use
/proc/ioports Shows the I/O ports in use
/proc/pci Lists PCI devices
/proc/sound Lists sound devices
/proc/scsi Directory for SCSI devices
/proc/ide Directory for IDE devices
/proc/net Directory for network devices

Installing and Managing Printers: LPRng

Printers are installed and managed on Red Hat by the Linux print server, next generation
(LPRng). LPRng is an enhanced version of the Berkeley Line Printer Daemon (LPD) lpd and
associated lpr applications. It features a wide range of capabilities that include security
measures and access to remote printers. Many of the commands are the same as those used by
LPD on a standard Unix system. The Linux printer server program is called lpd, the line
printer daemon. Printers are installed to run under lpd, which then handles print jobs for them
both locally and from remote sources. Though lpd is called the line printer daemon, it is
designed to manage any kind of printer, not just line printers. You should think of it as a
general-purpose print server capable of handling laser, inkjet, postscript, and dot-matrix
printers. You can find out more information about printing in Linux at
www.linuxprinting.org. LPRng also features a companion IFHP filter package which

provides hardware-level support for postscript, PCL, text printers, among others
(www.astart.com/lprng).

Printers can be attached directly to your system or attached to other systems on your network.
A printer attached directly to your system is referred to as a local printer. For example, a local
printer would be a printer connected to your parallel port on your PC. A remote printer would
be one connected directly to another system on your network. A remote printer could also be
one that is designed to operate as its own host on a network, accessible directly by other
systems on the network. You could even have printers connected to a single system operating
just as a print server that then manages access to them. Access to both local and remote
printers is managed by the lpd daemon. Request are submitted to the lpd daemon along with
the print job. The lpd daemon then spools the print job, making its own copy, and then sends
that job to the specified printer.

The lpd daemon was installed and configured on your Linux system when you installed Red
Hat. lpd is run as a stand-alone process by the lpd startup script in the /etc/rc.d/init.d
directory. You can use the service command on this script to start, stop, and restart the
daemon.

service lpd restart

lpd makes use of two configuration files: lpd.conf and lpd.perms. lpd.conf contains general
lpd configuration commands. You use lpd.perms to set up rules by which you can restrict
access to the lpd server. Here you can deny access by certain hosts, users, or even networks.

Requests to print documents are performed by print clients like lpr. When a document is
submitted for printing, it becomes a print job that is placed on a queue for the printer it was
sent to. While the job is on the queue waiting to print, you can check its status and even
remove it from the queue, canceling the job. The lpq client lets you check a print queue, lpc
allows you to make changes to it, and lprm can be used to remove a print job from a queue.

Installing Printers

To use any printer, it first has to be installed on a Linux system that is on your network. A
local printer is installed directly on your own system. This involves creating an entry for the
printer in the /etc/printcap file that defines the kind of printer it is along with other features
like the device file and spool directory it uses. Installing a printer is fairly simple: determine
which device file to use for the printer, and place printer configuration entries for it in your
/etc/printcap file. You can use several configuration tools to enable you to set up and
configure your printer easily. Red Hat systems provide the printconf utility discussed here.
KDE also provides the K Printer System utility.

Red Hat Linux creates three device names for parallel printers automatically during
installation: lp0, lp1, and lp2. (Most systems currently use lp1.) The number used in these
names corresponds to a parallel port on your PC. lp0 references the LPT1 parallel port usually
located at address 0x03bc, lp1 references the LPT2 parallel port located at 0x0378, and lp2
references LPT3 at address 0x0278. If you are unsure at what address your parallel port is
located, you can use the msd.exe command on your DOS system to find it. Serial printers use
the serial ports, referenced by the device files ttyS0, ttyS1, ttyS2, and so on. For a detailed

explanation of printer installation, see the Printing-HOWTO file in
/usr/share/doc/HOWTO.

printconf

The printconf utility provided on Red Hat distributions is an easy interface for setting up and
managing your printers. Using only printconf, you can easily install a printer on your Linux
system. You can start printconf by selecting the Printer Configuration entry in the Gnome
System menu. The printconf utility enables you to select the appropriate driver for your
printer, as well as to set print options such as paper size and print resolutions. Once you have
configured your printer with printconf, printconf will generate an entry for it in the
/etc/printcap file. See the printconf section in the Red Hat Customization Guide for more
details.

When you start up printconf, you are presented with a window that lists your installed
printers. To add a new printer, click the New button. To edit an installed printer, double-click
its entry or select it and click the Edit button. Once you have made your changes, you can
click on the Apply button to save your changes and restart the printer daemon. If you have
more than one printer on your system, you can make one the default by selecting it and then
clicking on the Default button. The Delete button will remove a printer configuration. You
can test your printer with a PostScript, A4, or ASCII test sheet selected from the Test menu.

When you select New a series of dialogs will be displayed where you can enter the printer
name, its type, and its driver. You can also edit a printer to change any settings. When editing,
a set of four tabbed panes are displayed for the printer name, queue type, driver, and options.

For the queue selection, you can specify entries for the printer device and spool directory. The
device is the port to which the printer is connected. For the first three parallel ports, these are
lp0, lp1, and lp2; for serial ports, these are ttyS0, ttyS1, and ttyS2; and so on (see Figure 33-
1). From a drop-down menu, you can also specify whether the printer is local or remotely
connected through a Linux/Unix, Windows (SMB), or NetWare network.

Figure 33-1: printconf printer queue types

For the driver selection, you are presented with an expandable tree of printer types. You first
select the manufacturer, such as Canon or Apple, which then expands to a list of particular
printer models (see Figure 33-2). Click on yours.

Figure 33-2: printconf printer drivers

For the options selection, you can specify printer features such as paper size and resolution.
When you finish, click OK to close the window. You then see your printer listed in the
printconf window, as shown in Figure 33-1. Choose the Quit item from the File menu to quit
printconf. You are now ready to print. For a detailed explanation of printer installation, see
the Printing-HOWTO file in /usr/share/doc/HOWTO.

 Note If you cannot find the drivers for your printer, you can may be able to download them
from www.linuxprinting.org. The site maintains an extensive listing of drivers.

Setting Up Printers with Linuxconf and Webmin

To set up a printer using Linuxconf, select Add | Edit printers under the Miscellaneous
Services | Printer menu in the Config panel (be sure you are using the full version of
Linuxconf). This opens a Printer Setup panel listing all the printers installed on your system.
Click the Add button to open an Adding a Printer panel where you can enter the printer name
and specify whether it is a local or remote printer. Once the printer is added, you can then
double-click its entry in the Printer Setup panel to open a Printer Properties panel with panels
for General, Printertype, and Filter options. In the Printertype panel, you select the device file
to use for this printer, such as /dev/lp0. In the Filter options panel, you can choose options
such as resolution, paper size, and color depth. To select your printer type, click the Filter
button to open a listing of printers to choose from.

To manage printers with Webmin, you select Printer Administration from the Hardware
panel. To add a printer, click the Add a New Printer link on the Printer Administration page to
display the Create Printer page. Here you can enter the printer name and description as well as
enable the printer and specify the port. For a local printer, you can then select the appropriate
driver.

Printer Devices and /etc/printcap

When your system prints a file, it makes use of special directories called spool directories. A
print job is a file to be printed. When you print a file to a printer, a copy of it is made and
placed in a spool directory set up for that printer. The location of the spool directory is
obtained from the printer's entry in the /etc/printcap file. On Red Hat Linux, the spool
directory is located at /var/spool/lpd under a directory with the name of the printer. For
example, the spool directory for the myepson printer would be located at
/var/spool/lpd/myepson. The spool directory contains several files for managing print jobs.
Some will bear as their extension the name of the printer. For example, the myepson printer
will have the files control.myepson (provides printer queue control) and active.myepson (for
the active print job), as well as log.myepson (the log file).

The /etc/printcap file holds entries for each printer connected to your system. A printcap
entry holds information, such as the pathname for a printer's spool directory and the device
name of the printer port the printer uses. The first field in a printcap entry is a list of possible
names for the printer. These are names you can make up yourself, and you can add others if
you want. Each name is separated by a |. You use these names to identify the printer when
entering various printer commands or options, such as the -P option. These names are also
used for special shell variables, such as the PRINTER variable, used in many initialization
scripts.

 Note If you manage your printers with printconf, then printconf will maintain and overwrite
the /etc/printcap file as you change and add printers. Should you need to create a
printcap entry manually, you can place it in the /etc/printcap.local file.

The fields following the list of names set different fields for your printer. The fields have two-
letter names and are usually assigned a value using =. These assignments are separated by

colons. Three of the more important fields are lp, sd, and of. The lp field is set to the device
name the printer uses. The sd field is set to the pathname of the spool directory, and of is set
to the particular filter used for this printer. Some have Boolean values and simply list the field
name with no assignment for a true value. You can find a complete listing of the printcap
fields in the printcap Man pages: man printcap. An example of a printcap entry follows.

myprinter|myepson:\
 :sh:\
 :ml=0:\
 :mx=0:\
 :sd=/var/spool/lpd/myprinter:\
 :lp=/dev/lp0:\
 :lpd_bounce=true:\
 :if=/usr/share/printconf/mf_wrapper:
 Tip Instead of making your own entries in the /etc/printcap file, you can use a printer

configuration tool such as the printconf utility, Linuxconf, or Webmin to make them for
you automatically.

Installing Remote Printers

To install a remote (network or remote host–attached) printer, you place remote entries for the
printer host and device in the printer's /etc/printcap file entry. An :rm entry identifies the
remote host that controls the remote printer, and an :rp entry specifies the device name of the
remote printer. In the following example, the remote printer is located at rabbit.mytrek.com
and is called lp1:

:rm=rabbit.mytrek.com
:rp=lp1

You can also use printconf to set up a remote printer on Linux, Unix, Microsoft, or Novell
networks (see Table 33-3). When you add a new printer, an edit window opens with a sidebar
for selecting printer configuration tasks. For the queue, a pane is displayed with a drop-down
menu where you can select whether this is a local, Unix (lpd share), Windows (SMB share),
Novell (NDP queue), or JetDirect printer. For a remote Linux or Unix printer, select Unix
Printer (lpd share). This displays a dialog box for configuring the remote printer with entries
for the server and the queue (see Figure 33-3). For the server, enter the host name for the
system that controls the printer. For the queue, enter the device name on that host for the
printer. A Novell (NCP queue) screen will add entries for the user and the password. A
Windows (SMB share) will have entries for the share name, host IP address, workgroup, user,
and password. Check the Red Hat Customization Guide for more details.

Figure 33-3: printconf remote printer configuration

Table 33-3: printconf Supported Networks for Remote Printers
Printer Description
Local Printer Any printer that is directly connected to your system.
Unix Printer (lpd Spool) A printer connected to another Linux or Unix system

on your network (TCP/IP).
Windows Printer (SMB Share) A printer connected to another system that is on an

SMB network such as a Microsoft Windows system.
Samba must be enabled.

Novell Printer (NCP Queue) A printer connected to another system that is on a
Novell's NetWare network.

JetDirect Printer A printer that is connected to the network directly
instead of through another system.

A Windows (SMB share) printer is one located on a Windows network. To access an SMB
share remote printer, you need to install Samba and have the Server Message Block services
enabled using the smbd daemon. Printer sharing must, in turn, be enabled on the Windows
network. In the printconf SMB configuration panel, you need to enter the name of the share,
its IP address, the name of the printer's workgroup, and the user name and password. The
share is the hostname and printer name in the format \\hostname\printername. The hostname
is the computer where the printer is located, and printer name is the name of the printer as it is
known to remote hosts. The user name and password can be one for the printer resource itself,
or for access by a particular user. You can then use a print client lpr to print a file to the
Windows printer. lpr will invoke the Samba client smbclient to send the print job to the
Windows printer.

 Note On Linuxconf, you can also set up a remote printer. When adding a printer, you
determine if it is a local, remote, SMB/Windows, or NetWare printer. When you open
the Printer Properties panel for that printer, the Printertypes options panel will display
entry boxes where you can enter the remote host and the remote queue for that printer.

Configuring lpd

LPRng allows you to configure your lpd server, providing support found in other servers such
as secure access or setting global defaults. There are only two configuration files to manage,
and both are heavily commented. Red Hat provides basic versions for both. An extensive set
of features are available, letting you create servers with powerful and complex capabilities.

General Configuration: lpd.conf

The general configuration for the lpd print server is handled in the /etc/lpd.conf file. Here
you can specify features that apply to all printers and print management. You should think of
these more as default features, as any of them can be overridden in a printer's printcap entry.

The lpd.conf file installed with LPRng on Red Hat will hold an extensive list of configuration
parameters. They will all be commented out, using preceding # signs. A comment describing
the parameter precedes each. The entry itself lists the default value given to the parameters,
preceding the entry with the term "default". The entry for the connect_timeout parameter is
shown here:

Purpose: connection timeout for remote printers
default connect_timeout=10 (INTEGER)

To create your own timeout entry, it is best to add your own entry below, as shown here.
Notice that the preceding # and the term "default" are missing from the new entry. The
connection timeout for remote printers is now set at 20. This can be overridden by a printer's
printcap file entry.

Purpose: connection timeout for remote printers
default connect_timeout=10 (INTEGER)
connect_timeout=20

Parameters can also be flags that you can turn on or off. An off flag is noted with an attached
@ sign. In the following example, the allow_user_logging parameter is a flag that will allow
users to request login information. By default it is turned off. The following example turns it
on:

Purpose: allow users to request logging info using lpr -mhost%port
default allow_user_logging@ (FLAG off)
allow_user_logging

Printer Security: lpd.perms

LPRng provides access control rules for controlling access to your print server, and thereby
the printers it controls, by remote users. These are placed in the lpd.perms file and can be
used to refuse print services to specific hosts or users. Such rules consist of an action and a set
of keys (see Table 33-4). The keys specify criteria to be met, and if met, their associated
action is taken. In each rule you have one action and one or more keys. If there are several
keys, all their criteria must be met for the action to take place. An example of a key would be
to specify the IP address of a host. In addition, you have to specify the kind of service that is
being requested, such as a printing or connection request. The action is usually either
ACCEPT or REJECT. Keys operate as flags or variables. To specify a host you would assign

the address to the HOST key, using an assignment operator. For a user, you would use USER,
and for IP addresses, IFIP. The kind of service is specified by the SERVICE key. For a
printing request, the value you assign is the lpd code P. The following example specifies a
host as the key and will REJECT any request from that address:

Table 33-4: lpd.perms Keys
Key Description
SERVICE Type of service
USER Users specified in a print job control file
HOST Hosts specified in a print job control file
IP IP address specified in a print job control file
IFIP IP address of requests origin (interface IP address)
GROUP Check to see if user is part of specified group
REMOTEHOST Hostname or IP address of remote host specified in a printer

command or derived from network information
REMOTEPORT Port number of remote connection
REMOTEUSER Remote user specified in a printer command or derived from

network information
SAMEUSER Checks to see if the user issuing a command for a job

(REMOTEUSER) is the same as the user that created it
(USER), as listed in the job's control file

SAMEHOST Checks to see if the host issuing a command for a job
(REMOTEHOST) is the same as the host that created it
(HOST), as listed in the job's control file

PRINTER Specified printer
SERVER Request originated from print server
AUTH Enable authentication
AUTHTYPE Type of authentication
AUTHUSER Authenticated userID
AUTHFROM Authenticated ID of requestor
REJECT SERVICE=P HOST=192.168.0.57

A special DEFAULT rule is designed to match any request. You can then specify the default
action to take. The following entry accepts any request. A REJECT action would reject any
request.

DEFAULT ACCEPT

The lpd.perms file consists of a set of rules that are sequentially evaluated until a match is
found. The DEFAULT action rule should be the last rule and is normally one to accept any
requests. In other words, any request that is not matched by the previous rules is accepted.
Normally you would set up rules to reject certain requests, like requests for specific hosts.
Most requests would not match these rules and then should fall through to the DEFAULT
action, which would ACCEPT them.

SERVICE key values differ depending on type of request submitted. These can range from a
simple connection request by a remote server to a removal of a print job. The print clients like
lpr, lpq, lprm, and lpc will make different kinds of service requests. lpq will make a request
for queue information that has the key value Q for SERVICE. lprm will issue a removal
request indicated by a key value M. The different service values for the SERVICE key are
shown here:

Key Value Service Requests
X Connection request
R Job spool
P Printing
Q Queue status information (lpq)
M Removal request (lprm)
C Printer control (lpc)
S Printer status (lpc)

A further distinction is made between keys that reference information in a print job's control
file and that provided by a print command like lpc or lpq. For example, the HOST key
references hostnames in a print job's control file, allowing you to reject or accept print job
requests. The REMOTEHOST key will reference hostnames derived from the remote
connection directly for all types of requests except for an lpr request. Check the key table in
the lpd.perm or lpd Man page for a detailed breakdown of requests and the type of
information they reference. As another example, SAMEUSER will match the user indicated
in a print request for a print job, such as status or removal, against the user in the control file
for that print job, to make sure they are the same user.

The settings for the /etc/lpd.perms file included with Red Hat are shown here. The file itself
includes details documentation as well as several commented recommended entries.

allow root on server to control jobs
ACCEPT SERVICE=C SERVER REMOTEUSER=root
allow anybody to get server, status, and printcap
ACCEPT SERVICE=C LPC=lpd,status,printcap
reject all others
REJECT SERVICE=C

allow same user on originating host to remove a job
ACCEPT SERVICE=M SAMEHOST SAMEUSER
allow root on server to remove a job
ACCEPT SERVICE=M SERVER REMOTEUSER=root
REJECT SERVICE=M
all other operations allowed
DEFAULT ACCEPT

The Print Queue Clients

As noted previously, printing on your system is handled by a print daemon called lpd, which
is constantly running, waiting for print jobs and then managing their printing procedures. The
lpd daemon places its print jobs on print queues. Once on the queue, there are several clients
you can use to manage print jobs such as lpq, which lists a print queue, lpc, which can reorder

it, and lprm, which can remove a print job, effectively canceling it. Documents are initially
submitted to lpd with the lpr print command.

The lpr client submits a job, and lpd then takes it in turn and places it on the appropriate print
queue. lpr takes as its argument the name of a file. You can also feed data to lpr through the
standard input, piping in the data to be printed from another operation. The -P option enables
you to specify a particular printer. In the next example, the user first prints the file preface.
Then he or she uses the cat command to generate combined output of the files intro and
digest. This is piped to the lpr command, which then prints it. Finally, the user prints the file
report to the printer with the name myepson.

$ lpr preface
$ cat intro digest | lpr
$ lpr –P myepson report
 Tip If no printer is specified for the lpr command, the default printer is used. This is

determined by either the default_printer entry in lpd.conf, the PRINTER environment
variable, or the first entry in the /etc/printcap file.

You can also print directly to the printer by simply redirecting output to the printer's device
file. This does not place anything on the print queue. The print operation becomes a command
to be immediately executed. However, your system is occupied until the file completes
printing. The following example uses this technique to print the report file to a printer
connected to device lp1:

$ cat report > /dev/lp1

To manage the printing jobs on your printer or printers, you can use either Klpq or the LPRng
clients lpc, lpq, and lprm. Klpq is a KDE desktop utility installed with Red Hat and labeled
the Print Job Administration tool (see Figure 33-4). With Klpq, you can list the print jobs for
a printer, remove a print job, and move a print job to the top of the queue. You can also
disable printing for a printer. To have the print queue listing automatically updated, you can
set an update frequency in the Options menu.

Figure 33-4: Managing a printer queue with Klpq

You can use lpc to enable or disable printers, reorder their print queues, and reexecute
configuration files. To use lpc, enter the command lpc at the shell prompt. You are then given
an LPC> prompt at which you can enter lpc commands to manage your printers and reorder
their jobs. The status command with the name of the printer displays whether the printer is

ready, how many print jobs it has, and so on. The stop and start commands can stop a printer
and start it back up.

lpc
lpc> status hp1
hp1|lp1:
 queuing is enabled
 printing is enabled
 1 entry in spool area

You can manage the print queue using the lpq and lprm commands. The lpq command lists
the printing jobs currently on the print queue. With the -P option and the printer name, you
can list the jobs for a particular printer. If you specify a user name, you can list the print jobs
for that user. With the -l option, lpq displays detailed information about each job. If you want
information on a specific job, simply use that job's ID number with lpq. To check the status of
a printer you use lpstat.

With the lprm command, you can remove a printing job from the queue, erasing the job
before it can be printed. The lprm command takes many of the same options as lpq. To
remove a specific job, use lprm with the job number. To remove all printing jobs for a
particular user, enter lprm with the user name. To remove all printing jobs for a particular
printer, use the -P option with the printer name.

The lprm command has a special argument indicated by a dash, -, that references all print
jobs for the user who issues the command. For example, to remove all your own print jobs,
enter lprm -. If you logged in as the root user, lprm - removes all print jobs for all printers
and users from the print queue, emptying it completely.

You should not use lprm to kill a printing job that has already started printing. Instead, you
may have to use the kill command on the print job process. You can display processes using
the ps -ax command, and then use kill and the number of the process to end it. For a job that
is already printing, you see a process for its filter. This is the process to kill. If the process
does not end, you can force its termination by using the –s option and the kill signal number,
9.

Table 33-5 shows various printer commands; Table 33-6 includes lpc commands.

Table 33-5: Printer Commands
Printer Management Description
Klpq KDE print queue management tool.
lpr options file-list Prints a file; copies the file to the printer's spool directory,

and places it on the print queue to be printed in turn.-
Pprinter prints the file on the specified printer.

lpq options Displays the print jobs in the print queue.-Pprinter prints
queue for the specified printer.-l prints a detailed listing.

lpstat options Displays printer status.
lprm options Printjob-id or
User-id

Removes a print job from the print queue; you identify a
particular print job by its number as listed by lpq; if you
use User-id, it removes all print jobs for that user.- refers to

Table 33-5: Printer Commands
Printer Management Description

all print jobs for the logged-in user; if the logged-in user is
the root, it refers to all print jobs.-Pprinter removes all
print jobs for the specified printer.

lpc Manages your printers; at the LPC prompt, you can enter
commands to check the status of your printers and take
other actions.

Table 33-6: lpc Commands
Command Operation
help [command ...] Prints a short description of each command.
abort printers Terminates an active spooling daemon on the local host

immediately, and then disables printing for the specified
printers; use «all» to indicate all printers.

clean printers Removes any temporary files, data files, and control files that
cannot be printed.

disable printers Turns the specified printer queue off; new jobs are not
accepted.

down printers message Turns the specified printer queue off, disables printing, and
puts message in the printer status file.

enable printers Enables spooling for the listed printers; allows new jobs into
the spool queue.

quit or exit Exits from lpc.
restart printers Starts a new printer daemon; used if the printer daemon, lpd,

dies, leaving jobs yet to be printed.
reread Read and execute the lpd.conf and lpd.perms configuration

files.
start printers Enables printing and starts a spooling daemon for the listed

printers.
status printers Displays the status of daemons and queues on the local

machine.
stop printers Stops a spooling daemon after the current job completes and

disables printing.
topq printer [jobnum ...]
[user ...]

Places the jobs in the order listed at the top of the printer
queue.

up printers Enables everything and starts a new printer daemon; undoes
the effects of down.

Installing and Managing Printers with CUPS

The Common Unix Printing System (CUPS) is an alternative for LPRng that provides
printing services. It is freely available under the GNU Public License. You can download a
Red Hat version of CUPS from their Web site at www.cups.org. The site also provides detail

documentation installing and managing printers. Whereas LPRng is derived from the old
Berkeley line printer daemon (LPD), CUPS is based on the newer Internet Printing Protocol
(IPP). The Internet Printing Protocol (www.pwg.org/ipp) is designed to establish a printing
standard for the Internet. Whereas the older LPD-based printing systems focused primarily on
line printers, an IPP-based system provides networking, postscript, and Web support. CUPS
works like an Internet server and employs a configuration setup much like that of the Apache
Web server. Its network support lets clients directly access printers on remote servers, without
having to configure the printers themselves. Configuration needs only to be maintained on the
print servers.

To install CUPS you first have to uninstall LPRng, along with printconf and printconf-gui.
Use the rpm –e command to remove those applications. Bear in mind that you will lose your
/etc/printcap file, so you may want to back up that file before you remove LPRng. An RPM
package for CUPS is currently available on their Web site. For Red Hat 7.2 be sure to select
the one for the 2.4 kernel or above. You can use the rpm –i command to install it.

With the RPM version, a cups startup script is installed in the /etc/rc.d/init.d directory. You
can start, stop, and restart CUPS using the service command and the cups script. When you
make changes or install printers, be sure to restart CUPS to have your changes take effect.

service cups restart

The easiest way to configure and install printers with CUPS is to use its Web interface. This is
a Web browser–based configuration tool like Webmin and SWAT. To start the Web interface,
you open a browser like Mozilla and Netscape and enter the following URL:

http://localhost:631/admin

This displays the initial administration screen where you can manage print jobs and add
printers (see Figure 33-5).

Figure 33-5: CUPS Web interface

You install a printer on CUPS through a series of Web pages, each requesting different
information. To install a printer, click on the Add Printer button to display a page where you
enter the printer name and location. The location is the host to which the printer is connected.
In Figure 33-6 the myepson printer is connected to the host turtle.mytrek.com.

Figure 33-6: CUPS Add New Printer page

Subsequent pages will prompt you to enter the model of the printer and driver. These you
select from available listings. Once you have added the printer you can configure it. Clicking
the Manage Printers entry in the Administration page will list your installed printers. You can
then click a printer to display a page that will let you control the printer. You can stop the
printer, configure its printing, modify its installation, and even delete the printer. Clicking the
Configure Printer button will display a page where you can configure how your printer prints,
specifying the resolution or paper size. The printer entry will be displayed as shown in Figure
33-7.

Figure 33-7: CUPS printer entry
 Note You can perform all administrative tasks from the command line using the lpadmin

command. See the CUPS documentation for more details.

To install a remote printer that is attached to a Windows system or another Linux system
running LPRng or LPD, you specify its location using special URL protocols. For a Windows
printer, you will first need to install, configure, and run Samba. CUPS uses Samba to access
Windows printers. When installing the Windows printer on CUPS, you specify its location
using the URL protocol smb. The user allowed to log on to the printer is entered before the

host name and separated by the @ sign. On most configurations this is the guest user. The
location entry for a Windows printer called myhp attached to a Windows host named lizard is
shown here. Its Samba share reference would be //lizard/myhp.

smb://guest@lizard/myhp

To enable Samba on CUPS, you will also have to set the printing option in the
/etc/cups/cupsd.conf file to Samba, as shown here.

printing = samba

You will also have to link the smbspool directory to the CUPS smb spool directory.

ln –s 'which smbspool` /usr/cups/backend/smb

To access a printer connected to a Linux or Unix system running LPRng, you would use the
protocol lpd when specifying its location. In the following example, the printer mylaser is
connected to the Linux host rabbit.

lpd://rabbit.mytrek.com/mylaser

CUPS features a way to let you select a group of printers to print a job instead of selecting just
one. That way, if one printer is busy or down, another printer can be automatically selected to
perform the job. Such groupings of printers are called classes. Once you have installed your
printers you can then group them into different classes. For example, you may want to group
all inkjet printers in one class and lasers in another. Or you might want to group printers
connected to a printer server in their own class. To create a class, select Classes on the
Administration page, and enter the name of the class. You can then add printers to it.

CUPS configuration files will be placed in the /etc/cups directory. They are listed in Table
33-7. The classes.conf, printers.conf, and client.conf files can be managed by the Web
interface. In the printers.conf file, you will see the configuration information for the different
printers you have installed. Any of these files can be edited manually, if you wish.

Table 33-7: CUPS Configuration Files
Filename Description
classes.conf Configurations for different printer classes.
client.conf Lists specific option for specified clients.
cupsd.conf Configures the CUPS server, cupsd.
printers.conf Printer configurations.

The CUPS server is configured with the cupsd.conf file. Configuration options have to be
manually edited. The server is not configured with the Web interface. Your installation of
CUPS will install a commented version of the cupsd.conf file, with each option listed,
although mostly commented out. Commented lines are preceded with a # symbol and each
option is documented in detail. The server configuration uses an Apache Web server syntax
consisting of a set of directives. As with Apache, several of these directives can group other
directives into blocks.

Certain directives allow access controls to be placed on specific locations. These can be
printers or resources such as the administrative tool or the spool directories. Location controls
are implemented with the Location directive. Allow From and Deny From directives can deny
or permit access from specific hosts. CUPS supports both Basic and Digest forms of
authentication, specified in the AuthType directive. Basic authentication uses a user and
password. For example, to use the Web interface, you were prompted to enter the root user
and the root user password. Digest authentication makes use of user and password
information kept in the CUPS /etc/cups/passwd.md5 file, using MD5 versions of a user and
password for authentication. The AuthClass specifies the class allowed access. The System
class include the root, sys, and system users. The following example shows the Location
directive for the /admin resource, the administrative tool.

<Location /admin>

AuthType Basic
AuthClass System

Restrict access to local domain
Order Deny,Allow
Deny From All
Allow From 127.0.0.1

#Encryption Required
</Location>

Installing and Managing Terminals and Modems

With a multiuser system such as Linux, you might have several users logged in at the same
time. Each user would, of course, need his or her own terminal through which to access the
Linux system. The monitor on your PC acts as a special terminal, called the console, but you
can add other terminals either through the serial ports on your PC or a special multiport card
installed on your PC. The other terminals can be stand-alone terminals or PCs using terminal
emulation programs. For a detailed explanation of terminal installation, see the Term-
HOWTO file in /usr/doc/HOWTO. A brief explanation is provided here.

The serial ports on your PC are referred to as COM1, COM2, on up to COM4. These serial
ports correspond to the terminal devices /dev/ttyS0 through /dev/ttyS3. Note, several of these
serial devices may already be used for other input devices such as your mouse, and for
communications devices such as your modem. If you have a serial printer, one of these serial
devices is already used for that. If you installed a multiport card, you have many more ports
from which to choose. For each terminal you add, you must create a character device on your
Linux system. As with printers, you use the mknod command to create terminal devices. The
permissions for a terminal device are 660. Terminal devices are character devices with a
major number of 4 and minor numbers usually beginning at 64.

Terminal devices are managed by your system using the getty program and a set of
configuration files. When your system starts, it reads a list of connected terminals in the
inittab file and then executes an /etc/getty program for each one. The getty program sets up
the communication between your Linux system and a specified terminal. It obtains from the
/etc/gettydefs file certain parameters, such as speed and the login prompt, as well as any
special instructions.

Format: <speed># <init flags> # <final flags> #<login
 string>#<next-speed>
38400 fixed baud Dumb Terminal entry
DT38400# B38400 CS8 CLOCAL # B38400 SANE -ISTRIP CLOCAL #@S login:
 #DT38400

The /etc/inittab file holds instructions for your system on how to manage terminal devices. A
line in the /etc/inittab file has four basic components: an ID, a runlevel, an action, and a
process. Terminal devices are identified by ID numbers, beginning with 1 for the first device.
The runlevel at which the terminal operates is usually 1. The action is usually respawn, which
says to run the process continually. The process is a call to /etc/getty with the baud rate and
terminal device name. The /etc/ttys file associates the type of terminal used with a certain
device.

The /etc/termcap file holds the specifications for different terminal types. These are the
different types of terminals users could use to log into your system. Your /etc/termcap file is
already filled with specifications for most of the terminals currently produced. An entry in the
/etc/termcap file consists of various names that can be used for a terminal separated by a |
and then a series of parameter specifications, each ending in a colon. You find the name used
for a specific terminal type here. You can use more to display your /etc/termcap file, and
then use a search, /, to locate your terminal type. You can set many options for a terminal
device. To change these options, use the stty command instead of changing configuration files
directly. The stty command with no arguments lists the current setting of the terminal.

When a user logs in, having the terminal device initialized using the tset command is helpful.
Usually the tset command is placed in the user's .bash_profile file and is automatically
executed whenever the user logs into the system. You use the tset command to set the
terminal type and any other options the terminal device requires. A common entry of tset for a
.bash_profile file follows. The -m dialup: option prompts the user to enter a terminal type.
The type specified here is a default type that is displayed in parentheses. The user presses
ENTER to choose the default. The prompt looks like this: TERM=(vt100)?

eval 'tset -s -Q -m dialup:?vt00'

Input Devices

Input devices, such as mice and keyboards, are displayed on several levels. Initial
configuration is performed during installation where you select the mouse and keyboard
types. You can change that configuration with your administration configuration tool, such as
Red Hat Setup (see Chapter 30). Red Hat provides a keyboard configuration tool called
kbdconfig and a mouse configuration tool called mouseconfig. Both can be run from any
command line interface. Special configurations also exist for mice and keyboard for the X
Window System, and for the KDE and Gnome desktops. You select the keyboard layout and
language, as well as configure the speed and display of the mouse.

Installing Sound, Network, and Other Cards

For you to install a new card, your kernel must be configured to support it. Support for most
cards is provided in the form of modules that can be dynamically loaded in and attached to the
kernel, running as its extension. Installing support for a card is usually a simple matter of
loading a module that includes the drives for it. For example, drivers for the Sound Blaster

sound card are in the module sb.o. Loading this module makes your sound card accessible to
Linux. Most distributions automatically detect the cards installed on your system and load the
needed modules. If you change cards, you may have to load the module you need manually,
removing an older conflicting one. For example, if you change your Ethernet card, you may
have to unload the module for your previous card and load in the one for your new card.
Certain utilities, such as Linuxconf and netcfg, enable you to choose a new Ethernet card and
have the module loaded for you. You can, however, load modules manually. The later
"Modules" section in this chapter describes this process.

Device files for most cards are already set up for you in the /dev directory. For example, the
device name for your sound card is /dev/audio. The device names for Network cards are
aliases for network modules instead of device files. For example, the device name for your
Ethernet card begins with eth, with the numbering starting from 0, as in eth0 for the first
Ethernet card on your system. They will alias the module used for that particular card; for
example, a 3com Etherlink XL card will alias the 3c59x network module, whose alias would
be eth0 if it is the first Ethernet card.

Multimedia Devices: Sound, Video, and DVD

Currently, most Linux sound drivers are developed as part of the Open Sound System and
freely distributed as OSS/Free. These are installed as part of Linux distributions. The OSS
device drivers are intended to provide a uniform API for all Unix platforms, including Linux.
They support Sound Blaster– and Windows Sound System–compatible sound cards (ISA and
PCI). OSS is a commercial version called the Open Sound System (OSS). OSS is also
available for a nominal fee and features configuration interfaces for device setup. A listing of
the different OSS/Free sound devices is provided in Table 33-8. On Red Hat, you can use the
sndconfig utility to install most sound cards on Linux. Some sound cards may require more
specialized support (see Table 33-9). For sound cards, you can tell what your current sound
configuration is by listing the contents of the /dev/sndstat file. You can test your card by
simply redirecting a sound file to it, as shown here:

cat sample.au > /dev/audio.

Table 33-8: Sound Devices
Device Description
/dev/sndstat Sound driver status
/dev/audio Audio output device
/dev/dsp Sound sampling device
/dev/mixer Control mixer on sound card
/dev/music High-level sequencer
/dev/sequencer Low-level sequencer
/dev/midi Direct MIDI port

Table 33-9: Linux Sound Driver Sites
Driver Site Description
Linux MIDI and Sound Pages Information and links to Linux Sound projects and site:

www.xdt.com/ar/linux-snd
Advanced Linux Sound The Advanced Linux Sound Architecture project (ALSA) is

Table 33-9: Linux Sound Driver Sites
Driver Site Description
Architecture (ALSA) developed on Linux under the GPL: www.alsa-project.org
Open Sound System/Free The standard Linux sound drivers formerly known as

USS/Lite, TASD, and Voxware are now called OSS/Free:
www.opensound.com

Open Sound System/Linux OSS/Linux is a commercial version of the Linux sound
drivers: www.opensound.com

Linux Ultra Sound Project Drivers for the Gravis Ultrasound:
www.perex.cz/~perex/ultra

PC Serial Port MIDI Driver Linux MIDI driver for IBM-PC serial ports:
http://crystal.apana.org.au/ghansper/midiaxis.html

The Linux Musical Instrument Digital Interface (MIDI) and Sound Pages currently at
www.xdt.com/ar/linux-snd hold links to Web and FTP sites for Linux sound drivers for
various sound cards. They also include links to sites for Linux MIDI and sound software.

The Advanced Linux Sound Architecture (ALSA) project is developing a modular sound
driver, API, and configuration manager that aims to be a better alternative to OSS, while
maintaining compatibility with it. ALSA is a GNU project and is entirely free; its Web site at
www.alsa-project.org contains extensive documentation, applications, and drivers. Currently
under development are the ALSA sound driver, the ALSA Kernel API, the ALSA library to
support application development, and the ALSA manager to provide a configuration interface
for the driver. ALSA evolved from the Linux Ultra Sound Project.

The Linux Ultra Sound Project has developed drivers for Gravix Ultrasound sound cards.
Although Gravis Ultrasound is supported by OSS/Free, the Linux Ultra Sound Project drivers
offer many more features. See Table 33-9 for a listing of sites providing sound drivers.

Table 33-10: Video Devices
Device Name Type of Device
/dev/video Video capture interface
/dev/vfx Video effects interface
/dev/codec Video codec interface
/dev/vout Video output interface
/dev/radio AM/FM radio devices
/dev/vtx Teletext interface chips
/dev/vbi Data services interface

Device names used for TV, video, and DVD devices are listed in Table 33-10. Drivers for
DVD and TV decoders are also under development (see Table 33-11). mga4linux is
developing video support for the Matrox Multimedia cards like the Marvel G200. The
General ATI TV and Overlay Software (GATOS) is developing drivers for the currently
unsupported features of ATI video cards, specifically TV features. The BTTV Driver Project

has developed drivers for the Booktree video chip. Creative Labs sponsors Linux drivers for
the Creative line of DVD DXR2 decoders (opensource.creative.com).

Table 33-11: Video, TV, and DVD Projects and Drivers
Device Drivers Type of Device
linuxtv.org Links to Video, TV, and DVD sites
video4linux 2 Video for Linux Two
LiViD The Linux Video and DVD Project

www.linuxvideo.org
LSDVD LSDVD Linux Player Project

www.csh.rit.edu/projects/lsdvd/
mga4linux Driver for Matrox Multimedia Cards

www.cs.brandeis.edu/~eddie/mga4linux/
GATOS The General ATI TV and Overlay Software

www.core.binghamton.edu/~insomnia/gatos
BTTV BTTV drivers for cards with Booktree video chips

www.sourceforge.net
DVD DXR2 Drivers for Creative DVD DXR2 decoders

opensource.creative.com

Modules

Beginning with Linux kernel 2.0, the Linux kernel adopted a modular structure. In earlier
kernel versions, support for specific features and devices had to be included directly into the
kernel program. Adding support for a new device—say, a new kind of sound card—required
you to create a new version of your kernel program that included the code for supporting that
device. This involved a sometimes lengthy configuration, followed by compiling and
installing the new kernel program, as well as making sure it was called properly when your
system booted up.

As an alternative to this rebuilding of the kernel, Linux now supports the use of modules.
Modules are components of the Linux kernel that can be loaded and attached to it as needed.
To add support for a new device, you can now simply instruct a kernel to load its module. In
some cases, you may have to recompile only that module to provide support for your device.
The use of modules has the added advantage of reducing the size of the kernel program. The
kernel can load modules in memory only as they are needed. For example, the module for the
PPP network interface used for a modem only needs to be used when you connect to an ISP.

The modules your system needs are usually determined during installation, based on the kind
of configuration information you provided. For example, if your system uses an Ethernet card
whose type you specified during installation, the system loads the module for that card. You
can, however, manually control what modules are to be loaded for your system. This, in
effect, enables you to customize your kernel whatever way you want. You can use several
commands, configuration tools, and daemons to manage kernel modules. The 2.4 Linux
kernel includes the Kernel Module Loader (kmod), which has the capability to load modules
automatically as they are needed. In addition, several tools enable you to load and unload
modules manually, if you must. The Kernel Module Loader uses certain kernel commands to

perform the task of loading or unloading modules. The modprobe command is a general-
purpose command that calls insmod to load modules and rmmod to unload them. These
commands are listed in Table 33-12. Options for particular modules, general configuration,
and even specific module loading can be specified in the /etc/modules.conf file. You can use
this file to automatically load and configure modules. You can also specify modules to be
loaded at the boot prompt or in lilo.conf (see Chapter 3).

Table 33-12: Kernel Module Commands
Command Description
lsmod Lists modules currently loaded.
insmod Loads a module into the kernel. Does not check for dependencies.
rmmod Unloads a module currently loaded. Does not check for

dependencies.
modinfo Displays information about a module. -a (author), -d (description), -

p (module parameters), -f (module filename), -v (module version).
depmod Creates a dependency file listing all other modules on which the

specified module may rely.
modprobe Loads a module with any dependent modules it may also need. Uses

the file of dependency listings generated by depmod. -r (unload a
module), -l (list modules).

The filename for a module has the extension .o. Modules reside in the /lib/modules/version
directory, where version is the version number for your current module. The directory for the
2.4 kernel is /lib/modules/2.4.7-10. As you install new kernels on your system, new module
directories are generated for them. One trick to access the directory for the current kernel is to
use the uname -r command to generate the kernel version number. This command needs to
have backquotes.

cd /lib/modules/'uname –r'

In this directory, modules for the kernel reside in the kernel directory. And within the kernel
directory are several subdirectories, including the drivers directory that holds subdirectories
for modules like the sound drivers or video drivers. These subdirectories serve to categorize
your modules, making them easier to locate. For example, the kernel/drivers/net directory
holds modules for your Ethernet cards, and the kernel/drivers/sound directory contains
sound card modules.

Managing Modules with /etc/modules.conf

As noted previously, there are several commands you can use to manage modules. The lsmod
command lists the modules currently loaded into your kernel, and modinfo provides
information about particular modules. Though you can use the insmod and rmmod
commands to load or unload modules, you should only use modprobe for these tasks. See
Table 33-12 for kernel module commands. It is often the case, however, that a given module
requires other modules to be loaded. For example, the module for the Sound Blaster sound
card, sb.o, requires the sound.o module to be loaded also. Instead of manually trying to
determine what modules a given module depends on, you use the depmod command to detect
the dependencies for you. The depmod command generates a file that lists all the modules on

which a given module depends. The depmod command generates a hierarchical listing,
noting what modules should be loaded first and in what order. Then, to load the module, you
use the modprobe command using that file. modprobe reads the file generated by depmod
and loads any dependent modules in the correct order, along with the module you want. You
need to execute depmod with the -a option once, before you ever use modprobe. Entering
depmod -a creates a complete listing of all module dependencies. This command creates a
file called modules.deb in the module directory for your current kernel version,
/lib/modules/version.

depmod -a

To install a module manually, you use the modprobe command and the module name. You
can add any parameters the module may require. The following command installs the Sound
Blaster sound module with the I/O, IRQ, and DMA values. modprobe also supports the use
of the * character to enable you to use a pattern to select several modules.

modprobe sb io=0x220 irq=5 dma=1

To discover what parameters a module takes, you can use the modinfo command with the –p
option.

modinfo –p sb

You can use the -l option to list modules and the -t option to look for modules in a specified
subdirectory. In the next example, the user lists all modules in the sound directory:

modprobe -l -t sound
/lib/modules/2.4.7-10/kernel/drivers/sound/sb.o
/lib/modules/2.4.7-10/kernel/drivers/sound/sb_lib.o
/lib/modules/2.4.7-10/kernel/drivers/sound/sound.o
/lib/modules/2.4.7-10/kernel/drivers/sound/soundcore.o

Options for the modprobe command are placed in the /etc/modules.conf file. Here, you can
enter configuration options, such as default directories and aliases. An alias provides a simple
name for a module. For example, the following entry enables you to reference the 3c59x.o
Ethernet card module as eth0 (Kmod will automatically detect the 3Com Ethernet card and
load the 3c59x module):

alias eth0 3c59x

Notice that there is no device name for Ethernet devices in the /dev directory. This is because
the device name is really an alias for a Ethernet network module that has been defined in the
modules.conf file. If you were to add another Ethernet card of the same type, you would
place an alias for it in the modules.conf file. For a second Ethernet card, you would use the
device name eth1 as its alias. This way, the second Ethernet device can be referenced with the
name eth1. A modules.conf entry is shown here:

alias eth1 3c59x
 Note After making changes to /etc/modules.conf, you should run depmod again to record

any changes in module dependencies.

The previous entry assumes that the Ethernet card was of the same model. If you had added a
different model Ethernet card, you would have to specify the module used for that kind of
card. In the following example, the second card is a standard PCI Realteck card. Kmod has
already automatically detected the new card and loaded the ne2k-pci module for you. You
only need to identify this as the eth1 card in the /etc/modules.conf file.

alias eth0 3c59x
alias eth1 ne2k-pci

A sample modules.conf file is shown here. Notice the aliases for the USB controller and the
sound card.

modules.conf

alias eth0 3c59x
alias eth1 ne2k-pci
alias parport_lowlevel parport_pc
alias usb-controller usb-uhci
alias sound-slot-0 i810_audio

 Note In some cases, Kmod may not detect a device in the way you want, and thereby not load

the kernel module you would like. This was the case in Chapter 32, where you needed to
provide SCSI emulation for IDE CD write devices. In this case, entries in the
/etc/modules.conf file were used to manually load modules, with certain options,
overriding the original setup.

Installing New Modules for the Kernel

The source code for your Linux kernel contains an extensive set of modules, of which only a
few are actually used on your system. When you install a new device, you may have to install
the kernel module that provides the drivers for it. This involves selecting the module you need
from a listing and then regenerating your kernel modules with the new module included. Then
the new module is copied into the module library, installing it on your system. Then you can
enter it in the /modules.conf file with any options, or use modprobe to install it manually.

First, make sure you have installed the kernel source code in the /usr/src/linuxVersion
directory (see Chapter 34). If not, simply use your distribution's installation utility such as
rpm or an RPM utility like kpackage or Gnomerpm to install the kernel source RPM
packages. The following command installs the kernel sources:

rpm –i kernel-source-2.4.7-10.i386.rpm

Now change to the /usr/src/linuxVersion directory, where Version is the kernel version. Then
use the make command with the xconfig or menuconfig argument to display the kernel
configuration menus, invoking them with the following commands. The make xconfig
command starts an X Window System interface that needs to be run on your desktop from a
terminal window.

make xconfig
make menuconfig

Using the menus select the modules you need. Make sure each is marked as a module,
clicking the Module check box in xconfig or pressing M for menuconfig. Once the kernel is
configured, save it and exit from the configuration menus. Then you create the modules with
the following command:

make modules

This places the modules in the kernel source modules directory: /usr/src/linuxversion/. You
can copy the one you want to the kernel modules directory, /lib/modules/version/kernel,
where version is the version number of your Linux kernel. A simpler approach is to reinstall
all your modules, using the following command. This copies all the compiled modules to the
/lib/modules/version/kernel directory.

make modules-install

For example, if you want to provide AppleTalk support and your distribution did not create an
AppleTalk module or incorporate the support into the kernel directly, then you can use this
method to create and install the AppleTalk modules. First, check to see if your distribution has
already included it. The AppleTalk modules should be in the
/lib/modules/version/kernel/drivers/net/appletalk directory. If not, you can move to the
/usr/src/linuxversion directory, run make xconfig, and select AppleTalk as a module. Then
generate the modules with the make modules command. You could then use the make
modules-install command to install the new module, along with your other modules. Or, you
can copy the appletalk directory and the modules it holds to the module directory.

Chapter 34: Kernel Administration
Overview

The kernel is the core of the operating system, performing core tasks like managing memory
and disk access, as well as interfacing with the hardware that makes up your system. For
example, the kernel makes possible such standard Linux features as multitasking, which
allows several users to work on the same system. It also handles communications with devices
like your CD-ROM or hard disk. Users send requests for access to these devices through the
kernel, which then handles the lower-level task of actually sending instructions to a device.
Given the great variety of devices available, the system will vary in the kind of devices
connect to a Linux system. These devices are automatically detected, and the kernel is
appropriately configured when Linux is installed. However, if you add a new device, you may
have to enable support for it in the kernel. This would involve creating a modified version of
the kernel, often referred to as building or compiling the kernel. In addition, new versions of
the kernel are continuously made available that will provide improved support for your
devices, as well as a smoother running system. These you can easily download and install on
your system. This chapter covers how you can download and install new kernels, as well as
modify your current one.

The version number for a Linux kernel consists of three segments: the major, minor, and
revision numbers. The major number increments with major changes in the kernel. The minor
number indicates stability. Even numbers are used for stable releases, whereas odd numbers
are reserved for development releases, which may be unstable. New features first appear in

the development versions. If stability is a concern, waiting for the stable version is best. The
revision number refers to the corrected versions. As bugs are discovered and corrected, new
revisions of a kernel are released. A development kernel may have numerous revisions. For
example, kernel 2.4.7 has a major number of 2 and a minor number of 4, with a revision
number of 7. On Red Hat systems, another number is added that refers to a Red Hat–specific
set of patches applied to the kernel. For Red Hat 7.2, this is 2.4.7-10, with 10 being the patch
number. Currently, the newest kernel is 2.4.12, which also has a major number of 2 and a
minor number of 4, but a revision number of 12. This is the most recent stable release of the
Linux kernel. On Red Hat, which supports RPM packages, you can use an RPM query to
learn what version is installed, as shown here:

rpm -q kernel
 Note Unless you are experimenting with kernel development, you should always install a

stable version of the kernel. The current stable version is 2.4, whereas 2.5 is the
development version.

The Linux kernel is being worked on constantly, with new versions released when they are
ready. Red Hat includes the most up-to-date kernel in its releases. Linux kernels are kept at
www.kernel.org. Also, RPM packages for a new kernel often are available at distribution
update sites, such as ftp.redhat.com. One reason you may need to upgrade your kernel is to
provide support for new hardware or for features not supported by the distribution's version.
For example, you may need support for a new device not provided in the distribution's version
of the kernel. Certain features may not be included in a distribution's version because they are
considered experimental or a security risk.

 Note You probably don't need to install a new kernel only to add support for a new device.
Kernels provide most device support in the form of modules, of which only those
needed are installed with the kernel. Most likely your current kernel has the module you
need. You simply have to install it. For this task, see the "Installing New Modules for
the Kernel" section in Chapter 33.

You can learn more about the Linux kernel from www.kernel.org, the official repository for
the current Linux kernels. The most current source code, as well as documentation, is here.
For Red Hat systems, www.redhat.com also provides online documentation for installing and
compiling the kernel on its systems. Several Linux HOW-TOs also exist on the subject. For
Red Hat, consult the Red Hat Customization Guide for details on installing and compiling a
kernel. The kernel source code software packages also include extensive documentation.
Kernel source code files are always installed in the /usr/src/linux directory. In this directory,
you can find a subdirectory named Documentation, which contains an extensive set of files
and directories documenting kernel features, modules, and commands. See the following list
of kernel resources.

Site Description
www.kernel.org The official Linux kernel Web site. All new

kernels originate from here.
linuxhq.com Linux headquarters, kernel sources, and patches.
ftp.redhat.com/pub/linux/updates/version/ Location of Red Hat packages for recent

kernels, along with other updates. version is the
number of your Red Hat distribution.

Precautionary Steps for Modifying Kernels

If you want to modify your current kernel, you should take care to retain your current one.
Otherwise, your working kernel will be overwritten with the modified version. If something
should go wrong, you would be unable to restore the previous working kernel. You should
retain a copy of your current kernel so you can use it again in case something goes wrong
with the new one. You do not have to worry about this happening if you are installing a new
kernel. New kernels are given different names, so the older one is not overwritten.

To retain a copy of your current kernel, you can either make a backup copy of it, letting the
original be overwritten, or modify the kernel source Makefile to have your modified version
created with a different name. The kernel image file is called vmlinuz-version where version
is the version number attached, as in vmlinuz-2.4.7. It is located in the /boot directory. Also,
there is a file called /boot/vmlinuz, which is only a symbolic link to the actual kernel file.
When you generate a modified version of the kernel, the kernel file, here called vmlinuz-
2.4.7, will be overwritten with the new kernel image.

To edit the Makefile, you change to the /usr/src/linux-2.4 directory and carefully open the
Makefile with a text editor. Then you locate the line that says EXTRAVERSION = and
assign to it a unique name you want appended to the modified kernel to identify it. For
example, if you appended a date, you could easily identify the kernel and know when you
modified it.

EXTRAVERSION = -July2001

This would give you two kernels, keeping the original one. Corresponding map files and
modules will also be generated. When you install your modified kernel, /boot/vmlinuz will
link to it, in this case, vmlinuz-2.4.7-July2001.

/boot/vmlinuz-2.4.7
/boot/vmlinuz-2.4.7-July2001

Making a backup copy is a more intuitive process, but takes a few more steps. You would
make a copy of the /boot/mvlinux-2.4.7 file, giving it another name as shown here:

cp /boot/vmlinuz2.4.7-10 /boot/vmlinuz2.4.7-10.back

You could also make a backup of the System.map file. This file contains kernel symbols
needed by modules to start kernel functions. In the case of kernel 2.4.7-10, this would be
System.map-2.4.7-10. You should also back up your modules located in the
/lib/modules/version directory, where version is the version number of the kernel. Otherwise,
you will lose the modules already set up to work with the original kernel. For version 2.4.7-
10, the libraries are located in /lib/modules/2.4.7-10. If you are compiling a different version,
those libraries are placed in a new directory named with the new version number.

If you are using a boot loader, you should create a new entry for the old kernel in the boot
loader configuration file (see Chapter 29). You can then make an entry for the new kernel in
that configuration file. Leaving the entry for the old kernel is advisable in case something
goes wrong with the new kernel. This way, you can always reboot and select the old kernel.
For example, in the grub.conf file, add a new entry, similar to the one for the old kernel,
which references the new kernel in its image line. The grub.conf entry would look something

like the following code. You could then select the entry with the title Old Red Hat Linux
(2.4.7-10.back) from the GRUB menu to launch the old kernel.

title Old Red Hat Linux (2.4.7-10.back)
 root (hd0,2)
 kernel /boot/vmlinuz-2.4.7-10.back ro root=/dev/hda3
 initrd /boot/initrd-2.4.7-10.back.img

Also advisable is to have a boot disk ready, just in case something goes wrong with the
installation. With a boot disk, you can start your system without using the boot loader. On
Red Hat systems, you can create a boot disk using the mkbootdisk utility. To create a boot
disk, you will need to know the full version number for your kernel. You can, in fact, have
several kernels installed and create boot disks for each one (your grub.conf will list your
kernel version number). For Red Hat 7.2, the kernel version is 2.4.7-10. Use it as the
argument to the mkbootdisk command to create the bootdisk for your system:

mkbootdisk 2.4.7-10

Installing Distribution Kernel Binaries and Source: RPM

To install a new kernel on Red Hat, you need to download the software packages for that
kernel to your system. It is advisable to download the RPM packages for new kernels from the
Red Hat FTP site. Alternatively, you can download the most recent version from
www.kernel.org. You can install a new kernel either by downloading a binary version from
your distribution's Web site and installing it or by downloading the source code, compiling
the kernel, and then installing the resulting binary file. For Red Hat, the binary version of the
kernel is provided in an RPM package. You can install a new kernel using the Red Hat
Package Manager, just as you would any other RPM software package.

The easiest way to install a new kernel on Red Hat is to use the Red Hat Update Agent. The
Agent will not automatically select kernel file for download. Though listed, you have to
explicitly select them for them to be downloaded and installed.

The source code version is available either from the Red Hat FPT site, ftp.redhat.com for
Red Hat, or from www.kernel.org. Wherever you download a kernel version from, it is
always the same. The source code downloaded for a particular kernel version from Red Hat is
the same as the one for www.kernel.org. Patches for that version can be applied to any
distribution.

If you wish to download kernel RPM packages directly from ftp://ftp.redhat.com, you will
need to locate the corresponding updates directory for your Red Hat distribution, such as 7.1.
A series of RPM packages are there, all beginning with the term kernel. There are also other
packages you may need, which contain updated system configuration files used by the new
kernel. As an example, the kernel packages for the 2.4 kernel are listed in the following code.
Only install one of the kernel-version-ix86 packages and one of the kernel-smp packages.
Choose the one for your machine—for example, i686 for a Pentium II, i586 for a Pentium,
and i386 for other PCs. The following list shows the RPM packages for the Red Hat version
of kernel 2.4:

kernel-2.4.7-10.i386.rpm
kernel-2.4.7-10.althion.rpm
kernel-2.4.7-10.i686.rpm

kernel-doc-2.4.7-10.i386.rpm
kernel-enterprise-2.4.7-10.i686.rpm
kernel-headers-2.4.7-10.i386.rpm
kernel-pcmcia-cs-2.4.7-10.i386.rpm
kernel-smp-2.4.7-10.i386.rpm
kernel-smp-2.4.7-10.althion.rpm
kernel-smp-2.4.7-10.i686.rpm
kernel-source-2.4.7-10.i386.rpm

To make sure a kernel RPM package was downloaded without any errors, you can use the
rpm command with the -K --nopgp options to check it:

rpm -K --nopgp *rpm

You are now ready to install the new kernel. First, install updated versions, if any, of other
support packages. In Red Hat, these currently include mkinitrd, SysVinit, and initscripts. Use
the -Uvh option to update those packages:

rpm -Uvh mkinitrd*rpm SysVinit*rpm initscripts*rpm

Installing the source code and headers for the kernel is also essential. You use the source code
to generate any modules and tailor the kernel to your own needs. For example, you can use
the source code to generate modules containing devices drivers for any uncommon devices
you may have installed, as shown here:

rpm -Uvh kernel-headers-2.4.7-10.i386.rpm
rpm -Uvh kernel-source-2.4.7-10.i386.rpm

You can now install the kernel. On Red Hat systems, you install the kernel, kernel-ibcs, and
the kernel-pcmia-cs packages. As a safety precaution, it is advisable to preserve your old
kernel in case the new one does not work out for some reason. This involves installing with
the install (-i) option instead of the update(-U) option, creating a separate RAM disk for the
new kernel, and then modifying grub.conf to have GRUB start up using the new kernel.

rpm -Uvh kernel-2.4.7-10.i686.rpm
rpm -Uvh kernel-pcmcia-cs-2.4.7-10.386.rpm
rpm –Uvh kernel-smp-2.4.7-10.i686.rpm

On Red Hat, kernels are installed in the /boot directory. Performing an ls -l operation on this
directory lists all the currently installed kernels. A file for your old kernel and a file for your
new one now exist, as well as a link file called vmlinuz that links to the new kernel file. If
you took the precautions described in the previous section, you may have already renamed the
older kernel. On Red Hat, if you are using a boot loader like GRUB, you needn't change its
configuration file (grub.conf) because the entry to invoke the kernel still references the
/boot/vmlinuz link, which now points to the new kernel. Red Hat boots the kernel using the
/boot/vmlinux link to the kernel file. In your grub.conf file, the kernel line for the kernel file
references this link.

 kernel = /boot/vmlinuz-2.4.7-10

Compiling the Kernel from Source Code

Instead of installing already compiled binary versions of the kernel for Red Hat, you can
install the kernel source code on your system and use it to create the kernel binary files
yourself. Kernel source code files are compiled with the gcc compiler just as any other source
code files are. One advantage to compiling the kernel is you are able to customize its
configuration, selecting particular devices you want supported by the kernel or the kind of
networking support you want. You can have more control over exactly what your operating
system can support. The 2.4 kernel is described here.

Installing Kernel Sources: Kernel Archives and Patches

You can obtain a recent version of the kernel source code from Red Hat. It will have the name
kernel-source. The kernel-source file is usually installed as part of your installation. New
versions can be downloaded with the Red Hat Update Agent, or by directly accessing the Red
Hat FTP site. Be sure to download both the kernel headers and the source code RPM files. As
noted previously, you simply install them as you would any RPM package.

rpm -Uvh kernel-headers-2.4.7-10.i386.rpm
rpm -Uvh kernel-source-2.4.7-10.i386.rpm

The source files are placed in the /usr/src directory, within the subdirectory that will have the
prefix linux and a suffix consisting of the kernel version, as in linux-2.4.7 for kernel 2.4,
release 2, patch 7. The full directory will be /usr/src/linux-2.4.7. When you download and
install a new kernel, a separate subdirectory will be created for it. For example, the 2.4.7-10
kernel will be placed in /usr/src/linux-2.4.3. A link is created called /usr/src/linux-2.4 that
will link to the most recent kernel source directory that you installed. You can use this link to
access your most recent kernel source. Originally, this would link to /usr/src/linux-2.4.7. If
you later installed the 2.4.7-10 kernel, this would link to /usr/src/linux2.4.3.

You can also obtain the most recent version of the source code from www.kernel.org. These
versions are normally much more recent that those available on Red Hat, but may not have
been thoroughly tested on the Red Hat platform. The kernel source will be in the form of
compressed archives (.tar.gz). They will have the prefix linux with the version name as the
suffix. For example, linux-2.4.6 is the 2.4 kernel, revision 6. You first decompress and extract
the archive with the following commands. vnum is the version number. First you change to
the /usr/src directory and then unpack the archive. It will create a directory called linux
where the source files are placed. The following example extracts the 2.4.6 kernel:

cd /usr/src
gzip –cd linux-2.4.6.tar.gz | tar xvf -

Be sure to unpack it in the /usr/src directory. The archive extracts a directory named linux
that holds the source code files. This way, the files are located in the /usr/src/ linux directory.

Once you have extracted your kernel source, you should download and apply any patches. A
patch modifies a source code file, making required changes. To install a patch, download the
patch file and then execute the following command. The patch file is first decompressed, and
then the patch command implements the changes.

cd /usr/src

gzip -cd patchvnum.gz | patch -p0

You can also decompress the patch and then redirect it to the patch command. patch reads its
patches from the standard input.

gunzip patch-2.4.6.gz
patch -p0 < patch-2.4.6

You may have to implement several patches, depending on how out-of-date your kernel is. In
this case, you must execute a patch operation for each patch file needed. Patches need to be
applied in sequence. The latest patch does not include any previous ones. So to apply patch
2.4.7, you would first have to apply patch 2.4.1. Or, you can use the patch-kernel script,
which determines your kernel version and applies the patches needed.

cd /usr/src
linux/scripts/patch-kernel linux

Before you can install the kernel, you have to configure and compile it, as discussed in the
next section.

 Note Once you have installed a kernel source for a particular revision, you can update it by
downloading and installing any patches for it.

Configuring the Kernel

Once the source is installed, you must configure the kernel. Configuration consists of
determining the features for which you want to provide kernel-level support. This includes
drivers for different devices, such as sound cards and SCSI devices. This process is referred to
as configuring the kernel. You can configure features as directly included in the kernel itself
or as modules the kernel can load as needed. You can also specifically exclude features.
Features incorporated directly into the kernel make for a larger kernel program. Features set
up as separate modules can also be easily updated. Documentation for many devices that
provide sound, video, or network support can be found in the /usr/share/doc directory. Check
the kernel-doc package to find a listing of the documentation provided.

rpm –ql kernel-doc
 Note If you configured your kernel previously and now want to start over from the default

settings, you can use the make mrproper command to restore the default kernel
configuration.

You can configure the kernel using one of several available configuration tools: config,
menuconfig, and xconfig. They perform the same configuration tasks, but use different
interfaces. The config tool is a simple configure script providing line-based prompts for
different configuration options. The menuconfig tool provides a cursor- based menu, which
you can still run from the command line. Menu entries exist for different configuration
categories, and you can pick and choose the ones you want. To mark a feature for inclusion in
the kernel, move to it and press the SPACEBAR. An asterisk appears in the empty
parentheses to the left of the entry. If you want to make it a module, press M and an M
appears in the parentheses. The xconfig tool runs on a window manager and provides a
window interface with buttons and menus. You can use your mouse to select entries. A menu
consists of configuration categories that are listed as buttons you can click. All these tools

save their settings to the .config file in the kernel source's directory. Should you want to
remove a configuration entirely, you can use the mrproper option to remove the .config file,
starting over from scratch.

make mrproper

You start a configuration tool by preceding it with the make command. Be sure you are in the
/usr/src/linux-version directory. The process of starting a configuration tool is a make
operation that uses the Linux kernel Makefile. The xconfig tool should be started from a
terminal window on your window manager. The menuconfig and config tools are started on a
shell command line. The following example lists commands to start xconfig, menuconfig, or
config:

make xconfig
make menuconfig
make config

The xconfig tool opens a Linux Kernel Configuration window listing the different
configuration categories. Figure 34-1 shows the configuration categories for the 2.4 kernel.
Buttons at the right of the screen are used to save the configuration or to copy it to a file, as
well as to quit. Clicking an entry opens a window that lists different features you can include.
Three check boxes to the left of each entry enable you to choose to have a feature compiled
directly into the kernel, created as a separate module that can be loaded at runtime, or not
included at all. As a rule, features in continual use, such as network and file system support,
should be compiled directly into the kernel. Features that could easily change, such as sound
cards, or features used less frequently, should be compiled as modules. Otherwise, your kernel
image file may become too large and slower to run.

Figure 34-1: The xconfig Linux kernel configuration tool
 Note If you decide to include a feature directly into the kernel that was previously a module,

be sure to check that the old module is removed from the /lib/modules/version
directory. Otherwise, conflicts can occur between the module and its corresponding
code, which is now directly part of the kernel.

The xconfig and menuconfig tools provide excellent context-sensitive help for each entry. To
the right of an entry is a Help button. Click it to display a detailed explanation of what that
feature does and why you would include it either directly or as a module, or even exclude it.

When in doubt about a feature, always use the Help button to learn exactly what it does and
why you would want to use it. Many of the key features are described here.

• Loadable Module Support In most cases, you should make sure your kernel can
load modules. Click the Loadable Modules Support button to display a listing of
several module management options (see Figure 34-2). Make sure Enable Loadable
Module Support is marked Yes. This feature allows your kernel to load modules as
they are needed. Kernel Module Loader should also be set to Yes, as this allows your
daemons, like your Web server, to load any modules they may need. The Set Version
Information entry enables you to use any modules set up for previous kernels.

Figure 34-2: Loadable modules support

• Processor Type and Features The Processor Type and Features window enables
you to set up support for your particular system (see Figure 34-3). Here, you select the
type of processor your have (486, 586, 686, Pentium III, and so forth), as well as the
amount of maximum memory your system supports (up to 64 gigs with 2.4 kernel).

Figure 34-3: Processor Type and Features window

• General Setup The General Setup window enables you to select general features,
such as networking, PCI BIOS support, and power management, as well as support for
ELF and a.out binaries (see Figure 34-4).

Figure 34-4: General Setup window

• Block Devices The Block Devices window lists entries that enable support for your
IDE, floppy drive, and parallel port devicesRAD. Special features, such as RAM disk
support and the loopback device for mounting CD-ROM image files, are also there.

• Multi-Device Support The Multi-Device Support window lists entries to enable the
use of RAID devices. You can choose the level of RAID support you want.

• Networking Options The Networking Options window, shown in Figure 34-5, lists
an extensive set of networking capabilities. The TCP/IP Networking entry must be set
to enable any kind of Internet networking. Here, you can specify features that enable
your system to operate as a gateway, firewall, or router. Network Aliasing enables
support for IP aliases. Support also exists for other kinds of networks, including
AppleTalk and IPX. AppleTalk must be enabled if you want to use NetaTalk to
connect to a Macintosh system on your network.

Figure 34-5: Networking Options window

• ATA/IDE/MFM/RLL Support In the ATA/IDE/MFM/RLL Support window, you
can click on the IDE, ATA, and ATAPI Block Device button to open a window where
you can select support for IDE ATA hard drives and ATAPI CD-ROMs. Included here
are IDE chipsets such as HTP366 used for ATA66 drives.

• SCSI Support If you have any SCSI devices on your system, make sure the entries
in the SCSI Support window are set to Yes. You enable support for SCSI disks, tape
drives, and CD-ROMs here. The SCSI Low-Level Drivers window displays an
extensive list of SCSI devices currently supported by Linux. Be sure the ones you
have are selected.

• Network Device Support The Network Device Support window lists several general
features for network device support. There are entries here for windows that list
support for particular types of network devices, including Ethernet (10 or 100Mbit)
devices, token ring devices, WAN interfaces, and AppleTalk devices. Many of these
devices are created as modules you can load as needed. You can elect to rebuild your
kernel with support for any of these devices built directly into the kernel. Figure 34-6
shows the Ethernet (10 or 100Mbit) window listing Ethernet devices. Notice they are
built as separate modules.

Figure 34-6: Ethernet (10 or 100Mbit) window

• Multimedia Devices Multimedia devices provide support for various multimedia
cards as well as Video4Linux.

• File Systems The File Systems window, shown in Figure 34-7, lists the different
types of file systems Linux can support. These include DOS, VFAT (Windows 95),
and ISO9660 (CD-ROM) file systems. Network file systems— such as NFS, SMB
(Samba), NCP (NetWare), HFS (Macintosh), and NTFS—are also listed. Note, the
Linux file system type, ext2fs, must be included in the kernel, and is not compiled as a
module.

Figure 34-7: File Systems window

• Character Devices The Character Devices window lists features for devices such as
your keyboard, mouse, and serial ports. Support exists for both serial and bus mice.

• Sound The Sound window lists different sound cards supported by the kernel. Select
the one on your system. You also must provide the IRQ, DMA, and Base I/0 your
sound card uses. These are compiled as separate modules, some of which you could
elect to include directly in the kernel if you want (see Figure 34-8).

Figure 34-8: Sound window

• Kernel Hacking The Kernel Hacking window lists features of interest to
programmers who want to modify the kernel code. You can have the kernel include
debugging information.

Once you set your options, save your configuration. You can also make a backup copy by
clicking Save To File.

Compiling and Installing the Kernel

Now that the configuration is ready, you can compile your kernel. You first need to generate a
dependency tree to determine what part of the source code to compile, based on your
configuration. Use the following command:

make dep

You also have to clean up any object and dependency files that may remain from a previous
compilation. Use the following command to remove such files:

make clean

You can use several options to compile the kernel (See Table 34-1 later in this chapter). The
bzImage option simply generates a kernel file called bzImage and places it in the arch
directory. For Intel systems, you find bzImage in the i386/boot subdirectory, arch/i386/boot.
For a Red Hat kernel source, this would be in /usr/src/linux-2.4 /arch/i386/boot. For a kernel
archive source, this would be in /usr/src/linux/arch /i386/boot.

make bzImage

The install option generates both the kernel files and installs them on your system, as
vmlinuz.

make install

The zlilo option installs the kernel file as well, but also runs lilo to update LILO. The zlilo
option is designed for use with systems that run LILO. If you are booting Linux from DOS
using loadlin, you will need to copy the bzImage file to the loadlin directory on the DOS
partition where you are starting Linux from.

To install a kernel bzImage file manually, copy the bzImage file to the directory where the
kernel resides and give it the name used on your distribution, such as vmlinuz for Red Hat.
Remember to first back up the old kernel file. On Red Hat, vmlinuz is a symbolic link to an
actual kernel file that will have the term "vmlinuz" with the version name. So, to manually
install a bzImage file on Red Hat, you copy it to the /boot directory with the name vmlinuz
and the attached version number such as vmlinuz-2.4.7-10. You then create a symbolic link
from /boot/vmlinuz to /boot/vmlinuz-2.4.7-10.

make bzImage
cp arch/i386/boot/bzImage /boot/vmlinuz-2.4.7-10
ln –s /boot/vmlinuz /boot/vmlinuz-2.4.7-10

The bzImage option and those options that begin with the letter b, like bzlilo, create a
compressed kernel image. This kernel image may not work on older systems. If not, try using
the zImage option to create a kernel file called zImage. Then install the zImage file
manually. Bear in mind that support for zImage will be phased out eventually.

make zImage

The bzlilo option both installs the kernel file on your system and runs LILO. You should use
this option if you receive an error saying your kernel is too large. The following command
compiles the kernel, installs it on your system, and runs LILO for you. To install and update
LILO, use the following:

make zlilo

If you receive an error saying the kernel is too large, try using a b version of the option, such
as bzlilo, to further reduce its size.

make bzlilo

If you want to create a boot disk with the new kernel, use the bzdisk option. This option will
install the kernel on a floppy disk placed in your floppy drive. The kernel will reside on the
floppy disk, and to use that kernel you boot your system from the floppy (the kernel is not
installed on your root partition as it is with the install option).

make bzdisk

The previous options will create the kernel, but not the modules—those features of the kernel
to be compiled into separate modules. To compile your modules, use the make command
with the modules argument.

make modules

To install your modules, use the make command with the modules_install option. This
installs the modules in the /lib/modules/version-num directory, where version-num is the
version number of the kernel. Making a backup copy of the old modules before you install the
new ones may be advisable.

make modules_install

The commands for a simple compilation and installation are shown here:

make dep
make clean
make bzImage
make modules
make modules_install
make install

If you want, you could enter these all on one line, separating the commands with semicolons,
as shown here:

make dep; make clean; make bzImage; make modules
make modules_install; make install

The following commands show a basic compilation and a manual installation. First, all
previous binary files are removed with the clean option. Then the kernel is created using the
bzImage option. This creates a kernel program called bzImage located in the arch/i386/boot
directory. Then copy this kernel file to the /boot directory and give it the name vmlinuz-
version, where version is the kernel version. Then create a symbolic link called /boot/vmlinuz
to the kernel vmlinuz-version file. Then create the modules and install the modules:

make dep
make clean
make bzImage
make modules
make modules_install
cp arch/i386/boot/bzImage /boot/vmlinuz-2.4.7-10
ln –s /boot/vmlinuz /boot/vmlinux-2.4.7-10

Instead of installing the kernel on your system, you can simply place it on a boot disk and
boot your system from that disk. In that case, you just have to create a boot disk using the
bzdisk option. Be sure a formatted floppy disk is in the floppy drive. You will still have to
create and install your modules. Be sure that the bzImage file is small enough to fit on a
floppy disk. If not, you will have to reconfigure your kernel, compiling as many features as
possible as modules instead of as part of the kernel.

make clean
make bzImage
make bzdisk
make modules
make modules_install
 Tip If you are experimenting with your kernel configurations, it may be safer to put a new

kernel version on a boot disk, rather than installing on your system. If something goes
wrong, you can always boot up normally with your original kernel still on your system.

LILO Configurations

If you are using a boot loader like GRUB or LILO, you can configure your system to enable
you to start any of your installed kernels. As seen in the "Precautionary Steps" section, you
can create an added entry in the boot loader configuration file for your old kernel. As you
install new kernel versions, you could simply add more entries, enabling you to use any of the
previous kernels. For example, you could install a developmental version of the kernel, along
with a current stable version, while keeping your old version. In the image line for each entry,
you would specify the filename of the kernel. Whenever you install the kernel on Red Hat
using the RPM kernel package, the /boot/vmlinuz link is automatically changed to the new

kernel. You can still create another boot loader entry for your older kernel. In the next
example, the grub.conf file contains entries for two Linux kernels, one for the kernel installed
with 7.2, 2.4.7-10, and one for a more recent kernel, 2.4.12. With GRUB, you only have to
add a new entry for the new kernel. If you are using LILO, just add a new image segment for
the new kernel in the /etc/lilo.conf file. Be sure to execute the lilo command to update LILO.

Table 34-1: Kernel Compile Options Used as Arguments to the make Command in
/usr/src/linux

Configuration Tools Description
config Line-based interface for kernel configuration.
menuconfig Screen-based interface for kernel configuration.
xconfig X Window System interface for kernel configuration.
Maintenance Options
checkhelp Checks configuration for options not documented.
checkconfig Checks source tree for missing header files.
clean Removes old object files and dependencies.
mrproper Performs a more complete removal of object files,

including the kernel configuration file, .config. Usually
run before a new patch.

Compiling Options
zImage Creates the kernel file called zImage located in the

/usr/src/linux/arch or arch/i386/boot directory.
install Creates the kernel and installs it on your system.
zlilo Creates the kernel, installs it on your system, and runs

LILO.
zdisk Creates a kernel file and installs it on a floppy disk

(creates a boot disk).
bzImage Creates the kernel file and calls it bzImage.
bzlilo Creates and installs the kernel and runs LILO.
bzdisk Creates the kernel and installs it on a floppy disk (creates

a boot disk).
Module Options
modules Creates kernel modules.
modules-install Installs kernel modules in the /lib/modules directory.
/etc/grub.conf

grub.conf generated by anaconda

#boot=/dev/hda
default=0
timeout=30
splashimage=(hd0,2)/boot/grub/splash.xpm.gz
title Red Hat Linux (2.4.12)
 root (hd0,2)
 kernel /boot/vmlinuz-2.4.12 ro root=/dev/hda3 hdc=ide-scsi

 initrd /boot/initrd-2.4.12.img
title Red Hat Linux (2.4.7-10)
 root (hd0,2)
 kernel /boot/vmlinuz-2.4.7-10 ro root=/dev/hda3 hdc=ide-scsi
 initrd /boot/initrd-2.4.7-10.img
title Windows XP
 root (hd0,0)
 imakeactive
 chainloader +1

Module RAM Disks

If your system requires certain modules to be loaded when you boot, you may have to create a
RAM disk for them. For example, if you have a SCSI hard drive or CD-ROMs, the SCSI
drivers for them are often held in modules that are loaded whenever you start up your system.
These modules are stored in a RAM disk from which the startup process reads. If you create a
new kernel that needs to load modules to start up, you must create a new RAM disk for those
modules. When you create a new kernel, you also need to create its modules. You place the
modules needed for startup, such as SCSI hard drive modules, in a new RAM disk. In the
lilo.conf file, add an entry to load this RAM disk. You only need to create a new RAM disk if
your kernel has to load modules at startup. If, for example, you use a SCSI hard drive, but you
incorporated SCSI hard drive and CD-ROM support (including support for the specific
model) directly into your kernel, you needn't set up a RAM disk. Support for IDE hard drives
and CD-ROMs is already incorporated directly into the kernel.

If you need to create a RAM disk, you can use the mkinitrd command to create a RAM disk
image file or create a RAM disk device. See the Man pages for mkinitrd and RAM disk
documentation for more details. mkinitrd takes as its arguments the name of the RAM disk
image file and the kernel that the modules are taken from. In the following example, a RAM
disk image called initrd-2.4.7-10.im is being created in the /boot directory using modules
from the 2.4.7-10 kernel. The 2.4.7-10 kernel needs to already be installed on your system and
its modules created.

mkinitrd /boot/initrd-2.4.7-10.img 2.4.7-10

In the lilo.conf segment for the new kernel, you would place an initrd entry specifying the
new RAM disk.

image=/boot/vmlinuz-2.4.7-10
 label=linux
 root=/dev/hda3
 initrd=/boot/initrd-2.4.7-10.img
 read-only

Chapter 35: The X Window System and
XFree86
Overview

Linux and Unix systems use the same standard underlying graphics utility known as the X
Window System, also known as X or X11. This means that, in most cases, an X-based

program can run on any of the window managers and desktops. X-based software is often
found at Linux or Unix FTP sites in directories labeled X11. You can download these
packages and run them on any window manager running on your Linux system. Some may
already be in the form of Linux binaries that you can download, install, and run directly.
Netscape is an example. Others are in the form of source code that can easily be configured,
compiled, and installed on your system with a few simple commands. Some applications,
such as Motif applications, may require special libraries.

The X Window System is designed for flexibility—you can configure it in various ways. You
can run the X Window System on almost all the video cards currently available. The X
Window System is not tied to any specific desktop interface. It provides an underlying set of
graphical operations that user interface applications such as window managers, file managers,
and even desktops can use. A window manager uses these operations to construct widgets for
manipulating windows, such as scroll bars, resize boxes, and close boxes. Different window
managers can construct them to appear differently, providing interfaces with different
appearances. All window managers work on the X Window System. You can choose from a
variety of different window managers, and each user on your system can run a different
window manager, each using the same underlying X Window System graphic operations. You
can even run X programs without any window or file managers.

To run the X Window System, you need to install an X Window server. A free version of X
Window server software, known as XFree86, is used on most Linux systems, though
commercial versions are available from MetroLink (www.metrolink.com) and Xi graphics.
Once you install the XFree86 server, you must provide configuration information about your
monitor, mouse, and keyboard. This information is then used in a configuration file called
/etc/X11/XF86Config, which includes technical information best generated by an X Window
System configuration program, such as Xconfigurator, xlizard, or XF86Setup. When you
configured the X Window System when you installed your system, this file was automatically
generated.

You can also configure your own X interface using the .xinitrc and /etc/X11/ xinit/xinitrc
configuration files, where window managers, file managers, and initial X applications can be
selected and started. And, you can use a set of specialized X commands to configure your root
window, load fonts, or configure X Window System resources, such as setting the color of
window borders. You can also download X utilities from online sources that serve as Linux
mirror sites, usually in their /pub/ Linux/X11 directory. If you have to compile an X
application, you may have to use special procedures, as well as install support packages. An
official source for X Window System news, tools, and window managers is www.X11.org.
Here you can find detailed information about X Window System features, along with
compliant desktops and window managers.

The X Window System was developed and is maintained by The Open Group (TOG), a
consortium of over a hundred companies, including Sun, HP, IBM, Motorola, and Intel
(www.opengroup.org). Development is currently managed by the X.org group (www.X.org)
on behalf of the TOG. X.org is a nonprofit organization that maintains the existing X Window
System code. X.org periodically provides free official Window System update releases to the
general public. It controls the development of the X11R6 specifications, working with
appropriate groups to revise and release updates to the standard, as required. The newest
release is currently X11R6.4. XFree86 is a free distributed version of X Window System

servers used on most Linux systems. XFree86 incorporates X11R6.4 into its XFree86-4.0
release. You can find out more about XFree86 at www.xfree86.org.

The X Protocol

The X protocol was developed for Unix systems in the mid-1980s to provide a network-
transparent graphical user interface. The X protocol organizes display operations into a client
and server relationship, in which a client submits display requests to a server. The client is
known as an X client, and the server as an X server. The client, in this case, is an application,
and the server is a display. This relationship separates an application from the server. The
application acts as a client sending requests to the server, which then does the actual work of
performing the requested display operation. This has the advantage of letting the server
interact with the operating system and its devices, whereas the application need know nothing
of these details. An application operating as an X client can display on any system that uses
an X server. In fact, a remote X client can send requests to have an X server on a local
machine perform certain display operations. In effect, the X server/client relationship is
inverted from the way we normally think of servers. Usually, several client systems access a
single server. In the X server model, you would have each system operating as an X server
that can access a single system that holds X client programs.

XFree86

The XFree86 Project (www.xfree86.org) is a nonprofit organization that provides free X
Window System servers and supporting materials for several operating systems on PCs and
other microcomputers. The X server, client programs, and documentation supplied by the
XFree86 Project are commonly referred to as XFree86. The XFree86 server is available free
and includes source code. The project is funded entirely by donations.

In releases 3.3 and earlier, XFree86 organized video card and monitor drivers into separate
servers. You had to find the correct one to use and load it. With release 4.0, XFree86 now
uses only one server, called the XFree86 X server, which includes all video card and monitor
drivers. You only need to install the XFree86 X server package along with basic support
packages such as those for fonts. The XFree86 X server will have support for given video
cards and monitors implemented as static libraries or as modules it can load as needed. The
XFree86 X server uses a built-in runtime loader, donated by Metro Link, that is operating
system independent, though it is still hardware dependent. Currently, the XFree86 X server
supports the Intel, Alpha, PowerPC, and Sparc platforms.

The XFree86 server supports a wide range of video cards and monitors, including
monochrome, VGA, and Super VGA, and accelerated video cards. You can find a detailed
listing of supported cards by checking the driver status for a particular release. To obtain
information about a particular XFree86 release, just attach its release number to the
www.xfree86.org site as in www.xfree86.org/4.0 for information about release 4.0. To find
out the driver status for release 4.1.0, go to www.xfree86.org/4.1.0 and click the Driver
Status link. This will list links for all video cards to pages detailing support for particular
video card models. Also, you can consult the Man pages for the different driver types, such as
nv for Nvidia cards, mga for Matrox, and ati for ATI graphics cards.

XFree86 configuration tools, such as Red Hat's Xconfigurator and XFree86's xf86cfg, make
configuring your video card and monitor a simple process. They keep on hand an extensive

list of video cards and monitors provided by Xfree86, from which you can select your own. If
your video card or monitor is quite new, however, it may not be on this list. If this is the case,
first check to see if a new release of XFree86 has come out. The new release may have
support for your card or monitor. For example, release 4.1 now has support for NVidia
GeForce3 and ATI Radeon cards. If your card is not supported, you will need to enter certain
hardware specifications, such as horizontal and vertical sync frequencies for monitors. If you
must do this, be careful to enter the correct information. The wrong settings could damage
both your card and your monitor.

Be sure to check for new releases of XFree86 servers periodically at the XFree86 Web site.
You can download the new releases from there or from your distribution's update sites, such
as ftp.redhat.com/updates for Red Hat. It's always preferable to download from your Linux
distribution sites, since those packages may be modified to work better with your system. The
entire XFree86 software release includes the XFree86 X server and its modules along with
several supporting packages such as those for fonts and configuration files. Table 35-1 lists
the current XFree86 packages. If you are downloading from the Xfree86 site, you first
download and run Xinstall.sh to determine which packages are appropriate for your system.
XFree86 provides versions for different platforms on its FTP site at ftp.xfree86.org. For
downloads from the XFree86 site, it is strongly recommended that you use the Xinstall.sh
installer. Xinstall.sh will query for installation information and then download and install all
needed XFree86 packages. For Red Hat systems, download and install the RPM packages
from the Red Hat FTP site, instead of the ones at the XFree86 site.

Table 35-1: XFree86 Packages
Packages Description
Xinstall.sh The installer script
Extract The utility for extracting tarballs
Xbin.tgz X clients/utilities and runtime libraries
Xlib.tgz Some data files required at runtime
Xman.tgz Manual pages
Xdoc.tgz XFree86 documentation
Xfnts.tgz Base set of fonts
Xfenc.tgz Base set of font encoding data
Xetc.tgz Runtime configuration files
Xvar.tgz Runtime data
Xxserv.tgz XFree86 X server
Xmod.tgz XFree86 X server modules
Optional Packages Description
Xfsrv.tgz Font server
Xnest.tgz Nested X server
Xprog.tgz X header files, config files, and compile-time libs
Xprt.tgz X Print server
Xvfb.tgz Virtual framebuffer X server

Table 35-1: XFree86 Packages
Packages Description
Xf100.tgz 100-dpi fonts
Xfcyr.tgz Cyrillic fonts
Xflat2.tgz Latin-2 fonts
Xfnon.tgz Some large bitmap fonts
Xfscl.tgz Scalable fonts (Speedo and Type1)
Xhtml.tgz HTML version of the documentation
Xps.tgz PostScript version of the documentation
Xjdoc.tgz Documentation in Japanese

In addition to the server, XFree86 includes support programs and development libraries. The
entire XFree86 collection is installed in various directories, beginning with the pathname
/usr/X11R6. Directories are here for X programs, development files, libraries, Man pages,
and documentation. Configuration files are placed in the /etc/X11 directory. Applications
written to support X usually install in the /usr/X11R6/bin directory. You can also find the
XFree86 servers and support programs here. Table 35-2 lists XFree86 configuration
directories.

Table 35-2: XFree86 Directories
Directory Description
/usr/X11R6/bin Programs (X Window System clients and servers)
/usr/X11R6/include Development files
/usr/X11R6/lib Libraries
/usr/X11R6/man Man pages
/usr/X11R6/lib/X11/doc Documentation
/etc/X11 Configuration files
/usr/X11R6/lib/X11/ Contains subdirectories for window manager program

functions
 Note XFree86 now includes Direct Rendering Interface (DRI) and OPenGL support (GLX)

for 3D cards like ATI, Matrox, and 3dfx (dri.sourceforge.net).

You can use X servers to run X Window System applications on a remote system. When you
access a remote system, you can have the X server on that system generate a new display for
you to run the remote X application. Every X server has a display name consisting of a
hostname, a display number, and a screen number. These are used by an application to
determine how to connect to the server and the screen it should use.

hostname:displaynumber.screennumber

The hostname is the host where the X server is physically located. The display number is the
number of the display being managed by the X server. On a local workstation, there is usually
only one display. However, on a multiuser system where several terminals (each with its own
keyboard and mouse) are connected to a single system, each terminal is its own display with

its own display number. This way, several users can be running X applications at the same
time off the same X server. If your system has two or more monitors sharing the same
keyboard and mouse, a different screen number would be applied to each monitor, though
they would have the same display number.

The display a user is currently using is listed as the DISPLAY environment variable. On a
single-user system, you will find that the display entry begins with a colon and is followed by
a 0, as shown here. This indicates that the X server is on the local system (not a remote host)
and has the display number of 0.

$ echo $DISPLAY
:0

To use a remote X application, you have to change the display name for the DISPLAY
variable. You can do this manually by assigning a new hostname and display number to the
variable, or you can use the xon script:

$ DISPLAY=rabbit.mytrek.com:0
$ export DISPLAY

You can also use the -display option when invoking an X application to specify the remote X
server to use:

$ xterm -display rabbit.mytrek.com:0

XFree86 Configuration: /etc/X11/XF86Config

The XFree86 servers provide a wide range of hardware support, but it can be challenging to
configure. You can consult the XFree86-HOWTO document at www.linux.org or in the
/usr/share/doc/HOWTO directory for most distributions. There are also Man pages for
XFree86 and XF86Config, and documentation and FAQs are available at www.xfree86.org.
The configuration file used for your XFree86 server is called XF86Config, located in the
/etc/X11 directory. XF86Config contains all the specifications for your graphics card,
monitor, keyboard, and mouse. To configure the XF86Config file, you need specific
information on hand about your hardware. For your monitor, you must know the horizontal
and vertical sync frequency ranges and bandwidth. For your graphics card, you have to know
the chipset, and you may even need to know the clocks. For your mouse, you should know
whether it is Microsoft-compatible or some other brand, such as Logitech. Also, know the
port to which your mouse is connected.

 Note XFree86 4.x uses the /etc/XF86Config-4 file, instead of /etc/XF86Config, if it exists.
Red Hat generates both files, but the /etc/XF86Config-4 file takes precedence and uses
XFree86 4.x commands.

Although you could create and edit the file directly, using a configuration utility such as
Xconfigurator or xf86config is better. (Table 35-3 lists these various configuration tools.)
With these, you simply answer questions about your hardware or select options on the dialog
window, and the program generates the appropriate /etc/X11/XF86Config file. xf86config
provides line-mode prompts where you type responses or enter a menu selection, and it
provides explanations of each step. You can run it from any shell command line.
Xconfigurator uses a cursor-based screen that also operates on a shell command line. You can

use arrow keys, TAB, and the ENTER key to make your selections. xf86config also attempts
to detect your card automatically, or you can select your monitor from a predetermined list.

Table 35-3: X Window System Configuration Tools
Tool Description
xf86cfg XFree86 screen-based X Window System configuration tool
XFree86 -configure XFree86 X Window System configuration tool that is built into

the XFree86 X server
XF86Setup GUI X Window System configuration tool; use after

installation process
Xconfigurator Screen-based X Window System configuration tool (used in

Red Hat install procedure)
xf86config XFree86 command line X Window System configuration tool;

requires no screen-based support
/etc/X11/XF86Config The X Window System configuration file; edited by the

configuration tools

If you have problems configuring with a configuration utility, however, you can use the
XFree86 command with the –configure option to generate a version for you. With the –
configure option, XFree86 will probe your video card, keyboard, and mouse, and then
generate an XF86Config file automatically, naming it XF86Config.new. It will also display a
report on the results of its probe. This approach can be helpful if you have difficulty installing
a new video card:

XFree86 –configure

You can check out the configuration first by trying to run it with the X Window System. Use
the –xf86config option to use the XF86Config.new file instead of the /etc/XF86Config file:

XFree86 –xf86config /root/XF86Config.new

Once this version of the configuration file is working, you can replace your current
/etc/XF86Config file with it.

The /etc/X11/XF86Config file is organized into several parts, as shown here. You can find a
detailed discussion of all these sections and their entries in the XF86Config Man page. All of
these are set by the XF86Setup program. For example, the Monitor screen generates the
Monitor section in the XF86Config file, the Mouse screen generates the Input Device section
for the mouse, and so on. A section in the file begins with the keyword Section, followed by
the name of the section in quotes. The section ends with the term EndSection. Comments
have a # sign at the beginning of the line. The different kinds of sections are listed here.

Section Description
Files Directories for font and rgb files
Module Dynamic module loading
ServerFlags Miscellaneous options

Section Description
Input Device Mouse and keyboard configuration
Monitor Monitor configuration (set horizontal and vertical frequencies)
Device Video card configuration
Screen Configure display, setting virtual screen, display colors, screen

size, and other features
ServerLayout Specify layout of screens and input devices

Entries for each section begin with a data specification, followed by a list of values.

With release 4.0, many former data specifications are now implemented using the Option
entry. You enter the keyword Options followed by the data specification and its value. For
example, the keyboard layout specification, XkbLayout, is now implemented using an
Options entry as shown here:

Option "XkbLayout" "us"

Although you can directly edit the file using a standard text editor, relying on the setup
programs such as XF86Setup to make changes is always best. You won't ever have to touch
most of the sections, but in some cases, you want to make changes to the Screen section,
located at the end of the file. To do so, you would edit the file and add or change entries in the
Screen section. In the Screen section, you can configure your virtual screen display and set the
number of colors supported. Because the Screen section is the one you would most likely
change, it is discussed first, even though it comes last, at the end of the file.

Screen

A Screen section begins with an Identifier entry to give a name to this Screen. After the
Identifier entry, the Device and Monitor entries specify the monitor and video card you are
using. The name given in the Identifier entry in these sections is used to reference those
components.

Section "Screen"
 Identifier "Screen0"
 Device "Matrox|MGA G400 AGP"
 Monitor "C1025"
 DefaultDepth 24
 Subsection "Display"
 Depth 32
 Modes "1024x768"
 EndSubSection
 Subsection "Display"
 Depth 24
 Modes "1024x768"
 EndSubSection
EndSection

The Screen section has Display subsections, one for each depth supported. Whereas the
previous sections configured hardware, the Display subsection configures display features,
such as the number of colors displayed and the virtual screen size. Two main entries exist:
Depth and Modes. The Depth entry is the screen resolution: 8, 16, and 24. You can add the

DefaultDepth entry to set the default color depth to whatever your X server supports: 8 for
256K, 16 for 32K, and 24 for 16M. Modes are the modes allowed given the resolution. You
can also add to the Virtual entry to specify the size of the virtual screen. You can have a
virtual screen larger than your display area. When you move your mouse to the edge of the
displayed screen, it scrolls to that hidden part of the screen. This way, you can have a working
screen much larger than the physical size of your monitor. The physical screen size for a 17-
inch monitor is usually 1,024 x 768. You could set it to 1,152 x 864, a 21-inch monitor size,
with a Virtual entry.

Any of these features in this section can be safely changed. In fact, to change the virtual
screen size, you must modify this section. Other sections in the XF86Config file should be left
alone, however, unless you are certain of what you are doing.

Files, Modules, and ServerFlags

The Files section lists different directories for resources that XFree86 needs. For example, to
specify the location where rgb color data is listed, a line begins with the data specification
RgbPath, followed by the pathname for that rgb color data file. For fonts, you can specify
either font files or a font server. In earlier versions of the X Window System, this section
mostly listed the fonts available on your system. A font entry would begin with the data
specification FontPath and was followed by the pathname for that font. A sample of these
entries is shown here:

RgbPath "/usr/X11R6/lib/X11/rgb"
FontPath "/usr/X11R6/lib/X11/fonts/misc:unscaled"

To specify a font server, you enter the transport type, the hostname, and the port it is listening
on (this is usually 7100). If the server is on your own system, you can leave the hostname
blank.

transport/hostname:port

The transport can be either tcp for a TCP/IP connection (Internet) or unix for a Unix domain
socket. On most systems, the xfs server manages fonts. Font paths for the xfs server are listed
in the /etc/X11/fs/config file. A sample entry for the font server is shown here for a local font
server listening on port 7100.

FontPath "unix/:7100"

If no FontPaths are specified, the X server falls back on default font paths already compiled
into the X server (see the XF86Config Man page for more details).

The Module section specifies modules to be dynamically loaded, and the Load entry loads a
module. It is used to load server extension modules and font modules. This is a feature
introduced with version 4.0 that allows X server components that extend the functionality of
the X server to be loaded as modules. This feature provides for easy updating, letting you
upgrade modules without having to replace the entire X server. For example, the extmod
module contains miscellaneous extensions to enable commonly used functions in the X
server. In the following example, the extmod module that contains a set of needed extensions
is loaded. See the XF86Config Man page for more details.

Load "extmod"

Several flags can be set for the XFree86 server. With version 4.0, these are now implemented
as Options. (You can find a complete listing in the XF86Config Man page.) For example, the
BlankTime value specifies the inactivity timeout for the screen saver. DontZap disables the
use of CTRL-ALT-BACKSPACE to shut down the server. DontZoom disables switching
between graphic modes. You create an Option entry with the flag as the option. The following
example sets the server flag for the screen saver inactivity timeout:

Option "BlankTime " "30"

Intput Device

With 4.0, the Input Device section replaces the previous Keyboard, Pointer, and XInput
sections. To provide support for an input device such as a keyboard, you create an Input
Device section for it and enter Identifier and Driver entries for the device. For example, the
following entry creates an Input Device section for the keyboard:

Section "Input Device"
 Identifier "keyboard 1"
 Driver "keyboard"

Any features are added as Options, such as keyboard layout or model. A large number of
options exist for this section. Consult the XF86Config Man pages for a complete listing. The
following example shows an entire keyboard entry with autorepeat, keyboard model
(XkbModel), and keyboard layout (XkbLayout) options entered:

Section "InputDevice"
 Identifier "Keyboard 1"
 Driver "keyboard"
 Option "AutoRepeat" "500 5"
 Option "XkbModel" "pc104"
 Option "XkbLayout" "us"
EndSection

You create an Input Device section for your mouse and any other pointer devices. This
section has only a few entries, with some tailored for specific types of mice. Features are
defined using Option entries. The Protocol option specifies the protocol your mouse uses,
such as PS/2, Microsoft, or Logitech. The Device option is the pathname for the mouse
device. The following example shows a standard Pointer section for a three-button PS/2
mouse. The device file is /dev/mouse.

Section "InputDevice"
 Identifier "Mouse 1"
 Driver "mouse"
 Option "Protocol" "PS/2"
 Option "Device" "/dev/mouse"
 Option "Emulate3Buttons" "off"
EndSection

The following is a listing of the Pointer section options:

Option Description

Option Description
Protocol Mouse protocol (Check the XF86Config Man page for complete

listing)
Device Device path, such as /dev/mouse or /dev/cua0
BaudRate Baud rate for serial mouse
Emulate3Buttons Enables two-button mouse to emulate a third button when both

left and right buttons are pressed at once
ChordMiddle Three-button mouse configuration on some Logitech mice
ClearDTR and ClearRTS Clear DTR and RTS lines, valid only for Mouse Systems mice
SampleRate Set the sampling rate (Logitech)

Monitor

A Monitor section should exist for each monitor used on your system. The vertical and
horizontal frequencies must be accurate, or you can damage your monitor. A Monitor section
begins with entries that identify the monitor, such as vendor and model names. The
HorizSync and VerRefresh entries are where the vertical and horizontal frequencies are
specified. Most monitors can support a variety of resolutions. Those resolutions are specified
in the Monitor section by ModeLine entries. A ModeLine entry exists for each resolution. The
ModeLine entry has five values, the name of the resolution, its dot clock value, and then two
sets of four values, one for the horizontal timing and one for the vertical timing, ending with
flags. The flags specify different characteristics of the mode, such as Interlace, to indicate the
mode is interlaced, and +hsync and +vsync to select the polarity of the signal.

ModeLine "name" dotclock horizontal-freq vertical-freq flags

A sample of a ModeLine entry is shown here. Leaving the entire Monitor section alone is
best; rely, instead, on the entries generated by XF86Setup.

Modeline "800x600" 50.00 800 856 976 1040 600 637 643 666 +hsync +vsync

Commonly used entries for the Monitor section are listed here:

Option Description
Identifier A name to identify the monitor
VendorName Manufacturer
ModelName The make and model
HorizSync The horizontal frequency; can be a range or series of values
VerRefresh Vertical refresh frequency; can be a range or series of values
Gamma Gamma correction
ModeLine Specifies a resolution with dotclock, horizontal timing, and

vertical timing for that resolution

A sample Monitor section is shown here:

Section "Monitor"
 Identifier "C1025"
 VendorName "Unknown"
 ModelName "Unknown"
 HorizSync 30 - 95
 VertRefresh 50 - 160
EndSection

Device

The Device section specifies your video card. It begins with an Identifier entry and an entry
for the video card driver. The following example creates an Identifier for a Matrox card called
"MGA 1" and then specifies that the mga driver is to be used for it:

Identifier " Matrox|MGA G400 AGP"
Driver "mga"

Further entries identify the card, such as VendorName, BoardName, and Chipset. The amount
of video RAM is indicated in the VideoRam entry. The Clocks entry lists your clock values.
Many different entries can be made in this section, such as Ramdac for a Ramdac chip, if the
board has one, and MemBase for the base address of a frame buffer, if it is accessible. See the
XF86Config Man pages for a detailed list and descriptions.

Although you could safely change a VideoRam entry—for example, if you added more
memory to your card—changing the Clocks entry is not safe. If you get the clock values
wrong, you could easily destroy your monitor. Rely on the clock values generated by
XF86Setup or other XFree86 setup programs. If the clock values are missing, it means that
the server will automatically determine them. This may be the case for newer cards. A sample
Device entry is shown here:

Section "Device"
 Identifier "Matrox|MGA G400 AGP"
 Driver "mga"
 BoardName "Unknown"
EndSection

ServerLayout

A ServerLayout section has been added with release 4.0 to let you specify the layout of the
screens and the selection of input devices. The ServerLayout sections may also include
options that are normally found in the ServerFlags section. You can set up several
ServerLayout sections and select them from the command line. The following example shows
a simple ServerLayout section for a basic configuration:

Section "ServerLayout"
 Identifier "XFree86 Configured"
 Screen 0 "Screen0" 0 0
 InputDevice "Mouse0" "CorePointer"
 InputDevice "Keyboard0" "CoreKeyboard"
EndSection

X Window System Command Line Arguments

You can start up any X Window application either within an .xinitrc or .xsession script or on
the command line in an Xterm window. Some distributions, including Red Hat, place X
Window startup applications in an .Xclients file that is read by the .xinitrc script. Most X
Window applications take a set of standard X Window arguments used to configure the
window and display the application uses. You can set the color of the window bars, give the
window a specific title, and specify the color and font for text, as well as position the window
at a specific location on the screen. Table 35-4 lists these X Window arguments. They are
discussed in detail in the XMan pages, man X.

Table 35-4: Configuration Options for X Window System–Based Applications
X Window Application
Configuration Argument

See the XMan pages for detailed explanations

-bw num Border width of pixels in frame
-bd color Border color
-fg color Foreground color (for text or graphics)
-bg color Background color
-display display-name Displays client to run on; displays name consisting of

hostname, display number, and screen number (see XMan
pages)

-fn font Font to use for text display
-geometry offsets Location on screen where X Window application window

is placed; offsets are measured relative to screen display
-iconic Starts application with icon, not with open window
-rv Switches background and foreground colors
-title string Title for the window's title bar
-name string Name for the application
-xrm resource-string Specifies resource value
-xnllanguage lang Set the language used to resolve filenames

One commonly used argument is -geometry. This takes an additional argument that specifies
the location on the screen where you want an application's window displayed. In the next
example, the xclock X Window application is called with a geometry argument. A set of up to
four numbers specifies the position. The value +0+0 references the upper left-hand corner.
There, you see the clock displayed when you start up the X Window System. The value –0–0
references the upper right-hand corner.

& xclock -geometry +0+0 &

With the -title option, you can set the title displayed on the application window. Notice the
use of quotes for titles with more than one word. You set the font with the -fn argument and
the text and graphics color with the -fg argument. -bg sets the background color. The
following example starts up an Xterm window with the title "My New Window" in the title

bar. The text and graphics color is green, and the background color is gray. The font is
Helvetica.

$ xtessrm -title "My New Window" -fg green -bg gray -fn
/usr/fonts/helvetica &

X Window System Commands and Configuration Files

The X Window System uses several configuration files as well as X commands to configure
your X Window System. Some of the configuration files belong to the system and should not
be modified. Each user can have his or her own set of configuration files, however, such as
.xinitrc, .xsession, and .Xresources, that can be used to configure a personalized X Window
interface. Red Hat also uses an .Xclients file to hold X Window startup applications. These
configuration files are automatically read and executed when the X Window System is started
up with either the startx command or an X display manager, such as xdm or gdm. Within
these configuration files, you can execute X commands used to configure your system. With
commands such as xset and xsetroot, you can add fonts or control the display of your root
window. Table 35-5 provides a list of X Window System configuration files and commands.
You can obtain a complete description of your current X configuration using the xdypinfo
command. The XMan pages provide a detailed introduction to the X commands and
configuration files.

X Resources

Several X commands, such as xrdb and xmodmap, configure your X Window interface. X
Window graphic configurations are listed in a resource file called .Xresources. Each user can
have a customized .Xresources file in his or her home directory, configuring the X Window
System to particular specifications. The .Xresources file contains entries for configuring
specific programs, such as the color of certain widgets. A systemwide version called
/etc/X11/xinit/.Xresources also exists. (Notice that, unlike /etc/X11/xinit/xinitrc, a period is
before Xresources in the /etc/X11/xinit/.Xresources filename.) The .Xdefaults file is a
default configuration loaded by all programs, which contains the same kind of entries for
configuring resources as .Xresources. An .Xdefaults file is accessible by programs on your
system, but not by those running on other systems. The /usr/X11R6/ lib/X11/app-defaults
directory holds files that contain default resource configurations for particular X applications,
such as Xterm, Xclock, and Xmixer. The Xterm file holds resource entries specifying how an
Xterm window is displayed. You can override any of these defaults with alternative entries in
an .Xresources file in your home directory. You can create an .Xresources file of your own
in your home directory and add resource entries to it. You can also copy the
/etc/X11/xinit/.Xresources file and edit the entries there or add new ones of your own.

Configuration is carried out by the xrdb command, which reads both the system's
.Xresources file and any .Xresources or .Xdefaults file in your home directory. The xrdb
command is currently executed in the /etc/X11/xinit/xinitrc script and the
/etc/X11/xdm/Xsession script. If you create your own .xinitrc script in your home directory,
be sure it executes the xrdb command with at least your own .Xresources file or the
/etc/X11/xinit/.Xresources file (preferably both). You can ensure this by simply using a copy
of the system's xinitrc script as your own .xinitrc file, and then modifying that copy as you
want. See the Man pages on xrdb for more details on resources. Also, you can find a more
detailed discussion of Xresources, as well as other X commands, in the Man pages for X.

An entry in the .Xresources file consists of a value assigned to a resource, a class, or a group
of resources for an application. Usually, resources are used for widgets or classes of widgets
in an application. The resource designation typically consists of three elements separated by
periods: the application, an object in the application, and the resource. The entire designation
is terminated by a colon, and the value follows. For example, suppose you want to change the
color of the hour hand to blue in the oclock application. The application is oclock, the object
is clock, and the resource is hour: oclock.clock.hour. This entry looks like this:

oclock.clock.hour: blue

The object element is actually a list of objects denoting the hierarchy leading to a particular
object. In the oclock example, only one object exists, but in many applications, the object
hierarchy can be complex. This requires a lengthy set of objects listed to specify the one you
want. To avoid this complexity, you can use the asterisk notation to reference the object you
want directly, using an asterisk in place of the period. You only need to know the name of the
resource you want to change. The following example sets the oclock minute and hour hands
to green:

oclock*hour: green
oclock*minute: green

You can also use the asterisk to apply a value to whole classes of objects. Many individual
resources are grouped into classes. You can reference all the resources in a class by their class
name. Class names begin with an uppercase character. In the Xterm application, for example,
the background and pointer color resources are both part of the Background class. The
reference XTerm*Background would change all these resources in an Xterm window.
However, any specific references always override the more general ones.

You can also use the asterisk to change the values of a resource in objects for all your
applications. In this case, you place an asterisk before the resource. For example, to change
the foreground color to red for all the objects in every application, you enter

*foreground: red

If you want to change the foreground color of the scroll bars in all your applications, you use

*scrollbar*foreground: blue

The showrgb command lists the different colors available on your system. You can use the
descriptive name or a hexadecimal form. Values can also be fonts, bitmaps, and pixmaps. You
could change the font displayed by certain objects in, or for, graphic applications as well as
change background or border graphics. Resources vary with each application. Applications
may support different kinds of objects and the resources for them. Check the Man pages and
documentation for an application to learn what resources it supports and the values accepted
for it. Some resources take Boolean values that can turn features on or off, while others can
specify options. Some applications have a default set of resource values that is automatically
placed in your system's .Xresources or .Xdefaults files.

The Xmodmap file holds configurations for your input devices, such as your mouse and
keyboard (for example, you can bind keys such as BACKSPACE or reverse the click
operations of your right and left mouse buttons). The Xmodmap file used by your display

manager is in the display manager configuration directory, such as /etc/X11/xdm, whereas the
one used by startx is located in /etc/X11/xinit. Each user can create a custom .Xmodmap file
in his or her home directory to configure the system's input devices. This is helpful if users
connect through their own terminals to your Linux system. The .Xmodmap file is read by the
xmodmap command, which performs the configuration. The xmodmap command first looks
for an .Xmodmap file in the user's home directory and uses that. If no .Xmodmap is in the
home directory, it uses the one for your display manager or startx command. You see entries
for the xmodmap command in the /etc/X11/xinit/xinitrc file and the display manager's
Xsession file. If you have your own .xinitrc or .xsession script in your home directory, it
should execute the xmodmap command with either your own .Xmodmap file or the system's
Xmodmap file. See the Man pages on xmodmap for more details.

X Commands

Usually, an .xinitrc or .xssesion script has X Window System commands, such as xset and
xsetroot, used to configure different features of your X Window session. The xset command
sets different options, such as turning on the screen saver or setting the volume for the bell
and speaker. You can also use xset to load fonts. See the xset Man pages for specific details.
With the b option and the on or off argument, xset turns your speaker on or off. The
following example turns on the speaker:

xset b on

You use xset with the -s option to set the screen saver. With the on and off arguments, you
can turn the screen saver on or off. Two numbers entered as arguments specify the length and
period in seconds. The length is the number of seconds the screen saver waits before
activating and the period is how long it waits before regenerating the pattern.

The xsetroot command enables you to set the features of your root window (setting the color
or displaying a bitmap pattern—you can even use a cursor of your own design). Table 35-5
lists the different xsetroot options. See the Man pages for xsetroot for options and details.
The following xsetroot command uses the -solid option to set the background color of the
root window to blue:

xsetroot -solid blue

Table 35-5: X Window System Commands
X Window Command Explanation
xterm Opens a new terminal window
xset Sets X Window options; see Man pages for complete listing

-b Configures bell
-c Configures key click
+fp fontlist Adds fonts
-fp fontlist Removes fonts
led Turns on or off keyboard LEDs
m Configures mouse
p Sets pixel color values
s Sets the screen saver
q Lists current settings

xsetroot Configures the root window

Table 35-5: X Window System Commands
X Window Command Explanation

-cursor cursorfile maskfile Sets pointer to bitmap pictures when
pointer is outside any window
-bitmap filename Sets root window pattern to bitmap
-gray Sets background to gray
-fg color Sets color of foreground bitmap
-bg color Sets color of background bitmap
-solid color Sets background color
-name string Sets name of root window to string

xmodmap Configures input devices; reads the .Xmodmap file
-pk Displays current keymap
-e expression Sets key binding
keycode NUMBER = KEYSYMNAME
Sets key to specified key symbol
keysym KEYSYMNAME = KEYSYMNAME
Sets key to operate the same as specified key
pointer = NUMBER Sets mouse button codes

xrdb Configures X Window resources; reads the .Xresources file
xdm X Window display manager; runs the XFree86 server for your

system; usually called by xinitrc
Startx Starts X Window by executing xinit and instructing it to read the

xinitrc file.
xfs config-file The X Window font server
mkfontdir font-directory Indexes new fonts, making them accessible by the font server
xlsfonts Lists fonts on your system
xfontsel Displays installed fonts
xdpyinfo Lists detailed information about your X Window configuration
xinit Starts X Window, first reading the system's xinitrc file; when

invoked from startx, it also reads the user's .Xclients file; xinit is
not called directly, but through startx

xmkmf Creates a Makefile for an X Window application using the
application's Imakefile; invokes imake to generate the Makefile
(never invoke imake directly)

xauth Reads .Xauthority file to set access control to a user account
through xdm from remote systems

Fonts

Your X Window System fonts are located in a directory called /usr/X11R6/lib/X11/ fonts. X
Window System fonts are loaded using the xfs command. xfs reads the /etc/X11/fs/config
configuration file that lists the font directories in an entry for the term catalogue. The XMan
pages provide a detailed discussion on fonts. To install a set of fonts automatically, place
them in a directory whose path you can add to the catalogue entry. You can also separately
install a particular font with the xset command and its +fp option. Fonts for your system are

specified in a font path. The font path is a set of filenames, each holding a font. The filenames
include their complete path. An example of the catalogue entry in the /etc/X11/config file
follows. This is a comma-delimited list of directories. These are directories where the X
Window System first looks for fonts.

catalogue = /usr/X11R6/lib/X11/fonts/misc/,
/usr/X11R6/lib/X11/fonts/Speedo/,/usr/X11R6/lib/X11/fonts/Type1/,
/usr/X11R6/lib/X11/fonts/75dpi/,/usr/X11R6/lib/X11/fonts/100dpi/

Before you can access newly installed fonts, you must first index them with the mkfontdir
command. From within the directory with the new fonts, enter the mkfontdir command. You
can also use the directory path as an argument to mkfontdir. After indexing the fonts, you
can then load them using the xset command with the fp rehash option. To have the fonts
automatically loaded, add the directory with the full pathname to the catalogue entry in the xfs
configuration file. The following shows how to install a new font and then load it:

$ cp newfont.pcf ~/myfonts
$ mkfontdir ~/myfonts
$ xset fp rehash

Within a font directory, several special files hold information about the fonts. The fonts.dir
file lists all the fonts in that directory. In addition, you can set up a fonts.alias file to give
other names to a font. Font names tend to be long and complex. A fonts.scale file holds the
names of scalable fonts. See the Man pages for xfs and mkfontdir for more details.

With the xset +fp and -fp options, you can specifically add or remove particular fonts. The fn
option with the rehash argument then loads the fonts. With the default argument, the default
set of fonts is restored. The +fp option adds a font to this font path. For your own fonts, you
can place them in any directory and specify their filenames, including their complete path.
The next example adds the myfont font in the /usr/local/fonts directory to the font path.
Then, the fp option with the rehash argument loads the font.

xset +fp /usr/local/fonts/myfont
xset fp rehash

To remove this font, use xset -fp /usr/home/myfont and follow it with the xset fp rehash
command. If you want to reset your system to the set of default fonts, enter the following:

xset fp default
xset fp rehash

With xlsfonts, you can list the fonts currently installed on your system. To display an installed
font to see what it looks like, use xlslfonts. You can browse through your fonts, selecting the
ones you like.

Table 35-5 lists common X Window System commands, whereas Table 35-6 lists the
configuration files and directories associated with the X Window System.

Table 35-6: X Window System Configuration Files
Configuration File Explanation
.Xmodmap User's X Window input devices configuration file.

Table 35-6: X Window System Configuration Files
Configuration File Explanation
.Xresources User's X Window resource configuration file.
.Xdefaults User's X Window user-specific resource configuration

file.
.xinitrc User's X Window configuration file read automatically

(by xinit, if it exists).
.Xclients or .Xsessions User's X Window configuration file (used on Red Hat and

other Linux distributions).
.Xauthority User's access controls through xdm GUI login interface.
/usr/X11R6/ Directory where the X Window System release 6

commands, applications, and configuration files are held.
/usr/X11R6/lib/X11/ Link to the /etc/X11 directory that holds X Window

System release 6 configuration file and subdirectories.
/etc/X11/ Directory that holds X Window System release 6

configuration file and subdirectories.
/usr/X11R6/lib/X11/ Directory that holds X Window System configuration files

and subdirectories for the version currently installed on
your system. On Red Hat, this is a link to the /etc/X11
directory.

/etc/X11/xinit/xinitrc System X Window initialization file; automatically read
by xinit

/etc/X11/xinit/Xclients System X Window configuration file (used on Red Hat
and other Linux distributions).

/etc/X11/xinit/.Xresources System X Window resources file; read by xinitrc.
/etc/X11/xinit/.Xmodmap System X Window input devices file; read by xinitrc.
/etc/X11/rgb.txt X Window colors. Each entry has four fields: the first

three fields are numbers for red, green, and blue; the last
field is the name given to the color.

X Window System Startup Methods: startx and Display Managers

You can start up your X Window System in two different ways. You can start Linux with the
command line interface and then, once you log in, use the startx command to start the X
Window System and your window manager and desktop. You can also use a display manager
that automatically starts the X Window System when you boot your computer, displaying a
login window and a menu for selecting the window manager or desktop you want to use.
Options for shutting down your system are also there. Currently, you can use three display
managers: The K Display Manager is a display manager provided with the KDE. The Gnome
Display Manager comes with the Gnome desktop. The X Display Manager is the original
display manager used on Linux system.

Each method uses its own startup script. The startx command uses the xinit command to start
the X Window System; its startup script is /etc/X11/xinit/xinitrc. Startup scripts for display
managers are found in their respective directories. For xdm, the startup script is

/etc/X11/xdm/Xsession. gdm has its own configuration directory, /etc/X11/gdm. Here you
find files for configuring their login window and menus. The gdm application as currently
implemented on Red Hat uses the Xdm Xsession script.

As an enhancement to either startx or a display manager, you can use the X session manager
(xsm). You can use it to launch your X Window System with different sessions. A session is a
specified group of X applications. Starting with one session might start Gnome and Netscape,
while starting with another might start KDE and KOffice. You can save your session while
you are using it or when you shut down. The applications you are running become part of a
saved session. When you start, xsm displays a session menu for you to choose from, listing
previous sessions you saved. For xsm to work, it must be the last entry in your .xsessions or
.Xclients file, and you shouldn't have any other applications started in these files.

startx, xinit, and .xinitrc

The X Window System can be started from the command line interface using the xinit
command. You do not invoke the xinit command directly, but through the startx command,
which you always use to start the X Window System. Both of these commands are found in
the /usr/X11R6/bin directory, along with many other X-based programs. The startx
command is a shell script that executes the xinit command. The xinit command, in turn, first
looks for an X Window System initialization script called .xinitrc, in the user's home
directory. If no .xinitrc script is in the home directory, xinit uses /etc/X11/xinit/xinitrc as its
initialization script. Both .xinitrc and /etc/X11/ xinit/xinitrc have commands to configure
your X Window server and to execute any initial X commands, such as starting up the
window manager. You can think of the /etc/X11/xinit/xinitrc script as a default script. In
addition, many systems use a separate file named Xclients, where particular X applications,
desktops, or window managers can be specified. These entries can be directly listed in an
xinitrc file, but a separate file makes for a more organized format. The Xclients files are
executed as shell scripts by the xinitrc file. A user version, as well as a system version, exists:
.Xclients and /etc/X11/init/Xclients. On Red Hat systems, the user's home directory is
checked for the .Xclients file and, if missing, the /etc/X11/xinit/Xclients file is used.

Most distributions, including Red Hat, do not initially set up any .xinitrc or .Xclients scripts
in any of the home directories. These must be created by a particular user who wants one.
Each user can create a personalized .xinitrc script in her or his home directory, configuring
and starting up the X Window System as wanted. Until a user sets up an .xinitrc script, the
/etc/X11/xinit/xinitrc script is used, and you can examine this script to see how the X
Window System starts. Certain configuration operations required for the X Window System
must be in the .xinitrc file. For a user to create his or her own .xinitrc script, copying the
/etc/X11/xinit/xinitrc first to the home directory and naming it .xinitrc is best. Then, each
user can modify the particular .xinitrc file as required. (Notice the system xinitrc file has no
preceding period in its name, whereas the home directory .xinitrc file set up by a user does
have a preceding period.) The following example shows a simplified version of the system
.xinitrc file that starts the Window Maker window manager and an Xterm window. System
and user .Xresources and .Xmodmap files are executed first to configure the X Window
System.

.xinitrc

#!/bin/sh

userresources=$HOME/.Xresources
usermodmap=$HOME/.Xmodmap
sysresources=/usr/X11R6/lib/X11/xinit/.Xresources
sysmodmap=/usr/X11R6/lib/X11/xinit/.Xmodmap

merge in defaults and keymaps
if [-f $sysresources]; then
 xrdb -merge $sysresources
fi
if [-f $sysmodmap]; then
 xmodmap $sysmodmap
fi
if [-f $userresources]; then
 xrdb -merge $userresources
fi
if [-f $usermodmap]; then
 xmodmap $usermodmap
fi
start some nice programs
 xterm &
 exec wmaker &

On Red Hat, if a user only wants to add startup applications, the user can simply create an
.Xclients file instead of a complete .xinitrc file. Be sure commands are in the system xinitrc
file to check for and run a user's .Xclients file. The following example shows the code used in
the Red Hat xinitrc file to execute a user's .Xclients script and, failing that, the system
Xclients script. If this fails, the FVWM2 window manager is started and, if that fails, the twm
file manager is started.

if [-f $HOME/.Xclients]; then
 exec $HOME/.Xclients
elif [-f /etc/X11/xinit/Xclients]; then
 exec /etc/X11/xinit/Xclients
else
 # failsafe settings. Although we should never get here
 xclock -geometry 100x100-5+5 &
 xterm -geometry 80x50-50+150 &
 if [-f /usr/X11R6/bin/fvwm2]; then
 exec fvwm2
 else
 exec twm
 fi
fi

Display Managers: xdm and gdm

When a system configured to run a display manager starts up, the X Window System starts up
immediately and displays a login dialog box. The dialog box prompts the user to enter a login
name and a password. Once they are entered, a selected X Window interface starts up—say,
with Gnome, KDE, or some other desktop or window manager. When the user quits the
window manager or desktop, the system returns to the login dialog box and remains there
until another user logs in. You can shift to a command line interface with the CTRL-ALT-F1
keys and return to the display manager login dialog box with CTRL-ALT-F7. A display
manager can do much more than provide a GUI login window. You can also use it to control

access to different hosts and users on your network. The .Xauthority file in each user's home
directory contains authentication information for that user. A display manager like xdm
supports the X Display Manager Control Protocol (XDMCP). They were originally designed
for systems like workstations that are continually operating, but they are also used to start up
X Window automatically on single-user systems when the system boots.

A display manager is automatically run when your system starts up at runlevel 5. Recall that
your system can run at different runlevels; for example, runlevel 3 is the standard multiuser
level, whereas runlevel 2 is a non-network user level, and runlevel 1 is a system
administration level. Runlevel 5 is the same as the standard multiuser level (runlevel 3),
except it automatically starts up the X Window System on connected machines and activates
the display manger's login screen.

During installation, you could choose whether you wanted to start with the display manager
(runlevel 5) or not (runlevel 3). In this case, your system automatically starts at runlevel 5,
activating the display manager. If, instead, you are starting with a standard line-mode login
prompt (runlevel 3), you can manually change to the display manager by changing your
runlevel. To do this, you can specify your runlevel with the telinit administration utility (see
Chapter 4). The following command changes to runlevel 3, the command line:

telinit 3

This command will change to runlevel 5, the graphical login:

telinit 5

To make a runlevel the default, you have to edit the /etc/inittab file as described in Chapter
28.

Xsession

A display manager refers to a user's login and startup of a window manager and desktop as a
session. When the user quits the desktop and logs out, the session ends. When another user
logs in, a new session starts. The X Window System never shuts down; only desktop or
window manager programs shut down. Session menus on the display manager login window
list different kinds of sessions you can start—in other words, different kinds of window
managers or desktops. For each session, the Xsession script is the startup script used to
configure a user's X Window System display and to execute the selected desktop or window
manager. Although this script is unnecessary for gdm, it is still used in the gdm Red Hat
implementation.

Xsession is the display manager session startup script used by the Red Hat implementation of
gdm (other display managers such as kdm and xdm also use Xsession). It contains many of
the X commands also used with the xinitrc startup script. Xsession usually executes the same
xmodmap and xrdb commands using the .Xmodmap and .Xrsources files in the
/etc/X11/xinit directory. Shown here is the Xsession script used by gdm on Red Hat systems,
which is located in the /etc/X11/xdm directory. Notice that any errors are saved in the user's
.xsession-errors file in their home directory. Xsession will also read any shell scripts located
in the /etc/X11/xinit/xinitrc.d directory. Currently this holds an input script to detect the kind
of language a keyboard uses.

/etc/X11/xdm/Xsession

#!/bin/bash -login
Copyright (c) 1999, 2000 Red Hat, Inc.

redirect errors to a file in user's home directory if we can
for errfile in "$HOME/.xsession-errors" "${TMPDIR-/tmp}/xses-$USER"
"/tmp/xses-$USER"
do
 if cp /dev/null "$errfile" 2> /dev/null ;
 then
 chmod 600 "$errfile"
 exec > "$errfile" 2>&1
 break
 fi
done

xsetroot -solid '#356390'

userresources=$HOME/.Xresources
usermodmap=$HOME/.Xmodmap
userxkbmap=$HOME/.Xkbmap

sysresources=/etc/X11/Xresources
sysmodmap=/etc/X11/Xmodmap
sysxkbmap=/etc/X11/Xkbmap

merge in defaults
if [-f "$sysresources"]; then
 xrdb -merge "$sysresources"
fi

if [-f "$userresources"]; then
 xrdb -merge "$userresources"
fi

merge in keymaps
if [-f "$sysxkbmap"]; then
 setxkbmap `cat "$sysxkbmap"`
 XKB_IN_USE=yes
fi

run all system xinitrc shell scripts.
for i in /etc/X11/xinit/xinitrc.d/* ; do
 if [-x "$i"]; then
 . "$i"
 fi
done

now, we see if xdm/gdm/kdm has asked for a specific environment
case $# in
 1)
 case $1 in
 failsafe)
 exec xterm -geometry 80x24-0-0
 ;;
 gnome)
 exec gnome-session
 ;;
 kde|kde1|kde2)
 exec /usr/share/apps/switchdesk/Xclients.kde

 ;;
 twm)
 # fall back to twm
 exec /usr/share/apps/switchdesk/Xclients.twm
 ;;
 esac
 esac

otherwise, take default action
if [-x "$HOME/.xsession"]; then
 exec "$HOME/.xsession"
elif [-x "$HOME/.Xclients"]; then
 exec "$HOME/.Xclients"
elif [-x /etc/X11/xinit/Xclients]; then
 exec /etc/X11/xinit/Xclients
else
 # should never get here; failsafe fallback
 exec xsm
fi

Xsession is usually invoked with an argument indicating the kind of environment to run, such
as Gnome, KDE, or a window manager like Window Maker. The option for Gnome would be
gnome and for KDE it would be kde.

Xsession gnome

These environments are listed in the Xsession script within the case statement. Here you will
find entries for Gnome, KDE, and the bare-boned twm window manager. On Red Hat, gnome
is invoked directly with the gnome-session command, whereas KDE and other window
managers are invoked through scripts set up for the Red Hat switchdesk tool. These scripts
contain a simple command to invoke a window manager. The scripts are held in the
/usr/share/apps/switchdesk directory. Each file has the prefix "Xclients" and the suffix with
the name of the window manger or desktop. For example, the KDE script is Xclients.kde, and
the Window Maker script is Xclients.windowmaker.

If Xsession is not invoked with a specific environment, the user's home directory is checked
for a .xession or .Xclients script. If those scripts are missing, the system Xclients script is
used, /etc/X11/xinit/Xclients.

If users want to set up their own startup files, they can copy the Xsession file to the their
home directory and name it .xsession and then edit it. The following example shows a
simplified Xsession script that executes the user's .xsession script if it exists. The user's
.xsession script is expected to start a window manager or desktop.

Xsession

This is the program that is run as the client
for the display manager.

startup=$HOME/.xsession
resources=$HOME/.Xresources

if [-f "$startup"]; then
 exec "$startup"
 else
 if [-f "$resources"]; then
 xrdb -load "$resources"
 fi
 fvwn2 &
 exec xterm -geometry 80x24+10+10 -ls
 fi

The X Display Manager (xdm)

The X Display Manager (xdm) manages a collection of X displays either on the local system
or remote servers. xdm's design is based on the X Consortium standard X Display Manager
Control Protocol (XDMCP). The xdm program manages user logins, providing authentication
and starting sessions. For character-based logins, a session is the lifetime of the user shell that
is started up when the user logs in from the command line interface. For xdm and other
display managers, the session is determined by the session manager. The session is usually the
duration of a window manager or desktop. When the desktop or window manager terminates,
so does the session.

The xdm program displays a login window with boxes for a login name and password. The
user logs in, and a window manager or desktop starts up. When the user quits the window
manager, the X Window System restarts automatically, displaying the login window again.
Authentications to control access for particular users are kept in their .Xauthority file.

The xdm configuration files are located in the /usr/X11R6/lib/X11/xdm/ directory, although
on Red Hat this is a link to the /etc/X11/xdm directory. The main xdm configuration file is
xdm-config. Files such as Xresources configure how the dialog box is displayed, and Xsetup
enables you to specify a root-window image or other windows to display. You can use the
xbanner program to choose a graphic to display with the login dialog box. When the user
starts up a session, the Xsession script is run to configure the user's X Window System and
execute the user's window manager or desktop. This script usually calls the .xsession script in
the user's home directory, if there is one (though this is not currently the case for Red Hat
Xsession scripts). It holds any specific user X commands.

If you want to start xdm from the command line interface, you can enter it with the -
nodaemon option. CTRL-C then shuts down xdm:

xdm -nodaemon

Table 35-7 lists the configuration files and directories associated with xdm. xdm-errors will
contain error messages from xdm and the scripts it runs such as Xsession and Xstartup.
Check this file if you are having any trouble with xdm.

Table 35-7: The xdm Configuration Files and Directories
Filename Description
/usr/X11R6/lib/X11/xdm xdm configuration directory; on Red Hat, this is

/etc/X11/xdm
xdm-config xdm configuration file

Table 35-7: The xdm Configuration Files and Directories
Filename Description
Xsession Startup script for user session
Xresource Resource features for xdm login window
Xsetup Sets up the login window and xdm login screen
Xstartup Session startup script
xdm-errors Errors from xdm sessions
.xsession User's session script in the home directory; usually executed

by Xsession
Xreset Resets the X Window System after a session ends
.Xauthority User authorization file where xdm stores keys for clients to

read

The Gnome Display Manager

The Gnome Display Manager (gdm) manages user login and GUI interface sessions. gdm can
service several displays and generates a process for each. The main gdm process listens for
XDMCP requests from remote displays and monitors the local display sessions. gdm displays
a login window with boxes for entering a login name and password, and also displays a pop-
up menu labeled Options with entries for sessions and shutdown submenus. The sessions
menu displays different window managers and desktops you can start up. On Red Hat, you
can find entries for Gnome, kde, and failsafe. You can easily add entries to this menu by
adding files for them in the gdm configuration directory, /etc/X11/gdm/Sessions.

The gdm configuration files are located in the /etc/X11/gdm directory. Its main configuration
file is gdm.conf, where you can set various options, such as the logo image and welcome text
to display. The gdm directory also contains four directories: Init, Sessions, PostSession, and
PreSession. You can easily configure gdm by placing or editing files in these different
directories. The Init directory contains scripts that are executed when gdm starts up. On Red
Hat, this directory contains a Default script that holds X commands, such as setting the
background. These are applied to the screen showing the gdm login window.

The Sessions directory holds session scripts. These become entries in the session menu
displayed on the gdm login window options menu. For example, you could have a script
called kde that contains the command startkde to run the KDE desktop. The term "kde"
appears in the gdm session menu. Selecting kde executes this script and starts KDE. Currently
on Red Hat, these scripts contain calls to the /etc/X11/xdm/Xsession script, using the
filename as its argument. In the Xsession script, this name is used to start that particular kind
of session. For example, when you select kde, the term "kde" is passed to the Xsession script,
which then uses it to execute the kde command to start KDE. For example, the Gnome script
consists of only the following lines. The term "gnome" is passed to the Xsession script, which
then uses it to execute the gnome-session command to start Gnome. This design has the
advantage of not having to repeat any X configuration commands, such as xmodmap.

#!/bin/bash
exec /etc/X11/xdm/Xsession gnome

The PreSession directory holds any presession commands to execute, while the PostSession
directory holds scripts for commands you want executed whenever a session ends. Neither the
Init, PreSession, or PostSession scripts are necessary (Red Hat currently does not include
PreSession or PostSession scripts).

For gdm, the login window is generated by a program called the greeter. Initially, the greeter
looks for icons for every user on the system, located in the .gnome/photo file in users' home
directories. Clicking the icon automatically displays the name of the user in the login box. The
user can then enter the password and click the Login button to log in.

Table 35-8 lists the configuration files and directories associated with gdm.

Table 35-8: The gdm Configuration Files and Directories
Filename Description
/etc/X11/gdm gdm configuration directory
gdm.conf gdm configuration file
Init Startup scripts for configuring gdm display
Sessions Holds session scripts whose names appear in session menu
PreSession Scripts execute at start of session
PostSession Scripts execute when session ends

Starting Desktops and Window Managers

As noted in Chapter 4, the X Window System is started either automatically using a display
manager with a login window or from the command line by entering the startx command.
Your X Window System server then loads, followed immediately by the window manager.
You exit the window manager by choosing an exit or quit entry in the desktop workspace
menu. The display manager and some window managers, such as FVWM2 and Window
Maker, give you the option of starting other window managers. If you get into trouble and the
window manager hangs, you can forcibly exit the X Window System with the keys CTRL-
ALT-BACKSPACE.

The desktop or window manager you start is the default window manager set up by your
Linux distribution when you installed your system. Many distributions now use either Gnome
or KDE as their default. For Gnome and the K Desktop, different window managers are used:
kwm for the K Desktop and sawfish for Gnome. You can run Gnome or KDE applications on
most window managers. To have Gnome use a particular window manager, you need to select
it using the Gnome Control Center. You can also use a window manager in place of kwm for
KDE. Check the window manager's Web site for current information on Gnome and KDE
compatibility. Currently, Enlightenment is fully Gnome compliant, and AfterStep and
Window Maker are nearly so. Red Hat only provides Enlightenment on its Publisher's
Edition, and Window Maker is added for its Standard Edition.

To use a different window manager, first install it. RPM packages install with a default
configuration for the window manager. If you are installing from source code you compiled,
follow the included installation instructions. You can then configure Gnome or KDE to use

that window manager, provided it is compliant with them. See Chapters 8 and 9 on how to
configure the KDE and Gnome desktops.

You can also configure your system to start a particular window manager without either
desktop. There are several ways to do this, depending on whether you are starting your
window manager from the graphical login (runlevel 5) or the command line with startx
(runlevel 3). For the graphical login, you will need to make entries in the gdm and Xsession
files. For a command line startup, you have the options of using the Red Hat desktop switcher
to select a window manager, placing a Window Manager entry in the .wm_style file, or
creating your own .Xclients file that invokes one.

Gnome Display Managers and Xsession

To invoke a window manager using a display manager like gdm, you first have to create an
entry for it in the login window's session menu. You then must edit the session startup script
and add code to select and start up that window manager. The startup script used for the Red
Hat implementation of gdm is /etc/X11/xdm/Xsession.

First, create an entry for the window manager in the session menu displayed in the gdm login
window's options menu. Here you find files for other items listed in this menu. Simply create
a file with the name of the entry you want displayed in the /etc/X11/gdm/Sessions directory
(you can copy one of the scripts already there). On Red Hat, these scripts invoke the
/etc/X11/xdm/Xsession script with an option for the particular window manager or desktop
chosen. For example, to create an entry for Window Maker, you can create a file called
winmaker as shown here.

/etc/X11/gdm/Sessions/winmaker

#!/bin/bash
exec /etc/X11/xdm/Xsession wmaker

To add another entry for Enlightenment, you can create a file called enlightenment as shown
here.

/etc/X11/gdm/Sessions/enlightenment

#!/bin/bash
exec /etc/X11/xdm/Xsession enlightenment

You then must edit the /etc/X11/xdm/Xsession file to insert the code for selecting and
starting the new window manager. Xsession contains detailed code, most of which you do not
need to touch. In it is a case statement that lists the different window managers and desktops.
Here you can enter a case entry for wmaker that the "wmaker" argument to Xsession will
match on. The entry will execute the Window Maker program, wmaker. For Enlightenment
you would add an entry for enlightenment.

You can execute the window manager program directly, as Gnome is, or you can invoke
either the switchdesk script for the window manager or, for certain older window managers,
the RunWM script. Enlightenment has its own switchdesk script, while Window Maker has
both a switchdesk script and RunWM support. RunWM currently only supports Window
Maker, LessTiff, and AfterStep. For those, it is preferable to use RunWM as that script will
run certain checks tailored for those window managers. In the following example, Window
Maker is invoked with the RunWM script and the --maker option, whereas Enlightenment is
invoked with its switchdesk script, Xclients.enlightenment:

now, we see if xdm/gdm/kdm has asked for a specific environment
case $# in
 1)
 case $1 in
 failsafe)
 exec xterm -geometry 80x24-0-0
 ;;
 gnome)
 exec gnome-session
 ;;
 kde|kde1|kde2)
 exec /usr/share/apps/switchdesk/Xclients.kde
 ;;
 enlightenment)
 exec
/usr/share/apps/switchdesk/Xclients.enlightenment
 ;;
 wmaker)
 exec /usr/X11R6/bin/RunWM --wmaker
 ;;
 twm)
 # fall back to twm
 exec /usr/share/apps/switchdesk/Xclients.twm
 ;;
 esac
 esac

switchdesk

The switchdesk tool is designed to work with the X Window System started up with startx
from the command line (runlevel 3). Switchdesk will display a list of possible window
managers, and you can check the one you want to run. You then log out to shut down your
current window manager. When you start up X again with startx, the new window manager
you selected will be used. Gnome provides an entry in its system menu for the Desktop
Switcher to run switchdesk. On other window managers, you may have to invoke switchdesk
from a terminal window.

To add a new window manger to the list that switchdesk will display, you need to create a file
for it in the /usr/share/apps/switchdesk directory. As previously noted, these files have the
prefix "Xclients" and the suffix of the name of the window manager, like Xclients.fvwm for
the fvwm2 window manager. The Window Maker file is shown here.

Xclients.windowmaker

#!/bin/bash
(c) 2000 Red Hat, Inc.

exec /usr/bin/wmaker

RunWM and .wm_style

Red Hat uses a rather complex startup procedure designed to configure window managers
automatically with the complete set of Red Hat menus for applications installed by its
distribution. Support exists for FVWM2, LessTiff, Window Maker, and AfterStep. Red Hat's
global Xclients file searches for a file called .wm_style in a user's home directory. This is
where the name of your preferred window manager is placed if you select an alternative from
the FVWM2 or AfterStep menus. You can also manually edit this file with a text editor and
type in one. The .wm_style file holds a single name, such as FVWM2, AfterStep, Window
Maker, or LessTiff. Xclients then calls the /usr/X11R6/bin/RunWM script with an option
for the window manager to start. The RunWM script checks to see if the window manager is
installed, and then starts it up with helpful options. As the system administrator, you can edit
this file to add new entries if you want.

startx and .Xclients

You also have the option of creating your own .Xclients file in which you can invoke the
window manager you wish. Red Hat enables users to specify their own X clients, such as
window managers and desktops, in a startup file called .Xclients. The system X Window
System startup file is called /etc/X11/xinit/xinitrc. For the startx command, users can also
set up their own .Xclients file in their home directories in place of the system's Xclients file.
To create your .Xclients file, you can copy the one from the system or just create the file
yourself.

The invocation of the window manager is always the last command in the .Xclients script.
The X Window System exits after finishing the execution of whatever the last command in
the .xinitrc script is. This is an invocation of the .Xclients or /etc/X11/ xinit/Xclients script.
By making the window manager the last command, exiting the window manager shuts down
your X Window session. Any other programs you want to start up initially should be placed
before the window manager command. You must place the command to start the window
manager you want at the end of your .Xclients file. It is best to use the full pathname of a
window manager program. These pathnames are usually located in the /usr/X11R6/bin
directory or in the /usr/bin directory. The following example runs Window Maker:

exec /usr/X11R6/bin/wmaker

If you also want to load other programs automatically, such as a file manager, you can place
their commands before the command for the window manager. Put an ampersand (&) after the
command. The following example starts the Xterm window when the Window Maker window
manager starts up:

xterm &
exec /usr/X11R6/bin/wmaker

If you are planning extensive changes, making them a few at a time is advisable, testing as
you go. A simple .Xclients file follows, starting up a clock, terminal window, and Netscape,

using the Window Maker window manager. fvwm2 is used as an alternative if Window
Maker should fail to start.

.Xclients

#!/bin/sh

xclock -geometry 100x100-5+5 &
xterm -geometry 80x50-50+150 &
netscape &

if the window maker is installed, run it.
if [-f /usr/X11R6/bin/wmaker]; then
 exec /usr/X11R6/bin/wmaker
 else
 exec fvwm2
 fi

Compiling X Window System Applications

To compile X Window System applications, you should first make sure the XFree86
development package is installed, along with any other development package you may need.
These contain header files and libraries used by X Window System programs. The names of
such packages contain the term devel—for example, XFree86-devel. Also, many X Window
applications may need special shared libraries. For example, some applications may need the
xforms library or the qt library. Gnome applications require the Gnome development
libraries, while KDE applications require the KDE development libraries. You may have to
obtain some of these from online sites, though most are available as part of the standard Red
Hat installation.

Many X Window System applications use configure scripts that automatically detect your
system's configuration and generate a Makefile, which can then be used to compile and install
the program. An application's configure script is located in its source code directory. Simply
change to that directory and execute the configure command. Be sure to include a preceding
./ to specify the configure script in that directory. Afterward, the command make compiles the
program, and make install installs the program on your system. Check an application's
readme and install files for any special instructions.

./configure
make
make install

For older applications that do not have configure scripts, use the xmkmf command. A
Makefile that is configured to your system must be generated. This is done using an
Imakefile provided with the application source code. The xmkmf command installed on your
system can take an Imakefile and generate the appropriate Makefile. Once you have the
Makefile, you can use the make command to compile the application. The xmkmf command
actually uses a program called imake to generate the Makefile from the Imakefile; however,
you should never use imake directly. Consult the Man pages for xmkmf and make for more
details.

Part VII: Network Administration

Chapter List
Chapter 36: Configuring Network Connections
Chapter 37: NFS, NIS, and AppleTalk
Chapter 38: Samba
Chapter 39: Administering TCP/IP Networks
Chapter 40: Network Security: Firewalls, Encryption, and Authentication

Chapter 36: Configuring Network
Connections
Overview

Most distributions enable you to configure your network during installation. If you did so,
then your system is ready to go. If you need to change your configuration later, you may find
the information in this chapter helpful. Administering and configuring a TCP/IP network on
your Linux system is not particularly complicated. Your system uses a set of configuration
files to set up and maintain your network. Table 39-2 in Chapter 39 provides a complete
listing.

Instead of manually editing configuration files, you can use the GUI or cursor-based
configuration tools included in many distributions that prompt you for network information.
Many distributions incorporate this kind of network configuration into the installation
process. If you chose not to configure your network during configuration or you need to make
changes to it, you may find it easier and safer to use a network configuration tool. On Red
Hat, you can use either Linuxconf or netcfg to configure your network.

Many networks now provide a service that automatically configures a system's network
interface. They use a protocol called DHCP (Dynamic Host Configuration Protocol). If your
network is configuring your system with DHCP, you will not have to configure it manually.
All necessary information will be automatically entered into your network configuration files.

If your system does not have a direct hardware connection to a network, such as an Ethernet
connection, and you dial into a network through a modem, you will probably have to set up a
PPP connection. Several GUI tools are available for use with Linux that you can use to
configure your PPP connection. These include Linuxconf, netcfg, and rp3. You can even
initiate PPP connections from the command line.

 Note If you just want to dial into a remote network using a simple command line interface,
you can use a dial-in terminal program like minicom.

Network Startup Script

On Red Hat, your network interface is started up using the network script in the
/etc/rc.d/init.d directory. You can manually shut down and restart your network interface by
invoking this script with the service command and the start, stop, or restart options. The
following command shuts down and then start up your network interface:

service network restart

To test if your interface is working, use the ping command with an IP address of a system on
your network, such as your gateway machine. The ping command continually repeats until
you stop it with a CTRL-C. For example, if you have a host on your network with the IP
address 192.168.1.42, you could enter

ping 192.168.1.42

Hardware Specifications

In addition to your configuration files, you may also have to configure support for your
networking hardware, such as Ethernet cards and modems. Ethernet cards use different
modules. During installation, kmod automatically detects your Ethernet card type and has the
appropriate module loaded whenever you boot up, as noted in Chapters 33 and 34. If you
change your Ethernet card, it will be detected and the appropriate module loaded. An alias
entry for it is entered in the /etc/modules.conf file, assigning it an eth device name such as
eth0 or eth1 (if it is a second card). If your card is not correctly detected or if it needs certain
parameters set, you will have to make an alias entry for it manually in the /etc/modules.conf
file.

If you are using a modem, you should make sure a link by the name of /dev/modem exists to
your modem device, which is usually one of the /dev/ttySnum devices, where num is in the
range of 0–3. For example, a modem on the second serial port has a device name of
/dev/ttyS1, and /dev/modem is a link to the /dev/ttyS1 device file (see Chapter 33). On most
distributions, this is usually done for you during installation. On Red Hat, you can use a
modem configuration tool called modemtool to create this link for you. Many modem
programs and PPP configuration programs look for the /dev/modem file by default.

Dynamic Host Configuration Protocol (DHCP)

The Dynamic Host Configuration Protocol (DHCP) provides configuration information to
systems connected to a TCP/IP network, whether the Internet or an intranet. The machines on
the network operate as DHCP clients, obtaining their network configuration information from
a DHCP server on their network. A machine on the network runs a DHCP client daemon that
automatically downloads its network configuration information from its network's DHCP
server. The information includes its IP address, along with the network's name server,
gateway, and proxy addresses, including the netmask. Nothing has to be entered manually on
the local system. This has the added advantage of centralizing control over network
configuration for the different systems on the network. A network administrator can manage
the network configurations for all the systems on the network from the DHCP server.

 Note DHCP is based on the BOOTP protocol developed for diskless workstations. Check
DHCP documentation for options specific to machines designed to work with BOOTP.

A DHCP server also supports several methods for IP address allocation: automatic, dynamic,
and manual. Automatic allocation assigns a permanent IP address for a host. Manual
allocation assigns an IP address designated by the network administrator. With dynamic
allocation, a DHCP server can allocate an IP address to a host on the network only when the
host actually needs to use it. Dynamic allocation takes addresses from a pool of IP addresses
that hosts can use when needed and release when they are finished.

A variety of DHCP servers and clients is available for different operating systems. For Linux,
you can obtain DHCP software from the Internet Software Consortium (ISC) at www.isc.org.
The software package includes a DHCP server, client, and relay agent. Linux includes a
DHCP server and client. The DHCP client is called dhcpcd, and the server is called dhcpd.
The network information a DHCP client downloads is kept in its own network configuration
files in the /etc/dhcpc directory. For example, here you can find a resolv.conf file for your
network's name servers.

Configuring DHCP Client Hosts

Configuring hosts to use a DHCP server is a simple matter of setting options for the host's
network interface device such as an Ethernet card. For a Red Hat Linux host, you can use
netcfg to set the host to automatically access a DHCP server for network information. On the
Interface panel, click the network interface device for the host, such as eth0 for the first
Ethernet card. Then click Edit. From the pop-up menu labeled Interface Configuration
Protocol, select DHCP. This will set the BOOTPROTO entry in that interface's network script
in the /etc/sysconfig/network-scripts directory, such as ifcfg-eth0 for the first Ethernet card.
You could also manually make this entry.

BOOTPROTO=dhcp

Be sure to restart your network devices with the network script to have the changes take
effect.

On a Windows client, locate the TCP/IP entry for your network interface card, then open its
properties window. Click the box labeled "Obtain IP address automatically". Then locate the
Wins panel (usually by clicking the Advanced button) and select DHCP as the protocol you
want to use.

Configuring the DHCP Server

On Red Hat systems, you can stop and start the DHCP server using the dhcpd command in
the /etc/rc.d/init.d directory. Use the service command with the start, restart, and stop
options. The following example starts the DHCP server. Use the stop argument to shut it
down, and restart will restart it.

service dhcpd start

Configuration files for the DHCP server are kept in the /etc/dhcpd directory. Here is kept the
primary configuration file dhcpd.conf, where you specify parameters that define how
different DHCP clients on your network are accessed by the DHCP server. Global parameters
apply to all clients. You can further create declarations that reference a particular client or
different groupings of clients. Within these declarations you can enter parameters that will
apply only to those clients (see Table 36-1). Declarations are implemented using different
statements for different kinds of client groups. For example, to define a declaration for a
particular host, you use the host statement as shown here:

host 192.168.1.2 {
 parameters
 }

Table 36-1: DHCP Declarations, Parameters, and Options
Entries Description
Declarations
shared-network Used to note if some subnets share the same networks.
subnet subnet-number netmask References an entire subnet of addresses.
range [dynamic-bootp] low-
address [high-address];

Provides the highest and lowest range for dynamically
allocated IP addresses.

host hostname References a particular host.
group Lets you label a group of parameters and declarations,

and then use the label to apply them to subnets and
hosts.

allow unknown-clients; deny
unknown-clients;

Do not dynamically assign addresses to unknown
clients.

allow bootp; deny bootp; Whether to respond to bootp queries.
allow booting; deny booting; Whether to respond to client queries.
Parameters
default-lease-time time; Length in seconds assigned to a lease.
max-lease-time time; Maximum length of lease.
hardware hardware-type hardware-
address;

Network hardware type (Ethernet or token ring) and
address.

filename "filename"; Name of the initial boot file.
server-name "name"; Name of the server from which a client is booting.
next-server server-name; Server that loads the initial boot file specified in the

filename.
fixed-address address [, address ...
];

Assign a fixed address to a client.

get-lease-hostnames flag; Whether to look up and use IP addresses of clients.
authoritative; not authoritative; Denies invalid address requests.
server-identifier hostname; Specify the server.
Options
option subnet-mask ip-address; The client's subnet mask.
option routers ip-address [, ip-
address...];

List of router IP addresses on client's subnet.

option domain-name-servers ip-
address [, ip-address...];

List of domain name servers used by the client.

option log-servers ip-address [, ip-
address...];

List of log servers used by the client.

option host-name string; The client's hostname.
option domain-name string; The client's domain name.
option broadcast-address ip- The client's broadcast address.

Table 36-1: DHCP Declarations, Parameters, and Options
Entries Description
address;
option nis-domain string; The client's Network Information Service domain.
option nis-servers ip-address [, ip-
address...];

NIS servers the client can use.

option smtp-server ip-address [, ip-
address...];

List of smtp servers used by the client.

option pop-server ip-address [, ip-
address...];

List of pop servers used by the client.

option nntp-server ip-address [, ip-
address...];

List of nntp servers used by the client.

option www-server ip-address [, ip-
address...];

List of Web servers used by the client.

You use the subnet statement to inform the DHCP server of the possible IP addresses
encompassed by a given subnet. The subnet statement includes the netmask for the subnet.

subnet 192.168.1.0 netmask 255.255.255.0 {

With the range statement, you specify a range of addresses that can be dynamically allocated
to clients. You enter the first and last addresses in the range.

range 192.168.1.5 192.168.1.128 {

With parameters, you can specify how the server is to treat clients. For example, the default-
lease-time parameter sets the number of seconds a lease is assigned to a client. The filename
parameter specifies the boot file to be used by the client. The server-name parameter informs
the client of the host from which it is booting. The fixed-address parameter can be used to
assign a static IP address to a client. See the Man page for dhcpd.conf for a complete listing.

Clients can further be provided with information they may need to access network services,
such as the domain name servers that client uses or the broadcast address. This information is
provided by option statements as shown here:

option broadcast-address 192.168.1.255;
option domain-name-servers 192.168.1.1, 192.168.1.4;
option domain-name "mytrek.com";

A sample dhcpd.conf file is shown here.

/etc/dhcpd.conf

subnet 192.168.1.0 netmask 255.255.255.0 {
 option routers 192.168.0.1;
 option subnet-mask 255.255.255.0;

 option domain-name "mytrek.com ";
 option domain-name-servers 192.168.1.1;

 range 192.168.0.5 192.168.0.128;
 default-lease-time 21600;
 max-lease-time 43200;

 # we want the name server to appear at a fixed address
 host mynameserver {
 next-server turtle.mytrek.com;
 hardware ethernet 08:00:2b:4c:29:32;
 fixed-address 192.168.1.1;
 }

 Note With Webmin, you can configure your DHCP server easily, entering options and

parameters for subnets and hosts as well as globally.

Chapter 37: NFS, NIS, and AppleTalk
Overview

Linux provides several tools for accessing files on remotes systems connected to a network.
The Network File System (NFS) enables you to connect to and directly access resources such
as files or devices like CD-ROMs that reside on another machine. The Network Information
Service (NIS) maintains configuration files for all systems on a network. With Samba, you
can connect your Windows clients on a Microsoft Windows network to services such as
shared files, systems, and printers controlled by the Linux Samba server (see Chapter 38).
Netatalk enables you to connect your Linux systems to an AppleTalk network, enabling you
to access remote Macintosh file systems directly, as well as to access any Apple printers such
as LaserWriters.

Network File Systems: NFS and /etc/exports

NFS enables you to mount a file system on a remote computer as if it were local to your own
system. You can then directly access any of the files on that remote file system. This has the
advantage of allowing different systems on a network to access the same files directly,
without each having to keep its own copy. Only one copy would be on a remote file system,
which each computer could then access. You can find out more about NFS at its Web site at
nfs.sourceforge.net.

NFS operates over a TCP/IP network. The remote computer that holds the file system makes
it available to other computers on the network. It does so by exporting the file system, which
entails making entries in an NFS configuration file called /etc/exports, as well as by running
several daemons to support access by other systems. These include rpc.mountd, rpc.nfsd,
and rpc.portmapper. Access to your NFS server can be controlled by the /etc/hosts.allow
and /etc/hosts.deny files. The NFS daemons are listed here.

• rpc.nfsd receives NFS requests from remote systems and translates them into requests
for the local system.

• rpc.mountd performs requested mount and unmount operations.
• rpc.portmapper maps remote requests to the appropriate NFS daemon.
• rpc.rquotad provides user disk quote management.

• rpc.statd provides locking services when a remote host reboots.
• rpc.lockd handles lock recovery for systems that have gone down.

 Note It is advisable to use NFS on a local secure network only. If used over the
Internet, NFS would open your system up to nonsecure access.

On Red Hat, you start up and shut down the NFS daemons using the /etc/rc.d/init.d/nfs
script. You can access this script directly or use the service command as shown here:

service nfs start

To have NFS started automatically you can use chkconfig, the Service Configuration tool, or
ksysv to specify the runlevels at which it will operate. The following example will have NFS
start up automatically at runlevels 3 and 5:

chkconfig –level 35 nfs on

The nfs script will start up the portmapper, nfsd, mountd, and rquotad daemons. To enable
NFS locking, you use the nfslock script. This will start up the statd and lockd daemons. NFS
locking provides for better recovery from interrupted operations that can occur from system
crashes on remote hosts.

service nfslock start

To see if NFS is actually running, you can use the rpcinfo command with the –p option as
shown here. You should see entries for mountd and nfs. If not, then NFS is not running.

rpcinfo -p
 program vers proto port
 100000 2 tcp 111 portmapper
 100000 2 udp 111 portmapper
 100024 1 udp 32768 status
 100024 1 tcp 32768 status
 100011 1 udp 647 rquotad
 100011 2 udp 647 rquotad
 100005 1 udp 32769 mountd
 100005 1 tcp 32769 mountd
 100005 2 udp 32769 mountd
 100005 2 tcp 32769 mountd
 100003 2 udp 2049 nfs
 100003 3 udp 2049 nfs
 100021 1 udp 32770 nlockmgr
 100021 3 udp 32770 nlockmgr

NFS Configuration: /etc/exports

An entry in the /etc/exports file specifies the file system to be exported and the hosts on the
network that can access it. For the file system, enter its mountpoint, the directory to which it
was mounted on the host system. This is followed by a list of hosts that can access this file
system along with options to control that access. A comma-separated list of export options
placed within a set of parentheses may follow each host. For example, you might want to give
one host read-only access and another read and write access. If the options are preceded by an
* symbol, they are applied to any host. A list of options is provided in Table 37-1. The format
of an entry in the /etc/exports file is shown here:

directory-pathname host-designation(options)

Table 37-1: The /etc/exports Options
General Option Description
secure Requires that request originate on secure ports, those less than

1024. This is on by default.
insecure Turns off the secure option.
ro Allows only read-only access. This is the default.
rw Allows read-write access.
sync Perform all writes when requested. This is the default.
async Perform all writes when the server is ready.
no_wdelay Perform writes immediately, not checking to see if they are

related.
wdelay Check to see if writes are related, and, if so, wait to perform

them together. Can degrade performance. This is the default.
hide Automatically hide an exported directory that is the

subdirectory of another exported directory. The subdirectory
has to be explicitly mounted to be accessed. Mounting the
parent directory does not allow access. This is the default.

no_hide Do not hide an exported directory that is the subdirectory of
another exported directory (opposite of hide). Only works for
single hosts and can be unreliable.

subtree_check Check parent directories in a file system to validate an
exported subdirectory. This is the default.

no_subtree_check Do not check parent directories in a file system to validate an
exported subdirectory.

insecure_locks Do not require authentication of locking requests. Used for
older NFS versions.

User ID Mapping
all_squash Maps all uids and gids to the anonymous user. Useful for NFS-

exported public FTP directories, news spool directories, and so
forth.

no_all_squash The opposite option to all_squash, and is the default setting.
root_squash Maps requests from remote root user to the anonymous uid/gid.

This is the default.
no_root_squash Turns off root squashing. Allows the root user to access as the

remote root.
anonuid
anongid

Set explicitly the uid and gid of the anonymous account used
for all_squash and root_squash options. The defaults are
nobody and nogroup.

You can have several host entries for the same directory, each with access to that directory:

directory-pathname host(options) host(options) host(options)

You have a great deal of flexibility when specifying hosts. For hosts within your domain you
can just use the hostname, whereas for those outside you need to use a fully qualified domain
name. You could also just use the host's IP address. Instead of just a single host, you can
reference all the hosts within a specific domain, allowing access by an entire network. A
simple way to do this is to use the * for the host segment, followed by the domain name for
the network, such as *.mytrek.com for all the hosts in the mytrek.com network. Instead of
domain names, you could use IP network addresses using a CNDR format where you specify
the netmask to indicate a range of IP addresses. You can also use an NIS netgroup name to
reference a collection of hosts. The NIS netgroup name is preceded by an @ sign.

directory host(options)
directory *(options)
directory *.domain(options)
directory 192.168.1.0/255.255.255.0(options)
directory @netgroup(options)

Options in /etc/exports operate as permissions to control access to exported directories. Read-
only access is set with the ro option, and read-write with the rw option. The snyc and async
options specify whether a write operation is performed immediately (sync) or when the server
is ready to handle it (async). By default, write requests are checked to see if they are related,
and, if so, are written together (wdelay). This can degrade performance. You can override this
default with no_wdelay and have writes executed as they are requested. If two directories are
exported, where one is the subdirectory of another, then the subdirectory is not accessible
unless it is explicitly mounted (hide). In other words, mounting the parent directory does not
make the subdirectory accessible. The subdirectory remains hidden until also mounted. You
can overcome this restriction with the no_hide option (though this can cause problems with
some file systems). If an exported directory is actually a subdirectory in a larger file system,
its parent directories are checked to make sure that the subdirectory is the valid directory
(subtree_check). This option works well with read-only file systems, but can cause problems
for write-enabled file systems, where filenames and directories can be changed. You can
cancel this check with the no_subtree_check option.

Along with general options, there are also options that apply to user-level access. As a
security measure, the client's root user is treated as an anonymous user by the NFS server.
This is known as squashing the user. In the case of the client root user, squashing prevents the
client from attempting to appear as the NFS server's root user. Should you want a particular
client's root user to have root-level control over the NFS server, you can specify the
no_root_squash option. To prevent any client user from attempting to appear as a user on the
NFS server, you can classify them as anonymous users (the all_squash option). Such
anonymous users would only have access to directories and files that are part of the
anonymous group.

Normally, if a user on a client system has a user account on the NFS server, that user can
mount and access his or her files on the NFS server. However, NFS requires the User ID for
the user be the same on both systems. If this is not the case, he or she is considered two
different users. To overcome this problem, you could use an NIS service, maintaining User ID
information in just one place, the NIS password file (see the following section for information
on NIS).

Examples of entries in an /etc/exports file are shown here. Read-only access is given to all
hosts to the file system mounted on the /pub directory, a common name used for public

access. Users, however, are treated as anonymous users (all_squash). Read and write access
is given to the lizard.mytrek.com computer for the file system mounted on the
/home/foodstuff directory. The next entry would allow access by rabbit.mytrek.com to the
NFS server's CD-ROM. The last entry allows anyone secure access to /home/richlp.

/etc/exports

/pub *(ro,insecure,all_squash)
/home/foodstuff lizard.mytrek.com(rw)
/mnt/cdrom rabbit.mytrek.com(ro)
/home/richlp *(secure)

 Note Instead of editing the /etc/exports file directly, you can use Linuxconf's Exported File

Systems panel in the Server Tasks list under the Networking heading in Config. Click
the Add button to add a new entry.

Each time your system starts up the NFS server (usually when the system starts up), the
/etc/exports file will be read, and those directories specified will be exported. When a
directory is exported, an entry for it is made in the /var/lib/nfs/xtab file. It is this file that
NFS reads and uses to perform the actual exports. Entries are read from /etc/exports and
corresponding entries made in /var/lib/nfs/xtab. The xtab file maintains the list of actual
exports.

If you want to export added entries in the /etc/exports file immediately, without rebooting,
you can use the exportfs command with the –a option. It is helpful to add the –v option to
display the actions that NFS is taking. Use the same options to effect any changes you make
to the /etc/exports file.

exportfs –a -v

If you later make changes to the /etc/exports file, you can use the –r option to reexport its
entries. The –r option will resync the /var/lib/nfs/xtab file with the /etc/exports entries,
removing any other exports or any with different options.

exportfs –r -v

To both export added entries and re-export changed ones, you can combine both the –r and –a
options.

exportfs –r -a -v

You can also use the exportfs command to manually export file systems instead of using an
entry for it in the /etc/exports file. Export entries will be added to the /var/lib/nfs/xtab file
directly. With the –o option you can list various permissions, and then follow them with the
host and file system to export. The host and file system are separated by a colon. For example,
to manually export the /home/myprojects directory to golf.mytrek.com with the permissions
ro and insecure, you would use the following:

exportfs –o rw,insecure golf.mytrek.com:/home/myprojects

You can also use exportfs to unexport a directory that has already been exported, either
manually or by the /etc/exports file. Just use the –u option with the host and the directory
exported. The entry for the export will be removed from the /var/lib/nfs/xtab file. The
following example will unexport the /home/foodstuff directory that was exported to
lizard.mytrek.com:

exportfs –u lizard.mytrek.com:/home/foodstuff

NFS Security: /etc/hosts.allow and /etc/hosts.deny

The /etc/hosts.allow and /etc/hosts.deny are used to restrict access to services provided by
your server to hosts on your network or on the Internet (if accessible). For example, you can
use the hosts.allow file to permit access by certain hosts to your FTP server. Entries in the
hosts.deny file would explicitly deny access to certain hosts. For NFS, you can provide the
same kind of security by controlling access to specific NFS daemons.

 Note You can further secure your NFS transmissions by having them operate over TCP
instead of UDP. Use the tcp option to mount your NFS file systems (UDP is the
default); however, performance does degrade for NFS when it uses TCP.

The first line of defense is to control access to the portmapper service. The portmapper tells
hosts where the NFS services can be found on the system. Restricting access does not allow a
remote host to even locate NFS. For a strong level of security, you should deny access to all
hosts except those that are explicitly allowed. In the hosts.deny file, you would place the
following entry, denying access to all hosts by default. ALL is a special keyword denoting all
hosts.

portmap:ALL

In the hosts.allow file, you would then enter the hosts on your network, or any others that you
would want to permit access to your NFS server. Again, you would specify the portmapper
service. Then list the IP addresses of the hosts you are permitting access. You can list specific
IP addresses or a network range using a netmask. The following example allows access only
by hosts in the local network, 192.168.0.0, and to the host 10.0.0.43. You can separate
addresses with commas.

 portmap: 192.168.0.0/255.255.255.0, 10.0.0.43

The portmapper is also used by other services like NIS. Should you close all access to the
portmapper in hosts.deny, you will also need to allow access to NIS services in hosts.allow,
should you be running them. These include ypbind and ypserver. In addition, you may have to
add entries for remote commands like ruptime and rusers, if you are supporting them.

In addition, it is also advisable to add the same level of control for specific NFS services. In
the hosts.deny file you would add entries for each service, as shown here:

mountd:ALL
rquotad:ALL
statd:ALL
lockd:ALL

Then, in the hosts.allow file, you can add entries for each service:

mountd: 192.168.0.0/255.255.255.0, 10.0.0.43
rquotad: 192.168.0.0/255.255.255.0, 10.0.0.43
statd: 192.168.0.0/255.255.255.0, 10.0.0.43
lockd: 192.168.0.0/255.255.255.0, 10.0.0.43

You can further control access using Netfilter to check transmissions from certain hosts on the
ports used by NFS services. See Chapter 40 for an explanation of Netfilter. The portmapper
uses port 111 and nfsd uses 2049. Netfilter is helpful if you have a private network that has an
Internet connection, and you want to protect it from the Internet. Usually a specific network
device, like an Ethernet card, is dedicated to the Internet connection. The following examples
assume that device eth1 is connected to the Internet. Any packets attempting access on ports
111 and 2049 are refused.

iptables -A INPUT -i eth1 -p 111 -j DENY
iptables -A INPUT -i eth1 -p 2049 -j DENY

To enable NFS for your local network, you will have to allow packet fragments. Assuming
that etho is the device used for the local network, you could use the following example:

iptables -A INPUT –I eth0 -f -j ACCEPT
 Note A root user on a remote host can try access a remote NFS server as a root user with root

level permissions. The root_squash option (a default) will automatically change the
remote root user to the nobody (anonymous) user.

Mounting NFS File Systems: NFS Clients

Once NFS makes directories available to different hosts, those hosts can then mount those
directories on their own systems, and then access them. The host needs to be able to operate
as NFS clients. Current Linux kernels all have NFS client capability built in. This means that
any NFS client can mount a remote NFS directory that they have access to by performing a
simple mount operation.

Mounting NFS Automatically: /etc/fstab

You can mount an NFS directory either by an entry in the /etc/fstab file or by an explicit
mount command. You have your NFS file systems mounted automatically by placing entries
for them in /etc/fstab file. An NFS entry in the /etc/fstab file has a mount type of NFS. An
NFS file system name consists of the hostname of the computer it is located on, followed by
the pathname of the directory where it is mounted. The two are separated by a colon. For
example, rabbit.trek.com:/home/project specifies a file system mounted at /home/project
on the rabbit.trek.com computer. The format for an NFS entry in the /etc/fstab file follows.
Notice that the file type is nfs.

host:remote-directory local-directory nfs options 0 0

You can also include several NFS-specific mount options with your NFS entry. You can
specify the size of datagrams sent back and forth, and the amount of time your computer waits
for a response from the host system. You can also specify whether a file system is to be hard-
mounted or soft-mounted. For a hard-mounted file system, your computer continually tries to

make contact if for some reason the remote system fails to respond. A soft-mounted file
system, after a specified interval, gives up trying to make contact and issues an error message.
A hard mount is the default. A system making a hard-mount attempt that continues to fail will
stop responding to user input as it tries continually to achieve the mount. For this reason, soft
mounts may be preferable as they will simply stop attempting a mount that continually fails.
Table 37-2 and the Man pages for mount contain a listing of these NFS client options. They
differ from the NFS server options indicated previously.

Table 37-2: NFS Options
Option Description
rsize=n The number of bytes NFS uses when reading files from an NFS

server. The default is 1,024 bytes. A size of 8,192 can greatly
improve performance.

wsize=n The number of bytes NFS uses when writing files to an NFS server.
The default is 1,024 bytes. A size of 8,192 can greatly improve
performance.

timeo=n The value in tenths of a second before sending the first
retransmission after a timeout. The default value is seven-tenths of a
second.

retry=n The number of minutes to retry an NFS mount operation before
giving up. The default is 10,000 minutes (one week).

retrans=n The number of retransmissions or minor timeouts for an NFS mount
operation before a major timeout (default is 3). At that time, the
connection is cancelled or a "server not responding" message is
displayed.

soft Mount system using soft mount.
hard Mount system using hard mount. This is the default.
intr Allow NFS to interrupt the file operation and return to the calling

program. The default is not to allow file operations to be interrupted.
bg If the first mount attempt times out, continue trying the mount in the

background. The default is to fail without backgrounding.
tcp Mount the NFS file system using the TCP protocol, instead of the

default UDP protocol.

An example of an NFS entry follows. The remote system is rabbit.mytrek.com, and the file
system is mounted on /home/projects. This file system is to be mounted on the local system
as the /home/dylan/projects directory. The /home/dylan/projects directory must already be
created on the local system. The type of system is NFS and the timeo option specifies that the
local system wait up to 20-tenths of a second (two seconds) for a response. The mount is a
soft mount and can be interrupted by NFS.

rabbit.mytrek.com:/home/projects /home/dylan/projects nfs
soft,intr,timeo=20
 Note Instead of editing the /etc/fstab file directly, you can use Linuxconf's Access nfs volume

in the File Systems list under Config. Clicking the Add button displays Volume
Specification panels for Base entries, standard file options, and NFS options. In the Base
tab, boxes exist for the remote server, the remote directory (Volume), and the directory

on your local system where the remote directory is to be attached (Mountpoint).

Mounting NFS Manually: mount

You can also use the mount command with the -t nfs option to mount an NFS file system
explicitly. To mount the previous entry explicitly, use the following command:

mount -t nfs -o soft,intr,timeo=20 \
 rabbit.mytrek.com:/home/projects /home/dylan/projects

You can, of course, unmount an NFS directory with the umount command. You can specify
either the local mountpoint or the remote host and directory, as shown here:

umount /home/dylan/projects
umount rabbit.mytrek.com:/home/projects

On Red Hat systems, you can also mount and unmount all your NFS file systems at once with
the /etc/rc.d/init.d/netfs script, which you can invoke with the service command. This script
reads the NFS entries in the /etc/fstab file, using them to mount and unmount NFS remote
directories. Using the stop argument unmounts the file systems, and with the start argument,
you mount them again. The restart argument first unmounts and then remounts the file
systems.

service netfs stop

Mounting NFS on Demand: autofs

You can also mount NFS file systems using the automount service, autofs. This requires
added configuration on the client's part. The autofs service will mount a file system only when
you try to access it. A directory change operation (cd) to a specified directory will trigger the
mount operation, mounting the remote file system at that time.

The autofs service is configured using a master file to list map files, which in turn lists the file
systems to be mounted. The /etc/auto.master file is the autofs master file. The master file
will list the root pathnames where file systems can be mounted along with a map file for each
of those pathnames. The map file will then list a key (subdirectory), mount options, and the
file systems that can be mounted in that root pathname directory. Red Hat already implements
the /auto directory as the root pathname for file systems automatically mounted. You could
add your own in the /etc/auto.master file along with your own map files, if you wish. You
will find that the /etc/auto.master file contains the following entry for the /auto directory,
listing auto.misc as its map file:

/auto auto.misc --timeout 60

Following the map file you can add options, as shown in the previous example. The timeout
option specifies the number of seconds of inactivity to wait before trying to automatically
unmount.

In the map file, you list the key, the mount options, and the file system to be mounted. The
key will be the subdirectory on the local system where the file system is mounted. For

example, to mount the /home/projects directory on the rabbit.mytrek.com host to the
/auto/projects directory, you would use the following entry:

projects soft,intr,timeo=20 rabbit.mytrek.com:/home/projects

You could also create a new entry in the master file for an NFS file system, as shown here:

/myprojects auto.myprojects --timeout 60

You would then create an /etc/auto.myprojects file and place entries in it for NFS files
system mounts, like the following:

dylan soft,intr,rw rabbit.mytrek.com:/home/projects
newgame soft,intr,ro lizare.mytrek.com:/home/supergame
 Note The autofs service can be used for any file system, including floppy disks and CD-

ROMs. See Chapter 32.

Network Information Service: NIS

On networks supporting NFS, many resources and devices are shared by the same systems.
Normally, each system would need its own configuration files for each device or resource.
Changes would entail updating each system individually. However, NFS provides a special
service called Network Information Services (NIS) that maintains such configuration files for
the entire network. For changes, you only need to update the NIS files. NIS works for
information required for most administrative tasks, such as those relating to users, network
access, or devices. For example, you can maintain user and password information with an NIS
service, having only to update those NIS password files.

 Note NIS+ is a more advanced form of NIS that provides support for encryption and
authentication. However, it is more difficult to administer.

NIS was developed by Sun Microsystems and was originally known as Sun's Yellow Pages
(YP). NIS files are kept on an NIS server (NIS servers are still sometimes referred to as YP
servers). Individual systems on a network use NIS clients to make requests from the NIS
server. The NIS server maintains its information on special database files called maps. Linux
versions exist for both NIS clients and servers. Linux NIS clients easily connect to any
network using NIS.

Red Hat distributions contain both the Linux NIS client and server software in RPM packages
that install with default configurations. The NIS client is installed as part of the initial
installation on most Linux distributions. You can use the Linuxconf Network Information
Service panel in the Client Tasks list under Networking to specify the remote NIS server on
your network. NIS client programs are ypbind (the NIS client daemon), ypwhich, ypcat,
yppoll, ypmatch, yppasswd, and ypset. Each has its own Man page with details of its use. The
NIS server programs are ypserv, ypinit, yppasswdd, yppush, ypxfr, and netgroup—each also
with its own Man page. A detailed NIS HOW-TO document is available in the
/usr/share/doc/HOWTO directory.

NIS Servers

You have significant flexibility when setting up NIS servers. If you have a small network, you
may need only one NIS domain, for which you would have one NIS server. For larger
networks, you can divide your network into several NIS domains, each with its own server.
Even if you only have one domain, you may want several NIS slave servers. For an NIS
domain, you can have a master NIS server and several NIS slave servers. The slave servers
can act as backups, in case the master server goes down. A slave server only contains copies
of the configuration files set up on the NIS master server.

Configuring an NIS server involves several steps, listed here:

1. Define the NIS domain name that the NIS server will work for.
2. Start the ypserv daemon.
3. In the /var/yp/Makefile file, set any NIS server options and specify the configuration

files to manage.
4. Use ypinit to create the NIS versions of the configuration files.

You first have to define an NIS domain name. On Red Hat, you can have the NIS domain
defined whenever you start up your system, by defining the NIS_DOMAIN variable in the
/etc/sysconfig/network file. To this variable, you assign the name you want to give your NIS
domain. The following example defines the NIS domain called myturtles.nis:

NIS_DOMAIN=myturtles.nis

When first setting up the server, you may want to define your NIS domain name without
having to restart your system. You can do so with the domainname command, as shown here:

domainname myturtles.nis

You can start the NIS server with the ypserv startup script:

service ypserv start

Instead of the service command, you could reference the ypserv script directly, as shown
here:

/etc/rc.d/init.d/ypserv start

Then edit the /var/yp/Makefile file to select the configuration files that the NIS server will
maintain, along with setting any NIS server options. Red Hat has already set the standard
options as well as listed most commonly used configuration files.

NIS server options are listed first. The NOPUSH option will be set to true, indicating that
there are no slave NIS servers. If you are setting up any slave NIS servers for this domain,
you will have to set this option to no:

NOPUSH = true

The minimum user and group ids are set to 500 on Red Hat. These are set using the MINUID
and MINGID variables:

MINUID=500
MINGID=500

As Red Hat uses a shadow password and shadow group files to encrypt passwords and
groups, the MERGE_PASSWD and MERGE_GROUP settings will be set to true. NIS will
merge shadow password information into its password file:

MERGE_PASSWD=true
MERGE_GROUP=true

The directories where NIS will find password and other configuration files are then defined
using the YPSRCDIR and YPPWDIR variables. On Red Hat this is the /etc directory:

YPSRCDIR = /etc
YPPWDDIR = /etc

Then the configuration files that NIS could manage are listed. Here, you will find entries like
PASSWD for password, GROUP for your groups, and PRINTCAP for your printers. The
current entries are shown here:

GROUP = $(YPPWDDIR)/group
PASSWD = $(YPPWDDIR)/passwd
SHADOW = $(YPPWDDIR)/shadow
GSHADOW = $(YPPWDDIR)/gshadow
ADJUNCT = $(YPPWDDIR)/passwd.adjunct
#ALIASES = $(YPSRCDIR)/aliases # aliases could be in /etc or /etc/mail
ALIASES = /etc/aliases
ETHERS = $(YPSRCDIR)/ethers # ethernet addresses (for rarpd)
BOOTPARAMS = $(YPSRCDIR)/bootparams # for booting Sun boxes (bootparamd)
HOSTS = $(YPSRCDIR)/hosts
NETWORKS = $(YPSRCDIR)/networks
PRINTCAP = $(YPSRCDIR)/printcap
PROTOCOLS = $(YPSRCDIR)/protocols
PUBLICKEYS = $(YPSRCDIR)/publickey
RPC = $(YPSRCDIR)/rpc
SERVICES = $(YPSRCDIR)/services
NETGROUP = $(YPSRCDIR)/netgroup
NETID = $(YPSRCDIR)/netid
AMD_HOME = $(YPSRCDIR)/amd.home
AUTO_MASTER = $(YPSRCDIR)/auto.master
AUTO_HOME = $(YPSRCDIR)/auto.home
AUTO_LOCAL = $(YPSRCDIR)/auto.local
TIMEZONE = $(YPSRCDIR)/timezone
LOCALE = $(YPSRCDIR)/locale
NETMASKS = $(YPSRCDIR)/netmasks

The actual files that are shared are the network are listed in the all: entry, which follows the
list of configuration files. Only some of the files defined are listed as shared: those listed in
the first line after all:. The remaining lines are automatically commented out (with a
preceding # sign). You can add files by removing the # sign, or moving its entry to the first
line.

all: passwd group hosts rpc services netid protocols mail \
 # netgrp shadow publickey networks ethers bootparams printcap \
 # amd.home auto.master auto.home auto.local passwd.adjunct \
 # timezone locale netmasks

Be sure not to touch the remainder of the Makefile.

You then enter the ypinit command with the –m option to create the NIS database consisting
of the NIS configuration files. Your NIS server will be detected, and then you will be asked to
enter the names of any slave NIS servers used on this NIS domain. If there are any, enter
them. When you are finished, press CTRL-D. The NIS database files are then created.

/usr/lib/yp/ypinit –m

At this point, we have to construct a list of the hosts which will run NIS
servers. turtle.mytrek.com is in the list of NIS server hosts.
Please continue to add the names for the other hosts, one per line.
When you are done with the list, type a <control D>.
 next host to add: turtle.mytrek.com
 next host to add:
The current list of NIS servers looks like this:

turtle.mytrek.com

Is this correct? [y/n: y] y
We need some minutes to build the databases...
Building /var/yp/myturtles.nis/ypservers...
Running /var/yp/Makefile...
gmake[1]: Entering directory '/var/yp/myturtles.nis'
Updating passwd.byname...
Updating passwd.byuid...
Updating group.byname...
Updating group.bygid...
Updating hosts.byname...
Updating hosts.byaddr...
Updating rpc.byname...
Updating rpc.bynumber...
Updating services.byname...
Updating services.byservicename...
Updating netid.byname...
Updating protocols.bynumber...
Updating protocols.byname...
Updating mail.aliases...
gmake[1]: Leaving directory '/var/yp/myturtles.nis'

For an NIS slave server, you would use

ypinit –s masterhost

Should you receive the following error, it most likely means that your NIS server was not
running. Be sure to start ypserv before you run ypinit.

failed to send 'clear' to local ypserv: RPC: Program not registeredUpdating

If you later need to update your NIS server files, you would change to the /var/yp directory
and issue the make command.

cd /var/yp
make

The /var/yp/securenets file enables access by hosts to your NIS server. Hosts can be
referenced by network or individually. Entries consist of a subnet mask and an IP address. For
example, you could give access to all the hosts in an local network with the following entry:

255.255.255.0 192.168.1.0

For individual hosts, you can use the mask 255.255.255.255 or just the term "host", as shown
here:

host 192.168.1.4

Controlling how different hosts access NIS shared data is determined in /etc/ypserv.conf.

Netgroups

You can use NIS to set up netgroups, which allows you to create network-level groups of
users. Whereas normal groups are created locally on separate hosts, an NIS netgroup can be
used for network-wide services. For example, you can use NIS netgroup to control access to
NFS file systems. Netgroups are defined in the /etc/netgroup file. Entries consist of a
netgroup name followed by member identifiers consisting of three segments: the hosts, the
user, and the NIS domain:

group (host, user, NIs-domain) (host, user, NIS-domain) …

For example, in the NIS domain myturtles.nis, to define a group called myprojects that
consist of the user chris on the host rabbit, and the user george on the host
lizard.mytrek.com, you would use the following:

myprojects (rabbit, chris, myturtles.nis) \
 (lizard.mytrek.com, george, myturtles.nis)

A blank segment will match on any value. The following entry includes all users on the host
rabbit:

newgame (rabbit,,myturtles.ni)

If your use of a group does not need both a user and a host segment, you can eliminate one by
using the – sign. The following example generates a netgroup consisting just of hostnames,
with no usernames:

myservers (rabbit,-,) (turtle.mytrek.com,-,)

You can then reference different netgroups in various configuration files by prefixing the
netgroup name with an @ sign, as shown here:

@newgame

NIS Clients

For a host to use NIS on your network, you first need to specify your NIS domain name on
that host. In addition, your NIS clients need to know the name of your NIS server. If you

installed Linux on a network already running NIS, you may have already entered this
information during the installation process. Otherwise, on Red Hat, you can specify your NIS
domain name and server with the Text Mode Setup Tool (setuptool), which you can access
from the Gnome system menu or by entering the command setup at the shell prompt. From
the menu, select Authentication. This opens the authconfig window shown in Figure 37-1. For
NIS, you can enter the name of the NIS domain as well as the NIS server. Setuptool will save
the NIS domain in the /etc/sysconfig/ network file, and the NIS server in the /etc/yp.conf
file.

Figure 37-1: Setuptool NIS domain name and server

Each NIS client host on your network then has to run the ypbind NIS client to access the
server. In the client's /etc/yp.conf file, you need to specify the NIS server it will use. The
following entry would reference the NIS server at 192.168.1.1:

ypserver 192.168.1.1

Alternatively, you can specify the NIS domain name and the server it uses:

domain mydomain.nis server servername

Setuptool will make the following entry in /etc/yp.conf for the myturtle.nis NIS domain
using the turtle.mytrek.com server:

domain myturtles.nis server turtle.mytrek.com

To start the NIS client, you run the ypbind script:

service ypbind start

Then, to check that all is working, you can use ypcat to try to list the NIS password file:

ypcat passwd.

You can use ypcat to list any of the NIS configuration files. The ypwhich command will
display the name of the NIS server your client is using. ypmatch can be used to find a
particular entry in a configuration file.

ypmatch cecelia passwd.

User can change their password in the NIS passwd file by using the yppasswd command. It
works the same as the passwd command. You will also have to have the yppasswdd daemon
running.

To ensure that the client accesses the NIS server for a particular configuration file, you should
specify nis in the file's entry in the /etc/nsswitch.conf file. The /etc/nsswitch.conf file
specifies where a host should look for certain kinds of information. For example, the
following entry says to check the NIS server (nis) first and then the local configuration files
(files) for passwords data:

passwd: nis files

The files designation says to first use the system's own files, those on the local host. nis says
to look up entries in the NIS files, accessing the NIS server. nisplus says to use NIS+ files
maintained by the NIS+ server. dns says to perform DNS lookups and can only be used on
files like hosts that contain hostnames. These are the entries set up by Red Hat:

passwd: files nisplus nis
shadow: files nisplus nis
group: files nisplus nis

hosts: files nisplus nis dns
bootparams: nisplus [NOTFOUND=return] files

ethers: files
netmasks: files
networks: files
protocols: files nisplus nis
rpc: files
services: files nisplus nis
netgroup: files nisplus nis
publickey: nisplus
automount: files nisplus nis
aliases: files nisplus

Netatalk: AppleTalk

To access Apple file systems and printers such as those on Macintosh computers, you need to
use specialized servers that support the AppleTalk protocol. AppleTalk is the network
protocol used for Apple Macintosh computers. AppleTalk supports file sharing and network
printing, where different Macs can share each other's file systems and printers. For example,
if you have a LaserWriter connected to a Macintosh, you can have other Macintosh systems
access it and print on that LaserWriter. You can also access any shared file systems that may
be set up on the Macintoshes on the network.

 Note Mac OS X, which is based on BSD Unix, now supports NFS for file sharing.

To enable Apple systems like Macintoshes to access a Linux system, that Linux system has to
emulate the AppleTalk protocols. You can do this with a Netatalk daemon. Netatalk
implements the classic AppleTalk and AppleShare IP network protocol on Unix and Linux
systems. AppleShare IP implements AppleTalk over an IP network. Netatalk provides support

for sharing file systems, accessing printers, and routing AppleTalk. Netatalk allows a Mac
machine connected to an AppleTalk network to access a Linux system as if it were an
AppleTalk file and print server. Linux systems can also use Netatalk to access Mac machines
connected to an AppleTalk network. The current Netatalk Web sites are
www.umich.edu/~rsug/netatalk/ and netatalk.sourcforge.net, with links to the FAQ and
the HOW-TO sections. The Red Hat Netatalk package is part of the Powertools collection.
You can download it from the Red Hat FTP site in the powertools directory for your release.

The Netatalk server is called afpd and is used to implement both classic AppleTalk and
AppleShare IP connections. Classic AppleTalk further needs the atalkd daemon, which sets
up interfaces between the kernel AppleTalk module and classic AppleTalk operations. It
performs much the same function as routed and ifconfig. Several programs manage printing.
The papd program lets Macs spool to a Linux printer. The pap program lets Linux systems
print to an AppleTalk printer. The psf program is a PostScript printer filter for pap, and
psorder enables you to print PostScript pages in reverse. The apfd program provides an
interface to the Linux file system, while the nbplkup program lists all AppleTalk objects on
the network. For example, nbplkup :LaserWriter lists the LaserWriters available. You
would use the pap program to access and print to a LaserWriter. To use Linux commands to
access a printer, you need to make an entry for the command in the /etc/printcap file and
create spool, status, and lock files for it.

Netatalk requires kernel-level support for the AppleTalk Datagram Delivery Protocol (DDP)
for classic AppleTalk. If your kernel does not currently support it, you either must rebuild the
kernel including AppleTalk support or use a loadable module for AppleTalk, appletalk.o.
Current kernels for most distributions include AppleTalk support. AppleShare IP only
requires TCP/IP support.

Netatalk uses five configuration files, as shown in Table 37-3. The software package includes
default versions you can modify. The RPM package includes the /etc/atalk/config file that
contains documented default entries for use by the atalk startup script. Check the variable
entries for any parameters you may want to change, such as the maximum number of allowed
simultaneous users.

Table 37-3: Netatalk Configuration Files
Filename Description
AppleVolumes.default List of shared directories, including optional names
AppleVolumes.system Maps of file extensions to Mac OS types
afpd.conf Configuration file for afpd daemon that implements both

classic AppleTalk and AppleShare IP (AppleTalk File system
and printer daemon)

atalkd.conf Controls the interfaces for classic AppleTalk to which
Netatalk binds, enabling you to specify network numbers or
zones; if empty, Netatalk detects the interfaces itself

papd.conf Provides AppleTalk access to Linux print queues; if empty,
uses /etc/printcap

Configuration files are automatically installed for you by the RPM package versions of
Netatalk. If you are installing from the source distribution, you need to install these from

default files in the source directory. Also, make sure the following lines are in your
/etc/services file (RPM packages add these automatically):

rtmp 1/ddp # Routing Table Maintenance Protocol
nbp 2/ddp # Name Binding Protocol
echo 4/ddp # AppleTalk Echo Protocol
zip 6/ddp # Zone Information Protocol
afpovertcp 548/tcp # AFP over TCP
afpovertcp 548/udp

Netatalk is started using a startup script called atalk. The Red Hat RPM packages install
atalk in the /etc/rc.d/init.d directory. You can also use a System V Init runlevel editor to
manage startup and shutdown operations. A link is set up to start the atalk script when you
boot. You can also use start and stop arguments directly with atalk:

 service atalk start

The afpd server will implement both classic AppleTalk and AppleShare IP, though classic
AppleTalk also requires that the atalkd server be running. Once apfd is started, you can then
use your Macintosh client to access your shared Linux directories or printers. On your
Macintosh, select AppleShare under the Chooser. Your Netatalk server should appear. For
AppleShare IP, select the AppleShareIP button and enter your Netatalk server's IP address.
You can then log in to the server and access shared files.

If you want to use Netatalk to mount Apple file systems locally—say, like an Apple CD-
ROM disk—you need to have HFS support in your kernel. HFS (Hierarchical File System) is
the Apple file system format. You can then use the fork=netatalk option to use Netatalk to
access an Apple CD-ROM disk.

 Note Currently under development is the afpfs daemon, which allows Linux systems to
mount Apple file systems.

Chapter 38: Samba
Overview

With Samba, you can connect your Windows clients on a Microsoft Windows network to
services such as shared files, systems, and printers controlled by the Linux Samba server.
Whereas most Unix and Linux systems use the TCP/IP protocol for networking, Microsoft
networking with Windows uses a different protocol, called the Server Message Block (SMB)
protocol, that implements a local area network (LAN) of PCs running Windows. SMB makes
use of a network interface called Network Basic Input Output System (NetBIOS) that allows
Windows PCs to share resources, such as printers and disk space. One Windows PC on such a
network can access part of another Windows PC's disk drive as if it were its own. SMB was
originally designed for small LANs. To connect it to larger networks, including those with
Unix systems, Microsoft developed the Common Internet File System (CIFS). CIFS still uses
SMB and NetBIOS for Windows networking. Andrew Tridgell wrote a version of SMB he
called Samba. Samba also allows Unix and Linux systems to connect to such a Windows
network, as if they were Windows PCs. Unix systems can share resources on Windows
systems as if they were just another Windows PC. Windows PCs can also access resources on

Unix systems as if they were Windows systems. Samba, in effect, has become a professional
level, open source, and free version of CIFS. It also runs much faster than CIFS. Samba
effectively enables you to use a Linux or Unix server as a network server for a group of
Windows machines operating on a Windows network. You can also use it to share files on
your Linux system with other Windows PCs, or to access files on a Windows PC from your
Linux system, as well as between Windows PCs. On Linux systems, an smbfs file system
enables you, in effect, to mount a remote SMB-shared directory on to your own file system.
You can then access it as if it were a directory on your local system.

You can obtain extensive documentation and current releases from the Samba Web and FTP
sites at www.samba.org and ftp.samba.org. RPM packages can be obtained from respective
distribution FTP sites, such as ftp.redhat.com. Samba is also included on most Linux
distributions. Other information can be obtained from the SMB newsgroup,
comp.protocols.smb. Extensive documentation is provided with the software package and
installed on your system, usually in the /usr/share/doc directory under a subdirectory bearing
the name of the Samba release. Here, you can find extensive documentation in HTML and
text format, as well as numerous examples and the current FAQs. Samba HOW-TO
documentation is also available at www.linuxdoc.org. The examples include sample
smb.conf files for different kinds of configuration. The home page of the SWAT
configuration utility also provides Web page-based Samba documentation, as well as context-
level help for different features.

The Samba software package consists of two server daemons and several utility programs:
smbd, nmbd, smbclient, smbmount, smbumount, smbstatus, and testparm (see Table 38-1).
One daemon, smbd, provides file and printer services to SMB clients and other systems, such
as Windows, that support SMB. The nmbd utility is a daemon that provides NetBIOS name
resolution and service browser support. The smbclient utility provides FTP-like access by
Linux clients to Samba services. smbmount and smbumount enable Linux clients to mount
and unmount Samba shared directories. The smbstatus utility displays the current status of the
smb server and who is using it. You use testparm to test your Samba configuration. smbtar is
a shell script that backs up SMB/CIFS-shared resources directly to a Unix tape drive. You use
nmblookup to map the NetBIOS name of a Windows PC to its IP address. Included also with
the package is the Samba Web administration tool (SWAT). This enables you to use a Web
page interface to create and maintain your Samba configuration file, /etc/samba/smb.conf.
Samba configuration files are kept in the /etc/samba directory.

Table 38-1: Samba Applications
Application Description
smbd Samba server daemon that provides file and printer services to SMD

clients
nmbd Samba daemon that provides NetBIOS name resolution and service

browser support
smbclient Provides FTP-like access by Linux clients to Samba services
smbmount Mounts Samba share directories on Linux clients
smbumount Unmounts Samba share directories mounted on Linux clients
smbpasswd Changes SMB-encrypted passwords on Samba servers
smbstatus Displays the current status of the SMB network connections

Table 38-1: Samba Applications
Application Description
smbrun Interface program between smbd and external programs
testparm Tests the Samba configuration file, smb.conf
smbtar Backs up SMB/CIFS-shared resources directly to a Unix tap drive
nmblookup Maps the NetBIOS name of a Windows PC to its IP address
SWAT Samba Web administration tool for configuring smb.conf with a Web

browser; enables you to use a Web page interface to create and
maintain your Samba configuration file, smb.conf

Samba provides four main services: file and printer services, authentication and authorization,
name resolution, and service announcement. The SMB daemon, smbd, provides the file and
printer services, as well as authentication and authorization for those services. This means
users on the network can share files and printers. You can control access to these services by
requiring users to provide a password. When users try to access a shared directory, they are
prompted for a password. Control can be implemented in share mode or user mode. The share
mode sets up one password for the shared resource, and then enables any user who has that
password to access it. The user mode provides a different password for each user. Samba
maintains its own password file for this purpose: /etc/samba/smbpasswd.

Name resolution and service announcements are handled by the nmbd server. Name
resolution essentially resolves NetBIOS names with IP addresses (Microsoft plans to have this
handled by DNS in the future). Service announcement, also known as browsing, is the way a
list of services available on the network is made known to the connected Windows PCs (and
Linux PCs connected through Samba).

 Note For Red Hat, Samba is installed using RPM files that place SAMBA programs in
/usr/bin and /usr/sbin directories. If you want to download source code or binaries in
compressed archives (.tar.gz) from www.samba.org, the archive will extract to its own
samba subdirectory. To use it, you should first uninstall the Red Hat Samba RPM files,
and then extract the archive in a software directory like /usr/local. Be sure to add
/usr/local/samba/bin in your PATH. Alternatively, you could copy the samba/bin files
to /usr/bin, except for nmb and smbd, which should be copied to /usr/sbin.

Setting Up Samba

For a simple Samba setup, you should be able to use the default smb.conf file installed with
the Linux distribution package of Samba. If you need to make changes, however, you must
restart the Samba server to have the changes take effect. Starting, stopping, and restarting the
Samba server is managed by the /etc/rc.d/init.d/smb script using the options start, stop, and
restart. You can run this script with the service command, as shown here:

service smb restart

You could also invoke the smb script directly.

/etc/rc.d/init.d/smb restart

You can also use the desktop Service Configuration tool (serviceconf) to start and stop
Samba.

To ensure name resolution, you can enter the name of your host and its IP address in the
/etc/lmhosts file. On Windows systems, lmhosts entries consist of an IP address and the
system's NetBIOS name, the name it is known by on a Microsoft network. For your Linux
system, you can enter the IP address and the Linux system's hostname.

To test your connection from a Linux system, you can use the smbclient command to query
the Samba server. To access the home directory of a user on the Samba server, use the IP or
hostname address of the Samba server, along with the homes section. With the –U option,
specify a user to connect to on the system, as shown here:

smbclient //turtle.mytrek.com/homes -U dylan

You are then prompted for a password. If the client password is different from the server
password, use the server password. Once connected, you are presented with the smb client
prompt as shown here. You can then access the files on the user's home directory:

smb: \>

To set up a connection for a Windows client, you need to specify the Windows workgroup
name and configure the password. The workgroup name is the name that appears in the Entire
Network window in the Network Neighborhood on the Windows desktop (My Network
Places on Windows 2000, NT, and XP). In the smb.conf file, you specify the workgroup
name in the workgroup= entry in the global section. The work- group name should be
uppercase, no more than eight characters, and with no spaces.

You can then restart the Samba server. On a Windows client, you see the workgroup name
appeared in the Entire Network folder in your Network Neighborhood. Within the workgroup
is an icon for the Samba server, and within that is an icon for the user directory, as specified
in the homes section of the smb.conf file.

Samba configuration options are kept in the /etc/samba/smb.conf file. You edit this file to
make changes to the configuration. Once you finish making any changes, you should test your
smb.conf file using the testparm program. The testparm program checks the validity of your
configuration entries. By default, testparm uses the /etc/samba/smb.conf file, although you
can supply a different configuration file as an argument:

testparm

To check your network connections, use the smbstatus command. This command returns a
listing of all active smb connections.

 Note The /etc/samba/smbusers file associates Windows network usernames with
corresponding users on your Linux Samba server. For example, admin and administrator
are made equivalent to the Linux root user.

Passwords

Connections between Windows clients and Samba servers has been further complicated by
the implementation of password encryption on Microsoft networks. Current versions of
Windows operating systems, including upgraded versions of Windows NT, 2000, 98, and 95,
now require the use of encrypted passwords by default. Samba, on the other hand, uses
unencrypted passwords by default. To enable communication between Samba servers and
Windows clients you have to either change Windows clients to use unencrypted passwords, or
change the Samba server to use encrypted passwords. The more secure course is to implement
encrypted passwords on Samba servers, though this entails more administrative work. Note:
Though not distributed by default, Samba can be built with SSL support. This SSL-enabled
Samba provides support for encrypted SSL network communications. SSL-enabled Samba
includes several SSL-specific configuration options, each preceded by the term ssl. For
example, ssl cipher lets you determine the ciphers that can be used, and ssl CA certFile
specifies the certificates file.

Samba also provides its own Samba password PAM module, pam_smbpass.o. With this
module, you provide PAM authentication support for Samba passwords, enabling the use of
Windows hosts on a PAM-controlled network. The module could be used for authentication
and password management in your PAM samba file. The following entries in the PAM samba
file would implement PAM authentication and passwords using the Samba password
database:

auth required pam_smbpass.so nodelay
password required pam_smbpass.so nodelay

Be sure to enable PAM in the smb.conf file:

obey pam restrictions = yes

Samba Encrypted Passwords: smbpasswd

Encrypted passwords come into play if you are using user-level security instead of share-level
security. With user-level security, access to Samba server resources by a Windows client is
allowed only to users on that client. Each user on the Windows client has to have a
corresponding user account on the Samba server. A user logs in to their Windows account and
can then log in to their Samba server account. Users have to log in by providing their user
name and password. Their user name and password have to be registered with the Samba
server in the /etc/samba/smbpasswd file. You use the smbpasswd command to add these
passwords.

To implement encrypted passwords on Samba, the Samba server then needs to maintain an
encrypted version of user passwords that can be used by Windows clients. This file of
encrypted passwords is /etc/samba/smbpasswd on Red Hat systems. Samba passwords can
be added or changed for different users with the smbpasswd command. Initially, you will
generate the Samba password file so that it will have entries for all your current Samba users.
For this task, you use the mksmbpasswd.sh script. You input to this script the contents of the
Samba server's /etc/passwd file, and it generates entries that can be used for encrypted
passwords. You use redirection (>) to create the encrypted file. In the following example, an
/etc/samba/smbpasswd file is initially generated on a Red Hat system by the mksmbpasswd

script. The cat command with a pipe operation is used to input the contents of the /etc/passwd
file to the mksmbpasswd.sh script:

cat /etc/passwd | mksmbpasswd.sh > /etc/samba/smbpasswd

If your users and their passwords are being managed by NIS, you would use the ypcat
command to access the user passwords, as shown here:

ypcat passwd | mksmbpasswd.sh > /etc/samba/smbpasswd

You then need to change the permissions on this file to protect it from unauthorized access.
The 600 option allows only read and write access by the root user:

chmod 600 /etc/samba/smbpasswd

At this point, /etc/samba/smbpasswd will contain entries for all your current users with
dummy fields for the passwords. You then use the smbpasswd command to add, or later
change, encrypted passwords. To add a password for a particular user, you use the
smbpasswd command with the user's name:

smbpasswd dylan
New SMB Password: new-password
Repeat New SMB Password: new-password

Users can use smbpasswd to change their own password. The following example show how
you would use smbpasswd to change your Samba password. If the user has no Samba
password, they can just press the ENTER key.

$ smbpasswd
Old SMB password: old-password
New SMB Password: new-password
Repeat New SMB Password: new-password

You also have to make sure that Samba is configured to use encrypted passwords. Set the
encrypt passwords option to yes and specify the smb password file. These options are
already set in the /etc/samba/smb.conf file (described in the following section), but they are
commented with a preceding ; symbol. Just locate the lines and remove the ; symbols at the
beginning of the lines:

encrypt passwords = yes
smb passwd file = /etc/samba/smbpasswd

You can also use SWAT to make this change. In the GLOBALS page, select Yes from the
pop-up menu for the "encrypt password" entry; then save your changes by clicking the
Commit Changes button.

Be sure to restart the Samba server with the following command:

service smb restart

Clear-Text Passwords on Windows Clients

If you want to use clear-text passwords for Samba, you must manually edit the Windows
registry of each Windows client. This is a much riskier approach, because passwords will be
transmitted across the network in clear text. On the other hand, you do not need to maintain a
separate Samba password file (/etc/samba/smbpasswd).

For all Windows clients, you need to add an entry in the Windows registry for
EnablePlainTextPassword and set the entry to 1:

• For Windows 95 and 98, the EnablePlainTextPassword entry is located in
HKEY_LOCAL_MACHINES\System\CurrentControlSet\Services\VxD\VNETS
UP. If this entry is not there, you must make one. Select Edit | New | DWORD Value
from the regedit menu bar and rename the entry from New Value #1 to
EnablePlainTextPassword.

• For Windows NT, you create a registry entry in HKEY_LOCAL_MACHINE\
System\CurrentControlSet\Services\Rdr\Parameters. Select Edit | New | DWORD
Value to create the entry EnablePlainTextPassword Data: 0x01.

• For Windows 2000, you create a registry entry in HKEY_LOCAL_MACHINE\
System\CurrentControlSet\Services\LanmanWorkStation\Parameters. Select Edit
| New | DWORD Value to create the entry EnablePlainTextPassword Data: 0x01.

Make sure Samba is not using encrypted passwords. The encrypt passwords entry in smb.conf
needs to be commented out or turned off.

Samba Configuration: smb.conf

You configure the Samba daemon using the smb.conf file located in the /etc/samba directory.
The file is separated into two basic parts: one for global options and the other for shared
services. A shared service, also known as shares, can be either filespace services (used by
clients as an extension of their native file systems) or printable services (used by clients to
access print services on the host running the server). The filespace service is a directory to
which clients are given access and can use the space in it as an extension of their local file
system. A printable service provides access by clients to print services, such as printers
managed by the Samba server.

The /etc/samba/smb.conf file holds the configuration for the various shared resources, as
well as global options that apply to all resources. Linux installs an smb.conf file in your
/etc/samba directory. The file contains default settings used for your distribution. You can
edit the file to customize your configuration to your own needs. Many entries are commented
with either a semicolon or a # sign, and you can remove the initial comment symbol to make
them effective. Instead of editing the file directly, you may want to use the SWAT
configuration utility, which provides an easy-to-use, full-screen Web page interface for
entering configurations for shared resources. The SWAT configuration utility also provides
extensive help features and documentation. For a complete listing of the Samba configuration
parameters, check the Man page for smb.conf. An extensive set of sample smb.conf files is
located in the /usr/share/doc/samba* directory in the examples subdirectory.

In the smb.conf file, global options are set first, followed by each shared resource's
configuration. The basic organizing component of the smb.conf file is a section. Each

resource has its own section that holds its service name and definitions of its attributes. Even
global options are placed in a section of their own, labeled global. For example, each section
for a filespace share consists of the directory and the access rights allowed to users of the
filespace. The section of each share is labeled with the name of the shared resource. Special
sections, called printers and homes, provide default descriptions for user directories and
printers accessible on the Samba server. Following the special sections, sections are entered
for specific services, namely access to specific directories or printers. The basic organizing
component is a section. Global options are placed in a section of their own labeled global.

A section begins with a section label consisting of the name of the shared resource encased in
brackets. Other than the special sections, the section label can be any name you want to give
it. Following the section label, on separate lines, different parameters for this service are
entered. The parameters define the access rights to be granted to the user of the service. For
example, for a directory, you may want it to be browsable but read-only, and to use a certain
printer. Parameters are entered in the format parameter name = value. You can enter a
comment by placing a semicolon at the beginning of the comment line.

A simple example of a section configuration follows. The section label is encased in brackets
and followed by two parameter entries. The path parameter specifies the directory to which
access is allowed. The writable parameter specifies whether the user has write access to this
directory and its filespace.

 [mysection]
 path = /home/chris
 writable = true

A printer service has the same format, but requires certain other parameters. The path
parameters specify the location of the printer spool directory. The read-only and printable
parameters are set to true, indicating the service is read-only and printable. public indicates
anyone can access it.

 [myprinter]
 path = /var/spool/samba
 read only = true
 printable = true
 public = true

Parameter entries are often synonymous but different entries that have the same meaning. For
example, read only = no, writable = yes, and write ok = yes all mean the same thing,
providing write access to the user.

SWAT and smb.conf

SWAT is a network-based Samba configuration tool that uses a Web page interface to enable
you to configure your smb.conf file. SWAT is, by far, the easiest and simplest way to
configure your Samba server. SWAT provides a simple-to-use Web page interface with
buttons, menus, and text boxes for entering values. A simple button bar across the top enables
you to select the sections you want to configure. A button bar is even there to add passwords.
To see the contents of the smb.conf file as SWAT changes it, click the View button. The
initial screen (HOME) displays the index for Samba documentation (see Figure 38-1). One of
SWAT's more helpful features is its context-sensitive help. For each parameter and option

SWAT displays, you can click a Help button to display a detailed explanation of the option
and examples of its use.

Figure 38-1: SWAT home page

On Red Hat, SWAT is installed with Samba. SWAT is an xinetd service. As an xinetd
service, it will be listed in the /etc/services and /etc/xinetd.d/swat files. The SWAT program
uses port 901, as designated in the /etc/services file and shown here:

swat 901/tcp # Samba Web Administration Tool

As an xinetd service, SWAT will have its own xinetd file in the /etc/xinetd.d directory,
/etc/xinetd.d/swat. SWAT is turned off by default, and its disable option is set to yes. To use
SWAT, you will have to change the disable option to no as shown here:

default: off
description: SWAT is the Samba Web Admin Tool. Use swat \
to configure your Samba server. To use SWAT, \
connect to port 901 with your favorite web browser.
service swat
{
 disable = no
 port = 901
 socket_type = stream
 wait = no
 only_from = 127.0.0.1
 user = root

 server = /usr/sbin/swat
 log_on_failure += USERID
}

You can do this either by using chkconfig or the Service Configuration tool to turn on the
SWAT service or by manually editing the /etc/xinetd.d/swat file and changing the disable
option to no. chkconfig will edit the /etc/xinetd.d/swat file for you, making this change (see
Chapter 22 for more information about chkconfig). The following example shows the way
you would enable SWAT with the chkconfig command:

chkconfig swat on

With chkconfig, you will not have to manually restart the xinetd server. However, if you
manually edit the file, you will also have to restart the server to have the change take effect.
On Red Hat, you can do this simply using the xinetd script, as shown here:

service xinetd restart

Before you use SWAT, back up your current smb.conf file. SWAT overwrites the original,
replacing it with a shorter and more concise version of its own. The smb.conf file originally
installed lists an extensive number of options with detailed explanations. This is a good
learning tool, with excellent examples for creating various kinds of printer and directory
sections. Simply make a backup copy:

cp /etc/samba/smb.conf /etc/samba/smb.bk

On Red Hat, you can start up SWAT by selecting the Samba Configuration entry in the
Gnome System menu. This will open up your Web browser to the SWAT page using the
localhost IP address, 127.0.0.1 and port 901 as shown in Figure 38-1. You can also open your
browser and enter the IP address 127.0.0.1 with port 901 to access SWAT.

http://127.0.0.1:901

You can start up SWAT from a remote locate by entering the address of the Samba server it is
running on, along with its port (901) into a Web browser. However, you will first have to
enable this feature in the /etc/xinetd.d/swat file. Currently the only_from line in this file
restricts access to just localhost. To enable access from any remote system, just remove this
line. If you want to provide access to certain specific hosts, you can list them after 127.0.0.1
on the only_from line. Be sure to restart SWAT after any changes. The following example
enables access from both 127.0.0.1 and rabbit.mytrek.com:

only_from 127.0.0.1 rabbit.mytrek.com

The following URL entered into a Web browser on a remote system would then display the
Web page interface for SWAT on the turtle.mytrek.com Samba server:

http://turtle.mytrek.com:901

You are first asked to enter a username and a password. To configure Samba, you need to
enter root and the root password. (If you are connecting from a remote system, it is not
advisable to enter the root password in clear text—see Chapter 31.) The main SWAT page is
displayed with a button bar, with buttons for links for HOME, GLOBALS, SHARES,

PRINTERS, STATUS, VIEW, and PASSWORD (see Table 38-2). You can use STATUS to
list your active SMB network connections.

Table 38-2: SWAT Configuration Pages
Page Description
HOME SWAT home page listing documentation resources
GLOBALS Configure the global section for Samba
SHARES Select and configure directories to be shared (shares)
PRINTERS Set up access to printers
STATUS Check the status of the Samba server, both smbd and nmbd; list

clients currently active and the actions they are performing. You
can restart, stop, or start the Samba server from this page

VIEW Display the smb.conf configuration file
PASSWORD Set up password access for the server and users that have access

For the various sections, SWAT can display either a basic or advanced version. The basic
version shows only those entries needed for a simple configuration, whereas the advanced
version shows all the possible entries for that type of section. A button— labeled Advanced
View and Basic View, respectively—is at the top of the section page for toggling between the
advanced or basic versions (see Figure 38-2). Section pages for printers and shares have
added buttons and a menu for selecting the particular printer or share you want to configure.
The term "share," as it's used here, refers to directories you want to make available through
Samba. When you click the SHARES button, you initially see only a few buttons displayed at
the top of the SHARES page. You use these buttons to create new sections or to edit sections
already set up for shares. For setting up a new Share section, you enter its name in the box
next to the Create Share button and then click that button. The new share name appears in the
drop-down menu next to the Choose Share button. Initially, this button is blank. Click it to
display the list of current Share sections. Select the one you want, and then click the Choose
Share button. The page then displays the entries for configuring a share. For a new share,
these are either blank or default values. For example, to select the Homes section that
configures the default setting for user home directories, click the drop-down menu where you
find a Homes entry. Select it, and then click the Choose Share button. The entries for the
Homes section are displayed. The same process works for the Printers page, where you can
select either the Printers section or Create sections for particular printers.

Figure 38-2: SWAT Share page showing Homes section
 Note Samba automatically creates entries for any printer already configured for use on your

system or network. It reads these from your /etc/printcap file. You will need to edit the
printer entries to control access to your printers. For Samba to use a printer, it first has to
be configured on your system as either a local or network printer (see printconf in
Chapters 4 and 33). Keep in mind that a network printer could be a printer connected to
a Windows system.

In Figure 38-2, notice the Help links next to each entry. Such a link displays a Web page
showing the Samba documentation for smb.conf, positioned at the appropriate entry. In this
figure, the Guest OK part of the documentation is displayed after the user clicks the Help link
next to the Guest OK entry.

When you finish working on a section, click the Commit Changes button on its page to save
your changes. Do this for each separate page you work on, including the GLOBALS page.
Clicking the Commit Changes button generates a new version of the smb.conf file. To have
the Samba server read these changes, you then have to restart it. You can do this by clicking
on the Restart smb button on the Status page.

The basic procedures for creating a new share using SWAT include the following steps:

1. Select the Share page and, in the Create Share text box, enter the name of the new
share.

2. Click the Create Share button to open a configuration page for the new share. The
name of the new share will appear in the pop-up menu next to the Choose Share
button.

3. Enter various options. For the Basic Options, you will have to specify the directory for
the share in the "path" text box. In the "comment" text box, you enter the label that
will appear on Windows for the share.

4. Click the Commit Changes button to save your share entry to the Samba configuration
file, smb.conf. Then restart the Samba server to effect your changes (click the Restart
smb button on the Status page).

You can follow a similar procedure to add a new printer, but make sure the printer is also
configured on the system with the Samba server.

You can, of course, edit the /etc/samba/smb.conf file directly. This is a simple text file you
can edit with any text editor. You still must restart the smb server to have the changes take
effect, which you can do manually with the following command:

service smb restart

The following example shows an smb.conf file generated by SWAT for a simple
configuration. This is much smaller than the comment-intensive versions originally installed
with Samba. In this configuration, share-level security is implemented and password
encryption is enabled. A share called myprojects is defined, which has guest access and is
writeable. A printer share called myhp is also defined and also supports guest access.

Samba config file created using SWAT
from localhost.localdomain (127.0.0.1)
Date: 2001/09/09 01:09:07

Global parameters
[global]
 server string = Samba Server
 security = SHARE
 encrypt passwords = Yes
 ssl CA certFile = /usr/share/ssl/certs/ca-bundle.crt
 log file = /var/log/samba/%m.log
 max log size = 0
 socket options = TCP_NODELAY SO_RCVBUF=8192 SO_SNDBUF=8192
 dns proxy = No
 printing = lprng

[homes]
 comment = Home Directories
 path = /home
 writeable = Yes
 guest ok = Yes

[printers]
 comment = All Printers
 path = /var/spool/samba
 guest ok = Yes
 printable = Yes
 browseable = No

[myprojects]
 path = /myprojects
 writeable = Yes
 guest ok = Yes

[myhp]

 path = /var/spool/samba
 writeable = Yes
 guest ok = Yes
 printable = Yes
 printer = myhp
 oplocks = No
 share modes = No

Global Section

The Global section determines configuration for the entire server, as well as specifying
default entries to be used in the home and directory segments. In this section, you find entries
for the workgroup name, password configuration, and directory settings. Several of the more
important entries are discussed here. Figure 38-3 shows the Global Variables page on the
SWAT that you can use to set global options. The Basic View of this page lists the options
you would most likely need.

Figure 38-3: SWAT Global Variables page

The workgroup entry specifies the workgroup name you want to give to your network. This is
the workgroup name that appears on the Windows client's Network Neighborhood window.
The default workgroup entry in the smb.conf file is shown here:

[global]

workgroup = NT-Domain-Name or Workgroup-Name
 workgroup = MYGROUP

The workgroup name has to be the same for each Windows client that the Samba server
supports. On a Windows client, the workgroup name is usually found on the Network

Identification or General panels in the System tool located in the Control Panels window. On
many clients this is defaulted to WORKGROUP. If you want to keep this name, you would
have to change the workgroup entry in the smb.conf file accordingly. The workgroup entry
and the workgroup name on each Windows client has to be the same.

workgroup = WORKGROUP

The server string entry holds the descriptive name you want displayed for the server on the
client systems. On Windows systems, this is the name displayed on the Samba server icon.
The default is "Samba Server", but you can change this to any name you want.

server string is the equivalent of the NT Description field
 server string = Samba Server

Samba resources are normally accessed with either share or user level security. On a share
level, any user can access the resource without having to log in to the server. On a user level,
each user has to log in, using a password. Furthermore, Windows 98, ME, NT, and XP clients
use encrypted passwords for the logging-in process. For these clients you will have to enable
encrypted passwords. The default for encrypted passwords is no, so you will need to change it
to yes. In the smb.conf file, the security option is set to the level you want and the encrypt
passwords option is set to yes to enable encryption.

security = user
encrypt passwords = yes

If you want share-level security, specify share as the security option.

security = share

On the SWAT GLOBALS page, select the security level from the pop-up menu, either user or
share. Then select Yes for the encrypt passwords entry.

As a security measure, you can restrict access to SMB services to certain specified local
networks. On the host's network, type the network addresses of the local networks for which
you want to permit access. The localhost (127) is always automatically included. The next
example allows access to two local networks:

hosts allow = 192.168.1. 192.168.2.

To enable printing, allow Samba to load the printer descriptions from your printcap file.
Although you can specify a particular print system type with the printing entry, this usually is
unnecessary.

 printcap name = /etc/printcap
 load printers = yes

You can use a guest user to make resources available to anyone without requiring a password.
A guest user login would handle any users who log in without a specific account. On Linux
systems, by default Samba will use the nobody user as the guest user. Alternatively, you can
set up and designate a specific user to use as the guest user. You designate the guest user with
the "guest account" entry in the smb.conf file. The commented smb.conf file provided by
Samba currently lists a commented entry for setting up a guest user called pcguest. You can

make this a user you want used as the guest user. Be sure to add the guest user to the
password file:

 guest account = pcguest

On SWAT you can specify a guest account entry on the GLOBALS page. By default this is
already set to the nobody user.

Passwords

As noted previously, user-level security requires that each user log in to the Samba server
using passwords. Samba can use either clear text or encrypted passwords, although current
Windows clients support encrypted passwords. You can use the smbpasswd command to add
and change Samba passwords. On SWAT, you enable password encryption on the GLOBALS
page and manage passwords on the Passwords page, as shown in Figure 38-4. On the Server
Password Management section you can add, change, remove, enable, or disable users. To add
a new user, enter the user name and password, then click Add New User. As the root user on
the Samba server, you can add new passwords as well as enable or disable current ones.
Normal users can use the Client/Server Password Management section to change their own
passwords.

Figure 38-4: SWAT Passwords page

Homes Section

The Homes section specifies default controls for accessing a user home directory through the
SMB protocols by remote users. Setting the Browseable entry to No prevents the client from
listing the files with the browser, such as that used by a file manager to display files and

directories (for example, Explorer on Windows). The Writable entry specifies whether users
have read and write control over files in their home directories. On SWAT, you simply select
the SHARES page, select the Homes entry from the drop-down menu, and click Choose Share
(see Figure 38-2).

[homes]
 comment = Home Directories
 browseable = no
 writable = yes

Printers Section

The Printers section specifies the default controls for accessing printers. These are used for
printers for which no specific sections exist. In this case, Samba uses printers defined in the
server's printcap file.

In this context, setting Browseable to No simply hides the Printers section from the client, not
the printers. The path entry specifies the location of the spool directory Samba will use for
printer files. To enable printing at all, the printable entry must be set to Yes. To allow guest
users to print, set the Guest OK entry to Yes. The Writable entry set to No prevents any kind
of write access, other than the printer's management of spool files. On SWAT, select the
PRINTER page and the Printers entry in the drop-down menu, and then select Choose
Printers. A standard implementation of the Printers section is shown here:

 [printers]
 comment = All Printers
 path = /var/spool/samba
 browseable = No
 guest ok = Yes
 writable = No
 printable = Yes

If you can't print, be sure to check the Default Print entry. This specifies the command the
server actually uses to print documents.

Shares

Sections for specific shared resources, such as directories on your system, are usually placed
after the Homes and Printers sections. For a section defining a shared directory, enter a label
for the system. Then, on separate lines, enter options for its pathname and the different
permissions you want to set. In the path = option, specify the full pathname for the directory.
The comment = option holds the label to be given the share. You can make a directory
writable, public, or read-only. You can control access to the directory with the Valid Users
entry. With this entry, you can list those users permitted access. For those options not set, the
defaults entered in the Global, Home, and Printer segments are used.

On SWAT, you use the SHARES page to create and edit shared directories. Select the one
you want to edit from the drop-down menu and click Choose Share. The Basic View shows
the commonly used entries. For entries such as Valid Users, you need to select the Advanced
View. Be sure to click Commit Changes before you move on to another Share or Printers
section (see Figure 38-5).

Figure 38-5: SWAT Samba Share

The following example is the myprojects share generated by SWAT from the share page
shown in Figure 38-5. Here the /myprojects directory is defined as a share resource that is
open to any user with guest access.

[myprojects]
 comment = Great Project Ideas
 path = /myprojects
 writeable = Yes
 guest ok = Yes
 printable = Yes

To limit access to certain users, you can list a set of valid users. Setting the public option to
No closes it off from access by others.

[mynewmusic]
 comment = Service
 path = //home/specialprojects
 valid users = mark
 public = no
 writable = yes
 printable = no

To allow complete public access, set public entry to Yes, with no valid user's entry.

 [newdocs]
 path = /home/newdocs

 public = yes
 writable = yes
 printable = yes

To set up a directory that can be shared by more than one user, where each user has control of
the files he or she creates, simply list the users in the Valid Users entry. Permissions for any
created files are specified by the Create Mask entry. In this example, the permissions are set
to 765, which provides read/write/execute access to owners, read/write access to members of
the group, and only read/execute access to all others:

[myshare]
 comment = Writer's projects
 path = /usr/local/drafts
 valid users = justin chris dylan
 public = no
 writable = yes
 printable = no
 create mask = 0765

For more examples, check those in the original smb.conf file that shows a Share section for a
directory fredsdir.

Printers

Access to specific printers is defined in the Printers section of the smb.conf file. You can also
configure printers in the SWAT Printers page. For a printer, you need to include the printer
and printable entries. With the Printers entry, you name the printer, and by setting the
Printable entry to Yes, you allow it to print. You can control access to specific users with the
valid users entry and by setting the public entry to No. For public access, set the public entry
to Yes. On SWAT, you can create individual Printers sections on the PRINTERs page.
Default entries are already set up for you.

The following example sets up a printer accessible to guest users. This opens the printer up to
use by any user on the network. Users need to have write access to the printer's spool
directory, located in /var/spool/samba. Keep in mind that any printer has to first be installed
on your system. The following printer was already installed as myhp and has an /etc/printcap
entry with that name. You can use printconf to install your printer, giving it a name and
selecting it driver (see Chapters 4 and 33). The SWAT Printer page used to generate this
printer entry is shown in Figure 38-6.

Figure 38-6: SWAT printer share
[myhp]

 path = /var/spool/samba
 writeable = Yes
 guest ok = Yes
 printable = Yes
 printer = myhp
 oplocks = No
 share modes = No

As with shares, you can restrict printer use to certain users, denying it from public access. The
following example sets up a printer accessible only by the users larisa and aleina (you could
add other users if you want). Users need to have write access to the printer's spool directory.

[larisalaser]

 path = /var/spool/samba
 writeable = Yes
 valid users = larisa aleina
 public = no
 printable = Yes
 printer = myhp
 oplocks = No
 share modes = No
 Note Though SWAT is preferred, you can also use Linuxconf and Webmin to configure

Samba.

Variable Substitutions

For string values assigned to parameters, you can incorporate substitution operators. This
provides greater flexibility in designating values that may be context-dependent, such as
usernames. For example, suppose a service needs to use a separate directory for each user
who logs in. The path for such directories could be specified using the %u variable that

substitutes in the name of the current user. The string path = /tmp/%u would become path =
/tmp/justin for the justin user and /tmp/dylan for the dylan user. Table 38-3 lists several of
the more common substitution variables.

Table 38-3: Samba Substitution Variables
Variable Description
%S Name of the current service
%P Root directory of the current service
%u Username of the current service
%g Primary group name of the user
%U Session username (the username the client wanted)
%G Primary group name of session user
%H Home directory of the user
%v Samba version
%h Internet hostname on which Samba is running
%m NetBIOS name of the client machine
%L NetBIOS name of the server
%M Internet name of the client machine
%N Name of your NIS home directory server
%p Path of the service's home directory
%d Process ID of the current server process
%a Architecture of the remote machine
%I IP address of the client machine
%T Current date and time

Testing the Samba Configuration

After you make your changes to the smb.conf file, you can then use the testparm program to
see if the entries are correctly entered. testparm checks the syntax and validity of Samba
entries. By default, testparm checks the /etc/samba/smb.conf file. If you are using a different
file as your configuration file, you can specify it as an argument to testparm. You can also
have testparm check to see if a particular host has access to the service set up by the
configuration file.

With SWAT, the Status page, shown in Figure 38-7, will list your connections and shares.
From the command line, you can use the smbstatus command to check on current Samba
connections on your network.

Figure 38-7: SWAT Samba network status

To check the real-time operation of your Samba server, you can log in to a user account on the
Linux system running the Samba server and connect to the server.

Domain Logons

Samba also supports domain logons whereby a user can log on to the network. Logon scripts
can be set up for individual users. To configure such netlogin capability, you need to set up a
netlogon share in the smb.conf file. The following sample is taken from the original smb.conf
file. This share holds the netlogon scripts—in this case, the /home/netlogon directory—
which should not be writable, but it should be accessible by all users (Guest OK):

[netlogon]
 comment = Network Logon Service
 path = /home/netlogon
 guest ok = yes
 writeable = no
 share modes = no

The Global section would have the following parameters enabled:

domain logons = yes

With netlogon, you can configure Samba as an authentication server for both Linux and
Windows hosts. A Samba user and password needs to be set up for each host. In the Global
section of the smb.conf file, be sure to enable encrypted passwords, user-level security, and
domain logons, as well as a operating system level of 33 or more:

 [global]
 encrypt passwords = Yes
 security = user
 domain logons = Yes
 os level = 33
 Note You can also configure Samba to be a Primary Domain Controller (PDC) for Windows

NT networks. As a PDC, Samba can handle domain logons, retrieve lists of users and
groups, and provide user-level security.

Accessing Samba Services with Clients

Client systems connected to the SMB network can access the shared services provided by the
Samba server. Windows clients should be able to access shared directories and services
automatically through the Network Neighborhood and the Entire Network icons on a
Windows desktop. For other Linux systems connected to the same network, Samba services
can be accessed using special Samba client programs. With smbclient, a local Linux system
can connect to a shared directory on the Samba server and transfer files, as well as run shell
programs. With smbmount, directories on the Samba server can be mounted to local
directories on the Linux client.

 Note Several Samba browser clients are available for Gnome and KDE. For KDE you can use
Komba2 (Red Hat RPM downloadable from apps.kde.com). For Gnome you can use
Gnomba.

smbclient

smbclient operates like FTP to access systems using the SMB protocols. Whereas with an
FTP client you can access other FTP servers or Unix systems, with smbclient you can access
SMB-shared services, either on the Samba server or on Windows systems. Many smbclient
commands are similar to FTP, such as mget to transfer a file or del to delete a file. The
smbclient program has several options for querying a remote system, as well as connecting to
it (see Table 38-4). See the smbclient Man page for a complete list of options and commands.
The smbclient program takes as its argument a server name and the service you want to access
on that server. A double slash precedes the server name and a single slash separates it from
the service. The service can be any shared resource, such as a directory or a printer. The
server name is its NetBIOS name, which may or may not be the same as its IP name. For
example, to specify the myreports shared directory on the server named turtle.mytrek.com,
use //turtle.mytrek.com/myreports. If you must specify a pathname, use backslashes for
Windows files and forward slashes for Unix/Linux files:

//server-name/service

Table 38-4: smbclient Options
Option Description
password The password required to access the specified service on the

server. If no password is supplied, the user is prompted to
enter one.

-s smb.conf Specify the pathname to smb.conf file.
-B IP_address Specify the broadcast IP address.
-O socket_options List the socket options.
-R name resolve order Use these name resolution services only.
-M host Send a winpopup message to the host.
-i scope Use this NetBIOS scope.
-N Don't ask for a password.

Table 38-4: smbclient Options
Option Description
-n netbios name Use this name as my NetBIOS name.
-d debuglevel Set the debug level.
-P Connect to the service as a printer.
-p port Connect to the specified port.
-l log basename Base name for log/debug files.
-h Print this help message.
-I IP_address Specify the IP address to connect to.
-E Write messages to stderr instead of stdout.
-U username Specify the user to log in to on the remote system.
-L host List the shares available on the specified host.
-t terminal code Terminal I/O code used {sjis|euc|jis7|jis8|junet|hex}.
-m max protocol Set the max protocol level.
-W workgroup Set the workgroup name.
-Tc|x Command line tar operation.
-D directory Start from this directory.
-c command_string Execute semicolon-separated commands.
-b xmit/send buffer Change the transmit/send buffer (default: 65520).

You can also supply the password for accessing the service. Enter it as an argument following
the service name. If you do not supply the password, you are prompted to enter it.

You can then add several options, such as the remote username or the list of services
available. With the –I option, you can specify the system using its IP address name. You use
the –U option and a login name for the remote login name you want to use on the remote
system. Attach % with the password if a password is required. With the –L option, you can
obtain a list of the services provided on a server, such as shared directories or printers. The
following command will list the shares available on the host turtle.mytrek.com:

smbclient -L turtle.mytrek.com

To access a particular directory on a remote system, enter the directory as an argument to the
smbclient command, followed by any options. For Windows files, you use backslashes for
the pathnames, and for Unix/Linux files you use forward slashes. Once connected, an smb
prompt is displayed and you can use smbclient commands such as get and put to transfer
files. The quit or exit commands quit the smbclient program. In the following example,
smbclient accesses the directory myreports on the turtle.mytrek.com system, using the
dylan login name:

smbclient //turtle.mytrek.com/myreports -I 192.168.0.1 –U dylan

In most cases, you can simply use the server name to reference the server, as shown here:

smbclient //turtle.mytrek.com/myreports –U dylan

If you are accessing the home directory of a particular account on the Samba server, you can
simply specify the homes service. In the next example, the user accesses the home directory
of the aleina account on the Samba server, after being prompted to enter that account's
password:

smbclient //turtle.mytrek.com/homes –U aleina

You can also use smbclient to access shared resources located on Windows clients. Specify
the computer name of the Windows client along with its shared folder. In the next example,
the user accesses the windata folder on the Windows client named lizard. The folder is
configured to allow access by anyone, so the user just presses the ENTER key at the password
prompt.

$ smbclient //lizard/windata
added interface ip=192.168.0.2 bcast=192.168.0.255 nmask=255.255.255.0
Got a positive name query response from 192.168.0.3 (192.168.0.3)
Password:
Domain=[WORKGROUP] OS=[Windows 5.1] Server=[Windows 2000 LAN Manager]
smb: \> ls
 . D 0 Sat Sep 8 17:29:19 2001
 .. D 0 Sat Sep 8 17:29:19 2001
 hi A 10 Sat Sep 8 17:29:27 2001
 mynewdoc.doc A 0 Sat Sep 8 16:59:13 2001
 39997 blocks of size 1048576. 39930 blocks available
smb: \> mget hi
Get file hi? y
getting file hi of size 10 as hi (1.22069 kb/s) (average 1.2207 kb/s)
smb: \> quit

Once logged in, you can execute smbclient commands to manage files and change directories.
The smbclient commands are listed in Table 38-5.

Table 38-5: smbclient Commands
Command Description
? [command] With no command argument, lists of all available commands

are displayed. Use command argument to display
information about a particular command.

! [shell command] With no shell command argument, runs a local shell. If a
shell command is provided, it executes that command.

cd [directory name] Change directory on server. With no directory specified, the
name of the current working directory is displayed.

del mask Request the server delete all files matching mask from the
current working directory on the server.

dir mask A list of the files matching the mask in the current working
directory on the server is retrieved from the server and
displayed.

exit Terminate the connection with the server and exit from the
program.

Table 38-5: smbclient Commands
Command Description
get remote filename [local
filename]

Copy a file from the server to the local system. You can
rename the local system copy. Transfer is binary.

help [command] With no command argument, lists of all available commands
are displayed. Use command argument to display
information about a particular command. Same as !.

lcd [directory name] Change directories on the local system. With no argument,
the local directory name is displayed.

lowercase Toggle lowercasing of filenames for the get and mget
commands. When lowercasing is toggled ON, local
filenames are converted to lowercase when using the get and
mget commands. This is often useful when copying (say)
MS-DOS files from a server because lowercase filenames are
the norm on Unix systems.

ls mask A list of the files matching the mask in the current working
directory on the server is retrieved from the server and
displayed. Same as dir.

mask mask This command enables the user to set up a mask that is used
during recursive operation of the mget and mput commands.
The masks specified to the mget and mput commands act as
filters for directories, rather than files when recursion is
toggled ON. The value for mask defaults to blank (equivalent
to *) and remains so until the mask command is used to
change it.

md directory name Create a new directory on the server (user access privileges
permitting) with the specified name. Same as mkdir.

mget mask Copy all files matching mask from the server to the machine
running the client. Note, mask is interpreted differently
during recursive operation and nonrecursive operation—
refer to the recurse and mask commands for more
information. Transfers are binary.

mkdir directory name Create a new directory on the server (user access privileges
permitting) with the specified name.

mput mask Copy all files matching mask in the current working
directory on the local system to the current working directory
on the server. Transfers in are binary.

print filename Print the specified file from the local machine through a
printable service on the server.

printmode graphics or text Set the print mode for either binary data (graphics) or text.
Subsequent print commands use the currently set print mode.

prompt Toggle prompting for filenames during operation of the mget
and mput commands.

put local filename [remote
filename]

Copy a file on the local system to the server. You can rename
the server copy. Transfers are binary.

Table 38-5: smbclient Commands
Command Description
queue Displays the print queue, showing the job ID, name, size, and

current status.
quit Terminate the connection with the server and exit from the

program. Same as exit command.
rd directory name Delete the specified directory (user access privileges

permitting) from the server. Same as rmdir command.
recurse Toggle directory recursion for the commands mget and

mput. When toggled ON, the mget and mput commands
will copy any subdirectories and files. Files can be selected
by a mask specified with the mget and mput commands. The
mask for directories is specified with the mask command.
When toggled OFF, only files from the current working
directory are copied.

rm mask Delete all files matching mask from the current working
directory on the server.

rmdir directory name Delete the specified directory (user access privileges
permitting) from the server.

tar c|x [IXbgNa] Performs a tar operation. Behavior may be affected by the
tarmode command.

blocksize blocksize Specify block size. Must be followed by a valid (greater than
zero) block size. Causes tar file to be written out in
blocksize*TBLOCK (usually 512 byte) blocks.

tarmode full|inc|reset| noreset Changes tar's behavior regarding archive bits. In full mode,
tar backs up everything, regardless of the archive bit setting
(this is the default mode). In incremental mode, tar only
backs up files with the archive bit set. In reset mode, tar
resets the archive bit on all files it backs up (implies
read/write share).

setmode filename perm=[+|\-
]rsha

A version of the DOS attrib command to set file
permissions. For example: setmode myfile +r would make
myfile read-only.

Shell commands can be executed with the ! operator. To transfer files, you can use the mget
and mput commands, much as they are used in the FTP program. The recurse command
enables you to turn on recursion to copy whole subdirectories at a time. You can use file-
matching operators, referred to here as masks, to select a certain collection of files. The file-
matching (mask) operators are *, [], and ? (see Chapter 7). The default mask is *, which
matches everything. The following example uses mget to copy all files with a .c suffix, as in
myprog.c:

smb> mget *.c

During transfers, you can have smbclient either prompt you for each individual file, or simply
transfer all the selected ones. The prompt command toggles this file, prompting on and off.

To access a particular printer on a remote system, enter the printer name as an argument to the
smbclient command, followed by any options. In the following example, smbclient accesses
the myepson printer on the turtle.mytrek.com system, using the dylan login name:

smbclient //turtle.mytrek.com/myepson -U dylan

Once connected, an smb prompt is displayed and you can use smbclient commands such as
print to print files and printmode to specify graphics or text. In the next example, the user
prints a file called myfile, after having accessed the myepson printer on turtle.mytrek.com:

smb> print myfile

smbmount

With the smbmount command, a Linux or a Unix client can mount a shared directory onto its
local system. The syntax for the smbmount command is similar to the smbclient command,
with many corresponding options. The smbmount command takes as its arguments the
Samba server and shared directory, followed by the local directory to where you want to
mount the directory. The following example mounts the myreports directory onto the
/mnt/myreps directory on the local system:

smbmount //turtle.mytrek.com/myreports /mnt/myreps –U dylan

To unmount the directory, use the smbumount command with the local directory name, as
shown here:

smbumount /mnt/myreps

To mount the home directory of a particular user on the server, specify the homes service and
the user's login name. The following example mounts the home directory of the user larisa to
the /home/chris/larisastuff directory on the local system:

smbmount //turtle.mytrek.com/homes /home/chris/larisastuff –U larisa

You can also use smbmount to mount shared folders on Windows clients. Just specify the
computer name of the Windows client along with its folder. If the folder name contains
spaces, enclose it in single quotes. In the following example, the user mounts the windata
folder on lizard as the /mylinux directory. For a folder with access to anyone, just press
ENTER at the password prompt.

$ smbmount //lizard/windata /mylinux
Password:
$ ls /mylinux
_hi_mynewdoc.doc_myreport.txt

To unmount the shared folder when you are finished with it, use the smbumount command.

smbumount /mylinux

Instead of using smbmount explicitly you can use the mount command with the file system
type smbfs. mount will then run the /sbin/mount.smbfs command, which will invoke
smbclient to mount the file system:

mount –t smbfs //lizard/windata /mylinux

You could also specify a username and password as options, if user level access is required:

mount –t smbfs –o username=chris passwd=mypass //lizard/windata /mylinux

You can also use the smbfs type in an /etc/fstab entry to have a samba file system mounted
automatically:

//lizard/windata /mylinux smbfs defaults 0 0

Windows Clients

To access Samba resources from a Windows system, you will need to make sure that your
Windows system has enabled TCP/IP networking. This may already be the case if your
Windows client is connected to the Microsoft network. If you need to connect a Windows
system directly to a TCP/IP network that your Linux Samba server is running on, you should
check that TCP/IP networking is enabled on that Windows system. This involves making sure
that the Microsoft Network client and the TCP/IP protocol are installed, and that your network
interface card (NIC adaptor) is configured to use TCP/IP. The procedures differ slightly on
Windows 2000 and XP, and those for Windows 95, 98, and ME.

Once connected, your Samba shares and printers will appear in the Windows network
window. Here you can access those shares and printers. If you are going to use a share
frequently, you can assign it a disk label. Right-click on the share and select Map Network
Drive, and select the drive label you want to use. On XP you can further select whether you
want the drive automatically mounted when you log in.

Windows 95, 98, and ME

For Windows 95, 98, and ME, you click on a Network icon in the Control Panels window.
Here you will see the network components loaded for your system. Check to make sure that
Client for Microsoft Networks and TCP/IP protocol are installed. If not, click the Add button,
select Client or Protocol, and then select the needed client or protocol. For example, to add the
TCP/IP protocol, click Add, then click Protocol, and then select TCP/IP from the list of
protocols. You can also allow the Windows system to share its own files and printers by
selecting "File and Print Sharing".

Then check the computer's name and workgroup by selecting the Identification panel. Make
sure your Samba entry for the workgroup matches it.

Then select the kind of access control for sharing you set up for Samba, either user level or
share level. Click on the Access Control tab and select either Share-level or User-level access.

Then open the Network Neighborhood icon on your desktop. This will list your Samba server.
If not, open Entire network and then Workgroups to find it. When you open your Samba
server icon, the shared printers and directories set up on your Samba server should be
displayed.

Windows 2000 and XP

On Windows 2000 open the Network and Dialup Connections window in the Control Panels,
and in Windows XP open the Network Connections window also in Control Panels. If you do
not already have a LAN connection, create one with the Make New Connection tool. Each
NIC card will have its own Local Area Connections file (you probably have only one). Right-
click on the one for the NIC adapter connected to the TCP/IP network that your Linux Samba
server is on. Select Properties from the pop-up menu. The General tab will show the NIC
card's name (adapter) and the components loaded and checked in support for this connection.
Make sure the following are listed and checked:

• Client for Microsoft Networks
• File and Printer Sharing for Microsoft Networks
• Internet Protocol (TCP/IP)

Should any of these be missing, you can click on the Install button to install them. From a
dialog box listing Client, Service, and Protocol, select the type of component you want to
install. Then a list of components is displayed. For example, to install TCP/IP, click on the
Install button, and then the Protocol entry in the Component Type window, and then the
TCP/IP protocol listed in the Select Network Protocol window.

File and printer sharing enables access to the directories and printers on the Windows client. It
is not essential for accessing shares and printers on the Samba server. However, if you want a
user to be able to access, through Samba, a printer on a Windows client, then this feature has
to be enabled on that Windows client.

Make sure that the IP address for this adapter is entered. This is the IP address for your
Windows host. Click on the TCP/IP entry and then click on the Properties button. This
displays a window for entering the IP address for this NIC adapter. Click on the Advanced
button and then click on the WINS tab. Also, make sure that the Enable LMHOSTS Lookup
and the Enable NetBIOS over TCP/IP entries are checked.

Next, check to make sure that the computer name and workgroup are the same as that used in
your Samba smb.conf file. Click on System in Control Panels and click on the Network
Identification tab. The computer name and workgroup for the Windows system will be
displayed. If none are given, or if you want to change it, click on the Properties button to open
a window where you can enter a computer name and workgroup.

To access your Samba server, click on the My Network Places icon, and then the Computers
Near Me icon. On Windows XP, you can open the My Computer window and select the
Computers Near Me entry on the left panel. Your Samba server will then show up. Double-
click it to display the shares available on your Samba server. You can also click the Entire
Network icon and choose to show entire contents. Click the Microsoft Windows Network
icon and then your Workgroup icon. Your Samba server will be listed along with your
Windows client.

If you specified share-level security in your smb.conf file (or on the Globals page of SWAT),
the shares available to you will be displayed. Normally you would use share-level security if
you are supporting resources like printers that you do not want to require users to log in for
each time they use them.

If you specified the user-level security in the smb.conf file or the SWAT Globals page, then a
dialog will first appear that will prompt you for a user name and password. You need to be
logged in on Windows as the same user that you will be using to access the Samba server. If
you want to access the Samba server as the aleina user, you need to be logged in as the aleina
user on your Windows system.

To see what resources on your Windows client can be shared, double-click the icon for your
client in the Workgroup or Computers Near Me window. Any resources such as printers or
folders that you specified should be shared will be listed.

To use a printer connected to the Samba server, the Windows client first has to connect to it.
Click the printer's icon in the Samba server's window and select Connect. The first time you
do this, you will be prompted to configure the printer for use on your Windows system. A
window will let you select the driver needed for that printer. Now, when you print in a
application, you can choose the remote Linux printer from your list of available printers. For
example, to use a printer on a Samba server named myhp, click the myhp icon in the Samba
server window and select connect. You will be asked to specify the driver to use for this
printer. If it is an HP printer, select its model. The appropriate Windows driver for that printer
will be installed on the Windows client. Now when you print, you can select the myhp printer
and have your document printed on that Linux printer. For example, if the Samba server's
name is rabbit and the printer's name is myhp, you will see an entry like this among your list
of printers.

\\rabbit\myhp

Mounting Linux Shares and Printers on Windows Clients

Your Samba shares and printers will appear in your Window network window. You can
access them through here. You could also mount a share as a disk on your Windows system.
The share will appear with a disk label, just as your other disks are listed. You can mount
shares either with a net command entered on a command window or by right-clicking the
share and selecting "Map Network Drive". As noted previously, selecting Map Network Drive
will open a window where you can choose a disk label to use for the share. You can also
specify if you want to have the share automatically mounted as that disk whenever you log in.

With the net command, you give a share a disk label with which you can reference it on your
Windows system. The syntax for the command is as follows (notice that backslashes are used
on Windows instead of the forward slashes used on Linux):

net use label: \\server\service

For example, to mount the myprojects directory on the Samba server turtle.mytrek.com as
the h: disk, you would use the following command.

net use h: \\turtle.mytrek.com\myprojects

To print, you would specify the remote printer and the local port to use it as follows:

net use lpt1: \\turtle.trek.com\myhp

Then use the print command to print a file:

print filename

Sharing Windows Directories and Printers

To manage directory shares, open the Computer Management tool in the Administrative
window in Control Panels. Click on Shared Folders and there you can see the Shares,
Sessions, and Open folders. To add a new share, click on the Shares folder and then click the
Action menu and select New File Share. The Sessions and Open folders' Action menus let you
disconnect active sessions and folders.

To allow share-level open access by users on other clients or on the Samba server, be sure to
enable the guest user on your Windows client. They are not enabled by default. Access the
Users and Passwords tool in the Control Panels to a set up the guest user. Guest access is
particularly important for providing access to a printer connected to a Windows client. The
Linux system that wants to access a printer on Windows will configure the printer on its own
system as a remote Samba printer. Users normally access the printer as the guest user. For the
Linux system to access the Windows printer, that Windows system has to have a guest user.

To share a printer, locate the printer in the Printers window and right-click it, selecting the
Sharing As option. This opens the Sharing panel where you can click the Shared As button
and enter the name under which the printer will be known by other hosts. For example, on the
Windows client named lizard, to have a printer called Epson Stylus Color shared as myepson,
the Sharing panel for this printer would have the Shared As button selected and the name
myepson entered. Then when the user double-clicks the lizard icon in the Computers Near Me
window, the printer icon labeled myepson will appear.

For a Linux system to use this printer, it will have be first configured as a remote Windows
printer on that Linux system. You can do this easily with printconf. You give the printer a
name by which it is known on your Linux system. Then you will enter the Windows client
computer name, the name of the printer as it is accessed on the Windows client, along with
the user name for access (usually guest). Once configured, your printing commands can
access it using just the printer name, as they would any other printer. For example, the
myepson printer installed on the Windows client has to also be installed on the Linux system
operating as the Samba server (see Figure 38-8). Using printconf, you can give the printer the
same name, if you wish, and then in the Queue Type panel select Windows Printer (SMB
Share). For Share, you enter //lizard/myepson, for User enter guest, and for Workgroup enter
the Windows client's workgroup (usually WORKGROUP).

Figure 38-8: A Windows printer on Linux, printconf

Once installed, you can restart the lpd server. Then an lpr command can access the remote
Windows printer directly. The next example prints the mydoc file on the Windows client's
Epson printer.

lpr –P myepson mydoc

To share a directory, right-click on the directory and select Sharing from the pop-up menu
(Sharing and Security on Windows XP). Click "Share this folder" and then enter the share
name, the name by which the directory will be known by Samba. You can also specify
whether you want to allow others to change files on the share. You can also specify a user
limit (maximum allowed is the default). You can further click on the Permissions button to
control access by users. Here, you can specify which users will have access, as well as the
type of access. For example, you could allow only read access to the directory.

Chapter 39: Administering TCP/IP
Networks
Overview

Linux systems are configured to connect into networks that use the TCP/IP protocols. These
are the same protocols that the Internet uses, as do many local area networks (LANs). In
Chapter 23, you were introduced to TCP/IP, a robust set of protocols designed to provide
communications among systems with different operating systems and hardware. The TCP/IP
protocols were developed in the 1970s as a special DARPA project to enhance
communications between universities and research centers. These protocols were originally
developed on Unix systems, with much of the research carried out at the University of
California, Berkeley. Linux, as a version of Unix, benefits from much of this original focus on
Unix. Currently, the TCP/IP protocol development is managed by the Internet Engineering
Task Force (IETF), which, in turn, is supervised by the Internet Society (ISOC). The ISOC
oversees several groups responsible for different areas of Internet development, such as the
Internet Assigned Numbers Authority (IANA), which is responsible for Internet addressing
(see Table 39-1). Over the years, TCP/IP protocol standards and documentation have been

issued in the form of Requests for Comments (RFC) documents. Check the most recent ones
for current developments at the IETF Web site at www.ietf.org.

Table 39-1: TCP/IP Protocol Development Groups
Group Title Description
ISOC Internet Society Professional membership organization of

Internet experts that oversees boards and task
forces dealing with network policy issues
www.isoc.org

IESG The Internet Engineering
Steering Group

Responsible for technical management of
IETF activities and the Internet standards
process www.ietf.org/iesg.html

IANA Internet Assigned Numbers
Authority

Responsible for Internet Protocol (IP)
addresses www.iana.org

IAB Internet Architecture Board Defines the overall architecture of the
Internet, providing guidance and broad
direction to the IETF www.iab.org

IETF Internet Engineering Task
Force

Protocol engineering and development arm
of the Internet www.ietf.org

The TCP/IP protocol suite actually consists of different protocols, each designed for a specific
task in a TCP/IP network. The three basic protocols are the Transmission Control Protocol
(TCP), which handles receiving and sending out communications, the Internet Protocol (IP),
which handles the actual transmissions, and the User Datagram Protocol (UPD), which also
handles receiving and sending packets. The IP protocol, which is the base protocol that all
others use, handles the actual transmissions, handling the packets of data with sender and
receiver information in each. The TCP protocol is designed to work with cohesive messages
or data. This protocol checks received packets and sorts them into their designated order,
forming the original message. For data sent out, the TCP protocol breaks the data into
separate packets, designating their order. The UDP protocol, meant to work on a much more
raw level, also breaks down data into packets, but does not check their order. The TCP/IP
protocol is designed to provide stable and reliable connections that ensure that all data is
received and reorganized into its original order. UDP, on the other hand, is designed to simply
send as much data as possible, with no guarantee that packets will all be received or placed in
the proper order. UDP is often used for transmitting very large amounts of data of the type
that can survive the loss of a few packets—for example, temporary images, video, and
banners displayed on the Internet.

Other protocols provide various network and user services. For example, the Domain Name
Service (DNS) provides address resolution. The File Transfer Protocol (FTP) provides file
transmission, and Network File System (NFS) provides access to remote file systems. Table
39-2 lists the different protocols in the TCP/IP protocol suite. These protocols make use of
either the TCP or UDP protocol to send and receive packets, which, in turn, uses the IP
protocol for actually transmitting the packets.

Table 39-2: TCP/IP Protocol Suite
Transport Description

Table 39-2: TCP/IP Protocol Suite
Transport Description
TCP Transmission Control Protocol; places systems in direct

communication
UDP User Datagram Protocol
IP Internet Protocol; transmits data
ICMP Internet Control Message Protocol; status messages for IP
Routing Description
RIP Routing Information Protocol; determines routing
OSPF Open Shortest Path First; determines routing
Network Addresses Description
ARP Address Resolution Protocol; determines unique IP address of

systems
DNS Domain Name Service; translates hostnames into IP addresses
RARP Reverse Address Resolution Protocol; determines addresses of

systems
User Services Description
FTP File Transfer Protocol; transmits files from one system to another

using TCP
TFTP Trivial File Transfer Protocol; transfers files using UDP
TELNET Remote login to another system on the network
SMTP Simple Mail Transfer Protocol; transfers e-mail between systems
RPC Remote Procedure Call; allows programs on remote systems to

communicate
Gateway Description
EGP Exterior Gateway Protocol; provides routing for external

networks
GGP Gateway-to-Gateway Protocol; provides routing between

Internet gateways
IGP Interior Gateway Protocol; provides routing for internal networks
Network Services Description
NFS Network File System; allows mounting of file systems on remote

machines
NIS Network Information Service; maintains user accounts across a

network
BOOTP Boot Protocol; starts system using boot information on server for

network
SNMP Simple Network Management Protocol; provides status

messages on TCP/IP configuration
DHCP Dynamic Host Configuration Protocol; automatically provides

network configuration information to host systems

In a TCP/IP network, messages are broken into small components, called datagrams, which
are then transmitted through various interlocking routes and delivered to their destination
computers. Once received, the datagrams are reassembled into the original message.
Datagrams themselves can be broken down into smaller packets. The packet is the physical
message unit actually transmitted among networks. Sending messages as small components
has proved to be far more reliable and faster than sending them as one large, bulky
transmission. With small components, if one is lost or damaged, only that component must be
resent, whereas if any part of a large transmission is corrupted or lost, the entire message has
to be resent.

The configuration of a TCP/IP network on your Linux system is implemented using a set of
network configuration files (Table 39-5 provides a complete listing). Many of these can be
managed using administrative programs, such as Linuxconf or netcfg, on your root user
desktop (see Chapter 29). You can also use the more specialized programs, such as netstat,
ifconfig, and route. Some configuration files are easy to modify yourself using a text editor.

TCP/IP networks are configured and managed with a set of utilities: ifconfig, route, and
netstat. The ifconfig utility operates from your root user desktop and enables you to configure
your network interfaces fully, adding new ones and modifying others. The ifconfig and route
utilities are lower-level programs that require more specific knowledge of your network to use
effectively. The netstat utility provides you with information about the status of your network
connections.

IPv4 and IPv6

Traditionally, a TCP/IP address is organized into four segments, consisting of numbers
separated by periods. This is called the IP address. The IP address actually represents a 32-bit
integer whose binary values identify the network and host. This form of IP addressing adheres
to Internet Protocol, version 4, also known as IPv4. IPv4, the kind of IP addressing described
here, is still in wide use.

Currently, a new version of the IP protocol called Internet Protocol, version 6 (IPv6) is
gradually replacing the older IPv4 version. IPv6 expands the number of possible IP addresses
using a 128-bit address. It is fully compatible with systems still using IPv4. IPv6 addresses
are represented differently, using a set of eight 16-bit segments, each separated by a colon.
Each segment is represented by a hexadecimal number. A sample address would be

FEDC:0:0:200C:800:BA98:7654:3210

IPv6 features simplified headers that allow for faster processing. It also provides support for
encryption and authentication. Its most significant advantage is extending the address space to
cover 2 to the power of 128 possible hosts (billions of billions of billions—a lot). This
extends far beyond the 4.2 billion supported by IPv4.

TCP/IP Network Addresses

As noted previously, the traditional IPv4 TCP/IP address is organized into four segments,
consisting of numbers separated by periods. This kind of address is still in wide use and is
what people commonly refer to as an IP address. Part of an IP address is used for the network
address, and the other part is used to identify a particular interface on a host in that network.

You should realize that IP addresses are assigned to interfaces—such as Ethernet cards or
modems—and not to the host computer. Usually a computer has only one interface and is
accessed using only that interface's IP address. In that regard, an IP address can be thought of
as identifying a particular host system on a network, and so the IP address is usually referred
to as the host address.

In fact, though, a host system could have several interfaces, each with its own IP address. This
is the case for computers that operate as gateways and firewalls from the local network to the
Internet. One interface usually connects to the LAN and another to the Internet, as by two
Ethernet cards. Each interface (such as an Ethernet card) has its own IP address. For example,
when you use Linuxconf to specify an IP address for an Ethernet card on your system, the
panel for entering your IP address is labeled as Adaptor 1, and three other panels are there for
other Ethernet cards that have their own IP addresses. Currently, the Linux kernel can support
up to four network adapters. If you use a modem to connect to an ISP, you would set up a PPP
interface that would also have its own IP address (usually dynamically assigned by the ISP).
Remembering this distinction is important if you plan to use Linux to set up a local or home
network, using Linux as your gateway machine to the Internet (see the section "IP
Masquerading" later in Chapter 40).

Network Addresses

The IP address is divided into two parts: one part identifies the network, and the other part
identifies a particular host. The network address identifies the network of which a particular
interface on a host is a part. Two methods exist for implementing the network and host parts
of an IP address: the original class-based IP addressing and the current Classless Interdomain
Routing (CIDR) addressing. Class-based IP addressing designates officially predetermined
parts of the address for the network and host addresses, whereas CIDR addressing allows the
parts to be determined dynamically using a netmask.

Class-Based IP Addressing

Originally, IP addresses were organized according to classes. On the Internet, networks are
organized into three classes depending on their size—classes A, B, and C. A class A network
uses only the first segment for the network address and the remaining three for the host,
allowing a great many computers to be connected to the same network. Most IP addresses
reference smaller, class C, networks. For a class C network, the first three segments are used
to identify the network, and only the last segment identifies the host. Altogether, this forms a
unique address with which to identify any network interface on computers in a TCP/IP
network. For example, in the IP address 192.168.1.72, the network part is 192.168.1 and the
interface/host part is 72. The interface/host is a part of a network whose own address is
192.168.1.0.

In a class C network, the first three numbers identify the network part of the IP address. This
part is divided into three network numbers, each identifying a subnet. Networks on the
Internet are organized into subnets, beginning with the largest and narrowing to small
subnetworks. The last number is used to identify a particular computer, referred to as a host.
You can think of the Internet as a series of networks with subnetworks; these subnetworks
have their own subnetworks. The rightmost number identifies the host computer, and the
number preceding it identifies the subnetwork of which the computer is a part. The number to
the left of that identifies the network the subnetwork is part of, and so on. The Internet address

192.168.187.4 references the fourth computer connected to the network identified by the
number 187. Network 187 is a subnet to a larger network identified as 168. This larger
network is itself a subnet of the network identified as 192. Here's how it breaks down:

192.168.187.4 IP address
192.168.187 Network identification
4 Host identification

Netmask

Systems derive the network address from the host address using the netmask. You can think
of an IP address as a series of 32 binary bits, some of which are used for the network and the
remainder for the host. The netmask has the network set of bits set to 1s, with the host bits set
to 0s (see Figure 39-1). In a standard class-based IP address, all the numbers in the network
part of your host address are set to 255, and the host part is set to 0. This has the effect of
setting all the binary bits making up the network address to 1s. This, then, is your netmask.
So, the netmask for the host address 192.168.1.72 is 255.255.255.0. The network part,
192.168.1, has been set to 255.255.255, and the host part, 72, has been set to 0. Systems can
then use your netmask to derive your network address from your host address. They can
determine what part of your host address makes up your network address and what those
numbers are.

Figure 39-1: Class-based netmask operations

For those familiar with computer programming, a bitwise AND operation on the netmask and
the host address results in zeroing the host part, leaving you with the network part of the host
address. You can think of the address as being implemented as a four-byte integer with each
byte corresponding to a segment of the address. In a class C address, the three network
segments correspond to the first three bytes and the host segment corresponds to the fourth
byte. A netmask is designed to mask out the host part of the address, leaving the network
segments alone. In the netmask for a standard class C network, the first three bytes are all 1s
and the last byte consists of 0s. The 0s in the last byte mask out the host part of the address,
and the 1s in the first three bytes leave the network part of the address alone. Figure 39-1
shows the bitwise operation of the netmask on the address 192.168.1.4. This is a class C
address to the mask, which consists of twenty-four 1s making up the first three bytes and eight

0s making up the last byte. When it is applied to the address 192.168.1.4, the network address
remains (192.168.1) and the host address is masked out (4), giving you 192.168.1.0 as the
network address.

The netmask as used in Classless Interdomain Routing (CIDR) is much more flexible. Instead
of having the size of the network address and its mask determined by the network class, it is
determined by a number attached to the end of the IP address. This number simply specifies
the size of the network address, how many bits in the address it takes up. For example, in an
IP address whose network part takes up the first three bytes (segments), the number of bits
used for that network part is 24—eight bits to a byte (segment). Instead of using a netmask to
determine the network address, the number for the network size is attached to the end of the
address with a slash, as shown here:

192.168.1.72/24

CIDR gives you the advantage of specifying networks that are any size bits, instead of only
three possible segments. You could have a network whose addresses take up 14 bits, 22 bits,
or even 25 bits. The host address can use whatever bits are left over. An IP address with 21
bits for the network can cover host addresses using the remaining 11 bits, 0 to 2,047.

Classless Interdomain Routing (CIDR)

Currently, the class-based organization of IP addresses is being replaced by the CIDR format.
CIDR was designed for midsized networks, those between a class C and classes with numbers
of hosts greater than 256 and smaller than 65,534. A class C network–based IP address using
only one segment for hosts uses only one segment, an 8-bit integer, with a maximum value of
256. A class B network–based IP address uses two segments, which make up a 16-bit integer
whose maximum value is 65,534. You can think of an address as a 32-bit integer taking up
four bytes, where each byte is eight bits. Each segment conforms to one of the four bytes. A
class C network uses three segments, or 24 bits, to make up its network address. A class B
network, in turn, uses two segments, or 16 bits, for its address. With this scheme, allowable
host and network addresses are changed an entire byte at a time, segment to segment. With
CIDR addressing, you can define host and network addresses by bits, instead of whole
segments. For example, you can use CIDR addressing to expand the host segment from eight
bits to nine, rather than having to jump it to a class B 16 bits (two segments).

CIDR addressing notation achieves this by incorporating netmask information in the IP
address (the netmask is applied to an IP address to determine the network part of the address).
In the CIDR notation, the number of bits making up the network address is placed after the IP
address, following a slash. For example, the CIDR form of the class C 192.168.187.4 IP
address is

192.168.187.4/24

Figure 39-2 shows an example of a CIDR address and its network mask. The IP address is
192.168.1.6 with a network mask of 22 bits, 192.168.1.6/22. The network address takes up the
first 22 bits of the IP address, and the remaining 10 bits are used for the host address. The host
address is taking up the equivalent of a class-based IP address's fourth segment (8 bits) and
two bits from the third segment.

Figure 39-2: CIDR addressing

Table 39-3 lists the different CIDR network masks available along with the maximum number
of hosts. Both the short form and the full forms of the netmask are listed.

Table 39-3: CIDR Network Masks
Short Form Full Form Maximum Number of Hosts
/8 /255.0.0.0 16,777,215 (A class)
/16 /255.255.0.0 65,535 (B class)
/17 /255.255.128.0 32,767
/18 /255.255.192.0 16,383
/19 /255.255.224.0 8,191
/20 /255.255.240.0 4,095
/21 /255.255.248.0 2,047
/22 /255.255.252.0 1,023
/23 /255.255.254.0 511
/24 /255.255.255.0 255 (C class)
/25 /255.255.255.128 127
/26 /255.255.255.192 63
/27 /255.255.255.224 31
/28 /255.255.255.240 15
/29 /255.255.255.248 7
/30 /255.255.255.252 3

The network address for any standard class C IP address takes up the first three segments, 24
bits. If you want to create a network with a maximum of 512 hosts, you can give them IP
addresses where the network address is 23 bits and the host address takes up 9 bits (0–511).
The IP address notation remains the same, however, using the four 8-bit segments. This
means a given segment's number could be used for both a network address and a host address.
Segments are no longer wholly part of either the host address or the network address.
Assigning a 23-bit network address and a 9-bit host address means that the number in the
third segment is part of both the network address and the host address, the first seven bits for
the network and the last bit for the host. In this following example, the third number, 145, is
used as the end of the network address and as the beginning of the host address:

192.168.145.67/23

This situation complicates CIDR addressing, and in some cases the only way to represent the
address is to specify two or more network addresses. Check RFC 1520 at www.ietf.org for
more details.

 Note A simple way to calculate the number of hosts a network can address is to take the
number of bits in its host segment as a power of 2, then subtract 2—that is, 2 to the
number of host bits, minus 2. For example, an 8-bit host segment would be 2 to the
power of 8, which equals 256. Subtract 2, one for the broadcast address, 255, and one
for the zero value, 000, to leave you with 254 possible hosts.

CIDR also allows a network administrator to take what is officially the host part of an IP
address and break it up into subnetworks with fewer hosts. This is referred to as subnetting. A
given network will have its official IP network address recognized on the Internet or by a
larger network. The network administrator for that network could, in turn, create several
smaller networks within it using CIDR network masking. A classic example is to take a
standard class C network with 254 hosts and break it up into two smaller networks, each with
64 hosts. You do this by using a CIDR netmask to take a bit from the host part of the IP
address and use it for the subnetworks. Numbers within the range of the original 254
addresses whose first bit would be set to 1 would represent one subnet, and the others, whose
first bit would be set to 0, would constitute the remaining network. In the network whose
network address is 192.168.187.0, where the last segment is used for the hostnames, that last
host segment could be further split into two subnets, each with its own hosts. For two subnets,
you would use the first bit in the last 8-bit segment for the network. The remaining seven bits
could then be used for host addresses, giving you a range of 127 hosts per network. The
subnet whose bit is set to 0 would have a range of 1 to 127, with a CIDR netmask of 25. The
8-bit segment for the first host would be 00000001. So, the host with the address of 1 in that
network would have this IP address:

192.168.187.1/25

For the subnet where the first bit is 1, the first host would have an address of 129, with the
CIDR netmask of 25, as shown here. The 8-bit sequence for the first host would be 10000001.

192.168.187.129/25

Each subnet would have a set of 126 addresses, the first from 1 to 126, and the second from
129 to 254; 127 is the broadcast address for the first subnet, and 128 is the network address
for the second subnet. The possible subnets and their masks that you could use are shown
here.

Subnetwork CIDR Address Binary Mask
First subnet network address .0/25 00000000
Second subnet network address .128/25 10000000
First subnet broadcast address .127/25 01111111
Second subnet broadcast address .255/25 11111111
First address in first subnet .1/25 00000001
First address in second subnet .129/25 10000001
Last address in first subnet .126/25 01111110

Subnetwork CIDR Address Binary Mask
Last address in second subnet .254/25 11111110

Obtaining an IP Address

IP addresses are officially allocated by IANA, which manages all aspects of Internet
addressing (www.iana.org). IANA oversees Internet Registries (IRs), which, in turn,
maintain Internet addresses on regional and local levels. The Internet Registry for the
Americas is the American Registry for Internet Numbers (ARIN), whose Web site is at
www.arin.net. These addresses are provided to users by Internet service providers (ISPs).
You can obtain your own Internet address from an ISP, or if you are on a network already
connected to the Internet, your network administrator can assign you one. If you are using an
ISP, the ISP may temporarily assign one from a pool it has on hand with each use.

Certain numbers are reserved. The numbers 127, 0, or 255 cannot be part of an official IP
address. The number 127 is used to designate the network address for the loopback interface
on your system. The loopback interface enables users on your system to communicate with
each other within the system without having to route through a network connection. Its
network address would be 127.0.0.0 and its IP address is 127.0.0.1. For class-based IP
addressing, the number 255 is a special broadcast identifier you can use to broadcast messages
to all sites on a network. Using 255 for any part of the IP address references all nodes
connected at that level. For example, 192.168.255.255 broadcasts a message to all computers
on network 192.168, all its subnetworks, and their hosts. The address 192.168.187.255
broadcasts to every computer on the local network. If you use 0 for the network part of the
address, the host number references a computer within your local network. For example,
0.0.0.6 references the sixth computer in your local network. If you want to broadcast to all
computers on your local network, you can use the number 0.0.0.255. For CIDR IP addressing,
the broadcast address may appear much like a normal IP address. As indicated in the previous
section, CIDR addressing allows the use of any number of bits to make up the IP address for
either the network or the host part. For a broadcast address, the host part must have all its bits
set to 1 (see Figure 39-1).

A special set of numbers is reserved for use on non-Internet LANs (RFC 1918). These are
numbers that begin with the special network number 192.168 (for class C networks), as used
in these examples. If you are setting up a LAN, such as a small business or a home network,
you are free to use these numbers for your local machines. You can set up an intranet using
network cards, such as Ethernet cards and Ethernet hubs, and then configure your machines
with IP addresses starting from 192.168.1.1. The host segment can go up to 256. If you have
three machines on your home network, you could give them the addresses 192.168.1.1,
192.168.1.2, and 192.168.1.3. You can implement Internet services, such as FTP, Web, and
mail services, on your local machines and use any of the Internet tools to make use of those
services. They all use the same TCP/IP protocols used on the Internet. For example, with FTP
tools, you can transfer files among the machines on your network; with mail tools, you can
send messages from one machine to another; and with a Web browser, you can access local
Web sites that may be installed on a machine running its own Web servers. If you want to
have one of your machines connected to the Internet or some other network, you can set it up
to be a gateway machine. By convention, the gateway machine is usually given the address
192.168.1.1. With a method called IP masquerading, you can have any of the non-Internet
machines use a gateway to connect to the Internet.

Numbers are also reserved for class A and class B non-Internet local networks. Table 39-4
lists these addresses. The possible addresses available span from 0 to 255 in the host segment
of the address. For example, class B network addresses range from 172.16.0.0 to
172.31.255.255, giving you a total of 32,356 possible hosts. The class C network ranges from
192.168.0.0 to 192.168.255.255, giving you 256 possible subnetworks, each with 256
possible hosts. The network address 127.0.0.0 is reserved for a system's loopback interface,
which allows it to communicate with itself, enabling users on the same system to send
messages to each other.

Table 39-4: Non-Internet Local Network IP Addresses
Private Network Address Network Classes
10.0.0.0 Class A network
172.16.0.0 to 172.31.255.255 Class B network
192.168.0.0 Class C network
127.0.0.0 Loopback network (for system self-communication)

Broadcast Addresses

The broadcast address allows a system to send the same message to all systems on your
network at once. With class-based IP addressing, you can easily determine the broadcast
address using your host address: the broadcast address has the host part of your address set to
255. The network part remains untouched. So, the broadcast address for the host address
192.168.1.72 is 192.168.1.255 (you combine the network part of the address with 255 in the
host part). For CIDR IP addressing, you need to know the number of bits in the netmask. The
remaining bits are set to 1 (see Figure 39-3). For example, an IP address of 192.168.4.6/22 has
a broadcast address of 192.168.7.255/22. In this case, the first 22 bits are the network address
and the last 10 bits are the host part set to the broadcast value (all 1s).

Figure 39-3: Class-based and CIDR broadcast addressing

In fact, you can think of a class C broadcast address as merely a CIDR address using 24 bits
(the first three segments) for the network address, and the last eight bits (the fourth segment)
as the broadcast address. The value 255 expressed in binary terms is simply eight bits that are
all 1s. 255 is the same as 11111111.

IP Address Broadcast Address IP Broadcast Number Binary Equivalent
192.168.1.72 192.168.1.255 255 11111111
192.168.4.6/22 192.168.7.255/22 7.255 (last 2 bits in 7) 1111111111

Gateway Addresses

Some networks have a computer designated as the gateway to other networks. Every
connection to and from a network to other networks passes through this gateway computer.
Most local networks use gateways to establish a connection to the Internet. If you are on this
type of network, you must provide the gateway address. If your network does not have a
connection to the Internet, or a larger network, you may not need a gateway address. The
gateway address is the address of the host system providing the gateway service to the
network. On many networks, this host is given a host ID of 1: the gateway address for a
network with the address 192.168.1 would be 192.168.1.1, but this is only a convention. To
be sure of your gateway address, ask your network administrator.

Name Server Addresses

Many networks, including the Internet, have computers that provide a Domain Name Service
(DNS) that translates the domain names of networks and hosts into IP addresses. These are
known as the network's domain name servers. The DNS makes your computer identifiable on
a network, using only your domain name rather than your IP address. You can also use the
domain names of other systems to reference them, so you needn't know their IP addresses.
You must know the IP addresses of any domain name servers for your network, however. You
can obtain the addresses from your system administrator (often more than one exists). Even if
you are using an ISP, you must know the address of the domain name servers your ISP
operates for the Internet.

TCP/IP Configuration Files

A set of configuration files in the /etc directory, shown in Table 39-5, is used to set up and
manage your TCP/IP network. These configuration files specify such network information as
host and domain names, IP addresses, and interface options. The IP addresses and domain
names of other Internet hosts you want to access are entered in these files. If you configured
your network during installation, you can already find that information in these files. The
netcfg, Linuxconf, and the netconfig configuration tools described in the next section provide
easy interfaces for entering the configuration data for these files.

Identifying Hostnames: /etc/hosts

Without the unique IP address the TCP/IP network uses to identify computers, a particular
computer cannot be located. Because IP addresses are difficult to use or remember, domain
names are used instead. For each IP address, a domain name exists. When you use a domain
name to reference a computer on the network, your system translates it into its associated IP
address. This address can then be used by your network to locate that computer.

Originally, every computer on the network was responsible for maintaining a list of the
hostnames and their IP addresses. This list is still kept in the /etc/hosts file. When you use a
domain name, your system looks up its IP address in the hosts file. The system administrator
is responsible for maintaining this list. Because of the explosive growth of the Internet and the
development of more and more large networks, the responsibility for associating domain
names and IP addresses has been taken over by domain name servers. The hosts file is still
used to hold the domain names and IP addresses of frequently accessed hosts, however. Your

system normally checks your hosts file for the IP address of a domain name before taking the
added step of accessing a name server.

The format of a domain name entry in the hosts file is the IP address followed by the domain
name, separated by a space. You can then add aliases for the hostname. After the entry, on the
same line, you can enter a comment. A comment is always preceded by a # symbol. You can
already find an entry in your hosts file for localhost with the IP address 127.0.0.1. Localhost
is a special identification used by your computer to enable users on your system to
communicate locally with each other. The IP address 127.0.0.1 is a special reserved address
used by every computer for this purpose. It identifies what is technically referred to as a
loopback device. A sample /etc/hosts file is shown here.

/etc/hosts

127.0.0.1 turtle.mytrek.com localhost
192.168.0.1 turtle.mytrek.com
192.168.0.2 rabbit.mytrek.com
192.168.34.56 pango1.mytrain.com
202.211.234.1 rose.berkeley.edu

Network Name: /etc/networks

The /etc/networks file holds the domain names and IP addresses of networks you are
connected to, not the domain names of particular computers. Networks have shortened IP
addresses. Depending on the type of network, they use one, two, or three numbers for their IP
addresses. You also have your localhost network IP address 127.0.0.0. This is the network
address used for the loopback device.

The IP addresses are entered, followed by the network domain names. Recall that an IP
address consists of a network part and a host part. The network part is the network address
you find in the networks file. You always have an entry in this file for the network portion of
your computer's IP address. This is the network address of the network to which your
computer is connected. A sample /etc/networks file is shown here with an entry for the
mytrek.com network.

/etc/networks

loopback 127.0.0.0
mytrek.com 192.168.1.0

/etc/HOSTNAME

The /etc/HOSTNAME file holds your system's hostname. To change your hostname, you
change this entry. The netcfg program enables you to change your hostname and places the
new name in /etc/HOSTNAME. Instead of displaying this file to find your hostname, you
can use the hostname command:

$ hostname

turtle.mytrek.com

/etc/services

The /etc/services file lists network services available on your system, such as FTP and telnet,
and associates each with a particular port. Here, you can find out what port your Web server is
checking or what port is used for your FTP server. You can give a service an alias, which you
specify after the port number. You can then reference the service using the alias.

/etc/protocols

The /etc/protocols file lists the TCP/IP protocols currently supported by your system.

/etc/sysconfig/network

The /etc/sysconfig/network file contains system definitions for your network configuration.
These include definitions for your domain name, gateway, and hostname, as shown here:

NETWORKING=yes
HOSTNAME=turtle.mytrek.com
GATEWAY=192.168.0.1

Table 39-5: TCP/IP Configuration Addresses and Files
Address Description
Host address IP address of your system; it has a network part to identify

the network you are on and a host part to identify your own
system

Network address IP address of your network
Broadcast address IP address for sending messages to all hosts on your

network at once
Gateway address IP address of your gateway system, if you have one

(usually the network part of your host IP address with the
host part set to 1)

Domain name server addresses IP addresses of domain name servers your network uses
Netmask Used to determine the network and host parts of your IP

address
Files Description
/etc/hosts Associates hostnames with IP addresses
/etc/networks Associates domain names with network addresses
/etc/host.conf Lists resolver options
/etc/nsswitch.conf Name Service Switch configuration file
/etc/hosts Lists domain names for remote hosts with their IP

addresses
/etc/resolv.conf Lists domain name server names, IP addresses

(nameserver), and domain names where remote hosts may
be located (search)

Table 39-5: TCP/IP Configuration Addresses and Files
Address Description
/etc/protocols Lists protocols available on your system
/etc/services Lists available network services, such as FTP and telnet,

and the ports they use
/etc/HOSTNAME Holds the name of your system
/etc/sysconfig/network Network configuration information

Domain Name Service (DNS)

Each computer connected to a TCP/IP network, such as the Internet, is identified by its own
IP address. IP addresses are difficult to remember, so a domain name version of each IP
address is also used to identify a host. As described in Chapter 10, a domain name consists of
two parts, the hostname and the domain. The hostname is the computer's specific name, and
the domain identifies the network of which the computer is a part. The domains used for the
United States usually have extensions that identify the type of host. For example, .edu is used
for educational institutions and .com is used for businesses. International domains usually
have extensions that indicate the country they are located in, such as .de for Germany or .au
for Australia. The combination of a hostname, domain, and extension forms a unique name by
which a computer can be referenced. The domain can, in turn, be split into further
subdomains.

As you know, a computer on a network can still only be identified by its IP address, even if it
has a hostname. You can use a hostname to reference a computer on a network, but this
involves using the hostname to look up the corresponding IP address in a database. The
network then uses the IP address, not the hostname, to access the computer. Before the advent
of large TCP/IP networks, such as the Internet, it was feasible for each computer on a network
to maintain a file with a list of all the hostnames and IP addresses of the computers connected
on its network. Whenever a hostname was used, it was looked up in this file and the
corresponding IP address was located. You can still do this on your own system for remote
systems you access frequently.

As networks became larger, it became impractical—and, in the case of the Internet,
impossible—for each computer to maintain its own list of all the domain names and IP
addresses. To provide the service of translating domain addresses to IP addresses, databases
of domain names were developed and placed on their own servers. To find the IP address of a
domain name, you send a query to a name server, which then looks up the IP address for you
and sends it back. In a large network, several name servers can cover different parts of the
network. If a name server cannot find a particular IP address, it sends the query on to another
name server that is more likely to have it.

If you are administering a network and you need to set up a name server for it, you can
configure a Linux system to operate as a name server. To do so, you must start up a name
server daemon and then wait for domain name queries. A name server makes use of several
configuration files that enable it to answer requests. The name server software used on Linux
systems is the Berkeley Internet Name Domain (BIND) server distributed by the Internet
Software Consortium (www.isc.org). Chapter 18 describes the process of setting up a domain
name server in detail.

Name servers are queried by resolvers. These are programs specially designed to obtain
addresses from name servers. To use domain names on your system, you must configure your
own resolver. Your local resolver is configured with your /etc/host.conf and /etc/resolv.conf
files. You can use /etc/nsswitch in place of /etc/host.conf.

host.conf

Your host.conf file lists resolver options (shown in the following table). Each option can have
several fields, separated by spaces or tabs. You can use a # at the beginning of a line to enter a
comment. The options tell the resolver what services to use. The order of the list is important.
The resolver begins with the first option listed and moves on to the next ones in turn. You can
find the host.conf file in your /etc directory, along with other configuration files.

Option Description
order Specifies sequence of name resolution methods:

 hosts Checks for name in the local /etc/host file
 bind Queries a DNS name server for address
 nis Uses Network Information Service protocol to obtain address

alert Checks addresses of remote sites attempting to access your system; you
turn it on or off with the on and off options

nospoof Confirms addresses of remote sites attempting to access your system
trim Checks your local host's file; removes the domain name and checks

only for the hostname; enables you to use only a hostname in your host
file for an IP address

multi Checks your local hosts file; allows a host to have several IP addresses;
you turn it on or off with the on and off options

In the next example of a host.conf file, the order option instructs your resolver first to look
up names in your local /etc/hosts file, and then, if that fails, to query domain name servers.
The system does not have multiple addresses.

/etc/host.conf

host.conf file
Lookup names in host file and then check DNS
order bind host
There are no multiple addresses
multi off

/etc/nsswitch.conf: Name Service Switch

Different functions in the standard C Library must be configured to operate on your Linux
system. Previously, database-like services, such as password support and name services like
NIS or DNS, directly accessed these functions, using a fixed search order. For GNU C
Library 2.x, used on current versions of Linux, this configuration is carried out by a scheme
called the Name Service Switch (NSS), which is based on the method of the same name used

by Sun Microsystems Solaris 2 OS. The database sources and their lookup order are listed in
the /etc/nsswitch.conf file.

The /etc/nsswitch.conf file holds entries for the different configuration files that can be
controlled by NSS. The system configuration files that NSS supports are listed in Table 39-6.
An entry consists of two fields: the service and the configuration specification. The service
consists of the configuration file followed by a colon. The second field is the configuration
specification for that file, which holds instructions on how the lookup procedure will work.
The configuration specification can contain service specifications and action items. Service
specifications are the services to search. Currently, valid service specifications are nis, nis-
plus, files, db, dns, and compat (see Table 39-7). Not all are valid for each configuration file.
For example, the dns service is only valid for the hosts file, whereas nis is valid for all files.
An action item specifies the action to take for a specific service. An action item is placed
within brackets after a service. A configuration specification can list several services, each
with its own action item. In the following example, the entry for the network file has a
configuration specification that says to check the NIS service and, if not found, to check the
/etc/networks file:

networks: nis [NOTFOUND=return] files

Table 39-6: NSS Supported Files
File Description
aliases Mail aliases, used by Sendmail
ethers Ethernet numbers
group Groups of users
hosts Hostnames and numbers
netgroup Network-wide list of hosts and users, used for access rules; C libraries

before glibc 2.1 only support netgroups over NIS
network Network names and numbers
passwd User passwords
protocols Network protocols
publickey Public and secret keys for SecureRPC used by NFS and NIS+
rpc Remote procedure call names and numbers
services Network services
shadow Shadow user passwords

Table 39-7: NSS Configuration Services
Service Description
files Check corresponding /etc file for the configuration (for example,

/etc/hosts for hosts); this service is valid for all files
db Check corresponding /var/db databases for the configuration; valid

for all files except netgroup
compat Valid only for passwd, group, and shadow files
dns Check the DNS service; valid only for hosts file
nis Check the NIS service; valid for all files

Table 39-7: NSS Configuration Services
Service Description
nisplus NIS version 3
hesiod Use Hesiod for lookup

An action item consists of a status and an action. The status holds a possible result of a service
lookup, and the action is the action to take if the status is true. Currently, the possible status
values are SUCCESS, NOTFOUND, UNAVAIL, and TRYAGAIN (service temporarily
unavailable). The possible actions are return and continue: return stops the lookup process
for the configuration file, whereas continue continues on to the next listed service. In the
previous example, if the record is not found in NIS, the lookup process ends.

Shown here is a copy of the current Red Hat /etc/nsswitch.conf file. Comments and
commented-out entries begin with a # sign.

/etc/nsswitch.conf

/etc/nsswitch.conf

An example Name Service Switch config file. This file should be
sorted with the most-used services at the beginning.

The entry '[NOTFOUND=return]' means that the search for an
entry should stop if the search in the previous entry turned
up nothing. Note that if the search failed due to some other reason
(like no NIS server responding) then the search continues with the
next entry.

Legal entries are:

nisplus or nis+ Use NIS+ (NIS version 3)
nis or yp Use NIS (NIS version 2), also called YP
dns Use DNS (Domain Name Service)
files Use the local files
db Use the local database (.db) files
compat Use NIS on compat mode
hesiod Use Hesiod for user lookups
[NOTFOUND=return] Stop searching if not found so far

To use db, put the "db" in front of "files" for entries you want to
be looked up first in the databases

Example:
#passwd: db files nisplus
#shadow: db files nisplus
#group: db files nisplus

passwd: files nisplus
shadow: files nisplus
group: files nisplus

hosts: files nisplus nis dns

Example - obey only what nisplus tells us...

#services: nisplus [NOTFOUND=return] files
#networks: nisplus [NOTFOUND=return] files
#protocols: nisplus [NOTFOUND=return] files
#rpc: nisplus [NOTFOUND=return] files
#ethers: nisplus [NOTFOUND=return] files
#netmasks: nisplus [NOTFOUND=return] files

bootparams: nisplus [NOTFOUND=return] files

ethers: files
netmasks: files
networks: files
protocols: files nisplus
rpc: files
services: files nisplus

netgroup: files nisplus

publickey: nisplus

automount: files nisplus
aliases: files nisplus

Network Interfaces and Routes: ifconfig and route

Your connection to a network is made by your system through a particular hardware interface,
such as an Ethernet card or a modem. Data passing through this interface is then routed to
your network. The ifconfig command configures your network interfaces, and the route
command sets up network connections accordingly. If you configure an interface with a
network configuration tool, such as netcfg, Linuxconf, or YaST, you needn't use ifconfig or
route. If you are using another Linux system, the netconfig utility also performs the same
configuration as netcfg. However, you can directly configure interfaces using ifconfig and
route, if you want. Every time you start your system, the network interfaces and their routes
must be established. This is done automatically for you when you boot up by ifconfig and
route commands executed for each interface by the /etc/rc.d/init.d/network initialization
file, which is executed whenever you start your system. If you are manually adding your own
interfaces, you must set up the network script to perform the ifconfig and route operations for
your new interfaces.

Network Startup Script: /etc/rc.d/init.d/network and
/etc/sysconfig/network-scripts

On Red Hat, your network interface is started up using the network script in the
/etc/rc.d/init.d directory. This script will activate your network interface cards (NIC) as well
as implement configuration information such as gateway, host, and name server identities.
You can manually shut down and start your network interface using this script and the
restart, start, or stop options. You can run the script on Red Hat with the service command.
The following commands shut down and then start up your network interface:

service network stop
service network start

If you are changing network configuration, you will have to restart your network interface for
the changes to take effect:

service network restart

To test if your interface is working, use the ping command with an IP address of a system on
your network, such as your gateway machine. The ping command continually repeats until
you stop it with a CTRL-C.

ping 192.168.0.1

The /etc/rc.d/init.d/network file performs the startup operations by executing several
specialized scripts located in the /etc/sysconfig/network-scripts directory. The network
script uses a script in that directory called ifup to activate a network connection, and ifdown
to shut it down. ifup and ifdown will invoke other scripts tailored to the kind of device being
worked on, such as ifup-ppp for modems using the PPP protocol, or ifup-ipv6 for network
devices that use IP Protocol version 6 addressing.

The ifup and ifdown scripts make use of interface configuration files that bear the names of
the network interfaces currently configured such as ifcfg-eth0 for the first Ethernet device.
These files define shell variables that hold information on the interface, such as whether to
start them at boot time. For example, the ifcfg-eth0 file holds definitions for NETWORK,
BROADCAST, and IPADDR, which are assigned the network, broadcast, and IP addresses
that the device uses.

The ifdown and ifup scripts, in turn, hold the ifconfig and route commands to activate scripts
using these variables defined in the interface configuration files. If you want to manually start
up an interface with ifup, you simply use the interface configuration file as its argument. The
following command starts up the second Ethernet card:

cd /etc/sysconfig/network-scripts
ifup ifcfg-eth1

Interface configuration files are automatically generated when you configure your network
connections, say with netcfg, rp3, or Linuxconf. You can also manually edit these interface
configuration files, making changes such as whether to start up the interface at boot or not
(though using a configuration tool like netcfg is easier). A sample ifcfg-eth0 file is shown
here.

/etc/sysconfig/network-scripts/ifcfg-eth0

DEVICE=eth0
BOOTPROTO=static
BROADCAST=192.168.0.255
IPADDR=192.168.0.1
NETMASK=255.255.255.0
NETWORK=192.168.0.0
ONBOOT=yes

ifconfig

The ifconfig command takes as its arguments the name of an interface and an IP address, as
well as options. The ifconfig command then assigns the IP address to the interface. Your

system now knows that such an interface exists and that it references a particular IP address.
In addition, you can specify whether the IP address is a host address or a network address.
You can use a domain name for the IP address, provided the domain name is listed along with
its IP address in the /etc/hosts file. The syntax for the ifconfig command is as follows:

ifconfig interface -host_net_flag address options

The host_net_flag can be either -host or -net to indicate a host or network IP address. The -
host flag is the default. The ifconfig command can have several options, which set different
features of the interface, such as the maximum number of bytes it can transfer (mtu) or the
broadcast address. The up and down options activate and deactivate the interface. In the next
example, the ifconfig command configures an Ethernet interface:

ifconfig eth0 192.168.0.1

For a simple configuration such as this, ifconfig automatically generates a standard broadcast
address and netmask. The standard broadcast address is the network address with the number
255 for the host address. For a class C network, the standard netmask is 255.255.255.0,
whereas for a class A network, the standard netmask is 255.0.0.0. If you are connected to a
network with a particular netmask and broadcast address, however, you must specify them
when you use ifconfig. The option for specifying the broadcast address is broadcast; for the
network mask, it is netmask. Table 39-8 lists the different ifconfig options. In the next
example, ifconfig includes the netmask and broadcast address:

ifconfig eth0 192.168.0.1 broadcast 192.168.0.255 netmask 255.255.255.0

Table 39-8: The ifconfig Options
Option Description
Interface Name of the network interface, such as eth0 for the first Ethernet

device or ppp0 for the first PPP device (modem)
aftype Address family for decoding protocol addresses; default is inet,

currently used by Linux
up Activates an interface; implied if IP address is specified
down Deactivates an interface
-arp Turns ARP on or off; preceding -turns it off
-trailers Turns on or off trailers in Ethernet frames; preceding - turns it off
-allmulti Turns on or off the promiscuous mode; preceding - turns it off-

this allows network monitoring
metric n Cost for interface routing (not currently supported)
mtu n Maximum number of bytes that can be sent on this interface per

transmission
dstaddr address Destination IP address on a point-to-point connection
netmask address IP network mask; preceding - turns it off
broadcast address Broadcast address; preceding - turns it off
point-to-
point address

Point-to-point mode for interface; if address is included, it is
assigned to remote system

Table 39-8: The ifconfig Options
Option Description
hw Sets hardware address of interface
Address IP address assigned to interface

Once you configure your interface, you can use ifconfig with the up option to activate it and
with the down option to deactivate it. If you specify an IP address in an ifconfig operation, as
in the previous example, the up option is implied.

ifconfig eth0 up

Point-to-point interfaces such as Parallel IP (PLIP), Serial Line IP (SLIP), and Point-to-Point
Protocol (PPP) require you to include the pointopoint option. A PLIP interface name is
identified with the name plip with an attached number. For example, plip0 is the first PLIP
interface. SLIP interfaces use slip0. PPP interfaces start with ppp0. Point-to-point interfaces
are those that usually operate between only two hosts, such as two computers connected over
a modem. When you specify the pointopoint option, you need to include the IP address of the
host. In the next example, a PLIP interface is configured that connects the computer at IP
address 192.168.1.72 with one at 204.166.254.14. If domain addresses were listed for these
systems in /etc/hosts, those domain names could be used in place of the IP addresses.

ifconfig plip0 192.168.1.72 pointopoint 204.166.254.14

If you need to, you can also use ifconfig to configure your loopback device. The name of the
loopback device is lo, and its IP address is the special address 127.0.0.1. The following
example shows the configuration:

ifconfig lo 127.0.0.1

The ifconfig command is useful for checking on the status of an interface. If you enter the
ifconfig command, along with the name of the interface, information about that interface is
displayed:

ifconfig eth0

To see if your loopback interface is configured, you can use ifconfig with the loopback
interface name, lo:

ifconfig lo

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Bcast:127.255.255.255 Mask:255.0.0.0
 UP BROADCAST LOOPBACK RUNNING MTU:2000 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0
 TX packets:12 errors:0 dropped:0 overruns:0

Routing

A packet that is part of a transmission takes a certain route to reach its destination. On a large
network, packets are transmitted from one computer to another until the destination computer
is reached. The route determines where the process starts and to what computer your system

needs to send the packet for it to reach its destination. On small networks, routing may be
static—that is, the route from one system to another is fixed. One system knows how to reach
another, moving through fixed paths. On larger networks and on the Internet, however,
routing is dynamic. Your system knows the first computer to send its packet off to, and then
that computer takes the packet from there, passing it on to another computer, which then
determines where to pass it on. For dynamic routing, your system needs to know little. Static
routing, however, can become complex because you have to keep track of all the network
connections.

Your routes are listed in your routing table in the /proc/net/route file. To display the routing
table, enter route with no arguments (the netstat -r command will also display the routing
table):

route
Kernel routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
loopback * 255.0.0.0 U 0 0 12 lo
pango1.train.com * 255.255.255.0 U 0 0 0 eth0

Each entry in the routing table has several fields, providing information such as the route
destination and the type of interface used. The different fields are listed in the following table:

Field Description
Destination Destination IP address of the route
Gateway IP address or hostname of the gateway the route uses; * indicates no

gateway is used
Genmask The netmask for the route
Flags Type of route: U = up, H = host, G = gateway, D = dynamic, M =

modified
Metric Metric cost of route
Ref Number of routes that depend on this one
Window TCP window for AX.25 networks
Use Number of times used
Iface Type of interface this route uses

You should have at least one entry in the routing table for the loopback interface. If not, you
must route the loopback interface using the route command. The IP address for an interface
has to be added to the routing table before you can use that interface. You add an address with
the route command and the add option:

route add address

The next example adds the IP address for the loopback interface to the routing table:

route add 127.0.0.1

With the add argument, you can add routes either for networks with the –net option or with
the –host option for IP interfaces (hosts). The –host option is the default. In addition, you can

then specify several parameters for information, such as the netmask (netmask), the gateway
(gw), the interface device (dev), and the default route (default). If you have more than one IP
interface on your system, such as several Ethernet cards, you must specify the name of the
interface using the dev parameter. If your network has a gateway host, you use the gw
parameter to specify it. If your system is connected to a network, at least one entry should be
in your routing table that specifies the default route. This is the route taken by a message
packet when no other route entry leads to its destination. The following example is the routing
of an Ethernet interface:

route add 192.168.1.2 dev eth0

If your system has only the single Ethernet device as your IP interface, you could leave out
the dev eth0 parameter:

route add 192.168.1.2

You can delete any route you establish by invoking ifconfig with the del argument and the IP
address of that route, as in this example:

route del 192.168.1.2

You also need to add routes for networks that an IP interface can access. For this, you use the
–net option. In this example, a route is set up for a system's LAN at 192.168.1.0:

route add -net 192.168.1.0 dev eth0

For a gateway, you first add a route to the gateway interface, and then add a route specifying
that it is a gateway. The address of the gateway interface in this example is 192.168.1.1:

route add 192.168.1.1
route add default gw 192.168.1.1

If you are using the gateway to access a subnet, add the network address for that network (in
this example, 192.168.23.0):

 # route add –net 192.168.23.0 gw dev eth1

To add another IP address to a different network interface on your system, use the ifconfig
and route commands with the new IP address. The following command configures a second
Ethernet card (eth1) with the IP address 192.168.1.3:

ifconfig eth1 192.168.1.3
route add 192.168.1.3 dev eth1

Monitoring Your Network: ping and netstat

With the ping program, you can check to see if you can actually access another host on your
network. The ping program sends a request to the host for a reply. The host then sends a reply
back, and it is displayed on your screen. The ping program continually sends such a request
until you stop it with a break command, a CTRL-C. You see one reply after another scroll by
on your screen until you stop the program. If ping cannot access a host, it issues a message
saying the host is unreachable. If ping fails, this may be an indication that your network

connection is not working. It may only be the particular interface, a basic configuration
problem, or a bad physical connection. ping uses the Internet Control Message Protocol
(ICMP) discussed in Chapter 40. Networks may block these protocols as a security measure,
also preventing ping from working. A ping failure may simply indicate a security precaution
on the part of the queried network.

To use ping, enter ping and the name of the host. You can also use the KDE network utilities
on the KDE desktop and gfinger on the Gnome desktop (see Chapter 21).

$ ping ftp.redhat.com

The netstat program provides real-time information on the status of your network connections,
as well as network statistics and the routing table. The netstat program has several options you
can use to bring up different sorts of information about your network (see Table 38-9):

netstat
Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address (State) User
tcp 0 0 turtle.mytrek.com:01 pango1.mytrain.com.:ftp ESTABLISHED dylan
Active UNIX domain sockets
Proto RefCnt Flags Type State Path
unix 1 [ACC] SOCK_STREAM LISTENING /dev/printer
unix 2 [] SOCK_STREAM CONNECTED /dev/log
unix 1 [ACC] SOCK_STREAM LISTENING /dev/nwapi
unix 2 [] SOCK_STREAM CONNECTED /dev/log
unix 2 [] SOCK_STREAM CONNECTED
unix 1 [ACC] SOCK_STREAM LISTENING /dev/log

The netstat command with no options lists the network connections on your system. First,
active TCP connections are listed, and then the active domain sockets are listed. The domain
sockets contain processes used to set up communications among your system and other
systems. The various fields are described in the following table. You can use netstat with the
-r option to display the routing table, and netstat with the -i option displays the uses of the
different network interfaces.

Table 39-9: The netstat Options
Option Description
-a Displays information about all Internet sockets, including those

sockets that are only listening
-i Displays statistics for all network devices
-c Displays network status continually every second until the program is

interrupted
-n Displays remote and local addresses as IP addresses
-o Displays timer states, expiration times, and backoff state for network

connections
-r Displays the kernel routing table
-t Displays information about TCP sockets only, including those that

are listening
-u Displays information about UDP sockets only

Table 39-9: The netstat Options
Option Description
-v Displays version information
-w Displays information about raw sockets only
-x Displays information about Unix domain sockets

IP Aliasing

In some cases, you may want to assign a single Linux system that has only one network
interface to two or more IP addresses. For example, you may want to run different Web sites
that can be accessed with separate IP addresses on this same system. In effect, you are setting
up an alias for your system, another address by which it can be accessed. In fact, you are
assigning two IP addresses to the same network interface—for example, assigning a single
Ethernet card two IP addresses. This procedure is referred to as IP aliasing and is used to set
up multiple IP-based virtual hosts for Internet servers. This method enables you to run several
Web servers on the same machine using a single interface (or more than one on each of
several interfaces). See Chapters 23 and 24 for FTP and Web server information about virtual
hosts, and Chapter 25 for Domain Name Service configuration.

Setting up an IP alias is a simple matter of configuring a network interface on your system to
listen for the added IP address. Your system needs to know what IP addresses it should listen
for and on what network interface. You set up IP aliases using either Linuxconf or the
ifconfig and route commands. For Linuxconf, select the IP aliases for virtual hosts under
Server tasks. This opens a panel that lists available interfaces. Click one to open a panel
where you can enter added IP addresses for it.

To add another address to the same interface, you need to qualify the interface by adding a
colon and a number. For example, if you are adding another IP address to the first Ethernet
card (eth0), you would add a :0 to its interface name, eth0:0. The following example shows
the ifconfig and route commands for the Ethernet interface 192.168.1.2 and two IP aliases
added to it: 192.168.1.100 and 192.168.1.101. To add yet another IP address to this same
interface, you would use eth0:1, incrementing the qualifier, and so on. The first ifconfig
command assigns the main IP address, 192.168.1.2, to the first Ethernet device, eth0. Then,
two other IP addresses are assigned to that same device. In the first route command, the
network route is set up for the Ethernet device, and then routes are set up for each IP
interface. The interfaces for the two aliases are indicated with eth0:0 and eth0:1:

ifconfig eth0 192.168.1.2
ifconfig eth0:0 192.168.1.100
ifconfig eth0:1 192.168.1.101
route add -net 192.168.1.0 dev eth0
route add -host 192.168.1.2 dev eth0
route add -host 192.168.1.100 dev eth0:0
route add -host 192.168.1.101 dev eth0:1

IP aliasing must be supported by the kernel before you can use it. If your kernel does not
support it, you may have to rebuild the kernel (including IP aliasing support), or use loadable
modules to add IP aliasing.

Chapter 40: Network Security: Firewalls,
Encryption, and Authentication
Overview

Most systems currently connected to the Internet are open to attempts by outside users to gain
unauthorized access. Outside users can try either to gain access directly by setting up an
illegal connection, by intercepting valid communications from users remotely connected to
the system, or by pretending to be a valid users. Firewalls, encryption, and authentication
procedures are ways of protecting against such attacks. A firewall prevents any direct
unauthorized attempts at access, encryption protects transmissions from authorized remote
users, and authentication verifies that a user requesting access has the right to do so. The
current Linux kernel incorporates support for firewalls using the Netfilter (iptables) packet
filtering package (the previous version, ipchains, is used on older systems). To implement a
firewall, you simply provide a series of rules to govern what kind of access you want to allow
on your system. If that system is also a gateway for a private network, the system's firewall
capability can effectively help protect the network from outside attacks. To provide protection
for remote communications, transmission can be simply encrypted. For Linux systems, you
can use the Secure Shell (SSH) suite of programs to encrypt any transmissions, preventing
them from being read by anyone else. The SSH programs are meant to replace the remote
tools such as rsh and rcp (see Chapter 21), which perform no encryption and include security
risks such as transmitting passwords in clear text. In addition, Kerberos authentication
provides another level of security whereby individual services can be protected, allowing use
of a service only to users who are cleared for access. Table 40-1 lists several network security
applications commonly used on Linux.

Table 40-1: Network Security Applications
Web Site Security Application
netfilter.samba.org Netfilter project, iptables, and NAT
netfilter.samba.org/ipchains IP-Chains firewall
www.openssh.org Secure Shell encryption
www.squid.org Squid Web Proxy server
web.mit.edu/kerberos Kerberos network authentication

Outside users may also try to gain unauthorized access through any Internet services you may
be hosting, such as a Web site. In such a case, you can set up a proxy to protect your site from
attack. For Linux systems, use Squid proxy software to set up a proxy to protect your Web
server (see Chapter 28).

Firewalls: iptables and NAT

A good foundation for your network's security is to set up a Linux system to operate as a
firewall for your network, protecting it from unauthorized access. You can use a firewall to
implement either packet filtering or proxies. Packet filtering is simply the process of deciding
whether a packet received by the firewall host should be passed on into the local network. The

packet-filtering software checks the source and destination addresses of the packet and sends
the packet on, if it's allowed. Even if your system is not part of a network but connects
directly to the Internet, you can still use the firewall feature to control access to your system.
Of course, this also provides you with much more security.

With proxies, you can control access to specific services, such as Web or FTP servers. You
need a proxy for each service you want to control. The Web server has its own Web proxy,
while an FTP server has an FTP proxy. Proxies can also be used to cache commonly used
data, such as Web pages, so that users needn't constantly access the originating site. The
proxy software commonly used on Linux systems is Squid, discussed in Chapter 27.

An additional task performed by firewalls is Network Address Translation (NAT). Network
Address Translation redirects packets to appropriate destinations. It performs tasks such as
redirecting packets to certain hosts, forwarding packets to other networks, and changing the
host source of packets to implement IP masquerading.

 Note ipchains was used to implement packet filtering and NAT tasks on firewalls for the
Linux 2.2 kernel and earlier.

The Netfilter software package implements both packet filtering and NAT tasks for the Linux
2.4 kernel and above. The Netfilter software is developed by the Netfilter Project, which you
can find out more about at netfilter.samba.org. The command used to execute packet
filtering and NAT tasks is iptables, and the software is commonly referred to as simply
iptables. However, Netfilter implements packet filtering and NAT tasks separately using
different tables and commands. A table will hold the set of commands for its application. This
approach streamlines the packet-filtering task, letting iptables perform packet-filtering checks
without the overhead of also having to address translations. NAT operations are also freed
from being mixed in with packet-filtering checks. You use the iptables command for both
packet filtering and NAT tasks, but for NAT you add the -nat option.

The iptables software can be built directly into the 2.4 kernel or loaded as a kernel module,
iptable_filter.o. Unlike its predecessor, ipchains, Netfilter is designed to be modularized and
extensible. Capabilities can be added in the form of modules such as the state module, which
adds connection tracking.

Iptables includes backward-compatible modules for both ipfwadm and ipchains. In fact,
iptables is very similar to ipchains. You can still use ipchains and the earlier ipfwadm
commands by loading the ipchains.o or ipfwadm.o modules provided with the Netfilter
software. These provide full backward compatibility. For the sake of older systems, ipchains
is also discussed here.

Packet Filtering

Netfilter is essentially a framework for packet management that can check packets for
particular network protocols and notify parts of the kernel listening for them. Built on the
Netfilter framework is the packet selection system implemented by IP Tables. With IP Tables,
different tables of rules can be set up to select packets according to differing criteria. Packet
filtering is implemented using a filter table that holds rules for dropping or accepting packets.
Network Address Translation operations such as IP masquerading are implemented using the
NAT table that holds IP masquerading rules. Preroute packet mangling uses the mangle table.

This structure is extensible in that new modules can define their own tables with their own
rules. It also greatly improves efficiency. Instead of all packets checking one large table, they
only access the table of rules they need to.

IP Tables rules are managed using the iptables command. For this command, you will need to
specify the table you want to manage. The default is the filter table, which need not be
specified. You can list the rules you have added at any time with the –L and –n options, as
shown here. The –n option says to use only numeric output for both IP addresses and ports,
avoiding a DNS lookup for hostnames. You could, however, just use the –L option to see the
port labels and hostnames:

iptables –L -n
 Note In iptables' commands, chain names have to be entered in uppercase. This means that

the chain names INPUT, OUTPUT, and FORWARD have to be written in uppercase.

Packet-filtering rules are very similar to those used in ipchains with few exceptions. Rules are
combined into different chains. The kernel uses chains to manage packets it receives and
sends out. A chain is simply a checklist of rules. These rules specify what action to take for
packets containing certain headers. The rules operate with an if-then-else structure. If a packet
does not match the first rule, the next rule is then checked, and so on. If the packet does not
match any rules, then the kernel consults chain policy. Usually, at this point the packet is
rejected. If the packet does match a rule, it is passed to its target, which determines what to do
with the packet. The standard targets are listed in Table 40-2. If a packet does not match any
of the rules, it is passed to the chain's default target.

Table 40-2: iptables Targets
Target Function
ACCEPT Allows packet to pass through the firewall
DROP Denies access by the packet (same as DENY in ipchains)
REJECT Denies access and notifies the sender
QUEUE Sends packets to user space
RETURN Jumps to the end of the chain and lets the default target process it

A target could, in turn, be another chain of rules, even a chain of user-defined rules. A packet
could be passed through several chains before finally reaching a target. In the case of user-
defined chains, the default target is always the next rule in the chains from which it was
called. This sets up a procedure or function call—like flow of control found in programming
languages. When a rule has a user-defined chain as its target, then, when activated, that user-
defined chain is executed. If no rules are matched, execution returns to the next rule in the
originating chain.

The kernel uses three firewall chains: INPUT, OUTPUT, and FORWARD. When a packet is
received through an interface, the INPUT chain is used to determine what to do with it. The
kernel then uses its routing information to decide where to send it. If the kernel sends the
packet to another host, the FORWARD chain is checked. Before the packet is actually sent,
the OUTPUT chain is also checked. In addition, two NAT table chains, POSTROUTING and
PREROUTING, are implemented to handle masquerading and packet address modifications.
The built-in Netfilter chains are listed in Table 40-3.

Table 40-3: Netfilter Built-in Chains
Chain Descriptions
INPUT Rules for incoming packets
OUTPUT Rules for outgoing packets
FORWARD Rules for forwarded packets
PREROUTING Rules for redirecting or modifying incoming packets, NAT table

only
POSTROUTING Rules for redirecting or modifying outgoing packets, NAT table

only

You add and modify chain rules using the iptables commands. An iptables command
consists of the keyword iptables, followed by an argument denoting the command to execute.
For example, iptables -A is the command to add a new rule, whereas iptables -D is the
command to delete a rule. The iptables commands are listed in Table 40-4. The following
command simply lists the chains along with their rules currently defined for your system. The
output shows the default values created by iptables commands.

Table 40-4: iptables Commands
Option Function
-A chain Appends a rule to a chain
-D chain Deletes matching rule from a chain
-D chain rulenum Deletes rule rulenum (1 = first) from chain
-I chain [rulenum] Inserts in chain as rulenum (default 1 = first)
-R chain rulenum Replaces rule rulenum (1 = first) in chain
-L [chain] Lists the rules in chain or all chains
-E [chain] Renames a chain
-F [chain] Deletes (flush) all rules in chain or all chains
-R chain Replaces a rule; rules are numbered from 1
-Z [chain] Zero counters in chain or all chains
-N chain Create a new user-defined chain
-X chain Deletes a user-defined chain
-P chain target Changes policy on chain to target
iptables –L -n
Chain input (policy ACCEPT):
Chain forward (policy ACCEPT):
Chain output (policy ACCEPT):

To add a new rule to a chain, you use -A. Use -D to remove it, and -R to replace it. Following
the command, list the chain to which the rule applies, such as the INPUT, OUTPUT, or
FORWARD chain, or else a user-defined chain. Next, you list different options that specify
the actions you want taken. Most are the same as those used for ipchains, with a few
exceptions. The -s option specifies the source address attached to the packet, -d specifies the
destination address, and -j specifies the target. The ACCEPT target will allow a packet to
pass. The -i option now indicates the input device and can only be used with the INPUT and

FORWARD chains. The -o option indicates the output device and can only be used for
OUTPUT and FORWARD chains. Table 40-5 lists several basic options. Many are similar to
the ipchains options, but some, like -i, are different and others are missing (like –y).

Table 40-5: iptables Options
Option Function
-p [!] proto Specify a protocol, such as TCP, UDP, ICMP, or ALL.
-s [!] address[/mask] [!] [port[:port]] Source address to match. With the port argument, you

can specify the port.
--sport [!] [port[:port]] Source port specification. You can specify a range of

ports using the colon, port:port.
-d [!] address[/mask] [!]
[port[:port]]

Destination address to match. With the port argument,
you can specify the port.

--dport [!][port[:port]] Destination port specification.
--icmp-type [!] typename Specify ICMP type.
-i [!] name[+] Specify an input network interface using its name (for

example, eth0). The + symbol functions as a wildcard.
The + attached to the end of the name matches all
interfaces with that prefix (eth+ matches all Ethernet
interfaces). Can only be used with the INPUT chain.

-j target [port] Specify the target for a rule (specify [port] for
REDIRECT target).

--to-source ipaddr[- ipaddr]
[: port- port]

Used with the SNAT target, rewrites packets with new
source IP address.

--to-destination ipaddr
[- ipaddr][: port- port]

Used with the DNAT target, rewrites packets with new
destination IP address.

-n Numeric output of addresses and ports, used with –L.
-o [!] name[+] Specify an output network interface using its name (for

example, eth0). Can only be used with FORWARD
and OUTPUT chains.

-t table Specify a table to use, as in –t nat for the NAT table.
-v Verbose mode, shows rule details, used with –L.
-x Expand numbers (display exact values), used with –L.
[!] –f Match second through last fragments of a fragmented

packet.
[!] –V Print package version.
! Negates an option or address.
-m Specify a module to use, such as state.
--state Specify options for the state module such as NEW,

INVALID, RELATED, and ESTABLISHED. Used to
detect packets state. NEW references SYN packets
(new connections).

--syn SYN packets, new connections.

Table 40-5: iptables Options
Option Function
--tcp-flags Tcp flags: SYN, ACK, FIN, RST, URG, PS, and ALL

for all flags.
--limit Option for the limit module (-m limit). Used to control

the rate of matches, matching a given number of times
per second.

--limit-burst Option for the limit module (-m limit). Specify
maximum burst before the limit kicks in. Used to
control denial of service attacks.

Iptables is designed to be extensible, and there are number of options with selection criteria
that can be included with iptables. For example, the TCP extension includes the --syn option
that checks for SYN packets. The ICMP extension provides the --icmp- type option for
specifying ICMP packets as those used in ping operations. The limit extension includes the --
limit option with which you can limit the maximum number of matching packets in a
specified time period, like a second.

In the following example, the user adds a rule to the INPUT chain to accept all packets
originating from the address 192.168.0.55. Any packets that are received (INPUT) whose
source address (-s) matches 192.168.0.55 are accepted and passed through (-j ACCEPT).

iptables -A INPUT -s 192.168.0.55 -j ACCEPT

There are two built-in targets, DROP and ACCEPT. DROP is the same as the ipchains DENY
target. Other targets can be either user-defined chains or extensions added on, such as
REJECT. There are two special targets used to manage chains, RETURN and QUEUE.
RETURN indicates the end of a chain and returns to the chain it started from. QUEUE is used
to send packets to userspace (replaces -o in ipchains).

iptables -A INPUT -s www.myjunk.com -j DROP

You can turn a rule into its inverse with a ! symbol. For example, to accept all incoming
packets except those from a specific address, place a ! symbol before the -s option and that
address. The following example will accept all packets except those from the IP address
192.168.0.45:

iptables -A INPUT -j ACCEPT ! -s 192.168.0.45

You can specify an individual address using its domain name or its IP number. For a range of
addresses, you can use the IP number of their network and the network IP mask. The IP mask
can be an IP number or simply the number of bits making up the mask. For example, all of the
addresses in network 192.168.0 can be represented by 192.168.0.0/225.255.255.0 or by
192.168.0.0/24. To specify any address, you can use 0.0.0.0/0.0.0.0 or simply 0/0. By default,
rules reference any address if no -s or -d specification exists. The following example accepts
messages coming in that are from (source) any host in the 192.168.0.0 network and that are
going (destination) anywhere at all (the -d option is left out or could be written as -d 0/0):

iptables -A INPUT -s 192.168.0.0/24 -j ACCEPT

The iptables rules are usually applied to a specific network interface such as the Ethernet
interface used to connect to the Internet. For a single system connected to the Internet, you
will have two interfaces, one that is your Internet connection and a localhost interface (lo) for
internal connections between users on your system. The network interface for the Internet is
referenced using the device name for the interface. For example, an Ethernet card with the
device name /dev/eth0 would be referenced by the name eth0. A modem using PPP protocols
with the device name /dev/ppp0 would have the name ppp0. In iptables rules, you use -i
option to indicate the input device; it can only be used with the INPUT and FORWARD
chains. The -o option indicates the output device and can only be used for OUTPUT and
FORWARD chains. Rules can then be applied to packets arriving and leaving on particular
network devices. In the following examples, the first rule references the Ethernet device eth0,
and the second, the localhost:

iptables -A INPUT -j DROP -i eth0 -s 192.168.0.45
iptables -A INPUT -j ACCEPT -i lo

User Defined Chains

With iptables, the FORWARD and INPUT chains are evaluated separately. One does not feed
into the other. This means that if you want to completely block certain addresses from passing
through your system, you will need to add both a FORWARD and INPUT rule for them.

iptables -A INPUT -j DROP -i eth0 -s 192.168.0.45
iptables -A FORWARD -j DROP -i eth0 -s 192.168.0.45

A common method for reducing repeated INPUT and FORWARD rules is to create a user
chain that both the INPUT and FORWARD chains feed into. You define a user chain with the
–N option. The next example shows the basic format for this arrangement. A new chain is
created called incoming (it can be any name you choose). The rules you would define for your
FORWARD and INPUT chains are now defined for the incoming chain. The INPUT and
FORWARD chains then use the incoming chain as a target, jumping directly to it and using
its rules to process any packets they receive.

iptables –N incoming

iptables -A incoming -j DROP -i eth0 -s 192.168.0.45
iptables -A incoming -j ACCEPT -i lo

iptables -A FORWARD -j incoming
iptables –A INPUT –j incoming

ICMP Packets

Firewalls often block certain Internet Control Message Protocol (ICMP) messages. ICMP
redirect messages, in particular, can take control of your routing tasks. You need to enable
some ICMP messages, however, such as those needed for ping, traceroute, and particularly
destination-unreachable operation. In most cases, you always need to make sure destination-
unreachable packets are allowed; otherwise, domain name queries could hang. Some of the
more common ICMP packet types are listed in Table 40-6. You can enable an ICMP type of
packet with the -icmp-type option, which takes as its argument a number or a name
representing the message. The following examples enable the use of echo-reply, echo-request,
and destination-unreachable messages, which have the numbers 0, 8, and 3.

iptables -A INPUT -j ACCEPT -p icmp -i eth0 --icmp-type echo-reply -d
10.0.0.1
iptables -A INPUT -j ACCEPT -p icmp -i eth0 --icmp-type echo-request -d
10.0.0.1
iptables -A INPUT -j ACCEPT -p icmp -i eth0 --icmp-type destination-
unreachable -d 10.0.0.1

Table 40-6: Common ICMP Packets
Number Name Required by
0 echo-reply ping
3 destination-unreachable Any TCP/UDP traffic
5 redirect Routing if not running routing daemon
8 echo-request ping
11 time-exceeded traceroute

Their rule listing will look like this:

ACCEPT icmp -- 0.0.0.0/0 10.0.0.1 icmp type 0
ACCEPT icmp -- 0.0.0.0/0 10.0.0.1 icmp type 8
ACCEPT icmp -- 0.0.0.0/0 10.0.0.1 icmp type 3

Ping operations need to be further controlled to avoid the ping of death security threat. You
can do this several ways. One way is to deny any ping fragments. Ping packets are normally
very small. You can block ping of death attacks by denying any ICMP packet that is a
fragment. Use the –f option to indicate fragments.

iptables –A INPUT –p icmp –j DROP –f

Another way is to limit the number of matches received for ping packets. You use the limit
module to control the number of matches on the ICMP ping operation. Use –m limit to use
the limit module, and –-limit to specify the number of allowed matches. 1/s will allow one
match per second.

iptables -A FORWARD -p icmp --icmp-type echo-request -m limit --limit
 1/s -j ACCEPT

Ports

If your system is hosting an Internet service, such as a Web or FTP server, you can use
iptables to control access to it. You can specify a particular service by using the source port (-
-sport) or destination port (--dport) options with the port that the service uses. iptables lets
you use names for ports such as www for the Web server port. The names of services and the
ports they use are listed in the /etc/services file, which maps ports to particular services. For a
domain name server, the port would be domain. You can also use the port number if you
want, preceding the number with a colon. The following example accepts all messages to the
Web server located at 192.168.0.43:

iptables -A INPUT -d 192.168.0.43 -–dport www -j ACCEPT

You can also use port references to protect certain services and deny others. This approach is
often used if you are designing a firewall that is much more open to the Internet, letting users

make freer use of Internet connections. Certain services you know can be harmful, such as
telnet and ntp, can be denied selectively. For example, to deny any kind of telnet operation on
your firewall, you can drop all packets coming in on the telnet port, 23. To protect NFS
operations, you can deny access to the port used for the portmapper, 111. You can use either
the port number or the port name.

deny outside access to portmapper port on firewall.
iptables -A arriving -j DROP -p tcp -i eth0 --dport 111
deny outside access to telnet port on firewall.
iptables -A arriving -j DROP -p tcp -i eth0 --dport telnet

The rule listing will look like this:

DROP tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:111
DROP tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:23

One port-related security problem is the access to your X server on the XFree86 ports that
range from 6000 to 6009. On a relatively open firewall, these ports could be used to illegally
access your system through your X server. A range of ports can be specified with a colon, as
in 6000:6009. You can also use x11 for the first port, as in x11:6009. Sessions on the X server
can be secured by using ssh, which normally accesses the X server on port 6010.

iptables -A arriving -j DROP -p tcp -i eth0 --dport 6000:6009

Common ports checked and their labels are shown here:

Service Port Number Port Label
Auth 113 auth
Finger 79 finger
FTP 21 ftp
NTP 123 ntp
Portmapper 111 sunrpc
Telnet 23 telnet
Web server 80 www
XFree86 6000:6009 x11:6009

States

One of the more useful extensions is the state extension, which can easily detect tracking
information for a packet. You need to specify the state module first with -m state. Then you
can use the --state option. Here you can specify any of the following states:

State Description
NEW A packet that creates a new connection
ESTABLISHED A packet that belongs to an existing connection
RELATED A packet that is related to, but not part of, an existing

connection, such as an ICMP error or a packet establishing an

State Description
FTP data connection

INVALID A packet that could not be identified for some reason
RELATED+REPLY A packet that is related to an established connection, but not part

of one directly

If you are designing a firewall that is meant to protect your local network from any attempts
to penetrate it from an outside network, you may want to restrict packets coming in. Simply
denying access by all packets is unfeasible because users connected to outside servers—say,
on the Internet—must receive information from them. You can, instead, deny access by a
particular kind of packet used to initiate a connection. The idea is that an attacker must initiate
a connection from the outside. The headers of these kinds of packets have their SYN bit set on
and their FIN and ACK bits empty. The state module's NEW state matches on any such SYN
packet. By specifying a DROP target for such packets, you deny access by any packet that is
part of an attempt to make a connection with your system. Anyone trying to connect to your
system from the outside is unable to do so. Users on your local system who have initiated
connections with outside hosts can still communicate with them. The following example will
drop any packets trying to create a new connection on the eth0 interface, though they will be
accepted on any other interface:

iptables -A INPUT -m state --state NEW -i eth0 -j DROP

You can use the ! operator on the eth0 device combined with an ACCEPT target to compose a
rule that will accept any new packets except those on the eth0 device. If the eth0 device is the
only one that connects to the Internet, this still effectively blocks outside access. At the same
time, input operation for other devices such as your localhost are free to make new
connections. This kind of conditional INPUT rule is used to allow access overall with
exceptions. It usually assumes that a later rule such as a chain policy will drop remaining
packets.

iptables -A INPUT -m state --state NEW ! -i eth0 -j ACCEPT

The next example will accept any packets that are part of an established connection or related
to such a connection on the eth0 interface:

iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

Network Address Translation (NAT)

Network Address Translation (NAT) is the process whereby a system will change the
destination or source of packets as they pass through the system. A packet will traverse
several linked systems on a network before it reaches its final destination. Normally, they will
simply pass the packet on. However, if one of these systems performs a NAT on a packet, it
can change the source or destination. A packet sent to a particular destination could have its
destination address changed. To make this work, the system also needs to remember such
changes so that the source and destination for any reply packets are altered back to the
original addresses of the packet being replied to.

NAT is often used to provide access to systems that may be connected to the Internet through
only one IP address. Such is the case with networking features like IP masquerading, support
for multiple servers, and transparent proxying. With IP masquerading, NAT operations will
change the destination and source of a packet moving through a firewall/gateway linking the
Internet to computers on a local network. The gateway has a single IP address that the other
local computers can use through NAT operations. If you have multiple servers but only one IP
address, you can use NAT operations to send packets to the alternate servers. You can also
use NAT operations to have your IP address reference a particular server application such as a
Web server (transparent proxy).

Packet selection rules for NAT operations are added to the NAT table managed by the
iptables command. To add rules to the NAT table, you have to specify the NAT table with the
-t option. Thus to add a rule to the NAT table, you would have to specify the NAT table with
the -t nat option as shown here:

iptables -t nat

With the –L option, you can list the rules you have added to the NAT table:

iptables -t nat –L -n

Adding the –n option will list IP addresses and ports in numeric form. This will speed up the
listing as iptables will not attempt to do a DNS lookup to determine the hostname for the IP
address.

In addition, there are two types of NAT operations: source NAT, specified as SNAT target,
and destination NAT, specified as DNAT target. SNAT target is used for rules that alter
source addresses, and DNAT target for those that alter destination addresses.

Three chains in the NAT table are used by the kernel for NAT operations. These are
PREROUTING, POSTROUTING, and OUTPUT. PREROUTING is used for destination
NAT (DNAT) rules. These are packets that are arriving. POSTROUTING is used for source
NAT (SNAT) rules. These are for packets leaving. OUTPUT is used for destination NAT
rules for locally generated packets.

As with packet filtering, you can specify source (-s) and destination (-d) addresses, as well as
the input (-i) and output (-o) devices. The -j option will specify a target such as
MASQUERADE. You would implement IP masquerading by adding a MASQUERADE rule
to the POSTROUTING chain:

iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

To change the source address of a packet leaving your system, you would use the
POSTROUTING rule with the SNAT target. For the SNAT target, you use the -–to-source
option to specify the source address:

iptables -t nat -A POSTROUTING -o eth0 -j SNAT --to-source 192.168.0.4

To change the destination address of packets arriving on your system, you would use the
PREROUTING rule with the DNAT target and the --to-destination option:

iptables -t nat -A PRETROUTING -i eth0 \
 -j DNAT --to-destination 192.168.0.3

To redirect an packet, you use the REDIRECT target on the PREROUTING chain:

iptables -t nat -A PREROUTING -i eth1 --dport 80 -j REDIRECT --to-port
3128

With the TOS and MARK targets, you can mangle the packet to control its routing or priority.
A TOS target sets the type of service for a packet, which can set the priority using criteria
such as normal-service, minimize-cost, and maximize-throughput, among others.

The targets only valid for the NAT table are shown here:

SNAT Modify source address; use --to-source option to specify new source
address.

DNAT Modify destination address; use --to-destination option to specify
new destination address

REDIRECT Redirect a packet.
MASQUERADE IP masquerading.
MIRROR Reverse source and destination and send back to sender.
MARK Modify the Mark field to control message routing.
TOS Modify the Type of Service field to manage the priority of the packet.

IP Tables Scripts

Though you can enter iptables rules from the shell command line, when you shut down your
system, these commands will be lost. On Red Hat, you can make use of the built-in support
for saving and reading iptables rules using the iptables service script. Alternatively, you can
manage the process yourself, saving to files of your own choosing. In either event, you will
most likely need to place your iptables rules in a script that can then be executed directly. This
way you can edit and manage a complex set of rules, adding comments and maintaining their
ordering.

Red Hat iptables Support

Red Hat provides support for iptables as part of its system configuration. When you install the
Red Hat package for iptables, an iptables service script is installed that will read and save
iptables commands using the /etc/sysconfig/iptables file. If you have set iptables to be started
up automatically when you boot your system, this file will be checked to see if it exists and is
not empty. If so, then iptables will automatically read the iptables commands that it holds.
Red Hat is attempting to integrate iptables more smoothly into the system setup process.

You can sidestep this automatic iptables setup by simply deleting the /etc/ sysconfig/iptables
file (running lokkit and choosing No Firewall will do the same). Be sure you back it up first in
case it has important commands.

It is possible to edit the /etc/sysconfig/iptables file directly and enter iptables commands, but
it is not recommended. Red Hat adds some notation of its own, such as a colon at the
beginning of each line, and uses the notation to detect commands. Instead, you should think of
this file as holding a final installation of your iptables commands.

You should think of the iptables service script that Red Hat provides as a versatile
management tool, not as a service startup script. The use of the service command for this
script can be confusing. The iptables script only manages iptables rules, flushing, adding, or
reporting them. It does not start and stop the iptables service. If Netfilter is not running, you
will need to instruct that it be started up when your system boots. For this, you can use
setuptool (setup or Text Mode Setup Tool) to select System Services (ntsysv), then select
ipchains from the list of services (press SPACEBAR). Make sure that ipchains is not selected.
ipchains and iptables cannot run at the same time.

The service script /etc/rc.d/init.d/iptables supports several options with which to manage
your rules. The status option displays a listing of all your current rules. The stop option will
flush your current rules. Unlike stop and status, the start and save options are tied directly to
the /etc/sysconfig/iptables file. The start option will flush your current iptable rules and add
those in the /etc/sysconfig/iptables file. The save option will save your current rules to the
/etc/sysconfig/iptables file. Keep in mind that the stop and status operations work on the
current iptables rules, no matter if they were added manually on the command line, added by
your own script, or added by the start option from /etc/sysconfig/iptables. The following
command will list your current rules:

service iptables status

Perhaps the most effective way to think of the iptables service script is as an iptables
development tool. When creating firewall rules, you should first create a script and place your
rules in them, as described later on in the iptables script example. Make the script executable.
Any changes you need to make as you debug your firewall, you make to this script. Before
you run it, run the iptables service script with the stop option to clear out any previous rules:

service iptables stop

Then run your script, as shown here for the myfilters script:

./myfilters

To see how the commands have been interpreted by iptables, use the service script with the
status option:

service iptables status

For any changes, edit your iptables script. Then run the service script again to clear out the old
rules. Run the iptables script again, and use the status option with the service script to see
how the commands were implemented:

service iptables stop
./myfilters
service iptables status

Once you are satisfied that your iptables rules are working correctly, you can save your rules
to the /etc/sysconfig/iptables file. Use the iptables service script with the save option. Now
your rules will be read automatically when your system starts up. You can think of the save
operation as installing your iptables rules on your system, making them part of your system
setup whenever you start your system.

service iptables save

To make changes, modify your iptables script, run the service script with stop to clear out the
old rules, run the iptables script, and then use the service script with the save option to
generate a new /etc/sysconfig/iptables file.

Manually Saving and Reading Rules

Instead of using the service script, you can save your rules to a file of your choosing using the
iptables-save script. The recommended file to use is /etc/iptables.rules. The iptables-save
command outputs rules to the standard output. To save them in a file, you must redirect the
output to a file with the redirection operator, >, as shown here:

iptables-save > /etc/iptables.rules

Then, to restore the rules, use the iptables-restore script to read the iptables commands from
that saved file:

iptables-restore < /etc/iptables.rules

You could then place the iptables-restore operation in the /etc/rc.d/rc.local script to have it
run automatically.

An iptables Script Example

You now have enough information to create a simple iptables script that will provide basic
protection for a single system connected to the Internet. The following script provides an IP
Tables filtering process to protect a local network and a Web site from outside attacks. It
configures a simple firewall for a private network (check the ipchains HOWTO for a more
complex example). If you have a local network, you could adapt this script to it. In this
configuration, all remote access initiated from the outside is blocked, but two-way
communication is allowed for connections that users in the network make with outside
systems. In this example, the firewall system functions as a gateway for a private network
whose network address is 192.168.0.0 (see Figure 40-1). The Internet address is, for the sake
of this example, 10.0.0.1. The system has two Ethernet devices: one for the private network
(eth1) and one for the Internet (eth0). The gateway firewall system also supports a Web
server at address 10.0.0.2. Entries in this example that are too large to fit on one line are
continued on a second line, with the newline quoted with a backslash.

Figure 40-1: A network with a firewall

The basic rules as they apply to different parts of the network are illustrated in Figure 40-2.

Figure 40-2: Firewall rules applied to a local network example

First a DROP policy is set up for INPUT and FORWARD built-in IP chains. This means that
if a packet does not meet a criterion in any of the rules to let it pass, it will be dropped. Then
both IP spoofing attacks and any attempts from the outside to initiate connections (SYN
packets) are rejected. Outside connection attempts are also logged. This is a very basic
configuration that can easily be refined to your own needs by adding IP Tables rules.

myfilter

Firewall Gateway system IP address is 10.0.0.1 using Ethernet device eth0
Private network address is 192.168.0.0 using Ethernet device eth1
Web site address is 10.0.0.2

modprobe iptable_filter
turn off IP forwarding

echo 0 > /proc/sys/net/ipv4/ip_forward

Flush chain rules
iptables -F INPUT
iptables -F OUTPUT
iptables -F FORWARD

set default (policy) rules
iptables -P INPUT DROP
iptables -P OUTPUT ACCEPT
iptables -P FORWARD ACCEPT

IP spoofing, deny any packets on the internal network that have an
external
source address.
iptables -A INPUT -j LOG -i eth1 \! -s 192.168.0.0/24
iptables -A INPUT -j DROP -i eth1 \! -s 192.168.0.0/24
iptables -A FORWARD -j DROP -i eth1 \! -s 192.168.0.0/24
IP spoofing, deny any outside packets (any not on eth1) that have the
source
address of the internal network
iptables -A INPUT -j DROP \! -i eth1 -s 192.168.0.0/24
iptables -A FORWARD -j DROP \! -i eth1 -s 192.168.0.0/24
IP spoofing, deny any outside packets with localhost address
(packets not on the lo interface (any on eth0 or eth1) that have the
source
address of localhost)
iptables -A INPUT -j DROP -i \! lo -s 127.0.0.0/255.0.0.0
iptables -A FORWARD -j DROP -i \! lo -s 127.0.0.0/255.0.0.0

allow all incoming messages for users on your firewall system
iptables -A INPUT -j ACCEPT -i lo

allow communication to the Web server (address 10.0.0.2), port www
iptables -A INPUT -j ACCEPT -p tcp -i eth0 —dport www -s 10.0.0.2
Allow established connections from Web servers to internal network
iptables -A INPUT -m state —state ESTABLISHED,RELATED -i eth0 -p tcp —
sport www
-s 10.0.0.2 -d 192.168.0.0/24 -j ACCEPT
Prevent new connections from Web servers to internal network
iptables -A OUTPUT -m state —state NEW -o eth0 -p tcp —sport www -d
192.168.0.0/24 -j DROP

allow established and related outside communication to your system
allow outside communication to the firewall,except for ICMP packets
iptables -A INPUT -m state —state ESTABLISHED,RELATED -i eth0 -p \! icmp -j
ACCEPT
prevent outside initiated connections
iptables -A INPUT -m state —state NEW -i eth0 -j DROP
iptables -A FORWARD -m state —state NEW -i eth0 -j DROP

allow all local communication to and from the firewall on eth1 from the
local network
iptables -A INPUT -j ACCEPT -p all -i eth1 -s 192.168.0.0/24

Set up masquerading to allow internal machines access to outside network
iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

Accept ICMP Ping (0 and 8) and Destination unreachable (3) messages
Others will be rejected by INPUT and OUTPUT DROP policy

iptables -A INPUT -j ACCEPT -p icmp -i eth0 —icmp-type echo-reply -d
10.0.0.1
iptables -A INPUT -j ACCEPT -p icmp -i eth0 —icmp-type echo-request -d
10.0.0.1
iptables -A INPUT -j ACCEPT -p icmp -i eth0 —icmp-type destination-
unreachable -d 10.0.0.1

 # Turn on IP Forwarding
echo 1 > /proc/sys/net/ipv4/ip_forward

Initially, in the script you would clear your current iptables with the flush option (-F), and
then set the policies (default targets) for the non-user-defined rules. IP forwarding should also
be turned off while the chain rules are being set:

echo 0 > /proc/sys/net/ipv4/ip_forward

One way to protect the private network from IP spoofing any packets is to check for any
outside addresses on the Ethernet device dedicated to the private network. In this example,
any packet on device eth1 (dedicated to the private network) whose source address is not that
of the private network (! -s 192.168.0.0) is denied. Also, check to see if any packets coming
from the outside are designating the private network as their source. In this example, any
packets with the source address of the private network on any Ethernet device other than for
the private network (eth1) are denied. The same strategy can be applied to the local host.

IP spoofing, deny any packets on the internal network
that has an external source address.
iptables -A INPUT -j LOG -i eth1 \! -s 192.168.0.0/24
iptables -A INPUT -j DROP -i eth1 \! -s 192.168.0.0/24
iptables -A FORWARD -j DROP -i eth1 \! -s 192.168.0.0/24
IP spoofing, deny any outside packets (any not on eth1)
that have the source address of the internal network
iptables -A INPUT -j DROP \! -i eth1 -s 192.168.0.0/24
iptables -A FORWARD -j DROP \! -i eth1 -s 192.168.0.0/24
IP spoofing, deny any outside packets with localhost address
(packets not on the lo interface (any on eth0 or eth1)
that have the source address of localhost)
iptables -A INPUT -j DROP -i \! lo -s 127.0.0.0/255.0.0.0
iptables -A FORWARD -j DROP -i \! lo -s 127.0.0.0/255.0.0.0

Then, you would set up rules to allow all packets sent and received within your system
(localhost) to pass:

iptables -A INPUT -j ACCEPT -i lo

For the Web server, you want to allow access by outside users, but block access by anyone
attempting to initiate a connection from the Web server into the private network. In the next
example, all messages are accepted to the Web server, but the Web server cannot initiate
contact with the private network. This prevents anyone from breaking into the local network
through the Web server, which is open to outside access. Established connections are allowed,
permitting the private network to use the Web server.

allow communication to the Web server (address 10.0.0.2), port www
iptables -A INPUT -j ACCEPT -p tcp -i eth0 --dport www -s 10.0.0.2

Allow established connections from Web servers to internal network
iptables -A INPUT -m state --state ESTABLISHED,RELATED -i eth0 \
 -p tcp --sport www -s 10.0.0.2 -d 192.168.0.0/24 -j ACCEPT
Prevent new connections from Web servers to internal network
iptables -A OUTPUT -m state --state NEW -o eth0 -p tcp \
 --sport www -d 192.168.0.1.0/24 -j DROP

To allow access by the firewall to outside networks, you allow input by all packets except for
ICMP packets. These are handled later. The firewall is specified by the firewall device, eth0.
First, allow established and related connections to proceed:

allow outside communication to the firewall,
except for ICMP packets
iptables -A INPUT -m state --state ESTABLISHED,RELATED \
 -i eth0 -p \! icmp -j ACCEPT

To prevent outsiders from initiating any access to your system, create a rule to block access
by SYN packets from the outside using the state option with NEW. Drop any new
connections on the eth0 connection (assumes only eth0 is connected to the Internet or outside
network).

prevent outside initiated connections
iptables -A INPUT -m state --state NEW -i eth0 -j DROP
iptables -A FORWARD -m state --state NEW -i eth0 -j DROP

To allow interaction by the internal network with the firewall, you allow input by all packets
on the internal Ethernet connection, eth1. The valid internal network addresses are designated
as the input source:

iptables -A INPUT -j ACCEPT -p all -i eth1 -s 192.168.0.0/24

To implement masquerading, where systems on the private network can use the gateway's
Internet address to connect to Internet hosts, you create a NAT table (-t nat) POSTROUTING
rule with a MASQUERADE target:

iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

In addition, to allow ping and destination-unreachable ICMP packets, you enter INPUT rules
with the firewall as the destination. To enable ping operations, you use both echo-reply and
echo-request ICMP types, and for destination unreachable, you use the destination-
unreachable type:

iptables -A INPUT -j ACCEPT -p icmp -i eth0 --icmp-type \
 echo-reply -d 10.0.0.1
iptables -A INPUT -j ACCEPT -p icmp -i eth0 --icmp-type \
 echo-request -d 10.0.0.1
iptables -A INPUT -j ACCEPT -p icmp -i eth0 --icmp-type \
 destination-unreachable -d 10.0.0.1

At the end, IP forwarding is turned on again:

echo 1 > /proc/sys/net/ipv4/ip_forward

A listing of these iptables options shows the different rules for each option, as shown here:

iptables -L
Chain INPUT (policy DROP)
target prot opt source destination
LOG all -- !192.168.0.0/24 anywhere LOG level warning
DROP all -- !192.168.0.0/24 anywhere
DROP all -- 192.168.0.0/24 anywhere
DROP all -- 127.0.0.0/8 anywhere
ACCEPT all -- anywhere anywhere
ACCEPT tcp -- 10.0.0.2 anywhere tcp dpt:http
ACCEPT tcp -- 10.0.0.2 192.168.0.0/24 state RELATED,ESTABLISHED
 tcp spt:http
ACCEPT !icmp -- anywhere anywhere state RELATED,ESTABLISHED
DROP all -- anywhere anywhere state NEW
ACCEPT all -- 192.168.0.0/24 anywhere
ACCEPT icmp -- anywhere 10.0.0.1 icmp echo-reply
ACCEPT icmp -- anywhere 10.0.0.1 icmp echo-request
ACCEPT icmp -- anywhere 10.0.0.1 icmp destination-
unreachable

Chain FORWARD (policy ACCEPT)
target prot opt source destination
DROP all -- !192.168.0.0/24 anywhere
DROP all -- 192.168.0.0/24 anywhere
DROP all -- 127.0.0.0/8 anywhere
DROP all -- anywhere anywhere state NEW

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
DROP tcp -- anywhere 192.168.0.0/24 state NEW tcp spt:http
iptables -t nat -L
Chain PREROUTING (policy ACCEPT)
target prot opt source destination

Chain POSTROUTING (policy ACCEPT)
target prot opt source destination
MASQUERADE all -- anywhere anywhere

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

For more complex rules, you may want to create your own chain to reduce repetition. A
common method is to define a user chain for both INPUT and FORWARD chains, so that you
do not have to repeat DROP operations for each. Instead you would have only one user chain
that both FORWARD and INPUT chains would feed into for DROP operations. Keep in mind
that both FORWARD and INPUT operations may have separate rules in addition to the ones
they share. In the next example, the myfilter script has been rewritten, as myfilter2, with a
user-defined chain called arriving. The chain is defined with the –N option at the top of the
script:

iptables –N arriving

A user chain has to be defined before it can be used as a target in other rules. So, you have to
first define and add all the rules for that chain, and then use it as a target. In the myfilter2
script, the arriving chain is defined and its rules added. Then, at the end of the file, it is used
as a target for both the INPUT and FORWARD chains. The INPUT chain lists rules for
accepting packets, whereas the FORWARD chain has an ACCEPT policy, which will accept
them by default.

myfilter2

)# Firewall Gateway system IP address is 10.0.0.1 using Ethernet device
eth0
Private network address is 192.168.0.0 using Ethernet device eth1
Web site address is 10.0.0.2

modprobe iptable_filter
turn off IP forwarding
echo 0 > /proc/sys/net/ipv4/ip_forward

iptables -N arriving

Flush chain rules
iptables -F INPUT
iptables -F OUTPUT
iptables -F FORWARD
iptables -F arriving

set default (policy) rules
iptables -P INPUT DROP
iptables -P OUTPUT ACCEPT
iptables -P FORWARD ACCEPT

IP spoofing, deny any packets on the internal network that have an
external
source address.
iptables -A arriving -j LOG -i eth1 \! -s 192.168.0.0/24
iptables -A arriving -j DROP -i eth1 \! -s 192.168.0.0/24
IP spoofing, deny any outside packets (any not on eth1) that have the
source
address of the internal network
iptables -A arriving -j DROP \! -i eth1 -s 192.168.0.0/24
IP spoofing, deny any outside packets with localhost address
(packets not on the lo interface (any on eth0 or eth1) that have the
source
address of localhost)
iptables -A arriving -j DROP -i \! lo -s 127.0.0.0/255.0.0.0

allow all incoming messages for users on your firewall system
iptables -A arriving -j ACCEPT -i lo

allow communication to the Web server (address 10.0.0.2), port www
iptables -A arriving -j ACCEPT -p tcp -i eth0 —dport www -s 10.0.0.2
Allow established connections from Web servers to internal network
iptables -A arriving -m state —state ESTABLISHED,RELATED -i eth0 -p tcp —
sport
www -s 10.0.0.2 -d 192.168.0.0/24 -j ACCEPT
Prevent new connections from Web servers to internal network
iptables -A OUTPUT -m state —state NEW -o eth0 -p tcp —sport www -d
192.168.0.0/24 -j DROP

allow established and related outside communication to your system
allow outside communication to the firewall, except for ICMP packets
iptables -A arriving -m state —state ESTABLISHED,RELATED -i eth0 -p \! icmp
-j
ACCEPT
prevent outside initiated connections
iptables -A arriving -m state —state NEW -i eth0 -j DROP

allow all local communication to and from the firewall on eth1 from the
local
network
iptables -A arriving -j ACCEPT -p all -i eth1 -s 192.168.0.0/24

Set up masquerading to allow internal machines access to outside network
iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

Accept ICMP Ping (0 and 8) and Destination unreachable (3) messages
Others will be rejected by INPUT and OUTPUT DROP policy
iptables -A arriving -j ACCEPT -p icmp -i eth0 —icmp-type echo-reply -d
10.0.0.1
iptables -A arriving -j ACCEPT -p icmp -i eth0 —icmp-type echo-request -d
10.0.0.1
iptables -A arriving -j ACCEPT -p icmp -i eth0 —icmp-type
destination-unreachable -d 10.0.0.1

iptables -A INPUT -j arriving
iptables -A FORWARD -j arriving

Turn on IP Forwarding
echo 1 > /proc/sys/net/ipv4/ip_forward

A listing of the rules is shown here:

iptables –L -n
Chain INPUT (policy DROP)
target prot opt source destination
arriving all -- 0.0.0.0/0 0.0.0.0/0

Chain FORWARD (policy ACCEPT)
target prot opt source destination
arriving all -- 0.0.0.0/0 0.0.0.0/0

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
DROP tcp -- 0.0.0.0/0 192.168.0.0/24 state NEW tcp spt:80

Chain arriving (2 references)
target prot opt source destination
LOG all -- !192.168.0.0/24 0.0.0.0/0 LOG flags 0 level 4
DROP all -- !192.168.0.0/24 0.0.0.0/0
DROP all -- 192.168.0.0/24 0.0.0.0/0
DROP all -- 127.0.0.0/8 0.0.0.0/0
ACCEPT all -- 0.0.0.0/0 0.0.0.0/0
ACCEPT tcp -- 10.0.0.2 0.0.0.0/0 tcp dpt:80
ACCEPT tcp -- 10.0.0.2 192.168.0.0/24 state
RELATED,ESTABLISHED
 tcp spt:80
ACCEPT !icmp -- 0.0.0.0/0 0.0.0.0/0 state
RELATED,ESTABLISHED
DROP all -- 0.0.0.0/0 0.0.0.0/0 state NEW
ACCEPT all -- 192.168.0.0/24 0.0.0.0/0
ACCEPT icmp -- 0.0.0.0/0 10.0.0.1 icmp type 0
ACCEPT icmp -- 0.0.0.0/0 10.0.0.1 icmp type 8
ACCEPT icmp -- 0.0.0.0/0 10.0.0.1 icmp type 3

For rules where chains may differ, you will still need to enter separate rules. In the myfilter2
script, the FORWARD chain has an ACCEPT policy, allowing all forwarded packets to the
local network to pass through the firewall. If the FORWARD chain had a DROP policy, like
the INPUT chain, then you may need to define separate rules under which the FORWARD
chain could accept packets. In this example, the FORWARD and INPUT chains have
different rules for accepting packets on the eth1 device. The INPUT rule is more restrictive.
To enabled the local network to receive forwarded packets through the firewall, you could
enable forwarding on its device using a separate FORWARD rule, as shown here.

iptables -A FORWARD -j ACCEPT -p all -i eth1

The INPUT chain would accept packets only from those in the local network.

iptables -A INPUT -j ACCEPT -p all -i eth1 -s 192.168.0.0/24

IP Masquerading

On Linux systems, you can set up a network in which you can have one connection to the
Internet, which several systems on your network can use. This way, using only one IP
address, several different systems can connect to the Internet. This method is called IP
masquerading, where a system masquerades as another system, using that system's IP
address. In such a network, one system is connected to the Internet with its own IP address,
while the other systems are connected on a local area network (LAN) to this system. When a
local system wants to access the network, it masquerades as the Internet-connected system,
borrowing its IP address.

IP masquerading is implemented on Linux using the ipchains firewalling tool. In effect, you
set up a firewall, which you then configure to do IP masquerading. Currently, IP
masquerading—as does ipchains firewalling—supports all the common network services,
such as Web browsing, telnet, ping, and gopher. Other services, such as IRC, FTP, and Real
Audio, require the use of certain modules. Any services you want local systems to access
must also be on the firewall system because request and response actually are handled by
services on that system.

You can find out more information on IP masquerading at the IP Masquerade Resource Web
site at http://ipmasq.cjb.net/. In particular, the Linux IP Masquerade mini-HOWTO provides
a detailed, step-by-step guide to setting up IP masquerading on your system. IP masquerading
must be supported by the kernel before you can use it. If your kernel does not support it, you
may have to rebuild the kernel, including IP masquerade support, or use loadable modules to
add it. See the IP Masquerade mini-HOWTO for more information.

With IP masquerading, as implemented on Linux systems, the machine with the Internet
address is also the firewall and gateway for the LAN of machines that use the firewall's
Internet address to connect to the Internet. Firewalls that also implement IP masquerading are
sometimes referred to as MASQ gates. With IP masquerading, the Internet-connected system
(the firewall) listens for Internet requests from hosts on its LAN. When it receives one, it
replaces the requesting local host's IP address with the Internet IP address of the firewall and
then passes the request out to the Internet, as if the request were its own. Replies from the
Internet are then sent to the firewall system. The replies the firewall receives are addressed to
the firewall using its Internet address. The firewall then determines the local system to whose

request the reply is responding. It then strips off its IP address and sends the response on to
the local host across the LAN. The connection is transparent from the perspective of the local
machines. They appear to be connected directly to the Internet.

IP masquerading is often used to allow machines on a private network to access the Internet.
These could be machines in a home network or a small LAN—say, for a small business. Such
a network might have only one machine with Internet access, and as such, only the one
Internet address. The local private network would have IP addresses chosen from the private
network allocations (10., 172.16., or 192.168.). Ideally, the firewall has two Ethernet cards:
one for an interface to the LAN (say, eth1) and one for an interface to the Internet, such as
eth0 (for dial-up ISPs, this would be ppp0 for the modem). The card for the Internet
connection (eth0) would be assigned the Internet IP address. The Ethernet interface for the
local network (eth1, in this example) is the firewall Ethernet interface. Your private LAN
would have a network address like 192.168.0. Its Ethernet firewall interface (eth1) would be
assigned the IP address 192.168.0.1. In effect, the firewall interface lets the firewall operate as
the local network's gateway. The firewall is then configured to masquerade any packets
coming from the private network. Your LAN needs to have its own domain name server,
identifying the machines on your network, including your firewall. Each local machine needs
to have the firewall specified as its gateway. Try not to use IP aliasing to assign both the
firewall and Internet IP addresses to the same physical interface. Use separate interfaces for
them, such as two Ethernet cards, or an Ethernet card and a modem (ppp0).

Certain services like FTP and IRC can conflict with the IP masquerading setup where your
firewall denies new connections. FTP operations use two ports, one to set up the connection
and one to handle the data transfer. Connecting on the second port can appear to an IP
masqueraded firewall as a new connection attempt, and it will deny it. To overcome this
problem, special Netfilter modules are used for specific services. For the FTP service you use
ip_masq_ftp and for IRC you use ip_masq_irc. There are also modules for quake, Real Audio
(raudio), and VDO live (vdolive).

IP Masquerading with Netfilter (NAT and iptables)

In Netfilter, IP masquerading is a NAT operation and is no longer integrated with packet
filtering as in ipchains. IP masquerading commands are placed on the NAT table and treated
separately from the packet-filtering commands. To implement IP masquerading with Netfilter,
first make sure that the iptable_nat module is loaded (you can have this operation built into
the kernel). Normally it is loaded by default.

modprobe iptable_nat

Then, use iptables to place a masquerade rule on the NAT table. First reference the NAT table
with the -t nat option. Then add a rule to the POSTROUTING chain with the -o option
specifying the output device and the -j option with the MASQUERADE command:

iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

Then turn on IP forwarding as you normally would:

echo 1 > /proc/sys/net/ipv4/ip_forward

Instead of masquerading all local hosts as the single IP address of the firewall/ gateway host,
you could use the NAT table to rewrite addresses for a few selected hosts. Such an approach
is often applied to setups where you want several local hosts to appear as Internet servers.
Using the DNAT and SNAT targets you can direct packets to specific local hosts. You would
use rules on the PREROUTING and POSTROUTING chains to direct input and output
packets.

For example, the Web server described in the previous example could have been configured
as a local host to which a DNAT target could redirect any packets originally received for
10.0.0.2. Say the Web servers were set up on 192.168.0.5. It could appear as having the
address 10.0.0.2 on the Internet. Packets sent to 10.0.0.2 would be rewritten and directed to
192.168.0.5 by the NAT table. You would use the PREROUTING chain with the –d option to
handle incoming packets and POSTROUTING with the –s option for outgoing packets.

iptables -t nat -A PREROUTING -d 10.0.0.2 \
 --to-destination 192.168.0.5 -j DNAT
iptables -t nat -A POSTROUTING –s 192.168.0.5 \
 --to-source 10.0.0.2 -j SNAT
 Tip Bear in mind that with iptables, masquerading is no longer combined with the

FORWARD chain, as it is with ipchains. So, if you specify a DROP policy for the
FORWARD chain, you will also have to specifically enable FORWARD operation for
the network that is being masqueraded. You will need both a POSTROUTING rule and
FORWARD rule.

IP Masquerading with ipchains

You need to specify forwarding rules for use by ipchains to implement IP masquerading. (See
the mychains file in the previous section for another example of an ipchains masquerade
entry.) The following example assumes the Internet connect host, the firewall, uses its first
Ethernet device to connect to the Internet, eth0. If you are using a modem to dial up a
connection to an ISP, the interface used would probably be the first PPP interface, ppp0. The
second command appends (-A) the forward rule to the target (-j) MASQ (masquerade) for the
interface (-i) eth0. The host machines on the LAN must specify the connected system as their
gateway machine. The last command enables IP forwarding. To enable IP masquerading
using Linuxconf's firewalling entries, select Forward Firewalling and click the Do
masquerade check box for any firewall forwarding rules you add that you want to apply to IP
masquerading.

ipchains -P forward DENY
 ipchains -A forward -i eth0 -j MASQ
 echo 1 > /proc/sys/net/ipv4/ip_forward

IP Chains (Kernel 2.2)

IP Chains is the precursor to iptables that was used on Linux systems running the 2.2 kernel.
It is still in use on many Linux systems. The Linux Web site for ipchains, which is the
successor to ipfwadm used on older versions of Linux, is currently netfilter.
samba.org/ipchains/. Support for ipchains is already implemented on the Linux 2.2 kernel.
For earlier versions, you must enable support in the kernel, rebuilding it with network
firewalls and IP firewalling features (see Chapter 34). The IP Chains HOWTO, located in
your /usr/doc/ipchains directory, provides an excellent introduction and tutorial for ipchains

and how you use it to implement a firewall. The HOWTO is in Web page format and can be
viewed with any Web browser. The HOWTO features specific examples on how to guard
against several standard attacks, such as IP spoofing, the ping of death, and teardrop.

Like iptables, ipchains organizes its rules into chains. A chain is simply a checklist of rules.
These rules specify what action to take for packets containing certain headers. If the packet
does match a rule, it is passed to its target, which determines what to do with the packet. If a
packet does not match any of the rules, it is passed to the chain's default target. The standard
targets are listed in Table 40-7. Unlike iptables, ipchains has both a MASQ and DENY target.
A major difference between iptables and ipchains is that ipchains does not treat masquerading
as a separate processes. It is just another ipchain rule, not a separate process as in iptables.

A target could, in turn, be another chain of rules, even a chain of user-defined rules. A packet
could be passed through several chains before finally reaching a target. In the case of user-
defined chains, the default target is always the next rule in the chains from which it was
called. This sets up a procedure or function call—like flow of control found in programming
languages. When a rule has a user-defined chain as its target, then, when activated, that user-
defined chain is executed. If no rules are matched, execution returns to the next rule in the
originating chain.

Table 40-7: ipchains Targets
Target Function
ACCEPT Allow packet to pass through the firewall.
DENY Deny access by the packet (changed to DROP in iptables).
REJECT Deny access and notify the sender.
MASQ Masquerade the packet. Used only in the forward chain or chains

called from the forward chain. Replaces sender's address with
firewall host address (changed to MASQUERADE in iptables and
to a NAT task).

REDIRECT Redirect the packet to a local socket or process on the firewall.
Used only in the input chain or chains called from the forward
chain (changed to a NAT task in iptables).

RETURN Jump to the end of the chain and let the default target process it.

The kernel uses three firewall chains: input, output, and forward. Unlike iptables, in ipchains
these chains are written in lowercase. When a packet is received through an interface, the
input chain is used to determine what to do with it. The kernel then uses its routing
information to decide where to send it. If the kernel sends the packet to another host, the
forward chain is checked. Before the packet is actually sent, the output chain is also checked.

You add and modify chain rules using the ipchains commands. An ipchains command
consists of the keyword ipchains, followed by an argument denoting the command to execute.
For example, ipchains -A is the command to add a new rule, whereas ipchains -D is the
command to delete a rule. The ipchains options are listed in Table 40-8. Except for the
masquerading options, they are much the same as those used in iptables. The following
command simply lists the chains along with their rules currently defined for your system. The
output shows the default values created by ipchains commands.

ipchains -L
Chain input (policy ACCEPT):
Chain forward (policy ACCEPT):
Chain output (policy ACCEPT):

Table 40-8: ipchains Options
Option Function
-A chain Append a rule to a chain.
-D chain Delete matching rule from a chain.
-D chain rulenum Delete rule rulenum (1 = first) from chain.
-I chain [rulenum] Insert in chain as rulenum (default 1 = first).
-R chain rulenum Replace rule rulenum (1 = first) in chain.
-L [chain] List the rules in chain or all chains.
-F [chain] Delete (flush) all rules in chain or all chains.
-Z [chain] Zero counters in chain or all chains.
-C chain Test this packet on chain.
-N chain Create a new user-defined chain.
-X chain Delete a user-defined chain.
-P chain target Change policy on chain to target.
-M –L List current masquerading connections (not valid for

iptables).
-M -S tcp tcpfin udp Set masquerading timeout values (not valid for iptables).
-h Display list of commands.
--version Display version.

Following the command, list the chain to which the rule applies, such as the input, output, or
forward chain, or else a user-defined chain. Next, list different options that specify the actions
you want taken. Options exist to specify the address a rule is to match on (-s, -d) and to
specify the target the rule is to execute (-j). The -s option specifies the source address attached
to the packet, while the -d option specifies the destination address attached to the packet
(where it is coming from and where it is going to). The -j option, which stands for jump, is
used to specify the target to jump to and execute. This is the target that is executed if the
packet in a chain matches all the options. The standard targets used for a firewall are
ACCEPT and DENY. The ACCEPT target will allow a packet to pass, whereas a DENY
target will refuse access.

In the following example, the user adds a rule to the input chain to accept all packets
originating from the address 192.168.0.55. Any packets that are received (input) whose source
address (-s) matches 192.168.0.55 are accepted and passed through as specified by the
ACCEPT target, -j ACCEPT.

ipchains -A input -s 192.168.0.55 -j ACCEPT

To deny access from a particular site, simply specify the DENY target (in iptables, this was
changed to DROP). Alternatively, you can send a packet back to where it came from using the

REJECT target instead of the DENY target. In the following example, any packet received
from www.myjunk.com is rejected:

ipchains -A input -s www.myjunk.com -j DENY

You can specify an individual address using its domain name or its IP number. For a range of
addresses, you can use the IP number of their network and the network IP mask. The IP mask
can be an IP number or simply the number of bits making up the mask. For example, all of the
addresses in network 192.168.0 can be represented by 192.168.0.0/225.255.255.0 or by
192.168.0.0/24. To specify any address, you can use 0.0.0.0/0.0.0.0 or simply 0/0. By default,
rules reference any address if no -s or -d specification exists. The following example accepts
messages coming in that are from (source) any host in the 192.168.0.0 network and that are
going (destination) anywhere at all (the -d option is left out or could be written as -d 0/0):

ipchains -A input -s 192.168.0.0/24 -j ACCEPT

If your system is hosting an Internet service, such as a Web or FTP server, you can use
ipchains to control access to it. You can specify a particular service by specifying the port it
uses. For a Web server, the port would be www. The names of services and the ports they use
are listed in the /etc/services file, which maps ports to particular services. For a domain name
server, the port would be domain. You can also use the port number if you want, preceding
the number with a colon. The following example accepts all messages to the Web server
located at 192.168.0.43:

ipchains -A input -d 192.168.0.43 www -j ACCEPT

With the ! operator, you can change the effect of a rule to its inverse. The ! operator works
like a "not" logical operator in programming languages. Placing a ! operator before a -s entry
matches on any address that is not the specified address: ! -s 192.168.0.66 matches on any
packet whose address is not 192.168.0.66. The operator is helpful if you want to restrict by
only a few selected sites. The following example restricts access to 192.168.0.66, denying
access to all others:

ipchains -A input ! -s 192.168.0.66 -j DENY

The inverse can apply also to ports, protocols, and devices. For example, to allow access to
any port except the Ethernet device eth2, you would use

ipchains -A input ! eth2 -j ACCEPT

The following example denies access to any port except the Web server:

ipchains -A input ! www -j DENY

You can enter ipchains commands from the shell command line. When you shut down your
system, however, these commands will be lost. To save your commands, you can use the
ipchains-save script to save them to a file. The recommended file to use is /etc/ipchains.rules.
The ipchains-save command outputs rules to the standard output. To save them in a file, you
must redirect the output to a file with the redirection operator, >.

Secure Shell (SSH)

Although a firewall can protect a network from attempts to break in to it from the outside, the
problem of securing legitimate communications to the network from outside sources still
exists. A particular problem is one of users who want to connect to your network remotely.
Such connections could be monitored, and information such as passwords and user IDs used
when the user logs into your network could be copied and used later to break in. One solution
is to use a Secure Shell (SSH) tool like slogin for remote logins. SSH encrypts any
communications between the remote user and a system on your network. The SSH programs
are meant to replace remote tools such as rsh and rcp (see Chapter 21), which perform no
encryption and introduce security risks such as transmitting passwords in clear text. You can
also use SSH to encode X server sessions as well as FTP transmissions (sftp).

Two different implementations of SSH currently use what are, in effect, two different and
incompatible protocols. The first version of SSH, known as SSH1, uses the original SSH
protocol, whereas version 2.0, known as SSH2, uses a completely rewritten version of the
SSH protocol. Encryption is performed in different ways, encrypting different parts of a
packet. SSH1 uses server and host keys to authenticate systems, whereas SSH2 only uses host
keys. Furthermore, certain functions, such as sftp, are only supported by SSH2.

SSH secures connections by both authenticating users and encrypting their transmissions. The
authentication process is handled with public key encryption described in Chapter 6. Once
authenticated, transmissions are encrypted by a cipher agreed upon by the SSH server and
client for use in a particular session. Authentication is applied to both hosts and users. SSH
first authenticates a particular host, verifying that it is a valid SSH host that can be securely
communicated with. Then the user is authenticated, verifying that the user is who they say
they are.

The public key encryption used in SSH authentication makes use of two keys: a public key
and a private key. The public key is used to encrypt data, while the private key decrypts it.
Each host or user has his or her own public and private keys. The public key is distributed to
other hosts, who can then use it to encrypt data that only the host's private key can decrypt.
For example, when a host sends data to a user on another system, the host encrypts the data
with a public key, which it previously received from that user. The data can only be decrypted
by the user's corresponding private key. The public key can safely be sent in the open from
one host to another, allowing it to be installed safely on different hosts. You think of the
process as taking place between a client and a server. When the client sends data to the server,
it first encrypts the data using the server's public key. The server can then decrypt the data
using its own private key.

The mechanics of authentication in SSH version 1 and version 2 differ slightly. However, the
procedure on the part of users is the same. Essentially, a user creates both public and private
keys. For this you use the ssh-keygen command. The user's public key then has to be
distributed to those users that the original user wants access to. Often this is an account a user
has on another host. A passphrase further protects access. The original user will need to know
the other user's passphrase to access it.

SSH version 1 uses RSA authentication. When a remote user tries to log in to an account, that
account is checked to see if it has the remote user's public key. That public key is then used to
encrypt a challenge (usually a random number) that can only be decrypted by the remote

user's private key. When the remote user receives the encrypted challenge, that user decrypts
the challenge with its private key. SSH version 2 can use either RSA or DSA authentication.
The remote user will first encrypt a session identifier using its private key, signing it. The
encrypted session identifier is then decrypted by the account using the remote user's public
key. The session identifier has been previously set up by SSH for that session.

SSH authentication is first carried out with the host and then with users. Each host has its own
host, public, and private keys used for authentication. Once the host is authenticated then the
user is queried. Each user has their own public and private keys. Users on an SSH server who
want to receive connections from remote users will have to keep a list of those remote users'
public keys. Similarly, an SSH host will maintain a list of public keys for other SSH hosts.

SSH uses strong encryption methods for which export from the United States may be
restricted. Currently, SSH can deal with the following kinds of attacks:

• IP spoofing, where a remote host sends out packets that pretend to come from another,
trusted host

• IP source routing, where a host can pretend an IP packet comes from another, trusted
host

• DNS spoofing, where an attacker forges name server records
• Interception of clear text passwords and other data by intermediate hosts
• Manipulation of data by people in control of intermediate hosts
• Attacks based on listening to X authentication data and spoofed connections to the

X11 server

 Note A commercial version of SSH is available from SSH Communications Security,
whose Web site is www.ssh.com. SSH Communications Security provides SSH
free for noncommercial use and sells SSH for commercial use through
Datafellows.

The SSH protocol has become an official Internet Engineering Task Force (IETF) standard. A
free and open source version is developed and maintained by the OpenSSH project, currently
supported by the OpenBSD project. OpenSSH is the version supplied with Red Hat. You can
find out more about OpenSSH at www.openssh.org. From here, you can download the most
recent version, though Red Hat will provide current RPM versions.

SSH Applications

A full set of OpenSSH RPM packages are included with Red Hat distributions. These include
the general OpenSSH package (openssh), the OpenSSH server (openssh-server), and the
OpenSSH clients (openssh-clients). These packages also require OpenSSL (openssl) with
installs the cryptographic libraries that SSH uses. You can easily update them from Red Hat
FTP sites or by using the Red Hat Network.

The SSH applications are listed in Table 40-9. They include several client programs and the
ssh server. The ssh server (sshd) provides secure connections to anyone from the outside
using the ssh client to connect. With ssh, users can remotely log in and execute commands
using encrypted transmissions. In the same way, with scp, users can copy files from one host
to another securely. The ssh server can also invoke the sftp-server to provide encrypted FTP
transmissions to those using the sftp client. This client, which only works with ssh version

2.0, operates much like ftp, with many of the same commands (see Chapter 19). Several
configuration utilities are also included, such as ssh-add, which adds valid hosts to the
authentication agent, and ssh-keygen, which generates the keys used for encryption.

On Red Hat you can start, restart, and stop the sshd server with the service command:

service sshd restart

Table 40-9: SSH Applications
Application Description
ssh ssh client
sshd ssh server (daemon)
sftp sftp client. Version 2 only. Use ? to list sftp commands
sftp-server sftp server. Version 2 only
scp scp client
ssh-keygen Utility for generating keys. -h for help
ssh-add Add identities to the authentication agent
ssh-agent SSH authentication agent
ssh-askpass X Window System utility for querying passwords
ssh-askpass-gnome Gnome utility for querying passwords
ssh-signer Signs host-based authentication packets. Version 2 only. Must

be suid root (performed by installation)
slogin Remote login (version 1)

SSH was originally designed to replace remote access operations, such as rlogin, rcp, and
telnet, as well as FTP (see Chapter 21). The ssh-clients package contains corresponding SSH
clients to replace these applications. With slogin or ssh, you can log in from a remote host to
execute commands and run applications, much as you can with rlogin and rsh. With scp, you
can copy files between the remote host and a network host, just as with rcp. scftp lets you
make secure FTP connections.

For version 2.0, names of the actual applications have a 2 suffix to indicate they are version
2.0 programs. Version 1.0 applications have a 1 as their suffix. During installation, however,
links are set for each application to use only the name with the suffix. For example, if you
have installed version 2.0, there is a link called scp to the scp2 application. You can then use
the link to invoked the application. Using scp starts scp2. Table 40-9 specifies only the link
names, as these are the same for each version. Remember, though, some applications, such as
sftp, are only available with version 2.0.

SSH Setup

Using SSH involves creating your own public and private keys and then distributing your
public key to other users you want to access. These can be different users or simply user
accounts of your own that you have on remote systems. Often people remotely log in from a
local client into an account on a remote server, say from a home computer to a company
computer. Your home computer would be your client account and the account on your
company computer would be your server account. On your client account, you would need to

generate your public and private keys. Then you would have to place a copy of your public
key in the server account. You can do this by simply emailing the key file or copying the file
from a floppy disk. Once the account on your server has a copy of your client user's public
key, you can access the server account from your client account. You will be also prompted
for the server account's passphrase. You will have to know this to access that account. Figure
40-3 illustrates the SSH setup that allows a user george to access the account cecelia.

Figure 40-3: SSH setup and access

The following steps are needed to allow you to use SSH to access other accounts.

1. Create public and private keys on your account along with a passphrase. You will need
to use this passphrase to access your account from another account.

2. Distribute your public key to other accounts you want to access, placing them in the
.ssh/authorized_keys or .ssh/authorized_keys2 file.

3. Other accounts also have to set up a public and private key along with a passphrase.
4. You will need to also know the other account's passphrase to access it.

You create your public and private keys using the ssh-keygen command. The ssh-keygen
command prompts you for a passphrase, which it will use as a kind of password to protect
your private key. The passphrase should be several words long. You are also prompted to
enter a filename for the keys. If you do not enter one, SSH will use its defaults. The public
key will be given the extension .pub. For SSH version 1, the ssh-keygen command generates
the public key and places it in your .ssh/identity. pub file; it places the private key in the
.ssh/identity file. For SSH version 2, the ssh- keygen command generates the public key and
places it in your .ssh/id_dsa.pub file; it places the private key in the .ssh/id_dsa file.

If you need to change your passphrase, you can do so with the ssh-keygen command and the -
p option. Each user will have his or her own SSH configuration directory, called .ssh, located
in their own home directory. The public and private keys, as well as SSH configuration files,
are placed here. If you build from the source code, then the make install operation will
automatically run ssh-keygen. Table 40-10 lists the SSH configuration files.

Table 40-10: SSH Configuration Files (SSH2 files are placed in /etc/ssh2 and .ssh2
directories)

File Description
$HOME/.ssh/known_hosts Records host keys for all hosts the user has logged in

to (that are not in /etc/ssh/ssh_known_hosts).
$HOME/.ssh/random_seed Used for seeding the random number generator.
$HOME/.ssh/identity Contains the RSA authentication identity of the user.

Table 40-10: SSH Configuration Files (SSH2 files are placed in /etc/ssh2 and .ssh2
directories)

File Description
$HOME/.ssh/identity.pub Contains the public key for authentication (public

part of the identity file in human- readable form). The
contents of this file should be added to
$HOME/.ssh/authorized_keys on all machines
where you want to log in using RSA authentication.

$HOME/.ssh/config The per-user configuration file.
$HOME/.ssh/authorized_keys Lists the RSA keys that can be used for logging in as

this user.
/etc/ssh/ssh_known_hosts Systemwide list of known host keys.
/etc/ssh/ssh_config Systemwide configuration file. This file provides

defaults for those values not specified in the user's
configuration file.

/etc/ssh/sshd_config SSH server configuration file.
$HOME/.rhosts This file is used in .rhosts authentication to list the

host/user pairs permitted to log in. Note, this file is
also used by rlogin and rsh, which makes using this
file insecure.

$HOME/.shosts This file is used exactly the same way as .rhosts. The
purpose for having this file is to use rhosts
authentication with ssh without permitting login with
rlogin or rsh.

/etc/hosts.equiv This file is used during .rhosts authentication. It
contains canonical hosts' names, one per line. If the
client host is found in this file, login is automatically
permitted, provided client and server usernames are
the same.

/etc/ssh/shosts.equiv This file is processed exactly as /etc/hosts.equiv.
This file may be useful to permit logins using ssh but
not using rsh/rlogin.

/etc/ssh/sshrc System default. Commands in this file are executed
by ssh when the user logs in just before the user's
shell (or command) is started.

$HOME/.ssh/rc Commands in this file are executed by ssh when the
user logs in just before the user's shell (or command)
is started.

A public key is used to authenticate a user and its host. You use the public key on a remote
system to allow that user access. In SSH version 2, the public key is placed in the remote user
account's .ssh/authorized_keys2 file. Recall that the public key is held in the .ssh/id_dsa.pub
file. If a user wants to log in remotely from a local account to an account on a remote system,
he or she would first place their public key in the .ssh/ authorized_keys2 file in the account
on the remote system they want to access. If the user larisa on turtle.mytrek.com wants to
access the aleina account on rabbit.mytrek.com, larisa's public key from

/home/larisa/.ssh/id_dsa.pub first must be placed in aleina's authorized_keys2 file,
/home/aleina/.ssh/authorized_keys2. larisa could send the key or have it copied over. A
simple cat operation can append a key to the authorized key file. In the next example, the user
adds the public key for aleina in the larisa.pub file to the authorized key file. The larisa.pub
file is a copy of the /home/larisa/.ssh/id_dsa.pub file that the user received earlier.

cat larisa.pub >> .ssh/authorized_keys2

For SSH version 1, the default name for the authorized key file is simply
.ssh/authorized_keys.

If you regularly make connections to a variety of remote hosts, you can use the ssh-agent
command to place private keys in memory where they can be accessed quickly to decrypt
received transmissions. The ssh-agent command is intended for use at the beginning of a
login session. If you are using a shell in your work, use that shell as the argument for the ssh-
agent command. If you are using the X Window System (Gnome or KDE), use the startx
command as your argument. That way, any applications you start inherit a connection to ssh-
agent. For a graphical login, such as GDM, place the ssh-agent command in your .Xclients
file. For Gnome, you can use the openssh-askpass-gnome utility, which allows you to enter a
password when you log in to Gnome. Gnome will automatically supply that password
whenever you use an SSH client. See the Red Hat Customization Guide for details on how to
enable openssh-askpass-gnome.

Although the ssh-agent command enables you to use private keys in memory, you also must
specifically load your private keys into memory using the ssh-add command. ssh-add with
no arguments loads your private key from your .ssh/identity file. You are prompted for your
passphrase for this private key. To remove the key from memory, use ssh-add with the -d
option. If you have several private keys, you can load them all into memory. ssh-add with the
-l option lists those currently loaded.

SSH also supports the original rhosts form of authentication where hosts and users that are
permitted access are placed in an .rhosts or .shosts file. However, this method is not
considered secure.

To use SSH in scripts that run in the background or when you are not logged in, you need to
either create a key that has no passphrase or allow automatic access with .shosts. To create a
key with no passphrase, you run ssh-keygen and then press ENTER for the passphrase. Give
the key a separate filename. Then, when you invoke SSH use the –i option to designate that
key. Make sure that the remote user you are accessing has the public key for this key pair.
Alternatively you can use .shosts. Make sure that the remote user you want to automatically
access has your public key. In the remote user's .shosts file add an entry for your host and
user name.

ssh

With ssh, you can remotely log in from a local client to a remote system on your network
operating as the SSH server. The term local client here refers to one outside the network such
as your home computer, and the term remote refers to a host system on the network to which
you are connecting. In effect, you connect from your local system to the remote network host.
It is designed to replace rlogin, which performs remote logins, and rsh, which executes remote

commands. With ssh, you can log in from a local site to a remote host on your network and
then send commands to be executed on that host. ssh is also capable of supporting X Window
System connections. This feature is automatically enabled if you make an ssh connection
from an X Window System environment, such as Gnome or KDE. A connection is set up for
you between the local X server and the remote X server. The remote host sets up a dummy X
server and sends any X Window System data through it to your local system to be processed
by your own local X server.

The ssh login operation function is much like the rlogin command. You enter the ssh
command with the address of the remote host, followed by an -l option and the login name
(username) of the remote account you are logging into. The following example logs into the
aleina user account on the rabbit.mytrek.com host:

ssh rabbit.mytrek.com -l aleina

The following listing shows how the user george accesses the cecelia account on
turtle.mytrek.com.

[george@turtle george]$ ssh turtle.mytrek.com -l cecelia
cecelia@turtle.mytrek.com's password:
Last login: Wed Sep 19 15:13:05 2001 from turtle.mytrek.com
[cecelia@turtle cecelia]$

A variety of options are available to enable you to configure your connection (see Table 40-
11). Most have corresponding configuration options that can be set in the configuration file.
For example, with the -c option, you can designate which encryption method you want to use.
With the -i option, you can select a particular private key to use. The -C option enables you to
have transmissions compressed at specified levels.

Table 40-11: ssh Command Options
Option Description
-a Disables forwarding of the authentication agent connection.
-c idea|des|3des|
blowfish|arcfour|
none

Selects the cipher to use for encrypting the session. idea is
used by default and is believed to be secure. none disables
encryption entirely; it is only intended for debugging and
renders the connection insecure.

-e ch|^ch|none Sets the escape character for sessions with a pty (default: ~).
The escape character is only recognized at the beginning of a
line. The escape character followed by a dot (.) closes the
connection, followed by CTRL-Z suspends the connection,
and followed by itself sends the escape character once.
Setting the character to "none" disables any escapes and
makes the session fully transparent.

-f Requests ssh to go to background after authentication is done
and forwardings are established.

-i identity_file Selects the file from which the identity (private key) for RSA
authentication is read. Default is .ssh/identity in the user's
home directory.

Table 40-11: ssh Command Options
Option Description
-k Disables forwarding of the Kerberos tickets.
-l login_name Specifies the user to log in as on the remote machine.
-n Redirects stdin from /dev/null (actually, prevents reading

from stdin). Used when ssh is run in the background. Used to
run X11 programs in a remote machine.

-o option Specifies options.
-p port Port to connect to on the remote host.
-q Quiet mode, suppresses warning and diagnostic messages.
-P Uses nonprivileged port.
-t Forces pseudo-tty allocation.
-v Verbose mode.
-V Displays version number.
-g Allows remote hosts to connect local port-forwarding ports.
-x Disables X11 forwarding.
-C Requests compression of all data. The compression algorithm

is the same used by gzip and the level can be controlled by
the CompressionLevel option.

-L port:host:hostport Specifies that the given port on the local (client) host is to be
forwarded to the given host and port on the remote side.

-R port:host:hostport Specifies that the given port on the remote (server) host is to
be forwarded to the given host and port on the local side.

scp

You use scp to copy files from one host to another on a network. Designed to replace rcp, scp
actually uses ssh to transfer data and employs the same authentication and encryption (see
Table 40-12). If authentication requires it, scp requests a password or passphrase. scp operates
much like rcp. Directories and files on remote hosts are specified using the username and the
host address before the filename or directory. The username specifies the remote user account
that scp is accessing, and the host is the remote system where that account is located. You
separate the user from the host address with a @, and you separate the host address from the
file or directory name with a colon, :. The following example copies the file party from a user
current directory to the user aleina's birthday directory, located on the rabbit.mytrek.com
host:

scp party aleina@rabbit.mytrek.com:/birthday/party

Table 40-12: scp Options
Option Description
-q Turns off statistics display.
-Q Turns on statistics display.
-r Recursively copies entire directories.

Table 40-12: scp Options
Option Description
-v Verbose mode.
-B Selects batch mode (prevents asking for passwords or pass-

phrases).
-C Compression-enabled.
-P port Specifies the port to connect to on the remote host.
-S path-to-ssh Specifies the path to sch program.

Of particular interest is the -r option (recursive), which enables you to copy whole directories.
In the next example, the user copies the entire reports directory to the user justin's projects
directory:

scp -r reports justin@rabbit.mytrek.com:/projects

In the next example, the user george copies the mydoc1 file form the user cecelia's home
directory.

[george@turtle george]$ scp cecelia@turtle.mytrek.com:mydoc1 .
cecelia@turtle.mytrek.com's password:
mydoc1 0% | | 0 --:--
ETA
mydoc1 100% |*****************************| 17 00:00
[george@turtle george]$

Port Forwarding

If, for some reason, you can only connect to a secure host by going through an unsecure host,
ssh provides a feature called port forwarding. With port forwarding, you can secure the
unsecure segment of your connection. This involves simply specifying the port at which the
unsecure host is to connect to the secure one. This sets up a direct connection between the
local host and the remote host, through the intermediary unsecure host. Encrypted data is
passed through directly.

You can set up port forwarding to a port on the remote system or your local system. To
forward a port on the remote system to a port on your local system, use the ssh -R option,
followed by an argument holding the local port, the remote host address, and the remote port
to be forwarded, each separated by a colon. This works by allocating a socket to listen to the
port on the remote side. Whenever a connection is made to this port, the connection is
forwarded over the secure channel, and a connection is made to a remote port from the local
machine. In the following example, port 22 on the local system is connected to port 23 on the
rabbit.mytrek.com remote system:

ssh -R 22:rabbit.mytrek.com:23

To forward a port on your local system to a port on a remote system, use the ssh -L option,
followed by an argument holding the local port, the remote host address, and the remote port
to be forwarded, each two arguments separated by a colon. A socket is allocated to listen to
port on the local side. Whenever a connection is made to this port, the connection is

forwarded over the secure channel and a connection is made to the remote port on the remote
machine. In the following example, port 22 on the local system is connected to port 23 on the
rabbit.mytrek.com remote system:

ssh -L 22:rabbit.mytrek.com:23

You can use the LocalForward and RemoteForward options in your .ssh/config file to set up
port forwarding for particular hosts or to specify a default for all hosts you connect to.

SSH Session

An SSH session can be implemented as a pseudoterminal, much like a telnet connection, or it
can be transparent, as is the case with X server connections. With a psuedoterminal, the user
can control the connection with a set of escape characters, each beginning with a tilde (~). To
end the connection, use a "~." escape sequence. A ~CTRL-Z suspends the session. The escape
sequence must be entered in a line of its own. The ~? lists the available escape sequences you
can use.

If no pseudoterminal is set up, the session is transparent. Usually, setting the escape character
to "none" makes the session transparent. Binary data can safely be transmitted during
transparent sessions. A transparent session ends when the shell or command on the remote
system ends and all connections have been closed. X Window System connections are
automatically set up as transparent connections. SSH sets up a proxy X server on the remote
system.

SSH Configuration

The SSH configuration file for each user is in his or her .ssh/config file. The
/etc/ssh/sys_config file is used to set sitewide defaults. In the configuration file, you can set
various options, as listed in Table 40-13. The configuration file is designed to specify options
for different remote hosts to which you might connect. It is organized into segments where
each segment begins with the keyword HOST, followed by the IP address of the host. The
following lines hold the options you have set for that host. A segment ends at the next HOST
entry. Of particular interest are the User and Cipher options. Use the User option to specify
the names of users on the remote system that are allowed access. With the Cipher option, you
can select which encryption method to use for a particular host (see Table 40-14). The
following example allows access from larisa at turtle.mytrek.com and uses blowfish
encryption for transmissions:

Host turtle.mytrek.com
 User larisa
 Compression no
 Cipher blowfish

Table 40-13: SSH Configuration Options
Option Description
Host hostname Specifies the host to which the following options apply.

All options apply to this host until the next Host entry.
You can specify a range of hosts by using the * and ?
pattern-matching wildcard symbols. A host specified as
only * matches on all hosts and can be used to specify

Table 40-13: SSH Configuration Options
Option Description

global options.
BatchMode (yes | no) If set to yes, passphrase/password querying is disabled.

This option is useful in scripts and other batch jobs where
you have no user to supply the password. The argument
must be yes or no.

Cipher cipher Specifies the cipher to use for encrypting the session, such
as idea, des, 3des, blowfish, arcfour, and none. The default
is idea (or 3des if idea is not supported by both hosts).
Using "none" (no encryption) renders the connection
insecure and is intended only for debugging.

ClearAllForwardings
(yes | no)

Clears all forwardings after reading all config files and
parsing the command line. This is useful to disable
forwardings in config files when you want to make a
second connection to the host having forwardings in the
config file. scp sets this on by default, so it does not fail,
even if you have some forwardings set in a config file.

Compression
(yes | no)

Specifies whether to use compression.

CompressionLevel (1–9) Specifies the compression level. The argument must be an
integer from 1 (fast) to 9 (slow, best). The default level is
6.

ConnectionAttempts
num

Specifies the number of tries (one per second) to make.

EscapeChar Sets the escape character (default: ~). The argument
should be a single character, ^, followed by a letter or
"none" to disable the escape character entirely (making the
connection transparent for binary data).

FallBackToRsh
(yes | no)

Specifies if connecting with ssh fails because no sshd is on
the remote host, rsh should automatically be used instead.

ForwardAgent
(yes | no)

Specifies whether the connection to the authentication
agent should be forwarded to the remote machine.

ForwardX11 (yes | no) Specifies whether X11 connections should be
automatically redirected over the secure channel and
DISPLAY set.

GatewayPorts
(yes | no)

Specifies that remote hosts may connect to locally
forwarded ports.

GlobalKnownHostsFile
file

Specifies a file to use instead of
/etc/ssh/ssh_known_hosts.

HostName hostname Specifies the real hostname to log into. This can be used to
specify nicknames or abbreviations for hosts.

IdentityFile file Specifies the file from which the user's RSA
authentication identity is read (default .ssh/identity in the
user's home directory).

Table 40-13: SSH Configuration Options
Option Description
KeepAlive (yes | no) Specifies whether the system should send keep alive

messages to the other side. Used to detect if connection
fails.

KerberosAuthentication
(yes | no)

Specifies whether Kerberos V5 authentication should be
used.

KerberosTgtPassing
(yes | no)

Specifies whether a Kerberos V5 TGT is to be forwarded
to the server.

LocalForward
host host:port

Specifies a TCP/IP port on the local machine be
forwarded over the secure channel to given host:port from
the remote machine. The first argument must be a port
number, and the second must be host:port.

NumberOfPasswordPrompts
num

Specifies the number of password prompts before giving
up.

PasswordAuthentication
(yes | no)

Specifies whether to use password authentication.

PasswordPromptHost
(yes | no)

Specifies whether to include the remote hostname in the
password prompt.

PasswordPrompt
Login (yes | no)

Specifies whether to include the remote login name in the
password prompt.

Port Specifies the port number to connect on the remote host.
Default is 22.

ProxyCommand
command

Specifies the command to use to connect to the server.

RemoteForward
host host:port

Specifies a TCP/IP port on the remote machine be
forwarded over the secure channel to given host:port from
the local machine. The first argument must be a port
number, and the second must be host:port.

RhostsAuthentication
(yes | no)

Specifies whether to try rhosts-based authentication.

RhostsRSAAuthentication
(yes | no)

Specifies whether to try rhosts-based authentication with
RSA host authentication.

RSAAuthentication
(yes | no)

Specifies whether to try RSA authentication.

StrictHostKeyChecking
(yes | no | ask)

If this flag is set to yes, ssh never automatically adds host
keys to the $HOME/.ssh/known_hosts file and refuses to
connect hosts whose host key has changed.

TISAuthentication
(yes | no)

Specifies whether to try TIS authentication.

UsePrivilegedPort
(yes | no)

Specifies whether to use a privileged port when
connecting to other end.

User username Specifies the user login name.

Table 40-13: SSH Configuration Options
Option Description
UserKnownHostsFile
file

Specifies a file to use instead of
$HOME/.ssh/known_hosts.

UseRsh (yes | no) Specifies rlogin/rsh should be used for this host if it does
not support the ssh protocol.

XAuthLocation path Specifies the path to xauth program.

Table 40-14: SSH2 Encryption Methods
Method Description
idea Believed to be secure.
DES The data encryption standard, but this is breakable by governments,

large corporations, and major criminal organizations.
3des (triple-des) Encrypt-decrypt-encrypt triple with three different keys.

Presumably more secure than DES and used as the default if both
sites do not support IDEA.

Blowfish 128-bit key encryption algorithm invented by Bruce Schneier.
Arcfour Equivalent with the RC4 cipher from RSA Data Security (RC4 is a

trademark of RSA Data Security). This is the fastest algorithm
currently supported.

Twofish Version 2 only.
Arcfour Version 2 only.
cast128-cbc Version 2 only.

To specify global options that apply to any host you connect to, create a HOST entry with the
asterisk as its host, HOST *. This entry must be placed at the end of the configuration file
because an option is changed only the first time it is set. Any subsequent entries for an option
are ignored. Because a host matches on both its own entry and the global one, its specific
entry should come before the global entry. The asterisk, *, and the question mark, ?, are both
wildcard matching operators that enable you to specify a group of hosts with the same suffix
or prefix.

 Host *
 FallBackToRsh yes
 KeepAlive no
 Cipher idea

Kerberos Authentication and Encryption

Kerberos is a network authentication protocol that provides encrypted authentication to
connections between a client and a server. As an authentication protocol, Kerberos requires a
client to prove his or her identity using encryption methods before they can access a server.
Once authenticated, the client and server can conduct all communications using encryption.
Whereas firewalls only protect from outside attacks, Kerberos is designed to also protect from
attacks from those inside the network. Users already within a network could try to break in to
local servers. Kerberos places protection around the servers themselves, rather than an entire
network or computer. A free version is available from the Massachusetts Institute of

Technology at web.mit.edu/kerberos under the MIT Public License, which is similar to the
GNU Public License. The name Kerberos comes from Greek mythology and is the name of
the three-headed watchdog for Hades.

The key to Kerberos is a Kerberos server through which all requests for any server services
are channeled. The Kerberos server then authenticates a client, identifying the client and
validating the client's right to use a particular server. The server maintains a database of
authorized users. Kerberos then issues the client an encrypted ticket that the client can use to
gain access to the server. For example, if a user needs to check his or her mail, a request for
use of the mail server is sent to the Kerberos server, which then authenticates the user and
issues a ticket that is then used to access the mail server. Without a Kerberos-issued ticket, no
one can access any of the servers. Originally, this process required that the user undergo a
separate authentication procedure for each server he or she wanted to access. However, users
now only need to perform an initial authentication that is valid for all servers.

This process actually involves the use of two servers, an authentication server (AS) and a
ticket granting server (TGS). Together they make up what is known as the key distribution
center (KDC). In effect, they distribute keys used to unlock access to services. The
authentication server first validates a user's identity. The AS issues a ticket called the ticket
granting ticket (TGT) that allows the user to access the ticket granting server. The TGS then
issues the user another ticket to actually access a service. This way, the user never has any
direct access of any kind to a server during the authentication process. The process is
somewhat more complex than described. An authenticator using information such as the
current time, a checksum, and an optional encryption key is sent along with the ticket and is
decrypted with the session key. This authenticator is used by a service to verify the user's
identity.

The authentication server validates a user using information in its user database. Each user
needs to be registered in the authentication server's database. The database will include a user
password and other user information. To access the authentication server, the user provides
the username and the password. The password is used to generate a user key with which
communication between the AS and the user is encrypted. The user will have its own copy of
the user key with which to decrypt communications. The authentication process is illustrated
in Figure 40-4.

Figure 40-4: Kerberos authentication

Accessing a service with Kerberos involves the following steps:

1. First the user has to be validated by the authentication server and granted access to the
ticket granting server with a ticket access key. The user does this by issuing the kinit
command, which will ask you enter your Kerberos username and then send it on to the
authentication server (the Kerberos username is usually the same as your username).

kinit

2. The AS generates a ticket granting ticket with which to access the ticket granting
server. This ticket will include a session key that will be used to let you access the
TGS server. The TGT is sent back to you encrypted with your user key (password).

3. The kinit program then prompts you to enter your Kerberos password, which it then
uses to decrypt the TGT.

4. Now you can use a client program such as a mail client program to access the mail
server, for instance. When you do so, the TGT is used to access the TGS server, which
then will generate a ticket for accessing the mail server. The TGS will generate a new
session key for use with just the mail server. This will be provided in the ticket sent to
you for accessing the mail server. In effect, there is a TGT sessions key used for
accessing the TGS server, and a mail session key used for accessing the mail server.
The ticket for the mail server is sent to you encrypted with the TGS session key.

5. The client then uses the mail ticket received from the TGS server to access the mail
server.

6. If you want to use another service such as FTP, when your FTP client sends a request
to the TGS server for a ticket, the TGS server will automatically obtain authorization
from the authentication server and issue an FTP ticket with an FTP session key. This
kind of support remains in effect for a limited period of time, usually several hours,
after which you again have to use kinit to undergo the authentication process and
access the TGS server.

Installing and configuring a Kerberos server can be a complex process. Carefully check the
documentation for installing the current versions. Some of the key areas are listed here. In the
Kerberos configuration file, krb5.conf, you can set such features as the encryption method
used and the database name. When installing Kerberos, be sure to carefully follow the
instructions for providing administrative access. The /etc/services file should contain a listing
of all Kerberized services. These are services such as kftp or klogin that provide Kerberos
FTP and login services. To run Kerberos, you start the Kerberos server with the krb5kdc and
kadmin commands.

 Note On Gnome, you can use the krb5 tool to manage Kerberos tickets, and the gkadmin tool
to manage Kerberos realms. These are part of the gnome-kerberos package on your Red
Hat distribution.

Setting up a particular service to use Kerberos (known as Kerberizing) can be a complicated
process. A Kerberized service needs to check the user's identity and credentials, check for a
ticket for the service, and, if one is not present, obtain one. Once the service is set up, use of
Kerberized services is nearly transparent to the user. Tickets are automatically issued and
authentication carried out without any extra effort by the user.

 Note The Red Hat Reference Manual provides detailed instructions on setting up Kerberos

servers and clients on Red Hat systems.

Web Chapter 41: Shell Programming
Overview

A shell program combines Linux commands in such a way as to perform a specific task. The
Linux shell provides you with many programming tools with which to create shell programs.
You can define variables and assign values to them. You can also define variables in a script
file and have a user interactively enter values for them when the script is executed. There are
loop and conditional control structures that repeat Linux commands or make decisions on
which commands you want to execute. You can also construct expressions that perform
arithmetic or comparison operations. All these programming tools operate like those found in
other programming languages.

You can combine shell variables, control structures, expressions, and Linux commands to
form a shell program. Usually, the instructions making up a shell program are entered into a
script file that can then be executed. You can create this script file using any standard editor.
To run the shell program, you then execute its script file. You can even distribute your
program among several script files, one of which will contain instructions to execute others.
You can think of variables, expressions, and control structures as tools you use to bring
together several Linux commands into one operation. In this sense, a shell program is a new,
complex Linux command that you have created. The BASH, TCSH, and Z shells that are
supported on Linux distributions each have their own shell programming language with
slightly different syntax. This chapter discusses BASH shell programming. Table 1 lists
several commonly used BASH shell commands discussed throughout this chapter and
previously in Chapter 11.

Table 1: BASH: Shell Commands and Arguments
BASH Shell Commands Effect
break Exits from for, while, or until loop
continue Skips remaining commands in loop and continues with next

iteration
echo Displays values

-n eliminates output of new line
eval Executes the command line
exec Executes command in place of current process; does not

generate a new subshell, but uses the current one
exit Exits from the current shell
export var Generates a copy of var variable for each new subshell (call-

by-value)
history Lists recent history events
let "expression" Evaluates an arithmetic, relational, or assignment expression

using operators listed in Table 41-3. The expression must be
quoted

Table 1: BASH: Shell Commands and Arguments
BASH Shell Commands Effect
read Reads a line from the standard input
return Exits from a function
set Assigns new values for these arguments (when used with

command line arguments); lists all defined variables (when
used alone)

shift Moves each command line argument to the left so that the
number used to reference it is one less than before; argument
$3 would then be referenced by $2, and so on; $1 is lost

test value option value
[value option value]

Compares two arguments; used as the Linux command tested
in control structures
test 2 -eq $count
[2 -eq $count]

unset Undefines a variable
Command Line Arguments
$0 Name of Linux command
$n The nth command line argument beginning from 1, $1–$n;

you can use set to change them
$* All the command line arguments beginning from 1; you can

use set to change them
$@ The command line arguments individually quoted
$# The count of the command line arguments
Process Variables
$$ The PID number, process ID, of the current process
$! The PID number of the most recent background job
$? The exit status of the last Linux command executed

Shell Scripts: Commands and Comments

A shell script is a text file that contains Linux commands, which you enter using any standard
editor. You can then execute the commands in the file by using the filename as an argument
to any sh or dot command (.). They read the commands in shell scripts and execute them. You
can also make the script file itself executable and use its name directly on the command line
as you would use the name of any command. To better identify your shell scripts, you can add
the .sh extension to them, as in hello.sh. However, this is not necessary.

You make a script file executable by setting its execute permission using the chmod
command. The executable permission for the chmod command can be set using either
symbolic or absolute references. The symbolic reference u+x sets the execute permission of a
file. The command chmod u+x hello will set the execute permission of the hello script file.
You can now use the script filename hello as if it were a Linux command. You only need to
set the executable permission once. Once set, it remains set until you explicitly change it. The
contents of the hello script are shown here.

hello

echo "Hello, how are you"

The user then sets the execute permission and runs the script using just the script name, in this
case, hello.

$ chmod u+x hello
$ hello
Hello, how are you
$

An absolute reference will set read and write permissions at the same time that it sets the
execute permission. See Chapter 12 for a more detailed explanation of absolute and symbolic
permission references. In brief, a 700 will set execute as well as read and write permissions
for the user; 500 will set only execute and read permissions; 300 only execute and write
permissions; and 400 only execute permission. Users most often set 700 or 500. In the next
example, the user sets the execute permission using an absolute reference:

$ chmod 750 hello
$ hello
Hello, how are you
$

It is often helpful to include in a script file short explanations describing what the file's task is
as well as describing the purpose of certain commands and variables. You can enter such
explanations using comments. A comment is any line or part of a line preceded by a sharp (or
hash) sign, #, with the exception of the first line. The end of the comment is the next newline
character, the end of the line. Any characters entered on a line after a sharp sign will be
ignored by the shell. The first line is reserved for identification of the shell, as noted in the
following discussion. In the next example, a comment describing the name and function of the
script is placed at the head of the file.

hello

The hello script says hello
echo "Hello, how are you"

You may want to be able to execute a script that is written for one of the Linux shells while
you are working in another. Suppose you are currently in the TCSH shell and want to execute
a script you wrote in the BASH shell that contains BASH shell commands. First you would
have to change to the BASH shell with the sh command, execute the script, and then change
back to the TCSH shell. You can, however, automate this process by placing, as the first
characters in your script, #!, followed by the pathname for the shell program on your system.

Your shell always examines the first character of a script to find out what type of script it is—
a BASH, PDKSH, or TCSH shell script. If the first character is a space, the script is assumed
to be either a BASH or PDKSH shell script. If there is a # alone, the script is a TCSH shell

script. If, however, the # is followed by a ! character, then your shell reads the pathname of a
shell program that follows. A #! should always be followed by the pathname of a shell
program identifying the type of shell the script works in. If you are currently in a different
shell, that shell will read the pathname of the shell program, change to that shell, and execute
your script. If you are in a different shell, the space or # alone is not enough to identify a
BASH or TCSH shell script. Such identification works only in their own shells. To identify a
script from a different shell, you need to include the #! characters followed by a pathname.

For example, if you put #!/bin/sh at the beginning of the first line of the hello script, you
could execute it directly from the TCSH shell. The script will first change to the BASH shell,
execute its commands, and then return to the TCSH shell (or whatever type of shell it was
executed from). In the next example, the hello script includes the #!/bin/sh command.

hello

#!/bin/sh
The hello script says hello
echo "Hello, how are you"

The user then executes the script while in the TCSH shell.

> hello
Hello, how are you

Variables and Scripts

In the shell, you can create shell programs using variables and scripts. Within a shell program,
you can define variables and assign values to them. Variables are used extensively in script
input and output operations. The read command allows the user to interactively enter a value
for a variable. Often read is combined with a prompt notifying the user when to enter a
response. Another form of script input, called the Here document, allows you to use lines in a
script as input to a command (discussed later). This overcomes the need to always read input
from an outside source such as a file.

Definition and Evaluation of Variables: =, $, set, unset

A variable is defined in a shell when you first use the variable's name. A variable name may
be any set of alphabetic characters, including the underscore. The name may also include a
number, but the number cannot be the first character in the name. A name may not have any
other type of character, such as an exclamation point, ampersand, or even a space. Such
symbols are reserved by a shell for its own use. A name may not include more than one word,
because a shell uses spaces to parse commands, delimiting command names and arguments.

You assign a value to a variable with the assignment operator. You type the variable name,
the assignment operator, =, and then the value assigned. Note that you cannot place any
spaces around the assignment operator. Any set of characters can be assigned to a variable. In
the next example, the greeting variable is assigned the string "Hello":

$ greeting="Hello"

Once you have assigned a value to a variable, you can then use that variable to reference the
value. Often, you use the values of variables as arguments for a command. You can reference
the value of a variable using the variable name preceded by the $ operator. The dollar sign is a
special operator that uses a variable name to reference a variable's value, in effect evaluating
the variable. Evaluation retrieves a variable's value—a set of characters. This set of characters
then replaces the variable name on the command line. Thus, wherever a $ is placed before the
variable name, the variable name is replaced with the value of the variable.

In the next example, the shell variable greeting is evaluated and its contents, "Hello", are then
used as the argument for an echo command. The echo command simply echoes or prints a set
of characters to the screen.

$ echo $greeting
Hello
 Tip You can obtain a list of all the defined variables with the set command. If you decide that

you do not want a certain variable, you can remove it with the unset command.

Variable Values: Strings

The values that you assign to variables may consist of any set of characters. These characters
may be a character string that you explicitly type in or the result obtained from executing a
Linux command. In most cases, you will need to quote your values using either single quotes,
double quotes, backslashes, or back quotes. Single quotes, double quotes, and backslashes
allow you to quote strings in different ways. Back quotes have the special function of
executing a Linux command and using the results as arguments on the command line.

Although variable values can be made up of any characters, problems occur when you want to
include characters that are also used by the shell as operators. Your shell has certain special
characters that it uses in evaluating the command line. If you want to use any of these
characters as part of the value of a variable, you must first quote them. Quoting a special
character on a command line makes it just another character.

• A space is used to parse arguments on the command line.
• The asterisk, question mark, and brackets are special characters used to generate lists

of filenames.
• The period represents the current directory.
• The dollar sign is used to evaluate variables, and the greater-than and less-than

characters are redirection operators.
• The ampersand is used to execute background commands, and the vertical bar pipes

execute output. Double and single quotes allow you to quote several special characters
at a time. Any special characters within double or single quotes are quoted. A
backslash quotes a single character—the one that it precedes. If you want to assign
more than one word to a variable, you need to quote the spaces separating the words.
You can do so by enclosing the words within double quotes. You can think of this as
creating a character string to be assigned to the variable. Of course, any other special
characters enclosed within the double quotes will also be quoted.

The following examples show three ways of quoting strings. In the first example, the double
quotes enclose words separated by spaces. Because the spaces are enclosed within double
quotes, they are treated as characters—not as delimiters used to parse command line
arguments. In the second example, single quotes also enclose a period, treating it as just a

character. In the third example, an asterisk is also enclosed within the double quotes. The
asterisk is considered just another character in the string and is not evaluated.

$ notice="The meeting will be tomorrow"
$ echo $notice
The meeting will be tomorrow

$ message='The project is on time.'
$ echo $message
The project is on time.

$ notice="You can get a list of files with ls *.c"
$ echo $notice
You can get a list of files with ls *.c

Double quotes, however, do not quote the dollar sign—the operator that evaluates variables.
A $ next to a variable name enclosed within double quotes will still be evaluated, replacing
the variable name with its value. The value of the variable will then become part of the string,
not the variable name. There may be times when you want a variable within quotes to be
evaluated. In the next example, the double quotes are used so that the winner's name will be
included in the notice:

$ winner=dylan
$ notice="The person who won is $winner"

$ echo $notice
The person who won is dylan

You can always quote any special character, including the $ operator, by preceding it with a
backslash. The backslash is useful when you want to evaluate variables within a string and
also include $ characters. In the next example, the backslash is placed before the dollar sign in
order to treat it as a dollar sign character, \$. At the same time, the variable $winner is
evaluated, since double quotes do not themselves quote the $ operator.

$ winner=dylan
$ result="$winner won \$100.00""
$ echo $result
dylan won $100.00

Values from Linux Commands: Back Quotes

Though you can create variable values by typing in characters or character strings, you can
also obtain values from other Linux commands. However, to assign the result of a Linux
command to a variable, you first need to execute the command. If you place a Linux
command within back quotes on the command line, that command is executed first and its
result becomes an argument on the command line. In the case of assignments, the result of a
command can be assigned to a variable by placing the command within back quotes to
execute it first.

 Tip Think of back quotes as a kind of expression that contains both a command to be
executed and its result, which is then assigned to the variable. The characters making up
the command itself are not assigned.

In the next example, the command ls *.c is executed and its result is then assigned to the
variable listc. The command ls *.c generates a list of all files with a .c extension, and this list
of files will then be assigned to the listc variable.

$ listc=`ls *.c`
$ echo $listc
main.c prog.c lib.c

Script Input and Output: echo, read, and <<

Within a script, you can use the echo command to output data and the read command to read
input into variables. Also within a script, the echo command will send data to the standard
output. The data is in the form of a string of characters. As you have seen, the echo command
can output variable values as well as string constants. The read command reads in a value for
a variable. It is used to allow a user to interactively input a value for a variable. The read
command literally reads the next line in the standard input. Everything in the standard input
up to the newline character is read in and assigned to a variable. In shell programs, you can
combine the echo command with the read command to prompt the user to enter a value and
then read that value into a variable. In the greetvar script in the next example, the user is
prompted to enter a value for the greeting variable. The read command then reads the value
the user typed and assigns it to the greeting variable.

greetvar

echo Please enter a greeting:
read greeting
echo "The greeting you entered was $greeting"

The greetvar script is then run, as shown here:

$ greetvar
Please enter a greeting:
hi
The greeting you entered was hi
$

If the value of a variable is a special character and the variable's value is referenced with a $,
then the special character will be evaluated by the shell. However, placing the evaluated
variable within quotes prevents any evaluation of special characters such as $. In the greetvar
script, $greeting was placed within a quoted string, preventing evaluation of any special
characters. If $greeting is not quoted, then any special characters it contains will be
evaluated.

The Here operation is a redirection operation, redirecting data within a shell script into a
command. It is called Here because the redirected data is here in the shell script, not
somewhere else in another file. The Here operation is represented by two less-than signs, <<.
The << operator can be thought of as a kind of redirection operator, redirecting lines in a shell
script as input to a command. The << operator is placed after the command to which input is
being redirected. Lines following the << operator are then taken as input to the command. The
end of the input can be specified by an end-of-file character, CTRL-D. Instead of using an

end-of- file character, you can specify your own delimiter. A word following the << operator
on the same line is taken to be the ending delimiter for the input lines. The delimiter can be
any set of symbols. All lines up to the delimiter are read as input to the command.

In the next example, a message is sent to the user mark. The input for the message is obtained
from a Here operation. The delimiter for the Here operation is the word myend.

mailmark

mail mark << myend
Did you remember the meeting
 robert
myend

Script Command Line Arguments

Like Linux commands, a shell script can take arguments. When you invoke a script, you can
enter arguments on the command line after the script name. These arguments can then be
referenced within the script using the $ operator and the number of its position on the
command line. Arguments on the command line are sequentially numbered from 1. The first
argument is referenced with $1, the second argument with $2, and so on. The argument $0
will contain the name of the shell script, the first word on the command line.

 Note These argument references can be thought of as referencing read-only variables. For
those familiar with programming terminology, you can think of words on the command
line as arguments that are passed into argument variables, $1 through $9.

The argument variables are read-only variables. You cannot assign values to them. Once
given the initial values, they cannot be altered. In this sense, argument variables function
more as constants—constants determined by the command line arguments. Each word on the
command line is parsed into an argument unless it is quoted. If you enter more than one
argument, you can reference them with each corresponding argument number. In the next
example, four arguments are entered on the command line.

greetargs

echo "The first argument is: $1"
echo "The second argument is: $2"
echo "The third argument is: $3"
echo "The fourth argument is: $4"

Here is a run of the greetargs script:

$ greetargs Hello Hi Salutations "How are you"
The first argument is: Hello
The second argument is: Hi
The third argument is: Salutations
The fourth argument is: How are you
$

A set of special arguments allows you to reference different aspects of command line
arguments, such as the number of arguments or all the arguments together: $*, $@, $#. The
$# argument contains the number of arguments entered on the command line. This is useful
when you need to specify a fixed number of arguments for a script. The argument $*
references all the arguments in the command line. A command line may have more than nine
arguments. The $@ also references all the arguments on the command line, but allows you to
separately quote each one. The difference between $* and $@ is not clear until you use them
to reference arguments using the for-in control structure. For this reason, they are discussed
only briefly here and more extensively in the section on control structures later in the chapter.

Export Variables and Script Shells

When you execute a script file, you initiate a new process that has its own shell. Within this
shell you can define variables, execute Linux commands, and even execute other scripts. If
you execute another script from within the script currently running, the current script
suspends execution, and control is transferred to the other script. All the commands in this
other script are first executed before returning to continue with the suspended script. The
process of executing one script from another operates much like a function or procedure call
in programming languages. You can think of a script calling another script. The calling script
waits until the called script finishes execution before continuing with its next command.

Any variable definitions that you place in a script will be defined within the script's shell and
only known within that script's shell. Variable definitions are local to their own shells. In a
sense, the variable is hidden within its shell. Suppose, however, you want to be able to define
a variable within a script and use it in any scripts it may call. You cannot do this directly, but
you can export a variable definition from one shell to another using the export command.
When the export command is applied to a variable, it will instruct the system to define a copy
of that variable for each new subshell generated. Each new subshell will have its own copy of
the exported variable. In the next example, the myname variable is defined and exported:

$ myname="Charles"
$ export myname
 Note It is a mistake to think of exported variables as global variables. A shell can never

reference a variable outside of itself. Instead, a copy of the variable with its value is
generated for the new shell. An exported variable operates to some extent like a scoped
global parameter. It is copied to any shell derived from its own shell. Any shell script
called directly or indirectly after the exported variable's shell will be given a copy of the
exported variable with the initial value.

In the BASH shell, an environment variable can be thought of as a regular variable with added
capabilities. To make an environment variable, you apply the export command to a variable
you have already defined. The export command instructs the system to define a copy of that
variable for each new subshell generated. Each new subshell will have its own copy of the
environment variable. This process is called exporting variables.

In the next example, the variable myfile is defined in the dispfile script. It is then turned into
an environment variable using the export command. The myfile variable will consequently be
exported to any subshells, such as that generated when printfile is executed.

dispfile

myfile="List"
export myfile
echo "Displaying $myfile"
pr -t -n $myfile
printfile

printfile

echo "Printing $myfile"
lp $myfile &

A run of the dispfile script follows:

$ dispfile
Displaying List
1 screen
2 modem
3 paper
Printing List
$

Arithmetic Shell Operations: let

The let command is the BASH shell command for performing operations on arithmetic
values. With let, you can compare two values or perform arithmetic operations such as
addition or multiplication on them. Such operations are used often in shell programs to
manage control structures or perform necessary calculations. The let command can be
indicated either with the keyword let or with a set of double parentheses. The syntax consists
of the keyword let followed by two numeric values separated by an arithmetic or relational
operator, as shown here:

$ let value1 operator value2

You can use as your operator any of those listed in Table 2. The let command automatically
assumes that operators are arithmetic or relational. You do not have to quote shell-like
operators. The let command also automatically evaluates any variables and converts their
values to arithmetic values. This means that you can write your arithmetic operations as
simple arithmetic expressions. In the next example, the let command multiplies the values 2
and 7. The result is output to the standard output and displayed.

$ let 2*7
14

Table 2: BASH: Shell Operators
Arithmetic Operators Function
* Multiplication
/ Division
+ Addition

Table 2: BASH: Shell Operators
Arithmetic Operators Function
- Subtraction
% Modulo—results in the remainder of a division
Relational Operators
 Greater than
 Less than
= Greater than or equal to
= Less than or equal to
= Equal in expr
== Equal in let
!= Not equal
& Logical AND
| Logical OR
! Logical NOT

If you want to have spaces between operands in the arithmetic expression, you must quote the
expression. The let command expects one string.

$ let "2 * 7"

You can also include assignment operations in your let expression. In the next example, the
result of the multiplication is assigned to res:

$ let "res = 2 * 7"
$ echo $res
14
$

You can also use any of the relational operators to perform comparisons between numeric
values, such as checking to see whether one value is less than another. Relational operations
are often used to manage control structures such as loops and conditions. In the next example,
helloprg displays the word "hello" three times. It makes use of a let less-than-or-equal
operation to manage the loop, let "again <= 3 ", and to increment the again variable, let
"again = again + 1". Notice that when again is incremented, it does not need to be evaluated.
No preceding $ is needed. The let command will automatically evaluate variables used in
expressions.

helloprg

again=1
while let "again <= 3"
do
 echo $again Hello
let "again = again + 1"
done

Here is a run of the helloprg script.

$ helloprg
1 Hello
2 Hello
3 Hello

Control Structures

You can control the execution of Linux commands in a shell program with control structures.
Control structures allow you to repeat commands and to select certain commands over others.
A control structure consists of two major components: a test and commands. If the test is
successful, the commands are executed. In this way, you can use control structures to make
decisions as to whether commands should be executed.

There are two different kinds of control structures: loops and conditions. A loop repeats
commands, whereas a condition executes a command when certain conditions are met. The
BASH shell has three loop control structures: while, for, and for-in. There are two condition
structures: if and case.

The while and if control structures are more for general purposes, such as performing
iterations and making decisions using a variety of different tests. The case and for control
structures are more specialized. The case structure is a restricted form of the if condition and
is often used to implement menus. The for structure is a limited type of loop. It runs through a
list of values, assigning a new value to a variable with each iteration.

The if and while control structures have as their test the execution of a Linux command. All
Linux commands return an exit status after they have finished executing. If a command is
successful, its exit status will be 0. If the command fails for any reason, its exit status will be a
positive value referencing the type of failure that occurred. The if and while control structures
check to see if the exit status of a Linux command is 0 or some other value. In the case of the
if and while structures, if the exit status is a zero value, the command was successful and the
structure continues.

The test Command

Often you may need to perform a test that compares two values. Yet the test used in control
structures is a Linux command, not a relational expression. There is, however, a Linux
command called test that can perform such a comparison of values. The test command will
compare two values and return as its exit status a 0 if the comparison is successful.

With the test command, you can compare integers, compare strings, and even perform logical
operations. The command consists of the keyword test followed by the values being
compared, separated by an option that specifies what kind of comparison is taking place. The
option can be thought of as the operator, but is written, like other options, with a minus sign
and letter codes. For example, -eq is the option that represents the equality comparison.
However, there are two string operations that actually use an operator instead of an option.
When you compare two strings for equality you use the equal sign, =. For inequality, you use

!=. Table 3 lists all the options and operators used by test. The syntax for the test command is
shown here:

test value -option value
test string = string

Table 3: BASH: Shell Test Operators
Integer Comparisons Function
-gt Greater than
-lt Less than
-ge Greater than or equal to
-le Less than or equal to
-eq Equal
-ne Not equal
String Comparisons
-z Tests for empty string
-n Tests for string value
= Equal strings
!= Not-equal strings
str Tests to see if string is not a null string
Logical Operations
-a Logical AND
-o Logical OR
! Logical NOT
File Tests
-f File exists and is a regular file
-s File is not empty
-r File is readable
-w File can be written to, modified
-x File is executable
-d Filename is a directory name
-h Filename is a symbolic link
-c Filename references a character device
-b Filename references a block file

In the next example, the user compares two integer values to see if they are equal. In this case,
you need to use the equality option, -eq. The exit status of the test command is examined to
find out the result of the test operation. The shell special variable $? holds the exit status of
the most recently executed Linux command.

$ num=5
$ test $num -eq 10
$ echo $?

1

Instead of using the keyword test for the test command, you can use enclosing brackets. The
command test $greeting = "hi" can be written as

$ [$greeting = "hi"]

Similarly, the test command test $num -eq 10 can be written as

$ [$num -eq 10]

The brackets themselves must be surrounded by white space: a space, TAB, or ENTER.
Without the spaces, it would be invalid.

The test command is used extensively as the Linux command in the test component of control
structures. Be sure to keep in mind the different options used for strings and integers. Do not
confuse string comparisons and integer comparisons. To compare two strings for equality,
you use =; to compare two integers, you use the option -eq.

Conditions: if, if-else, elif, case

The BASH shell has a set of conditional control structures that allow you to choose what
Linux commands to execute. Many of these are similar to conditional control structures found
in programming languages, but there are some differences. The if condition tests the success
of a Linux command, not an expression. Furthermore, the end of an if-then command must be
indicated with the keyword fi, and the end of a case command is indicated with the keyword
esac. The condition control structures are listed in Table 4.

Table 4: BASH: Shell Control Structures
Condition Control Structures:
if, else, elif, case

Function

if command then
command
fi

if executes an action if its test command is true.

if command then
command
else
command
fi

if-else executes an action if the exit status of its test
command is true; if false, then the else action is
executed.

if command then
command
elif command then
command
else
command
fi

elif allows you to nest if structures, enabling selection
among several alternatives; at the first true if
structure, its commands are executed and control
leaves the entire elif structure.

case string in
pattern)
command;;

case matches the string value to any of several
patterns; if a pattern is matched, its associated
commands are executed.

Table 4: BASH: Shell Control Structures
Condition Control Structures:
if, else, elif, case

Function

esac
command && command The logical AND condition returns a true 0 value if

both commands return a true 0 value; if one returns a
nonzero value, then the AND condition is false and
also returns a nonzero value.

command || command The logical OR condition returns a true 0 value if one
or the other command returns a true 0 value; if both
commands return a nonzero value, then the OR
condition is false and also returns a nonzero value.

! command The logical NOT condition inverts the return value of
the command.

Loop Control Structures:
while, until, for, for-in, select

while command
 do
 command
 done

while executes an action as long as its test command
is true.

until command
 do
 command
 done

until executes an action as long as its test command
is false.

for variable in list-values
 do
 command
 done

for-in is designed for use with lists of values; the
variable operand is consecutively assigned the values
in the list.

for variable
 do
 command
 done

for is designed for reference script arguments; the
variable operand is consecutively assigned each
argument value.

Loop Control Structures:
while, until, for, for-in, select
(continued)

select string in item-list
 do
 command
 done

select creates a menu based on the items in the item-
list; then it executes the command; the command is
usually a case.

if-then

The if structure places a condition on commands. That condition is the exit status of a specific
Linux command. If a command is successful, returning an exit status of 0, then the commands
within the if structure are executed. If the exit status is anything other than 0, the command
has failed and the commands within the if structure are not executed.

The if command begins with the keyword if and is followed by a Linux command whose exit
condition will be evaluated. This command is always executed. After the command, the
keyword then goes on a line by itself. Any set of commands may then follow. The keyword fi
ends the command. Often, you need to choose between two alternatives based on whether or
not a Linux command is successful. The else keyword allows an if structure to choose
between two alternatives. If the Linux command is successful, those commands following the
then keyword are executed. If the Linux command fails, those commands following the else
keyword are executed. The syntax for the if-then-else command is shown here:

if Linux Command
 then
 Commands
 else
 Commands
fi

The elsels script in the next example executes the ls command to list files with two different
possible options, either by size or with all file information. If the user enters an s, files are
listed by size; otherwise, all file information is listed.

elsels

echo Enter s to list file sizes,
echo otherwise all file information is listed.
echo -n "Please enter option: "
read choice
if ["$choice" = s]
 then
 ls -s
 else
 ls -l
fi
echo Good-bye

A run of the elsels script is shown here:

$ elsels
Enter s to list file sizes,
otherwise all file information is listed.
Please enter option: s
total 2
 1 monday 2 today
$

The elif structure allows you to nest if-then-else operations. The elif structure stands for "else
if." With elif, you can choose between several alternatives. The first alternative is specified
with the if structure, followed by other alternatives, each specified by its own elif structure.
The alternative to the last elif structure is specified with an else. If the test for the first if
structure fails, control will be passed to the next elif structure, and its test will be executed. If
it fails, control is passed to the next elif and its test checked. This continues until a test is true.
Then that elif has its commands executed and control passes out of the if structure to the next
command after the fi keyword.

The Logical Commands: && and ||

The logical commands perform logical operations on two Linux commands. The syntax is as
follows:

command && command
command || command

In the case of the logical AND, &&, if both commands are successful, the logical command is
successful. For the logical OR, ||, if either command is successful, the OR is successful and
returns an exit status of 0. The logical commands allow you to use logical operations as your
test command in control structures.

case

The case structure chooses among several possible alternatives. The choice is made by
comparing a value with several possible patterns. Each possible value is associated with a set
of operations. If a match is found, the associated operations are performed. The case structure
begins with the keyword case, an evaluation of a variable, and the keyword in. A set of
patterns then follows. Each pattern is a regular expression terminated with a closing
parenthesis. After the closing parenthesis, commands associated with this pattern are listed,
followed by a double semicolon on a separate line, designating the end of those commands.
After all the listed patterns, the keyword esac ends the case command. The syntax looks like
this:

case string in
 pattern)
 commands
 ;;
 pattern)
 commands
 ;;
 *)
 default commands
 ;;
 esac

A pattern can include any shell special characters. The shell special characters are the *, [], ?,
and |. You can specify a default pattern with a single * special character. The * special
character matches on any pattern and so performs as an effective default option. If all other
patterns do not match, the * will. In this way, the default option is executed if no other options
are chosen. The default is optional. You do not have to put it in.

Loops: while, for-in, for

The BASH shell has a set of loop control structures that allow you to repeat Linux commands.
They are the while, for-in, and for structures. Like the BASH if structure, while and until test
the result of a Linux command. However, the for and for-in structures do not perform any
test. They simply progress through a list of values, assigning each value in turn to a specified
variable. Furthermore, the while and until structures operate like corresponding structures
found in programming languages, whereas the for and for-in structures are very different.
The loop control structures are listed in Table 41-4.

while

The while loop repeats commands. A while loop begins with the keyword while and is
followed by a Linux command. The keyword do follows on the next line. The end of the loop
is specified by the keyword done. Here is the syntax for the while command:

while Linux command
 do
 commands
 done

The Linux command used in while structures is often a test command indicated by enclosing
brackets. In the myname script, in the next example, you are asked to enter a name. The name
is then printed out. The loop is controlled by testing the value of the variable again using the
bracket form of the test command.

myname

again=yes
while ["$again" = yes]
 do
 echo -n "Please enter a name: "
 read name
 echo "The name you entered is $name"
 echo -n "Do you wish to continue? "
 read again
 done
 echo Good-bye

Here is a run of the myname script:

$ myname
Please enter a name: George
The name you entered is George
Do you wish to continue? yes
Please enter a name: Robert
The name you entered is Robert
Do you wish to continue? no
Good-bye

for-in

The for-in structure is designed to reference a list of values sequentially. It takes two
operands—a variable and a list of values. The values in the list are assigned one by one to the
variable in the for-in structure. Like the while command, the for-in structure is a loop. Each
time through the loop, the next value in the list is assigned to the variable. When the end of
the list is reached, the loop stops. Like the while loop, the body of a for-in loop begins with
the keyword do and ends with the keyword done. The syntax for the for-in loop is shown
here:

for variable in list of values
 do

 commands
 done

In the mylistfor script, the user simply outputs a list of each item with today's date. The list of
items makes up the list of values read by the for-in loop. Each item is consecutively assigned
to the grocery variable.

mylistfor

tdate=`date +%D`
for grocery in milk cookies apples cheese
 do
 echo "$grocery
 $tdate"
 done

A run of the mylistfor script follows:

$ mylistfor
milk 10/23/00
cookies 10/23/00
apples 10/23/00
cheese 10/23/00
$

The for-in loop is handy for managing files. You can use special characters to generate
filenames for use as a list of values in the for-in loop. For example, the * special character, by
itself, generates a list of all files and directories, and *.c lists files with the .c extension. The
special character * placed in the for-in loop's value list will generate a list of values consisting
of all the filenames in your current directory.

for myfiles in *
 do

The cbackup script makes a backup of each file and places it in a directory called sourcebak.
Notice the use of the * special character to generate a list of all filenames with a .c extension.

cbackup

for backfile in *.c
 do
 cp $backfile sourcebak/$backfile
 echo $backfile
 done

A run of the cbackup script follows:

$ cbackup
io.c
lib.c

main.c
$

for

The for structure without a specified list of values takes as its list of values the command line
arguments. The arguments specified on the command line when the shell file is invoked
become a list of values referenced by the for command. The variable used in the for
command is set automatically to each argument value in sequence. The first time through the
loop, the variable is set to the value of the first argument. The second time, it is set to the
value of the second argument.

The for structure without a specified list is equivalent to the list $@. $@ is a special argument
variable whose value is the list of command line arguments. In the next example, a list of C
program files is entered on the command line when the shell file cbackuparg is invoked. In
cbackuparg, each argument is automatically referenced by a for loop, and backfile is the
variable used in the for loop. The first time through the loop, $backfile holds the value of the
first argument, $1. The second time through, it holds the value of the second argument, $2.

cbackuparg

for backfile
 do
 cp $backfile sourcebak/$backfile
 echo "$backfile "
 done

A run of the cbackuparg script is shown here:

$ cbackuparg main.c lib.c io.c
main.c
lib.c
io.c

Web Chapter 42: Compilers, Libraries, and
Programming Tools
Overview

An application is an executable program created by a programmer using one of several
programming languages. Linux provides several utilities with which a programmer can
control development of an application. Foremost among these is the gcc utility, which invokes
the compiler for the C and C++ programming languages, generating an executable version of
a program. Most Linux applications are written in the C or C++ programming language.

Application development often makes extensive use of libraries. You can create your own
libraries or choose from specialized libraries. You can use libraries such as the X Windows
library to program X Window displays, or the gdbm library, with which you can have

database access to files. Libraries have become more flexible and can now be shared or
loaded dynamically.

Other utilities allow you to better manage the development of your applications. The gdb
symbolic debuggers help you to locate runtime errors. indent and cproto help you prepare
your source code. Autoconf and RPM help you package your software for distribution.
Version control systems such as RCS and CVS help you maintain a record of changes as you
develop a software application. Table 1 lists the development tools described in this chapter.

Table 1: Programming: Tools
Tool Description
gcc, g++ GNU C and C++ compiler, www.gnu.org/software/gcc
gdb GNU debugger, www.gnu.org/software/gdb
RCS Revision Control System, www.gnu.org/software/rcs
CVS Control Versions System, www.cvshome.org
Man Online manual documentation
Autoconf Automatic configuration for source code software compiling,

www.gnu.org/software/autoconf

Getting Information: info

Though there are Man pages for all the compilers and their tools, much more detailed
information is available through the GNU info system. These are files located in the /usr/info
directory that contain detailed descriptions and examples for various GNU tools. They are the
equivalent of compact online manuals. There are info documents for the gcc compiler, the C
and C++ libraries, and the Autoconf utility. Other applications may have their own local
directories with info files such as the /usr/TeX/info directory that holds info files for LaTeX.
You invoke the main menu of info documents by entering the command info.

$ info

You then use the SPACEBAR to page down the menu. When you find a topic you want, you
press the m key. This opens up a line at the bottom of the screen where you can type in the
name of the menu item. When you press ENTER, that document comes up. Pressing b pages
you back to the beginning, and U puts you up to the previous menu. The command info info
will bring up a tutorial on how to use info.

The C Compiler: gcc

There is a special relationship between the Unix operating system and the C programming
language. The C programming language was developed specifically as a tool for
programming the Unix operating system. The code for the Unix operating system is actually
written in C. Linux has the same kind of special relationship. Most Linux systems include the
GNU version of the C compiler, gcc. The C programming language is a very complex
language with many different features. This section briefly describes the basic components of
the C programming language and uses them to construct a useful programming example. With
an example program, we can then examine the different ways you can compile C programs.

 Note Instead of using the command line interface to compile applications, you can use an
integrated development environment (IDE) with a Gnome or KDE interface to compile
and edit application source files. On Gnome you can use gbuilder, Anjuta, and Titano.
On KDE, you can use Gideon, KDevelop, and KDEStudio.

You invoke the GNU C compiler on your Linux system with the gcc command. The gcc
command, in turn, calls four other components. The first is the preprocessor. A C program
contains special preprocessor commands that modify the code before it is sent to the compiler.
The second component is the compiler itself. The compiler will process the code and generate
an assembly code version of the program. The third component is the assembler. The
assembler will use the assembly code version of the program to generate an object code
version. The fourth component is the linker. The linker uses the program's object code to
generate an executable file. The default name of this executable file is a.out. Normally, you
should give the executable file a name of your own choosing. The -o option takes a filename
as its argument. This filename will be the name of the executable file instead of the default,
a.out. A list of gcc options is provided in Table 2. In the next example, the gcc command
compiles the program greet.c. The user names the executable file "greet". The executable file
is run by entering it at the Linux prompt as if it were a command.

$ gcc greet.c -o greet
$ greet
Hello, how are you

Table 2: The: gcc Utility: the C Compiler
Command Description
gcc The gcc utility creates an executable program using a preprocessor,

a compiler, an assembler, and a linker. The preprocessor executes
preprocessing commands found in the source code file. Such
commands perform simple text substitutions. The compiler
compiles a source code file into assembly code. The assembler then
compiles assembly code files into object code files. The linker then
links object code files into an executable file.gcc takes as possible
arguments source code, object code, and assembly code files as well
as several options. gcc recognizes a file by its extension:
.c C source code files
.o Object code files
.s Assembly code files
.m Objective C
.a Archive library files

g++ Invokes the cc utility work on C++ source code files. g++ takes as
possible arguments source code, object code, and assembly code
files as well as several options. gcc recognizes a file by its
extension:
.C C++ files
.cpp C++ files
.cc C++ source code files
.o Object code files
.s Assembly code files

Option Function
-S Output only assembly code. Assembly code versions of compiled

Table 2: The: gcc Utility: the C Compiler
Command Description

files have extension .s. The example will generate a file called
greet.s.

-P Output result of preprocessor.
-c Create object code file only. Object code versions of compiled files

have the extension .o.
-g Prepare compiled program for use with symbolic debugger.
-o filename Name the executable file filename. Default is a.out.
-O Optimize compilation.
-l filename Link system library by name of filename. The filename is preceded

by lib and has an extension of .a. Neither is included on the gcc
command line. The -l options must always be placed after source
code and object code filenames on the command line.

With multiple-file programs, you need to keep in mind the difference between the C compiler
and the linker. The purpose of a C compiler is to generate object code, whereas the purpose of
a linker is to build an executable file using object code files. The C compiler will individually
compile each source code file, generating a separate object code file for each one. These
object code files will have the extension .o instead of .c. You compile and link multiple file
programs using the same gcc command. Simply list the source code filenames as arguments
on the command line. In the next example, the user compiles the bookrecs program by
invoking gcc with the source code files that make it up. The -o option specifies that the
executable file will be called bookrecs.

$ gcc main.c io.c -o bookrecs

You can use the gcc utility to perform just a link operation by only listing object code files as
its arguments. An object code file has a .o extension. In the next example, the user just
performs a link operation. No compiling takes place. Of course, this operation assumes that
the object code files have been previously generated.

$ gcc main.o io.o

As you develop and debug your program, you will be making changes to source code files and
then recompiling your program to see how it runs. If you have a very large program made up
of many source code files, it would be very inefficient to recompile all of them if you only
made changes to just a few of them. Those to which you made no changes do not need to be
recompiled, just linked. You can direct the gcc utility to do just that, by mixing source code
files and object code files as arguments on the command line. Source code files have a .c
extension, and object code files have a .o extension. gcc will compile the source code files
you specified on the command line, but will only use the object code files with the linker.
This has the advantage of being able to compile only those files where changes have been
made. If changes were made in main.c, but not in io.c, io.c would not have to be compiled.
You would then specify the source code file main.c and the object code file io.o on the
command line. In the next example, io.o will not be compiled, whereas main.c will be
compiled:

$ gcc main.c io.o -o bookrecs

ELF and a.out Binary Formats

There are two possible formats for binary files such as executable programs. The first is the
a.out format that is the original format used on Unix systems as well as early Linux systems.
The term "a.out" comes from the default name given to an executable file by the Unix C
compiler. As shared libraries came into use, difficulties arose with the a.out format. Adapting
an a.out format for use as a shared library is a very complex operation. For this reason, a new
format was introduced for Unix System 5 release 4 and for Solaris. It is called the Executable
and Linking Format (ELF). Its design allowed for the easy implementation of shared libraries.

The ELF format has been adopted as the standard format for Linux systems. All binaries
generated by the gcc compiler are in ELF format (even though the default name for the
executable file is still a.out). Older programs that may still be in the a.out format will still run
on a system supporting ELF.

C++ and Objective C: g++

The gcc utility is also a C++ compiler. It can read and compile any C++ program. However, it
will not automatically link with the C++ Class library. You would have to invoke it on the
command line. Alternatively, you can use the command g++, which invokes the gcc compiler
with the C++ Class library.

C++ source code files have a different extension than regular C files. Several different
extensions are recognized for C++: C, cc, cxx, or cpp. Other than this difference, you compile
C++ programs just as you would C programs. Instead of gcc, it is preferable to use the g++
command. The following example compiles a C++ program, myprog.cpp:

$ g++ myprog.cpp -o myprog

The gcc compiler also supports Objective-C programs. Objective-C is an object-oriented
version of C originally developed for NeXt systems. To compile a program in Objective-C,
you use the gcc command with the -lobjc option, which links to the Objective-C library,
libobjc.so.

Other Compilers: Pascal, Ada, Lisp, and Fortran

A great many programming languages are supported on your Linux system. Many are
available on your OpenLinux CD-ROM. In addition to C and C++, you can compile Pascal,
ADA, Lisp, Basic, and Fortran programs. In several cases, the compiling is handled by the
gcc compiler, which is designed to recognize source code files for other programming
languages. For example, G77 is the GNU Fortran compiler. This compiler is integrated with
the gcc compiler. The command g77 will compile a Fortran program by invoking the gcc
compiler with options to recognize Fortran code, using the G77 features of gcc. The ADA 95
compiler is called gnat. The info file on ADA provides detailed information on gnat. You can
compile an ADA program using the command gnatmake with the filename.

Creating and Using Libraries: Static, Shared, and Dynamic

There are usually functions used in a C program that rarely need to be compiled and are used
repeatedly. There may also be functions that you may want to use in different programs.
Often, such functions perform standardized tasks such as database input/output operations or
screen manipulation. You can precompile such functions and place them together in a special
type of object code file called a library. The functions in such a library file can be combined
with a program by the linker. They save you the trouble of having to recompile these
functions for each program you develop.

Different types of applications make use of specialized libraries that are placed in system
directories and made available for use in developing programs. For example, there is a library,
libdbm, that contains dbm functions for implementing database access to files. You can use
these functions in your own programs by linking to that library. Mathematical applications
would use the math library, libm, and X Window applications would use the Xlib library,
libX11. All programs make use of the standard C library, libc, that contains functions to
perform tasks such as memory management and I/O operations (a new version of the GNU
libc library, 2.0, is now available). These libraries are placed within system directories such as
/usr/lib, where they can be accessed by anyone on the system. You can also create your own
library just for use with your own particular program, or make one that you would want to be
accessed by others.

Libraries can be either static, shared, or dynamic. A static library is one whose code is
incorporated into the program when it is compiled. A shared library, however, has its code
loaded for access whenever the program is run. When compiled, such a program simply notes
the libraries it needs. Then, when the program is run, that library is loaded and the program
can access its functions. A dynamic library is a variation on a shared library. Like a shared
library, it can be loaded when the program is run. However, it does not actually load until
instructions in the program tell it to. It can also be unloaded as the program runs, and another
could be loaded in its place. Shared and dynamic libraries make for much smaller code.
Instead of a program including the library as part of its executable file, it only needs a
reference to it.

Most libraries currently developed are shared libraries. Shared libraries were made feasible by
the implementation of the ELF binary format, though there is an older a.out format for shared
(tagged) libraries. ELF is currently the standard format used for all binary files in Linux.

The GNU libraries are made available under a Library GNU Public License (LGPL). The
conditions of this license differ from the standard GNU license in that you are free to charge
for programs developed using these libraries. However, you do have to make available the
source code for those libraries you used.

Libraries made available on your system reside in the /usr/lib and /lib directories. The names
of these libraries always begin with the prefix lib followed by the library name and a suffix.
The suffix differs, depending on whether it is a static or shared library. A shared library has
the suffix .so followed by major and minor version numbers. A static library simply has a .a
extension. A further distinction is made for shared libraries in the old a.out format. These
have the extension .sa.

libname.so.major.minor

libname.a

The name can be any string, and it uniquely identifies a library. It can be a word, a few
characters, or even a single letter. The name of the shared math library is libm.so.5, where the
math library is uniquely identified by the letter m and the major version is 5. libm.a is the
static math library. The name of the X Windows library is libX11.so.6, where the X Windows
library is uniquely identified with the characters X11 and its major version is 6.

You can link libraries to your programs using the gcc compiler. For example, the libc.so.5
library contains the standard I/O functions. This library is automatically searched and linked
whenever the linker generates an executable file. The standard I/O library contains numerous
functions that include input/output operations such as printf. There are other system libraries
that you can access, such as the math library. Though the libc.so.5 library is automatically
linked, most other system libraries need to be explicitly referenced on the command line.

Most shared libraries are found in the /usr/lib and /lib directories. These will always be
searched first. Some shared libraries are located in special directories of their own. A listing
of these is placed in the /etc/ld.conf configuration file. These directories will also be searched
for a given library. By default, Linux will first look for shared libraries, then static ones.
Whenever a shared library is updated or a new one installed, you need to run the ldconfig
command to update its entries in the /etc/ld.conf file as well as links to it (if you install from
an RPM package, this is usually done for you).

To reference a library file in one of these searchable directories when you invoke the gcc
compiler, you use the -l option followed by the unique part of a system library's name: -
lname. To instruct the linker to use the standard math library, you enter -lm on the gcc
command line. -l will look first for a libname.so file, in this case, libm.so. This is a link to the
actual library file. In the next example, the bookrecs program is created and linked to the math
library. Notice the -lm option.

$ gcc main.c io.c -o bookrecs -lm

Many different libraries are currently available for your use. One of the more popular is the
libncurses.a library, which contains simple cursor movement routines. You would reference
the libncurses.so library on the command line with -lncurses. In the next example, the user
invokes both the math and curses libraries:

$ gcc main.c io.c -o bookrecs -lm -lncurses

To reference a library in another directory, you have to specify that directory using the -Ldir
option. This option adds the specified directory to the list of directories that will be searched
with the -l option. In the following example, the user links to a library in the mydir directory
called myio.so. For a shared library, you will first have to have the dl and ld link names set
up, such as libmyio.so and libmyio.so.1 for a libmyio.so.1.0 file.

gcc main.c -o bookrecs -Lmydir -lmyio

The gdb Symbolic Debugger

The gdb program is the symbolic debugger available on your Linux system. If you run your
program and it crashes for some reason, you can use a symbolic debugger to track down the

error. A symbolic debugger allows you to step through your program line by line, displaying
the source code for each line as you execute it. You can decide to stop in specific functions
and display the contents of active variables. You can even check specific addresses and the
contents of the stack.

 Note Instead of using the command line interface shown here, you can use any of several
available graphical interfaces for gdb. These include the GNU Data Display Debugger
(DDD) available from Red Hat 7.2 on your CD-ROM and at ftp.redhat.com. Also
available are the GNU Visual Debugger (GVD) from www.gnome.org, and the KDE
Debugger, KDbg, from apps.kde.com.

To be able to use an executable file with a symbolic debugger, you need to compile and link
your program using the -g option. In the next example, a program is compiled and prepared
for the symbolic debuggers. Once you have a prepared executable file, you can then use it
with the symbolic debugger.

$ gcc -g main.c io.c

You invoke the gdb debugger with the keyword gdb and the name of the executable file. In
the next example, the name of the executable file is a.out:

$ gdb a.out

The gdb command will place you in the debugger, replacing the Linux prompt ($), with the
gdb prompt (gdb). You run your program in the debugger by typing at the prompt the
command run:

 (gdb) run

If your program has in it an fopen or open statement, it means it will be using a data file at
some point in the program. If this is so, then gdb also needs to know the name of such a data
file. When you type run in gdb to run your program, you must also supply the actual names
of such data files:

 (gdb) run filename

When you are finished, leave the debugger with the quit command, q or quit:

 (gdb) quit

Most gdb commands have a single-letter equivalent consisting of the first letter of the
command. Instead of entering the command run, you can enter just r. For quit, you can enter
the letter q, for print just p, and for next the letter n. The gdb commands are listed in Table 3.

Table 3: The: gdb Symbolic Debugger
Running Programs
in gdb

Command Description

r run Run the program.
q quit Quit gdb.

Table 3: The: gdb Symbolic Debugger
Running Programs
in gdb

Command Description

Displaying Variables
and Arguments

p var print var Display the contents of a variable.
p &var print &var Display the address of a variable.
set var = value Assign a value to a variable during the gdb

session.
where Display a stack trace showing a sequence of

function calls with function names and their
arguments.

 info locals Display defined variables and arguments.
Displaying Lines
l linenum list linenum Display lines beginning with the specified

line number.
l func list func Display lines in a function.
l num,num list num,num Display a range of lines.
Stepping and Continuing
Execution

n next Single-step execution line by line, executing
the current line and displaying the next line to
be executed.

s step Single-step execution line by line, executing
the current line and displaying the next line to
be executed.

c cont Continue execution of the program.
Setting and Deleting
Breakpoints

b break Set breakpoint at current line.
 break line Set breakpoint at specified line.
 break func Set breakpoint at first line in the specified

function.
 info break List all breakpoints.
d num delete num Delete breakpoints. You need to specify the

number of the breakpoint.
 delete Delete all breakpoints.

You display the contents of a variable using the print command. Enter the word print
followed by the variable name. In the next example, the user displays the contents of the
count variable:

 (gdb) print count

10

With the where command, you can display the function names and arguments of the functions
that have been called at any point in your program. In the next example, the user is currently
in the calc function. Entering the where command displays the functions main, as well as
calc and its arguments.

 (gdb) where
#3 calc(newcost = 2.0) at calc.c:25
#1 main () at main.c:19
#2 0x8000455 in ___crt_dummy__ ()

You can obtain a listing of all the variables and arguments defined in a function. The info
locals command will display variable and argument values currently defined. In the next
example, the user displays the defined variables:

 (gdb) info locals
cost = 2
name = "Richard\000\000"
count = 10
count2 = 10
nameptr = 0x8000570 "petersen"
countptr = (int *) 0xbffffde8

You can set breakpoints in your program using the break command. When you reach a
breakpoint, your program will stop. You can then step through your program line by line
using the next or step command. When you wish, you can advance to the next breakpoint by
using the cont command.

Programming Tools

Many tools are available to help you prepare and organize your source code. The indent utility
will indent the braces used for blocks in a consistent format, making the code easier to read.
cproto generates a list of function declarations for all your defined functions for use in header
files. f2c and p2c can translate Fortran and Pascal programs into C programs. xwpe is an X
Windows programming environment similar to Turbo C. Many more tools are also available.

Once you have finished developing your software, you may then want to distribute it to
others. Ordinarily, you would pack your program into a tar archive file. People would then
download the file and unpack it. You would have to have included detailed instructions on
how to install it and where to place any supporting documentation and libraries. If you were
distributing the source code, users would have to figure out how to adapt the source code to
their systems. There are any number of variations that may stop compilation of a program.

The Red Hat Package Manager (RPM) and Autoconf are designed to automate these tasks.
Autoconf is used to automatically configure source code to a given system. The Red Hat
Package Manager will automatically install software on a system in the designated directories,
along with any documentation, libraries, or support programs. Both have very complex and
powerful capabilities, making them able to handle the most complex programs. Several Linux
distributions like Red Hat and Caldera support RPM packages.

Development Tools

An application is an executable program created by a programmer using one of several
programming languages. Linux provides several utilities with which a programmer can
control development of an application. Foremost among these is the make utility. The make
utility interfaces with the Linux operating system to provide an easy way to maintain and
compile programs. The RCS utility allows you to better control program changes. It organizes
changes into different versions that can be stored and later accessed. You can even use the
man utility to create your own online documentation for your applications. All of these
utilities are complex and powerful tools.

The make Utility

You will often be working with a program that has many source code files. As you develop
the program, making modifications, you will need to compile the program over and over
again. However, you need only compile those source code files in which you made changes.
The linker then links the newly generated object code files with previously compiled object
code files, creating a new executable file. The fact that only a few of your source files are
actually compiled drastically cuts down on the work of the compiler. Each time you need a
new executable program, you do not need to recompile each source code file.

It can be very difficult in large programs with many source code files to keep track of which
files have been changed and need to be compiled and which files need only to be linked. The
make utility will do this for you. make was designed for a development environment in which
different source code files in a program are constantly being modified. make keeps track of
which source files have been changed and which have not. It then recompiles only those that
have been changed, linking them with the rest of the object code files to create a new
executable file. In the next example, the user enters the command make on the command line
to invoke the make utility. make then compiles those files that have recently been modified
and creates a new executable file. make displays each Linux command it executes.

$ make
gcc -c main.c
gcc -c io.c
gcc main.o io.o

To understand how the make utility works, you need to realize that it uses a source code file's
time stamp to determine whether or not it should be compiled. Whenever a file is created, re-
created, or modified in any way, a new time stamp is placed on it by the Linux operating
system. If you create a file at 1:00, that file is stamped with the time 1:00. If you then change
the file at 6:00, the file is restamped with the time 6:00. When you are compiling a program,
only those source code files that have been changed need to be recompiled. Since a change in
any file changes the time stamp, the time stamp can be used to determine which files need to
be compiled. In this way, make knows which files need to be compiled and actually selects
the files to be compiled for the programmer.

A dependency line specifies a dependency relationship between files. make operates in terms
of dependencies. A source code file is used to create an object code file, which in turn is used
to create a runnable program. The program can be said to be dependent on the object code
file, which in turn is dependent on the source code file. You need to specify the dependency
relationship between a source code file and an object code file in a dependency line. In

another dependency line, you need to specify the dependency relationship between an
executable file and all its object code files.

A dependency line can be thought of as a kind of conditional statement. The dependency
relationship is its test condition. If an object code file depends on a source code file and the
source code file has been recently modified, then the test condition is true and the file is then
recompiled. However, the syntax for a dependency line is a bit more complex than a standard
conditional statement. A dependency line consists of three components: a target file, a list of
dependency files, and a Linux command. If any of the dependency files have been modified
more recently than the target file, the Linux command is executed. The target file and the
dependent files are written on the same line, separated by a colon. You can either place the
Linux command on the same line, separated from the dependent files by a semicolon, or you
can place the Linux command on the next line preceded by a tab. You can list more than one
Linux command if you wish. When entering Linux commands on the same line, you separate
them with semicolons. Entered on a separate line, each Linux command has to be preceded by
a tab. The dependency line ends with a following empty line. In these examples, the Linux
command is an invocation of the gcc compiler, compiling a source code file or linking object
code files. The syntax for a dependency line is as follows:

target file : dependent files ; Linux command
empty line

target file : dependent files
tab Linux command
empty line

In the following Makefile, we construct the dependency lines for a C program consisting of
two source code files: main.c and io.c. In such a two-file program, there are really five files to
manage. For each .c file there is a corresponding .o file. There is the executable file, a.out.
You need to set up your Makefile with dependency lines to manage all of these files,
specifying dependencies for each. An object code file (.o) is dependent on a source code (.c)
file. An executable file, a.out, is dependent on several object code files (.o). In the example,
a.out is dependent on (made up of) the two object code files main.o and io.o. Each object
code file is, in turn, dependent on its respective source code files: main.o on main.c, and io.o
on io.c.

In the Makefile, three dependency lines are needed for the a.out, main.o, and io.o files,
respectively. Notice that the linking and compilation of the program are split up among the
different dependency lines. The Linux command for the a.out target only links the two object
code files, creating a new executable file. It invokes gcc with only object code files (.o),
causing only the linker to be invoked. The Linux commands for the main.o and io.o targets
only compile, creating .o object files. The -c option used with gcc means that no linking is
done, only compilation, generating the object code file for this source code file.

makefile

a.out : main.o io.o
gcc main.o io.o

main.o : main.c
gcc -c main.c

io.o : io.c
gcc -c io.c

You can also create dependency lines for special operations such as printing files or installing
an application. Many software packages that you create with make will also have an install
target to install the application program on your system.

$ make install

The Revision Control System: RCS

When you work on a major project, you are continually changing source code. You may
detect bugs, or you may add other features. Sometimes changes may unintentionally result in
new bugs. A record of all the changes to your program may help you track down bugs and any
possible design errors. The Revision Control System (RCS) is a Linux utility that keeps track
of all changes that you have made to a program. In effect, RCS provides you with a set of
prior versions for your program. You can view each version and examine the changes made
for each.

RCS is very helpful in a situation in which a team of programmers is working on the same
program. Each programmer may make changes to the program at different times. RCS can
record each change a programmer makes and when it was made. It can even include notes
about a change.

RCS stores an original version of a file and then records all changes to the file. Using this
information, it can generate any one of several possible versions of a file. RCS does not
actually store separate full versions of a file. Instead, it uses the change information and the
original file to create a full version of the file. The commands that manage RCS files are listed
in Table 4.

Table 4: The: RCS Utility
Commands Description
RCS The Revision Control System (RCS) allows you to control

the development of a program. With RCS, you can
establish different versions of your program as you make
changes. You can later retrieve different versions or
obtain a record of how your program was developed. An
RCS file is created with the ci command and managed
with the rcs command. Versions are retrieved with the co
command, and versions are erased with the rcs -o
command.

ci The ci command updates an RCS file, creating new
versions. If the RCS file does not already exist, ci will
create it using the extension ,v. You usually use ci to save
an edited copy of a file that you previously retrieved using
co with the -l option. Saving this edited copy will create a
new version for the file within the RCS file.

Table 4: The: RCS Utility
Commands Description

$ ci main.c
 -rversion This option allows you to specify the release and version

number you want to begin with when creating a new
version.
$ ci -r5.2 main.c

co The co command retrieves a version of an RCS file. With
no option, it retrieves a read-only version. If no version
number is specified, the most recent version is retrieved.

 -l This option retrieves an editable version of an RCS file,
locking the file to prevent others from changing it. The
file remains locked until you use ci to check it back in.
$ co -e main.c

rcs The rcs command manages RCS files and can be used to
control access to an RCS file by other users.

 -auser-name This option will add user-name to the list of users that can
access a specified RCS file.
$ rcs -arobert main.c

 -euser-name This option will remove user-name from the list of users
that can access a specified RCS file.
$ rcs -erobert main.c

 -lrelease This option will lock a specific release for everyone but
the creator of the file.
$ rcs -l2 main.c

 -urelease This option will unlock a specific release.
$ rcs -u2 main.c

 -Lrelease This option will lock a specific release for everyone,
including the creator of the file.
$ rcs -L2 main.c

 -Urelease This option will unlock a specific release for everyone,
including the creator of the file.
$ rcs -U2 main.c

 -orelease This option will delete a version from an RCS file.
$ rcs -o2.3 main.c

rlog The rlog command outputs information about the
different releases and versions in a RCS file. Without an
argument, it outputs summary information for each
version.

 -rversion This option will output information about a specific
version.
$ rlog -r2 main.c

 -ddate This option will output information about versions created
on a specified date. The format for the date is year, month,
day separated by slashes, and hour, minute, second

Table 4: The: RCS Utility
Commands Description

separated by colons. All except the year are optional.
$ rlog -d93/04/12 main.c

 -d< Followed by a less-than sign, this option will output
information that is earlier than a specified date.
$ rlog -d93/04/12 main.c

 -d< Preceded by a greater-than sign, this option will output
information that is later than a specified date.
$ rlog -d93/04/12 main.c

A set of recorded changes to a file is called a version. Each version is assigned a version
number that has several components, the first two of which are the release and level numbers.
By default, the first version is assigned a release number of 1 and a level number of 1. A
version is often referred to by its release and level numbers. The first version is called version
1.1 or delta 1.1. Subsequent versions will have the same release number with an incremented
level number. The next version will be 1.2, then 1.3, etc. You can also change the release
number manually.

To create an RCS file, you first create an RCS directory. Within this directory are placed the
RCS files for your programs. You can then create an RCS file with the ci command. The ci
command (which stands for "check in") takes one argument, the name of the original file. The
RCS file will be created in the RCS directory with the extension ,v. A main.c file will have an
RCS file called main.c,v in the RCS directory. If your program is initially made up of several
source code files, you need to create an RCS file for each one, including its source code
suffix. In the next example, the user creates an RCS file for the main.c program:

$ ci main.c
RCS/main.c,v main.c
enter description, terminated with single '.' or end of file:
NOTE: This is NOT the log message!
>> Bookrecs main program
>> .
initial revision: 1.1
done

To edit your source code file using RCS, you must first have RCS generate a copy of the
source code file. This copy will have the same name as the RCS file, but without the ,v suffix.
For the main.c,v file, RCS will generate a file called main.c. To save the copy once you have
made changes, you simply register any changes you make to the RCS file.

The RCS co command (which stands for "check out") generates a copy of the source code
file. The co command has several options. The co command with no options simply generates
a read-only copy of the source code file. The -l option generates a copy of the source code file
that you can edit; -l stands for lock, and when you use this option, the main.c program in the
RCS main.c,v file is locked. The locking mechanism used by RCS permits only one
programmer at a time to change a given file. When you have finished your modifications, you
"check in" the program code, registering your changes and unlocking it for use by others. In
the next example, the co command generates an editable copy of the source code file
main.c,v:

$ co -l main.c
RCS/main.c,v --> main.c
revision 1.1 (locked)
done

Once you have finished editing your source code file, you then register your changes in the
RCS file with the ci command. You enter the keyword ci followed by the name of the RCS
file. You are then prompted to enter comments. In effect, editing a copy of the file generated
with co creates a new version of the source code file, a new set of changes constituting a new
version. The new version number (1.2) is displayed. In the next example, the user saves the
changes to main.c by generating a new version, 1.2:

$ ci main.c
RCS/main.c,v main.c
new revision: 1.2; previous revision: 1.1
enter log message, terminated with single '.' or end of file:
>> Added prompts
>> .
done

The Concurrent Versions System: CVS

The Concurrent Versions System (CVS) has become a popular alternative to RCS, primarily
because it is easy to use for program development over the Internet. CVS allows several
developers to work on a file at the same time. This means that CVS supports parallel
development, where programmers around the world can work on the same task at the same
time. Developed originally as a front end to RCS, CVS shares many of the same commands
(see Table 5). You can find out more about CVS from www.cvshome.org.

Table 5: CVS: Commands and Options
Commands Description
commit,ci The commit command updates a CVS file, creating

new versions.
 rversion This option allows you to specify the release and

version number you want to begin with when creating
a new version.

checkout,co The checkout command retrieves a version of a CVS
file.

 -D date Check out revisions for a specific date.
 -d dir Check out to a specified directory.
 -r version Check out a specified version.
import Import files to CVS repository.
login Log into a remote CVS repository.
logout Log out from a remote CVS repository.
rdiff Show the differences between releases.
remove Remove an entry from a repository.
update, up Update from a repository.

Table 5: CVS: Commands and Options
Commands Description
init Create a CVS repository.
admin Administer files in the repository.
 -lrelease Lock a revision.
 -urelease Unlock a revision.
 -orelease Delete revision from the repository.
 Note You can use CVS GUI clients on Gnome and KDE to manage your CVS repositories or

access those on the Internet. For Gnome you can use Pharmacy, and for KDE you can
use Cervisia or LinCVS.

CVS is structured along the same lines as RCS, using check-in and check-out procedures for
projects. To use CVS, you first create a directory to hold your project files and then use the
import option to install your project files there. In the following example, the /home/projects
directory is designated as the CVS repository directory. You use the command cvs with the -d
option and the name of the directory along with the init option.

$ cvs -d /home/projects init

You can set the CVSROOT shell variable to the path of the repository directory and then
export the variable. The cvs command, whenever executed, will automatically check this
variable for the location of the repository.

CVSROOT=/home/projects
export CVSROOT

To install files for an already existing project in the repository directory, you use the import
option. You can install them to a subdirectory in the repository. A CVS repository can support
multiple projects, each in its own subdirectory. You will also need to provide arguments
specifying the supplier and the release. First you change to the directory that holds your
project files, then you issue the cvs command with the import option. The following example
will import all the files in the current working directory—in this case, myproject-so-far—to
the myproject directory in the CVS repository (/home/projects/myproject). The supplier is
richp, and the release is the first release, as indicated by the start argument. If the current
directory holds the file main.c, the main.c file will be installed in the
/home/projects/myproject directory along with any other files in the current directory.

$ cd myproject-so-far
$ cvs import myproject richp start

Whenever you install projects, or add, change, or remove files in a CVS repository, you need
to supply a log message describing the action. CVS will automatically open your standard
editor to let you enter the description. Alternatively, you can use the -m option to include the
log message in the command. Be sure to quote the message string. You would use the editor
for multiline detailed messages, and the -m option for short one-line messages. The following
example includes a log message with the import command:

$ cvs import –m "Install myproject into CVS" myproject richp start

To work on a file, you must first retrieve it from the repository using the check-out option, co.
You then work on it in a project directory that will be created as a subdirectory in your local
directory. When you are ready to check the file back into the repository, you use the commit
option. The following example will extract the main.c file from the CVS repository for
myproject:

$ cvs co myproject/main.c
$ cd myproject

You then change to the subdirectory called myproject that has been created in the current
working directory. There you will find the extracted version of main.c. You can then edit and
change main.c. To check it back into the CVS repository, you would use the commit option.

$ cvs commit -m "Modified main.c" main.c

To see the changes, use the diff option. The rdiff option lets you see any changes to the entire
release.

$ cvs diff

To check out the entire project, you use the project name. All the files for the project will be
extracted to a subdirectory with that project name.

$ cvs co myproject
$ cd myproject

You can then work on any of the files and then check in the entire project when you are
finished.

$ cvs commit -m "Major changes to myproject" myproject

As you work on a project with numerous files, you can use the update option, up, to check out
just the ones you need.

$ cvs up myproject

To add a new file, you use the add option, and to delete a file you use the remove option.
You effect the changes with the commit option.

$ cvs add mynewfile
$ cvs commit -m "Added mynewfile" myproject

To create and extract new releases, you use the –r options and specify the release number,
such as 1.2 or 3.5. You create a new version with the commit command. The following
example creates a new version, 1.2:

$ cvs commit -m "Created release 1.2" –r 1.2 myproject

You can then check out that release with the co option:

$ cvs co –r 1.2 myproject

To access a repository on the Internet, you simply specify as the repository root the Internet
site and the remote directory for that repository. You can do this by assigning the repository to
the CVSROOT shell variable. The format for specifying the remote repository is as follows:

:method:user@hostname:/path/to/repository

The following example assigns the repository for KDE to the CVSROOT variable:

export CVSROOT=:pserver:anonymous@anoncvs.kde.org:/home/kde

To access the remote repository, you first log in with the login option:

$ cvs login

Then you use the standard co (check-out) and commit options to check out and check in
projects. When doing so, you may want to use the compression options such as -z4 to speed
transmission time.

 Note If you want to set up a repository on your own system that is accessible over the
Internet, you need to install and configure the CVS server.

Autoconf

If you were distributing the source code, users would have to determine how to adapt the
source code to their systems. Any Unix or Linux system can compile any software written in
the C programming language. Different Unix and Linux systems have different
configurations, however, some using different compilers or placing programs and libraries in
different system directories. Different types of support libraries may be present. In the past, to
compile software on different systems, the software had to be configured manually for each
system. For example, if your system has the gcc compiler instead of the cc compiler, you
would have to set that feature in the software's Makefile.

The Autoconf program is designed to automate the configuration process. It automatically
detects the configuration of the current Unix system and generates an appropriate Makefile
that can then be used to compile that software on this particular system. Much of the current
software on the Internet in source form uses Autoconf. A detailed manual on Autoconf can be
found in the /usr/info directory and is called autoconf.info. You can use the info command to
view it. (You can also view the text with any text editor.) The general operations are
described here.

Software that uses Autoconf performs the configuration without any need of the actual
Autoconf software. Special shell scripts included with the software detect the different system
features the software needs. The ./configure command usually automatically configures the
software for your system. As the configuration is performed, it checks for different features
one by one, displaying the result of each check. The operation is entirely automatic and
doesn't even require the identity of the system on which it is working.

To create a configuration script for your own software, you use special Autoconf commands.
The Autoconf applications package is available on your Red Hat CD-ROM. Generating the
configurations involves several stages, using several intermediate configuration files.

Autoconf has many options designed to handle the requirements of a complex program. For a
simple program, you may only need to follow the basic steps.

The goal is to create a configure script. Two phases are in this process, using the autoscan
and autoconf commands. The first phase creates a configure.scan file, using the autoscan
command. The autoscan command is applied directly to your source code files. Next, check
the configure.scan file for any errors with an editor, make any changes or additions you want,
and then rename it as the configure.in file. This file is used as input for the autoconf
command, which then generates the configure script. The autoscan step is an aid in the
creation of the configure.in file, but autoscan and the configure.scan file it generates are
optional. You can create your own configure.in file, entering various Autoconf macros.
These are described in detail in the Autoconf info file.

In addition, you need to create a version of the Makefile for your program, named
makefile.in. This is essentially your original Makefile, with reference to special Autoconf
variables. When the software is compiled on another system, the configure.in file detects the
system's features, and then uses this information with the makefile.in file to generate a
Makefile for that particular system. This new Makefile is then used to compile the program.

Autoconf is designed to create values for different features, which can then be used with
makefile.in to create a new Makefile containing those features. The feature values are placed
in special shell variables called output variables. You should place references to these shell
variables in the makefile.in file wherever you want to use these values. For example, the CC
variable holds the name of the C compiler on your system (cc or gcc). The AC_PROG_CC
macro in the configure script detects the C compiler in use and places its name in the CC
variable. A reference to this variable should be placed in the makefile.in file wherever you
invoke the C compiler. The variable name is bounded by two @ symbols. For example,
@CC@ in makefile.in references the CC variable and its value is substituted in that place.

Once you have the configure file, you no longer need the configure.in file. You only need
configure, makefile.in, and the source code files along with any header files. The configure
file is a shell script designed to execute on its own.

Once another user has received the software package and unpacked all the source code files,
you only need to take three steps: configuration, compilation, and installation. The
./configure command generates a customized Makefile for the user's system, the make
command compiles the program using that Makefile, and the make install command installs
the program on the user's system.

./configure
make
make install

Online Manuals for Applications: man

As you develop a program for use on Linux, you may need to document it. If it is a large
application worked on by several programmers at once, documentation may become essential.
Documentation often takes the form of a manual describing different commands and features
of a program. Many times an application is broken down into separate programs. It is very
helpful to both users and program developers to be able to retrieve and display appropriate
sections of an application's manual. Such an online manual provides instant access to

documentation by all users and developers. The man command provides access to an online
manual for Linux commands. You can also use the man command to manage your own
online manual for your own applications. You can create Man documents using special Man
text processing macros. You can then instruct the man command to read these documents.

One of the more common uses today of gnroff is the creation of online manual documents.
The online manual that you find on your Linux system is actually a gnroff document. You use
a set of macros called the Man macros to create your own online manual entries. If you create
a new command and want to document it, you can create a manual document for it and read
this document with the man command.

When you call the man command with the name of a document, the man command uses
gnroff to format the document and then display it. The actual document that you create is an
unformatted text file with the appropriate Man macros. The Man macros, which are very
similar to the ms macros, are described in the next section. You can actually format and
display a manual document directly by using the gnroff command with the -man option. In
the next example, both commands display the manual document for the ls command.

$ man ls
$ gnroff -man /usr/man/man1/ls | more

Man Document Files

You can create a Man document file using any standard text editor. The name that you give to
the text file is the name of the command or topic it is about with a section number as an
extension. The name of a document about the who command would be called who.1. In the
example described here, the document is about the bookrec command and has a section
number 1. Its name is bookrec.1.

A Man document is organized into sections with a running title at the top. The sections may
be named anything you wish. By convention, a Man document for Linux commands is
organized into several predetermined sections such as NAME, SYNOPSIS, and
DESCRIPTION. You are, however, free to have as many sections as you want and to give
them names of your own choosing. The actual document that you create is an unformatted
text file with the appropriate Man macros. A manual document requires at least two different
Man macros: TH and SH. TH provides a running title that will be displayed at the top of each
page displayed for the document as well as the document's section number. You use the SH
macro for each section heading. You can add other macros as you need them, such as a PP
macro for paragraph formatting or an IP macro for indented paragraphs. The Man macros are
listed in Table 6.

Table 6: Man: Command and Macros for Creating Online Documents
Commands and Options Description
man The manual command can search and display online manual

documents. You can create your own online manual
documents and instruct man to search for them. The man
command searches for documents in section directories
specified by the word "man" followed by a section number,
man1. When you create your own manual directories, be
sure to include section directories.

Table 6: Man: Command and Macros for Creating Online Documents
Commands and Options Description
man command-name Search for and display online manual documents.

man who
MANPATH Shell special variable that holds the directory pathname the

man command automatically searches. You can add new
pathnames with an assignment operation.
$ MANPATH=$MANPATH:/$HOME/man

Options
num Search only specified section for a manual document.

$ man 3 bookrec
-M directory-name Search only specified directory for manual documents.

$ man –M $HOME/man bookrec
The Man Macros
.TH title sec-num Used to enter running title of the online document.
.SH section-name Used to enter section headings.
.B word Used to boldface words such as command names.
.I word Used to underline words.
.IP option Format indented paragraph. Used to enter in options in the

OPTIONS section.
.PP Formats paragraph. Starts a new paragraph.

You enter a macro in your document at the beginning of a line and preceded by a period. Any
text that you enter in the lines after the macro will be formatted by it. A macro stays in effect
until another macro is reached. Some macros, like SH and TH, take arguments. You enter in
arguments after the macro on the same line. The SH macro takes as its argument the name of
a section. You enter the section name on the same line as the SH macro. The body of the
section then follows. The body of the section text is entered in as a series of short lines. These
lines will later be formatted by Man into a justified paragraph. In the next example, the user
enters in the SH macro and follows it with the section name DESCRIPTION. In the following
lines, the user enters in the text of the section:

.SH DESCRIPTION

.I bookrec
 allows the user to input a title and price
for a book. Then both elements
of the record are displayed

Your Man document is organized into a series of section heading macros with their names and
text. The template here gives you an idea of how to organize your Man document. It is the
organization usually followed by the online manual for Linux commands.

.TH COMMAND Section -number

.SH NAME
command and brief description of function
.SH SYNOPSIS

command and options. Each option is encased in brackets. This section
is sometimes called the SYNTAX.
.SH DESCRIPTION
 Detailed description of command and options. Use paragraph macros for
new paragraphs: PP, LP, and IP
.SH OPTIONS
 .Options used for the command
.SH EXAMPLES
 .Examples of how a command is used
.SH FILE
 .File uses by the command
.SH "SEE ALSO"
 References to other documentation or manual documents
.SH DIAGNOSTICS
 Description of any unusual output.
.SH WARNINGS
 Warning about possible dangerous uses of the command
.SH BUGS
 Surprising features and bugs.

Within the text of a section, you can add other macros to perform specific text processing
operations. You enter in these macros on a line by themselves. Some will also take arguments.
The .PP macro starts a new paragraph. The .IP macro starts an indented paragraph and is
usually used to display options. You enter in the option as an argument to the .IP macro and
then the following text is indented from it. The .I macro underlines text. The .B macro will
boldface text. Both the .B macro and .I macro take as their argument the word you want to
boldface or underline. By convention, the command name and options in the NAME section
are set in boldface with the .B macro. Any other use of command names is usually underlined
with the .I macro. If you use any hyphens, you need to quote them with a backslash.

In the next example, the user creates an online document for the bookrec program described
earlier. Notice how the text is formatted into justified paragraphs. The options are displayed
using indented paragraphs specified by the .IP macro.

bookrec.1 - man document file man output

.TH BOOKREC 1
.SH NAME
bookrec \-Input and display a book record
.SH SYNOPSIS
.B bookrec
[\-t] [\-p] [\-f]
.SH DESCRIPTION
.I bookrec
 allows the user to input a title and price
for a book. Then both elements
of the record are displayed
.SH OPTIONS
.IP t
Display only the title
.IP p
Display only the price.
.IP f
Save the record to a file
.SH FILES
 The command uses no special files.
.SH "SEE ALSO"
 printbook (1)

.SH DIAGNOSTICS
 Date output has the form of m/d/y.
.SH BUGS
 The program can only read and display one record.
.br
 It does not as yet allow you to read records from a file.

The man utility looks for a particular manual document in a system directory set aside for
manual documents such as /usr/man. The /usr/man directory itself does not contain manual
documents. Rather, it contains subdirectories called section directories, which in turn contain
the documents. The name of a section directory begins with the word "man" and ends with the
section number. man1 is the name of the first section directory in a manual. There are usually
about seven section directories, beginning with man1 and ending with man7. In your own
manual directory, you can have as many or as few section directories as you want, though you
always have to have a man1 directory.

Section directories allow you to create several documents of varying complexity and subject
matter for the same command or topic. For example, the document in section 1 for the man
command gives only a general description, whereas the document in section 7 for the man
command lists all the Man macros. These documents are identified by section numbers and
reside in the appropriate section directory. The section number of a document, as noted
previously, is entered in as an argument to the .TH macro. To retrieve an online document
from a particular section, enter in the section number before the command name. The next
example displays the document on the bookrec command that is in the third section directory.
If you enter no section number, the first section is assumed.

$ man 3 bookrec

Web Chapter 43: Gnome and KDE
Programming
Overview

Development support for application interfaces was an integral part of both the Gnome (GNU
Network Object Model Environment) and KDE (K Desktop Environment) projects from their
inception. Any application can be designed easily to use either Gnome or KDE graphical
components such as windows, toolbars, and buttons. Their aim is to provide not just a
consistent interface, but also a flexible platform for the development of powerful applications.
Both are completely free under the GNU Public License, with no restrictions.

Both Gnome and KDE provide extensive development libraries that contain functions and
definitions you can use in C and C++ programs to create Gnome or KDE interfaces for your
applications. You can code these directly into your program source code, or use a GUI
development tool like KDevelop or Glade to construct your interfaces by simply selecting and
combining different components. This chapter will briefly describe essential aspects of both
Gnome and KDE development. For more information and detailed documentation, check the
Gnome development site at developer.gnome.org, and the KDE development site at

developer.kde.org. In addition, numerous open source projects for both Gnome and KDE are
under development at sourceforge.net. You can check here to download and examine source
code for the kind of projects you may be interested in. You can even start your own project
there. Table 1 lists several Gnome and KDE development sites resources.

Table 1: Gnome: and KDE Development Resources
Site Description
developer.gnome.org Gnome development site, including detailed documentation
glade.gnome.org Glade, the GTK+ User Interface Builder
developer.kde.org KDE development site, including detailed documentation
www.kdevelop.org KDevelop Integrated Development Environment (IDE) for

KDE applications
www.trolltech.com QT site with documentation for QT libraries used in KDE, as

well as for QT Designer
www.sourceforge.net Open source development site for many Gnome and KDE

projects

Gnome Programming: Glade

Gnome provides libraries of Gnome GUI tools that developers can use to create Gnome
applications, and programs can be said to be Gnome compliant if they use buttons, menus,
and windows that adhere to a Gnome standard. Gnome applications make use of Gnome,
GTK Toolkit, GGTK Drawing Kit, and GNU libraries. For detailed descriptions of the
functions, definitions, and structures contained in these libraries, it is strongly recommended
that you use the extensive documentation available on the Gnome developer's Web site at
developer.gnome.org. The Documentation section includes detailed tutorials, manuals, and
reference works, including the complete reference for the Gnome, GTK, and GDK APIs.

GTK+ is the widget set used for Gnome applications, and its look and feel was originally
derived from Motif. A widget set is the set of GUI objects that are available for use in a
desktop. Buttons, windows, and toolbars are all examples of widgets. The widget set is
designed from the ground up for power and flexibility. For example, buttons can have labels,
images, or any combination thereof. Objects can be dynamically queried and modified at run
time. GTK+ also includes a theme engine that lets users change the look and feel of
applications using these widgets. At the same time, the GTK+ widget set remains small and
efficient.

The GTK+ widget set is entirely free under the Library General Public License (LGPL). The
LGPL allows developers to use the widget set with proprietary as well as free software. The
widget set also features an extensive set of programming language bindings including C++,
Perl, Python, Pascal, Objective-C, Guile, and Ada. Internalization is fully supported,
permitting applications based on GTK+ to be used with other character sets, such as those of
Asian languages. The drag-and-drop functionality supports both XDND and Motif protocols,
allowing drag-and-drop operations with other widget sets that support these protocols, such as
Qt and Motif.

Programs written to work on Gnome are essentially C programs that contain Gnome and
GTK+ functions. The Gnome and GTK+ functions handle the Gnome desktop operations for
a program. When programming for Gnome, you will make use of a very extensive set of
functions and structures contained in many libraries—these functions and structures make up
the different components that go into a Gnome application.

This chapter can only provide a general overview of these libraries and of how you use them
to create Gnome programs. Though Gnome is not as easy to use as Tk, programming in
Gnome requires the use of only a few basic functions to create simple user interfaces. You can
think of GTK+ functions as lower-level operations and Gnome functions as easy-to-use
higher-level operations. The Gnome functions usually incorporate several GTK+ functions,
making GUI tasks relatively easy to program. A Gnome program is essentially a C program
with GTK+ functions as well as Gnome functions. Because several basic Gnome operations
are handled by GTK+ functions, this chapter begins by discussing basic GTK+ programming,
and then discusses Gnome programs.

The Gnome libraries provide the highest-level functions used in Gnome applications. Below
them are the GTK+ libraries. GTK+ is the toolkit developed for the GNU Image Manipulation
Program (GIMP). GTK+ is made up of the GIMP Toolkit (GTK) and GIMP Drawing Kit
(GDK) libraries.

GTK contains the functions and structures for managing widgets and user interface tasks.
These functions and structures can be accessed directly in any Gnome program. In fact, a
Gnome application is a GTK program with Gnome library functions. GTK functions and
structures are C++ program objects, both designed to be used in a C++ style program.

GDK contains lower-level functions that are used to connect GTK to the Xlib libraries. The
Xlib libraries hold functions that perform the actual X Window System operations. Both GTK
and Gnome also make use of the standard C functions provided by the Glib library. Table 2
lists the different Gnome components.

Table 2: Gnome: Components
Gnome Component Description
Gnome libraries Contains high-level Gnome functions
GTK (GIMP Tool Kit) Contains widgets and GUI functions
GDK (GIMP Drawing Kit) Provides a low-level wrapper for Xlib
Xlib Provides X Window operations
Glib Contains the GNU C library of standard functions

Gnome applications also make use of ORBit and Imlib (Image Library). Gnome uses the
Common Object Request Broker Architecture (CORBA), which allows software components
to interconnect, regardless of the computer language in which they are implemented or the
kind of machine they are running on. The Gnome implementation of CORBA is called ORBit.
With ORBit, programs can locate and request services from an object, even one located across
a network. For example, an editor could request the use of a spreadsheet. Imlib contains
functions for managing images in various formats, letting you display, scale, save, and load
images into your program.

Gnome Libraries

The Gnome libraries make it possible for Gnome applications to have the same kind of GUI
interface with the same look and feel. Though a Gnome application is a GTK program with
Gnome library functions, the Gnome library provides several complex higher-level widgets,
as well as many simple operations not included in the GTK+ libraries. Table 3 lists the
Gnome libraries.

Table 3: Gnome: Libraries
Library Description
libaudiofile Reads a wide variety of audio file formats (AIFF, AIFC, WAV,

and NeXT/Sun au).
libgdk_imlib Includes functions to load multiple file formats (JPEG, GIF,

TIFF, PNG, XPM, PPM, PGM, PBM, and BMP).
libgtk This is the GTL Toolkit library. Gnome applications are written

entirely using libgtk for all GUI elements (buttons, menus, scroll
bars, and so on).

libgnome Includes utility routines for the Gnome desktop environment,
such as routines for configuration, help, managing mime types,
and managing sessions. This library is independent of any GUI
toolkit.

libgnomeui Includes toolkit extensions to the GTK+ widget set for creating
dialog boxes and message boxes, menu bars, toolbars, status
lines, and so on. It also includes icons for use in dialog boxes,
menu entries, and buttons, and it provides the Gnome canvas for
the easy creation of complex interfaces, such as address books,
calendar applications, and spreadsheets. This is a toolkit-
dependent library currently using the GTK+ Toolkit.

libgnorba A library for using the ORBit CORBA implementation with
Gnome.

libzvt A library containing a terminal widget.
libart_lgpl Contains graphic functions used for GnomeCanvas.

Libgnome and libgnomeui are the two main libraries needed for any Gnome applications.
Libgnome is a set of functions designed to be independent of any particular GUI toolkit.
These functions could be used in any kind of program, whether it be one with just a command
line interface or even no interface. These functions are independent of any particular GUI
toolkit. The libgnomeui library contains functions that provide GUI interface operations.
These are tied to a particular GUI toolset, such as the GTK. It is possible to create a
libgnomeui library that is tied to a different GUI toolset.

The libgnome library provides many utility routines related to the Gnome desktop
environment. Among the capabilities provided are config file support for applications to store
persistent data, support for metadata (data attached to file objects, like the icon that will
display for a particular file type), and support for loading help documents into the Gnome
help browser. An interface is also provided so Gnome applications can talk to the Gnome
session manager. Finally, there are routines to configure how different mime types are

handled by Gnome and the Gnome file manager. Some of these functions are listed in Table
4.

Table 4: Gnome: Library (libgnome)
Gnome Library Function
Category

Description

gnome-config Provides simple access to configuration values.
gnome-defs Contains Gnome definitions for C++ linking.
gnome-exec Permits execution of programs from Gnome applications.
gnome-help Contains routines for displaying help.
gnome-history Keeps track of recently used documents.
gnome-i18n Provides support for localization and internationalization.
gnome-mime-info Contains routines to get information bound to a MIME type.
gnome-paper Contains paper dimensions and printing unit conversions.
gnome-popt Contains the command line argument parser.
gnome-regex Contains the regular expression cache implementation.
gnome-sound Includes sound-playing routines for Gnome applications.
gnome-triggers Contains a hierarchical signal mechanism for application

events.
gnome-url Permits launching viewers for documents based on their URL.
gnome_lib Initializes libgnome library.

The libgnomeui library contains the functions and structures you need to create Gnome user
interfaces for your applications, and these functions are tied to the GTK+ Toolkit. This library
contains toolkit extensions to the GTK+ widget set, and programmers can easily create dialog
boxes and message boxes, as well as menu bars, toolbars, and status lines. An extensive array
of stock icons is provided for programmers to use in dialog boxes, menu entries, and buttons,
and because all Gnome applications will use libgnomeui to create these common GUI
elements, visual consistency is guaranteed. Similar in many ways to the Tk canvas, the
Gnome canvas provides a framework for creating address books, calendar applications, and
spreadsheets.

GUI applications require extensive use of images to create a friendly and comfortable user
interface. Traditionally, it has been difficult to load all of the common graphic file formats
into X11 applications. The libgdk_imlib library addresses this issue by providing convenient
and powerful functions to load multiple file formats (JPEG, GIF, TIFF, PNG, XPM, PPM,
PGM, PBM, and BMP). These files are converted to an internal 24-bit RGB representation,
and utility functions exist to scale as well as render from 24-bit RGB to a variety of other
color depths (with dithering if desired). Input image files are cached internally by
libgdk_imlib to improve performance in applications that repeatedly use images.

The libgtk library is the GTK Toolkit library. It is a professional-quality widget set that in
many ways is superior to other widget sets. Gnome applications are written entirely using
libgtk for all GUI elements (buttons, menus, scroll bars, and so on). The libgnorba library
provides support for CORBA operations, such as obtaining references to objects and

requesting new instances of objects. Libzvt is a simple library containing a terminal widget.
Libart_lgpl holds graphic functions that can be used with the GnomeCanvas widget.

GTK+

GTK+ consists of an extensive set of functions for widgets of various types, such as menus,
buttons, and windows. It also supports bindings that associate GUI events, such as mouse
clicks, with objects, such as buttons. Check the online documentation for the GTK API at the
www.gtk.org and developer.gnome.org Web sites. The documentation includes a
comprehensive listing of all GTK functions, as well as a detailed tutorial on GTK
programming. It is highly recommended that you make use of this documentation—due to
size constraints, this book can only present brief introductions and list several of the common
GTK functions. Also, check the GTK header files for a detailed declaration of different
functions and structures, including their arguments and return values.

Several basic functions and components are needed in any GTK program. You first need to
include at least the gtk.h header file. Other GTK header files may be required, depending on
the widgets and functions you are using. You then have to define pointers to the widgets you
intend to define and use. Then you have to initialize the GTK library with the gtk_init
function. Once that's done, you can define your widgets using GTK functions and assign their
addresses to the pointers defined earlier. Then, you can use GTK functions to specify actions
and attributes for the widgets, such as displaying them. For example, a close box event
(delete_event) is connected to the window and the gtk_main_quit function so that when a
user clicks the Close box of the window, the program ends. Finally, you use the gtk_main
function to run the widgets.

The following base.c program defines a simple GTK program that displays a simple window:

#include <gtk/gtk.h>
int main(int argc, char *argv[])
 {
 GtkWidget *window1;

 gtk_init (&argc, &argv);

 window1 = gtk_window_new (GTK_WINDOW_TOPLEVEL);

 gtk_widget_show (window1);

 gtk_main ();

 return(0);
 }

The gtk.h header file includes GTK variable, macro, and function definitions. window1 is
defined as a pointer to a structure named GtkWidget. The actual structure pointed to will
later be determined by the function used to create a given structure. The gtk_init function
creates initial settings, such as the default visual and color map, and it then calls the gdk_init
function to initialize the GTK library and check for GTK arguments. The gtk_window_new
function creates a new window structure, returning its address, which is then assigned to the
window pointer. The window is now pointing to the GTK window structure. The
GTK_WINDOW_TOP_LEVEL argument will place the window under the control of the

window managers, using its window manager's defaults for displaying a window. The
gtk_widget_show function then displays the window—notice that the window pointer is used
as the argument to this function. Finally, the gtk_main function starts the interactive process,
waiting for events to occur, such as button selections and mouse clicks.

You compile a GTK+ program using the gcc compiler and the GTK+ libraries. To specify the
GTK+ libraries on the command line, you use the gtk-config command. This command
determines the compiler options needed to compile a GTK+ program.

 gtk-config --cflags --libs

gtk-config is a command that needs to be executed on the command line. To do this, you
surround it and its arguments with back quotes. Back quotes are shell operators that are used
to execute an enclosed command on the command line and place its returned values in the
same place on that line. You can think of this operation as functioning somewhat like a
macro, substituting returned values for the command executed. In this case, the gtk-config
command with the cflags and libs arguments will place the compiler GTK flags and libraries
you need on the command line for the gcc command. The gcc command is then executed with
those flags and libraries:

gcc hello.c –o hello `gtk-config --cflags --libs`

The libraries usually used are listed in Table 5.

Table 5: Commonly: Used GTK Libraries
Library Description
GTK (-lgtk) GTK widget library
GDK (-lgdk) Xlib wrapper
gmodule (-lgmodule) Runtime extensions
Glib (-lglib) GTK is built on top of Glib and always requires it
Xlib (-lX11) Used by GDK
Xext (-lXext) Shared memory pixmaps and other X extensions
math (-lm) Math library

The program language types used in GTK+ programming can be categorized into
fundamental, built-in, and object types. The fundamental types are basic types, such as
standard C program types and the base class types for GTK+, like GTK_TYPE_OBJECT.
The fundamental types are automatically defined by gtk_init. The built-in types include some
basic enumerations, flags, and structures like GdkWindow—these are types that GTK+ need
not understand to use. Object types consist of registered GtkObject types.

Signal and Events

Gnome programming works like other GUI programming—it is event oriented. In event-
driven programs, you first define the objects that the user can operate on, and then you start
the interaction function that continually checks for certain events, such as mouse clicks and
menu selections. When such an event is detected, it is passed to its appropriate function for

handling. For example, if a user clicks on an OK button, the mouse click is detected and
control is passed to a function set up to handle a click on an OK button. When the function is
finished, it returns control back to the interaction program.

GTK adds a further level of sophistication. When events occur on a certain widget, the widget
will emit a signal that is then used to execute a function associated both with that signal and
that object. For example, when you click on a Close button, the Close button widget detects
the mouse-click event and emits a "clicked" signal. The signal is detected and its associated
function is executed.

You can also, if you wish, associate an event directly with a function. For this to work, the
programmer has to connect a signal on a given object with a particular function. Functions
associated with a particular signal are commonly referred to as "handlers" or "callbacks."
When a signal is emitted, its handlers or callbacks are invoked. This process is referred to as
"emission." Note that the signals referred to here are in no way like the signals used in Unix
systems.

To associate a particular event with the function you want executed for a given signal, you use
either the gtk_signal_connect or gtk_signal_connect_object functions. When the signal is
detected, its associated function is automatically executed. The gtk_signal_connect function
is used for calling functions to which you may be passing arguments, and either
gtk_signal_connect or gtk_signal_connect_object is used for calling functions that require
no arguments. In the following gtk_signal_connect syntax statement, the object is the
GtkObject you defined, such as a button. The name is the name of the signal, such as a
mouse click; func is the function you want executed whenever an event for this object occurs;
and func_data are any arguments being passed to that function.

gint gtk_signal_connect(GtkObject *object, gchar *name,
 GtkSignalFunc func, gpointer func_data);

When a signal is detected for the specified object, its associated callback function is called
and executed, as shown in this syntax statement:

void callback_func(GtkWidget *widget, gpointer callback_data);

Therefore, to associate a click on a button with the hello function, you would use the
following gtk_signal_connect statement:

gtk_signal_connect (GTK_OBJECT (mybutton), "clicked",
 GTK_SIGNAL_FUNC (hello), NULL);

The object is mybutton, clicked is the click signal, and hello is a function the programmer
wrote to be executed when this signal is detected. GTK_OBJECT and GTK_SIGNAL_FUNC
are macros that perform type checking and casting to make sure the objects are passed with
the appropriate types.

Certain objects have signals that can be associated with them. For example, the button object
can be associated with a clicked signal or an enter signal. The clicked signal occurs when a
user presses down and then releases the mouse button, whereas an enter signal occurs when
the user moves the mouse pointer over the button object. The button signals are the following:

• pressed Mouse button pressed down when pointer positioned on the button
• released Mouse button released when pointer positioned on the button
• clicked Mouse button pressed down and released when pointer positioned on the

button
• enter Mouse pointer is moved onto the button
• leave Mouse pointer is moved out of the button

You can also use the signal connection functions to connect events directly to an object and
function, instead of using signals. Events are messages transmitted by the X11 server to
indicate occurrences like mouse clicks and menu selections. In the gtk_signal_connect
function, you use the name of the event instead of the signal. Callback functions for events
include an added argument for the event. The type for this parameter can be GdkEvent or one
of several other event types. These are listed in Table 6.

void callback_func(GtkWidget *widget, GdkEvent *event,
 gpointer callback_data);

Table 6: Commonly: Used GTK Events
Event Type GtkWidget Signal
GDK_DELETE "delete_event"
GDK_DESTROY "destroy_event"
GDK_EXPOSE "expose_event"
GDK_MOTION_NOTIFY "motion_notify_event"
GDK_BUTTON_PRESS "button_press_event"
GDK_2BUTTON_PRESS "button_press_event"
GDK_3BUTTON_PRESS "button_press_event"
GDK_BUTTON_RELEASE "button_release_event"
GDK_KEY_PRESS "key_press_event"
GDK_KEY_RELEASE "key_release_event"
GDK_FOCUS_CHANGE "focus_in_event", "focus_out_event"
GDK_SELECTION_CLEAR "selection_clear_event"
GDK_SELECTION_REQUEST "selection_request_event"

For example, to associate a button_press_event with an OK button, you would use
"button_press_event" as the signal name. The following example associates a
button_press_event event on a button with the button_press_callback function:

gtk_signal_connect(GTK_OBJECT(button), "button_press_event",
 GTK_SIGNAL_FUNC(button_press_callback), NULL);

The callback function used for the signal connection, in this case button_press_callback,
would have the event type GdkEventButton for its event argument.

static gint button_press_callback(GtkWidget *widget,
 GdkEventButton *event, gpointer data);

The following example associates a click on a window Close box with the close-win function.
The object is mywindow, delete_event is the Close-box event, and close-win is a function
the programmer wrote with code to be executed when this event occurs. When a user clicks
on the window's Close box, the close-win function is called.

gtk_signal_connect (GTK_OBJECT (mywindow), "delete_event",
 GTK_SIGNAL_FUNC (close-win), NULL);

Signals are stored in a global table. You can create your own signals with the gtk_signal_new
function, and then use gtk_signal_emit to have an object emit a signal. gtk_signal_new will
return an identifier for the new signal. You can use this with gtk_signal_emit to have your
object emit that signal.

Gnome Functions

Gnome programs build on GTK+ programs providing Gnome functions to let you more easily
create Gnome interfaces that are consistent with the style for the Gnome desktop. To create a
simple GTK program, you begin with GTK object definitions for your Gnome widgets and
then use Gnome functions to initialize your program and define your widgets. GTK functions
such as gtk_signal_connect are used to associate GUI events with objects, whereas Gnome
functions such as gnome_app_create_menus create menus. In a Gnome program you need to
include an initialization function called gnome_init, which you place at the very beginning.
To create a primary window for your application, you use gnome_app_new.

The following example shows the use of the gnome_init and the gnome_app_new functions.
The gnome_init function takes as its arguments any initial arguments that the user must enter
when the program starts, as well as an application ID and version number. The user's initial
arguments are managed by the argc and argv special variables. gnome_app_new takes as its
arguments the title you want displayed in the application window and the name of the
application object. It returns the address of the new object which, in this example, is assigned
to the app pointer. app is a pointer to an object of type GtkWidget.

GtkWidget *app;

gnome_init ("", "0.1", argc, argv);
app = gnome_app_new ("Hello-World", "Hello App");

Other operations, such as displaying widgets and starting the interactive interface, are handled
by GTK functions. gtk_widget_show_all will display a widget and any other widgets it
contains. gtk_main will start the interactive operations, detecting GUI events such as mouse
clicks and key presses and executing their associated functions.

gtk_widget_show_all(app);
gtk_main ();

Compiling Gnome Programs

Given the extensive number of libraries involved in creating Gnome applications, the
compiler command with all its listed libraries and flags can be very complex to construct. For
this reason, Gnome provides the gnome-config script. You place a call to this script as an
argument to the compiler operation instead of manually listing Gnome libraries and flags.
gnome-config takes two options, -cflags and -libs. The -cflags option will generate all the

flags you need, and the -libs option generates the list of necessary Gnome libraries. You do
need to specify the libraries you want to use, such as gnomeui and gnome, as shown here:

gnome-config --cflags –-libs gnome gnomeui

For the compiler operation, you would place the gnome-config operation in back quotes to
execute it:

gcc myprog.c –o myprog 'gnome-config -–cflags -–libs gnome gnomeui'

To simplify matters, you can place this operation in a Makefile. In a Makefile, the compiling
is performed separately from the linking. For compiling, you would use a gnome-config
script with the -cflags option, and for linking you would use the -libs option. In the following
example, the CFLAGS and LDFLAGS macros are used to hold the compiling and linking
results, respectively. Notice the use of back quotes in the code.

makefile
 CFLAGS='gnome-config --cflags gnome gnomeui'
 LDFLAGS='gnome-config --libs gnome gnomeui'

 all: bookrec

 bookrec: file.o calc.o
 cc $(LDFLAGS) main.o –o bookrec
 main.o: main.c
 cc $(CFLAGS) main.c
 file.o: file.c file.h
 cc $(CFLAGS) file.c

Gnome Program Example

The hello1.c program is a simple Gnome application in the "Hello World" tradition. The
program creates a simple window with a button that displays a message on the standard output
of your terminal window. When the user clicks the Close box (delete_event), the window
closes (see Figure 1).

Figure 1: Gnome window

Gnome functions begin with the term "gnome", whereas GTK functions begin with "gtk".
Notice that the initialization function is a Gnome function, gnome_init. As explained earlier,
Gnome programs are event-driven: you first define your objects, such as windows, then set
their attributes, and then bind signals from events such as mouse clicks to objects like

windows and to functions that process these events. Such functions are often referred to as
callback functions.

To compile this program, you can use the following compile command in a Gnome terminal
window. Then, just enter hello1 to run it. The -o option specifies the name of the program, in
this case hello. Be sure to use back quotes for the gnome-config segment.

gcc hello1.c –o hello1 'gnome-config -–cflags -–libs gnome gnomeui'

You would use the following steps to create the hello program listed in hello.c.

• Define two callback functions: hellomessage and closeprog. hellomessage just
outputs a simple text, "Hello World". closeprog invokes the gtk_main_quit function
to end the program.

• In the main function, define two GtkWidget pointers: app and mybutton. app should
be a pointer to the main application window and mybutton to a simple button object.

• Create a gnome_init function to initialize the Gnome interface.
• Create a button object using the gtk_button_new_with_label function, and assign its

address to the mybutton pointer, as shown in the following code line. The button will
be displayed with the label "Click Me".

mybutton = gtk_button_new_with_label("Click Me");

• Create an application window widget using the gnome_app_new function, and assign
its address to the app pointer.

• Use gnome_app_set_contents to place the button in the application window.
• Use gtk_signal_connect to connect the application with a delete_event signal, which

occurs when the user clicks the Close box. Set this to execute the closeprog function,
which should use gtk_main_quit to end the program.

• Use gtk_signal_connect to connect the button to the mouse click event (clicked), and
set this to execute the hello function. Whenever the user clicks the button, "Hello
World" should be displayed on the standard output.

• Use the gtk_widget_show_all function to display the application window and the
button it now contains.

• Use gtk_main starts the interactive interface.

The contents of the hello1.c program are shown here.

hello.c

#include <gnome.h>

 void hellomessage(GtkWidget *widget, gpointer data)
 {
 g_print ("Hello World\n");
 }

 gint closeprog (GtkWidget *widget, GdkEvent *event,
 gpointer data)
 {
 gtk_main_quit();
 }

 int main(int argc, char *argv[])
 {
 GtkWidget *app;
 GtkWidget *mybutton;

 gnome_init ("", "0.1", argc, argv);

 mybutton = gtk_button_new_with_label("Click Me");
 app = gnome_app_new ("Hello-World", "Hello App");
 gnome_app_set_contents (GNOME_APP (app), mybutton);
 gtk_signal_connect (GTK_OBJECT (app), "delete_event",
 GTK_SIGNAL_FUNC (closeprog),NULL);

 gtk_signal_connect (GTK_OBJECT (mybutton), "clicked",
 GTK_SIGNAL_FUNC (hellomessage), NULL);
 gtk_widget_show_all(app);
 gtk_main ();

 return(0);
 }

Glade

Instead of coding complex and detailed statements for all your Gnome widgets, you can use
Glade to automatically generate them. Glade provides a graphical user interface for creating
Gnome widgets, combining them into a GUI interface for your application. With Glade,
creating a Gnome interface is as simple as selecting and placing widgets onto windows. For
each widget you can specify certain properties such as their size, color, and the signals they
use. See glade.gnome.org for more information.

You can start Glade by selecting its entry in the Gnome Applications menu. Be sure that you
have already installed the Gnome development packages, including Glade. Glade will initially
display three separate windows, the main Glade window, the Palette window, and the
Property Editor (labeled Properties). To create your interface you will be selecting Gnome
widgets in the Palette window. When you select a window on the Palette, a window will
automatically be generated on your desktop. You can then select different widgets such as
buttons and menus, and place them on the window, building your interface. When you create
a window, it is listed in the main Glade window. As you create more windows for your
application interface, icons for them will be displayed in the Glade window. Figure 2 shows
Glade with a window labeled window1 that has been created. From the Glade window you
can also open previous projects. When you are finished with Glade, select Exit from the File
menu.

Figure 2: Glade

To start using Glade, you first create a project. Select New Project from the File menu or click
on the New icon in the toolbar. The Project Options window will let you select the directory
you want your project placed in (see Figure 3). By default, projects are placed in a directory
called Projects in your home directory. Each project has its own subdirectory which is given
the default name numbered project1. You can specify your own name for the Project
directory, as well as the subdirectories for the particular projects. A Glade project file will
have the extension .glade, in this directory. The source code files for the project are placed in
a subdirectory named src. Glade will generate a main.c and an interface.c source code file
for the widgets you create.

Figure 3: Glade project options

The Palette is the key component in Glade. Here you will find all the widgets you can use to
create your interface. The Palette displays three different kinds of widgets: GTK+ Basic,
GTK+ Additional, and Gnome. There are buttons for each at the top of the Palette window,
and clicking on one will display the widgets available for each category. GTK+ Basic, as the

name suggests, provides basic components such as buttons, windows, and menus. GTK+
Additional provides more sophisticated, though less commonly used, GTK+ widgets. Gnome
lists the Gnome widgets. These conform to the functions in the Gnome libraries. Of particular
note is the Gnome application window, which provides a Gnome application window with
basic menus and toolbar already installed. Figure 4 shows the Glade Palette displaying the
GTK+ widgets.

Figure 4: Glade Palette

When creating a Gnome interface, bear in mind that Gnome uses a container method for
holding and placing its widgets. Each widget that you place in a window, cannot be placed
directly in the window, but, instead, must be placed in a container. In fact, the key to
designing a Gnome interface is to first select the appropriate container for the widget you
want to add. For example, to place a button in a Gnome window, you first place a container
for it on the window and then place the button in that container. Containers come in a variety
of combinations. You can have several containers stacked on top of each other in rows
(horizontal boxes), or set beside each other in columns (vertical boxes). Containers can be
organized into tables, or you can create a container that supports fixed positions. When you
place a container on a window, you will be asked to select the number of containers you want.
For example, for containers that fill up rows the length of a window, you would select

horizontal box container. When you place it on the window, you will be prompted to enter the
number of rows you want. The different types of containers are displayed at the bottom of the
GTK+ Basic Palette window, showing the outline formats for each. Figure 5 shows the
containers currently available.

Figure 5: Glade GTK+ containers

Keep in mind that, unless you select the Fixed Position container, the widget will
automatically expand to fill the frame. For example, a button placed in a row container will
fill the entire length of the window. This is helpful if you are selecting the kind of widget that
would fit well into that container. For example, if you want to add a menu and a toolbar to a
blank window, you would first select and place the horizontal boxes container and select three
rows. Initially, all three rows will be evenly sized. Then you would click on the menu widget
and place it on the first row. The row will contract to the size of the menu, and the same for
the toolbar placed on the second row.

You can create complex combinations by placing one container inside another. For example,
you could first create two row containers, placing a menu in one. Then place two column
containers in the remaining row container. In one column, you could place several button-row
containers and put buttons in them. The other column could hold a frame for displaying data.

 Tip You can delete any widget, including containers, by right-clicking on them and selecting
Delete from the pop-up menu.

To just place a widget anywhere on a surface, you would use the Fixed Positions container.
With this container, you can then select any number of widgets, placing each at different
places on the container space. You can move or resize the widget by selecting it to display the
anchor points on its corners. Use these to resize it, or use click and drag on the selected
widget to move it. In Figure 6, a Fixed Position container has been created and two widgets
placed on it—a label with the text "Hello World" and a button with the text "Click Me".

Figure 6: Buttons and labels on Glade

The properties window will display the different properties for a selected widget. The
properties window displays several tabbed panels. Here, you can enter the features like the
text displayed by a widget—should it display text. Widgets like buttons and menu items will
also have a Signals panel where you can select the signals that that widget will respond to.
You can have several signals for any given widget. To create a signal, you first select the kind
of signal from the pop-up menu, then select the handler function that signal will execute. You
can also enter data and objects to be passed. Figure 7 shows the Signal panel for the Click Me
button.

Figure 7: Glade Signal Properties panel

Once you have created your interface, you then need to generate the source code for it. Click
the Build icon or select Build from the File menu. This will generate main.c and interface.c

files. The interface.c file in your project's src directory will hold the C code for your widgets.
You can then continue to code your program, adding classes and functions your project
develops. You can open your Glade project at any time to add new windows, dialogs, and
their widgets. In the project directory, you can use Autoconf and configure commands to
generate an appropriate Make file, and then use the make command to create your
application.

Gnome App and Menu Widgets

The GnomeApp widget is the basic widget for Gnome applications. This widget is the main
window holding menus, toolbars, and data. You use the gnome_app_new function to create a
new GnomeApp widget. This function takes as its argument the name of the application.

To add elements such as toolbars, menus, and status bars to the widget, you just use the
appropriate function. For example, to add a menu, use gnome_app_set_menus, and to add a
status bar use gnome_app_set_statusbar. To add just a single toolbar, use
gnome_app_set_toolbar, and to add multiple toolbars use gnome_app_add_toolbar.

With the gnome-app-helper functions, you can generate menus and toolbars automatically
using GnomeUIInfo structures. For toolbars and menus, you can create GnomeUIInfo
structures for them with the appropriate values and then use gnome_app_create_menus to
create menus and gnome_app_create_toolbar to create toolbars.

With the GNOMEUIINFO_ITEM macro, you can add an item to a menu. The
GNOMEUIINFO_SEPARATOR macro adds a separator line, and the
GNOMEUIINFO_END macro specifies the end of menu. In the following example, label is
the text of the label, tooltip is the tooltip that will be displayed when the pointer moves over
that item, and callback is the function that is executed when the user clicks that item. You can
add another argument for an icon image if you want an icon displayed in the menu item. This
is usually a .xpm image.

GNOMEUIINFO_ITEM(label, tooltip, callback)

To specify an accelerator key for a particular item, you just place an underscore before the
letter in the label for the key you want to use. An accelerator key is an alternative key you can
use to access the menu item. This is usually an ALT key. In the following example, the menu
item will have an Exit label with the "x" underlined, indicating that you can use an ALT-X
key combination to access this item.

GNOMEUIINFO_ITEM("E_xit", "Exit the program", exitfunc)

The GNOMEUINFO_ITEM macro generates the values to be used in a GnomeUIInfo
structure. You can assign these values to such a structure. In the following example, a menu is
created consisting of an array of GnomeUIInfo structures, and GnomeUIInfo macros are
used to assign values to each GnomeUIInfo structure in this array. In this example, a simple
File menu is created with two entries, one for Open and one for Exit. A line separator will be
displayed between them.

GnomeUIInfo file_menu[] = {
 GNOMEUIINFO_ITEM("_Open", "Open a document", openfunc),
 GNOMEUIINFO_SEPARATOR,

 GNOMEUIINFO_ITEM("E_xit", "Exit the program", exitfunc),
 GNOMEUIINFO_END
 };

A number of macros are provided for standard menu items, like the Save and Open entries in
a File menu. These take as their arguments the function to be executed when the item is
selected (cb) and any icon image you want displayed for the entry (data). Here is the syntax
for these macros:

GNOMEUIINFO_MENU_OPEN_ITEM(cb, data)

The following example creates the same simple File menu as in the previous example, but it
uses specialized macros to create each item. Here, the
GNOMEUIINFO_MENU_EXIT_ITEM macro creates the Exit entry for the menu:

GnomeUIInfo file_menu[] = {
 GNOMEUIINFO_MENU_OPEN_ITEM(openfunc),
 GNOMEUIINFO_SEPARATOR,
 GNOMEUIINFO_MENU_EXIT_ITEM(exitfunc),
 GNOMEUIINFO_END
 };

For submenus and for menus added to your menu bar, you use the
GNOMEUIINFO_SUBTREE(label, tree) macro, where tree is the array of GnomeUIInfo
structures to be used for that submenu.

The following example assigns the File menu defined earlier and an Edit menu to a menu bar.
Again, these are GnomeUIInfo structures for which the macros generate values. Notice the
use of underscores in the labels to designate ALT keys for accessing the menus.

GnomeUIInfo menubar[] = {
 GNOMEUIINFO_SUBTREE("_FILE", file_menu),
 GNOMEUIINFO_SUBTREE("_EDIT", edit_menu),
 GNOMEUIINFO_END
 };

For particular menus on a menu bar, you use the menu tree macros. The tree argument is the
array of GnomeUIInfo structures for the menu. For example, the File menu can be added to
the menu bar with the following statement, where tree is the array of GnomeUIInfo
structures for the File menu:

GNOMEUIINFO_MENU_FILE_TREE (tree)

The following example is a rewritten version of the menu bar assignment using specialized
macros for the File and Edit menus:

GnomeUIInfo menubar[] = {
 GNOMEUIINFO_MENU_FILE_TREE(file_menu, NULL),
 GNOMEUIINFO_MENU_EDIT_TREE(edit_menu, NULL),
 GNOMEUIINFO_END
 };

Once you have defined your menus, you can create them using the
gnome_app_create_menus function. This takes as its arguments the Gnome application

structure and the pointer to the GnomeUIInfo structures you are using for your menu bar. In
the previous example, this pointer was the array name "menubar". Each of the elements
making up the menubar array, in turn, references a GnomeUIInfo array for their menu.

gnome_app_create_menus (GNOME_APP (app), menubar);

KDE Development: KDevelop

KDE (K Desktop Environment) is organized on a C++ object model with C++ objects
containing functions with which you can modify the object. Many of the functions are
inherited from higher-level KDE classes, while others are defined for a particular type of
object. In a KDE program, you define an object and then use its public and private functions
to modify it. For example, you can create a menu object and then use the menu object's
functions to add new menu items to it. KDE uses the Qt Toolkit which is developed by Troll
Tech (http://www.troll.no). It is this toolkit that is actually used to display and manage GUI
objects such as buttons and windows. The Qt Toolkit operates much like the GTK+ Toolkit in
Gnome.

Because KDE applications are C++ object-oriented programs, they use a set of hierarchical
object classes contained in the KDE and Qt libraries. Classes lower in the hierarchy will
inherit members (functions) from predefined KDE classes higher in the hierarchy, and you
can create your own classes and have them inherit members. KDE uses the Qt Toolkit and
currently relies on it directly. Unlike Gnome, which can have its lower-level functions
managed by any toolkit, KDE relies solely on the Qt Toolkit. Currently, KDE programming is
essentially Qt programming.

KDE and Qt programming rely on an extensive set of classes, each of which usually has a
significant number of member functions that manage objects of that class. There are far more
than can be listed within the size limitations of this book. For a complete listing of the KDE
user interface classes, consult the documentation provided on the KDE developer's site,
developer.kde.org. This site includes detailed tutorials, and complete reference materials for
the KDE API as well as KOM (KDE Object Manager) documentation and Qt reference
material. Each class is described in detail, and class type declarations, including their member
function declarations and definitions, are given. In addition, consult the KDE and Qt header
files. The .h files contain a complete listing of the KDE and Qt classes, along with detailed
comments describing their member functions.

A widget, like a window or a button, is just an object. You can define a window object using a
KDE or Qt window class or a button using a KDE or Qt button class. There are several kinds
of classes that you can use, depending on the type of window or button you want. To create a
complex widget, such as a window that contains other widgets (perhaps toolbars and menus),
you would define the subwidgets as children of the main widget. When you define a toolbar,
you specify a particular window object as its parent. A subwidget can, in turn, have its own
subwidgets, its own children. For example, a menu bar can have a window as its parent and
individual menus as its children.

When you declare a C++ object, you usually include arguments in addition to the class and
object name. These arguments are passed to a special function called a constructor that is
executed when the object is defined, which performs any needed setup or initialization
operations for the object.

For widgets, one of these arguments is usually the address of its parent widget. For example, a
toolbar will be defined with one of its arguments being the address of a window object that is
its parent. If the widget is a top-level object with no parent, the argument is NULL. With a
series of simple object definitions, you can easily create a complex widget.

KDE Libraries

A KDE program is simply a C++ program that uses objects whose classes are defined in the
KDE and Qt libraries. You use the g++ compiler on your source code files as you would any
other C++ program. g++ is the C++ form of the gcc C compiler. There are several KDE
libraries, each with an extensive set of classes. Most programs will need at least the kdecore
and kdeui libraries. Kdeui holds the KDE user interface classes for KDE widgets (see Table
7).

Table 7: Common: KDE Kdeui (User Interface)
Widget Description
DialogBase A base class that provides basic functionality needed by nearly

all dialog boxes
KApplet The KDE Panel Applet class
KButton The class that provides active raise/lower buttons
KButtonBox A container widget for buttons
KCursor A Qt QCursor wrapper allowing "themed" cursors
KDialog A dialog box with extended modeless support
KFontChooser A widget for interactive font selection
KGradientSelector A gradient selector widget
KMenuBar A floatable menu bar
KMessageBox An easy MessageBox dialog box
KNumCheckButton A different type of Check button
KPopupMenu A pop-up menu with a title
KProgress A progress-indicator widget
KSeparator A standard horizontal or vertical separator
KStatusBar A KDE status bar widget
KStatusBarItem An internal class for use in KStatusBar
KStatusBarLabel An internal class for use in KStatusBar
KTMainWindow A KDE top-level main window
KToolBar A floatable toolbar with auto-resize
KToolBarButton A toolbar button
KToolBarItem A toolbar item
KTopLevelWidget An old KDE top-level window

KDevelop

KDevelop is an integrated development environment (IDE) for writing K Desktop programs
(see www.kdevelop.org). You can access KDevelop from the Development entry in the K
Desktop menu. When KDevelop first opens, it displays a window with two toolbars, a status
bar, and three subwindows (see Figure 8). The bottom window displays debugging
information. The left window will display the different C++ classes and source code files
defined for your project. The right window holds three tabbed panes: one for header files, one
for your source code files, and the other for KDevelop documentation.

Figure 8: KDevelop
 Note KDevelop and Qt Designer are not included with the Publisher's Edition. You will need

to download them from the Red Hat FTP site.

To start a project you select New from the Project menu. This will start up the Application
Wizard, shown in Figure 9, that helps you set up the kind of application you want to create.
For example, you could create a KDE panel applet, a Konqueror browser plug-in, or a
standard KDE Desktop interface.

Figure 9: KDevelop Application Wizard

Click the Next button to move to the next window in the Wizard. Here, you specify the
project name and its directory, along with the kind of support files you will need, such as
those for documentation (see Figure 10). KDevelop will create a directory with the same
name as the projects. Within that directory, it will create a further subdirectory with the same
name, which will hold the source code files. The source code files for the myhello project
would be in the myhello/myhello directory.

Figure 10: KDevelop project specifications

On the next screen you can choose to use the CVS versioning system, to help keep track of
changes and enable many users to work on the same project. Then, templates for standard
headings in the source and header files are presented. On the Process screen, you click the
Create button to have KDevelop generate any needed files and create an initial main.c source
code file with required K Desktop functions and classes defined, as well as links to the needed
KDE libraries. Click the Exit key when finished.

For a standard KDE application, KDevelop will automatically generate the code for an
application window, standard menus including File, Edit, and Help menus, a standard icon
bar, and a status bar. This initial code will be placed in the source code file of the same
name—for example, myhello.cpp. You can then add in your own classes with their own
function calls and have them invoked from entries you can add to these menus or to the
toolbar.

You could code your program as you would any C++ program. However, KDevelop also
includes the Qt Designer that you can use to automatically create your KDE windows and
widgets. Once you have created your project, you can then start up Qt Designer by selecting
the Dialog Editor entry in the View window. This opens a separate Qt Designer window, with
toolbars for different KDE widgets (see Figure 11). A subwindow in the main pane is the
Property Editor, which will display properties for any selected widget you have created.

Figure 11: Qt Designer

To create a window, either click on the New icon in the toolbar or select New from the File
menu. A window will be displayed on the right side of the main pane. To the left will be the
window's Property Editor. Here, you can specify the class name of the window, along with its
caption, size, and color, and so on. In Figure 11, the class name is hwin and the caption is My
Hello. When you save the window and its widgets, you need to save them in the directory for
the source code used for your project.

To add a widget to your window, click on the widget in the toolbar and then click on where
you want to place it on the window, and drag to set the size of the widget. The widget will
appear. The Property Editor will automatically display the properties for the selected widget.
For example, to create a button, click the Button icon and then click in your window. You can
then change the text displayed for the button in its Property Editor window. Figure 11 shows
both a label and a button widget added to the hwin window. The button has had its display
text changed to "Click Me".

Widgets, like buttons, need to be connected to slots for them to have any effect. The slot is the
function that will activate when a specified event occurs on that button. To set up an
event/slot connection for a widget, you need to select the Connect Signal/Slots entry in the
Tools menu, or click on the Connect Signal/Slots button in the second toolbar. Then, click on
the widget. This opens a window where you can select the event and the slot to be associated
with it.

Once you have created your windows and widgets with the Qt Designer, you then need to
integrate them into your project as source code. When you exit the Qt Designer, KDevelop
will set up the necessary instructions in your project's Makefile to do this. Qt Designer
actually saves its code in special .ui files that need to be converted to C++ code to be used.
KDevelop sets up this process for you. However, you still need to integrate the KDE windows
and widgets into your program. When you created your main window in Qt Designer, you
gave it a class name. The example in Figure 11 used hwin as the class name for the main

window. You have to integrate this class name into the overall class structure of your KDE
C++ program. You do this by creating a new class in your program that will inherit from the
class you created with the Qt Designer. This way, all those windows and widget classes that
contain the code to create and manage those widgets are inherited automatically into your
program and can be referenced by the new class you created.

To create a new class, select New Class from the Projects menu. This opens a window where
you can specify the name of the new class and any class it inherits from. In Figure 12, a new
class called myhellowin is created that will inherit from the hwin class, its base class.
Through the myhellowin class, the program can access the window and widgets created for
the hwin class. Click "Generate a QWidget Childclass" since the classes are derived from the
parent QWidget class. Whenever you create a new class, KDevelop generates a
corresponding header file for it (.h). If the class inherits from another class, KDevelop will
generate an include statement to include the header file for that class. For example, when the
myhellowin class is created, a myhellowin.h file is generated for it. Since that class inherits
from the hwin class, an include statement in inserted in myhellowin.h that will include the
hwin.h file. The hwin.h file is automatically generated by KDevelop using the hwin.ui file
created with Qt Designer.

Figure 12: New class in KDevelop

Once you have coded your program, you can build and run it by clicking on the Run icon.
You can also elect to just build the project or compile selected files.

 Tip You can manually generate source code from a Qt Designer .ui file using the uic tool.
Redirect the output to the appropriate .h file—for example, uic myhello.ui > myhello.h.

KDE Applications and Widgets

To create a KDE application, you simply create an object of type KApplication in your
program before you define any other KDE objects. The class declaration for KApplication is
contained in the kapp.h file. The definition of a KApplication object takes as its arguments

argc and argv. These operate as they do in C programs, referencing any command line
arguments the user enters. The following example defines an application object called
myapp:

KApplication myapp(argc, argv);

Declarations for different kinds of KDE and Qt objects are located in separate header files.
Whenever you define an object of a particular type, be sure to include the header file that has
its class declaration. For example, to create a main application window, you use
KTMainWindow class, and you need to include the ktmainwindow.h header file.

#include <ktmainwindow.h>

The header files are also extremely helpful as a reference source. They list all the member
functions for a particular class and include detailed comments describing each function and its
use. The header files will be located in the KDE include directory. Currently for Red Hat, this
is the standard include directory, /usr/include. On OpenLinux and other distributions, it may
be the special KDE directory, such as /opt/kde/include.

To define a main window for your application, you use the KTMainWindow class. The
following example defines a main window object called mywin:

KTMainWindow mywin;

If you create an application where the main window is the primary interface and you want the
application to close when that window closes, you have to make it the main widget for the
application. To do this, you use the application object's setMainWidget function. The main
widget could be any widget you want. Be sure to pass the address of the widget. You do this
by preceding it with the address operator, the ampersand - &. The following example sets the
main widget to be the mywin window. The address of the mywin widget is passed, &mywin.

myapp.setMainWidget(&mywin);
 Tip If you are using a pointer to a widget as in the later program examples, you need only

pass the pointer without using the address operator. A pointer already holds the address.

When you define a widget, you will also be defining any of its member functions contained in
its class declaration. See the developer.kde.org documentation for a complete description of
all KDE class declarations, including their member functions. Many of these member
functions are designed to let you change the display features of a widget, such as its color or
initial size. For example, to control the display size of the KTMainWindow widget, you use
its setGeometry function, as shown here:

mywin.setGeometry(100,100,200,100);

You have to explicitly instruct KDE to show any widget that you want displayed. To do this,
you use your widget's show member function. For example, to have the mywin window
display, you execute its show function as shown here:

mywin.show();

Once you have defined all your widgets and made any modifications, you can then run the
application. You do this with the KApplication object's exec member function.

myapp.exec();

When the user closes the application, control returns to the main function, which can then
terminate the program. Usually, the return statement with the exec function will return any
errors that exec may return.

return myapp.exec();

The following program creates a simple KDE application that displays a window:

#include <kapp.h>
#include <ktmainwindow.h>

int main(int argc, char **argv)
 {
 KApplication myapp(argc, argv);
 KTMainWindow mywin;
 mywin.setGeometry(100,100,200,100);

 myapp.setMainWidget(&mywin);
 mywin.show();
 return myapp.exec();
 }

Many systems will have set up the KDEDIR and QTDIR shell variables. KDEDIR would
contain the path names for the KDE commands, headers, and libraries, and QTDIR would
contain the path names for Qt. To specify the header files for KDE you would use the
following:

-I/$KDEDIR/include

Be sure to include the $ before KDEDIR. If KDEDIR is not already defined, you can define it
yourself, assigning the location (if you know it) of the KDE components:

KDEDIR = /opt/kde

On Red Hat Linux, the Qt libraries for 6.0 are placed in the /usr/lib/qt directory, and KDE
libraries are mixed with other libraries in the /usr/lib directory. You will not have to specify a
KDE library, and for Qt, you specify the /usr/lib/qt directory. Caldera OpenLinux, along with
other distributions, currently defines the KDE libraries to be in the /opt/kde directory.

In the following example, both the KDE and Qt libraries are specified for the myapp.cpp
KDE program.

g++ -I$KDEDIR/include -L$KDEDIR/lib -I$QTDIR/include -L$QTDIR/libs
 –lkdecore –lkdeui –lqt myapp.cpp

Signals and Slots

KDE and Qt use signals and slots to allow one widget to communicate with another. Signals
and slots are member functions defined in a class that have special capabilities. Signals are

emitted by an object when it is activated by some event occurring on it. For example, when a
user clicks a button object, the button will emit a clicked signal. This signal can then be
picked up by any other object set up to receive it. Such an object will have slots that are
designated to receive the signal. A slot is just a member function that executes when the
object receives a certain signal.

In effect, slots operate like event handlers, and signals can be thought of as events, but KDE
and Qt do not operate like standard event-driven GUIs. Instead, the process of event handling
is implemented as messages are sent and received by objects. Instead of focusing on the
processing of an event when it occurs, objects manage their own event tasks as they occur,
whether that be receiving or sending signals. A KDE widget emits a signal when an event
occurs on it or when it changes state for some reason. There are several possible signals,
among the more common of which are the activated and clicked signals. So, when an
activated signal occurs on a menu item widget, the processing function will execute the
corresponding function for that item. For example, given a window with a menu that has an
Exit item, when a user clicks on an Exit item in the File menu, a function to exit the program
should be executed. The Exit item emits a signal that is then received by the main window
object, which then executes the slot function associated with the Exit item.

The connection between the signal from an emitting object to a slot function in a receiving
object is created with the object's connect function. The connect function sets up a
connection between a certain signal in a given object with a specific slot function in another
object. Its first argument is the object, the second is the signal, and the last is the callback
function. To specify the signal, you use the SIGNAL macro on the signal name with its
parameters. For the callback command function, you use the SLOT macro. Using connect
operations, you can also connect a signal to several slots and connect several signals to just
one slot. In the following example, the clicked signal on the buttonhi object is connected to
the myhello slot function in the mywin object:

connect(buttonhi, SIGNAL(clicked()), mywin, SLOT(myhello()));

Classes composed of several widgets, such as an application window, will often have
connections from signals from the different widgets to the main widget. connect operations
are usually placed with the class declaration of the main widget for connecting signals from
its subwidgets to itself. In this case, the main widget (object) can then be referenced with the
C++ this pointer reference, which always references the class being declared, as shown next:

connect(buttonhi, SIGNAL(clicked()), this, SLOT(myhello()));
 Tip Any class that includes slots or signals must also include a special reference named

Q_OBJECT. This enables the Meta-Object Compiler preprocessor (described next) to set
up any signals and slots declared in the class.

Meta-Object Compiler: MOC

Though the code for entering signal and slot functions, as well as that for making the
connections, may appear straightforward to the programmer, it actually requires much more
complex C++ coding. Signal and slot functions need to be preprocessed by the Meta-Object
Compiler (MOC) to generate the C++ code that can implement the signal and slot message-
connection process. You then include the output of MOC in your source code file for
compiling. This means that you should place the class declarations for any classes that have

signals and slots in separate header files. You can then preprocess these header files and
include the output in the source code.

You cannot combine the member function definitions with the class declaration. To compile,
the class declaration has to first be preprocessed by MOC before it can be combined correctly
with the member function definitions. This necessitates placing the class declaration in a
separate file from the member functions so that the class declaration can be separately
preprocessed by MOC.

To declare a class that contains either signals or slots, you would first declare the class in a
header file like myobj.h. You do not place the definitions of any of the member functions in
the header file, only the class declaration. Note that the class declaration will include
declarations of the member functions, structures, and variables. In a separate source code file,
you would place the definition of member functions, like myobj.cpp. A member function
definition is the actual code for the function.

For these definitions to be correctly compiled, you have to include the MOC preprocessed
version of its object declaration, not the actual declaration itself. To generate the preprocessed
MOC versions, you use the class declaration header file and the moc command, like this:

moc myobj.h –o myobj.moc

In the particular source code files where you are defining member functions for this object,
you would include the MOC version of the header file that contains the object declaration, not
the header file itself. So you would include myobj.moc in the myobj.cpp source code file,
not myobj.h.

However, for any other source code files where you are generating an object of that class—
say, with a new operation—you just include the header file, not the MOC file. So, for any
source code file where you only need the class declaration, you include the header file, such
as myobj.h.

For example, suppose in the main.cpp file a myobj object is generated as a variable, whereas
in a myobj.cpp file there are function definitions for member functions for the myobj class.
Furthermore, suppose the class definition for myobj is in the myobj.h header file and the
MOC version of myobj.h is in the myobj.moc file. In the main.cpp file, you would include
the myobj.h file (not myobj.moc), but in the myobj.cpp file you would include the
myobj.moc file (not myobj.h).

KDE Program Example

hellowin.cpp is a simple program that displays a button in the main window and then will
display a message box with "Hello World" when clicked. The Hellowin class will have two
slots declared: myhello (to display the message) and myexit (to exit the program). The
declaration should also include Q_OBJECT. Q_OBJECT is a special object used by KDE to
connect to the Qt Toolkit objects. The declaration for Hellowin will be placed in the
hellowin.h header file, and all the member function definitions will be placed in the
hellowin.cpp file. Figure 13 shows both the main window with its Exit and Hello buttons and
the hello window displayed by this program.

Figure 13: KDE Hellowin program

To compile this program, you first need to preprocess the hellowin.h header file with MOC.
Then, you can compile the hellowin.cpp file. Notice that this file should include the
hellowin.moc file, not the hellowin.h file. The compile operations are shown here:

moc –o hellowin.moc hellowin.h
g++ -lkdecore -lkdeui -lqt -o hellowin hellowin.cpp

Depending on your system, you may also need to specify the location of the KDE libraries
and header files. These are usually held in a KDE directory specified in the KDEDIR system
variable. Use the -L option with the /lib directory to specify the libraries, and -I options with
the /include directory for header files, as in -L$KDEDIR/lib and -I$KDEDIR/include. If
KDEDIR is not set, then check with your system administrator or with your Linux
distribution manual for the location of the KDE libraries and header files. An example of the
compile operation specifying the location of the KDE include and lib directories is shown
here:

g++ -L$KDEDIR/lib -I$KDEDIR/include -lkdecore –lkdeui \
 -lqt -o hellowin hellowin.cpp

The displaying of the "Hello World" message will be handled by a KMsgBox object. This
class implements a simple dialog box with messages and several buttons, if you want them. In
addition to a simple message dialog box, KMsgBox also supports dialog boxes with Yes and
No buttons and Yes, No, and Cancel buttons. Be sure to include kmsgbox.h.

The basic tasks for creating a Hellowin program are listed here.

• Create the hellowin.h header file that will hold the class definition of the Hellowin
class.

• Include header files that contain class definitions for objects such as windows, buttons,
and message boxes. In this case, include the header file for the main window,
ktmainwindow.h, for a button, qpushbutton.h, and for a message box, kmsgbox.h.

• Define the Hellowin class, derived from the KTMainWindow class. Give the
Hellowin class two slots (functions) called myhello and myexit. Define two pointers
to buttons: buttonhi and buttonExit.

• The myhello.cpp file will hold the main program. Begin it by including header files
and the hellowin.moc file, which needs to be separately generated by the MOC
preprocessor.

• Define a constructor function for the Hellowin class, Hellowin::Hellowin. When an
object of that class is defined, this function is automatically executed.

• Create a button object using QPushButton, and assign it to the buttonhi pointer. Set
its size and then display it. It is connected to the myhello slot so that when it is
clicked, the myhello function is executed.

• Create another button object using QPushButton, and assign it to the buttonExit
pointer. Set its size and then display it. Connect it to the myexit slot so that when it is
clicked, the myexit function will be executed.

• Define a closeEvent function for the Hellowin class. This function should simply end
the program by invoking the kapp->quit function.

• Define the myhello function for the Hellowin class. This should display a separate
message box with the message "Hello World".

• Define the myexit function for the Hellowin class, and set it to close the Hellowin
window.

• In the main function, define a Kapplication called myapp. Define a Hellowin object
called mywin. Then set the size of the object.

• Use the setMainWidget function for myapp to make the mywin object the main
application window.

• Use mywin.show to show that window.
• Use myapp.exec to run the application.

The code for the hellowin.h file is shown next.

hellowin.h

#include <kapp.h>
#include <ktmainwindow.h>
#include <qpushbutton.h>
#include <kmsgbox.h>

class Hellowin : public KTMainWindow
 {
 Q_OBJECT
 public:
 Hellowin ();
 void closeEvent(QCloseEvent *);
 public slots:
 void myhello();
 void myexit();
 private:
 QPushButton *buttonhi;
 QPushButton *buttonExit;
 };

The following is the code for the hellowin.cpp file.

hellowin.cpp

#include <kapp.h>
#include <ktmainwindow.h>
#include <qpushbutton.h>
#include "hellowin.moc"
#include <kmsgbox.h>

Hellowin::Hellowin () : KTMainWindow()
 {
 buttonhi = new QPushButton("Hello", this);
 buttonhi->setGeometry(45,30,50,25);
 buttonhi->show();
 connect(buttonhi, SIGNAL(clicked()), this, SLOT(myhello()));

 buttonExit = new QPushButton("Exit", this);
 buttonExit->setGeometry(105,30,50,25);
 buttonExit->show();
 connect(buttonExit, SIGNAL(clicked()), this, SLOT(myexit()));
 }

void Hellowin::closeEvent(QCloseEvent *)
 {
 kapp->quit();
 }

void Hellowin::myhello()
 {
 KMsgBox::message(0,"Important","Hello World!");
 }

void Hellowin::myexit()
 {
 close();
 }

int main(int argc, char **argv)
 {
 KApplication myapp (argc, argv, "Hello World!");
 Hellowin mywin;
 mywin.setGeometry(100,100,200,100);

 myapp.setMainWidget(&mywin);
 mywin.show();
 return myapp.exec();
 }

Menus

To create menus, you create a KDE menu bar and then add Qt menus with their menu items to
it. You will need to include the qpopupmenu.h header file for the menus and the
kmenubar.h header file for the menu bar, as shown here:

#include <qpopupmenu.h>
#include <kmenubar.h>

You then define a menu bar object, or a pointer to one, and do the same for your menus. The
class for a menu bar is KMenuBar, and the class for a menu is QPopupMenu. The following
example defines pointers to a menu bar and a menu:

KMenuBar *mymenubar;
QPopupMenu *myfilemenu;

If you defined pointers, you can create the menu and menu bar objects with the new operation
as shown here. KMenuBar takes as its argument its parent. When defined in a class like a
window, where you want the class itself to be the parent, you use the this pointer.

mymenubar = new KMenuBar(this);
myfilemenu = new QPopupMenu;

You can then add the menu to the menu bar with the menu bar's insertItem member function.
The first argument is the label you want displayed on the menu bar for the menu, and the
second argument is the address of the menu object. The following example adds myfilemenu
to mymenubar:

mymenubar->insertItem("File", myfilemenu);

Then, to add items to a particular menu, you use the menu object's insertItem member
function. Its first argument is the label you want displayed for the item, and the next two
arguments are references to a slot function to be executed when the item emits a signal. (This
is the same as the slot arguments in the connect function.) The second argument for
insertItem is the address of the object that holds the slot function, and the third argument is
the slot function in that object to be executed.

The following example creates an Exit item in the myfilemenu menu and connects it to the
myexit slot function in the current object (denoted by the this pointer):

myfilemenu->insertItem("Exit", this, SLOT(myexit()));

Qt Programming

KDE currently relies directly on the Qt Toolkit. Using just Qt objects, you can create an
interface with a look and feel similar to KDE. You can create a Qt application using just Qt
objects and the Qt libraries. This section provides a basic introduction to Qt programming.
Both the KDE development site at developer.kde.org and the Qt Web site at
www.trolltech.com provide very detailed documentation and tutorials on Qt programming. It
is strongly recommended that you consult these resources for a detailed presentation of Qt
programming and API references.

Web Chapter 44: Perl, Tcl/Tk, Expect, and
Gawk
Perl, Tcl/Tk, Expect, and Gawk are scripting languages commonly used for customized
applications on Linux. Your Red Hat Linux system installs these languages as part of its

development package. Though beyond the scope of this book, a brief introduction to these
languages is provided in this chapter.

Perl

The Practical Extraction and Report Language (Perl) is a scripting language originally
designed to operate on files, generating reports and handling very large files. Perl was
designed as a core program to which features could be easily added. Over the years, Perl's
capabilities have been greatly enhanced. It can now control network connections, process
interaction, and even support a variety of database management files. At the same time, Perl
remains completely portable. A Perl script will run on any Linux system, as well as most
other operating systems such as Unix, Windows, and Mac. Perl is also used extensively for
implementing CGI scripts on Web sites. There are extensive and detailed man pages on Perl,
discussing all aspects of the language with a great many examples. The man pages begin with
the term perl; for example, perlfunc discusses the built-in Perl functions and perlsyn
describes the different control structures. You can also use the www.perl.com site to access
and search documentation including the reference manual, the online man pages, and FAQs.

There are extensive Internet resources for Perl. On the Perl Web site at www.perl.com, you
can access documentation, software, newsgroups, and support. The site has programming and
reference sections where you can access detailed FAQs on topics such as CGI, modules, and
security. You can also access software archives and more detailed documentation.

Specialized Perl Web sites focus on programming, conferences, and reference resources. The
Comprehensive Perl Archive Network (CPAN) maintains FTP sites that hold an extensive
collection of utilities, modules, documentation, and current Perl distributions. You can also
link to a CPAN site through the Perl Web sites. Several of the Perl Web sites are listed here:

www.perl.com
www.perlmongers.org
www.perl.org
republic.perl.com
www.perlreference.net
www.perl.com/CPAN/CPAN.html

The Perl advocacy group known as the perlmongers can be located at www.perl.org or
www.perlmongers.org. The republic.perl.com site lets you join the Programming Republic
of Perl. There are also several Usenet newsgroups that discuss different Perl issues. You can
use them to post questions and check out current issues. Here is a listing of the current
newsgroups:

comp.lang.perl.announce
comp.lang.perl.misc
comp.lang.perl.modules
comp.lang.perl.tk

Perl Scripts

Usually, Perl commands are placed in a file that is then read and executed by the perl
command. In effect, you are creating a shell in which your Perl commands are executed. Files

containing Perl commands must have the extension .pl. This identifies a file as a Perl script
that can be read by the perl command. There are two ways that you can use the perl
command to read Perl scripts. You can enter the perl command on the shell command line,
followed by the name of the Perl script. Perl will read and execute the commands. The
following example executes a Perl script called hello.pl:

$ perl hello.pl

You can also include the invocation of the perl command within the Perl script file, much as
you would for a shell script. This automatically invokes the Perl shell and will execute the
following Perl commands in the script. The path /usr/bin/perl is the location of the perl
command on the OpenLinux system. On other systems, it could be located in /usr/local/bin
directory. The command which perl will return the location of Perl on your system. Place the
following shell instruction on the first line of your file:

#!/usr/bin/perl

Then, to make the script executable, you would have to set its permissions to be executable.
The chmod command with the 755 option sets executable permissions for a file, turning it
into a program that can be run on the command line. You only have to do this once per script.
You do not have to do this if you use the perl command on the command line, as noted
previously. The following example sets the executable permissions for the hello.pl script:

$ chmod 755 hello.pl

As in C, Perl commands end with a semicolon. There is a print command for outputting text.
Perl also uses the same escape sequence character to output newlines, \n, and tabs, \t.
Comments are lines that begin with a #. The following is an example of a Perl script. It prints
out the word "hello" and a newline. Notice the invocation of the perl command on the first
line:

helloprg

#!/usr/bin/perl

print "hello \n";

$ helloprg
hello

Perl Input and Output: <> and print

A Perl script can accept input from many different sources. It can read input from different
files, from the standard input, and even from pipes. Because of this, you have to identify the
source of your input within the program. This means that, unlike with Gawk but like with a
shell program, you have to explicitly instruct a Perl script to read input. A particular source of
input is identified by a file handle, a name used by programs to reference an input source such
as a particular file. Perl already sets up file handles for the standard input and the standard
output, as well as the standard error. The file handle for the standard input is STDIN.

The same situation applies to output. Perl can output to many different destinations, whether
they be files, pipes, or the standard output. File handles are used to identify files and pipes

when used for either input or output. The file handle STDOUT identifies the standard output,
and STDERR is the file handle for the standard error. We shall first examine how Perl uses
the standard input and output, and later discuss how particular files are operated on.

Perl can read input from the standard input or from any specified file. The command for
reading input consists of the less-than (<) and greater-than (>) symbols. To read from a file, a
file handle name is placed between them, <MYFILE>. To read from the standard input, you
can simply use the STDIN file handle, <STDIN>, which is similar to the read command in
the BASH shell programming language.

<STDIN>

To use the input that <STDIN> command reads, you assign it to a variable. You can use a
variable you define or a default variable called $_, as shown in the next example. $_ is the
default for many commands. If the print command has no argument, it will print the value of
$_. If the chomp command has no argument, it operates on $_, cutting off the newline. The
myread script that follows illustrates the use of $_ with the standard input:

myread

#!/usr/bin/perl
Program to read input from the keyboard and then display it.

$_ = <STDIN>; #Read data from the standard input
print "This is what I entered: $_"; #Output read data as part of a string

$ myread
larisa and aleina
This is what I entered: larisa and aleina

You can use the print command to write data to any file or to the standard output. File handle
names are placed after the print command and before any data such as strings or variables. If
no file handle is specified, print outputs to the standard output. The following examples both
write the "hello" string to the standard output. The explicit file handle for the standard output
is STDOUT. If you do not specify an argument, print will output whatever was read from the
standard input.

print STDOUT "hello";
print "hello";
 Tip A null file handle, <>, is a special input operation that will read input from a file listed on

the command line when the Perl script is invoked. Perl will automatically set up a file
handle for it and read. If you list several files on the command line, Perl will read the
contents of all of them using the null file handle. You can think of this as a cat operation
in which the contents of the listed files are concatenated and then read into the Perl script.

Perl File Handles

You use the open command to create a file handle for a file or pipe. The open command takes
two arguments: the name of the file handle and the filename string. The name of the file
handle is a name you make up. By convention, it is uppercase. The filename string can be the
name of the file or a variable that holds the name of the file. This string can also include
different modes for opening a file. By default, a file is opened for reading. But you can also

open a file for writing, or for appending, or for both reading and writing. The syntax for open
follows:

open (file-handle, filename-string);

In the next example, the user opens the file reports, calling the file handle for it REPS:

open (REPS, "reports");

Often the filename will be held in a variable. You then use the $ with the variable name to
reference the filename. In this example, the filename "reports" is held in the variable filen:

filen = "reports";
open (REPS, $filen);

To open a file in a specific mode such as writing or appending, you include the appropriate
mode symbols in the filename string before the filename, separated by a space. The different
mode symbols are listed in Table 1. The symbol > opens a file for writing, and +> opens a file
for both reading and writing. In the next example, the reports file is opened for both reading
and writing:

open (REPS, "+> reports");

Table 1: Perl: File Operations and Command Line Options
Perl Command Line Options Description
-e Enter one line of a Perl program.
-n Read from files listed on the command line.
-p Output to standard output any data read.
Perl File Commands
open(file-handle, permission-with-
filename)

Open a file.

close(file-handle) Close a file.
filename Read from a file.
STDIN Read from the standard input.
 Read from files whose filenames are provided in the

argument list when the program was invoked.
print file-handle text; Write to a file. If no file handle is specified, write to

standard output. If no text is specified, write contents
of $_.

printf handle
" Format-str ", values ;

Write formatted string to a file. Use conversion
specifiers to format values. If no file handle is
specified, write to standard output. If no values are
specified, use contents of $_.

sprintf str-var
" Format-str ", values ;

Write formatted values to a string. Use conversion
specifiers to format values. If no values are specified,
use contents of $_.

Permissions for Opening Files

Table 1: Perl: File Operations and Command Line Options
Perl Command Line Options Description
filename Read-only.
filename Write-only.
+ filename Read and write.
filename Append (written data is added to the end of the file).
command | An input pipe, reading data from a pipe.
| command An output pipe, sending data out through this pipe.

If you are using a variable to hold the filename, you can include the evaluated variable within
the filename string, as shown here:

open (REPS, "+> $filen");

To read from a file using that file's file handle, you simply place the file handle within the <
and > symbols. <REPS> reads a line of input from the reports file. In the myreport program,
the reports file is opened and its contents are displayed.

myreport.pl

#!/usr/bin/perl
Program to read lines from the reports file and display them

open(REPS, "< reports"); # Open reports file for reading only
while ($ldat = <REPS>) # Read a line from the reports file
 {
 print $ldat; # Display recently read line
 }
close REPS; # Close file

Perl also has a full set of built-in commands for handling directories. They operate much like
the file functions. The opendir command opens a directory, much as a file is opened. A
directory handle is assigned to the directory. The readdir command will read the first item in
the directory, though, when in a list context, it will return all the file and directory names in
that directory. closedir closes the directory, chdir changes directories, mkdir creates
directories, and rmdir removes directories.

Perl Variables and Expressions

Perl variables can be numeric or string variables. Their type is determined by context—the
way they are used. You do not have to declare them. A variable that is assigned a numeric
value and is used in arithmetic operations is a numeric variable. All others are treated as
strings. To reference a variable in your program, you precede it with a $ symbol, just as you
would for a shell variable.

You can use the same set of operators with Perl variables as with C variables—with the
exception of strings. Strings use the same special comparison terms as used in the Bourne
shell, not the standard comparison operators. Those are reserved for numeric variables.
However, other operators such as assignment operators work on both string and numeric
variables. In the next example, the variable myname is assigned the string "Larisa". The
assignment operator is the = symbol (see Table 2).

$myname = "Larisa";

For a numeric variable, you can assign a number. This can be either an integer or a floating-
point value. Perl treats all floating-point values as double precision.

$mynum = 45;
$price = 54.72;

Perl also supports arithmetic expressions. All the standard arithmetic operators found in other
programming languages are used in Perl. Expressions can be nested using parentheses (see
Table 2). Operands can be numeric constants, numeric variables, or other numeric
expressions. In the following examples, $mynum is assigned the result of an addition
expression. Its value is then used in a complex arithmetic expression whose result is assigned
to $price.

$mynum = 3 + 6;
$price = (5 * ($num / 3);

Table 2: Arithmetic: , Relational (Numeric), and Assignment Operators
Arithmetic Operators Function
* Multiplication
/ Division
+ Addition
- Subtraction
% Modulo—results in the remainder of a division
** Power
Relational Operators
 Greater than
 Less than
= Greater than or equal to
= Less than or equal to
== Equal in let
!= Not equal
Increment Operators
++ Increment variable by one
«— Decrement variable by one
Arithmetic Assignment Operators
+= Increment by specified value

Table 2: Arithmetic: , Relational (Numeric), and Assignment Operators
Arithmetic Operators Function
-= Decrement by specified value
/= Variable is equal to itself divided by value
*= Variable is equal to itself multiplied by value
%= Variable is equal to itself remaindered by value

Perl supports the full range of assignment operators found in Gawk and C. The ++ and «—
operators will increment or decrement a variable. The += and -= operators and their variations
will perform the equivalent of updating a variable. For example, i++ is the same as i = i + 1,
and i += 5 is the same as i= i + 5. Increment operations such as i++ are used extensively with
loops.

You can easily include the value of a variable within a string by simply placing the variable
within it. In the following example, the value of $nameinfo would be the string "My name is
Larisa \n":

print "The number of items is $mynum \n"
$nameinfo = "My name is $myname \n"

To assign data read from a file to a variable, just assign the result of the read operation to the
variable. In the next example, data read from the standard input is assigned to the variable
$mydata:

$mydata = <STDIN>;

When reading data from the standard input into a variable, the carriage return character will
be included with the input string. You may not want to have this carriage return remain a part
of the value of the variable. To remove it, you can use the chomp command, which removes
the last character of any string. With data input from the keyboard, this happens to be the
carriage return.

chomp $myinput;

In the next example, the user inputs his or her name. It is assigned to the myname variable.
The contents of myname is then output as part of a string. chomp is used to remove the
carriage return from the end of the $myname string before it is used as part of another string.

readname.pl

#!/usr/bin/perl
$myname = <STDIN>;
chomp $myname;

print "$myname just ran this program\n";

$ myread.pl
larisa Petersen
larisa Petersen just ran this program

Arrays and Lists

In Perl, you create an array by assigning it a list of values. A list in Perl consists of a set of
values encased in parentheses and separated by colons. The following example is a list of four
values:

(23, 41, 92, 7)

You assign this list to the array you wish to create, preceding the array name with an @ sign.
This assignment will initialize the array sequentially, beginning with the first value in the list:

@mynums = (23, 41, 92, 7);

Once the array has been created, you can reference its individual elements. The elements start
from 0, not 1. The mynums array has four elements, numbered from 0 to 3. You can
reference individual elements using an index number encased within brackets. [0] references
the first element, and [2] references the third element. The following example prints out the
first element and then the fourth element. Notice that the array name is prefixed with a $.

print $mynums[0] ;
print $mynums[2] ;

You can change the value of any element in the array by assigning it a new value. Notice that
you use a $, not an @ sign, preceding an individual array element. The @ sign references the
entire array and is used when you are assigning whole lists of values to it. The $ sign
references a particular element, which is essentially a variable.

$mynums[2] = 40;

There is no limit to the number of elements in the array. You can add more by simply
referencing a new element and assigning it a value. The following assignment will add a fifth
element to the mynums array:

$mynums[4] = 63;

Each array will have a special variable that consists of a # and the name of the array. This
variable is the number of elements currently in the array. For example, #mynums holds the
number of elements in the mynums array. The following example prints out the number of
elements. Notice the preceding $.

print "$#mynums";

When assigning a list to an array, the values in a list do not have to be of the same type. You
can have numbers, strings, and even variables in a list. Similarly, elements of the array do not
have to be of the same type. One element could be numeric, and another a string. In the next
example, the list with varied elements is assigned to the myvar array:

@myvar = ("aleina", 11, 4.5, "a new car");

You can reference the entire set of elements in an array as just one list of values. To do this,
you use the array name prefixed by the @ sign. The following example will output all the
values in the mynums array:

print @mynums;

The @ is used here instead of the $, because the array name is not a simple variable. It is
considered a list of values. Only the individual elements are variables. This means that to just
reference all the values in an array, you use the @ sign, not the $. This is even true when you
want to assign one array to another. In the next example, the values of each element in
mynums are assigned to corresponding elements in newnums. Notice the @ used for
mynums. You can think of @mynums as evaluating to a list of the values in the mynums
array, and this list being then assigned to newnums.

@newnums = @mynums;

Perl Control Structures

Perl has a set of control structures similar to those used in the Gawk, TCSH shell, and C
programming languages. Perl has loops with which you can repeat commands, and conditions
that allow you to choose among specified commands. For the test expressions, there are two
different sets of operators for use with strings and numeric values. Table 2 lists the numeric
relational operators, and Table 3 lists the string operators. You can also use pattern operations
that allow the use of regular expressions. Table 4 lists the Perl control structures with their
syntax.

Table 3: String: , Logical, File, and Assignment Operators
String Comparisons Function
gt Greater than.
lt Less than.
ge Greater than or equal to.
le Less than or equal to.
eq Equal.
ne Not equal.
Logical Operations
expression && expression
expression and expression

The logical AND condition returns a true 0 value if both
expressions return a true 0 value; if one returns a nonzero
value, the AND condition is false and also returns a
nonzero value. Execution stops at the first false
expression. The and operation is the same as && but has
a lower precedence.

expression || expression
expression or expression

The logical OR condition returns a true 0 value if one or
the other expression returns a true 0 value; if both
expressions return a nonzero value, the OR condition is
false and also returns a nonzero value. Evaluation stops at
the first true expression. The or operation is the same as ||
but has a lower precedence.

Table 3: String: , Logical, File, and Assignment Operators
String Comparisons Function
! command
not command

The logical NOT condition inverts the true or false value
of the expression. The not operation is the same as ! but
has a lower precedence.

File Tests
-e File exists.
-f File exists and is a regular file.
-s File is not empty.
-z File is empty, zero size.
-r File is readable.
-w File can be written to, modified.
-x File is executable.
-d Filename is a directory name.
-B File is a binary file.
-T File is a text file.
Assignment Operator
= Assign a value to a variable.

Table 4: Perl: Conditions, Loops, and Functions
Control Stucture Description
LABEL:{
statements;
}

Block is a collection of statements enclosed within
opening and closing braces. The statements are
executed sequentially. The block can be labeled.

Conditional Control Structures:
if, else, elsif, case

if(expression) {
statements;
}

if executes statements if its test expression is true.
Statements must be included within a block.

if(expression) {
statements;
}
else(expression) {
statements;
}

if-else executes statements if the test expression is
true; if false, the else statements are executed.

if(expression) {
statements;
}
elsif(expression) {
statements;
}
else(expression) {
statements;
}

elsif allows you to nest if structures, enabling
selection among several alternatives; at the first
true if expression, its statements are executed and
control leaves the entire elsif structure.

Table 4: Perl: Conditions, Loops, and Functions
Control Stucture Description
unless(expression) {
statements;
}

unless executes statements if its test expression is
false.

test ? stat1 : stat2 Conditional expression. If true, executes stat1, else
stat2.

LABEL:{
if(expr){statements;last LABEL};
}

Simulate a switch structure by using listed if
statements within a block with the last statement
referencing a label for the block.

Loop Control Structures:
while, until, for, foreach

LABEL:while(expression) {
statements;
}

while executes statements as long as its test
expression is true. LABEL is optional.

do{
statements;
} until(expression)

until executes statements as long as its test
expression is false.

foreach variable (list-values)
{
statements;
}

foreach is designed for use with lists of values
such as those generated by an array; the variable
operand is consecutively assigned the values in the
list.

for(init-expr; test-expr; incr-expr)
{
statements;
}

The for control structure executes statements as
long as test-expr is true. The first expression, init-
expr, is executed before the loop begins. The third
expression, incr-expr, is executed within the loop
after the statements.

LABEL: block-or-loop Label a block or loop. Used with the next, last,
and redo commands.

Functions
sub function-name ; Declare a function.
sub function-name {
statements;
}

Define a function with the name function-name.

& function-name(arg-list) Call a function with arguments specified in the
argument list.

@@_ Holds the values of arguments passed to the
current function. $_ and index references an
argument. $_[0] is the first argument.

$#_ Number of arguments passed to the current
function.

Test Expressions

Perl has different sets of operators for numeric and string comparisons. You have to be careful
not to mix up the different operators. The string operators are two-letter codes similar to those
used in the BASH shell. For example, the eq operator tests for the equality of two strings, and
the gt operator tests to see if one is greater than the other. Numeric comparisons, on the other
hand, use as operators symbols similar to those found in programming languages. For
example, > stands for greater than, and == tests for equality. These are essentially the same
comparison operators used for the C programming language.

There are two important exceptions: patterns and string patterns. The string-pattern operator,
=~, tests for a pattern in a string variable. The right-hand operand is the pattern, and the left-
hand operand is the string. The pattern can be any regular expression, making this a very
flexible and powerful operation.

Patterns perform pattern matching on either a string or the contents of the _$ special variable.
The pattern operator consists of two slashes that enclose the pattern searched for, /pattern/.
The pattern can be any regular expression. Regular expression are discussed in detail in the
section on pattern matching.

Perl supports the AND, OR, and NOT logical operations. There are two implementations of
these operations: the standard operators and those with list processing capabilities. The
standard logical operators are &&, ||, and !. The && operator implements an AND operation,
|| an OR, and ! a NOT. They take as their operands expressions, just as they do in the C
programming language. Their syntax is as follows:

(expression) && (expression)
(expression) || (expression)
!(expression)

In the case of the logical AND, &&, if both commands are successful, the logical command is
true. For the logical OR, ||, if either command is successful, the OR is true. You can extend
these commands with added && or || commands, creating complex AND or OR operations.
The logical commands allow you to use logical operations as your test commands in control
structures. You can also use them independently.

The logical operators are usually used in test expressions for control structures such as while
and if. But they can also be used independently as their own statements. In effect, they
provide a simple way to write a conditional operation. In Perl scripts, you may often see an
OR operation used with a file open command. In an OR operation, if the first expression fails,
the second one is checked. If that second one is the die command to end the program, in effect
there is an operation to end the program if the file open operation fails (the first expression
fails).

open (REPS, "+> $filen") or die "Can't open $filen";

The AND operation works similarly, except that if the first expression is true, the second one
is checked. The following looks for an empty line and, if it finds it, prints the message:

/^$/ && print "Found empty line";

Loops

Perl loops are the while, do-until, for, and foreach loops. The while loop is the more
general-purpose loop, whereas the for and foreach loops provide special capabilities. The
foreach is particularly helpful in processing lists and arrays. The while, do-until, and for
loops operate much like their counterparts in the C programming language. The for loop, in
particular, has the same three expression formats as the C for loop. The foreach loop is
similar to its counterpart in the C shell, able to easily handle lists of items.

You can easily adapt the while loop for use with arrays. The variable used to control a loop
can also be used, inside the loop, to index an array. In the next example, the elements of the
title array are assigned the value of each title. Then, the contents of each element are printed
out using a for loop. Notice that the $#num holds the count of elements in the array. $#num
is used as the upper bound in the for loop test expression in order to check when the loop
should stop.

titlearr.pl

#!/usr/bin/perl
Program to define and print out a scalar array

@title = ("Tempest", "Iliad", "Raven"); # define array with 3 elements

for($i = 0; $i <= $#title; $i++) # Loop through array, $#title is size
 {
 print "$title[$i] \n"; # Print an element of the title array
 }

$ titlearr.pl
Tempest
Iliad
Raven

The foreach loop is useful for managing arrays. In the foreach loop, you can use the array
name to generate a list of all the element values in the array. This generated list of values then
becomes the list referenced by the foreach loop. You can also specify a range of array
elements, using only those values for the list, or a set of individual elements. In the next
example, the array name @mylist is used to generate a list of its values that the foreach loop
can operate on, assigning each one to $mynum in turn:

mynumlist.pl

#!/usr/bin/perl
Program to use foreach to print out an array

@mylist = (34, 21, 96, 85); # define array of 4 elements

foreach $mynum (@mylist) # Assign value of each element to $mynum
 {
 print "$mynum \n";
 }

Using the @ARGV array, you can specify the command line arguments as a list of values.
The arguments specified on the command line when the program was invoked become a list
of values referenced by the foreach loop. The variable used in the foreach loop is set

automatically to each argument value in sequence. The first time through the loop, the
variable is set to the value of the first argument. The second time, it is set to the value of the
second argument, and so on.

 Tip The number of arguments that a user actually enters on the command line can vary. The
#ARGV variable will always hold the number of arguments that a user enters. This is the
number of elements that are in the ARGV array. If you want to reference all the elements
in the ARGV array using their indexes, you will need to know the number of elements,
#ARGV. For example, to use the foreach loop to reference each element in the ARGV
array, you would use the .. operator to generate a list of indexes. 0.. $#ARGV generates a
list of numbers beginning with 0 through to the value of $#ARGV.

Conditions: if, elsif, unless, and switch

Perl supports if-else operations much as they are used in other programming languages. The if
structure with its else and elsif components allows you to select alternative actions. You can
use just the if command to choose one alternative, or combine that with else and elsif
components to choose among several alternatives. The if structure has a test expression
encased in parentheses followed by a block of statements. If the test is true, the statements in
the block are performed. If not, the block is skipped. Unlike in other programming languages,
only a block can follow the test, and any statements, even just one, must be encased with it.
The following example tests to see if an open operation on a file was successful. If not, it will
execute a die command to end the program. The NOT operator, !, will make the test true if
open fails, thereby executing the die command.

if (!(open (REPS, "< $filen"))) {
 die "Can't open $filen";
}
else {
 print "Opened $filen successfully";
 }

Tcl, Tk, and Expect

Tcl is general-purpose command language developed by John Ousterhout in 1987 at the
University of California, Berkeley. Originally designed to customize applications, it has
become a fully functional language in its own right. As with Perl and Gawk, you can write Tcl
scripts, developing your own Tcl programs. Tcl is a very simple language to use.

TK and Expect are Tcl applications that extend the capabilities of the language. The Tk
application allows easy development of graphical interactive applications. You can create
your own windows and dialog boxes with buttons and text boxes of your choosing. The
Expect application provides easy communication with interactive programs such as FTP and
telnet.

Tcl is often used in conjunction with Tk to create graphical applications. Tk is used to create
the graphical elements such as windows, and Tcl performs the programming actions such as
managing user input. Like Java, Tcl and Tk are cross-platform applications. A Tcl/Tk
program will run on any platform that has the Tcl/Tk interpreter installed. Currently, there are
Tcl/Tk versions for Windows, the Mac, and Unix systems, including Linux. You can write a
Tcl application on Linux and run the same code on Windows or the Mac. The new versions of

Tcl and Tk 8.0 even support a local look and feel for GUI widgets using Mac-like windows
on the Mac, but Windows-like windows under Windows 98.

Tcl is an interpreted language operating, like Perl, within its own shell; tclsh is the command
for invoking the Tcl shell. Within this shell, you can then execute Tcl commands. You can
also create files within which you can invoke the Tcl shell and list Tcl commands, effectively
creating a Tcl program. A significant advantage to the Tcl language and its applications is the
fact that it is fully compatible with the C programming language. Tcl libraries can be
incorporated directly into C programs. In effect, this allows you to create very fast compiled
versions of Tcl programs.

When you install Tk and Tcl on your system, Man pages for Tcl/Tk commands are also
installed. Use the man command with the name of the Tcl or Tk command to bring up
detailed information on that command. For example, man switch displays the manual page
for the Tcl switch command, and man button displays information on the Tk button widget.
Once you have installed Tk, you can run a demo program called widget that shows you all the
Tk widgets available. The widget program uses Tcl/Tk sample programs and can display the
source code for each. You can find the widget program by changing to the Tk demos
directory as shown here. (tk* here matches on directory names consisting of tk and its version
number, tk4.1 for version 4.1, and tk8.0 for version 8.0.)

cd /usr/lib/tk*/demos

From the Xterm window, just enter the command widget. You can also examine the
individual demo files and modify them as you wish. If you have installed a version of Tk
yourself into the /usr/local/bin directory rather than /usr/bin, the demos directory will be
located in /usr/local/lib/tk*.

Tcl/Tk Extensions and Applications

Currently, both Tcl and Tk are being developed and supported as open-source projects by Tcl
Core Team. The current release of both Tcl and Tk is 8.0, though version 8.1 will be ready
soon. Current versions of Tcl and Tk are available free of charge from the Tcl Developer
Xchange Web site, http://dev.scriptics.com. Also available on this site is extensive
documentation for each product in PostScript, Adobe PDF, and HTML formats. The HTML
documentation can be viewed online. RPM packaged versions can also be found at
distribution sites such as ftp.redhat.com. You will need both Tcl and Tk RPM packages as
well as the development packages for each.

Tcl/Tk has been enhanced by extensions that increase the capabilities of the language. Several
commonly used extensions are TclX, [incr Tcl], and Oratcl. All these are currently available
though links on the Tcl Developer Xchange Web site. Access the Tcl Software Resource page
and from there, you can access the Tcl Extensions page, listing those currently available
(dev.scriptics.com/software). Most you can download and install for free. Most are also
available at http://sourceforge.net. TclX extends capabilities such as file access and time and
date manipulation, many of which have been incorporated into recent Tcl releases. [incr Tcl]
supports the easy implementation of higher-level widgets, using an object-oriented
programming structure. BLT adds graph and bar widgets to Tk. Sybtcl and Oratcl implement
database interfaces to the Sybase and Oracle databases. TclDP provides support for
distributed programming across a network. With the Scotty Network Management Tools, you

can develop network management applications. The TrfCrypt extension adds encryption that
was removed from the standard Tcl/Tk release to make it exportable.

Numerous Tcl/Tk applications, development tools, and utilities are freely available for
download from Internet sites. You can link to most of these through the Tcl Developer
Xchange site or through www.tcltk.com site. Most products are also open-source projects
available at http://sourceforge.net. If a site does not provide an RPM-packaged version of its
software, be sure to check the appropriate distribution site, such as ftp.redhat.com. Of
particular note is the Tcl/Tk Web page plug-in that allows you to embed Tcl/Tk programs
within a Web page. Such embedded Tcl/Tk programs are called Tclets. There is also a Tcl/Tk
Web server called TclHttpd that can be easily embedded in applications, making them Web
capable. You can configure and modify the server using Tcl/Tk commands. Several GUI
builders are also available that let you build graphical user interfaces (GUIs). Free Visual Tcl,
SpecTcl, VisualGIPSY, and XF SpecTcl are GUI builders that have a window-based interface
with menus and icons for easily creating Tcl/Tk widgets. They can generate both Tcl/Tk and
Java code, and can be used to create standalone Tcl/Tk applications or Web Tclets. There are
also editors (TextEdit), desktops (TK Desk), multimedia (MBone), and specialized
applications like Tik, a Tcl/Tk implementation of AOL Instant Messenger.

Tcl

Tcl is a simple-to-use programming language. Its statements consist of a command followed
by arguments, though it also has a complete set of control structures including while and for
loops. Commands can be terminated either by a semicolon or by a newline. You can think of a
Tcl command as a function call where the command name operates like a function name,
followed by arguments to the function. However, unlike with a function call, there are no
parentheses or commas encasing the arguments. You simply enter the command name and
then its arguments, separated only by spaces. A newline entered after the last argument will
end the statement.

You can see the features in this format very clearly in the Tcl assignment command, set. To
assign a value to a variable, you first enter the assignment command set. Then enter the name
of the variable, followed by the value to be assigned. The command name, variable, and value
are separated only by spaces. The newline at the end of the line ends the statement. The
following statement assigns a string "larisa" to the variable myname, and the next statement
assigns the integer value 11 to the variable age:

set myname "larisa"
set age 11
 Note Variable types are determined by their use. A variable assigned an integer will be

considered an integer, and one assigned a string will be a character array.

The Tcl Shell and Scripts: tclsh

You execute Tcl commands within the Tcl shell. You can do this interactively, entering
commands at a Tcl shell prompt and executing them one by one, or you can place the
commands in a script file and execute them all at once. To start up the Tcl shell, you enter the
command tclsh. This starts up the Tcl shell with the % prompt. You can then enter single Tcl
commands and have them evaluated when you press ENTER. You leave the Tcl shell by
entering either an exit command or a CTRL-D.

$ tclsh
% set age 11
% puts $age
11
% exit
$

You can run a Tcl script either as a standalone program or as a file explicitly read by the Tcl
shell command tclsh. A Tcl script has the extension .tcl. For example, the myread.tcl Tcl
script would be read and executed by the following command:

$ tclsh myread.tcl

To create a standalone script that operates more like a command, you need to invoke the tclsh
command within the script. You can do this using an explicit pathname for the tclsh
command. This is placed on the first line of the script.

#!/usr/bin/tclsh

Expressions

Expressions are also handled as commands. The command expr evaluates an expression and
returns its resulting value as a string. It takes as its arguments the operands and operator of an
expression. Tcl supports all the standard arithmetic, comparison, and logical operators. The
result of an arithmetic expression will be the same form as its operands. If the operands are
real numbers, the result will be a real number. You can mix operands of different types, and
Tcl will convert one to be the same as the other. In the case of real and integer operands, the
integer will be converted to a real. In the next statement, the addition of 4 and 3 is evaluated
by the expr command. The following statement multiplies 25 and 2:

expr 4 + 3
expr 25 * 2
 Tip The resulting value returned by any Tcl command is always a string. In the case of

arithmetic operations, the arithmetic value is converted first to a string, which is then
returned by the expr command.

Embedded Commands

You can combine commands by embedding one within the other. Embedding is commonly
used for assigning the result of an expression to a variable. This involves two commands, the
set command to perform the assignment and the expr command to evaluate an expression.
You embed commands using brackets. An embedded command is another Tcl command
whose result is used as an argument in the outer Tcl command. The embedded command is
executed first, and its result is used as the argument to the outer command. The following
statement assigns the result of the arithmetic operation, 25 * 2, to the variable num. expr 25 *
2 is a command embedded within the set command. First the embedded command is
executed, and its result, "50", is assigned to the variable num.

set num [expr 25 * 2]

Variables

Tcl supports numeric and string variables as well as arrays, including associative arrays. All
variables hold as their contents a string. However, though the content of a variable is a string,
that string can be used as an integer or real value in an arithmetic expression, provided that
the string consists of numbers. Whenever such a variable is used as an operand in an
arithmetic expression, its contents are first converted to an integer or real value. The operation
is performed on the arithmetic values, and the result returned by expr is then converted back
to a string. This means that you do not have to worry about declaring the type of variable, or
even defining a variable. All variables are automatically defined when they are first used in a
statement.

As we have seen, variables can be assigned values using the set command. The set command
takes as its argument the variable name and the value assigned. A variable's name can be any
set of alphabetic or numeric characters and the underscore. Punctuation and other characters
are not allowed.

When you need to use the value of a variable within a statement, you need to evaluate it.
Evaluating a variable substitutes its name with its value. The $ placed before a variable name
performs such an evaluation. To use a variable's value as an operand in an expression, you
need to evaluate the variable by preceding its name with the $. In the next example, the value
5 is assigned to the mynum variable. Then mynum is evaluated in an expression, $mynum,
providing its value, 5, as an operand in that expression.

set mynum 5
expr 10 * $mynum

Should you want to make the value of a variable part of string, you only need to evaluate it
within that string. The value of the variable becomes part of the string. In the following
statement, the value of the variable myname is used as part of a string. In this case, the string
will be "My name is Larisa".

set myname "Larisa"
set mystr "My name is $myname"

Certain commands are designed to operate on variables. The append command concatenates
a string to a variable. The incr command will increment an integer, and the unset command
will undefine a variable. The different commands that operate on variables are listed in Table
5.

Table 5: Assignments: and Variables
Commands Description
set Assign a value to a variable
global Declare global variables
incr Increment a variable by an integer value
unset Delete variables
upvar Reference a variable in a different scope
variable Declare namespace variables

Table 5: Assignments: and Variables
Commands Description
array Array access operations like searches
expr Math expressions

Arrays

Array elements are defined and assigned values using the set command with the index
encased in parentheses. The following example assigns the string "rain" as the second
element in the weather array:

set weather(2) rain

You can then reference the element using its index encased in parentheses with the array
name preceded with a $.

puts $weather(2)
rain

Tcl allows the use of any word string as an index, in effect supporting associative arrays. The
string used as the index is encased within parentheses next to the array name. The following
statements add two elements to the city array with the index strings Napa and Alameda:

set city(Napa) 34
set city(Alameda) 17

Control Structures

Tcl has a set of control structures similar to those used in the Perl, Gawk, C shell, and C
programming languages. Tcl has loops with which you can repeat commands and conditions
that allow you to choose among specified commands. Table 6 lists the Tcl control structures.
Control structures in Tcl often make use of a block of Tcl commands. A block of commands
consists of Tcl commands enclosed in braces. The opening brace ({) will begin on the same
line as that of the control structure that uses it. On following lines, there can be several Tcl
commands, each on its own line. The block ends with a closing brace (}) on a line by itself. A
block is literally an argument to a Tcl command. The block is passed to a control structure
command, and the control structure will execute the commands in that block.

if

The if control structure allows you to select alternative actions. The if command takes two
arguments, a test expression and a Tcl command or block of commands. Each is encased in its
own set of braces. The test expression is used to determine if the Tcl commands will be
executed. If the test expression is true, the commands are performed. If not, the commands are
skipped. Below is the syntax for the if structure. You can specify alternative commands to
execute if the expression is false by attaching an else block with those Tcl commands. You
can nest if structures using the elseif command.

Table 6: Tcl: Control Structures

Control Structures Description
if Conditional command, extend with else and elseif blocks
switch Switch selection structure
while The while loop
for The for loop, like the C for loop
foreach Loop through a list, or lists, of values
break Forced loop exit
if {test-expression} {
 Tcl commands
 } elseif {test-expression} {
 Tcl commands
 } else {
 Tcl commands
 }
 Note Keep in mind that the else and elseif keywords must be on the same line as the closing

brace of the previous block, as in } elseif { test-expression} { . The opening brace of the
next block must also be on the same line.

switch

The switch structure chooses among several possible alternatives. The choice is made by
comparing a string value with several possible patterns. Each pattern has its own block of Tcl
commands. If a match is found, the associated block is executed. The default keyword
indicates a pattern that matches anything. If all of the other matches fail, the block associated
with the default keyword is executed. The switch structure begins with the keyword switch,
the options prefixed with -, and the string pattern to be matched, followed by a block
containing all the patterns with their blocks. The syntax for the switch structure is described
next:

 switch -options string-pattern {
 pattern {
 Tcl commands
 }
 pattern {
 Tcl commands
 }
 default {
 Tcl commands
 }
 }

Options specify the pattern-matching capabilities. The following options are supported:

-exact Use exact matching when comparing string to a pattern. This is the
default.

-glob When matching string to the patterns, use glob style matching.
-regexp When matching string to the patterns, use regular expression matching

(i.e., the same as implemented by the regexp command).
«— Marks the end of options. The argument following this one will be treated

as a string even if it starts with a -.

The -regexp option lets you match any regular expression, whereas -glob lets you use the
shell filename matching methods. With -glob, the shell special characters *, [], ? let you
easily match on part of a string. With the -regexp option, you can match on complex
alternative strings, specifying multiple instances of characters, the beginning or end of a
string, and classes of characters. For example, to match on all filenames with the .c extension,
you would use the following command:

switch -glob *.c

To match on words that end with a number, like "report17" and "report32," you could use the
following command:

switch -regexp report[0-9]*

while

The while loop repeats commands. In Tcl, the while loop begins with the while command and
takes two arguments, an expression, and either a single Tcl command or a block of Tcl
commands. The expression is encased in braces. A block of Tcl commands begins with an
opening brace on the same line as the while command. Then, on following lines are the Tcl
commands that will be repeated in the loop. The block ends with a closing brace, usually on a
line by itself. The syntax for the while loop with a single statement is described here:

 while {expression } {
 Tcl commands
 }

for

The for loop performs the same tasks as the while loop. However, it has a different format.
The for loop takes four arguments, the first three of which are expressions and the last of
which is a block of Tcl commands. The first three arguments are expressions that incorporate
the initialization, test, and increment components of a loop. These expressions are each
encased in braces. The last argument, the block of Tcl commands, begins with an opening
brace and then continues with Tcl commands on the following lines, ending with a closing
brace:

 for {expression1} {expression2} {expression3} {
 Tcl commands;
 }

foreach

The foreach structure is designed to sequentially reference a list of values. It is very similar to
the C shell's for-in structure. The foreach structure takes three arguments: a variable, a list,
and a block of Tcl commands. Each value in the list is assigned to the variable in the foreach
structure. Like the while structure, the foreach structure is a loop. Each time through the loop,
the next value in the list is assigned to the variable. When the end of the list is reached, the

loop stops. As in the while loop, the block of Tcl commands is encased in braces. The syntax
for the foreach loop is described here:

 foreach variable (list of values) {
 tcl commands
 }

Tcl Input and Output: gets and puts

Tcl can read input from the standard input or a file using the gets command and write output
to the standard output with the puts command. The following command reads a line from the
standard input, usually the keyboard. The input is placed in the variable line.

gets line

The puts command outputs a string to the standard output or to a file. It takes as its argument
the string to be output.

puts $line.

gets reads a line into the variable specified as its argument. You can then use this variable to
manipulate whatever has been read. For example, you can use line in a puts command to
display what was input.

myread

#!/usr/bin/tclsh
gets line
puts "This is what I entered: $line"

$ myread
larisa and aleina
This is what I entered: larisa and aleina

You can use the puts command to write data to any file or to the standard output. File handle
names are placed after the puts command and before any data such as strings or variables. If
no filename is specified, then puts outputs to the standard output.

To output formatted values, you can use the results of a format command as the argument of a
puts command. format performs a string conversion operation on a set of values, formatting
them according to conversion specifiers in a format string.

puts [format "%s" $myname]

If you want to output different kinds of values in a puts operation, you can use the format
command to first transform them into a single string. The puts command will only output a
single string. In the following example, the contents of the $firstname and $age variables are
output as a single string by first using the format command with two string specifiers, "%s
%d", to make them one string. %d will transform a numeric value into its corresponding
character values.

puts [format "%s %d" $firstname $age]

For string values, you can just make them part of the single string by placing them within
double quotes. In this example, firstname and lastname are made part of the same string:

puts "$firstname $lastname"

Tcl File Handles

You use the open command to create a file handle for a file or pipe (see Table 7 for a list of
Tcl file commands). The open command takes two arguments, the filename and the file mode,
and returns a file handle that can then be used to access the file. The filename argument can
be the name of the file or a variable that holds the name of the file. The file mode is the
permissions you are opening the file with. This can be r for read-only, w for write-only, and a
for append only. To obtain both read and write permission for overwriting and updating a file,
you attach a + to the file mode. r+ gives you read and write permission. The syntax for open
follows:

open (filename-string, file-mode);

Table 7: Tcl: File Access and Input/Output Commands
File Access Commands Description
file Obtain file information
open Open a file
close Close a file
eof Check for end of file
fcopy Copy from one file to another
flush Flush output from a file's internal buffers
glob Match filenames using glob pattern characters
read Read blocks of characters from a file
seek Set the seek offset of a file
tell Return the current offset of a file
socket Open a TCP/IP network connection
Input/Output Commands
format Format a string with conversion specifiers, like sprintf in

C
scan Read and convert elements in a string using conversion

specifiers, like scanf in C
gets Read a line of input
puts Write a string to output

You would usually use the open command in a set command so that you can assign the file
handle returned by open to a variable. You can then use that file handle in that variable in
other file commands to access the file. In the next example, the user opens the file reports
with a file mode for reading, r, and assigns the returned file handle to the myfile variable.

set myfile [open "reports" r]

Often, the filename will be held in a variable. You then use the $ with the variable name to
reference the filename. In this example, the filename reports is held in the variable filen:

set myfile [open $filen r]

Once you have finished with the file, you close it with the close command. close takes as its
argument the file handle of the file you want to close.

close $myfile

With the gets and puts commands, you can use a file handle to read and write from a specific
file. gets takes two arguments: a file handle and a variable. It will read a line from the file
referenced by the file handle and place it as a string in the variable. If no file handle is
specified, then gets reads from the standard input. The following command reads a line from a
file using the file handle in the myfile variable. The line is read into the line variable.

gets $myfile line

The puts command also takes two arguments: a file handle and a string. It will write the string
to the file referenced by the file handle. If no file handle is specified, then puts will write to
the standard output. In the following example, puts writes the string held in the line variable
to the file referenced by the file handle held in myfile. Notice that there is a $ before line in
the puts command, but not in the previous gets command. puts operates on a string, whereas
gets operates on a variable.

puts $myfile $line

myreport

#!/usr/bin/tclsh
 set reps [open "reports" r]
 while (gets $reps line)
 {
 puts $line;
 }
 close reps

You can use the file command to check certain features of files, such as whether they exist or
if they are executable. You can also check for directories. The file command takes several
options, depending on the action you want to take. The exist option checks whether a file
exists, and the size option tells you its size. The isdirectory option determines whether the file
is a directory, and isfile checks to see whether it is a file. With the executable, readable, and
writable options, you can detect whether a file is executable, can be read, or can be written to.
The dirname option displays the full pathname of the file, and the extension and root name
options show the extension or root name of the file, respectively. The atime, mtime, and
owned options display the last access time and the modification time, and whether it is owned
by the user.

file exits reps
file isfile reps
file size reps
file executable myreport

Often filenames will be used as arguments to Tcl programs. In this case, you can use the argv
list to obtain the filenames. The argv command lists all arguments entered on the command
line when the Tcl script was invoked. You use the lindex command to extract a particular
argument from the argv list. Many programs use filenames as their arguments. Many also
specify options. Remember that the lindex command indexes a list from 0. So the first
argument in the argv list would be obtained by the following (be sure to precede argv with
the $):

lindex $argv 0

You can, if you wish, reference an argument in the argv list within the open command. Here,
the lindex operation is enclosed in braces, in place of the filename. The lindex command will
return the filename from the argv list.

set shandle [open {lindex $argv 1} r]
Tk
The Tk application extends Tcl with commands for creating and managing graphic objects
such as windows, icons, buttons, and text fields. Tk commands create graphic objects using
the X Window System. It is an easier way to program X Window objects than using the X11
Toolkit directly. With Tk, you can easily create sophisticated window-based user interfaces
for your programs.

The Tk language is organized according to different types of graphic objects such as
windows, buttons, menus, and scroll bars. Such objects are referred to as widgets. Each type
of widget has its own command with which you can create a widget. For example, you can
create a button with the button command or a window with the window command. A type of
widget is considered a class, and the command to create such a widget is called a class
command. The command will create a particular instance of that class, a particular widget of
that type. button is the class command for creating a button. Graphical objects such as buttons
and frames are also often referred to as widgets. Table 8 lists the different widgets available in
Tk.

Table 8: Standard: TK Widgets Widget
 Description

button
 A button

canvas
 A window for drawing objects

checkbutton
 A check button

entry
 An input box

frame
 A frame is a simple widget. Its primary purpose is to act as a spacer or container for complex
window layouts

image
 Create image objects for displaying pictures

label
 A label

listbox
 A list box with a selectable list of items

menu
 A menu bar

menubutton
 A menu button to access the menu

message
 Create and manipulate message widgets

radiobutton
 A radio button

scrollbar
 A scroll bar

text
 An editable text box

scale
 A scale

 Note Several currently available Tcl/Tk GUI builders are Free Visual Tcl, SpecTcl,
VisualGIPSY, and XF. These are freely available, and you can download them from their
Web sites or from the Tcl Developer Xchange

The wish Shell and Scripts
Tk operates under the X Window System. Within the X Window System, Tk uses its own
shell, the wish shell, to execute Tk commands. To run Tk programs, you first start up your X-
Window System and then start up the wish shell with the command wish. This will open up a
window in which you can then run Tk commands.

You execute Tk commands within the wish shell interactively, entering commands and
executing them one by one, or you can place the commands in a script file and execute them
all at once. Usually, Tk commands are placed in a script that is then run with the invocation of
the wish command. Like Tcl scripts, Tk scripts usually have the extension .tcl. For example, a
Tk script called mydir.tcl would be read and executed by the following command entered in
an Xterm window:

$ wish mydir.tcl

To create a standalone script that operates more like a command, you need to invoke the wish
command within the script. Ordinarily the wish command will open an interactive Tk shell
window whenever executed. To avoid this, you should invoke wish with the -f option.

#!/usr/bin/wish -f
 Note When creating a standalone script, be sure to change its permissions with the chmod
command to allow execution. You can then just enter the name of the script to run the
program.

$ chmod 755 mydir1
$./mydir1

Tk Widgets
Tk programs consist of class commands that create various graphic widgets. The class
command takes as its arguments the name you want to give the particular widget followed by
configuration options with their values (see Table 9). Tk commands have a format similar to
Tcl. You enter a Tk class command on a line, beginning with the name of the command
followed by its arguments. Tk commands are more complicated than Tcl commands. Graphic
interface commands require a significant amount of information about a widget to set it up.
For example, a button requires a name, the text it will display, and the action it will take.

Table 9: Tk: Commands Event Operations
 Description

Bind
 Associate Tcl scripts with X events

Bindtags
 Bind commands to tags

Selection
 Object or text selected by mouse

Geometry Managers

Pack
 Pack widgets next to each other

Place
 Place widgets in positions in frame

Grid
 Place widgets in a grid of rows and columns

Window Operations

Destroy
 Close a TK window

Toplevel
 Select the top-level window

Wm
 Set window features

Uplevel
 Move up to previous window level

Many Tk commands can take various options indicating different features of a widget. Table
10 lists several options commonly used for Tk widgets. In the following example, a button is
created using the button command. The button command takes as its first argument the name
of the button widget. Then, different options define various features. The -text option is
followed by a string that will be the text displayed by the button. The -command option is
followed by the command that the button executes when it is clicked. This button command
will display a button with the text "Click Me". When you click it, the Tk shell will exit.

button .mybutton -text "Click Me" -command exit
Table 10: Tk: Commonly Used Standard Options Button
 Description

-activebackground
 Specifies background color to use when drawing active elements

-activeborderwidth
 Width of the 3-D border drawn around active elements

-activeforeground
 Foreground color to use when drawing active elements

-anchor
 How information is displayed in the widget; must be one of the values n, ne, e, se, s, sw, w,
nw, or center

-background
 The normal background color to use when displaying the widget

-font
 The font to use when drawing text inside the widget

-foreground
 The normal foreground color to use when displaying the widget

-geometry
 Specifies the desired geometry for the widget's window

-image
 Specifies an image to display in the widget

-insertbackground
 Color to use as background in the area covered by the insertion cursor

-insertborderwidth
 Width of the 3-D border to draw around the insertion cursor

-insertofftime
 Number of milliseconds the insertion cursor should remain "off" in each blink cycle

-relief
 Specifies the 3-D effect desired for the widget

-selectbackground
 Specifies the background color to use when displaying selected items

-text
 String to be displayed inside the widget

Button Options

-command
 Specifies a Tcl command to associate with the button

-selectimage
 Image to display when the check button is selected

-height
 Height for the button

-state
 Specifies one of three states for the radio button: normal, active, or disabled

-variable
 Global variable to set to indicate whether or not this button is selected

-width
 Width for the button

To set up a working interface, you need to define all the widgets you need to perform a given
task. Some widgets are designed to manage other widgets; for instance, scroll bars are
designed to manage windows. Other widgets, such as text input fields, may interact with a Tcl
program. A menu choice may take the action of running part of a Tcl program.

Widgets are organized hierarchically. For example, to set up a window to input data, you may
need a frame, within which may be text field widgets as well as buttons. Widget names reflect
this hierarchy. The widget contained within another widget is prefixed with that widget's
name. If the name of the frame is report and you want to call the text input field monday, the
text input field will have the name report.monday. A period separates each level in the

hierarchy. A button that you want to call ok that is within the report frame would be named
report.ok.

Once you have created your widgets, their geometry has to be defined. The geometry
determines the size of each widget in relation to the others, and where they are placed in the
window. Tk has three geometry managers, pack, place, and grid. The pack command is used
in these examples. When you have defined your widgets, you issue a geometry manager
command on them to determine their size and shape on the screen.

 Note Your widgets cannot be displayed until their geometry is determined.

The following determines the geometry of the .mybutton widget using the pack command:

pack .mybutton
The mydir1 program is a simple Tcl/Tk program to display a list of file and directory names
in a Tk listbox widget with an attached scroll bar. Figure 1 shows this list box. With a listbox
widget, you can display a list of items that you can then easily scroll through. Using the
mouse, you can select a particular item. If a scroll bar is attached, you can scroll through the
displayed items if there are more than can fit in the designated size of the list box. First the
scroll bar is defined using the scrollbar command, giving it the name .scroll and binding it
with the command .list yview. This instructs the scroll bar to be attached to the list box on a y-
axis, vertical.

Figure 1: The mydir1 Tk list box
scrollbar .scroll -command ".list yview"
Then, the list box is defined with the listbox command, giving it the name .list and a y-axis
scroll capability provided by the .scroll widget. The list box will appear sunken with the
specified width and height.

listbox .list -yscroll ".scroll set" -relief sunken \
 -width 15 -height 15 -setgrid yes
The two widgets are then created with the pack command and positioned in the window. They
are placed on the left side of the window and will always expand to fill the window. The
anchor is on the west side of the window, w. The list box, .list, is placed first, followed by the
scroll bar, .scroll.

pack .list .scroll -side left -fill both -expand yes -anchor w
A Tcl if test then follows that checks if the user entered an argument when the program was
invoked. The if test checks to see if there is a first element in the argv list where any
arguments are held. If there are no arguments, the current directory is used, as represented by
the period. This chosen directory is assigned to the dir variable. A Tcl foreach operation is
then used to fill the list box. The shell ls command, as executed with the exec command,
obtains the list of files and directories. Each is then placed in the list box with the Tk insert
operation for the .list widget. The insert command takes a position and a value. Here, the
value is a filename held in $i that is placed at the end of the list.

.list insert end $i

The CTRL-C character is then bound to the exit command to allow you to easily close the
window. A listing of the mydir1 program follows.

mydir1

#!/usr/bin/wish -f
Create a scroll bar and listbox
scrollbar .scroll -command ".list yview"
listbox .list -yscroll ".scroll set" -relief sunken -width 15 -height 15 -setgrid yes
pack .list .scroll -side left -fill both -expand yes -anchor w
If user enters a directory argument use that, otherwise use current directory.
if {$argc > 0} then {
 set dir [lindex $argv 0]
 } else {
 set dir "."
 }
Fill the listbox (.list) with the list of files and directories obtained from ls
 cd $dir
 foreach i [exec ls -a] {
 if [file isfile $i] {
 .list insert end $i
 }
 }
Set up bindings for the file manager. Control-C closes the window.
bind all <Control-c> {destroy .}

To run the mydir1 program, first make it executable using the chmod command to set the
executable permissions, as shown here:

chmod 755 mydir1
Then, within a terminal window on your desktop or window manager, just enter the mydir1
command at the prompt. You may have to precede it with a ./ to indicate the current directory.

./mydir1
A window will open with a list box displaying a list of files in your current working directory
(see Figure 1). Use the scroll bar to display any filenames not shown. Click the window Close
box to close the program.
Events and Bindings
A Tk program is event driven. Upon running, it waits for an event such as a mouse event or a
keyboard event. A mouse event can be a mouse click or a double-click, or even a mouse down
or up. A keyboard event can be a CTRL key or meta key, or even the ENTER key at the end
of input data. When the program detects a particular event, it takes an action. The action may
be another graphical operation such as displaying another menu, or it may be a Tcl, Perl, or
shell program.

Bindings are the key operational component of a Tk program. Bindings detect the events that
drive a Tk program. You can think of a Tk program as an infinite loop that continually scans
for the occurrence of specified events (bindings). When it detects such an event, such as a
mouse click or control key, it executes the actions bound to that event. These actions can be
any Tcl/Tk command or series of commands. Usually, they call functions that can perform
complex operations. When finished, the program resumes its scanning, looking for other
bound events. This scanning continues indefinitely until it is forcibly broken by an exit or
destroy command, as is done with the CTRL-C binding. You can think of bindings as
multiple entry points where different parts of the program begin. It is not really the same
structure as a traditional hierarchical sequential program. You should think of a binding as
starting its own sequence of commands, its own program. This means that to trace the flow of
control for a Tk program, you start with the bindings. Each binding has its own path, its own
flow of control.

Actions are explicitly bound to given events using the bind command. The bind command
takes as its arguments the name of a widget or class, the event to bind, and the action to bind
to that event. Whenever the event takes place within that widget, the specified action is
executed.

bind .myframe <CTRL-H> {.myframe delete insert }
You use the bind command to connect events in a Tk widget with the Tcl command you want
executed. In a sense, you are dividing your Tcl program into segments, each of which is
connected to an event in a Tk widget. When an event takes place in a Tk widget, its associated
set of Tcl commands is executed. Other Tk commands, as well as Tcl commands, can be
associated with an event bound to a Tk widget. This means that you can nest widgets and their
events. The Tcl commands executed by one Tk event may, in turn, include other Tk
commands and widgets with events bound to yet other Tcl commands.
Expect
Expect has several commands that you can use to automatically interact with any Unix
program or utility that prompts you for responses. For example, the login procedure for
different systems using FTP or telnet can be automatically programmed with Expect
commands. Expect is designed to work with any interactive program. It waits for a response
from a program and will then send the response specified in its script. You can drop out of the
script with a simple command and interact with the program directly.

Three basic Expect commands are the send, expect, and interact commands. The expect
command will wait to receive a string or value from the application you are interacting with.
The send command will send a string to that application. The interact command places you
into direct interaction with the application, ending the Expect/Tcl script. In the following
script, Expect is used to perform an anonymous login with FTP. The spawn command starts
up the FTP program. The Internet address of the FTP site is assumed to be an argument to this
script, and as such will be held in the argv list. In place of $argv, you could put the name of a
particular FTP site. The myftp.expect script that follows will set up an ftp connection
automatically.

myftp.expect

#!/usr/bin/expect
spawn ftp

send "open $argv\r"
expect "Name"
send "anonymous\r"
expect "word:"
send "richlp@turtle.mytrek.com\r"
interact

To run Expect commands, you have to first enter the Expect shell. In the previous
myftp.expect script, the Expect shell is invoked with the command #!/usr/bin/expect. Be sure
to add execute permission with chmod 755 myftp.expect:

$myftp ftp.calderasystems.com
The expect command can take two arguments: the pattern to expect and an action to take if
the pattern is matched. expect can also take as its argument a block of pattern/action
arguments. In this case, expect can match on alternative patterns, executing the action only for
the pattern it receives. For example, the ftp command may return a "connection refused"
string instead of a "name" string. In that case, you would want to issue this message and exit
the Expect script. If you want more than one action taken for a pattern, you can encase them
in braces, separated by semicolons.

Another useful Expect command is timeout. You can set the timeout command to a number of
seconds, then have Expect check for the timeout. To set the number of seconds for a timeout,
you use set to assign it to the timeout variable (the default is 10 seconds). To have the expect
command detect a timeout, you use the word timeout as the expect command's pattern. With
the timeout, you can add an action to take. An example of an Expect script follows:

set timeout 20
end "open $argv\r"
expect {
 timeout {puts "Connection timed out\n"; exit }
 "Connection refused" {puts "Failed to connect\n"; exit}
 "Unknown host" {puts "$argv is unknown\n"; exit}
 "Name"
}
Expect can run with any kind of program that requires interaction. All you need to do is to
determine the sequence of prompts and responses you want.
Gawk
Gawk is a programming language designed to let Linux users create their own shell filters. A
filter operates within a Linux shell such as BASH or TCSH. It reads information from an
input source such as a file or the standard input, modifies or analyzes that information, and
then outputs the results. Results can be a modified version of the input or an analysis. For
example, the sort filter reads a file and then outputs a sorted version of it, generating output
that can be sorted alphabetically or numerically. The wc filter reads a file and then calculates
the number of words and lines in it, outputting just that information. The grep filter will
search a file for a particular pattern, outputting the lines the pattern is found on. With Gawk,
you can design and create your own filters, in effect creating your own Linux commands. You
can instruct Gawk to simply display lines of input text much like cat, or to search for patterns

in a file like grep, or even count words in a file like wc. In each case, you could add your own
customized filtering capabilities. You could display only part of each line, or search for a
pattern in a specific field, or count only words that are capitalized. This flexibility lets you use
Gawk to generate reports, detecting patterns and performing calculations on the data.

You can use Gawk directly on the shell command line, or you can place Gawk within a shell
file that you can then execute. The name of the shell file can be thought of as a new filter that
you have created. In effect, with Gawk, you can define your own filters. In this sense there are
two ways of thinking about Gawk. Gawk is itself a filter that you can invoke on the command
line like any other filter, and Gawk is a programmable filter that you can use to create your
own filters. This section will examine both aspects of Gawk. First we will examine Gawk as a
filter, with all its different features. Then, we will see how you can use Gawk to define your
own filters.

The Gawk utility has all the flexibility and complexity of a programming language. Gawk has
a set of operators that allow it to make decisions and calculations. You can also declare
variables and use them in control structures to control how lines are to be processed. Many of
the programming features are taken from the C programming language and share the same
syntax. All of this makes for a very powerful programming tool.

Gawk is the GNU version of the Unix Awk utility. Awk was originally created as a standard
utility for the Unix operating system. One of its creators is Brian Kernighan, who developed
the Unix operations system. An enhanced version of Awk called Nawk was developed later to
include file handling. With Nawk, you can access several files in the same program. Gawk is
a further enhancement, including the added features of Nawk as well as the standard
capabilities of Awk.

Gawk has a full set of arithmetic operators. You can perform multiplication, division,
addition, subtraction, and modulo calculations. The arithmetic operators are the same as those
used in the C programming language and Perl. Gawk also supports both scalar and associative
arrays. Gawk has control structures similar to those in the C programming language, as well
as pattern matching and string functions similar to those in Perl and Tcl/Tk. You can find out
more about Gawk at www.gnu.org/software/gawk.

The gawk Command
The gawk command takes as its arguments a Gawk instruction and a list of filenames. The
Gawk instruction is encased in single quotes and is read as one argument. The Gawk
instruction itself consists of two segments: a pattern and an action. The action is enclosed in
brackets. The term "pattern" can be misleading. It is perhaps clearer to think of the pattern
segment as a condition. The pattern segment can be either a pattern search or a test condition
of the type found in programming languages. The Gawk utility has a full set of operators with
which to construct complex conditions. You can think of a pattern search as just one other
kind of condition for retrieving records. Instead of simply matching patterns as in the case of
grep, the user specifies a condition. Records that meet that condition are then retrieved. The
actions in the action segment are then applied to the record. The next example shows the
syntax of a Gawk instruction, which you can think of as condition {action}:

pattern {action}
The Gawk utility operates on either files or the standard input. You can list filenames on the
command line after the instruction. If there are no filenames listed, input is taken from the

standard input. The example below shows the structure of the entire Gawk instruction. The
invocation of Gawk consists of the gawk keyword followed by a Gawk instruction and
filenames. As with the sed commands, the instruction should be placed within single quotes to
avoid interpretation by the shell. Since the condition and action are not separate arguments for
Gawk, you need to enclose them both in one set of quotes. The next example shows the
syntax of a gawk command:

$ gawk 'pattern action { }' filenames

You can think of the pattern in a Gawk instruction as referencing a line. The Gawk action is
then performed on that line. The next two examples below print all lines with the pattern
"Penguin". The pattern segment is a pattern search. A pattern search is denoted by a pattern
enclosed in slashes. All records with this pattern are retrieved. The action segment in the first
example contains the print command. The print command outputs the line to the standard
output.

books

Tempest Shakespeare 15.75 Penguin
Christmas Dickens 3.50 Academic
Iliad Homer 10.25 Random
Raven Poe 2.50 Penguin

$ gawk '/Penguin/{print}' books
Tempest Shakespeare 15.75 Penguin
Raven Poe 2.50 Penguin

 Tip Both the action and pattern have defaults that allow you to leave either of them out. The
print action is the default action. If an action is not specified, the line is printed. The default
pattern is the selection of every line in the text. If the pattern is not specified, the action is
applied to all lines.

In the second example, there is no action segment. The default action is then used, the print
action.

$ gawk '/Penguin/' books
Tempest Shakespeare 15.75 Penguin
Raven Poe 2.50 Penguin
Pattern Searches and Special Characters
Gawk can retrieve lines using a pattern search that contains special characters. The pattern is
designated with a beginning and ending slash, and placed in the pattern segment of the Gawk
instruction.

/pattern/ {action}

The pattern search is performed on all the lines in the file. If the pattern is found, the action is
performed on the line. In this respect, Gawk performs very much like an editing operation.
Like sed, a line is treated as a line of text and the pattern is searched for throughout the line.
In the next example, Gawk searches for any line with the pattern "Poe". When a match is
found, the line is output.

$ gawk '/Poe/{print}' books
Raven Poe 2.50 Penguin
You can use the same special characters for Gawk that are used for regular expressions in the
sed filter and the Ed editor. The first example below searches for a pattern at the beginning of
the line. The special character ^ references the beginning of a line. The second example
searches for a pattern at the end of a line using the special character $:

$ gawk '/^Christmas/{print}' books
Christmas Dickens 3.50 Academic

$ gawk '/Random$/{print}' books
Iliad Homer 10.25 Random
As in Ed and sed, you can use special characters to specify variations on a pattern. The period
matches any character, the asterisk matches repeated characters, and the brackets match a
class of characters: ., *, and []. In the first example below, the period is used to match any
pattern in which a single character is followed by the characters "en":

$ gawk '/.en/{print}' books
Tempest Shakespeare 15.75 Penguin
Christmas Dickens 3.50 Academic
Raven Poe 2.50 Penguin
The next example uses the brackets and asterisk special characters to specify a sequence of
numbers. The set of possible numbers is represented by the brackets enclosing the range of
numeric characters [0–9]. The asterisk then specifies any repeated sequence of numbers. The
context for such a sequence consists of the characters ".50". Any number ending with .50 will
be matched. Notice that the period is quoted with a backslash to treat it as the period
character, not as a special character.

$ gawk '/[0-9]*\.50/ {print}' books
Christmas Dickens 3.50 Academic
Raven Poe 2.50 Penguin
Gawk also uses the extended special characters: +, ?, and |. The + and ? are variations on the *
special character. The + matches one or more repeated instances of a character. The ? matches
zero or one instance of a character. The | provides alternative patterns to be searched. In the
next example, the user searches for a line containing either the pattern "Penguin" or the
pattern "Academic":

$ gawk '/Penguin|Academic/ {print}' books
Tempest Shakespeare 15.75 Penguin
Christmas Dickens 3.50 Academic
Raven Poe 2.50 Penguin
Variables

Gawk provides for the definition of variables and arrays. It also supports the standard kind of
arithmetic and assignment operators found in most programming languages such as C.
Relational operators are also supported.

In Gawk, there are three types of variables: field variables, special Gawk variables, and user-
defined variables. Gawk automatically defines both the field and special variables. The user
can define his or her own variables. You can also define arithmetic and string constants.
Arithmetic constants consist of numeric characters, and string constants consist of any
characters enclosed within double quotes.

Field variables are designed to reference fields in a line. A field is any set of characters
separated by a field delimiter. The default delimiter is a space or tab. As with other database
filters, Gawk numbers fields from 1. This is similar to the number used for arguments in shell
scripts. Gawk defines a field variable for each field in the file. A field variable consists of a
dollar sign followed by the number of the field. $2 references the second field. The variable
$0 is a special field variable that contains the entire line.

 Tip A variable may be used in either the pattern or action segment of the Gawk instruction.
If more than one variable is listed, they are separated by commas. Notice that the dollar sign is
used differently in Gawk than in the shell.

In the next example, the second and fourth fields of the books file are printed out. The $2 and
$4 reference the second and fourth fields.

books

Tempest Shakespeare 15.75 Penguin
Christmas Dickens 3.50 Academic
Iliad Homer 10.25 Random
Raven Poe 2.50 Penguin

$ gawk '{print $2, $4}' books
Shakespeare Penguin
Dickens Academic
Homer Random
Poe Penguin

In the next example, the user outputs the line with the pattern "Dickens" twice—first
reversing the order of the fields and then with the fields in order. The $0 is used to output all
the fields in order, the entire line.

$ gawk '/Dickens/ {print $4, $3, $2, $1; print $0}' books
Academic 3.50 Dickens Christmas
Christmas Dickens 3.50 Academic
Gawk defines a set of special variables that provide information about the line being
processed. The variable NR contains the number of the current line (or record). The variable

NF contains the number of fields in the current line. There are other special variables that hold
the field and record delimiters. There is even one, FILENAME, that holds the name of the
input file. The Gawk special variables are listed in Table 11.

Table 11: Gawk: Special Variables Variables
 Description

NR
 Record number of current record

NF
 Number of fields in current record

$0
 The entire current record

$n
 The fields in the current record, numbered from 1—for example, $1

FS
 Input field delimiter; default delimiter is space or tab

FILENAME
 Name of current input file

Both special variables and user-defined variables do not have a dollar sign placed before
them. To use such variables, you only need to specify their name. The next example combines
both the special variable NR with the field variables $2 and $4 to print out the line number of
the line followed by the contents of fields two and four. The NR variable holds the line
number of the line being processed.

$ gawk '{print NR, $2, $4}' books
1 Shakespeare Penguin
2 Dickens Academic
3 Homer Random
4 Poe Penguin
You can also define your own variables, giving them any name you want. Variables can be
named using any alphabetic or numeric characters as well as underscores. The name must
begin with an alphabetic character. A variable is defined when you first use it. The type of
variable is determined by the way it is used. If you use it to hold numeric values, the variable
is considered arithmetic. If you use it to hold characters, the variable is considered a string.
You need to be consistent in the way in which you use a variable. String variables should not
be used in arithmetic calculations and vice versa.

You assign a value to a variable using the assignment operator, =. The left-hand side of an
assignment operation is always a variable and the right-hand side is the value assigned to it. A
value can be the contents of a variable such as a field, special, or other user variable. It can
also be a constant. In the next example, the user assigns the contents of the second field to the
variable myfield:

$ gawk '{myfield = $2; print myfield}' books
Shakespeare
Dickens
Homer
Poe
By default, Gawk separates fields by spaces or tabs. However, if you want to use a specific
delimiter, you need to specify it. The -F option allows Gawk to detect a specific delimiter.
The -F option actually sets a Gawk special variable called FS, which stands for field
separator. With the -F option, you can use any character you want for your delimiter.

