
Dayle Parker Scott Radvan
Red Hat Subject Matter Experts

Red Hat Enterprise Linux 7
Virtualization Tuning and
Optimization Guide

Optimizing your virtual environment

Red Hat Enterprise Linux 7 Virtualization Tuning and Optimization Guide

Optimizing your virtual environment

Dayle Parker
Red Hat Engineering Content Services
dayleparker@redhat.com

Scott Radvan
Red Hat Engineering Content Services
sradvan@redhat.com

Red Hat Subject Matter Experts

Legal Notice

Copyright © 2013-2014 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0 Unported
License. If you distribute this document, or a modified version of it, you must provide attribution to Red
Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat trademarks must be
removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section
4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo,
and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other
countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or
endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack Logo are either registered trademarks/service marks or
trademarks/service marks of the OpenStack Foundation, in the United States and other countries and
are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The Red Hat Enterprise Linux Virtualization Tuning and Optimization Guide covers KVM and
virtualization performance. Within this guide you can find tips and suggestions for making full use of
KVM performance features and options for your host systems and virtualized guests.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

⁠Chapter 1. Introduction
⁠1.1. KVM Overview
⁠1.2. KVM Performance Architecture Overview
⁠1.3. Virtualization Performance Features and Improvements

⁠Chapter 2. Virt-manager
⁠2.1. Introduction
⁠2.2. Operating System Details and Devices
⁠2.3. CPU Performance Options
⁠2.4. Virtual Disk Performance Options

⁠Chapter 3. tuned
⁠3.1. Introduction
⁠3.2. tuned and tuned-adm

⁠Chapter 4 . Networking
⁠4.1. Introduction
⁠4.2. Networking Tuning T ips
⁠4.3. Virtio and vhost_net
⁠4.4. Device Assignment and SR-IOV
⁠4.5. Network Tuning Techniques

⁠Chapter 5. Memory
⁠5.1. Introduction
⁠5.2. Memory Tuning T ips
⁠5.3. Memory Tuning on Virtual Machines

⁠Chapter 6. Block I/O
⁠6.1. Introduction
⁠6.2. Block I/O Tuning
⁠6.3. Caching
⁠6.4. I/O Mode
⁠6.5. Block I/O Tuning Techniques

⁠Chapter 7. NUMA
⁠7.1. Introduction
⁠7.2. Memory Allocation Policies
⁠7.3. Automatic NUMA Balancing
⁠7.4. libvirt NUMA Tuning
⁠7.5. NUMA-Aware Kernel SamePage Merging (KSM)

⁠Chapter 8. Performance Monitoring Tools
⁠8.1. Introduction
⁠8.2. perf kvm
⁠8.3. Virtual Performance Monitoring Unit (vPMU)

Revision History

2
2
2
2

5
5
5
6

10

11
11
11

13
13
13
13
14
14

17
17
17
17

21
21
21
22
22
23

25
25
25
25
26
31

32
32
32
34

35

Table of Contents

1

Chapter 1. Introduction

1.1. KVM Overview
The following diagram represents the architecture of KVM:

Figure 1.1. KVM architecture

1.2. KVM Performance Architecture Overview
The following points provide a brief overview of KVM as it pertains to system performance and
process/thread management:

When using KVM, guests run as a Linux process on the host.

Virtual CPUs (vCPUs) are implemented as normal threads, handled by the Linux scheduler.

Guests inherit features such as NUMA and huge pages from the kernel.

Disk and network I/O settings in the host have a significant performance impact.

Network traffic typically travels through a software-based bridge.

1.3. Virtualization Performance Features and Improvements
Virtualization Performance Improvements in Red Hat Enterprise Linux 7

The following features improve virtualization performance in Red Hat Enterprise Linux 7:

Automatic NUMA Balancing

Red Hat Enterprise Linux 7 Virtualization Tuning and Optimization Guide

2

Automatic NUMA balancing improves the performance of applications running on NUMA hardware
systems, without any manual tuning required for Red Hat Enterprise Linux 7 guests. Automatic
NUMA balancing moves tasks, which can be threads or processes, closer to the memory they are
accessing.

For more information on automatic NUMA balancing, see Section 7.3, “Automatic NUMA
Balancing”.

Multi-queue virt io-net

A networking approach that enables packet sending/receiving processing to scale with the
number of available vCPUs of the guest.

For more information on multi-queue virtio-net, see Section 4.5.2, “Multi-Queue virtio-net”.

Bridge Zero Copy Transmit

Zero copy transmit mode reduces the host CPU overhead in transmitting large packets between a
guest network and an external network by up to 15%, without affecting throughput. Bridge zero
copy transmit is fully supported on Red Hat Enterprise Linux 7 virtual machines, but disabled by
default.

For more information on zero copy transmit, see Section 4.5.1, “Bridge Zero Copy Transmit”.

APIC Virtualization (APICv)

Newer Intel processors offer hardware virtualization of the Advanced Programmable Interrupt
Controller (APICv). APICv improves virtualized x86_64 guest performance by allowing the guest to
directly access the APIC, dramatically cutting down interrupt latencies and the number of virtual
machine exits caused by the APIC. This feature is used by default in newer Intel processors and
improves I/O performance.

EOI Acceleration

End-of-interrupt acceleration for high bandwidth I/O on older chipsets without virtual APIC
capabilities.

Multi-queue virt io-scsi

Improved storage performance and scalability provided by multi-queue support in the virtio-scsi
driver. This enables each virtual CPU to have a separate queue and interrupt to use without
affecting other vCPUs.

For more information on multi-queue virtio-scsi, see Section 6.5.2, “Multi-Queue virtio-scsi”.

Para-virtualized Ticketlocks

Para-virtualized ticketlocks (pvticketlocks) improve the performance of Red Hat Enterprise Linux 7
guest virtual machines running on Red Hat Enterprise Linux 7 hosts with oversubscribed CPUs.

Para-virtualized Page Faults

Para-virtualized page faults are injected into a guest when it attempts to access a page swapped
out by the host. This improves KVM guest performance when host memory is overcommitted and
guest memory is swapped out.

Para-virtualized Time vsyscall Optimization

⁠Chapter 1. Introduction

3

The gettimeofday and clock_gettime system calls execute in the userspace through the
vsyscall mechanism. Previously, issuing these system calls required the system to switch into
kernel mode, and then back into the userspace. This greatly improves performance for some
applications.

Virtualization Performance Features in Red Hat Enterprise Linux

CPU/Kernel

NUMA - Non-Uniform Memory Access. See Chapter 7, NUMA for details on NUMA.

CFS - Completely Fair Scheduler. A modern class-focused scheduler.

RCU - Read Copy Update. Better handling of shared thread data.

Up to 160 virtual CPUs (vCPUs).

Memory

huge pages and other optimizations for memory-intensive environments. See Chapter 5, Memory
for details.

Networking

vhost-net - A fast, kernel-based VirtIO solution.

SR-IOV - For near-native networking performance levels.

Block I/O

AIO - Support for a thread to overlap other I/O operations.

MSI - PCI bus device interrupt generation.

Disk I/O throttling - Controls on guest disk I/O requests to prevent over-utilizing host resources.
See Section 6.5.1, “Disk I/O Throttling” for details.

Note

For more details on virtualization support, limits, and features, refer to the Red Hat Enterprise
Linux 7 Virtualization Getting Started Guide and the following URLs:

https://access.redhat.com/site/supported-hypervisors

https://access.redhat.com/site/articles/rhel-kvm-limits

Red Hat Enterprise Linux 7 Virtualization Tuning and Optimization Guide

4

https://access.redhat.com/site/supported-hypervisors
https://access.redhat.com/site/articles/rhel-kvm-limits

Chapter 2. Virt-manager

2.1. Introduction
This chapter covers performance tuning options available in virt-manager, a desktop tool for managing
guest virtual machines.

2.2. Operating System Details and Devices

2.2.1. Specifying Guest Virtual Machine Details

The virt-manager tool provides different profiles depending on what operating system type and version
are selected for a new guest virtual machine. When creating a guest, you should provide as many details
as possible; this can improve performance by enabling features available for your specific type of guest.

Refer to the following example screen capture of the virt-manager tool. When creating a new guest
virtual machine, always specify your intended OS type and Version:

Figure 2.1. Provide the OS type and Version

2.2.2. Remove Unused Devices

Removing unused or unnecessary devices can improve performance. For instance, a guest tasked as a
web server is unlikely to require audio features or an attached tablet.

⁠Chapter 2. Virt-manager

5

Refer to the following example screen capture of the virt-manager tool. Click the Remove button to
remove unnecessary devices:

Figure 2.2. Remove unused devices

2.3. CPU Performance Options
Several CPU related options are available to your guest virtual machines. Configured correctly, these
options can have a large impact on performance. The following image shows the CPU options available to
your guests. The remainder of this section shows and explains the impact of these options.

Red Hat Enterprise Linux 7 Virtualization Tuning and Optimization Guide

6

Figure 2.3. CPU Performance Options

2.3.1. Option: Available CPUs

Use this option to adjust the amount of virtual CPUs (vCPUS) available to the guest. If you allocate more
than is available on the host (known as overcommitting), a warning is displayed, as shown in the following
image:

Figure 2.4 . CPU overcommit

CPUs are overcommitted when the sum of vCPUs for all guests on the system is greater than the number
of host CPUs on the system. You can overcommit CPUs with one or multiple guests if the total number of
vCPUs is greater than the number of host CPUs.

⁠Chapter 2. Virt-manager

7

Important

As with memory overcommitting, CPU overcommitting can have a negative impact on performance,
for example, in situations with a heavy or unpredictable guest workload. Refer to the Red Hat
Enterprise Linux Virtualization Deployment and Administration Guide, Overcommitting with KVM for
more details on overcommitting.

2.3.2. Option: CPU Configuration

Use this option to select the CPU configuration type, based on the desired CPU model. Expand the list to
see available options, or click the Copy host CPU configuration button to detect and apply the physical
host's CPU model and configuration. Once you select a CPU configuration, its available CPU
features/instructions are displayed and can be individually enabled/disabled in the CPU Features list.
Refer to the following diagram which shows these options:

Figure 2.5. CPU Configuration Options

Note

Copying the host CPU configuration is recommended over manual configuration.

Note

Alternately, run the virsh capabilities command on your host machine to view the
virtualization capabilities of your system, including CPU types and NUMA capabilities.

2.3.3. Option: CPU Topology

Use this option to apply a particular CPU topology (Sockets, Cores, Threads) to the virtual CPUs for your
guest virtual machine. Refer to the following diagram which shows an example of this option:

Red Hat Enterprise Linux 7 Virtualization Tuning and Optimization Guide

8

Figure 2.6. CPU Topology Options

Note

Although your environment may dictate other requirements, selecting any desired number of
sockets, but with only a single core and a single thread usually gives the best performance results.

2.3.4. Option: CPU Pinning

Large performance improvements can be obtained by adhering to the system's specific NUMA topology.
Use this option to automatically generate a pinning configuration that is valid for the host.

Figure 2.7. CPU Pinning

⁠Chapter 2. Virt-manager

9

Warning

Do not use this option if the guest has more vCPUs than a single NUMA node.

Using the Pinning option will constrain the guest's vCPU threads to a single NUMA node; however, threads
will be able to move around within that NUMA node. For tighter binding capabilities, use the output from the
lscpu command to establish a 1:1 physical CPU to vCPU binding using virsh cpupin. Refer to
Chapter 7, NUMA for more information on NUMA and CPU pinning.

2.4. Virtual Disk Performance Options
Several virtual disk related options are available to your guest virtual machines during installation that can
impact performance. The following image shows the virtual disk options available to your guests.

The cache mode, IO mode, and IO tuning can be selected in the Virtual Disk section in virt-manager.
Set these parameters in the fields under Performance options, as shown in the following image:

Figure 2.8. Virtual Disk Performance Options

Important

When setting the virtual disk performance options in virt-manager, the virtual machine must be
restarted for the settings to take effect.

See Section 6.3, “Caching” and Section 6.4, “I/O Mode” for descriptions of these settings and instructions
for editing these settings in the guest XML configuration.

Red Hat Enterprise Linux 7 Virtualization Tuning and Optimization Guide

10

Chapter 3. tuned

3.1. Introduction
This chapter covers using the tuned daemon for tuning system settings in virtualized environments.

3.2. tuned and tuned-adm
tuned is a tuning profile delivery mechanism that adapts Red Hat Enterprise Linux for certain workload
characteristics, such as requirements for CPU-intensive tasks, or storage/network throughput
responsiveness.

The accompanying ktune partners with the tuned-adm tool to provide a number of tuning profiles that
are pre-configured to enhance performance and reduce power consumption in a number of specific use
cases. Edit these profiles or create new profiles to create performance solutions tailored to your
environment.

The virtualization-related profiles provided as part of tuned-adm include:

virtual-guest

Based on the throughput-performance profile, virtual-guest also decreases the
swappiness of virtual memory.

The virtual-guest profile is automatically selected when creating a Red Hat Enterprise Linux 7
guest virtual machine. It is the recommended profile for virtual machines.

This profile is available in Red Hat Enterprise Linux 6.3 and later, but must be manually selected
when installing a virtual machine.

virtual-host

Based on the throughput-performance profile, virtual-host also decreases the swappiness
of virtual memory and enables more aggressive writeback of dirty pages. This profile is the
recommended profile for virtualization hosts, including both KVM and Red Hat Enterprise
Virtualization hosts.

Install the tuned package and its associated systemtap scripts with the command:

yum install tuned

Installing the tuned package also sets up a sample configuration file at /etc/tuned.conf and activates
the default profile.

Start tuned by running:

systemctl start tuned

To start tuned every time the machine boots, run:

systemctl enable tuned

To list all available profiles and identify the current active profile, run:

⁠Chapter 3. tuned

11

tuned-adm list
Available profiles:
- balanced
- desktop
- latency-performance
- network-latency
- network-throughput
- powersave
- sap
- throughput-performance
- virtual-guest
- virtual-host
Current active profile: throughput-performance

To only display the currently active profile, run:

tuned-adm active

To switch to one of the available profiles, run:

tuned-adm profile profile_name

For example, to switch to the virtual-host profile, run:

tuned-adm profile virtual-host

Note

It is possible to create custom tuned profiles to encapsulate a set of tuning parameters. For
instructions on creating custom tuned profiles, refer to the tuned.conf man page.

In some cases, it is preferable to disable tuned to use parameters set manually. To disable all tuning, run:

tuned-adm off

Note

Refer to the Red Hat Enterprise Linux 7 Power Management Guide, available from
http://access.redhat.com/site/documentation/, for further information about tuned, tuned-adm and
ktune .

Red Hat Enterprise Linux 7 Virtualization Tuning and Optimization Guide

12

http://access.redhat.com/site/documentation/

Chapter 4. Networking

4.1. Introduction
This chapter covers network optimization topics for virtualized environments.

4.2. Networking Tuning Tips
Use multiple networks to avoid congestion on a single network. For example, have dedicated networks
for management, backups and/or live migration.

Usually, matching the default MTU (1500 bytes) in all components is sufficient. If you require larger
messages, increasing the MTU value can reduce fragmentation. If you change the MTU, all devices in
the path should have a matching MTU value.

Use arp_filter to prevent ARP Flux, an undesirable condition that can occur in both hosts and
guests and is caused by the machine responding to ARP requests from more than one network
interface: echo 1 > /proc/sys/net/ipv4/conf/all/arp_filter or edit /etc/sysctl.conf
to make this setting persistent.

Note

Refer to the following URL for more information on ARP Flux: http://linux-ip.net/html/ether-
arp.html#ether-arp-flux

4.3. Virtio and vhost_net
The following diagram demonstrates the involvement of the kernel in the Virtio and vhost_net
architectures.

⁠Chapter 4. Networking

13

http://linux-ip.net/html/ether-arp.html#ether-arp-flux

Figure 4 .1. Virt io and vhost_net architectures

vhost_net moves part of the Virtio driver from the userspace into the kernel. This reduces copy operations,
lowers latency and CPU usage.

4.4. Device Assignment and SR-IOV
The following diagram demonstrates the involvement of the kernel in the Device Assignment and SR-IOV
architectures.

Figure 4 .2. Device assignment and SR-IOV

Device assignment presents the entire device to the guest. SR-IOV needs support in drivers and
hardware, including the NIC and the system board and allows multiple virtual devices to be created and
passed into different guests. A vendor-specific driver is required in the guest, however, SR-IOV offers the
lowest latency of any network option.

4.5. Network Tuning Techniques
This section describes techniques for tuning network performance in virtualized environments.

4.5.1. Bridge Zero Copy Transmit

Zero copy transmit mode is effective on large packet sizes. It typically reduces the host CPU overhead by
up to 15% when transmitting large packets between a guest network and an external network, without
affecting throughput.

It does not affect performance for guest-to-guest, guest-to-host, or small packet workloads.

Red Hat Enterprise Linux 7 Virtualization Tuning and Optimization Guide

14

Bridge zero copy transmit is fully supported on Red Hat Enterprise Linux 7 virtual machines, but disabled
by default. To enable zero copy transmit mode, set the experimental_zcopytx kernel module parameter
for the vhost_net module to 1.

Note

An additional data copy is normally created during transmit as a threat mitigation technique against
denial of service and information leak attacks. Enabling zero copy transmit disables this threat
mitigation technique.

If performance regression is observed, or if host CPU utilization is not a concern, zero copy transmit mode
can be disabled by setting experimental_zcopytx to 0.

4.5.2. Multi-Queue virtio-net

Multi-queue virtio-net provides an approach that scales the network performance as the number of vCPUs
increases, by allowing them to transfer packets through more than one virtqueue pair at a time.

Today's high-end servers have more processors, and guests running on them often have an increasing
number of vCPUs. In single queue virtio-net, the scale of the protocol stack in a guest is restricted, as the
network performance does not scale as the number of vCPUs increases. Guests cannot transmit or
retrieve packets in parallel, as virtio-net has only one TX and RX queue.

Multi-queue support removes these bottlenecks by allowing paralleled packet processing.

Multi-queue virtio-net provides the greatest performance benefit when:

Traffic packets are relatively large.

The guest is active on many connections at the same time, with traffic running between guests, guest
to host, or guest to an external system.

The number of queues is equal to the number of vCPUs. This is because multi-queue support
optimizes RX interrupt affinity and TX queue selection in order to make a specific queue private to a
specific vCPU.

Note

Multi-queue virtio-net works well for incoming traffic, but can occasionally hurt performance for
outgoing traffic. Enabling multi-queue virtio-net increases the total throughput, and in parallel
increases CPU consumption.

4 .5.2.1. Configuring Multi-Queue virt io-net

To use multi-queue virtio-net, enable support in the guest by adding the following to the guest XML
configuration (where the value of N is from 1 to 8, as the kernel supports up to 8 queues for a multi-queue
tap device):

<interface type='network'>
 <source network='default'/>
 <model type='virtio'/>
 <driver name='vhost' queues='N'/>
</interface>

⁠Chapter 4. Networking

15

When running a virtual machine with N virtio-net queues in the guest, enable the multi-queue support with
the following command (where the value of M is from 1 to N):

ethtool -L eth0 combined M

Red Hat Enterprise Linux 7 Virtualization Tuning and Optimization Guide

16

Chapter 5. Memory

5.1. Introduction
This chapter covers memory optimization options for virtualized environments.

5.2. Memory Tuning Tips
To optimize memory performance in a virtualized environment, consider the following:

Do not allocate more resources to guest than it will use.

If possible, assign a guest to a single NUMA node, providing that resources are sufficient on that
NUMA node.

5.3. Memory Tuning on Virtual Machines

5.3.1. Memory Monitoring Tools

Memory usage can be monitored in virtual machines using tools used in bare metal environments. Tools
useful for monitoring memory usage and diagnosing memory-related problems include:

top

vmstat

numastat

/proc/

Note

For details on using these performance tools, refer to the Red Hat Enterprise Linux 7 Performance
Tuning Guide and the man pages for these commands.

5.3.2. Memory Tuning with virsh

The optional <memtune> element in the guest XML configuration allows administrators to configure guest
virtual machine memory settings manually. If <memtune> is omitted, default memory settings apply.

Display or set memory parameters in the <memtune> element in a virtual machine with the virsh
memtune command, replacing values according to your environment:

virsh memtune virtual_machine --parameter size

Optional parameters include:

hard_limit

The maximum memory the virtual machine can use, in kibibytes (blocks of 1024 bytes).

⁠Chapter 5. Memory

17

Warning

Setting this limit too low can result in the virtual machine being killed by the kernel.

soft_limit

The memory limit to enforce during memory contention, in kibibytes (blocks of 1024 bytes).

swap_hard_limit

The maximum memory plus swap the virtual machine can use, in kibibytes (blocks of 1024 bytes).
The swap_hard_limit value must be more than the hard_limit value.

min_guarantee

The guaranteed minimum memory allocation for the virtual machine, in kibibytes (blocks of 1024
bytes).

Note

See # virsh help memtune for more information on using the virsh memtune command.

The optional <memoryBacking> element may contain several elements that influence how virtual
memory pages are backed by host pages.

Setting locked prevents the host from swapping out memory pages belonging to the guest. Add the
following to the guest XML to lock the virtual memory pages in the host's memory:

<memoryBacking>
 <locked/>
</memoryBacking>

Important

When setting locked, a hard_limit must be set in the <memtune> element to the maximum
memory configured for the guest, plus any memory consumed by the process itself.

Setting nosharepages prevents the host from merging the same memory used among guests. To instruct
the hypervisor to disable share pages for a guest, add the following to the guest's XML:

<memoryBacking>
 <nosharepages/>
</memoryBacking>

5.3.3. Huge Pages and Transparent Huge Pages (THP)

x86 CPUs usually address memory in 4kB pages, but they are capable of using larger 2MB pages known
as huge pages. KVM guests can be deployed with huge page memory support in order to improve
performance by increasing CPU cache hits against the Transaction Lookaside Buffer (TLB).

Red Hat Enterprise Linux 7 Virtualization Tuning and Optimization Guide

18

A kernel feature enabled by default in Red Hat Enterprise Linux 7, huge pages can significantly increase
performance, particularly for large memory and memory-intensive workloads. Red Hat Enterprise Linux 7 is
able to more effectively manage large amounts of memory by increasing the page size through the use of
huge pages.

5.3.3.1. Configuring Transparent Huge Pages

Transparent huge pages (THP) automatically optimize system settings for performance. By allowing all
free memory to be used as cache, performance is increased.

Transparent huge pages are used by default if /sys/kernel/mm/transparent_hugepage/enabled
is set to always. To disable transparent huge pages:

echo never > /sys/kernel/mm/transparent_hugepage/enabled

Transparent Huge Page support does not prevent the use of hugetlbfs. However, when hugetlbfs is not
used, KVM will use transparent huge pages instead of the regular 4kB page size.

5.3.3.2. Configuring Static Huge Pages

In some cases, more control of huge pages is preferable. To use static huge pages on guests, add the
following to the guest XML configuration:

<memoryBacking>
 <hugepages/>
</memoryBacking>

This instructs the host to allocate memory to the guest using huge pages, instead of the default page size.

View the current huge pages value, run the following command:

cat /proc/sys/vm/nr_hugepages

Procedure 5.1. Sett ing huge pages

The following example procedure shows the commands to set huge pages.

1. View the current huge pages value:

cat /proc/meminfo | grep Huge
AnonHugePages: 2048 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB

2. Huge pages are set in increments of 2MB. To set the number of huge pages to 25000, use the
following command:

echo 25000 > /proc/sys/vm/nr_hugepages

⁠Chapter 5. Memory

19

Note

Alternatively, to make the setting persistent, use the # sysctl vm.nr_hugepages=N
command with N being the number of huge pages.

3. Mount the huge pages:

mount -t hugetlbfs hugetlbfs /dev/hugepages

4. Restart libvirtd, then restart the virtual machine with the following commands:

systemctl start libvirtd

virsh start virtual_machine

5. Verify the changes in /proc/meminfo:

cat /proc/meminfo | grep Huge
AnonHugePages: 0 kB
HugePages_Total: 25000
HugePages_Free: 23425
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB

Huge pages can benefit not only the host but also guests, however, their total huge pages value must be
less than what is available in the host.

Red Hat Enterprise Linux 7 Virtualization Tuning and Optimization Guide

20

Chapter 6. Block I/O

6.1. Introduction
This chapter covers optimizing I/O settings in virtualized environments.

6.2. Block I/O Tuning
The virsh blkiotune command allows administrators to set or display a guest virtual machine's block
I/O parameters manually in the <blkio> element in the guest XML configuration.

To display current <blkio> parameters for a virtual machine:

virsh blkiotune virtual_machine

To set a virtual machine's <blkio> parameters, refer to the following command and replace values
according to your environment:

virsh blkiotune virtual_machine [--weight number] [--device-weights string] [--
config] [--live] [--current]

Parameters include:

weight

The I/O weight, within the range 100 to 1000.

device-weights

A single string listing one or more device/weight pairs, in the format of
/path/to/device,weight,/path/to/device,weight. Each weight must be within the
range 100-1000, or the value 0 to remove that device from per-device listings. Only the devices
listed in the string are modified; any existing per-device weights for other devices remain
unchanged.

config

Add the --config option for changes to take effect at next boot.

live

Add the --live option to apply the changes to the running virtual machine.

Note

The --live option requires the hypervisor to support this action. Not all hypervisors allow
live changes of the maximum memory limit.

current

⁠Chapter 6. Block I/O

21

Add the --current option to apply the changes to the current virtual machine.

Note

See # virsh help blkiotune for more information on using the virsh blkiotune
command.

6.3. Caching
Caching options can be configured with virt-manager during guest installation, or on an existing guest
virtual machine by editing the guest XML configuration.

Table 6.1. Caching options

Caching Option Description

Cache=none I/O from the guest is not cached on the host, but
may be kept in a writeback disk cache. Use this
option for guests with large I/O requirements. This
option is generally the best choice, and is the only
option to support migration.

Cache=writethrough I/O from the guest is cached on the host but
written through to the physical medium. This mode
is slower and prone to scaling problems. Best
used for small number of guests with lower I/O
requirements. Suggested for guests that do not
support a writeback cache (such as Red Hat
Enterprise Linux 5.5 and earlier), where migration
is not needed.

Cache=writeback I/O from the guest is cached on the host.

In virt-manager, the caching mode can be specified under Virtual Disk. For information on using virt-
manager to change the cache mode, see Section 2.4, “Virtual Disk Performance Options”

To configure the cache mode in the guest XML, edit the cache setting inside the driver tag, specifying
none, writeback, or writethrough. For example, to set the cache as writeback:

<disk type='file' device='disk'>
 <driver name='qemu' type='raw' cache='writeback'/>

6.4. I/O Mode
I/O mode options can be configured with virt-manager during guest installation, or on an existing guest
virtual machine by editing the guest XML configuration.

Table 6.2. IO mode options

Caching Option Description

IO=native The default for Red Hat Enterprise Virtualization
environments. This mode refers to kernel
asynchronous I/O with direct I/O options.

Red Hat Enterprise Linux 7 Virtualization Tuning and Optimization Guide

22

IO=threads The default are host user-mode based threads.

IO=default The default in Red Hat Enterprise Linux 7 is
threads mode.

Caching Option Description

In virt-manager, the I/O mode can be specified under Virtual Disk. For information on using virt-
manager to change the I/O mode, see Section 2.4, “Virtual Disk Performance Options”

To configure the I/O mode in the guest XML, edit the io setting inside the driver tag, specifying native,
threads, or default. For example, to set the I/O mode to threads:

<disk type='file' device='disk'>
 <driver name='qemu' type='raw' io='threads'/>

6.5. Block I/O Tuning Techniques
This section describes more techniques for tuning block I/O performance in virtualized environments.

6.5.1. Disk I/O Throttling

When several virtual machines are running simultaneously, they can interfere with system performance by
using excessive disk I/O. Disk I/O throttling in KVM provides the ability to set a limit on disk I/O requests
sent from virtual machines to the host machine. This can prevent a virtual machine from over-utilizing
shared resources and impacting the performance of other virtual machines.

Disk I/O throttling can be useful in various situations, for example, where guest virtual machines belonging
to different customers are running on the same host, or when quality of service guarantees are given for
different guests. Disk I/O throttling can also be used to simulate slower disks.

I/O throttling can be applied independently to each block device attached to a guest and supports limits on
throughput and I/O operations. Use the virsh blkdeviotune command to set I/O limits for a virtual
machine. Refer to the following example:

virsh blkdeviotune virtual_machine device --parameter limit

Optional parameters include:

total-bytes-sec

The total throughput limit in bytes per second.

read-bytes-sec

The read throughput limit in bytes per second.

write-bytes-sec

The write throughput limit in bytes per second.

total-iops-sec

The total I/O operations limit per second.

read-iops-sec

⁠Chapter 6. Block I/O

23

The read I/O operations limit per second.

write-iops-sec

The write I/O operations limit per second.

For example, to throttle disk0 on virtual_machine to 1000 I/O operations per second and 50 MB per
second throughput, run this command:

virsh blkdeviotune virtual_machine disk0 --total-iops-sec 1000 --total-bytes-sec
52428800

6.5.2. Multi-Queue virtio-scsi

Multi-queue virtio-scsi provides improved storage performance and scalability in the virtio-scsi driver. It
enables each virtual CPU to have a separate queue and interrupt to use without affecting other vCPUs.

6.5.2.1. Configuring Multi-Queue virt io-scsi

Multi-queue virtio-scsi is disabled by default on Red Hat Enterprise Linux 7.

To enable multi-queue virtio-scsi support in the guest, add the following to the guest XML configuration,
where N is the total number of vCPU queues:

 <controller type='scsi' index='0' model='virtio-scsi'>
 <driver queues='N' />
 </controller>

Red Hat Enterprise Linux 7 Virtualization Tuning and Optimization Guide

24

Chapter 7. NUMA

7.1. Introduction
Historically, all memory on x86 systems is equally accessible by all CPUs. Known as Uniform Memory
Access (UMA), access times are the same no matter which CPU performs the operation.

This behavior is no longer the case with recent x86 processors. In Non-Uniform Memory Access (NUMA),
system memory is divided across NUMA nodes, which correspond to sockets or to a particular set of
CPUs that have identical access latency to the local subset of system memory.

This chapter describes memory allocation and NUMA tuning configurations in virtualized environments.

7.2. Memory Allocation Policies
Three policy types define how memory is allocated from the nodes in a system:

Strict

The default operation is for allocation to fall back to other nodes if the memory can not be
allocated on the target node. Strict policy means that the allocation will fail if the memory can not
be allocated on the target node.

Interleave

Memory pages are allocated across nodes specified by a nodemask, but are allocated in a round-
robin fashion.

Preferred

Memory is allocated from a single preferred memory node. If sufficient memory is not available,
memory can be allocated from other nodes.

XML configuration enables the desired policy:

<numatune>
 <memory mode='preferred' nodeset='0'>
</numatune>

7.3. Automatic NUMA Balancing
Automatic NUMA balancing improves the performance of applications running on NUMA hardware
systems. It is enabled by default on Red Hat Enterprise Linux 7 systems.

An application will generally perform best when the threads of its processes are accessing memory on the
same NUMA node as the threads are scheduled. Automatic NUMA balancing moves tasks (which can be
threads or processes) closer to the memory they are accessing. It also moves application data to memory
closer to the tasks that reference it. This is all done automatically by the kernel when automatic NUMA
balancing is active.

Automatic NUMA balancing uses a number of algorithms and data structures, which are only active and
allocated if automatic NUMA balancing is active on the system:

Periodic NUMA unmapping of process memory

⁠Chapter 7. NUMA

25

NUMA hinting fault

Migrate-on-Fault (MoF) - moves memory to where the program using it runs

task_numa_placement - moves running programs closer to their memory

7.3.1. Configuring Automatic NUMA Balancing

Automatic NUMA balancing is enabled by default in Red Hat Enterprise Linux 7, and will automatically
activate when booted on hardware with NUMA properties.

Automatic NUMA balancing is enabled when both of the following conditions are met:

numactl --hardware shows multiple nodes, and

cat /sys/kernel/debug/sched_features shows NUMA in the flags.

Manual NUMA tuning of applications will override automatic NUMA balancing, disabling periodic unmapping
of memory, NUMA faults, migration, and automatic NUMA placement of those applications.

In some cases, system-wide manual NUMA tuning is preferred.

To disable automatic NUMA balancing, use the following command:

echo 0 > /proc/sys/kernel/numa_balancing

To enable automatic NUMA balancing, use the following command:

echo 1 > /proc/sys/kernel/numa_balancing

7.4. libvirt NUMA Tuning
Generally, best performance on NUMA systems is achieved by limiting guest size to the amount of
resources on a single NUMA node. Avoid unnecessarily splitting resources across NUMA nodes.

Use the numastat tool to view per-NUMA-node memory statistics for processes and the operating
system.

In the following example, the numastat tool shows four virtual machines with inoptimal memory alignment
across NUMA nodes:

numastat -c qemu-kvm

Per-node process memory usage (in MBs)
PID Node 0 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Total
--------------- ------ ------ ------ ------ ------ ------ ------ ------ -----
51722 (qemu-kvm) 68 16 357 6936 2 3 147 598 8128
51747 (qemu-kvm) 245 11 5 18 5172 2532 1 92 8076
53736 (qemu-kvm) 62 432 1661 506 4851 136 22 445 8116
53773 (qemu-kvm) 1393 3 1 2 12 0 0 6702 8114
--------------- ------ ------ ------ ------ ------ ------ ------ ------ -----
Total 1769 463 2024 7462 10037 2672 169 7837 32434

Run numad to align the guests' CPUs and memory resources automatically.

Red Hat Enterprise Linux 7 Virtualization Tuning and Optimization Guide

26

Then run numastat -c qemu-kvm again to view the results of running numad. The following output
shows that resources have been aligned:

numastat -c qemu-kvm

Per-node process memory usage (in MBs)
PID Node 0 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Total
--------------- ------ ------ ------ ------ ------ ------ ------ ------ -----
51747 (qemu-kvm) 0 0 7 0 8072 0 1 0 8080
53736 (qemu-kvm) 0 0 7 0 0 0 8113 0 8120
53773 (qemu-kvm) 0 0 7 0 0 0 1 8110 8118
59065 (qemu-kvm) 0 0 8050 0 0 0 0 0 8051
--------------- ------ ------ ------ ------ ------ ------ ------ ------ -----
Total 0 0 8072 0 8072 0 8114 8110 32368

Note

Running numastat with -c provides compact output; adding the -m option adds system-wide
memory information on a per-node basis to the output. Refer to the numastat man page for more
information.

7.4.1. NUMA vCPU Pinning

vCPU pinning provides similar advantages to task pinning on bare metal systems. Since vCPUs run as
userspace tasks on the host operating system, pinning increases cache efficiency. One example of this is
an environment where all vCPU threads are running on the same physical socket, therefore sharing a L3
cache domain.

Combining vCPU pinning with numatune can avoid NUMA misses. The performance impacts of NUMA
misses are significant, generally starting at a 10% performance hit or higher. vCPU pinning and numatune
should be configured together.

If the virtual machine is performing storage or network I/O tasks, it can be beneficial to pin all vCPUs and
memory to the same physical socket that is physically connected to the I/O adapter.

Note

The lstopo tool can be used to visualize NUMA topology. It can also help verify that vCPUs are
binding to cores on the same physical socket. Refer to the following Knowledgebase article for more
information on lstopo: https://access.redhat.com/site/solutions/62879.

Important

Pinning causes increased complexity where there are many more vCPUs than physical cores.

The following example XML configuration has a domain process pinned to physical CPUs 0-7. The vCPU
thread is pinned to its own cpuset. For example, vCPU0 is pinned to physical CPU 0, vCPU1 is pinned to
physical CPU 1, and so on:

⁠Chapter 7. NUMA

27

https://access.redhat.com/site/solutions/62879

<vcpu cpuset='0-7'>8</vcpu>
 <cputune>
 <vcpupin vcpu='0' cpuset='0'/>
 <vcpupin vcpu='1' cpuset='1'/>
 <vcpupin vcpu='2' cpuset='2'/>
 <vcpupin vcpu='3' cpuset='3'/>
 <vcpupin vcpu='4' cpuset='4'/>
 <vcpupin vcpu='5' cpuset='5'/>
 <vcpupin vcpu='6' cpuset='6'/>
 <vcpupin vcpu='7' cpuset='7'/>
 </cputune>

There is a direct relationship between the vcpu and vcpupin tags. If a vcpupin option is not specified, the
value will be automatically determined and inherited from the parent vcpu tag option. The following
configuration shows <vcpupin> for vcpu 5 missing. Hence, vCPU5 would be pinned to physical CPUs
0-7, as specified in the parent tag <vcpu>:

<vcpu cpuset='0-7'>8</vcpu>
 <cputune>
 <vcpupin vcpu='0' cpuset='0'/>
 <vcpupin vcpu='1' cpuset='1'/>
 <vcpupin vcpu='2' cpuset='2'/>
 <vcpupin vcpu='3' cpuset='3'/>
 <vcpupin vcpu='4' cpuset='4'/>
 <vcpupin vcpu='6' cpuset='6'/>
 <vcpupin vcpu='7' cpuset='7'/>
 </cputune>

Important

<vcpupin>, <numatune>, and <emulatorpin> should be configured together to achieve
optimal, deterministic performance. For more information on the <numatune> tag, see
Section 7.4.2, “Domain Processes”. For more information on the <emulatorpin> tag, see
Section 7.4.4, “Using emulatorpin”.

7.4.2. Domain Processes

As provided in Red Hat Enterprise Linux, libvirt uses libnuma to set memory binding policies for domain
processes. The nodeset for these policies can be configured either as static (specified in the domain XML)
or auto (configured by querying numad). Refer to the following XML configuration for examples on how to
configure these inside the <numatune> tag:

<numatune>
 <memory mode='strict' placement='auto'/>
</numatune>

<numatune>
 <memory mode='strict' nodeset='0,2-3'/>
</numatune>

libvirt uses sched_setaffinity(2) to set CPU binding policies for domain processes. The cpuset option
can either be static (specified in the domain XML) or auto (configured by querying numad). Refer to the
following XML configuration for examples on how to configure these inside the <vcpu> tag:

Red Hat Enterprise Linux 7 Virtualization Tuning and Optimization Guide

28

<vcpu placement='auto'>8</vcpu>

<vcpu placement='static' cpuset='0-10,ˆ5'>8</vcpu>

There are implicit inheritance rules between the placement mode you use for <vcpu> and <numatune>:

The placement mode for <numatune> defaults to the same placement mode of <vcpu>, or to static if
a <nodeset> is specified.

Similarly, the placement mode for <vcpu> defaults to the same placement mode of <numatune>, or to
static if <cpuset> is specified.

This means that CPU tuning and memory tuning for domain processes can be specified and defined
separately, but they can also be configured to be dependent on the other's placement mode.

It is also possible to configure your system with numad to boot a selected number of vCPUs without
pinning all vCPUs at startup.

For example, to enable only 8 vCPUs at boot on a system with 32 vCPUs, configure the XML similar to the
following:

<vcpu placement='auto' current='8'>32</vcpu>

Note

Refer to the following URLs for more information on vcpu and numatune:
http://libvirt.org/formatdomain.html#elementsCPUAllocation and
http://libvirt.org/formatdomain.html#elementsNUMATuning

7.4.3. Domain vCPU Threads

In addition to tuning domain processes, libvirt also permits the setting of the pinning policy for each vcpu
thread in the XML configuration. Set the pinning policy for each vcpu thread inside the <cputune> tags:

<cputune>
 <vcpupin vcpu="0" cpuset="1-4,ˆ2"/>
 <vcpupin vcpu="1" cpuset="0,1"/>
 <vcpupin vcpu="2" cpuset="2,3"/>
 <vcpupin vcpu="3" cpuset="0,4"/>
</cputune>

In this tag, libvirt uses either cgroup or sched_setaffinity(2) to pin the vcpu thread to the specified
cpuset.

Note

For more details on <cputune>, refer to the following URL:
http://libvirt.org/formatdomain.html#elementsCPUTuning

7.4.4. Using emulatorpin

⁠Chapter 7. NUMA

29

http://libvirt.org/formatdomain.html#elementsCPUAllocation
http://libvirt.org/formatdomain.html#elementsNUMATuning
http://libvirt.org/formatdomain.html#elementsCPUTuning

Another way of tuning the domain process pinning policy is to use the <emulatorpin> tag inside of
<cputune>.

The <emulatorpin> tag specifies which host physical CPUs the emulator (a subset of a domain, not
including vCPUs) will be pinned to. The <emulatorpin> tag provides a method of setting a precise
affinity to emulator thread processes. As a result, vhost threads run on the same subset of physical CPUs
and memory, and therefore benefit from cache locality. For example:

<cputune>
 <emulatorpin cpuset="1-3"/>
</cputune>

Note

In Red Hat Enterprise Linux 7, automatic NUMA balancing is enabled by default. Automatic NUMA
balancing reduces the need for manually tuning <emulatorpin>, since the vhost-net emulator
thread follows the vCPU tasks more reliably. For more information about automatic NUMA balancing,
see Section 7.3, “Automatic NUMA Balancing”.

7.4.5. Tuning vcpu CPU Pinning with virsh

Important

These are example commands only. You will need to substitute values according to your
environment.

The following example virsh command will pin the vcpu thread (rhel7) which has an ID of 1 to the
physical CPU 2:

% virsh vcpupin rhel7 1 2

You can also obtain the current vcpu pinning configuration with the virsh command. For example:

% virsh vcpupin rhel7

7.4.6. Tuning Domain Process CPU Pinning with virsh

Important

These are example commands only. You will need to substitute values according to your
environment.

The emulatorpin option applies CPU affinity settings to threads that are associated with each domain
process. For complete pinning, you must use both virsh vcpupin (as shown previously) and virsh
emulatorpin for each guest. For example:

% virsh emulatorpin rhel7 3-4

7.4.7. Tuning Domain Process Memory Policy with virsh

Red Hat Enterprise Linux 7 Virtualization Tuning and Optimization Guide

30

Domain process memory can be dynamically tuned. Refer to the following example command:

% virsh numatune rhel7 --nodeset 0-10

More examples of these commands can be found in the virsh man page.

7.4.8. Guest NUMA Topology

Guest NUMA topology can be specified using the <numa> tag inside the <cpu> tag in the guest virtual
machine's XML. Refer to the following example, and replace values accordingly:

<cpu>
 ...
 <numa>
 <cell cpus='0-3' memory='512000'/>
 <cell cpus='4-7' memory='512000'/>
 </numa>
 ...
</cpu>

Each <cell> element specifies a NUMA cell or a NUMA node. cpus specifies the CPU or range of CPUs
that are part of the node, and memory specifies the node memory in kibibytes (blocks of 1024 bytes).
Each cell or node is assigned a cellid or nodeid in increasing order starting from 0.

7.5. NUMA-Aware Kernel SamePage Merging (KSM)
Kernel SamePage Merging (KSM) allows virtual machines to share identical memory pages. KSM can
detect that a system is using NUMA memory and control merging pages across different NUMA nodes.

Use the sysfs /sys/kernel/mm/ksm/merge_across_nodes parameter to control merging of pages
across different NUMA nodes. By default, pages from all nodes can be merged together. When this
parameter is set to zero, only pages from the same node are merged.

Important

When KSM merges across nodes on a NUMA host with multiple guest virtual machines, guests and
CPUs from more distant nodes can suffer a significant increase of access latency to the merged
KSM page.

To instruct the hypervisor to disable share pages for a guest, add the following to the guest's XML:

<memoryBacking>
 <nosharepages/>
</memoryBacking>

⁠Chapter 7. NUMA

31

Chapter 8. Performance Monitoring Tools

8.1. Introduction
This chapter describes tools used to monitor guest virtual machine environments.

8.2. perf kvm
You can use the perf command with the kvm option to collect guest operating system statistics from the
host.

In Red Hat Enterprise Linux, the perf package provides the perf command. Run rpm -q perf to see if
the perf package is installed. If it is not installed, and you want to install it to collect and analyze guest
operating system statistics, run the following command as the root user:

yum install perf

In order to use perf kvm in the host, you must have access to the /proc/modules and
/proc/kallsyms files from the guest. There are two methods to achieve this. Refer to the following
procedure, Procedure 8.1, “Copying /proc files from guest to host” to transfer the files into the host and run
reports on the files. Alternatively, refer to Procedure 8.2, “Alternative: using sshfs to directly access files” to
directly mount the guest and access the files.

Procedure 8.1. Copying /proc files from guest to host

Important

If you directly copy the required files (for instance, via scp) you will only copy files of zero length.
This procedure describes how to first save the files in the guest to a temporary location (with the
cat command), and then copy them to the host for use by perf kvm .

1. Log in to the guest and save files

Log in to the guest and save /proc/modules and /proc/kallsyms to a temporary location,
/tmp:

cat /proc/modules > /tmp/modules
cat /proc/kallsyms > /tmp/kallsyms

2. Copy the temporary files to the host

Once you have logged off from the guest, run the following example scp commands to copy the
saved files to the host. You should substitute your host name and TCP port if they are different:

scp root@GuestMachine:/tmp/kallsyms guest-kallsyms
scp root@GuestMachine:/tmp/modules guest-modules

You now have two files from the guest (guest-kallsyms and guest-modules) on the host,
ready for use by perf kvm .

Red Hat Enterprise Linux 7 Virtualization Tuning and Optimization Guide

32

3. ⁠

Recording and reporting events with perf kvm

Using the files obtained in the previous steps, recording and reporting of events in the guest, the
host, or both is now possible.

Run the following example command:

perf kvm --host --guest --guestkallsyms=guest-kallsyms \
--guestmodules=guest-modules record -a -o perf.data

Note

If both --host and --guest are used in the command, output will be stored in
perf.data.kvm . If only --host is used, the file will be named perf.data.host. Similarly, if
only --guest is used, the file will be named perf.data.guest.

Pressing Ctrl-C stops recording.

4. ⁠

Reporting events

The following example command uses the file obtained by the recording process, and redirects the
output into a new file, analyze.

perf kvm --host --guest --guestmodules=guest-modules report -i perf.data.kvm \
--force > analyze

View the contents of the analyze file to examine the recorded events:

cat analyze

Events: 7K cycles

Overhead Command Shared Object Symbol
........

 95.06% vi vi [.] 0x48287
 0.61% init [kernel.kallsyms] [k] intel_idle
 0.36% vi libc-2.12.so [.] _wordcopy_fwd_aligned
 0.32% vi libc-2.12.so [.] __strlen_sse42
 0.14% swapper [kernel.kallsyms] [k] intel_idle
 0.13% init [kernel.kallsyms] [k] uhci_irq
 0.11% perf [kernel.kallsyms] [k] generic_exec_single
 0.11% init [kernel.kallsyms] [k] tg_shares_up
 0.10% qemu-kvm [kernel.kallsyms] [k] tg_shares_up

[output truncated...]

Procedure 8.2. Alternative: using sshfs to directly access files

⁠Chapter 8. Performance Monitoring Tools

33

Important

This is provided as an example only. You will need to substitute values according to your
environment.

Get the PID of the qemu process for the guest:
PID=`ps -eo pid,cmd | grep "qemu.*-name GuestMachine" \
| grep -v grep | awk '{print $1}'`

Create mount point and mount guest
mkdir -p /tmp/guestmount/$PID
sshfs -o allow_other,direct_io GuestMachine:/ /tmp/guestmount/$PID

Begin recording
perf kvm --host --guest --guestmount=/tmp/guestmount \
record -a -o perf.data

Ctrl-C interrupts recording. Run report:
perf kvm --host --guest --guestmount=/tmp/guestmount report \
-i perf.data

Unmount sshfs to the guest once finished:
fusermount -u /tmp/guestmount

8.3. Virtual Performance Monitoring Unit (vPMU)
The virtual performance monitoring unit (vPMU) displays statistics which indicate how a guest virtual
machine is functioning.

The virtual performance monitoring unit allows users to identify sources of possible performance problems
in their guest virtual machines. The vPMU is based on Intel's PMU (Performance Monitoring Units) and can
only be used on Intel machines.

This feature is only supported with guest virtual machines running Red Hat Enterprise Linux 6 or Red Hat
Enterprise Linux 7 and is disabled by default.

To verify if the vPMU is supported on your system, check for the arch_perfmon flag on the host CPU by
running:

cat /proc/cpuinfo|grep arch_perfmon

To enable the vPMU, specify the cpu mode in the guest XML as host-passthrough:

virsh dumpxml guest_name |grep "cpu mode"
<cpu mode='host-passthrough'>

After the vPMU is enabled, display a virtual machine's performance statistics by running the perf
command from the guest virtual machine.

Red Hat Enterprise Linux 7 Virtualization Tuning and Optimization Guide

34

Revision History
Revision 0.1-50 Tues June 3 2014 Dayle Parker

Version for 7.0 GA release

Revision 0.1-4 9 Tues June 3 2014 Dayle Parker
Updated screenshots in Virtual Machine Manager chapter.
Updated support limit URLs in first chapter for BZ#1064612.
Added note about the nosharepages parameter to memory chapter for QE feedback in BZ#1064616.

Revision 0.1-4 8 Fri May 23 2014 Dayle Parker
Changed terminology and guest names in NUMA chapter for QE feedback in BZ#1064618.
Edited blkiotune command, added the "live" and "current" options in Block I/O chapter for QE feedback in
BZ#1064617.
Edited tuned-adm list command output and added reference to tuned.conf man page in tuned chapter for
QE feedback in BZ#1096793 and BZ#1096795.

Revision 0.1-4 7 Tues May 20 2014 Dayle Parker
Updated support limit URLs in Introduction chapter.

Revision 0.1-4 6 Mon May 19 2014 Dayle Parker
Removed documentation suite list from introduction chapter and preface material.

Revision 0.1-4 5 Fri May 9 2014 Dayle Parker
Rebuild for style changes.

Revision 0.1-4 3 Wed April 30 2014 Dayle Parker
Added description of emulatorpin; expanded note about configuring vcpupin, numatune, and emulatorpin
together to NUMA chapter for BZ#1031911.

Revision 0.1-4 2 Thurs April 17 2014 Dayle Parker
Added numastat examples to NUMA chapter for BZ#1011786.

Revision 0.1-4 1 Fri April 11 2014 Dayle Parker
Edited overcommitting explanation, added numastat command to libvirt NUMA tuning section, and corrected
wording on KSM for SME feedback in BZ#1011786.

Revision 0.1-4 0 Wed April 9 2014 Dayle Parker
Build for beta refresh.

Revision 0.1-38 Fri April 4 2014 Dayle Parker
Edits to memory chapter for BZ#1057397.

Revision 0.1-37 Thurs April 3 2014 Dayle Parker
Edits to memory chapter for BZ#1057397.

Revision 0.1-36 Wed April 2 2014 Dayle Parker
Added perf command to vPMU section in BZ#799750.

Revision 0.1-35 Tues April 1 2014 Dayle Parker

Revision History

35

https://bugzilla.redhat.com/show_bug.cgi?id=1064612
https://bugzilla.redhat.com/show_bug.cgi?id=1064616
https://bugzilla.redhat.com/show_bug.cgi?id=1064618
https://bugzilla.redhat.com/show_bug.cgi?id=1064617
https://bugzilla.redhat.com/show_bug.cgi?id=1096793
https://bugzilla.redhat.com/show_bug.cgi?id=1096795
https://bugzilla.redhat.com/show_bug.cgi?id=1031911
https://bugzilla.redhat.com/show_bug.cgi?id=1011786
https://bugzilla.redhat.com/show_bug.cgi?id=1011786
https://bugzilla.redhat.com/show_bug.cgi?id=1057397
https://bugzilla.redhat.com/show_bug.cgi?id=1057397
https://bugzilla.redhat.com/show_bug.cgi?id=799750

Edited IO mode options in Block I/O chapter; added cross-reference and new screenshot in virt-manager
chapter.
Edited zero copy transmit description for SME feedback in BZ#794627.
Edited vPMU commands for QE feedback in BZ#1059016.

Revision 0.1-33 Thurs March 27 2014 Dayle Parker
Edited author group.
Re-organized subsections within chapters.
Added reference to Red Hat Enterprise Linux Performance Tuning Guide in introduction.
Edited virt-manager chapter introduction.
Edits to NUMA section for BZ#1031911.

Revision 0.1-32 Wed March 26 2014 Dayle Parker
Edited disk I/O throttling section for BZ#799753.
Added to blkiotune section for BZ#1031912.
Edits throughout guide for SME feedback in BZ#1011786 and BZ#1031911.

Revision 0.1-31 Mon March 24 2014 Dayle Parker
Edited block I/O chapter for BZ#799753 and BZ#1031912.
Edits throughout guide for SME feedback in BZ#1011786.

Revision 0.1-30 Wed March 19 2014 Dayle Parker
Updated virtualization docs suite list to include new Red Hat Enterprise Virtualization documentation.
Edited tuned chapter based on SME feedback for BZ#952966.
Edited vPMU section for QE feedback inBZ#1059016.

Revision 0.1-29 Tues Mar 11 2014 Dayle Parker
Included virsh memtune command in memory chapter for BZ#1056915.

Revision 0.1-28 Fri Mar 7 2014 Dayle Parker
Edited transparent huge pages section and NUMA chapter on SME feedback.

Revision 0.1-27 Thurs Mar 6 2014 Dayle Parker
Edited guest NUMA topology section for BZ#1056917.

Revision 0.1-26 Tues Mar 4 2014 Dayle Parker
Edited memory chapter for BZ#1056915.

Revision 0.1-25 Mon Mar 3 2014 Dayle Parker
Added text about cgroups.
Added guest NUMA topology section for BZ#1056917.

Revision 0.1-24 Tues Feb 25 2014 Dayle Parker
Edited multi-queue virtio-scsi description in introduction for BZ#1034020.
Moved tuning-related content from Virtualization Deployment and Administration Guide to this guide.
Added Virtual Performance Monitoring Unit section.

Revision 0.1-22 Fri Feb 14 2014 Dayle Parker
Minor edits for NUMA aware KSM section BZ#949244.
Edited terminology in NUMA introduction following SME review.

Red Hat Enterprise Linux 7 Virtualization Tuning and Optimization Guide

36

https://bugzilla.redhat.com/show_bug.cgi?id=794627
https://bugzilla.redhat.com/show_bug.cgi?id=1059016
https://bugzilla.redhat.com/show_bug.cgi?id=1031911
https://bugzilla.redhat.com/show_bug.cgi?id=799753
https://bugzilla.redhat.com/show_bug.cgi?id=1031912
https://bugzilla.redhat.com/show_bug.cgi?id=1011786
https://bugzilla.redhat.com/show_bug.cgi?id=1031911
https://bugzilla.redhat.com/show_bug.cgi?id=799753
https://bugzilla.redhat.com/show_bug.cgi?id=1031912
https://bugzilla.redhat.com/show_bug.cgi?id=1011786
https://bugzilla.redhat.com/show_bug.cgi?id=952966
https://bugzilla.redhat.com/show_bug.cgi?id=1059016
https://bugzilla.redhat.com/show_bug.cgi?id=1056915
https://bugzilla.redhat.com/show_bug.cgi?id=1056917
https://bugzilla.redhat.com/show_bug.cgi?id=1056915
https://bugzilla.redhat.com/show_bug.cgi?id=1056917
https://bugzilla.redhat.com/show_bug.cgi?id=1034020
https://bugzilla.redhat.com/show_bug.cgi?id=949244

Revision 0.1-21 Thurs Feb 13 2014 Dayle Parker
Minor edits for BZ#1056909.
Minor edits forBZ#1032535.

Revision 0.1-19 Fri Feb 7 2014 Dayle Parker
Created section for zero copy transmit and edited brief description for BZ#794627.
Edited NUMA chapter for BZ#1032535.

Revision 0.1-17 Wed Feb 5 2014 Dayle Parker
Edited multi-queue virtio-net section for BZ#794608, and BZ#1056909.
Edited NUMA chapter for BZ#1032535 and BZ#1056917.

Revision 0.1-16 Fri Jan 24 2014 Dayle Parker
Applied SME feedback to descriptions of Para-virtualized T ime vsyscall Optimization (BZ#1034029), multi-
queue virtio-net (BZ#794608), and APIC virtualization (BZ#799749).
Corrected commands in Hugepages and tuned sections.

Revision 0.1-13 Tues Dec 10 2013 Dayle Parker
Edited automatic NUMA balancing section based on SME feedback in BZ#1032535.

Revision 0.1-10 Fri Dec 6 2013 Dayle Parker
Version for beta release.

Revision 0.1-9 Thurs Dec 5 2013 Dayle Parker
Edited list of Red Hat Enterprise Linux 7 performance features.
Edited automatic NUMA balancing section based on SME feedback in BZ#1032535.

Revision 0.1-8 Wed Nov 27 2013 Dayle Parker
Edited huge pages section.
Added disk I/O throttling to Performance Features list for BZ#799753.
Added note to About This Guide about chapter structure.

Revision 0.1-7 Mon Nov 25 2013 Dayle Parker
Added multi-queue NIC support description for BZ#794608.
Expanded list of Red Hat Enterprise Linux 7 performance features.

Revision 0.1-6 Wed Nov 20 2013 Dayle Parker
Added section for performance improvements in Red Hat Enterprise Linux 7.
Added sections for automatic NUMA balancing and NUMA-aware KSM for BZ#1032535 and BZ#949244.
Added zero copy transmit description for BZ#794627.

Revision 0.1-5 Mon Nov 4 2013 Dayle Parker
Added performance profile information to tuned section for BZ#952966.

Revision 0.1-4 Thurs Oct 31 2013 Dayle Parker
Added reference to Virtualization Deployment and Administration Guide for BZ#1009206.
Updated virtualization documentation suite list in Chapter 1.

Revision 0.1-3 Wed Oct 30 2013 Dayle Parker

Revision History

37

https://bugzilla.redhat.com/show_bug.cgi?id=1056909
https://bugzilla.redhat.com/show_bug.cgi?id=1032535
https://bugzilla.redhat.com/show_bug.cgi?id=794627
https://bugzilla.redhat.com/show_bug.cgi?id=1032535
https://bugzilla.redhat.com/show_bug.cgi?id=794608
https://bugzilla.redhat.com/show_bug.cgi?id=1056909
https://bugzilla.redhat.com/show_bug.cgi?id=1032535
https://bugzilla.redhat.com/show_bug.cgi?id=1056917
https://bugzilla.redhat.com/show_bug.cgi?id=1034029
https://bugzilla.redhat.com/show_bug.cgi?id=794608
https://bugzilla.redhat.com/show_bug.cgi?id=799749
https://bugzilla.redhat.com/show_bug.cgi?id=1032535
https://bugzilla.redhat.com/show_bug.cgi?id=1032535
https://bugzilla.redhat.com/show_bug.cgi?id=799753
https://bugzilla.redhat.com/show_bug.cgi?id=794608
https://bugzilla.redhat.com/show_bug.cgi?id=1032535
https://bugzilla.redhat.com/show_bug.cgi?id=949244
https://bugzilla.redhat.com/show_bug.cgi?id=794627
https://bugzilla.redhat.com/show_bug.cgi?id=952966
https://bugzilla.redhat.com/show_bug.cgi?id=1009206

Included updates and wording improvements throughout from Red Hat Enterprise Linux 6 version of guide.
Created tuned chapter from existing content.
Adjusted image scaling parameters throughout guide.

Revision 0.1-2 Wed Jan 23 2013 Scott Radvan
Send to internal preview site. Initial build for version 7.

Revision 0.1-1 Thu Jan 17 2013 Scott Radvan
Branched from the Red Hat Enterprise Linux 6 version of the document.

Red Hat Enterprise Linux 7 Virtualization Tuning and Optimization Guide

38

	Table of Contents
	⁠Chapter 1. Introduction
	⁠1.1. KVM Overview
	⁠1.2. KVM Performance Architecture Overview
	⁠1.3. Virtualization Performance Features and Improvements

	⁠Chapter 2. Virt-manager
	⁠2.1. Introduction
	⁠2.2. Operating System Details and Devices
	⁠2.2.1. Specifying Guest Virtual Machine Details
	⁠2.2.2. Remove Unused Devices

	⁠2.3. CPU Performance Options
	⁠2.3.1. Option: Available CPUs
	⁠2.3.2. Option: CPU Configuration
	⁠2.3.3. Option: CPU Topology
	⁠2.3.4. Option: CPU Pinning

	⁠2.4. Virtual Disk Performance Options

	⁠Chapter 3. tuned
	⁠3.1. Introduction
	⁠3.2. tuned and tuned-adm

	⁠Chapter 4. Networking
	⁠4.1. Introduction
	⁠4.2. Networking Tuning Tips
	⁠4.3. Virtio and vhost_net
	⁠4.4. Device Assignment and SR-IOV
	⁠4.5. Network Tuning Techniques
	⁠4.5.1. Bridge Zero Copy Transmit
	⁠4.5.2. Multi-Queue virtio-net
	⁠4.5.2.1. Configuring Multi-Queue virtio-net

	⁠Chapter 5. Memory
	⁠5.1. Introduction
	⁠5.2. Memory Tuning Tips
	⁠5.3. Memory Tuning on Virtual Machines
	⁠5.3.1. Memory Monitoring Tools
	⁠5.3.2. Memory Tuning with virsh
	⁠5.3.3. Huge Pages and Transparent Huge Pages (THP)
	⁠5.3.3.1. Configuring Transparent Huge Pages
	⁠5.3.3.2. Configuring Static Huge Pages

	⁠Chapter 6. Block I/O
	⁠6.1. Introduction
	⁠6.2. Block I/O Tuning
	⁠6.3. Caching
	⁠6.4. I/O Mode
	⁠6.5. Block I/O Tuning Techniques
	⁠6.5.1. Disk I/O Throttling
	⁠6.5.2. Multi-Queue virtio-scsi
	⁠6.5.2.1. Configuring Multi-Queue virtio-scsi

	⁠Chapter 7. NUMA
	⁠7.1. Introduction
	⁠7.2. Memory Allocation Policies
	⁠7.3. Automatic NUMA Balancing
	⁠7.3.1. Configuring Automatic NUMA Balancing

	⁠7.4. libvirt NUMA Tuning
	⁠7.4.1. NUMA vCPU Pinning
	⁠7.4.2. Domain Processes
	⁠7.4.3. Domain vCPU Threads
	⁠7.4.4. Using emulatorpin
	⁠7.4.5. Tuning vcpu CPU Pinning with virsh
	⁠7.4.6. Tuning Domain Process CPU Pinning with virsh
	⁠7.4.7. Tuning Domain Process Memory Policy with virsh
	⁠7.4.8. Guest NUMA Topology

	⁠7.5. NUMA-Aware Kernel SamePage Merging (KSM)

	⁠Chapter 8. Performance Monitoring Tools
	⁠8.1. Introduction
	⁠8.2. perf kvm
	⁠8.3. Virtual Performance Monitoring Unit (vPMU)

	Revision History

