Q® redhat.

Red Hat Enterprise Linux 7

Virtualization Deployment and
Administration Guide

Installing, configuring, and managing virtual machines on a Red Hat
Enterprise Linux physical machine

Laura Novich Tahlia Richardson

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration
Guide

Installing, configuring, and managing virtual machines on a Red Hat
Enterprise Linux physical machine

Laura Novich
Red Hat Engineering Content Services
Inovich@redhat.com

Tahlia Richardson
Red Hat Engineering Content Services
trichard@redhat.com

Legal Notice
Copyright © 2014 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0 Unported

License. If you distribute this document, or a modified version of it, you must provide attribution to Red
Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat trademarks must be
removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section
4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo,
and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other
countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or
endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack Logo are either registered trademarks/service marks or
trademarks/service marks of the OpenStack Foundation, in the United States and other countries and
are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.
Abstract

This guide instructs how to configure a Red Hat Enterprise Linux 7 host physical machine and how to
install and configure guest virtual machines with different distributions, using the KVM hypervisor. Also
included PCI device configuration, SR-IOV, networking, storage, device and guest virtual machine
management, as well as troubleshooting, compatibility and restrictions.

http://creativecommons.org/licenses/by-sa/3.0/

Table of Contents

Table of Contents

Part . Deploymenti ittt iiiein s eana st aa e s 6
Chapter 1. Systemrequirementsciiiirtennnrreannrrransnrrnnnnsnnns 7
1.1. Calculating swap space 8
1.2. KVM requirements 8
1.3. Storage support 8
1.4. Verifying virtualization extensions 8
Chapter 2. KVM guest virtual machine compatibility 10
2.1. Red Hat Enterprise Linux 7 support limits 10
2.2. Supported CPU Models 10
Chapter 3. Virtualization restrictions ittt anannnns 14
3.1. KVM restrictions 14
3.2. Application restrictions 16
3.3. Other restrictions 17
Chapter 4. Installing the virtualization packagesc s 18
4.1. Configuring a Virtualization Host installation 18
4.2. Installing virtualization packages on an existing Red Hat Enterprise Linux system 22
Chapter 5. Guest virtual machine installation overview iiinnrans 24
5.1. Guest virtual machine prerequisites and considerations 24
5.2. Creating guests with virt-install 24
5.3. Creating guests with virt-manager 26
5.4. Installing guest virtual machines with PXE 32

Chapter 6. Installing a Red Hat Enterprise Linux 7 guest virtual machine on a Red Hat

Enterprise Linux 7 host 39
6.1. Creating a Red Hat Enterprise Linux 7 guest with local installation media 39
6.2. Creating a Red Hat Enterprise Linux 7 guest with a network installation tree 48
6.3. Creating a Red Hat Enterprise Linux 7 guest with PXE 51

Chapter 7. Virtualizing Red Hat Enterprise Linux on Other Platforms 55
7.1. On VMware ESX 55
7.2. On Hyper-V 55

Chapter 8. Installing a fully-virtualized Windows guest 57
8.1. Using virt-install to create a guest 57
8.2. Tips for more efficiency with Windows guest virtual machines 58

Chapter 9. KVM Para-virtualized (virtio) Driversot nannns 59
9.1. Installing the KVM Windows virtio drivers 59
9.2. Installing the drivers on an installed Windows guest virtual machine 61
9.3. Installing drivers during the Windows installation 69
9.4. Using KVM virtio drivers for existing devices 76
9.5. Using KVM virtio drivers for new devices 77

Chapter 10. Network configurationcciiiiiiiiiiiiiiii i 82
10.1. Network Address Translation (NAT) with libvirt 82
10.2. Disabling vhost-net 83
10.3. Enabling vhost-net zero-copy 84
10 4. Bridged networking with virt-manager 84
10.5. Bridged networking with libvirt 86

Chapter 11. Overcommitting with KVM i i i i i i it e nnes 88
11 1. Introduction 88

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

11.2. Overcommitting Memory
11.3. Overcommitting virtualized CPUs

Chapter 12. KVM guest timing manhagementciiiiiinnnnnrrrrrnaannns

12.1. Required parameters for Red Hat Enterprise Linux guests

12.2. Using the Real-Time Clock with Windows Server 2003 and Windows XP guests
12.3. Using the Real-Time Clock with Windows Server 2008, Windows Server 2008 R2, and

Windows 7 guests
12.4. Steal time accounting

Chapter 13. Network booting with libvirt i i i

13.1. Preparing the boot server
13.2. Booting a guest using PXE

Chapter 14. QEMU Guest Agentiiiiiinnrrennnrrrannnssnannsssnnnnnns

14 .1. Set Up Communication between Guest Agent and Host
14 2. Using the QEMU guest virtual machine agent protocol CLI
14 .3. Running the QEMU guest agent on a Windows guest

Part Il Administration it i i tntnen e et asnsnsnsnasasnsnsnsnssasnsnsnnnnns

Chapter 15. Securing the host physical machine and improving performance

15.1. Security Deployment Plan
15.2. Client access control

Chapter 16. Storage poolsttt ittt s et nana s annnens

16.1. Disk-based storage pools
16.2. Partition-based storage pools
16.3. Directory-based storage pools
16.4. LVM-based storage pools
16.5. iSCSI-based storage pools
16.6. NFS-based storage pools

Chapter 17. Storage Volumescccvvuvnnnnn
17.1. Introduction
17.2. Creating volumes
17.3. Cloning volumes
17.4. Adding storage devices to guests
17.5. Deleting and removing volumes

Chapter 18.Using gqemu-imgccouurunnnnnnn
18.1. Checking the disk image
18.2. Committing changes to an image
18.3. Converting an existing image to another format
18.4. Creating and formatting new images or devices
18.5. Displaying image information
18.6. Re-basing a backing file of an image
18.7. Re-sizing the disk image
18.8. Listing, creating, applying, and deleting a snapshot
18.9. Supported gemu-img formats

Chapter 19. KVM live migration
19.1. Live migration requirements

19.2. Live migration and Red Hat Enterprise Linux version compatibility

19.3. Shared storage example: NFS for a simple migration
19.4. Live KVM migration with virsh
19.5. Migrating with virt-manager

Chapter 20. Guest virtual machine device configuration
20 1 PCIl Adavirac

Table of Contents

V.. 1 vl UL VIVLO FR VLV

20.2. USB devices 195
20.3. Configuring device controllers 197
20 .4. Setting addresses for devices 201
20.5. Random number generator device 202
Chapter 21. SR-IOV it ittt tas st aana s aaaassanannsssnnnnnns 205
21.1. Advantages of SR-I0V 205
21.2. Using SR-IOV 206
21.3. Troubleshooting SR-IOV 211
Chapter 22. Virtual Networkingcciiiiiiiiiii ittt annnnnns 212
22.1. Virtual network switches 212
22.2. Network Address Translation 213
22.3. Networking protocols 214
22.4. The default configuration 216
22.5. Examples of common scenarios 217
22.6. Managing a virtual network 220
22.7. Creating a virtual network 221
22.8. Attaching a virtual network to a guest 225
22.9. Directly attaching to physical interface 229
22.10. Dynamically changing a host physical machine or a network bridge that is attached to a
virtual NIC 231
22.11. Applying network filtering 232
22.12. Creating Tunnels 260
22.13. Setting VLAN tags 261
22.14. Applying QoS to your virtual network 262
Chapter 23. Remote management of guestst ininrrnnnnnnnn 263
23.1. Remote management with SSH 263
23.2. Remote management over TLS and SSL 265
23.3. Transport modes 268
23.4. Configuring a VNC Server 271
Chapter 24. KSM it ittt tas et e aaaa s aaanassananaesnnnnnens 273
24.1. The KSM service 273
24.2. The KSM tuning service 274
24 3. KSM variables and monitoring 275
24 4. Deactivating KSM 276
Chapter 25. Managing guests with the Virtual Machine Manager (virt-manager) 277
25.1. Starting virt-manager 277
25.2. The Virtual Machine Manager main window 278
25.3. The virtual hardware details window 279
25.4. Virtual Machine graphical console 285
25.5. Adding a remote connection 287
25.6. Displaying guest details 288
25.7. Performance monitoring 295
25.8. Displaying CPU usage for guests 297
25.9. Displaying CPU usage for hosts 299
25.10. Displaying Disk I/O 301
25.11. Displaying Network I/O 304
Chapter 26. Managing guest virtual machines withvirsh 308
26.1. Generic Commands 308
26.2. Attaching and updating a device with virsh 310
26.3. Attaching interface devices 311
26.4. Changing the media of a CDROM 311
26.5. Domain Commands 312

2R R Editinn o niiact virtiial machina'e ~anfinniratinn fila 221

3

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

LY.V, LUl IU a HUCDL virwual i aviinic o vuli IIIHUI auvill 1c

26.7. NUMA node management

26.8. Starting, suspending, resuming, saving and restoring a guest virtual machine
26.9. Shutting down, rebooting and force-shutdown of a guest virtual machine
26.10. Retrieving guest virtual machine information

26.11. Storage pool commands

26.12. Storage Volume Commands

26.13. Displaying per-guest virtual machine information

26.14. Managing virtual networks

26.15. Migrating guest virtual machines with virsh

26.16. Interface Commands

26.17. Managing snapshots

26.18. Guest virtual machine CPU model configuration

26.19. Configuring the guest virtual machine CPU model

26.20. Managing resources for guest virtual machines

26.21. Setting schedule parameters

26.22. Disk /O throttling

26.23. Display or set block /O parameters

26.24. Configuring memory T uning

26.25. Virtual Networking Commands

Chapter 27. Guest virtual machine disk access with offlinetools
27.1. Introduction
27.2. Terminology
27.3. Installation
27.4. The guestfish shell
27.5. Other commands
27.6. virt-rescue: The rescue shell
27.7. virt-df: Monitoring disk usage
27.8. virt-resize: resizing guest virtual machines offline
27.9. virt-inspector: inspecting guest virtual machines
27.10. virt-win-reg: Reading and editing the Windows Registry
27.11. Using the API from Programming Languages
27.12. Using virt-sysprep

Chapter 28. Graphic User Interface tools for guest virtual machine management
28.1. Using virt-viewer command line
28.2. remote-viewer
28.3. GNOME Boxes

Chapter 29. Manipulatingthe domain XML i iiiiiiinnnnnnn
29.1. General information and metadata
29.2. Operating system booting
29.3. SMBIOS system information
29.4. CPU allocation
29.5. CPU tuning
29.6. Memory backing
29.7. Memory tuning
29.8. Memory allocation
29.9. NUMA node tuning
29.10. Block I/O tuning
29.11. Resource partitioning
29.12. CPU model and topology
29.13. Events configuration
29.14. Power Management
29.15. Hypervisor features
29.16. Time keeping
29.17. Timer element attributes
29.18. Devices

Lt

327
331
334
339
340
342
346
351
352
352
354
359
362
363
364
365
365
365
365

369
369
370
371
371
376
377
378
379
381
383
384
388

391
391
393
393

399
399
400
404
404
405
407
407
408
409
410
411
411
418
420
420
421
425
426

Table of Contents

29.19. Storage pools 476
29.20. Storage Volumes 482
29.21. Security label 487
29.22. A Sample configuration file 488
Part lll. APPeNndiCest i sttt 490
Troubleshootingiiiii i i i i i ettt s s e nnn s 491
A.1l. Debugging and troubleshooting tools 491
A.2. Creating virsh dump files 492
A.3. kvm_stat 493
A.4. Troubleshooting with serial consoles 498
A5. Virtualization log files 499
A.6. Loop device errors 499
A.7. Live Migration Errors 499
A.8. Enabling Intel VT-x and AMD-V virtualization hardware extensions in BIOS 499
A.9. Generating a new unique MAC address 500
A.10. KVM networking performance 501
A.11. Workaround for creating external snapshots with libvirt 503
A.12. Missing characters on guest console with Japanese keyboard 503
A.13. Known Windows XP guest issues 503
A.14. Disable SMART disk monitoring for guest virtual machines 504
A.15. libguestfs troubleshooting 504
A.16. Common libvirt errors and troubleshooting 504
Additional reSOUICeS it ittt 532
B.1. Online resources 532
B.2. Installed documentation 532
NetKVM Driver Parametersiuiiiiin e neerereenannnsnnsnnnnnnnsnssns 533
C.1. Configurable parameters for NetKkVM 533
The Virtual Host Metrics Daemon (vhostmd) i iiiannrnnens 537
ReVISION HIStOry ... ittt ittt ittt e et eana s anan s nannssnnnnns 538

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Part I. Deployment

Chapter 1. System requirements

Chapter 1. System requirements

This chapter lists system requirements for successfully running virtual machines, referred to as VMs on
Red Hat Enterprise Linux 7. Virtualization is available for Red Hat Enterprise Linux 7 on the Intel 64 and
AMDG64 architecture.

The KVM hypervisor is provided with Red Hat Enterprise Linux 7.

For information on installing the virtualization packages, see Chapter 4, Installing the virtualization
packages.

Minimum system requirements
6 GB free disk space.

2 GB of RAM.

Recommended system requirements

One processor core or hyper-thread for the maximum number of virtualized CPUs in a guest virtual
machine and one for the host.

2 GB of RAM plus additional RAM for virtual machines.
6 GB disk space for the host, plus the required disk space for each virtual machine.

Most guest operating systems will require at least 6GB of disk space, but the additional storage space
required for each guest depends on its image format.

For guest virtual machines using raw images, the guest's total required space (total for raw
format) is equal to or greater than the sum of the space required by the guest's raw image files
(images), the 6GB space required by the host operating system (host), and the swap space that
guest will require (swap).

Equation 1.1. Calculating required space for guest virtual machines using raw images
total for raw format = images + host + swap

For gcow images, you must also calculate the expected maximum storage requirements of the guest
(total for qcow format), as gcow and gcow2 images grow as required. To allow for this
expansion, first multiply the expected maximum storage requirements of the guest (expected
maximum guest storage) by 1.01, and add to this the space required by the host (host), and the
necessary swap space (swap).

Equation 1.2. Calculating required space for guest virtual machines using qcow images
total for gcow format = (expected maximum guest storage * 1.01) + host + swap

Guest virtual machine requirements are further outlined in Chapter 11, Overcommitting with KVVM.

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

1.1. Calculating swap space

Using swap space can provide additional memory beyond the available physical memory. The swap
partition is used for swapping underused memory to the hard drive to speed up memory performance. The
default size of the swap partition is calculated from the physical RAM of the host.

The Red Hat Knowledge Base contains an article on safely and efficiently determining the size of the swap
partition, available here: https://access.redhat.com/site/solutions/15244.

1.2. KVM requirements

The KVM hypervisor requires:
an Intel processor with the Intel VT-x and Intel 64 extensions for x86-based systems, or
an AMD processor with the AMD-V and the AMD64 extensions.

Refer to Section 1.4, “Verifying virtualization extensions” to determine if your processor has the
virtualization extensions.

1.3. Storage support

The guest virtual machine storage methods are:
files on local storage,
physical disk partitions,
locally connected physical LUNs,
LVM patrtitions,
NFS shared file systems,
iISCSI,
GFS2 clustered file systems,
Fibre Channel-based LUNs, and

Fibre Channel over Ethernet (FCoE).

1.4. Verifying virtualization extensions

Use this section to determine whether your system has the hardware virtualization extensions.
Virtualization extensions (Intel VT-x or AMD-V) are required for full virtualization.

1. Run the following command to verify the CPU virtualization extensions are available:
$ grep -E 'svm|vmx' /proc/cpuinfo

2. Analyze the output.

The following output contains a vmx entry indicating an Intel processor with the Intel VT-x
extension:

https://access.redhat.com/site/solutions/15244

Chapter 1. System requirements

flags : fpu tsc msr pae mce cx8 apic mtrr mca cmov pat pse36 clflush
dts acpi mmx fxsr sse sse2 ss ht tm syscall 1lm constant_tsc pni monitor
ds_cpl

vmx est tm2 cx16 xtpr lahf_1m

The following output contains an svm entry indicating an AMD processor with the AMD-V
extensions:

flags : fpu tsc msr pae mce cx8 apic mtrr mca cmov pat pse36 clflush
mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt 1lm 3dnowext 3dnow pni cx16
lahf_1m cmp_legacy svm cr8legacy ts fid vid ttp tm stc

If any output is received, the processor has the hardware virtualization extensions. However in
some circumstances manufacturers disable the virtualization extensions in BIOS.

The "flags:" output content may appear multiple times, once for each hyperthread, core or CPU
on the system.

The virtualization extensions may be disabled in the BIOS. If the extensions do not appear or full
virtualization does not work refer to Procedure A.1, “Enabling virtualization extensions in BIOS”.

3. Ensure KVM subsystem is loaded

As an additional check, verify that the kvm modules are loaded in the kernel:
lsmod | grep kvm

If the output includes kvm_intel or kvm_amd then the kvm hardware virtualization modules are
loaded and your system meets requirements.

_

If the libvirt package is installed, the virsh command can output a full list of virtualization system
capabilities. Run virsh capabilities as root to receive the complete list.

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Chapter 2. KVM guest virtual machine compatibility

To verify whether your processor supports the virtualization extensions and for information on enabling
the virtualization extensions if they are disabled, refer to Section 1.4, “Verifying virtualization extensions”.

2.1. Red Hat Enterprise Linux 7 support limits
Red Hat Enterprise Linux 7 servers have certain support limits.
The following URLs explain the processor and memory amount limitations for Red Hat Enterprise Linux:

For host systems: https://access.redhat.com/site/articles/rhel-limits

For KVM hypervisors: https://access.redhat.com/site/articles/801093

The following URL is a complete reference showing supported operating systems and host and guest
combinations:

https://access.redhat.com/site/supported-hypervisors

2.2. Supported CPU Models

Every hypervisor has its own policy for which CPU features the guest will see by default. The set of CPU
features presented to the guest by the hypervisor depends on the CPU model chosen in the guest virtual
machine configuration.

_

A full list of supported CPU models can also be found using the virsh cpu-models command as
shown in Section 2.2.1, “Listing the guest CPU models”. Additional information is also included in
Section 29.12, “CPU model and topology”. The host model can be configured to be using a specified
feature set as needed. For information, refer to Section 29.12.1, “Changing the feature set for a

2.2.1. Listing the guest CPU models

In order to generate the list of supported CPU models and features, you will need to open the XML file
containing that information. The file is titled cpu_map .xm1 and is located in /usr/share/libvirt/.To

see the contents, run cat /user/share/libvirt/cpu_map.xml. To change your guest's CPU model

“CPU model and topology”).

gedit /user/share/libvirt/cpu_map.xml

“cpu_map.xml file partial contents” but is much longer.

10

https://access.redhat.com/site/articles/rhel-limits
https://access.redhat.com/site/articles/801093
https://access.redhat.com/site/supported-hypervisors

Chapter 2. KVM guest virtual machine compatibility

-

<!-- This is only a partial file, only containing the CPU models. The XML file has

more information (including supported features per model) which you can see when you

open the file yourself -->
<cpus>
<arch name='x86"'>

<!-- Intel-based QEMU generic CPU models -->
<model name='pentium'>

<model name='486"'/>

</model>

<model name='pentium2'>
<model name='pentium'/>
</model>

<model name='pentium3'>
<model name='pentium2'/>
</model>

<model name='pentiumpro'>
</model>

<model name='coreduo'>
<model name='pentiumpro'/>
<vendor name='Intel'/>
</model>

<model name='n270'>
<model name='coreduo'/>
</model>

<model name='core2duo'>
<model name='n270'/>
</model>

<!-- Generic QEMU CPU models -->
<model name='gemu32'>

<model name='pentiumpro'/>
</model>

<model name='kvm32'>
<model name='gemu32'/>
</model>

<model name='cpu64-rhel5'>
<model name='kvm32'/>
</model>

<model name='cpu64-rhel6'>
<model name='cpu64-rhel5'/>
</model>

<model name='kvm64'>
<model name='cpu64-rhel5'/>
</model>

<model name='gemu64'>
<model name='kvmé64'/>
</model>

~

11

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

<!-- Intel CPU models -->
<model name='Conroe'>
<model name='pentiumpro'/>
<vendor name='Intel'/>
</model>

<model name='Penryn'>
<model name='Conroe'/>
</model>

<model name='Nehalem'>
<model name='Penryn'/>
</model>

<model name='Westmere'>
<model name='Nehalem'/>
<feature name='aes'/>
</model>

<model name='SandyBridge'>
<model name='Westmere'/>
</model>

<model name='Haswell'>
<model name='SandyBridge'/>
</model>

<!-- AMD CPUs -->
<model name='athlon'>
<model name='pentiumpro'/>
<vendor name='AMD'/>
</model>

<model name='phenom'>
<model name='cpu64-rhel5'/>
<vendor name='AMD'/>
</model>

<model name='Opteron_G1'>
<model name='cpu64-rhel5'/>
<vendor name='AMD'/>
</model>

<model name='Opteron_G2'>
<model name='Opteron_G1'/>
</model>

<model name='Opteron_G3'>
<model name='Opteron_G2'/>
</model>

<model name='Opteron_G4'>
<model name='Opteron_G2'/>
</model>

<model name='Opteron_G5'>
<model name='Opteron_G4'/>
</model>

</arch>

</cpus>

12

Chapter 2. KVM guest virtual machine compatibility

Figure 2.1. cpu_map.xml file partial contents

13

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Chapter 3. Virtualization restrictions

This chapter covers additional support and product restrictions of the virtualization packages in Red Hat
Enterprise Linux 7.

3.1. KVM restrictions

The following restrictions apply to the KVM hypervisor:
Maximum vCPUs per guest

Guest virtual machines support up to a maximum of 160 virtual CPUs in Red Hat Enterprise
Linux 7.

Nested virtualization

Nested virtualization is disabled by default in Red Hat Enterprise Linux 7. Starting a guest virtual
machine within a guest virtual machine is not supported by Red Hat.

Constant TSC bit

Systems without a Constant Time Stamp Counter require additional configuration. Refer to
Chapter 12, KVM guest timing management for details on determining whether you have a
Constant Time Stamp Counter and configuration steps for fixing any related issues.

Memory overcommit

KVM supports memory overcommit and can store the memory of guest virtual machines in swap.
A virtual machine will run slower if it is swapped frequently. Red Hat Knowledge Base has an
article on safely and efficiently determining the size of the swap partition, available here:
https://access.redhat.com/site/solutions/15244. When KSM is used for memory overcommitting,
make sure that the swap size follows the recommendations described in this article.

_

When device assignment is in use, all virtual machine memory must be statically pre-
allocated to enable DMA with the assigned device. Memory overcommit is therefore not
supported with device assignment.

CPU overcommit

It is not recommended to have more than 10 virtual CPUs per physical processor core.
Customers are encouraged to use a capacity planning tool in order to determine the CPU
overcommit ratio. Estimating an ideal ratio is difficult as it is highly dependent on each workload.
For instance, a guest virtual machine may consume 100% CPU on one use case, and multiple
guests may be completely idle on another.

Red Hat does not support running more vCPUSs to a single guest than the amount of overall
physical cores that exist on the system. While Hyperthreads can be considered as cores, their
performance can also vary from one scenario to the next, and they should not be expected to
perform as well as regular cores.

Refer to Section 11.3, “Overcommitting virtualized CPUs” for tips and recommendations on
overcommitting CPUs.

14

https://access.redhat.com/site/solutions/15244

Chapter 3. Virtualization restrictions

Virtualized SCSI devices

SCSI emulation is not supported with KVM in Red Hat Enterprise Linux.
Virtualized IDE devices

KVM is limited to a maximum of four virtualized (emulated) IDE devices per guest virtual machine.
Para-virtualized devices

Para-virtualized devices are also known as Virtio devices. They are purely virtual devices
designed to work optimally in a virtual machine.

Red Hat Enterprise Linux 7 supports 32 PCI device slots per virtual machine, and 8 PCI functions
per device slot. This gives a theoretical maximum of 256 PCI functions per guest when multi-
function capabilities are enabled, and PCI bridges are used. Refer to Section 20.1.5, “Creating PCI
bridges” for more information on PCI bridges and Chapter 20, Guest virtual machine device
configuration for more information on devices.

Migration restrictions

Device assignment refers to physical devices that have been exposed to a virtual machine, for the
exclusive use of that virtual machine. Because device assignment uses hardware on the specific
host where the virtual machine runs, migration and save/restore are not supported when device
assignment is in use. If the guest operating system supports hot-plugging, assigned devices can
be removed prior to the migration or save/restore operation to enable this feature.

Live migration is only possible between hosts with the same CPU type (that is, Intel to Intel or
AMD to AMD only).

For live migration, both hosts must have the same value set for the No eXecution (NX) bit, either
on or of f.

For migration to work, cache=none must be specified for all block devices opened in write mode.

Failing to include the cache=none option can result in disk corruption.

Storage restrictions

There are risks associated with giving guest virtual machines write access to entire disks or
block devices (such as /dev/sdb). If a guest virtual machine has access to an entire block

device, it can share any volume label or partition table with the host machine. If bugs exist in the
host system's partition recognition code, this can create a security risk. Avoid this risk by
configuring the host machine to ignore devices assigned to a guest virtual machine.

Failing to adhere to storage restrictions can result in risks to security.

SR-10V restrictions

15

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

SR-I0OV is only thoroughly tested with the following devices (other SR-IOV devices may work but
have not been tested at the time of release):

Intel® 82576NS Gigabit Ethernet Controller (igb driver)
Intel® 82576EB Gigabit Ethernet Controller (igb driver)
Intel® 82599ES 10 Gigabit Ethernet Controller (ixgbe driver)
Intel® 82599EB 10 Gigabit Ethernet Controller (i1xgbe driver)

Core dumping restrictions

Because core dumping is currently implemented on top of migration, it is not supported when
device assignment is in use.

PCl device assighment restrictions

PCl device assignment (attaching PCI devices to virtual machines) requires host systems to have
AMD IOMMU or Intel VT-d support to enable device assignment of PCl-e devices.

For parallel/legacy PCI, only single devices behind a PCI bridge are supported.

Red Hat Enterprise Linux 7 has limited PCI configuration space access by guest device drivers.
This limitation could cause drivers that are dependent on PCI configuration space to fail
configuration.

Platform support for interrupt remapping is required to fully isolate a guest with assigned devices
from the host. Without such support, the host may be vulnerable to interrupt injection attacks from
a malicious guest. In an environment where guests are trusted, the admin may opt-in to still allow
PCl device assignment using the allow_unsafe_interrupts option to the

vfio_iommu_typel module. This may either be done persistently by adding a .conf file (e.g.
local.conf)to /etc/modprobe.d containing the following:

options vfio_iommu_typel allow_unsafe_interrupts=1

or dynamically using the sysfs entry to do the same:

echo 1 > /sys/module/vfio_iommu_typel/parameters/allow_unsafe_interrupts

3.2. Application restrictions

There are aspects of virtualization which make it unsuitable for certain types of applications.

Applications with high /O throughput requirements should use KVM's para-virtualized drivers (virtio
drivers) for fully-virtualized guests. Without the virtio drivers certain applications may be unpredictable
under heavy /O loads.

The following applications should be avoided due to high I/O requirements:
kdump server

netdump server

16

Chapter 3. Virtualization restrictions

You should carefully evaluate applications and tools that heavily utilize I/O or those that require real-time
performance. Consider the virtio drivers or PCl device assignment for increased I/O performance. Refer to
Chapter 9, KVM Para-virtualized (virtio) Drivers for more information on the virtio drivers for fully virtualized
guests. Refer to Chapter 20, Guest virtual machine device configuration for more information on PCI device
assignment.

Applications suffer a small performance loss from running in virtualized environments. The performance
benefits of virtualization through consolidating to newer and faster hardware should be evaluated against
the potential application performance issues associated with using virtualization.

3.3. Other restrictions

For the list of all other restrictions and issues affecting virtualization read the Red Hat Enterprise Linux 7
Release Notes. The Red Hat Enterprise Linux 7 Release Notes cover the present new features, known
issues and restrictions as they are updated or discovered.

17

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Chapter 4. Installing the virtualization packages

Before you can use virtualization, the virtualization packages must be installed on your computer.
Virtualization packages can be installed either during the host installation sequence or after host
installation using the yum command and the Red Hat Network (RHN).

The KVM hypervisor uses the default Red Hat Enterprise Linux kernel with the kvm kernel module.

4.1. Configuring a Virtualization Host installation

This section covers installing virtualization tools and virtualization packages as part of a fresh Red Hat
Enterprise Linux installation.

_

The Red Hat Enterprise Linux Installation Guide, available from
https://access.redhat.com/site/documentation/Red Hat Enterprise Linux/, covers installing Red Hat
Enterprise Linux in detail.

Procedure 4.1. Installing the virtualization package group
1. Launch the Red Hat Enterprise Linux 7 installation program

Start an interactive Red Hat Enterprise Linux 7 installation from the Red Hat Enterprise Linux
Installation CD-ROM, DVD or PXE.

2. Continue installation up to software selection

Complete the other steps up to the software selection step. The Installation Summary screen
prompts the user to complete any steps still requiring attention.

18

https://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/

INSTALLATION SUMMARY

- rednat

LOCALIZATION

DATE & TIME
Americas/New York timezone

LANGUAGE SUPPORT
English (United States)

SOFTWARE

INSTALLATION SOURCE
Local media

SYSTEM

INSTALLATION DESTINATION
Automatic partitioning selected

Chapter 4. Installing the virtualization packages

RED HAT ENTERPRISE LINUX 7.0 INSTALLATION
@ us

KEYBOARD
English (US)

SOFTWARE SELECTION
Minimal Install

NETWORK & HOSTNAME
Not connected

Quit Begin Installation

Figure 4.1. The Installation Summary screen

Software Selection defaults to Minimal Install. Open the Software Selection screento
select the virtualization packages instead.

. Select the server type and package groups

Red Hat Enterprise Linux 7 has two available options for installing a virtualization host: a minimal
virtualization host with only the basic packages installed (Step 3.a), or a virtualization host with
packages installed to allow management of guests through a graphical user interface (Step 3.b).

a.
Selecting a minimal virtualization host

Select the Virtualization Host radio button under Base Environment, and the
Virtualization Platform checkbox under Add-Ons for Selected Environment.
This installs a basic virtualization environment which can be run with virsh, or remotely over
the network.

19

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

20

SOFTWARE SELECTION RED HAT ENTERPRISE LINUX 7.0 INSTALLATION
Base Erwironment Add-Ons for Selected Environment

Minimal Install "I Network File System Client

Basic functionality. Enables the system to attach to network storage.

Infrastructure Server
Server for operating network infrastructure services, Remote Management for Linux
Remote management interface for Red Hat Enterprise Linux, including

File and Print Server OpenLMI and SNMP.

File, print, and storage server for enterprises

% Virtualization Platform

Provides an interface for accessing and controlling virtualized guests

Basic Web Server

Server for serving static and dynamic internet content and containers.

@ Virtualization Host N Compatibility Libraries
Minimal virtualization host. Compatibility Libraries for applications built on previous versions of Red

Server with GUI Hat Enterprise Linux

Server for operating network infrastructure services, with a GUI

Development Tools
A basic development environment.

Smart Card Support
Support for using smart card authentication

Figure 4.2. Virtualization Host selected in the software selection screen

Selecting a virtualization host with a graphical user interface

Select the Server with GUI radio button under Base Environment, and the checkboxes
for Virtualization Client,Virtualization Hypervisor,and Virtualization
Tools under Add-Ons for Selected Environment. This installs a virtualization
environment along with graphical tools for installing and managing guest virtual machines.

Chapter 4. Installing the virtualization packages

SOFTWARE SELECTION RED HAT ENTERPRISE LINUX 7.0 INSTALLATION

Base Environment Add-Ons for Selected Environment

" Minimal Install

Basic functionality. ' Print Server

" Infrastructure Server Allows the system to act as a print server.

Server for operating network infrastructure services.

™' Remote Desktop Clients
File and Print Server

File, print, and storage server for enterprises Remote Management for Linux

Remote management interface for Red Hat Enterprise Linux, including
' Basic Web Server OpenLMI and SNMP.

Server for serving static and dynamic internet content

¥ Virtualization Client
" Virtualization Host Clients for installing and managing virtualization instances.
Minimal virtualization host.

© server with GUI
Server for operating network infrastructure services, with a GUI.

¥ Virtualization Hypervisor
Smallest possible virtualization host installation

& virtualization Tools
Teools for offline virtual image management.

™! Compatibility Libraries

Compatibility libraries for applications built on previous versions of
Red Hat Enterprise Linux.

O Development Tools
A basic development environment.

™ Smart Card Support
Support for using smart card authentication

Figure 4.3. Server with GUI selected in the software selection screen

4. Finalize installation

On the Installation Summary screen, complete the steps as necessary and click Begin
Installtion.

When the installation is complete, reboot the system.

You require a valid RHN virtualization entitlement to receive updates for the virtualization packages.

Installing KVM packages with Kickstart files

Kickstart files allow for large, automated installations without a user manually installing each individual host
system. This section describes how to create and use a Kickstart file to install Red Hat Enterprise Linux
with the Virtualization packages.

In the %packages section of your Kickstart file, append the following package groups:

@virtualization
@virtualization-client
@virtualization-platform
@virtualization-tools

For more information about Kickstart files, refer to the Red Hat Enterprise Linux Installation Guide, available
from https://access.redhat.com/site/documentation/Red Hat Enterprise Linux/.

21

https://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

4.2. Installing virtualization packages on an existing Red Hat
Enterprise Linux system

This section describes the steps for installing the KVM hypervisor on a working Red Hat Enterprise Linux
7 or newer system.

To install the packages, your machines must be registered. There are two methods of registering an
unregistered installation of Red Hat Enterprise Linux:

1. To register via RHN Classic, run the rhn_register command and follow the prompts.

2. Toregister via Red Hat Subscription Manager, run the subscription-manager register
command and follow the prompts.

If you do not have a valid Red Hat subscription, visit the Red Hat online store to obtain one.

Installing the virtualization packages with yum

To use virtualization on Red Hat Enterprise Linux you require at least the gemu-kvm and gemu-img

packages. These packages provide the user-level KVM emulator and disk image manager on the host Red
Hat Enterprise Linux system.

To install the gemu-kvm and qemu-img packages, run the following command:
yum install gemu-kvm gemu-img

Several additional virtualization management packages are also available:

Recommended virtualization packages
virt-install
Provides the virt-install command for creating virtual machines.
libvirt

The libvirt package provides the server and host side libraries for interacting with hypervisors
and host systems. The libvirt package provides the 1ibvir td daemon that handles the library

calls, manages virtual machines and controls the hypervisor.
libvirt-python

The libvirt-python package contains a module that permits applications written in the Python
programming language to use the interface supplied by the libvirt API.

virt-manager

virt-manager, also known as Virtual Machine Manager, provides a graphical tool for
administering virtual machines. It uses libvirt-client library as the management API.

libvirt-client

The libvirt-client package provides the client-side APIs and libraries for accessing libvirt servers.
The libvirt-client package includes the virsh command line tool to manage and control virtual

machines and hypervisors from the command line or a special virtualization shell.

22

https://www.redhat.com/wapps/store/catalog.html

Chapter 4. Installing the virtualization packages

Install all of these recommended virtualization packages with the following command:

yum install virt-manager libvirt libvirt-python python-virtinst libvirt-client

Installing Virtualization package groups

The virtualization packages can also be installed from package groups. T he following table describes the
virtualization package groups and what they provide.

_

Note that the qemu-img package is installed as a dependency of the Virtualization package
group if it is not already installed on the system. It can also be installed manually with the yum
install gemu-img command as described previously.

Table 4.1. Virtualization Package Groups

‘ Package Group Description Mandatory Packages Optional Packages
Virtualization Smallest possible libvirt, gemu-kvm gemu-kvm-tools
Hypervisor virtualization host
installation

Virtualization Client Clients for installing and gnome-boxes, virt- virt-top, libguestfs-tools,
managing virtualization install, virt-manager, virt- libguestfs-tools-c
instances viewer

Virtualization Platform Provides an interface libvirt, libvirt-client, virt- fence-virtd-libvirt, fence-
for accessing and who virtd-multicast, fence-
controlling virtual virtd-serial, libvirt-cim,
machines and libvirt-java, libvirt-snmp,
containers perl-Sys-Virt

Virtualization Tools Tools for offline virtual libguestfs libguestfs-java,
image management libguestfs-tools,

libguestfs-tools-c

To install a package group, run the yum groupinstall groupname command. For instance, to install
the Virtualization Tools package group, run the yum groupinstall "Virtualization Tools"
command.

23

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Chapter 5. Guest virtual machine installation overview

After you have installed the virtualization packages on the host system you can create guest operating
systems. This chapter describes the general processes for installing guest operating systems on virtual
machines. You can create guest virtual machines using the New button in virt-manager or use the

command line interface virt-install. Both methods are covered by this chapter.

Detailed installation instructions are available in the following chapters for specific versions of Red Hat
Enterprise Linux and Microsoft Windows.

5.1. Guest virtual machine prerequisites and considerations

Various factors should be considered before creating any guest virtual machines. Not only should the role
of a virtual machine be considered before deployment, but regular ongoing monitoring and assessment
based on variable factors (load, amount of clients) should be performed. Some factors include:

Performance

Guest virtual machines should be deployed and configured based on their intended tasks. Some
guest systems (for instance, guests running a database server) may require special performance
considerations. Guests may require more assigned CPUs or memory based on their role and
projected system load.

Input/Output requirements and types of Input/Output

Some guest virtual machines may have a particularly high I/O requirement or may require further
considerations or projections based on the type of /O (for instance, typical disk block size
access, or the amount of clients).

Storage

Some guest virtual machines may require higher priority access to storage or faster disk types, or
may require exclusive access to areas of storage. The amount of storage used by guests should
also be regularly monitored and taken into account when deploying and maintaining storage.

Networking and network infrastructure

Depending upon your environment, some guest virtual machines could require faster network
links than other guests. Bandwidth or latency are often factors when deploying and maintaining
guests, especially as requirements or load changes.

Request requirements

SCSl requests can only be issued to guest virtual machines on virtio drives if the virtio drives are
backed by whole disks, and the disk device parameter is set to 1un, as shown in the following
example:

<devices>
<emulator>/usr/libexec/qemu-kvm</emulator>
<disk type='block' device='lun'>

5.2. Creating guests with virt-install

24

You can use the virt-install command to create guest virtual machines from the command line.
virt-install is used either interactively or as part of a script to automate the creation of virtual
machines. Using virt-install with Kickstart files allows for unattended installation of virtual machines.

The virt-install tool provides a number of options that can be passed on the command line. To see a
complete list of options run the following command:

virt-install --help

Note that you need root privileges in order for virt-install commands to complete successfully. The
virt-install man page also documents each command option and important variables.

gemu-img is a related command which may be used before virt-install to configure storage options.

An important option is the - -graphics option which allows graphical installation of a virtual machine.

Example 5.1. Using virt-install to install a Red Hat Enterprise Linux 6 guest virtual machine

This example creates a Red Hat Enterprise Linux 6 guest:

virt-install \
--name=guestl-rhel6-64 \
--disk path=/var/lib/libvirt/images/guestl-rhel6-
64 .dsk, size=8, sparse=false, cache=none \
--graphics spice \
--VCpus=2 --ram=2048 \
--location=http://examplel.com/installation_tree/RHEL6.4-Server-x86_64/0s \
--network bridge=bro \
--0s-type=linux \
--0s-variant=rhel6

In Red Hat Enterprise Linux 7, the virtio-scsi controller is available for use in guests. If both the host and
guest support virtio-scsi, you can use it as follows:

Example 5.2. Using virt-install to install a guest virtual machine with the virtio-scsi
controller

The items in bold are required on top of a standard installation in order to use the virtio-scsi controller.

virt-install \
--name=guestl-rhel6-64 \
--controller type=scsi,model=virtio-scsi \
--disk path=/var/lib/libvirt/images/guestl-rhel6-
64 .dsk, size=8, sparse=false, cache=none, bus=scsi \
--graphics spice \
--VCpus=2 --ram=2048 \
--location=http://examplel.com/installation_tree/RHEL6.4-Server-x86_64/0s \
--network bridge=bro \
--0s-type=linux \
--0s-variant=rhel6

Ensure that you select the correct os-type for your operating system when running this command.

Refer to man virt-install for more examples.

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

_

When installing a Windows guest with virt-install, the - -os-type=windows option is

recommended. T his option prevents the CD-ROM from disconnecting when rebooting during the
installation procedure. The --o0s-variant option further optimizes the configuration for a specific

guest operating system.

5.3. Creating guests with virt-manager

virt-manager, also known as Virtual Machine Manager, is a graphical tool for creating and managing
guest virtual machines.

Procedure 5.1. Creating a guest virtual machine with virt-manager
1. Open virt-manager

Start virt-manager. Launch the Virtual Machine Manager application from the Applications
menu and System Tools submenu. Alternatively, run the virt-manager command as root.

2. Optional: Open a remote hypervisor

Select the hypervisor and click the Connect button to connect to the remote hypervisor.

3. Create a new virtual machine

The virt-manager window allows you to create a new virtual machine. Click the Create a new
virtual machine button (Figure 5.1, “Virtual Machine Manager window”) to open the New VM
wizard.

Virtual Machine Manager

File Edit View Help
L) :
Figure 5.1. Virtual Machine Manager window

The New VM wizard breaks down the virtual machine creation process into five steps:
a. Naming the guest virtual machine and choosing the installation type
b. Locating and configuring the installation media
c. Configuring memory and CPU options
d. Configuring the virtual machine's storage

e. Configuring networking, architecture, and other hardware settings

26

Chapter 5. Guest virtual machine installation overview
Ensure that virt-manager can access the installation media (whether locally or over the network)
before you continue.
. Specify name and installation type

The guest virtual machine creation process starts with the selection of a name and installation type.
Virtual machine names can have underscores (_), periods (.), and hyphens (-).

Enter your virtual machine details

Mame: | test-vm

Connection: localhost (QEMU/IKVM)

Choose how you would like to install the operating system

© Local install media (ISO image or CDROM)
Network Install (HTTP, FTP, or NFS)
Metwork Boot (PXE)

Import existing disk image

Cancel Forward

Figure 5.2. Name virtual machine and select installation method

Type in a virtual machine name and choose an installation type:
Local install media (ISO image or CDROM)

This method uses a CD-ROM, DVD, or image of an installation disk (for example, .1is0).

Network Install (HTTP, FTP, or NFS)

This method involves the use of a mirrored Red Hat Enterprise Linux or Fedora installation
tree to install a guest. The installation tree must be accessible through either HTTP, FTP,
or NFS.

Network Boot (PXE)

This method uses a Preboot eXecution Environment (PXE) server to install the guest virtual
machine. Setting up a PXE server is covered in the Deployment Guide. T o install via
network boot, the guest must have a routable IP address or shared network device. For
information on the required networking configuration for PXE installation, refer to

Section 5.4, “Installing guest virtual machines with PXE”.

Import existing disk image

27

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

This method allows you to create a new guest virtual machine and import a disk image
(containing a pre-installed, bootable operating system) to it.

Click Forward to continue.

5. Configure installation

Next, configure the OS type and Version of the installation. Ensure that you select the appropriate
OS type for your virtual machine. Depending on the method of installation, provide the install URL or
existing storage path.

MNew VM

m Create a new virtual machine

Provide the operating system install URL

URL: | http:/fexamplel.com/installation_tree/RHEL7-x86_64

* URL Options
Kickstart LRL:

Kernel options:

Automatically detect operating system based on install media

05 type: | Linux b
Version: | Red Hat Enterprise Linux 7 b
Cancel Back Forward

Figure 5.3. Remote installation URL

28

Chapter 5. Guest virtual machine installation overview

MNew VM

m Create a new virtual machine

Locate your install media

' Use CDROM or DVD

@ Use ISO image:

fvar/lib/libvirt/images/RHEL7-5erver-x86_64 Browse...

Choose an operating system type and version

05 type: | Linux W
Version: = Red Hat Enterprise Linux 7 ot
Cancel Back Forward

Figure 5.4. Local ISO image installation

. Configure CPU and memory

The next step involves configuring the number of CPUs and amount of memory to allocate to the
virtual machine. The wizard shows the number of CPUs and amount of memory you can allocate;
configure these settings and click Forward.

29

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

New VM

m Create a new virtual machine

Choose Memory and CPU settings
Memory (RAM): 1024 — + MB
Upto 3752 MBE available onthe host
CPUs: 2| —

Up to 2 available

Cancel

Figure 5.5. Configuring CPU and Memory

7. Configure storage

Assign storage to the guest virtual machine.

30

Back

Forward

Chapter 5. Guest virtual machine installation overview

MNew VM

m Create a new virtual machine

« Enable storage for this virtual machine
@ Create a disk image on the camputer's hard drive

80 — + |GB

9.8 Gb available in the default location

¢ Allocate entire disk now 5

' Select managed or other existing storage

Cancel Back Forward

Figure 5.6. Configuring virtual storage

If you chose to import an existing disk image during the first step, virt-manager will skip this step.

Assign sufficient space for your virtual machine and any applications it requires, then click Forward
to continue.

. Final configuration

. Working with guests that are not Red Hat Enterprise Linux 7

Any guest virtual machine that is of type Red Hat Enterprise Linux 5 or Red Hat Enterprise
Linux 4 will not be able to be installed using graphical mode. As such, you must select
"Cirrus" instead of "QXL" as a video card.

Verify the settings of the virtual machine and click Finish when you are satisfied; doing so will
create the virtual machine with default networking settings, virtualization type, and architecture.

31

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Feady to begin installation of test-vm

05: Red Hat Enterprise Linux 7
Install: Local CDROM/ISO
Memory: 1024 MB
CPUs: 1

Storage: 8.0 GB jvar/lib/libvirtfimages/test-vm.img

Customize configuration before install

* Advanced options
Virtual network 'default’ : NAT v
¢ Set afixed MAC address
52:54:00:fa:ch:f7
Virt Type: | kvm W

Architecture: | x86_64 w

Cancel Baclk Finish

Figure 5.7. Verifying the configuration

If you prefer to further configure the virtual machine's hardware first, check the Customize
configuration before install box first before clicking Finish. Doing so will open another wizard

that will allow you to add, remove, and configure the virtual machine's hardware settings.

After configuring the virtual machine's hardware, click Apply. virt-manager will then create the
virtual machine with your specified hardware settings.

5.4. Installing guest virtual machines with PXE

PXE guest installation requires a PXE server running on the same subnet as the guest virtual machines
you wish to install. The method of accomplishing this depends on how the virtual machines are connected
to the network. Contact Support if you require assistance setting up a PXE server.

5.4.1. PXE installation with virt-install

virt-install PXE installations require both the --network=bridge:installation parameter,
where installation is the name of your bridge, and the - -pxe parameter.

32

Chapter 5. Guest virtual machine installation overview

By default, if no network is found, the guest virtual machine attempts to boot from alternative bootable
devices. If there is no other bootable device found, the guest virtual machine pauses. You can use the

gemu-kvm boot parameter reboot - timeout to allow the guest to retry booting if no bootable device is
found, like so:

gemu-kvm -boot reboot-timeout=1000

Example 5.3. Fully-virtualized PXE installation with virt-install

virt-install --hvm --connect gemu:///system \
--network=bridge:installation --pxe --graphics spice \

--name rhel6-machine --ram=756 --vcpus=4 \

--0s-type=linux --os-variant=rhel6 \

--disk path=/var/lib/libvirt/images/rhel6-machine.img, size=10

Note that the command above cannot be executed in a text-only environment. A fully-virtualized (- -hvm)
guest can only be installed in a text-only environment if the --location and --extra-args
"console=console_type" are provided instead of the --graphics spice parameter.

5.4.2. PXE installation with virt-manager

Procedure 5.2. PXE installation with virt-manager

1.

Select PXE

Select PXE as the installation method and follow the rest of the steps to configure the OS type,
memory, CPU and storage settings.

33

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

MNew VM

m Create a new virtual machine

Enter your virtual machine details

Mame: test-vm

Connection: localhost (QEMU/KWVM)

Choose how you would like to install the operating system

' Local install media (ISO image or CDROM)
' Network Install (HTTP, FTP, or NFS)
@ MNetwork Boot (PXE)

' Import existing disk image

Cancel Forward

Figure 5.8. Selecting the installation method

34

Chapter 5. Guest virtual machine installation overview

MNew VM

m Create a new virtual machine

Choose an operating system type and version

0S type: Linux hod
Version: Red Hat Enterprise Linux 7 hd
Cancel Back Forward

Figure 5.9. Selecting the installation type

35

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

MNew VM

m Create a new virtual machine

Choose Memory and CPLU settings
Memory (RAM): 1024 — + MB
Upto 3752 MB available on the host
CPUs: 2 -

Up to 2 available

Cancel Baclk Forward

Figure 5.10. Specifying virtualized hardware details

36

Chapter 5. Guest virtual machine installation overview

MNew VM

m Create a new virtual machine

« Enable storage for this virtual machine
@ Create a disk image on the computer’s hard drive

80 — + | GB

32.3 Gb available in the default location

' Allocate entire disk now 3

' Select managed or other existing storage

Cancel Back Forward

Figure 5.11. Specifying storage details

Start the installation

The installation is ready to start.

37

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

MNew VM

m Create a new virtual machine

Ready to begin installation of test=-vm
05: Red Hat Enterprise Linux 7
Install: PXE Install
Memory: 1024 MB
CPUs: 1
Storage: 8.0 GB var/lib/libvirt/images/test-vm.img

Customize configuration before install

¥ Advanced options

E"!-"g Metwork selection does not support PXE

Specify shared device name v

Bridge name: Installation
¥ Set afixed MAC address

52:54:00:fa:.ch:f7
Virt Type: | kvm hod

Architecture: | x86_64 w
Cancel Back Finish

Figure 5.12. Finalizing virtual machine details

A DHCP request is sent and if a valid PXE server is found the guest virtual machine's installation
processes will start.

38

Chapter 6. Installing a Red Hat Enterprise Linux 7 guest virtual machine on a Red Hat Enterprise Linux 7 host

Chapter 6. Installing a Red Hat Enterprise Linux 7 guest virtual
machine on a Red Hat Enterprise Linux 7 host

This chapter covers how to install a Red Hat Enterprise Linux 7 guest virtual machine on a Red Hat
Enterprise Linux 7 host.

These procedures assume that the KVM hypervisor and all other required packages are installed and the
host is configured for virtualization.

_

For more information on installing the virtualization packages, refer to Chapter 4, Installing the
virtualization packages.

6.1. Creating a Red Hat Enterprise Linux 7 guest with local
installation media
This procedure covers creating a Red Hat Enterprise Linux 7 guest virtual machine with a locally stored

installation DVD or DVD image. DVD images are available from http://access.redhat.com for Red Hat
Enterprise Linux 7.

Procedure 6.1. Creating a Red Hat Enterprise Linux 7 guest virtual machine with virt-manager
1. Optional: Preparation

Prepare the storage environment for the virtual machine. For more information on preparing storage,
refer to Chapter 16, Storage pools.

iy mportane

Various storage types may be used for storing guest virtual machines. However, for a virtual
machine to be able to use migration features the virtual machine must be created on
networked storage.

Red Hat Enterprise Linux 7 requires at least 1GB of storage space. However, Red Hat recommends
at least 5GB of storage space for a Red Hat Enterprise Linux 7 installation and for the procedures in
this guide.

2. Open virt-manager and start the wizard

Open virt-manager by executing the virt-manager command as root or opening Applications
- System Tools - Virtual Machine Manager.

39

http://access.redhat.com

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Virtual Machine Manager X

File Edit View Help

E_-J Open | b

Name ¥ CPU usage

b localhost (QEMLU)

Figure 6.1. The Virtual Machine Manager window

Click on the Create a new virtual machine button to start the new virtualized guest wizard.
L5

Figure 6.2. The Create a new virtual machine button

The New VM window opens.

3. Name the virtual machine

Virtual machine names must be unique for migration and cannot consist only of numbers.

Virtual machine names can contain letters, numbers and the following characters:'_',"." and '-".

Choose the Local install media (ISO image or CDROM) radio button.

40

Chapter 6. Installing a Red Hat Enterprise Linux 7 guest virtual machine on a Red Hat Enterprise Linux 7 host

Mew VM

m Create a new virtual machine

Enter your virtual machine details
Mame: test-vm

Connection: localhost (QEMU/JKVM)

Choose how you would like to install the operating system

@ Local install media (ISO image or CDROM)
' Network Install (HTTP, FTP, or NFS)
' Network Boot (PXE)

' Import existing disk image
Cancel Forward
Figure 6.3. The New VM window - Step 1

Click Forward to continue.

4. Select the installation media

Select the appropriate radio button for your installation media.

41

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Mew VM

m Create a new virtual machine

Locate your install media

Use CODROM or DVD

@ Use ISO image:

W Browse...

Choose an operating system type and version

05 type: | Generic hd
Version: | Generic W
Cancel Bacl Forward

Figure 6.4. Locate your install media

A. If you wish to install from a CD-ROM or DVD, select the Use CDROM or DVD radio button, and
select the appropriate disk drive from the drop-down list of drives available.

B. If you wish to install from an ISO image, select Use IS0 image, and then click the Browse. ..
button to open the Locate media volume window.

Select the installation image you wish to use, and click Choose Volume.

If no images are displayed in the Locate media volume window, click on the Browse Local
button to browse the host machine for the installation image or DVD drive containing the
installation disk. Select the installation image or DVD drive containing the installation disk and
click Open; the volume is selected for use and you are returned to the Create a new

virtual machine wizard.

_

For ISO image files and guest storage images, the recommended location to use is
/var/lib/1libvirt/images/. Any other location may require additional configuration
by SELinux. Refer to the Red Hat Enterprise Linux Virtualization Security Guide or Red Hat
Enterprise Linux SELinux User's and Administrator's Guide for more details on configuring
SELinux.

42

Chapter 6. Installing a Red Hat Enterprise Linux 7 guest virtual machine on a Red Hat Enterprise Linux 7 host

Select the operating system type and version which match the installation media you have selected.

MNew VM

m Create a new virtual machine

Locate your install media

Use CODROM or DVD

@ Use ISO image:

fvar/lib/libvirt/images/RHEL 7-5Server-x86_64 Browse...

Choose an operating system type and version

OS type: | Linux ot
Version: Red Hat Enterprise Linux 7 ot
Cancel Back Forward

Figure 6.5. The New VM window - Step 2

Click Forward to continue.

Set RAM and virtual CPUs

Choose appropriate values for the virtual CPUs and RAM allocation. These values affect the host's
and guest's performance. Memory and virtual CPUs can be overcommitted. For more information on
overcommitting, refer to Chapter 11, Overcommitting with KVM.

Virtual machines require sufficient physical memory (RAM) to run efficiently and effectively. Red Hat
supports a minimum of 512MB of RAM for a virtual machine. Red Hat recommends at least 1024 MB
of RAM for each logical core.

Assign sufficient virtual CPUs for the virtual machine. If the virtual machine runs a multi-threaded
application, assign the number of virtual CPUs the guest virtual machine will require to run efficiently.

You cannot assign more virtual CPUs than there are physical processors (or hyper-threads)
available on the host system. The number of virtual CPUs available is noted in the Up to X

available field.

43

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

m Create a new virtual machine

Choose Memory and CFU settings
Memory (RAM): |1024 g MB
Upto 3838 MB available onthe host

CPUSs: 1 3

Lpto 4 available

| Cancel ‘ ‘ Back ‘ ‘ Forward |

Figure 6.6. The new VM window - Step 3

Click Forward to continue.

6. Storage

Enable and assign storage for the Red Hat Enterprise Linux 7 guest virtual machine. Assign at least
5GB for a desktop installation or at least 1GB for a minimal installation.

S

Live and offline migrations require virtual machines to be installed on shared network storage.

“Shared storage example: NFS for a simple migration”.

a. With the default local storage

Selectthe Create a disk image on the computer's hard drive radio button to
create a file-based image in the default storage pool, the /var/1ib/libvirt/images/
directory. Enter the size of the disk image to be created. If the Allocate entire disk
now check box is selected, a disk image of the size specified will be created immediately. If
not, the disk image will grow as it becomes filled.

44

Chapter 6. Installing a Red Hat Enterprise Linux 7 guest virtual machine on a Red Hat Enterprise Linux 7 host

S

Although the storage pool is a virtual container it is limited by two factors: maximum
size allowed to it by gemu-kvm and the size of the disk on the host physical machine.
Storage pools may not exceed the size of the disk on the host physical machine. The
maximum sizes are as follows:

virtio-blk = 2763 bytes or 8 Exabytes(using raw files or disk)

Ext4 = ~ 16 TB (using 4 KB block size)

XFS = ~8 Exabytes

gcow2 and host file systems keep their own metadata and scalability should be

evaluated/tuned when trying very large image sizes. Using raw disks means fewer

layers that could affect scalability or max size.

New VM

m Create a new virtual machine

| Enable storage for this virtual machine

@ Create a disk image on the computer's hard drive
8.0 g GB

¥ Allocate entire disk now

(0 Select managed or other existing storage

Cancel | | Back | ‘ Forward ‘

Figure 6.7. The New VM window - Step 4

Click Forward to create a disk image on the local hard drive. Alternatively, select Select
managed or other existing storage,then select Browse to configure managed
storage.

. With a storage pool

If you selected Select managed or other existing storage in the previous step to
use a storage pool and clicked Browse, the Locate or create storage volume
window will appear.

45

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Locate or create storage volume

Storage Pools Name v Size Format Used By

default
Filesystem Directory

Browse Local Mew Volume Cancel

Figure 6.8. The Locate or create storage volume window

i. Select a storage pool from the Storage Pools list.

ii. Optional: Click on the New Volume button to create a new storage volume. The Add a
Storage Volume screen will appear. Enter the name of the new storage volume.

Choose a format option from the Format dropdown menu. Format options include raw,
cow, gqcow, qcow2, vmdk, and vpc. Adjust other fields as desired. Note that the gcow
version used here is version 3. To change the qcow version refer to Section 29.20.2,
“Setting target elements”

46

Chapter 6. Installing a Red Hat Enterprise Linux 7 guest virtual machine on a Red Hat Enterprise Linux 7 host

Add a Storage Volume

i New Storage Volume

Create a storage unit that can be used directly by a virtual machine.

Mame: ‘ guestE—rheL?—64| amg

Format: raw v

Storage Volume Quota
default's available space: 9.78 GB

Max Capacity: 8192 — + MB

Allocation: O + [MB

Cancel Finish

Figure 6.9. The Add a Storage Volume window

Click Finish to continue.
. Verify and finish
Verify there were no errors made during the wizard and everything appears as expected.

Select the Customize configuration before install check box to change the guest's
storage or network devices, to use the para-virtualized (virtio) drivers or to add additional devices.

Click on the Advanced options down arrow to inspect and modify advanced options. For a
standard Red Hat Enterprise Linux 7 installation, none of these options require modification.

47

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

MNew VM

m Create a new virtual machine

Feady to begin installation of test-vm
05: Red Hat Enterprise Linux 7
Install: Local CDROM/ISO
Memory: 1024 MB
CPUs: 1

Storage: 8.0 GB jvar/lib/libvirtfimages/test-vm.img

Customize configuration before install

* Advanced options
Virtual network 'default’ : NAT w
w Set afixed MAC address

52.54:00:fa:cb:f7
Virt Type: | kvm W

Architecture: | x86_64 w

Cancel Baclk Finish

Figure 6.10. The New VM window - local storage

Click Finish to continue into the Red Hat Enterprise Linux installation sequence. For more

information on installing Red Hat Enterprise Linux 7 refer to the Red Hat Enterprise Linux 7
Installation Guide.

A Red Hat Enterprise Linux 7 guest virtual machine is now created from an ISO installation disc image.

6.2. Creating a Red Hat Enterprise Linux 7 guest with a network
installation tree

Procedure 6.2. Creating a Red Hat Enterprise Linux 7 guest with virt-manager
1. Optional: Preparation

Prepare the storage environment for the guest virtual machine. For more information on preparing
storage, refer to Chapter 16, Storage pools.

48

Chapter 6. Installing a Red Hat Enterprise Linux 7 guest virtual machine on a Red Hat Enterprise Linux 7 host

Various storage types may be used for storing guest virtual machines. However, for a virtual
machine to be able to use migration features the virtual machine must be created on
networked storage.

Red Hat Enterprise Linux 7 requires at least 1GB of storage space. However, Red Hat recommends
at least 5GB of storage space for a Red Hat Enterprise Linux 7 installation and for the procedures in
this guide.

2. Open virt-manager and start the wizard

Open virt-manager by executing the virt-manager command as root or opening Applications
- System Tools - Virtual Machine Manager.

Virtual Machine Manager X

File Edit View Help

E_-J Open A v
Mame ¥ (CPU usage

¥ localhost (QEML)

Figure 6.11. The main virt-manager window

Click onthe Create a new virtual machine button to start the new virtual machine wizard.

49

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

K
Figure 6.12. The Create a new virtual machine button

The Create a new virtual machine window opens.

3. Name the virtual machine

Virtual machine names can contain letters, numbers and the following characters:'_','." and '-".

Virtual machine names must be unique for migration and cannot consist only of numbers.

Choose the installation method from the list of radio buttons.

MNew VM

m Create a new virtual machine

Enter your virtual machine details
Mame: | test-vm

Connection: localhost (QEMU/KVM)

Choose how you would like to install the operating system
Local install media (ISO image or CDROM)
© Network Install (HTTP, FTP, or NFS)
Metwork Boot (PXE)

Import existing disk image

Cancel Forward

Figure 6.13. The New VM window - Step 1

50

Chapter 6. Installing a Red Hat Enterprise Linux 7 guest virtual machine on a Red Hat Enterprise Linux 7 host

Click Forward to continue.

4. Provide the installation URL, and the Kickstart URL and Kernel options if required.

MNew VM

m Create a new virtual machine

Provide the operating system install URL

URL: | http:/fexamplel.com/installation_tree/RHEL7-x86_64

* UREL Options
Kickstart URL:

Kernel options:

Automatically detect operating system based on install media

05 type: | Linux v
Version: | Red Hat Enterprise Linux 7 W
Cancel Back Forward

Figure 6.14. The New VM window - Step 2

Click Forward to continue.

ISO installation procedure.

6.3. Creating a Red Hat Enterprise Linux 7 guest with PXE

Procedure 6.3. Creating a Red Hat Enterprise Linux 7 guest with virt-manager
1. Optional: Preparation

Prepare the storage environment for the virtual machine. For more information on preparing storage,
refer to Chapter 16, Storage pools.

51

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Various storage types may be used for storing guest virtual machines. However, for a virtual
machine to be able to use migration features the virtual machine must be created on
networked storage.

Red Hat Enterprise Linux 7 requires at least 1GB of storage space. However, Red Hat recommends
at least 5GB of storage space for a Red Hat Enterprise Linux 7 installation and for the procedures in
this guide.

2. Open virt-manager and start the wizard

Open virt-manager by executing the virt-manager command as root or opening Applications
- System Tools - Virtual Machine Manager.

Virtual Machine Manager X

File Edit View Help

E_-J Open A v
Mame ¥ (CPU usage

¥ localhost (QEML)

Figure 6.15. The main virt-manager window

Click on the Create new virtualized guest button to start the new virtualized guest wizard.

52

Chapter 6. Installing a Red Hat Enterprise Linux 7 guest virtual machine on a Red Hat Enterprise Linux 7 host

K
Figure 6.16. The create new virtualized guest button

The New VM window opens.

. Name the virtual machine

Virtual machine names can contain letters, numbers and the following characters:'_',"." and '-".
Virtual machine names must be unique for migration and cannot consist only of numbers.

Choose the installation method from the list of radio buttons.

MNew VM

m Create a new virtual machine

Enter your virtual machine details

MName: |test-vm

Connection: localhost (QEMU/KVM)

Choose how you would like to install the operating system
' Local install media (ISQ image or CDROM)
' Network Install (HTTP, FTP, or NFS)
@ MNetwork Boot (PXE)

' Import existing disk image

Cancel Forward

Figure 6.17. The New VM window - Step 1

Click Forward to continue.

53

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

54

ISO installation procedure. From this point, the only difference in this PXE procedure is on the final
New VM screen, which shows the Install: PXE Install field.

New VM

m Create a new virtual machine

Ready to begin installation of test=-vm
05! Red Hat Enterprise Linux 7
Install: PXE Install
Memory: 1024 MB
CPUs: 1

Storage: 8.0 GB fvar/lib/libvirt/images/test-vm.img

Customize configuration before install

¥ Advanced options

&'3!."3' Metwork selection does not suppaort PXE

Specify shared device name W

Bridge name: Installation
« Set afixed MAC address

52:54:00:fa:.ch:f7
Virt Type: | kvm hod

Architecture: | x86_64 w
Cancel Back Finish

Figure 6.18. The New VM window - Step 5 - PXE Install

Chapter 7. Virtualizing Red Hat Enterprise Linux on Other Platforms

Chapter 7. Virtualizing Red Hat Enterprise Linux on Other
Platforms

This chapter contains useful reference material for customers running Red Hat Enterprise Linux 7 as a
virtualized operating system on other virtualization hosts.

7.1. On VMware ESX

Red Hat Enterprise Linux 7 provides the following drivers:

vmw_balloon - a para-virtualized memory ballooning driver used when running Red Hat Enterprise
Linux on VMware hosts. For further information about this driver, refer to
http://kb.VMware.com/selfservice/microsites/search.do?

cmd=displayKC&docT ype=kc&externalld=1002586.

vmmouse_drv - a para-virtualized mouse driver used when running Red Hat Enterprise Linux on
VMware hosts. For further information about this driver, refer to
http://kb.VMware.com/selfservice/microsites/search.do?

cmd=displayKC&docT ype=kc&externalld=5739104.

vmware_drv - a para-virtualized video driver used when running Red Hat Enterprise Linux on VMware
hosts. For further information about this driver, refer to
http://kb.VMware.com/selfservice/microsites/search.do?
cmd=displayKC&docType=kc&externalld=1033557.

vmxnet3 - a para-virtualized network adapter used when running Red Hat Enterprise Linux on
VMware hosts. For further information about this driver, refer to
http://kb.VMware.com/selfservice/microsites/search.do?

language=en US&cmd=displayKC&externalld=1001805.

vmw_pvVscsi - a para-virtualized SCSI adapter used when running Red Hat Enterprise Linux on
VMware hosts. For further information about this driver, refer to
http://kb.VMware.com/selfservice/microsites/search.do?

language=en US&cmd=displayKC&externalld=1010398.

7.2. On Hyper-V

Red Hat Enterprise Linux 7 ships with Microsoft's Linux Integration Services, a set of drivers that enable
synthetic device support in supported virtualized operating systems. Further details about the drivers
provided are available from http://technet.microsoft.com/en-us/library/dn531030.aspx.

The following enhancements have been made to allow for easier deployment and management of Red Hat
Enterprise Linux guest virtual machines on Hyper-V hypervisor:

Upgraded VMBUS protocols - VMBUS protocols have been upgraded to Windows 8 level. As part of
this work, now VMBUS interrupts can be processed on all available virtual CPUs in the guest.
Furthermore, the signaling protocol between the Red Hat Enterprise Linux guest virtual machine and
the Windows host physical machine has been optimized.

Synthetic frame buffer driver - Provides enhanced graphics performance and superior resolution for
Red Hat Enterprise Linux desktop users.

Live Virtual Machine Backup support - Provisions uninterrupted backup support for live Red Hat
Enterprise Linux guest virtual machines.

55

http://kb.vmware.com/selfservice/microsites/search.do?cmd=displayKC&docType=kc&externalId=1002586
http://kb.vmware.com/selfservice/microsites/search.do?cmd=displayKC&docType=kc&externalId=5739104
http://kb.vmware.com/selfservice/microsites/search.do?cmd=displayKC&docType=kc&externalId=1033557
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1001805
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1010398
http://technet.microsoft.com/en-us/library/dn531030.aspx

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Dynamic expansion of fixed size Linux VHDXs - Allows expansion of live mounted fixed sized Red Hat
Enterprise Linux VHDXs.

Boot using UEFI - Allows virtual machines to boot using Unified Extensible Firmware Interface (UEFI) on
Hyper-V 2012 R2 host.

For more information, refer to the following article:" Enabling Linux Support on Windows Server 2012 R2

56

http://blogs.technet.com/b/virtualization/archive/2013/07/24/enabling-linux-support-on-windows-server-2012-r2-hyper-v.aspx

Chapter 8. Installing a fully-virtualized Windows guest

Chapter 8. Installing a fully-virtualized Windows guest

This chapter describes how to create a fully-virtualized Windows guest using the command-line (virt-
install), launch the operating system's installer inside the guest, and access the installer through
virt-viewer.

To install a Windows operating system on the guest, use the virt-viewer tool. This tool allows you to
display the graphical console of a virtual machine (via the VNC protocol). In doing so, virt-viewer
allows you to install a fully-virtualized guest's operating system with that operating system's installer (for
example, the Windows 8 installer).

Installing a Windows operating system involves two major steps:
1. Creating the guest virtual machine, using either virt-install or virt-manager.
2. Installing the Windows operating system on the guest virtual machine, using virt-viewer.

Refer to Chapter 5, Guest virtual machine installation overview for details about creating a guest virtual
machine with virt-install or virt-manager.

Note that this chapter does not describe how to install a Windows operating system on a fully-virtualized
guest. Rather, it only covers how to create the guest and launch the installer within the guest. For
information on how to install a Windows operating system, refer to the relevant Microsoft installation
documentation.

8.1. Using virt-install to create a guest

The virt-install command allows you to create a fully-virtualized guest from a terminal, for example,
without a GUI.

oy eortant

Before creating the guest, consider first if the guest needs to use KVM Windows para-virtualized
(virtio) drivers. If it does, keep in mind that you can do so during or after installing the Windows
operating system on the guest. For more information about virtio drivers, refer to Chapter 9, KVM
Para-virtualized (virtio) Drivers.

For instructions on how to install K\VM virtio drivers, refer to Section 9.1, “Installing the KVM
Windows virtio drivers”.

It is possible to create a fully-virtualized guest with only a single command. To do so, run the following
program (replace the values accordingly):

virt-install \
--name=guest-name \
--0s-type=windows \
--network network=default \
--disk path=path-to-disk,size=disk-size \
--cdrom=path-to-install-disk \
--graphics spice --ram=1024

57

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

The path-to-disk must be a device (e.g. /dev/sda3) or image file
(/var/1ib/libvirt/images/name.img). It must also have enough free space to support the disk-
size.

The path-to-install-disk must be a path to an ISO image, or a URL from which to access a minimal boot ISO
image.

oy ortant

All image files are stored in /var/1ib/1ibvirt/images/ by default. Other directory locations

for file-based images are possible, but may require SELinux configuration. If you run SELinux in
enforcing mode, refer to the Red Hat Enterprise Linux SELinux User's and Administrator's Guide for
more information on SELinux.

Once the fully-virtualized guest is created, virt-viewer will launch the guest and run the operating

system's installer. Refer to the relevant Microsoft installation documentation for instructions on how to
install the operating system.

8.2. Tips for more efficiency with Windows guest virtual machines

The following flags should be set with libvirt to make sure the Windows guest virual machine works
efficiently:

hv_relaxed
hv_spinlocks=0x1fff
hv_vapic

hv_time

8.2.1. Setting the Hyper-V clock flag

To set the Hyper-V clock flag, augment the Windows guest virtual machine XML to contain:

<domain type='kvm'>
<clock offset='utc'>
<timer name='hypervclock' present='yes'/>
</clock>

</domain>

Figure 8.1. Clock element XML

This action should not be done while the guest virtual machine is running. Shutdown the guest virtual
machine, change the XML file and then re-start the guest virtual machine.

58

Chapter 9. KVM Para-virtualized (virtio) Drivers

Chapter 9. KVM Para-virtualized (virtio) Drivers

Para-virtualized drivers enhance the performance of guests, decreasing guest I/O latency and increasing
throughput to near bare-metal levels. It is recommended to use the para-virtualized drivers for fully
virtualized guests running I/O heavy tasks and applications.

Virtio drivers are KVM's para-virtualized device drivers, available for Windows guest virtual machines
running on KVM hosts. These drivers are included in the virtio package. The virtio package supports block
(storage) devices and network interface controllers.

The KVM virtio drivers are automatically loaded and installed on the following:
Red Hat Enterprise Linux 4.8 and newer
Red Hat Enterprise Linux 5.3 and newer
Red Hat Enterprise Linux 6 and newer
Red Hat Enterprise Linux 7 and newer
Some versions of Linux based on the 2.6.27 kernel or newer kernel versions.

Versions of Red Hat Enterprise Linux in the list above detect and install the drivers; additional installation
steps are not required.

In Red Hat Enterprise Linux 3 (3.9 and above), manual installation is required.

_

PCl devices are limited by the virtualized system architecture. Refer to Chapter 20, Guest virtual
machine device configuration for additional limitations when using assigned devices.

Using KVM virtio drivers, the following Microsoft Windows versions are expected to run similarly to bare-
metal-based systems.

Windows XP Service Pack 3 and newer (32-bit only)
Windows Server 2003 (32-bit and 64-bit versions)
Windows Server 2008 (32-bit and 64-bit versions)
Windows Server 2008 R2 (64-bit only)

Windows 7 (32-bit and 64-bit versions)

Windows Server 2012 (64-bit only)

Windows Server 2012 R2 (64-bit only)

Windows 8 (32-bit and 64-bit versions)

Windows 8.1 (32-bit and 64-bit versions)

9.1. Installing the KVM Windows virtio drivers

59

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

This section covers the installation process for the KVM Windows virtio drivers. The KVM virtio drivers can
be loaded during the Windows installation or installed after the guest's installation.

You can install the virtio drivers on a guest virtual machine using one of the following methods:

hosting the installation files on a network accessible to the virtual machine

using a virtualized CD-ROM device of the driver installation disk .iso file

using a USB drive, by mounting the same (provided) .ISO file that you would use for the CD-ROM

using a virtualized floppy device to install the drivers during boot time (required and recommended only
for XP/2003)

This guide describes installation from the para-virtualized installer disk as a virtualized CD-ROM device.

60

1.

Download the drivers

The virtio-win package contains the virtio block and network drivers for all supported Windows guest
virtual machines.

S

The virtio-win package can be found here in RHN:
https //rhn.redhat.com/rhn/software/packages/details/Overview.do?pid=868414. It requires
access to one of the following channels:

RHEL Client Supplementary (v. 7)

RHEL Server Supplementary (v. 7)

RHEL Workstation Supplementary (v. 7)

Download and install the virtio-win package on the host with the yum command.
yum install virtio-win

The list of virtio-win packages that are supported on Windows operating systems, and the current
certified package version, can be found at the following URL: windowsservercatalog.com.

Note that the Red Hat Enterprise Virtualization Hypervisor and Red Hat Enterprise Linux are created
on the same code base so the drivers for the same version (for example, Red Hat Enterprise
Virtualization Hypervisor 3.3 and Red Hat Enterprise Linux 6.5) are supported for both environments.

The virtio-win package installs a CD-ROM image, virtio-win.iso, in the /usr/share/virtio-
win/ directory.

Install the virtio drivers

When booting a Windows guest that uses virtio-win devices, the relevant virtio-win device drivers
must already be installed on this guest. The virtio-win drivers are not provided as inbox drivers in
Microsoft's Windows installation kit, so installation of a Windows guest on a virtio-win storage device
(viostor/virtio-scsi) requires that you provide the appropriate driver during the installation, either
directly from the virtio-win.iso or from the supplied Virtual Floppy image virtio-
win<version>.vfd.

https://rhn.redhat.com/rhn/software/packages/details/Overview.do?pid=868414
http://www.windowsservercatalog.com/results.aspx?text=Red+Hat&bCatID=1282&avc=10&ava=0&OR=5&=Go&chtext=&cstext=&csttext=&chbtext=

Chapter 9. KVM Para-virtualized (virtio) Drivers

9.2. Installing the drivers on an installed Windows guest virtual
machine

This procedure covers installing the virtio drivers with a virtualized CD-ROM after Windows is installed.

Follow this procedure to add a CD-ROM image with virt-manager and then install the drivers.

Procedure 9.1. Installing from the driver CD-ROM image with virt-manager
1. Open virt-manager and the guest virtual machine

Open virt-manager, then open the guest virtual machine from the list by double-clicking the
guest name.

2. Open the hardware window

Click the lightbulb icon on the toolbar at the top of the window to view virtual hardware details.

File Wirtual M

Figure 9.1. The virtual hardware details button

Then click the Add Hardware button at the bottom of the new view that appears.

Add Hardware
Figure 9.2. The virtual machine hardware information window

This opens a wizard for adding the new device.
3. Select the ISO file

Ensure that the Select managed or other existing storage radio button is selected, and
browse to the virtio driver's .iso image file. The default location for the latest version of the drivers
is /usr/share/virtio-win/virtio-win.iso.

Change the Device type to IDE cdrom and click the Forward button to proceed.

61

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Once the CD-ROM with the drivers is attached and the virtual machine has started, proceed with

i

it
[t

N I)

A

SHYDAPEE)

Network

Input

Graphics

Sound

Serial

Parallel
Channel

USB Host Device
PCl Host Device
Video
Watchdog
Filesystem
Smartcard

USB Redirection

4. Reboot

Please indicate how you would like to assign space
on the host system for your virtual storage device.

O Create a disk image on the computer's hard drive

[eoffee

17.9 Gb available in the default location

Allocate entire disk now

® Select managed or other existing storage

Browse... l!usr!sharefvirtio—win!virtio—win.iso

Device type: [: IDE cdrom o
Cache mode: default =
Storage format: [v
Cancel Finish

Figure 9.3. The Add new virtual hardware wizard

Reboot or start the virtual machine to begin using the driver disc. Virtualized IDE devices require a
restart to for the virtual machine to recognize the new device.

Procedure 9.2, “Windows installation on a Windows 7 virtual machine”.

Procedure 9.2. Windows installation on a Windows 7 virtual machine

This procedure installs the drivers on a Windows 7 virtual machine as an example. Adapt the Windows

installation instructions to your guest's version of Windows.

62

1. Open the Computer Management window

On the desktop of the Windows virtual machine, click the Windows icon at the bottom corner of the
screen to open the Start menu.

Right-click on Computer and select Manage from the pop-up menu.

Chapter 9. KVM Para-virtualized (virtio) Drivers

‘.—. >
=

Recycle Bin

‘ | :‘l Getting Started

! Connect to a Projector

Windows
|:?| Calculater

i

Documents
Sticky Motes

Pictures
% Snipping Teol
Music
“‘Jf_j; Paint
E Computer

1‘ HPS Viewer Open
Manage

éj Windews Fax and Scan b

Map network drive...

%;) Remote Desktop Connection Disconnect netwerk drive...

1 Show on Desktop
%,' Magnifier s

Rename

¥ Al Programs Properties

D= ; 522PM
) o o G
m u.?ﬂ) T T

Figure 9.4. The Computer Management window

2. Open the Device Manager

Select the Device Manager from the left-most pane. This can be found under Computer
Management > System Tools.

;QTJ Cemputer Management EI

File Action View Help

s 2EEBE

;5_'1 Computer Management (Local|| a2 Windows-PC

Actions
Pl m System Tools 1> 18 Computer e -
b (B Task Scheduler I+ g Disk drives
- §2] Event Viewer - B, Display adapters More Actions
I [l Shared Folders [3 \ﬂif DVD/CD-ROM drives
> # Local Users and Groups 3 \g Floppy drive controllers
3 @ Performance 3 tﬁ Human Interface Devices
g Device ManaEerI I» g IDE ATASATAPI controllers
2 22 Storage > &2 Keyboards
= Disk Management 3 ﬂ IMice and ether pointing devices
3 ?3 Services and Applications > | Monitors

|- ¥ Metwork adapters
a |5 Other devices
i PCISimple Communications Controller
1§ Ports (COM & LPT)
.- J2¥ Processors
1% Sound, video and game controllers
[+ 18 System devices
3 a Universal Serial Bus controllers

Figure 9.5. The Computer Manhagement window

3. Start the driver update wizard
a. View available system devices

Expand System devices by clicking on the arrow to its left.

63

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

P 4™ System devices
- ..yM ACPI Fixed Feature Button
Composite Bus Enumerator

[N

EEEEE

=]

' High precision event timer

il Intel 823715B PCl to ISA bridge

| Intel 82441FX Pentium(R) Pro Processor to PCl bridge
| Microsoft ACPI-Compliant System

78 Microsoft System Management BIOS Driver

1 S

Figure 9.6. Viewing available system devices in the Computer Management window

b. Locate the appropriate device

There are up to four drivers available: the balloon driver, the serial driver, the network driver,
and the block driver.

Balloon, the balloon driver, affects the PCI standard RAM Controller inthe
System devices group.

vioserial, the serial driver, affects the PCI Simple Communication Controller
in the System devices group.

NetKVM, the network driver, affects the Network adapters group. This driver is only
available if a virtio NIC is configured. Configurable parameters for this driver are
documented in Appendix C, NetKVVM Driver Parameters.

viostor, the block driver, affects the Disk drives group. This driver is only available if
a virtio disk is configured.

Right-click on the device whose driver you wish to update, and select Update Driver...
from the pop-up menu.

This example installs the balloon driver, so right-click on PCI standard RAM
Controller.

64

Chapter 9. KVM Para-virtualized (virtio) Drivers

A Computer Management

[E= HoR 5
File Action View Help
s rEEIEE & B &S
& Computer Management (Local b Network adapters » | Actions
Pl [[’!; System Tools 4y Other devices Device Manager -
3 @ Task Scheduler by PCLSimple Communications Centreller
» [Event Viewer b X3 Ports (COM & LPT) Mere Actions
> @l Shared Felders b 2 Processors
> ¥ Local Users and Groups » % Sound, video and game controllers
3 -@E_I' Performance IA-:E System devices
g=x Device Manager CPI Fixed Feature Butten
4 (55 Storage b Composite Bus Enumerator
=5 Disk Management | High Definiticn Audio Controller
. Ty Services and Applications igh precision event timer
ntel 8237158 PCIto ISA bridge
ntel 82441FX Pentium(R) Pre Processor to PCl bridge
2 Micresoft ACPI-Compliant System
| Microsoft System Management BIOS Driver
Aicrosoft Virtual Drive Enumerator Driver L
6 Pl bus 1
| PCI standard RAM Centrolles
b Plug and Play Software Devi Update Driver Software... h
temote Desktop Device Red Disable
| Systern Ch05/real time clog Uninstall
| UMBuUs Enumerator
..q8 UMBus Reot Bus Enumeratd Scan for hardware changes
> - § Universal Serial Bus centrollers "
4 m » Properties
Launches the Update Driver Software Wizard for the selected device,

Figure 9.7. The Computer Management window

c. Open the driver update wizard

From the drop-down menu, select Update Driver Software

... to access the driver
update wizard.

& PCl standard RAM Controller |

i Plug and Play Software Devi Update Driver Software.., b
E| Femote Desltop Device Red Disable

i System CMOS/ real time clog

Uninstall

Figure 9.8. Opening the driver update wizard

4. Specify how to find the driver

The first page of the driver update wizard asks how you want to search for driver software. Click on
the second option, Browse my computer for driver software.

65

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

) U Update Driver Software - PCI standard RAM Controller

How do you want to search for driver software?

< Search automatically for updated driver software
Windows will search your computer and the Internet for the latest driver software
for your device, unless yeu've disabled this feature in your device installation
settings.

= Browse my computer for driver software
Locate and install driver software manually. I}

Cancel

Figure 9.9. The driver update wizard

5. Select the driver to install
a. Open a file browser

Click on Browse. ..

@ Il Update Driver Software - PCI standard RAM Controller

Browse for driver software on your computer

Search for driver software in this location:

C:\Users\Windows\Documents A Browse... [

[¥]Include subfolders

< Let me pick from a list of device drivers on my computer
This list will show installed driver software compatible with the device, and all driver
software in the same categery as the device,

Mext]’ Cancel

Figure 9.10. The driver update wizard

b. Browse to the location of the driver

A separate driver is provided for each combination of operating systems and architectures.
The drivers are arranged hierarchically according to their driver type, the operating system,
and the architecture on which they will be installed: driver_type/os/arch/. For example, the

Balloon driver for a Windows 7 operating system with an x86 (32-bit) architecture, resides in

66

Chapter 9. KVM Para-virtualized (virtio) Drivers

the Balloon/w7/x86 directory.

Browse For Folder @

Select the folder that contains drivers for your hardware.

48 Computer =
> B Local Disk ()
4 é, D Drive (D) virtio-win-1.1.1
4 . Balloon
> N 2k3 Al
> 8 2kB L
4 4wl]
amdid n
. xB6
> W xp -

Faolder: x50

Ok {g[Cancel

Figure 9.11. The Browse for driver software pop-up window

Once you have navigated to the correct location, click OK.

c. Click Next to continue

@ [l Update Driver Software - PCI standard RAM Controller

Browse for driver software on your computer

Search for driver software in this lecation:

D:\Balloon\w7':86 - Browse...
Include subfolders

< Let me pick from a list of device drivers on my computer

This list will show installed driver software compatible with the device, and all driver
software in the same categery as the device,

’ Ne:d:& ’ Cancel

67

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Figure 9.12. The Update Driver Software wizard

The following screen is displayed while the driver installs:

Wy u Update Driver Software - PCI standard RAM Controller
Installing driver software...
—
Figure 9.13. The Update Driver Software wizard
6. Close the installer
The following screen is displayed when installation is complete:
23w

S

Windows has successfully updated your driver software

o) Update Driver Software - VirtlO Balloon Driver

Windows has finished installing the driver software for this device:

VirtlO Balloon Driver
N

Figure 9.14. The Update Driver Software wizard

Click Close to close the installer.

7. Reboot

68

Chapter 9. KVM Para-virtualized (virtio) Drivers

Reboot the virtual machine to complete the driver installation.

9.3. Installing drivers during the Windows installation

This procedure covers installing the virtio drivers during a Windows installation.

This method allows a Windows guest virtual machine to use the virtio drivers for the default storage
device.

Procedure 9.3. Installing virtio drivers during the Windows installation

1. Install the virtio-win package:

yum install virtio-win

S

The virtio-win package can be found here in RHN:
https://rhn.redhat.com/rhn/software/packages/details/Overview.do?pid=868414. It requires
access to one of the following channels:

RHEL Client Supplementary (v. 7)

RHEL Server Supplementary (v. 7)

RHEL Workstation Supplementary (v. 7)

2. Creating the guest virtual machine

Yy mportane

Create the virtual machine, as normal, without starting the virtual machine. Follow one of the
procedures below.
Select one of the following guest-creation methods, and follow the instructions.
a. Creating the guest virtual machine with virsh
This method attaches the virtio driver floppy disk to a Windows guest before the installation.

If the virtual machine is created from an XML definition file with virsh, use the virsh
define command not the virsh create command.

i. Create, but do not start, the virtual machine. Refer to the Red Hat Enterprise Linux
Virtualization Administration Guide for details on creating virtual machines with the
virsh command.

ii. Add the driver disk as a virtualized floppy disk with the virsh command. This example
can be copied and used if there are no other virtualized floppy devices attached to the
guest virtual machine. Note that vm_name should be replaced with the name of the
virtual machine.

69

https://rhn.redhat.com/rhn/software/packages/details/Overview.do?pid=868414

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

virsh attach-disk vm_name /usr/share/virtio-win/virtio-win.vfd fda
--type floppy

You can now continue with Step 3.

b. Creating the guest virtual machine with virt-manager and changing the disk type

i. At the final step of the virt-manager guest creation wizard, check the Customize
configuration before install checkbox.

m Create a new virtual machine

Ready to begin installation of win2k8-x86_64-guest
0% Microsoft Windows Server 2008
Install: Local CDROM/ISO
Memory: 1024 MB
CPUs: 1
Storage: 8.0 GB jvar/lib/libvirt/images/win2kg-x86_6 4-guest.img

| Customize configuration before install

> Advanced options

Cancel | | Back | | Finish

Figure 9.15. The virt-manager guest creation wizard

Click on the Finish button to continue.

ii. Open the Add Hardware wizard

Click the Add Hardware button in the bottom left of the new panel.

Add Hardware

Figure 9.16. The Add Hardware button

70

Chapter 9. KVM Para-virtualized (virtio) Drivers

iii. Select storage device

Storage is the default selection in the Hardware type list.

@D ETE L

MNetwork

Input

Graphics

Sound

Serial

Parallel

Channel

USB Host Device
PCl Host Device
Video
Watchdog
Filesystem
Smartcard

USB Redirection

Please indicate how you would like to assign space

on the host system for your virtual storage device.

@ Create a disk image on the computer's hard drive

ool es

36.5 Gb available in the default location

Allocate entire disk now

O Select managed or other existing storage

Device type: . IDE disk

Cache mode: default

L]

L]

Storage format:

'

Cancel

Figure 9.17. The Add new virtual hardware wizard

Ensure the Select managed or other existing storage radio button is

selected. Click Browse. . ..

@ Select managed or other existing storage

Finish

‘Brawse... ‘ |

Figure 9.18. Select managed or existing storage

In the new window that opens, click Browse Local. Navigate to

/usr/share/virtio-win/virtio-win.vfd, and click Select to confirm.

Change Device type to Floppy disk, and click Finish to continue.

Device type:

E Floppy disk

<)

Figure 9.19. Change the Device type

iv. Confirm settings

Review the device settings.

71

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

72

-“’_; Begin Installation !. Cancel

Overview
Processor
Memory
Boot Options
Disk 1

w0 o

NIC:ddicl:8b
Input
Display VN C

Console

L g 18

Video

| Add Hardware |

Virtual Disk
Target device: Floppy 1
Source path: fusr/share/virtio-win/virtio-win.vfd
Storage size: 1.41 MB
Readonly: [
Shareable: []

Disconnect

P Advanced options

. Tip: 'source’ refers to information seen from the host OS,

while 'target’ refers to information seen from the guest OS

| Remove |

Figure 9.20. The virtual machine hardware information window

You have now created a removable device accessible by your virtual machine.

v. Change the hard disk type

To change the hard disk type from IDE Disk to Virtio Disk, we must first remove the
existing hard disk, Disk 1. Select the disk and click on the Remove button.

?j; Begin Installation @) Cancel

g Overview
ﬁ Processor
B2 Memory
Boot Options
S
H Foppy1
B NIC:ddic1:8b
;; Input

B picplay vnC
=y Console

B vigeo

| Add Hardware |

Virtual Disk
Target device: Disk 1
Source path: /var/lib/libvirt/images/guest]l-win2k8-x86_64.img
Storage size: Unknown
Readonly: [J
Shareable: [

7 Advanced options

Disk bus: |deFauLt 2

Serial number: l l

Storage format:
7 Performance options

Cache mode: | default v

10 mode: |defauLt = |

. Tip: 'source’ refers to information seen from the host OS,

while 'target’ refers to information seen from the guest OS

Remove

Figure 9.21. The virtual machine hardware information window

Chapter 9. KVM Para-virtualized (virtio) Drivers

Add a new virtual storage device by clicking Add Hardware. Then, change the
Device type from IDE disk to Virtio Disk. Click Finish to confirm the operation.

Netwaork

|
[t

L B

Input
Graphics
Sound

Bife!

Serial

Parallel

Channel

LUSB Host Device
PCI Host Device
Video

Watchdog

Filesystem

VO Rl L

Smartcard

B

USBE Redirection

[+]

Please indicate how you would like to assign space
on the host system for your virtual storage device.

® Create a disk image on the computer's hard drive

8.0|-| GB

Allocate entire disk now

© Select managed or other existing storage

Device type: (3 Virtio disk <
Cache mode: default =
Storage format: A4
Cancel l Finish |

Figure 9.22. The virtual machine hardware information window

vi. Ensure settings are correct

Review the settings for VirtlO Disk 1.

Q Begin Installation Q Cancel

Overview
Processor
Memaory

Boot Options
Floppy 1

NIC :dd:c1:8b

.| Bleukcy Rl |

Input
Display VNC

|

Console

fi

L

Video

Add Hardware

Figure 9.23. The

Virtual Disk
Target device: VirtlO Disk 1
Source path: /var/lib/libvirt/images/quest1-win2k8-x 86_64.img
Storage size: 8.00 GB
Readonly: [
Shareable: [

~ Advanced options

Disk bus: | Virtio =

Serial number: [|

Storage format: |raw hd

I Performance options

5 Tip: 'source’ refers to information seen from the host OS,
while 'target’ refers to information seen from the guest OS

Remove

virtual machine hardware information window

73

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

When you are satisfied with the configuration details, click the Begin Installation
button.

Iet;j'f Begin Installation

k

Figure 9.24. The Begin Installation button

c. Creating the guest virtual machine with virt-install

Append the following parameter exactly as listed below to add the driver disk to the
installation with the virt-install command:

--disk path=/usr/share/virtio-win/virtio-win.vfd,device=floppy

oy mportane

If the device you wish to add is a disk (that is, not a floppy or a cdrom), you will
also need to add the bus=virtio option to the end of the - -disk parameter, like so:

--disk path=/usr/share/virtio-win/virtio-
win.vfd, device=disk, bus=virtio

According to the version of Windows you are installing, append one of the following options to
the virt-install command:

--0s-variant winxp
--0s-variant win2k3

--0Ss-variant win7

Additional steps for driver installation

During the installation, additional steps are required to install drivers, depending on the type of
Windows guest.

a.

74

Chapter 9. KVM Para-virtualized (virtio) Drivers

Windows Server 2003 and Windows XP

Before the installation blue screen repeatedly press F6 for third party drivers.

indows 3

Press Fb if you need to install a third party SCSI or RAID driver...

Figure 9.25. The Windows Setup screen

Press S to install additional device drivers.

indows Setup

p could not de the t of one or more m

ROHM dr
wdir those fo

which you > a port 4 P a
manuf

or use with Wind

S=Specify Additional Device ENTER=Cont inue F3=Exit

Figure 9.26. The Windows Setup screen

75

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

indows Setup

You have chosen to conf it I Adapter for use with Windows,
using a de upport d by an adapter manufacturer.

fAdapte it from the following list, or press
he previ EN .

ENTER=Select F3=Exit

Figure 9.27. The Windows Setup screen

Press Enter to continue the installation.

Windows Server 2008

Follow the same procedure for Windows Server 2003, but when the installer prompts you for
the driver, click on Load Driver, point the installer to Drive A: and pick the driver that

suits your guest operating system and architecture.

9.4. Using KVM virtio drivers for existing devices

You can modify an existing hard disk device attached to the guest to use the virtio driver instead of the

virtualized IDE driver. The example shown in this section edits libvirt configuration files. Note that the guest
virtual machine does not need to be shut down to perform these steps, however the change will not be
applied until the guest is completely shut down and rebooted.

Procedure 9.4. Using KVM virtio drivers for existing devices

“Installing the KVM Windows virtio drivers”, before continuing with this procedure.

2. Runthe virsh edit <guestname> command as root to edit the XML configuration file for your
device. For example, virsh edit guestil. The configuration files are located in
/etc/libvirt/qemu.

3. Below is a file-based block device using the virtualized IDE driver. This is a typical entry for a virtual
machine not using the virtio drivers.

<disk type='file' device='disk'>
<source file='/var/lib/libvirt/images/diskl.img'/>
<target dev='hda' bus='ide'/>

</disk>

76

Chapter 9. KVM Para-virtualized (virtio) Drivers

4. Change the entry to use the virtio device by modifying the bus= entry to virtio. Note that if the

disk was previously IDE it will have a target similar to hda, hdb, or hdc and so on. When changing to
bus=virtio the target needs to be changed to vda, vdb, or vdc accordingly.

<disk type='file' device='disk'>
<source file='/var/lib/libvirt/images/diskl.img'/>
<target dev='vda' bus='virtio'/>

</disk>

5. Remove the address tag inside the disk tags. This must be done for this procedure to work. Libvirt
will regenerate the address tag appropriately the next time the virtual machine is started.

Alternatively, virt-manager,virsh attach-disk orvirsh attach-interface can add a new
device using the virtio drivers.

Refer to the libvirt website for more details on using Virtio: http://www.linux-kvm.org/page/Virtio

9.5. Using KVM virtio drivers for new devices
This procedure covers creating new devices using the KVM virtio drivers with virt-manager.

Alternatively, the virsh attach-disk orvirsh attach-interface commands can be used to
attach devices using the virtio drivers.

oy mportane

Ensure the drivers have been installed on the Windows guest before proceeding to install new
devices. If the drivers are unavailable the device will not be recognized and will not work.

Procedure 9.5. Starting the new device wizard
1. Open the guest virtual machine by double clicking on the name of the guest in virt-manager.

2. Open the Show virtual hardware details tab by clicking the 1ightbulb button.

File \irtual M

=[]

Figure 9.28. The Show virtual hardware details tab

3. Inthe Show virtual hardware details tab, click on the Add Hardware button.

4. In the Adding Virtual Hardware tab select Storage or Network for the type of device. The storage
and network device wizards are covered in procedures Procedure 9.6, “Adding a storage device
using the virtio storage driver” and Procedure 9.7, “Adding a network device using the virtio network
driver”.

77

http://www.linux-kvm.org/page/Virtio

Procedure 9.6. Adding a storage device using the virtio storage driver
1. Open the guest virtual machine by double clicking on the name of the guestin virt-manager.

2. Openthe Show virtual hardware details tab by clicking the 1ightbulb button.

File Virtual M

Figure 9.29. The Show virtual hardware details tab

3. Inthe Show virtual hardware details tab, click on the Add Hardware button.
4. Select hardware type

Select Network as the Hardware type.

Add New Virtual Hardware

i Storage

— J Network

=

6 Input Please indicate how you'd like to connect your
._E_] Graphics new virtual network device to the host network.
[q [

% Sound Host device: | Virtual network 'default’ : NAT 3 |
=4 Serial))
< parallel MAC address: [52:54:00:62:16:58 |
=% Channel . =

. Device model: | Hypervisor default &

&% USB Host Device

:jé} PCl Host Device

B video

ﬁ} Watchdog

5 Filesystem

G=s Smartcard

g}” USB Redirection

Cancel Finish

Figure 9.30. The Add new virtual hardware wizard

5. Select the network device and driver
Create a new disk image or select a storage pool volume.

Set the Device type to Virtio Disk to use the virtio drivers. Choose the desired Host
device.

Chapter 9. KVM Para-virtualized (virtio) Drivers

Add New Virtual Hardware

4 Storage
= 2 Network
=
t!j Input Please indicate how you'd like to connect your
g Graphics new virtual network device to the host network.
= . [
% Sound Host device: IHost device virbrO-nic : macvtap & |
=4 Serial
=4 Parallel MAC address: 52:54:00:3b:fc:%e ‘
=4 Channel . . -
o Device model: | virtio w
ff:? USB Host Device
L{f:'.'l PCl Host Device
[video
ﬁ} Watchdog
Filesystem
=2 Smartcard

UUSB Redirection

&

Cancel Finish

Figure 9.31. The Add new virtual hardware wizard

Click Finish to complete the procedure.

Procedure 9.7. Adding a network device using the virtio network driver
1. Select hardware type

Select Network as the Hardware type.

e Add new virtual hardware S

Adding Virtual Hardware

This assistant will guide you through adding a
new piece of virtual hardware. First select what
type of hardware you wish to add:

Hapdware type: |@E Network

ik

Cancel Forward

Figure 9.32. The Add new virtual hardware wizard

79

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Click Forward to continue.

2. Select the network device and driver
Select the network device from the Host device list.
Create a custom MAC address or use the one provided.

Set the Device model to virtio to use the virtio drivers.

Q

Add new virtual hardware

Please indicate how you'd like to connect your
new virtual network device to the host network.

Host device: Host device eth0 (Bridge 'virtbe') 2

MAC address: b |52:54:00:f7:80:c5

<»

Device model: | virtio

Cancel Back Forward

Figure 9.33. The Add new virtual hardware wizard

Click Forward to continue.

3. Finish the procedure

Confirm the details for the new device are correct.

80

Chapter 9. KVM Para-virtualized (virtio) Drivers

[Add new virtual hardware x

Finish Adding Virtual Hardware

MNetwork
MWetwork type: Shared physical device
Target: wirtbr
MAC address: 52:54:00:f7:80:c5
Model: wvirtio

Cancel Back Finish
Figure 9.34. The Add new virtual hardware wizard

Click Finish to complete the procedure.

Once all new devices are added, reboot the virtual machine. Windows virtual machines may not recognize
the devices until the guest is rebooted.

81

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Chapter 10. Network configuration

This chapter provides an introduction to the common networking configurations used by libvirt based
guest virtual machines. For additional information, consult the libvirt network architecture documentation:
http:/libvirt.org/archnetwork.html.

Red Hat Enterprise Linux 7 supports the following networking setups for virtualization:
virtual networks using Network Address Translation (NAT)
directly allocated physical devices using PCI device assignment
directly allocated virtual functions using PCle SR-IOV
bridged networks

You must enable NAT, network bridging or directly assign a PCI device to allow external hosts access to
network services on guest virtual machines.

10.1. Network Address Translation (NAT) with libvirt

One of the most common methods for sharing network connections is to use Network Address Translation
(NAT) forwarding (also known as virtual networks).

Host configuration

Every standard 1ibvirt installation provides NAT-based connectivity to virtual machines as the default
virtual network. Verify that it is available with the virsh net-list --all command.

virsh net-list --all
Name State Autostart

default active yes

If it is missing the following could be used in the XML configuration file (such as
[etc/libvirtd/gemu/myguest.xml) for the guest:

11 /etc/libvirt/qemu/

total 12

drwx------ . 3 root root 4096 Nov 7 23:02 networks
-rwW------- . 1 root root 2205 Nov 20 01:20 r6.4.xml
-rw------- . 1 root root 2208 Nov 8 03:19 r6.xml

The default network is defined from /etc/libvirt/qemu/networks/default.xml

Mark the default network to automatically start:

virsh net-autostart default
Network default marked as autostarted

Start the default network:

virsh net-start default
Network default started

82

http://libvirt.org/archnetwork.html

Chapter 10. Network configuration

Once the 1ibvirt default network is running, you will see an isolated bridge device. This device does not

have any physical interfaces added. The new device uses NAT and IP forwarding to connect to the
physical network. Do not add new interfaces.

brctl show
bridge name bridge id STP enabled interfaces
virbro 8000.000000000000 yes

libvirt adds iptables rules which allow traffic to and from guest virtual machines attached to the
virbr0 device in the INPUT, FORWARD, OUTPUT and POSTROUTING chains. 1ibvirt then attempts to
enable the ip_forward parameter. Some other applications may disable ip_forward, so the best
option is to add the following to /etc/sysctl.conf.

net.ipv4.ip_forward = 1

Guest virtual machine configuration

Once the host configuration is complete, a guest virtual machine can be connected to the virtual network
based on its name. To connect a guest to the 'default’ virtual network, the following could be used in the
XML configuration file (such as /etc/libvirtd/qemu/myguest.xml) for the guest:

<interface type='network'>
<source network='default'/>
</interface>

_

Defining a MAC address is optional. If you do not define one, a MAC address is automatically
generated and used as the MAC address of the bridge device used by the network. Manually
setting the MAC address may be useful to maintain consistency or easy reference throughout your
environment, or to avoid the very small chance of a conflict.

<interface type='network'>

<source network='default'/>

<mac address='00:16:3e:1a:b3:4a'/>
</interface>

10.2. Disabling vhost-net

The vhost-net module is a kernel-level back end for virtio networking that reduces virtualization
overhead by moving virtio packet processing tasks out of user space (the QEMU process) and into the
kernel (the vhost-net driver). vhost-net is only available for virtio network interfaces. If the vhost-net
kernel module is loaded, it is enabled by default for all virtio interfaces, but can be disabled in the interface
configuration in the case that a particular workload experiences a degradation in performance when vhost-
netis in use.

Specifically, when UDP traffic is sent from a host machine to a guest virtual machine on that host,
performance degradation can occur if the guest virtual machine processes incoming data at a rate slower
than the host machine sends it. In this situation, enabling vhost-net causes the UDP socket's receive
buffer to overflow more quickly, which results in greater packet loss. It is therefore better to disable
vhost-net in this situation to slow the traffic, and improve overall performance.

83

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

To disable vhost-net, edit the <interface> sub-element in the guest virtual machine's XML
configuration file and define the network as follows:

<interface type="network">

<model type="virtio"/>
<driver name="gemu"/>

</interface>

Setting the driver name to qemu forces packet processing into QEMU user space, effectively disabling
vhost-net for that interface.

10.3. Enabling vhost-net zero-copy

Starting with Red Hat Enterprise Linux 7, vhost-net zero-copy is disabled by default. To enable this action
on a permanent basis, add a new file vhost-net.conf to /etc/modprobe .d with the following content:

options vhost_net experimental_zcopytx=1

If you want to disable this again, you can run the following:

modprobe -r vhost_net

modprobe vhost_net experimental_zcopytx=0

The first command removes the old file, the second one makes a new file (like above) and disables zero-
copy. You can use this to enable as well but the change will not be permanent.

To confirm that this has taken effect, check the output of cat
/sys/module/vhost_net/parameters/experimental_zcopytx. It should show:

$ cat /sys/module/vhost_net/parameters/experimental_zcopytx
0

10.4. Bridged networking with virt-manager

This section gives instructions on how to create a bridge from a host physical machine's interface to a
guest virtual machine. Before beginning, please heed the warning as indicated Important.

Procedure 10.1. Creating a bridge

1. From the virt-manager main menu, click Edit > Connection Details to open the Connection Details
window.

2. Click the Network Interfaces tab.
3. Click the + at the bottom of the window to configure a new network interface.

4. In the Interface type drop-down menu, select Bridge, and then click Forward to continue.

84

Chapter 10. Network configuration

Configure network interface

Configure network interface

Select the interface type you would like to configure.

Interface type: | Bridge

Cancel Forward

Figure 10.1. Adding a bridge

5. a. In the Name field, pick a name for the bridge, such as br0.
b. Select a Start mode from the drop-down menu. Choose from one of the following:
none - deactivates the bridge
onboot - activates the bridge on the next guest virtual machine reboot
hotplug - activates the bridge even if the guest virtual machine is running
c. Check the Activate now check box to activate the bridge immediately.

d. If you want to configure either the IP or Bridge settings, click the appropriate Configure
button. A separate window will open to allow you to specify the settings. Make any necessary
changes and click OK when done.

e. Choose the interfaces you want to bridge. If the interface is currently in use by another guest
virtual machine you will get a warning message.

6. Click Finish and the wizard closes taking you back to the Connections menu. To stop the
interface, click the Stop key and to delete click the Delete key.

85

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Configure network interface

onfigure network interface

Mame: bro

Start mode: hotplug

Activate now: C.4

IP settings: IPv4: DHCF Configure

Bridge settings: 5TF on, delay O sec Configure

Choose interface(s) to bridge:

v MName Type In use by

Lo ethernet

enp0s25 ethernet

E virbrO-nic ethernet

Cancel Back Finish

Figure 10.2. Adding a bridge - step 2

10.5. Bridged networking with libvirt

Bridged networking (also known as physical device sharing) is used to dedicate a physical device to a
virtual machine. Bridging is often used for more advanced setups and on servers with multiple network
interfaces. For instructions on creating a bridge with virt-manager, refer to Section 10.4, “Bridged

networking with virt-manager”.

To create a bridge (br0) based on the ethO interface, execute the following command on the host:

C# virsh iface-bridge eth® bro

86

Chapter 10. Network configuration

oy ortant

NetworkManager does not support bridging. NetworkManager must be disabled to use
networking with the network scripts (located in the /etc/sysconfig/network-scripts/
directory). In addition, it is highly recommended that there be more than one connection to a guest
virtual machine. Make sure that the host physical machine interface you choose to bridge is not the
only connection to the guest virtual machine.

systemctl disable NetworkManager
systemctl enable network
systemctl stop NetworkManager
systemctl start network

H* H HF H

If you do not want to disable NetworkManager entirely, add "NM_CONTROLLED=no" to the ifcfg-
* network script being used for the bridge.

87

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Chapter 11. Overcommitting with KVM

11.1. Introduction

The KVM hypervisor supports overcommitting CPUs and overcommitting memory. Overcommitting is
allocating more virtualized CPUs or memory than there are physical resources on the system. With CPU
overcommit, under-utilized virtualized servers or desktops can run on fewer servers which saves a
number of system resources, with the net effect of less power, cooling, and investment in server hardware.

As most processes do not access 100% of their allocated memory all the time, KVM can use this behavior
to its advantage and allocate more memory for guest virtual machines than the host physical machine
actually has available, in a process called overcommiting of resources.

11.2. Overcommitting Memory

oy mportane

Overcommitting is not an ideal solution for all memory issues as the recommended method to deal
with memory shortage is to allocate less memory per guest so that the sum of all guests memory
(+4G for the host O/S) is lower than the host physical machine's physical memory. If the guest
virtual machines need more memory, then increase the guest virtual machines' swap space
allocation. If however, should you decide to overcommit, do so with caution.

Guest virtual machines running on a KVM hypervisor do not have dedicated blocks of physical RAM
assigned to them. Instead, each guest virtual machine functions as a Linux process where the host
physical machine's Linux kernel allocates memory only when requested. In addition the host physical
machine's memory manager can move the guest virtual machine's memory between its own physical
memory and swap space. This is why overcommitting requires allotting sufficient swap space on the host
physical machine to accommodate all guest virtual machines as well as enough memory for the host
physical machine's processes. As a basic rule, the host physical machine's operating system requires a
maximum of 4GB of memory along with a minimum of 4GB of swap space. Refer to Example 11.1, “Memory
overcommit example” for more information.

Red Hat Knowledgebase has an article on safely and efficiently determining the size of the swap partition.

_

The example below is provided as a guide for configuring swap only. The settings listed may not be
appropriate for your environment.

88

http://kbase.redhat.com/faq/docs/DOC-15252

Chapter 11. Overcommitting with KVM

Example 11.1. Memory overcommit example

This example demonstrates how to calculate swap space for overcommitting. Although it may appear to

proceeding.

ExampleServerl has 32GB of physical RAM. The system is being configured to run 50 guest virtual
machines, each requiring 1GB of virtualized memory. As mentioned above, the host physical machine's
system itself needs a maximum of 4GB (apart from the guest virtual machines) as well as an additional
4GB as a swap space minimum.

The swap space is calculated as follows:

Calculate the amount of memory needed for the sum of all the guest virtual machines - In this
example: (50 guest virtual machines * 1GB of memory per guest virtual machine) = 50GB

Add the guest virtual machine's memory amount to the amount needed for the host physical
machine's OS and for the host physical machine's minimum swap space - In this example: 50GB
guest virtual machine memory + 4GB host physical machine's OS + 4GB minimal swap = 58GB

Subtract this amount from the amount of physical RAM there is on the system - In this example 58GB

- 32GB = 26GB

The answer is the amount of swap space that needs to be allocated. In this example 26GB

_

Overcommitting does not work with all guest virtual machines, but has been found to work in a
desktop virtualization setup with minimal intensive usage or running several identical guest virtual
machines with KSM. It should be noted that configuring swap and memory overcommit is not a
simple plug-in and configure formula, as each environment and setup is different. Proceed with
caution before changing these settings and make sure you completely understand your
environment and setup before making any changes.

For more information on KSM and overcommitting, refer to Chapter 24, KSM.

11.3. Overcommitting virtualized CPUs

The KVM hypervisor supports overcommitting virtualized CPUs. Virtualized CPUs can be overcommitted
as far as load limits of guest virtual machines allow. Use caution when overcommitting VCPUs as loads
near 100% may cause dropped requests or unusable response times.

Virtualized CPUs are overcommitted best when each guest virtual machine only has a single VCPU. The
Linux scheduler is very efficient with this type of load. KVM should safely support guest virtual machines

with loads under 100% at a ratio of five VCPUs. Overcommitting single VCPU guest virtual machines is not

an issue.

You cannot overcommit symmetric multiprocessing guest virtual machines on more than the physical
number of processing cores. For example a guest virtual machine with four VCPUs should not be run on a
host physical machine with a dual core processor. Overcommitting symmetric multiprocessing guest virtual
machines in over the physical number of processing cores will cause significant performance degradation.

89

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Assigning guest virtual machines VCPUs up to the number of physical cores is appropriate and works as
expected. For example, running guest virtual machines with four VCPUs on a quad core host. Guest virtual
machines with less than 100% loads should function effectively in this setup.

oy mportane

Do not overcommit memory or CPUs in a production environment without extensive testing.
Applications which use 100% of memory or processing resources may become unstable in
overcommitted environments. Test before deploying.

90

Chapter 12. KVM guest timing management

Chapter 12. KVM guest timing management

Virtualization involves several intrinsic challenges for time keeping in guest virtual machines. Interrupts
cannot always be delivered simultaneously and instantaneously to all guest virtual machines, because
interrupts in virtual machines are not true interrupts; they are injected into the guest virtual machine by the
host machine. The host may be running another guest virtual machine, or a different process, meaning that
the precise timing typically required by interrupts may not always be possible.

Guest virtual machines without accurate time keeping may experience issues with network applications
and processes, as session validity, migration, and other network activities rely on timestamps to remain
correct.

KVM avoids these issues by providing guest virtual machines with a para-virtualized clock (kvm-clock).
However, it is still vital to test timing before attempting activities that may be affected by time keeping
inaccuracies.

_

Red Hat Enterprise Linux 5.5 and newer, Red Hat Enterprise Linux 6.0 and newer, and Red Hat
Enterprise Linux 7 use kvm-clock as their default clock source. Running without kvm-clock
requires special configuration, and is not recommended.

oy portane

The Network Time Protocol (NTP) daemon should be running on the host and the guest virtual
machines. Make sure to install ntp and enable the ntpd service:

Enable the ntpd service and add it to the default startup sequence:

systemctl enable ntpd

Start the service:

systemctl start ntpd

The ntpd service will correct the effects of clock skew as long as the clock runs no more than
0.05% faster or slower than the reference time source. The ntp startup script adjusts the clock
offset from the reference time by adjusting the system clock at startup time, if required.

Constant Time Stamp Counter (TSC)

Modern Intel and AMD CPUs provide a constant Time Stamp Counter (T SC). The count frequency of the
constant TSC does not vary when the CPU core itself changes frequency, for example, to comply with a
power saving policy. A CPU with a constant TSC frequency is necessary in order to use the TSC as a
clock source for KVM guests.

Your CPU has a constant Time Stamp Counter if the constant_tsc flag is present. To determine if your
CPU has the constant_tsc flag run the following command:

$ cat /proc/cpuinfo | grep constant_tsc

91

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

If any output is given your CPU has the constant_tsc bit. If no output is given follow the instructions
below.

Configuring hosts without a constant Time Stamp Counter

Systems without a constant T SC frequency cannot use the TSC as a clock source for virtual machines,
and require additional configuration. Power management features interfere with accurate time keeping and
must be disabled for guest virtual machines to accurately keep time with KVM.

oy eortant

These instructions are for AMD revision F CPUs only.

system has several timers it uses to keep time. The TSC is not stable on the host, which is sometimes
caused by cpufreq changes, deep C state, or migration to a host with a faster TSC. Deep C sleep states
can stop the TSC. To prevent the kernel using deep C states append processor .max_cstate=1 to the
kernel boot. To make this change persistent, edit values of the GRUB_CMDLINE_LINUX DEFAULT key in
the /etc/default/grub file.For example.if you want to enable emergency mode for each boot, edit
the entry as follows:

GRUB_CMDLINE_LINUX_DEFAULT="emergency"

Note that you can specify multiple parameters for the GRUB_CMDLINE_LINUX_DEFAULT key, similarly to
adding the parameters in the GRUB 2 boot menu.

Disable cpufreq (only necessary on hosts without the constant_tsc) by editing the
/etc/sysconfig/cpuspeed configuration file and change the . Valid limits can be found in the
/sys/devices/system/cpu/cpu* /cpufreq/scaling_available_frequenciesfiles.

12.1. Required parameters for Red Hat Enterprise Linux guests

For certain Red Hat Enterprise Linux guest virtual machines, additional kernel parameters are required.
These parameters can be set by appending them to the end of the /kernel line in the

/boot/grub/grub.conf file of the guest virtual machine.

The table below lists versions of Red Hat Enterprise Linux and the parameters required on the specified
systems.

Table 12.1. Kernel parameter requirements

‘ Red Hat Enterprise Linux version Additional guest kernel parameters
7.0 AMD64/Intel 64 with the para-virtualized clock Additional parameters are not required

6.1 and higher AMD64/Intel 64 with the para- Additional parameters are not required
virtualized clock

6.0 AMD64/Intel 64 with the para-virtualized clock Additional parameters are not required

6.0 AMD64/Intel 64 without the para-virtualized notsc Ipj=n

clock

5.5 AMD64/Intel 64 with the para-virtualized clock Additional parameters are not required
5.5 AMD64/Intel 64 without the para-virtualized notsc Ipj=n

clock

92

https://bugzilla.redhat.com/show_bug.cgi?id=513138

Chapter 12. KVM guest timing management

Red Hat Enterprise Linux version Additional guest kernel parameters

5.5 x86 with the para-virtualized clock Additional parameters are not required
5.5 x86 without the para-virtualized clock clocksource=acpi_pm Ipj=n

5.4 AMDG64/Intel 64 notsc

5.4 x86 clocksource=acpi_pm

5.3 AMD64/Intel 64 notsc

5.3 x86 clocksource=acpi_pm

4.8 AMD64/Intel 64 notsc

4.8 x86 clock=pmtmr

3.9 AMD64/Intel 64 Additional parameters are not required

_

The 1pj parameter requires a numeric value equal to the loops per jiffy value of the specific CPU
on which the guest virtual machine runs. If you do not know this value, do not set the 1pj
parameter.

The divider kernel parameter was previously recommended for Red Hat Enterprise Linux 4 and 5

guest virtual machines that did not have high responsiveness requirements, or exist on systems
with high guest density. It is no longer recommended for use with guests running Red Hat
Enterprise Linux 4, or Red Hat Enterprise Linux 5 versions prior to version 5.8.

divider can improve throughput on Red Hat Enterprise Linux 5 versions equal to or later than 5.8
by lowering the frequency of timer interrupts. For example, if HZ=1000, and divider is setto 10
(that is, divider=10), the number of timer interrupts per period changes from the default value
(1000) to 100 (the default value, 1000, divided by the divider value, 10).

recording. This bug is fixed as of Red Hat Enterprise Linux 5.8. However, the divider parameter

can still cause kernel panic in guests using Red Hat Enterprise Linux 4, or Red Hat Enterprise Linux
5 versions prior to version 5.8.

Red Hat Enterprise Linux 6 and newer does not have a fixed-frequency clock interrupt; it operates
in tickless mode and uses the timer dynamically as required. The divider parameter is therefore

not useful for Red Hat Enterprise Linux 6 and Red Hat Enterprise Linux 7, and guests on these
systems are not affected by this bug.

12.2. Using the Real-Time Clock with Windows Server 2003 and
Windows XP guests
Windows uses both the Real-Time Clock (RTC) and the Time Stamp Counter (T SC). For Windows guest

virtual machines the Real-Time Clock can be used instead of the TSC for all time sources which resolves
guest timing issues.

93

https://bugzilla.redhat.com/show_bug.cgi?id=698842

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

To enable the Real-Time Clock for the PMTIMER clock source (the PMT IMER usually uses the TSC), add
the following option to the Windows boot settings. Windows boot settings are stored in the boot.ini file. Add

the following option to the end of the Windows boot line in the boot.ini file:

/usepmtimer

For more information on Windows boot settings and the usepmtimer option, refer to Available switch
options for the Windows XP and the Windows Server 2003 Boot.ini files.

12.3. Using the Real-Time Clock with Windows Server 2008,
Windows Server 2008 R2, and Windows 7 guests

Windows uses both the Real-Time Clock (RTC) and the Time Stamp Counter (T SC). For Windows guest
virtual machines the Real-Time Clock can be used instead of the TSC for all time sources, which resolves
guest timing issues.

The boot.ini file is no longer used as of Windows Server 2008 and newer. Windows Server 2008,
Windows Server 2008 R2, and Windows 7 do not use the TSC as a time source if the hypervisor -
present bit is set. The Red Hat Enterprise Linux 7 KVM hypervisor enables this CPUID bit by default, so
it is no longer necessary to use the Boot Configuration Data Editor (bcdedit.exe) to modify the
Windows boot parameters.

1. Open the Windows guest virtual machine.

2. Open the Accessories menu of the start menu. Right click on the Command Prompt application,
select Run as Administrator.

3. Confirm the security exception, if prompted.

4. Set the boot manager to use the platform clock. This should instruct Windows to use the PM timer
for the primary clock source. The system UUID ({default} in the example below) should be

changed if the system UUID is different than the default boot device.

C:\Windows\system32>bcdedit /set {default} USEPLATFORMCLOCK on
The operation completed successfully

This fix should improve time keeping for Windows Server 2008 and Windows 7 guests.

12.4. Steal time accounting

Steal time is the amount of CPU time desired by a guest virtual machine that is not provided by the host.
Steal time occurs when the host allocates these resources elsewhere: for example, to another guest.

Steal time is reported in the CPU time fields in /proc/stat as st. It is automatically reported by utilities
such as top and vmstat, and cannot be switched off.

Large amounts of steal time indicate CPU contention, which can reduce guest performance. To relieve
CPU contention, increase the guest's CPU priority or CPU quota, or run fewer guests on the host.

94

http://support.microsoft.com/kb/833721

Chapter 13. Network booting with libvirt

Chapter 13. Network booting with libvirt

Guest virtual machines can be booted with PXE enabled. PXE allows guest virtual machines to boot and
load their configuration off the network itself. This section demonstrates some basic configuration steps to
configure PXE guests with libvirt.

This section does not cover the creation of boot images or PXE servers. It is used to explain how to
configure libvirt, in a private or bridged network, to boot a guest virtual machine with PXE booting enabled.

These procedures are provided only as an example. Ensure that you have sufficient backups
before proceeding.

13.1. Preparing the boot server

To perform the steps in this chapter you will need:

A PXE Server (DHCP and TFTP) - This can be a libvirt internal server, manually-configured dhcpd and
tftpd, dnsmasq, a server configured by Cobbler, or some other server.

Boot images - for example, PXELINUX configured manually or by Cobbler.

13.1.1. Setting up a PXE boot server on a private libvirt network

This example uses the default network. Perform the following steps:

Procedure 13.1. Configuring the PXE boot server
1. Place the PXE boot images and configuration in /var/1ib/tftp.

2. Run the following commands:

virsh net-destroy default
virsh net-edit default

3. Edit the <ip> element in the configuration file for the default network to include the appropriate
address, network mask, DHCP address range, and boot file, where BOOT_FILENAME represents
the file name you are using to boot the guest virtual machine.

<ip address='192.168.122.1' netmask='255.255.255.0'>
<tftp root='/var/lib/tftp' />
<dhcp>
<range start='192.168.122.2' end='192.168.122.254"' />
<bootp file='BOOT_FILENAME' />
</dhcp>
</ip>

4. Run:

virsh net-start default

95

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

5. Boot the guest using PXE (refer to Section 13.2, “Booting a guest using PXE").

13.2. Booting a guest using PXE

This section demonstrates how to boot a guest virtual machine with PXE.

13.2.1. Using bridged networking

Procedure 13.2. Booting a guest using PXE and bridged networking
1. Ensure bridging is enabled such that the PXE boot server is available on the network.

2. Boot a guest virtual machine with PXE booting enabled. You can use the virt-install command

to create a new virtual machine with PXE booting enabled, as shown in the following example
command:

virt-install --pxe --network bridge=breth® --prompt

Alternatively, ensure that the guest network is configured to use your bridged network, and that the
XML guest configuration file has a <boot dev='network'/> elementinside the <os> element, as

shown in the following example:

<0S>
<type arch='x86_64"' machine='rhel6.2.0'>hvm</type>
<boot dev='network'/>
<boot dev='hd'/>
</0s>
<interface type='bridge'>
<mac address='52:54:00:5a:ad:cb'/>
<source bridge='bretho'/>
<target dev='vneto'/>
<alias name='net0'/>
<address type='pci' domain='0Ox0000' bus='0x00' slot='0x03' function='0Ox0'/>
</interface>

13.2.2. Using a private libvirt network

Procedure 13.3. Using a private libvirt network

1. Configure PXE booting on libvirt as shown in Section 13.1.1, “Setting up a PXE boot server on a
private libvirt network”.

2. Boot a guest virtual machine using libvirt with PXE booting enabled. You can use the virt-
install command to create/install a new virtual machine using PXE:

virt-install --pxe --network network=default --prompt
Alternatively, ensure that the guest network is configured to use your bridged network, and that the XML

guest configuration file has a <boot dev='network'/> element inside the <os> element, as shown in
the following example:

96

Chapter 13. Network booting with libvirt

<0S>
<type arch='x86_64"' machine='rhel6.2.0'>hvm</type>
<boot dev='network'/>
<boot dev='hd'/>

</0s>

Also ensure that the guest virtual machine is connected to the private network:

<interface type='network'>

<mac address='52:54:00:66:79:14"'/>

<source network='default'/>

<target dev='vnet0'/>

<alias name='neto'/>

<address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0Ox0'/>
</interface>

97

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Chapter 14. QEMU Guest Agent

The QEMU Guest Agent allows the host machine to issue commands to the guest operating system. The
guest operating system then responds to those commands asynchronously.

This section covers the options and commands available to the guest agent in detail. It also covers how to
run the Guest Agent in the foreground, or as a daemon in the background.

Note that CPU hot plugging and hot unplugging are supported with the help of the QEMU guest agent on
Linux and Windows guests; CPUs can be enabled or disabled while the guest is running, thus
implementing the hotplug feature and mimicking the unplug feature. Refer to Section 26.13.6, “Configuring
virtual CPU count” for the command to use to implement this.

14.1. Set Up Communication between Guest Agent and Host

The host machine communicates with the Guest Agent through a VirtlO serial connection between the host
and guest machines. A VirtlO serial channel is connected to the host via a character device driver (typically
a Unix socket), and the guest listens on this serial channel. The following procedure shows how to set up
the host and guest machines for Guest Agent use.

_

For instructions on how to setup the QEMU guest agent on Window's guests refer to the
instructions found here. or Section 14.3, “Running the QEMU guest agent on a Windows guest”

Procedure 14.1. Set Up Host-Agent Communication
1. Open the guest virtual machine domain XML

In this step you will open the guest virtual machine domain XML with the QEMU guest-agent
configuration. You will need the domain name to open the file. Use the command # virsh list on
the host physical machine to list the domains that it can recognize.ln this example, the domain's
name is rhel7 as shown.

virsh edit rhel7z

2. Edit the domain XML file

Add the following elements to the XML file remembering to write and save it when done.

<channel type='unix'>
<source mode='bind' path='/var/lib/libvirt/qemu/rhel?7.agent'/>
<target type='virtio' name='org.qgemu.guest_agent.0'/>

</channel>

98

http://msdn.microsoft.com/en-us/library/windows/desktop/bb968832%28v=vs.85%29.aspx

Chapter 14. QEMU Guest Agent

Figure 14.1. Editing the domain XML to configure the QEMU guest agent

3. Start the QEMU guest agent in the guest

Download and install the guest agent via the guest virtual machine's terminal window if you have not
done so already. Once installed, start the service as follows:

systemctl start gemu-guest-agent

You can now communicate with the guest by sending valid libvirt commands over the established character
device driver.

14.2. Using the QEMU guest virtual machine agent protocol CLI

The QEMU guest virtual machine agent protocol (QEMU GA) package, gemu-guest-agent, is fully
supported in Red Hat Enterprise Linux 7. There are some issues regarding its isa-serial/virtio-serial
transport, and the following caveats have been noted:

There is no way for gemu-guest-agent to detect whether or not a client has connected to the channel.

There is no way for a client to detect whether or not gemu-guest-agent has disconnected or
reconnected to the backend.

If the virtio-serial device resets and gemu-guest-agent has not connected to the channel as a result,
(generally caused by a reboot or hotplug), data from the client will be dropped.

If gemu-guest-agent has connected to the channel following a virtio-serial device reset, data from the
client will be queued (and eventually throttled if available buffers are exhausted), regardless of whether
or not gemu-guest-agent is still running/connected.

14.2.1. guest-sync

The guest-sync request/response exchange is simple. The client provides a unique numerical token, the
agent sends it back in a response:

virsh gemu-agent-command --domain qcow2 '{"execute":"guest-sync", "arguments": {
"id": 123456 } }'
{"return":123456}

A successful exchange guarantees that the channel is now in sync and no unexpected data/responses
will be sent. Note that for the reasons mentioned above there's no guarantee this request will be
answered, so a client should implement a timeout and re-issue this periodically until a response is
received for the most recent request.

This alone does not handle synchronization issues in all cases. For example, if gemu-guest-agent's
parser previously received a partial request from a previous client connection, subsequent attempts to
issue the guest-sync request can be misconstrued as being part of the previous partial request.
Eventually gemu-guest-agent will hit it's recursion or token size limit and flush its parser state, at which

99

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

point it will begin processing the backlog of requests, but there's no guarantee this will occur before the
channel is throttled due to exhausting all available buffers. Thus, there is a potential for a deadlock
situation occurring for certain instances.

To avoid this, gemu-guest-agent/QEMU's JSON parser has special handling for the OxFF byte, which is an
invalid UT F-8 character. Client requests should precede the guest-sync request with to ensure that gemu-
guest-agent flushes it's parser state as soon as possible. As long as all clients abide by this, the deadlock
state should be reliably avoidable.

For more information see the gemu-guest-agent wiki page on wiki.qemu.org.

14.2.2. guest-sync-delimited

If gemu-guest-agent attempts to communicate with a client, and the client receives a partial response from
a previous gemu-guest-agent instance, the client might misconstrue responses to guest-sync as being
part of this previous request. For client implementations that treat newlines as a delimiter for gemu-guest-
agent responses, use guest-sync-delimited.

Even in some cases where there are JSON stream-based implementations that do not rely on newline
delimiters, it may be considered invasive to implement a client's response/JSON handling, as it is the same
deadlock scenario described previously. Using the guest-sync-delimited on the client, tells QEMU

GA to place the same OxFF character in front of the response, thereby preventing confusion.

virsh gemu-agent-command --domain rhel7 '{ "execute": "guest-sync-delimited",
"arguments": { "id": 123456 } }'

Actual hex values sent:

> 7b 27 65 78 65 63 75 74 65 27 3a 27 67 75 65 73 74 2d 73 79 6e 63 2d 64 65
6c 69 6d 69 74 65 64 27 2c 27 61 72 67 75 6d 65 6e 74 73 27 3a 7h 27 69 64
27 3a 31 32 33 34 35 36 7d 7d 0a

< ff 7b 22 72 65 74 75 72 6e 22 3a 20 31 32 33 34 35 36 7d Oa

As stated above, the request should also be preceded with a OxFF to flush gemu-guest-agent's parser
state.

14.2.3. Creating a guest virtual machine disk backup

libvirt can communicate with gemu-ga to assure that snapshots of guest virtual machine file systems are
consistend internally and ready for use on an as needed basis. Improvements in Red Hat Enterprise
Linux 7 have been made to make sure that both file and application level synchronization (flushing) is
done. Guest system administrators can write and install application-specific freeze/thaw hook scripts.
Before freezing the filesystems, the gemu-ga invokes the main hook script (included in the gemu-ga
package). The freezing process temporarily deactivates all guest virtual machine applications.

Just before filesystems are frozen, the following actions occur:

File system applications / databases flush working buffers to the virtual disk and stop accepting client
connections

Applications bring their data files into a consistent state
Main hook script returns

gemu-ga freezes the filesystems and management stack takes a snapshot

100

http://wiki.qemu.org/Features/QAPI/GuestAgent

Chapter 14. QEMU Guest Agent

Snapshot is confirmed
Filesystem function resumes
Thawing happens in reverse order.

The command you need to use shapshot-create-as is explained in furter detail in Section 26.17.2,
“Creating a snapshot for the current domain”.

. Tips when using SELinux

An application specific hook script might need various SELinux permissions in order to run correctly.
As is done when the script needs to connect to a socket in order to talk to a database. In general,
local SELinux policies should be developed and installed for such purposes. Accessing file system
nodes should work out of the box, after issuing the restorecon -FvvR command listed in

Table 14.1, “OEMU guest agent package contents” in the table row labeled /etc/qemu-
ga/fsfreeze-hook.d/.

The gemu-guest-agent binary RPM includes the following files:

Table 14.1. QEMU guest agent package contents

‘ File name Description
/usr/1ib/systemd/system/qemu-guest- Service control script (start/stop) for the QEMU
agent.service GA.

/etc/sysconfig/qemu-ga Configuration file for the QEMU guest agent, as it

is read by the
/usr/1lib/systemd/system/gemu-guest-
agent.service control script. The settings are
documented in the file with shell script comments.

/usr/bin/qemu-ga QEMU GA binary file.

/etc/qemu-ga Root directory for hook scripts.

/etc/qgemu-ga/fsfreeze-hook Main hook script. No modifications are needed
here.

/etc/qemu-ga/fsfreeze-hook.d Directory for individual, application-specific hook

scripts. The guest system administrator should
copy hook scripts manually into this directory,
ensure proper file mode bits for them, and then run
restorecon -FvvR on this directory.

/usr/share/gemu-kvm/qemu-ga/ Directory with sample scripts (for example

purposes only). The scripts contained here are not
executed.

The main hook script, /etc/qemu-ga/fsfreeze-hook logs its own messages, as well as the

application-specific scripts' standard output and error messages, in the following log file:
/var/log/qgemu-ga/fsfreeze-hook.log. For more information, refer to the gemu-guest-agent wiki
page on wiki.gemu.org or libvirt.org.

14.3. Running the QEMU guest agent on a Windows guest

http://wiki.qemu.org/Features/QAPI/GuestAgent
http://wiki.libvirt.org/page/Qemu_guest_agent

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

The instructions below are for Windows guests running on a Red Hat Enterprise Linux host phyical
machine only.

. Tips for Windows guests

Windows guest virtual machines will use QEMU GA for windows, gemu-guest-agent-win. This agent

is required for VSS (Volume Shadow Copy Service) support for Windows guest virtual machines

Procedure 14.2. Configuring QEMU guest agent on a Windows guest

1.

102

Preparing the Red Hat Enterprise Linux host physical machine

Make sure the following packages are installed on the Red Hat Enterprise Linux host physical
machine

virtio-win.- located here: /usr/share/virtio-win/
spice and gxl drivers - both located here: /usr/share/virtio-win/drivers/.

In order to copy the drivers in the Windows guest, make an * .iso file for the gqxI driver using the
following command:

mkisofs -o /var/lib/libvirt/images/virtiowin.iso /usr/share/virtio-
win/drivers

. Preparing the Windows guest

Install the virtio-serial and spice+qxl drivers in guest by mounting the * .iso to the Windows guest
in order to update the driver. Remember to start the guest,then attach the driver .iso file to the guest
as shown:

virsh attach-disk guest /var/lib/libvirt/images/virtiowin.iso vdb

To install the drivers using the Windows Control Panel and navigate to the following menus:

To install gxl-win driver - Select Hardware and Sound > device manager > display
adapter, and update the driver with the spice+qgxl

Install virtio-win driver - Select Hardware and Sound > device manager > virtio-serial
driver.

Update the Windows guest XML configuration file

The domain XML file for the Windows guest is located on the Red Hat Enterprise Linux host physical
machine. To gain access to this file, you need the Windows guest domain name. Use the command
virsh list on the host physical machine to list the domains that it can recognize.ln this

example, the domain's name is win7x86 as shown.

virsh edit win7x86

. Edit the domain XML file

http://msdn.microsoft.com/en-us/library/windows/desktop/bb968832%28v=vs.85%29.aspx

Chapter 14. QEMU Guest Agent

Add the following elements to the XML file remembering to write and save it when done.

<domain type='kvm'>
<name>win7x86</name>
<uuid>ad61420e-b3c6-b50e-16ab-73009chbf9b6d</uuid>
<memory unit='KiB'>1048576</memory>
<currentMemory unit='KiB'>1048576</currentMemory>
<vcpu placement='static'>1</vcpu>
<0S>
<type arch='i686"' machine='rhel6.4.0'>hvm</type>
<loader>/usr/share/seabios/bios.bin</loader>
<boot dev='hd'/>
</0s>

<pm>
<suspend-to-mem enabled='yes'/>
<suspend-to-disk enabled='yes'/>
</pm>

<disk type='file' device='cdrom'>
<driver name='gemu' type='raw'/>
<target dev='hdc' bus='ide'/>
<readonly/>
<address type='drive' controller='0"' bus='1l' target='0' unit='0'/>
</disk>
<channel type='unix'>
<source mode='bind' path='/var/lib/libvirt/qemu/rhelnew.agent'/>
<target type='virtio' name='org.gemu.guest_agent.0'/>
<address type='virtio-serial' controller='Q' bus='0' port='1'/>
</channel>
<channel type='spicevmc'>
<target type='virtio' name='com.redhat.spice.0'/>
<address type='virtio-serial' controller='Q' bus='0' port='2'/>
</channel>
<graphics type='spice' autoport='yes'/>
<video>
<model type='qxl' vram='65536"' heads='1'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0Ox02'
function='0x0"'/>
</video>

</domain>

Figure 14.2. Editing the Windows guest domain XML to configure the QEMU guest agent

. Preparing the gqemu-ga in the Windows guest
There are 3 steps you need to follow:

a. Install the latest virtio-win package

103

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Run the following command on the Red Hat Enterprise Linux host physical machine terminal
window to locate the file to install. Note that the file shown below may not be exactly the same
as the one your system finds, but it should be latest official version.

rpm -gqajgrep virtio-win
virtio-win-1.6.8-5.el7.noarch

rpm -iv virtio-win-1.6.8-5.el7.noarch

b. Confirm the installation completed

After the virtio-win package finishes installing, check the /usr/share/virtio-win/guest-
agent/ folder and you will find an file named gemu-ga.-x64/x86.msi as shown

1s -1 /usr/share/virtio-win/guest-agent/
total 1544
-rw-r--r--. 1 root root 856064 Oct 23 04:58 gemu-ga-x64.msi

-rw-r--r--. 1 root root 724992 Oct 23 04:58 gemu-ga-x86.msi

c. Install the .msi file

From the Windows guest (win7x86, for example) install the gemu-ga-x64.msi or the gemu-ga-
x86.msi by double clicking on the file. Once installed, it will be shown as a gemu-ga service in
the Windows guest within the System Manager. This same manager can be used to monitor
the status of the service.

. gemu-ga supported commands

Only the following commands are currently supported with gemu-ga for Windows guests. These
commands function in the same way as the Red Hat Enterprise Linux commands do and the
directions are universal. More information is in the README . T XT file that is downloaded when the

package is installed. It is best to read it entirely. Refer to gemu-devel list for even more information.

guest-info

guest-ping
guest-sync-delimited
guest-sync
guest-shutdown
guest-suspend-disk
guest-suspend-ram
guest-fsfreeze-status
guest-fsfreeze-freeze
guest-fsfreeze-thaw

104

http://lists.nongnu.org/archive/html/qemu-devel/2011-07/msg00370.html

Part Il. Administration

Part Il. Administration

105

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Chapter 15. Securing the host physical machine and improving
performance

The following tasks and tips can assist you with increasing the performance of your Red Hat Enterprise
Linux host.

Run SELinux in enforcing mode. Set SELinux to run in enforcing mode with the setenforce command.

setenforce 1

Remove or disable any unnecessary services such as AutoFS, NFS, FTP, HTTP, NIS, telnetd,
sendmail and so on.

Only add the minimum number of user accounts needed for platform management on the server and
remove unnecessary user accounts.

Avoid running any unessential applications on your host. Running applications on the host may impact
virtual machine performance and can affect server stability. Any application which may crash the server
will also cause all virtual machines on the server to go down.

Use a central location for virtual machine installations and images. Virtual machine images should be
stored under /var/1lib/libvirt/images/. If you are using a different directory for your virtual

machine images make sure you add the directory to your SELinux policy and relabel it before starting
the installation. Use of shareable, network storage in a central location is highly recommended.

_

Additional performance tips can be found in the Red Hat Enterprise Linux Virtualization Tuning and
Optimization Guide.

Additional security tips can be found in the Red Hat Enterprise Linux Virtualization Security Guide.

Both of these guides can be found at https://access.redhat.com/site/documentation/.

15.1. Security Deployment Plan

When deploying virtualization technologies, you must ensure that the host physical machine and its
operating system cannot be compromised. In this case the host physical machine is a Red Hat Enterprise
Linux system that manages the system, devices, memory and networks as well as all guest virtual
machines. If the host physical machine is insecure, all guest virtual machines in the system are vulnerable.
There are several ways to enhance security on systems using virtualization. You or your organization
should create a Deployment Plan. This plan needs to contain the following:

Operating specifications
Specifies which services are needed on your guest virtual machines
Specifies the host physical servers as well as what support is required for these services

Here are a few security issues to consider while developing a deployment plan:

106

https://access.redhat.com/site/documentation/

Chapter 15. Securing the host physical machine and improving performance

Run only necessary services on host physical machines. The fewer processes and services running
on the host physical machine, the higher the level of security and performance.

Enable SELinux on the hypervisor. Refer to the Red Hat Enterprise Linux Virtualization Security Guide
for more information on using SELinux and virtualization.

Use a firewall to restrict traffic to the host physical machine. You can setup a firewall with default-reject
rules that will help secure the host physical machine from attacks. It is also important to limit network-
facing services.

Do not allow normal users to access the host operating system. If the host operating system is
privileged, granting access to unprivileged accounts may compromise the level of security.

15.2. Client access control

libvirt's client access control framework allows system administrators to setup fine grained permission
rules across client users, managed objects, and APl operations. This allows client connections to be
locked down to a minimal set of privileges.

In a default configuration, the libvirtd daemon has three levels of access control. All connections start off in
an unauthenticated state, where the only API operations allowed are those required to complete
authentication. After successful authentication, a connection either has full, unrestricted access to all libvirt
API calls, or is locked down to only “read only" operations, according to what socket the client connection
originated on. The access control framework allows authenticated connections to have fine grained
permission rules to be defined by the administrator. Every API call in libvirt has a set of permissions that
will be validated against the object being used. Further permissions will also be checked if certain flags are
set in the API call. In addition to checks on the object passed in to an API call, some methods will filter their
results.

15.2.1. Access control drivers

The access control framework is designed as a pluggable system to enable future integration with
arbitrary access control technologies. By default, the none driver is used, which does no access control
checks at all. At this time, libvirt ships with support for using polkit as a real access control driver. To learn
how to use the polkit access driver refer to the configuration documentation.

The access driver is configured in the libvirtd.conf configuration file, using the access_drivers

parameter. This parameter accepts an array of access control driver names. If more than one access
driver is requested, then all must succeed in order for access to be granted. To enable 'polkit' as the
driver run the command:

augtool -s set '/files/etc/libvirt/libvirtd.conf/access_drivers[1]' polkit

To set the driver back to the default (no access control), run the following command:

augtool -s rm /files/etc/libvirt/libvirtd.conf/access_drivers
It should be noted that changes made to libvirtd.conf require that the libvirtd daemon be restarted.

15.2.2. Objects and permissions

107

http://libvirt.org/aclpolkit.html

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

libvirt applies access control to all the main object types in its API. Each object type, in turn, has a set of
permissions defined. To determine what permissions are checked for specific API call, consult the API
reference manual documentation for the APl in question. For the complete list of objects and permissions,
refer to libvirt.org.

108

http://libvirt.org/acl.html

Chapter 16. Storage pools

Chapter 16. Storage pools

This chapter includes instructions on creating storage pools of assorted types. A storage pool is a
quantity of storage set aside by an administrator, often a dedicated storage administrator, for use by guest
virtual machines. Storage pools are divided into storage volumes either by the storage administrator or the
system administrator, and the volumes are then assigned to guest virtual machines as block devices.

For example, the storage administrator responsible for an NFS server creates a shared disk to store all of
the guest virtual machines' data. The system administrator would define a storage pool on the
virtualization host using the details of the shared disk. In this example the admin may want
nfs.example.com:/path/to/share to be mounted on /vm_data). When the storage pool is started,
libvirt mounts the share on the specified directory, just as if the system administrator logged in and
executed mount nfs.example.com:/path/to/share /vmdata. If the storage pool is configured to
autostart, libvirt ensures that the NFS shared disk is mounted on the directory specified when libvirt is
started.

Once the storage pool is started, the files in the NFS shared disk are reported as storage volumes, and
the storage volumes' paths may be queried using the libvirt APIs. The storage volumes' paths can then be
copied into the section of a guest virtual machine's XML definition describing the source storage for the
guest virtual machine's block devices.In the case of NFS, an application using the libvirt APIs can create
and delete storage volumes in the storage pool (files in the NFS share) up to the limit of the size of the
pool (the storage capacity of the share). Not all storage pool types support creating and deleting volumes.
Stopping the storage pool (pool-destroy) undoes the start operation, in this case, unmounting the NFS
share. The data on the share is not modified by the destroy operation, despite what the name of the
command suggests. See man virsh for more details.

A second example is an iSCSI storage pool. A storage administrator provisions an iSCSI target to present
a set of LUNs to the host running the VMs. When libvirt is configured to manage that iSCSl target as a
storage pool, libvirt will ensure that the host logs into the iISCSI target and libvirt can then report the
available LUNs as storage volumes. The storage volumes' paths can be queried and used in VM's XML
definitions as in the NFS example. In this case, the LUNs are defined on the iSCSI server, and libvirt cannot
create and delete volumes.

Storage pools and volumes are not required for the proper operation of guest virtual machines. Storage
pools and volumes provide a way for libvirt to ensure that a particular piece of storage will be available for
a guest virtual machine, but some administrators will prefer to manage their own storage without using
storage pools or volumes and the guest virtual machines will operate properly without any storage pools
or volumes defined. On systems that do not use storage pools, system administrators must ensure the
availability of the guest virtual machine's storage using whatever tools they prefer, for example, adding the
NFS share to the host physical machine's fstab so that the share is mounted at boot time.

If at this point the value of storage pools and volumes over traditional system administration tools is
unclear, note that one of the features of libvirt is its remote protocol, so it's possible to manage all aspects
of a guest virtual machine's life cycle as well as the configuration of the resources required by the guest
virtual machine. These operations can be performed on a remote host entirely within the libvirt API. In other
words, a management application using /ibvirt can enable a user to perform all the required tasks for
configuring the host physical machine for a guest virtual machine such as: allocating resources, running
the guest virtual machine, shutting it down and deallocating the resources, without requiring shell access
or any other control channel.

A Although the storage pool is a virtual container it is limited by two factors: maximum size allowed to it by
gemu-kvm and the size of the disk on the host physical machine. Storage pools may not exceed the size
of the disk on the host physical machine. The maximum sizes are as follows:

virtio-blk = 2763 bytes or 8 Exabytes(using raw files or disk)

109

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Ext4 = ~ 16 TB (using 4 KB block size)
XFS = ~8 Exabytes

gcow2 and host file systems keep their own metadata and scalability should be evaluated/tuned when
trying very large image sizes. Using raw disks means fewer layers that could affect scalability or max
size.

libvirt uses a directory-based storage pool, the /var/1ib/1libvirt/images/ directory, as the default
storage pool. The default storage pool can be changed to another storage pool.

Local storage pools - Local storage pools are directly attached to the host physical machine server.
Local storage pools include: local directories, directly attached disks, physical partitions, and LVM
volume groups. These storage volumes store guest virtual machine images or are attached to guest
virtual machines as additional storage. As local storage pools are directly attached to the host physical
machine server, they are useful for development, testing and small deployments that do not require
migration or large numbers of guest virtual machines. Local storage pools are not suitable for many
production environments as local storage pools do not support live migration.

Networked (shared) storage pools - Networked storage pools include storage devices shared over
a network using standard protocols. Networked storage is required when migrating virtual machines
between host physical machines with virt-manager, but is optional when migrating with virsh. Networked
storage pools are managed by libvirt. Supported protocols for networked storage pools include:

Fibre Channel-based LUNs
iSCSI

NFS

GFS2

SCSI RDMA protocols (SCSI RCP), the block export protocol used in InfiniBand and 10GbE iWARP
adapters.

_

Multi-path storage pools should not be created or used as they are not fully supported.

110

Chapter 16. Storage pools

Example 16.1. NFS storage pool

Suppose a storage administrator responsible for an NFS server creates a share to store guest virtual
machines' data. The system administrator defines a pool on the host physical machine with the details
of the share (nfs.example.com:/path/to/share should be mounted on /vm_data). When the pool is
started, libvirt mounts the share on the specified directory, just as if the system administrator logged in
and executed mount nfs.example.com:/path/to/share /vmdata. If the poolis configured to
autostart, libvirt ensures that the NFS share is mounted on the directory specified when libvirt is started.

Once the pool starts, the files that the NFS share, are reported as volumes, and the storage volumes'
paths are then queried using the libvirt APIs. The volumes' paths can then be copied into the section of
a guest virtual machine's XML definition file describing the source storage for the guest virtual
machine's block devices. With NFS, applications using the libvirt APIs can create and delete volumes in
the pool (files within the NFS share) up to the limit of the size of the pool (the maximum storage capacity
of the share). Not all pool types support creating and deleting volumes. Stopping the pool negates the
start operation, in this case, unmounts the NFS share. The data on the share is not modified by the
destroy operation, despite the name. See man virsh for more details.

_

Storage pools and volumes are not required for the proper operation of guest virtual machines.
Pools and volumes provide a way for libvirt to ensure that a particular piece of storage will be
available for a guest virtual machine, but some administrators will prefer to manage their own
storage and guest virtual machines will operate properly without any pools or volumes defined. On
systems that do not use pools, system administrators must ensure the availability of the guest
virtual machines' storage using whatever tools they prefer, for example, adding the NFS share to
the host physical machine's fstab so that the share is mounted at boot time.

16.1. Disk-based storage pools

This section covers creating disk based storage devices for guest virtual machines.

Guests should not be given write access to whole disks or block devices (for example, /dev/sdb).
Use partitions (for example, /dev/sdb1) or LVM volumes.

If you pass an entire block device to the guest, the guest will likely partition it or create its own LVM
groups on it. This can cause the host physical machine physical machine to detect these partitions
or LVM groups and cause errors.

16.1.1. Creating a disk based storage pool using virsh

This procedure creates a new storage pool using a disk device with the virsh command.

111

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Dedicating a disk to a storage pool will reformat and erase all data presently stored on the disk
device! It is strongly recommended to back up the data on the storage device before commencing
with the following procedure:

1. Create a GPT disk label on the disk

The disk must be relabeled with a GUID Partition Table (GPT) disk label. GPT disk labels allow for
creating a large numbers of partitions, up to 128 partitions, on each device. GPT partition tables can
store partition data for far more partitions than the MS-DOS partition table.

parted /dev/sdb

GNU Parted 2.1

Using /dev/sdb

Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted) mklabel

New disk label type? gpt

(parted) quit

Information: You may need to update /etc/fstab.

#

2. Create the storage pool configuration file
Create a temporary XML text file containing the storage pool information required for the new device.
The file must be in the format shown below, and contain the following fields:
<name>guest_images_disk</name>

The name parameter determines the name of the storage pool. This example uses the
name guest_images_disk in the example below.

<device path='/dev/sdb'l>

The device parameter with the path attribute specifies the device path of the storage
device. This example uses the device /dev/sdb.

<target> <path>/dev</path></target>

The file system target parameter with the path sub-parameter determines the location on
the host physical machine file system to attach volumes created with this storage pool.

For example, sdbl, sdb2, sdb3. Using /deVv/, as in the example below, means volumes
created from this storage pool can be accessed as /dev/sdbl, /dev/sdb2, /dev/sdb3.

<format type="'gpt'/>

The format parameter specifies the partition table type. This example uses the gpt in the
example below, to match the GPT disk label type created in the previous step.

Create the XML file for the storage pool device with a text editor.

112

Example 16.2. Disk based storage device storage pool

<pool type='disk'>
<name>guest_images_disk</name>
<source>
<device path='/dev/sdb'/>
<format type='gpt'/>
</source>
<target>
<path>/dev</path>
</target>
</pool>

3. Attach the device

Add the storage pool definition using the virsh pool-define command with the XML
configuration file created in the previous step.

virsh pool-define ~/guest_images_disk.xml
Pool guest_images_disk defined from /root/guest_images_disk.xml
virsh pool-list --all

Name State Autostart
default active yes
guest_images_disk inactive no

4. Start the storage pool

Start the storage pool with the virsh pool-start command. Verify the pool is started with the
virsh pool-list --all command.

virsh pool-start guest_images_disk
Pool guest_images_disk started
virsh pool-list --all

Name State Autostart
default active yes
guest_images_disk active no

5. Turn on autostart

Turn on autostart for the storage pool. Autostart configures the 1ibvirtd service to start the
storage pool when the service starts.

virsh pool-autostart guest_images_disk
Pool guest_images_disk marked as autostarted
virsh pool-list --all

Name State Autostart
default active yes
guest_images_disk active yes

6. Verify the storage pool configuration

Verify the storage pool was created correctly, the sizes reported correctly, and the state reports as
running.

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

virsh pool-info guest_images_disk

Name: guest_images_disk

UUID: 551a67c8-5f2a-012c-3844-df29b167431c
State: running

Capacity: 465.76 GB

Allocation: 0.00

Available: 465.76 GB

1s -la /dev/sdb

brw-rw----. 1 root disk 8, 16 May 30 14:08 /dev/sdb
virsh vol-list guest_images_disk

Name Path

7. Optional: Remove the temporary configuration file

Remove the temporary storage pool XML configuration file if it is not needed anymore.

rm ~/guest_images_disk.xml
A disk based storage pool is how available.

16.1.2. Deleting a storage pool using virsh
The following demonstrates how to delete a storage pool using virsh:

1. To avoid any issues with other guest virtual machines using the same pool, it is best to stop the
storage pool and release any resources in use by it.

virsh pool-destroy guest_images_disk

2. Remove the storage pool's definition

virsh pool-undefine guest_images_disk

16.2. Partition-based storage pools

This section covers using a pre-formatted block device, a partition, as a storage pool.

For the following examples, a host physical machine has a 500GB hard drive (/dev/sdc) partitioned into
one 500GB, ext4 formatted partition (/dev/sdc1). We set up a storage pool for it using the procedure
below.

16.2.1. Creating a partition-based storage pool using virt-manager

This procedure creates a new storage pool using a partition of a storage device.

Procedure 16.1. Creating a partition-based storage pool with virt-manager
1. Open the storage pool settings

a. Inthe virt-manager graphical interface, select the host physical machine from the main
window.

114

Chapter 16. Storage pools

Open the Edit menu and select Connection Details

Virtual Machine Manager -

v CPU usage

File Edit View Help
E—-J Connection Details
Virtual Machine Details
MNam
Delete
- Preferences
—_— Shut off

Figure 16.1. Connection Details

b. Click on the Storage tab of the Connection Details window.

File

default

Filesystem Directory

Overview Virtual Networks Ilr Storage 1II Network Interfaces

default: 1.69 GB Free/ 1741 GBin Use

Pool Type: Filesystem Directory

Location: fvar/lib/libvirt/images
State: X Active
Autostart: # On Boot

Volumes kj;.'

Volumes v Size Format Used By
test-guestnew.img &.00 GBE raw
test-vm.img 5.00GB raw test-vm

+[[@©

Mew Volume || Delete

Volume

Apply

Figure 16.2. Storage tab

2. Create the new storage pool

a. Add a new pool (part 1)

Press the + button (the add pool button). The Add a New Storage Pool wizard appears.

Choose a Name for the storage pool. This example uses the name guest_images_fs. Change
the Type to fs: Pre-Formatted Block Device.

115

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Add a New Storage Fool

7 Add Storage Pool Step 1 of 2

Specify a storage location to be later split into virtual machine storage.

Mame: ‘ guest_images_fs|

| |
Type: | fs: Pre-Formatted Block Device v

|
Cancel Back Forward

Figure 16.3. Storage pool name and type

Press the Forward button to continue.

b. Add a new pool (part 2)

Change the Target Path, Format, and Source Path fields.

116

Chapter 16. Storage pools

Add a New Storage Fool

|1 Add Storage Pool Step 2 of 2

Specify a storage location to be later split into virtual machine storage.

Target Path: | /var/lib/libvirt/images/quest_i ~ | Browse

Format: | extd W

Source Path: ‘fdevfsdcl W Browse

Cancel Baclk Finish

Figure 16.4. Storage pool path and format

Target Path

Enter the location to mount the source device for the storage pool in the Target
Path field. If the location does not already exist, virt-manager will create the
directory.

Format

Select a format from the Format list. The device is formatted with the selected
format.

This example uses the ext4 file system, the default Red Hat Enterprise Linux file
system.

Source Path
Enter the device in the Source Path field.
This example uses the /dev/sdc1 device.
Verify the details and press the Finish button to create the storage pool.
3. Verify the new storage pool

The new storage pool appears in the storage list on the left after a few seconds. Verify the size is
reported as expected, 458.20 GB Free in this example. Verify the State field reports the new

storage pool as Active.

Select the storage pool. In the Autostart field, click the On Boot checkbox. This will make sure
the storage device starts whenever the 1ibvir td service starts.

117

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

File

Overview | Virtual Networks | Storage

o, default guest_images _fs: 458.20 GB Free/197.91 MB In Use
Filesystem Directory Pool Type: Pre-Formatted Block Device
0% Location: fguest_images
State: (3 Active
Autostart: On Boot
Volumes

Volumes v Size Format

|¥| ‘§| New Volume
Figure 16.5. Storage list confirmation

The storage pool is now created, close the Connection Details window.

16.2.2. Deleting a storage pool using virt-manager
This procedure demonstrates how to delete a storage pool.

1. To avoid any issues with other guest virtual machines using the same pool, it is best to stop the
storage pool and release any resources in use by it. To do this, select the storage pool you want to
stop and click the red X icon at the bottom of the Storage window.

118

Chapter 16. Storage pools

File
| 1
Overview | Virtual Networks | Storage | Metwork Interfaces

default: 1.69 GB Free/ 17.41 GBIn Use
Fllesystem Directory Pool Type: Filesystem Directory

Location: Jvar/lib/libvirt/images

State: K3 pctive
Autostart: & On Boot
Volumes [5

Volumes v Size Format Used By
test-guestnew.img &.00 GB raw

test-vm.img 5.00 GB raw test-vm

%+ @ Mew Volume

Figure 16.6. Stop Icon

2. Delete the storage pool by clicking the Trash can icon. This icon is only enabled if you stop the
storage pool first.

16.2.3. Creating a partition-based storage pool using virsh

This section covers creating a partition-based storage pool with the virsh command.

Do not use this procedure to assign an entire disk as a storage pool (for example, /dev/sdb).
Guests should not be given write access to whole disks or block devices. Only use this method to
assign partitions (for example, /dev/sdb1) to storage pools.

Procedure 16.2. Creating pre-formatted block device storage pools using virsh
1. Create the storage pool definition

Use the virsh pool-define-as command to create a new storage pool definition. There are three
options that must be provided to define a pre-formatted disk as a storage pool:

Partition name

The name parameter determines the name of the storage pool. This example uses the
name guest _images_fs in the example below.

119

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

device

The device parameter with the path attribute specifies the device path of the storage
device. This example uses the partition /dev/sdc1.

mountpoint

The mountpoint on the local file system where the formatted device will be mounted. If the
mount point directory does not exist, the virsh command can create the directory.

The directory /guest_images is used in this example.

virsh pool-define-as guest_images_fs fs - - /dev/sdcl - "/guest_images"
Pool guest_images_fs defined

The new pool is now created.
2. Verify the new pool

List the present storage pools.

virsh pool-list --all

Name State Autostart
default active yes
guest_images_fs inactive no

3. Create the mount point

Use the virsh pool-build command to create a mount point for a pre-formatted file system
storage pool.

virsh pool-build guest_images_fs

Pool guest_images_fs built

1ls -la /guest_images

total 8

drwx------ . 2 root root 4096 May 31 19:38
dr-xr-xr-x. 25 root root 4096 May 31 19:38
virsh pool-list --all

Name State Autostart
default active yes
guest_images_fs inactive no

4. Start the storage pool

Use the virsh pool-start command to mount the file system onto the mount point and make the
pool available for use.

virsh pool-start guest_images_fs
Pool guest_images_fs started
virsh pool-list --all

Name State Autostart
default active yes
guest_images_fs active no

5. Turn on autostart

120

Chapter 16. Storage pools

By default, a storage pool is defined with virsh is not set to automatically start each time
libvirtd starts. Turn on automatic start with the virsh pool-autostart command. The
storage pool is now automatically started each time 1ibvir td starts.

virsh pool-autostart guest_images_fs
Pool guest_images_fs marked as autostarted

virsh pool-list --all

Name State Autostart
default active yes
guest_images_fs active yes

6. Verify the storage pool

Verify the storage pool was created correctly, the sizes reported are as expected, and the state is
reported as running. Verify there is a "lost+found” directory in the mount point on the file system,
indicating the device is mounted.

virsh pool-info guest_images_fs

Name: guest_images_fs

UUID: C7466869-e82a-a66c-2187-dc9d6f0877d0
State: running

Persistent: yes

Autostart: yes

Capacity: 458.39 GB

Allocation: 197.91 MB

Available: 458.20 GB

mount | grep /guest_images

/dev/sdcl on /guest_images type extd (rw)

1ls -la /guest_images

total 24

drwxr-xr-x. 3 root root 4096 May 31 19:47
dr-xr-xr-x. 25 root root 4096 May 31 19:38
drwx------ . 2 root root 16384 May 31 14:18 lost+found

16.2.4. Deleting a storage pool using virsh

1. To avoid any issues with other guest virtual machines using the same pool, it is best to stop the
storage pool and release any resources in use by it.

virsh pool-destroy guest_images_disk

2. Optionally, if you want to remove the directory where the storage pool resides use the following
command:

virsh pool-delete guest_images_disk

3. Remove the storage pool's definition

virsh pool-undefine guest_images_disk

16.3. Directory-based storage pools

This section covers storing guest virtual machines in a directory on the host physical machine.

121

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide
Directory-based storage pools can be created with virt-manager or the virsh command line tools.

16.3.1. Creating a directory-based storage pool with virt-manager
1. Create the local directory
a. Optional: Create a new directory for the storage pool

Create the directory on the host physical machine for the storage pool. This example uses a
directory named /guest virtual machine_images.

mkdir /guest_images

b. Set directory ownership

Change the user and group ownership of the directory. The directory must be owned by the
root user.

chown root:root /guest_images

c. Set directory permissions

Change the file permissions of the directory.

chmod 700 /guest_images

d. Verify the changes

Verify the permissions were modified. The output shows a correctly configured empty
directory.

ls -la /guest_images

total 8

drwx------ . 2 root root 4096 May 28 13:57
dr-xr-xr-x. 26 root root 4096 May 28 13:57

2. Configure SELinux file contexts

Configure the correct SELinux context for the new directory. Note that the name of the pool and the
directory do not have to match. However, when you shutdown the guest virtual machine, libvirt has to
set the context back to a default value. The context of the directory determines what this default
value is. It is worth explicitly labeling the directory virt_image_t, so that when the guest virtual
machine is shutdown, the images get labeled 'virt_image_t' and are thus isolated from other
processes running on the host physical machine.

semanage fcontext -a -t virt_image_t '/guest_images(/.*)?'
restorecon -R /guest_images

3. Open the storage pool settings

a. Inthe virt-manager graphical interface, select the host physical machine from the main
window.

Open the Edit menu and select Connection Details

122

Chapter 16. Storage pools

v | CPU usage

Preferences
VM-RHEL
Running

= localhost (QEMU)

VM-RHEL
Running

= myhypervisor (QEMU}

VM-RHEL
Running

Figure 16.7. Connection details window

b. Click on the Storage tab of the Connection Details window.

File

Overview Virtual Networks IIr Storage 1II Network Interfaces

default default: 1.69 GBE Free/ 1741 GBIn Use

Filesystem Directory

Pool Type: Filesystem Directory
Location: /var/lib/libvirt/images

State: B3 Active

Autostart: @ On Boot

Volumes l_Lg'

Volumes v Size Format Used By
test-guestnew.img &00 GBE raw
test-vm.img 5.00GB raw test-vm
+ | !) (’j) Mew Volume | | Delete Volume || Apply

Figure 16.8. Storage tab

4. Create the new storage pool
a. Add a new pool (part 1)
Press the + button (the add pool button). The Add a New Storage Pool wizard appears.
Choose a Name for the storage pool. This example uses the name guest_images. Change

the Type todir: Filesystem Directory.

123

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

1 Add Storage Pool Step 1 of 2
Specify a storage location to be later split into virtual machine storage.
Name: [guest_images_did] Name: Name for the
storage object.
Type: |dir: Filesystem Directory - |
Cancel Forward

Figure 16.9. Name the storage pool

Press the Forward button to continue.
b. Add a new pool (part 2)
Change the Target Path field. For example, /guest_images.
Verify the details and press the Finish button to create the storage pool.
5. Verify the new storage pool

The new storage pool appears in the storage list on the left after a few seconds. Verify the size is
reported as expected, 36.41 GB Free in this example. Verify the State field reports the new storage

pool as Active.

Select the storage pool. In the Autostar t field, confirm that the On Boot checkbox is checked.
This will make sure the storage pool starts whenever the 1ibvirtd service starts.

124

Chapter 16. Storage pools

FEile

Overview | Virtual Networks | Storage

5, default guest_images_dir: 36.41 GB Free/12.80 GBIn Use
Filesystemn Directory Pool Type: Filesystem Directory
26% Location: fguest_images
State: (3 Active
Autostart: On Boot
Volumes

Volumes v Size Format

| E ‘ |°| New Volume
Figure 16.10. Verify the storage pool information

The storage pool is now created, close the Connection Details window.

16.3.2. Deleting a storage pool using virt-manager

This procedure demonstrates how to delete a storage pool.

1. To avoid any issues with other guest virtual machines using the same pool, it is best to stop the
storage pool and release any resources in use by it. To do this, select the storage pool you want to
stop and click the red X icon at the bottom of the Storage window.

125

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

File
| |
Overview | Virtual Networks | Storage | Metwork Interfaces

default: 1.69 GB Free/17.41 GBIn Use
Fllesystem Directory Pool Type: Filesystem Directory

Location: Jvar/lib/libvirt/images

State: K3 pctive
Autostart: [On Boot

Volumes (5

Volumes v Size Format Used By

test-guestnew.img &.00 GB raw

test-vm.img 5.00 GB raw test-vm

% @ MNew Volume

h— L

Figure 16.11. Stop Icon

2. Delete the storage pool by clicking the Trash can icon. This icon is only enabled if you stop the
storage pool first.

16.3.3. Creating a directory-based storage pool with virsh

1. Create the storage pool definition

Use the virsh pool-define-as command to define a new storage pool. There are two options
required for creating directory-based storage pools:

The name of the storage pool.

This example uses the name guest_images. All further virsh commands used in this example
use this name.

The path to a file system directory for storing guest image files. If this directory does not exist,
virsh will create it.

This example uses the /guest_images directory.

virsh pool-define-as guest_images dir - - - - "/guest_images"
Pool guest_images defined

2. Verify the storage pool is listed

Verify the storage pool object is created correctly and the state reports it as inactive.

virsh pool-list --all
Name State Autostart

126

default active yes
guest_images inactive no

3. Create the local directory

Use the virsh pool-build command to build the directory-based storage pool for the directory
guest_images (for example), as shown:

virsh pool-build guest_images

Pool guest_images built

1ls -la /guest_images

total 8

drwx------ . 2 root root 4096 May 30 02:44
dr-xr-xr-x. 26 root root 4096 May 30 02:44
virsh pool-list --all

Name State Autostart
default active yes
guest_images inactive no

4. Start the storage pool

Use the virsh command pool-start to enable a directory storage pool, thereby allowing allowing
volumes of the pool to be used as guest disk images.

virsh pool-start guest_images
Pool guest_images started
virsh pool-list --all

Name State Autostart
default active yes
guest_images active no

5. Turn on autostart

Turn on autostart for the storage pool. Autostart configures the 1ibvir td service to start the
storage pool when the service starts.

virsh pool-autostart guest_images
Pool guest_images marked as autostarted
virsh pool-list --all

Name State Autostart
default active yes
guest_images active yes

6. Verify the storage pool configuration

Verify the storage pool was created correctly, the size is reported correctly, and the state is reported
as running. If you want the pool to be accessible even if the guest virtual machine is not running,
make sure that Persistent is reported as yes. If you want the pool to start automatically when the
service starts, make sure that Autostart is reported as yes.

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

virsh pool-info guest_images

Name: guest_images

UUID: 779081bf-7a82-107b-2874-a19a9c51d24c
State: running

Persistent: yes

Autostart: yes

Capacity: 49.22 GB

Allocation: 12.80 GB

Available: 36.41 GB

1ls -la /guest_images

total 8

drwx------ . 2 root root 4096 May 30 02:44
dr-xr-xr-x. 26 root root 4096 May 30 02:44
#

A directory-based storage pool is how available.

16.3.4. Deleting a storage pool using virsh
The following demonstrates how to delete a storage pool using virsh:

1. To avoid any issues with other guest virtual machines using the same pool, it is best to stop the
storage pool and release any resources in use by it.

virsh pool-destroy guest_images_disk

2. Optionally, if you want to remove the directory where the storage pool resides use the following
command:

virsh pool-delete guest_images_disk

3. Remove the storage pool's definition

virsh pool-undefine guest_images_disk

16.4. LVM-based storage pools
This chapter covers using LVM volume groups as storage pools.

LVM-based storage groups provide the full flexibility of LVM.

_

Thin provisioning is currently not possible with LVM based storage pools.

_

Please refer to the Red Hat Enterprise Linux Storage Administration Guide for more details on LVM.

Chapter 16. Storage pools

LVM-based storage pools require a full disk partition. If activating a new partition/device with these
procedures, the partition will be formatted and all data will be erased. If using the host's existing
Volume Group (VG) nothing will be erased. It is recommended to back up the storage device before
commencing the following procedure.

16.4.1. Creating an LVM-based storage pool with virt-manager

LVM-based storage pools can use existing LVM volume groups or create new LVM volume groups on a
blank partition.

1. Optional: Create new partition for LVM volumes

These steps describe how to create a new partition and LVM volume group on a new hard disk
drive.

This procedure will remove all data from the selected storage device.

a. Create a new partition

Use the fdisk command to create a new disk partition from the command line. The following
example creates a new partition that uses the entire disk on the storage device /dev/sdb.

fdisk /dev/sdb
Command (m for help):

Press nfor a new patrtition.

b. Press p for a primary partition.

Command action
e extended
p primary partition (1-4)

c. Choose an available partition number. In this example the first partition is chosen by entering
1.

Partition number (1-4): 1
d. Enter the default first cylinder by pressing Enter.
First cylinder (1-400, default 1):

e. Select the size of the partition. In this example the entire disk is allocated by pressing Enter.

Last cylinder or +size or +sizeM or +sizeK (2-400, default 400):

f. Set the type of partition by pressing t.

129

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Command (m for help): t

g. Choose the partition you created in the previous steps. In this example, the partition number is
1.

Partition number (1-4): 1
h. Enter 8e for a Linux LVM partition.
Hex code (type L to list codes): 8e

i. write changes to disk and quit.

Command (m for help): w
Command (m for help): q

j- Create a new LVM volume group

Create a new LVM volume group with the vgcreate command. This example creates a
volume group named guest_images_Ilvm.

vgcreate guest_images_lvm /dev/sdbl
Physical volume "/dev/vdbl1" successfully created
Volume group "guest_images_lvm" successfully created

The new LVM volume group, guest_images_Ivm, can now be used for an LVM-based storage pool.
2. Open the storage pool settings

a. Inthe virt-manager graphical interface, select the host from the main window.

Open the Edit menu and select Connection Details

Virtual Machine Manager - | O

File Edit View Help

o
am

N

v CPU usage

Delete

Preferences

Shutoff

Figure 16.12. Connection details

b. Click on the Storage tab.

130

Chapter 16. Storage pools

File

Overview Virtual Netwaorks Ilr Storage 1lI Network Interfaces

default default: 1.69 GBE Free/ 1741 GBIn Use

Filesystem Directory

Pool Type: Filesystem Directory
Location: fvar/lib/libvirtfimages
State: 3 Active

Autostart: ¥ On Boot

Volumes _‘5'

Volumes v Size Format Used By
test-guestnew.img &00 GB raw
test-vm.img 5.00GB raw test-vm
= ® @ New Volume | | Delete Volume || Apply

Figure 16.13. Storage tab

3. Create the new storage pool

a. Start the Wizard

Press the + button (the add pool button). The Add a New Storage Pool wizard appears.

Choose a Name for the storage pool. We use guest_images_Ivm for this example. Then
change the Type to logical: LVM Volume Group, and

131

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

132

- Add Storage Pool Step 1 of 2
Specify a storage location to be later split into virtual machine storage.
Name: [guest_imaQES_Ium] Name: Name for the
storage object.
Type: | logical: LVM Volume Group - |
Cancel Forward

Figure 16.14. Add LVM storage pool

Press the Forward button to continue.

. Add a new pool (part 2)

Change the Target Path field. This example uses /guest_images.

Now fill in the Target Path and Source Path fields, then tick the Build Pool check
box.

Use the Target Path field to either select an existing LVM volume group or as the name
for a new volume group. The default format is /dev/storage pool_name.

This example uses a new volume group named /dev/guest_images_Ivm.

The Source Path field is optional if an existing LVM volume group is used in the
Target Path.

For new LVM volume groups, input the location of a storage device in the Source Path
field. This example uses a blank partition /dev/sdc.

The Build Pool checkbox instructs virt-manager to create a new LVM volume
group. If you are using an existing volume group you should not select the Build Pool
checkbox.

This example is using a blank partition to create a new volume group so the Build Pool
checkbox must be selected.

Chapter 16. Storage pools

| Add Storage Pool Step 2 of 2
Specify a storage location to be later split into virtual machine storage.
Target Path: [Edeufgueﬂ_images_lum v | |Browse| Build: Create a logical
volume group from
Source Path: [Edewmc 'Browse | the source device.
Build Pool:
Cancel | | Back | | Finish

Figure 16.15. Add target and source
Verify the details and press the Finish button format the LVM volume group and create the
storage pool.

c. Confirm the device to be formatted

A warning message appears.

_.f‘-\ Building a pool of this type will format the
A source device. Are you sure you want to 'build’
AR this pool?

Figure 16.16. Warning message
Press the Yes button to proceed to erase all data on the storage device and create the
storage pool.

4. Verify the new storage pool

The new storage pool will appear in the list on the left after a few seconds. Verify the details are
what you expect, 465.76 GB Free in our example. Also verify the State field reports the new

storage pool as Active.

It is generally a good idea to have the Autostart check box enabled, to ensure the storage pool
starts automatically with libvirtd.

133

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

File
Overview Virtual Networks | Storage
»eo. default guest_images_lvm: 465.76 GB Free / 0.00 MB In Use
Filesystem Directory Pool Type: LVM Volume Group

Location: /dev/guest_images lvm
State: 2 Active
Autostart: & On Boot
Volumes

Volumes v Size Format

. o New Volume

Figure 16.17. Confirm LVM storage pool details

Close the Host Details dialog, as the task is now complete.

16.4.2. Deleting a storage pool using virt-manager

This procedure demonstrates how to delete a storage pool.

1. To avoid any issues with other guest virtual machines using the same pool, it is best to stop the
storage pool and release any resources in use by it. To do this, select the storage pool you want to
stop and click the red X icon at the bottom of the Storage window.

134

Chapter 16. Storage pools

File

1
Overview | Virtual Networks | Storage | Network Interfaces

default: 1.69 GB Free/ 17.41 GBIn Use
Fllesystem Directory Pool Type: Filesystem Directory

Location: Jvar/lib/libvirt/images

State: K3 pctive

Autostart: & On Boot

=

Veolumes |5

Volumes v Size Format Used By
test-guestnew.img &.00 GB raw

test-vm.img 5.00 GB raw test-vm

< 9 Mew Volume

h— L

Figure 16.18. Stop Icon

2. Delete the storage pool by clicking the Trash can icon. This icon is only enabled if you stop the
storage pool first.

16.4.3. Creating an LVM-based storage pool with virsh

This section outlines the steps required to create an LVM-based storage pool with the virsh command. It
uses the example of a pool named guest_images_lvm from a single drive (/dev/sdc). This is only an
example and your settings should be substituted as appropriate.

Procedure 16.3. Creating an LVM-based storage pool with virsh

1. Define the pool name guest_images_lvm.

virsh pool-define-as guest_images_lvm logical - - /dev/sdc libvirt_1lvm \
/dev/1ibvirt_lvm
Pool guest_images_lvm defined

2. Build the pool according to the specified name. If you are using an already existing volume group,
skip this step.

virsh pool-build guest_images_lvm

Pool guest_images_lvm built

3. Initialize the new pool.

135

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

virsh pool-start guest_images_lvm

Pool guest_images_lvm started

4. Show the volume group information with the vgs command.

vgs
VG #PV #LV #SN Attr VSize VFree
libvirt_1lvm 1 0 ©@ wz--n- 465.76g 465.769

5. Set the pool to start automatically.

virsh pool-autostart guest_images_lvm
Pool guest_images_lvm marked as autostarted

6. List the available pools with the virsh command.

virsh pool-list --all

Name State Autostart
default active yes
guest_images_lvm active yes

7. The following commands demonstrate the creation of three volumes (volumel, volume2 and
volume3) within this pool.

virsh vol-create-as guest_images_lvm volumel 8G
Vol volumel created

virsh vol-create-as guest_images_lvm volume2 8G
Vol volume2 created

virsh vol-create-as guest_images_lvm volume3 8G
Vol volume3 created

8. List the available volumes in this pool with the virsh command.

virsh vol-list guest_images_1lvm

Name Path

volumel /dev/1libvirt_lvm/volumel
volume?2 /dev/1libvirt_lvm/volume?2
volume3 /dev/1libvirt_lvm/volume3

9. The following two commands (1vscan and 1vs) display further information about the newly created

volumes.
lvscan
ACTIVE '/dev/1libvirt_lvm/volumel' [8.00 GiB] inherit
ACTIVE '/dev/1libvirt_lvm/volume2' [8.00 GiB] inherit
ACTIVE '/dev/1libvirt_lvm/volume3' [8.00 GiB] inherit
1lvs
LV VG Attr LSize Pool Origin Data% Move Log Copy%

136

Chapter 16. Storage pools

Convert

volumel libvirt_lvm -wi-a- 8.00g
volume2 libvirt_lvm -wi-a- 8.00g
volume3 1libvirt_lvm -wi-a- 8.00g

16.4.4. Deleting a storage pool using virsh
The following demonstrates how to delete a storage pool using virsh:

1. To avoid any issues with other guests using the same pool, it is best to stop the storage pool and
release any resources in use by it.

virsh pool-destroy guest_images_disk

2. Optionally, if you want to remove the directory where the storage pool resides use the following
command:

virsh pool-delete guest_images_disk

3. Remove the storage pool's definition

virsh pool-undefine guest_images_disk

16.5. iISCSl-based storage pools

This section covers using iSCSI-based devices to store guest virtual machines. This allows for more
flexible storage options as iscsi is a block storage device. The iscsi devices use an LIO target, which is a
multi-protocol SCSI target for Linux. In addition to iSCSI, LIO also supports Fibre Channel and Fibre
Channel over Ethernet (FCoE).

iISCSI (Internet Small Computer System Interface) is a network protocol for sharing storage devices. iSCSI
connects initiators (storage clients) to targets (storage servers) using SCSI instructions over the IP layer.

16.5.1. Configuring a software iSCSI target

Introduced in Red Hat Enterprise Linux 7, scsi targets are created with a new package, targetcli T he old
package scsi-target-utils is still available via EPEL, but the directions have been changed to reflect the new
package targetcli, which provides a command set for creating software-backed iSCSI targets.

Procedure 16.4. Creating an iSCSI target
1. Install the required package

Install the targetcli package and all dependencies

yum install targetcli

2. Launch targetcli

Start the command set by typing sudo targetcli

137

Create storage objects
You will create three storage objects, as follows:

a. Create a block storage object, by changing into the backstores/block directory and
running the following command:

create [block-name][filepath]

, or for example

create blockl dev=/dev/vdb1

b. Create a fileio object, by changing into the fileio directory and running the following
command:

create [fileioname] [imagename] [image-size]

, or for example

create fileiol /foo.img 50M

c. Create a ramdisk object by changing into the ramdisk directory, and running the following
command:

create [ramdiskname] [size]

, or for example

create ramdiskl 1M

d. Remember the names of the disks you created in this step, you will need them later.
4. Navigate to the correct directory

Using the commands in targetcli, change into the iscsi directory

5. Create iSCSI target
Create an iSCSl target in two ways:

a. create with no additional parameters, automatically generates the IQN.

b. create iqn.iqn.2010-05.com.example.serverl:iscsirhel7guest creates a
specific ign on a specific server

Define the TPG

Each iscsi target needs to have a target portal group or TPG defined. In this example,the default
tpgl will be used, but you can add additional tpgs as well. As this is the most common configuration,
the example will configure tpgl. To do this, make sure you are still in then /iscsi directory and

change to the /tpg1 directory.

/iscsi>ign.iqn.2010-05.com.example.serverl:iscsirhel7guest/tpgl

7. Define the portal IP address

In order to export the block storage over iSCSI, three things need to be configured: portals, luns, and
acls. The first thing that needs to be configured is the portal which includes the IP address and TCP
port that the target will listen on and that the initiators will connect to. iISCSI uses port 3260, which is
the port that will be configured by default. To connect to this port, run the command

portals /create

from the /tpg directory. This command will have all available IP addresses listen to this port. To
specify that only one specific IP address will listen on the port, run portals /create
[ipaddress], and the specified IP address will be configured to listen to port 3260.

8. Configure the LUNs and assigh the storage objects to the fabric

This step uses the storage devices you created in Step 3. Make sure you change into the 1luns
directory for the TPG you created in Step 6, or iscsi>iqn.iqn.2010-
05.com.example.serverl:iscsirhel7guest, for example.

a. Assign the first lun to the ramdisk as follows:

create /backstores/ramdisk/ramdiski1

b. Assign the second lun to the block disk as follows:

create /backstores/block/blockil

c. Assign the third lun to the fileio disk as follows:

create /backstores/fileio/filel

d. Listing the resulting luns should resemble this screen output:

/iscsi/iqgn.20...csirhel7guest/tpgl 1ls

[enabled, auth]

0_

[ramdisk/ramdiski]
0 T I o
[block/blockl (dev/vdb1)]

[fileio/filel (foo.img)]
0_
0 g = T
..[1 Portal]
o- IP-
ADDRESS 13260 . . ottt
....[OK]

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

9. Creating ACLs for each initiator

This step allows for the creation of authentication when the initiator connects, and it also allows for
restriction of specified luns to specified initiators. Both targets and initiators have unique names.
iISCSl initiators use an IQN.

a. Change to the acls directory

b. Run the command create [iqn] or

create ign.2010-05.com.example.fo00:888

Procedure 16.5. Optional steps
1. Create LVM volumes

LVM volumes are useful for iSCSI backing images. LVM snapshots and re-sizing can be beneficial
for guest virtual machines. This example creates an LVM image named virtimagel on a new volume
group named virtstore on a RAID5 array for hosting guest virtual machines with iSCSI.

a. Create the RAID array

Creating software RAID5 arrays is covered by the Red Hat Enterprise Linux Deployment
Guide.

b. Create the LVM volume group

Create a logical volume group named virtstore with the vgcreate command.
vgcreate virtstore /dev/mdl

c. Create a LVM logical volume

Create a logical volume group named virtimagel on the virtstore volume group with a size of
20GB using the 1vcreate command.

lvcreate **size 20G -n virtimagel virtstore

The new logical volume, virtimagel, is ready to use for iISCSI.
2. Create file-based images

File-based storage is sufficient for testing but is not recommended for production environments or
any significant /O activity. This optional procedure creates a file based imaged named
virtimage2.img for an iSCSI target.

a. Create a new directory for the image

Create a new directory to store the image. The directory must have the correct SELinux
contexts.

mkdir -p /etc/target/targetd.yamlvirtualization

3. Optional: Test discovery

140

Chapter 16. Storage pools

Test whether the new iSCSI device is discoverable.

iscsiadm --mode discovery --type sendtargets --portal serverl.example.com
127.0.0.1:3260,1 iqn.2010-05.com.example.serverl:iscsirhel7guest

4. Optional: Test attaching the device

Attach the new device (ign.2010-05.com.example.serverl:iscsirhel7guest) to determine whether the
device can be attached.

iscsiadm -d2 -m node --login
scsiadm: Max file limits 1024 1024

Logging in to [iface: default, target: iqn.2010-
05.com.example.serverl:iscsirhel7guest, portal: 10.0.0.1,3260]

Login to [iface: default, target: ign.2010-
05.com.example.serverl:iscsirhel7guest, portal: 10.0.0.1,3260] successful.

5. Detach the device.

iscsiadm -d2 -m node --logout
scsiadm: Max file limits 1024 1024

Logging out of session [sid: 2, target: ign.2010-
05.com.example.serverl:iscsirhel7guest, portal: 10.0.0.1, 3260

Logout of [sid: 2, target: iqn.2010-05.com.example.serverl:iscsirhel7guest,
portal: 10.0.0.1,3260] successful.

An iSCSI device is now ready to use for virtualization.

16.5.2. Securing an iSCSI storage pool

There is an option that will allow the addition of a username and password parameters for an iSCSI
storage pool. This is done by augmenting the XML for the storage pool using the virsh edit
domainname command to be similar as the example shown in Figure 29.84, “Source element option 1”

16.5.3. Adding an iSCSI target to virt-manager

This procedure covers creating a storage pool with an iSCSl targetin virt-manager.

Procedure 16.6. Adding an iSCSI device to virt-manager
1. Open the host physical machine's storage tab
Open the Storage tab in the Host Details window.

a. Openvirt-manager.

b. Select a host physical machine from the main virt-manager window. Click Edit menu and
select Connection Details.

141

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Virtual
File Edit View Help
E—-J Connection Details
Virtual Machine Details
Mam
Delete
- Preferences

Shutoff

|_E_I

Figure 16.19. Connection details

c. Click on the Storage tab.

File

Machine Manager

L

CPU usage

Ilr Storage 1I|

Metwork Interfaces '.I

I.' Overview I.' Virtual Networks

default:

default

Filesystem Directory

Fool Type:
Location:

State:

Autostart:

Volumes

1.69 GB Free/ 17.41 GB In Use
Filesystem Directory
fvar/lib/libvirt/images

3 Active

% On Boot

<l

Volumes

test-vm.img

v Size Format Used By

test-guestnew.img &00 GBE raw

500 GE raw test-vm

(¢ [F @[®]

| | |
| Mew Volume | Delete Volume | Apply

Figure 16.20. Storage menu

2. Add a new pool (part 1)

142

Press the + button (the add pool button). The Add

a New Storage Pool wizard appears.

Chapter 16. Storage pools

| Add Storage Pool Step 1 of 2
Specify a storage location to be later split into virtual machine storage.
Name: [iscsirhel Bguest] Type: Storage device
type the pool will
Type: | iscsi: iSCSI Target > | represent.
Cancel Forward

Figure 16.21. Add an iscsi storage pool name and type

Choose a name for the storage pool, change the Type to iscsi, and press Forward to continue.

. Add a new pool (part 2)

You will need the information you used in Section 16.5, “iISCSI-based storage pools” and Step 6 to
complete the fields in this menu.

a.

Enter the iISCSI source and target. The Format option is not available as formatting is
handled by the guest virtual machines. It is not advised to edit the Target Path. The default
target path value, /dev/disk/by-path/, adds the drive path to that directory. The target
path should be the same on all host physical machines for migration.

Enter the hostname or IP address of the iISCSI target. This example uses
hostl.example.com.

In the Source Pathfield, enter the iISCSI target IQN. If you look at Step 6 in Section 16.5,

“ISCSI-based storage pools”, this is the information you added in the
/etc/target/targets.conf file. This example uses iqn.2010-

05.com.example.serverl:iscsirhel7guest.

. Check the IQN checkbox to enter the IQN for the initiator. This example uses iqn.2010-

05.com.example.hostl:iscsirhel?.

Click Finish to create the new storage pool.

143

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

| Add Storage Pool Step 2 of 2

Specify a storage location to be later split into virtual machine storage.

Target Path: [fdeufdiSk;by-path | B_mwse| Host: Name of the
host sharing the

Host Name: [hnstl.example.cnm|] storage.

Source Path: [it:|n.EGID-DS.CDm.exampIe.Se

IQN: [it:|n.2{}lﬂ-ﬂﬂ.cnm.example.hmtl:i5c5irh]

Cancel || Back || Finish

Figure 16.22. Create an iscsi storage pool

16.5.4. Deleting a storage pool using virt-manager
This procedure demonstrates how to delete a storage pool.

1. To avoid any issues with other guest virtual machines using the same pool, it is best to stop the
storage pool and release any resources in use by it. To do this, select the storage pool you want to
stop and click the red X icon at the bottom of the Storage window.

144

Chapter 16. Storage pools

File

1
Overview | Virtual Networks | Storage | Network Interfaces

default: 1.69 GB Free/ 17.41 GBIn Use
Fllesystem Directory Pool Type: Filesystem Directory

Location: Jvar/lib/libvirt/images

State: K3 pctive

Autostart: & On Boot

Volumes (5

Volumes v Size Format Used By
test-guestnew.img &.00 GB raw

test-vm.img 5.00 GB raw test-vm

< 9 Mew Volume

h— L

Figure 16.23. Stop Icon

2. Delete the storage pool by clicking the Trash can icon. This icon is only enabled if you stop the
storage pool first.

16.5.5. Creating an iSCSl-based storage pool with virsh
1. Use pool-define-as to define the pool from the command line

Storage pool definitions can be created with the virsh command line tool. Creating storage pools
with virsh is useful for systems administrators using scripts to create multiple storage pools.

The virsh pool-define-as command has several parameters which are accepted in the
following format:

virsh pool-define-as name type source-host source-path source-dev source-name
target

The parameters are explained as follows:
type
defines this pool as a particular type, iscsi for example
name

must be unique and sets the name for the storage pool
source-host and source-path

the hostname and iSCSI IQN respectively

145

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

source-dev and source-name

these parameters are not required for iISCSI-based pools, use a - character to leave the
field blank.

target
defines the location for mounting the iSCSI device on the host physical machine

The example below creates the same iSCSI-based storage pool as the previous step.

virsh pool-define-as --name scsirhel7guest --type iscsi \
--source-host serverl.example.com \
--source-dev ign.2010-05.com.example.serverl:iscsirhel7guest
--target /dev/disk/by-path

Pool iscsirhel7guest defined

2. Verify the storage pool is listed

Verify the storage pool object is created correctly and the state reports as inactive.

virsh pool-list --all

Name State Autostart
default active yes
iscsirhel7guest inactive no

3. Optional: Establish a direct connection to the iSCSI storage pool

This step is optional but it allows you to establish a direct connection to the iSCSI storage pool. By
default this is enabled, but if the connection is to the host physical machine (and not direct to the
network) you can change it back by editing the domain XML for the guest virtual machine to reflect
this example:

<disk type='volume' device='disk'>
<driver name='gemu'/>
<source pool='iscsi' volume='unit:0:0:1' mode='direct'/>
<!--you can change mode to mode='host' for a connection to the host
physical machine-->
<target dev='vda' bus='virtio'/>
<address type='pci' domain='Ox0000' bus='0x00' slot='0x06'
function='0x0"'/>
</disk>

Figure 16.24. Disk type element XML example

4. Start the storage pool

146

Chapter 16. Storage pools

Use the virsh command pool-start for this. pool-start enables a directory storage pool,
allowing it to be used for volumes and guest virtual machines.

virsh pool-start guest_images_disk
Pool guest_images_disk started
virsh pool-list --all

Name State Autostart
default active yes
iscsirhel7guest active no

5. Turn on autostart

Turn on autostart for the storage pool. Autostart configures the 1ibvir td service to start the
storage pool when the service starts.

virsh pool-autostart iscsirhel7guest
Pool iscsirhel7guest marked as autostarted

Verify that the iscsirhel7guest pool has autostart set:

virsh pool-list --all

Name State Autostart
default active yes
iscsirhel7guest active yes

6. Verify the storage pool configuration

Verify the storage pool was created correctly, the sizes reported correctly, and the state reports as
running.

virsh pool-info iscsirhel7guest

Name: iscsirhel7guest

UuID: afcc5367-6770-e151-bcbh3-847bc36c5e28
State: running

Persistent: unknown

Autostart: yes

Capacity: 100.31 GB

Allocation: 0.00

Available: 100.31 GB

An iSCSI-based storage pool is now available.

16.5.6. Deleting a storage pool using virsh
The following demonstrates how to delete a storage pool using virsh:

1. To avoid any issues with other guest virtual machines using the same pool, it is best to stop the
storage pool and release any resources in use by it.

virsh pool-destroy guest_images_disk

2. Remove the storage pool's definition

virsh pool-undefine guest_images_disk

147

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

16.6. NFS-based storage pools

This procedure covers creating a storage pool with a NFS mount point in virt-manager.

16.6.1. Creating a NFS-based storage pool with virt-manager
1. Open the host physical machine's storage tab

Open the Storage tab in the Host Details window.
a. Open virt-manager.

b. Select a host physical machine from the main virt-manager window. Click Edit menu and
select Connection Details.

Virtual Machine Manager - | O X

File Edit View Help

E—"J Connection Details .
Mam Delet v CPU usage
elete
. Preferences
— Shut off

Figure 16.25. Connection details

c. Click on the Storage tab.

148

Chapter 16. Storage pools

File

default

Filesystem Directory

'{’ Dverview] Virtual Networksj Storage \Net\m}rk Interfaces \

default: 1.69 GB Free/ 1741 GBIn Use
Pool Type: Filesystem Directory

Location: fvar/lib/libvirtfimages

State: 3 Active

Autostart: @ On Boot

Volumes |@‘

Volumes v Size Format Used By
test-guestnew.img 800 GBE raw
test-vm.img 5.00GB raw test-vm

= 8/0]

MNew VYolume |

Delete Volume

Apply \

Figure 16.26. Storage tab

2. Create a new pool (part 1)

Press the + button (the add pool button). The Add a New Storage Pool wizard appears.

 Add Storage Pool

Specify a storage location to be later split into virtual machine storage.

Name: [nfstrial

Type: [netfs: Network Exported Directory

)
2]

Step 1 of 2

Cancel l[Back l

[Forward

Figure 16.27. Add an NFS name and type

149

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Choose a name for the storage pool and press Forward to continue.
3. Create a new pool (part 2)

Enter the target path for the device, the hostname and the NFS share path. Set the Format option
to NFS or auto (to detect the type). The target path must be identical on all host physical machines
for migration.

Enter the hostname or IP address of the NFS server. This example uses serverl.example.com.

Enter the NFS path. This example uses /nfstrial.

| Add Storage Pool Step 2 of 2
Specify a storage location to be later split into virtual machine storage.
Target Path: [f‘ﬁ.farflibflibuirt,fimagesfnfStﬁa | B_mwse| Source path: Path on
the host that is being
Format: |nf5 2 shared.

Host Name: [sewerl.example.com]

Source Path: [f'nfstn'al

Cancel || Back || Finish

Figure 16.28. Create an NFS storage pool

Press Finish to create the new storage pool.

16.6.2. Deleting a storage pool using virt-manager
This procedure demonstrates how to delete a storage pool.

1. To avoid any issues with other guests using the same pool, it is best to stop the storage pool and
release any resources in use by it. To do this, select the storage pool you want to stop and click the
red X icon at the bottom of the Storage window.

150

Chapter 16. Storage pools

File

f T

I.' Overview I.' Virtual l\h!a1:'n'n'or|-chl Storage lU\.Ier!:\n.'orlnc Interfaces '.I

default: 1.69 GB Free/ 1741 GBin Use

=m Directory Pool Type: Filesystem Directory
Location: Jvar/lib/libvirt/images
State: 3 Active

Autostart: & On Boot

Veolumes ‘Lé:;._ﬂ|

Volumes v Size Format Used By
test-guestnew.img &.00 GB raw
test-vm.img 5.00 GB raw test-vm
| 4 l L l 'Q) l @ | Mew Volume H Delete Volume H Apply |

Figure 16.29. Stop Icon

2. Delete the storage pool by clicking the Trash can icon. This icon is only enabled if you stop the
storage pool first.

151

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Chapter 17. Storage Volumes

17.1. Introduction

Storage pools are divided into storage volumes. Storage volumes are an abstraction of physical partitions,
LVM logical volumes, file-based disk images and other storage types handled by libvirt. Storage volumes
are presented to guest virtual machines as local storage devices regardless of the underlying hardware.
Note the sections below do not contain all of the possible commands and arguments that virsh allows, for
more information refer to Section 26.12, “Storage Volume Commands”.

17.1.1. Referencing volumes

For more additional parameters and arguments, refer to Section 26.12.4, “Listing volume information”.

To reference a specific volume, three approaches are possible:
The name of the volume and the storage pool

A volume may be referred to by name, along with an identifier for the storage pool it belongs in.
On the virsh command line, this takes the form - -pool storage pool volume_name.

For example, a volume named firstimage in the guest_images pool.

virsh vol-info --pool guest_images firstimage

Name: firstimage
Type: block
Capacity: 20.00 GB
Allocation: 20.00 GB
virsh #

The full path to the storage on the host physical machine system

A volume may also be referred to by its full path on the file system. When using this approach, a
pool identifier does not need to be included.

For example, a volume named secondimage.img, visible to the host physical machine system as
/images/secondimage.img. The image can be referred to as /images/secondimage.img.

virsh vol-info /images/secondimage.img

Name: secondimage.1img
Type: file

Capacity: 20.00 GB
Allocation: 136.00 kB

The unique volume key

When a volume is first created in the virtualization system, a unique identifier is generated and
assigned to it. The unique identifier is termed the volume key. The format of this volume key
varies upon the storage used.

When used with block based storage such as LVM, the volume key may follow this format:

c3pKz4-gPVc-Xf7M-7WNM-WJc8-qSiz-mtvpGn

152

Chapter 17. Storage Volumes

When used with file based storage, the volume key may instead be a copy of the full path to the
volume storage.

/images/secondimage.img
For example, a volume with the volume key of Wivnf7-a4a3-Tlje-lJDa-9eak-PZBv-LoZuUr:

virsh vol-info Wlvnf7-a4a3-Tlje-1JDa-9eak-PZBv-LoZuUr

Name: firstimage
Type: block
Capacity: 20.00 GB
Allocation: 20.00 GB

virsh provides commands for converting between a volume name, volume path, or volume key:

vol-name

Returns the volume name when provided with a volume path or volume key.

virsh vol-name /dev/guest_images/firstimage
firstimage
virsh vol-name Wlvnf7-a4a3-Tlje-1JDa-9eak-PZBv-LoZuUr

vol-path

Returns the volume path when provided with a volume key, or a storage pool identifier and volume
name.

virsh vol-path Wlvnf7-a4a3-Tlje-1JDa-9eak-PZBv-LoZuUr
/dev/guest_images/firstimage

virsh vol-path --pool guest_images firstimage
/dev/guest_images/firstimage

The vol-key command

Returns the volume key when provided with a volume path, or a storage pool identifier and volume
name.

virsh vol-key /dev/guest_images/firstimage
Wlvnf7-a4a3-Tlje-1JDa-9eak-PZBv-LoZuUr

virsh vol-key --pool guest_images firstimage
Wlvnf7-a4a3-Tlje-1JDa-9eak-PZBv-LoZuUr

For more information refer to Section 26.12 .4, “Listing volume information”.

17.2. Creating volumes

This section shows how to create disk volumes inside a block based storage pool. In the example below,
the virsh vol-create-as command will create a storage volume with a specific size in GB within the

guest_images_disk storage pool. As this command is repeated per volume needed, three volumes are
created as shown in the example. For additional parameters and arguments refer to Section 26.12.1,

“Creating storage volumes”

153

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

virsh vol-create-as guest_images_disk volumel 8G
Vol volumel created

virsh vol-create-as guest_images_disk volume2 8G
Vol volume2 created

virsh vol-create-as guest_images_disk volume3 8G
Vol volume3 created

virsh vol-1list guest_images_disk

Name Path

volumel /dev/sdb1
volume?2 /dev/sdb2
volume3 /dev/sdb3

parted -s /dev/sdb print

Model: ATA ST3500418AS (scsi)

Disk /dev/sdb: 500GB

Sector size (logical/physical): 512B/512B
Partition Table: gpt

Number Start End Size File system Name Flags
2 17.4kB 8590MB 8590MB primary
3 8590MB 17.2GB 8590MB primary
1 21.5GB 30.1GB 8590MB primary

17.3. Cloning volumes

The new volume will be allocated from storage in the same storage pool as the volume being cloned. The
virsh vol-clone must have the --pool argument which dictates the name of the storage pool that

contains the volume to be cloned. The rest of the command names the volume to be cloned (volume3) and
the name of the new volume that was cloned (clonel). The virsh vol-1list command lists the volumes

that are present in the storage pool (guest_images_disk). For additional commands and arguments refer
to Section 26.12.1.2, “Cloning a storage volume”

virsh vol-clone --pool guest_images_disk volume3 clonel
Vol clonel cloned from volume3

virsh vol-list guest_images_disk

Name Path

volumel /dev/sdbl
volume?2 /dev/sdb2
volume3 /dev/sdb3
clonel /dev/sdb4

parted -s /dev/sdb print

Model: ATA ST3500418AS (scsi)

Disk /dev/sdb: 500GB

Sector size (logical/physical): 512B/512B
Partition Table: msdos

Number Start End Size File system Name Flags
1 4211MB 12.8GB 8595MB primary

154

Chapter 17. Storage Volumes

2 12.8GB 21.4GB 8595MB primary
3 21.4GB 30.0GB 8595MB primary
4 30.0GB 38.6GB 8595MB primary

17.4. Adding storage devices to guests

This section covers adding storage devices to a guest. Additional storage can only be added as needed.
The following types of storage is discussed in this section:

File based Storage. Refer to Section 17.4.1, “Adding file based storage to a guest”.

Block devices - including CD-ROM, DVD and floppy devices. Refer to Section 17.4.2, “Adding hard
drives and other block devices to a guest”.

SCSiI controllers and devices. If your host physical machine can accommodate it, up to 100 SCSI
controllers can be added to any guest virtual machine. Refer to Section 17.4.3, “Managing storage
controllers in a guest virtual machine”.

17.4.1. Adding file based storage to a guest

File-based storage is a collection of files that are stored on the host physical machines file system that act
as virtualized hard drives for guests. To add file-based storage, perform the following steps:

Procedure 17.1. Adding file-based storage

1. Create a storage file or use an existing file (such as an IMG file). Note that both of the following
commands create a 4GB file which can be used as additional storage for a guest:

Pre-allocated files are recommended for file-based storage images. Create a pre-allocated file
using the following dd command as shown:

dd if=/dev/zero of=/var/lib/libvirt/images/FileName.img bs=1G count=4

Alternatively, create a sparse file instead of a pre-allocated file. Sparse files are created much
faster and can be used for testing, but are not recommended for production environments due to
data integrity and performance issues.

dd if=/dev/zero of=/var/lib/libvirt/images/FileName.img bs=1G seek=4096
count=4

2. Create the additional storage by writing a <disk> element in a new file. In this example, this file will be
known as NewStorage.xml.

A <disk> element describes the source of the disk, and a device name for the virtual block device.

The device name should be unique across all devices in the guest, and identifies the bus on which

the guest will find the virtual block device. The following example defines a virtio block device whose
source is a file-based storage container named FileName.img:

<disk type='file' device='disk'>
<driver name='gemu' type='raw' cache='none'/>
<source file='/var/lib/libvirt/images/FileName.img'/>
<target dev='vdb'/>

155

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide
</disk>

Device names can also start with "hd" or "sd", identifying respectively an IDE and a SCSI disk. The
configuration file can also contain an <address> sub-element that specifies the position on the bus

for the new device. In the case of virtio block devices, this should be a PCl address. Omitting the
<address> sub-element lets libvirt locate and assign the next available PCI slot.

3. Attach the CD-ROM as follows:

<disk type='file' device='cdrom'>
<driver name='gemu' type='raw' cache='none'/>
<source file='/var/lib/libvirt/images/FileName.img'/>
<readonly/>
<target dev='hdc'/>
</disk >

4. Add the device defined in NewStorage .xm1l with your guest (Guest1):

virsh attach-device --config Guestl ~/NewStorage.xml

S

This change will only apply after the guest has been destroyed and restarted. In addition,
persistent devices can only be added to a persistent domain, that is a domain whose
configuration has been saved with virsh define command.

If the guest is running, and you want the new device to be added temporarily until the guest is
destroyed, omit the --config option:

virsh attach-device Guestl ~/NewStorage.xml

S

The virsh command allows for an attach-disk command that can set a limited number of
parameters with a simpler syntax and without the need to create an XML file. The attach-
disk command is used in a similar manner to the attach-device command mentioned
previously, as shown:

virsh attach-disk Guestl /var/lib/libvirt/images/FileName.img vdb --
cache none

Note that the virsh attach-disk command also accepts the - -config option.

5. Start the guest machine (if it is currently not running):

virsh start Guestl

156

Chapter 17. Storage Volumes

@

The following steps are Linux guest specific. Other operating systems handle new storage
devices in different ways. For other systems, refer to that operating system's documentation.

Partitioning the disk drive

The guest now has a hard disk device called /dev/vdb. If required, partition this disk drive and

format the partitions. If you do not see the device that you added, then it indicates that there is an
issue with the disk hotplug in your guest's operating system.

a. Start fdisk for the new device:

fdisk /dev/vdb
Command (m for help):

b. Type n for a new partition.
c. The following appears:

Command action
e extended
p primary partition (1-4)

Type p for a primary partition.

d. Choose an available partition number. In this example, the first partition is chosen by entering
1.

Partition number (1-4): 1
e. Enter the default first cylinder by pressing Enter.
First cylinder (1-400, default 1):
f. Select the size of the partition. In this example the entire disk is allocated by pressing Enter.
Last cylinder or +size or +sizeM or +sizeK (2-400, default 400):
g. Enter t to configure the partition type.
Command (m for help): t

h. Select the partition you created in the previous steps. In this example, the partition number is
1 as there was only one partition created and fdisk automatically selected partition 1.

Partition number (1-4): 1

i. Enter 83 for a Linux partition.

157

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Hex code (type L to list codes): 83

j- Enter w to write changes and quit.

Command (m for help): w

k. Format the new partition with the ext3 file system.

mke2fs -j /dev/vdbil

7. Create a mount directory, and mount the disk on the guest. In this example, the directory is located in
myfiles.

mkdir /myfiles
mount /dev/vdbl /myfiles

The guest now has an additional virtualized file-based storage device. Note however, that this
storage will not mount persistently across reboot unless defined in the guest's /etc/fstab file:

/dev/vdb1l /myfiles ext3 defaults 00

17.4.2. Adding hard drives and other block devices to a guest

System administrators have the option to use additional hard drives to provide increased storage space
for a guest, or to separate system data from user data.

Procedure 17.2. Adding physical block devices to guests

1. This procedure describes how to add a hard drive on the host physical machine to a guest. It
applies to all physical block devices, including CD-ROM, DVD and floppy devices.

Physically attach the hard disk device to the host physical machine. Configure the host physical
machine if the drive is not accessible by default.

2. Do one of the following:

a. Create the additional storage by writing a disk element in a new file. In this example, this file
will be known as NewStorage .xml. The following example is a configuration file section

which contains an additional device-based storage container for the host physical machine
partition /dev/sro:

<disk type='block' device='disk'>
<driver name='gemu' type='raw' cache='none'/>
<source dev='/dev/sr0'/>
<target dev='vdc' bus='virtio'/>

</disk>

b. Follow the instruction in the previous section to attach the device to the guest virtual machine.
Alternatively, you can use the virsh attach-disk command, as shown:

virsh attach-disk Guestl /dev/sr0 vdc

158

Chapter 17. Storage Volumes

Note that the following options are available:

The virsh attach-disk command also accepts the --config, - -type, and - -mode
options, as shown:

virsh attach-disk Guestl /dev/sr® vdc --config --type cdrom --
mode readonly

Additionally, --type also accepts --type disk in cases where the device is a hard
drive.

3. The guest virtual machine now has a new hard disk device called /dev/vdc on Linux (or something
similar, depending on what the guest virtual machine OS chooses) or D: drive (for example) on
Windows. You can now initialize the disk from the guest virtual machine, following the standard

procedures for the guest virtual machine's operating system. Refer to Procedure 17.1, “Adding file-
based storage” and Step 6 for an example.

The host physical machine should not use filesystem labels to identify file systems in the
fstab file, the initrd file or on the kernel command line. Doing so presents a security risk
if less privileged users, such as guest virtual machines, have write access to whole partitions
or LVM volumes, because a guest virtual machine could potentially write a filesystem label
belonging to the host physical machine, to its own block device storage. Upon reboot of the
host physical machine, the host physical machine could then mistakenly use the guest virtual
machine's disk as a system disk, which would compromise the host physical machine system.

It is preferable to use the UUID of a device to identify it in the fstab file, the initrd file or

on the kernel command line. While using UUIDs is still not completely secure on certain file
systems, a similar compromise with UUID is significantly less feasible.

iy mportan

Guest virtual machines should not be given write access to whole disks or block devices (for
example, /dev/sdb). Guest virtual machines with access to whole block devices may be able

to modify volume labels, which can be used to compromise the host physical machine system.
Use partitions (for example, /dev/sdb1) or LVM volumes to prevent this issue.

17.4.3. Managing storage controllers in a guest virtual machine
Unlike virtio disks, SCSI devices require the presence of a controller in the guest virtual machine. This

section details the necessary steps to create a virtual SCSI controller (also known as "Host Bus Adapter”,
or HBA), and to add SCSI storage to the guest virtual machine.

Procedure 17.3. Creating a virtual SCSI controller

1. Display the configuration of the guest virtual machine (Guest1) and look for a pre-existing SCSI
controller:

159

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

virsh dumpxml Guestl | grep controller.*scsi

If a device controller is present, the command will output one or more lines similar to the following:

<controller type='scsi' model='virtio-scsi' index='0Q'/>

2. If the previous step did not show a device controller, create the description for one in a new file and
add it to the virtual machine, using the following steps:

a. Create the device controller by writing a <controller> elementin a new file and save this
file with an XML extension. virtio-scsi-controller.xml, for example.

<controller type='scsi' model='virtio-scsi'/>

b. Associate the device controller you just created in virtio-scsi-controller.xml with
your guest virtual machine (Guestl, for example):

virsh attach-device --config Guestl ~/virtio-scsi-controller.xml

In this example the --config option behaves the same as it does for disks. Refer to
Procedure 17.2, “Adding physical block devices to guests” for more information.

3. Add a new SCSI disk or CD-ROM. The new disk can be added using the methods in sections
Section 17.4.1, “Adding file based storage to a guest” and Section 17.4.2, “Adding hard drives and
other block devices to a guest”. In order to create a SCSI disk, specify a target device name that
starts with sd. Each SCSI controller can serve 7 disks and the sum total memory of the disks cannot
exceed that of the host physical machine.

virsh attach-disk Guestl /var/lib/libvirt/images/FileName.img sdb --cache
none

Depending on the version of the driver in the guest virtual machine, the new disk may not be
detected immediately by a running guest virtual machine. Follow the steps in the Red Hat Enterprise
Linux Storage Administration Guide.

17.5. Deleting and removing volumes

For the virsh commands you need to delete and remove a volume, refer to Section 26.12.2, “Deleting
storage volumes”.

160

Chapter 18. Using gemu-img

Chapter 18. Using gemu-img

The gemu-img command line tool is used for formatting, modifying, and verifying various file systems used
by KVM. gemu-img options and usages are highlighted in the sections that follow.

18.1. Checking the disk image

To perform a consistency check on a disk image with the file name imgname.

gemu-img check [-f format] imgname

_

Only the gcow2, gcow? version3, and vdi formats support consistency checks.

18.2. Committing changes to an image

Commit any changes recorded in the specified image file (imgname) to the file's base image with the
gemu-img commit command. Optionally, specify the file's format type (fmt).

gemu-img commit [-f qcow2] [-t cache] imgname

18.3. Converting an existing image to another format

The convert option is used to convert one recognized image format to another image format. Refer to
Section 18.9, “Supported gemu-img formats” for a list of accepted formats.

gemu-img convert [-c] [-p] [-f fmt] [-t cache] [-0 output_fmt] [-o0 options] [-S
sparse_size] filename output_filename

The -p parameter shows the progress of the command (optional and not for every command) and -S flag

allows for the creation of a sparse file, which is included within the disk image. Sparse files in all purposes
function like a standard file, except that the physical blocks that only contain zeros (i.e., nothing). When the
Operating System sees this file, it treats it as it exists and takes up actual disk space, even though in
reality it doesn't take any. This is particularly helpful when creating a disk for a guest virtual machine as
this gives the appearance that the disk has taken much more disk space than it has. For example, if you
set -S to 50Gb on a disk image that is 10Gb, then your 10Gb of disk space will appear to be 60Gb in size
even though only 10Gb is actually being used.

Convert the disk image filename to disk image output_filename using format output_format. The
disk image can be optionally compressed with the -c option, or encrypted with the -o option by setting -o
encryption. Note that the options available with the -o parameter differ with the selected format.

Only the gcow2 and gcow?2 format supports encryption or compression. gcow2 encryption uses the AES
format with secure 128-bit keys. qcow2 compression is read-only, so if a compressed sector is converted
from gcow?2 format, it is written to the new format as uncompressed data.

Image conversion is also useful to get a smaller image when using a format which can grow, such as gcow
or cow. The empty sectors are detected and suppressed from the destination image.

161

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

18.4. Creating and formatting nhew images or devices

Create the new disk image filename of size size and format format.
gemu-img create [-f format] [-o0 options] filename [size]

If a base image is specified with -o backing_file=Ffilename, the image will only record differences
between itself and the base image. The backing file will not be modified unless you use the commit
command. No size needs to be specified in this case.

18.5. Displaying image information

The info parameter displays information about a disk image filename. The format for the info option is
as follows:

gemu-img info [-f format] filename

This command is often used to discover the size reserved on disk which can be different from the
displayed size. If snapshots are stored in the disk image, they are displayed also. This command will show
for example, how much space is being taken by a gcow2 image on a block device. This is done by running
the gemu-1img. You can check that the image in use is the one that matches the output of the gemu-img

info command with the qemu-img check command.

gemu-img info /dev/vg-90.100-sluo/1lv-90-100-sluo
image: /dev/vg-90.100-sluo/1lv-90-100-sluo

file format: qcow2

virtual size: 20G (21474836480 bytes)

disk size: 0@

cluster_size: 65536

18.6. Re-basing a backing file of an image

The qemu-img rebase changes the backing file of an image.

gemu-img rebase [-f fmt] [-t cache] [-p] [-u] -b backing file [-F backing_fmt]
filename

The backing file is changed to backing_file and (if the format of filename supports the feature), the backing
file format is changed to backing_format.

_

Only the gcow?2 format supports changing the backing file (rebase).

There are two different modes in which rebase can operate: safe and unsafe.

safe mode is used by default and performs a real rebase operation. The new backing file may differ from
the old one and the gemu-img rebase command will take care of keeping the guest virtual machine-

visible content of flename unchanged. In order to achieve this, any clusters that differ between
backing_file and old backing file of filename are merged into filename before making any changes to the

162

Chapter 18. Using gemu-img

backing file.

Note that safe mode is an expensive operation, comparable to converting an image. The old backing file
is required for it to complete successfully.

unsafe mode is used if the -u option is passed to gemu-img rebase. In this mode, only the backing file
name and format of filename is changed, without any checks taking place on the file contents. Make sure
the new backing file is specified correctly or the guest-visible content of the image will be corrupted.

This mode is useful for renaming or moving the backing file. It can be used without an accessible old
backing file. For instance, it can be used to fix an image whose backing file has already been moved or
renamed.

18.7. Re-sizing the disk image

Change the disk image filename as if it had been created with size size. Only images in raw format can be
re-sized in both directions, whereas gcow?2 version 2 or gcow2 version 3 images can be grown but cannot
be shrunk.

Use the following to set the size of the disk image filename to size bytes:

gemu-img resize filename size

You can also re-size relative to the current size of the disk image. To give a size relative to the current
size, prefix the number of bytes with + to grow, or - to reduce the size of the disk image by that number of

bytes. Adding a unit suffix allows you to set the image size in kilobytes (K), megabytes (M), gigabytes (G)
or terabytes (T).

gemu-img resize filename [+|-]size[K|M|G|T]

Before using this command to shrink a disk image, you must use file system and partitioning tools
inside the VM itself to reduce allocated file systems and partition sizes accordingly. Failure to do so
will result in data loss.

After using this command to grow a disk image, you must use file system and partitioning tools
inside the VM to actually begin using the new space on the device.

18.8. Listing, creating, applying, and deleting a snapshot

Using different parameters from the gqemu-img snapshot command you can list, apply, create, or delete
an existing snapshot (snapshot) of specified image (filename).

gemu-img snapshot [-1 | -a snapshot | -c snapshot | -d snapshot] filename

The accepted arguments are as follows:

-1 lists all snapshots associated with the specified disk image.

The apply option, -a, reverts the disk image (filename) to the state of a previously saved snapshot.

163

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

-c creates a snapshot (snapshot) of an image (filename).

-d deletes the specified snapshot.

18.9. Supported gemu-img formats

When a format is specified in any of the gqemu-img commands, the following format types may be used:

raw - Raw disk image format (default). This can be the fastest file-based format. If your file system

supports holes (for example in ext2 or ext3 on Linux or NTFS on Windows), then only the written
sectors will reserve space. Use gemu-img info to obtain the real size used by the image or 1s -1s

on Unix/Linux. Although Raw images give optimal performance, only very basic features are available
with a Raw image (no snapshots etc.).

gcow2 - QEMU image format, the most versatile format with the best feature set. Use it to have optional

AES encryption, zlib-based compression, support of multiple VM snapshots, and smaller images, which
are useful on file systems that do not support holes (non-NTFS file systems on Windows). Note that
this expansive feature set comes at the cost of performance.

Although only the formats above can be used to run on a guest virtual machine or host physical
machine machine, gemu-img also recognizes and supports the following formats in order to convert
from them into either raw , or gcow2 format. The format of an image is usually detected automatically.

In addition to converting these formats into raw or qcow2 , they can be converted back from raw or
gcow2 to the original format. Note that the qcow2 version supplied with Red Hat Enterprise Linux 7 is
1.1. The format that is supplied with previous versions of Red Hat Enterprise Linux will be 0.10. You
can revert image files to previous versions of qcow2. To know which version you are using, run gemu-
img info qcow2 [imagefilename.img] command. To change the gcow version refer to

Section 29.20.2, “Setting target elements”.

bochs - Bochs disk image format.

cloop - Linux Compressed Loop image, useful only to reuse directly compressed CD-ROM images
present for example in the Knoppix CD-ROMs.

cow - User Mode Linux Copy On Write image format. The cow format is included only for compatibility
with previous versions. It does not work with Windows.

dmg - Mac disk image format.

nbd - Network block device.

parallels - Parallels virtualization disk image format.

gcow - Old QEMU image format. Only included for compatibility with older versions.
vdi - Oracle VM VirtualBox hard disk image format.

vmdk - VMware 3 and 4 compatible image format.

vpc - Windows Virtual PC disk image format. Also referred to as vhd, or Microsoft virtual hard disk
image format.

vvfat - Virtual VFAT disk image format.

164

Chapter 19. KVM live migration

Chapter 19. KVM live migration

This chapter covers migrating guest virtual machines running on one host physical machine to another. In
both instances, the host physical machines are running the KVM hypervisor.

Migration describes the process of moving a guest virtual machine from one host physical machine to
another. This is possible because guest virtual machines are running in a virtualized environment instead
of directly on the hardware. Migration is useful for:

Load balancing - guest virtual machines can be moved to host physical machines with lower usage
when their host physical machine becomes overloaded, or another host physical machine is under-
utilized.

Hardware independence - when we need to upgrade, add, or remove hardware devices on the host
physical machine, we can safely relocate guest virtual machines to other host physical machines. T his
means that guest virtual machines do not experience any downtime for hardware improvements.

Energy saving - guest virtual machines can be redistributed to other host physical machines and can
thus be powered off to save energy and cut costs in low usage periods.

Geographic migration - guest virtual machines can be moved to another location for lower latency or in
serious circumstances.

Migration works by sending the state of the guest virtual machine's memory and any virtualized devices to
a destination host physical machine. It is recommended to use shared, networked storage to store the
guest virtual machine's images to be migrated. It is also recommended to use libvirt-managed storage
pools for shared storage when migrating virtual machines.

Migrations can be performed live or not.

In a live migration, the guest virtual machine continues to run on the source host physical machine while its
memory pages are transferred, in order, to the destination host physical machine. During migration, KVM
monitors the source for any changes in pages it has already transferred, and begins to transfer these
changes when all of the initial pages have been transferred. KVM also estimates transfer speed during
migration, so when the remaining amount of data to transfer will take a certain configurable period of time
(10ms by default), KVM suspends the original guest virtual machine, transfers the remaining data, and
resumes the same guest virtual machine on the destination host physical machine.

A migration that is not performed live, suspends the guest virtual machine, then moves an image of the
guest virtual machine's memory to the destination host physical machine. The guest virtual machine is
then resumed on the destination host physical machine and the memory the guest virtual machine used on
the source host physical machine is freed. The time it takes to complete such a migration depends on
network bandwidth and latency. If the network is experiencing heavy use or low bandwidth, the migration
will take much longer.

If the original guest virtual machine modifies pages faster than KVM can transfer them to the destination
host physical machine, offline migration must be used, as live migration would never complete.

19.1. Live migration requirements

Migrating guest virtual machines requires the following:

Migration requirements

A guest virtual machine installed on shared storage using one of the following protocols:

165

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Fibre Channel-based LUNs
iSCSI

FCoE

NFS

GFS2

SCSI RDMA protocols (SCSI RCP): the block export protocol used in Infiniband and 10GbE iWARP
adapters

The migration platforms and versions should be checked against table Table 19.1, “Live Migration

Both systems must have the appropriate TCP/IP ports open. In cases where a firewall is used refer to
the Red Hat Enterprise Linux Virtualization Security Guide for detailed port information.

A separate system exporting the shared storage medium. Storage should not reside on either of the
two host physical machines being used for migration.

Shared storage must mount at the same location on source and destination systems. The mounted
directory names must be identical. Although it is possible to keep the images using different paths, it is
not recommended. Note that, if you are intending to use virt-manager to perform the migration, the path
names must be identical. If however you intend to use virsh to perform the migration, different network
configurations and mount directories can be used with the help of --xml option or pre-hooks when
doing migrations (refer to Live Migration Limitations). For more information on prehooks, refer to

When migration is attempted on an existing guest virtual machine in a public bridge+tap network, the
source and destination host physical machines must be located in the same network. Otherwise, the
guest virtual machine network will not operate after migration.

Live Migration Limitations

Guest virtual machine migration has the following limitations when used on Red Hat Enterprise
Linux with virtualization technology based on KVM:

Point to point migration — must be done manually to designate destination hypervisor from
originating hypervisor

No validation or roll-back is available

Determination of target may only be done manually

Storage migration cannot be performed live on Red Hat Enterprise Linux 7, but you can migrate
storage while the guest virtual machine is powered down. Live storage migration is available on
Red Hat Enterprise Virtualization . Call your service representive for deatails.

Make sure that the 1ibvirtd service is enabled (# systemctl enable libvirtd) and running (#
systemctl start libvirtd).Itis also important to note that the ability to migrate effectively is
dependent on the parameter settings in the /etc/1ibvirt/1libvirtd.conf configuration file.

Procedure 19.1. Configuring libvirtd.conf

166

http://www.libvirt.org/hooks.html

Chapter 19. KVM live migration

1. Opening the 1ibvirtd.conf requires running the command as root:

vim /etc/libvirt/libvirtd.conf

2. Change the parameters as needed and save the file.

3. Restart the 11ibvirtd service:

systemctl start libvirtd

19.2. Live migration and Red Hat Enterprise Linux version
compatibility

Live Migration is supported as shown in table Table 19.1, “Live Migration Compatibility”:

Table 19.1. Live Migration Compatibility

Migration Release Type Example Live Migration Notes

Method Support

Forward Major release 6.5+ - 7.X Supported Any issues should
be reported

Backward Major release 7X > 6y Not supported

Troubleshooting problems with migration

Issues with the migration protocol — If backward migration ends with "unknown section error",
repeating the migration process can repair the issue as it may be a transient error. If not, please report
the problem.

Configuring network storage
Configure shared storage and install a guest virtual machine on the shared storage.

Alternatively, use the NFS example in Section 19.3, “Shared storage example: NFS for a simple migration”

19.3. Shared storage example: NFS for a simple migration

oy portan

This example uses NFS to share guest virtual machine images with other KVM host physical
machines. Although not practical for large installations, it is presented to demonstrate migration
techniques only. Do not use this example for migrating or running more than a few guest virtual
machines. In addition, it is required that the synch parameter is enabled. This is required for proper

export of the NFS storage.

iISCSI storage is a better choice for large deployments. Refer to Section 16.5, “iSCSI-based storage

167

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Also note, that the instructions provided herin are not meant to replace the detailed instructions found in
Red Hat Linux Storage Administration Guide. Refer to this guide for information on configuring NFS,
opening IP tables, and configuring the firewall.

Make sure that NFS file locking is not used as it is not supported in KVM.
1. Export your libvirt image directory

Migration requires storage to reside on a system that is separate to the migration target systems.
On this separate system, export the storage by adding the default image directory to the
/etc/exports file:

/var/1lib/libvirt/images *.example.com(rw,no_root_squash, sync)
Change the hostname parameter as required for your environment.

2. Start NFS

a. Install the NFS packages if they are not yet installed:

yum install nfs

b. Make sure that the ports for NFS in iptables (2049, for example) are opened and add NFS
to the /etc/hosts.allow file.

c. Start the NFS service:

service nfs start

3. Mount the shared storage on the destination

On the migration destination system, mount the /var/1ib/libvirt/images directory:

mount storage_host:/var/lib/libvirt/images /var/lib/libvirt/images

Whichever directory is chosen for the guest virtual machine must be exactly the same as that
on the host physical machine. This applies to all types of shared storage. T he directory must
be the same or the migration with virt-manager will fail.

19.4. Live KVM migration with virsh

A guest virtual machine can be migrated to another host physical machine with the virsh command. The
migrate command accepts parameters in the following format:

virsh migrate --live GuestName DestinationURL

Note that the --live option may be eliminated when live migration is not desired. Additional options are listed
in Section 19.4 .2, “Additional options for the virsh migrate command”.

The GuestName parameter represents the name of the guest virtual machine which you want to migrate.

168

Chapter 19. KVM live migration

The DestinationURL parameter is the connection URL of the destination host physical machine. The

destination system must run the same version of Red Hat Enterprise Linux, be using the same hypervisor
and have libvirt running.

_

The DestinationURL parameter for normal migration and peer2peer migration has different
semantics:

normal migration: the DestinationURL is the URL of the target host physical machine as seen
from the source guest virtual machine.

peer2peer migration: DestinationURL is the URL of the target host physical machine as seen
from the source host physical machine.

Once the command is entered, you will be prompted for the root password of the destination system.

oy eortan

An entry for the destination host physical machine, in the /etc/hosts file on the source server is
required for migration to succeed. Enter the IP address and hostname for the destination host
physical machine in this file as shown in the following example, substituting your destination host
physical machine's IP address and hostname:

10.0.0.20 host2.example.com

Example: live migration with virsh

This example migrates from hostl.example.com to host2.example.com. Change the host physical
machine names for your environment. T his example migrates a virtual machine named guestl1-rhelé6 -
64.

This example assumes you have fully configured shared storage and meet all the prerequisites (listed
here: Migration requirements).

1.
Verify the guest virtual machine is running

From the source system, hostl.example.com, verify guestl-rhel6-64 is running:

[root@hostl ~]# virsh list
Id Name State

10 guestl-rhel6-64 running

Migrate the guest virtual machine

169

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Execute the following command to live migrate the guest virtual machine to the destination,
host2.example.com. Append /system to the end of the destination URL to tell libvirt that you

need full access.

virsh migrate --live guestl-rhel7-64 qgemu+ssh://host2.example.com/system

Once the command is entered you will be prompted for the root password of the destination system.

Wait

The migration may take some time depending on load and the size of the guest virtual machine.
virsh only reports errors. The guest virtual machine continues to run on the source host physical

machine until fully migrated.

Verify the guest virtual machine has arrived at the destination host

From the destination system, host2.example.com, verify guestl-rhel7-64 is running:

[root@host2 ~]# virsh list
Id Name State

10 guestl-rhel7-64 running

The live migration is now complete.

_

libvirt supports a variety of networking methods including TLS/SSL, UNIX sockets, SSH, and
unencrypted T CP. Refer to Chapter 23, Remote management of guests for more information on
using other methods.

_

Non-running guest virtual machines cannot be migrated with the virsh migrate command. To
migrate a non-running guest virtual machine, the following script should be used:

virsh dumpxml Guestl > Guestl.xml
virsh -c qgemutssh://<target-system-FQDN> define Guestl.xml
virsh undefine Guestl

19.4.1. Additional tips for migration with virsh

It is possible to perform multiple, concurrent live migrations where each migration runs in a separate
command shell. However, this should be done with caution and should involve careful calculations as each
migration instance uses one MAX_CLIENT from each side (source and target). As the default setting is 20,
there is enough to run 10 instances without changing the settings. Should you need to change the
settings, refer to the procedure Procedure 19.1, “Configuring libvirtd.conf”.

170

Chapter 19. KVM live migration

1. Open the libvirtd.conf file as described in Procedure 19.1, “Configuring libvirtd.conf”.

2. Look for the Processing controls section.

HHHBHHBHA R AR B H AR HH R R R R R R R R

#
Processing controls
#

The maximum number of concurrent client connections to allow
over all sockets combined.
#max_clients = 20

The minimum limit sets the number of workers to start up
initially. If the number of active clients exceeds this,
then more threads are spawned, upto max_workers limit.
Typically you'd want max_workers to equal maximum number
of clients allowed

#min_workers = 5

#max_workers = 20

H* H H H H

The number of priority workers. If all workers from above
pool will stuck, some calls marked as high priority

(notably domainDestroy) can be executed in this pool.
#prio_workers = 5

Total global 1imit on concurrent RPC calls. Should be

at least as large as max_workers. Beyond this, RPC requests
will be read into memory and queued. This directly impact
memory usage, currently each request requires 256 KB of
memory. So by default upto 5 MB of memory is used

XXX this isn't actually enforced yet, only the per-client
limit is used so far
#max_requests = 20

HOH HOHH H HH

Limit on concurrent requests from a single client

connection. To avoid one client monopolizing the server

this should be a small fraction of the global max_requests
and max_workers parameter

#max_client_requests = 5

HHHBHAERHA R HH B R H AR HH R R R R R R R R R

3. Change the max_clients and max_workers parameters settings. It is recommended that the

number be the same in both parameters. The max_clients will use 2 clients per migration (one per
side) and max_workers will use 1 worker on the source and 0 workers on the destination during the

perform phase and 1 worker on the destination during the finish phase.

171

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

oy portan

The max_clients and max_workers parameters settings are effected by all guest virtual

machine connections to the libvirtd service. This means that any user that is using the same
guest virtual machine and is performing a migration at the same time will also beholden to the
limits set in the the max_clients and max_workers parameters settings. This is why the

maximum value needs to be considered carefully before performing a concurrent live
migration.

4. Save the file and restart the service.

S

There may be cases where a migration connection drops because there are too many ssh
sessions that have been started, but not yet authenticated. By default, sshd allows only 10
sessions to be in a "pre-authenticated state" at any time. This setting is controlled by the
MaxStartups parameter in the sshd configuration file (located here:
/etc/ssh/sshd_config), which may require some adjustment. Adjusting this parameter
should be done with caution as the limitation is put in place to prevent DoS attacks (and over-
use of resources in general). Setting this value too high will negate its purpose. To change
this parameter, edit the file /etc/ssh/sshd_config, remove the # from the beginning of

the MaxStar tups line, and change the 10 (default value) to a higher number. Remember to
save the file and restart the sshd service. For more information, refer to the sshd_config
MAN page.

19.4.2. Additional options for the virsh migrate command
In addition to --1ive, virsh migrate accepts the following options:
--direct - used for direct migration
--p2p - used for peer-2-peer migration
--tunneled - used for tunneled migration

--offline - migrates domain definition without starting the domain on destination and without

stopping it on source host. Offline migration may be used with inactive domains and it must be used
with the --persistent option.

--persistent - leaves the domain persistent on destination host physical machine
--undefinesource - undefines the domain on the source host physical machine
--suspend - leaves the domain paused on the destination host physical machine

--change-protection - enforces that no incompatible configuration changes will be made to the

domain while the migration is underway; this flag is implicitly enabled when supported by the
hypervisor, but can be explicitly used to reject the migration if the hypervisor lacks change protection
support.

--unsafe - forces the migration to occur, ignoring all safety procedures.

172

Chapter 19. KVM live migration

--verbose - displays the progress of migration as it is occurring

--compressed - activates compression of memory pages that have to be transferred repeatedly
during live migration.

--abort-on-error - cancels the migration if a soft error (for example I/O error) happens during the
migration.

--domain name - sets the domain name, id or uuid.

--desturi uri - connection URI of the destination host as seen from the client (normal migration) or
source (p2p migration).

--migrateuri uri - the migration URI, which can usually be omitted.
--graphicsuri uri - graphics URIto be used for seamless graphics migration.

--listen-address address - sets the listen address that the hypervisor on the destination side
should bind to for incoming migration.

--timeout seconds - forces a guest virtual machine to suspend when the live migration counter
exceeds N seconds. It can only be used with a live migration. Once the timeout is initiated, the migration
continues on the suspended guest virtual machine.

--dname newname - is used for renaming the domain during migration, which also usually can be
omitted

--xm1l filename - the filename indicated can be used to supply an alternative XML file for use on the

destination to supply a larger set of changes to any host-specific portions of the domain XML, such as
accounting for naming differences between source and destination in accessing underlying storage.
This option is usually omitted.

In addtion the following commands may help as well:

virsh migrate-setmaxdowntime domain downtime - will set a maximum tolerable downtime for
a domain which is being live-migrated to another host. The specified downtime is in milliseconds. The
domain specified must be the same domain that is being migrated.

virsh migrate-compcache domain --size - will set and or get the size of the cache in bytes

which is used for compressing repeatedly transferred memory pages during a live migration. When the
--size is not used the command displays the current size of the compression cache. When --size

is used, and specified in bytes, the hypervisor is asked to change compression to match the indicated
size, following which the current size is displayed. The --size argument is supposed to be used while

the domain is being live migrated as a reaction to the migration progress and increasing number of
compression cache misses obtained from the domjobingfo.

virsh migrate-setspeed domain bandwidth - sets the migration bandwidth in Mib/sec for the
specified domain which is being migrated to another host.

virsh migrate-getspeed domain - gets the maximum migration bandwidth that is available in
Mib/sec for the specified domain.

Refer to Live Migration Limitations or the virsh man page for more information.

19.5. Migrating with virt-manager

173

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

This section covers migrating a KVM guest virtual machine with virt-manager from one host physical
machine to another.

1. Open virt-manager

Open virt-manager. Choose Applications — System Tools - Virtual Machine Manager
from the main menu bar to launch virt-manager.

Eile Edit View Help

L=
Name v CPU usage

=~ localhost (QEMLU)

RHEL-3.9
Shutoff

RHEL-4.8
Shutoff

RHEL-&
Shutoff

guestl-rhel&-64
Running

Figure 19.1. Virt-Manager main menu

2. Connect to the target host physical machine

Connect to the target host physical machine by clicking on the File menu, then click Add
Connection.

Edit View Help

Close Ctri+w

Quit ctrl+Q
= localhost (QEMU]

v CPU usage

RHEL-3.9
Shutoff

RHEL-4.8
Shutoff

RHEL-&
Shutoff

ij guestl-rhel&-64

Running

Figure 19.2. Open Add Connection window

174

Chapter 19. KVM live migration

3. Add connection

The Add Connection window appears.

Hypervisor: | QEMU/KVM S |

Connect to remote host

Method: | SSH S|

Username: [rnot]

Hostname: [uir‘tlabzz vl

Autoconnect: [

Generated URI: gemu+ssh://root@virtlab22/system

| Cancel || Connect |

Figure 19.3. Adding a connection to the target host physical machine

Enter the following detalils:

Hypervisor: Select QEMU/KVM.

Method: Select the connection method.

Username: Enter the username for the remote host physical machine.
Hostname: Enter the hostname for the remote host physical machine.

Click the Connect button. An SSH connection is used in this example, so the specified user's
password must be entered in the next step.

root@virtlab22's password:

I

'P'assphrase length hidden intentionally |

Cancel | | OK |

Figure 19.4. Enter password

4. Migrate guest virtual machines

175

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Open the list of guests inside the source host physical machine (click the small triangle on the left of
the host name) and right click on the guest that is to be migrated (guest1-rhel6-64 in this
example) and click Migrate.

File Edit View Help

£ S m @ v

Mame v CPU usage
= localhost (QEMLU)
RHEL-3.9
= Shutoff
RHEL-4.8
= Shutoff
|| RHEL-6
= Shutoff
E guestl-rhel6-64
== Running Bun
= virtlab22 (QEMLU) Pause
[l RHEL6 Shut Down >
= Shutoff
Clone...
Delete
Open

Figure 19.5. Choosing the guest to be migrated

In the New Host field, use the drop-down list to select the host physical machine you wish to
migrate the guest virtual machine to and click Migrate.

176

Chapter 19. KVM live migration

| Migrate 'guestl-rhel6-64"

Name: guestl-rhel6-64
Original host: virtlabl8

New host: | virtlab22 (QEMU)

L

Migrate offline: [

=~ Advanced options

Tunnel migration through libvirt's daemon: ||

Max downtime: [

ms
Connectivity
Address: [
Port: [
Bandwidth: [Mbps

Cancel l [Migrate

Figure 19.6. Choosing the destination host physical machine and starting the migration
process

A progress window will appear.

Migrating VM 'guestl-rhel6-64' from virtlabl8
to virtlab22. This may take awhile.

Migrating domain

Cancel

Figure 19.7. Progress window

virt-manager now displays the newly migrated guest virtual machine running in the destination

host. The guest virtual machine that was running in the source host physical machine is now listed
inthe Shutoff state.

177

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

File Edit View Help

E—-J @ Open [TYERY,

Name v CPU usage
=~ localhost (QEMU)

RHEL-3.9
L

— Shutoff

RHEL-4.5
L]

Shutoff

[l RHEL-6
S Shutoff

guestl-rhel6-64

Shutoff

- virtlab22 (QEMU)

- RHEL&

= Shutoff
guestl-rhele-64
Running

Figure 19.8. Migrated guest virtual machine running in the destination host physical
machine

5. Optional - View the storage details for the host physical machine
In the Edit menu, click Connection Details, the Connection Details window appears.

Click the Storage tab. The iSCSI target details for the destination host physical machine is shown.
Note that the migrated guest virtual machine is listed as using the storage

178

Chapter 19. KVM live migration

File

Overviewlvirtual Networks | Storage Networklnterfaces‘

17o, default iscsirheléguest: 0.00 MB Free / 30.00 GB In Use
Filesystem Directory Pool Type: iSCSI Target
iscsirhelégues T i .
T Location: l!deu?dlskfby path
State: [Active
Autostart: [] Never
vbhnnes{::]
| Volumes v | Size Format Used By
| unit:0:0:0 30.00 GB dos guest1-rhel6-64

el ‘ |@| | New ‘\.-'olume| |;e efe Volume

Figure 19.9. Storage details

| Apply ‘
AppTy

This host was defined by the following XML configuration:

4 N

<pool type='iscsi'>
<name>iscsirhel6guest</name>
<source>
<host name='virtlab22.example.com.'/>
<device path='iqn.2001-05.com.iscsivendor:0-8a0906-fbab74a06 -
a700000017a4cc89-rhevh'/>
</source>
<target>
<path>/dev/disk/by-path</path>
</target>
</pool>

- J

Figure 19.10. XML configuration for the destination host physical machine

179

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Chapter 20. Guest virtual machine device configuration

Red Hat Enterprise Linux 7 supports three classes of devices for guest virtual machines:

Emulated devices are purely virtual devices that mimic real hardware, allowing unmodified guest
operating systems to work with them using their standard in-box drivers. Red Hat Enterprise Linux 7
supports up to 216 virtio devices.

Virtio devices are purely virtual devices designed to work optimally in a virtual machine. Virtio devices
are similar to emulated devices, however, non-Linux virtual machines do not include the drivers they
require by default. Virtualization management software like the Virtual Machine Manager (virt-
manager) and the Red Hat Enterprise Virtualization Hypervisor install these drivers automatically for
supported non-Linux guest operating systems. Red Hat Enterprise Linux 7 supports up to 700 scsi
disks.

Assigned devices are physical devices that are exposed to the virtual machine. This method is also
known as ‘passthrough’. Device assignment allows virtual machines exclusive access to PCI devices
for a range of tasks, and allows PCI devices to appear and behave as if they were physically attached
to the guest operating system. Red Hat Enterprise Linux 7 supports up to 32 assigned devices per
virtual machine.

Device assignment is supported on PCle devices, including select graphics devices. Nvidia K-series
Quadro, GRID, and Tesla graphics card GPU functions are now supported with device assignment in
Red Hat Enterprise Linux 7. Parallel PCI devices may be supported as assigned devices, but they have
severe limitations due to security and system configuration conflicts.

Red Hat Enterprise Linux 7 supports PCI hotplug of devices exposed as single function slots to the virtual
machine. Single function host devices and individual functions of multi-function host devices may be
configured to enable this. Configurations exposing devices as multi-function PCI slots to the virtual
machine are recommended only for non-hotplug applications.

_

Platform support for interrupt remapping is required to fully isolate a guest with assigned devices
from the host. Without such support, the host may be vulnerable to interrupt injection attacks from a
malicious guest. In an environment where guests are trusted, the admin may opt-in to still allow PCI
device assignment using the allow_unsafe_interrupts option to the vfio iommu_typel
module. This may either be done persistently by adding a .conf file (e.g. Local.conf) to
/etc/modprobe .d containing the following:

options vfio_iommu_typel allow_unsafe_interrupts=1

or dynamically using the sysfs entry to do the same:

echo 1 > /sys/module/vfio_iommu_typel/parameters/allow_unsafe_interrupts

20.1. PCl devices

PCl device assignment is only available on hardware platforms supporting either Intel VT-d or AMD
IOMMU. These Intel VT-d or AMD IOMMU specifications must be enabled in BIOS for PCI device
assignment to function.

180

Chapter 20. Guest virtual machine device configuration

Procedure 20.1. Preparing an Intel system for PCl device assignment
1. Enable the Intel VT-d specifications

The Intel VT -d specifications provide hardware support for directly assigning a physical device to a
virtual machine. These specifications are required to use PCI device assignment with Red Hat
Enterprise Linux.

The Intel VT-d specifications must be enabled in the BIOS. Some system manufacturers disable
these specifications by default. The terms used to refer to these specifications can differ between
manufacturers; consult your system manufacturer's documentation for the appropriate terms.

2. Activate Intel VT-d in the kernel

Activate Intel VT-d in the kernel by adding the intel_iommu=on parameter to the end of the
GRUB_CMDLINX_LINUX line, within the quotes, in the /etc/sysconfig/grub file.

The example below is a modified grub file with Intel VT-d activated.

GRUB_CMDLINE_LINUX="rd.lvm.lv=vg_VolGroup®@/LogVol0l
vconsole.font=1latarcyrheb-suni6 rd.lvm.lv=vg_VolGroup_1/root
vconsole.keymap=us $([-x /usr/sbin/rhcrashkernel-param] && /usr/sbin/
rhcrashkernel-param || :) rhgb quiet intel_iommu=on"

3. Regenerate config file

Regenerate /boot/grub2/grub.cfg by running:

grub2-mkconfig -o /boot/grub2/grub.cfg

4. Ready to use

Reboot the system to enable the changes. Your system is now capable of PCl device assignment.

Procedure 20.2. Preparing an AMD system for PCI device assignment
1. Enable the AMD IOMMU specifications

The AMD IOMMU specifications are required to use PCIl device assignment in Red Hat Enterprise
Linux. These specifications must be enabled in the BIOS. Some system manufacturers disable these
specifications by default.

2. Enable IOMMU kernel support

Append amd_iommu=on to the end of the GRUB_CMDLINX_LINUX line, within the quotes, in
/etc/sysconfig/grub so that AMD IOMMU specifications are enabled at boot.

3. Regenerate config file

Regenerate /boot/grub2/grub.cfg by running:

grub2-mkconfig -o /boot/grub2/grub.cfg

4. Ready to use

181

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Reboot the system to enable the changes. Your system is now capable of PCl device assignment.

20.1.1. Assigning a PCI device with virsh

These steps cover assigning a PCI device to a virtual machine on a KVM hypervisor.

This example uses a PCle network controller with the PCl identifier code, pci_0000_01_00_0, and a fully
virtualized guest machine named guest1-rhel7-64.

Procedure 20.3. Assighing a PCl device to a guest virtual machine with virsh

1.

182

Identify the device

First, identify the PCI device designated for device assignment to the virtual machine. Use the
1spci command to list the available PCl devices. You can refine the output of 1spci with grep.

This example uses the Ethernet controller highlighted in the following output:

lspci | grep Ethernet

00:19.0 Ethernet controller: Intel Corporation 82567LM-2 Gigabit Network
Connection

01:00.0 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection
(rev 01)

01:00.1 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection
(rev 01)

This Ethernet controller is shown with the short identifier 00:19.0. We need to find out the full
identifier used by virsh in order to assign this PCl device to a virtual machine.

To do so, use the virsh nodedev-1list command to list all devices of a particular type (pci) that

are attached to the host machine. Then look at the output for the string that maps to the short
identifier of the device you wish to use.

This example highlights the string that maps to the Ethernet controller with the short identifier
00:19.0. Note that the : and . characters are replaced with underscores in the full identifier.

virsh nodedev-list --cap pci
pci_0000_00_00_0
pci_0000_00_01 0
pci_0000_00_03_0
pci_0000_00_07_06
pci_0000_00_10_0
pci_0000_00_10_1
pci_0000_00_14 0
pci_0000_00_14_ 1
pci_0000_00_14_2
pci_0000_00_14_3
pci_0000_00_19 0
pci_0000_00_1a_0
pci_0000_00_1a_1
pci_0000_00_1a_2
pci_0000_00_1a 7
pci_0000_00_1b_0
pci_0000_00_1c_0
pci_0000_00_1c_1
pci_0000_00_1c_4
pci_0000_060_1d_0

Chapter 20. Guest virtual machine device configuration

pci_0000_00_1d_1
pci_0000_00_1d_2
pci_0000_00_1d_7
pci_0000_00_1e_0
pci_0000_00_1f_0
pci_0000_00_1f 2
pci_0000_00_1f 3
pci_0000_01_00_0
pci_0000_01_00_1
pci_0000_02_00_0
pci_0000_02_00_1
pci_0000_06_00_0
pci_0000_07_02_0
pci_0000_07_03_0

Record the PCI device number that maps to the device you want to use; this is required in other
steps.

. Review device information

Information on the domain, bus, and function are available from output of the virsh nodedev-
dumpxml command:

virsh nodedev-dumpxml pci_0000_0060_19_0
<device>
<name>pci_0000_00_19_0</name>
<parent>computer</parent>
<driver>
<name>e1000e</name>
</driver>
<capability type='pci'>
<domain>0</domain>
<bus>0</bus>
<slot>25</slot>
<function>0</function>
<product id='0x1502'>82579LM Gigabit Network Connection</product>
<vendor id='0x8086'>Intel Corporation</vendor>
<iommuGroup number='7"'>
<address domain='0x0000' bus='0x00' slot='0x19' function='0x0'/>
</iommuGroup>
</capability>
</device>

183

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

3.

184

@

An IOMMU group is determined based on the visibility and isolation of devices from the
perspective of the IOMMU. Each IOMMU group may contain one or more devices. When
multiple devices are present, all endpoints within the IOMMU group must be claimed for any
device within the group to be assigned to a guest. This can be accomplished either by also
assigning the extra endpoints to the guest or by detaching them from the host driver using
virsh nodedev-detach. Devices contained within a single group may not be split

between multiple guests or split between host and guest. Non-endpoint devices such as
PCle root ports, switch ports, and bridges should not be detached from the host drivers and
will not interfere with assignment of endpoints.

Devices within an IOMMU group can be determined using the iommuGroup section of the
virsh nodedev-dumpxml output. Each member of the group is provided via a separate

"address" field. This information may also be found in sysfs using the following:

$ 1s /sys/bus/pci/devices/0000:01:00.0/iommu_group/devices/

An example of the output from this would be:

0000:01:00.0 0000:01:00.1

To assign only 0000.01.00.0 to the guest, the unused endpoint should be detached from the
host before starting the guest:

$ virsh nodedev-detach pci_0000_01_00_1

Determine required configuration details

Refer to the output from the virsh nodedev-dumpxml pci_0000_00_19_0 command for the
values required for the configuration file.

The example device has the following values: bus = 0, slot = 25 and function = 0. The decimal
configuration uses those three values:

bus='0"
slot='25"
function='0"

. Add configuration details

Run virsh edit, specifying the virtual machine name, and add a device entry in the <source>
section to assign the PCI device to the guest virtual machine.

virsh edit guestl-rhel7-64
<hostdev mode='subsystem' type='pci' managed='yes'>
<source>
<address domain='0' bus='0' slot='25' function='0Q'/>
</source>
</hostdev>

Alternately, run virsh attach-device, specifying the virtual machine name and the guest's XML
file:

Chapter 20. Guest virtual machine device configuration

virsh attach-device guesti-rhel7-64 file.xml

5. Start the virtual machine

virsh start guestl-rhel7-64

The PCI device should now be successfully assigned to the virtual machine, and accessible to the guest
operating system.

20.1.2. Assigning a PCI device with virt-manager

PCl devices can be added to guest virtual machines using the graphical virt-manager tool. The
following procedure adds a Gigabit Ethernet controller to a guest virtual machine.

Procedure 20.4. Assighing a PCI device to a guest virtual machine using virt-manager

1. Open the hardware settings

Open the guest virtual machine and click the Add Hardware button to add a new device to the
virtual machine.

- gliesti rhel6:6a Virtual Machine =
File Virtual Machine View Send Key

=0 >

]

Basic Details

|&® Performance
MName: |guest1-rhel6-64
{7} Processor
B8 Memory UuID: b8d7388a-bbf2-db3a-e962-b97cabe514bd
j} Boot Options Status: = Shitoff
) _ Description:

= VirtiO Disk 1
B2 NIC:79:35:e9
#| Tablet
™ Mouse : i

Hypervisor Details
B Display VNC e ;
= _ Hypervisor: kvm
B sound: icho Architecture: x86_64
= Serial 1 Emulator: jusr/libexec/qemu-kvm
B video

Operating System
Hostname: unknown
Product name: unknown

P Applications
P Machine Settings

P Security

[Add Hardware

)

Figure 20.1. The virtual machine hardware information window

2. Select a PCl device

Select PCI Host Device from the Hardware list on the left.
Select an unused PCI device. Note that selecting PCl devices presently in use by another guest

causes errors. In this example, a spare 82576 network device is used. Click Finish to complete
setup.

185

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Sorage PCI Device
Network

00:1E:0 82801 PCI Bridge

USB Host Device 00:1F:0 82801JIR (ICH10R) LPC interface Controller
PCI Host Device 00:1F:2 82801)! (ICH10 Family) SATA AHCI Controller
Video 00:1F:3 82801)I (ICH10 Family) SMBus Controller
Watchdog '01:00:0 82576 Gigabit Network Connect
Filesysten 01:00:1 Interface eth3 (82576 Gigabit Network Connection)
Smartcard 02:00:0 R580 [Radeon X1900 XT] (Primary)

02:00:1 R580 [Radeon X1900 XT] (Secondary)

06:00:0 88SE6121 SATA Il Controller [~
|| B

=)

5 Input Please indicate what physical device

@ Graphics to connect to the virtual machine.

Eif sound Host Device:

= serial 00:1D:2 82801)1 (ICH10 Family) USB UHCI Controller #3 =
=4 Parallel 00:1D:7 82801)1 (ICH10 Family) USB2 EHCI Controller #1

~a| Channel

D1:00:0 8 6 Gigabit Netwo

=
ac

[Cancel ‘I Finish ‘

Figure 20.2. The Add new virtual hardware wizard

3. Add the new device

The setup is complete and the guest virtual machine now has direct access to the PCl device.

File Virtual Machine View Send Key

=@ @ n@-~

‘i
=]
8
=
@
=

Basic Details
L Performance
{7} Processor Name: guestl-rhel6-64
B8 Memory uuID: b8d7388a-bbf2-db3a-e962-b97cabeS14bd
&2 oot Options Status: &3 Running
= S
) Virtio Disk 1 SERI)
EE NIC:79:35:e9
[# Tablet
(*y Mouse
['_' Display VNC Hypervisor Details
i : Hypervisor: kvm
I sl chs Architecture: x86_64
- e Emulator: jusr/libexec/qemu-kvm
B Pciooo0:01:00.0
& video Operating System

Hostname: unknown
Product name: unknown

b Applications
P Machine Settings

[Security

| Add Hardware

Figure 20.3. The virtual machine hardware information window

186

Chapter 20. Guest virtual machine device configuration

_

If device assignment fails, there may be other endpoints in the same IOMMU group that are still
attached to the host. There is no way to retrieve group information using virt-manager, but virsh
commands can be used to analyze the bounds of the IOMMU group and if necessary sequester
devices.

Refer to the Note in Section 20.1.1, “Assigning a PCI device with virsh” for more information on
IOMMU groups and how to detach endpoint devices using virsh.

20.1.3. PCI device assignment with virt-install

To use virt-install to assign a PCl device, use the --host-device parameter.

Procedure 20.5. Assighing a PCIl device to a virtual machine with virt-install
1. Identify the device

Identify the PCI device designated for device assignment to the guest virtual machine.

lspci | grep Ethernet
00:19.0 Ethernet controller: Intel Corporation 82567LM-2 Gigabit Network

Connection

01:00.0 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection
(rev 01)

01:00.1 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection
(rev 01)

The virsh nodedev-1list command lists all devices attached to the system, and identifies each
PCI device with a string. To limit output to only PCI devices, run the following command:

virsh nodedev-list --cap pci
pci_0000_00_00_0
pci_0000_00_01 0
pci_0000_00_03_0
pci_0000_00_07_0
pci_0000_00_10_0
pci_0000_00_10_1
pci_0000_00_14 0
pci_0000_00_14_ 1
pci_0000_00_14_2
pci_0000_00_14_3
pci_0000_00_19 0
pci_0000_00_1a_0
pci_0000_00_1a_1
pci_0000_00_1a_2
pci_0000_00_1a 7
pci_0000_00_1b_0
pci_0000_00_1c_0
pci_0000_00_1c_1
pci_0000_00_1c_4
pci_0000_00_1d_0
pci_0000_00_1d_1
pci_0000_00_1d_ 2

187

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

pci_0000_00_1d 7
pci_0000_00_1e_0
pci_0000_00_1f_0
pci_0000_0060_1f_2
pci_0000_00_1f_3
pci_0000_01 00_0
pci_0000_01 00_1
pci_0000_02 0060_0
pci_0000_02 _00_1
pci_0000_06_00_0
pci_0000_07_02 0
pci_0000_07_03_0

Record the PCI device number; the number is needed in other steps.

Information on the domain, bus and function are available from output of the virsh nodedev-
dumpxml command:

virsh nodedev-dumpxml pci_0000_01_00_0
<device>
<pame>pci_0000_01_00_0</name>
<parent>pci_0000_00_01_0</parent>
<driver>
<name>igb</name>
</driver>
<capability type='pci'>
<domain>0</domain>
<bus>1</bus>
<slot>0</slot>
<function>0</function>
<product id='0x10c9'>82576 Gigabit Network Connection</product>
<vendor id='0x8086'>Intel Corporation</vendor>
<iommuGroup number='7"'>
<address domain='0x0000' bus='0x00' slot='0x19' function='0x0'/>
</iommuGroup>
</capability>
</device>

S

If there are multiple endpoints in the IOMMU group and not all of them are assigned to the
guest, you will need to manually detach the other endpoint(s) from the host by running the
following command before you start the guest:

$ virsh nodedev-detach pci 0000_00_19 1

Refer to the Note in Section 20.1.1, “Assigning a PCI device with virsh” for more information
on IOMMU groups.

2. Add the device

Use the PCI identifier output from the virsh nodedev command as the value for the --host-
device parameter.

188

Chapter 20. Guest virtual machine device configuration

virt-install \

--name=guestl-rhel7-64 \

--disk path=/var/lib/libvirt/images/guestl-rhel7-64.img, size=8 \
--nonsparse --graphics spice \

--VCpus=2 --ram=2048 \
--location=http://examplel.com/installation_tree/RHEL7.0-Server-x86_64/0s \
--nonetworks \

--0s-type=linux \

--0s-variant=rhel?7

--host-device=pci_006000_01_00_0

3. Complete the installation

Complete the guest installation. The PCI device should be attached to the guest.

20.1.4. Detaching an assigned PCI device

When a host PCl device has been assigned to a guest machine, the host can no longer use the device.
Read this section to learn how to detach the device from the guest with virsh or virt-manager so it is

available for host use.

Procedure 20.6. Detaching a PCl device from a guest with virsh
1. Detach the device

Use the following command to detach the PCI device from the guest by removing it in the guest's
XML file:

virsh detach-device name_of_guest file.xml

2. Re-attach the device to the host (optional)

If the device is in managed mode, skip this step. The device will be returned to the host automatically.

If the device is not using managed mode, use the following command to re-attach the PCI device to
the host machine:

virsh nodedev-reattach device
For example, to re-attach the pci_0000_01_00_0 device to the host:
virsh nodedev-reattach pci_0000_01_00_0

The device is now available for host use.

Procedure 20.7. Detaching a PCI Device from a guest with virt-manager
1. Open the virtual hardware details screen

In virt-manager, double-click on the virtual machine that contains the device. Select the Show
virtual hardware details button to display a list of virtual hardware.

189

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

File Virtual M

Figure 20.4. The virtual hardware details button

2. Select and remove the device

Select the PCI device to be detached from the list of virtual devices in the left panel.

File Virtual Machine View Send Key
AN

B overview
Performance
{3 Processor
B2 Memory
33 Boot Options
) Virtlo Disk 1
B NIC 4882

Physical PCl Device
Device: 00:1D:0 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #1

[Tablet
*) Mouse
8 pisplay Spice
Eif sound: iche
@ serial 1

= Channel

]

B video
B controller uss
B controller virtio Serial

Add Hardware Remove

Figure 20.5. Selecting the PCl device to be detached

Click the Remove button to confirm. The device is now available for host use.

20.1.5. Creating PCI bridges

Peripheral Component Interconnects (PCI) bridges are used to attach to devices such as network cards,
modems and sound cards. Just like their physical counterparts, virtual devices can also be attached to a
PCI Bridge. In the past, only 31 PCI devices could be added to any guest virtual machine. Now, when a 31st
PCl device is added, a PClI bridge is automatically placed in the 31st slot moving the additional PCI device
to the PCI bridge. Each PCI bridge has 31 slots for 31 additional devices, all of which can be bridges. In
this manner, over 900 devices can be available for guest virtual machines. Note that this action cannot be

performed when the guest virtual machine is running. You must add the PCI device on a guest virtual
machine that is shutdown.

20.1.6. PCI passthrough

A PCI network device (specified by the <source> element) is directly assigned to the guest using generic

device passthrough, after first optionally setting the device's MAC address to the configured value, and
associating the device with an 802.1Qbh capable switch using an optionally specified <virtualport>

element (see the examples of virtualport given above for type="direct’' network devices). Note that - due to

190

Chapter 20. Guest virtual machine device configuration

limitations in standard single-port PCI ethernet card driver design - only SR-IOV (Single Root /O
Virtualization) virtual function (VF) devices can be assigned in this manner; to assign a standard single-
port PCl or PCle Ethernet card to a guest, use the traditional <hostdev> device definition.

To use VFIO device assignment rather than traditional/legacy KVM device assignment (VFIO is a new
method of device assignment that is compatible with UEFI Secure Boot), a <type="hostdev'> interface
can have an optional driver sub-element with a name attribute set to "vfio". To use legacy KVM device
assignment you can set name to "kvm" (or simply omit the <driver> element, since <driver="'kvm'>
is currently the default).

Note that this "intelligent passthrough” of network devices is very similar to the functionality of a standard
<hostdev> device, the difference being that this method allows specifying a MAC address and
<virtualport> for the passed-through device. If these capabilities are not required, if you have a
standard single-port PCI, PCle, or USB network card that does not support SR-IOV (and hence would
anyway lose the configured MAC address during reset after being assigned to the guest domain), or if you
are using a version of libvirt older than 0.9.11, you should use standard <hostdev> to assign the device

to the guestinstead of <interface type='hostdev'/>.

<devices>
<interface type='hostdev'>
<driver name='vfio'/>
<source>
<address type='pci' domain='Ox0000' bus='0x00' slot='0xQ7' function='0Ox0'/>
</source>
<mac address='52:54:00:6d:90:02'>
<virtualport type='802.1Qbh'>
<parameters profileid='finance'/>
</virtualport>
</interface>
</devices>

Figure 20.6. XML example for PCI device assighment

20.1.7. Configuring PCI assignment (passthrough) with SR-IOV devices

This section is for SR-IOV devices only. SR-IOV network cards provide multiple Virtual Functions (VFs) that
can each be individually assigned to a guest virtual machines using PCI device assignment. Once
assigned, each will behave as a full physical network device. This permits many guest virtual machines to
gain the performance advantage of direct PCI device assignment, while only using a single slot on the host
physical machine.

These VFs can be assigned to guest virtual machines in the traditional manner using the element
<hostdev>, but as SR-IOV VF network devices do not have permanent unigue MAC addresses, it causes
issues where the guest virtual machine's network settings would have to be re-configured each time the
host physical machine is rebooted. To remedy this, you would need to set the MAC address prior to
assigning the VF to the host physical machine and you would need to set this each and every time the
guest virtual machine boots. In order to assign this MAC address as well as other options, refert to the
procedure described in Procedure 20.8, “Configuring MAC addresses, VLAN, and virtual ports for
assigning PCl devices on SR-IOV”.

191

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Procedure 20.8. Configuring MAC addresses, VLAN, and virtual ports for assigning PCIl devices
on SR-IOV

It is important to note that the <hostdev> element cannot be used for function-specific items like MAC
address assignment, VLAN tag ID assignment, or virtual port assignment because the <mac>, <vlan>,
and <virtualport> elements are not valid children for <hostdev>. As they are valid for
<interface>, support for a new interface type was added (<interface type='hostdev'>).This
new interface device type behaves as a hybrid of an <interface> and <hostdev>. Thus, before

assigning the PCI device to the guest virtual machine, libvirt initializes the network-specific
hardware/switch that is indicated (such as setting the MAC address, setting a vLAN tag, and/or
associating with an 802.1Qbh switch) in the guest virtual machine's XML configuration file. For information
on setting the vLAN tag, refer to Section 22.13, “Setting VLAN tags”.

1. Shutdown the guest virtual machine

Using virsh shutdown command (refer to Section 26.9.2, “Shutting down Red Hat

Enterprise Linux 6 guests on a Red Hat Enterprise Linux 7 host”), shutdown the guest virtual
machine named guestVM.

virsh shutdown guestVvM

2. Gather information

In order to use <interface type='hostdev'>, you must have an SR-IOV-capable network card,

host physical machine hardware that supports either the Intel VT-d or AMD IOMMU extensions, and
you must know the PCl address of the VF that you wish to assign.

3. Open the XML file for editing

Run the # virsh save-image-edit command to open the XML file for editing (refer to

Section 26.8.10, “Edit Domain XML configuration files” for more information). As you would want to
restore the guest virtual machine to its former running state, the --running would be used in this
case. The name of the configuration file in this example is guestVM.xml, as the name of the guest
virtual machine is guestVM.

virsh save-image-edit guestVM.xml --running

The guestVM.xml opens in your default editor.
4. Edit the XML file

Update the configuration file (guestVM.xml) to have a <devices> entry similar to the following:

<devices>

<interface type='hostdev' managed='yes'>
<source>
<address type='pci' domain='0Ox0' bus='0x00' slot='0x07' function='0Ox0'/>

<!--these values can be decimal as well-->

</source>

<mac address='52:54:00:6d:90:02'/>
<!--sets the mac address-->

<virtualport type='802.1Qbh'>
<I--sets the virtual port for the 802.1Qbh switch-->

192

Chapter 20. Guest virtual machine device configuration

<parameters profileid='finance'/>
</virtualport>
<vlan>
<!--sets the vlan tag-->
<tag id='42'/>
</vlan>
</interface>

</devices>

Figure 20.7. Sample domain XML for hostdev interface type

Note that if you do not provide a MAC address, one will be automatically generated, just as with any
other type of interface device. Also, the <virtualport> element is only used if you are connecting

to an 802.11Qgh hardware switch (802.11Qbg (a.k.a. "VEPA") switches are currently not supported.
5. Re-start the guest virtual machine

Run the virsh start command to restart the guest virtual machine you shutdown in the first step

(example uses guestVM as the guest virtual machine's domain name). Refer to Section 26.8.1,
“Starting a defined domain” for more information.

virsh start guestvMm

When the guest virtual machine starts, it sees the network device provided to it by the physical host
machine's adapter, with the configured MAC address. This MAC address will remain unchanged
across guest virtual machine and host physical machine reboots.

20.1.8. Setting PCI device assignment from a pool of SR-IOV virtual functions

Hard coding the PCl addresses of a particular Virtual Functions (VFS) into a guest's configuration has two
serious limitations:

The specified VF must be available any time the guest virtual machine is started, implying that the
administrator must permanently assign each VF to a single guest virtual machine (or modify the
configuration file for every guest virtual machine to specify a currently unused VF's PCl address each
time every guest virtual machine is started).

If the guest vitual machine is moved to another host physical machine, that host physical machine must
have exactly the same hardware in the same location on the PCl bus (or, again, the guest vitual
machine configuration must be modified prior to start).

It is possible to avoid both of these problems by creating a libvirt network with a device pool containing all
the VFs of an SR-IOV device. Once that is done you would configure the guest virtual machine to reference
this network. Each time the guest is started, a single VF will be allocated from the pool and assigned to the
guest virtual machine. When the guest virtual machine is stopped, the VF will be returned to the pool for
use by another guest virtual machine.

Procedure 20.9. Creating a device pool

1. Shutdown the guest virtual machine

193

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

194

Using virsh shutdown command (refer to Section 26.9.2, “Shutting down Red Hat

Enterprise Linux 6 guests on a Red Hat Enterprise Linux 7 host”), shutdown the guest virtual
machine named guestVM.

virsh shutdown guestVM

. Create a configuration file

Using your editor of chocice create an XML file (hamed passthrough.xml, for example) in the /tmp
directory. Make sure to replace pf dev="'eth3' with the netdev name of your own SR-IOV device's
PF

The following is an example network definition that will make available a pool of all VFs for the SR-
IOV adapter with its physical function (PF) at "eth3' on the host physical machine:

<network>
<name>passthrough</name>
<I--This is the name of the file you created-->
<forward mode='hostdev' managed='yes'>
<pf dev='myNetDevName'/>
<!--Use the netdev name of your SR-IOV devices PF here-->
</forward>
</network>

Figure 20.8. Sample network definition domain XML

. Load the new XML file

Run the following command, replacing /tmp/passthrough.xml, with the name and location of your XML
file you created in the previous step:

virsh net-define /tmp/passthrough.xml

. Restarting the guest

Run the following replacing passthrough.xml, with the name of your XML file you created in the
previous step:

virsh net-autostart passthrough # virsh net-start passthrough

. Re-start the guest virtual machine

Run the virsh start command to restart the guest virtual machine you shutdown in the first step

(example uses guestVM as the guest virtual machine's domain name). Refer to Section 26.8.1,
“Starting a defined domain” for more information.

virsh start guestvMm

. Initiating passthrough for devices

Chapter 20. Guest virtual machine device configuration

Although only a single device is shown, libvirt will automatically derive the list of all VFs associated
with that PF the first time a guest virtual machine is started with an interface definition in its domain

XML like the following:

<interface type='network'>
<source network="'passthrough'>

</interface>

Figure 20.9. Sample domain XML for interface network definition

7. Verification

You can verify this by running virsh net-dumpxml passthrough command after starting the
first guest that uses the network; you will get output similar to the following:

<network connections='1'>

<name>passthrough</name>
<uuid>a6b49429-d353-d7ad-3185-4451cc786437</uuid>

<forward mode='hostdev' managed='yes'>

<pf dev='eth3'/>
<address type='pci'
function='0x1'/>
<address type='pci'
function='0x3"'/>
<address type='pci'
function='0x5"'/>
<address type='pci'
function='0x7"'/>
<address type='pci'
function='0Ox1'/>
<address type='pci'
function='0x3"'/>
<address type='pci'
function='0x5"'/>
</forward>
</network>

domain='0x0000"'

domain='0x0000"

domain='0x0000"'

domain='0x0000"

domain='0x0000"

domain='0x0000"

domain="'0x0000"

bus='0x02'
bus='0x02'
bus='0x02'
bus='0x02'
bus='0x02'
bus='0x02'
bus='0x02'

Figure 20.10. XML dump file passthrough contents

20.2. USB devices

This section gives the commands required for handling USB devices.

slot='0x10"
slot='0x10"
slot="'0x10"
slot='0x10"
slot='Ox11"
slot='0x11"
slot="'0Ox11"'

195

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

20.2.1. Assigning USB devices to guest virtual machines

Most devices such as web cameras, card readers, disk drives, keyboards, mice, etc are connected to a
computer using a USB port and cable. There are two ways to pass such devices to a guest virtual
machine:

Using USB passthrough - this requires the device to be physically connected to the host physical
machine that is hosting the guest virtual machine. SPICE is not needed in this case. USB devices on
the host can be passed to the guest via the command line or virt-manager. Refer to Section 25.3.2,
“Attaching USB devices to a guest virtual machine” for virt manager directions. Note that the virt-
manager directions are not suitable for hot plugging or hot unplugging devices. If you want to hot
plug/or hot unplug a USB device, refer to Procedure 26.1, “Hotplugging USB devices for use by the
guest virtual machine”.

Using USB re-direction - USB re-direction is best used in cases where there is a host physical machine

that is running in a data center. The user connects to his/her guest virtual machine from a local
machine or thin client. On this local machine there is a SPICE client. The user can attach any USB
device to the thin client and the SPICE client will redirect the device to the host physical machine on the
data center so it can be used by the guest virtual machine that is running on the thin client. For
instructions via the virt-manager refer to Section 25.3.3, “USB redirection”.

20.2.2. Setting a limit on USB device redirection

To filter out certain devices from redirection, pass the filter property to -device usb-redir. The filter
property takes a string consisting of filter rules, the format for a rule is:

<class>:<vendor>:<product>:<version>:<allow>

Use the value -1 to designate it to accept any value for a particular field. You may use multiple rules on

the same command line using | as a separator. Note that if a device matches none of the passed in rules,
redirecting it will not be allowed!

196

Chapter 20. Guest virtual machine device configuration

Example 20.1. An example of limiting redirection with a windows guest virtual machine
1. Prepare a Windows 7 guest virtual machine.

2. Add the following code excerpt to the guest virtual machine's' domain xml file:

<redirdev bus='usb' type='spicevmc'>
<alias name='redir0@'/>
<address type='usb' bus='0' port='3'/>
</redirdev>
<redirfilter>
<usbdev class='0x08' vendor='0x1234"' product='0OXBEEF' version='2.0'
allow="'yes'/>
<usbdev class='-1' vendor='-1' product='-1' version='-1' allow='no'/>
</redirfilter>

3. Start the guest virtual machine and confirm the setting changes by running the following:

#ps -ef | grep $guest_name

-device ush-redir,chardev=charrediro,id=rediro, /
filter=0x08:0x1234 :0xBEEF:0x0200:1|-1:-1:-1:-1:0, bus=usb.0,port=3

4. Plug a USB device into a host physical machine, and use virt-manager to connect to the guest
virtual machine.

5. Click USB device selection in the menu, which will produce the following message: "Some USB
devices are blocked by host policy". Click OK to confirm and continue.

The filter takes effect.

6. To make sure that the filter captures properly check the USB device vendor and product, then
make the following changes in the host physical machine's domain XML to allow for USB
redirection.

<redirfilter>
<usbdev class='0x08' vendor='0x0951' product='0x1625' version='2.0"
allow='yes'/>
<usbdev allow='no'/>
</redirfilter>

7. Restart the guest virtual machine, then use virt-viewer to connect to the guest virtual machine.
The USB device will now redirect traffic to the guest virtual machine.

20.3. Configuring device controllers

Depending on the guest virtual machine architecture, some device buses can appear more than once, with
a group of virtual devices tied to a virtual controller. Normally, libvirt can automatically infer such controllers
without requiring explicit XML markup, but in some cases it is better to explicitly set a virtual controller
element.

197

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

<devices>
<controller type='ide' index='0'/>
<controller type='virtio-serial' index='Q' ports='16' vectors='4"'/>
<controller type='virtio-serial' index='1'>
<address type='pci' domain='Ox0000' bus='0x00' slot='Ox@a' function='0x0'/>
</controller>

</devices>

Figure 20.11. Domain XML example for virtual controllers

Each controller has a mandatory attribute <controller type>, which must be one of:

ide

fdc

scsi

sata

usb

ccid

virtio-serial

pci

The <controller> element has a mandatory attribute <controller index> which is the decimal

integer describing in which order the bus controller is encountered (for use in controller attributes of
<address> elements). When <controller type ='virtio-serial'> there are two additional

optional attributes (named ports and vectors), which control how many devices can be connected
through the controller.

When <controller type ='scsi'>,there is an optional attribute model model, which can have the
following values:

auto
buslogic
ibmvscsi
Isilogic
Isisas1068
Isisas1078
virtio-scsi

VMpPVSCSi

198

Chapter 20. Guest virtual machine device configuration

When <controller type ='usb'>, there is an optional attribute model model, which can have the
following values:

piix3-uhci

piix4-uhci

ehci

ich9-ehcil

ich9-uhcil

ich9-uhci2

ich9-uhci3

vt82c686b-uhci

pci-ohci

nec-xhci

Note that if the USB bus needs to be explicitly disabled for the guest virtual machine, <model="'none'>
may be used. .

For controllers that are themselves devices on a PCl or USB bus, an optional sub-element <address>

can specify the exact relationship of the controller to its master bus, with semantics as shown in
Section 20.4, “Setting addresses for devices”.

An optional sub-element <driver> can specify the driver specific options. Currently it only supports

attribute queues, which specifies the number of queues for the controller. For best performance, it's
recommended to specify a value matching the number of vCPUs.

USB companion controllers have an optional sub-element <master> to specify the exact relationship of
the companion to its master controller. A companion controller is on the same bus as its master, so the
companion index value should be equal.

An example XML which can be used is as follows:

<devices>
<controller type='usb' index='0' model='ich9-ehcil'>
<address type='pci' domain='®' bus='0®' slot='4' function='7'/>
</controller>
<controller type='usb' index='0' model='ich9-uhcil'>
<master startport='0'/>
<address type='pci' domain='0' bus='@' slot='4' function='0Q"
multifunction='on'/>
</controller>

</devices>

199

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Figure 20.12. Domain XML example for USB controllers

PCI controllers have an optional model attribute with the following possible values:
pci-root
pcie-root
pci-bridge
dmi-to-pci-bridge

The root controllers (pci-root and pcie-root) have an optional pcihole64 element specifying how
big (in kilobytes, or in the unit specified by pcihole64's unit attribute) the 64-bit PCI hole should be.

Some guest virtual machines (such as Windows XP or Windows Server 2003) may cause a crash, unless
unit is disabled (setto O unit='0").

For machine types which provide an implicit PCI bus, the pci-root controller with index="'0" is auto-added
and required to use PCI devices. pci-root has no address. PCI bridges are auto-added if there are too
many devices to fit on the one bus provided by model="pci-root"', or a PCl bus number greater than
zero was specified. PCI bridges can also be specified manually, but their addresses should only refer to
PCl buses provided by already specified PCI controllers. Leaving gaps in the PCI controller indexes might
lead to an invalid configuration. T he following XML example can be added to the <devices> section:

<devices>
<controller type='pci' index='0®' model='pci-root'/>
<controller type='pci' index='1' model='pci-bridge'>
<address type='pci' domain='0®' bus='®' slot='5' function='0"
multifunction="'off'/>
</controller>
</devices>

Figure 20.13. Domain XML example for PCI bridge

For machine types which provide an implicit PCI Express (PCle) bus (for example, the machine types
based on the Q35 chipset), the pcie-root controller with index="'0" is auto-added to the domain's
configuration. pcie-root has also no address, but provides 31 slots (numbered 1-31) and can only be used
to attach PCle devices. In order to connect standard PCI devices on a system which has a pcie-root
controller, a pci controller with model="dmi-to-pci-bridge' is automatically added. A dmi-to-pci-
bridge controller plugs into a PCle slot (as provided by pcie-root), and itself provides 31 standard PCI slots
(which are not hot-pluggable). In order to have hot-pluggable PCI slots in the guest system, a pci-bridge
controller will also be automatically created and connected to one of the slots of the auto-created dmi-to-
pci-bridge controller; all guest devices with PCl addresses that are auto-determined by libvirt will be placed
on this pci-bridge device.

200

Chapter 20. Guest virtual machine device configuration

<devices>
<controller type='pci' index='®' model='pcie-root'/>
<controller type='pci' index='1' model='dmi-to-pci-bridge'>
<address type='pci' domain='0®' bus='0' slot='GOxe' function='0'/>
</controller>
<controller type='pci' index='2' model='pci-bridge'>
<address type='pci' domain='@' bus='1' slot='1' function='Q'/>
</controller>
</devices>

Figure 20.14. Domain XML example for PCle (PCI express)

20.4. Setting addresses for devices

Many devices have an optional <address> sub-element which is used to describe where the device is
placed on the virtual bus presented to the guest virtual machine. If an address (or any optional attribute
within an address) is omitted on input, libvirt will generate an appropriate address; but an explicit address
is required if more control over layout is required. See Figure 20.6, “XML example for PCI device
assignment” for domain XML device examples including an <address> element.

Every address has a mandatory attribute type that describes which bus the device is on. The choice of
which address to use for a given device is constrained in part by the device and the architecture of the
guest virtual machine. For example, a <disk> device uses type="'drive', while a <console> device
would use type="pci' on i686 or x86_64 guest virtual machine architectures. Each address type has
further optional attributes that control where on the bus the device will be placed as described in the table:

Table 20.1. Supported device address types

‘ Address type Description
type="pci’ PCl addresses have the following additional
attributes:

domain (a 2-byte hex integer, not currently
used by gemu)

bus (a hex value between 0 and 0xff, inclusive)
slot (a hex value between 0x0 and Ox1f,
inclusive)

function (a value between 0 and 7, inclusive)
multifunction controls turning on the
multifunction bit for a particular slot/function in
the PCI control register By default it is set to
‘off', but should be set to 'on’ for function O of a
slot that will have multiple functions used.

201

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

‘ Address type Description

type='drive’ Drive addresses have the following additional
attributes:

controller (a 2-digit controller number)
bus (a 2-digit bus number

target (a 2-digit bus number)

unit (a 2-digit unit number on the bus)

type='virtio-serial' Each virtio-serial address has the following
additional attributes:

controller (a 2-digit controller number)
bus (a 2-digit bus number)
slot (a 2-digit slot within the bus)

type='ccid' A CCID address, for smart-cards, has the following
additional attributes:

bus (a 2-digit bus number)
slot attribute (a 2-digit slot within the bus)

type='usb' USB addresses have the following additional
attributes:

bus (a hex value between 0 and Oxfff,
inclusive)

port (a dotted notation of up to four octets,
such as 1.2 or 21.3.1)

type='isa’ ISA addresses have the following additional
attributes:

iobase
irg

20.5. Random number generator device

virtio-rng is a virtual hardware random number generator device that can provide the guest with fresh
entropy upon request. The driver feeds the data back to the guest virtual machine's OS.

On the host physical machine, the hardware rng interface creates a chardev at /dev/hwrng, which can
be opened and then read to fetch entropy from the host physical machine. Coupled with the rngd daemon,
the entropy from the host physical machine can be routed to the guest virtual machine's /dev/random,
which is the primary source of randomness.

Using a random number generator is particularly useful when a device such as a keyboard, mouse and
other inputs are not enough to generate sufficient entropy on the guest virtual machine.T he virtual random
number generator device allows the host physical machine to pass through entropy to guest virtual
machine operating systems. This device is available on both Windows and KVM guest virtual machines.
This procedure can be done either via the command line or via virt-manager. For virt-manager instructions
refer to Procedure 20.10, “Implementing virtio-rng via Virtualzation Manager” and for command line
instructions, refer to Procedure 20.11, “Implementing virtio-rng via command line tools”.

202

Chapter 20. Guest virtual machine device configuration

Procedure 20.10. Implementing virtio-rng via Virtualzation Manager
1. Shutdown the guest virtual machine.

2. Select the guest virtual machine and from the Edit menu, select Virtual Machine Details, to open
the Details window for the specified guest virtual machine.

3. Click the Add Hardware button.
4. In the Add New Virtual Hardware window, select RNG to open the Random Number Generator

window.

Add New Virtual Hardware

2 stor
orage Random Number Generator
@ Metwaorl

Input Please indicate the parameters of the RNG device,

Y
(] Graphics

= Type: | Random o
@ Sound
=4 Serial Backend Type:
=& Parallel Backend Mode:
=% Channel
rr USB Host Device Device: | /dev/random
PCl Host Device Host:
E video
Bind Host:
E} Watchdog
o
f=a Smartcard

@ usB Redirection
2% RNG

Cancel Finish

Figure 20.15. Random Number Generator window

Enter the desired parameters and click Finish when done. The parameters are explained in virtio-
rng elements.

Procedure 20.11. Implementing virtio-rng via command line tools
1. Shutdown the guest virtual machine.

2. Using virsh edit domain-name command, open the XML file for the desired guest virtual
machine.

203

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

3. Edit the <devices> element to include the following:

<devices>
<rng model='virtio'>
<rate period="2000" bytes="1234"/>
<backend model='random'>/dev/random</backend>
<l-- OR -->
<backend model='egd' type='udp'>
<source mode='bind' service='1234"'>
<source mode='connect' host physical machine='1.2.3.4' service='1234'>
</backend>
</rng>
</devices>

Figure 20.16. Random number generator device

The random number generator device allows the following attributes/elements:

virtio-rng elements

model - The required model attribute specifies what type of RNG device is provided.
'virtio'

<backend> - The <backend> element specifies the source of entropy to be used for the
domain. The source model is configured using the model attribute. Supported source models
include 'random' — /dev/random (default setting) or similar device as source and 'egd'
which sets a EGD protocol backend.

backend type='random' - This <backend> type expects a non-blocking character device
as input. Examples of such devices are /dev/random and /dev/urandom. The file name is
specified as contents of the <backend> element. When no file name is specified the hypervisor
default is used.

<backend type='egd'> - This backend connects to a source using the EGD protocol. The

source is specified as a character device. Refer to character device host physical machine
interface for more information.

204

Chapter 21. SR-IOV

Chapter 21. SR-IOV

Developed by the PCI-SIG (PCI Special Interest Group), the Single Root I/O Virtualization (SR-IOV)
specification is a standard for a type of PCI device assignment that can share a single device to multiple
virtual machines. SR-IOV improves device performance for virtual machines.

\?‘J:J Guest 1 \?‘]:J Guest 2

Guest OS5
Virtual
NIC

- Physical NIC
Hypervisor Driver

Guest OS5

Virtual
NIC

IO MMU (Intel VT-d or AMD IOMMU)

Virtual Virtual Physical
Function Function Function

@ SR-IOV PCI Device (NIC)

Host System

Figure 21.1. How SR-IOV works

SR-IOV enables a Single Root Function (for example, a single Ethernet port), to appear as multiple,
separate, physical devices. A physical device with SR-IOV capabilities can be configured to appear in the
PCI configuration space as multiple functions. Each device has its own configuration space complete with
Base Address Registers (BARS).

SR-I0V uses two PCI functions:

Physical Functions (PFs) are full PCle devices that include the SR-IOV capabilities. Physical Functions
are discovered, managed, and configured as normal PCI devices. Physical Functions configure and
manage the SR-IOV functionality by assigning Virtual Functions.

Virtual Functions (VFs) are simple PCle functions that only process I/O. Each Virtual Function is derived
from a Physical Function. The number of Virtual Functions a device may have is limited by the device
hardware. A single Ethernet port, the Physical Device, may map to many Virtual Functions that can be
shared to virtual machines.

The hypervisor can map one or more Virtual Functions to a virtual machine. The Virtual Function's
configuration space is then mapped to the configuration space presented to the guest.

Each Virtual Function can only be mapped to a single guest at a time, as Virtual Functions require real
hardware resources. A virtual machine can have multiple Virtual Functions. A Virtual Function appears as a
network card in the same way as a normal network card would appear to an operating system.

The SR-IOV drivers are implemented in the kernel. The core implementation is contained in the PCI
subsystem, but there must also be driver support for both the Physical Function (PF) and Virtual Function
(VF) devices. An SR-IOV capable device can allocate VFs from a PF. The VFs appear as PCI devices
which are backed on the physical PCI device by resources such as queues and register sets.

21.1. Advantages of SR-IOV

SR-IOV devices can share a single physical port with multiple virtual machines.

205

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Virtual Functions have near-native performance and provide better performance than para-virtualized
drivers and emulated access. Virtual Functions provide data protection between virtual machines on the
same physical server as the data is managed and controlled by the hardware.

These features allow for increased virtual machine density on hosts within a data center.

SR-IOV is better able to utilize the bandwidth of devices with multiple guests.

21.2. Using SR-IOV

This section covers the use of PCl passthrough to assign a Virtual Function of an SR-IOV capable
multiport network card to a virtual machine as a network device.

SR-IOV Virtual Functions (VFs) can be assigned to virtual machines by adding a device entry in
<hostdev> with the virsh edit or virsh attach-device command. However, this can be
problematic because unlike a regular network device, an SR-IOV VF network device does not have a
permanent unique MAC address, and is assigned a new MAC address each time the host is rebooted.
Because of this, even if the guest is assigned the same VF after a reboot, when the host is rebooted the
guest determines its network adapter to have a new MAC address. As a result, the guest believes there is
new hardware connected each time, and will usually require re-configuration of the guest's network
settings.

libvirt-0.9.10 and newer contains the <interface type='hostdev'> interface device. Using this interface

device, libvirt will first perform any network-specific hardware/switch initialization indicated (such as
setting the MAC address, VLAN tag, or 802.1Qbh virtualport parameters), then perform the PCl device
assignment to the guest.

Using the <interface type='hostdev'> interface device requires:

an SR-I0OV-capable network card,
host hardware that supports either the Intel VT-d or the AMD IOMMU extensions, and

the PCl address of the VF to be assigned.

oy mportane

Assignment of an SR-IOV device to a virtual machine requires that the host hardware supports the
Intel VT -d or the AMD IOMMU specification.

To attach an SR-IOV network device on an Intel or an AMD system, follow this procedure:

Procedure 21.1. Attach an SR-IOV network device on an Intel or AMD system
1. Enable Intel VT-d or the AMD IOMMU specifications in the BIOS and kernel

On an Intel system, enable Intel VT-d in the BIOS if it is not enabled already. Refer to
Procedure 20.1, “Preparing an Intel system for PCI device assignment” for procedural help on
enabling Intel VT-d in the BIOS and kernel.

Skip this step if Intel VT-d is already enabled and working.

206

Chapter 21. SR-IOV

On an AMD system, enable the AMD IOMMU specifications in the BIOS if they are not enabled
already. Refer to Procedure 20.2, “Preparing an AMD system for PCI device assignment” for
procedural help on enabling IOMMU in the BIOS.

. Verify support

Verify if the PCI device with SR-IOV capabilities is detected. This example lists an Intel 82576
network interface card which supports SR-IOV. Use the 1spci command to verify whether the
device was detected.

lspci
03:00.0 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection
(rev 01)
03:00.1 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection
(rev 01)

Note that the output has been modified to remove all other devices.
. Start the SR-I0V kernel modules

If the device is supported the driver kernel module should be loaded automatically by the kernel.
Optional parameters can be passed to the module using the modprobe command. The Intel 82576
network interface card uses the igb driver kernel module.

modprobe igb [<option>=<VAL1>,<VAL2>,]
lsmod |grep igb

igb 87592 0

dca 6708 1 igb

. Activate Virtual Functions

The max_vfs parameter of the igb module allocates the maximum number of Virtual Functions. The
max_vfs parameter causes the driver to spawn, up to the value of the parameter in, Virtual
Functions. For this particular card the valid range is 0 to 7.

Remove the module to change the variable.

modprobe -r igb

Restart the module with the max_vfs set to 7 or any number of Virtual Functions up to the maximum
supported by your device.

modprobe igb max_vfs=7

. Make the Virtual Functions persistent

Add the line options igb max_vfs=7 to any file in /etc/modprobe.d to make the Virtual
Functions persistent. For example:

echo "options igb max_vfs=7" >>/etc/modprobe.d/igb.conf

. Inspect the new Virtual Functions

207

Using the 1spci command, list the newly added Virtual Functions attached to the Intel 82576
network device. (Alternatively, use grep to search for Virtual Function,to search for devices
that support Virtual Functions.)

lspci | grep 82576

0b:00.0 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection
(rev 01)

0b:00.1 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection
(rev 01)

0b:10.0 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)

0b:10.1 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:10.2 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:10.3 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:10.4 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:10.5 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:10.6 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:10.7 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:11.0 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
Ob:11.1 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
Ob:11.2 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:11.3 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
Ob:11.4 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:11.5 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)

The identifier for the PCIl device is found with the -n parameter of the 1spci command. The
Physical Functions correspond to 6b:00.0 and 0b:00.1. All Virtual Functions have Virtual
Function in the description.

7. Verify devices exist with virsh

The 1libvirt service must recognize the device before adding a device to a virtual machine.
libvirt uses a similar notation to the 1spci output. All punctuation characters, ; and ., in 1spci
output are changed to underscores (_).

Use the virsh nodedev-1list command and the grep command to filter the Intel 82576 network
device from the list of available host devices. @b is the filter for the Intel 82576 network devices in
this example. This may vary for your system and may result in additional devices.

virsh nodedev-list | grep 6b
pci_0000_0b_00_0
pci_0000_0b_006_1
pci_0000_0b_10_0
pci_0000_0b_10_1
pci_0000_0b_10_2
pci_0000_0b_10_3
pci_0000_0b_10_4
pci_0000_0b_10_5
pci_0000_0b_10_6
pci_0000_06b_11 7
pci_06000_60b_11 1
pci_0000_0b_11 2
pci_0000_06b_11 3
pci_0000_0b_11 4
pci_0000_0b_11 5

The serial numbers for the Virtual Functions and Physical Functions should be in the list.

8. Get device details with virsh

The pci_0000_0b_00_0 is one of the Physical Functions and pci_0000_0b_10_0 is the first
corresponding Virtual Function for that Physical Function. Use the virsh nodedev-dumpxml
command to get advanced output for both devices.

virsh nodedev-dumpxml pci_0000_0b_00_0
<device>
<name>pci_0000_0b_00_0</name>
<parent>pci_0000_00_01_0</parent>
<driver>
<name>igb</name>
</driver>
<capability type='pci'>
<domain>0</domain>
<bus>11</bus>
<slot>0</slot>
<function>0</function>
<product id='0x10c9'>Intel Corporation</product>
<vendor id='0x8086'>82576 Gigabit Network Connection</vendor>
</capability>
</device>

virsh nodedev-dumpxml pci_0000_0b_10_0
<device>
<name>pci_0000_0b_10_0</name>
<parent>pci_0000_00_01_0</parent>
<driver>
<pame>igbvf</name>
</driver>
<capability type='pci'>
<domain>0</domain>
<bus>11</bus>
<slot>16</slot>
<function>0</function>
<product id='Ox10ca'>Intel Corporation</product>
<vendor 1id='0x8086'>82576 Virtual Function</vendor>
</capability>
</device>

This example adds the Virtual Function pci_0000_0b_10_0 to the virtual machine in Step 9. Note
the bus, slot and function parameters of the Virtual Function: these are required for adding the
device.

Copy these parameters into a temporary XML file, such as /tmp/new-interface.xml for
example.

<interface type='hostdev' managed='yes'>
<source>
<address type='pci' domain='Q' bus='11' slot='16' function='0Q'/>
</source>
</interface>

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

@

If you do not specify a MAC address, one will be automatically generated. The
<virtualport> element is only used when connecting to an 802.11Qbh hardware switch.

The <vlan> element will transparently put the guest's device on the VLAN tagged 42.

When the virtual machine starts, it should see a network device of the type provided by the
physical adapter, with the configured MAC address. This MAC address will remain
unchanged across host and guest reboots.

The following <interface> example shows the syntax for the optional <mac address>,
<virtualport>, and <vlan> elements. In practice, use either the <vlan> or <virtualport>
element, not both simultaneously as shown in the example:

<devices>

<interface type='hostdev' managed='yes'>
<source>
<address type='pci' domain='@' bus='11' slot='16' function='0'/>
</source>
<mac address='52:54:00:6d:90:02'>
<vlan>
<tag id='42'/>
</vlan>
<virtualport type='802.1Qbh'>
<parameters profileid='finance'/>
</virtualport>
</interface>

</devices>

Add the Virtual Function to the virtual machine

Add the Virtual Function to the virtual machine using the following command with the temporary file
created in the previous step. This attaches the new device immediately and saves it for subsequent
guest restarts.

virsh attach-device MyGuest /tmp/new-interface.xml --live --config

Specifying the --1ive option with virsh attach-device attaches the new device to the running
guest. Using the --config option ensures the new device is available after future guest restarts.

S

The --1ive option is only accepted when the guest is running. vir sh will return an error if
the --1ive option is used on a non-running guest.

The virtual machine detects a new network interface card. This new card is the Virtual Function of the SR-
IOV device.

210

Chapter 21. SR-IOV

21.3. Troubleshooting SR-IOV

This section contains solutions for problems which may affect SR-IOV. If you need additional help, refer to
Appendix A, Troubleshooting as well as Section 20.1.8, “Setting PCI device assignment from a pool of SR-
IOV virtual functions”.

Error starting the guest

When starting a configured virtual machine, an error occurs as follows:

virsh start test

error: Failed to start domain test

error: Requested operation is not valid: PCI device 0000:03:10.1 is in use
by domain rhel?

This error is often caused by a device that is already assigned to another guest or to the host
itself.

Error migrating, saving, or dumping the guest

Attempts to migrate and dump the virtual machine cause an error similar to the following:

virsh dump rhel7/tmp/rhel7.dump

error: Failed to core dump domain rhel7 to /tmp/rhel7.dump
error: internal error: unable to execute QEMU command 'migrate': State
blocked by non-migratable device '0000:00:03.0/vfio-pci'

Because device assignment uses hardware on the specific host where the virtual machine was
started, guest migration and save are not supported when device assignment is in use. Currently,
the same limitation also applies to core-dumping a guest; this may change in the future. It is
important to note that QEMU does not currently support migrate, save, and dump operations on
guest virtual machines with PCI devices attached. Currently it only can support these actions with
USB devices. Work is currently being done to improve this in the future.

211

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Chapter 22. Virtual Networking

This chapter introduces the concepts needed to create, start, stop, remove, and modify virtual networks
with libvirt.

Additional information can be found in the libvirt reference chapter

22.1. Virtual network switches

Libvirt virtual networking uses the concept of a virtual network switch. A virtual network switch is a software
construct that operates on a host physical machine server, to which virtual machines (guests) connect.
The network traffic for a guest is directed through this switch:

l Host Server

Virtual
Machine

Virtual
Machine

Figure 22.1. Virtual network switch with two guests

Linux host physical machine servers represent a virtual network switch as a network interface. When the
libvirtd daemon (1ibvirtd) is first installed and started, the default network interface representing the

virtual network switch is virbro.

Linux
l—"”’f\\ Host Server

virtual network switch
wvirbro

Figure 22.2. Linux host physical machine with an interface to a virtual network switch

This virbro interface can be viewed with the ifconfig and ip commands like any other interface:

212

Chapter 22. Virtual Networking

$ ifconfig virbro
virbro Link encap:Ethernet Hwaddr 1B:C4:94:CF:FD:17

inet addr:192.168.122.1 Bcast:192.168.122.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:11 errors:0 dropped:0 overruns:0 carrier:0
collisions:® txqueuelen:O
RX bytes:0 (0.0 b) TX bytes:3097 (3.0 KiB)

$ ip addr show virbro

3: virbr@: <BROADCAST, MULTICAST, UP, LOWER_UP> mtu 1500 gqdisc noqueue state UNKNOWN

link/ether 1b:c4:94:cf:fd:17 brd ff:ff:ff:ff:ff:ff
inet 192.168.122.1/24 brd 192.168.122.255 scope global virbr@

22.2. Network Address Translation

By default, virtual network switches operate in NAT mode. They use IP masquerading rather than SNAT
(Source-NAT) or DNAT (Destination-NAT). IP masquerading enables connected guests to use the host
physical machine IP address for communication to any external network. By default, computers that are

placed externally to the host physical machine cannot communicate to the guests inside when the virtual

network switch is operating in NAT mode, as shown in the following diagram:

Virtual switch: NAT mode
#,ff“’“hma

| \ Host Server

..-""‘-Rd!_!_.__._.__.—r":
10.10.10.190

NAT is
applied
here

All communication to
systems outside of

the host, appears to Virtual
come from the host Machine
IP address. : 192.168.122.210
virtual network switch
10.10.10.190 in this in NAT mode Virtual
example. Machine

192.168.122.220

Figure 22.3. Virtual network switch using NAT with two guests

Virtual network switches use NAT configured by iptables rules. Editing these rules while the switch

is running is not recommended, as incorrect rules may result in the switch being unable to
communicate.

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

If the switch is not running, you can set th public IP range for foward mode NAT in order to create a port
masquerading range by running:

iptables -j SNAT --to-source [start]-[end]

22.3. Networking protocols

The following sections describe individual networking protocols and how they are used in libvirt

22.3.1. DNS and DHCP

IP information can be assigned to guests via DHCP. A pool of addresses can be assigned to a virtual
network switch for this purpose. Libvirt uses the dnsmasq program for this. An instance of dnsmasq is
automatically configured and started by libvirt for each virtual network switch that needs it.

[) Virtualization Host Server

i Virtual
Virtual network e .
@ switch <+ JB Machine

192.168.122.210

<> Virtual
Using DHCP range: R \ﬁﬁiﬂ Machine
192.168.122.2 - 192.168.122.254 192.168.122.220

Figure 22.4. Virtual network switch running dnsmasq

22.3.2. Routed mode

When using routed mode, the virtual switch connects to the physical LAN connected to the host physical
machine, passing traffic back and forth without the use of NAT. The virtual switch can examine all traffic
and use the information contained within the network packets to make routing decisions. When using this
mode, all of the virtual machines are in their own subnet, routed through a virtual switch. This situation is
not always ideal as no other host physical machines on the physical network are aware of the virtual
machines without manual physical router configuration, and cannot access the virtual machines. Routed
mode operates at Layer 3 of the OSI networking model.

214

Chapter 22. Virtual Networking

Virtual switch: Routed mode

Host Server

10.10.10.1

The host acts as a
router, letting the

outside world Virtual
communicate with - Machine
the virtual machines 10.10.10.100
by IP address. virtual network switch
in routed mode < > Virtual
10.10.10.100, gD Machine
and 10.10.10.101, 10.10.10.101

in this example.

Figure 22.5. Virtual network switch in routed mode

22.3.3. Isolated mode

When using Isolated mode, guests connected to the virtual switch can communicate with each other, and
with the host physical machine, but their traffic will not pass outside of the host physical machine, nor can
they receive traffic from outside the host physical machine. Using dnsmasq in this mode is required for
basic functionality such as DHCP. However, even if this network is isolated from any physical network,
DNS names are still resolved. Therefore a situation can arise when DNS names resolve but ICMP echo
request (ping) commands fail.

215

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Virtual switch: Isolated mode

\ Host Server

Mo external network x
traffic gets to, nor
comes from, the
virtual machines

Virtual
Machine

virtual network switch

in isolated mode ?. Virtual

m Machine
192.168.122.220

Figure 22.6. Virtual network switch in isolated mode

22.4. The default configuration

When the libvirtd daemon (1ibvirtd) is first installed, it contains an initial virtual network switch

configuration in NAT mode. This configuration is used so that installed guests can communicate to the
external network, through the host physical machine. T he following image demonstrates this default
configuration for 1ibvirtd:

216

Chapter 22. Virtual Networking

libvirt's default network configuration

Virtualization Host Server

Physical
ethernet
port (ethO)

virbro

Virtual network
switch: MAT mode

Virtual s, Virtual

9= Machine Y2 Machine
Virtual s, Virtual
\@ Machine @) Machine

Figure 22.7. Default libvirt network configuration

_

A virtual network can be restricted to a specific physical interface. This may be useful on a physical
system that has several interfaces (for example, eth0, ethl and eth2). This is only useful in

routed and NAT modes, and can be defined in the dev=<interface> option, or in virt-
manager when creating a new virtual network.

22.5. Examples of common scenarios

This section demonstrates different virtual networking modes and provides some example scenarios.

22.5.1. Routed mode
DMZ

Consider a network where one or more nodes are placed in a controlled sub-network for security reasons.
The deployment of a special sub-network such as this is a common practice, and the sub-network is
known as a DMZ. Refer to the following diagram for more details on this layout:

217

Red Hat Enterprise Linux 7 Virtualization Deployment and Administration Guide

Firewall

Wide Area ' ¢) Local Area
- Network < > Network

DMZ

C Host Server
1 .

Virtual
Machine

virtual network switch
in routed mode Virtual
Machine

Figure 22.8. Sample DMZ configuration

Host physical machines in a DMZ typically provide services to WAN (external) host physical machines as
well as LAN (internal) host physical machines. As this requires them to be accessible from multiple
locations, and considering that these locations are controlled and operated in different ways based on
their security and trust level, routed mode is the best configuration for this environment.

Virtual Server hosting

Consider a virtual server hosting company that has several host physical machines, each with two
physical network connections. One interface is used for management and accounting, the other is for the
virtual machines to connect through. Each guest has its own public IP address, but the host physical
machines use private IP address as management of the guests can only be performed by internal
administrators. Refer to the following diagram to understand this scenario:

218

Chapter 22. Virtual Networking

. Host Server
ﬁ 1 .

*------.-hqlh IOJIO.IO.I

LS
The host can be "‘\
administered through *

one network interface Virtual
while virtual machines w Machine
tp;'owdﬁ ';'rr':ew f:r\nces . B Bublle P>
mﬁg : € E’ rfer e virtual network switch
NEIWOrK Interface. in routed mode Virtual
) Machine
<Public IP>

Figure 22.9. Virtual server hosting sample configuration

When the host physical machine has a public IP address and the virtual machines have static public IP
addresses, bridged networking cannot be used, as the provider only accepts packets from the MAC
address of the public host physical machine. The following diagram demonstrates this:

Host Server
1
192.168.0.1

—

The host acts as a
router, letting the
outside world Virtual
communicate with Machine
the V