
Red Hat Subject Matter ExpertsLaura Bailey

Red Hat Enterprise Linux 7
Performance Tuning Guide

Optimizing subsystem throughput in Red Hat Enterprise Linux 7

Red Hat Enterprise Linux 7 Performance Tuning Guide

Optimizing subsystem throughput in Red Hat Enterprise Linux 7

Red Hat Subject Matter Experts

Laura Bailey

Legal Notice

Copyright © 2014 Red Hat, Inc. and others.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0 Unported
License. If you distribute this document, or a modified version of it, you must provide attribution to Red
Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat trademarks must be
removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section
4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo,
and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other
countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or
endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack Logo are either registered trademarks/service marks or
trademarks/service marks of the OpenStack Foundation, in the United States and other countries and
are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The Red Hat Enterprise Linux 7 Performance Tuning Guide explains how to optimize Red Hat Enterprise
Linux 7 performance. It also documents performance-related upgrades in Red Hat Enterprise Linux 7.
The Performance Tuning Guide presents only field-tested and proven procedures. Nonetheless, all
prospective configurations should be set up and tested in a testing environment before being applied to
a production system. Backing up all data and configuration settings prior to tuning is also recommended.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

Table of Contents

⁠Chapter 1. Performance Features in Red Hat Enterprise Linux 7
⁠1.1. New in 7.0

⁠Chapter 2. Performance Monitoring Tools
⁠2.1. /proc
⁠2.2. GNOME System Monitor
⁠2.3. Performance Co-Pilot (PCP)
⁠2.4. Tuna
⁠2.5. Built in command line tools
⁠2.6. tuned and tuned-adm
⁠2.7. perf
⁠2.8. turbostat
⁠2.9. iostat
⁠2.10. irqbalance
⁠2.11. ss
⁠2.12. numastat
⁠2.13. numad
⁠2.14. SystemTap
⁠2.15. OProfile
⁠2.16. Valgrind

⁠Chapter 3. CPU
⁠3.1. Considerations
⁠3.2. Monitoring and diagnosing performance problems
⁠3.3. Configuration suggestions

⁠Chapter 4 . Memory
⁠4.1. Considerations
⁠4.2. Monitoring and diagnosing performance problems
⁠4.3. Configuration tools

⁠Chapter 5. Storage and File Systems
⁠5.1. Considerations
⁠5.2. Monitoring and diagnosing performance problems
⁠5.3. Configuration tools

⁠Chapter 6. Networking
⁠6.1. Considerations
⁠6.2. Monitoring and diagnosing performance problems
⁠6.3. Configuration tools

Tool Reference
⁠A.1. irqbalance
⁠A.2. Tuna
⁠A.3. ethtool
⁠A.4. ss
⁠A.5. tuned
⁠A.6. tuned-adm
⁠A.7. perf
⁠A.8. Performance Co-Pilot (PCP)
⁠A.9. vmstat
⁠A.10. x86_energy_perf_policy
⁠A.11. turbostat
⁠A.12. numastat
⁠A.13. numactl
⁠A.14. numad

3
3

4
4
4
5
5
5
6
7
7
8
8
8
8
9
9
9

10

11
11
16
17

23
23
24
27

31
31
36
39

4 9
49
50
51

58
58
59
61
61
61
61
63
64
64
65
66
67
68
69

Table of Contents

1

. .

⁠A.14. numad
⁠A.15. OProfile
⁠A.16. taskset
⁠A.17. SystemTap

Revision History

69
70
71
72

73

Red Hat Enterprise Linux 7 Performance Tuning Guide

2

Chapter 1. Performance Features in Red Hat Enterprise Linux 7
Read this section for a brief overview of the performance-related changes included in Red Hat
Enterprise Linux 7.

1.1. New in 7.0
This guide has been completely rewritten and restructured for Red Hat Enterprise Linux 7.

deadline replaces cfq as the default I/O scheduler in Red Hat Enterprise Linux 7. This change
provides better performance for most common use cases.

The XFS file system replaces ext4 as the default file system, and is now supported to a maximum file
system size of 500 TB, and a maximum file offset of 8 EB (sparse files). Tuning recommendations for
XFS have been updated to assist with clarity.

The ext4 file system is now supported to a maximum file system size of 50 TB and a maximum file size
of 16 TB. Tuning recommendations have been updated accordingly. Additionally, support for the ext2
and ext3 file systems is now provided by the ext4 driver.

The btrfs file system is now provided as a Technology Preview.

Red Hat Enterprise Linux 7 includes some minor performance improvements for GFS2.

Tuna has been updated to include support for configuration files, and adding and saving tuned
profiles. This updated version uses event-based sampling to consume fewer processor resources.
The graphical version has also been updated to allow realtime monitoring. Tuna is now documented in
Section 2.4, “Tuna”, Section 3.3.8, “Configuring CPU, thread, and interrupt affinity with Tuna”, and
Section A.2, “Tuna”.

The default profile for tuned is now throughput-performance. This replaces the now removed
enterprise-storage profile. Several new profiles for networking and virtualization have been
added. Additionally, tuned now provides shell script callout and includes functionality.

The tuned-adm tool now provides the recommend sub-command, which recommends an appropriate
tuning profile for your system. This also sets the default profile for your system at install time, so can
be used to return to the default profile.

Red Hat Enterprise Linux 7 provides support for automatic NUMA balancing. The kernel now
automatically detects which memory pages process threads are actively using, and groups the threads
and their memory into or across NUMA nodes. The kernel reschedules threads and migrates memory
to balance the system for optimal NUMA alignment and performance.

The performance penalty to enabling file system barriers is now negligible (less than 3%). As such,
tuned profiles no longer disable file system barriers.

OProfile adds support for profiling based on the Linux Performance Events subsystem with the new
operf tool. This new tool can be used to collect data in place of the opcontrol daemon.

Control groups remain available as a method of allocating resources to certain groups of processes on
your system. For detailed information about implementation in Red Hat Enterprise Linux 7, see the
Red Hat Enterprise Linux 7 Resource Management Guide, available from
http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/.

⁠Chapter 1. Performance Features in Red Hat Enterprise Linux 7

3

http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/

Chapter 2. Performance Monitoring Tools
This chapter briefly describes some of the performance monitoring and configuration tools available for
Red Hat Enterprise Linux 7. Where possible, this chapter directs readers to further information about how
to use the tool, and examples of real life situations that the tool can be used to resolve.

The following knowledge base article provides a more comprehensive list of performance monitoring tools
suitable for use with Red Hat Enterprise Linux: https://access.redhat.com/site/solutions/173863.

2.1. /proc
The /proc "file system" is a directory that contains a hierarchy of files that represent the current state of
the Linux kernel. It allows users and applications to see the kernel's view of the system.

The /proc directory also contains information about system hardware and any currently running
processes. Most files in the /proc file system are read-only, but some files (primarily those in /proc/sys)
can be manipulated by users and applications to communicate configuration changes to the kernel.

For further information about viewing and editing files in the /proc directory, refer to the Red Hat
Enterprise Linux 7 System Administrator's Reference Guide, available from
http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/.

2.2. GNOME System Monitor
The GNOME desktop environment includes a graphical tool, System Monitor, to assist you in monitoring
and modifying the behavior of your system. System Monitor displays basic system information and allows
you to monitor system processes and resource or file system usage.

System Monitor has four tabs, each of which displays different information about the system.

⁠System

This tab displays basic information about the system's hardware and software.

⁠Processes

This tab displays detailed information about active processes and the relationships between
those processes. The processes displayed can be filtered to make certain processes easier to
find. This tab also lets you perform some actions on the processes displayed, such as start, stop,
kill, and change priority.

⁠Resources

This tab displays the current CPU time usage, memory and swap space usage, and network
usage.

⁠File Systems

This tab lists all mounted file systems, and provides some basic information about each, such as
the file system type, mount point, and memory usage.

To start System Monitor, press the Super key to enter the Activities Overview, type System Monitor, and
then press Enter.

Red Hat Enterprise Linux 7 Performance Tuning Guide

4

https://access.redhat.com/site/solutions/173863
http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/

For more information about System Monitor, see either the Help menu in the application, or the Red Hat
Enterprise Linux 7 System Administrator's Guide, available from
http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/.

2.3. Performance Co-Pilot (PCP)
Red Hat Enterprise Linux 7 introduces support for Performance Co-Pilot (PCP), a suite of tools, services,
and libraries for acquiring, storing, and analysing system-level performance measurements. Its light-weight,
distributed architecture makes it particularly well suited to centralized analysis of complex systems.
Performance metrics can be added using the Python, Perl, C++ and C interfaces. Analysis tools can use
the client APIs (Python, C++, C) directly, and rich web applications can explore all available performance
data using a JSON interface.

The pcp package provides the command line tools and underlying functionality. The graphical tool also
requires the pcp-gui package.

For further details about PCP, see Section A.8, “Performance Co-Pilot (PCP)”. Additionally, the pcp-doc
package provides comprehensive documentation, which is installed to /usr/share/doc/pcp-doc by
default. PCP also provides a man page for every tool; type man toolname at the command line to view the
man page for that tool.

2.4. Tuna
Tuna adjusts configuration details such as scheduler policy, thread priority, and CPU and interrupt affinity.
The tuna package provides a command line tool and a graphical interface with equivalent functionality.

Section 3.3.8, “Configuring CPU, thread, and interrupt affinity with Tuna” describes how to configure your
system with Tuna on the command line. For details about how to use Tuna, see Section A.2, “Tuna” or the
man page:

$ man tuna

2.5. Built in command line tools
Red Hat Enterprise Linux 7 provides several tools that can be used to monitor your system from the
command line, allowing you to monitor your system outside run level 5. This chapter discusses each tool
briefly and provides links to further information about where each tool should be used, and how to use
them.

2.5.1. top

The top tool, provided by the procps-ng package, gives a dynamic view of the processes in a running
system. It can display a variety of information, including a system summary and a list of tasks currently
being managed by the Linux kernel. It also has a limited ability to manipulate processes, and to make
configuration changes persistent across system restarts.

By default, the processes displayed are ordered according to the percentage of CPU usage, so that you
can easily see the processes consuming the most resources. Both the information top displays and its
operation are highly configurable to allow you to concentrate on different usage statistics as required.

For detailed information about using top, see the man page:

⁠Chapter 2. Performance Monitoring Tools

5

http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/

$ man top

2.5.2. ps

The ps tool, provided by the procps-ng package, takes a snapshot of a select group of active processes.
By default, the group examined is limited to processes that are owned by the current user and associated
with the terminal in which ps is run.

ps can provide more detailed information about processes than top, but by default it provides a single
snapshot of this data, ordered by process identifier.

For detailed information about using ps, see the man page:

$ man ps

2.5.3. Virtual Memory Statistics (vmstat)

The Virtual Memory Statistics tool, vmstat, provides instant reports on your system's processes, memory,
paging, block input/output, interrupts, and CPU activity. Vmstat lets you set a sampling interval so that you
can observe system activity in near-real time.

vmstat is provided by the procps-ng package. For detailed information about using vmstat, see the man
page:

$ man vmstat

2.5.4. System Activity Reporter (sar)

The System Activity Reporter, sar, collects and reports information about system activity that has occurred
so far on the current day. The default output displays the current day's CPU usage at 10 minute intervals
from the beginning of the day (00:00:00 according to your system clock).

You can also use the -i option to set the interval time in seconds, for example, sar -i 60 tells sar to
check CPU usage every minute.

sar is a useful alternative to manually creating periodic reports on system activity with top. It is provided by
the sysstat package. For detailed information about using sar, see the man page:

$ man sar

2.6. tuned and tuned-adm
tuned is a tuning daemon that can adapt the operating system to perform better under certain workloads
by setting a tuning profile. tuned-adm is a command line tool that lets users switch between different tuning
profiles.

Several pre-defined profiles are included for common use cases, but tuned-adm also lets you define
custom profiles, which can be either based on one of the pre-defined profiles, or defined from scratch. In
Red Hat Enterprise Linux 7 the default profile is throughput-performance.

The profiles provided with tuned-adm are divided into two categories: power saving profiles, and
performance boosting profiles. The performance boosting profiles include profiles that focus on the
following:

Red Hat Enterprise Linux 7 Performance Tuning Guide

6

low latency for storage and network

high throughput for storage and network

virtual machine performance

virtualization host performance

For detailed information about how to enabled tuned, see Section A.5, “tuned”.

For detailed information about the performance boosting profiles provided with tuned-adm, see Section A.6,
“tuned-adm”.

For detailed information about the power saving profiles provided with tuned-adm, see the Red Hat
Enterprise Linux 7 Power Management Guide, available from
http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/.

For detailed information about using tuned and tuned-adm, see their respective man pages:

$ man tuned

$ man tuned-adm

2.7. perf
The perf tool uses hardware performance counters and kernel tracepoints to track the impact of other
commands and applications on your system. Various perf subcommands display and record statistics for
common performance events, and analyze and report on the data recorded.

For detailed information about perf and its subcommands, see Section A.7, “perf”.

Alternatively, more information is available in the Red Hat Enterprise Linux 7 Developer Guide, available
from http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/.

2.8. turbostat
Turbostat is provided by the kernel-tools package. It reports on processor topology, frequency, idle power-
state statistics, temperature, and power usage on Intel® 64 processors.

Turbostat is useful for identifying servers that are inefficient in terms of power usage or idle time. It also
helps to identify the rate of system management interrupts (SMIs) occurring on the system. It can also be
used to verify the effects of power management tuning.

Turbostat requires root privileges to run. It also requires processor support for the following:

invariant time stamp counters

APERF model-specific registers

MPERF model-specific registers

For more details about turbostat output and how to read it, see Section A.11, “turbostat”.

For more information about turbostat, see the man page:

$ man turbostat

⁠Chapter 2. Performance Monitoring Tools

7

http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/
http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/

2.9. iostat
The iostat tool is provided by the sysstat package. It monitors and reports on system input/output device
loading to help administrators make decisions about how to balance input/output load between physical
disks. It reports on processor or device utilization since iostat was last run, or since boot. You can focus
the output of these reports on specific devices by using the parameters defined in the iostat man page:

$ man iostat

2.10. irqbalance
irqbalance is a command line tool that distributes hardware interrupts across processors to improve
system performance. For details about irqbalance , see Section A.1, “irqbalance” or the man page:

$ man irqbalance

2.11. ss
ss is a command-line utility that prints statistical information about sockets, allowing administrators to
assess device performance over time. By default, ss lists open non-listening TCP sockets that have
established connections, but a number of useful options are provided to help administrators filter out
statistics about specific sockets.

Red Hat recommends using ss over netstat in Red Hat Enterprise Linux 7.

One common usage is ss -tmpie which displays detailed information (including internal information)
about TCP sockets, memory usage, and processes using the socket.

ss is provided by the iproute package. For more information, see the man page:

$ man ss

2.12. numastat
The numastat tool displays memory statistics for processes and the operating system on a per-NUMA-
node basis.

By default, numastat displays per-node NUMA hit an miss system statistics from the kernel memory
allocator. Optimal performance is indicated by high numa_hit values and low numa_miss values.
Numastat also provides a number of command line options, which can show how system and process
memory is distributed across NUMA nodes in the system.

It can be useful to cross-reference per-node numastat output with per-CPU top output to verify that
process threads are running on the same node to which memory is allocated.

Numastat is provided by the numactl package. For details about how to use numastat, see Section A.12,
“numastat”. For further information about numastat, see the man page:

$ man numastat

Red Hat Enterprise Linux 7 Performance Tuning Guide

8

2.13. numad
numad is an automatic NUMA affinity management daemon. It monitors NUMA topology and resource
usage within a system in order to dynamically improve NUMA resource allocation and management (and
therefore system performance). Depending on system workload, numad can provide up to 50 percent
improvements in performance benchmarks. It also provides a pre-placement advice service that can be
queried by various job management systems to provide assistance with the initial binding of CPU and
memory resources for their processes.

numad monitors available system resources on a per-node basis by periodically accessing information in
the /proc file system. It tries to maintain a specified resource usage level, and rebalances resource
allocation when necessary by moving processes between NUMA nodes. numad attempts to achieve
optimal NUMA performance by localizing and isolating significant processes on a subset of the system's
NUMA nodes.

numad primarily benefits systems with long-running processes that consume significant amounts of
resources, and are contained in a subset of the total system resources. It may also benefit applications
that consume multiple NUMA nodes' worth of resources; however, the benefits provided by numad
decrease as the consumed percentage of system resources increases.

numad is unlikely to improve performance when processes run for only a few minutes, or do not consume
many resources. Systems with continuous, unpredictable memory access patterns, such as large in-
memory databases, are also unlikely to benefit from using numad.

For further information about using numad, see Section 3.3.5, “Automatic NUMA affinity management with
numad” or Section A.14, “numad”, or refer to the man page:

$ man numad

2.14. SystemTap
SystemTap is a tracing and probing tool that lets you monitor and analyze operating system activities,
especially kernel activities, in fine detail. It provides information similar to the output of tools like top, ps,
netstat, and iostat, but includes additional options for filtering and analyzing collected data.

SystemTap provides a deeper, more precise analysis of system activities and application behavior to allow
you to pinpoint system and application bottlenecks.

For more detailed information about SystemTap, see the Red Hat Enterprise Linux 7 SystemTap
Beginner's Guide and the Red Hat Enterprise Linux 7 SystemTap TapSet Reference. Both books are
available from http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/.

2.15. OProfile
OProfile is a system-wide performance monitoring tool. It uses the processor's dedicated performance
monitoring hardware to retrieve information about the kernel and system executables to determine the
frequency of certain events, such as when memory is referenced, the number of second-level cache
requests, and the number of hardware requests received. OProfile can also be used to determine
processor usage, and to determine which applications and services are used most often.

However, OProfile does have several limitations:

⁠Chapter 2. Performance Monitoring Tools

9

http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/

Performance monitoring samples may not be precise. Because the processor may execute instructions
out of order, samples can be recorded from a nearby instruction instead of the instruction that triggered
the interrupt.

OProfile expects processes to start and stop multiple times. As such, samples from multiple runs are
allowed to accumulate. You may need to clear the sample data from previous runs.

OProfile focuses on identifying problems with processes limited by CPU access. It is therefore not
useful for identifying processes that are sleeping while they wait for locks on other events.

For more detailed information about OProfile, see Section A.15, “OProfile”, or the Red Hat
Enterprise Linux 7 System Administrator's Guide, available from
http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/. Alternatively, refer to the
documentation on your system, located in /usr/share/doc/oprofile-version.

2.16. Valgrind
Valgrind provides a number of detection and profiling tools to help improve the performance of your
applications. These tools can detect memory and thread-related errors, as well as heap, stack, and array
overruns, letting you easily locate and correct errors in your application code. They can also profile the
cache, the heap, and branch-prediction to identify factors that may increase application speed and
minimize memory usage.

Valgrind analyzes your application by running it on a synthetic CPU and instrumenting existing application
code as it is executed. It then prints commentary that clearly identifies each process involved in application
execution to a user-specified file, file descriptor, or network socket. Note that executing instrumented code
can take between four and fifty times longer than normal execution.

Valgrind can be used on your application as-is, without recompiling. However, because Valgrind uses
debugging information to pinpoint issues in your code, if your application and support libraries were not
compiled with debugging information enabled, Red Hat recommends recompiling to include this information.

Valgrind also integrates with the GNU Project Debugger (gdb) to improve debugging efficiency.

Valgrind and its subordinate tools are useful for memory profiling. For detailed information about using
Valgrind to profile system memory, see Section 4.2.2, “Profiling application memory usage with Valgrind”.

For detailed information about Valgrind, see the Red Hat Enterprise Linux 7 Developer Guide, available
from http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/.

For detailed information about using Valgrind, see the man page:

$ man valgrind

Accompanying documentation can also be found in /usr/share/doc/valgrind-version when the
valgrind package is installed.

Red Hat Enterprise Linux 7 Performance Tuning Guide

10

http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/
http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/

Chapter 3. CPU
This chapter outlines CPU hardware details and configuration options that affect application performance
in Red Hat Enterprise Linux 7. Section 3.1, “Considerations” discusses the CPU related factors that affect
performance. Section 3.2, “Monitoring and diagnosing performance problems” teaches you how to use
Red Hat Enterprise Linux 7 tools to diagnose performance problems related to CPU hardware or
configuration details. Section 3.3, “Configuration suggestions” discusses the tools and strategies you can
use to solve CPU related performance problems in Red Hat Enterprise Linux 7.

3.1. Considerations
Read this section to gain an understanding of how system and application performance is affected by the
following factors:

How processors are connected to each other and to related resources like memory.

How processors schedule threads for execution.

How processors handle interrupts in Red Hat Enterprise Linux 7.

3.1.1. System Topology

In modern computing, the idea of a central processing unit is a misleading one, as most modern systems
have multiple processors. How these processors are connected to each other and to other system
resources — the topology of the system — can greatly affect system and application performance, and the
tuning considerations for a system.

There are two primary types of topology used in modern computing:

⁠Symmetric Multi-Processor (SMP) topology

SMP topology allows all processors to access memory in the same amount of time. However,
because shared and equal memory access inherently forces serialized memory accesses from all
the CPUs, SMP system scaling constraints are now generally viewed as unacceptable. For this
reason, practically all modern server systems are NUMA machines.

⁠Non-Uniform Memory Access (NUMA) topology

NUMA topology was developed more recently than SMP topology. In a NUMA system, multiple
processors are physically grouped on a socket. Each socket has a dedicated area of memory,
and processors that have local access to that memory are referred to collectively as a node.

Processors on the same node have high speed access to that node's memory bank, and slower
access to memory banks not on their node. Therefore, there is a performance penalty to
accessing non-local memory.

Given this performance penalty, performance sensitive applications on a system with NUMA
topology should access memory that is on the same node as the processor executing the
application, and should avoid accessing remote memory wherever possible.

When tuning application performance on a system with NUMA topology, it is therefore important to
consider where the application is being executed, and which memory bank is closest to the point
of execution.

⁠Chapter 3. CPU

11

In a system with NUMA topology, the /sys file system contains information about how processors,
memory, and peripheral devices are connected. The /sys/devices/system/cpu directory
contains details about how processors in the system are connected to each other. The
/sys/devices/system/node directory contains information about NUMA nodes in the system,
and the relative distances between those nodes.

3.1.1.1. Determining system topology

There are a number of commands that can help you understand the topology of your system. The
numactl --hardware command gives an overview of your system's topology.

$ numactl --hardware
available: 4 nodes (0-3)
node 0 cpus: 0 4 8 12 16 20 24 28 32 36
node 0 size: 65415 MB
node 0 free: 43971 MB
node 1 cpus: 2 6 10 14 18 22 26 30 34 38
node 1 size: 65536 MB
node 1 free: 44321 MB
node 2 cpus: 1 5 9 13 17 21 25 29 33 37
node 2 size: 65536 MB
node 2 free: 44304 MB
node 3 cpus: 3 7 11 15 19 23 27 31 35 39
node 3 size: 65536 MB
node 3 free: 44329 MB
node distances:
node 0 1 2 3
 0: 10 21 21 21
 1: 21 10 21 21
 2: 21 21 10 21
 3: 21 21 21 10

The lscpu command, provided by the util-linux package, gathers information about the CPU architecture,
such as the number of CPUs, threads, cores, sockets, and NUMA nodes.

$ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 40
On-line CPU(s) list: 0-39
Thread(s) per core: 1
Core(s) per socket: 10
Socket(s): 4
NUMA node(s): 4
Vendor ID: GenuineIntel
CPU family: 6
Model: 47
Model name: Intel(R) Xeon(R) CPU E7- 4870 @ 2.40GHz
Stepping: 2
CPU MHz: 2394.204
BogoMIPS: 4787.85
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 30720K

Red Hat Enterprise Linux 7 Performance Tuning Guide

12

NUMA node0 CPU(s): 0,4,8,12,16,20,24,28,32,36
NUMA node1 CPU(s): 2,6,10,14,18,22,26,30,34,38
NUMA node2 CPU(s): 1,5,9,13,17,21,25,29,33,37
NUMA node3 CPU(s): 3,7,11,15,19,23,27,31,35,39

The lstopo command, provided by the hwloc package, creates a graphical representation of your system.
The lstopo-no-graphics command provides detailed textual output.

⁠Chapter 3. CPU

13

Red Hat Enterprise Linux 7 Performance Tuning Guide

14

Output of lstopo command

3.1.2. Scheduling

In Red Hat Enterprise Linux, the smallest unit of process execution is called a thread. The system
scheduler determines which processor runs a thread, and for how long the thread runs. However, because
the scheduler's primary concern is to keep the system busy, it may not schedule threads optimally for
application performance.

For example, say an application on a NUMA system is running on Node A when a processor on Node B
becomes available. To keep the processor on Node B busy, the scheduler moves one of the application's
threads to Node B. However, the application thread still requires access to memory on Node A. Because
the thread is now running on Node B, and Node A memory is no longer local to the thread, it will take
longer to access. It may take longer for the thread to finish running on Node B than it would have taken to
wait for a processor on Node A to become available, and to execute the thread on the original node with
local memory access.

Performance sensitive applications often benefit from the designer or administrator determining where
threads are run. For details about how to ensure threads are scheduled appropriately for the needs of
performance sensitive applications, see Section 3.3.6, “Tuning scheduling policy”.

3.1.2.1. Kernel Ticks

In previous versions of Red Hat Enterprise Linux, the Linux kernel interrupted each CPU on a regular basis
to check what work needed to be done. It used the results to make decisions about process scheduling
and load balancing. This regular interruption was known as a kernel tick.

This tick occurred regardless of whether there was work for the core to do. This meant that even idle
cores were forced into higher power states on a regular basis (up to 1000 times per second) to respond
to the interrupts. This prevented the system from effectively using deep sleep states included in recent
generations of x86 processors.

In Red Hat Enterprise Linux 6 and 7, by default, the kernel no longer interrupts idle CPUs, which tend to be
in low power states. This behavior is known as the tickless kernel. Where one or fewer tasks are running,
periodic interrupts have been replaced with on-demand interrupts, allowing CPUs to remain in an idle or
low power state for longer, and reducing power usage.

Red Hat Enterprise Linux 7 offers a dynamic tickless option (nohz_full) to further improve determinism
by reducing kernel interference with user-space tasks. This option can be enabled on specified cores with
the nohz_full kernel parameter. When this option is enabled on a core, all timekeeping activities are
moved to non-latency-sensitive cores. This can be useful for high performance computing and realtime
computing workloads where user-space tasks are particularly sensitive to microsecond-level latencies
associated with the kernel timer tick.

For details on how to enable the dynamic tickless behavior in Red Hat Enterprise Linux 7, see
Section 3.3.1, “Configuring kernel tick time”.

3.1.3. Interrupt Request (IRQ) Handling

An interrupt request or IRQ is a signal for immediate attention sent from a piece of hardware to a
processor. Each device in a system is assigned one or more IRQ numbers to allow it to send unique
interrupts. When interrupts are enabled, a processor that receives an interrupt request will immediately
pause execution of the current application thread in order to address the interrupt request.

⁠Chapter 3. CPU

15

Because they halt normal operation, high interrupt rates can severely degrade system performance. It is
possible to reduce the amount of time taken by interrupts by configuring interrupt affinity or by sending a
number of lower priority interrupts in a batch (coalescing a number of interrupts).

For more information about tuning interrupt requests, see Section 3.3.7, “Setting interrupt affinity” or
Section 3.3.8, “Configuring CPU, thread, and interrupt affinity with Tuna”. For information specific to network
interrupts, see Chapter 6, Networking.

3.2. Monitoring and diagnosing performance problems
Red Hat Enterprise Linux 7 provides a number of tools that are useful for monitoring system performance
and diagnosing performance problems related to processors and their configuration. This section outlines
the available tools and gives examples of how to use them to monitor and diagnose processor related
performance issues.

3.2.1. turbostat

Turbostat prints counter results at specified intervals to help administrators identify unexpected behavior
in servers, such as excessive power usage, failure to enter deep sleep states, or system management
interrupts (SMIs) being created unnecessarily.

The turbostat tool is part of the kernel-tools package. It is supported for use on systems with AMD64
and Intel® 64 processors. It requires root privileges to run, and processor support for invariant time stamp
counters, and APERF and MPERF model specific registers.

For usage examples, see the man page:

$ man turbostat

3.2.2. numastat

Important

This tool received substantial updates in the Red Hat Enterprise Linux 6 life cycle. While the default
output remains compatible with the original tool written by Andi Kleen, supplying any options or
parameters to numastat significantly changes the format of its output.

The numastat tool displays per-NUMA node memory statistics for processes and the operating system
and shows administrators whether process memory is spread throughout a system or centralized on
specific nodes.

Cross reference numastat output with per-processor top output to confirm that process threads are
running on the same node from which process memory is allocated.

Numastat is provided by the numactl package. For further information about numastat output, see the
man page:

$ man numastat

3.2.3. /proc/interrupts

Red Hat Enterprise Linux 7 Performance Tuning Guide

16

The /proc/interrupts file lists the number of interrupts sent to each processor from a particular I/O
device. It displays the interrupt request (IRQ) number, the number of that type of interrupt request handled
by each processor in the system, the type of interrupt sent, and a comma-separated list of devices that
respond to the listed interrupt request.

If a particular application or device is generating a large number of interrupt requests to be handled by a
remote processor, its performance is likely to suffer. In this case, poor performance can be alleviated by
having a processor on the same node as the application or device handle the interrupt requests. For
details on how to assign interrupt handling to a specific processor, see Section 3.3.7, “Setting interrupt
affinity”.

3.3. Configuration suggestions
Red Hat Enterprise Linux provides a number of tools to assist administrators in configuring the system.
This section outlines the available tools and provides examples of how they can be used to solve
processor related performance problems in Red Hat Enterprise Linux 7.

3.3.1. Configuring kernel tick time

By default, Red Hat Enterprise Linux 7 uses a tickless kernel, which does not interrupt idle CPUs in order
to reduce power usage and allow newer processors to take advantage of deep sleep states.

Red Hat Enterprise Linux 7 also offers a dynamic tickless option (disabled by default), which is useful for
very latency-sensitive workloads, such as high performance computing or realtime computing.

To enable dynamic tickless behavior in certain cores, specify those cores on the kernel command line with
the nohz_full parameter. On a 16 core system, specifying nohz_full=1-15 enables dynamic tickless
behavior on cores 1 through 15, moving all timekeeping to the only unspecified core (core 0). This
behavior can be enabled either temporarily at boot time, or persistently in the /etc/default/grub file.
For persistent behavior, run the grub2-mkconfig -o /boot/grub2/grub.cfg command to save
your configuration.

Enabling dynamic tickless behavior does require some manual administration.

When the system boots, you must manually move rcu threads to the non-latency-sensitive core, in this
case core 0.

for i in `pgrep rcu` ; do taskset -pc 0 $i ; done

Use the isolcpus parameter on the kernel command like to isolate certain cores from user-space
tasks.

Optionally, set CPU affinity for the kernel's write-back bdi-flush threads to the housekeeping core:

echo 1 > /sys/bus/workqueue/devices/writeback/cpumask

Verify that the dynamic tickless configuration is working correctly by executing the following command,
where stress is a program that spins on the CPU for 1 second.

perf stat -C 1 -e irq_vectors:local_timer_entry taskset -c 1 stress -t 1 -c 1

One possible replacement for stress is a script that runs something like while :; do d=1; done. The
program available at the following link is another suitable replacement:
https://dl.fedoraproject.org/pub/epel/6/x86_64/repoview/stress.html.

⁠Chapter 3. CPU

17

https://dl.fedoraproject.org/pub/epel/6/x86_64/repoview/stress.html

The default kernel timer configuration shows 1000 ticks on a busy CPU:

perf stat -C 1 -e irq_vectors:local_timer_entry taskset -c 1 stress -t 1 -c 1
1000 irq_vectors:local_timer_entry

With the dynamic tickless kernel configured, you should see 1 tick instead:

perf stat -C 1 -e irq_vectors:local_timer_entry taskset -c 1 stress -t 1 -c 1
1 irq_vectors:local_timer_entry

3.3.2. Setting hardware performance policy (x86_energy_perf_policy)

The x86_energy_perf_policy tool allows administrators to define the relative importance of performance
and energy efficiency. This information can then be used to influence processors that support this feature
when they select options that trade off between performance and energy efficiency.

By default, it operates on all processors in performance mode. It requires processor support, which is
indicated by the presence of CPUID.06H.ECX.bit3, and must be run with root privileges.

x86_energy_perf_policy is provided by the kernel-tools package. For details of how to use
x86_energy_perf_policy, see Section A.10, “x86_energy_perf_policy” or refer to the man page:

$ man x86_energy_perf_policy

3.3.3. Setting process affinity with taskset

The taskset tool is provided by the util-linux package. Taskset allows administrators to retrieve and set
the processor affinity of a running process, or launch a process with a specified processor affinity.

Important

taskset does not guarantee local memory allocation. If you require the additional performance
benefits of local memory allocation, Red Hat recommends using numactl instead of taskset .

For more information about taskset , see Section A.16, “taskset” or the man page:

$ man taskset

3.3.4. Managing NUMA affinity with numactl

Administrators can use numactl to run a process with a specified scheduling or memory placement policy.
Numactl can also set a persistent policy for shared memory segments or files, and set the processor
affinity and memory affinity of a process.

In a system with NUMA topology, a processor's memory access slows as the distance between the
processor and the memory bank increases. Therefore, it is important to configure applications that are
sensitive to performance so that they allocate memory from the closest possible memory bank. It is best to
use memory and CPUs that are in the same NUMA node.

Multi-threaded applications that are sensitive to performance may benefit from being configured to execute
on a specific NUMA node rather than a specific processor. Whether this is suitable depends on your
system and the requirements of your application. If multiple application threads access the same cached
data, then configuring those threads to execute on the same processor may be suitable. However, if

Red Hat Enterprise Linux 7 Performance Tuning Guide

18

multiple threads that access and cache different data execute on the same processor, each thread may
evict cached data accessed by a previous thread. This means that each thread 'misses' the cache, and
wastes execution time fetching data from disk and replacing it in the cache. You can use the perf tool, as
documented in Section A.7, “perf”, to check for an excessive number of cache misses.

Numactl provides a number of options to assist you in managing processor and memory affinity. See
Section A.12, “numastat” or the man page for details:

$ man numactl

Note

The numactl package includes the libnuma library. This library offers a simple programming
interface to the NUMA policy supported by the kernel, and can be used for more fine-grained tuning
than the numactl application. For more information, see the man page:

$ man numa

3.3.5. Automatic NUMA affinity management with numad

numad is an automatic NUMA affinity management daemon. It monitors NUMA topology and resource
usage within a system in order to dynamically improve NUMA resource allocation and management.

numad also provides a pre-placement advice service that can be queried by various job management
systems to provide assistance with the initial binding of CPU and memory resources for their processes.
This pre-placement advice is available regardless of whether numad is running as an executable or a
service.

For details of how to use numad, see Section A.14, “numad” or refer to the man page:

$ man numad

3.3.6. Tuning scheduling policy

The Linux scheduler implements a number of scheduling policies, which determine where and for how long
a thread runs. There are two major categories of scheduling policies: normal policies and realtime policies.
Normal threads are used for tasks of normal priority. Realtime policies are used for time-sensitive tasks
that must complete without interruptions.

Realtime threads are not subject to time slicing. This means they will run until they block, exit, voluntarily
yield, or are pre-empted by a higher priority thread. The lowest priority realtime thread is scheduled before
any thread with a normal policy.

3.3.6.1. Scheduling policies

3.3.6.1.1. Static priority scheduling with SCHED_FIFO

SCHED_FIFO (also called static priority scheduling) is a realtime policy that defines a fixed priority for each
thread. This policy allows administrators to improve event response time and reduce latency, and is
recommended for time sensitive tasks that do not run for an extended period of time.

⁠Chapter 3. CPU

19

When SCHED_FIFO is in use, the scheduler scans the list of all SCHED_FIFO threads in priority order and
schedules the highest priority thread that is ready to run. The priority level of a SCHED_FIFO thread can
be any integer from 1 to 99, with 99 treated as the highest priority. Red Hat recommends starting at a low
number and increasing priority only when you identify latency issues.

Warning

Because realtime threads are not subject to time slicing, Red Hat does not recommend setting a
priority of 99. This places your process at the same priority level as migration and watchdog
threads; if your thread goes into a computational loop and these threads are blocked, they will not
be able to run. Systems with a single processor will eventually hang in this situation.

Administrators can limit SCHED_FIFO bandwidth to prevent realtime application programmers from
initiating realtime tasks that monopolize the processor.

⁠/proc/sys/kernel/sched_rt_period_us

This parameter defines the time period in microseconds that is considered to be one hundred
percent of processor bandwidth. The default value is 1000000 μs, or 1 second.

⁠/proc/sys/kernel/sched_rt_runtime_us

This parameter defines the time period in microseconds that is devoted to running realtime
threads. The default value is 950000 μs, or 0.95 seconds.

3.3.6.1.2. Round robin priority scheduling with SCHED_RR

SCHED_RR is a round-robin variant of SCHED_FIFO. This policy is useful when multiple threads need to
run at the same priority level.

Like SCHED_FIFO, SCHED_RR is a realtime policy that defines a fixed priority for each thread. The
scheduler scans the list of all SCHED_RR threads in priority order and schedules the highest priority
thread that is ready to run. However, unlike SCHED_FIFO, threads that have the same priority are
scheduled round-robin style within a certain time slice.

You can set the value of this time slice in milliseconds with the sched_rr_timeslice_ms kernel
parameter (/proc/sys/kernel/sched_rr_timeslice_ms). The lowest value is 1 millisecond.

3.3.6.1.3. Normal scheduling with SCHED_OTHER

SCHED_OTHER is the default scheduling policy in Red Hat Enterprise Linux 7. This policy uses the
Completely Fair Scheduler (CFS) to allow fair processor access to all threads scheduled with this policy.
This policy is most useful when there are a large number of threads or data throughput is a priority, as it
allows more efficient scheduling of threads over time.

When this policy is in use, the scheduler creates a dynamic priority list based partly on the niceness value
of each process thread. Administrators can change the niceness value of a process, but cannot change
the scheduler's dynamic priority list directly.

For details about changing process niceness, see the Red Hat Enterprise Linux 7 Deployment Guide,
available from http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/.

3.3.6.2. Isolating CPUs

Red Hat Enterprise Linux 7 Performance Tuning Guide

20

http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/

You can isolate one or more CPUs from the scheduler with the isolcpus boot parameter. This prevents
the scheduler from scheduling any user-space threads on this CPU.

Once a CPU is isolated, you must manually assign processes to the isolated CPU, either with the CPU
affinity system calls or the numactl command.

To isolate the third and sixth to eighth CPUs on your system, add the following to the kernel command line:

isolcpus=2,5-7

You can also use the Tuna tool to isolate a CPU. Tuna can isolate a CPU at any time, not just at boot
time. However, this method of isolation is subtly different from the isolcpus parameter, and does not
currently achieve the performance gains associated with isolcpus. See Section 3.3.8, “Configuring CPU,
thread, and interrupt affinity with Tuna” for more details about this tool.

3.3.7. Setting interrupt affinity

Interrupt requests have an associated affinity property, smp_affinity, that defines the processors that
will handle the interrupt request. To improve application performance, assign interrupt affinity and process
affinity to the same processor, or processors on the same core. This allows the specified interrupt and
application threads to share cache lines.

The interrupt affinity value for a particular interrupt request is stored in the associated
/proc/irq/irq_number/smp_affinity file. smp_affinity is stored as a hexadecimal bit mask
representing all processors in the system. The default value is f, meaning that an interrupt request can be
handled on any processor in the system. Setting this value to 1 means that only processor 0 can handle
the interrupt.

On systems with more than 32 processors, you must delimit smp_affinity values for discrete 32 bit
groups. For example, if you want only the first 32 processors of a 64 processor system to service an
interrupt request, you could run:

echo 0xffffffff,00000000 > /proc/irq/IRQ_NUMBER/smp_affinity

Alternatively, if the BIOS exports its NUMA topology, the irqbalance service can use that information to
serve interrupt requests on the node that is local to the hardware requesting service. For details about
irqbalance , see Section A.1, “irqbalance”

Note

On systems that support interrupt steering, modifying the smp_affinity of an interrupt request
sets up the hardware so that the decision to service an interrupt with a particular processor is
made at the hardware level with no intervention from the kernel. For more information about interrupt
steering, see Chapter 6, Networking.

3.3.8. Configuring CPU, thread, and interrupt affinity with Tuna

Tuna can control CPU, thread, and interrupt affinity, and provides a number of actions for each type of
entity it can control. For a full list of Tuna 's capabilities, see Section A.2, “Tuna”.

To move all threads away from one or more specified CPUs, run the following command, replacing CPUs
with the number of the CPU you want to isolate.

⁠Chapter 3. CPU

21

tuna --cpus CPUs --isolate

To include a CPU in the list of CPUs that can run certain threads, run the following command, replacing
CPUs with the number of the CPU you want to include.

tuna --cpus CPUs --include

To move an interrupt request to a specified CPU, run the following command, replacing CPU with the
number of the CPU, and IRQs with the comma-delimited list of interrupt requests you want to move.

tuna --irqs IRQs --cpus CPU --move

Alternatively, you can use the following command to find all interrupt requests of the pattern sfc1* .

tuna -q sfc1* -c7 -m -x

To change the policy and priority of a thread, run the following command, replacing thread with the thread
you want to change, policy with the name of the policy you want the thread to operate under, and level with
an integer from 0 (lowest priority) to 99 (highest priority).

tuna --threads thread --priority policy:level

Red Hat Enterprise Linux 7 Performance Tuning Guide

22

Chapter 4. Memory
This chapter outlines the memory management capabilities of Red Hat Enterprise Linux 7. Section 4.1,
“Considerations” discusses memory related factors that affect performance. Section 4.2, “Monitoring and
diagnosing performance problems” teaches you how to use Red Hat Enterprise Linux 7 tools to diagnose
performance problems related to memory utilization or configuration details. Section 4.3, “Configuration
tools” discusses the tools and strategies you can use to solve memory related performance problems in
Red Hat Enterprise Linux 7.

4.1. Considerations
By default, Red Hat Enterprise Linux 7 is optimized for moderate workloads. If your application or use case
requires a large amount of memory, changing the way your system manages virtual memory may improve
the performance of your application.

4.1.1. Page size

Physical memory is managed in chunks called pages. The physical location of each page is mapped to a
virtual location so that the processor can access the memory. This mapping is stored in a data structure
known as the page table.

By default, a page is about 4 KB. Since the default page size is so small, you need an enormous number
of pages to manage a large amount of memory. However, the page table can only store a finite number of
address mappings, and increasing the number of address mappings it can store is both expensive and
difficult in terms of maintaining performance levels as memory requirements scale.

Red Hat Enterprise Linux also offers the ability to manage a larger amount of memory per page with static
huge pages. Static huge pages can be configured up to sizes of 1 GB. However, they are difficult to
manage manually, and must be assigned at boot time.

Transparent huge pages are a largely automated alternative to static huge pages. Transparent huge
pages are 2 MB in size, and are enabled by default. They can sometimes interfere with latency-sensitive
applications, so are often disabled when latency is a concern.

For details about configuring huge pages to improve application performance, see Section 4.3.1,
“Configuring huge pages”.

4.1.2. Translation Lookaside Buffer size

Reading address mappings from the page table is time consuming and resource expensive, so the Linux
operating system provides a cache for recently-used addresses: the Translation Lookaside Buffer (TLB).
However, the default TLB can only cache a certain number of address mappings. If a requested address
mapping is not in the TLB (that is, the TLB is missed), the system still needs to read the page table to
determine the physical to virtual address mapping.

Because of the relationship between application memory requirements and the size of pages used to
cache address mappings, applications with large memory requirements are more likely to suffer
performance degradation from TLB misses than applications with minimal memory requirements. It is
therefore important to avoid TLB misses wherever possible.

Red Hat Enterprise Linux provides the Huge Translation Lookaside Buffer (HugeTLB), which allows
memory to be managed in very large segments. This lets a greater number of address mappings be
cached at one time, which reduces the likelihood of TLB misses, thereby improving performance in
applications with large memory requirements.

⁠Chapter 4. Memory

23

For details about configuring HugeTLB, see Section 4.3.1, “Configuring huge pages”.

4.2. Monitoring and diagnosing performance problems
Red Hat Enterprise Linux 7 provides a number of tools that are useful for monitoring system performance
and diagnosing performance problems related to system memory. This section outlines the available tools
and gives examples of how to use them to monitor and diagnose memory related performance issues.

4.2.1. Monitoring memory usage with vmstat

Vmstat , provided by the procps-ng package, outputs reports on your system's processes, memory,
paging, block input/output, interrupts, and CPU activity. It provides an instantaneous report of the average
of these events since the machine was last booted, or since the previous report.

The following command displays a table of various event counters and memory statistics.

$ vmstat -s

For further details of how to use vmstat , see Section A.9, “vmstat” or the man page:

$ man vmstat

4.2.2. Profiling application memory usage with Valgrind

Valgrind is a framework that provides instrumentation to user-space binaries. It ships with a number of
tools that can be used to profile and analyze program performance. The valgrind tools outlined in this
section can help you to detect memory errors such as uninitialized memory use and improper memory
allocation or deallocation.

To use valgrind or any of its tools, install the valgrind package:

yum install valgrind

4 .2.2.1. Profiling memory usage with Memcheck

Memcheck is the default valgrind tool. It detects and reports on a number of memory errors that can be
difficult to detect and diagnose, such as:

Memory access that should not occur

Undefined or uninitialized value use

Incorrectly freed heap memory

Pointer overlap

Memory leaks

Note

Memcheck can only report these errors; it cannot prevent them from occurring. If your program
accesses memory in a way that would normally cause a segmentation fault, the segmentation fault
still occurs. However, memcheck will log an error message immediately prior to the fault.

Red Hat Enterprise Linux 7 Performance Tuning Guide

24

Because memcheck uses instrumentation, applications executed with memcheck run ten to thirty times
slower than usual.

To run memcheck on an application, execute the following command:

valgrind --tool=memcheck application

You can also use the following options to focus memcheck output on specific types of problem.

⁠-- leak-check

After the application finishes executing, memcheck searches for memory leaks. The default
value is --leak-check=summary, which prints the number of memory leaks found. You can
specify --leak-check=yes or --leak-check=full to output details of each individual leak.
To disable, specify --leak-check=no.

⁠--undef-value-errors

The default value is --undef-value-errors=yes, which reports errors when undefined
values are used. You can also specify --undef-value-errors=no, which will disable this
report and slightly speed up Memcheck.

⁠-- ignore-ranges

Specifies one or more ranges that memcheck should ignore when checking for memory
addressability, for example, --ignore-ranges=0xPP-0xQQ,0xRR-0xSS.

For a full list of memcheck options, see the documentation included at /usr/share/doc/valgrind-
version/valgrind_manual.pdf.

4 .2.2.2. Profiling cache usage with Cachegrind

Cachegrind simulates application interaction with a system's cache hierarchy and branch predictor. It
tracks usage of the simulated first level instruction and data caches to detect poor code interaction with
this level of cache. It also tracks the last level of cache (second or third level) in order to track memory
access. As such, applications executed with cachegrind run twenty to one hundred times slower than
usual.

Cachegrind gathers statistics for the duration of application execution and outputs a summary to the
console. To run cachegrind on an application, execute the following command:

valgrind --tool=cachegrind application

You can also use the following options to focus cachegrind output on a specific problem.

⁠-- I1

Specifies the size, associativity, and line size of the first level instruction cache, like so: --
I1=size,associativity,line_size.

⁠--D1

Specifies the size, associativity, and line size of the first level data cache, like so: --
D1=size,associativity,line_size.

⁠--LL

⁠Chapter 4. Memory

25

Specifies the size, associativity, and line size of the last level cache, like so: --
LL=size,associativity,line_size.

⁠--cache-sim

Enables or disables the collection of cache access and miss counts. This is enabled (--cache-
sim=yes) by default. Disabling both this and --branch-sim leaves cachegrind with no
information to collect.

⁠--branch-sim

Enables or disables the collection of branch instruction and incorrect prediction counts. This is
enabled (--branch-sim=yes) by default. Disabling both this and --cache-sim leaves
cachegrind with no information to collect.

Cachegrind writes detailed profiling information to a per-process cachegrind.out.pid file,
where pid is the process identifier. This detailed information can be further processed by the
companion cg_annotate tool, like so:

cg_annotate cachegrind.out.pid

Cachegrind also provides the cg_diff tool, which makes it easier to chart program performance before
and after a code change. To compare output files, execute the following command, replacing first with the
initial profile output file, and second with the subsequent profile output file.

cg_diff first second

The resulting output file can be viewed in greater detail with the cg_annotate tool.

For a full list of cachegrind options, see the documentation included at /usr/share/doc/valgrind-
version/valgrind_manual.pdf.

4 .2.2.3. Profiling heap and stack space with Massif

Massif measures the heap space used by a specified application. It measures both useful space and any
additional space allocated for bookkeeping and alignment purposes. massif helps you understand how
you can reduce your application's memory use to increase execution speed and reduce the likelihood that
your application will exhaust system swap space. Applications executed with massif run about twenty
times slower than usual.

To run massif on an application, execute the following command:

valgrind --tool=massif application

You can also use the following options to focus massif output on a specific problem.

⁠--heap

Specifies whether massif profiles the heap. The default value is --heap=yes. Heap profiling can
be disabled by setting this to --heap=no.

⁠--heap-admin

Specifies the number of bytes per block to use for administration when heap profiling is enabled.
The default value is 8 bytes.

Red Hat Enterprise Linux 7 Performance Tuning Guide

26

⁠--stacks

Specifies whether massif profiles the stack. The default value is --stack=no, as stack profiling
can greatly slow massif. Set this option to --stack=yes to enable stack profiling. Note that
massif assumes that the main stack starts with a size of zero in order to better indicate the
changes in stack size that relate to the application being profiled.

⁠--t ime-unit

Specifies the interval at which massif gathers profiling data. The default value is i (instructions
executed). You can also specify ms (milliseconds, or realtime) and B (bytes allocated or
deallocated on the heap and stack). Examining bytes allocated is useful for short run applications
and for testing purposes, as it is most reproducible across different hardware.

Massif outputs profiling data to a massif.out.pid file, where pid is the process identifier of the
specified application. The ms_print tool graphs this profiling data to show memory consumption over the
execution of the application, as well as detailed information about the sites responsible for allocation at
points of peak memory allocation. To graph the data from the massif.out.pid file, execute the following
command:

ms_print massif.out.pid

For a full list of Massif options, see the documentation included at /usr/share/doc/valgrind-
version/valgrind_manual.pdf.

4.3. Configuration tools
Memory usage is typically configured by setting the value of one or more kernel parameters. These
parameters can be set temporarily by altering the contents of files in the /proc file system, or they can be
set persistently with the sysctl tool, which is provided by the procps-ng package.

For example, to set the overcommit_memory parameter to 1 temporarily, run the following command:

echo 1 > /proc/sys/vm/overcommit_memory

To set this value persistently, run the following command:

sysctl vm.overcommit_memory=1

Setting a parameter temporarily is useful for determining the effect the parameter has on your system. You
can then set the parameter persistently when you are sure that the parameter's value has the desired
effect.

4.3.1. Configuring huge pages

Huge pages rely on contiguous areas of memory, so it is best to define huge pages at boot time, before
memory becomes fragmented. To do so, add the following parameters to the kernel boot command line:

⁠hugepages

Defines the number of persistent 2 MB huge pages configured in the kernel at boot time. The
default value is 0. It is only possible to allocate (or deallocate) huge pages if there are sufficient
physically contiguous free pages in the system. Pages reserved by this parameter cannot be
used for other purposes.

⁠Chapter 4. Memory

27

This value can be adjusted after boot by changing the value of the
/proc/sys/vm/nr_hugepages file.

For more information, read the relevant kernel documentation, which is installed in
/usr/share/doc/kernel-doc-

kernel_version/Documentation/vm/hugetlbpage.txt by default.

⁠/proc/sys/vm/nr_overcommit_hugepages

Defines the maximum number of additional huge pages that can be created and used by the
system through overcommitting memory. Writing any non-zero value into this file indicates that the
system obtains that number of huge pages from the kernel's normal page pool if the persistent
huge page pool is exhausted. As these surplus huge pages become unused, they are then freed
and returned to the kernel's normal page pool.

4.3.2. Configuring system memory capacity

This section discusses memory-related kernel parameters that may be useful in improving memory
utilization on your system. These parameters can be temporarily set for testing purposes by altering the
value of the corresponding file in the /proc file system. Once you have determined the values that
produce optimal performance for your use case, you can set them permanently by using the sysctl
command.

4 .3.2.1. Virtual Memory parameters

The parameters listed in this section are located in /proc/sys/vm unless otherwise indicated.

⁠dirty_ratio

A percentage value. When this percentage of total system memory is modified, the system begins
writing the modifications to disk with the pdflush operation. The default value is 20 percent.

⁠dirty_background_ratio

A percentage value. When this percentage of total system memory is modified, the system begins
writing the modifications to disk in the background. The default value is 10 percent.

⁠overcommit_memory

Defines the conditions that determine whether a large memory request is accepted or denied.

The default value is 0. By default, the kernel performs heuristic memory overcommit handling by
estimating the amount of memory available and failing requests that are too large. However, since
memory is allocated using a heuristic rather than a precise algorithm, overloading memory is
possible with this setting.

When this parameter is set to 1, the kernel performs no memory overcommit handling. This
increases the possibility of memory overload, but improves performance for memory-intensive
tasks.

When this parameter is set to 2, the kernel denies requests for memory equal to or larger than
the sum of total available swap space and the percentage of physical RAM specified in
overcommit_ratio. This reduces the risk of overcommitting memory, but is recommended only
for systems with swap areas larger than their physical memory.

⁠overcommit_ratio

Red Hat Enterprise Linux 7 Performance Tuning Guide

28

Specifies the percentage of physical RAM considered when overcommit_memory is set to 2. The
default value is 50.

⁠max_map_count

Defines the maximum number of memory map areas that a process can use. The default value
(65530) is appropriate for most cases. Increase this value if your application needs to map more
than this number of files.

⁠min_free_kbytes

Specifies the minimum number of kilobytes to keep free across the system. This is used to
determine an appropriate value for each low memory zone, each of which is assigned a number of
reserved free pages in proportion to their size.

Warning

Extreme values can damage your system. Setting min_free_kbytes to an extremely low
value prevents the system from reclaiming memory, which can result in system hangs and
OOM-killing processes. However, setting min_free_kbytes too high (for example, to 5–
10% of total system memory) causes the system to enter an out-of-memory state
immediately, resulting in the system spending too much time reclaiming memory.

⁠oom_adj

In the event that the system runs out of memory and the panic_on_oom parameter is set to 0, the
oom_killer function kills processes until the system can recover, starting from the process
with the highest oom_score.

The oom_adj parameter helps determine the oom_score of a process. This parameter is set per
process identifier. A value of -17 disables the oom_killer for that process. Other valid values
are from -16 to 15.

Note

Processes spawned by an adjusted process inherit that process's oom_score.

⁠swappiness

A value from 0 to 100 that controls the degree to which the system swaps. A high value
prioritizes system efficiency, and aggressively swaps processes out of physical memory when
they are not active. A low value prioritizes responsiveness, and avoids swapping processes out
of physical memory for as long as possible. The default value is 60.

4 .3.2.2. File system parameters

Parameters listed in this section are located in /proc/sys/fs unless otherwise indicated.

⁠aio-max-nr

⁠Chapter 4. Memory

29

Defines the maximum allowed number of events in all active asynchronous input/output contexts.
The default value is 65536. Modifying this value does not pre-allocate or resize any kernel data
structures.

⁠file-max

Defines the maximum number of file handles allocated by the kernel. The default value matches
the value of files_stat.max_files in the kernel, which is set to the largest value out of either
NR_FILE (8192 in Red Hat Enterprise Linux), or the result of the following:

(mempages * (PAGE_SIZE / 1024)) / 10

Raising this value can resolve errors caused by a lack of available file handles.

4 .3.2.3. Kernel parameters

Parameters listed in this section are located under /proc/sys/kernel unless otherwise indicated.

⁠msgmax

Defines the maximum allowable size in bytes of any single message in a message queue. This
value must not exceed the size of the queue (msgmnb). The default value is 65536.

⁠msgmnb

Defines the maximum size in bytes of a single message queue. The default value is 65536.

⁠msgmni

Defines the maximum number of message queue identifiers (and therefore the maximum number
of queues). The default value on systems with 64-bit architecture is 1985.

⁠shmall

Defines the total amount of shared memory in bytes that can be used on the system at one time.
The default for systems with 64-bit architecture is 4294967296.

⁠shmmax

Defines the maximum size of a single shared memory segment allowed by the kernel, in bytes.
The default value on systems with 64-bit architecture is 68719476736. However, the kernel
does support values much larger than this.

⁠shmmni

Defines the system-wide maximum number of shared memory segments. The default value is
4096 on all systems.

⁠threads-max

Defines the system-wide maximum number of threads available to the kernel at one time. The
default value is equal to the value of the kernel parameter max_threads, or the result of:

mempages / (8 * THREAD_SIZE / PAGE SIZE)

The minimum value is 20.

Red Hat Enterprise Linux 7 Performance Tuning Guide

30

Chapter 5. Storage and File Systems
This chapter outlines supported file systems and configuration options that affect application performance
for both I/O and file systems in Red Hat Enterprise Linux 7. Section 5.1, “Considerations” discusses the I/O
and file system related factors that affect performance. Section 5.2, “Monitoring and diagnosing
performance problems” teaches you how to use Red Hat Enterprise Linux 7 tools to diagnose performance
problems related to I/O or file system configuration details. Section 5.3, “Configuration tools” discusses the
tools and strategies you can use to solve I/O and file system related performance problems in Red Hat
Enterprise Linux 7.

5.1. Considerations
The appropriate settings for storage and file system performance are highly dependent on the purpose of
the storage. I/O and file system performance can be affected by any of the following factors:

Data write or read patterns

Data alignment with underlying geometry

Block size

File system size

Journal size and location

Recording access times

Ensuring data reliability

Pre-fetching data

Pre-allocating disk space

File fragmentation

Resource contention

Read this chapter to gain an understanding of the formatting and mount options that affect file system
throughput, scalability, responsiveness, resource usage, and availability.

5.1.1. Solid-State Disks

Solid-state disks (SSD) use NAND flash chips rather than rotating magnetic platters to store persistent
data. They provide a constant access time for data across their full Logical Block Address range, and do
not incur measurable seek costs like their rotating counterparts. They are more expensive per gigabyte of
storage space and have a lesser storage density, but they also have lower latency and greater throughput
than HDDs.

Performance generally degrades as the used blocks on an SSD approach the capacity of the disk. The
degree of degradation varies by vendor, but all devices experience degradation in this circumstance.
Enabling discard behavior can help to alleviate this degradation; see Section 5.1.4.3, “Maintenance” for
details.

The default I/O scheduler and virtual memory options are suitable for use with SSDs.

⁠Chapter 5. Storage and File Systems

31

Further information about SSD deployment recommendations is available in the Red Hat Enterprise Linux 7
Storage Administration Guide, available from
http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/.

5.1.2. I/O Schedulers

The I/O scheduler determines when and for how long I/O operations run on a storage device. It is also
known as the I/O elevator.

Red Hat Enterprise Linux 7 provides three I/O schedulers.

⁠deadline

The default I/O scheduler for all block devices except SATA disks. Deadline attempts to provide
a guaranteed latency for requests from the point at which requests reach the I/O scheduler. This
scheduler is suitable for most use cases, but particularly those in which read operations occur
more often than write operations.

Queued I/O requests are sorted into a read or write batch and then scheduled for execution in
increasing LBA order. Read batches take precedence over write batches by default, as
applications are more likely to block on read I/O. After a batch is processed, deadline checks
how long write operations have been starved of processor time and schedules the next read or
write batch as appropriate. The number of requests to handle per batch, the number of read
batches to issue per write batch, and the amount of time before requests expire are all
configurable; see Section 5.3.4, “Tuning the deadline scheduler” for details.

⁠cfq

The default scheduler only for devices identified as SATA disks. The Completely Fair Queueing
scheduler, cfq, divides processes into three separate classes: real time, best effort, and idle.
Processes in the real time class are always performed before processes in the best effort class,
which are always performed before processes in the idle class. This means that processes in the
real time class can starve both best effort and idle processes of processor time. Processes are
assigned to the best effort class by default.

Cfq uses historical data to anticipate whether an application will issue more I/O requests in the
near future. If more I/O is expected, cfq idles to wait for the new I/O, even if I/O from other
processes is waiting to be processed.

Because of this tendency to idle, the cfq scheduler should not be used in conjunction with
hardware that does not incur a large seek penalty unless it is tuned for this purpose. It should
also not be used in conjunction with other non-work-conserving schedulers, such as a host-
based hardware RAID controller, as stacking these schedulers tends to cause a large amount of
latency.

Cfq behavior is highly configurable; see Section 5.3.5, “Tuning the cfq scheduler” for details.

⁠noop

The noop I/O scheduler implements a simple FIFO (first-in first-out) scheduling algorithm.
Requests are merged at the generic block layer through a simple last-hit cache. This can be the
best scheduler for CPU-bound systems using fast storage.

For details on setting a different default I/O scheduler, or specifying a different scheduler for a particular
device, see Section 5.3, “Configuration tools”.

Red Hat Enterprise Linux 7 Performance Tuning Guide

32

http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/

5.1.3. File systems

Read this section for details about supported file systems in Red Hat Enterprise Linux 7, their
recommended use cases, and the format and mount options available to file systems in general. Detailed
tuning recommendations for these file systems are available in Section 5.3.7, “Configuring file systems for
performance”.

⁠XFS

XFS is a robust and highly scalable 64-bit file system. It is the default file system in Red Hat
Enterprise Linux 7. XFS uses extent-based allocation, and features a number of allocation
schemes, including pre-allocation and delayed allocation, both of which reduce fragmentation and
aid performance. It also supports metadata journaling, which can facilitate crash recovery. XFS
can be defragmented and enlarged while mounted and active, and Red Hat Enterprise Linux 7
supports several XFS-specific backup and restore utilities.

As of Red Hat Enterprise Linux 7.0 GA, XFS is supported to a maximum file system size of
500 TB, and a maximum file offset of 8 EB (sparse files). For details about administering XFS, see
the Red Hat Enterprise Linux 7 Storage Administration Guide, available from
http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/. For assistance tuning
XFS for a specific purpose, see Section 5.3.7.1, “Tuning XFS”.

⁠Ext4

Ext4 is a scalable extension of the ext3 file system. Its default behavior is optimal for most work
loads. However, it is supported only to a maximum file system size of 50 TB, and a maximum file
size of 16 TB. For details about administering ext4, see the Red Hat Enterprise Linux 7 Storage
Administration Guide, available from
http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/. For assistance tuning
ext4 for a specific purpose, see Section 5.3.7.2, “Tuning ext4”.

⁠Btrfs (Technology Preview)

Btrfs is a copy-on-write file system that provides scalability, fault tolerance, and ease of
administration. It includes built-in snapshot and RAID support, and uses data and metadata
checksums to provide data integrity. It also uses data compression to improve performance and
use space more efficiently. It is supported as a Technology Preview to a maximum file system
size of 50 TB.

Btrfs is best suited for desktop and cloud storage. It is best to tune btrfs for its intended use
when the device is initially formatted.

Red Hat Enterprise Linux 7 provides btrfs as a Technology Preview. For details about Technology
Preview features, see https://access.redhat.com/site/support/offerings/techpreview/.

For details about administering btrfs, see the Red Hat Enterprise Linux 7 Storage Administration
Guide, available from http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/.
For assistance tuning btrfs for a specific purpose, see Section 5.3.7.3, “Tuning btrfs”.

⁠GFS2

GFS2 is part of the High Availability Add-On, which provides clustered file system support to
Red Hat Enterprise Linux 7. GFS2 provides a consistent file system image across all servers in a
cluster, allowing servers to read from and write to a single shared file system.

GFS2 is supported to a maximum file system size of 250 TB.

⁠Chapter 5. Storage and File Systems

33

http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/
http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/
https://access.redhat.com/site/support/offerings/techpreview/
http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/

For details about administering GFS2, see the Red Hat Enterprise Linux 7 Storage Administration
Guide, available from http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/.
For assistance tuning GFS2 for a specific purpose, see Section 5.3.7.4, “Tuning GFS2”.

5.1.4. Generic tuning considerations for file systems

This section covers tuning considerations common to all file systems. For tuning recommendations
specific to your file system, see Section 5.3.7, “Configuring file systems for performance”.

5.1.4 .1. Considerations at format t ime

Some file system configuration decisions cannot be changed after the device is formatted. This section
covers the options available to you for decisions that must be made before you format your storage
device.

⁠Size

Create an appropriately-sized file system for your workload. Smaller file systems have
proportionally shorter backup times and require less time and memory for file system checks.
However, if your file system is too small, its performance will suffer from high fragmentation.

⁠Block size

The block is the unit of work for the file system. The block size determines how much data can be
stored in a single block, and therefore the smallest amount of data that is written or read at one
time.

The default block size is appropriate for most use cases. However, your file system will perform
better and store data more efficiently if the block size (or the size of multiple blocks) is the same
as or slightly larger than amount of data that is typically read or written at one time. A small file will
still use an entire block. Files can be spread across multiple blocks, but this can create additional
runtime overhead. Additionally, some file systems are limited to a certain number of blocks, which
in turn limits the maximum size of the file system.

Block size is specified as part of the file system options when formatting a device with the mkfs
command. The parameter that specifies the block size varies with the file system; see the mkfs
man page for your file system for details. For example, to see the options available when
formatting an XFS file system, execute the following command.

$ man mkfs.xfs

⁠Geometry

File system geometry is concerned with the distribution of data across a file system. If your
system uses striped storage, like RAID, you can improve performance by aligning data and
metadata with the underlying storage geometry when you format the device.

Many devices export recommended geometry, which is then set automatically when the devices
are formatted with a particular file system. If your device does not export these recommendations,
or you want to change the recommended settings, you must specify geometry manually when you
format the device with mkfs.

The parameters that specify file system geometry vary with the file system; see the mkfs man
page for your file system for details. For example, to see the options available when formatting an
ext4 file system, execute the following command.

$ man mkfs.ext4

Red Hat Enterprise Linux 7 Performance Tuning Guide

34

http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/

⁠External journals

Journaling file systems document the changes that will be made during a write operation in a
journal file prior to the operation being executed. This reduces the likelihood that a storage device
will become corrupted in the event of a system crash or power failure, and speeds up the
recovery process.

Metadata-intensive workloads involve very frequent updates to the journal. A larger journal uses
more memory, but reduces the frequency of write operations. Additionally, you can improve the
seek time of a device with a metadata-intensive workload by placing its journal on dedicated
storage that is as fast as, or faster than, the primary storage.

Warning

Ensure that external journals are reliable. Losing an external journal device will cause file
system corruption.

External journals must be created at format time, with journal devices being specified at mount
time. For details, see the mkfs and mount man pages.

$ man mkfs

$ man mount

5.1.4 .2. Considerations at mount t ime

This section covers tuning decisions that apply to most file systems and can be specified as the device is
mounted.

⁠Barriers

File system barriers ensure that file system metadata is correctly written and ordered on
persistent storage, and that data transmitted with fsync persists across a power outage. On
previous versions of Red Hat Enterprise Linux, enabling file system barriers could significantly
slow applications that relied heavily on fsync, or created and deleted many small files.

In Red Hat Enterprise Linux 7, file system barrier performance has been improved such that the
performance effects of disabling file system barriers are negligible (less than 3%).

For further information, see the Red Hat Enterprise Linux 7 Storage Administration Guide,
available from http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/.

⁠Access Time

Every time a file is read, its metadata is updated with the time at which access occurred (atime).
This involves additional write I/O. In most cases, this overhead is minimal, as by default Red Hat
Enterprise Linux 7 updates the atime field only when the previous access time was older than
the times of last modification (mtime) or status change (ctime).

However, if updating this metadata is time consuming, and if accurate access time data is not
required, you can mount the file system with the noatime mount option. This disables updates to
metadata when a file is read. It also enables nodiratime behavior, which disables updates to
metadata when a directory is read.

⁠Chapter 5. Storage and File Systems

35

http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/

⁠Read-ahead

Read-ahead behavior speeds up file access by pre-fetching data that is likely to be needed soon
and loading it into the page cache, where it can be retrieved more quickly than if it were on disk.
The higher the read-ahead value, the further ahead the system pre-fetches data.

Red Hat Enterprise Linux attempts to set an appropriate read-ahead value based on what it
detects about your file system. However, accurate detection is not always possible. For example,
if a storage array presents itself to the system as a single LUN, the system detects the single
LUN, and does not set the appropriate read-ahead value for an array.

Workloads that involve heavy streaming of sequential I/O often benefit from high read-ahead
values. The storage-related tuned profiles provided with Red Hat Enterprise Linux 7 raise the
read-ahead value, as does using LVM striping, but these adjustments are not always sufficient for
all workloads.

The parameters that define read-ahead behavior vary with the file system; see the mount man
page for details.

$ man mount

5.1.4 .3. Maintenance

Regularly discarding blocks that are not in use by the file system is a recommended practice for both solid-
state disks and thinly-provisioned storage. There are two methods of discarding unused blocks: batch
discard and online discard.

⁠Batch discard

This type of discard is part of the fstrim command. It discards all unused blocks in a file system
that match criteria specified by the administrator.

Red Hat Enterprise Linux 7 supports batch discard on XFS and ext4 formatted devices that
support physical discard operations (that is, on HDD devices where the value of
/sys/block/devname/queue/discard_max_bytes is not zero, and SSD devices where the
value of /sys/block/sda/queue/discard_granularity is not 0).

⁠Online discard

This type of discard operation is configured at mount time with the discard option, and runs in
real time without user intervention. However, online discard only discards blocks that are
transitioning from used to free. Red Hat Enterprise Linux 7 supports online discard on XFS and
ext4 formatted devices.

Red Hat recommends batch discard except where online discard is required to maintain
performance, or where batch discard is not feasible for the system's workload.

⁠Pre-allocation

Pre-allocation marks disk space as being allocated to a file without writing any data into that
space. This can be useful in limiting data fragmentation and poor read performance. Red Hat
Enterprise Linux 7 supports pre-allocating space on XFS, ext4, and GFS2 devices at mount time;
see the mount man page for the appropriate parameter for your file system. Applications can also
benefit from pre-allocating space by using the fallocate(2) glibc call.

5.2. Monitoring and diagnosing performance problems

Red Hat Enterprise Linux 7 Performance Tuning Guide

36

Red Hat Enterprise Linux 7 provides a number of tools that are useful for monitoring system performance
and diagnosing performance problems related to I/O and file systems and their configuration. This section
outlines the available tools and gives examples of how to use them to monitor and diagnose I/O and file
system related performance issues.

5.2.1. Monitoring system performance with vmstat

Vmstat reports on processes, memory, paging, block I/O, interrupts, and CPU activity across the entire
system. It can help administrators determine whether the I/O subsystem is responsible for any
performance issues.

The information most relevant to I/O performance is in the following columns:

⁠si

Swap in, or writes to swap space, in KB.

⁠so

Swap out, or reads from swap space, in KB.

⁠bi

Block in, or block write operations, in KB.

⁠bo

Block out, or block read operations, in KB.

⁠wa

The portion of the queue that is waiting for I/O operations to complete.

Swap in and swap out are particularly useful when your swap space and your data are on the same
device, and as indicators of memory usage.

Additionally, the free, buff, and cache columns can help identify write-back frequency. A sudden drop in
cache values and an increase in free values indicates that write-back and page cache invalidation has
begun.

If analysis with vmstat shows that the I/O subsystem is responsible for reduced performance,
administrators can use iostat to determine the responsible I/O device.

vmstat is provided by the procps-ng package. For detailed information about using vmstat , see the man
page:

$ man vmstat

5.2.2. Monitoring I/O performance with iostat

Iostat is provided by the sysstat package. It reports on I/O device load in your system. If analysis with
vmstat shows that the I/O subsystem is responsible for reduced performance, you can use iostat to
determine the I/O device responsible.

You can focus the output of iostat reports on a specific device by using the parameters defined in the
iostat man page:

$ man iostat

⁠Chapter 5. Storage and File Systems

37

5.2.2.1. Detailed I/O analysis with blktrace

Blktrace provides detailed information about how time is spent in the I/O subsystem. The companion
utility blkparse reads the raw output from blktrace and produces a human readable summary of input
and output operations recorded by blktrace .

For more detailed information about this tool, see the man page:

$ man blktrace

$ man blkparse

5.2.2.2. Analyzing blktrace output with btt

Btt is provided as part of the blktrace package. It analyzes blktrace output and displays the amount of
time that data spends in each area of the I/O stack, making it easier to spot bottlenecks in the I/O
subsystem.

For example, if btt shows that the time between requests being sent to the block layer (Q2Q) is larger than
the total time that requests spent in the block layer (Q2C), the I/O subsystem may not be responsible for
performance issues. If the device takes a long time to service a request (D2C), the device may be
overloaded, or the workload sent to the device may be sub-optimal. If block I/O is queued for a long time
before being assigned a request (Q2G), it may indicate that the storage in use is unable to serve the I/O
load.

For more detailed information about this tool, see the man page:

$ man btt

5.2.2.3. Analyzing blktrace output with seekwatcher

The seekwatcher tool can use blktrace output to graph I/O over time. It focuses on the Logical Block
Address (LBA) of disk I/O, throughput in megabytes per second, the number of seeks per second, and I/O
operations per second. This can help you to identify when you are hitting the operations-per-second limit
of a device.

For more detailed information about this tool, see the man page:

$ man seekwatcher

5.2.3. Storage monitoring with SystemTap

The Red Hat Enterprise Linux 7 SystemTap Beginner's Guide includes several sample scripts that are
useful for profiling and monitoring storage performance.

The following SystemTap example scripts relate to storage performance and may be useful in diagnosing
storage or file system performance problems. By default they are installed to the
/usr/share/doc/systemtap-client/examples/io directory.

⁠disktop.stp

Checks the status of reading/writing disk every 5 seconds and outputs the top ten entries during
that period.

Red Hat Enterprise Linux 7 Performance Tuning Guide

38

⁠iotime.stp

Prints the amount of time spent on read and write operations, and the number of bytes read and
written.

⁠traceio.stp

Prints the top ten executables based on cumulative I/O traffic observed, every second.

⁠traceio2.stp

Prints the executable name and process identifier as reads and writes to the specified device
occur.

⁠inodewatch.stp

Prints the executable name and process identifier each time a read or write occurs to the
specified inode on the specified major/minor device.

⁠inodewatch2.stp

Prints the executable name, process identifier, and attributes each time the attributes are
changed on the specified inode on the specified major/minor device.

The Red Hat Enterprise Linux 7 SystemTap Beginner's Guide is available from
http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/.

5.3. Configuration tools
Red Hat Enterprise Linux provides a number of tools to assist administrators in configuring the storage
and file systems. This section outlines the available tools and provides examples of how they can be used
to solve I/O and file system related performance problems in Red Hat Enterprise Linux 7.

5.3.1. Configuring tuning profiles for storage performance

Tuned and tuned-adm provide a number of profiles designed to improve performance for specific use
cases. The following profiles are particularly useful for improving storage performance.

latency-performance

throughput-performance (the default)

To configure a profile on your system, run the following command, replacing name with the name of the
profile you want to use.

$ tuned-adm profile name

The tuned-adm recommend command recommends an appropriate profile for your system. This also
sets the default profile for your system at install time, so can be used to return to the default profile.

For further details about these profiles or additional configuration options, see Section A.6, “tuned-adm”.

5.3.2. Setting the default I/O scheduler

The default I/O scheduler is the scheduler that is used if no scheduler is specified in a device's mount
options.

⁠Chapter 5. Storage and File Systems

39

http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/

To set the default I/O scheduler, specify the scheduler you want to use by appending the elevator
parameter to the kernel command line, either at boot time or by editing the /etc/grub2.conf file.

elevator=scheduler_name

5.3.3. Configuring the I/O scheduler for a device

To set the scheduler or scheduler preference order for a particular storage device, edit the
/sys/block/devname/queue/scheduler file, where devname is the name of the device you want to
configure.

echo cfq > /sys/block/hda/queue/scheduler

5.3.4. Tuning the deadline scheduler

When deadline is in use, queued I/O requests are sorted into a read or write batch and then scheduled
for execution in increasing LBA order. Read batches take precedence over write batches by default, as
applications are more likely to block on read I/O. After a batch is processed, deadline checks how long
write operations have been starved of processor time and schedules the next read or write batch as
appropriate.

The following parameters affect the behavior of the deadline scheduler.

⁠fifo_batch

The number of read or write operations to issue in a single batch. The default value is 16. A
higher value can increase throughput, but will also increase latency.

⁠front_merges

If your workload will never generate front merges, this tunable can be set to 0. However, unless
you have measured the overhead of this check, Red Hat recommends the default value of 1.

⁠read_expire

The number of milliseconds in which a read request should be scheduled for service. The default
value is 500 (0.5 seconds).

⁠write_expire

The number of milliseconds in which a write request should be scheduled for service. The default
value is 5000 (5 seconds).

⁠writes_starved

The number of read batches that can be processed before processing a write batch. The higher
this value is set, the greater the preference given to read batches.

5.3.5. Tuning the cfq scheduler

When cfq is in use, processes are placed into three classes: real time, best effort, and idle. All real time
processes are scheduled before any best effort processes, which are scheduled before any idle
processes. By default, processes are classed as best effort. You can manually adjust the class of a
process with the ionice command.

Red Hat Enterprise Linux 7 Performance Tuning Guide

40

You can further adjust the behavior of the cfq scheduler with the following parameters. These parameters
are set on a per-device basis by altering the specified files under the
/sys/block/devname/queue/iosched directory.

⁠back_seek_max

The maximum distance in kilobytes that cfq will perform a backward seek. The default value is
16 KB. Backward seeks typically damage performance, so large values are not recommended.

⁠back_seek_penalty

The multiplier applied to backward seeks when the disk head is deciding whether to move forward
or backward. The default value is 2. If the disk head position is at 1024 KB, and there are
equidistant requests in the system (1008 KB and 1040 KB, for example), the
back_seek_penalty is applied to backward seek distances and the disk moves forward.

⁠fifo_expire_async

The length of time in milliseconds that an asynchronous (buffered write) request can remain
unserviced. After this amount of time expires, a single starved asynchronous request is moved to
the dispatch list. The default value is 250 milliseconds.

⁠fifo_expire_sync

The length of time in milliseconds that a synchronous (read or O_DIRECT write) request can
remain unserviced. After this amount of time expires, a single starved synchronous request is
moved to the dispatch list. The default value is 125 milliseconds.

⁠group_idle

This parameter is set to 0 (disabled) by default. When set to 1 (enabled), the cfq scheduler idles
on the last process that is issuing I/O in a control group. This is useful when using proportional
weight I/O control groups and when slice_idle is set to 0 (on fast storage).

⁠group_isolation

This parameter is set to 0 (disabled) by default. When set to 1 (enabled), it provides stronger
isolation between groups, but reduces throughput, as fairness is applied to both random and
sequential workloads. When group_isolation is disabled (set to 0), fairness is provided to
sequential workloads only. For more information, see the installed documentation in
/usr/share/doc/kernel-doc-version/Documentation/cgroups/blkio-

controller.txt.

⁠low_latency

This parameter is set to 1 (enabled) by default. When enabled, cfq favors fairness over
throughput by providing a maximum wait time of 300 ms for each process issuing I/O on a device.
When this parameter is set to 0 (disabled), target latency is ignored and each process receives a
full time slice.

⁠quantum

This parameter defines the number of I/O requests that cfq sends to one device at one time,
essentially limiting queue depth. The default value is 8 requests. The device being used may
support greater queue depth, but increasing the value of quantum will also increase latency,
especially for large sequential write work loads.

⁠Chapter 5. Storage and File Systems

41

⁠slice_async

This parameter defines the length of the time slice (in milliseconds) allotted to each process
issuing asynchronous I/O requests. The default value is 40 milliseconds.

⁠slice_idle

This parameter specifies the length of time in milliseconds that cfq idles while waiting for further
requests. The default value is 0 (no idling at the queue or service tree level). The default value is
ideal for throughput on external RAID storage, but can degrade throughput on internal non-RAID
storage as it increases the overall number of seek operations.

⁠slice_sync

This parameter defines the length of the time slice (in milliseconds) allotted to each process
issuing synchronous I/O requests. The default value is 100 ms.

5.3.5.1. Tuning cfq for fast storage

The cfq scheduler is not recommended for hardware that does not suffer a large seek penalty, such as
fast external storage arrays or solid state disks. If your use case requires cfq to be used on this storage,
you will need to edit the following configuration files:

Set /sys/block/devname/queue/ionice/slice_idle to 0

Set /sys/block/devname/queue/ionice/quantum to 64

Set /sys/block/devname/queue/ionice/group_idle to 1

5.3.6. Tuning the noop scheduler

The noop I/O scheduler is primarily useful for CPU-bound systems using fast storage. Requests are
merged at the block layer, so noop behavior is modified by editing block layer parameters in the files
under the /sys/block/sdX/queue/ directory.

⁠add_random

Some I/O events contribute to the entropy pool for /dev/random . This parameter can be set to
0 if the overhead of these contributions becomes measurable.

⁠max_sectors_kb

Specifies the maximum size of an I/O request in kilobytes. The default value is 512 KB. The
minimum value for this parameter is determined by the logical block size of the storage device.
The maximum value for this parameter is determined by the value of max_hw_sectors_kb.

Some solid state disks perform poorly when I/O requests are larger than the internal erase block
size. In these cases, Red Hat recommends reducing max_hw_sectors_kb to the internal erase
block size.

⁠nomerges

Most workloads benefit from request merging. However, disabling merges can be useful for
debugging purposes. Set this parameter to 0 to disable merging. It is enabled (set to 1) by
default.

⁠nr_requests

Red Hat Enterprise Linux 7 Performance Tuning Guide

42

Specifies the maximum number of read and write requests that can be queued at one time. The
default value is 128; that is, 128 read requests and 128 write requests can be queued before the
next process to request a read or write is put to sleep.

For latency-senstitive applications, lower the value of this parameter and limit the command queue
depth on the storage so that write-back I/O cannot fill the device queue with write requests. When
the device queue fills, other processes attempting to perform I/O operations are put to sleep until
queue space becomes available. Requests are then allocated in a round-robin fashion,
preventing one process from continuously consuming all spots in the queue.

⁠optimal_io_size

Some storage devices report an optimal I/O size through this parameter. If this value is reported,
Red Hat recommends that applications issue I/O aligned to and in multiples of the optimal I/O size
wherever possible.

⁠read_ahead_kb

Defines the number of kilobytes that the operating system will read ahead during a sequential
read operation in order to store information likely to be needed soon in the page cache. Device
mappers often benefit from a high read_ahead_kb value; 128 KB for each device to be mapped is
a good starting point.

⁠rotational

Some solid state disks do not correctly advertise their solid state status, and are mounted as
traditional rotational disks. If your solid state device does does not set this to 0 automatically, set
it manually to disable unnecessary seek-reducing logic in the scheduler.

⁠rq_affinity

By default, I/O completions can be processed on a different processor than the processor that
issued the I/O request. Set rq_affinity to 1 to disable this ability and perform completions only
on the processor that issued the I/O request. This can improve the effectiveness of processor
data caching.

5.3.7. Configuring file systems for performance

This section covers the tuning parameters specific to each file system supported in Red Hat
Enterprise Linux 7. Parameters are divided according to whether their values should be configured when
you format the storage device, or when you mount the formatted device.

Where loss in performance is caused by file fragmentation or resource contention, performance can
generally be improved by reconfiguring the file system. However, in some cases the application may need
to be altered. In this case, Red Hat recommends contacting Customer Support for assistance.

5.3.7.1. Tuning XFS

This section covers some of the tuning parameters available to XFS file systems at format and at mount
time.

The default formatting and mount settings for XFS are suitable for most workloads. Red Hat recommends
changing them only if specific configuration changes are expected to benefit your workload.

5.3.7.1.1. Formatting options

For further details about any of these formatting options, see the man page:

⁠Chapter 5. Storage and File Systems

43

$ man mkfs.xfs

⁠Directory block size

The directory block size affects the amount of directory information that can be retrieved or
modified per I/O operation. The minimum value for directory block size is the file system block size
(4 KB by default). The maximum value for directory block size is 64 KB.

At a given directory block size, a larger directory requires more I/O than a smaller directory. A
system with a larger directory block size also consumes more processing power per I/O operation
than a system with a smaller directory block size. It is therefore recommended to have as small a
directory and directory block size as possible for your workload.

Red Hat recommends the directory block sizes listed in Table 5.1, “Recommended maximum
directory entries for directory block sizes” for file systems with no more than the listed number of
entries for write-heavy and read-heavy workloads.

Table 5.1. Recommended maximum directory entries for directory block sizes

Directory block size Max. entries (read-heavy) Max. entries (write-heavy)

4 KB 100000–200000 1000000–2000000

16 KB 100000–1000000 1000000–10000000

64 KB >1000000 >10000000

For detailed information about the effect of directory block size on read and write workloads in file
systems of different sizes, see the XFS documentation.

To configure directory block size, use the mkfs.xfs -l option. See the mkfs.xfs man page for
details.

⁠Allocation groups

An allocation group is an independent structure that indexes free space and allocated inodes
across a section of the file system. Each allocation group can be modified independently, allowing
XFS to perform allocation and deallocation operations concurrently as long as concurrent
operations affect different allocation groups. The number of concurrent operations that can be
performed in the file system is therefore equal to the number of allocation groups. However, since
the ability to perform concurrent operations is also limited by the number of processors able to
perform the operations, Red Hat recommends that the number of allocation groups be greater
than or equal to the number of processors in the system.

A single directory cannot be modified by multiple allocation groups simultaneously. Therefore,
Red Hat recommends that applications that create and remove large numbers of files do not store
all files in a single directory.

To configure allocation groups, use the mkfs.xfs -d option. See the mkfs.xfs man page for
details.

⁠Growth constraints

If you may need to increase the size of your file system after formatting time (either by adding
more hardware or through thin-provisioning), you must carefully consider initial file layout, as
allocation group size cannot be changed after formatting is complete.

Red Hat Enterprise Linux 7 Performance Tuning Guide

44

Allocation groups must be sized according to the eventual capacity of the file system, not the
initial capacity. The number of allocation groups in the fully-grown file system should not exceed
several hundred, unless allocation groups are at their maximum size (1 TB). Therefore for most
file systems, the recommended maximum growth to allow for a file system is ten times the initial
size.

Additional care must be taken when growing a file system on a RAID array, as the device size
must be aligned to an exact multiple of the allocation group size so that new allocation group
headers are correctly aligned on the newly added storage. The new storage must also have the
same geometry as the existing storage, since geometry cannot be changed after formatting time,
and therefore cannot be optimized for storage of a different geometry on the same block device.

⁠Inode size and inline attributes

If the inode has sufficient space available, XFS can write attribute names and values directly into
the inode. These inline attributes can be retrieved and modified up to an order of magnitude
faster than retrieving separate attribute blocks, as additional I/O is not required.

The default inode size is 256 bytes. Only around 100 bytes of this is available for attribute
storage, depending on the number of data extent pointers stored in the inode. Increasing inode
size when you format the file system can increase the amount of space available for storing
attributes.

Both attribute names and attribute values are limited to a maximum size of 254 bytes. If either
name or value exceeds 254 bytes in length, the attribute is pushed to a separate attribute block
instead of being stored inline.

To configure inode parameters, use the mkfs.xfs -i option. See the mkfs.xfs man page for
details.

⁠RAID

If software RAID is in use, mkfs.xfs automatically configures the underlying hardware with an
appropriate stripe unit and width. However, stripe unit and width may need to be manually
configured if hardware RAID is in use, as not all hardware RAID devices export this information.
To configure stripe unit and width, use the mkfs.xfs -d option. See the mkfs.xfs man page
for details.

⁠Log size

Pending changes are aggregated in memory until a synchronization event is triggered, at which
point they are written to the log. The size of the log determines the number of concurrent
modifications that can be in-progress at one time. It also determines the maximum amount of
change that can be aggregated in memory, and therefore how often logged data is written to disk.
A smaller log forces data to be written back to disk more frequently than a larger log. However, a
larger log uses more memory to record pending modifications, so a system with limited memory
will not benefit from a larger log.

Logs perform better when they are aligned to the underlying stripe unit; that is, they start and end
at stripe unit boundaries. To align logs to the stripe unit, use the mkfs.xfs -d option. See the
mkfs.xfs man page for details.

To configure the log size, use the following mkfs.xfs option, replacing logsize with the size of
the log:

mkfs.xfs -l size=logsize

⁠Chapter 5. Storage and File Systems

45

For further details, see the mkfs.xfs man page:

$ man mkfs.xfs

⁠Log stripe unit

Log writes on storage devices that use RAID5 or RAID6 layouts may perform better when they
start and end at stripe unit boundaries (are aligned to the underlying stripe unit). mkfs.xfs
attempts to set an appropriate log stripe unit automatically, but this depends on the RAID device
exporting this information.

Setting a large log stripe unit can harm performance if your workload triggers synchronization
events very frequently, because smaller writes need to be padded to the size of the log stripe
unit, which can increase latency. If your workload is bound by log write latency, Red Hat
recommends setting the log stripe unit to 1 block so that unaligned log writes are triggered as
possible.

The maximum supported log stripe unit is the size of the maximum log buffer size (256 KB). It is
therefore possible that the underlying storage may have a larger stripe unit than can be
configured on the log. In this case, mkfs.xfs issues a warning and sets a log stripe unit of
32 KB.

To configure the log stripe unit, use one of the following options, where N is the number of blocks
to use as the stripe unit, and size is the size of the stripe unit in KB.

mkfs.xfs -l sunit=Nb
mkfs.xfs -l su=size

For further details, see the mkfs.xfs man page:

$ man mkfs.xfs

5.3.7.1.2. Mount options
⁠Inode allocation

Highly recommended for file systems greater than 1 TB in size. The inode64 parameter
configures XFS to allocate inodes and data across the entire file system. This ensures that
inodes are not allocated largely at the beginning of the file system, and data is not largely
allocated at the end of the file system, improving performance on large file systems.

⁠Log buffer size and number

The larger the log buffer, the fewer I/O operations it takes to write all changes to the log. A larger
log buffer can improve performance on systems with I/O-intensive workloads that do not have a
non-volatile write cache.

The log buffer size is configured with the logbsize mount option, and defines the maximum
amount of information that can be stored in the log buffer; if a log stripe unit is not set, buffer
writes can be shorter than the maximum, and therefore there is no need to reduce the log buffer
size for synchronization-heavy workloads. The default size of the log buffer is 32 KB. The
maximum size is 256 KB and other supported sizes are 64 KB, 128 KB or power of 2 multiples of
the log stripe unit between 32 KB and 256 KB.

Red Hat Enterprise Linux 7 Performance Tuning Guide

46

The number of log buffers is defined by the logbufs mount option. The default value is 8 log
buffers (the maximum), but as few as two log buffers can be configured. It is usually not
necessary to reduce the number of log buffers, except on memory-bound systems that cannot
afford to allocate memory to additional log buffers. Reducing the number of log buffers tends to
reduce log performance, especially on workloads sensitive to log I/O latency.

⁠Delay change logging

XFS has the option to aggregate changes in memory before writing them to the log. The
delaylog parameter allows frequently modified metadata to be written to the log periodically
instead of every time it changes. This option increases the potential number of operations lost in
a crash and increases the amount of memory used to track metadata. However, it can also
increase metadata modification speed and scalability by an order of magnitude, and does not
reduce data or metadata integrity when fsync, fdatasync, or sync are used to ensure data
and metadata is written to disk.

5.3.7.2. Tuning ext4

This section covers some of the tuning parameters available to ext4 file systems at format and at mount
time.

5.3.7.2.1. Formatting options
⁠Inode table init ialization

Initializing all inodes in the file system can take a very long time on very large file systems. By
default, the initialization process is deferred (lazy inode table initialization is enabled). However, if
your system does not have an ext4 driver, lazy inode table initialization is disabled by default. It
can be enabled by setting lazy_itable_init to 1). In this case, kernel processes continue to
initialize the file system after it is mounted.

This section describes only some of the options available at format time. For further formatting parameters,
see the mkfs.ext4 man page:

$ man mkfs.ext4

5.3.7.2.2. Mount options
⁠Inode table init ialization rate

When lazy inode table initialization is enabled, you can control the rate at which initialization
occurs by specifying a value for the init_itable parameter. The amount of time spent
performing background initialization is approximately equal to 1 divided by the value of this
parameter. The default value is 10.

⁠Automatic file synchronization

Some applications do not correctly perform an fsync after renaming an existing file, or after
truncating and rewriting. By default, ext4 automatically synchronizes files after each of these
operations. However, this can be time consuming.

If this level of synchronization is not required, you can disable this behavior by specifying the
noauto_da_alloc option at mount time. If noauto_da_alloc is set, applications must
explicitly use fsync to ensure data persistence.

⁠Journal I/O priority

By default, journal I/O has a priority of 3, which is slightly higher than the priority of normal I/O. You

⁠Chapter 5. Storage and File Systems

47

can control the priority of journal I/O with the journal_ioprio parameter at mount time. Valid
values for journal_ioprio range from 0 to 7, with 0 being the highest priority I/O.

This section describes only some of the options available at mount time. For further mount options, see
the mount man page:

$ man mount

5.3.7.3. Tuning btrfs

As of Red Hat Enterprise Linux 7.0, btrfs is provided as a Technology Preview. This section will be
updated in future releases if btrfs becomes fully supported.

5.3.7.4 . Tuning GFS2

This section covers some of the tuning parameters available to GFS2 file systems at format and at mount
time.

⁠Directory spacing

All directories created in the top-level directory of the GFS2 mount point are automatically spaced
to reduce fragmentation and increase write speed in those directories. To space another
directory like a top-level directory, mark that directory with the T attribute, as shown, replacing
dirname with the path to the directory you wish to space:

chattr +T dirname

chattr is provided as part of the e2fsprogs package.

⁠Reduce contention

GFS2 uses a global locking mechanism that can require communication between the nodes of a
cluster. Contention for files and directories between multiple nodes lowers performance. You can
minimize the risk of cross-cache invalidation by minimizing the areas of the file system that are
shared between multiple nodes.

Red Hat Enterprise Linux 7 Performance Tuning Guide

48

Chapter 6. Networking
The networking subsystem is comprised of a number of different parts with sensitive connections. Red Hat
Enterprise Linux 7 networking is therefore designed to provide optimal performance for most workloads,
and to optimize its performance automatically. As such, it is not usually necessary to manually tune
network performance. This chapter discusses further optimizations that can be made to functional
networking systems.

Network performance problems are sometimes the result of hardware malfunction or faulty infrastructure.
Resolving these issues is beyond the scope of this document.

6.1. Considerations
To make good tuning decisions, you need a thorough understanding of packet reception in Red Hat
Enterprise Linux. This section explains how network packets are received and processed, and where
potential bottlenecks can occur.

A packet sent to a Red Hat Enterprise Linux system is received by the network interface card (NIC) and
placed in either an internal hardware buffer or a ring buffer. The NIC then sends a hardware interrupt
request, prompting the creation of a software interrupt operation to handle the interrupt request.

As part of the software interrupt operation, the packet is transferred from the buffer to the network stack.
Depending on the packet and your network configuration, the packet is then forwarded, discarded, or
passed to a socket receive queue for an application and then removed from the network stack. This
process continues until either there are no packets left in the NIC hardware buffer, or a certain number of
packets (specified in /proc/sys/net/core/dev_weight) are transferred.

6.1.1. Before you tune

Network performance problems are most often the result of hardware malfunction or faulty infrastructure.
Red Hat highly recommends verifying that your hardware and infrastructure are working as expected
before beginning to tune the network stack.

6.1.2. Bottlenecks in packet reception

While the network stack is largely self-optimizing, there are a number of points during network packet
processing that can become bottlenecks and reduce performance.

⁠The NIC hardware buffer or ring buffer

The hardware buffer might be a bottleneck if a large number of packets are being dropped. For
information about monitoring your system for dropped packets, see Section 6.2.4, “ethtool”.

⁠The hardware or software interrupt queues

Interrupts can increase latency and processor contention. For information on how interrupts are
handled by the processor, see Section 3.1.3, “Interrupt Request (IRQ) Handling”. For information
on how to monitor interrupt handling in your system, see Section 3.2.3, “/proc/interrupts”. For
configuration options that affect interrupt handling, see Section 3.3.7, “Setting interrupt affinity”.

⁠The socket receive queue for the application

A bottleneck in an application's receive queue is indicated by a large number of packets that are
not copied to the requesting application, or by an increase in UDP input errors (InErrors) in
/proc/net/snmp. For information about monitoring your system for these errors, see

⁠Chapter 6. Networking

49

/proc/net/snmp. For information about monitoring your system for these errors, see
Section 6.2.1, “ss” and Section 6.2.5, “/proc/net/snmp”.

6.2. Monitoring and diagnosing performance problems
Red Hat Enterprise Linux 7 provides a number of tools that are useful for monitoring system performance
and diagnosing performance problems related to the networking subsystem. This section outlines the
available tools and gives examples of how to use them to monitor and diagnose network related
performance issues.

6.2.1. ss

ss is a command-line utility that prints statistical information about sockets, allowing administrators to
assess device performance over time. By default, ss lists open non-listening TCP sockets that have
established connections, but a number of useful options are provided to help administrators filter out
statistics about specific sockets.

Red Hat recommends ss over netstat in Red Hat Enterprise Linux 7.

ss is provided by the iproute package. For more information, see the man page:

$ man ss

6.2.2. ip

The ip utility lets administrators manage and monitor routes, devices, routing policies, and tunnels. The ip
monitor command can continuously monitor the state of devices, addresses, and routes.

ip is provided by the iproute package. For details about using ip, see the man page:

$ man ip

6.2.3. dropwatch

Dropwatch is an interactive tool that monitors and records packets that are dropped by the kernel.

For further information, see the dropwatch man page:

$ man dropwatch

6.2.4. ethtool

The ethtool utility allows administrators to view and edit network interface card settings. It is useful for
observing the statistics of certain devices, such as the number of packets dropped by that device.

You can view the status of a specified device's counters with ethtool -S and the name of the device
you want to monitor.

$ ethtool -S devname

For further information, see the man page:

$ man ethtool

Red Hat Enterprise Linux 7 Performance Tuning Guide

50

6.2.5. /proc/net/snmp

The /proc/net/snmp file displays data that is used by snmp agents for IP, ICMP, TCP and UDP
monitoring and management. Examining this file on a regular basis can help administrators identify
unusual values and thereby identify potential performance problems. For example, an increase in UDP
input errors (InErrors) in /proc/net/snmp can indicate a bottleneck in a socket receive queue.

6.2.6. Network monitoring with SystemTap

The Red Hat Enterprise Linux 7 SystemTap Beginner's Guide includes several sample scripts that are
useful for profiling and monitoring network performance.

The following SystemTap example scripts relate to networking and may be useful in diagnosing network
performance problems. By default they are installed to the /usr/share/doc/systemtap-
client/examples/network directory.

⁠nettop.stp

Every 5 seconds, prints a list of processes (process identifier and command) with the number of
packets sent and received and the amount of data sent and received by the process during that
interval.

⁠socket-trace.stp

Instruments each of the functions in the Linux kernel's net/socket.c file, and prints trace data.

⁠tcp_connections.stp

Prints information for each new incoming TCP connection accepted by the system. The
information includes the UID, the command accepting the connection, the process identifier of the
command, the port the connection is on, and the IP address of the originator of the request.

⁠dropwatch.stp

Every 5 seconds, prints the number of socket buffers freed at locations in the kernel.

The Red Hat Enterprise Linux 7 SystemTap Beginner's Guide is available from
http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/.

6.3. Configuration tools
Red Hat Enterprise Linux provides a number of tools to assist administrators in configuring the system.
This section outlines the available tools and provides examples of how they can be used to solve network
related performance problems in Red Hat Enterprise Linux 7.

However, it is important to keep in mind that network performance problems are sometimes the result of
hardware malfunction or faulty infrastructure. Red Hat highly recommends verifying that your hardware and
infrastructure are working as expected before using these tools to tune the network stack.

Further, some network performance problems are better resolved by altering the application than by
reconfiguring your network subsystem. It is generally a good idea to configure your application to perform
frequent posix calls, even if this means queuing data in the application space, as this allows data to be
stored flexibly and swapped in or out of memory as required.

6.3.1. Tuned-adm profiles for network performance

⁠Chapter 6. Networking

51

http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/

tuned-adm provides a number of different profiles to improve performance in a number of specific use
cases. The following profiles can be useful for improving networking performance.

latency-performance

network-latency

network-throughput

For more information about these profiles, see Section A.6, “tuned-adm”.

6.3.2. Configuring the hardware buffer

If a large number of packets are being dropped by the hardware buffer, there are a number of potential
solutions.

⁠Slow the input traffic

Filter incoming traffic, reduce the number of joined multicast groups, or reduce the amount of
broadcast traffic to decrease the rate at which the queue fills. For details of how to filter incoming
traffic, see the Red Hat Enterprise Linux 7 Security Guide. For details about multicast groups, see
the Red Hat Enterprise Linux 7 Clustering documentation. For details about broadcast traffic, see
the Red Hat Enterprise Linux 7 System Administrator's Reference Guide, or documentation related
to the device you want to configure. All Red Hat Enterprise Linux 7 documentation is available
from http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/.

⁠Resize the hardware buffer queue

Reduce the number of packets being dropped by increasing the size of the queue so that the it
does not overflow as easily. You can modify the rx/tx parameters of the network device with the
ethtool command:

ethtool --set-ring devname value

⁠Change the drain rate of the queue

Device weight refers to the number of packets a device can receive at one time (in a single
scheduled processor access). You can increase the rate at which a queue is drained by
increasing its device weight, which is controlled by the dev_weight parameter. This parameter
can be temporarily altered by changing the contents of the /proc/sys/net/core/dev_weight
file, or permanently altered with sysctl, which is provided by the procps-ng package.

Altering the drain rate of a queue is usually the simplest way to mitigate poor network performance.
However, increasing the number of packets that a device can receive at one time uses additional
processor time, during which no other processes can be scheduled, so this can cause other performance
problems.

6.3.3. Configuring interrupt queues

If analysis reveals high latency, your system may benefit from poll-based rather than interrupt-based
packet receipt.

6.3.3.1. Configuring busy polling

Red Hat Enterprise Linux 7 Performance Tuning Guide

52

http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/

Busy polling helps reduce latency in the network receive path by allowing socket layer code to poll the
receive queue of a network device, and disabling network interrupts. This removes delays caused by the
interrupt and the resultant context switch. However, it also increases CPU utilization. Busy polling also
prevents the CPU from sleeping, which can incur additional power consumption.

Busy polling is disabled by default. To enable busy polling on specific sockets, do the following.

Set sysctl.net.core.busy_poll to a value other than 0. This parameter controls the number of
microseconds to wait for packets on the device queue for socket poll and selects. Red Hat
recommends a value of 50.

Add the SO_BUSY_POLL socket option to the socket.

To enable busy polling globally, you must also set sysctl.net.core.busy_read to a value other than 0.
This parameter controls the number of microseconds to wait for packets on the device queue for socket
reads. It also sets the default value of the SO_BUSY_POLL option. Red Hat recommends a value of 50 for
a small number of sockets, and a value of 100 for large numbers of sockets. For extremely large numbers
of sockets (more than several hundred), use epoll instead.

Busy polling behavior is supported by the following drivers. These drivers are also supported on Red Hat
Enterprise Linux 7.

bnx2x

be2net

ixgbe

mlx4

myri10ge

6.3.4. Configuring socket receive queues

If analysis suggests that packets are being dropped because the drain rate of a socket queue is too slow,
there are several ways to alleviate the performance issues that result.

⁠Decrease the speed of incoming traffic

Decrease the rate at which the queue fills by filtering or dropping packets before they reach the
queue, or by lowering the weight of the device.

⁠Increase the depth of the application's socket queue

If a socket queue that receives a limited amount of traffic in bursts, increasing the depth of the
socket queue to match the size of the bursts of traffic may prevent packets from being dropped.

6.3.4 .1. Decrease the speed of incoming traffic

Filter incoming traffic or lower the network interface card's device weight to slow incoming traffic. For details
of how to filter incoming traffic, see the Red Hat Enterprise Linux 7 Security Guide, available from
http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/.

Device weight refers to the number of packets a device can receive at one time (in a single scheduled
processor access). Device weight is controlled by the dev_weight parameter. This parameter can be
temporarily altered by changing the contents of the /proc/sys/net/core/dev_weight file, or
permanently altered with sysctl, which is provided by the procps-ng package.

⁠Chapter 6. Networking

53

http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/

6.3.4 .2. Increasing queue depth

Increasing the depth of an application socket queue is typically the easiest way to improve the drain rate of
a socket queue, but it is unlikely to be a long-term solution.

To increase the depth of a queue, increase the size of the socket receive buffer by making either of the
following changes:

⁠Increase the value of /proc/sys/net/core/rmem_default

This parameter controls the default size of the receive buffer used by sockets. This value must
be smaller than that of /proc/sys/net/core/rmem_max.

⁠Use setsockopt to configure a larger SO_RCVBUF value

This parameter controls the maximum size in bytes of a socket's receive buffer. Use the
getsockopt system call to determine the current value of the buffer. For further information
about this parameter, see the man page:

$ man 7 socket

6.3.5. Configuring Receive-Side Scaling (RSS)

Receive-Side Scaling (RSS), also known as multi-queue receive, distributes network receive processing
across several hardware-based receive queues, allowing inbound network traffic to be processed by
multiple CPUs. RSS can be used to relieve bottlenecks in receive interrupt processing caused by
overloading a single CPU, and to reduce network latency.

To determine whether your network interface card supports RSS, check whether multiple interrupt request
queues are associated with the interface in /proc/interrupts. For example, if you are interested in the
p1p1 interface:

egrep 'CPU|p1p1' /proc/interrupts
 CPU0 CPU1 CPU2 CPU3 CPU4 CPU5
89: 40187 0 0 0 0 0 IR-PCI-MSI-edge p1p1-0
90: 0 790 0 0 0 0 IR-PCI-MSI-edge p1p1-1
91: 0 0 959 0 0 0 IR-PCI-MSI-edge p1p1-2
92: 0 0 0 3310 0 0 IR-PCI-MSI-edge p1p1-3
93: 0 0 0 0 622 0 IR-PCI-MSI-edge p1p1-4
94: 0 0 0 0 0 2475 IR-PCI-MSI-edge p1p1-5

The preceding output shows that the NIC driver created 6 receive queues for the p1p1 interface (p1p1-0
through p1p1-5). It also shows how many interrupts were processed by each queue, and which CPU
serviced the interrupt. In this case, there are 6 queues because by default, this particular NIC driver
creates one queue per CPU, and this system has 6 CPUs. This is a fairly common pattern amongst NIC
drivers.

Alternatively, you can check the output of ls -1
/sys/devices/*/*/device_pci_address/msi_irqs after the network driver is loaded. For example,
if you are interested in a device with a PCI address of 0000:01:00.0, you can list the interrupt request
queues of that device with the following command:

ls -1 /sys/devices/*/*/0000:01:00.0/msi_irqs
101
102
103

Red Hat Enterprise Linux 7 Performance Tuning Guide

54

104
105
106
107
108
109

RSS is enabled by default. The number of queues (or the CPUs that should process network activity) for
RSS are configured in the appropriate network device driver. For the bnx2x driver, it is configured in
num_queues. For the sfc driver, it is configured in the rss_cpus parameter. Regardless, it is typically
configured in /sys/class/net/device/queues/rx-queue/, where device is the name of the network
device (such as eth1) and rx-queue is the name of the appropriate receive queue.

When configuring RSS, Red Hat recommends limiting the number of queues to one per physical CPU core.
Hyper-threads are often represented as separate cores in analysis tools, but configuring queues for all
cores including logical cores such as hyper-threads has not proven beneficial to network performance.

When enabled, RSS distributes network processing equally between available CPUs based on the amount
of processing each CPU has queued. However, you can use the ethtool --show-rxfh-indir and --
set-rxfh-indir parameters to modify how network activity is distributed, and weight certain types of
network activity as more important than others.

The irqbalance daemon can be used in conjunction with RSS to reduce the likelihood of cross-node
memory transfers and cache line bouncing. This lowers the latency of processing network packets.

6.3.6. Configuring Receive Packet Steering (RPS)

Receive Packet Steering (RPS) is similar to RSS in that it is used to direct packets to specific CPUs for
processing. However, RPS is implemented at the software level, and helps to prevent the hardware queue
of a single network interface card from becoming a bottleneck in network traffic.

RPS has several advantages over hardware-based RSS:

RPS can be used with any network interface card.

It is easy to add software filters to RPS to deal with new protocols.

RPS does not increase the hardware interrupt rate of the network device. However, it does introduce
inter-processor interrupts.

RPS is configured per network device and receive queue, in the /sys/class/net/device/queues/rx-
queue/rps_cpus file, where device is the name of the network device (such as eth0) and rx-queue is
the name of the appropriate receive queue (such as rx-0).

The default value of the rps_cpus file is 0. This disables RPS, so the CPU that handles the network
interrupt also processes the packet.

To enable RPS, configure the appropriate rps_cpus file with the CPUs that should process packets from
the specified network device and receive queue.

The rps_cpus files use comma-delimited CPU bitmaps. Therefore, to allow a CPU to handle interrupts for
the receive queue on an interface, set the value of their positions in the bitmap to 1. For example, to handle
interrupts with CPUs 0, 1, 2, and 3, set the value of rps_cpus to 00001111 (1+2+4+8), or f (the
hexadecimal value for 15).

For network devices with single transmit queues, best performance can be achieved by configuring RPS to
use CPUs in the same memory domain. On non-NUMA systems, this means that all available CPUs can be

⁠Chapter 6. Networking

55

used. If the network interrupt rate is extremely high, excluding the CPU that handles network interrupts may
also improve performance.

For network devices with multiple queues, there is typically no benefit to configuring both RPS and RSS, as
RSS is configured to map a CPU to each receive queue by default. However, RPS may still be beneficial if
there are fewer hardware queues than CPUs, and RPS is configured to use CPUs in the same memory
domain.

6.3.7. Configuring Receive Flow Steering (RFS)

Receive Flow Steering (RFS) extends RPS behavior to increase the CPU cache hit rate and thereby
reduce network latency. Where RPS forwards packets based solely on queue length, RFS uses the RPS
backend to calculate the most appropriate CPU, then forwards packets based on the location of the
application consuming the packet. This increases CPU cache efficiency.

RFS is disabled by default. To enable RFS, you must edit two files:

⁠/proc/sys/net/core/rps_sock_flow_entries

Set the value of this file to the maximum expected number of concurrently active connections. We
recommend a value of 32768 for moderate server loads. All values entered are rounded up to the
nearest power of 2 in practice.

⁠/sys/class/net/device/queues/rx-queue/rps_flow_cnt

Replace device with the name of the network device you wish to configure (for example, eth0),
and rx-queue with the receive queue you wish to configure (for example, rx-0).

Set the value of this file to the value of rps_sock_flow_entries divided by N, where N is the
number of receive queues on a device. For example, if rps_flow_entries is set to 32768 and
there are 16 configured receive queues, rps_flow_cnt should be set to 2048. For single-
queue devices, the value of rps_flow_cnt is the same as the value of
rps_sock_flow_entries.

Data received from a single sender is not sent to more than one CPU. If the amount of data received from
a single sender is greater than a single CPU can handle, configure a larger frame size to reduce the
number of interrupts and therefore the amount of processing work for the CPU. Alternatively, consider NIC
offload options or faster CPUs.

Consider using numactl or taskset in conjunction with RFS to pin applications to specific cores,
sockets, or NUMA nodes. This can help prevent packets from being processed out of order.

6.3.8. Configuring Accelerated RFS

Accelerated RFS boosts the speed of RFS by adding hardware assistance. Like RFS, packets are
forwarded based on the location of the application consuming the packet. Unlike traditional RFS, however,
packets are sent directly to a CPU that is local to the thread consuming the data: either the CPU that is
executing the application, or a CPU local to that CPU in the cache hierarchy.

Accelerated RFS is only available if the following conditions are met:

Accelerated RFS must be supported by the network interface card. Accelerated RFS is supported by
cards that export the ndo_rx_flow_steer() netdevice function.

ntuple filtering must be enabled.

Red Hat Enterprise Linux 7 Performance Tuning Guide

56

Once these conditions are met, CPU to queue mapping is deduced automatically based on traditional RFS
configuration. That is, CPU to queue mapping is deduced based on the IRQ affinities configured by the
driver for each receive queue. Refer to Section 6.3.7, “Configuring Receive Flow Steering (RFS)” for details
on configuring traditional RFS.

Red Hat recommends using accelerated RFS wherever using RFS is appropriate and the network interface
card supports hardware acceleration.

⁠Chapter 6. Networking

57

Tool Reference
This appendix provides a quick reference for the various tools in Red Hat Enterprise Linux 7 that can be
used to tweak performance. See the relevant man page for your tool for complete, up-to-date, detailed
reference material.

A.1. irqbalance
irqbalance is a command line tool that distributes hardware interrupts across processors to improve
system performance. It runs as a daemon by default, but can be run once only with the --oneshot option.

The following parameters are useful for improving performance.

⁠--powerthresh

Sets the number of CPUs that can idle before a CPU is placed into powersave mode. If more
CPUs than the threshold are more than 1 standard deviation below the average softirq workload
and no CPUs are more than one standard deviation above the average, and have more than one
irq assigned to them, a CPU is placed into powersave mode. In powersave mode, a CPU is not
part of irq balancing so that it is not woken unnecessarily.

⁠--hintpolicy

Determines how irq kernel affinity hinting is handled. Valid values are exact (irq affinity hint is
always applied), subset (irq is balanced, but the assigned object is a subset of the affinity hint),
or ignore (irq affinity hint is ignored completely).

⁠--policyscript

Defines the location of a script to execute for each interrupt request, with the device path and irq
number passed as arguments, and a zero exit code expected by irqbalance . The script defined
can specify zero or more key value pairs to guide irqbalance in managing the passed irq.

The following are recognized as valid key value pairs.

⁠ban

Valid values are true (exclude the passed irq from balancing) or false (perform
balancing on this irq).

⁠balance_level

Allows user override of the balance level of the passed irq. By default the balance level is
based on the PCI device class of the device that owns the irq. Valid values are none,
package, cache, or core.

⁠numa_node

Allows user override of the NUMA node that is considered local to the passed irq. If
information about the local node is not specified in ACPI, devices are considered
equidistant from all nodes. Valid values are integers (starting from 0) that identify a
specific NUMA node, and -1, which specifies that an irq should be considered
equidistant from all nodes.

For further details, see the man page:

Red Hat Enterprise Linux 7 Performance Tuning Guide

58

$ man irqbalance

A.2. Tuna
Tuna allows you to control processor and scheduling affinity. This section covers the command line
interface, but a graphical interface with the same range of functionality is also available. Launch the
graphical utility by running tuna at the command line.

Tuna accepts a number of command line parameters, which are processed in sequence. The following
command distributes load across a four socket system.

tuna --socket 0 --isolate \
 --thread my_real_time_app --move \
 --irq serial --socket 1 --move \
 --irq eth* --socket 2 --spread \
 --show_threads --show_irqs

⁠--gui

Starts the graphical user interface.

⁠--cpus

Takes a comma-delimited list of CPUs to be controlled by Tuna . The list remains in effect until a
new list is specified.

⁠--config_file_apply

Takes the name of a profile to apply to the system.

⁠--config_file_list

Lists the pre-loaded profiles.

⁠--cgroup

Used in conjunction with --show_threads. Displays the type of control group that processes
displayed with --show_threads belong to, if control groups are enabled.

⁠--affect_children

When specified, Tuna affects child threads as well as parent threads.

⁠--filter

Filters the display to show only affected entities.

⁠-- isolate

Takes a comma-delimited list of CPUs. Tuna migrates all threads away from the CPUs specified.

⁠-- include

Takes a comma-delimited list of CPUs. Tuna allows all threads to run on the CPUs specified.

⁠--no_kthreads

When this parameter is specified, Tuna does not affect kernel threads.

Tool Reference

59

⁠--move

Moves selected entities to the CPUs specified.

⁠--priority

Specifies the scheduler policy and priority for a thread. Valid scheduler policies are OTHER, FIFO,
RR, BATCH, or IDLE.

When the policy is FIFO or RR, valid priority values are integers from 1 (lowest) to 99 (highest).
The default value is 1. For example, tuna --threads 7861 --priority=RR:40 sets a
policy of RR (round-robin) and a priority of 40 for thread 7861.

When the policy is OTHER, BATCH, or IDLE, the only valid priority value is 0, which is also the
default.

⁠--show_threads

Show the thread list.

⁠--show_irqs

Show the IRQ list.

⁠-- irqs

Takes a comma-delimited list of IRQs that Tuna affects. The list remains in effect until a new list
is specified. IRQs can be added to the list by using + and removed from the list by using -.

⁠--save

Saves the kernel threads schedules to the specified file.

⁠--sockets

Takes a comma-delimited list of CPU sockets to be controlled by Tuna . This option takes into
account the topology of the system, such as the cores that share a single processor cache, and
that are on the same physical chip.

⁠--threads

Takes a comma-delimited list of threads to be controlled by Tuna . The list remains in effect until
a new list is specified. Threads can be added to the list by using + and removed from the list by
using -.

⁠--no_uthreads

Prevents the operation from affecting user threads.

⁠--what_is

To see further help on selected entities.

⁠--spread

Distribute the threads specified with --threads evenly between the CPUs specified with --
cpus.

Red Hat Enterprise Linux 7 Performance Tuning Guide

60

A.3. ethtool
The ethtool utility allows administrators to view and edit network interface card settings. It is useful for
observing the statistics of certain devices, such as the number of packets dropped by that device.

ethtool, its options, and its usage, are comprehensively documented on the man page.

$ man ethtool

A.4. ss
ss is a command-line utility that prints statistical information about sockets, allowing administrators to
assess device performance over time. By default, ss lists open non-listening TCP sockets that have
established connections, but a number of useful options are provided to help administrators filter out
statistics about specific sockets.

One commonly used command is ss -tmpie, which displays all TCP sockets (t, internal TCP information
(i), socket memory usage (m), processes using the socket (p), and detailed socket information (i).

Red Hat recommends ss over netstat in Red Hat Enterprise Linux 7.

ss is provided by the iproute package. For more information, see the man page:

$ man ss

A.5. tuned
Tuned is a tuning daemon that can adapt the operating system to perform better under certain workloads
by setting a tuning profile. It can also be configured to react to changes in CPU and network use and
adjusts settings to improve performance in active devices and reduce power consumption in inactive
devices.

To configure dynamic tuning behavior, edit the dynamic_tuning parameter in the /etc/tuned/tuned-
main.conf file. You can also configure the amount of time in seconds between tuned checking usage
and updating tuning details with the update_interval parameter.

For further details about tuned, see the man page:

$ man tuned

A.6. tuned-adm
tuned-adm is a command line tool that provides a number of different profiles to improve performance in
a number of specific use cases. It also provides a sub-command (tuned-adm recommend) that
assesses your system and outputs a recommended tuning profile. This also sets the default profile for
your system at install time, so can be used to return to the default profile.

As of Red Hat Enterprise Linux 7, tuned-adm includes the ability to run any command as part of enabling
or disabling a tuning profile. This allows you to add environment specific checks that are not available in
tuned-adm, such as checking whether the system is the master database node before selecting which
tuning profile to apply.

Tool Reference

61

Red Hat Enterprise Linux 7 also provides the include parameter in profile definition files, allowing you to
base your own tuned-adm profiles on existing profiles.

The following tuning profiles are provided with tuned-adm and are supported in Red Hat
Enterprise Linux 7.

⁠throughput-performance

A server profile focused on improving throughput. This is the default profile, and is recommended
for most systems.

This profile favors performance over power savings by setting intel_pstate and
max_perf_pct=100. It enables transparent huge pages, uses cpupower to set the
performance cpufreq governor, and sets the input/output scheduler to deadline. It also sets
kernel.sched_min_granularity_ns to 10 μs, kernel.sched_wakeup_granularity_ns to
15 μs, and vm.dirty_ratio to 40%.

⁠latency-performance

A server profile focused on lowering latency. This profile is recommended for latency-sensitive
workloads that benefit from c-state tuning and the increased TLB efficiency of transparent huge
pages.

This profile favors performance over power savings by setting intel_pstate and
max_perf_pct=100. It enables transparent huge pages, uses cpupower to set the
performance cpufreq governor, requests a cpu_dma_latency value of 1, and sets the I/O
scheduler to deadline.

⁠network-latency

A server profile focused on lowering network latency.

This profile favors performance over power savings by setting intel_pstate and
max_perf_pct=100. It disables transparent huge pages, and automatic NUMA balancing. It also
uses cpupower to set the performance cpufreq governor, requests a cpu_dma_latency
value of 1, and sets the I/O scheduler to deadline. It also sets busy_read and busy_poll
times to 50 μs, and tcp_fastopen to 3.

⁠network-throughput

A server profile focused on improving network throughput.

This profile favors performance over power savings by setting intel_pstate and
max_perf_pct=100 and increasing kernel network buffer sizes. It enables transparent huge
pages, uses cpupower to set the performance cpufreq governor, and sets the I/O scheduler
to deadline. It also sets kernel.sched_min_granularity_ns to 10 μs,
kernel.sched_wakeup_granularity_ns to 15 μs, and vm.dirty_ratio to 40%.

⁠virtual-guest

A profile focused on optimizing performance in Red Hat Enterprise Linux 7 virtual machines.

This profile favors performance over power savings by setting intel_pstate and
max_perf_pct=100. It also decreases the swappiness of virtual memory. It enables
transparent huge pages, uses cpupower to set the performance cpufreq governor, and sets
the I/O scheduler to deadline. It also sets kernel.sched_min_granularity_ns to 10 μs,

Red Hat Enterprise Linux 7 Performance Tuning Guide

62

kernel.sched_wakeup_granularity_ns to 15 μs, and vm.dirty_ratio to 40%.

⁠virtual-host

A profile focused on optimizing performance in Red Hat Enterprise Linux 7 virtualization hosts.

This profile favors performance over power savings by setting intel_pstate and
max_perf_pct=100. It also decreases the swappiness of virtual memory. This profile enables
transparent huge pages and writes dirty pages back to disk more frequently. It uses cpupower
to set the performance cpufreq governor, and sets the I/O scheduler to deadline. It also
sets kernel.sched_min_granularity_ns to 10 μs, kernel.sched_wakeup_granularity_ns
to 15 μs, kernel.sched_migration_cost to 5 μs, and vm.dirty_ratio to 40%.

For detailed information about the power saving profiles provided with tuned-adm, see the Red Hat
Enterprise Linux 7 Power Management Guide, available from
http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/.

For detailed information about using tuned-adm, see the man page:

$ man tuned-adm

A.7. perf
The perf tool provides a number of useful commands, some of which are listed in this section. For detailed
information about perf, see the Red Hat Enterprise Linux 7 Developer Guide, available from
http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/, or refer to the man pages.

⁠perf stat

This command provides overall statistics for common performance events, including instructions
executed and clock cycles consumed. You can use the option flags to gather statistics on events
other than the default measurement events. As of Red Hat Enterprise Linux 6.4, it is possible to
use perf stat to filter monitoring based on one or more specified control groups (cgroups).

For further information, read the man page:

$ man perf-stat

⁠perf record

This command records performance data into a file which can be later analyzed using perf
report. For further details, read the man page:

$ man perf-record

⁠perf report

This command reads the performance data from a file and analyzes the recorded data. For
further details, read the man page:

$ man perf-report

⁠perf list

Tool Reference

63

http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/
http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/

This command lists the events available on a particular machine. These events vary based on
the performance monitoring hardware and the software configuration of the system. For further
information, read the man page:

$ man perf-list

⁠perf top

This command performs a similar function to the top tool. It generates and displays a
performance counter profile in realtime. For further information, read the man page:

$ man perf-top

⁠perf trace

This command performs a similar function to the strace tool. It monitors the system calls used by
a specified thread or process and all signals received by that application. Additional trace targets
are available; refer to the man page for a full list:

$ man perf-trace

A.8. Performance Co-Pilot (PCP)
Performance Co-Pilot (PCP) provides a large number of command line tools, graphical tools, and libraries.
For more information about any of these tools, see the man page: type man toolname at the command
line, replacing toolname with the name of the tool.

The pcp-doc package installs detailed documentation to the /usr/share/doc/pcp-doc directory by
default.

A.9. vmstat
Vmstat outputs reports on your system's processes, memory, paging, block input/output, interrupts, and
CPU activity. It provides an instantaneous report of the average of these events since the machine was
last booted, or since the previous report.

⁠-a

Displays active and inactive memory.

⁠-f

Displays the number of forks since boot. This includes the fork, vfork, and clone system
calls, and is equivalent to the total number of tasks created. Each process is represented by one
or more tasks, depending on thread usage. This display does not repeat.

⁠-m

Displays slab information.

⁠-n

Specifies that the header will appear once, not periodically.

⁠-s

Red Hat Enterprise Linux 7 Performance Tuning Guide

64

Displays a table of various event counters and memory statistics. This display does not repeat.

⁠delay

The delay between reports in seconds. If no delay is specified, only one report is printed, with the
average values since the machine was last booted.

⁠count

The number of times to report on the system. If no count is specified and delay is defined, vmstat
reports indefinitely.

⁠-d

Displays disk statistics.

⁠-p

Takes a partition name as a value, and reports detailed statistics for that partition.

⁠-S

Defines the units output by the report. Valid values are k (1000 bytes), K (1024 bytes), m
(1000000 bytes), or M (1048576 bytes).

For detailed information about the output provided by each output mode, see the man page:

$ man vmstat

A.10. x86_energy_perf_policy
The x86_energy_perf_policy tool allows administrators to define the relative importance of performance
and energy efficiency. It is provided by the kernel-tools package.

To view the current policy, run the following command:

x86_energy_perf_policy -r

To set a new policy, run the following command:

x86_energy_perf_policy profile_name

Replace profile_name with one of the following profiles.

⁠performance

The processor does not sacrifice performance for the sake of saving energy. This is the default
value.

⁠normal

The processor tolerates minor performance compromises for potentially significant energy
savings. This is a reasonable saving for most servers and desktops.

⁠powersave

Tool Reference

65

The processor accepts potentially significant performance decreases in order to maximize energy
efficiency.

For further details of how to use x86_energy_perf_policy, see the man page:

$ man x86_energy_perf_policy

A.11. turbostat
The turbostat tool provides detailed information about the amount of time that the system spends in
different states. Turbostat is provided by the kernel-tools package.

By default, turbostat prints a summary of counter results for the entire system, followed by counter
results every 5 seconds, under the following headings:

⁠pkg

The processor package number.

⁠core

The processor core number.

⁠CPU

The Linux CPU (logical processor) number.

⁠%c0

The percentage of the interval for which the CPU retired instructions.

⁠GHz

The average clock speed while the CPU was in the c0 state.

⁠TSC

The average clock speed over the course of the entire interval.

⁠%c1, %c3, and %c6

The percentage of the interval for which the processor was in the c1, c3, or c6 state, respectively.

⁠%pc3 or %pc6

The percentage of the interval for which the processor was in the pc3 or pc6 state, respectively.

Specify a different period between counter results with the -i option, for example, run turbostat -i 10
to print results every 10 seconds instead.

Note

Upcoming Intel processors may add additional c-states. As of Red Hat Enterprise Linux 7.0,
turbostat provides support for the c7, c8, c9, and c10 states.

Red Hat Enterprise Linux 7 Performance Tuning Guide

66

A.12. numastat
The numastat tool is provided by the numactl package, and displays memory statistics (such as
allocation hits and misses) for processes and the operating system on a per-NUMA-node basis. The
default tracking categories for the numastat command are outlined as follows:

⁠numa_hit

The number of pages that were successfully allocated to this node.

⁠numa_miss

The number of pages that were allocated on this node because of low memory on the intended
node. Each numa_miss event has a corresponding numa_foreign event on another node.

⁠numa_foreign

The number of pages initially intended for this node that were allocated to another node instead.
Each numa_foreign event has a corresponding numa_miss event on another node.

⁠interleave_hit

The number of interleave policy pages successfully allocated to this node.

⁠local_node

The number of pages successfully allocated on this node, by a process on this node.

⁠other_node

The number of pages allocated on this node, by a process on another node.

Supplying any of the following options changes the displayed units to megabytes of memory (rounded to
two decimal places), and changes other specific numastat behaviors as described below.

⁠-c

Horizontally condenses the displayed table of information. This is useful on systems with a large
number of NUMA nodes, but column width and inter-column spacing are somewhat unpredictable.
When this option is used, the amount of memory is rounded to the nearest megabyte.

⁠-m

Displays system-wide memory usage information on a per-node basis, similar to the information
found in /proc/meminfo.

⁠-n

Displays the same information as the original numastat command (numa_hit, numa_miss,
numa_foreign, interleave_hit, local_node, and other_node), with an updated format,
using megabytes as the unit of measurement.

⁠-p pattern

Displays per-node memory information for the specified pattern. If the value for pattern is
comprised of digits, numastat assumes that it is a numerical process identifier. Otherwise,
numastat searches process command lines for the specified pattern.

Tool Reference

67

Command line arguments entered after the value of the -p option are assumed to be additional
patterns for which to filter. Additional patterns expand, rather than narrow, the filter.

⁠-s

Sorts the displayed data in descending order so that the biggest memory consumers (according
to the total column) are listed first.

Optionally, you can specify a node, and the table will be sorted according to the node column.
When using this option, the node value must follow the -s option immediately, as shown here:

numastat -s2

Do not include white space between the option and its value.

⁠-v

Displays more verbose information. Namely, process information for multiple processes will
display detailed information for each process.

⁠-V

Displays numastat version information.

⁠-z

Omits table rows and columns with only zero values from the displayed information. Note that
some near-zero values that are rounded to zero for display purposes will not be omitted from the
displayed output.

A.13. numactl
Numactl lets administrators run a process with a specified scheduling or memory placement policy.
Numactl can also set a persistent policy for shared memory segments or files, and set the processor
affinity and memory affinity of a process.

Numactl provides a number of useful options. This appendix outlines some of these options and gives
suggestions for their use, but is not exhaustive.

⁠--hardware

Displays an inventory of available nodes on the system, including relative distances between
nodes.

⁠--membind

Ensures that memory is allocated only from specific nodes. If there is insufficient memory
available in the specified location, allocation fails.

⁠--cpunodebind

Ensures that a specified command and its child processes execute only on the specified node.

⁠--phycpubind

Ensures that a specified command and its child processes execute only on the specified
processor.

Red Hat Enterprise Linux 7 Performance Tuning Guide

68

⁠-- localalloc

Specifies that memory should always be allocated from the local node.

⁠--preferred

Specifies a preferred node from which to allocate memory. If memory cannot be allocated from this
specified node, another node will be used as a fallback.

For further details about these and other parameters, see the man page:

$ man numactl

A.14. numad
numad is an automatic NUMA affinity management daemon. It monitors NUMA topology and resource
usage within a system in order to dynamically improve NUMA resource allocation and management.

Note that when numad is enabled, its behavior overrides the default behavior of automatic NUMA
balancing.

A.14.1. Using numad from the command line

To use numad as an executable, just run:

numad

While numad runs, its activities are logged in /var/log/numad.log. It will run until stopped with the
following command:

numad -i 0

Stopping numad does not remove the changes it has made to improve NUMA affinity. If system use
changes significantly, running numad again will adjust affinity to improve performance under the new
conditions.

To restrict numad management to a specific process, start it with the following options.

numad -S 0 -p pid

⁠-p pid

This option adds the specified pid to an explicit inclusion list. The process specified will not be
managed until it meets the numad process significance threshold.

⁠-S 0

This sets the type of process scanning to 0, which limits numad management to explicitly
included processes.

For further information about available numad options, refer to the numad man page:

$ man numad

Tool Reference

69

A.14.2. Using numad as a service

While numad runs as a service, it attempts to tune the system dynamically based on the current system
workload. Its activities are logged in /var/log/numad.log.

To start the service, run:

systemctl start numad.service

To make the service persist across reboots, run:

chkconfig numad on

For further information about available numad options, refer to the numad man page:

$ man numad

A.14.3. Pre-placement advice

numad provides a pre-placement advice service that can be queried by various job management systems
to provide assistance with the initial binding of CPU and memory resources for their processes. This pre-
placement advice is available regardless of whether numad is running as an executable or a service.

A.14.4. Using numad with KSM

If KSM is in use on a NUMA system, change the value of the /sys/kernel/mm/ksm/merge_nodes
parameter to 0 to avoid merging pages across NUMA nodes. Otherwise, KSM increases remote memory
accesses as it merges pages across nodes. Furthermore, kernel memory accounting statistics can
eventually contradict each other after large amounts of cross-node merging. As such, numad can become
confused about the correct amounts and locations of available memory, after the KSM daemon merges
many memory pages. KSM is beneficial only if you are overcommitting the memory on your system. If your
system has sufficient free memory, you may achieve higher performance by turning off and disabling the
KSM daemon.

A.15. OProfile
OProfile is a low overhead, system-wide performance monitoring tool provided by the oprofile package. It
uses the performance monitoring hardware on the processor to retrieve information about the kernel and
executables on the system, such as when memory is referenced, the number of second-level cache
requests, and the number of hardware interrupts received. OProfile is also able to profile applications that
run in a Java Virtual Machine (JVM).

OProfile provides the following tools. Note that the legacy opcontrol tool and the new operf tool are
mutually exclusive.

⁠ophelp

Displays available events for the system’s processor along with a brief description of each.

⁠opimport

Converts sample database files from a foreign binary format to the native format for the system.
Only use this option when analyzing a sample database from a different architecture.

Red Hat Enterprise Linux 7 Performance Tuning Guide

70

⁠opannotate

Creates annotated source for an executable if the application was compiled with debugging
symbols.

⁠opcontrol

Configures which data is collected in a profiling run.

⁠operf

Intended to replace opcontrol. The operf tool uses the Linux Performance Events
subsystem, allowing you to target your profiling more precisely, as a single process or system-
wide, and allowing OProfile to co-exist better with other tools using the performance monitoring
hardware on your system. Unlike opcontrol, no initial setup is required, and it can be used
without the root privileges unless the --system-wide option is in use.

⁠opreport

Retrieves profile data.

⁠oprofiled

Runs as a daemon to periodically write sample data to disk.

Legacy mode (opcontrol, oprofiled, and post-processing tools) remains available, but is no longer
the recommended profiling method.

For further information about any of these commands, see the OProfile man page:

$ man oprofile

A.16. taskset
The taskset tool is provided by the util-linux package. It allows administrators to retrieve and set the
processor affinity of a running process, or launch a process with a specified processor affinity.

Important

taskset does not guarantee local memory allocation. If you require the additional performance
benefits of local memory allocation, Red Hat recommends using numactl instead of taskset.

To set the CPU affinity of a running process, run the following command:

taskset -c processors pid

Replace processors with a comma delimited list of processors or ranges of processors (for example,
1,3,5-7. Replace pid with the process identifier of the process that you want to reconfigure.

To launch a process with a specified affinity, run the following command:

taskset -c processors -- application

Tool Reference

71

Replace processors with a comma delimited list of processors or ranges of processors. Replace
application with the command, options and arguments of the application you want to run.

For more information about taskset , see the man page:

$ man taskset

A.17. SystemTap
SystemTap is extensively documented in its own guides. The Red Hat Enterprise Linux 7 versions of the
SystemTap Beginner's Guide and the SystemTap TapSet Reference are both available from
http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/.

Red Hat Enterprise Linux 7 Performance Tuning Guide

72

http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/

Revision History
Revision 0.3-5 Wed Jun 11 2014 Laura Bailey

Added trailing slash to access.redhat.com links that wouldn't redirect.

Revision 0.3-3 Mon Apr 07 2014 Laura Bailey
Rebuilding for RHEL 7.0 GA.

Revision 0.3-2 Mon Apr 07 2014 Laura Bailey
Updated book structure for RT#294949.

Revision 0.2-38 Mon Apr 07 2014 Laura Bailey
Added updated OProfile data, BZ955882.
Removing outdated comments.

Revision 0.2-34 Fri Apr 04 2014 Laura Bailey
Corrected lstopo output image styling, BZ1042800.
Added details about irqbalance daemon, BZ955890.
Added and corrected details about control groups, BZ794624.
Added details about PCP, BZ955883.
Updated XFS tuning details, BZ794616.
Added updated OProfile data, BZ955882.

Revision 0.2-27 Fri Mar 28 2014 Laura Bailey
Corrected busy_poll section based on feedback from Jeremy Eder, RT276607.
Corrected nohz_full section and added details based on feedback from Jeremy Eder, RT284423.
Added further detail to SystemTap sections, BZ955884.
Added further detail to the SSD section, BZ955900.
Added further detail on the tuned-adm recommend command, BZ794623.
Corrected note about automatic NUMA balancing in features section, BZ794612.
Corrected a number of terminology issues and example output issues regarding NUMA, including a new
image, BZ1042800.
Corrected details about irqbalance in conjunction with RSS based on feedback from Jeremy Eder.

Revision 0.2-19 Fri Mar 21 2014 Laura Bailey
Added details about transparent huge pages to the Memory chapter, BZ794621.
Corrected use of terms related to NUMA nodes, BZ1042800.
Updated kernel limits, BZ955894.
Drafted tickless kernel section, RT284423.
Drafted busy polling section, RT276607.
Updated information about file system barriers.
Removed unclear information about per-node huge page assignment. BZ1079079 created to add more
useful information in future.
Added details about solid state disks, BZ955900.
Removed review markers.

Revision 0.2-14 Thu Mar 13 2014 Laura Bailey
Applied feedback from Jeremy Eder and Joe Mario.
Noted updates to Tuna GUI from BZ955872.
Added details about SystemTap to the Networking chapter and Tools Reference appendix, BZ955884.

Revision 0.2-12 Fri Mar 07 2014 Laura Bailey

Revision History

73

Noted support for automatic NUMA migration, as per BZ794612.
Applied additional feedback from Jeremy Eder.

Revision 0.2-11 Fri Mar 07 2014 Laura Bailey
Applied feedback from Jeremy Eder.

Revision 0.2-10 Mon Feb 24 2014 Laura Bailey
Corrected Ext4 information based on feedback from Lukáš Czerner (BZ#794607).

Revision 0.2-9 Mon Feb 17 2014 Laura Bailey
Corrected the CPU chapter based on feedback from Bill Gray.
Corrected and added to the Memory chapter and Tools Reference based on feedback from Bill Gray.

Revision 0.2-8 Mon Feb 10 2014 Laura Bailey
Added isolcpus boot parameter to CPU chapter (RT276607).
SME feedback: corrected parameter descriptions and added new parameters (BZ#970844).
Added recommended tuned-adm profiles to Network chapter.
Added remarks to flag sections for review.

Revision 0.2-4 Mon Feb 03 2014 Laura Bailey
Confirmed that numactl --membind parameter is documented (BZ#922070).
Added details about Tuna to the Tools introduction, the CPU chapter, and the Tools Reference appendix
(BZ#970844).
Corrected structural error in the Storage and File Systems chapter.
Added missing cross references.

Revision 0.2-2 Fri Jan 31 2014 Laura Bailey
Rewrite and restructure complete.
Ensured that all tools mentioned in the guide were listed alongside the package that provides them.

Revision 0.1-11 Thu Dec 05 2013 Laura Bailey
Building restructured guide for RHEL 7.0 Beta.

Revision 0.1-10 Wed Nov 27 2013 Laura Bailey
Pre-Beta customer build.

Revision 0.1-9 Tue Oct 15 2013 Laura Bailey
Minor corrections based on customer feedback (BZ#1011676).

Revision 0.1-7 Mon Sep 09 2013 Laura Bailey
Merged new content from RHEL 6.5.
Applied editor feedback.

Revision 0.1-6 Wed May 29 2013 Laura Bailey

Red Hat Enterprise Linux 7 Performance Tuning Guide

74

https://bugzilla.redhat.com/show_bug.cgi?id=794607
https://bugzilla.redhat.com/show_bug.cgi?id=970844
https://bugzilla.redhat.com/show_bug.cgi?id=922070
https://bugzilla.redhat.com/show_bug.cgi?id=970844
https://bugzilla.redhat.com/show_bug.cgi?id=1011676

Updated ext4 file system limits (BZ#794607).
Corrected theoretical maximum of a 64-bit file system.
Added the New Features section to track performance-related changes.
Changed default I/O scheduler from cfq to deadline (BZ#794602).
Added draft content for BTRFS tuning (BZ#794604).
Updated XFS section to provide clearer recommendations about directory block sizes, and updated XFS
supported limits (BZ#794616.

Revision 0.1-2 Thurs Jan 31 2013 Tahlia Richardson
Updated and published as RHEL 7 draft.

Revision 0.1-1 Wed Jan 16 2013 Laura Bailey
Branched from the RHEL 6.4 version of this document.

Revision History

75

https://bugzilla.redhat.com/show_bug.cgi?id=794607
https://bugzilla.redhat.com/show_bug.cgi?id=794602
https://bugzilla.redhat.com/show_bug.cgi?id=794604
https://bugzilla.redhat.com/show_bug.cgi?id=794616

	Table of Contents
	⁠Chapter 1. Performance Features in Red Hat Enterprise Linux 7
	⁠1.1. New in 7.0

	⁠Chapter 2. Performance Monitoring Tools
	⁠2.1. /proc
	⁠2.2. GNOME System Monitor
	⁠2.3. Performance Co-Pilot (PCP)
	⁠2.4. Tuna
	⁠2.5. Built in command line tools
	⁠2.5.1. top
	⁠2.5.2. ps
	⁠2.5.3. Virtual Memory Statistics (vmstat)
	⁠2.5.4. System Activity Reporter (sar)

	⁠2.6. tuned and tuned-adm
	⁠2.7. perf
	⁠2.8. turbostat
	⁠2.9. iostat
	⁠2.10. irqbalance
	⁠2.11. ss
	⁠2.12. numastat
	⁠2.13. numad
	⁠2.14. SystemTap
	⁠2.15. OProfile
	⁠2.16. Valgrind

	⁠Chapter 3. CPU
	⁠3.1. Considerations
	⁠3.1.1. System Topology
	⁠3.1.1.1. Determining system topology

	⁠3.1.2. Scheduling
	⁠3.1.2.1. Kernel Ticks

	⁠3.1.3. Interrupt Request (IRQ) Handling

	⁠3.2. Monitoring and diagnosing performance problems
	⁠3.2.1. turbostat
	⁠3.2.2. numastat
	⁠3.2.3. /proc/interrupts

	⁠3.3. Configuration suggestions
	⁠3.3.1. Configuring kernel tick time
	⁠3.3.2. Setting hardware performance policy (x86_energy_perf_policy)
	⁠3.3.3. Setting process affinity with taskset
	⁠3.3.4. Managing NUMA affinity with numactl
	⁠3.3.5. Automatic NUMA affinity management with numad
	⁠3.3.6. Tuning scheduling policy
	⁠3.3.6.1. Scheduling policies
	⁠3.3.6.2. Isolating CPUs

	⁠3.3.7. Setting interrupt affinity
	⁠3.3.8. Configuring CPU, thread, and interrupt affinity with Tuna

	⁠Chapter 4. Memory
	⁠4.1. Considerations
	⁠4.1.1. Page size
	⁠4.1.2. Translation Lookaside Buffer size

	⁠4.2. Monitoring and diagnosing performance problems
	⁠4.2.1. Monitoring memory usage with vmstat
	⁠4.2.2. Profiling application memory usage with Valgrind
	⁠4.2.2.1. Profiling memory usage with Memcheck
	⁠4.2.2.2. Profiling cache usage with Cachegrind
	⁠4.2.2.3. Profiling heap and stack space with Massif

	⁠4.3. Configuration tools
	⁠4.3.1. Configuring huge pages
	⁠4.3.2. Configuring system memory capacity
	⁠4.3.2.1. Virtual Memory parameters
	⁠4.3.2.2. File system parameters
	⁠4.3.2.3. Kernel parameters

	⁠Chapter 5. Storage and File Systems
	⁠5.1. Considerations
	⁠5.1.1. Solid-State Disks
	⁠5.1.2. I/O Schedulers
	⁠5.1.3. File systems
	⁠5.1.4. Generic tuning considerations for file systems
	⁠5.1.4.1. Considerations at format time
	⁠5.1.4.2. Considerations at mount time
	⁠5.1.4.3. Maintenance

	⁠5.2. Monitoring and diagnosing performance problems
	⁠5.2.1. Monitoring system performance with vmstat
	⁠5.2.2. Monitoring I/O performance with iostat
	⁠5.2.2.1. Detailed I/O analysis with blktrace
	⁠5.2.2.2. Analyzing blktrace output with btt
	⁠5.2.2.3. Analyzing blktrace output with seekwatcher

	⁠5.2.3. Storage monitoring with SystemTap

	⁠5.3. Configuration tools
	⁠5.3.1. Configuring tuning profiles for storage performance
	⁠5.3.2. Setting the default I/O scheduler
	⁠5.3.3. Configuring the I/O scheduler for a device
	⁠5.3.4. Tuning the deadline scheduler
	⁠5.3.5. Tuning the cfq scheduler
	⁠5.3.5.1. Tuning cfq for fast storage

	⁠5.3.6. Tuning the noop scheduler
	⁠5.3.7. Configuring file systems for performance
	⁠5.3.7.1. Tuning XFS
	⁠5.3.7.2. Tuning ext4
	⁠5.3.7.3. Tuning btrfs
	⁠5.3.7.4. Tuning GFS2

	⁠Chapter 6. Networking
	⁠6.1. Considerations
	⁠6.1.1. Before you tune
	⁠6.1.2. Bottlenecks in packet reception

	⁠6.2. Monitoring and diagnosing performance problems
	⁠6.2.1. ss
	⁠6.2.2. ip
	⁠6.2.3. dropwatch
	⁠6.2.4. ethtool
	⁠6.2.5. /proc/net/snmp
	⁠6.2.6. Network monitoring with SystemTap

	⁠6.3. Configuration tools
	⁠6.3.1. Tuned-adm profiles for network performance
	⁠6.3.2. Configuring the hardware buffer
	⁠6.3.3. Configuring interrupt queues
	⁠6.3.3.1. Configuring busy polling

	⁠6.3.4. Configuring socket receive queues
	⁠6.3.4.1. Decrease the speed of incoming traffic
	⁠6.3.4.2. Increasing queue depth

	⁠6.3.5. Configuring Receive-Side Scaling (RSS)
	⁠6.3.6. Configuring Receive Packet Steering (RPS)
	⁠6.3.7. Configuring Receive Flow Steering (RFS)
	⁠6.3.8. Configuring Accelerated RFS

	Tool Reference
	⁠A.1. irqbalance
	⁠A.2. Tuna
	⁠A.3. ethtool
	⁠A.4. ss
	⁠A.5. tuned
	⁠A.6. tuned-adm
	⁠A.7. perf
	⁠A.8. Performance Co-Pilot (PCP)
	⁠A.9. vmstat
	⁠A.10. x86_energy_perf_policy
	⁠A.11. turbostat
	⁠A.12. numastat
	⁠A.13. numactl
	⁠A.14. numad
	⁠A.14.1. Using numad from the command line
	⁠A.14.2. Using numad as a service
	⁠A.14.3. Pre-placement advice
	⁠A.14.4. Using numad with KSM

	⁠A.15. OProfile
	⁠A.16. taskset
	⁠A.17. SystemTap

	Revision History

