Q® redhat.

Red Hat Enterprise Linux 7

Logical Volume Manager
Administration

LVM Administrator Guide

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

LVM Administrator Guide

Legal Notice
Copyright © 2014 Red Hat, Inc. and others.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0 Unported

License. If you distribute this document, or a modified version of it, you must provide attribution to Red
Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat trademarks must be
removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section
4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo,
and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other
countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or
endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack Logo are either registered trademarks/service marks or
trademarks/service marks of the OpenStack Foundation, in the United States and other countries and
are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.
Abstract

This book describes the LVM logical volume manager, including information on running LVM in a
clustered environment.

http://creativecommons.org/licenses/by-sa/3.0/

Table of Contents

Chapter 1. The LVM Logical Volume Manhagercvvuun.

1.1. Logical Volumes

1.2. LVM Architecture Overview

1.3. The Clustered Logical Volume Manager (CLVM)
1.4. Document Overview

Chapter 2. LVM COmponentscturrnnnrnrnnnnnnnnnns

2.1. Physical Volumes
2.2. Volume Groups
2.3. LVM Logical Volumes

Chapter 3. LVM Administration Overview

3.1. Creating LVM Volumes in a Cluster

3.2. Logical Volume Creation Overview

3.3. Growing a File System on a Logical Volume
3.4. Logical Volume Backup

3.5. Logging

3.6. The Metadata Daemon (lvmetad)

Chapter 4. LVM Administration with CLICommands

4 .1. Using CLI Commands

4.2. Physical Volume Administration

4.3. Volume Group Administration

4 4. Logical Volume Administration

4 .5. Controlling LVM Device Scans with Filters

4 6. Online Data Relocation

4.7. Activating Logical Volumes on Individual Nodes in a Cluster
4.8. Customized Reporting for LVM

The pvsCommanditiiiiirennnrrrnnnnrrnnnnsnnns
ThevgsCommandiiiiiinnnrnnannnrennnnennns

ThelvsCommandiiiiinernrnrnsnsnnsasnsnsnsnnnnnas

4 .8.3. Sorting LVM Reports
4.8.4. Specifying Units

Chapter 5. LVM Configuration Examples

5.1. Creating an LVM Logical Volume on Three Disks
5.2. Creating a Striped Logical Volume

5.3. Splitting a Volume Group

5.4. Removing a Disk from a Logical Volume

5.5. Creating a Mirrored LVM Logical Volume in a Cluster

Chapter 6. LVM Troubleshootingciiiiiiinnnnn.

6.1. Troubleshooting Diagnostics

6.2. Displaying Information on Failed Devices

6.3. Recovering from LVM Mirror Failure

6.4. Recovering Physical Volume Metadata

6.5. Replacing a Missing Physical Volume

6.6. Removing Lost Physical Volumes from a Volume Group
6.7. Insufficient Free Extents for a Logical Volume

The Device Mapperc.ciiiiiinintrennnrreansnrennnnsnnns

A.1l. Device Table Mappings
A.2. The dmsetup Command

Table of Contents

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

A.3. Device Mapper Support for the udev Device Manager

The LVM ConfigurationFilest

B.1. The LVM Configuration Files
B.2. Sample Ivm.conf File

LVMODJeCt TaQgsiiiiiiiiiiiiinnnnn s nnnnnnnnns

C.1. Adding and Removing Object Tags
C.2. Host Tags
C.3. Controlling Activation with Tags

LVM Volume Group Metadatattt innnnrnnnnn.

D.1. The Physical Volume Label
D.2. Metadata Contents
D.3. Sample Metadata

ReVviSiONn HiStOryttt ettt a e

18T o =

Chapter 1. The LVM Logical Volume Manager

Chapter 1. The LVM Logical Volume Manager

This chapter provides a summary of the features of the LVM logical volume manager that are new for the initial release
of Red Hat Enterprise Linux 7. Following that, this chapter provides a high-level overview of the components of the
Logical Volume Manager (LVM).

1.1. Logical Volumes

Volume management creates a layer of abstraction over physical storage, allowing you to create logical storage
volumes. This provides much greater flexibility in a number of ways than using physical storage directly. With a logical
volume, you are not restricted to physical disk sizes. In addition, the hardware storage configuration is hidden from the
software so it can be resized and moved without stopping applications or unmounting file systems. This can reduce
operational costs.

Logical volumes provide the following advantages over using physical storage directly:
Flexible capacity

When using logical volumes, file systems can extend across multiple disks, since you can aggregate disks and
partitions into a single logical volume.

Resizeable storage pools

You can extend logical volumes or reduce logical volumes in size with simple software commands, without
reformatting and repartitioning the underlying disk devices.

Online data relocation

To deploy newer, faster, or more resilient storage subsystems, you can move data while your system is active.
Data can be rearranged on disks while the disks are in use. For example, you can empty a hot-swappable disk
before removing it.

Convenient device haming

Logical storage volumes can be managed in user-defined groups, which you can name according to your
convenience.

Disk striping

You can create a logical volume that stripes data across two or more disks. This can dramatically increase
throughput.

Mirroring volumes
Logical volumes provide a convenient way to configure a mirror for your data.
Volume Snapshots

Using logical volumes, you can take device snapshots for consistent backups or to test the effect of changes
without affecting the real data.

The implementation of these features in LVM is described in the remainder of this document.

1.2. LVM Architecture Overview

For the Red Hat Enterprise Linux 4 release of the Linux operating system, the original LVM1 logical volume manager
was replaced by LVM2, which has a more generic kernel framework than LVM1. LVM2 provides the following
improvements over LVML1:

flexible capacity

more efficient metadata storage

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

better recovery format

new ASCIl metadata format
atomic changes to metadata
redundant copies of metadata

LVM2 is backwards compatible with LVM1, with the exception of snapshot and cluster support. You can convert a
volume group from LVML1 format to LVM2 format with the vgconver t command. For information on converting LVM

metadata format, see the vgconver t(8) man page.

The underlying physical storage unit of an LVM logical volume is a block device such as a partition or whole disk. This
device is initialized as an LVM physical volume (PV).

To create an LVM logical volume, the physical volumes are combined into a volume group (VG). This creates a pool of
disk space out of which LVM logical volumes (LVs) can be allocated. This process is analogous to the way in which
disks are divided into partitions. A logical volume is used by file systems and applications (such as databases).

Figure 1.1, “LVM Logical Volume Components” shows the components of a simple LVM logical volume:

e e

Laogical Logical
Volume Vaolume

Volume Group
4
| | |

2 @ @

Physical Physical Physical
Volume Volume Volume

Figure 1.1. LVM Logical Volume Components

For detailed information on the components of an LVM logical volume, see Chapter 2, LVM Components.

1.3. The Clustered Logical Volume Manager (CLVM)

The Clustered Logical Volume Manager (CLVM) is a set of clustering extensions to LVM. These extensions allow a
cluster of computers to manage shared storage (for example, on a SAN) using LVM. CLVM is part of the Resilient
Storage Add-On.

Whether you should use CLVM depends on your system requirements:

If only one node of your system requires access to the storage you are configuring as logical volumes, then you
can use LVM without the CLVM extensions and the logical volumes created with that node are all local to the node.
Additionally, if you are using a clustered system for failover where only a single node that accesses the storage is
active at any one time, then you can also use LVM without the CLVM extensions. When configuring logical volumes
in a cluster that will not require the CLVM extensions, you configure your system with the LVM high availability

resource agent. For information on configuring resources in a cluster, see the High Availability Add-On Reference.

If more than one node of your cluster will require access to your storage which is then shared among the active
nodes, then you must use CLVM. CLVM allows a user to configure logical volumes on shared storage by locking
access to physical storage while a logical volume is being configured, and uses clustered locking services to
manage the shared storage. When configuring logical volumes in a cluster that will require the CLVM extensions,

Chapter 1. The LVM Logical Volume Manager

you configure your system with a c1vm resource agent. For information on configuring resources in a cluster, see
the High Availability Add-On Reference.

In order to use CLVM, the High Availability Add-On and Resilient Storage Add-On software, including the clvmd
daemon, must be running. The clvmd daemon is the key clustering extension to LVM. The c¢1lvmd daemon runs in
each cluster computer and distributes LVM metadata updates in a cluster, presenting each cluster computer with the
same view of the logical volumes.

Figure 1.2, “CLVM Overview” shows a CLVM overview in a cluster.

Red Hat cluster nodes

LVM2 LVM2 LVM2 LVM2 LVM2 clvmd distributes LVM
Metadata Metadata Metadata Metadata Metadata metadata updates in a

cluster

Logical Volumes presented
Shared Storage to each cluster node

\/'<>

Logical Volumes

D

Figure 1.2. CLVM Overview

In Red Hat Enterprise Linux 7, clusters are managed through Pacemaker. Clustered LVM logical volumes are
supported only in conjunction with Pacemaker clusters, and must be configured as cluster resources. For information
on configuring LVM volumes in a cluster, see Section 3.1, “Creating LVM Volumes in a Cluster”.

1.4. Document Overview
This remainder of this document includes the following chapters:

Chapter 2, LVM Components describes the components that make up an LVM logical volume.

Chapter 3, LVM Administration Overview provides an overview of the basic steps you perform to configure LVM
logical volumes.

Chapter 4, LVM Administration with CLI Commands summarizes the individual administrative tasks you can
perform with the LVM CLI commands to create and maintain logical volumes.

Chapter 5, LVM Configuration Examples provides a variety of LVM configuration examples.

Chapter 6, LVM Troubleshooting provides instructions for troubleshooting a variety of LVM issues.

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

Appendix A, The Device Mapper describes the Device Mapper that LVM uses to map logical and physical volumes.

Appendix B, The LVM Configuration Files describes the LVM configuration files.

Appendix C, LVM Object Tags describes LVM object tags and host tags.

Appendix D, LVM Volume Group Metadata describes LVM volume group metadata, and includes a sample copy of
metadata for an LVM volume group.

Chapter 2. LVM Components

Chapter 2. LVM Components

This chapter describes the components of an LVM Logical volume.

2.1. Physical Volumes

The underlying physical storage unit of an LVM logical volume is a block device such as a partition or whole disk. To
use the device for an LVM logical volume the device must be initialized as a physical volume (PV). Initializing a block
device as a physical volume places a label near the start of the device.

By default, the LVM label is placed in the second 512-byte sector. You can overwrite this default by placing the label on
any of the first 4 sectors. This allows LVM volumes to co-exist with other users of these sectors, if necessary.

An LVM label provides correct identification and device ordering for a physical device, since devices can come up in
any order when the system is booted. An LVM label remains persistent across reboots and throughout a cluster.

The LVM label identifies the device as an LVM physical volume. It contains a random unique identifier (the UUID) for
the physical volume. It also stores the size of the block device in bytes, and it records where the LVM metadata will be
stored on the device.

The LVM metadata contains the configuration details of the LVM volume groups on your system. By default, an
identical copy of the metadata is maintained in every metadata area in every physical volume within the volume group.
LVM metadata is small and stored as ASCII.

Currently LVM allows you to store 0, 1 or 2 identical copies of its metadata on each physical volume. The default is 1
copy. Once you configure the number of metadata copies on the physical volume, you cannot change that number at a
later time. T he first copy is stored at the start of the device, shortly after the label. If there is a second copy, it is placed
at the end of the device. If you accidentally overwrite the area at the beginning of your disk by writing to a different disk
than you intend, a second copy of the metadata at the end of the device will allow you to recover the metadata.

For detailed information about the LVM metadata and changing the metadata parameters, see Appendix D, LVM
Volume Group Metadata.

2.1.1. LVM Physical Volume Layout

Figure 2.1, “Physical Volume layout” shows the layout of an LVM physical volume. The LVM label is on the second
sector, followed by the metadata area, followed by the usable space on the device.

_

In the Linux kernel (and throughout this document), sectors are considered to be 512 bytes in size.

»

<~ LVM Label (Second sector)
= Metadata

w <~ Usable Space

Figure 2.1. Physical Volume layout

2.1.2. Multiple Partitions on a Disk

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

LVM allows you to create physical volumes out of disk partitions. It is generally recommended that you create a single
partition that covers the whole disk to label as an LVM physical volume for the following reasons:

Administrative convenience

It is easier to keep track of the hardware in a system if each real disk only appears once. This becomes
particularly true if a disk fails. In addition, multiple physical volumes on a single disk may cause a kernel warning
about unknown partition types at boot-up.

Striping performance

LVM cannot tell that two physical volumes are on the same physical disk. If you create a striped logical volume
when two physical volumes are on the same physical disk, the stripes could be on different partitions on the same
disk. This would result in a decrease in performance rather than an increase.

Although it is not recommended, there may be specific circumstances when you will need to divide a disk into separate
LVM physical volumes. For example, on a system with few disks it may be necessary to move data around partitions
when you are migrating an existing system to LVM volumes. Additionally, if you have a very large disk and want to
have more than one volume group for administrative purposes then it is necessary to partition the disk. If you do have
a disk with more than one partition and both of those partitions are in the same volume group, take care to specify
which partitions are to be included in a logical volume when creating striped volumes.

2.2. Volume Groups

Physical volumes are combined into volume groups (VGs). This creates a pool of disk space out of which logical
volumes can be allocated.

Within a volume group, the disk space available for allocation is divided into units of a fixed-size called extents. An
extent is the smallest unit of space that can be allocated. Within a physical volume, extents are referred to as physical
extents.

A logical volume is allocated into logical extents of the same size as the physical extents. The extent size is thus the
same for all logical volumes in the volume group. The volume group maps the logical extents to physical extents.

2.3. LVM Logical Volumes

In LVM, a volume group is divided up into logical volumes. There are three types of LVM logical volumes: linear
volumes, striped volumes, and mirrored volumes. These are described in the following sections.

2.3.1. Linear Volumes

A linear volume aggregates space from one or more physical volumes into one logical volume. For example, if you
have two 60GB disks, you can create a 120GB logical volume. The physical storage is concatenated.

Creating a linear volume assigns a range of physical extents to an area of a logical volume in order. For example, as
shown in Figure 2.2, “Extent Mapping” logical extents 1 to 99 could map to one physical volume and logical extents
100 to 198 could map to a second physical volume. From the point of view of the application, there is one device that
is 198 extents in size.

Chapter 2. LVM Components

Application

Legical Velume
198 logical extents

Valume Group
maps logical extents to
physical extents

Physical Volume Physical Volume
99 physical extents 99 physical extents

Figure 2.2. Extent Mapping

The physical volumes that make up a logical volume do not have to be the same size. Figure 2.3, “Linear Volume with
Unequal Physical Volumes” shows volume group V61 with a physical extent size of 4MB. This volume group includes
2 physical volumes named PV1 and PV2. The physical volumes are divided into 4MB units, since that is the extent
size. In this example, PV1 is 200 extents in size (800MB) and PV2 is 100 extents in size (400MB). You can create a
linear volume any size between 1 and 300 extents (4MB to 1200MB). In this example, the linear volume named LV1 is
300 extents in size.

Lv1
300 extents
(1200 MB)

f N
PV PV2
200 extents 100 extents
(BOO MEB) (400 ME)

Figure 2.3. Linear Volume with Unequal Physical Volumes

You can configure more than one linear logical volume of whatever size you require from the pool of physical extents.
Figure 2.4, “Multiple Logical Volumes” shows the same volume group as in Figure 2.3, “Linear Volume with Unequal
Physical Volumes”, but in this case two logical volumes have been carved out of the volume group: LV1, which is 250
extents in size (1000MB) and LV2 which is 50 extents in size (200MB).

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

(R

Lva2
250 extents
(1000 MB) r :523 ::'t:}nts

VG1

f

C N

PV1

200 extents rovﬂ?

(BOO MB)] extents
: {400 ME)

Figure 2.4. Multiple Logical Volumes

2.3.2. Striped Logical Volumes

When you write data to an LVM logical volume, the file system lays the data out across the underlying physical
volumes. You can control the way the data is written to the physical volumes by creating a striped logical volume. For
large sequential reads and writes, this can improve the efficiency of the data I/O.

Striping enhances performance by writing data to a predetermined number of physical volumes in round-robin fashion.
With striping, /O can be done in parallel. In some situations, this can result in near-linear performance gain for each
additional physical volume in the stripe.

The following illustration shows data being striped across three physical volumes. In this figure:
the first stripe of data is written to PV1
the second stripe of data is written to PV2
the third stripe of data is written to PV3
the fourth stripe of data is written to PV1

In a striped logical volume, the size of the stripe cannot exceed the size of an extent.

>

Logical
Volume

Volume
Group

D D

Physical Physical Physical
Volume Volume Volume

10

Chapter 2. LVM Components

Figure 2.5. Striping Data Across Three PVs

Striped logical volumes can be extended by concatenating another set of devices onto the end of the first set. In order
to extend a striped logical volume, however, there must be enough free space on the underlying physical volumes that
make up the volume group to support the stripe. For example, if you have a two-way stripe that uses up an entire
volume group, adding a single physical volume to the volume group will not enable you to extend the stripe. Instead,
you must add at least two physical volumes to the volume group. For more information on extending a striped volume,
see Section 4 .4.15.1, “Extending a Striped Volume”.

2.3.3. RAID Logical Volumes

LVM supports RAID1/4/5/6/10. An LVM RAID volume has the following characteristics:
RAID logical volumes created and managed via LVM leverage the MD kernel drivers.
RAID1 images can be temporarily split from the array and merged back into the array later.
LVM RAID volumes support snapshots.

For information on creating RAID logical volumes, see Section 4.4.3, “RAID Logical Volumes”.

_

RAID logical volumes are not cluster-aware. While RAID logical volumes can be created and activated
exclusively on one machine, they cannot be activated simultaneously on more than one machine. If you require
non-exclusive mirrored volumes, you must create the volumes with a mirror segment type, as described in
Section 4.4 .4, “Creating Mirrored Volumes”.

2.3.4. Thinly-Provisioned Logical Volumes (Thin Volumes)

Logical volumes can be thinly provisioned. This allows you to create logical volumes that are larger than the available
extents. Using thin provisioning, you can manage a storage pool of free space, known as a thin pool, which can be
allocated to an arbitrary number of devices when needed by applications. You can then create devices that can be
bound to the thin pool for later allocation when an application actually writes to the logical volume. T he thin pool can be
expanded dynamically when needed for cost-effective allocation of storage space.

_

Thin volumes are not supported across the nodes in a cluster. The thin pool and all its thin volumes must be
exclusively activated on only one cluster node.

By using thin provisioning, a storage administrator can over-commit the physical storage, often avoiding the need to
purchase additional storage. For example, if ten users each request a 100GB file system for their application, the
storage administrator can create what appears to be a 100GB file system for each user but which is backed by less
actual storage that is used only when needed. When using thin provisioning, it is important that the storage
administrator monitor the storage pool and add more capacity if it starts to become full.

To make sure that all available space can be used, LVM supports data discard. This allows for re-use of the space
that was formerly used by a discarded file or other block range.

For information on creating thin volumes, refer to Section 4.4.5, “Creating T hinly-Provisioned Logical Volumes”.

Thin volumes provide support for a new implementation of copy-on-write (COW) snapshot logical volumes, which allow
many virtual devices to share the same data in the thin pool. For information on thin snapsnot volumes, refer to
Section 2.3.6, “T hinly-Provisioned Snapshot Volumes”.

2.3.5. Snapshot Volumes

11

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

The LVM snapshot feature provides the ability to create virtual images of a device at a particular instant without
causing a service interruption. When a change is made to the original device (the origin) after a snapshot is taken, the
snapshot feature makes a copy of the changed data area as it was prior to the change so that it can reconstruct the
state of the device.

LVM supports thinly-provisioned snapshots. For information on thinly provisioned snapshot volumes, refer to
Section 2.3.6, “T hinly-Provisioned Snapshot Volumes”.

LVM snapshots are not supported across the nodes in a cluster. You cannot create a snapshot volume in a
clustered volume group.

Because a snapshot copies only the data areas that change after the snapshot is created, the snapshot feature
requires a minimal amount of storage. For example, with a rarely updated origin, 3-5 % of the origin's capacity is
sufficient to maintain the snapshot.

Snapshot copies of a file system are virtual copies, not actual media backup for a file system. Snapshots do not
provide a substitute for a backup procedure.

The size of the snapshot governs the amount of space set aside for storing the changes to the origin volume. For
example, if you made a snapshot and then completely overwrote the origin the snapshot would have to be at least as
big as the origin volume to hold the changes. You need to dimension a snapshot according to the expected level of
change. So for example a short-lived snapshot of a read-mostly volume, such as /usr, would need less space than a
long-lived snapshot of a volume that sees a greater number of writes, such as /home.

If a snapshot runs full, the snapshot becomes invalid, since it can no longer track changes on the origin volume. You
should regularly monitor the size of the snapshot. Snapshots are fully resizeable, however, so if you have the storage
capacity you can increase the size of the snapshot volume to prevent it from getting dropped. Conversely, if you find
that the snapshot volume is larger than you need, you can reduce the size of the volume to free up space that is
needed by other logical volumes.

When you create a snapshot file system, full read and write access to the origin stays possible. If a chunk on a
snapshot is changed, that chunk is marked and never gets copied from the original volume.

There are several uses for the snapshot feature:

Most typically, a snapshot is taken when you need to perform a backup on a logical volume without halting the live
system that is continuously updating the data.

You can execute the fsck command on a snapshot file system to check the file system integrity and determine
whether the original file system requires file system repair.

Because the snapshot is read/write, you can test applications against production data by taking a snapshot and
running tests against the snapshot, leaving the real data untouched.

You can create LVM volumes for use with Red Hat virtualization. LVM snapshots can be used to create snapshots
of virtual guest images. These snapshots can provide a convenient way to modify existing guests or create new
guests with minimal additional storage. For information on creating LVM-based storage pools with Red Hat
Virtualization, see the Virtualization Administration Guide.

For information on creating snapshot volumes, see Section 4 4.6, “Creating Snapshot Volumes”.

=
N

Chapter 2. LVM Components

You can use the --merge option of the 1vconvert command to merge a snapshot into its origin volume. One use

for this feature is to perform system rollback if you have lost data or files or otherwise need to restore your system to
a previous state. After you merge the snapshot volume, the resulting logical volume will have the origin volume's name,

“Merging Snapshot Volumes”.

2.3.6. Thinly-Provisioned Snapshot Volumes

Red Hat Enterprise Linux provides support for thinly-provisioned snapshot volumes. Thin snapshot volumes allow
many virtual devices to be stored on the same data volume. This simplifies administration and allows for the sharing of
data between snapshot volumes.

As for all LVM snapshot volumes, as well as all thin volumes, thin snapshot volumes are not supported across the
nodes in a cluster. The snapshot volume must be exclusively activated on only one cluster node.

Thin snapshot volumes provide the following benefits:
A thin snapshot volume can reduce disk usage when there are multiple snapshots of the same origin volume.

If there are multiple snapshots of the same origin, then a write to the origin will cause one COW operation to
preserve the data. Increasing the number of snapshots of the origin should yield no major slowdown.

Thin snapshot volumes can be used as a logical volume origin for another snapshot. This allows for an arbitrary
depth of recursive snapshots (snapshots of snapshots of snapshots...).

A snapshot of a thin logical volume also creates a thin logical volume. T his consumes no data space until a COW
operation is required, or until the snapshot itself is written.

A thin snapshot volume does not need to be activated with its origin, so a user may have only the origin active
while there are many inactive snapshot volumes of the origin.

When you delete the origin of a thinly-provisioned snapshot volume, each snapshot of that origin volume becomes
an independent thinly-provisioned volume. This means that instead of merging a snapshot with its origin volume,
you may choose to delete the origin volume and then create a new thinly-provisioned snapshot using that
independent volume as the origin volume for the new snapshot.

Although there are many advantages to using thin snapshot volumes, there are some use cases for which the older
LVM snapshot volume feature may be more appropriate to your needs:

You cannot change the chunk size of a thin pool. If the thin pool has a large chunk size (for example, 1MB) and you
require a short-living snapshot for which a chunk size that large is not efficient, you may elect to use the older
snapshot feature.

You cannot limit the size of a thin snapshot volume; the snapshot will use all of the space in the thin pool, if
necessary. This may not be appropriate for your needs.

In general, you should consider the specific requirements of your site when deciding which snapshot format to use.

For information on configuring thin snapshot volumes, refer to Section 4.4.7, “Creating T hinly-Provisioned Snapshot
Volumes”.

13

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

Chapter 3. LVM Administration Overview

This chapter provides an overview of the administrative procedures you use to configure LVM logical volumes. This
chapter is intended to provide a general understanding of the steps involved. For specific step-by-step examples of
common LVM configuration procedures, see Chapter 5, LVM Configuration Examples.

For descriptions of the CLI commands you can use to perform LVM administration, see Chapter 4, LVVM Administration
with CLI Commands.

3.1. Creating LVM Volumes in a Cluster

To create logical volumes in a cluster environment, you use the Clustered Logical Volume Manager (CLVM), which is a
set of clustering extensions to LVM. These extensions allow a cluster of computers to manage shared storage (for
example, on a SAN) using LVM.

In Red Hat Enterprise Linux 7, clusters are managed through Pacemaker. Clustered LVM logical volumes are
supported only in conjunction with Pacemaker clusters, and must be configured as cluster resources.

The following procedure provides an overview of the steps required to configure clustered LVM volumes as cluster
resources.

1. Install the cluster software and LVM packages, start the cluster software, and create the cluster. You must
configure fencing for the cluster. The document High Availability Add-On Administration provides a sample
procedure for creating a cluster and configuring fencing for the nodes in the cluster. The document High
Availability Add-On Reference provides more detailed information about the components of cluster configuration.

2. CLVM requires each node's /etc/1vm.conf file to have cluster locking enabled. You can use the lvmconf -
-enable-cluster command to enable cluster locking. Executing this command changes the locking type and
disables the 1vmetad daemon. For information on the 1vmetad daemon, see Section 3.6, “The Metadata
Daemon (lvmetad)”.

Information on configuring the 1vm .conf file manually to support clustered locking is provided within the
1vm.conf file itself. For information about the 1vm .conf file, see Appendix B, The LVVM Configuration Files.

3. Setup a d1lm resource for the cluster. You create the resource as a cloned resource so that it will run on every
node in the cluster.

pcs resource create dlm ocf:pacemaker:controld op monitor interval=30s on-
fail=fence clone interleave=true ordered=true

4. Configure clvmd as a cluster resource. Just as for the d1m resource, you create the resource as a cloned
resource so that it will run on every node in the cluster.

pcs resource create clvmd ocf:heartbeat:clvm op monitor interval=30s on-
fail=fence clone interleave=true ordered=true

5. Setup clvmd and d1m dependency and start up order. clvmd must start after d1m and must run on the same
node as d1m.

pcs constraint order start dlm-clone then clvmd-clone
pcs constraint colocation add clvmd-clone with dlm-clone

6. Create the clustered logical volume. Creating LVM logical volumes in a cluster environment is identical to
creating LVM logical volumes on a single node. There is no difference in the LVM commands themselves. In
order to enable the LVM volumes you are creating in a cluster, the cluster infrastructure must be running and
the cluster must be quorate.

14

Chapter 3. LVM Administration Overview

By default, logical volumes created with CLVM on shared storage are visible to all systems that have access to the
shared storage. It is possible to create volume groups in which all of the storage devices are visible to only one node
in the cluster. It is also possible to change the status of a volume group from a local volume group to a clustered
volume group. For information, see Section 4.3.3, “Creating Volume Groups in a Cluster” and Section 4.3.8, “Changing
the Parameters of a Volume Group”

A Warning

When you create volume groups with CLVM on shared storage, you must ensure that all nodes in the cluster
have access to the physical volumes that constitute the volume group. Asymmetric cluster configurations in
which some nodes have access to the storage and others do not are not supported.

For an example of creating a mirrored logical volume in a cluster, see Section 5.5, “Creating a Mirrored LVM Logical
Volume in a Cluster”.

3.2. Logical Volume Creation Overview

The following is a summary of the steps to perform to create an LVM logical volume.
1. Initialize the partitions you will use for the LVM volume as physical volumes (this labels them).
2. Create a volume group.
3. Create a logical volume.

After creating the logical volume you can create and mount the file system. The examples in this document use GFS2
file systems.

_

Although a GFS2 file system can be implemented in a standalone system or as part of a cluster configuration,
for the Red Hat Enterprise Linux 7 release Red Hat does not support the use of GFS2 as a single-node file
system. Red Hat will continue to support single-node GFS2 file systems for mounting snapshots of cluster file
systems (for example, for backup purposes).

1. Create a GFS2 file system on the logical volume with the mkfs.gfs2 command.

2. Create a new mount point with the mkdir command. In a clustered system, create the mount point on all nodes
in the cluster.

3. Mount the file system. You may want to add a line to the fstab file for each node in the system.
Alternately, you can create and mount the GFS2 file system with the LVM GUI.

Creating the LVM volume is machine independent, since the storage area for LVM setup information is on the physical
volumes and not the machine where the volume was created. Servers that use the storage have local copies, but can
recreate that from what is on the physical volumes. You can attach physical volumes to a different server if the LVM
versions are compatible.

3.3. Growing a File System on a Logical Volume
To grow a file system on a logical volume, perform the following steps:

1. Make a new physical volume.

2. Extend the volume group that contains the logical volume with the file system you are growing to include the new
physical volume.

15

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

3. Extend the logical volume to include the new physical volume.
4. Grow the file system.

If you have sufficient unallocated space in the volume group, you can use that space to extend the logical volume
instead of performing steps 1 and 2.

3.4. Logical Volume Backup

Metadata backups and archives are automatically created on every volume group and logical volume configuration
change unless disabled in the 1vm .conf file. By default, the metadata backup is stored in the /etc/1lvm/backup
file and the metadata archives are stored in the /etc/1lvm/archive file. How long the metadata archives stored in
the /etc/1lvm/archive file are kept and how many archive files are kept is determined by parameters you can set
in the 1vm .conf file. A daily system backup should include the contents of the /etc/1vm directory in the backup.

Note that a metadata backup does not back up the user and system data contained in the logical volumes.

You can manually back up the metadata to the /etc/1vm/backup file with the vgcfgbackup command. You can
restore metadata with the vgcfgrestore command. The vgcfgbackup and vgcfgrestore commands are
described in Section 4.3.13, “Backing Up Volume Group Metadata”.

3.5. Logging

All message output passes through a logging module with independent choices of logging levels for:
standard output/error
syslog

log file

external log function

3.6. The Metadata Daemon (lvmetad)

LVM can optionally use a central metadata cache, implemented through a daemon (Lvmetad) and a udev rule. The
metadata daemon has two main purposes: It improves performance of LVM commands and it allows udev to
automatically activate logical volumes or entire volume groups as they become available to the system.

LVM is configured to make use of the daemon when the global/use_lvmetad variable is setto 1 in the 1lvm.conf

The LVM Configuration Files.

_

The 1vmetad daemon is not currently supported across the nodes of a cluster, and requires that the locking
type be local file-based locking. When you use the 1lvmconf --enable-cluster/--disable-cluster
command, the 1vm .conf file is configured appropriately, including the use_lvmetad setting (which should be
0 for locking_type=3).

If you change the value of use_lvmetad from 1 to O, you must reboot or stop the lvmetad service manually with the
following command.

systemctl stop lvm2-lvmetad.service

16

Chapter 3. LVM Administration Overview

Normally, each LVM command issues a disk scan to find all relevant physical volumes and to read volume group
metadata. However, if the metadata daemon is running and enabled, this expensive scan can be skipped. Instead, the
lvmetad daemon scans each device only once, when it becomes available, via udev rules. This can save a

significant amount of /O and reduce the time required to complete LVM operations, particularly on systems with many
disks,

When a new volume group is made available at runtime (for example, through hotplug or iSCSI), its logical volumes
must be activated in order to be used. When the 1vmetad daemon is enabled, the
activation/auto_activation_volume_1list option in the 1vm.conf configuration file can be used to
configure a list of volume groups and/or logical volumes that should be automatically activated. Without the 1vmetad
daemon, a manual activation is necessary.

17

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

Chapter 4. LVM Administration with CLI Commands

This chapter summarizes the individual administrative tasks you can perform with the LVM Command Line Interface
(CLI) commands to create and maintain logical volumes.

_

If you are creating or modifying an LVM volume for a clustered environment, you must ensure that you are
running the clvmd daemon. For information, see Section 3.1, “Creating LVM Volumes in a Cluster”.

4.1. Using CLI Commands

There are several general features of all LVM CLI commands.

When sizes are required in a command line argument, units can always be specified explicitly. If you do not specify a
unit, then a default is assumed, usually KB or MB. LVM CLI commands do not accept fractions.

When specifying units in a command line argument, LVM is case-insensitive; specifying M or m is equivalent, for
example, and powers of 2 (multiples of 1024) are used. However, when specifying the --units argumentin a
command, lower-case indicates that units are in multiples of 1024 while upper-case indicates that units are in
multiples of 1000.

Where commands take volume group or logical volume names as arguments, the full path name is optional. A logical
volume called 1vo1l0 in a volume group called vg0 can be specified as vg0/1vol0. Where a list of volume groups is
required but is left empty, a list of all volume groups will be substituted. Where a list of logical volumes is required but
a volume group is given, a list of all the logical volumes in that volume group will be substituted. For example, the
lvdisplay vg0 command will display all the logical volumes in volume group vgo.

All LVM commands accept a -v argument, which can be entered multiple times to increase the output verbosity. For
example, the following examples shows the default output of the 1vcreate command.

lvcreate -L 50MB new_vg
Rounding up size to full physical extent 52.00 MB
Logical volume "lvol@" created

The following command shows the output of the 1vcreate command with the -v argument.

lvcreate -v -L 50MB new_vg
Finding volume group "new_vg"
Rounding up size to full physical extent 52.00 MB
Archiving volume group "new_vg" metadata (seqno 4).
Creating logical volume 1lvol@
Creating volume group backup "/etc/lvm/backup/new_vg" (seqno 5).
Found volume group "new_vg"
Creating new_vg-1lvol0e
Loading new_vg-1lvol@ table
Resuming new_vg-1lvol0 (253:2)
Clearing start of logical volume "lvol@"
Creating volume group backup "/etc/lvm/backup/new_vg" (segno 5).
Logical volume "lvol@" created

You could also have used the -vv, -vvv or the -vvvv argument to display increasingly more details about the
command execution. The -vvvv argument provides the maximum amount of information at this time. The following
example shows only the first few lines of output for the lvcreate command with the -vvvv argument specified.

lvcreate -vvvv -L 50MB new_vg

#lvmcmdline.c:913 Processing: lvcreate -vvvv -L 50MB new_vg
#lvmcmdline.c:916 O_DIRECT will be used
#config/config.c:864 Setting global/locking_type to 1

18

Chapter 4. LVM Administration with CLI Commands

#locking/locking.c:138 File-based locking selected.
#config/config.c:841 Setting global/locking_dir to /var/lock/lvm
#activate/activate.c:358 Getting target version for linear
#ioctl/libdm-iface.c:1569 dm version OF [16384]
#ioctl/libdm-iface.c:1569 dm versions OF [16384]
#activate/activate.c:358 Getting target version for striped
#ioctl/libdm-iface.c:1569 dm versions OF [16384]
#config/config.c:864 Setting activation/mirror_region_size to 512

You can display help for any of the LVM CLI commands with the --help argument of the command.

commandname --help

To display the man page for a command, execute the man command:

man commandname

The man 1lvm command provides general online information about LVM.

All LVM objects are referenced internally by a UUID, which is assigned when you create the object. This can be useful
in a situation where you remove a physical volume called /dev/sdf which is part of a volume group and, when you
plug it back in, you find that it is now /dev/sdk. LVM will still find the physical volume because it identifies the physical
volume by its UUID and not its device name. For information on specifying the UUID of a physical volume when
creating a physical volume, see Section 6.4, “Recovering Physical Volume Metadata”.

4.2. Physical Volume Administration

This section describes the commands that perform the various aspects of physical volume administration.

4.2.1. Creating Physical Volumes

The following subsections describe the commands used for creating physical volumes.

4.2.1.1. Setting the Partition Type

If you are using a whole disk device for your physical volume, the disk must have no partition table. For DOS disk
partitions, the partition id should be set to 0x8e using the fdisk or cfdisk command or an equivalent. For whole

disk devices only the partition table must be erased, which will effectively destroy all data on that disk. You can remove
an existing partition table by zeroing the first sector with the following command:

dd if=/dev/zero of=PhysicalVolume bs=512 count=1

4.2.1.2. Initializing Physical Volumes

Use the pvcreate command to initialize a block device to be used as a physical volume. Initialization is analogous to
formatting a file system.

The following command initializes /dev/sdd, /dev/sde, and /dev/sdf as LVM physical volumes for later use as
part of LVM logical volumes.

pvcreate /dev/sdd /dev/sde /dev/sdf

To initialize partitions rather than whole disks: run the pvcreate command on the partition. T he following example
initializes the partition /dev/hdb1 as an LVM physical volume for later use as part of an LVM logical volume.

pvcreate /dev/hdb1l
4.2.1.3. Scanning for Block Devices

19

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

You can scan for block devices that may be used as physical volumes with the 1vmdiskscanh command, as shown in

the following example.

lvmdiskscan

/dev/ramo [16.00 MB]

/dev/sda [17.15 GB]

/dev/root [13.69 GB]

/dev/ram [16.00 MB]

/dev/sdal [17.14 GB] LVM physical volume
/dev/VolGroup00/LogVolel [512.00 MB]

/dev/ram2 [16.00 MB]

/dev/new_vg/1volo [52.00 MB]

/dev/ram3 [16.00 MB]
/dev/pkl_new_vg/sparkie_lv [7.14 GB]

/dev/ram4 [16.00 MB]

/dev/ram5 [16.00 MB]

/dev/ramé [16.00 MB]

/dev/ram7 [16.00 MB]

/dev/ram8 [16.00 MB]

/dev/ram9 [16.00 MB]

/dev/raml10 [16.00 MB]

/dev/ramil [16.00 MB]

/dev/rami2 [16.00 MB]

/dev/ram13 [16.00 MB]

/dev/raml4 [16.00 MB]

/dev/ramil5 [16.00 MB]

/dev/sdb [17.15 GB]

/dev/sdb1 [17.14 GB] LVM physical volume
/dev/sdc [17.15 GB]

/dev/sdcl [17.14 GB] LVM physical volume
/dev/sdd [17.15 GB]

/dev/sdd1 [17.14 GB] LVM physical volume
7 disks

17 partitions

0 LVM physical volume whole disks

4 LVM physical volumes

4.2.2. Displaying Physical Volumes

There are three commands you can use to display properties of LVM physical volumes: pvs, pvdisplay, and

pvscan.

The pvs command provides physical volume information in a configurable form, displaying one line per physical

volume. The pvs command provides a great deal of format control, and is useful for scripting. For information on using

the pvs command to customize your output, see Section 4.8, “Customized Reporting for LVM”.

The pvdisplay command provides a verbose multi-line output for each physical volume. It displays physical
properties (size, extents, volume group, etc.) in a fixed format.

The following example shows the output of the pvdisplay command for a single physical volume.

pvdisplay

--- Physical volume ---

PV Name

VG Name

PV Size
Allocatable

PE Size (KByte)
Total PE

Free PE
Allocated PE
PV UUID

/dev/sdc1
new_vg

17.14 GB / not usable 3.40 MB

yes
4096
4388
4375
13

Joglch-yWSj-KkuEn-IdwM-01S9-X08M-mcpsVe

The pvscan command scans all supported LVM block devices in the system for physical volumes.

20

Chapter 4. LVM Administration with CLI Commands

The following command shows all physical devices found:

pvscan

PV /dev/sdb2 VG vgo lvm2 [964.00 MB / © free]

PV /dev/sdc1l VG vgo lvm2 [964.00 MB / 428.00 MB free]

PV /dev/sdc2 1vm2 [964.84 MB]

Total: 3 [2.83 GB] / in use: 2 [1.88 GB] / in no VG: 1 [964.84 MB]

You can define a filter in the 1vm.conf so that this command will avoid scanning specific physical volumes. For

information on using filters to control which devices are scanned, refer to Section 4.5, “Controlling LVM Device Scans
with Filters”.

4.2.3. Preventing Allocation on a Physical Volume

You can prevent allocation of physical extents on the free space of one or more physical volumes with the pvchange
command. This may be necessary if there are disk errors, or if you will be removing the physical volume.

The following command disallows the allocation of physical extents on /dev/sdk1.

pvchange -x n /dev/sdk1

You can also use the -xy arguments of the pvchange command to allow allocation where it had previously been
disallowed.

4.2.4. Resizing a Physical Volume

If you need to change the size of an underlying block device for any reason, use the pvresize command to update
LVM with the new size. You can execute this command while LVM is using the physical volume.

4.2.5. Removing Physical Volumes

If a device is no longer required for use by LVM, you can remove the LVM label with the pvremove command.
Executing the pvremove command zeroes the LVM metadata on an empty physical volume.

If the physical volume you want to remove is currently part of a volume group, you must remove it from the volume
group with the vgreduce command, as described in Section 4.3.7, “Removing Physical Volumes from a Volume

”

pvremove /dev/rami5
Labels on physical volume "/dev/raml5" successfully wiped

4.3. Volume Group Administration

This section describes the commands that perform the various aspects of volume group administration.

4.3.1. Creating Volume Groups

To create a volume group from one or more physical volumes, use the vgcreate command. The vgcreate
command creates a new volume group by name and adds at least one physical volume to it.

The following command creates a volume group named vg1 that contains physical volumes /dev/sdd1 and
/dev/sdel.

vgcreate vgl /dev/sddl /dev/sdel

When physical volumes are used to create a volume group, its disk space is divided into 4MB extents, by default. T his
extent is the minimum amount by which the logical volume may be increased or decreased in size. Large numbers of
extents will have no impact on /O performance of the logical volume.

21

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

You can specify the extent size with the -s option to the vgcreate command if the default extent size is not suitable.
You can put limits on the number of physical or logical volumes the volume group can have by using the -p and -1
arguments of the vgcreate command.

By default, a volume group allocates physical extents according to common-sense rules such as not placing parallel
stripes on the same physical volume. This is the normal allocation policy. You can use the --alloc argument of the
vgcreate command to specify an allocation policy of contiguous, anywhere, or cling. In general, allocation
policies other than normal are required only in special cases where you need to specify unusual or nonstandard
extent allocation. For further information on how LVM allocates physical extents, refer to Section 4.3.2, “LVM Allocation”.

LVM volume groups and underlying logical volumes are included in the device special file directory tree in the /dev
directory with the following layout:

/dev/vg/1v/

For example, if you create two volume groups myvgl and myvg2, each with three logical volumes named 1vo1, 1vo2,
and 1lvo3, this create six device special files:

/dev/myvgl/1vel
/dev/myvgl/1v0e2
/dev/myvgl/1v0e3
/dev/myvg2/1ve1l
/dev/myvg2/1ve2
/dev/myvg2/1ve3

The maximum device size with LVM is 8 Exabytes on 64-bit CPUs.

4.3.2. LVM Allocation

When an LVM operation needs to allocate physical extents for one or more logical volumes, the allocation proceeds as
follows:

The complete set of unallocated physical extents in the volume group is generated for consideration. If you supply
any ranges of physical extents at the end of the command line, only unallocated physical extents within those
ranges on the specified physical volumes are considered.

Each allocation policy is tried in turn, starting with the strictest policy (contiguous) and ending with the allocation
policy specified using the --alloc option or set as the default for the particular logical volume or volume group.
For each policy, working from the lowest-numbered logical extent of the empty logical volume space that needs to
be filled, as much space as possible is allocated, according to the restrictions imposed by the allocation policy. If
more space is needed, LVM moves on to the next policy.

The allocation policy restrictions are as follows:

An allocation policy of contiguous requires that the physical location of any logical extent that is not the first
logical extent of a logical volume is adjacent to the physical location of the logical extent immediately preceding it.

When a logical volume is striped or mirrored, the contiguous allocation restriction is applied independently to
each stripe or mirror image (leg) that needs space.

An allocation policy of c1ing requires that the physical volume used for any logical extent to be added to an
existing logical volume is already in use by at least one logical extent earlier in that logical volume. If the
configuration parameter allocation/cling_tag_list is defined, then two physical volumes are considered to
match if any of the listed tags is present on both physical volumes. This allows groups of physical volumes with
similar properties (such as their physical location) to be tagged and treated as equivalent for allocation purposes.
For more information on using the cling policy in conjunction with LVM tags to specify which additional physical
volumes to use when extending an LVM volume, see Section 4.4.15.3, “Extending a Logical Volume with the cling
Allocation Policy”.

When a Logical Volume is striped or mirrored, the c1ing allocation restriction is applied independently to each
stripe or mirror image (leg) that needs space.

22

Chapter 4. LVM Administration with CLI Commands

An allocation policy of normal will not choose a physical extent that shares the same physical volume as a logical
extent already allocated to a parallel logical volume (that is, a different stripe or mirror image/leg) at the same offset
within that parallel logical volume.

When allocating a mirror log at the same time as logical volumes to hold the mirror data, an allocation policy of
normal will first try to select different physical volumes for the log and the data. If that is not possible and the
allocation/mirror_logs_require_separate_pvs configuration parameter is setto 0, it will then allow the
log to share physical volume(s) with part of the data.

Similarly, when allocating thin pool metadata, an allocation policy of normal will follow the same considerations as

for allocation of a mirror log, based on the value of the
allocation/thin_pool_metadata_require_separate_pvs configuration parameter.

If there are sufficient free extents to satisfy an allocation request but a normal allocation policy would not use
them, the anywhere allocation policy will, even if that reduces performance by placing two stripes on the same
physical volume.

The allocation policies can be changed using the vgchange command.

_

If you rely upon any layout behaviour beyond that documented in this section according to the defined allocation
policies, you should note that this might change in future versions of the code. For example, if you supply on the
command line two empty physical volumes that have an identical number of free physical extents available for
allocation, LVM currently considers using each of them in the order they are listed; there is no guarantee that
future releases will maintain that property. If it is important to obtain a specific layout for a particular Logical
Volume, then you should build it up through a sequence of 1vcreate and 1lvconvert steps such that the
allocation policies applied to each step leave LVM no discretion over the layout.

To view the way the allocation process currently works in any specific case, you can read the debug logging output,
for example by adding the -vvvv option to a command.

4.3.3. Creating Volume Groups in a Cluster

You create volume groups in a cluster environment with the vgcreate command, just as you create them on a single
node.

By default, volume groups created with CLVM on shared storage are visible to all computers that have access to the
shared storage. It is possible, however, to create volume groups that are local, visible only to one node in the cluster,
by using the -c¢ n option of the vgcreate command.

The following command, when executed in a cluster environment, creates a volume group that is local to the node from
which the command was executed. The command creates a local volume named vg1 that contains physical volumes
/dev/sdd1 and /dev/sdel.

vgcreate -c n vgl /dev/sddl /dev/sdel

You can change whether an existing volume group is local or clustered with the -c¢ option of the vgchange command,
which is described in Section 4.3.8, “Changing the Parameters of a Volume Group”.

You can check whether an existing volume group is a clustered volume group with the vgs command, which displays
the c attribute if the volume is clustered. The following command displays the attributes of the volume groups
VolGroup00 and testvgl. In this example, Vo1Group00 is not clustered, while testvg1 is clustered, as indicated
by the ¢ attribute under the Attr heading.

vgs
VG #PV #LV #SN Attr VSize VFree
VolGroup@oO 1 2 0 wz--n- 19.88G 0]
testvgl 1 1 0 wz--nc 46.00G 8.00M

23

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

For more information on the vgs command, see Section 4.3.5, “Displaying Volume Groups”Section 4.8, “Customized
Reporting for LVM”, and the vgs man page.

4.3.4. Adding Physical Volumes to a Volume Group

To add additional physical volumes to an existing volume group, use the vgextend command. The vgextend
command increases a volume group's capacity by adding one or more free physical volumes.

The following command adds the physical volume /dev/sdf1 to the volume group vg1.

vgextend vgl /dev/sdf1

4.3.5. Displaying Volume Groups
There are two commands you can use to display properties of LVM volume groups: vgs and vgdisplay.

The vgscan command, which scans all the disks for volume groups and rebuilds the LVM cache file, also displays the
volume groups. For information on the vgscan command, see Section 4.3.6, “Scanning Disks for Volume Groups to
Build the Cache File”.

The vgs command provides volume group information in a configurable form, displaying one line per volume group.
The vgs command provides a great deal of format control, and is useful for scripting. For information on using the vgs
command to customize your output, see Section 4.8, “Customized Reporting for LVM".

The vgdisplay command displays volume group properties (such as size, extents, number of physical volumes,
etc.) in a fixed form. T he following example shows the output of a vgdisplay command for the volume group new_vg.
If you do not specify a volume group, all existing volume groups are displayed.

vgdisplay new_vg
--- Volume group ---

VG Name new_vg

System ID

Format lvm2

Metadata Areas 3

Metadata Sequence No 11

VG Access read/write

VG Status resizable

MAX LV 0

Cur LV 1

Open LV 0

Max PV (0]

Cur PV 3

Act PV 3

VG Size 51.42 GB

PE Size 4.00 MB

Total PE 13164

Alloc PE / Size 13 / 52.00 MB
Free PE / Size 13151 / 51.37 GB
VG UUID jxQJ0a-zKko-0pMO-0118-nlw0-wwqd- fD5D32

4.3.6. Scanning Disks for Volume Groups to Build the Cache File

The vgscan command scans all supported disk devices in the system looking for LVM physical volumes and volume
groups. This builds the LVM cache in the /etc/1vm/cache/.cache file, which maintains a listing of current LVM
devices.

LVM runs the vgscan command automatically at system startup and at other times during LVM operation, such as
when you execute a vgcreate command or when LVM detects an inconsistency.

24

Chapter 4. LVM Administration with CLI Commands

_

You may need to run the vgscan command manually when you change your hardware configuration and add
or delete a device from a node, causing new devices to be visible to the system that were not present at
system bootup. This may be necessary, for example, when you add new disks to the system on a SAN or
hotplug a new disk that has been labeled as a physical volume.

You can define a filter in the 1vm .conf file to restrict the scan to avoid specific devices. For information on using
filters to control which devices are scanned, see Section 4.5, “Controlling LVM Device Scans with Filters”.

T he following example shows the output of a vgscan command.

vgscan
Reading all physical volumes. This may take a while...
Found volume group "new_vg" using metadata type lvm2
Found volume group "officevg" using metadata type lvm2

4.3.7. Removing Physical Volumes from a Volume Group

To remove unused physical volumes from a volume group, use the vgreduce command. The vgreduce command

shrinks a volume group's capacity by removing one or more empty physical volumes. This frees those physical
volumes to be used in different volume groups or to be removed from the system.

Before removing a physical volume from a volume group, you can make sure that the physical volume is not used by
any logical volumes by using the pvdisplay command.

pvdisplay /dev/hdail

-- Physical volume ---

PV Name /dev/hdal

VG Name myvg

PV Size 1.95 GB / NOT usable 4 MB [LVM: 122 KB]
PV# 1

PV Status available

Allocatable yes (but full)

Cur LV 1

PE Size (KByte) 4096

Total PE 499

Free PE (0]

Allocated PE 499

PV UUID Sd44tK-9IRw-SrMC-MOkn-76iP-iftz-0VSen7

If the physical volume is still being used you will have to migrate the data to another physical volume using the
pvmove command. Then use the vgreduce command to remove the physical volume:

The following command removes the physical volume /dev/hdal from the volume group my_volume_group.

vgreduce my_volume_group /dev/hdal

If a logical volume contains a physical volume that fails, you cannot use that logical volume. To remove missing
physical volumes from a volume group, you can use the --vgreduce parameter of the vgreduce command, if there
are no logical volumes that are allocated on the missing physical volumes.

4.3.8. Changing the Parameters of a Volume Group

The vgchange command is used to deactivate and activate volume groups, as described in Section 4.3.9, “Activating

and Deactivating Volume Groups”. You can also use this command to change several volume group parameters for an
existing volume group.

The following command changes the maximum number of logical volumes of volume group vgoo to 128.

25

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

vgchange -1 128 /dev/vgoo

For a description of the volume group parameters you can change with the vgchange command, see the
vgchange(8) man page.
4.3.9. Activating and Deactivating Volume Groups

When you create a volume group it is, by default, activated. This means that the logical volumes in that group are
accessible and subject to change.

There are various circumstances for which you need to make a volume group inactive and thus unknown to the kernel.
To deactivate or activate a volume group, use the -a (--available) argument of the vgchange command.

The following example deactivates the volume group my_volume_group.
vgchange -a n my_volume_group

If clustered locking is enabled, add 'e’ to activate or deactivate a volume group exclusively on one node or I to activate
or/deactivate a volume group only on the local node. Logical volumes with single-host snapshots are always activated
exclusively because they can only be used on one node at once.

You can deactivate individual logical volumes with the 1vchange command, as described in Section 4.4.11, “Changing
the Parameters of a Logical Volume Group”, For information on activating logical volumes on individual nodes in a
cluster, see Section 4.7, “Activating Logical Volumes on Individual Nodes in a Cluster”.

4.3.10. Removing Volume Groups

To remove a volume group that contains no logical volumes, use the vgremove command.

vgremove officevg
Volume group "officevg" successfully removed

4.3.11. Splitting a Volume Group
To split the physical volumes of a volume group and create a new volume group, use the vgsplit command.

Logical volumes cannot be split between volume groups. Each existing logical volume must be entirely on the physical
volumes forming either the old or the new volume group. If necessary, however, you can use the pvmove command to

force the split.

The following example splits off the new volume group smallvg from the original volume group bigvg.

vgsplit bigvg smallvg /dev/ramilb
Volume group "smallvg" successfully split from "bigvg"

4.3.12. Combining Volume Groups

To combine two volume groups into a single volume group, use the vgmer ge command. You can merge an inactive
"source" volume with an active or an inactive "destination” volume if the physical extent sizes of the volume are equal
and the physical and logical volume summaries of both volume groups fit into the destination volume groups limits.

The following command merges the inactive volume group my_vg into the active or inactive volume group databases
giving verbose runtime information.

vgmerge -v databases my_vg

4.3.13. Backing Up Volume Group Metadata

26

Chapter 4. LVM Administration with CLI Commands

Metadata backups and archives are automatically created on every volume group and logical volume configuration
change unless disabled in the 1vm .conf file. By default, the metadata backup is stored in the /etc/1vm/backup

file and the metadata archives are stored in the /etc/lvm/archives file. You can manually back up the metadata to
the /etc/1vm/backup file with the vgcfgbackup command.

The vgcfrestore command restores the metadata of a volume group from the archive to all the physical volumes in
the volume groups.

“Recovering Physical Volume Metadata”.

4.3.14. Renaming a Volume Group
Use the vgrename command to rename an existing volume group.

Either of the following commands renames the existing volume group vg02 to my_volume_group

vgrename /dev/vg02 /dev/my_volume_group

vgrename vg02 my_volume_group

4.3.15. Moving a Volume Group to Another System

You can move an entire LVM volume group to another system. It is recommended that you use the vgexport and
vgimport commands when you do this.

_

You can use the --force argument of the vgimport command. This allows you to import volume groups that
are missing physical and subsequently run the vgreduce --removemissing command.

The vgexport command makes an inactive volume group inaccessible to the system, which allows you to detach its
physical volumes. The vgimport command makes a volume group accessible to a machine again after the
vgexport command has made it inactive.

To move a volume group form one system to another, perform the following steps:

1. Make sure that no users are accessing files on the active volumes in the volume group, then unmount the
logical volumes.

2. Use the -a n argument of the vgchange command to mark the volume group as inactive, which prevents any
further activity on the volume group.

3. Use the vgexport command to export the volume group. This prevents it from being accessed by the system
from which you are removing it.

After you export the volume group, the physical volume will show up as being in an exported volume group when
you execute the pvscan command, as in the following example.

pvscan
PV /dev/sdal is in exported VG myvg [17.15 GB / 7.15 GB free]
PV /dev/sdc1l is in exported VG myvg [17.15 GB / 15.15 GB free]
PV /dev/sdd1 is in exported VG myvg [17.15 GB / 15.15 GB free]

When the system is next shut down, you can unplug the disks that constitute the volume group and connect
them to the new system.

27

Red Hat Enterprise Linux 7 Logical Volume Manager Administration
4. When the disks are plugged into the new system, use the vgimport command to import the volume group,
making it accessible to the new system.
5. Activate the volume group with the -a y argument of the vgchange command.

6. Mount the file system to make it available for use.

4.3.16. Recreating a Volume Group Directory

To recreate a volume group directory and logical volume special files, use the vgmknodes command. T his command
checks the LVM2 special files in the /dev directory that are needed for active logical volumes. It creates any special
files that are missing removes unused ones.

You can incorporate the vgmknodes command into the vgscan command by specifying the mknodes argument to
the vgscan command.

4.4. Logical Volume Administration

This section describes the commands that perform the various aspects of logical volume administration.

4.4.1. Creating Linear Logical Volumes

To create a logical volume, use the 1vcreate command. If you do not specify a name for the logical volume, the
default name 1vol#is used where # is the internal number of the logical volume.

When you create a logical volume, the logical volume is carved from a volume group using the free extents on the
physical volumes that make up the volume group. Normally logical volumes use up any space available on the

underlying physical volumes on a next-free basis. Modifying the logical volume frees and reallocates space in the
physical volumes.

The following command creates a logical volume 10 gigabytes in size in the volume group vg1.

lvcreate -L 106 vgl

The following command creates a 1500 MB linear logical volume named testlv in the volume group testvg, creating
the block device /dev/testvg/testlv.

lvcreate -L 1500 -n testlv testvg

The following command creates a 50 gigabyte logical volume named gfslv from the free extents in volume group
vgo.

lvcreate -L 506 -n gfslv vgo

You can use the -1 argument of the 1vcreate command to specify the size of the logical volume in extents. You can
also use this argument to specify the percentage of the volume group to use for the logical volume. T he following
command creates a logical volume called mylv that uses 60% of the total space in volume group testvg.

lvcreate -1 60%VG -n mylv testvg
You can also use the -1 argument of the 1lvcreate command to specify the percentage of the remaining free space
in a volume group as the size of the logical volume. The following command creates a logical volume called your 1lv

that uses all of the unallocated space in the volume group testvg.

lvcreate -1 100%FREE -n yourlv testvg

28

Chapter 4. LVM Administration with CLI Commands

You can use -1 argument of the 1vcreate command to create a logical volume that uses the entire volume group.
Another way to create a logical volume that uses the entire volume group is to use the vgdisplay command to find
the "Total PE" size and to use those results as input to the 1vcreate command.

The following commands create a logical volume called mylv that fills the volume group named testvg.

vgdisplay testvg | grep "Total PE"
Total PE 10230
lvcreate -1 10230 testvg -n mylv

The underlying physical volumes used to create a logical volume can be important if the physical volume needs to be
removed, so you may need to consider this possibility when you create the logical volume. For information on removing
a physical volume from a volume group, see Section 4.3.7, “Removing Physical Volumes from a Volume Group”.

To create a logical volume to be allocated from a specific physical volume in the volume group, specify the physical
volume or volumes at the end at the 1vcreate command line. T he following command creates a logical volume

named testlv in volume group testvg allocated from the physical volume /dev/sdg1,
lvcreate -L 1500 -ntestlv testvg /dev/sdgl

You can specify which extents of a physical volume are to be used for a logical volume. T he following example creates
a linear logical volume out of extents O through 24 of physical volume /dev/sdal and extents 50 through 124 of
physical volume /dev/sdb1 in volume group testvg.

lvcreate -1 100 -n testlv testvg /dev/sdal:0-24 /dev/sdb1:50-124

The following example creates a linear logical volume out of extents 0 through 25 of physical volume /dev/sdal and
then continues laying out the logical volume at extent 100.

lvcreate -1 100 -n testlv testvg /dev/sdal:0-25:100-

The default policy for how the extents of a logical volume are allocated is inherit, which applies the same policy as
for the volume group. These policies can be changed using the 1vchange command. For information on allocation
policies, see Section 4.3.1, “Creating Volume Groups”.

4.4.2. Creating Striped Volumes

For large sequential reads and writes, creating a striped logical volume can improve the efficiency of the data I/O. For
general information about striped volumes, see Section 2.3.2, “Striped Logical Volumes”.

When you create a striped logical volume, you specify the number of stripes with the -i argument of the 1vcreate

command. This determines over how many physical volumes the logical volume will be striped. The number of stripes
cannot be greater than the number of physical volumes in the volume group (unless the --alloc anywhere

argument is used).

If the underlying physical devices that make up a striped logical volume are different sizes, the maximum size of the
striped volume is determined by the smallest underlying device. For example, in a two-legged stripe, the maximum size
is twice the size of the smaller device. In a three-legged stripe, the maximum size is three times the size of the
smallest device.

The following command creates a striped logical volume across 2 physical volumes with a stripe of 64kB. The logical
volume is 50 gigabytes in size, is named gfslv, and is carved out of volume group vgo.

lvcreate -L 506 -i2 -I64 -n gfslv vgo

As with linear volumes, you can specify the extents of the physical volume that you are using for the stripe. The
following command creates a striped volume 100 extents in size that stripes across two physical volumes, is named
stripelv and is in volume group testvg. The stripe will use sectors 0-49 of /dev/sdal and sectors 50-99 of

/dev/sdb1.

29

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

lvcreate -1 100 -i2 -nstripelv testvg /dev/sdal:0-49 /dev/sdb1:50-99
Using default stripesize 64.00 KB
Logical volume "stripelv" created

4.4 3. RAID Logical Volumes

LVM supports RAID1/4/5/6/10.

_

RAID logical volumes are not cluster-aware. While RAID logical volumes can be created and activated
exclusively on one machine, they cannot be activated simultaneously on more than one machine. If you require
non-exclusive mirrored volumes, you must create the volumes with a mirror segment type, as described in

Section 4.4 .4, “Creating Mirrored Volumes”.

To create a RAID logical volume, you specify a raid type as the --type argument of the 1vcreate command.
Table 4.1, “RAID Segment Types” describes the possible RAID segment types.

Table 4.1. RAID Segment Types

‘ Segment type Description
raid1i RAID1 mirroring. T his is the default value for the --type argument of the
lvcreate command when you specify the -m but you do not specify striping.
raid4 RAID4 dedicated parity disk
raids Same as raid5_1s
raid5_la

RAID5 left asymmetric.

Rotating parity O with data continuation

raids_ra RAID5 right asymmetric.

Rotating parity N with data continuation
PSS RAID5S left symmetric.

Rotating parity O with data restart
raidS_rs RAID5 right symmetric.

Rotating parity N with data restart
raidé Same as raid6_zr
raidé_zr RAID6 zero restart

Rotating parity zero (left-to-right) with data restart
e el RAID6 N restart

Rotating parity N (left-to-right) with data restart
raidé_nc

RAID6 N continue

Rotating parity N (left-to-right) with data continuation

Chapter 4. LVM Administration with CLI Commands

‘ Segment type Description

e Striped mirrors. This is the default value for the - -type argument of the 1vcreate

command if you specify the -m and you specify a number of stripes that is greater
than 1.

Striping of mirror sets

For most users, specifying one of the five available primary types (raid1, raid4,raid5,raid6, raid10) should
be sufficient. For more information on the different algorithms used by RAID 5/6, refer to chapter four of the Common
RAID Disk Data Format Specification at http://www.snia.org/sites/default/files/SNIA_DDF T echnical Position v2.0.pdf.

When you create a RAID logical volume, LVM creates a metadata subvolume that is one extent in size for every data
or parity subvolume in the array. For example, creating a 2-way RAID1 array results in two metadata subvolumes
(Iv_rmeta_0 and 1lv_rmeta_1) and two data subvolumes (lv_rimage_0 and 1v_rimage_1). Similarly, creating
a 3-way stripe (plus 1 implicit parity device) RAID4 results in 4 metadata subvolumes (1v_rmeta_0,1lv_rmeta_1,
1lv_rmeta_2,and 1v_rmeta_3) and 4 data subvolumes (lv_rimage_0,1lv_rimage_1,1v_rimage_2, and
lv_rimage_3).

The following command creates a 2-way RAID1 array named my_1v in the volume group my_vg that is 1G in size.
lvcreate --type raidli -m 1 -L 16 -n my_lv my_vg

You can create RAID1 arrays with different numbers of copies according to the value you specify for the -m argument.
Similarly, you specify the number of stripes for a RAID 4/5/6 logical volume with the -1 argument. You can also
specify the stripe size with the -I argument.

The following command creates a RAID5 array (3 stripes + 1 implicit parity drive) named my_1v in the volume group
my_vg that is 1G in size. Note that you specify the number of stripes just as you do for an LVM striped volume; the
correct number of parity drives is added automatically.

lvcreate --type raid5 -i 3 -L 16 -n my_1lv my_vg

The following command creates a RAID6 array (3 stripes + 2 implicit parity drives) named my_1v in the volume group
my_vg thatis 1G in size.

lvcreate --type raidé -i 3 -L 16 -n my_lv my_vg

After you have created a RAID logical volume with LVM, you can activate, change, remove, display, and use the volume
just as you would any other LVM logical volume.

When you create RAID10 logical volumes, the background I/O required to initialize the logical volumes with a sync
operation can crowd out other I/O operations to LVM devices, such as updates to volume group metadata, particularly
when you are creating many RAID logical volumes. This can cause the other LVM operations to slow down.

You can control the rate at which a RAID logical volume is initialized by implementing recovery throttling. You control
the rate at which sync operations are performed by setting the minimum and maximum I/O rate for those operations
with the --minrecoveryrate and --maxrecoveryrate options of the lvcreate command. You specify these
options as follows.

--maxrecoveryrate Rate[bBsSkKmMgG]

Sets the maximum recovery rate for a RAID logical volume so that it will not crowd out nominal I/O operations. The
Rate is specified as an amount per second for each device in the array. If no suffix is given, then kiB/sec/device is
assumed. Setting the recovery rate to 0 means it will be unbounded.

--minrecoveryrate Rate[bBsSkKmMgG]

Sets the minimum recovery rate for a RAID logical volume to ensure that I/O for sync operations achieves a
minimum throughput, even when heavy nominal I/O is present. The Rate is specified as an amount per second for

31

http://www.snia.org/sites/default/files/SNIA_DDF_Technical_Position_v2.0.pdf

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

each device in the array. If no suffix is given, then kiB/sec/device is assumed.

The following command creates a 2-way RAID10 array with 3 stripes that is 10G is size with a maximum recovery rate
of 128 kiB/sec/device. The array is named my_1v and is in the volume group my_vg.

lvcreate --type raidl® -i 2 -m 1 -L 10G --maxrecoveryrate 128 -n my_lv my_vg

You can also specify minimum and maximum recovery rates for a RAID scrubbing operation. For information on RAID
scrubbing, see Section 4.4.3.7.4, “Scrubbing a RAID Logical Volume”.

The following sections describes the administrative tasks you can perform on LVM RAID devices:

Section 4.4.3.1, “Converting a Linear Device to a RAID Device”

Section 4.4.3.2, “Converting an LVM RAID1 Logical Volume to an LVM Linear Logical Volume”

Section 4.4.3.3, “Converting a Mirrored LVM Device to a RAID1 Device”

Section 4.4.3.4, “Changing the Number of Images in an Existing RAID1 Device”

Section 4.4.3.5, “Splitting off a RAID Image as a Separate Logical Volume”

Section 4.4.3.6, “Splitting and Merging a RAID Image”

Section 4.4.3.7, “Setting a RAID fault policy”

Section 4.4.3.7.3, “Replacing a RAID device”

Section 4.4.3.7.4, “Scrubbing a RAID Logical Volume”

Section 4.4.3.7.5, “Controlling I/O Operations on a RAID1 Logical Volume”

4.4.3.1. Converting a Linear Device to a RAID Device

You can convert an existing linear logical volume to a RAID device by using the --type argument of the 1vconvert
command.

The following command converts the linear logical volume my_1v in volume group my_vg to a 2-way RAID1 array.

lvconvert --type raidi -m 1 my_vg/my_1lv

Since RAID logical volumes are composed of metadata and data subvolume pairs, when you convert a linear device to
a RAID1 array, a new metadata subvolume is created and associated with the original logical volume on (one of) the
same physical volumes that the linear volume is on. The additional images are added in metadata/data subvolume
pairs. For example, if the original device is as follows:

1lvs -a -0 name,copy_percent,devices my_vg
LV Copy% Devices
my_1lv /dev/sdel(0)

After conversion to a 2-way RAID1 array the device contains the following data and metadata subvolume pairs:

lvconvert --type raidi -m 1 my_vg/my_1lv
lvs -a -0 name,copy_percent,devices my_vg

LV Copy% Devices

my_lv 6.25 my_lv_rimage_0(0), my_lv_rimage_1(0)
[my_lv_rimage_0] /dev/sdel(0)

[my_lv_rimage_1] /dev/sdf1(1)

[my_lv_rmeta 0] /dev/sdel(256)

[my_lv_rmeta_1] /dev/sdf1(0)

If the metadata image that pairs with the original logical volume cannot be placed on the same physical volume, the
lvconver t will fail.

32

Chapter 4. LVM Administration with CLI Commands

4.4.3.2. Converting an LVM RAID1 Logical Volume to an LVM Linear Logical Volume

You can convert an existing RAID1 LVM logical volume to an LVM linear logical volume with the 1vconver t command
by specifying the -m@ argument. This removes all the RAID data subvolumes and all the RAID metadata subvolumes
that make up the RAID array, leaving the top-level RAID1 image as the linear logical volume.

The following example displays an existing LVM RAID1 logical volume.

1lvs -a -0 name,copy_percent,devices my_vg

LV Copy% Devices

my_1lv 100.00 my_lv_rimage_0(0),my_1lv_rimage_1(0)
[my_lv_rimage_0] /dev/sdel(1)

[my_lv_rimage_1] /dev/sdf1(1)

[my_lv_rmeta 0] /dev/sdel(0)

[my_lv_rmeta_1] /dev/sdf1(0)

The following command converts the LVM RAID1 logical volume my_vg/my_1v to an LVM linear device.

lvconvert -m0@ my_vg/my_1lv

lvs -a -0 name,copy_percent,devices my_ vg
LV Copy% Devices
my_lv /dev/sdel(1)

When you convert an LVM RAID1 logical volume to an LVM linear volume, you can specify which physical volumes to
remove. T he following example shows the layout of an LVM RAID1 logical volume made up of two images: /dev/sdal
and /dev/sda2. In this example, the 1vconvert command specifies that you want to remove /dev/sdal, leaving
/dev/sdb1 as the physical volume that makes up the linear device.

lvs -a -0 name,copy_percent,devices my_vg

LV Copy% Devices

my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
[my_1lv_rimage_0] /dev/sdal(1)

[my_lv_rimage_1] /dev/sdb1(1)

[my_lv_rmeta 0] /dev/sdal(0)

[my_lv_rmeta_1] /dev/sdb1(0)

lvconvert -m@ my_vg/my_lv /dev/sdal

lvs -a -0 name,copy_percent,devices my_vg
LV Copy% Devices
my_lv /dev/sdb1(1)

4.4.3.3. Converting a Mirrored LVM Device to a RAID1 Device

You can convert an existing mirrored LVM device with a segment type of mirror to a RAID1 LVM device with the
lvconvert command by specifying the --type raidi1 argument. This renames the mirror subvolumes
(*_mimage_*) to RAID subvolumes (* _rimage_*). In addition, the mirror log is removed and metadata subvolumes
(*_rmeta_*) are created for the data subvolumes on the same physical volumes as the corresponding data
subvolumes.

The following example shows the layout of a mirrored logical volume my_vg/my_1v.

1lvs -a -0 name,copy_percent,devices my_vg

LV Copy% Devices

my_1lv 15.20 my_lv_mimage_0(0),my_lv_mimage_1(0)
[my_lv_mimage_0] /dev/sdel(0)

[my_lv_mimage_1] /dev/sdf1(0)

[my_lv_mlog] /dev/sdd1(0)

The following command converts the mirrored logical volume my_vg/my_1v to a RAID1 logical volume.

33

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

lvconvert --type raidli my_vg/my_lv
lvs -a -0 name,copy_percent,devices my_vg

LV Copy% Devices

my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
[my_1lv_rimage_0] /dev/sdel(0)

[my_lv_rimage_1] /dev/sdf1(0)

[my_lv_rmeta 0] /dev/sdel1(125)

[my_lv_rmeta_1] /dev/sdf1(125)

4.4.3.4. Changing the Number of Images in an Existing RAID1 Device

You can change the number of images in an existing RAID1 array just as you can change the number of images in the
earlier implementation of LVM mirroring, by using the 1vconvert command to specify the number of additional
metadata/data subvolume pairs to add or remove. For information on changing the volume configuration in the earlier
implementation of LVM mirroring, refer to Section 4.4.4.4, “Changing Mirrored VVolume Configuration”.

When you add images to a RAID1 device with the 1vconvert command, you can specify the total number of images

for the resulting device, or you can specify how many images to add to the device. You can also optionally specify on
which physical volumes the new metadata/data image pairs will reside.

Metadata subvolumes (named * _rmeta_*) always exist on the same physical devices as their data subvolume
counterparts *_rimage_*). The metadata/data subvolume pairs will not be created on the same physical volumes
as those from another metadata/data subvolume pair in the RAID array (unless you specify --alloc anywhere).

The format for the command to add images to a RAID1 volume is as follows:

lvconvert -m new_absolute count vg/lv [removable PVs]
lvconvert -m +num_additional_ images vg/lv [removable_PVs]

For example, the following display shows the LVM device my_vg/my_1v which is a 2-way RAID1 array:

1lvs -a -0 name,copy_percent,devices my_vg

LV Copy% Devices

my_lv 6.25 my_lv_rimage_0(0),my_lv_rimage_1(0)
[my_1lv_rimage_0] /dev/sdel(0)

[my_1lv_rimage_1] /dev/sdf1(1)

[my_lv_rmeta 0] /dev/sdel1(256)

[my_lv_rmeta_ 1] /dev/sdf1(0)

The following command converts the 2-way RAID1 device my_vg/my_1v to a 3-way RAID1 device:

lvconvert -m 2 my_vg/my_lv
1lvs -a -0 name,copy_percent,devices my_vg
LV Copy% Devices
my_1lv 6.25 my_lv_rimage_0(0),my_lv_rimage_1(0), my_lv_rimage_2(0)

[my_lv_rimage_0]

/dev/sdel(0)

[my_lv_rimage_1] /dev/sdf1(1)
[my_lv_rimage_2] /dev/sdg1(1)
[my_1lv_rmeta 0] /dev/sdel(256)
[my_1lv_rmeta 1] /dev/sdf1(0)
[my_lv_rmeta_ 2] /dev/sdg1(0)

When you add an image to a RAID1 array, you can specify which physical volumes to use for the image. The following
command converts the 2-way RAID1 device my_vg/my_1v to a 3-way RAID1 device, specifying that the physical
volume /dev/sdd1 be used for the array:

1lvs -a -0 name,copy_percent,devices my_vg

LV Copy% Devices

my_1lv 56.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
[my_lv_rimage_0] /dev/sdal(1)

[my_lv_rimage_1] /dev/sdb1(1)

[my_lv_rmeta 0] /dev/sdal(0)

[my_lv_rmeta_1] /dev/sdb1(0)

34

Chapter 4. LVM Administration with CLI Commands

lvconvert -m 2 my_vg/my_lv /dev/sdd1
1lvs -a -0 name,copy_percent,devices my_vg

LV Copy% Devices

my_1lv 28.00 my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
[my_lv_rimage_0] /dev/sdal(1)

[my_lv_rimage_1] /dev/sdb1(1)

[my_1lv_rimage_2] /dev/sdd1(1)

[my_lv_rmeta 0] /dev/sdal1(0)

[my_lv_rmeta 1] /dev/sdb1(0)

[my_lv_rmeta_2] /dev/sdd1(0)

To remove images from a RAID1 array, use the following command. When you remove images from a RAID1 device
with the 1vconvert command, you can specify the total number of images for the resulting device, or you can specify

how many images to remove from the device. You can also optionally specify the physical volumes from which to
remove the device.

lvconvert -m new_absolute_count vg/lv [removable_PVs]
lvconvert -m -num_fewer_images vg/lv [removable PVs]

Additionally, when an image and its associated metadata subvolume volume are removed, any higher-numbered
images will be shifted down to fill the slot. If you remove 1v_rimage_1 from a 3-way RAID1 array that consists of

lv_rimage_0,1lv_rimage_1,and 1lv_rimage_2, this results in a RAID1 array that consists of 1v_rimage_0 and
1lv_rimage_1. The subvolume 1v_rimage_2 will be renamed and take over the empty slot, becoming
lv_rimage_1.

The following example shows the layout of a 3-way RAID1 logical volume my_vg/my_1v.

1lvs -a -0 name,copy_percent,devices my_vg

LV Copy% Devices

my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
[my_lv_rimage_0] /dev/sdel(1)

[my_lv_rimage_1] /dev/sdf1(1)

[my_lv_rimage_2] /dev/sdg1(1)

[my_1lv_rmeta 0] /dev/sdel(0)

[my_lv_rmeta_1] /dev/sdf1(0)

[my_1lv_rmeta 2] /dev/sdgl1(0)

The following command converts the 3-way RAID1 logical volume into a 2-way RAID1 logical volume.

lvconvert -ml1 my_vg/my_1lv
1lvs -a -0 name,copy_percent,devices my_vg

LV Copy% Devices

my_1lv 100.00 my_lv_rimage_0(0),my_1lv_rimage_1(0)
[my_lv_rimage_0] /dev/sdel(1)

[my_lv_rimage_1] /dev/sdf1(1)

[my_lv_rmeta_0] /dev/sdel(0)

[my_lv_rmeta_1] /dev/sdf1(0)

The following command converts the 3-way RAID1 logical volume into a 2-way RAID1 logical volume, specifying the
physical volume that contains the image to remove as /dev/sde1l.

lvconvert -m1 my_vg/my_lv /dev/sdel
lvs -a -0 name,copy_percent,devices my_vg

Lv Copy% Devices

my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
[my_lv_rimage_0] /dev/sdf1(1)

[my_1lv_rimage_1] /dev/sdg1(1)

[my_lv_rmeta_0] /dev/sdf1(0)

[my_lv_rmeta 1] /dev/sdg1(0)

4.4.3.5. Splitting off a RAID Image as a Separate Logical Volume

35

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

You can split off an image of a RAID logical volume to form a new logical volume. The procedure for splitting off a RAID
image is the same as the procedure for splitting off a redundant image of a mirrored logical volume, as described in
Section 4.4 4.2, “Splitting Off a Redundant Image of a Mirrored Logical Volume”.

The format of the command to split off a RAID image is as follows:

lvconvert --splitmirrors count -n splitname vg/lv [removable_ PVs]

“Changing the Number of Images in an Existing RAID1 Device"), when you remove a RAID data subvolume (and its
associated metadata subvolume) from the middle of the device, any higher numbered images will be shifted down to fill
the slot. The index numbers on the logical volumes that make up a RAID array will thus be an unbroken sequence of
integers.

_

You cannot split off a RAID image if the RAID1 array is not yet in sync.

T he following example splits a 2-way RAID1 logical volume, my_1v, into two linear logical volumes, my_1v and new.

lvs -a -0 name,copy_percent,devices my_vg

Lv Copy% Devices

my_1lv 12.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
[my_lv_rimage_0] /dev/sdel(1)

[my_lv_rimage_1] /dev/sdf1(1)

[my_lv_rmeta_0] /dev/sdel(0)

[my_lv_rmeta 1] /dev/sdf1(0)

lvconvert --splitmirror 1 -n new my_vg/my_1lv
lvs -a -0 name,copy_percent,devices my_vg

Lv Copy% Devices
my_lv /dev/sdel(1)
new /dev/sdf1(1)

The following example splits a 3-way RAID1 logical volume, my_1v, into a 2-way RAID1 logical volume, my_1v, and a
linear logical volume, new

lvs -a -0 name,copy_percent,devices my_vg

LV Copy% Devices

my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
[my_lv_rimage_0] /dev/sdel(1)

[my_lv_rimage_1] /dev/sdf1(1)

[my_1lv_rimage_2] /dev/sdg1(1)

[my_1lv_rmeta 0] /dev/sdel(0)

[my_lv_rmeta 1] /dev/sdf1(0)

[my_lv_rmeta_2] /dev/sdgl1(0)

lvconvert --splitmirror 1 -n new my_vg/my_1lv
1lvs -a -0 name,copy_percent,devices my_vg

LV Copy% Devices

my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
[my_lv_rimage_0] /dev/sdel(1)

[my_1lv_rimage_1] /dev/sdf1(1)

[my_lv_rmeta 0] /dev/sdel(0)

[my_lv_rmeta_1] /dev/sdf1(0)

new /dev/sdgl(1)

4.4.3.6. Splitting and Merging a RAID Image

You can temporarily split off an image of a RAID1 array for read-only use while keeping track of any changes by using
the --trackchanges argument in conjunction with the --splitmirrors argument of the 1vconvert command.
This allows you to merge the image back into the array at a later time while resyncing only those portions of the array
that have changed since the image was split.

36

Chapter 4. LVM Administration with CLI Commands

The format for the 1vconvert command to split off a RAID image is as follows.

lvconvert --splitmirrors count --trackchanges vg/lv [removable PVs]

When you split off a RAID image with the - -trackchanges argument, you can specify which image to split but you
cannot change the name of the volume being split. In addition, the resulting volumes have the following constraints.

The new volume you create is read-only.

You cannot resize the new volume.

You cannot rename the remaining array.

You cannot resize the remaining array.

You can activate the new volume and the remaining array independently.

You can merge an image that was split off with the - -trackchanges argument specified by executing a subsequent
lvconvert command with the - -merge argument. When you merge the image, only the portions of the array that
have changed since the image was split are resynced.

The format for the 1vconvert command to merge a RAID image is as follows.

lvconvert --merge raid_image

The following example creates a RAID1 logical volume and then splits off an image from that volume while tracking
changes to the remaining array.

lvcreate --type raidli -m2 -L1G -n my_lv .vg
Logical volume "my_lv" created
1lvs -a -0 name,copy_percent,devices my_vg

LV Copy% Devices

my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
[my_lv_rimage_0] /dev/sdb1(1)

[my_lv_rimage_1] /dev/sdc1(1)

[my_lv_rimage_2] /dev/sdd1(1)

[my_lv_rmeta_0] /dev/sdb1(0)

[my_lv_rmeta_1] /dev/sdc1(0)

[my_lv_rmeta 2] /dev/sdd1(0)

lvconvert --splitmirrors 1 --trackchanges my_vg/my_1lv
my_lv_rimage_2 split from my_1lv for read-only purposes.
Use 'lvconvert --merge my_vg/my_lv_rimage_2' to merge back into my_1lv
1lvs -a -0 name,copy_percent,devices my_vg

LV Copy% Devices

my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0), my_lv_rimage_2(0)
[my_lv_rimage_0] /dev/sdb1(1)

[my_lv_rimage_1] /dev/sdc1(1)

my_lv_rimage_2 /dev/sdd1(1)

[my_lv_rmeta_0] /dev/sdb1(0)

[my_lv_rmeta_1] /dev/sdc1(0)

[my_1lv_rmeta_ 2] /dev/sdd1(0)

The following example splits off an image from a RAID1 volume while tracking changes to the remaining array, then
merges the volume back into the array.

lvconvert --splitmirrors 1 --trackchanges my_vg/my_lv

lv_rimage_1 split from my_1lv for read-only purposes.

Use 'lvconvert --merge my_vg/my_lv_rimage_1' to merge back into my_lv
lvs -a -0 name,copy_percent,devices my_vg

LV Copy% Devices

my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
[my_lv_rimage_0] /dev/sdc1(1)

my_lv_rimage_1 /dev/sdd1(1)

[my_lv_rmeta 0] /dev/sdc1(0)

[my_lv_rmeta 1] /dev/sdd1(0)

37

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

lvconvert --merge my_vg/my_lv_rimage_1

my_vg/my_1lv_rimage_1 successfully merged back into my_vg/my_1v

1lvs -a -0 name,copy_percent,devices my_vg

Lv Copy% Devices

my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
[my_lv_rimage_0] /dev/sdc1(1)

[my_lv_rimage_1] /dev/sdd1(1)

[my_lv_rmeta 0] /dev/sdc1(0)

[my_lv_rmeta 1] /dev/sdd1(0)

Once you have split off an image from a RAID1 volume, you can make the split permanent by issuing a second
lvconvert --splitmirrors command, repeating the initial lvconvert command that split the image without
specifying the --trackchanges argument. This breaks the link that the --trackchanges argument created.

After you have split an image with the --trackchanges argument, you cannot issue a subsequent 1lvconvert --

splitmirrors command on that array unless your intent is to permanently split the image being tracked.

The following sequence of commands splits an image and tracks the image and then permanently splits off the image

being tracked.

lvconvert --splitmirrors 1 --trackchanges my_vg/my_1lv

my_lv_rimage_1 split from my_lv for read-only purposes.
Use 'lvconvert --merge my_vg/my_lv_rimage_1' to merge back into my_lv

lvconvert --splitmirrors 1 -n new my_vg/my_lv
1lvs -a -0 name,copy_percent,devices my_vg

LV Copy% Devices
my_1lv /dev/sdc1(1)
new /dev/sdd1(1)

Note, however, that the following sequence of commands will fail.

lvconvert --splitmirrors 1 --trackchanges my_vg/my_1lv

my_lv_rimage_1 split from my_lv for read-only purposes.
Use 'lvconvert --merge my_vg/my_lv_rimage_1' to merge back into my_lv

lvconvert --splitmirrors 1 --trackchanges my_vg/my_1lv

Cannot track more than one split image at a time

Similarly, the following sequence of commands will fail as well, since the split image is not the image being tracked.

lvconvert --splitmirrors 1 --trackchanges my_vg/my_1lv

my_lv_rimage_1 split from my_lv for read-only purposes.
Use 'lvconvert --merge my_vg/my_lv_rimage_1' to merge back into my_lv

lvs -a -o name,copy_percent,devices my_vg

Lv Copy% Devices

my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
[my_lv_rimage_0] /dev/sdc1(1)

my_lv_rimage_1 /dev/sdd1(1)

[my_lv_rmeta_0] /dev/sdc1(0)

[my_lv_rmeta 1] /dev/sdd1(0)

lvconvert --splitmirrors 1 -n new my_vg/my_lv /dev/sdc1l

Unable to split additional image from my_lv while tracking changes for my_lv_rimage_1

4.4.3.7. Setting a RAID fault policy

LVM RAID handles device failures in an automatic fashion based on the preferences defined by the
raid_fault_policy field in the 1vm.conf file.

If the raid_fault_policy field is setto allocate, the system will attempt to replace the failed device with a
spare device from the volume group. If there is no available spare device, this will be reported to the system log.

If the raid_fault_policy field is set to warn, the system will produce a warning and the log will indicate that a

device has failed. T his allows the user to determine the course of action to take.

As long as there are enough devices remaining to support usability, the RAID logical volume will continue to operate.

38

Chapter 4. LVM Administration with CLI Commands

4.4.3.7.1. The allocate RAID Fault Policy

In the following example, the raid_fault_policy field has been setto allocate in the 1vm.conf file. The RAID
logical volume is laid out as follows.

1lvs -a -0 name,copy_percent,devices my_vg

LV Copy% Devices

my_1lv 100.00 my_lv_rimage_0(0),my_1lv_rimage_1(0),my_lv_rimage_2(0)
[my_lv_rimage_ 0] /dev/sdel(1)

[my_lv_rimage_1] /dev/sdf1(1)

[my_1lv_rimage_2] /dev/sdg1(1)

[my_lv_rmeta_0] /dev/sdel(0)

[my_lv_rmeta 1] /dev/sdf1(0)

[my_lv_rmeta_2] /dev/sdgl1(0)

If the /dev/sde device fails, the system log will display error messages.

grep lvm /var/log/messages

Jan 17 15:57:18 bp-01 1lvm[8599]: Device #0 of raidl array, my_vg-my_lv, has failed.
Jan 17 15:57:18 bp-01 1lvm[8599]: /dev/sdel: read failed after 0 of 2048 at
250994294784 : Input/output error

Jan 17 15:57:18 bp-01 1lvm[8599]: /dev/sdel: read failed after 0 of 2048 at
250994376704: Input/output error

Jan 17 15:57:18 bp-01 1lvm[8599]: /dev/sdel: read failed after 0 of 2048 at 0:
Input/output error

Jan 17 15:57:18 bp-01 1lvm[8599]: /dev/sdel: read failed after 0 of 2048 at
4096: Input/output error

Jan 17 15:57:19 bp-01 1lvm[8599]: Couldn't find device with uuid
3lugiV-3eSP-AFAR-sdrP-H200-wM2M-qdMANYy .

Jan 17 15:57:27 bp-01 1lvm[8599]: raidl array, my_vg-my_lv, is not in-sync.
Jan 17 15:57:36 bp-01 1lvm[8599]: raidl array, my_vg-my_lv, is now in-sync.

Since the raid_fault_policy field has been setto allocate, the failed device is replaced with a new device
from the volume group.

lvs -a -0 name,copy_percent,devices vg
Couldn't find device with uuid 31lugiV-3eSP-AFAR-sdrP-H200-wM2M-gdMANYy .

LV Copy% Devices

1v 100.00 lv_rimage_0(0),1lv_rimage_1(0),1lv_rimage_2(0)
[lv_rimage_0] /dev/sdh1(1)

[lv_rimage_1] /dev/sdf1(1)

[1v_rimage_2] /dev/sdgl(1)

[lv_rmeta_0] /dev/sdh1(0)

[lv_rmeta_1] /dev/sdf1(0)

[lv_rmeta_2] /dev/sdg1(0)

Note that even though the failed device has been replaced, the display still indicates that LVM could not find the failed
device. This is because, although the failed device has been removed from the RAID logical volume, the failed device
has not yet been removed from the volume group. To remove the failed device from the volume group, you can
execute vgreduce --removemissing VG.

If the raid_fault_policy has been setto allocate but there are no spare devices, the allocation will fail, leaving
the logical volume as it is. If the allocation fails, you have the option of fixing the drive, then deactivating and activating
the logical volume, as described in Section 4.4.3.7.2, “The warn RAID Fault Policy”. Alternately, you can replace the
failed device, as described in Section 4.4.3.7.3, “Replacing a RAID device”.

4.4.3.7.2. The warn RAID Fault Policy

In the following example, the raid_fault_policy field has been set to warn in the 1vm.conf file. The RAID
logical volume is laid out as follows.

39

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

lvs -a -0 name,copy_percent,devices my_vg

LV Copy% Devices

my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
[my_lv_rimage_0] /dev/sdh1(1)

[my_1lv_rimage_1] /dev/sdf1(1)

[my_lv_rimage_2] /dev/sdgl(1)

[my_lv_rmeta 0] /dev/sdh1(0)

[my_lv_rmeta_1] /dev/sdf1(0)

[my_lv_rmeta 2] /dev/sdg1(0)

If the /dev/sdh device fails, the system log will display error messages. In this case, however, LVM will not

automatically attempt to repair the RAID device by replacing one of the images. Instead, if the device has failed you can
replace the device with the --repair argument of the 1vconvert command, as shown below.

lvconvert --repair my_vg/my_1lv
/dev/sdhl: read failed after 0 of 2048 at 250994294784: Input/output error
/dev/sdhl: read failed after © of 2048 at 250994376704: Input/output error
/dev/sdhl: read failed after © of 2048 at 0: Input/output error
/dev/sdhl: read failed after 0 of 2048 at 4096: Input/output error
Couldn't find device with uuid fbIOYO-GX7x-firU-Vy50-vzwx-VAKZ-feRxfF.
Attempt to replace failed RAID images (requires full device resync)? [y/n]: vy

lvs -a -0 name,copy_percent,devices my_ vg
Couldn't find device with uuid fbIOYO-GX7x-firU-Vy50-vzwx-VAKZ-feRxfF.

LV Copy% Devices

my_lv 64.00 my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
[my_lv_rimage_0] /dev/sdel(1)

[my_lv_rimage_1] /dev/sdf1(1)

[my_1lv_rimage_2] /dev/sdg1(1)

[my_lv_rmeta_0] /dev/sdel(0)

[my_lv_rmeta_1] /dev/sdf1(0)

[my_1lv_rmeta_ 2] /dev/sdg1(0)

Note that even though the failed device has been replaced, the display still indicates that LVM could not find the failed
device. This is because, although the failed device has been removed from the RAID logical volume, the failed device
has not yet been removed from the volume group. To remove the failed device from the volume group, you can
execute vgreduce --removemissing VG.

If the device failure is a transient failure or you are able to repair the device that failed, you can initiate recovery of the
failed device with the --refresh option of the 1lvchange command. Previously it was necessary to deactive and
then activate the logical volume.

The following command refreshes a logical volume.

lvchange --refresh my_vg/my_lv

4.4.3.7.3. Replacing a RAID device

RAID is not like traditional LVM mirroring. LVM mirroring required failed devices to be removed or the mirrored logical
volume would hang. RAID arrays can keep on running with failed devices. In fact, for RAID types other than RAID1,
removing a device would mean converting to a lower level RAID (for example, from RAID6 to RAID5, or from RAID4 or
RAID5 to RAIDO). Therefore, rather than removing a failed device unconditionally and potentially allocating a
replacement, LVM allows you to replace a device in a RAID volume in a one-step solution by using the --replace
argument of the 1vconvert command.

The format for the 1vconvert --replace is as follows.
lvconvert --replace dev_to_remove vg/lv [possible_replacements]

The following example creates a RAID1 logical volume and then replaces a device in that volume.

40

lvcreate --type raidli -m2 -L 16 -n my_lv my_vg
Logical volume "my_lv" created

1lvs -a -0 name,copy_percent,devices my_vg
LV Copy% Devices
my_1lv 100.00 my_lv_rimage_0(0),my_1lv_rimage_1(0),my_lv_rimage_2(0)
[my_lv_rimage_0] /dev/sdb1(1)
[my_lv_rimage_1] /dev/sdb2(1)
[my_lv_rimage_2] /dev/sdc1(1)
[my_1lv_rmeta 0] /dev/sdb1(0)
[my_lv_rmeta 1] /dev/sdb2(0)
[my_1lv_rmeta_ 2] /dev/sdc1(0)

lvconvert --replace /dev/sdb2 my_vg/my_1lv

lvs -a -0 name,copy_percent,devices my_ vg
LV Copy% Devices
my_lv 37.50 my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
[my_lv_rimage_0] /dev/sdb1(1)
[my_1lv_rimage_1] /dev/sdc2(1)
[my_lv_rimage_2] /dev/sdc1(1)
[my_lv_rmeta 0] /dev/sdb1(0)
[my_lv_rmeta_1] /dev/sdc2(0)
[my_lv_rmeta 2] /dev/sdc1(0)

The following example creates a RAID1 logical volume and then replaces a device in that volume, specifying which

physical volume to use for the replacement.

lvcreate --type raidi -m1 -L 100 -n my_lv my_vg
Logical volume "my_1lv" created

1lvs -a -0 name,copy_percent,devices my_vg
LV Copy% Devices
my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
[my_lv_rimage_0] /dev/sdal(1)
[my_lv_rimage_1] /dev/sdb1(1)
[my_lv_rmeta 0] /dev/sdal(0)
[my_1lv_rmeta 1] /dev/sdb1(0)
pvs
PV VG Fmt Attr PSize PFree
/dev/sdal my_vg lvm2 a-- 1020.00m 916.00m
/dev/sdb1 my_vg lvm2 a-- 1020.00m 916.00m
/dev/sdc1l my_vg lvm2 a-- 1020.00m 1020.00m
/dev/sdd1 my_vg lvm2 a-- 1020.00m 1020.00m
lvconvert --replace /dev/sdbl my_vg/my_lv /dev/sdd1l
lvs -a -0 name,copy_percent,devices my_vg
LV Copy% Devices
my_lv 28.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
[my_lv_rimage_0] /dev/sdal (1)
[my_1lv_rimage_1] /dev/sdd1(1)
[my_lv_rmeta_0] /dev/sdal(0)
[my_lv_rmeta 1] /dev/sdd1(0)

You can replace more than one RAID device at a time by specifying multiple replace arguments, as in the following
example.

lvcreate --type raidli -m 2 -L 100 -n my_lv my_vg
Logical volume "my_lv" created

1lvs -a -0 name,copy_percent,devices my_vg

LV Copy% Devices

my_1lv 100.00 my_lv_rimage 0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
[my_lv_rimage_0] /dev/sdal(1)

[my_lv_rimage_1] /dev/sdb1(1)

[my_1lv_rimage_2] /dev/sdc1(1)

[my_1lv_rmeta 0] /dev/sdal1(0)

[my_lv_rmeta 1] /dev/sdb1(0)

[my_1lv_rmeta_ 2] /dev/sdc1(0)

lvconvert --replace /dev/sdbl --replace /dev/sdcl my_vg/my_lv
lvs -a -0 name,copy_percent,devices my_ vg
LV Copy% Devices

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

my_1lv 60.00 my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
[my_lv_rimage_0] /dev/sdal(1)
[my_lv_rimage_1] /dev/sdd1(1)
[my_1lv_rimage_2] /dev/sdel(1)
[my_lv_rmeta_0] /dev/sdal(0)
[my_lv_rmeta 1] /dev/sdd1(0)
[my_lv_rmeta_2] /dev/sdel(0)

_

When you specify a replacement drive using the 1lvconvert --replace command,the replacement drives
should never be allocated from extra space on drives already used in the array. For example, 1v_rimage_0
and 1lv_rimage_1 should not be located on the same physical volume.

4.4.3.7.4. Scrubbing a RAID Logical Volume

LVM provides scrubbing support for RAID logical volumes. RAID scrubbing is the process of reading all the data and
parity blocks in an array and checking to see whether they are coherent.

You initiate a RAID scrubbing operation with the --syncaction option of the 1lvchange command. You specify
either a check or repair operation. A check operation goes over the array and records the number of
discrepancies in the array but does not repair them. A repair operation corrects the discrepancies as it finds them.

The format of the command to scrub a RAID logical volume is as follows:

lvchange --syncaction {check|repair} vg/raid _1lv

_

The lvchange --syncaction repair vg/raid_1lv operation does not perform the same function as the
lvconvert --repair vg/raid_lv operation. The lvchange --syncaction repair operation initiates
a background synchronization operation on the array, while the 1vconvert --repair operation is designed
to repair/replace failed devices in a mirror or RAID logical volume.

In support of the new RAID scrubbing operation, the 1vs command now supports two new printable fields:
raid_sync_action and raid_mismatch_count. These fields are not printed by default. To display these fields
you specify them with the -o parameter of the 1vs, as follows.

lvs -0 +raid_sync_action, raid_mismatch_count vg/lv

The raid_sync_action field displays the current synchronization operation that the raid volume is performing. It
can be one of the following values:

idle: All sync operations complete (doing nothing)
resync: Initializing an array or recovering after a machine failure
recover: Replacing a device in the array
check: Looking for array inconsistencies
repair: Looking for and repairing inconsistencies
The raid_mismatch_count field displays the number of discrepancies found during a check operation.

The Cpy%Sync field of the 1vs command now prints the progress of any of the raid_sync_action operations,
including check and repair.

42

Chapter 4. LVM Administration with CLI Commands

The 1v_attr field of the 1vs display now provides additional indicators in support of the RAID scrubbing operation.
Bit 9 of this field displays the health of the logical volume, and it now supports the following indicators.

(m)ismatches indicates that there are discrepancies in a RAID logical volume. This character is shown after a
scrubbing operation has detected that portions of the RAID are not coherent.

(nefresh indicates that a device in a RAID array has suffered a failure and the kernel regards it as failed, even
though LVM can read the device label and considers the device to be operational. T he logical should be
(nefreshed to notify the kernel that the device is now available, or the device should be (r)eplaced if it is suspected
of having failed.

For information on the 1vs command, see Section 4.8.2, “Object Selection”.

When you perform a RAID scrubbing operation, the background /O required by the sync operations can crowd out
other I/O operations to LVM devices, such as updates to volume group metadata. This can cause the other LVM
operations to slow down. You can control the rate at which the RAID logical volume is scrubbed by implementing
recovery throttling.

You control the rate at which sync operations are performed by setting the minimum and maximum /O rate for those
operations with the --minrecoveryrate and --maxrecoveryrate options of the lvchange command. You
specify these options as follows.

--maxrecoveryrate Rate[bBsSkKmMgG]

Sets the maximum recovery rate for a RAID logical volume so that it will not crowd out nominal /O operations. The
Rate is specified as an amount per second for each device in the array. If no suffix is given, then kiB/sec/device is
assumed. Setting the recovery rate to 0 means it will be unbounded.

--minrecoveryrate Rate[bBsSkKmMgG]

Sets the minimum recovery rate for a RAID logical volume to ensure that I/O for sync operations achieves a
minimum throughput, even when heavy nominal /O is present. Ther Rate is specified as an amount per second for
each device in the array. If no suffix is given, then kiB/sec/device is assumed.

4.4.3.7.5. Controlling /O Operations on a RAID1 Logical Volume

You can control the /O operations for a device in a RAID1 logical volume by using the --writemostly and - -
writebehind parameters of the 1lvchange command. The format for using these parameters is as follows.

--[raid]writemostly PhysicalVolume[:{t|y|n}]

Marks a device in a RAID1 logical volume as write-mostly. All reads to these drives will be avoided unless
necessary. Setting this parameter keeps the number of I/O operations to the drive to a minimum. T he default
behavior is to set the write-mostly attribute for the specified physical volume in the logical volume. It is possible
to remove the write-mostly flag by appending :n to the physical volume or to toggle the value by specifying : t.
The --writemostly argument can be specified more than one time in a single command, making it possible to
toggle the write-mostly attributes for all the physical volumes in a logical volume at once.

--[raid]writebehind IOCount

Specifies the maximum number of outstanding writes that are allowed to devices in a RAID1 logical volume that are
marked as write-mostly. Once this value is exceeded, writes become synchronous, causing all writes to the

constituent devices to complete before the array signals the write has completed. Setting the value to zero clears
the preference and allows the system to choose the value arbitrarily.

4.4.4. Creating Mirrored Volumes

For the Red Hat Enterprise Linux 7.0 release, LVM supports RAID 1/4/5/6/10, as described in Section 4.4.3, “RAID
Logical Volumes”. RAID logical volumes are not cluster-aware. While RAID logical volumes can be created and
activated exclusively on one machine, they cannot be activated simultaneously on more than one machine. If you
require non-exclusive mirrored volumes, you must create the volumes with a mirror segment type, as described in

this section.

43

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

_

For information on converting an existing LVM device with a segment type of mirror to a RAID1 LVM device,
see Section 4 .4.3.3, “Converting a Mirrored LVM Device to a RAID1 Device”.

Mirrored LVM Logical Volumes in a Cluster

Creating a mirrored LVM logical volume in a cluster requires the same commands and procedures as creating a
mirrored LVM logical volume with a segment type of mirror on a single node. However, in order to create a
mirrored LVM volume in a cluster, the cluster and cluster mirror infrastructure must be running, the cluster must
be quorate, and the locking type in the 1vm .conf file must be set correctly to enable cluster locking. For an
example of creating a mirrored volume in a cluster, see Section 5.5, “Creating a Mirrored LVM Logical Volume in
a Cluster”.

Attempting to run multiple LVM mirror creation and conversion commands in quick succession from multiple
nodes in a cluster might cause a backlog of these commands. T his might cause some of the requested
operations to time-out and, subsequently, fail. To avoid this issue, it is recommended that cluster mirror
creation commands be executed from one node of the cluster.

When you create a mirrored volume, you specify the number of copies of the data to make with the -m argument of the
lvcreate command. Specifying -m1 creates one mirror, which yields two copies of the file system: a linear logical
volume plus one copy. Similarly, specifying -m2 creates two mirrors, yielding three copies of the file system.

The following command creates a mirrored logical volume with a single mirror. The volume is 50 gigabytes in size, is
named mirrorlv, and is carved out of volume group vgo:

lvcreate --type mirror -L 506 -ml1 -n mirrorlv vgo

An LVM mirror divides the device being copied into regions that, by default, are 512KB in size. You can use the -R
argument of the 1vereate command to specify the region size in megabytes. You can also change the default region
size by editing the mirror_region_size setting in the 1vm.conf file.

_

Due to limitations in the cluster infrastructure, cluster mirrors greater than 1.5TB cannot be created with the
default region size of 512KB. Users that require larger mirrors should increase the region size from its default
to something larger. Failure to increase the region size will cause LVM creation to hang and may hang other
LVM commands as well.

As a general guideline for specifying the region size for mirrors that are larger than 1.5TB, you could take your
mirror size in terabytes and round up that number to the next power of 2, using that number as the -R
argument to the 1vcreate command. For example, if your mirror size is 1.5TB, you could specify -R 2. If your
mirror size is 3TB, you could specify -R 4. For a mirror size of 5TB, you could specify -R 8.

The following command creates a mirrored logical volume with a region size of 2MB:

lvcreate --type mirror -mi1 -L 2T -R 2 -n mirror vol_group

When a mirror is created, the mirror regions are synchronized. For large mirror components, the sync process may
take a long time. When you are creating a new mirror that does not need to be revived, you can specify the --nosync
argument to indicate that an initial synchronization from the first device is not required.

44

Chapter 4. LVM Administration with CLI Commands

LVM maintains a small log which it uses to keep track of which regions are in sync with the mirror or mirrors. By
default, this log is kept on disk, which keeps it persistent across reboots and ensures that the mirror does not need to
be re-synced every time a machine reboots or crashes. You can specify instead that this log be kept in memory with
the --mirrorlog core argument; this eliminates the need for an extra log device, but it requires that the entire
mirror be resynchronized at every reboot.

The following command creates a mirrored logical volume from the volume group bigvg. The logical volume is nhamed
ondiskmirvol and has a single mirror. The volume is 12MB in size and keeps the mirror log in memory.

lvcreate --type mirror -L 12MB -ml1 --mirrorlog core -n ondiskmirvol bigvg
Logical volume "ondiskmirvol" created

The mirror log is created on a separate device from the devices on which any of the mirror legs are created. It is
possible, however, to create the mirror log on the same device as one of the mirror legs by using the --alloc
anywhere argument of the vgcreate command. This may degrade performance, but it allows you to create a mirror
even if you have only two underlying devices.

T he following command creates a mirrored logical volume with a single mirror for which the mirror log is on the same
device as one of the mirror legs. In this example, the volume group vge consists of only two devices. This command

creates a 500 MB volume named mirrorlv in the vg@ volume group.

lvcreate --type mirror -L 500M -ml1 -n mirrorlv -alloc anywhere vgo

_

With clustered mirrors, the mirror log management is completely the responsibility of the cluster node with the
currently lowest cluster ID. Therefore, when the device holding the cluster mirror log becomes unavailable on a
subset of the cluster, the clustered mirror can continue operating without any impact, as long as the cluster
node with lowest ID retains access to the mirror log. Since the mirror is undisturbed, no automatic corrective
action (repair) is issued, either. When the lowest-ID cluster node loses access to the mirror log, however,
automatic action will kick in (regardless of accessibility of the log from other nodes).

To create a mirror log that is itself mirrored, you can specify the --mirrorlog mirrored argument. The following
command creates a mirrored logical volume from the volume group bigvg. The logical volume is named twologvol

and has a single mirror. The volume is 12MB in size and the mirror log is mirrored, with each log kept on a separate
device.

lvcreate --type mirror -L 12MB -ml1 --mirrorlog mirrored -n twologvol bigvg
Logical volume "twologvol" created

Just as with a standard mirror log, it is possible to create the redundant mirror logs on the same device as the mirror
legs by using the --alloc anywhere argument of the vgcreate command. This may degrade performance, but it
allows you to create a redundant mirror log even if you do not have sufficient underlying devices for each log to be
kept on a separate device than the mirror legs.

When a mirror is created, the mirror regions are synchronized. For large mirror components, the sync process may
take a long time. When you are creating a new mirror that does not need to be revived, you can specify the --nosync
argument to indicate that an initial synchronization from the first device is not required.

You can specify which devices to use for the mirror legs and log, and which extents of the devices to use. To force the
log onto a particular disk, specify exactly one extent on the disk on which it will be placed. LVM does not necessary
respect the order in which devices are listed in the command line. If any physical volumes are listed that is the only
space on which allocation will take place. Any physical extents included in the list that are already allocated will get
ignored.

The following command creates a mirrored logical volume with a single mirror and a single log that is not mirrored. The
volume is 500 MB in size, itis named mirrorlv, and it is carved out of volume group vg®0. The first leg of the mirror
is on device /dev/sda1l, the second leg of the mirror is on device /dev/sdb1, and the mirror log is on /dev/sdc1.

45

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

lvcreate --type mirror -L 500M -m1 -n mirrorlv vgo /dev/sdal /dev/sdbl /dev/sdcl

The following command creates a mirrored logical volume with a single mirror. The volume is 500 MB in size, it is
named mirrorlv, and it is carved out of volume group vg®0. The first leg of the mirror is on extents 0 through 499 of
device /dev/sda1l, the second leg of the mirror is on extents 0 through 499 of device /dev/sdb1, and the mirror log
starts on extent O of device /dev/sdc1. These are 1MB extents. If any of the specified extents have already been
allocated, they will be ignored.

lvcreate --type mirror -L 500M -ml1 -n mirrorlv vge /dev/sdal:0-499 /dev/sdb1:0-499
/dev/sdc1:0

_

You can combine striping and mirroring in a single logical volume. Creating a logical volume while
simultaneously specifying the number of mirrors (--mirrors X) and the number of stripes (--stripes Y)
results in a mirror device whose constituent devices are striped.

4.4.4.1. Mirrored Logical Volume Failure Policy

You can define how a mirrored logical volume behaves in the event of a device failure with the
mirror_image_fault_policyandmirror_log_fault_policy parameters in the activation section of

the 1vm .conf file. When these parameters are set to remove, the system attempts to remove the faulty device and
run without it. When this parameter is setto allocate, the system attempts to remove the faulty device and tries to
allocate space on a new device to be a replacement for the failed device; this policy acts like the remove policy if no
suitable device and space can be allocated for the replacement.

By default,the mirror_log_fault_policy parameter is setto allocate. Using this policy for the log is fast and
maintains the ability to remember the sync state through crashes and reboots. If you set this policy to remove, when

a log device fails the mirror converts to using an in-memory log and the mirror will not remember its sync status across
crashes and reboots and the entire mirror will be re-synced.

By default,the mirror_image_fault_policy parameter is set to remove. With this policy, if a mirror image fails
the mirror will convert to a non-mirrored device if there is only one remaining good copy. Setting this policy to
allocate for a mirror device requires the mirror to resynchronize the devices; this is a slow process, but it
preserves the mirror characteristic of the device.

_

When an LVM mirror suffers a device failure, a two-stage recovery takes place. T he first stage involves
removing the failed devices. This can result in the mirror being reduced to a linear device. The second stage, if
themirror_log_fault policy parameteris setto allocate, is to attempt to replace any of the failed
devices. Note, however, that there is no guarantee that the second stage will choose devices previously in-use
by the mirror that had not been part of the failure if others are available.

For information on manually recovering from an LVM mirror failure, refer to Section 6.3, “Recovering from LVM
Mirror Failure”.

4.4.4.2. Splitting Off a Redundant Image of a Mirrored Logical Volume

You can split off a redundant image of a mirrored logical volume to form a new logical volume. To split off an image,
you use the --splitmirrors argument of the 1vconvert command, specifying the number of redundant images to
split off. You must use the --name argument of the command to specify a name for the newly-split-off logical volume.

The following command splits off a new logical volume named copy from the mirrored logical volume vg/1v. The new
logical volume contains two mirror legs. In this example, LVM selects which devices to split off.

46

Chapter 4. LVM Administration with CLI Commands

lvconvert --splitmirrors 2 --name copy vg/lv

You can specify which devices to split off. The following command splits off a new logical volume named copy from
the mirrored logical volume vg/1v. The new logical volume contains two mirror legs consisting of devices /dev/sdc1
and /dev/sdel.

lvconvert --splitmirrors 2 --name copy vg/lv /dev/sd[ce]1l

4.4 .4.3. Repairing a Mirrored Logical Device

You can use the 1vconvert --repair command to repair a mirror after a disk failure. This brings the mirror back
into a consistent state. The 1vconvert --repair command is an interactive command that prompts you to indicate
whether you want the system to attempt to replace any failed devices.

To skip the prompts and replace all of the failed devices, specify the -y option on the command line.
To skip the prompts and replace none of the failed devices, specify the -f option on the command line.

To skip the prompts and still indicate different replacement policies for the mirror image and the mirror log, you can
specify the --use-policies argument to use the device replacement policies specified by the

mirror_log_fault_policyandmirror_device_fault_policy parameters in the 1vm.conf file.

4.4.4.4. Changing Mirrored Volume Configuration

You can increase or decrease the number of mirrors that a logical volume contains by using the 1vconvert
command. This allows you to convert a logical volume from a mirrored volume to a linear volume or from a linear
volume to a mirrored volume. You can also use this command to reconfigure other mirror parameters of an existing
logical volume, such as corelog.

When you convert a linear volume to a mirrored volume, you are basically creating mirror legs for an existing volume.
This means that your volume group must contain the devices and space for the mirror legs and for the mirror log.

If you lose a leg of a mirror, LVM converts the volume to a linear volume so that you still have access to the volume,
without the mirror redundancy. After you replace the leg, you can use the 1vconvert command to restore the mirror.

This procedure is provided in Section 6.3, “Recovering from LVM Mirror Failure”.

The following command converts the linear logical volume vg00/1vol1 to a mirrored logical volume.

lvconvert -ml1 vgeo/lvolil

The following command converts the mirrored logical volume vg00/1vol1l to a linear logical volume, removing the
mirror leg.

lvconvert -m@ vgoo/lvolil

The following example adds an additional mirror leg to the existing logical volume vg00/1vol1. This example shows
the configuration of the volume before and after the 1vconvert command changed the volume to a volume with two
mirror legs.

lvs -a -0 name,copy_percent,devices vgoo

LV Copy% Devices

lvoll 100.00 lvoll _mimage_0(0),1voll_mimage_1(0)
[1lvoll _mimage_0] /dev/sdal(0)

[1lvoll_mimage_1] /dev/sdb1(0)

[1voll mlog] /dev/sdd1(0)

lvconvert -m 2 vgo0/lvoll
vgoo/1lvoll: Converted: 13.0%
vgoo/1lvoll: Converted: 100.0%
Logical volume 1lvoll converted.
lvs -a -0 name,copy_percent,devices vgoo
Lv Copy% Devices

47

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

lvol1l 100.00 lvoll mimage_0(0),1lvoll_mimage_1(0),1lvoll_mimage_2(0)
[1voll mimage_ 0] /dev/sdal(0)
[1voll mimage_1] /dev/sdb1(0)
[1lvoll mimage_2] /dev/sdc1(0)
[1voll_mlog] /dev/sdd1(0)

4.4.5. Creating Thinly-Provisioned Logical Volumes

Logical volumes can be thinly provisioned. This allows you to create logical volumes that are larger than the available
extents. Using thin provisioning, you can manage a storage pool of free space, known as a thin pool, which can be
allocated to an arbitrary number of devices when needed by applications. You can then create devices that can be
bound to the thin pool for later allocation when an application actually writes to the logical volume. T he thin pool can be
expanded dynamically when needed for cost-effective allocation of storage space.

_

Thin volumes are not supported across the nodes in a cluster. The thin pool and all its thin volumes must be
exclusively activated on only one cluster node.

To create a thin volume, you perform the following tasks:
1. Create a volume group with the vgcreate command.
2. Create a thin pool with the 1lvcreate command.

3. Create a thin volume in the thin pool with the 1vcreate command.

You can use the -T (or --thin) option of the 1vcreate command to create either a thin pool or a thin volume. You
can also use -T option of the 1vcreate command to create both a thin pool and a thin volume in that pool at the
same time with a single command.

The following command uses the -T option of the 1vcreate command to create a thin pool named mythinpool
that is in the volume group vg001 and thatis 100M in size. Note that since you are creating a pool of physical space,
you must specify the size of the pool. The -T option of the 1vcreate command does not take an argument; it
deduces what type of device is to be created from the other options the command specifies.

lvcreate -L 100M -T vg001/mythinpool
Rounding up size to full physical extent 4.00 MiB
Logical volume "mythinpool" created

1lvs
LV VG Attr LSize Pool Origin Data% Move Log Copy% Convert
my mythinpool vge01 twi-a-tz 100.00m 0.00

The following command uses the -T option of the 1vcreate command to create a thin volume named thinvolume
in the thin pool vg00@1/mythinpool. Note that in this case you are specifying virtual size, and that you are
specifying a virtual size for the volume that is greater than the pool that contains it.

lvcreate -V1G6 -T vge01/mythinpool -n thinvolume
Logical volume "thinvolume" created

1lvs
LV VG Attr LSize Pool Origin Data% Move Log Copy% Convert
mythinpool vg0oO1 twi-a-tz 100.00m 0.00
thinvolume vgo01 Vwi-a-tz 1.00g mythinpool 0.00

The following command uses the -T option of the 1vcreate command to create a thin pool and a thin volume in that
pool by specifying both a size and a virtual size argument for the 1vcreate command. This command creates a thin
pool named mythinpool in the volume group vg001 and it also creates a thin volume named thinvolume in that
pool.

48

Chapter 4. LVM Administration with CLI Commands

lvcreate -L 100M -T vge01/mythinpool -V1G6 -n thinvolume
Rounding up size to full physical extent 4.00 MiB
Logical volume "thinvolume" created

1lvs
Lv VG Attr LSize Pool Origin Data% Move Log Copy% Convert
mythinpool vgoeoe1 twi-a-tz 100.00m 0.00
thinvolume vgool Vwi-a-tz 1.00g mythinpool 0.00

You can also create a thin pool by specifying the --thinpool parameter of the lvcreate command. Unlike the -T
option, the --thinpool parameter requires an argument, which is the name of the thin pool logical volume that you
are creating. The following example specifies the --thinpool parameter of the 1vcreate command to create a thin
pool named mythinpool that is in the volume group vge01 and thatis 100M in size:

lvcreate -L 100M --thinpool mythinpool vgo01
Rounding up size to full physical extent 4.00 MiB
Logical volume "mythinpool" created

1lvs
LV VG Attr LSize Pool Origin Data% Move Log Copy% Convert
mythinpool vgoE1l twi-a-tz 100.00m 0.00

Striping is supported for pool creation. The following command creates a 100M thin pool named pool in volume group
vg001 with two 64 kB stripes and a chunk size of 256 kB. It also creates a 1T thin volume, vg00/thin_1v.

lvcreate -i 2 -I 64 -c 256 -L100M -T vg00/pool -V 1T --name thin_lv

You can extend the size of a thin volume with the 1vextend command. You cannot, however, reduce the size of a thin
pool.

The following command resizes an existing thin pool that is 100M in size by extending it another 100M.

lvextend -L+100M vge01/mythinpool
Extending logical volume mythinpool to 200.00 MiB
Logical volume mythinpool successfully resized

1lvs
LV VG Attr LSize Pool Origin Data% Move Log Copy% Convert
mythinpool vgool twi-a-tz 200.00m 0.00
thinvolume vgool Vwi-a-tz 1.00g mythinpool 0.00

As with other types of logical volumes, you can rename the volume with the 1vrename, you can remove the volume
with the 1vremove, and you can display information about the volume with the 1vs and 1vdisplay commands.

By default, the 1vcreate sets the size of the thin pool's metadata logical volume according to the formula

(Pool_LV_size / Pool_LV_chunk_size * 64). You cannot currently resize the metadata volume, however, so if you
expect significant growth of the size of thin pool at a later time you should increase this value with the - -

poolmetadatasize parameter of the lvcreate command. The supported value for the thin pool's metadata logical
volume is in the range between 2MiB and 16GiB.

You can use the --thinpool parameter of the lvconvert command to convert an existing logical volume to a thin
volume. When you convert an existing logical volume to a thin volume, you must use the --poolmetadata parameter
in conjunction with the --thinpool parameter of the lvconvert to convert an existing logical volume to the thin
volume's metadata volume.

The following example converts the existing logical volume 1v1 in volume group vg001 to a thin volume and converts
the existing logical volume 1v2 in volume group vg0@01 to the metadata volume for that thin volume.

lvconvert --thinpool vge01/1lvl --poolmetadata vgoe01/1v2
Converted vg001/1lvl to thin pool.

4.4.6. Creating Snapshot Volumes

49

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

LVM supports thinly-provisioned snapshots. For information on creating thinly provisioned snapshot volumes,
refer to Section 4 .4.7, “Creating T hinly-Provisioned Snapshot Volumes”.

Use the -s argument of the 1vcreate command to create a snapshot volume. A snapshot volume is writable.

LVM snapshots are not supported across the nodes in a cluster. You cannot create a snapshot volume in a
clustered volume group. However, if you need to create a consistent backup of data on a clustered logical
volume you can activate the volume exclusively and then create the snapshot. For information on activating
logical volumes exclusively on one node, see Section 4.7, “Activating Logical Volumes on Individual Nodes in a
Cluster”.

LVM snapshots are supported for mirrored logical volumes.

Snapshots are supported for RAID logical volumes. For information on creating RAID logical volumes, refer to
Section 4.4.3, “RAID Logical Volumes”.

LVM does not allow you to create a snapshot volume that is larger than the size of the origin volume plus needed
metadata for the volume. If you specify a snapshot volume that is larger than this, the system will create a snapshot
volume that is only as large as will be needed for the size of the origin.

The following command creates a snapshot logical volume that is 100 MB in size named /dev/vg00/snap. This
creates a snapshot of the origin logical volume named /dev/vg00/1vol1. If the original logical volume contains a file
system, you can mount the snapshot logical volume on an arbitrary directory in order to access the contents of the file
system to run a backup while the original file system continues to get updated.

lvcreate --size 100M --snapshot --name snap /dev/vg00/lvolil

After you create a snapshot logical volume, specifying the origin volume on the 1vdisplay command yields output
that includes a list of all snapshot logical volumes and their status (active or inactive).

The following example shows the status of the logical volume /dev/new_vg/1vol0, for which a snapshot volume
/dev/new_vg/newvgsnap has been created.

lvdisplay /dev/new_vg/lvolo0
--- Logical volume ---

LV Name /dev/new_vg/1lvol0
VG Name new_vg
LV UUID LBy1Tz-sr23-0jsI-LTO3-nHLC-y8XW-EhC178
LV Write Access read/write
LV snapshot status source of
/dev/new_vg/newvgsnapl [active]
LV Status available
open 0
LV Size 52.00 MB
Current LE 13
Segments 1
Allocation inherit
Read ahead sectors 0]
Block device 253:2

ol
o

Chapter 4. LVM Administration with CLI Commands

The 1vs command, by default, displays the origin volume and the current percentage of the snapshot volume being
used for each snapshot volume. T he following example shows the default output for the 1vs command for a system
that includes the logical volume /dev/new_vg/1vol0, for which a snapshot volume /dev/new_vg/newvgsnap has
been created.

1lvs
LV VG Attr LSize Origin Snap% Move Log Copy%
1lvolo new_vg owi-a- 52.00M

newvgsnapl new_vg swi-a- 8.00M lvole 0.20

Because the snapshot increases in size as the origin volume changes, it is important to monitor the percentage
of the snapshot volume regularly with the 1vs command to be sure it does not fill. A snapshot that is 100% full
is lost completely, as a write to unchanged parts of the origin would be unable to succeed without corrupting
the snapshot.

In addition to the snapshot itself being invalidated when full, any mounted file systems on that snapshot device are
forcibly unmounted, avoiding the inevitable file system errors upon access to the mount point. In addition, you can
specify the snapshot_autoextend_threshold option in the 1vm .conf file. This option allows automatic
extension of a snapshot whenever the remaining snapshot space drops below the threshold you set. This feature
requires that there be unallocated space in the volume group.

LVM does not allow you to create a snapshot volume that is larger than the size of the origin volume plus needed
metadata for the volume. Similarly, automatic extension of a snapshot will not increase the size of a snapshot volume
beyond the maximum calculated size that is necessary for the snapshot. Once a snapshot has grown large enough to
cover the origin, it is no longer monitored for automatic extension.

Information on setting snapshot_autoextend_threshold and snapshot_autoextend_percent is provided in
the 1vm .conf file itself. For information about the 1vm .conf file, refer to Appendix B, The LVM Configuration Files.

4.4.7. Creating Thinly-Provisioned Snapshot Volumes

Red Hat Enterprise Linux provides support for thinly-provisioned snapshot volumes. For information on the benefits
and limitations of thin snapshot volumes, refer to Section 2.3.6, “T hinly-Provisioned Snapshot Volumes”.

_

When creating a thin snapshot volume, you do not specify the size of the volume. If you specify a size
parameter, the snapshot that will be created will not be a thin snapshot volume and will not use the thin pool for
storing data. For example, the command 1lvcreate -s vg/thinvolume -L10M will not create a thin
snapshot, even though the origin volume is a thin volume.

Thin snapshots can be created for thinly-provisioned origin volumes, or for origin volumes that are not thinly-
provisioned.

You can specify a name for the snapshot volume with the --name option of the 1vcreate command. T he following
command creates a thinly-provisioned snapshot volume of the thinly-provisioned logical volume vg001/thinvolume
that is named mysnapshoti1.

lvcreate -s --name mysnapshotl vgo01/thinvolume
Logical volume "mysnapshotl" created

1lvs
LV VG Attr LSize Pool Origin Data% Move Log Copy% Convert
mysnapshotl vgoo1 Vwi-a-tz 1.00g mythinpool thinvolume 0.00
mythinpool vgoo1 twi-a-tz 100.00m 0.00
thinvolume vgo01 Vwi-a-tz 1.00g mythinpool 0.00

51

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

A thin snapshot volume has the same characteristics as any other thin volume. You can independently activate the
volume, extend the volume, rename the volume, remove the volume, and even snapshot the volume.

You can also create a thinly-provisioned snapshot of a non-thinly-provisioned logical volume. Since the non-thinly-
provisioned logical volume is not contained within a thinpool, it is referred to as an external origin. External origin
volumes can be used and shared by many thinly-provisioned snapshot volumes, even from different thin pools. The
external origin must be inactive and read-only at the time the thinly-provisioned snapshot is created.

To create a thinly-provisioned snapshot of an external origin, you must specify the --thinpool option. The following
command creates a thin snapshot volume of the read-only inactive volume origin_volume. The thin snapshot
volume is named mythinsnap. The logical volume origin_volume then becomes the thin external origin for the
thin shapshot volume mythinsnap in volume group vg001 that will use the existing thin pool vg001/pool. Because

the origin volume must be in the same volume group as the snapshot volume, you do not need to specify the volume
group when specifying the origin logical volume.

lvcreate -s --thinpool vgo01/pool origin_volume --name mythinsnap

You can create a second thinly-provisioned snapshot volume of the first snapshot volume, as in the following
command.

lvcreate -s vg001/mythinsnap --name my2ndthinsnap

4.4.8. Merging Snapshot Volumes

You can use the --merge option of the 1vconvert command to merge a snapshot into its origin volume. If both the

origin and snapshot volume are not open, the merge will start immediately. Otherwise, the merge will start the first time
either the origin or snapshot are activated and both are closed. Merging a snapshot into an origin that cannot be
closed, for example a root file system, is deferred until the next time the origin volume is activated. When merging
starts, the resulting logical volume will have the origin’s hame, minor number and UUID. While the merge is in progress,
reads or writes to the origin appear as they were directed to the snapshot being merged. When the merge finishes,
the merged snapshot is removed.

The following command merges snapshot volume vg00/1voll1_snap into its origin.
lvconvert --merge vg00/lvoll snap

You can specify multiple snapshots on the command line, or you can use LVM object tags to specify that multiple
snapshots be merged to their respective origins. In the following example, logical volumes vg00/1vol1,
vg00/1vol2, and vge0/1vol3 are all tagged with the tag @some_tag. The following command merges the
snapshot logical volumes for all three volumes serially: vg00/1vol1, then vg00/1vol2, then vg00/1vol3. If the --
background option were used, all snapshot logical volume merges would start in parallel.

lvconvert --merge @some_tag

For information on tagging LVM objects, see Appendix C, LVM Object Tags. For further information on the 1vconvert
--merge command, see the 1lvconver t(8) man page.

4.4 9. Persistent Device Numbers

Major and minor device numbers are allocated dynamically at module load. Some applications work best if the block
device always is activated with the same device (major and minor) number. You can specify these with the 1lvcreate
and the lvchange commands by using the following arguments:

--persistent y --major major --minor minor

Use a large minor number to be sure that it has not already been allocated to another device dynamically.

If you are exporting a file system using NFS, specifying the fsid parameter in the exports file may avoid the need to
set a persistent device number within LVM.

52

Chapter 4. LVM Administration with CLI Commands

4.4.10. Resizing Logical Volumes

To reduce the size of a logical volume, use the 1vreduce command. If the logical volume contains a file system, be
sure to reduce the file system first (or use the LVM GUI) so that the logical volume is always at least as large as the
file system expects it to be.

The following command reduces the size of logical volume 1vol1 in volume group vgeo by 3 logical extents.

lvreduce -1 -3 vgo0/1lvol1l

4.4.11. Changing the Parameters of a Logical Volume Group

To change the parameters of a logical volume, use the 1vchange command. For a listing of the parameters you can
change, see the 1vchange(8) man page.

You can use the lvchange command to activate and deactivate logical volumes. To activate and deactivate all the

“Changing the Parameters of a Volume Group”.

The following command changes the permission on volume 1vol1 in volume group vg0®0 to be read-only.

lvchange -pr vgeo/lvolil

4.4.12. Renaming Logical Volumes
To rename an existing logical volume, use the 1vrename command.

Either of the following commands renames logical volume 1vold in volume group vg02 to 1vnew.
lvrename /dev/vg02/1lvold /dev/vg02/lvnew
lvrename vg02 lvold lvnew

For more information on activating logical volumes on individual nodes in a cluster, see Section 4.7, “Activating Logical
Volumes on Individual Nodes in a Cluster”.

4.4.13. Removing Logical Volumes

To remove an inactive logical volume, use the 1vremove command. If the logical volume is currently mounted,

unmount the volume before removing it. In addition, in a clustered environment you must deactivate a logical volume
before it can be removed.

The following command removes the logical volume /dev/testvg/testlv from the volume group testvg. Note that
in this case the logical volume has not been deactivated.

lvremove /dev/testvg/testlv
Do you really want to remove active logical volume "testlv"? [y/n]: vy
Logical volume "testlv" successfully removed

You could explicitly deactivate the logical volume before removing it with the 1vchange -an command, in which case
you would not see the prompt verifying whether you want to remove an active logical volume.

4.4.14. Displaying Logical Volumes
There are three commands you can use to display properties of LVM logical volumes: 1vs, lvdisplay, and 1vscan.

The 1vs command provides logical volume information in a configurable form, displaying one line per logical volume.
The 1vs command provides a great deal of format control, and is useful for scripting. For information on using the 1vs
command to customize your output, see Section 4.8, “Customized Reporting for LVM".

53

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

The 1vdisplay command displays logical volume properties (such as size, layout, and mapping) in a fixed format.

The following command shows the attributes of 1vol2 in vg00. If snapshot logical volumes have been created for

this original logical volume, this command shows a list of all snapshot logical volumes and their status (active or
inactive) as well.

lvdisplay -v /dev/vg00/lvol2

The 1lvscan command scans for all logical volumes in the system and lists them, as in the following example.

lvscan
ACTIVE '/dev/vg0/gfslv' [1.46 GB] inherit

4.4.15. Growing Logical Volumes
To increase the size of a logical volume, use the 1vextend command.

When you extend the logical volume, you can indicate how much you want to extend the volume, or how large you want
it to be after you extend it.

The following command extends the logical volume /dev/myvg/homevol to 12 gigabytes.

lvextend -L12G /dev/myvg/homevol

lvextend -- extending logical volume "/dev/myvg/homevol" to 12 GB
lvextend -- doing automatic backup of volume group "myvg"
lvextend -- logical volume "/dev/myvg/homevol" successfully extended

The following command adds another gigabyte to the logical volume /dev/myvg/homevol.

lvextend -L+1G /dev/myvg/homevol

lvextend -- extending logical volume "/dev/myvg/homevol" to 13 GB
lvextend -- doing automatic backup of volume group "myvg"
lvextend -- logical volume "/dev/myvg/homevol" successfully extended

As with the 1vcreate command, you can use the -1 argument of the 1lvextend command to specify the number of

extents by which to increase the size of the logical volume. You can also use this argument to specify a percentage of
the volume group, or a percentage of the remaining free space in the volume group. T he following command extends
the logical volume called testlv to fill all of the unallocated space in the volume group myvg.

lvextend -1 +100%FREE /dev/myvg/testlv
Extending logical volume testlv to 68.59 GB
Logical volume testlv successfully resized

After you have extended the logical volume it is necessary to increase the file system size to match.

By default, most file system resizing tools will increase the size of the file system to be the size of the underlying
logical volume so you do not need to worry about specifying the same size for each of the two commands.

4.4.15.1. Extending a Striped Volume

In order to increase the size of a striped logical volume, there must be enough free space on the underlying physical
volumes that make up the volume group to support the stripe. For example, if you have a two-way stripe that that uses
up an entire volume group, adding a single physical volume to the volume group will not enable you to extend the
stripe. Instead, you must add at least two physical volumes to the volume group.

For example, consider a volume group vg that consists of two underlying physical volumes, as displayed with the
following vgs command.

vgs
VG #PV #LV #SN Attr VSize VFree
vg 2 0 0 wz--n- 271.31G 271.31G

54

Chapter 4. LVM Administration with CLI Commands

You can create a stripe using the entire amount of space in the volume group.

lvcreate -n stripel -L 271.31G -i 2 vg
Using default stripesize 64.00 KB
Rounding up size to full physical extent 271.31 GB
Logical volume "stripel" created
lvs -a -o +devices
Lv VG Attr LSize Origin Snap% Move Log Copy% Devices
stripel vg -wi-a- 271.31G /dev/sdal(0), /dev/sdb1(0)

Note that the volume group now has no more free space.

vgs
VG #PV #LV #SN Attr VSize VFree
vg 2 1 0 wz--n- 271.31G 0]

The following command adds another physical volume to the volume group, which then has 135G of additional space.

vgextend vg /dev/sdcl
Volume group "vg" successfully extended

Vvgs
VG #PV #LV #SN Attr VSize VFree
vg 3 1 0 wz--n- 406.97G 135.66G

At this point you cannot extend the striped logical volume to the full size of the volume group, because two underlying
devices are needed in order to stripe the data.

lvextend vg/stripel -L 4066

Using stripesize of last segment 64.00 KB

Extending logical volume stripel to 406.00 GB

Insufficient suitable allocatable extents for logical volume stripel: 34480
more required

To extend the striped logical volume, add another physical volume and then extend the logical volume. In this example,
having added two physical volumes to the volume group we can extend the logical volume to the full size of the volume
group.

vgextend vg /dev/sdd1
Volume group "vg" successfully extended

vgs
VG #PV #LV #SN Attr VSize VFree
Vg 4 1 0 wz--n- 542.62G 271.31G

lvextend vg/stripel -L 542G
Using stripesize of last segment 64.00 KB
Extending logical volume stripel to 542.00 GB
Logical volume stripel successfully resized

If you do not have enough underlying physical devices to extend the striped logical volume, it is possible to extend the
volume anyway if it does not matter that the extension is not striped, which may result in uneven performance. When
adding space to the logical volume, the default operation is to use the same striping parameters of the last segment of
the existing logical volume, but you can override those parameters. The following example extends the existing striped
logical volume to use the remaining free space after the initial Lvextend command fails.

lvextend vg/stripel -L 406G

Using stripesize of last segment 64.00 KB

Extending logical volume stripel to 406.00 GB

Insufficient suitable allocatable extents for logical volume stripel: 34480
more required
lvextend -il1 -1+100%FREE vg/stripel

4.4.15.2. Extending a RAID Volume

55

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

You can grow RAID logical volumes with the 1vextend command without performing a synchronization of the new
RAID regions.

If you specify the --nosync option when you create a RAID logical volume with the 1vcreate command, the RAID

regions are not synchronized when the logical volume is created. If you later extend a RAID logical volume that you
have created with the --nosync option, the RAID extensions are not synchronized at that time, either.

You can determine whether an existing logical volume was created with the - -nosync option by using the 1vs
command to display the volume's attributes. A logical volume will show “R" as the first character in the attribute field if
it is a RAID volume that was created without an initial synchronization, and it will show "r" if it was created with initial
synchronization.

The following command displays the attributes of a RAID logical volume named 1v that was created without initial
synchronization, showing "R" as the first character in the attribute field. The seventh character in the attribute field is
"r", indicating a target type of RAID. For information on the meaning of the attribute field, refer to Table 4 4, “lvs Display
Fields”.

1lvs vg
LV VG Attr LSize Pool Origin Snap% Move Log Cpy%Sync Convert
1v vg Rwi-a-r- 5.009g 100.00

If you grow this logical volume with the 1vextend command, the RAID extension will not be resynchronized.

If you created a RAID logical volume without specifying the --nosync option of the 1vcreate command, you can
grow the logical volume without resynchronizing the mirror by specifying the --nosync option of the 1vextend
command.

The following example extends a RAID logical volume that was created without the --nosync option, indicated that
the RAID volume was synchronized when it was created. This example, however, specifies that the volume not be
synchronized when the volume is extended. Note that the volume has an attribute of "r", but after executing the
lvextend commmand with the --nosync option the volume has an attribute of "R".

1lvs vg
LV VG Attr LSize Pool Origin Snap% Move Log Cpy%Sync Convert
1lv vg rwi-a-r- 20.00m 100.00

lvextend -L +56 vg/lv --nosync
Extending 2 mirror images.
Extending logical volume lv to 5.02 GiB
Logical volume lv successfully resized

1lvs vg
LV VG Attr LSize Pool Origin Snap% Move Log Cpy%Sync Convert
1v vg Rwi-a-r- 5.02g 100.00

If a RAID volume is inactive, it will not automatically skip synchronization when you extend the volume, even if you
create the volume with the --nosync option specified. Instead, you will be prompted whether to do a full resync of the

extended portion of the logical volume.

_

If a RAID volume is performing recovery, you cannot extend the logical volume if you created or extended the
volume with the --nosync option specified. If you did not specify the --nosync option, however, you can
extend the RAID volume while it is recovering.

4.4.15.3. Extending a Logical Volume with the cling Allocation Policy

When extending an LVM volume, you can use the --alloc cling option of the lvextend command to specify the
cling allocation policy. This policy will choose space on the same physical volumes as the last segment of the

existing logical volume. If there is insufficient space on the physical volumes and a list of tags is defined in the
1vm.conf file, LVM will check whether any of the tags are attached to the physical volumes and seek to match those

56

Chapter 4. LVM Administration with CLI Commands

physical volume tags between existing extents and new extents.

For example, if you have logical volumes that are mirrored between two sites within a single volume group, you can tag
the physical volumes according to where they are situated by tagging the physical volumes with @sitel and @site2
tags and specify the following line in the 1vm .conf file:

cling_tag_list = ["@sitel", "@site2"]

For information on tagging physical volumes, see Appendix C, LVM Object Tags.

In the following example, the 1vm . conf file has been modified to contain the following line:
cling_tag_list = ["@A", "@B"]

Also in this example, a volume group taft has been created that consists of the physical volumes /dev/sdb1,
/dev/sdc1, /dev/sdd1, /dev/sdel, /dev/sdf1, /dev/sdg1l, and /dev/sdh1. These physical volumes have
been tagged with tags A, B, and C. The example does not use the C tag, but this will show that LVM uses the tags to
select which physical volumes to use for the mirror legs.

pvs -a -0 +pv_tags /dev/sd[bcdefgh]
PV VG Fmt Attr PSize PFree PV Tags
/dev/sdb1 taft lvm2 a-- 15.00g 15.00g
/dev/sdcl taft lvm2 a-- 15.00g 15.00g9
/dev/sdd1 taft lvm2 a-- 15.00g 15.00g
/dev/sdel taft lvm2 a-- 15.00g 15.00g
/dev/sdf1 taft lvm2 a-- 15.00g 15.00g
/dev/sdgl taft lvm2 a-- 15.00g 15.00g9
/dev/sdh1 taft lvm2 a-- 15.00g 15.00g

>r>00mm>

The following command creates a 100GB mirrored volume from the volume group taft.

lvcreate --type raidl -m 1 -n mirror --nosync -L 10G taft
WARNING: New raidl won't be synchronised. Don't read what you didn't write!
Logical volume "mirror" created

The following command shows which devices are used for the mirror legs and RAID metadata subvolumes.

lvs -a -0 +devices

LV VG Attr LSize Log Cpy%Sync Devices

mirror taft Rwi-a-r--- 10.00g 100.00
mirror_rimage_0(0), mirror_rimage_1(0)

[mirror_rimage_0] taft iwi-aor--- 10.00g /dev/sdb1(1)

[mirror_rimage_1] taft iwi-aor--- 10.00g /dev/sdc1(1)

[mirror_rmeta 0] taft ewi-aor--- 4.00m /dev/sdb1(0)

[mirror_rmeta_1] taft ewi-aor--- 4.00m /dev/sdc1(0)

The following command extends the size of the mirrored volume, using the c¢1ing allocation policy to indicate that the
mirror legs should be extended using physical volumes with the same tag.

lvextend --alloc cling -L +10G taft/mirror
Extending 2 mirror images.
Extending logical volume mirror to 20.00 GiB
Logical volume mirror successfully resized

The following display command shows that the mirror legs have been extended using physical volumes with the same
tag as the leg. Note that the physical volumes with a tag of C were ignored.

lvs -a -o +devices

Lv VG Attr LSize Log Cpy%Sync Devices

mirror taft Rwi-a-r--- 20.00g 100.00
mirror_rimage_0(0),mirror_rimage_1(0)

[mirror_rimage_0] taft iwi-aor--- 20.00g /dev/sdb1(1)

57

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

[mirror_rimage_0] taft iwi-aor--- 20.00g /dev/sdg1(0)
[mirror_rimage_1] taft iwi-aor--- 20.00g /dev/sdc1(1)
[mirror_rimage_1] taft iwi-aor--- 20.00g /dev/sdd1(0)
[mirror_rmeta_0] taft ewi-aor--- 4.00m /dev/sdb1(0)
[mirror_rmeta_1] taft ewi-aor--- 4.00m /dev/sdc1(0)

4.4.16. Shrinking Logical Volumes

To reduce the size of a logical volume, first unmount the file system. You can then use the 1vreduce command to
shrink the volume. After shrinking the volume, remount the file system.

It is important to reduce the size of the file system or whatever is residing in the volume before shrinking the
volume itself, otherwise you risk losing data.

Shrinking a logical volume frees some of the volume group to be allocated to other logical volumes in the volume
group.

The following example reduces the size of logical volume 1vol1 in volume group vg0o by 3 logical extents.

lvreduce -1 -3 vgo0/1lvoll

4.5. Controlling LVM Device Scans with Filters

At startup, the vgscan command is run to scan the block devices on the system looking for LVM labels, to determine
which of them are physical volumes and to read the metadata and build up a list of volume groups. The names of the
physical volumes are stored in the cache file of each node in the system, /etc/1vm/cache/.cache. Subsequent

commands may read that file to avoiding rescanning.

You can control which devices LVM scans by setting up filters in the 1vm .conf configuration file. The filters in the
1vm .conf file consist of a series of simple regular expressions that get applied to the device names that are in the
/dev directory to decide whether to accept or reject each block device found.

The following examples show the use of filters to control which devices LVM scans. Note that some of these examples
do not necessarily represent best practice, as the regular expressions are matched freely against the complete
pathname. For example, a/loop/ is equivalentto a/.* loop.* / and would match /dev/solooperation/lvol1l.

The following filter adds all discovered devices, which is the default behavior as there is no filter configured in the
configuration file:

filter = ["a/.*/"]

T he following filter removes the cdrom device in order to avoid delays if the drive contains no media:
filter = ["r|/dev/cdrom|"]

T he following filter adds all loop and removes all other block devices:
filter = ["a/loop.*/", "r/.*/"]

T he following filter adds all loop and IDE and removes all other block devices:
filter =["al|loop.*|", "a|/dev/hd.*|", "r|[.*|"]

The following filter adds just partition 8 on the first IDE drive and removes all other block devices:

58

Chapter 4. LVM Administration with CLI Commands

filter = ["a|A/dev/hda8$|", "r/.*/"]

For more information on the 1vm .conf file, see Appendix B, The LVM Configuration Files and the 1vm .conf(5) man
page.

4.6. Online Data Relocation
You can move data while the system is in use with the pvmove command.

The pvmove command breaks up the data to be moved into sections and creates a temporary mirror to move each
section. For more information on the operation of the pvmove command, see the pvmove(8) man page.

_

In order to perform a pvmove operation in a cluster, you should ensure that the cmirror and cmirror -
kmod packages are installed and the cmirror service is running. The cmirror -kmod package that must be
installed depends on the kernel that is running. For example, if the running kernel is kernel-largesmp,itis
necessary to have cmirror-kmod-largesmp for the corresponding kernel version.

The following command moves all allocated space off the physical volume /dev/sdc1 to other free physical volumes
in the volume group:

pvmove /dev/sdcl
T he following command moves just the extents of the logical volume MyLV.
pvmove -n MyLV /dev/sdc1l

Since the pvmove command can take a long time to execute, you may want to run the command in the background to

avoid display of progress updates in the foreground. The following command moves all extents allocated to the
physical volume /dev/sdc1 over to /dev/sdf1 in the background.

pvmove -b /dev/sdcl /dev/sdf1

The following command reports the progress of the move as a percentage at five second intervals.

pvmove -i5 /dev/sdd1

4.7. Activating Logical Volumes on Individual Nodes in a Cluster

If you have LVM installed in a cluster environment, you may at times need to activate logical volumes exclusively on
one node.

To activate logical volumes exclusively on one node, use the 1vchange -aey command. Alternatively, you can use
lvchange -aly command to activate logical volumes only on the local node but not exclusively. You can later
activate them on additional nodes concurrently.

You can also activate logical volumes on individual nodes by using LVM tags, which are described in Appendix C, LVM
Object Tags. You can also specify activation of nodes in the configuration file, which is described in Appendix B, The

LVM Configuration Files.

4.8. Customized Reporting for LVM

59

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

You can produce concise and customizable reports of LVM objects with the pvs, 1vs, and vgs commands. The
reports that these commands generate include one line of output for each object. Each line contains an ordered list of
fields of properties related to the object. There are five ways to select the objects to be reported: by physical volume,
volume group, logical volume, physical volume segment, and logical volume segment.

The following sections provide:

A summary of command arguments you can use to control the format of the generated report.
A list of the fields you can select for each LVM object.
A summary of command arguments you can use to sort the generated report.

Instructions for specifying the units of the report output.

4.8.1. Format Control

Whether you use the pvs, 1vs, or vgs command determines the default set of fields displayed and the sort order. You
can control the output of these commands with the following arguments:

You can change what fields are displayed to something other than the default by using the -o argument. For
example, the following output is the default display for the pvs command (which displays information about physical

volumes).

pvs
PV VG Fmt Attr PSize PFree
/dev/sdbl new_vg lvm2 a- 17.14G 17.14G
/dev/sdcl new_vg lvm2 a- 17.14G 17.09G
/dev/sdd1l new_vg lvm2 a- 17.14G 17.14G

The following command displays only the physical volume name and size.

pvsS -0 pv_name,pv_size
PV PSize
/dev/sdbl 17.14G
/dev/sdcl 17.14G
/dev/sdd1 17.14G

You can append a field to the output with the plus sign (+), which is used in combination with the -o argument.

The following example displays the UUID of the physical volume in addition to the default fields.

pvs -0 +pv_uuid
PV VG Fmt Attr PSize PFree PV UUID
/dev/sdbl new_vg lvm2 a- 17.14G 17.14G onFF2w-1fLC-ughJ-D9eB-M71iv-6XqA-dqGeXY
/dev/sdcl new_vg lvm2 a- 17.14G 17.09G Joglch-yWSj-kuEn-IdwM-01S9-X08M-mcpsVe
/dev/sdd1l new_vg lvm2 a- 17.14G 17.14G yvfvZK-Cf31-j75k-dECm-0ORZ3-0dGW-UgkCS

Adding the -v argument to a command includes some extra fields. For example, the pvs -v command will display
the DevSize and PV UUID fields in addition to the default fields.

pvs -v
Scanning for physical volume names

PV VG Fmt Attr PSize PFree DevSize PV UUID

/dev/sdbl new_vg lvm2 a- 17.14G 17.14G 17.14G onFF2w-1fLC-ughJ-D9eB-M7iv-6XqgA-
dqGexXy

/dev/sdcl new_vg lvm2 a- 17.14G 17.09G 17.14G Joglch-yWSj-kuEn-IdwM-01S9-X08M-
mcpsve

/dev/sdd1l new_vg lvm2 a- 17.14G 17.14G 17.14G yvfvZK-Cf31-j75k-dECm-ORZ3-0dGW-
tugkcs

The --noheadings argument suppresses the headings line. This can be useful for writing scripts.

60

Chapter 4. LVM Administration with CLI Commands

The following example uses the --noheadings argument in combination with the pv_name argument, which will
generate a list of all physical volumes.

pvs --noheadings -o pv_name
/dev/sdb1l
/dev/sdc1l
/dev/sdd1

The --separator separator argument uses separator to separate each field.

The following example separates the default output fields of the pvs command with an equals sign (=).

pvs --separator =
PV=VG=Fmt=Attr=PSize=PFree
/dev/sdbl=new_vg=1lvm2=a-=17.14G=17.14G
/dev/sdcl=new_vg=1lvm2=a-=17.14G=17.09G
/dev/sdd1l=new_vg=1lvm2=a-=17.14G=17.14G

To keep the fields aligned when using the separator argument, use the separator argument in conjunction
with the --aligned argument.

pvs --separator = --aligned
PV =VG =Fmt =Attr=PSize =PFree
/dev/sdbl =new_vg=lvm2=a- =17.14G=17.14G
/dev/sdcl =new_vg=lvm2=a- =17.14G=17.09G
/dev/sdd1l =new_vg=lvm2=a- =17.14G=17.14G

You can use the -P argument of the 1vs or vgs command to display information about a failed volume that would

otherwise not appear in the output. For information on the output this argument yields, see Section 6.2, “Displaying
Information on Failed Devices”.

For a full listing of display arguments, see the pvs(8), vgs(8) and 1vs(8) man pages.

Volume group fields can be mixed with either physical volume (and physical volume segment) fields or with logical
volume (and logical volume segment) fields, but physical volume and logical volume fields cannot be mixed. For
example, the following command will display one line of output for each physical volume.

vgs -0 +pv_name
VG #PV #LV #SN Attr VSize VFree PV
new_vg 3 1 0 wz--n- 51.42G 51.37G /dev/sdcl
new_vg 3 1 0 wz--n- 51.42G 51.37G /dev/sdd1
new_vg 3 1 0 wz--n- 51.42G 51.37G /dev/sdbl

4.8.2. Object Selection

This section provides a series of tables that list the information you can display about the LVM objects with the pvs,
vgs, and 1vs commands.

For convenience, a field name prefix can be dropped if it matches the default for the command. For example, with the
pvs command, name means pv_name, but with the vgs command, name is interpreted as vg_name.

Executing the following command is the equivalent of executing pvs -o pv_free.

pvs -o free
PFree
17.14G
17.09G
17.14G

61

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

_

The number of characters in the attribute fields in pvs, vgs, and 1vs output may increase in later releases.
The existing character fields will not change position, but new fields may be added to the end. You should take
this into account when writing scripts that search for particular attribute characters, searching for the character
based on its relative position to the beginning of the field, but not for its relative position to the end of the field.
For example, to search for the character p in the ninth bit of the 1v_attr field, you could search for the string
“Al.....pl", but you should not search for the string "/*p$/".

The pvs Command

Table 4.2, “pvs Display Fields” lists the display arguments of the pvs command, along with the field name as it

appears in the header display and a description of the field.

Table 4.2. pvs Display Fields

‘ Argument

dev_size

pe_start

pv_attr

pv_fmt

pv_free

pv_name

pv_pe_alloc_count

pv_pe_count

pvseg_size

pvseg_start

pv_size

pv_tags

pv_used

pv_uuid

Header Description

DevSize The size of the underlying device on which the physical volume
was created

1st PE Offset to the start of the first physical extent in the underlying
device

Attr Status of the physical volume: (a)llocatable or e(x)ported.

Fmt The metadata format of the physical volume (1vm2 or 1vm1)

PFree The free space remaining on the physical volume

PV The physical volume name

Alloc Number of used physical extents

PE Number of physical extents

SSize The segment size of the physical volume

Start The starting physical extent of the physical volume segment

PSize The size of the physical volume

PV Tags LVM tags attached to the physical volume

Used The amount of space currently used on the physical volume

PV UUID The UUID of the physical volume

The pvs command displays the following fields by default: pv_name, vg_name, pv_fmt, pv_attr, pv_size,
pv_free. The display is sorted by pv_name.

#

pvs
PV

/dev/sdb1
/dev/sdc1l
/dev/sdd1

VG Fmt
new_vg lvm2
new_vg lvm2
new_vg lvm2

Attr PSize PFree
a- 17.14G 17.14G
a- 17.14G 17.09G
a- 17.14G 17.13G

Using the -v argument with the pvs command adds the following fields to the default display: dev_size, pv_uuid.

#

62

pvs -v
Scanning
PV
/dev/sdb1
/dev/sdc1
/dev/sdd1

for physical
VG Fmt
new_vg lvm2
new_vg lvm2
new_vg lvm2

volume names

Attr PSize PFree DevSize PV UUID

a- 17.14G 17.14G 17.14G onFF2w-1fLC-ughJ-D9eB-M7iv-6XgA-dqGeXY
a- 17.14G 17.09G 17.14G Joglch-yWSj-kuEn-IdwM-01S9-X08M-mcpsVe
a- 17.14G 17.13G 17.14G yvfvZK-Cf31-j75k-dECm-ORZ3-0dGW-tUgkCS

The vgs Command

You can use the --segments argument of the pvs command to display information about each physical volume

segment. A segment is a group of extents. A segment view can be useful if you want to see whether your logical
volume is fragmented.

The pvs --segments command displays the following fields by default: pv_name, vg_name, pv_fmt, pv_attr,

pv_size,pv_free, pvseg_start, pvseg_size. The display is sorted by pv_name and pvseg_size within the
physical volume.

pvs --segments

PV VG Fmt Attr PSize PFree Start SSize
/dev/hda2 VolGroup00 lvm2 a- 37.16G 32.00M 0 1172
/dev/hda2 VolGroup0O lvm2 a- 37.16G 32.00M 1172 16
/dev/hda2 VolGroup@® lvm2 a- 37.16G 32.00M 1188 1
/dev/sdal vg lvm2 a- 17.14G 16.75G 0 26
/dev/sdal vg lvm2 a- 17.14G 16.75G 26 24
/dev/sdal vg lvm2 a- 17.14G 16.75G 50 26
/dev/sdal vg lvm2 a- 17.14G 16.75G 76 24
/dev/sdal vg lvm2 a- 17.14G 16.75G 100 26
/dev/sdal vg lvm2 a- 17.14G 16.75G 126 24
/dev/sdal vg lvm2 a- 17.14G 16.75G 150 22
/dev/sdal vg lvm2 a- 17.14G 16.75G 172 4217
/dev/sdbl vg lvm2 a- 17.14G 17.14G 0 4389
/dev/sdcl vg lvm2 a- 17.14G 17.14G 0 4389
/dev/sdd1 vg lvm2 a- 17.14G 17.14G 0 4389
/dev/sdel vg lvm2 a- 17.14G 17.14G 0 4389
/dev/sdf1 vg lvm2 a- 17.14G 17.14G 0 4389
/dev/sdgl vg lvm2 a- 17.14G 17.14G 0 4389

You can use the pvs -a command to see devices detected by LVM that have not been initialized as LVM physical
volumes.

pvs -a
PV VG Fmt Attr PSize PFree
/dev/VolGroup@6/LogVolel -- 0] 0
/dev/new_vg/1lvolo -- 0] 0
/dev/ram -- 0 0
/dev/ram@ -- 0 0
/dev/ram2 -- 0 0]
/dev/ram3 -- (0] 0
/dev/ram4 -- 0 0
/dev/ram5 -- 0 0
/dev/ram6 -- 0 0
/dev/root -- 0 0
/dev/sda -- 0 0]
/dev/sdb -- 0 0]
/dev/sdb1 new_vg lvm2 a- 17.14G 17.14G
/dev/sdc -- 0 (0]
/dev/sdcl new_vg lvm2 a- 17.14G 17.09G
/dev/sdd -- 0 0]
/dev/sdd1 new_vg lvm2 a- 17.14G 17.14G

The vgs Command

Table 4.3, “vgs Display Fields” lists the display arguments of the vgs command, along with the field name as it
appears in the header display and a description of the field.

Table 4.3. vgs Display Fields

‘ Argument Header Description
1lv_count #LV The number of logical volumes the volume group contains
max_1lv MaxLV The maximum number of logical volumes allowed in the volume

group (O if unlimited)

63

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

‘ Argument Header Description

max_pv MaxPV The maximum number of physical volumes allowed in the volume
group (O if unlimited)

pv_count #PV The number of physical volumes that define the volume group

snap_count #SN The number of snapshots the volume group contains

vg_attr Attr Status of the volume group: (w)riteable, (r)eadonly, resi(z)eable,
e(x)ported, (p)artial and (c)lustered.

vg_extent_count #Ext The number of physical extents in the volume group

vg_extent_size Ext The size of the physical extents in the volume group

vg_fmt Fmt The metadata format of the volume group (1vm2 or 1vm1)

vg_free VFree Size of the free space remaining in the volume group

vg_free_count Free Number of free physical extents in the volume group

vg_nhame VG The volume group name

vg_seqno Seq Number representing the revision of the volume group

vg_size VSize The size of the volume group

vg_sysid SYSID LVM1 System ID

vg_tags VG Tags LVM tags attached to the volume group

vg_uuid VG UUID The UUID of the volume group

The vgs command displays the following fields by default: vg_name, pv_count, 1v_count, snap_count, vg_attr,
vg_size,vg_free. The display is sorted by vg_name.

Vvgs
VG #PV #LV #SN Attr VSize VFree
new_vg 3 1 1 wz--n- 51.42G 51.366G

Using the -v argument with the vgs command adds the following fields to the default display: vg_extent_size,
vg_uuid.

vgs -v
Finding all volume groups
Finding volume group "new_vg"
VG Attr Ext #PV #LV #SN VSize VFree VG UUID
new_vg wz--n- 4.00M 3 1 1 51.42G 51.36G jxQJOa-ZKkO-0OpM0-0118-nlwO-wwqd-fD5D32

The Ivs Command

Table 4.4, “Ivs Display Fields” lists the display arguments of the 1vs command, along with the field name as it appears
in the header display and a description of the field.

Table 4.4. Ivs Display Fields

‘ Argument Header Description

chunksize Chunk Unit size in a snapshot volume

chunk_size

copy_percent Copy% The synchronization percentage of a mirrored logical volume;
also used when physical extents are being moved with the
pv_move command

devices Devices The underlying devices that make up the logical volume: the
physical volumes, logical volumes, and start physical extents and
logical extents

64

‘ Argument
lv_attr

Header
Attr

The lvs Command

Description

The status of the logical volume. T he logical volume attribute bits
are as follows:

Bit 1: Volume type: (m)irrored, (M)irrored without initial sync,
(o)rigin, (O)rigin with merging snapshot, (r)aid, (R)aid without
initial sync, (s)napshot, merging (S)napshot, (p)vmove, (v)irtual,
mirror or raid (i)mage, mirror or raid (l)mage out-of-sync, mirror
(Dog device, under (c)onversion, thin (V)olume, (t)hin pool, (T)hin
pool data, raid or thin pool m(e)tadata or pool metadata spare,

Bit 2: Permissions: (w)riteable, (r)ead-only, (R)ead-only activation
of non-read-only volume

Bit 3: Allocation policy: (a)nywhere, (c)ontiguous, (i)nherited,
c(l)ing, (n)ormal. This is capitalized if the volume is currently
locked against allocation changes, for example while executing
the pvmove command.

Bit 4: fixed (m)inor

Bit 5: State: (a)ctive, (s)uspended, (l)nvalid snapshot, invalid
(S)uspended snapshot, snapshot (m)erge failed, suspended
snapshot (M)erge failed, mapped (d)evice present without tables,
mapped device present with (i)nactive table

Bit 6: device (0)pen

Bit 7: Target type: (m)irror, (r)aid, (s)napshot, (t)hin, (u)nknown,
(v)irtual. This groups logical volumes related to the same kernel
target together. So, for example, mirror images, mirror logs as
well as mirrors themselves appear as (m) if they use the original
device-mapper mirror kernel driver, whereas the raid equivalents
using the md raid kernel driver all appear as (r). Snapshots
using the original device-mapper driver appear as (s), whereas
snapshots of thin volumes using the thin provisioning driver
appear as (1).

Bit 8: Newly-allocated data blocks are overwritten with blocks of
(z)eroes before use.

Bit 9: Volume Health: (p)artial, (r)efresh needed, (m)ismatches
exist, (w)ritemostly. (p)artial signifies that one or more of the
Physical Volumes this Logical Volume uses is missing from the
system. (r)efresh signifies that one or more of the Physical
Volumes this RAID Logical Volume uses had suffered a write
error. The write error could be due to a temporary failure of that
Physical Volume or an indication that it is failing. The device
should be refreshed or replaced. (m)ismatches signifies that the
RAID logical volume has portions of the array that are not
coherent. Inconsistencies are discovered by initiating a check
operation on a RAID logical volume. (The scrubbing operations,
check and repair, can be performed on a RAID Logical
Volume by means of the 1lvchange command.) (w)ritemostly
signifies the devices in a RAID 1 logical volume that have been
marked write-mostly.

Bit 10: s(K)ip activation: this volume is flagged to be skipped
during activation.

65

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

‘ Argument Header Description

lv_kernel_major KMaj Actual major device number of the logical volume (-1 if inactive)

lv_kernel _minor KMIN Actual minor device number of the logical volume (-1 if inactive)

lv_major Maj The persistent major device number of the logical volume (-1 if
not specified)

lv_minor Min The persistent minor device number of the logical volume (-1 if
not specified)

lv_name LV The name of the logical volume

lv_size LSize The size of the logical volume

lv_tags LV Tags LVM tags attached to the logical volume

1v_uuid LV UUID The UUID of the logical volume.

mirror_log Log Device on which the mirror log resides

modules Modules Corresponding kernel device-mapper target necessary to use
this logical volume

move_pv Move Source physical volume of a temporary logical volume created
with the pvmove command

origin Origin The origin device of a snapshot volume

. . Region The unit size of a mirrored logical volume
regionsize

region_size

seg_count #Seg The number of segments in the logical volume

seg_size SSize The size of the segments in the logical volume

seg_start Start Offset of the segment in the logical volume

seg_tags Seg Tags LVM tags attached to the segments of the logical volume

segtype Type The segment type of a logical volume (for example: mirror,
striped, linear)

snap_percent Snhap% Current percentage of a snapshot volume that is in use

stripes #Str Number of stripes or mirrors in a logical volume

stripesize Stripe Unit size of the stripe in a striped logical volume

stripe_size

The 1vs command displays the following fields by default: lv_name, vg_name, lv_attr,lv_size,origin,

snap_percent,move_pv,mirror_log, copy_percent, convert_lv. The default display is sorted by vg_name

and 1lv_name within the volume group.

1lvs
LV VG Attr LSize Origin Snap% Move Log Copy% Convert
1lvoloe new_vg owi-a- 52.00M

newvgsnapl new_vg swi-a- 8.00M lvolo 0.20

Using the -v argument with the 1vs command adds the following fields to the default display: seg_count, 1v_major,

lv_minor,1lv_kernel_major,1lv_kernel_minor, lv_uuid.

1lvs -v
Finding all logical volumes
Lv VG #Seg Attr LSize Maj Min KMaj KMin Origin Snap% Move Copy% Log
Convert LV UUID
1lvolo new_vg 1 owi-a- 52.60M -1 -1 253 3

LBy1Tz-sr23-0jsSI-LTO3-nHLC-y8XW-EhC178
newvgsnapl new_vg 1 swi-a- 8.00M -1 -1 253 5 1lvoloe 0.20
1lyelOU-1cIu-079k-20h2-ZGFO-qCJIm-CfbsIx

66

The lvs Command

You can use the --segments argument of the 1vs command to display information with default columns that
emphasize the segment information. When you use the segments argument, the seg prefix is optional. The 1vs --
segments command displays the following fields by default: 1lv_name, vg_name, 1v_attr, stripes, segtype,
seg_size. The default display is sorted by vg_name, 1v_name within the volume group, and seg_start within the
logical volume. If the logical volumes were fragmented, the output from this command would show that.

lvs --segments
Lv VG Attr #Str Type SSize

LogVole® VolGroup0® -wi-ao 1 linear 36.62G
LogVol01l VolGroup@O® -wi-ao 1 linear 512.00M
1lv Vg -wi-a- 1 linear 104.00M
1v vg -wi-a- 1 linear 104.06M
1v vg -wi-a- 1 linear 104.00M
1v Vg -wi-a- 1 linear 88.00M

Using the -v argument with the 1vs --segments command adds the following fields to the default display:
seg_start, stripesize, chunksize.

lvs -v --segments
Finding all logical volumes

LV VG Attr Start SSize #Str Type Stripe Chunk
1lvolo new_vg owi-a- 0 52.00M 1 linear (0] (0]
newvgsnapl new_vg sSwi-a- 0 8.00M 1 linear 0 8.00K

The following example shows the default output of the 1vs command on a system with one logical volume configured,
followed by the default output of the 1vs command with the segments argument specified.

1lvs
Lv VG Attr LSize Origin Snap% Move Log Copy%
1vol® new_vg -wi-a- 52.00M
lvs --segments
LV VG Attr #Str Type SSize
1lvol® new_vg -wi-a- 1 linear 52.00M

4.8.3. Sorting LVM Reports

Normally the entire output of the 1vs, vgs, or pvs command has to be generated and stored internally before it can be

sorted and columns aligned correctly. You can specify the --unbuffered argument to display unsorted output as
soon as it is generated.

To specify an alternative ordered list of columns to sort on, use the -0 argument of any of the reporting commands. It
is not necessary to include these fields within the output itself.

The following example shows the output of the pvs command that displays the physical volume name, size, and free
space.

pvs -0 pv_name,pv_size,pv_free
PV PSize PFree
/dev/sdbl 17.14G 17.14G
/dev/sdcl 17.14G 17.09G
/dev/sddl 17.14G 17.14G

The following example shows the same output, sorted by the free space field.

pvs -0 pv_name,pv_size,pv_free -0 pv_free
PV PSize PFree
/dev/sdcl 17.14G 17.09G
/dev/sdd1l 17.14G 17.14G
/dev/sdbl 17.14G 17.14G

The following example shows that you do not need to display the field on which you are sorting.

67

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

pvs -0 pv_name,pv_size -0 pv_free
PV PSize
/dev/sdcl 17.14G
/dev/sddl 17.14G
/dev/sdbl 17.14G

To display a reverse sort, precede a field you specify after the -0 argument with the - character.

pvs -0 pv_name,pv_size,pv_free -0 -pv_free
PV PSize PFree
/dev/sdd1l 17.14G 17.14G
/dev/sdb1l 17.14G 17.14G
/dev/sdcl 17.14G 17.09G

4.8.4. Specifying Units

T o specify the unit for the LVM report display, use the --units argument of the report command. You can specify

(b)ytes, (k)ilobytes, (m)egabytes, (g)igabytes, (t)erabytes, (e)xabytes, (p)etabytes, and (h)uman-readable. The default
display is human-readable. You can override the default by setting the units parameter in the global section of the

1vm.conf file.

The following example specifies the output of the pvs command in megabytes rather than the default gigabytes.

pvs --units m
PV VG Fmt Attr PSize PFree
/dev/sdal lvm2 -- 17555.40M 17555.40M
/dev/sdbl new_vg lvm2 a- 17552.00M 17552.00M
/dev/sdcl new_vg lvm2 a- 17552.00M 17500.00M
/dev/sdd1l new_vg lvm2 a- 17552.00M 17552.00M

By default, units are displayed in powers of 2 (multiples of 1024). You can specify that units be displayed in multiples
of 1000 by capitalizing the unit specification (B, K, M, G, T, H).

The following command displays the output as a multiple of 1024, the default behavior.

pvs
PV VG Fmt Attr PSize PFree
/dev/sdbl new_vg lvm2 a- 17.14G 17.14G
/dev/sdcl new_vg lvm2 a- 17.14G 17.09G
/dev/sdd1l new_vg lvm2 a- 17.14G 17.14G

The following command displays the output as a multiple of 1000.

pvs --units G
PV VG Fmt Attr PSize PFree
/dev/sdbl new_vg lvm2 a- 18.40G 18.40G
/dev/sdcl new_vg lvm2 a- 18.40G 18.35G
/dev/sdd1l new_vg lvm2 a- 18.40G 18.406G

You can also specify (s)ectors (defined as 512 bytes) or custom units.

The following example displays the output of the pvs command as a number of sectors.

pvs --units s
PV VG Fmt Attr PSize PFree
/dev/sdbl new_vg lvm2 a- 35946496S 35946496S
/dev/sdcl new_vg lvm2 a- 35946496S 35840000S
/dev/sdd1l new_vg lvm2 a- 35946496S 35946496S

The following example displays the output of the pvs command in units of 4 MB.

68

pvs --units 4m
VG Fmt Attr PSize PFree

PV

/dev/sdb1l
/dev/sdc1
/dev/sdd1

new_vg lvm2 a-
new_vg lvm2 a-
new_vg lvm2 a-

4388.00U 4388.00U
4388.00U 4375.00U
4388.00U 4388.00U

The lvs Command

69

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

Chapter 5. LVM Configuration Examples

This chapter provides some basic LVM configuration examples.

5.1. Creating an LVM Logical Volume on Three Disks

This example creates an LVM logical volume called new_logical_volume that consists of the disks at /dev/sda1l,
/dev/sdb1, and /dev/sdc1.

5.1.1. Creating the Physical Volumes

To use disks in a volume group, you label them as LVM physical volumes.

This command destroys any data on /dev/sdal, /dev/sdb1, and /dev/sdc1.

pvcreate /dev/sdal /dev/sdbl /dev/sdc1l
Physical volume "/dev/sdal" successfully created
Physical volume "/dev/sdb1" successfully created
Physical volume "/dev/sdcl" successfully created

5.1.2. Creating the Volume Group

The following command creates the volume group new_vol_group.

vgcreate new_vol _group /dev/sdal /dev/sdbl /dev/sdc1l
Volume group "new_vol_group" successfully created

You can use the vgs command to display the attributes of the new volume group.

vgs
VG #PV #LV #SN Attr VSize VFree
new_vol group 3 0 0 wz--n- 51.45G 51.45G
5.1.3. Creating the Logical Volume

The following command creates the logical volume new_logical_volume from the volume group new_vol_group.
This example creates a logical volume that uses 2GB of the volume group.

lvcreate -L2G -n new_logical_volume new_vol_group
Logical volume "new_logical volume" created

5.1.4. Creating the File System

The following command creates a GFS2 file system on the logical volume.

mkfs.gfs2 -plock _nolock -j 1 /dev/new_vol group/new_logical volume
This will destroy any data on /dev/new_vol_group/new_logical_volume.

Are you sure you want to proceed? [y/n] y

Device: /dev/new_vol_group/new_logical_ volume
Blocksize: 4096

Filesystem Size: 491460

Journals: 1

Resource Groups: 8

70

Chapter 5. LVM Configuration Examples

Locking Protocol: lock_nolock
Lock Table:

Syncing...
All Done

The following commands mount the logical volume and report the file system disk space usage.

mount /dev/new_vol _group/new_logical_volume /mnt
[root@tng3-1 ~]# df

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/new_vol_group/new_logical_volume
1965840 20 1965820 1% /mnt

5.2. Creating a Striped Logical Volume

This example creates an LVM striped logical volume called striped_logical_volume that stripes data across the
disks at /dev/sdal, /dev/sdb1, and /dev/sdc1.

5.2.1. Creating the Physical Volumes

Label the disks you will use in the volume groups as LVM physical volumes.

This command destroys any data on /dev/sdal, /dev/sdb1, and /dev/sdc1.

pvcreate /dev/sdal /dev/sdbl /dev/sdc1l
Physical volume "/dev/sdal" successfully created
Physical volume "/dev/sdbl" successfully created
Physical volume "/dev/sdcl" successfully created

5.2.2. Creating the Volume Group

The following command creates the volume group volgroup01.

vgcreate volgroup0l /dev/sdal /dev/sdbl /dev/sdc1l
Volume group "volgroup@l" successfully created

You can use the vgs command to display the attributes of the new volume group.

Vvgs
VG #PV #LV #SN Attr VSize VFree
volgroup01l 3 0 0 wz--n- 51.45G 51.45G

5.2.3. Creating the Logical Volume

The following command creates the striped logical volume striped_logical_volume from the volume group
volgroup01. This example creates a logical volume that is 2 gigabytes in size, with three stripes and a stripe size of
4 kilobytes.

lvcreate -i3 -I4 -L2G -nstriped_logical_volume volgroup01l
Rounding size (512 extents) up to stripe boundary size (513 extents)
Logical volume "striped_logical_volume" created

5.2.4. Creating the File System

71

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

The following command creates a GFS2 file system on the logical volume.

mkfs.gfs2 -plock_nolock -j 1 /dev/volgroup@l/striped_logical_volume
This will destroy any data on /dev/volgroup0l1/striped_logical_volume.

Are you sure you want to proceed? [y/n] y

Device: /dev/volgroup@1/striped_logical_volume
Blocksize: 4096

Filesystem Size: 492484

Journals: 1

Resource Groups: 8

Locking Protocol: lock_nolock

Lock Table:

sSyncing...

All Done

The following commands mount the logical volume and report the file system disk space usage.

mount /dev/volgroup@l/striped_logical volume /mnt
[root@tng3-1 ~]# df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/mapper/VolGroup00-LogVoloo

13902624 1656776 11528232 13% /

/dev/hdal 101086 10787 85080 12% /boot
tmpfs 127880 0 127880 0% /dev/shm
/dev/volgroup@1/striped_logical_volume

1969936 20 1969916 1% /mnt

5.3. Splitting a Volume Group

In this example, an existing volume group consists of three physical volumes. If there is enough unused space on the
physical volumes, a new volume group can be created without adding new disks.

In the initial set up, the logical volume mylv is carved from the volume group myvol, which in turn consists of the
three physical volumes, /dev/sdal, /dev/sdb1, and /dev/sdc1.

After completing this procedure, the volume group myvg will consist of /dev/sdal1 and /dev/sdb1. A second volume
group, yourvg, will consist of /dev/sdc1.

5.3.1. Determining Free Space

You can use the pvscan command to determine how much free space is currently available in the volume group.

pvscan
PV /dev/sdal VG myvg lvm2 [17.15 GB / © free]
PV /dev/sdbl VG myvg lvm2 [17.15 GB / 12.15 GB free]
PV /dev/sdcl VG myvg lvm2 [17.15 GB / 15.80 GB free]
Total: 3 [51.45 GB] / in use: 3 [51.45 GB] / in no VG: 0 [0 1

5.3.2. Moving the Data

You can move all the used physical extents in /dev/sdc1 to /dev/sdb1 with the pvmove command. The pvmove
command can take a long time to execute.

pvmove /dev/sdcl /dev/sdb1l
/dev/sdcl: Moved: 14.7%
/dev/sdcl: Moved: 30.3%
/dev/sdcl: Moved: 45.7%

72

Chapter 5. LVM Configuration Examples

/dev/sdcl: Moved: 61.0%
/dev/sdcl: Moved: 76.6%
/dev/sdcl: Moved: 92.2%
/dev/sdcl: Moved: 100.0%

After moving the data, you can see that all of the space on /dev/sdc1 is free.

pvscan
PV /dev/sdal VG myvg lvm2 [17.15 GB / © free]
PV /dev/sdbl VG myvg lvm2 [17.15 GB / 10.80 GB free]
PV /dev/sdcl VG myvg lvm2 [17.15 GB / 17.15 GB free]
Total: 3 [51.45 GB] / in use: 3 [51.45 GB] / in no VG: 0 [0 1

5.3.3. Splitting the Volume Group
To create the new volume group yourvg, use the vgsplit command to split the volume group myvg.

Before you can split the volume group, the logical volume must be inactive. If the file system is mounted, you must
unmount the file system before deactivating the logical volume.

You can deactivate the logical volumes with the 1vchange command or the vgchange command. The following
command deactivates the logical volume mylv and then splits the volume group yourvg from the volume group myvg,
moving the physical volume /dev/sdc1 into the new volume group yourvg.

lvchange -a n /dev/myvg/mylv
vgsplit myvg yourvg /dev/sdc1l
Volume group "yourvg" successfully split from "myvg"

You can use the vgs command to see the attributes of the two volume groups.

vgs
VG #PV #LV #SN Attr VSize VFree
myvg 2 1 0 wz--n- 34.30G 10.80G

yourvg 1 0 0 wz--n- 17.15G 17.15G

5.3.4. Creating the New Logical Volume

After creating the new volume group, you can create the new logical volume your 1v.

lvcreate -L5G -n yourlv yourvg
Logical volume "yourlv" created

5.3.5. Making a File System and Mounting the New Logical Volume

You can make a file system on the new logical volume and mount it.

mkfs.gfs2 -plock _nolock -j 1 /dev/yourvg/yourlv
This will destroy any data on /dev/yourvg/yourlyv.

Are you sure you want to proceed? [y/n] y

Device: /dev/yourvg/yourlv
Blocksize: 4096

Filesystem Size: 1277816

Journals: 1

Resource Groups: 20

Locking Protocol: lock _nolock

Lock Table:

73

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

Syncing...
All Done

[root@tng3-1 ~]# mount /dev/yourvg/yourlv /mnt

5.3.6. Activating and Mounting the Original Logical Volume
Since you had to deactivate the logical volume mylv, you need to activate it again before you can mount it.

lvchange -a y /dev/myvg/mylv

[root@tng3-1 ~]# mount /dev/myvg/mylv /mnt
[root@tng3-1 ~]# df

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/yourvg/yourlv 24507776 32 24507744 1% /mnt
/dev/myvg/mylv 24507776 32 24507744 1% /mnt

5.4. Removing a Disk from a Logical Volume

This example shows how you can remove a disk from an existing logical volume, either to replace the disk or to use
the disk as part of a different volume. In order to remove a disk, you must first move the extents on the LVM physical
volume to a different disk or set of disks.

5.4.1. Moving Extents to Existing Physical Volumes

In this example, the logical volume is distributed across four physical volumes in the volume group myvg.

pvs -o+pv_used
PV VG Fmt Attr PSize PFree Used
/dev/sdal myvg lvm2 a- 17.15G 12.15G 5.00G
/dev/sdbl myvg lvm2 a- 17.15G 12.15G 5.00G
/dev/sdcl myvg lvm2 a- 17.15G 12.15G 5.00G
/dev/sdd1 myvg lvm2 a- 17.15G 2.15G 15.00G

We want to move the extents off of /dev/sdb1 so that we can remove it from the volume group.
If there are enough free extents on the other physical volumes in the volume group, you can execute the pvmove

command on the device you want to remove with no other options and the extents will be distributed to the other
devices.

pvmove /dev/sdb1l
/dev/sdbl: Moved: 2.0%

/dev/sdb1: Moved: 79.2%
/dev/sdbl: Moved: 100.0%
After the pvmove command has finished executing, the distribution of extents is as follows:

pvs -o+pv_used

PV VG Fmt Attr PSize PFree Used
/dev/sdal myvg lvm2 a- 17.15G 7.15G 10.00G
/dev/sdbl myvg lvm2 a- 17.15G 17.15G 0

/dev/sdcl myvg lvm2 a- 17.15G 12.15G 5.00G
/dev/sdd1l myvg lvm2 a- 17.15G6 2.15G 15.00G

Use the vgreduce command to remove the physical volume /dev/sdb1 from the volume group.

74

Chapter 5. LVM Configuration Examples

vgreduce myvg /dev/sdb1
Removed "/dev/sdb1" from volume group "myvg"
[root@tng3-1 ~]# pvs

PV VG Fmt Attr PSize PFree
/dev/sdal myvg lvm2 a- 17.15G 7.15G
/dev/sdb1l lvm2 -- 17.15G 17.15G

/dev/sdcl myvg lvm2 a- 17.15G 12.15G
/dev/sdd1l myvg lvm2 a- 17.15G 2.15G

The disk can now be physically removed or allocated to other users.

5.4.2. Moving Extents to a New Disk
In this example, the logical volume is distributed across three physical volumes in the volume group myvg as follows:

pvs -o+pv_used
PV VG Fmt Attr PSize PFree Used
/dev/sdal myvg lvm2 a- 17.15G 7.15G 10.00G
/dev/sdbl myvg lvm2 a- 17.15G 15.15G 2.00G
/dev/sdcl myvg lvm2 a- 17.15G 15.15G 2.00G

We want to move the extents of /dev/sdb1 to a new device, /dev/sdd1.

5.4.2.1. Creating the New Physical Volume

Create a new physical volume from /dev/sdd1.

pvcreate /dev/sdd1
Physical volume "/dev/sddl" successfully created
5.4.2.2. Adding the New Physical Volume to the Volume Group

Add /dev/sdd1 to the existing volume group myvg.

vgextend myvg /dev/sdd1i
Volume group "myvg" successfully extended
[root@tng3-1]# pvs -o+pv_used
PV VG Fmt Attr PSize PFree Used
/dev/sdal myvg lvm2 a- 17.15G 7.15G 10.00G
/dev/sdb1 myvg lvm2 a- 17.15G 15.15G 2.00G
/dev/sdcl myvg lvm2 a- 17.15G 15.15G 2.00G
/dev/sdd1 myvg lvm2 a- 17.15G 17.156G 0]

5.4.2.3. Moving the Data

Use the pvmove command to move the data from /dev/sdb1 to /dev/sdd1.

pvmove /dev/sdbl /dev/sdd1
/dev/sdbl: Moved: 10.0%

/dev/sdb1: Moved: 79.7%
/dev/sdb1l: Moved: 100.0%

[root@tng3-1]# pvs -o+pv_used

PV VG Fmt Attr PSize PFree Used
/dev/sdal myvg lvm2 a- 17.15G 7.15G 10.00G
/dev/sdb1 myvg lvm2 a- 17.15G 17.15G 0]

/dev/sdcl myvg lvm2 a- 17.15G 15.15G 2.00G
/dev/sdd1 myvg lvm2 a- 17.15G 15.15G 2.00G

5.4.2.4. Removing the Old Physical Volume from the Volume Group

75

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

After you have moved the data off /dev/sdb1, you can remove it from the volume group.

vgreduce myvg /dev/sdb1
Removed "/dev/sdbl1" from volume group "myvg"

You can now reallocate the disk to another volume group or remove the disk from the system.

5.5. Creating a Mirrored LVM Logical Volume in a Cluster

Creating a mirrored LVM logical volume in a cluster requires the same commands and procedures as creating a
mirrored LVM logical volume on a single node with a segment type of mirror. However, in order to create a mirrored

LVM volume in a cluster, the cluster and cluster mirror infrastructure must be running, the cluster must be quorate, and
the locking type in the 1vm .conf file must be set correctly to enable cluster locking, either directly or by means of the
lvmconf command as described in Section 3.1, “Creating LVM Volumes in a Cluster”.

In Red Hat Enterprise Linux 7, clusters are managed through Pacemaker. Clustered LVM logical volumes are
supported only in conjuction with Pacemaker clusters, and must be configured as cluster resources.

The following procedure creates a mirrored LVM volume in a cluster.

1. Install the cluster software and LVM packages, start the cluster software, and create the cluster. You must
configure fencing for the cluster. The document High Availability Add-On Administration provides a sample
procedure for creating a cluster and configuring fencing for the nodes in the cluster. The document High
Availability Add-On Reference provides more detailed information about the components of cluster configuration.

2. In order to create a mirrored logical volume that is shared by all of the nodes in a cluster, the locking type must
be set correctly in the 1vm .conf file in every node of the cluster. By default, the locking type is set to local. To

change this, execute the following command in each node of the cluster to enable clustered locking:

/sbin/lvmconf --enable-cluster

3. Setup a d1lm resource for the cluster. You create the resource as a cloned resource so that it will run on every
node in the cluster.

pcs resource create dlm ocf:pacemaker:controld op monitor interval=30s on-
fail=fence clone interleave=true ordered=true

4. Configure clvmd as a cluster resource. Just as for the d1m resource, you create the resource as a cloned
resource so that it will run on every node in the cluster. Note that you must set the with_cmirrord=true
parameter to enable the cmirrord daemon on all of the nodes that clvmd runs on.

pcs resource create clvmd pcf:heartbeat:clvm with_cmirrord=true op monitor
interval=30s on-fail=fence clone interleave=true ordered=true

If you have already configured a clvmd resource but did not specify the with_cmirrord=true parameter,
you can update the resource to include the parameter with the following command.

pcs resource update clvmd with_cmirrord=true

5. Set up clvmd and d1m dependency and start up order. clvmd must start after d1m and must run on the same
node as d1m.

pcs constraint order start dlm-clone then clvmd-clone
pcs constraint colocation add clvmd-clone with dlm-clone

6. Create the mirror. The first step is creating the physical volumes. The following commands create three physical
volumes. Two of the physical volumes will be used for the legs of the mirror, and the third physical volume will
contain the mirror log.

76

Chapter 5. LVM Configuration Examples

pvcreate /dev/xvdb1l

Physical volume "/dev/xvdb1l" successfully created
[root@doc-07 ~]# pvcreate /dev/xvdb2

Physical volume "/dev/xvdb2" successfully created
[root@doc-07 ~]# pvcreate /dev/xvdcl

Physical volume "/dev/xvdc1l" successfully created

7. Create the volume group. This example creates a volume group vg001 that consists of the three physical
volumes that were created in the previous step.

vgcreate vgeol /dev/xvdbl /dev/xvdb2 /dev/xvdcl
Clustered volume group "vg@O1" successfully created

Note that the output of the vgcreate command indicates that the volume group is clustered. You can verify that
a volume group is clustered with the vgs command, which will show the volume group's attributes. If a volume
group is clustered, it will show a c attribute.

vgs vgoeol
VG #PV #LV #SN Attr VSize VFree
vgool 3 (0] 0 wz--nc 68.97G 68.97G

8. Create the mirrored logical volume. This example creates the logical volume mirrorlv from the volume group
vgo01. This volume has one mirror leg. This example specifies which extents of the physical volume will be
used for the logical volume.

lvcreate --type mirror -1 1000 -ml1 vgo@l1l -n mirrorlv /dev/xvdb1:1-1000
/dev/xvdb2:1-1000 /dev/xvdc1:0
Logical volume "mirrorlv" created

You can use the 1vs command to display the progress of the mirror creation. The following example shows that
the mirror is 47% synced, then 91% synced, then 100% synced when the mirror is complete.

1lvs vgoO01/mirrorlv

LV VG Attr LSize Origin Snap% Move Log Copy% Convert

mirrorlv vgool mwi-a- 3.916G vgoo1_mlog 47 .00
[root@doc-07 log]# lvs vge01l/mirrorlv

LV VG Attr LSize Origin Snap% Move Log Copy% Convert

mirrorlv vgoo1 mwi-a- 3.91G vgeel_mlog 91.00
[root@doc-07 ~]# 1lvs vgool/mirrorlv

LV VG Attr LSize Origin Snap% Move Log Copy% Convert

mirrorlv vgool mwi-a- 3.91G vgeo1_mlog 100.00

The completion of the mirror is noted in the system log:

May 10 14:52:52 doc-07 [19402]: Monitoring mirror device vg@@l-mirrorlv for events
May 10 14:55:00 doc-07 1lvm[19402]: vgO@l-mirrorlv is now in-sync

9. You can use the 1vs with the -0 +devices options to display the configuration of the mirror, including which

devices make up the mirror legs. You can see that the logical volume in this example is composed of two linear
images and one log.

lvs -a -0 +devices

LV VG Attr LSize Origin Snap% Move Log Copy%
Convert Devices

mirrorlv vgool mwi-a- 3.916G mirrorlv_mlog
100.00 mirrorlv_mimage_0(0), mirrorlv_mimage_1(0)

[mirrorlv_mimage_0] vgoo1l iwi-ao 3.91G
/dev/xvdb1(1)

[mirrorlv_mimage_1] vgooe1l iwi-ao 3.916G
/dev/xvdb2(1)

[mirrorlv_mlog] vgeol lwi-ao 4.00M
/dev/xvdc1(0)

77

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

You can use the seg_pe_ranges option of the 1vs to display the data layout. You can use this option to verify

that your layout is properly redundant. The output of this command displays PE ranges in the same format that
the lvcreate and lvresize commands take as input.

lvs -a -0 +seg_pe_ranges --segments
PE Ranges
mirrorlv_mimage_0:0-999 mirrorlv_mimage_1:0-999
/dev/xvdb1:1-1000
/dev/xvdb2:1-1000
/dev/xvdcl:0-0

_

“Recovering from LVM Mirror Failure”.

78

Chapter 6. LVM Troubleshooting

Chapter 6. LVM Troubleshooting

This chapter provide instructions for troubleshooting a variety of LVM issues.

6.1. Troubleshooting Diagnostics
If a command is not working as expected, you can gather diagnostics in the following ways:
Use the -v, -vv, -vvv, or -vvvv argument of any command for increasingly verbose levels of output.

If the problem is related to the logical volume activation, set 'activation = 1' in the 'log' section of the configuration
file and run the command with the -vvvv argument. After you have finished examining this output be sure to reset

this parameter to 0, to avoid possible problems with the machine locking during low memory situations.

Run the 1vmdump command, which provides an information dump for diagnostic purposes. For information, see the
Ivmdump(8) man page.

Execute the 1vs -v,pvs -a ordmsetup info -c command for additional system information.

Examine the last backup of the metadata in the /etc/1vm/backup file and archived versions in the
/etc/lvm/archive file.

Check the current configuration information by running the 1vm dumpconfig command.

Check the .cache file in the /etc/1vm directory for a record of which devices have physical volumes on them.

6.2. Displaying Information on Failed Devices

You can use the -P argument of the 1vs or vgs command to display information about a failed volume that would
otherwise not appear in the output. This argument permits some operations even though the metadata is not
completely consistent internally. For example, if one of the devices that made up the volume group vg failed, the vgs
command might show the following output.

vgs -o +devices
Volume group "vg" not found

If you specify the -P argument of the vgs command, the volume group is still unusable but you can see more
information about the failed device.

vgs -P -0 +devices
Partial mode. Incomplete volume groups will be activated read-only.
VG #PV #LV #SN Attr VSize VFree Devices
vg 9 2 0 rz-pn- 2.11T 2.07T unknown device(0)
vg 9 2 @ rz-pn- 2.11T 2.07T unknown device(5120), /dev/sdal(0)

In this example, the failed device caused both a linear and a striped logical volume in the volume group to fail. The 1vs
command without the -P argument shows the following output.

lvs -a -o +devices
Volume group "vg" not found

Using the -P argument shows the logical volumes that have failed.

1lvs -P -a -0 +devices
Partial mode. Incomplete volume groups will be activated read-only.

Lv VG Attr LSize Origin Snap% Move Log Copy% Devices
linear vg -wi-a- 20.00G unknown device(0)
stripe vg -wi-a- 20.00G unknown device(5120), /dev/sdal(0)

79

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

The following examples show the output of the pvs and 1vs commands with the -P argument specified when a leg of
a mirrored logical volume has failed.

vgs -a -o +devices -P
Partial mode. Incomplete volume groups will be activated read-only.

VG #PV #LV #SN Attr VSize VFree Devices

corey 4 4 O rz-pnc 1.58T 1.34T my_mirror_mimage_0(0), my_mirror_mimage_1(0)

corey 4 4 O rz-pnc 1.58T 1.34T /dev/sdd1(0)

corey 4 4 O rz-pnc 1.58T 1.34T unknown device(0)

corey 4 4 O rz-pnc 1.58T 1.34T /dev/sdb1(0)
lvs -a -o +devices -P

Partial mode. Incomplete volume groups will be activated read-only.

LV VG Attr LSize Origin Snap% Move Log Copy%
Devices

my_mirror corey mwi-a- 120.00G my_mirror_mlog 1.95

my_mirror_mimage_0(0),my_mirror_mimage_1(0)
[my_mirror_mimage_0] corey iwi-ao 120.00G
unknown device(0)
[my_mirror_mimage_1] corey iwi-ao 120.00G
/dev/sdb1(0)
[my_mirror_mlog]
/dev/sdd1(0)

corey lwi-ao 4.00M

6.3. Recovering from LVM Mirror Failure

This section provides an example of recovering from a situation where one leg of an LVM mirrored volume fails
because the underlying device for a physical volume goes down and the mirror_log_fault_policy parameter is
set to remove, requiring that you manually rebuild the mirror. For information on setting the

mirror_log_fault_policy parameter, refer to Section 6.3, “Recovering from LVM Mirror Failure”.

When a mirror leg fails, LVM converts the mirrored volume into a linear volume, which continues to operate as before
but without the mirrored redundancy. At that point, you can add a new disk device to the system to use as a
replacement physical device and rebuild the mirror.

The following command creates the physical volumes which will be used for the mirror.

pvcreate /dev/sd[abcdefgh][12]

Physical volume "/dev/sdal" successfully created
Physical volume "/dev/sda2" successfully created
Physical volume "/dev/sdbl" successfully created
Physical volume "/dev/sdb2" successfully created
Physical volume "/dev/sdcl" successfully created
Physical volume "/dev/sdc2" successfully created
Physical volume "/dev/sdd1" successfully created
Physical volume "/dev/sdd2" successfully created
Physical volume "/dev/sdel" successfully created
Physical volume "/dev/sde2" successfully created
Physical volume "/dev/sdf1" successfully created
Physical volume "/dev/sdf2" successfully created
Physical volume "/dev/sdgl" successfully created
Physical volume "/dev/sdg2" successfully created
Physical volume "/dev/sdhl" successfully created
Physical volume "/dev/sdh2" successfully created

The following commands creates the volume group vg and the mirrored volume groupfs.

vgcreate vg /dev/sd[abcdefgh][12]
Volume group "vg" successfully created

[root@link-08 ~]# lvcreate -L 750M -n groupfs -m 1 vg /dev/sdal /dev/sdbl /dev/sdc1l

Rounding up size to full physical extent 752.00 MB
Logical volume "groupfs" created

80

Chapter 6. LVM Troubleshooting

You can use the 1vs command to verify the layout of the mirrored volume and the underlying devices for the mirror leg
and the mirror log. Note that in the first example the mirror is not yet completely synced; you should wait until the
Copy% field displays 100.00 before continuing.

lvs -a -0 +devices

LV VG Attr LSize Origin Snap% Move Log Copy% Devices

groupfs vg mwi-a- 752.00M groupfs_mlog 21.28
groupfs_mimage_0(0),groupfs_mimage_1(0)

[groupfs_mimage_0] vg iwi-ao 752.00M /dev/sdal(0)

[groupfs_mimage_1] vg iwi-ao 752.060M /dev/sdb1(0)

[groupfs_mlog] vg 1wi-ao 4.00M /dev/sdc1(0)
[root@link-08 ~]# lvs -a -0 +devices

LV VG Attr LSize Origin Snap% Move Log Copy% Devices

groupfs vg mwi-a- 752.00M groupfs_mlog 100.00

groupfs_mimage_0(0),groupfs_mimage_1(0)
[groupfs_mimage_0] vg iwi-ao 752.00M

/dev/sdal(0)

[groupfs_mimage_1] vg iwi-ao 752.060M
/dev/sdb1(0)

[groupfs_mlog] vg lwi-ao 4.00M i
/dev/sdc1(0)

In this example, the primary leg of the mirror /dev/sda1 fails. Any write activity to the mirrored volume causes LVM to
detect the failed mirror. When this occurs, LVM converts the mirror into a single linear volume. In this case, to trigger
the conversion, we execute a dd command

dd if=/dev/zero of=/dev/vg/groupfs count=10
10+0 records in
10+0 records out

You can use the 1vs command to verify that the device is now a linear device. Because of the failed disk, /O errors
occur.

lvs -a -o +devices
/dev/sdal: read failed after 0 of 2048 at 0: Input/output error
/dev/sda2: read failed after © of 2048 at 0: Input/output error
LV VG Attr LSize Origin Snap% Move Log Copy% Devices
groupfs vg -wi-a- 752.00M /dev/sdb1(0)

At this point you should still be able to use the logical volume, but there will be no mirror redundancy.

To rebuild the mirrored volume, you replace the broken drive and recreate the physical volume. If you use the same
disk rather than replacing it with a new one, you will see "inconsistent" warnings when you run the pvcreate
command. You can prevent that warning from appearing by executing the vgreduce --removemissing command.

pvcreate /dev/sdi[12]
Physical volume "/dev/sdil" successfully created
Physical volume "/dev/sdi2" successfully created

[root@link-08 ~]# pvscan
PV /dev/sdb1l VG vg lvm2 [67.83 GB
PV /dev/sdb2 VG vg lvm2 [67.83 GB
PV /dev/sdc1l VG vg lvm2 [67.83 GB
PV /dev/sdc2 VG vg lvm2 [67.83 GB
PV /dev/sdd1 VG vg lvm2 [67.83 GB
PV /dev/sdd2 VG vg lvm2 [67.83 GB
PV /dev/sdel VG vg lvm2 [67.83 GB
PV /dev/sde2 VG vg lvm2 [67.83 GB
PV /dev/sdf1 VG vg lvm2 [67.83 GB
PV /dev/sdf2 VG vg lvm2 [67.83 GB
PV /dev/sdgl VG vg lvm2 [67.83 GB
PV /dev/sdg2 VG vg lvm2 [67.83 GB
PV /dev/sdhl VG vg lvm2 [67.83 GB

67.10 GB free]
67.83 GB free]
67.83 GB free]
67.83 GB free]
67.83 GB free]
67.83 GB free]
67.83 GB free]
67.83 GB free]
67.83 GB free]
67.83 GB free]
67.83 GB free]
67.83 GB free]
67.83 GB free]

NN N N NN N NN NN NN

81

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

PV
PV
PV

Next you extend the original volume group with the new physical volume.

/dev/sdh2
/dev/sdil
/dev/sdi2

VG vg

lvm2 [603.94 GB]

vgextend vg /dev/sdi[12]
Volume group "vg" successfully extended

pvscan

PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV

/dev/sdb1l
/dev/sdb2
/dev/sdcl
/dev/sdc2
/dev/sdd1
/dev/sdd2
/dev/sdel
/dev/sde2
/dev/sdf1
/dev/sdf2
/dev/sdgl
/dev/sdg2
/dev/sdhli
/dev/sdh2
/dev/sdil
/dev/sdi2

VG
VG
VG
VG
VG
VG
VG
VG
VG
VG
VG
VG
VG
VG
VG
VG

Vg
Vg
Vg
Vg
Vg
Vg
Vg
Vg
Vg
Vg
Vg
Vg
Vg
vg
Vg
Vg

lvm2
lvm2
lvm2
lvm2
lvm2
lvm2
lvm2
lvm2
lvm2
lvm2
lvm2
lvm2
lvm2
lvm2
lvm2
lvm2

Total: 16 [2.11 TB] / in use:

[67
[67
[67

[67.
[67.
[67.

[67
[67
[67
[67
[67
[67
[67
[67

.83
.83
.83
83
83
83
.83
.83
.83
.83
.83
.83
.83
.83

lvm2 [603.94 GB]
Total: 16 [2.11 TB] / in use: 14 [949.65 GB] / in no VG:

GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB /

NN N N NN N NN NN NN

67
67
67

67.
67.
67.
.83
.83
.83
.83
.83
.83
.83

67
67
67
67
67
67
67

67.

.10
.83
.83

83
83
83

83

GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB

lvm2 [67.83 GB / 67.83 GB free]

free]
free]
free]
free]
free]
free]
free]
free]
free]
free]
free]
free]
free]
free]

2 [1.18 TB]

[603.93 GB / 603.93 GB free]
[603.93 GB / 603.93 GB free]
16 [2.11 TB] / in no VG: 0 [0 1

Convert the linear volume back to its original mirrored state.

lvconvert -m 1 /dev/vg/groupfs /dev/sdil /dev/sdbl /dev/sdc1l
Logical volume mirror converted.

You can use the 1vs command to verify that the mirror is restored

lvs -a -0 +devices

LV

groupfs

VG
vg

[groupfs_mimage_0] vg
[groupfs_mimage_1] vg

[groupfs_mlog]

Vg

Attr

LSize
mwi-a- 752.00M
groupfs_mimage_0(0),groupfs_mimage_1(0)

iwi-ao 752.00M
iwi-ao 752.00M
4.00M

Iwi-

ao

Origin Snap%

6.4. Recovering Physical Volume Metadata

Move Log

Copy% Devices
groupfs_mlog 68.62

/dev/sdb1(0)
/dev/sdil(0)
/dev/sdc1(0)

If the volume group metadata area of a physical volume is accidentally overwritten or otherwise destroyed, you will get
an error message indicating that the metadata area is incorrect, or that the system was unable to find a physical
volume with a particular UUID. You may be able to recover the data the physical volume by writing a new metadata
area on the physical volume specifying the same UUID as the lost metadata.

You should not attempt this procedure with a working LVM logical volume. You will lose your data if you specify
the incorrect UUID.

The following example shows the sort of output you may see if the metadata area is missing or corrupted.

82

Chapter 6. LVM Troubleshooting

lvs -a -o +devices
Couldn't find device with uuid 'FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5Sk'.
Couldn't find all physical volumes for volume group VG.
Couldn't find device with uuid 'FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5SkK'.
Couldn't find all physical volumes for volume group VG.

You may be able to find the UUID for the physical volume that was overwritten by looking in the /etc/1vm/archive
directory. Look in the file VolumeGroupName_xxxx .vg for the last known valid archived LVM metadata for that volume

group.

Alternately, you may find that deactivating the volume and setting the partial (-P) argument will enable you to find
the UUID of the missing corrupted physical volume.

vgchange -an --partial
Partial mode. Incomplete volume groups will be activated read-only.
Couldn't find device with uuid 'FmGRh3-zhok-1iVI8-7qTD-S5BI-MAEN-NYM5Sk'.
Couldn't find device with uuid 'FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5Sk'.

Use the --uuid and --restorefile arguments of the pvcreate command to restore the physical volume. The
following example labels the /dev/sdh1 device as a physical volume with the UUID indicated above, FWGRh3-zhok-
ivi8-7qTD-S5BI-MAEN-NYM5Sk. This command restores the physical volume label with the metadata information
contained in VG_00050 .vg, the most recent good archived metadata for the volume group. The restorefile
argument instructs the pvcreate command to make the new physical volume compatible with the old one on the
volume group, ensuring that the new metadata will not be placed where the old physical volume contained data (which
could happen, for example, if the original pvcreate command had used the command line arguments that control

metadata placement, or if the physical volume was originally created using a different version of the software that used
different defaults). The pvcreate command overwrites only the LVM metadata areas and does not affect the existing
data areas.

pvcreate --uuid "FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5Sk" --restorefile
/etc/1lvm/archive/VG6_00050.vg /dev/sdhi
Physical volume "/dev/sdhl" successfully created

You can then use the vgcfgrestore command to restore the volume group's metadata.

vgcfgrestore VG
Restored volume group VG

You can now display the logical volumes.

lvs -a -0 +devices

LV VG Attr LSize Origin Snap% Move Log Copy% Devices
stripe VG -wi--- 300.006 /dev/sdhl (@), /dev/sdal(0)
stripe VG -wi--- 300.006 /dev/sdhl (34728), /dev/sdb1(0)

The following commands activate the volumes and display the active volumes.

lvchange -ay /dev/VG/stripe
[root@link-07 backup]# lvs -a -o +devices

LV VG Attr LSize Origin Snap% Move Log Copy% Devices
stripe VG -wi-a- 300.00G /dev/sdh1 (0),/dev/sdal(0)
stripe VG -wi-a- 300.00G /dev/sdhl (34728),/dev/sdb1(0)

If the on-disk LVM metadata takes as least as much space as what overrode it, this command can recover the physical
volume. If what overrode the metadata went past the metadata area, the data on the volume may have been affected.
You might be able to use the fsck command to recover that data.

83

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

6.5. Replacing a Missing Physical Volume

If a physical volume fails or otherwise needs to be replaced, you can label a new physical volume to replace the one
that has been lost in the existing volume group by following the same procedure as you would for recovering physical
volume metadata, described in Section 6.4, “Recovering Physical Volume Metadata”. You can use the --partial and

--verbose arguments of the vgdisplay command to display the UUIDs and sizes of any physical volumes that are
no longer present. If you wish to substitute another physical volume of the same size, you can use the pvcreate
command with the --restorefile and --uuid arguments to initialize a new device with the same UUID as the
missing physical volume. You can then use the vgcfgrestore command to restore the volume group's metadata.

6.6. Removing Lost Physical Volumes from a Volume Group

If you lose a physical volume, you can activate the remaining physical volumes in the volume group with the - -
partial argument of the vgchange command. You can remove all the logical volumes that used that physical
volume from the volume group with the --removemissing argument of the vgreduce command.

It is recommended that you run the vgreduce command with the --test argument to verify what you will be
destroying.

Like most LVM operations, the vgreduce command is reversible in a sense if you immediately use the
vgcfgrestore command to restore the volume group metadata to its previous state. For example, if you used the - -
removemissing argument of the vgreduce command without the --test argument and find you have removed
logical volumes you wanted to keep, you can still replace the physical volume and use another vgcfgrestore
command to return the volume group to its previous state.

6.7. Insufficient Free Extents for a Logical Volume

You may get the error message "Insufficient free extents" when creating a logical volume when you think you have
enough extents based on the output of the vgdisplay or vgs commands. This is because these commands round
figures to 2 decimal places to provide human-readable output. To specify exact size, use free physical extent count
instead of some multiple of bytes to determine the size of the logical volume.

The vgdisplay command, by default, includes this line of output that indicates the free physical extents.

vgdisplay
--- Volume group ---

Free PE / Size 8780 / 34.30 GB

Alternately, you can use the vg_free_count and vg_extent_count arguments of the vgs command to display the
free extents and the total number of extents.

vgs -o +vg_free_count,vg extent_count
VG #PV #LV #SN Attr VSize VFree Free #Ext
testvg 2 0 0 wz--n- 34.30G 34.30G 8780 8780

With 8780 free physical extents, you can run the following command, using the lower-case | argument to use extents
instead of bytes:

lvcreate -18780 -n testlv testvg

This uses all the free extents in the volume group.

vgs -0 +vg_free_count,vg_extent_count
VG #PV #LV #SN Attr VSize VFree Free #Ext
testvg 2 1 0 wz--n- 34.30G (¢} 0 8780

Alternately, you can extend the logical volume to use a percentage of the remaining free space in the volume group by

84

Chapter 6. LVM Troubleshooting

using the -1 argument of the 1vcreate command. For information, see Section 4.4.1, “Creating Linear Logical
Volumes”.

85

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

The Device Mapper

The Device Mapper is a kernel driver that provides a framework for volume management. It provides a generic way of
creating mapped devices, which may be used as logical volumes. It does not specifically know about volume groups or
metadata formats.

The Device Mapper provides the foundation for a number of higher-level technologies. In addition to LVM, Device-
Mapper multipath and the dmraid command use the Device Mapper. The application interface to the Device Mapper
is the 1ioctl system call. The user interface is the dmsetup command.

LVM logical volumes are activated using the Device Mapper. Each logical volume is translated into a mapped device.
Each segment translates into a line in the mapping table that describes the device. The Device Mapper supports a
variety of mapping targets, including linear mapping, striped mapping, and error mapping. So, for example, two disks
may be concatenated into one logical volume with a pair of linear mappings, one for each disk. When LVM creates a
volume, it creates an underlying device-mapper device that can be queried with the dmsetup command. For
information about the format of devices in a mapping table, see Section A.1, “Device Table Mappings”. For information
about using the dmsetup command to query a device, see Section A.2, “The dmsetup Command”.

A.1. Device Table Mappings

A mapped device is defined by a table that specifies how to map each range of logical sectors of the device using a
supported Device Table mapping. T he table for a mapped device is constructed from a list of lines of the form:

start length mapping [mapping_parameters...]

In the first line of a Device Mapper table, the start parameter must equal 0. The start + length parameters on one
line must equal the start on the next line. Which mapping parameters are specified in a line of the mapping table
depends on which mapping type is specified on the line.

Sizes in the Device Mapper are always specified in sectors (512 bytes).

When a device is specified as a mapping parameter in the Device Mapper, it can be referenced by the device name in
the filesystem (for example, /dev/hda) or by the major and minor numbers in the format majorminor. The
major:minor format is preferred because it avoids pathname lookups.

The following shows a sample mapping table for a device. In this table there are four linear targets:

0 35258368 linear 8:48 65920

35258368 35258368 linear 8:32 65920
70516736 17694720 linear 8:16 17694976
88211456 17694720 linear 8:16 256

The first 2 parameters of each line are the segment starting block and the length of the segment. The next keyword is
the mapping target, which in all of the cases in this example is 1inear. The rest of the line consists of the

parameters for a 1inear target.
The following subsections describe the format of the following mappings:
linear
striped
mirror
snapshot and snapshot-origin
error
zero

multipath

86

The Device Mapper

crypt

A.1.1. The linear Mapping Target

A linear mapping target maps a continuous range of blocks onto another block device. The format of a linear target is
as follows:

start length linear device offset

start
starting block in virtual device
length

length of this segment

device

block device, referenced by the device name in the filesystem or by the major and minor numbers in the
format majorminor

offset

starting offset of the mapping on the device

The following example shows a linear target with a starting block in the virtual device of 0, a segment length of
1638400, a major:minor number pair of 8:2, and a starting offset for the device of 41146992.

0 16384000 linear 8:2 41156992

The following example shows a linear target with the device parameter specified as the device /dev/hda.

0 20971520 linear /dev/hda 384

A.1.2. The striped Mapping Target

The striped mapping target supports striping across physical devices. It takes as arguments the number of stripes
and the striping chunk size followed by a list of pairs of device name and sector. The format of a striped target is as
follows:

start length striped #stripes chunk_size devicel offsetl ... deviceN offsetN

There is one set of device and offset parameters for each stripe.
start
starting block in virtual device
length
length of this segment
#stripes
number of stripes for the virtual device
chunk_size

number of sectors written to each stripe before switching to the next; must be power of 2 at least as big as
the kernel page size

87

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

device

block device, referenced by the device name in the filesystem or by the major and minor numbers in the
format majorminor.

offset
starting offset of the mapping on the device

The following example shows a striped target with three stripes and a chunk size of 128:

0 73728 striped 3 128 8:9 384 8:8 384 8:7 9789824

0

starting block in virtual device
73728

length of this segment
striped 3128

stripe across three devices with chunk size of 128 blocks
8:9

major:minor numbers of first device
384

starting offset of the mapping on the first device
8:8

major:minor numbers of second device
384

starting offset of the mapping on the second device
8:7

major:minor numbers of third device
9789824

starting offset of the mapping on the third device

The following example shows a striped target for 2 stripes with 256 KiB chunks, with the device parameters specified
by the device names in the file system rather than by the major and minor numbers.

0 65536 striped 2 512 /dev/hda 0 /dev/hdb ©

A.1.3. The mirror Mapping Target

The mirror mapping target supports the mapping of a mirrored logical device. The format of a mirrored target is as
follows:

start length mirror log_type #logargs logargl ... logargN #devs devicel offsetl ...
deviceN offsetN

start

starting block in virtual device

88

The Device Mapper

length
length of this segment
log type
The possible log types and their arguments are as follows:
core
The mirror is local and the mirror log is kept in core memory. This log type takes 1 - 3 arguments:
regionsize [[no]sync] [block_on_error]
disk
The mirror is local and the mirror log is kept on disk. This log type takes 2 - 4 arguments:
logdevice regionsize [[no]sync] [block _on_error]
clustered_core

The mirror is clustered and the mirror log is kept in core memory. This log type takes 2 - 4
arguments:

regionsize UUID [[no]sync] [block_on_error]

clustered_disk
The mirror is clustered and the mirror log is kept on disk. This log type takes 3 - 5 arguments:
logdevice regionsize UUID [[no]sync] [block_on_error]

LVM maintains a small log which it uses to keep track of which regions are in sync with the mirror or mirrors.
The regionsize argument specifies the size of these regions.

In a clustered environment, the UUID argument is a unique identifier associated with the mirror log device so
that the log state can be maintained throughout the cluster.

The optional [no] sync argument can be used to specify the mirror as "in-sync" or "out-of-sync". The
block _on_error argumentis used to tell the mirror to respond to errors rather than ignoring them.

#log_args
number of log arguments that will be specified in the mapping
logargs

the log arguments for the mirror; the number of log arguments provided is specified by the #1og-args
parameter and the valid log arguments are determined by the 1og_type parameter.

#devs
the number of legs in the mirror; a device and an offset is specified for each leg
device

block device for each mirror leg, referenced by the device name in the filesystem or by the major and minor
numbers in the format majorminor. A block device and offset is specified for each mirror leg, as indicated by

the #devs parameter.
offset

starting offset of the mapping on the device. A block device and offset is specified for each mirror leg, as
indicated by the #devs parameter.

89

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

The following example shows a mirror mapping target for a clustered mirror with a mirror log kept on disk.

0 52428800 mirror clustered_disk 4 253:2 1024 UUID block_on_error 3 253:3 0 253:4 0 253:5 0

0

starting block in virtual device
52428800

length of this segment
mirror clustered_disk

mirror target with a log type specifying that mirror is clustered and the mirror log is maintained on disk

4
4 mirror log arguments will follow
253:2
major:minor numbers of log device
1024
region size the mirror log uses to keep track of what is in sync
UUID

UUID of mirror log device to maintain log information throughout a cluster
block_on_error

mirror should respond to errors

number of legs in mirror
253:3 0 253:4 0 253:50

major:minor numbers and offset for devices constituting each leg of mirror

A.1.4. The snapshot and snapshot-origin Mapping Targets
When you create the first LVM snapshot of a volume, four Device Mapper devices are used:
1. Adevice with a 1inear mapping containing the original mapping table of the source volume.

2. A device with a 1inear mapping used as the copy-on-write (COW) device for the source volume; for each

write, the original data is saved in the COW device of each snapshot to keep its visible content unchanged (until
the COW device fills up).

3. A device with a snapshot mapping combining #1 and #2, which is the visible snapshot volume.

4. The "original" volume (which uses the device number used by the original source volume), whose table is
replaced by a "snapshot-origin" mapping from device #1.

A fixed naming scheme is used to create these devices, For example, you might use the following commands to create
an LVM volume named base and a snapshot volume named snap based on that volume.

lvcreate -L 16 -n base volumeGroup
lvcreate -L 100M --snapshot -n snap volumeGroup/base

90

The Device Mapper

This yields four devices, which you can view with the following commands:

dmsetup table|grep volumeGroup
volumeGroup-base-real: © 2097152 linear 8:19 384
volumeGroup-snap-cow: O 204800 linear 8:19 2097536
volumeGroup-snap: @ 2097152 snapshot 254:11 254:12 P 16
volumeGroup-base: 0 2097152 snapshot-origin 254:11

1s -1L /dev/mapper/volumeGroup-*

brw------- 1 root root 254, 11 29 ago 18:15 /dev/mapper/volumeGroup-base-real
brw------- 1 root root 254, 12 29 ago 18:15 /dev/mapper/volumeGroup-snap-cow
brw------- 1 root root 254, 13 29 ago 18:15 /dev/mapper/volumeGroup-snap
brw------- 1 root root 254, 10 29 ago 18:14 /dev/mapper/volumeGroup-base

The format for the snapshot-origin targetis as follows:
start length snapshot-origin origin

start

starting block in virtual device
length

length of this segment
origin

base volume of snapshot

The snapshot-origin will normally have one or more snapshots based on it. Reads will be mapped directly to the

backing device. For each write, the original data will be saved in the COW device of each snapshot to keep its visible
content unchanged until the COW device fills up.

The format for the snapshot target is as follows:
start length snapshot origin COW-device P|N chunksize

start
starting block in virtual device
length
length of this segment
origin
base volume of snapshot
COW-device
Device on which changed chunks of data are stored
P|N

P (Persistent) or N (Not persistent); indicates whether snapshot will survive after reboot. For transient
snapshots (N) less metadata must be saved on disk; they can be kept in memory by the kernel.

chunksize
Size in sectors of changed chunks of data that will be stored on the COW device

The following example shows a snapshot-origin target with an origin device of 254:11.

91

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

0 2097152 snapshot-origin 254:11

The following example shows a snapshot target with an origin device of 254:11 and a COW device of 254:12. This

snapshot device is persistent across reboots and the chunk size for the data stored on the COW device is 16
sectors.

0 2097152 snapshot 254:11 254:12 P 16

A.1.5. The error Mapping Target
With an error mapping target, any /O operation to the mapped sector fails.

An error mapping target can be used for testing. To test how a device behaves in failure, you can create a device
mapping with a bad sector in the middle of a device, or you can swap out the leg of a mirror and replace the leg with an
error target.

An error target can be used in place of a failing device, as a way of avoiding timeouts and retries on the actual device.
It can serve as an intermediate target while you rearrange LVM metadata during failures.

The error mapping target takes no additional parameters besides the start and length parameters.

The following example shows an error target.

0 65536 error

A.1.6. The zero Mapping Target

The zero mapping target is a block device equivalent of /dev/zero. A read operation to this mapping returns blocks
of zeros. Data written to this mapping is discarded, but the write succeeds. The zero mapping target takes no
additional parameters besides the start and length parameters.

The following example shows a zero target for a 16 Tb Device.

0 65536 zero

A.1.7. The multipath Mapping Target

The multipath mapping target supports the mapping of a multipathed device. The format for the multipath targetis
as follows:

start length multipath #features [featurel ... featureN] #handlerargs [handlerargl ...
handlerargN] #pathgroups pathgroup pathgroupargsl ... pathgroupargsnN

There is one set of pathgroupargs parameters for each path group.
start
starting block in virtual device
length
length of this segment
#features

The number of multipath features, followed by those features. If this parameter is zero, then there is no
feature parameter and the next device mapping parameter is #handlerargs. Currently there is one
supported feature that can be set with the features attribute in the multipath.conf file,
queue_if_no_path. This indicates that this multipathed device is currently set to queue I/O operations if
there is no path available.

92

The Device Mapper

In the following example, the no_path_retry attribute in the multipath.conf file has been set to queue

I/O operations only until all paths have been marked as failed after a set number of attempts have been made
to use the paths. In this case, the mapping appears as follows until all the path checkers have failed the
specified number of checks.

0 71014400 multipath 1 queue_if_no_path © 2 1 round-robin 0 2 1 66:128 \
1000 65:64 1000 round-robin 0 2 1 8:0 1000 67:192 1000

After all the path checkers have failed the specified number of checks, the mapping would appear as follows.

0 71014400 multipath © ® 2 1 round-robin 0 2 1 66:128 1000 65:64 1000 \
round-robin 6 2 1 8:0 1000 67:192 1000

#handlerargs

The number of hardware handler arguments, followed by those arguments. A hardware handler specifies a
module that will be used to perform hardware-specific actions when switching path groups or handling I/O
errors. If this is set to 0, then the next parameter is #pathgroups.

#pathgroups

The number of path groups. A path group is the set of paths over which a multipathed device will load
balance. There is one set of pathgroupargs parameters for each path group.

pathgroup
The next path group to try.
pathgroupsargs
Each path group consists of the following arguments:

pathselector #selectorargs #paths #pathargs devicel ioreqsl ... deviceN ioreqsN

There is one set of path arguments for each path in the path group.
pathselector

Specifies the algorithm in use to determine what path in this path group to use for the next /O
operation.

#selectorargs

The number of path selector arguments which follow this argument in the multipath mapping.
Currently, the value of this argument is always 0.

#paths
The number of paths in this path group.
#pathargs

The number of path arguments specified for each path in this group. Currently this number is always
1, the ioreqs argument.

device

The block device number of the path, referenced by the major and minor numbers in the format
majorminor

ioreqs

93

Red Hat Enterprise Linux 7 Logical Volume Manager Administration
The number of /O requests to route to this path before switching to the next path in the current
group.

Figure A.1, “Multipath Mapping Target” shows the format of a multipath target with two path groups.

First path group Second path group
8 71814488 multipath @ 8 2 1 round-robin]e(2(1]66;128(1000 [S-RE-TRT:ETNZ-TTT B I-E U - B B - 6 =1 - e £= A E: 1]

I number of 110 reguests be send Lo this path before Switching
path major : minor numbens
number of path arguments (always 1)

number of paths in this path group
numiber of selector argurnents (always 0)
path selector
next path group to bry
number of path groups
number of hwhandler Teatures
number of features
target mame

target length In 512-bytes blocks
starting offset of the target

Figure A.1. Multipath Mapping Target

The following example shows a pure failover target definition for the same multipath device. In this target there are
four path groups, with only one open path per path group so that the multipathed device will use only one path at a
time.

0 71014400 multipath ® @ 4 1 round-robin 0 1 1 66:112 16000 \
round-robin @ 1 1 67:176 1000 round-robin @ 1 1 68:240 1000 \
round-robin @ 1 1 65:48 1000

The following example shows a full spread (multibus) target definition for the same multipathed device. In this target
there is only one path group, which includes all of the paths. In this setup, multipath spreads the load evenly out to all
of the paths.

0 71014400 multipath ® ® 1 1 round-robin 0 4 1 66:112 1000 \
67:176 1000 68:240 1000 65:48 1000

For further information about multipathing, see the Using Device Mapper Multipath document.

A.1.8. The crypt Mapping Target
The crypt target encrypts the data passing through the specified device. It uses the kernel Crypto API.

The format for the crypt target is as follows:
start length crypt cipher key IV-offset device offset

start

starting block in virtual device

length
length of this segment
cipher
Cipher consists of cipher[-chainmode]-ivmode[:iv options].

cipher

94

The Device Mapper

Ciphers available are listed in /proc/crypto (for example, aes).
chainmode
Always use cbc. Do not use ebc; it does not use an initial vector (IV).

ivmode[:iv options]

IV is an initial vector used to vary the encryption. The IV mode is plain or essiv:hash. An ivmode

of -plain uses the sector number (plus IV offset) as the IV. An ivmode of -essiv is an
enhancement avoiding a watermark weakness.

key

Encryption key, supplied in hex
Iv-offset

Initial Vector (IV) offset
device

block device, referenced by the device name in the filesystem or by the major and minor numbers in the
format majorminor

offset

starting offset of the mapping on the device

The following is an example of a crypt target.

0 2097152 crypt aes-plain 0123456789abcdef0123456789abcdef O /dev/hda 0@

A.2. The dmsetup Command

The dmsetup command is a command line wrapper for communication with the Device Mapper. For general system
information about LVM devices, you may find the info, 1s, status, and deps options of the dmsetup command to
be useful, as described in the following subsections.

For information about additional options and capabilities of the dmsetup command, see the dmsetup(8) man page.

A.2.1. The dmsetup info Command

The dmsetup info device command provides summary information about Device Mapper devices. If you do not

specify a device name, the output is information about all of the currently configured Device Mapper devices. If you
specify a device, then this command yields information for that device only.

The dmsetup info command provides information in the following categories:

Name

The name of the device. An LVM device is expressed as the volume group name and the logical volume name

separated by a hyphen. A hyphen in the original name is translated to two hyphens.
State

Possible device states are SUSPENDED, ACT IVE, and READ-ONLY. The dmsetup suspend command sets
a device state to SUSPENDED. When a device is suspended, all I/O operations to that device stop. The
dmsetup resume command restores a device state to ACTIVE.

Read Ahead

95

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

The number of data blocks that the system reads ahead for any open file on which read operations are
ongoing. By default, the kernel chooses a suitable value automatically. You can change this value with the - -
readahead option of the dmsetup command.

Tables present

Possible states for this category are LIVE and INACT IVE. An INACT IVE state indicates that a table has
been loaded which will be swapped in when a dmsetup resume command restores a device state to
ACT IVE, at which point the table's state becomes LIVE. For information, see the dmsetup man page.

Open count

The open reference count indicates how many times the device is opened. A mount command opens a
device.

Event number

The current number of events received. Issuing a dmsetup wait n command allows the user to wait for
the n'th event, blocking the call until it is received.

Major, minor
Major and minor device number
Number of targets

The number of fragments that make up a device. For example, a linear device spanning 3 disks would have 3
targets. A linear device composed of the beginning and end of a disk, but not the middle would have 2 targets.

UUID
UUID of the device.

The following example shows partial output for the dmsetup info command.

dmsetup info

Name : testgfsvg-testgfslvli
State: ACTIVE

Read Ahead: 256

Tables present: LIVE

Open count: 0

Event number: 0

Major, minor: 253, 2

Number of targets: 2
UUID: LVM-K528WUGQgPadNXYcFrrfoLnP1lUMswgkCkpgPIgYzSvigM7STfeWCypddNSWtNzc2N

Name: VolGroup00-LogVvoleo

State: ACTIVE
Read Ahead: 256
Tables present: LIVE
Open count: 1
Event number: 0]
Major, minor: 253, 0

Number of targets: 1
UUID: LVM-t0cS1kqFV9drboX1Vr8sxeYPOtqcrpdegyqj51lZxe45IJMG1lmvtgLmbLpBcenh2L3

A.2.2. The dmsetup Is Command

You can list the device names of mapped devices with the dmsetup 1ls command. You can list devices that have at
least one target of a specified type with the dmsetup 1ls --target target_type command. For other options of
the dmsetup 1s, see the dmsetup man page.

The following example shows the command to list the device names of currently configured mapped devices.

96

The Device Mapper

dmsetup 1ls

testgfsvg-testgfslv3 (253:4)
testgfsvg-testgfslv2 (253:3)
testgfsvg-testgfslvi (253:2)
VolGroup@0-LogVolol (253:1)
VolGroup@0-LogVoleo (253:0)

The following example shows the command to list the devices names of currently configured mirror mappings.

dmsetup 1ls --target mirror

lock_stress-grant--02.1722 (253, 34)
lock_stress-grant--01.1720 (253, 18)
lock_stress-grant--03.1718 (253, 52)
lock_stress-grant--02.1716 (253, 40)
lock_stress-grant--03.1713 (253, 47)
lock_stress-grant--02.1709 (253, 23)
lock_stress-grant--01.1707 (253, 8)

lock_stress-grant--01.1724 (253, 14)
lock_stress-grant--03.1711 (253, 27)

LVM configurations that are stacked on multipath or other device mapper devices can be complex to sort out. The
dmsetup 1ls command provides a --tree option that displays dependencies between devices as a tree, as in the
following example.

dmsetup 1ls --tree
vgtest-lvmir (253:13)
—vgtest-lvmir_mimage_1 (253:12)
L-mpathepl (253:8)
L-mpathe (253:5)

- (8:112)

L- (8:64)
—vgtest-lvmir_mimage_0 (253:11)
L-mpathcpl (253:3)

L-mpathc (253:2)

- (8:32)

- (8:16)

‘—vgtest-lvmir_mlog (253:4)

L-mpathfpl (253:10)
L-mpathf (253:6)

- (8:128)

L (8:80)

A.2.3. The dmsetup status Command

The dmsetup status device command provides status information for each target in a specified device. If you do
not specify a device name, the output is information about all of the currently configured Device Mapper devices. You
can list the status only of devices that have at least one target of a specified type with the dmsetup status --
target target_type command.

The following example shows the command to list the status of the targets in all currently configured mapped devices.

dmsetup status

testgfsvg-testgfslv3: 0 312352768 linear
testgfsvg-testgfslv2: 0 312352768 linear
testgfsvg-testgfslvl: © 312352768 linear
testgfsvg-testgfslvl: 312352768 50331648 linear
VolGroup@@-LogVol@l: © 4063232 linear
VolGroup@0-LogVole0: 0 151912448 linear

A.2.4. The dmsetup deps Command

97

Red Hat Enterprise Linux 7 Logical Volume Manager Administration

The dmsetup deps device command provides a list of (major, minor) pairs for devices referenced by the mapping
table for the specified device. If you do not specify a device name, the output is information about all of the currently
configured Device Mapper devices.

The following example shows the command to list the dependencies of all currently configured mapped devices.

dmsetup deps

testgfsvg-testgfslv3d: 1 dependencies : (8, 16)
testgfsvg-testgfslv2: 1 dependencies : (8, 16)
testgfsvg-testgfslvl: 1 dependencies : (8, 16)
VolGroup00@-LogVolel: 1 dependencies 1 (8, 2)
VolGroup00@-LogVoleO: 1 dependencies 1 (8, 2)

The following example shows the command to list the dependencies only of the device lock_stress-grant--
02.1722:

dmsetup deps lock stress-grant--02.1722
3 dependencies : (253, 33) (253, 32) (253, 31)

A.3. Device Mapper Support for the udev Device Manager

The primary role of the udev device manager is to provide a dynamic way of setting up nodes in the /dev directory.
The creation of these nodes is directed by the application of udev rules in userspace. These rules are processed on
udev events sent from the kernel directly as a result of adding, removing or changing particular devices. This provides
a convenient and central mechanism for hotplugging support.

Besides creating the actual nodes, the udev device manager is able to create symbolic links which the user can name.
This provides users the freedom to choose their own customized naming and directory structure in the/dev directory,
if needed.

Each udev event contains basic information about the device being processed, such as its name, the subsystem it
belongs to, the device's type, its major and minor number used, and the type of the event. Given that, and having the
possibility of accessing all the information found in the /sys directory that is also accessible within udev rules, the

users are able to utilize simple filters based on this information and run the rules conditionally based on this
information.

The udev device manager also provides a centralized way of setting up the nodes' permissions. A user can easily
add a customized set of rules to define the permissions for any device specified by any bit of information that is
available while processing the event.

It is also possible to add program hooks in udev rules directly. The udev device manager can call these programs to

provide further processing that is needed to handle the event. Also, the program can export environment variables as
a result of this processing. Any results given can be used further in the rules as a supplementary source of
information.

Any software using the udev library is able to receive and process udev events with all the information that is
available, so the processing is not bound to the udev daemon only.

A.3.1. udev Integration with the Device Mapper

The Device Mapper provides direct support for udev integration. This synchronizes the Device Mapper with all udev
processing related to Device Mapper devices, including LVM devices. The synchronization is needed since the rule
application in the udev daemon is a form of parallel processing with the program that is the source of the device's

changes (such as dmsetup and LVM). Without this support, it was a common problem for a user to try to remove a
device that was still open and processed by udev rules as a result of a previous change event; this was particularly
common when there was a very short time between changes for that device.

98

The Device Mapper

Red Hat Enterprise Linux provides officially supported udev rules for Device Mapper devices in general and for LVM
as well. Table A.1, “udev Rules for Device-Mapper Devices” summarizes these rules, which are installed in
/1ib/udev/rules.d.

Table A.1. udev Rules for Device-Mapper Devices

‘ Filename Description

16-dm.rules Contains basic/general Device Mapper rules and creates the symlinks

in /dev/mapper with a /dev/dm -N target where N is a number
assigned dynamically to a device by the kernel (/dev/dm-N is a node)

NOTE: /dev/dm -N nodes should never be used in scripts to access
the device since the N number is assigned dynamically and changes
with the sequence of how devices are activated. Therefore, true names
in the /dev/mapper directory should be used. This layout is to

support udev requirements of how nodes/symlinks should be created.

o b S S Contains rules applied for LVM devices and creates the symlinks for

the volume group's logical volumes. The symlinks are created in the
/dev/vgname directory with a /dev/dm -N target.

NOTE: To be consistent with the standard for naming all future rules
for Device Mapper subsystems, udev rules should follow the format
11-dm-subsystem_name.rules. Any libdevmapper users

providing udev rules as well should follow this standard.

13-dm-disk.rules Contains rules to be applied for all Device Mapper devices in general
and creates symlinks in the /dev/disk/by-id, /dev/disk/by-

uuid and the /dev/disk/by-uuid directories.

95-dm-notify.rules Contains the rule to notify the waiting process using 1ibdevmapper
(just like LVM and dmsetup). The notification is done after all previous
rules are applied, to ensure any udev processing is complete. Notified
process is then resumed.

69-dm-1lvm-metad.rules Contains a hook to trigger an LVM scan on any newly appeared block
device in the system and do any LVM autoactivation if possible. This
supports the lvmetad daemon, which is set with use_lvmetad=1 in
the 1vm.conf file. The lvmeetad daemon and autoactivation are n<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>